
A logic of access control

Jason Crampton, George Loizou and Greg O'Shea

Department of Computer Science, Birkbeck College, University of London,

Malet Street, London, WC1E 7HX, England

e-mail: ccram01@dcs.bbk.ac.uk

October 3, 2000

Abstract

The e�ectiveness of an access control mechanism in implementing a security policy in

a centralised operating system is often weakened because of the large number of possible

access rights involved, informal speci�cation of security policy and a lack of tools for assisting

systems administrators. Herein we present a logical foundation for automated tools that

assist in determining which access rights should be granted by reasoning about the e�ects of

an access control mechanism on the computations performed by an operating system. We

demonstrate the practicality and utility of our logical approach by showing how it allows us

to construct a deductive database capable of answering questions about the security of two

real-world operating systems. We illustrate the application of our techniques by presenting

the results of an experiment designed to assess how accurately the con�guration of an access

control mechanism implements a given security policy.

1 Introduction

The access control mechanism in a multi-user operating system provides one of the most impor-
tant security measures employed in commercial environments. However, in practice, access control
mechanisms often prove unreliable for enforcing security, because either the requirements are not
formally speci�ed or the number of possible access rights is too large for the systems administra-
tor to cope with in the absence of automated tools to determine which access rights should be
granted [21]. There are three issues to consider:

� The speci�cation of security, without which we cannot verify the security a�orded by an
access control mechanism any more than we can talk about the correctness of a program.
Speci�cation schemes that pertain speci�cally to access control have been studied elsewhere,
notably in [8] and [24];

� The con�guration of the access control mechanism of an operating system, which may involve
a large set of objects, such as �les and directories, and support many users. Real-world
evidence suggests that serious security aws occur because of errors or omissions made at
this level. The primary focus of this paper is to investigate the ability to describe and reason
about the implementation of a real-world access control mechanism;

� Whether the state of an access control mechanism meets the requirements of an abstract
security policy. In Section 6 we present the results of an experiment designed to assess
how accurately a con�guration of an access control mechanism implements a given security
policy.

1

The context for our work is multi-user centralised operating systems with discretionary access
control mechanisms which support complex applications whose functions and data should only be
made available to users in a controlled manner. In contrast, many computers support storage and
processing of personal or public data for which access control decisions are straightforward. Such
cases are not the primary motivation for our work.

In this paper we describe a new application of modal logic that provides a formal foundation for
automated tools that assist in determining which access rights should be granted. Our logic assists
in reasoning about the e�ects of an access control mechanism on the computations performed by
an operating system. This makes it possible for the systems administrator of a large computer
system, where the number of access rights is overwhelming, to answer some hitherto impractical
but important questions, such as:

� can an access right be revoked without reducing the functionality of the system and avail-
ability of information to users?

� have all of the access rights needed by a computation been granted, and does granting any
such access right have an unforeseen e�ect that compromises the con�dentiality or integrity
of the information in the system?

Our logic employs a formal model of an access control matrix, as found for example in the seminal
papers of Bell-LaPadula [2], Lampson [11] and Harrison et al. [7]. In [2] a model is developed for
multilevel secure systems, and an implementation of a security policy that ensures con�dentiality of
information in such a system is described. In [11] Lampson developed a model of a discretionary
access control mechanism based on a protection matrix, and in [7] Harrison et al. established
complexity results for the safety problem - that is, given a con�guration of an arbitrary protection
system (modelled as a protection matrix), can a subject acquire a particular access right. While all
of these papers inform our work and basic model, our concern is to demonstrate methods that we
have developed for reasoning about how primitive access rights and dependencies between them
may a�ect the operation and security of a real-world system.

We regard a computation as a �nite set of invocations of access rights all of which must
be granted by the access control mechanism for the computation to complete successfully. A
computation is initiated by a request - an event that occurs at the Trusted Computing Base
boundary [27] - which is characterised by a unique access right.

Some access rights may be invoked in some, but not in all instances of a given request because,
for example, of conditional statements in a program. Herein we use the modal logic system
S5, which deals with possibility and necessity, and which provides a natural way of describing
conditional relationships between access rights. Modal logic also provides a convenient foundation
for de�ning abstract objects and types formed out of the primitive objects and types appearing in a
deductive database. We envisage that the latter may prove to be important given the large number
of facts we must deal with and the potential need to construct a mapping between implementation
and abstract security policy. The description of a real-world access control mechanism could involve
a large number of facts, and modal logic is relatively simple and e�cient to implement by using
existing tools.

The remainder of the paper is organised as follows. In Section 2 we present a formal model of
an access control mechanism which we will use in providing a semantics to our logic. In Section 3
we describe the syntax, semantics and predicates of our logic. We show that our modal logic can be
transformed into �rst order logic and implemented in Prolog. In Section 4 we de�ne the inference
rules of our logic, and introduce a number of queries which we used in experiments against a
database of facts and inference rules of our logic. The queries were chosen to provide a suitable
means of testing the implementation of our logic, and to illustrate its practical applicability. In
Section 5 we describe experiments that involve an implementation of our logic in Prolog and the
construction of a deductive database describing two real-world operating systems. The experiments
demonstrate that our logic is computationally practical despite the large number of facts needed
to describe a real-world operating system. In Section 6 we discuss an experiment where we used
a logic program to specify a security policy. We then illustrate how our techniques can be used to

2

compare the con�guration of an access control mechanism with such a policy. Finally, in Section 7,
we present our conclusions.

Basic theoretic results are deferred to an appendix.

2 Preliminaries

We now introduce a formal model of a discretionary access control mechanism (ACM) in a cen-
tralised operating system. Our model makes use of the �nite state machine formulation of the
Bell-LaPadula model [2] which itself incorporates Lampson's protection matrix [11]. We have a
�nite set, S, of active entities, called subjects, typically processes or programs in execution; a �nite
set, O, of passive entities, called objects, typically �les; and a �nite set, R, of access rights. A
protection matrix comprises rows representing subjects and columns representing objects where an
entry in the protection matrix, [s; o] � R see [11], indicates the set of access rights which subject
s has to object o.

Rather than use a protection matrix in our model, we employ a set of triples, M � O�S�R,
to model an ACM where (o; s; r) 2 M if, and only if, (i�) r 2 [s; o]. The ACM permits a given
operation (o; s; r) to succeed if, and only if, (o; s; r) 2M . We refer to M as the state of the ACM.

The set F = O�S�R models all potential access requests to an ACM. At any point in time,
a �nite number of access rights will be invoked, and the set A � M models this active or actual
set of functionality.

We now introduce a de�nition of a relation that will be used to model dependencies between
triples in F . In Section 3 we introduce the Prolog predicate needs to represent members of this
relation, and which will form the basis for inferring dependencies between access rights.

De�nition 2.1 The reexive relation NR � F � F describes the dependencies between triples in
F . For a triple, f , we de�ne cf = fg : (f; g) 2 NRg.

Note that for all f , f 2 cf by the reexivity of NR.

De�nition 2.2 Let the set Q � F be the set of requests performed by an operating system. Each
request, q 2 Q, is associated with a computation, cq � F . The request q completes successfully if
cq 2M .

