Two partial orders on the set of antichains

Jason Crampton and George Loizou

Department of Computer Science, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, England

e-mail: ccram01@dcs.bbk.ac.uk

September 19, 2000

Abstract

Given a poset X, we define two partial orders on the set of antichains of X. We prove that the two resulting posets $\langle \mathcal{A}(X), \preccurlyeq \rangle$ and $\langle \mathcal{A}(X), \preccurlyeq' \rangle$ are lattices which are isomorphic to the lattice of order ideals of X, $\langle \mathcal{I}(X), \subseteq \rangle$. We also establish the meet and join operations of the two lattices.

1 Preliminaries

The reader is assumed to be familiar with the basic concepts of partial orders and lattices. Throughout this paper, X will denote a poset with partial order \leq .

Definition 1.1 $\alpha \subseteq X$ is an antichain if for all $a, b \in Y$, $a \leq b$ implies a = b. We denote the set of antichains by $\mathcal{A}(X)$. We define the following orders on $\mathcal{A}(X)$. For all $\alpha, \beta \in \mathcal{A}(X)$,

- $\alpha \preccurlyeq \beta$ if, and only if, for all $a \in \alpha$ there exists $b \in \beta$ such that $a \leqslant b$.
- $\alpha \preccurlyeq' \beta$ if, and only if, for all $b \in \beta$ there exists $a \in \alpha$ such that $a \leqslant b$.

Definition 1.2 Given $Y \subseteq X$, $y \in Y$ is a maximal element in Y if for all $z \in Y$, $y \leq z$ implies y = z. We denote the set of maximal elements in Y by \overline{Y} . Similarly $y \in Y$ is a minimal element in Y if for all $z \in Y$, $z \leq y$ implies y = z. We denote the set of minimal elements in Y by \underline{Y} .

Remark 1.1 For all $\alpha \subseteq X$, $a \in \alpha$,

 $\overline{\alpha} \subseteq \alpha \tag{1}$

there exists
$$a' \in \overline{\alpha}$$
 such that $a \leqslant a'$, (2)

$$\overline{\alpha} \in \mathcal{A}(X). \tag{3}$$

The (trivial) proofs of the above remarks follow immediately from Definition 1.2, and are left as an exercise for the interested reader. Analogous remarks hold for $\underline{\alpha}$

Definition 1.3 Let $\langle X_1, \leq_1 \rangle$ and $\langle X_2, \leq_2 \rangle$ be two posets. Then $f: X_1 \to X_2$ is

- an order-preserving function if $x \leq_1 y$ implies $f(x) \leq_2 f(y)$,
- an order-embedding if $x \leq_1 y$ if, and only if, $f(x) \leq_2 f(y)$.

If f is an order-embedding we will write $f: X_1 \hookrightarrow X_2$.

Definition 1.4 Let X be a poset. If $f : X \hookrightarrow L$ where L is a complete lattice, then we say that L is a completion of X.

Theorem 1.1 Two lattices L_1 and L_2 are isomorphic if, and only if, there is a bijection $f: L_1 \rightarrow L_2$ such that both f and f^{-1} are order-preserving.

2 Results

Lemma 2.1 \preccurlyeq and \preccurlyeq' are partial orders.

Proof: Clearly \preccurlyeq and \preccurlyeq' are reflexive and transitive.

- \preccurlyeq is anti-symmetric. We proceed by contradiction. Suppose $\alpha, \beta \in \mathcal{A}(X)$ and $\alpha \preccurlyeq \beta, \beta \preccurlyeq \alpha$, but $\alpha \neq \beta$. Without loss of generality we can choose $a \in \alpha$ such that $a \notin \beta$. Since $\alpha \preccurlyeq \beta$, there exists $b \in \beta$ such that a < b. Furthermore, $b \notin \alpha$ since $\alpha \in \mathcal{A}(X)$ and hence contains no chain. Therefore, there exists $z \in \alpha$ such that b < z since $\beta \preccurlyeq \alpha$. Therefore, we have a < b < z with $a, z \in \alpha$, but, since $\alpha \in \mathcal{A}(X)$ we have a contradiction.
- \preccurlyeq' is anti-symmetric. Suppose $\alpha, \beta \in \mathcal{A}(X)$ and $\alpha \preccurlyeq' \beta, \beta \preccurlyeq' \alpha$, but $\alpha \neq \beta$. Without loss of generality we can choose $a \in \alpha$ such that $a \notin \beta$. Since $\beta \preccurlyeq' \alpha$, there exists $b \in \beta$ such that b < a. Furthermore, $b \notin \alpha$ since $\alpha \in \mathcal{A}(X)$ and hence contains no chain. Therefore, there exists $z \in \alpha$ such that b < z since $\alpha \preccurlyeq' \beta$. Therefore, we have z < b < a with $a, z \in \alpha$, but, since $\alpha \in \mathcal{A}(X)$ we have a contradiction.

