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Abstract

We de�ne a conict of interest policy and show that the de�nition is su�ciently

general to include several well-known generic policies as special cases and to articulate

policies in di�erent models of access control. We show that conict of interest policies

can be regarded as members of P(P(X)), for some set X, where P(X) denotes the

powerset of X, and that such policies can be reduced to a canonical form. The set

of canonical conict of interest policies can be modelled by a subset of P(P(X)),

A(P(X)). We derive upper and lower bounds for jA(P(X))j and for the maximum

length of a string that would be required to describe a conict of interest policy. We

also discuss the composition of two conict of interest policies, an ordering for conict

of interest policies, and possible simpli�cations in the expression of such policies.

�The work of Jason Crampton is supported by EPSRC Award 98317878.
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1 Introduction

Our recent work [8, 9, 21] is concerned with modelling the behaviour of a discretionary

access control mechanism of a computer system using a deductive database. The purpose of

this work is to reason about the correctness of the implementation (that is, the con�guration

of access control lists, say) of an abstract access control policy. We model the state of the

access control mechanism as a set of (access right) triples M � O � S � R, where O is

the set of objects, S is the set of subjects, and R is the set of access rights supported by

the system. Our model is essentially the same as that of Harrison, Ruzzo and Ullman [17]

with (o; s; r) 2 M if, and only if, r 2 [s; o] where [s; o] denotes the entry in the protection

matrix for subject s and object o.

We then considered access control policies, which are considered to be an abstract

speci�cation of what an access control mechanism should implement. In their simplest

form, access control policies can be con�dentiality policies (controlling read access) or

integrity policies (controlling write access). In [21] a classi�cation of access control policies

was presented, and in [8] we discussed a way in which access control policies could be

modelled as elements or subsets of P(O � S �R).

We observed that a policy, P+ � O � S � R, which speci�es the triples that are

authorised, should be implemented as follows: the access control mechanism grants subject

s access to object o in mode r only if (o; s; r) 2 P+. Similarly a policy, P� � O � S � R,

which speci�es which triples are prohibited, should be implemented as follows: the access

control mechanism grants subject s access to object o in mode r only if (o; s; r) 62 P�. (The

Bell-LaPadula model [3] implements a con�dentiality policy through a somewhat di�erent

mechanism, although the policy itself could be expressed in the way we have suggested.) It

should be obvious that a policy of type P+ or P� can be used to specify a given integrity or

con�dentiality policy - they are merely complementary views of the same issue. P+ and P�

are similar to the positive authorisation and negative authorisation policies in Ponder [10],

from which we borrow the superscript notation.

However, when one considers separation of duty policies [5], it becomes clear that each
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element of the policy must be a set of triples. Speci�cally such a policy must specify those

sets of triples which form a conict of interest. Hence a conict of interest policy, P	, can

be represented as

P	 = fAi � O � S � R : i 2 Ig where I is some index set:

Clearly if jAij = 1, for all i 2 I, then P� corresponds to a P� policy. Thus we can and will

use a conict of interest policy of type P� to model both P�-type policies and separation

of duty policies. Hence we assume a conict of interest policy de�nes any scenario which

conicts with the integrity and con�dentiality of the system (and not just separation of

duty constraints).

We note that, as with con�dentiality and integrity policies, we could de�ne a comple-

mentary policy, P�, which speci�es all permissible combinations of roles. However, we will

adopt the prevailing (and intuitively more reasonable) practice and regard a separation of

duty policy as an explicit speci�cation of conict of interest requirements.

There are two ways of implementing a conict of interest policy - static and dynamic.

In the former, the access control mechanism has the requirements of the conict of interest

policy \embedded" into it, while in the latter the access control mechanism prevents the

current con�guration of the system from violating the conict of interest policy. For a

more detailed account of such considerations and the development of modelling conict of

interest policies, with particular reference to role-based access control (RBAC), see [1].

The �rst contribution of this paper is to provide a general framework and notation

for considering conict of interest policies. We will see that this framework permits the

speci�cation of policies of type P� and P	. We regard a conict of interest policy as a

set of conict of interest constraints which are subsets of some suitable choice of set, X.

Hence a conict of interest policy is a member of P(P(X)). We also de�ne rigorously how

to compare and combine two conict of interest policies.

Since jP(P(X))j = 22
n
, where n = jXj, the number of conict of interest policies

appears to increase doubly exponentially in the size of X, and the length (or description)
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of such a policy is potentially very large.

The second contribution is to demonstrate that a simple observation about the charac-

teristics of conict of interest policies leads to a natural reduction of elements of P(P(X))

to a canonical representation of conict of interest policies.

The third contribution of this paper is to state and prove an explicit value for (the length

of) the longest canonical representation and upper and lower bounds for the size of the set

of all canonical representations, A(P(X)). The lower bound for jA(P(X))j is a corollary

of Sperner's Theorem [27]. The upper bound is equivalent to a result of Hansel [16] which

is proved using a symmetric chain partition of P(X) [4], and some elementary theory of

partially ordered sets [11].

The �nal contribution of this paper is to signi�cantly improve on Hansel's upper bound

for jA(P(X))j by introducing the concept of a bi-symmetric chain partition.

The remainder of this paper is organised as follows. In Section 2 we introduce some

fundamental de�nitions and results from the theory of partially ordered sets and combina-

torics. In Section 3 we introduce conict of interest policies, their canonical representation

and an ordering and binary operations on the set of canonical conict of interest policies.

In Section 4 we give some examples of conict of interest policies in order to illustrate the

generality and utility of our approach. Section 5 contains our theoretic results. Therein

we state and prove results leading to bounds for A(P(X)) and for the length of the largest

conict of interest policy. We include a table of results for 1 6 jXj 6 8. In conclusion

we discuss certain simpli�cations to the model of a conict of interest policy which lead

immediately to an explicit value for the number of conict of interest policies and discuss

future directions for our work. The paper is intended to be self-contained, and hence we

include the proof of Hansel's result in Appendix A.
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2 Preliminaries

2.1 Partially Ordered Sets

De�nition 2.1 A pair hP;6i is a partially ordered set or poset if for all p; q; r 2 P ,

� p 6 p,

� p 6 q and q 6 p implies p = q,

� p 6 q and q 6 r implies p 6 r.