An example of a request is a command entered by a user at a terminal, to execute a speci�c
program. For example, the command who entered at a UNIX terminal would be modelled as
a request by the user process to execute the /bin/who �le. The command ls /homes/mydir

would be modelled as two requests, the �rst being a request by the user process to execute ls.
Assuming that request completed successfully, the second is a request by the ls process to read
the /homes/mydir directory.

Since Q � F we can use the deductive machinery of our logic consistently, whether we are
reasoning about the relationship between a request and a set of triples, or the relationship between
a triple and a set of triples. If there is no suitable triple, f 2 F , that is convenient for representing
a given request, then we can easily introduce a nonce triple into F to represent the request; this
may involve the introduction of a new element into either the set O or the set R.

De�nition 2.3 For a given set F = O � S � R, the state of an operating system is given by
the ordered triple k = (F;A;M), where A;M � F , and k 2 K, the set of states of the operating
system.

The operating system model Following a similar approach to the seminal papers in this
�eld [2, 7, 11, 15, 16], we model an operating system as a deterministic �nite state machine
DM(F;C; FS;W; k0), where

� F = O � S �R is �xed,

3

� C = finvoke; desist; grant; revokeg,

� FS = faccept; rejectg,

� W � C � F � FS �K �K is the set of state transitions, and

� k0 = (F;A0;M0), with A0 � M0, is the initial state of the �nite state machine. (Typically
A0 = ;.)

Table 1 shows the state transitions for an element (c; f; fs; k; k0) 2 W , where k = (F;A;M) and
k0 = (F;A0;M 0).

Command f 2M f 2 A Output k0 = (F;A0;M 0)

invoke(f) T T accept k0 = k

invoke(f) T F accept M 0 =M , A0 = A [ffg

invoke(f) F F reject k0 = k

desist(f) T T accept M 0 =M , A0 = A n ffg

desist(f) T F accept k0 = k

desist(f) F F accept k0 = k

grant(f) T T accept k0 = k

grant(f) T F accept k0 = k

grant(f) F F accept M 0 =M [ffg, A0 = A

revoke(f) T T accept M 0 =M n ffg, A0 = A n ffg

revoke(f) T F accept M 0 =M n ffg, A0 = A

revoke(f) F F accept k0 = k

Table 1: State transitions of DM(F;C; FS;W; k0)

A subject issues an invoke command for an access right when it attempts to access an object,
and eventually, once it has �nished with the object, it issues the desist command. In both events,
the state, k, of the operating system is changed by the introduction or removal of a triple in the
set A. The invoke command, when applied to a triple f 2 F , introduces f into A if, and only if,
f 2M .

State transitions that involve the introduction or removal of a given access right from M are
modelled by the grant and revoke commands, respectively. Removing a triple f 2M simultane-
ously removes that same triple from A if f 2 A. Thus f 2 A implies f 2M . This is in contrast to
those real-world operating systems that check access rights only at the time when a �le is opened.
We observe that, by construction, A � M implies A0 � M 0. Hence if A0 � M0, A � M for all
states k = (F;A;M) of DM .

The set FS = faccept; rejectg is the set of outputs. A sequence of elements (c; f) 2 C � F ,
represents a computation of the operating system and forms the input string. A sequence of
elements fs 2 FS forms the output string. The computation completes successfully if, and only
if, the output string is a sequence of \accept"s.

The Multics kernel project, which sought to improve the security of the Multics operating
system, identi�ed a number of important dependencies between objects in an operating system [23].
Of these dependencies, naming and object typing are relevant to access control, but in this paper
we deal only with naming. We have developed a more elaborate form of our logic, involving various
aspects of object-orientation, in which object typing is a central theme. We will present this work
in a future publication.

We do not want to clutter our logic with unnecessary devices for operating upon complex names,
nor do we wish to embed the syntax of any particular naming system in our logic. Therefore, we
introduce only a simple naming scheme that can serve as the basis for modelling more sophisticated

4

naming schemes. In the following de�nition we make use of the Kleene star notation (*) indicating
the concatenation of 0 or more strings from a language [13].

De�nition 2.4 Let �0 = fa; : : : ; z; A; : : : ; Z; 0; : : : ; 9g and �1 be the set of separator symbols.
We de�ne the set of names to be ��, where � = �0 [�1.

Every member of O, the set of objects, is uniquely identi�ed with a name. The following de�nition
introduces the concept of a binary relation over names, which we will use to represent a hierarchy
of objects in O.

De�nition 2.5 We de�ne a digraph G = (O;E), whose nodes are the members of O and whose
directed edges (arcs) belong to the set E � O � O. It is assumed hereafter that every node in G
(except the root) has exactly one direct parent. Hence (x; y) 2 E if and only if x 2 O, y 2 O,
x 6= y, and x is the direct parent of y in the name space of a real-world operating system.

Example 2.1 Let

O = f\=00; \=a00; \=aa00; \=aa=b00g and E = f(\=00; \=a00); (\=00; \=aa00); (\=aa00; \=aa=b00)g:

We observe that the interpretation of \/aa" relative to \/a" is unambiguous because (\=a00; \=aa00) 2
E.

De�nition 2.6 Let D = fF;C;M;FS;Q;NR; Gg. Then D is the set of sets and relations consti-
tuting our formal model.

It is easy to see that D is �nite and can be described by a string of �nite length, because D
comprises �nite sets and (binary) relations over those sets.

3 The Logic Framework

We use the modal logic system S5 as a basis for our logic of access control and demonstrate that
it can be transformed into a proper subset of �rst-order logic. We employ certain restrictions to
our logic which ensure that its transformation (into �rst order logic) is Turing computable and
that e�cient implementation through logic programming tools is feasible [26]. Speci�cally

� we avoid the use of function variables;

� we have a �nite domain of discourse and a �nite number of predicates;

� we adopt the Closed World Assumption (CWA), whereby any facts not explicitly stated as
true are assumed to be false. In particular, any triples not explicitly granted are assumed
to be forbidden;

� we avoid the use of disjunctive assertions and rules and restrict ourselves to Horn clauses
and positive ground literals (facts);

The elements of our logic are given below.

� Connectives - negation (), conjunction (^) and implication () of classical propositional
calculus

� Constants - members of the sets O, S and R

� Variables - range over the sets in the domain of discourse. The variables o, s, r, q, subscripted
or otherwise, range over the sets O, S, R and Q, respectively, and the variables x, y and z
range over the set F .

5

� A term is either a variable or a constant. A term that contains no variables is a ground term.
Where a term stands for a variable, the variable is assumed to be universally quanti�ed over
the entire formula.

� A predicate form is the application of the appropriate number of terms to a predicate constant
of arity, say k, denoted by P (t1; : : : ; tk).

� An atom is a predicate form. An atom containing no variables is a ground atom or a fact.

� A literal is an atom or the negation thereof. A literal that contains the connective : is a
negative literal, otherwise it is a positive literal.

We assume the rule of modus ponens. Namely, if L and K L are theorems, then so is K.