Lemma 2.2 Let $f : \mathcal{P}(\to)\mathcal{A}(X), g : \mathcal{P}(\to)\mathcal{I}(X), f' : \mathcal{P}(\to)\mathcal{A}(X)$ and $g' : \mathcal{P}(\to)\mathcal{F}(X)$ be defined as follows.

$$f(\alpha) = \overline{\alpha} \quad and \quad g(\alpha) = \downarrow \alpha$$
$$f'(\alpha) = \underline{\alpha} \quad and \quad g'(\alpha) = \uparrow \alpha$$

Then f, g, f' and g' are well-defined functions.

Proof: We will only prove that f' and g' are well-defined, the proof that f and g are well-defined can be found in [1].

- f' is well-defined. The proof proceeds by contradiction.)(Note that is equivalent to proving that for all $Y \subseteq X$, \underline{Y} is unique.) Suppose that $f'(\alpha) = \beta_1$, $f'(\alpha) = \beta_2$ with $\beta_1 \neq \beta_2$. Then without loss of generality we can choose $b \in \beta_1 \setminus \beta_2$, and since $\beta_1 \subseteq \alpha$, $b \in \alpha$. Therefore, by (2') there exists $b_2 \in \underline{\alpha}$ such that $b_2 \leq b_1$. Now, by (3'), $\beta_1 \in \mathcal{A}(X)$ and hence $b_2 \notin \beta_1$ (otherwise there is a chain $\{b_1, b_2\} \subseteq \beta_1$). Therefore, there exists $b_3 \in \beta_1$ such that $b_3 < b_2$ (since $b_2 \in \alpha$. Therefore, we have $b_3 < b_2 < b_1$ with $b_1, b_3 \in \beta_1$ which is a contradiction.
- The proof also proceeds by contradiction. (Note that it is equivalent to proving that for any $Y \subseteq X$, $\uparrow Y$ is unique.) Suppose $g(\alpha) = \beta_1$, $g(\alpha) = \beta_2$, and $\beta_1 \neq \beta_2$. Then without loss of generality we can choose $b \in \beta_1 \setminus \beta_2$. Now $\alpha \subseteq \beta_1$, $\alpha \subseteq \beta_2$, and hence $b_1 \notin \alpha$. Therefore, by definition β_2 , there exists $a \in \alpha$ such that $a < b_1$. Now we have $a \in \beta_2$ and $b_1 \notin \beta_2$. In other words, β_2 is not an order filter.

Lemma 2.3 For all $\alpha \in \mathcal{A}(X)$, $\beta \in \mathcal{I}(X)$, $\gamma \in \mathcal{F}(X)$,

 $\overline{\ }\overline{\ }\overline{\ }\alpha = \alpha \quad and \quad \downarrow \overline{\beta} = \beta; \qquad \underline{\uparrow \alpha} = \alpha \quad and \quad \uparrow \underline{\gamma} = \gamma.$

Proof: It follows immediately from the definitions of $\overline{\alpha}$, $\downarrow \alpha$, $\underline{\alpha}$ and $\uparrow \alpha$.

Theorem 2.1 $\langle \mathcal{A}(X), \preccurlyeq \rangle$ and $\langle \mathcal{A}(X), \preccurlyeq' \rangle$ are isomorphic to $\langle \mathcal{I}(X), \subseteq \rangle$.

Proof: By Lemma 2.2 $\phi : \mathcal{I}(X) \to \mathcal{A}(X)$ and $\psi : \mathcal{A}(X) \to \mathcal{I}(X)$ where $\phi(\alpha) = \overline{\alpha}$ and $\psi(\alpha) = \downarrow \alpha$ are well-defined. Similarly the $\phi' : \mathcal{F}(X) \to \mathcal{A}(X)$ and $\psi' : \mathcal{A}(X) \to \mathcal{F}(X)$ where $\phi'(\alpha) = \underline{\alpha}$ and $\psi'(\alpha) = \uparrow \alpha$ are well-defined.

• ϕ is order-preserving - that is, for $\alpha, \beta \in \mathcal{I}(X)$,

$$\alpha \subseteq \beta \text{ implies } \overline{\alpha} \preccurlyeq \overline{\beta} \tag{4}$$

Suppose $\alpha \subseteq \beta$. Then $\overline{\alpha} \subseteq \alpha \subseteq \beta$. Hence, if $a \in \overline{\alpha}$ then $a \in \beta$. Therefore, by (2), there exists $b \in \overline{\beta}$ such that $a \leq b$. That is $\overline{\alpha} \leq \overline{\beta}$.

• $\psi = \phi^{-1}$ is order-preserving - that is, for $\alpha, \beta \in \mathcal{A}(X)$,

$$\alpha \preccurlyeq \beta \text{ implies } \qquad \forall \alpha \subseteq \downarrow \beta \tag{5}$$

Suppose $\alpha \preccurlyeq \beta$ and $a \in \downarrow \alpha$. Then there exists $a' \in \alpha$ such that $a \leqslant a'$. Since $\alpha \preccurlyeq \beta$ there exists $b \in \beta$ such that $a \leqslant a' \leqslant b$. Hence $a \in \downarrow \beta$. That is $\downarrow \alpha \subseteq \downarrow \beta$.

