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Abstract

Given a poset X, we define two partial orders on the set of antichains of X. We prove
that the two resulting posets (A(X), <) and (A(X),<x’) are lattices which are isomorphic to
the lattice of order ideals of X, (Z(X), C). We also establish the meet and join operations of
the two lattices.

1 Preliminaries

The reader is assumed to be familiar with the basic concepts of partial orders and lattices.
Throughout this paper, X will denote a poset with partial order <.

Definition 1.1 a C X is an antichain if for all a,b € Y, a < b implies a =b. We denote the set
of antichains by A(X). We define the following orders on A(X). For all a, 8 € A(X),

o a < B if, and only if, for all a € a there exists b € [ such that a < b.
e ax' B if, and only if, for all b € B there exists a € a such that a < b.

Definition 1.2 Given Y C X, y € Y is a maximal element in Y if for all 2 € Y, y < z implies
y = z. We denote the set of mazimal elements in'Y by Y. Similarly y € Y is a minimal element
inY if forall z €Y , z <y implies y = z. We denote the set of minimal elements inY by Y.

Remark 1.1 For alla C X, a € q,

aCa (1)
there exists a' € @ such that a < d’, (2)
@ e AX). (3)

The (trivial) proofs of the above remarks follow immediately from Definition 1.2, and are left as
an exercise for the interested reader. Analogous remarks hold for o

Definition 1.3 Let (X1, <1) and (X2, <2) be two posets. Then f: X1 — X is
e an order-preserving function if z <1 y implies f(z) <2 f(y),
e an order-embedding if z <1 y if, and only if, f(x) <2 f(y).

If f is an order-embedding we will write f : X; — Xs.

Definition 1.4 Let X be a poset. If f : X — L where L is a complete lattice, then we say that
L is a completion of X.

Theorem 1.1 Two lattices Ly and Lo are isomorphic if, and only if, there is a bijection f : L1 —
Lo such that both f and f~' are order-preserving.



2 Results

Lemma 2.1 < and <’ are partial orders.

Proof: Clearly < and <’ are reflexive and transitive.

e < is anti-symmetric. We proceed by contradiction. Suppose «, 8 € A(X) and a 5 8, 5 <X a,
but a # B. Without loss of generality we can choose a € a such that a € 3. Since a < £,
there exists b € 8 such that a < b. Furthermore, b ¢ a since a € A(X) and hence contains
no chain. Therefore, there exists z € a such that b < z since f < a. Therefore, we have
a < b < z with a, z € a, but, since a € A(X) we have a contradiction.

e <’ is anti-symmetric. Suppose o, 8 € A(X) and a 5’ 3, 8 %" @, but a # 5. Without loss of
generality we can choose a € « such that a € 8. Since 8 <’ a, there exists b € 3 such that
b < a. Furthermore, b ¢ « since a € A(X) and hence contains no chain. Therefore, there
exists z € «a such that b < z since a g’ 3. Therefore, we have z < b < a with a, z € «, but,
since a € A(X) we have a contradiction.

Lemma 2.2 Let f : P(—=)A(X), g: P(=)Z(X), f': P(—=)A(X) and g' : P(—=)F(X) be defined
as follows.

Then f, g, ' and ¢' are well-defined functions.

Proof: We will only prove that f’ and ¢’ are well-defined, the proof that f and g are well-defined
can be found in [1].

e f'is well-defined. The proof proceeds by contradiction. )(Note that is equivalent to proving
that for all Y C X, Y is unique.) Suppose that f'(a) = g1, f'(a) = f2 with 5 # 2. Then
without loss of generality we can choose b € f; \ (2, and since 51 C «, b € a. Therefore,
by (27) there exists b, € a such that by < by. Now, by (3%), 81 € A(X) and hence by & (1
(otherwise there is a chain {by,b2} C f1). Therefore, there exists bs € 31 such that b < by
(since ba € a. Therefore, we have by < ba < by with by, b3 € 81 which is a contradiction.

e The proof also proceeds by contradiction. (Note that it is equivalent to proving that for any
Y C X, 1Y is unique.) Suppose g(a) = 81, g(a) = B2, and 1 # B2. Then without loss of
generality we can choose b € 1 \ 2. Now a C (1, a C (2, and hence b; ¢ a. Therefore,
by definition s, there exists a € o such that a < b;. Now we have a € $2 and b; & (5. In
other words, S5 is not an order filter.

[ ]
Lemma 2.3 For all o € A(X), B € Z(X), v € F(X),
la=a and |B=p; ta=a and ty=1.
Proof: It follows immediately from the definitions of @, |a, a and fTa. |

Theorem 2.1 (A(X), <) and (A(X), =) are isomorphic to (Z(X),C).

Proof: By Lemma 2.2 ¢ : Z(X) - A(X) and ¢ : A(X) — Z(X) where ¢(a) =@ and ¢¥(a) =]
are well-defined. Similarly the ¢' : F(X) - A(X) and ¢’ : A(X) = F(X) where ¢/ (@) = a and
' (a) = T« are well-defined.



e ¢ is order-preserving - that is, for «, 8 € Z(X),
a C B implies@ < 4)

Suppose o C 3. Then @ C o C . Hence, if a € @ then a € 3. Therefore, by (2), there
exists b € B such that a < b. That is @ < 3.

e 1) = ¢! is order-preserving - that is, for o, 8 € A(X),
a < B implies la Clp (5)

Suppose a < 8 and a € la. Then there exists a’ € o such that a < a’. Since a < 3 there
exists b € B such that a < a’ <b. Hence a € 3. That is |a C |f.

e ¢' is order-preserving - that is, for «, 8 € F(X),
a D [ implies a ' (6)

Suppose a D 3. Then 8D 8 D a. Hence, if b € 8 then b € a. Therefore, there exists a € a

such that a <b. That is & g’ (.
e ¢/ = ¢'~1 is order-preserving - that is, for a, 8 € A(X),
a x' B implies ta 214 (7)

Suppose a <’ 8 and b € 15. Then there exists b’ € a such that b’ < b. Since a <’ 3 there
exists a € a such that a < b’. Hence we have a’ < b. Hence b € ta. That is Ta D 14.

We now have, by Theorem 1.1, (A(X), ) = (Z(X), C) and (A(X), X"y = (F(X), D). Hence, since
(Z(X),C) = (F(X), D) via the mapping a — X \ «, we have (A(X),=x') = (Z(X),C) via the
mapping a — X\ fa. [ |
We summarise the relationships between the four lattices in the diagram below.

a—X\a
E—

(F(X),2)

Lemma 2.4 For all o, € A(X)

aANp = lan B and aVp=aUp;
aNpB=aUB and aV' B= tTan 15.
Proof: We will prove the result for A" and V'. The proof for A and V can be found in [1].

e aU S is a lower bound of a and 3. Suppose z € a. Then x € a U 3, and hence there exists
y € a U B such that y < x. There aU B K’ a. Similarly a U S ' B.

e TaU 1f is an upper bound of o and . Suppose z € tan 1. Then x € Tan 14 and
hence z € ta and = € 13. Therefore, there exists 2’ € a and 2" € 3 such that ' < z and
2" < x. Therefore, a ' tan 18 and a £’ tan 14.

e aNf is the greatest lower bound of a and . Suppose v € A(X) and v %' a, v <’ 5. Now
Ty D a and 1y D . Therefore, a U S C 1. Hence aUf C 1y = 1.

e taU 14 is the least upper bound of « and 8. Suppose v € A(X) and @ <’ v, 8 %" 7. Then
ta D yand 182 ~v. Hence v C tan 14 and tan 18" v=1.
[ |
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