3.1 The modal logic system S5

We graft modal elements onto our �rst order logic to form the system S5.

� The characteristic axiom L 2L of modal logic, where the monadic operator 2 is read
\necessarily". If L is an atom, then so is 2L, and if L is a literal, then so is 2L.

� The axiom 23L 3L which characterises S5, where the monadic operator 3 is read as
\possibly". It is de�ned in terms of 2 through the equivalence 3L � :2:L. Informally this
can be interpreted as,\something is possibly true i� it is not necessarily false". We do not
make explicit use of the operator 3 in the remainder of this paper.

� A formula is recursively de�ned as follows:

{ all literals are formulae;

{ if L and K are formulae, then so are L ^K and L K;

{ if L is a formula, then so is 2L.

� We make the following two observations.

{ S5 has a law of reduction for repeated instances of the modal operators and hence,
given a positive literal, L, there are only six distinct modalities in S5, namely

L; 3L; 2L; :L; :3L; and :2L;

In particular 2L � 22L.

{ S5 has the following theorems [9].

2(L ^K) � 2L ^2K and 2(K L) � 2K 2L

� A rule is a formula of the form

L L1 ^ L2 ^ : : : ^ Ln;

where L and Li, 1 6 i 6 n, are positive literals. The literal L is the head of the rule,
and the remaining literals form the body of the rule. The rules have no negative literals
in their bodies, and are therefore Horn clauses. The second of the observations in the
preceding paragraph enables us to rewrite a formula of the form 2(L L1 ^L2^ : : :^Ln)
as 2L 2L1 ^ 2L2 ^ : : : ^2Ln.

6

3.2 Semantics of modal logic

The semantics of modal logics do not permit a simple mapping onto the domain fT; Fg. In
particular, the interpretation of the formula, 2L, is that L is necessarily true.

An e�ective basis for giving an interpretation to modal formulae is with reference to Kripke's
notion of possible worlds [26]. Intuitively, the notion of possible worlds is that there can be several
possible interpretations of a formula, each of which is said to occur in a particular world (or point).
The set W of possible worlds is called the universe, and an accessibility relation AR �W �W is
de�ned over the universe.

The semantics of S5 are given with reference to an S5-modelM(W;AR;D; V), where

� W is a non-empty universe of possible worlds;

� AR is an equivalence relation overW (thus ensuring the validity of the characteristic axioms
of S5 [9]);

� D is a (non-empty, �nite) domain of discourse;

� V is a value-assignment (see below).

We de�ne a value-assignment, V , as follows:

� for each constant d 2 D, V (d) = d,

� for each variable X , V (X) = d, where d 2 D is a constant,

� for each k-ary predicate, P , V (P) � Dk �W is a set of (k + 1)-tuples, (d1; : : : ; dk; w), with
w 2 W , which are assigned the value T for the predicate P .

V assigns a truth value to each atom P (t1; : : : ; tk), not preceded by the operator 2, at each world
w 2 W , as follows: V (P (t1; : : : ; tk); w) = T i� (V (t1); : : : ; V (tk); w) 2 V (P); V assigns a truth
value to every formula as follows:

� V ((L;w) = T i� :(V (L;w)) = T (the CWA applies)

� V (L ^K;w) = T i� V (L;w) = T and V (K;w) = T

� V (K L;w) = T i� V (K;w) = T whenever V (L;w) = T

� V (2L;w) = T i� for all z 2W such that (w; z) 2 AR, V (L; z) = T

where L and K are formulae.
We observe that V gives the truth value of a formula at a particular point w 2 W , and we

writeM �w L, which is read as \for the S5-modelM formula L is true in world w".
We restrict our attention to the truth value of a formula, L, at the particular point wa 2 W

which we use to denote the actual world. For the sake of simplicity, we will write M � L as
shorthand for M �wa L. (This is an abuse of the standard notation, whereM � L means that L
is T at all worlds in the universe.)

Given an S5-model,M(W;AR;D; V), and a �nite set of formulae, �, we sayM is a w-model of
� ifM �w L for all L 2 �. From now on, given a set of formulae, �, which we write in the context
of the actual world wa 2W , we concern ourselves with a wa-model whose value-assignment is the
set of all ground atoms which are a logical consequence of �. We will refer to this as the intended
model for �.

Example 3.1 Consider the set of formulae fP (X) 2Q(X);2Q(a)g and de�ne W = fwa;wng,
and AR = f(wa;wa); (wa;wn); (wn;wn); (wn;wa)g. (wn represents a world which is distinct from
the actual world wa.) In our intended model, the valuation, V , is given by

V (Q) = fQ(a; wa); Q(a; wn)g = fQ(a);2Q(a)g and V (P) = fP (a; wa)g = fP (a)g;

in accordance with an intuitive interpretation of the logical consequences of the formulae.
(We observe that M 2wn P (X) 2Q(X), where V is as de�ned in the preceding paragraph,

illustrating that our intended model is not a wn-model.)

7

De�nition 3.1 Let � be a �nite set of formulae in our modal logic and let K be the set of constants
in �. We de�ne �K to be the �nite set of all ground atoms that can be constructed using the modal
operator 2 and the predicates and constants appearing in �.

We note that the value-assignment in the intended model for � can be thought of as a subset of
�K . (That is, if V (P (t1; : : : ; tk); w) = T for all w such that (wa;w) 2 AR, we identify this with
2P (t1; : : : ; tk) 2 �K ; and if V (P (t1; : : : ; tk); wa) = T we identify this with P (t1; : : : ; tk) 2 �K as
in the preceding example.)

De�nition 3.2 Let � be a �nite set of formulae, and let W be a �nite set of worlds. Given a
value-assignment, I, the consequence operator, IC : P(�K) ! P(�K), where P(�K) denotes the
power set of �K , is de�ned by

IC(I) = fL : L L1 ^ : : : ^ Lk is a ground instance of a formula in �; fL1; : : : ; Lkg � Ig

We observe informally that IC extends a given value-assignment, I , for the predicates in � to
include facts that can be inferred from I and the formulae in �.

De�nition 3.3 We de�ne I0 = ; and In = IC(In�1).

Appendix I presents formal results regarding the existence and uniqueness of a �xpoint, IN , of the
operator IC. IN represents the set of logical consequences of the set of formulae at the actual
world.

Example 3.2 Using our previous example we have

I0 = ;; I1 = f2Q(a)g; I2 = fQ(a);2Q(a); P (a)g = I3 = � � � :

We observe that:

� Q(a) is entered into I2 since 2L L is an axiom in S5;

� I2 is a �xpoint.

3.3 From Modal Logic to First Order Logic

We will want to render our �nite set of formulae, �, in �rst order logic so as to use logic pro-
gramming tools such as Prolog or Datalog. The following theorem states that such a translation
is feasible.

Theorem 3.1 Given a �nite set of formulae, �, and the intended modelM(W;AR;D; V), where
W is �nite, � can be transformed in polynomial time into �, a set of formulae in classical �rst-
order predicate logic.

Proof: Following Levene and Loizou [12], we describe a transformation from a �nite set of
formulae � of our modal logic to a set of formulae � of �rst-order predicate logic.