In other words 6 is a binary relation on P which is reexive, anti-symmetric and transitive,

respectively. We will write

� p < q if, and only if, p 6 q and p 6= q; and

� p k q if, and only if, p 66 q and p 6> q.

In the remainder of this section, we will write P to mean the pair hP;6i.

De�nition 2.2 Given a poset P , Q � P is a chain if for all q1; q2 2 Q either q1 6 q2 or

q2 6 q1. Q is an antichain if for all q1; q2 2 Q; q1 k q2. We denote the set of antichains by

A(P ).

De�nition 2.3 Given a poset P and Q � P , we say q 2 Q is a minimal element if for

all q0 2 Q, q0 6 q implies q = q0. Similarly, q 2 Q is a maximal element if for all q0 2 Q,

q 6 q0 implies q = q0. We denote the set of minimal elements in Q by Q; and the set of

maximal elements in Q by Q.

Lemma 2.1 For all Q � P , q 2 Q,

Q � Q; (1)

there exists q0 2 Q such that q0 6 q; (2)

Q 2 A(P ); (3)

Q is unique: (4)
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Proof The proof is trivial, following immediately from De�nition 2.3, and is left as an

exercise for the interested reader.

De�nition 2.4 Given a poset P and p; q;2 P , we say q covers p, denoted pl q, if p < q

and p 6 r < q implies p = r.

De�nition 2.5 Given a poset P , a non-empty subset Q of P is an order ideal if for all

p 2 P; q 2 Q, p 6 q implies p 2 P . We denote the set of order ideals of P by I(P ). A

non-empty subset Q of P is called an order �lter if for all p 2 P; q 2 Q, p > q implies

p 2 P . We denote the set of order �lters of P by F(P )

De�nition 2.6 Given a poset P , and Q � P , we de�ne #Q read \down Q" as follows:

#Q = fp 2 P : there exists q 2 Q such that p 6 q g:

Similarly we de�ne "Q read \up Q" as follows:

"Q = fp 2 P : there exists q 2 Q such that p > q g:

We will denote #fpg by #p (and "fpg by "p).

It can be easily veri�ed that #Q is the smallest order ideal that contains Q. Dual results

apply to "Q [11].

2.2 Symmetric Chain Partitions

We note that hP(X);�i is a poset. We will freely interchange the symbols � and 6. In

particular, for Y; Z 2 P(X) we will write Y l Z to represent the two conditions Y � Z

and jY j = jZj � 1 more conveniently. For example, f1; 2gl f1; 2; 3g.

De�nition 2.7 A partition of a set X is a set of subsets of X, fX1; : : : ; Xkg, such that

X =
k[
i=1

Xi and Xi \Xj = ; for all 1 6 i < j 6 k:
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De�nition 2.8 A symmetric chain partition of P(X) is a partition C such that for each

C = fc0; : : : ; ckg 2 C:

c0 l c1 l : : :l ck and jc0j+ jckj = jXj:

We will denote a symmetric chain partition of P(X) by SCPn where n = jXj.

Example 2.1 A symmetric chain partition for X = f1; 2; 3g is shown below.

; �f1g � f1; 2g � f1; 2; 3g

f2g � f2; 3g

f3g � f1; 3g

It can be proved (by induction on jXj, see Theorem A.1) that there exists a symmetric

chain partition of P(X).

Lemma 2.2 SCPn has
�

n
bn=2c

�
chains.

Proof For a proof of this elementary result see [4], for example.

The following classical result provides an insight to, and constructive method of proof for,

two of the results of Section 5.

Theorem 2.1 (Sperner's Theorem [27]) For all � 2 An,

j�j 6

�
n

bn=2c

�
;

with equality if, and only if,

� =

8>><
>>:
fA � X : jAj = n

2
g n even;

fA � X : jAj = n�1
2
g or fA � X : jAj = n+1

2
g n odd:

Proof (Sketch) Sperner's Theorem can be proved as a corollary of Lemma 2.2 by noting

that if � 2 An then for all C 2 SCPn, j� \ Cj 6 1, and hence j�j 6 jSCPnj =
�

n
bn=2c

�
.
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3 Conict of Interest Policies

Let X be some set of access control artefacts. We will refer to X as an access control

context (or simply context). For example, X may be the set of all possible triples in the

Harrison-Ruzzo-Ullman model.

An access control environment (or simply environment), E, is a subset of X. The

environment models the relevant access control system data structure. For example, in the

Harrison-Ruzzo-Ullman model E is the set of triples encoded by the access control matrix.

A conict of interest policy speci�es how an access control mechanism should control the

addition of elements to the environment.

De�nition 3.1 A conict of interest constraint or separation of duty constraint is a subset

of X. A conict of interest policy or separation of duty policy is a set of conict of interest

constraints.

An environment, E, satis�es a conict of interest policy, �, if, and only if, for all

A 2 �, A \E � A. We denote the set of environments which satisfy � by E(�). (We also

say that � is violated by E if there exists A 2 � such that A � E.)

In other words, a conict of interest policy states which subsets of X cannot be present

simultaneously in the environment, and is satis�ed provided the environment does not

include any conict of interest constraint in the policy. We make the following observations

about this de�nition.

� A singleton set fag 2 �, implies that a 2 X is prohibited from ever entering the

environment E. Speci�cally, the policy

P� = fx1; : : : ; xng

can be expressed as the conict of interest policy

� = ffx1g; : : : ; fxngg:
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It is because our framework can accommodate policies which articulate con�dentiality

and integrity constraints, as well as separation of duty constraints that we prefer the

terminology \conict of interest" rather than \separation of duty" policies. In this

sense, conict of interest policy means a policy which conicts with the interest of

the system.

� If � = f;g then no environment satis�es � (since ; � E for all E � X).