• ϕ' is order-preserving - that is, for $\alpha, \beta \in \mathcal{F}(X)$,

$$\alpha \supseteq \beta \text{ implies } \underline{\alpha} \preccurlyeq' \beta \tag{6}$$

Suppose $\alpha \supseteq \beta$. Then $\underline{\beta} \supseteq \beta \supseteq \alpha$. Hence, if $b \in \underline{\beta}$ then $b \in \alpha$. Therefore, there exists $a \in \underline{\alpha}$ such that $a \leq b$. That is $\overline{\alpha} \leq '\overline{\beta}$.

• $\psi' = \phi'^{-1}$ is order-preserving - that is, for $\alpha, \beta \in \mathcal{A}(X)$,

$$\alpha \preccurlyeq' \beta \text{ implies } \uparrow \alpha \supseteq \uparrow \beta \tag{7}$$

Suppose $\alpha \preccurlyeq' \beta$ and $b \in \uparrow \beta$. Then there exists $b' \in \alpha$ such that $b' \leqslant b$. Since $\alpha \preccurlyeq' \beta$ there exists $a \in \alpha$ such that $a \leqslant b'$. Hence we have $a' \leqslant b$. Hence $b \in \uparrow \alpha$. That is $\uparrow \alpha \supseteq \uparrow \beta$.

We now have, by Theorem 1.1, $\langle \mathcal{A}(X), \preccurlyeq \rangle \equiv \langle \mathcal{I}(X), \subseteq \rangle$ and $\langle \mathcal{A}(X), \preccurlyeq' \rangle \equiv \langle \mathcal{F}(X), \supseteq \rangle$. Hence, since $\langle \mathcal{I}(X), \subseteq \rangle \equiv \langle \mathcal{F}(X), \supseteq \rangle$ via the mapping $\alpha \mapsto X \setminus \alpha$, we have $\langle \mathcal{A}(X), \preccurlyeq' \rangle \equiv \langle \mathcal{I}(X), \subseteq \rangle$ via the mapping $\alpha \mapsto X \setminus \alpha$.

We summarise the relationships between the four lattices in the diagram below.

Lemma 2.4 For all $\alpha, \beta \in \mathcal{A}(X)$

$$\alpha \wedge \beta = \overline{\downarrow \alpha \cap \downarrow \beta} \quad and \quad \alpha \vee \beta = \overline{\alpha \cup \beta}; \\ \alpha \wedge' \beta = \alpha \cup \beta \quad and \quad \alpha \vee' \beta = \uparrow \alpha \cap \uparrow \beta.$$

Proof: We will prove the result for \wedge' and \vee' . The proof for \wedge and \vee can be found in [1].

- $\alpha \cup \beta$ is a lower bound of α and β . Suppose $x \in \alpha$. Then $x \in \alpha \cup \beta$, and hence there exists $y \in \alpha \cup \beta$ such that $y \leq x$. There $\alpha \cup \beta \preccurlyeq' \alpha$. Similarly $\alpha \cup \beta \preccurlyeq' \beta$.
- $\uparrow \alpha \cup \uparrow \beta$ is an upper bound of α and β . Suppose $x \in \uparrow \alpha \cap \uparrow \beta$. Then $x \in \uparrow \alpha \cap \uparrow \beta$ and hence $x \in \uparrow \alpha$ and $x \in \uparrow \beta$. Therefore, there exists $x' \in \alpha$ and $x'' \in \beta$ such that $x' \leq x$ and $x'' \leq x$. Therefore, $\alpha \preccurlyeq' \uparrow \alpha \cap \uparrow \beta$ and $\alpha \preccurlyeq' \uparrow \alpha \cap \uparrow \beta$.
- $\alpha \cap \beta$ is the greatest lower bound of α and β . Suppose $\gamma \in \mathcal{A}(X)$ and $\gamma \preccurlyeq' \alpha, \gamma \preccurlyeq' \beta$. Now $\uparrow \gamma \supseteq \alpha$ and $\uparrow \gamma \supseteq \beta$. Therefore, $\alpha \cup \beta \subseteq \uparrow \gamma$. Hence $\alpha \cup \beta \subseteq \uparrow \gamma = \gamma$.
- $\uparrow \alpha \cup \uparrow \beta$ is the least upper bound of α and β . Suppose $\gamma \in \mathcal{A}(X)$ and $\alpha \preccurlyeq' \gamma, \beta \preccurlyeq' \gamma$. Then $\uparrow \alpha \supseteq \gamma$ and $\uparrow \beta \supseteq \gamma$. Hence $\gamma \subseteq \uparrow \alpha \cap \uparrow \beta$ and $\underline{\uparrow \alpha \cap \uparrow \beta} \preccurlyeq' \underline{\gamma} = \gamma$.

References

[1] J. Crampton and G. Loizou. Embedding a poset in a lattice. Technical Report BBKCS-0001, Birkbeck College, University of London, May 2000.