Given the set of worldsWA = fwa;w1; : : : ; wpg �W , where (wa;wi) 2 AR for all i, 1 6 i 6 p,
the transformation is de�ned as follows.

� We introduce constants wa and wi, 1 6 i 6 p, into � to represent the worlds in WA. We
assume that we can name these constants in such a way that they do not already appear in
�.

� Replace the head of each rule (including atomic formulae which can be regarded as rules
with no bodies) in � as follows:

8

{ if the rule has the form P (t1; : : : ; tk) L, where L is the body of the rule, replace it
with the rule

P (t1; : : : ; tk; wa) L;

{ if the rule has the form 2P (t1; : : : ; tk) L, where L is the body of the rule, replace it
with the rules

P (t1; : : : ; tk; wa) L;

P (t1; : : : ; tk; w1) L;

...

P (t1; : : : ; tk; wp) L:

� Replace each instance of P (t1; : : : ; tk) in the body of the resulting rules by

P (t1; : : : ; tk; wa);

and each instance of 2P (t1; : : : ; tk) by

P (t1; : : : ; tk; wa) ^ P (t1; : : : ; tk; w1) ^ : : : ^ P (t1; : : : ; tk; wp):

It is easy to verify that this transformation requires polynomial time in the size of � the size of
WA and the number of predicates in �. �

Our transformation preserves the validity of theorems in � with respect to the intended modelM.
This is a special case of a result due to Morgan [18]. Speci�cally, if in our modelM � L(:::), where
L(:::) is a fact, then L(:::; wa) is a logical consequence of the formulae in �, and if M � 2L(:::),
then L(:::; wa) and L(:::; wi) for all i, 1 6 i 6 p, are logical consequences of the formulae in �.

We now simplify the transformation into �rst order logic by reducing the size of our universe
of worlds. We note that to make meaningful use of the modal operator 2, we require that we can
distinguish between the semantics of L and 2L at the world wa 2W .

Theorem 3.2 For the model M(W;AR;D; V), jW j > 1, where jW j is the cardinality of the set
W , is a necessary and su�cient condition for the formulae L and 2L to have di�erent semantics
at the world wa 2 W .

Proof: (Su�ciency) Let W = fwa;wng and AR = f(wa;wa); (wn;wn); (wa;wn); (wn;wa)g.
The modelM provides a semantics to the formulae L and 2L as follows:

� M �wa L if, and only if, V (L;wa) = T;

� M �wa 2L if, and only if, V (L;wa) = T and V (L;wn) = T.

Thus we have L 6� L.
(Necessity) Consider the model M1(W1; AR1; D; V), where W1 = fwag, AR1 = f(wa;wa)g,

that is, jW j = 1. Then we have in particular M �wa L if, and only if, V (L;wa) = T;M �wa 2L
if, and only if, V (L;wa) = T. Thus, for jW j = 1, L � 2L. This establishes the result. �

De�nition 3.4 Given a �nite set of formulae, �, and a model M(W;AR;D; V) for �, a query
is an expression of the form L1 ^ : : : ^ Lk. Such a query is also denoted by ?L1 ^ : : : ^ Lk.

The answer to a query is a subset of � which represents all ground instances of the query
expression which evaluate to T in the intended model. (If the answer is the empty set the query is
said to fail.)

For a more detailed analysis of queries in �rst order logic, and the way in which logic programs
compute the answer the reader is referred to [14].

9

Example 3.3 We transform the formulae

fP (X) 2Q(X);2Q(a)g

into

fP (X;wa) Q(X;wa) ^Q(X;wn); Q(a; wa); Q(a; wn)g:

The query ?2P (X), for example, is replaced by ?P (X;wa) ^P (X;wn) which fails as a �rst order
logic query in our transformed logic.

De�nition 3.5 We de�ne �, a deductive database, to be a �nite set of formulae describing an
access control mechanism. The set � is the union of a set �E of ground positive facts and a set
�I of inference rules [13].

4 The Logical Language

In this section we present the predicates and inference rules of our logic, and a number of queries
posed to our deductive database � = �E [�I . For paedagogical reasons we will present the
predicates and inference rules of our logic as a classical �rst-order predicate logic in the �rst
instance, to which we will later add the modal operator 2 where appropriate.

4.1 Predicates

In Table 2 we introduce the predicates of our language, with reference to the formal model of
Section 2. The column labelled \Semantics" states necessary and su�cient conditions for the
predicate to be true.

Predicate Name Semantics

request(q) q 2 Q

needs(x; y) (x; y) 2 NR (De�nition 2.1)

have(x) x 2M

parent of(o1; o2) (o1; o2) 2 E (De�nition 2.5)

searches((o1; s; r); o2) o2 2 O is used when resolving some other object's name o1 2 O,
o1 6= o2, in the course of executing the request (o1; s; r)

effective(q) q 2 Q; cq �M

requires(q; r) q 2 Q; r 2 cq

lacks(q; r) r 2 cq; r 62M

Table 2: Predicates

4.2 Inference Rules

We de�ne a rule to associate the needs and request predicates.

needs(x; x) request(x) (1)

The needs predicate is transitively closed under the following rule.

needs(x; z) needs(x; y) ^ needs(y; z) (2)

10

The following rules infer the set of object names searched when resolving an object's name, o1 2 O.

searches((o1; s; r); o2) parent of(o2; o1) (3)

searches((o1; s; r); o3) searches((o1; s; r); o2) ^ parent of(o3; o2) (4)

needs((o1; s; r); (o2; s; search)) searches((o1; s; r); o2); where search 2 R (5)

We de�ne the requires predicate as follows.

requires((o1; s1; s1); (o2; s2; r2)) needs((o1; s1; r1); (o2; s2; r2)) (6)

requires((o1; s1; r1); (o2; s1; search)) searches((o1; s1; r1); o2) (7)

We de�ne the effective predicate as follows.

effective(q) request(q) ^ :(needs(q; x) ^ :have(x)) (8)

Finally, we de�ne the lacks predicate as follows.

lacks(q1; q2) requires(q1; q2) ^ :(have(q2)) (9)

In other words, (8) states that a request is e�ective if there are no access rights that the request
needs which are not granted. The CWA states that any facts which are not speci�cally stated to be
true are assumed to be false, and is adopted in logic programming systems such as Prolog, where
a negative ground literal :x is inferred whenever a positive ground literal x cannot be deduced
from the given facts in �E . In general, the CWA can only be applied consistently to databases
that contain ground positive literals and Horn clauses [14]. Further, negations in the body of an
inference rule may lead to an inconsistent theory when the CWA is employed, because we may
infer that a fact is true under the CWA, and then introduce a new fact that is the negation of the
inferred fact [26]. The inference rules given in (8) and (9) di�er from the earlier inference rules in
that a negative literal appears in the body of each rule. In the speci�c case of our logic this does
not lead to inconsistency because

� the negative literals, :have and needs, are neither expressed as facts nor explicitly inferred
by any of the inference rules;

� neither effective nor :effective are ever expressed as facts.