� If � = ; then every environment satis�es � (since � contains no constraints).

Table 1 shows three conict of interest policies

�1 = ff1; 2g; f2; 3gg; �2 = ff1g; f2; 3gg; �3 = ff1g; f1; 2g; f2; 3gg;

and the environments which satisfy (ticked) and violate (crossed) each policy. These poli-

cies could be regarded as being de�ned on the subscripts of some set of roles fr1; : : : ; rng.

(For example in �1, the roles r2 and r3 form a conict of interest constraint.)

Environment �1 = ff1; 2g; f2; 3gg �2 = ff1g; f2; 3gg �3 = ff1g; f1; 2g; f2; 3gg

; � � �

f1g � ✗ ✗

f2g � � �

f3g � � �

f1; 2g ✗ ✗ ✗

f1; 3g � ✗ ✗

f2; 3g ✗ ✗ ✗

f1; 2; 3g ✗ ✗ ✗

Table 1: A comparison of conict of interest policies and environments

De�nition 3.2 Given two conict of interest policies, �; �, we say � is weaker than (or

less restrictive than or is enforced by) � if E(�) � E(�). We will also say � is stronger

(or more restrictive than or enforces) �; � and � are equivalent if E(�) = E(�).
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In Table 1, �1 is weaker than �2, for example. From Table 1 we also see that �2 and �3

are equivalent. In fact we have the following result.

Proposition 3.1 Suppose � 2 P(P(X)) and A � B for some A;B 2 �. De�ne �0 =

� n fBg. Then E(�) = E(�0). In other words, � and �0 are equivalent.

Proof We prove the equivalent statement that an environment E satis�es � if, and only

if E satis�es �0.

) It follows immediately from the fact that �0 � �.

( The proof proceeds by contradiction. Suppose, then, that E satis�es �0 but does not

satisfy �. Clearly B � E is the only possible way in which E does not satisfy �.

However, by construction, A � B � E, and hence E does not satisfy �0.

We note that hP(P(X));�i is a poset, and propose the following de�nition of a canonical

representation of a conict of interest policy.

De�nition 3.3 Given a conict of interest policy � 2 P(P(X)), we de�ne the canonical

representation of � to be � 2 A(P(X)).

In other words, given a conict of interest policy, its canonical representation is obtained

by removing all conict of interest constraints which are a superset of another constraint

in the policy. By Proposition 3.1, the canonical representation of a policy is equivalent to

the original policy, and by (4), it is unique. For example �2 is the canonical representation

of �3 in the example given in Table 1. Henceforth, therefore, we assume that all policies

are in their canonical form. We denote the set of canonical conict of interest policies by

An where n = jXj. We now de�ne an ordering on An and prove it is a partial order.

Lemma 3.1 For all �; � 2 An, de�ne

� 4 � if, and only if, for all A 2 � there exists B 2 � such that A � B:
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Then hAn;4i is a poset.

Proof We need to prove that 4 is reexive, anti-symmetric and transitive. It is clear that

the �rst and third of these properties hold. We prove 4 is anti-symmetric by contradiction.

Suppose that � 4 � and � 4 �, but � 6= �. Without loss of generality we can choose

A 2 � such that A 62 �. Since � 4 �, there exists B 2 � such that A < B. Furthermore,

B 62 � since � 2 An and hence contains no chain. Therefore, there exists C 2 � such that

B < C since � 6 �. Therefore, we have A < B < C with A;C 2 �, but � is an antichain.

As usual we will write � � � if � 4 � and � 6= �. Note that hP(P(X));4i is not

a poset, since, for example, ff1g; f1; 2gg 4 ff1; 2gg and ff1; 2gg 4 ff1g; f1; 2gg but

ff1; 2gg 6= ff1g; f1; 2gg.

The following proposition demonstrates that the formal de�nition of an ordering on

the set of conict of interest policies, 4, corresponds exactly to the intuitive de�nition of

strength given in De�nition 3.2.

Proposition 3.2 For all �; � 2 A(X), � 4 � if, and only if, � is stronger than �.

Proof The proof in both directions proceeds by contradiction.

) Given � 4 �, suppose E(�) 6� E(�). Then there exists E 2 E(�) such that E 62 E(�).

Hence there exists B 2 � such that B � E. Since, by assumption, � 4 �, for all

B 2 � there exists A 2 � such that A � B, and hence we have A � B � E. That is,

E 62 E(�) which is a contradiction.

( Given � is stronger than �, suppose � 64 �. Then, by de�nition, for some B 2 �

and for all A 2 �, A 6� B. In other words, for all A 2 �, A \ B � A. Therefore,

by de�nition, B 2 E(�), and since � is stronger than �, E(�) � E(�). That is B

satis�es the policy �. This is a contradiction since B 2 �.
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De�nition 3.4 For all �; � 2 An, de�ne

�� � = � [ �; and �+ � = "�\ "�:

The operation � merges two policies by including the stronger aspects of the two policies.

That is, the policy � � � is the weakest policy which enforces both � and �. In fact, we

have the following result.

Theorem 3.1 hAn;4i is a complete lattice. Moreover, the join and meet operations of

the lattice are + and � respectively.

Proof This is a special case of two results we proved in [6].

Figure 1 shows the lattices hP(X);�i and hA(P(X));4i for X = f1; 2; 3g. By Theo-

rem 3.1, + and � are associative, commutative, and closed. Furthermore, the policies f;g

and ; are identity elements for + and �, respectively.

Example 3.1 Let X = f1; 2; 3g. We have, for example,

ff1g; f2; 3gg � ff1; 2g; f2; 3gg � ff1; 2; 3gg;

ff1g; f2; 3gg � ff2g; f1; 3gg = ff1g; f2gg;

ff1g; f2; 3gg+ ff2g; f1; 3gg = ff1; 2g; f1; 3g; f2; 3gg:

De�nition 3.5 Let Y � X. We de�ne the Y�constrained subset of An, denoted An=Y ,

as follows:

An=Y = f� 2 An : A � Y for all A 2 �g:

Informally, a Y -constrained subset of An is the set of policies in which each of the con-

straints is a subset of a �xed set of elements, namely Y . Clearly there is a bijection

� : An=Y ! Am where m = jY j.
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���
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���

�

f1g
���

�
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���
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X
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hA(P(X));4i

f;g

ff1g;f2g;f3gg
HH

HH

��
��

ff1g;f2gg
��
��

ff1g;f3gg
HH

HH

��
��

ff2g;f3gg
HH
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ff1g;f2;3gg

((((
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((((

ff2g;f1;3gg
���

���
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ff3g;f1;2gg
��

��
ff1gg ff2gg ff3gg ff1;2g;f1;3g;f2;3gg

hhhh
hhhh

hhhh

XXX
XXX

XX

HH
HH

ff1;2g;f1;3gg
��
��

ff1;2g;f2;3gg
HH

HH

��
��

ff1;3g;f2;3gg
HH

HH
ff1;2gg
��

��

ff1;3gg ff2;3gg
HH

HH
ff1;2;3gg

;

Figure 1: The Lattices hP(X);�i and hA(P(X));4i for X = f1; 2; 3g

De�nition 3.6 For 0 6 r 6 n,

�(n) = jAnj; �(n; r) =
X
jY j=r

jAn=Y j;

�
n

r

�
=

n!

r!(n� r)!
:

Proposition 3.3 For all 1 6 r 6 n,

�(n; r) =

�
n

r

�
�(r); �(n) =

nX
r=0

�(n; r) =
nX
r=0

�
n

r

�
�(r)

Proof The results follow immediately from De�nitions 3.5 and 3.6.

4 Examples of Conict of Interest Policies

In this section we will illustrate the application of our approach using two di�erent access

control models. This section has no impact on the development of the theoretical results
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of Section 5 and can be omitted if the reader has little experience of access control models.

In the �rst set of examples we assume the protection matrix model, and in the second

a role-based access control model (RBAC). In both examples we indicate the sets which

correspond to X and E. We conclude the section with a brief discussion of RCL 2000 [1], a

role authorisation constraint language for expressing separation of duty constraints within

the RBAC96 [23] models.

4.1 The Protection Matrix Model

Let M denote the protection matrix, O the set of objects, S the set of subjects and R

the set of access modes. We will write [s; o] � R to denote the access modes available to

subject s for object o. (Most systems which employ this model use access control lists,

corresponding to a row in M , or capability lists, corresponding to a column in M , to

represent the matrix [21].) In this case X = O � S � R and (for static conict of interest

policies) E is the set of triples encoded by M . (The environment in the dynamic case is

the set of active triples which have been invoked by subjects and granted by the access

control mechanism.)

Suppose now that o1; o2 2 O, S = fs1; : : : ; sng and x 2 R where x denotes \execute"

access. We now give some simple examples of conict of interest policies.

� Subject s1 is prohibited from executing o1.

�1 = ff(o1; s1; x)gg

�1 is satis�ed provided x 62 [s1; o1]. This is a trivial example of a negative authorisa-

tion policy.

� No subject can execute both o1 and o2.

�2 = ff(o1; s; x); (o2; s; x)g : s 2 Sg
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�2 is satis�ed provided x 62 ([s; o1]\ [s; o2]) for all s 2 S. This is a trivial example of

a separation of duty policy.

� There is no \super-user".

�3 =
n[
i=1

fO � fsig � Rg

� No subject is permitted to execute any �le.

�4 = ff(o; s; x)g : o 2 O; s 2 Sg

�4 is satis�ed if for all o 2 O and for all s 2 S, x 62 [s; o].

� If we combine the features of �1 and �2 we see that the composite policy

�0 = �1 [ �2 n f(o1; s1; x); (o2; s1; x)g

since f(o1; s1; x)g � f(o1; s1; x); (o2; s1; x)g (see Proposition 3.1).

4.2 The Role-Based Access Control Model

We assume the existence of a set of roles, R = fr1; : : : ; rng, a set of users, U = fu1; : : : ; umg,

and a user-role assignment relation, UA � U � R, [23]. We will denote the set of roles

assigned to a user, u, by �u.

In the simplest case, we consider X = R and in the static case we have a family of

environments E(ui) = fr : (ui; r) 2 UAg = �ui , 1 6 i 6 m. (The environment in the

dynamic case is the \active" user-role assignments determined by the sessions which a user

is running [23].)

We now give some typical examples of simple policies.

� No user can be assigned to the role r. Such a policy may be useful when there is a

MaxRole which is too powerful for any user to be assigned to (see [19], for example);

15



or when a role has been \de-commissioned" and should no longer be used (see [26],

for example).

�1 = ffrgg

� No user can be assigned to both the roles r1 and r2. This is an example of the

classical separation of duty constraint in role-based access control.

�2 = ffr1; r2gg

We now briey consider the case when X = U � R. In this case E = UA. This expands

the range of policies enormously. We have the following simple examples.

� User u1 cannot be assigned to role r1. (Strangely this type of constraint or policy

is rarely mentioned in RBAC literature. The administrative model URA97 provides

constraints which can prevent users being assigned to roles, but these constraints

are usually articulated in terms of existing user-role assignments [22]. It is not im-

mediately obvious how such constraints could be used to implement a policy which

prohibits particular user-role assignments.)

�3 = ff(u1; r1)gg

We note the following useful application of such a policy. We recall that the role-

based access control model is policy neutral [23], and that it is of considerable value to

demonstrate that such a model can be used to simulate mandatory and discretionary

access control models [18, 25, 20]. It has been convincingly shown that role-based

access control can indeed simulate mandatory access control [20] by considering the

security lattice, L, as two distinct read and write role hierarchies LR and LW , re-

spectively. LR is isomorphic to L and LW is the dual of LR [11].