In some operating systems, one type of access right may imply another, for example, \write" 2 R
may implicitly grant \append" 2 R. Such cases can be accommodated by including rules like (10)
below. Table 6 on page 15 shows the inference rules for the Windows NT operating system.

have((n; s; append)) have((n; s; write)) (10)

In Table 3 we summarise the predicates and inference rules of our language.

4.3 Queries

We now de�ne a number of standard queries which we used in our experiments and which operate
against a database, �, of facts and inference rules of our logic. We will write the de�nitions of
our queries in the syntax of Prolog; thus we use the symbols o, s and r to stand for constants in
the sets O, S and R, respectively, and we use the symbols O, S and R to refer to variables over
the aforesaid sets. Hereafter we use the placeholder, W , to indicate modality in a query, on the
understanding that wa or wn, as appropriate, would be substituted for W at query time. The
queries are de�ned below with respect to the current state, M , of the access control mechanism,
ACM.

11

needs needs(x; x) request(x)

needs(x; z) needs(x; y) ^ needs(y; z)

needs((o1; s; r); (o2; s; search)) searches((o1; s; r); o2)

searches searches((o1; s; r); o2) parent of(o2; o1)

searches((o1; s; r); o3) searches((o1; s; r); o2) ^ parent of(o3; o2)

requires requires((o1; s1; r1); (o2; s2; r2)) needs((o1; s1; r1); (o2; s2; r2))

requires((o1; s1; r1); (o2; s1; search)) searches((o1; s1; r1); o2)

effective effective(q) request(q) ^ :(needs(q; x) ^ :have(x))

lacks lacks(q1; q2) requires(q1; q2) ^ :(have(q2)

Table 3: Inference Rules

To obtain the set of requests that would necessarily complete successfully (in other words, all
possible triples that a request may need are granted):

?effective((O;S;R); wa):

To obtain the set of requests that would not necessarily complete successfully:

?effective((O;S;R); wn):

To obtain the set of triples that must be granted in M in order for a given request, (o; s; r), to
complete successfully:

?requires((o; s; r); (O;S;R);W):

To determine the set of requests which require a given triple:

?request((O;S;R);W); requires((o; s; r); (O;S;R);W):

To determine the set of triples whose absence is preventing the successful completion of a given
request, (o; s; r),

?lacks((o; s; r); (O;S;R);W):

To determine the set of requests that would fail were a given triple, (o; s; r), revoked:

?request((O;S;R); wn); effective((O;S;R); wa); requires((O;S;R); (o; s; r); wn):

We note that it is not possible to infer facts concerning the revocation of a triple which is possibly
required by a request that possibly completes successfully; there is no way to determine whether
there are circumstances in which the request can complete successfully without attempting to
invoke that triple.

4.4 Prolog Implementation

We discuss the Prolog implementation of our �rst order language using an example. Assume
that the following segment of code forms part of a UNIX shell script stored in a �le named
=test1=test:sh. By construction, this script will always attempt to read the �le =test1=message
(line 1), will possibly attempt to write into the �le =test1=gt (line 3), and will possibly attempt to
write into the �le =test1=le (line 4). In other words, a request, q 2 Q, where q is a triple granting
the right to execute the �le =test1=test:sh, necessarily requires triples to execute the cat program
and to read from the �le =test1=message, possibly requires a triple to write into the �le =test1=gt

12

/bin/cat =test1=message line 1

if [\$1" -gt \0"] line 2

then echo \$1" >> =test1=gt line 3

else echo \$1" >> =test1=le line 4

fi line 5

and possibly requires a triple to write into the �le =test1=le. This can be expressed in terms of
our �rst order logic predicates and the necessity operator as follows.

2request((=test1=test:sh; S; execute)):

2needs((=test1=test:sh; S; execute); (=bin=cat; S; execute)):

2needs((=test1=test:sh; S; execute); (=test1=message; S; read)):

needs((=test1=test:sh; S; execute); (=test1=gt; S; write)):

needs((=test1=test:sh; S; execute); (=test1=le; S; write)):

De�ning a Prolog rule of the form P (t1; : : : ; tn; wa) :� P (t1; : : : ; tn; wn) for each predicate, P , is an
alternative, and more economical, way of entering the facts P (t1; : : : ; tn; wn) and P (t1; : : : ; tn; wa)
into the extensional database. This means, for example, that we could de�ne the rule

have(Q;wa) :� have(Q;wn);

and subsequently need only enter have(x;wn) and have(y; wn), to enable us to infer have(x;wa)
and have(y; wa). That is, in general we can represent k necessary (modal) facts for a given
predicate using (k+1) instead of 2k �rst order facts. The modal facts above can then be expressed
in Prolog as follows.

request((O;S;R); wa) :� request((O;S;R); wn):

request((=test1=test:sh; S; execute; wn)):

needs((O1; S1; R1); (O2; S2; R2); wa) :� needs((O1; S1; R1); (O2; S2; R2); wn):

needs((=test1=test:sh; S; execute); (=bin=cat; S; execute); wn):

needs((=test1=test:sh; S; execute); (=test1=message; S; read); wn):

needs((=test1=test:sh; S; execute); (=test1=gt; S; write); wa):

needs((=test1=test:sh; S; execute); (=test1=le; S; write); wa):

5 Experimentation

We performed some experiments to demonstrate that our logic is practical to implement and that
it can be applied to a real-world operating system. As a result of these experiments, we introduced
a number of important features to our logic.

Our experimentation made use of the UNIX operating system produced by the Santa Cruz
Operation Ltd (SCO) and the Windows NT operating system produced by Microsoft [5, 25].
Both operating systems are designed to meet the security requirements of level C2 of the Trusted
Computer System Evaluation Criteria [2], as a result of which they both feature security audit
trails from which we obtained many of the facts for our deductive database.

Our approach was to obtain a set of ground facts from each operating system using an assort-
ment of imperative programs, and to present these facts to Prolog. For these experiments we did
not attempt to describe in Prolog the speci�c implementation details of either operating system,
such as groups or the syntax and semantics of access control lists [22].

The �rst task was to produce an implementation of our logic in a suitable programming lan-
guage. We chose to use Prolog for our experiments because it is well known, it is su�cient for

13

our purposes and because interpreters for Prolog are available from a variety of sources. The
interpreter that we used was the MS-DOS version of the SB-Prolog System, version 3.1, from the
University of Arizona [6]. This is a rather modest system, but it proved to be adequate for the
purposes of our experiments.

A number of additional predicates were introduced in the Prolog encoding for implementation
reasons, for example, in order to avoid looping when the Prolog interpreter encountered recursive
inference rules. Overall we found that it was straightforward to implement our logic in Prolog.

Our �rst experiment was performed on an instance of the SCO UNIX operating system, com-
prising 25 users and 22 user groups. This experiment had three objectives. First, to establish the
practicality of dealing with the number of facts required to describe a real-world operating system.
(In general, we suspect that automated construction of a deductive database is essential to the
practical application of our approach.) Second, to discover a way of obtaining facts directly from
a UNIX �le system. Third, to apply our logic to some real-world computations.