However, we believe the constraints introduced in [20] to enforce the information
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ow policy that is an integral part of the mandatory access control model are rather

complicated. We suggest that to achieve this we can simply de�ne a role exclusion

policy of a similar form to �3 for each user u, where fr1; : : : ; rng is an antichain in

L. Figure 2 shows a security lattice for the security labels

unclassified < classified < secret < top secret

which we will abbreviate to u, c, s, and t, respectively; and two security categories,

a and b. If a user, u, has security clearance ca, the conict of interest policy

ff(u; sa)g; f(u; cb)gg

preserves the information ow policy de�ned by the lattice by preventing u being

assigned to, and hence activating, any roles other than u and ca. (Of course, in a

role-based access control implementation there would actually be a read and a write

lattice, but the example policy can be extended in the obvious way to accommodate

this.)

u
@

@
�
�

ca cb

sa
�
�

sb
@
@

tab

Figure 2: A security lattice

� Users u1 and u2 cannot occupy both or one of each of the two roles r1 and r2. This

kind of policy was identi�ed in [2] and aims to prevent collusion between two (or

17



more) individuals to compromise system security.

�4 = ff(u1; r1); (u1; r2)g; f(u2; r1); (u2; r2ig;

f(u1; r1); (u2; r2)g; f(u1; r2); (u2; r1igg

The �rst two constraints are simple separation of duty constraints for each of the

users, while the other two constraints prevent collusion by the two users.

We now consider the two most signi�cant existing approaches to separation of duty in

role-based access control and compare them to our approach. It should be mentioned that

most RBAC models include a role hierarchy [23, 18, 14, 24], which can be regarded as a

partially ordered set, hR;6i. Unlike the standard literature, we will use the notation of

partial order theory to develop our material.

The NIST Model The most detailed discussion of separation of duty constraints and

their realisation within a functioning access control system is found in [15] (which is a

realisation and re�nement of the NIST model outlined in [14]). The RBAC database

includes two binary, irreexive, symmetric relations ssd and dsd standing for static and

dynamic separation of duty, respectively. A pair (r1; r2) 2 ssd is, in our terminology, a

conict of interest constraint. A conict of interest policy corresponds to the set ssd and

is violated if fr1; r2g � �u for some u 2 U .

We now discuss the additional constraints identi�ed in [15] which ssd (and dsd) must

satisfy in a role-based context. The ssd relation must be irreexive and symmetric. The

irreexivity condition is introduced to prevent a mutually exclusive pair (r; r) from being

entered into the ssd relation. The assumption being that such a pair would only have the

meaning that no user could be assigned to the role r. We would argue that, as in policy

�1, there is a useful place for such constraints when one includes a user component. (The

symmetric condition is introduced in order to establish certain logical equivalences between

constraints in the NIST model in the presence of a role hierarchy, and to thereby reduce

the number of logical tests in the implementation of the database update operations.)
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Furthermore, if (r1; r2) 2 ssd then we have the following additional constraints.

� fr1; r2g 2 A(R)

As noted above this constraint is not articulated in this way in [15]. It is obvious

that this is necessary when one considers that if, without loss of generality, r1 6 r2

and (r1; r2) 2 ssd then no user can be assigned to r2 or any role senior to it.

Note that in De�nition 3.1 we assumed nothing about the set X. If, in fact, the

context supports some sort of inheritance, that is hX;6i is a partially ordered set,

then we observe that in general a conict of interest constraint should be de�ned to

be an antichain in X rather than a subset of X.

For example, consider the role hierarchy in Figure 3 and the policy � = ffr1; r3g; fr2; r3gg.

It is clear that if r1 enters the environment, then so do r2 and r3, violating both con-

straints. Hence the policy � can be reduced to the policy �0 = ffr1gg.

R

r2
�
�

r3
@

@

r1

A(R)

;
�
�

@
@

fr2g
�
�

fr3g
@
@

fr2; r3g

fr1g

P(R)

;
HH

HH

��
��

fr1g
��

��

fr2g
HH

HH

��
��

fr3g
HH

HH
fr1; r2g
��

��

fr1; r3g fr2; r3g
HH

HH
fr1; r2; r3g

Figure 3: A simple role hierarchy, R, A(R) and P(R)

In general, therefore, a conict of interest policy in a role-based access control model

is a member of A(A(R)). In other words, the constraints of a conict of interest

policy are elements of A(R) rather than A(P(X)); see Figure 3, for example. (In the

case of an unordered set X - that is, the order relation is the empty set - the set of

antichains is simply P(X).)

� "r1 \ "r2 = ;
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The justi�cation for this condition is because if r 2" r1\ " r2 no user can be assigned

to the role r. We would not wish to impose such a condition on conict of interest

policies in general, particularly if �ner granularity is required where users are included

in the policies, as in our examples above.

In short, we believe the NIST approach (and the broadly similar approach adopted in the

Role Graph Model [18]) to separation of duty policies omits the vitally important user

perspective.

The RCL 2000 Language A more exible and wide-ranging discussion of separation

of duty policies was presented in [1], and included policies in which users were a factor

in policy speci�cation. The paper introduces a role authorisation constraints speci�cation

language, RCL 2000, in which separation of duty policies are expressed. The language

includes a conicting role set, CR = fR1; : : : ; Rng, where Ri � R, 1 6 i 6 n. In our

terminology, CR is a set of constraints, and hence, a conict of interest policy.

The RCL 2000 expression

jroles�(OE(U) \ OE(CR))j 6 1 (5)

is interpreted in the following way: for the collection of sets of roles (or conict of interest

policy), CR, no user can be assigned more than one role in any of the sets contained in

CR. In other words, in our terminology, (5) states the conditions for satisfaction of the

conict of interest policy CR. Therefore, we would argue that we could simply express the

policy CR and (5) as a set of mutually exclusive pairs. Speci�cally, if we replace CR by

� = fP1; : : : ; Pmg where for each pair of roles, (r1; r2), in a constraint in CR there exists an

i such that 1 6 i 6 m and Pi = (r1; r2), then the policy � is equivalent to the collection

CR and the RCL 2000 statement (5) above. We pursue this line of thought in Section 6.
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5 Structural Complexity Results

De�nition 5.1 The length of a conict of interest policy is de�ned by the function l :

An ! N where

l(�) =

8>>><
>>>:
0 � = ;;

X
A2�

jAj otherwise:

The length of a conict of interest policy is a measure of the complexity of describing it

(by a string, for example).