Initially, we used a UNIX script program to output the set of parent of facts for the SCO
UNIX �le system, and a C program to output the entire set of have facts for a SCO UNIX raw
disk device. This resulted in 7,555 parent of facts and 222,802 have facts, which was beyond the
capacity of the SB-Prolog interpreter. We therefore discarded any facts pertaining to subjects and
objects other than those that were actually used in the course of our experiment.

We performed a number of controlled activities on the SCO UNIX operating system, for which
the corresponding set of needsand request facts were obtained from the security audit trail. From
these we obtained the set of subject and object names, and generated a set of parent offacts.
Only seven subject names appeared in the facts. We next obtained the set of havefacts for the
objects in question using a C program whose input consisted of a list of object names and whose
output was the set of triples granted for each object. Any havefacts that referred to subjects
other than the seven above were deleted. (Our database did not contain any requestfacts for
these subjects, and we were inferring needed triples with reference to speci�c requests.) Further,
all havefacts associated with the UNIX root account were deleted, and replaced instead by a single
rule saying that the root subject has every possible type of access right to every object.

The number of facts obtained is shown in Table 4 below. We observe that the number of
possible havefacts increases polynomially as users (and, similarly, objects or access rights) are
added to the operating system. The sets of facts plus the Prolog inference rules formed our

fact number

parent of 282

request 14

needs 2821

have 1197

Table 4: Number of Facts in Deductive Database �

deductive database. We experienced some minor problems when we �rst ran our queries, such as
a recursive needs fact relating the object \/" to itself which caused the Prolog interpreter to loop.
However, these problems were all easy to identify and straightforward to correct.

Some of the answers to the queries were unexpected in that they showed that some of our
requests required triples which we had not expected, such as triples for keyboard and terminal
character mapping �les used by the UNIX shell command interpreter. This information might
bene�t a system administrator (and his or her users) who is contemplating revoking these triples
and is unaware of their importance. Without this information, essential access rights might be
revoked, leading to process failures.

The results of our �rst experiment demonstrated that it is possible to implement our modal
logic using a logic programming language, and that our logic succeeds in answering some questions
of practical importance.

14

In order to investigate the generality of our logic, and the di�culty of adapting it to a di�erent
type of operating system, we conducted a second experiment using Windows NT [21]. In this
experiment we constructed a database describing the set of access rights required to run the
commercial \Microsoft Word" word processing program against a set of �les in an NTFS �le
system.

Most of the inference rules required for describing Windows NT could be copied from those
describing SCO UNIX; those that di�ered are discussed below. There is no \root" user in Windows
NT, so the inference rule referring to the root user was omitted. Table 5 indicates the abbreviations
used for access rights supported by access control lists in Windows NT. Table 6 shows the inference
rules describing relationships that hold between access rights in an NTFS �le system [5, 25, 17].
These rules enable us to reduce the size of our database by omitting large numbers of have facts
and inferring them instead from more \permissive" access rights.

x execute

r read

c change

d delete

w write

p change properties

o take ownership

a all

Table 5: NT Access Rights

have((O;S; x);W) :� have((O;S; r);W):

have((O;S; r);W) :� have((O;S; c);W):

have((O;S; d);W) :� have((O;S; c);W):

have((O;S;w);W) :� have((O;S; c);W):

have((O;S; p);W) :� have((O;S; a);W):

have((O;S; o);W) :� have((O;S; a);W):

have((O;S; c);W) :� have((O;S; a);W):

Table 6: Inference Rules for NT Access Rights

We switched on audit trail recording, then launched and ran the word processor. As before,
we obtained a set of request and needs facts by analysis of the security audit trail. There was
insu�cient information in the security audit trail to clearly distinguish a request fact from a
needs fact; consequently we had to add request facts to our database manually. With the SCO
UNIX security audit trail we had been able to distinguish between request facts and needs facts
by reconstructing the process tree, rooted at the login shell. This is a problem that could be
easily overcome by adding further information to the security audit trail. Again our approach was
to obtain a set of ground have and parent of facts directly from the operating system, without
modelling in Prolog the native Windows NT mechanisms such as object owner and subject groups.
This is signi�cant because the mechanisms used in Windows NT allow for the explicit declaration
of denied access rights for both subjects and subject groups. The algorithm used by Windows NT
for resolving any inconsistencies between permitted and denied access rights is highly specialised
and imperative in nature. The restrictions placed on our logic, which ensure its e�ciency, exclude

15

negative facts, so that in fact we cannot describe the NT mechanisms directly in our logic. This
presents no problem when we deal with ground have facts.

We used the perms program from the \Windows NT Resource Kit" to obtain the set of have
facts and parent of facts. We then omitted any triples that could be inferred from the above
rules, thereby reducing the number of have facts from 5072 to 2820.

Initially, our queries indicated that a signi�cant number of triples were missing in respect of
temporary �les created by the Word program. The Word program deleted these �les when it
terminated, so the �les did not exist at the time that we obtained our have facts. All of these
�les had very distinctive names, and we were able to account for them by introducing have facts
that matched the name syntax of the temporary �le names. Following this, our standard queries
returned the expected results.

Overall, the e�ort required in order to adapt our logic to the Windows NT operating system
was not substantial. Most of the e�ort was spent implementing simple programs for obtaining
facts from Windows NT.

We recognise that further experimentation is required in order to assess the scalability of our
approach. We have already conducted experiments where �le de�nitions are used as Prolog facts
and infer have and parent of facts from them, in an attempt to reduce the number of ground
facts in the deductive database. A simple example is included in the next section, and further
examples can be found in [4].

We also recognise that our techniques to generate needs facts are ad hoc and do not guaran-
tee that all dependencies between access rights have been identi�ed. Further work needs to be
undertaken to establish whether, in fact, such a guarantee can be delivered, and, if so, how that
might be achieved.

6 Speci�cation and veri�cation of security policy

A comprehensive review of speci�cation and veri�cation of security policies is found in [20], from
which we adopt the following de�nition of an Access Control Policy (ACP). An ACP speci�es those
states of ACM that preserve certain desirable properties of information con�dentiality, integrity
and availability for the operating system in question.

In the ensuing de�nition the notion of consistency is employed. In simple terms, the state, M ,
of an ACM is consistent with a given ACP if it satis�es the requirements of that policy. For a
formal treatment of this concept, the reader is referred to [4].

De�nition 6.1 An operating system is in a secure state k = (F;A;M) i� M is consistent with
the ACP given for that operating system. In such a case we also say that M is a secure state of
the ACM.

We have seen that a deductive database implemented in Prolog is capable of describing the ACM of
a real-world operating system, and of reasoning about the e�ects of an ACM on the computations
performed by the operating system.

The overwhelming number of subjects, objects and types of access right in a real-world operat-
ing system means that a system administrator will not always fully appreciate the consequences of
changing an ACM. Our results provide a basis for developing automated tools that are capable of
describing, and reasoning about, such large numbers of facts, and hence improve the understand-
ing of the implications of changing an ACM, and hence reducing the possibility of con�guring an
ACM in such a way as to compromise the corresponding ACP.