We now state and prove two results similar in spirit to Sperner's Theorem. Lemma 5.1

states the maximum length of a conict of interest policy, while Lemma 5.2 states the

largest element of Ar
n (see De�nition 5.2).

Lemma 5.1 For all � 2 An,

l(�) 6 dn=2e

�
n

dn=2e

�
;

with equality if, and only if,

� =

8>><
>>:
fA � X : jAj = n

2
g or fA � X : jAj = n+2

2
g n even;

fA � X : jAj = n+1
2
g n odd:

(6)

Proof We �rst note that � as de�ned in (6)

� belongs to An by construction; and

� l(�) = dn=2e
�

n
dn=2e

�
.

This is obvious when n is odd. Note that for 0 6 r < n,

(n� r)

�
n

r

�
= (r + 1)

�
n

r + 1

�
; (7)
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and that when n is even dn=2e= n/2. Hence, if n is even, substituting r = n=2

into (7) we obtain

n

2

�
n

n=2

�
= (n=2 + 1)

�
n

(n=2) + 1

�
=
�n+ 2

2

�� n

(n+ 2)=2

�
:

We follow the approach of the original proof of Sperner's Theorem [27]. Let � 2 An be

any policy with maximal length. We will prove that � = �. De�ne

b�c = fB 2 � : jBj = lg where l = min
B2�

jBj;

 = fC � X : there exists B 2 b�c such that B l Cg;

and

d�e = fB 2 � : jBj = ug where u = max
B2�

jBj;

� = fD � X : there exists B 2 d�e such that D l Bg:

De�ne

� 0 = (� n d�e) [ �:

Then, for all � 2 An,

� 0 2 An; (8)

and, for all u > n+2
2
,

l(� 0) > l(�) with equality if u =
n+ 2

2
: (9)

Analogous results can be proved for � 00 = (� n b�c) [  (These are left as an exercise for

the interested reader.)
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Proof of (8) (By contradiction) Therefore, suppose � 0 62 An. Then there exists D 2 �

such that B � D for some B 2 � n d�e. However, this implies that there exists B0 2 d�e

such that D � B0 by construction of �, and hence that B � B0 and � 62 An.

Proof of (9) We count N , the number of pairs (B;D) such that B 2 d�e, D 2 � and

D l B, in two di�erent ways. For a particular B 2 d�e there are exactly u such subsets

D (obtained by omitting one of the u elements of B). For a particular D 2 � there are

(n� (u� 1)) = (n� u+1) possible subsets B which cover D, since jDj = u� 1. However,

not all of these are necessarily in d�e. Therefore, we have

ujd�ej = N 6 (n� u+ 1)j�j: (10)

Hence

j�j

jd�ej
>

u

n� u+ 1
>

u

u� 1
since u >

n+ 2

2
implies n� u+ 1 6 u� 1;

and therefore

(u� 1)j�j > ujd�ej (11)

Now, by de�nition,

l(� 0) = l(�)� ujd�ej+ (u� 1)j�j;

and hence we have, by (11),

l(� 0) > l(�) with equality when u =
n + 2

2
:

Since, by assumption, � has maximal length, (8) and (9) imply

u 6
n+ 2

2
and, analogously, l >

n

2
:
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We now have three cases:

� n odd

Then u = l = dn=2e and � = �;

� n even, l = u

Then either u = l = n
2
or u = l = n+2

2
and � = �;

� n even, l < u

Then we derive a contradiction as follows. Since l(�) is assumed to be maximal and

l(�) 6 l(� 0) 6 dn=2e

�
n

dn=2e

�
(12)

we must have equality in (12), and hence equality in (10). In other words, for each

C 2  every superset B of C must be in d�e. Now choose some B 2 � n d�e and

C 2  such that jB\Cj is a maximum. Since jBj = jCj = u�1 (jBj = u�1 because

l = u � 1) and B 6= C, there exists some b 2 B n C and some c 2 C n B. Hence,

because of the required equality in (10), C [ fbg 2 d�e, C 0 = C [ fbg n fcg 2  and

jB \ C 0j = jB \ Cj+ 1 contradicting the maximality of B \ C.

De�nition 5.2 For 0 6 r 6 n, we de�ne Ar
n � An as follows:

Ar
n = f� 2 An : max

A2�
(jAj) = rg

In other words, Ar
n is the set of all conict of interest policies in which the largest constraint

has cardinality r.
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Example 5.1 Let X = f1; 2; 3g. Then

A2
3 =

�
ff1; 2gg; ff1; 3gg; ff2; 3gg;

ff1g; f2; 3gg; ff2g; f1; 3gg; ff3g; f1; 2gg;

ff1; 2g; f1; 3gg; ff1; 2g; f2; 3gg; ff1; 3g; f2; 3gg;

ff1; 2g; f1; 3g; f2; 3gg
	
:

Lemma 5.2 For all � 2 Ar
n,

j�j 6

8>>><
>>>:

�
n

r

�
if r 6 dn=2e;�

n

dn=2e

�
�

�
r

dn=2e

�
+ 1 if dn=2e 6 r 6 n;

with equality if, and only if,

� =

8>><
>>:
fA � X : jAj = rg if r 6 dn=2e;

A0 [ fA � X : jAj = dn=2e; A * A0g if dn=2e 6 r 6 n;

and jA0j = r.

Proof It is immediate by inspection that if r 6 dn=2e then the choice of � such that

j�j is a maximum is simply the set of all subsets of size r. This can be most clearly seen

by considering SCPn and noting that a choice of � must take at most one element from

any chain in SCPn (because of the restriction on � with respect to set inclusion) and that

precisely
�
n
r

�
chains have an element of size r.