We now explore whether Prolog might provide a suitable system for writing an ACP that could
be used to determine whether an ACM described in our deductive database is in a secure state.

We demonstrate this via a simple example. Although various speci�cation schemes for ACPs
exist in the literature [20], we use Prolog clauses to specify our ACP and choose the UNIX
operating system to provide an ACM since the semantics of its �le permissions align closely to
Prolog's negation-as-failure rule.

From our example we hope to gain some insight into the following issues.

16

� How do the restrictions of Prolog limit its suitability for writing an ACP?

� How easy is it to write an abstract ACP in terms of real-world objects and operations, and
to map the ACP onto a real-world access control mechanism?

� How readily can the speci�cation of security given in the ACP be used to verify whether a
given state of an access control mechanism is a secure state?

Our example concerns a university computer science department in which the following activities
must be supported.

� A lecturer can set and mark examination papers in a variety of subjects. Papers and marks
are written to �les.

� A student can read examination papers, but not �les containing marks.

� A student can submit an examination script (as a �le) for marking if the student studies the
course on which the paper is set.

The following approach is adopted.

� We write an abstract ACP in Prolog. It is intended that this should use, as far as possible,
a natural (language) interpretation of the requirements of the ACP. The speci�cation is
abstract in the sense that the ACP is written without reference to the operating system
which is to provide the ACM.

� We describe the ACM implementation using Prolog to simulate a set of UNIX �les, users
and groups.

� We map requirements of the ACP onto requests of the form (�le, user, access right).

A fuller account of this example and others can be found in [4]. We adopt the usual Prolog syntax
where variable names start with an upper case letter, constant names with a lower case letter and
lists are comma-separated and enclosed in square brackets. However, we omit the single quote
delimiters for arbitrary constants in the interests of readability.

The following extract forms a typical part of our ACP speci�cation. The person predicate is
de�ned by a list of facts specifying the users of the proposed �le system, and takes three arguments
- the name and status of the person, and a list of the courses with which the person is involved.
(The member predicate is true if and only if the �rst argument is a member of the second argument,
which must be a list.)

can(Course;Name; sit) :� person(Name; student; Courses);

member(Course; Courses):

The intended meaning of the above clause is that a person can sit an examination paper if (s)he
is a student and studies the course for which the paper was set. The UNIX implementation is
written in Prolog by expressing the UNIX accounts and �les in the system as facts using the
predicates, user def and file def. The former takes two arguments, the account name and a
list of groups to which that account belongs. The latter takes four arguments, the �le name, its
owner, its group owner and its permissions. The �le permissions are written as a list in order
to facilitate processing. Typical examples are shown below. (We assume that there is only one
course, and that all material relating to that course is held in a sub-directory, =cs, of the root
directory. The directories =papers, =scripts and =marks are sub-directories of the =cs directory.)

user def(jc; [students]):

file def(=cs=papers; root; staff; [d; r; w; x; r; w; x; r;�; x]):

17

We infer the have and needs facts directly from the �le and user de�nitions. (It was not felt
necessary to explicitly create a deductive database of triples or to use our modal logic operator 2
for this example.)

We map the ACP onto the UNIX implementation using the predicate ait map. The approach
that we adopt is to equate each action in the ACP with a set (represented as a list) of UNIX
access rights. The extract below illustrates the code used.

ait map((cs;Name;mark); [(=cs=scripts; Acc; r); (File; Acc; r); (=cs=marks;Acc; w)]) :�

ais map(Name;Acc); can(cs;Name;mark);

parent dir(=cs=scripts; F ile):

In this example, marking a script maps to requests to read the =cs=scripts directory, to read a �le
from that directory, and to write to the =cs=marks directory. The ais map predicate maps user
names in the ACP onto UNIX accounts in the implementation. (The predicate names ais map and
ait map are contractions of abstract-implementation-subject-map and abstract-implementation-
triple-map, respectively.) The parent dir predicate is true if the �rst argument is the parent
directory of the second argument.

The above framework enables us to pose the following questions as Prolog queries:

Q1 Which UNIX access rights need to be granted to implement the ACP? That is, which access
rights need to be granted so that every request that can be inferred from the ait map

predicate completes successfully? This query was constructed in order to provide an easy
means of de�ning the two following queries.

Q2 Which of the above access rights are not granted in a given state of the UNIX implementa-
tion?

Q3 Which access rights granted in a given state of the UNIX implementation are not authorised
by the ACP? That is, is our UNIX implementation in a secure state with respect to our
ACP?

The Prolog interpreter returned \no" in response to Q2 (that is, the implementation granted
all the access rights required by the ACP) as we expected. However, the interpreter did return
non-empty responses to Q3. These were of two types.

� Access rights that allowed a student to read the script of another student. Presumably this
would be undesirable, but it should be noted that the ACP does not preclude this possibility.
That is, the ACP has been inadequately speci�ed.

� Access rights that allowed a user read access to a directory. These instances are examples
of the fact that read access to a directory in UNIX is equivalent to list access. It does not
actually convey any rights to access �les in the directory. In particular, it is quite common
to have execute access, but not read access, to a directory. This enables users to read (or
write to) any �les in the directory (that they know the name of) and to which they have read
(or write) access, but prevents them from listing the contents of the directory [19]]. Thus
our simple experiment raised the question \to which directories is it appropriate for users to
have both read and execute access?" For example, it would be reasonable in the light of our
experiment, to restrict access to the /papers directory to execute only, and in \real life" for
students to be given the path and �lename for the paper they were required to sit.

In summary, we generate a list of requests that our implementation must provide in order to
support all the operations in the ACP, which in turn gives rise to a set of access rights that are
required for those requests to complete successfully. We can now analyse any access rights granted
by the ACM that are not permitted by the ACP speci�cation, and assess whether they arise as
a result of incorrectly, or partially, specifying the ACP, incorrectly implementing the ACM, or
indeed whether they are an unavoidable consequence of the shortcomings of the ACM mechanism
provided.

18

This example demonstrates that it is possible to specify an ACP using Prolog and, from our
experience, indicates that doing so can draw attention to possible security weaknesses in the
state of an ACM intended to implement that ACP. Prolog seems to provide a suitable means of
specifying an ACP, and of describing an ACM in the UNIX operating system, given the similar
restrictions of Prolog's negation as failure rule, and UNIX's denial of an access right if it is not
explicitly granted.

7 Conclusions

We have described a modal logic that allows us to reason about the e�ects of an ACM on the
computations performed by an operating system. Experimentation has demonstrated that such a
logic is practical to implement using existing tools and, moreover, for a reasonably large number
of facts. These results establish an unexpected foundation for improving the e�ectiveness of access
control mechanisms, and thereby for improving operating system security, through the use of logic
programming and deductive database technology.