Consider the case when r > dn=2e. We prove the result in the same way as for

Lemma 5.1 (but omitting some of the details). Let � 2 Ar
n such that j�j is maximal,
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select B0 2 � such that jB0j = r and de�ne

b�c = fB 2 � n fB0g : jBj = lg where l = min
B2�nfB0g

jBj;

 = fC � X : there exists B 2 b�c such that B l Cg;

and

d�e = fB 2 � n fB0g : jBj = ug where u = max
B2�nfB0g

jBj;

� = fD � X : there exists B 2 d�e such that D lBg:

De�ne

� 0 = (� n d�e) [ �:

As before, � 2 Ar
n. Furthermore, j� 0j = j�j � jd�ej+ j�j > j�j for all u > n+1

2
with equality

when u = n+1
2
, since

j�j

jd�ej
>

u

n� u+ 1
>

n+1
2

n� n+1
2

+ 1
= 1 for

n+ 1

2
6 u 6 n:

Hence we have l > n�1
2

and u 6 n+1
2
. We arrive at the same three cases, the only di�erence

being that l = u = n�1
2

is no longer an optimal choice because there are more subsets of B0

of size
�

r
bn=2c

�
than of size

�
r

dn=2e

�
. Therefore, the number of subsets (which are not subsets

of B0) of size
�

n
dn=2e

�
�
�

r
dn=2e

�
exceeds the number of subsets of size

�
n

dn=2e

�
�
�

r
bn=2c

�
.

Example 5.2 Consider the symmetric chain partition in Table 2. Suppose we are consid-

ering A4
5 and that f1; 2; 3; 4g has already been chosen as an element of length 4 in �. The

elements that cannot be included in a valid set of elements for � 2 A4
5 are shown in bold

typeface. Note that there are more such subsets in the 2-element column than the 3-element

column.
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; �f1g �f1; 2g �f1; 2; 3g �f1; 2; 3; 4g �f1; 2; 3; 4; 5g

f2g �f2; 3g �f2; 3; 4g �f2; 3; 4; 5g

f3g �f1; 3g �f1; 3; 4g �f1; 3; 4; 5g

f4g �f1; 4g �f1; 2; 4g �f1; 2; 4; 5g

f5g �f1; 5g �f1; 2; 5g �f1; 2; 3; 5g

f2; 4g �f2; 4; 5g

f2; 5g �f2; 3; 5g

f3; 4g �f3; 4; 5g

f3; 5g �f1; 3; 5g

f4; 5g �f1; 4; 5g

Table 2: SCP5 and subsets of f1; 2; 3; 4g

An example of � 2 A4
5 such that j�j is maximal is

�
f1; 2; 3; 4g; f1; 2; 5g; f2; 4; 5g; f2; 3; 5g; f3; 4; 5g; f1; 3; 5g; f1; 4; 5g

	
:

Corollary 5.1 For all n > 1,

�(n) >
nX
r=0

2(
n
r) � (n+ 1) > 2�;

where �(n) = jAnj and � =
�

n
bn=2c

�
.

Proof First note that

�(n) =
nX

r=0

jAr
nj > jAbn=2c

n j:

Furthermore, by Lemma 5.2, there exists � 2 Ar
n such that j�j >

�
n
r

�
for all 0 6 r 6 n.

Every subset of such an � belongs to Ar
n. The number of ways of choosing such elements

(excluding the empty set) is 2(
n
r) � 1. Hence

�(n) >
nX
r=0

(2(
n
r) � 1) =

nX
r=0

2(
n
r) � (n+ 1):
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The following theorem is a re-statement of a result due to Hansel [16]. The proof of this

result can be found in Appendix A. The reader is strongly urged to read this appendix

before attempting the proof of Theorem 5.2.

Theorem 5.1 (Hansel [16]) For all n > 1,

2� 6 �(n) 6 3�; where � =

�
n

bn=2c

�
:

It was also observed in [16] that for n even we have

�(n) 6 2(���)3�; where � =

�
n

bn=2c � 1

�
:

Prior to stating and proving a theorem which signi�cantly improves the upper bound for

�(n) we de�ne a bi-symmetric chain partition.

De�nition 5.3 Let SCPn be a symmetric chain partition of f1; : : : ; ng. For all C 2 SCPn

where C = fc0; : : : ; ckg and c0lc1l� � �lck let C[fn+1g = fc0[fn+1g; : : : ; ck[fn+1gg.

Then a bi-symmetric chain partition of f1; : : : ; n+ 1g, BCPn+1, is de�ned as follows.

BCPn+1 = fC 2 SCPng [ fC [ fn+ 1g : C 2 SCPng:

A bi-symmetric chain partition of f1; 2; 3; 4; 5g is shown in Table 3.

Theorem 5.2 For all n > 3,

�(n+ 1) < 6(
n

bn=2c) < 3(
n+1

b(n+1)=2c):

Moreover,

lim
n!1

6(
n

bn=2c)

3(
n+1

b(n+1)=2c)
= 0:
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; �f1g �f1; 2g �f1; 2; 3g �f1; 2; 3; 4g f5g �f1; 5g �f1; 2; 5g �f1; 2; 3; 5g �f1; 2; 3; 4; 5g

f2g �f2; 3g �f2; 3; 4g f2; 5g �f2; 3; 5g �f2; 3; 4; 5g

f3g �f1; 3g �f1; 3; 4g f3; 5g �f1; 3; 5g �f1; 3; 4; 5g

f4g �f1; 4g �f1; 2; 4g f4; 5g �f1; 4; 5g �f1; 2; 4; 5g

f2; 4g f2; 4; 5g

f3; 4g f3; 4; 5g

Table 3: BCP5

Proof We prove the right-hand inequality �rst. By considering Pascal's Triangle, we have

for all n > 1,

�
n+ 1

b(n + 1)=2c

�
=

�
n

dn=2e

�
+

�
n

dn=2e � 1

�
; (13)

and if n is odd then,

�
n

dn=2e

�
=

�
n

bn=2c

�
=

�
n

dn=2e � 1

�
: (14)

For all n > 1,

�
2n

n� 1

�
=

(2n)!