There are numerous opportunities for further research. We believe that the existing formal
foundations are su�cient for practical experimentation to lead the way. The formalism will be
extended where experimentation shows it to be necessary. Tools to support experimentation are
readily available in the form of logic programming systems, and in any case we believe that more
experimentation is desirable to establish the bene�ts and limitations of the logic as currently
formulated. We therefore intend to conduct experiments to investigate the use of our approach on
a variety of real-world operating systems. We are now considering extensions to our model that
would enable us to examine:

� distributed systems, where we would like to incorporate some of the ideas in the calculus for
access control in distributed systems developed by Abadi et al. [1];

� heterogeneous systems sharing a common ACP;

� generic system administration activity;

� role-based access control;

� the management of sensitive combinations of access rights;

� and explicit modelling of implementation details including object owner, groups and access
control lists.

Our experiment in Section 6 also raises several questions. Can we use our techniques on other
platforms? For example, could we map the same ACP onto the ACM of a UNIX system and the
ACM of Windows NT? Prolog, which does not support explicit negation, presumably prevents us
from specifying some types of ACP, and di�erent formulations will presumably be needed to cope
with ACMs which support explicit denial of access rights. We anticipate that logic programming
systems such as Datalog and applications of default logic may provide some solutions to these
issues [3, 10]. We anticipate, however, that much may be gained from a better understanding of
how much can be achieved using a Prolog-based implementation.

We envisage that stronger concepts of object-orientation may also be required, together with
some form of calculus operating upon object types, in order to facilitate the construction of
mappings between an ACP and a deductive database. We are currently considering such extensions
to the logic.

Acknowledgements The work of Jason Crampton has been supported by an EPSRC award.
The authors would like to thank the referees for their constructive comments.

19

References

[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for access control in dis-
tributed systems. ACM Transactions on Programming Languages and Systems, 15(4):706{
734, September 1993.

[2] D.E. Bell and L. LaPadula. Secure computer systems: Mathematical foundations. Technical
Report MTR-2547, Volume I, Mitre Corporation, March 1973.

[3] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about Datalog (and
never dared to ask). IEEE Transactions on Knowledge and Data Engineering, 1(1):146{166,
March 1989.

[4] J. Crampton, G. Loizou, and G. O'Shea. Evaluating access control. Technical Report BBKCS-
9905, Birkbeck College, University of London, 1999.

[5] H. Custer. Inside Windows NT. Microsoft Press, Redmond, Washington, 1993.

[6] S.K. Debray, D.S. Warren, S. Dietrich, F. Pereira, and D. Spinellis. The SD-Prolog System,
Version 3.1. Department of Computer Science, University of Arizona.

[7] M.A. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in operating systems. Communi-
cations of the ACM, 19(8):461{471, August 1976.

[8] A. Heydon, M.W. Maimone, J.D. Tygar, J.M. Wing, and A.M. Zaremski. Mir�o: Visual
speci�cation of security. Technical Report CMU-CS-89-1989, Carnegie Mellon University,
Pittsburgh, PA, 1989.

[9] G.E. Hughes and M.J. Cresswell. An Introduction to Modal Logic. Methuen and Co Ltd,
London, 1968.

[10] A. Hunter and P. McBrien. Default databases: Extending the approach of deductive databases
using default logic. Data & Knowledge Engineering, 26:135{160, 1998.

[11] B.W. Lampson. Protection. ACM Operating Systems Review, 8:437{443, 1974.

[12] M. Levene and G. Loizou. A modal logic formalism for distributed and parallel knowledge
bases. Parallel Algorithms and Applications, 1:11{27, 1993.

[13] M. Levene and G. Loizou. A Guided Tour of Relational Databases and Beyond. Springer-
Verlag, London, 1999.

[14] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, London, 1984.

[15] J. McLean. Reasoning about security models. In Proceedings of the 1987 IEEE Symposium
on Security and Privacy, pages 123{131, 1987.

[16] J. McLean. The algebra of security. In Proceedings of the 1988 IEEE Symposium on Security
and Privacy, pages 2{7, 1988.

[17] Microsoft. Windows NT Resource Guide. Microsoft Press, Redmond, Washington, 1995.

[18] C.G. Morgan. Methods for automated theorem proving in nonclassical logics. IEEE Trans-
actions on Computers, C-25(8):852{862, August 1976.

[19] S. Moritsugu and DTR Business Systems. Using UNIX. QUE, Indianapolis, Indiana, second
edition, 1998.

[20] G. O'Shea. On the speci�cation, validation and veri�ction of security in access control systems.
The Computer Journal, 37:437{448, 1994.

20

[21] G. O'Shea. Redundant access rights. Computers & Security, 14:323{348, 1995.

[22] G. O'Shea. Access Control in Operating Systems. PhD thesis, Birkbeck College, University
of London, July 1997.

[23] M.D. Schroeder, D.D. Clark, and J.H. Saltzer. The MULTICS kernel design project. ACM
Operating Systems Review, 11:43{56, 1977.

[24] M. Sloman. Policy driven management for distributed systems. Journal of Network and
Systems Management, 2(4):333{360, 1994.

[25] D. Solomon. Inside Window NT. Microsoft Press, Redmond, Washington, second edition,
1998.

[26] A. Thayse, editor. From Modal Logic to Deductive Databases: Introducing a Logic Based
Approach to Arti�cial Intelligence. John Wiley & Sons, Chichester, England, 1989.

[27] US Department of Defense. Trusted computer system evaluation criteria. Technical Report
CSC-STD-002-85, Department of Defense Computer Security Centre, Fort George G. Meade,
MD, 1985.

21

Appendix A: Basic Theoretic Results

Lemma A.1 For all n 2 N,

1 In is �nite for �nite W ,

2 In is monotonically increasing.

Proof:

1 �K is �nite because � contains a �nite number of predicates and the domain of discourse,
D, is �nite. Furthermore, there are no functional constants in our logic, and the Domain
Closure Assumption applies. Hence In � �K is �nite.

2 By construction, In�1 � In.

�

Corollary A.1 There exists an integer n such that In = In+1. That is, In is a �xpoint of the
consequence operator IC.

Proof: If follows immediately from Lemma A.1. �

De�nition A.1 Let N be the least integer such that IN is a �xpoint of the consequence operator
IC. We call IN the least �xpoint of IC.

Theorem A.1 IN is unique.

Proof: (By induction) I0 = ; by de�nition. Suppose that In is unique for all n 6 k. By
de�nition, Ik+1 = IC(Ik). Since IC is a function, by induction, Ik+1 is unique. (Suppose that
IC(Ik) = I and IC(Ik) = J with I 6= J . Without loss of generality we can choose L 2 I n J .
Then there exists a rule L L ^ L1 ^ � � � ^ Lk such that fL1; : : : ; Lkg � Ik but, since L 62 J ,
fL1; : : : ; Lkg 6� Ik .) �

Theorem A.2 IN can be determined in polynomial time.

Proof: From Lemma A.1, IN is �nite. For a predicate P in �, there are at most xy possible
predicate forms in IN , where x is the number of terms in D and y is the arity of P . Since the
number of predicates in D, the number of inference rules in � and the number of worlds are all
�nite, it follows that IN is bounded by a polynomial in the size of D, � and W . Furthermore,
since In�1 � In for all n 6 N , it follows that IN can be determined in polynomial time. The
result now follows. �

22