(n� 1)!(n+ 1)!
=

(2n!)n

(n!)(n!)(n + 1)
=

n

n+ 1

�
2n

n

�
: (15)

29



Hence, if n is odd we have

3(
n+1

b(n+1)=2c) = 3

�
( n
dn=2e)+(

n
dn=2e�1)

�
by (13)

= 3

�
( n
bn=2c)+(

n
bn=2c)

�
by (14)

= 3(
n

bn=2c)3(
n

bn=2c)

> 3(
n

bn=2c)2(
n

bn=2c)

= 6(
n

bn=2c):

Now suppose n is even and let n = 2m, m > 1. Consider

3(
n+1

b(n+1)=2c)

6(
n

bn=2c)
=

3(
n

dn=2e)3(
n

dn=2e�1)

6(
n

bn=2c)
by (13)

=
3(

2m
m )3(

2m
m�1)

3(
2m
m )2(

2m
m )

=
3(

2m
m�1)

2(
2m
m )

=
(3(

m
m+1

))(
2m
m )

2(
2m
m )

by (15)

=

�
3(

m
m+1

)

2

�(2mm )

> 1 since

�
2m

m

�
> 1 and

3(
m

m+1
)

2
> 1 for all m > 1:

The result follows.

We now prove the left-hand inequality. Consider BCPn as constructed from SCPn�1.

We will identify all chains in BCPn which are a copy of a chain in SCPn�1 by C, and all

chains in BCPn which are of the form c0 [fng; : : : ; ck [fng (where c0l � � �l ck is a chain

C) by D. If c 2 C we denote the corresponding element in D, c [ fng, by d. We will

construct a �lter by choosing elements from each pair of chains C and D.

The proof now proceeds in a similar way to that for Theorem 5.1. Consider �rst a pair
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of chains of length at most two.

c0 l c1 d0 l d1

By making our choices from C �rst, we can see there are at most 3! = 6 choices of elements

from these two chains. In the table below a tick indicates the choice to include the element

in the �lter, a cross indicates the choice to exclude the element from the �lter, a hyphen

indicates there is no choice involved because of the inclusion dependencies within the pairs

of chains.

c0 c1 d0 d1

� - - -

✗ � � -

✗ � ✗ -

✗ ✗ � -

✗ ✗ ✗ �

✗ ✗ ✗ ✗

Now suppose we have chains C and D of length k and that we have dealt with all

smaller chains.

c0 l � � �l ck d0 l � � �l dk

By Theorem A.2 we can �nd c1; : : : ; ck�1 and d1; : : : ; dk�1 belonging to shorter chains

(than C and D) such that

ci�1 l ci l ci+1 and di�1 l di l di+1 for 0 < i < k:

De�ne lc; uc; ld; ud in an analogous way to l and u. We �rst note that, as in Theorem 5.1,

when lc > uc or ld > ud, we will not be able to make any choices from C or D, respectively.
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We now have to prove that when we extend F by choosing elements from lc; uc; ld; ud we

do not contradict any decisions that have already been made with respect to F . There are

two cases.

� Include dld from D in F . We need to prove that dld � ci, 1 6 i 6 lc. (In other words,

none of the elements c1; : : : ; clc already excluded from F can be included in F if dld

is chosen to be included in F . Clearly, if this holds then the inclusion of dud in F

is legitimate since we can only include dud when ld < ud and hence dld < dud � ci.

Analogous remarks apply to the second case below.) As n 2 d for all d 2 D and

n 62 c for all c 2 C, it is clearly the case that dld � ci.

� Include clc from C in F . We need to prove that clc � di, 1 6 i 6 ld. The proof

proceeds as follows. We prove that

ld 6 lc and (16)

clc � dlc: (17)

By (16), dld 6 dlc, and hence, by (17), clc � dld.

We conclude by proving (16) and (17).

Proof of (16) (By contradiction) Suppose that lc 6 ld. Then clc < cld and cld 2 F by

de�nition of lc. Therefore dld 2 F since cld l dld, but, by de�nition, dld 62 F .

Proof of (17) (By contradiction) Suppose that clc < dlc. By construction, jclcj = jdlc j�1,

and n 62 clc. Therefore, clc < (dlcnfng) and jclcj = j(dlc nfng)j. Hence clc = (dlcnfng) = clc,

which is a contradiction.

As with Hansel's result, we can improve the upper bound for half the cases. Speci�cally,

if we de�ne

�(n) =

�
n

bn=2c

�
and �(n) =

�
n

bn=2c � 1

�
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we can restate Theorem 5.2 as

�(n) < 6�(n�1) < 3�(n);

and for n odd, we can improve the upper bound to

�(n) < 3�(n�1)��(n�1)6�(n�1) = 2�(n�1)3�(n�1):

To see this, consider BCP5 in Table 3 and notice that for the pairs of chains of length 1

we can choose either none, D or C (which necessarily includes D) in the �lter.

Postscript The problem of determining �(n) was �rst posed by Dedekind [12] and is

known to be very di�cult. The value of �(n) for n > 9 is not known. Table 4 shows values

of �(n) and the upper and lower bounds derived in this paper for 1 6 n 6 10. The values

of �(n) are reproduced from [11].

n 2�(n) �(n) 6�(n�1) 3�(n) 22
n

1 2 2 1 3 4

2 4 5 6 9 16

3 8 19 36 27 256

4 64 167 216 729 65536

5 1024 7580 46656 59049 4294967296

6 1:048576� 106 7:828354� 106 6:046618� 107 3:486784� 1012 1:844674� 1018

7 3:435974� 1010 2:414682� 1012 3:656158� 1015 5:003155� 1016 3:402824� 1038

8 1:180592� 1021 5:613044� 1022 1:719071� 1027 2:503156� 1033 1:157921� 1077

9 8:507059� 1037 ? 2:955204� 1054 1:310021� 1060 1:340781� 10154

10 7:237001� 1075 ? 1:114442� 1098 1:716154� 10120 1:797693� 10308

Table 4: A comparison of the upper and lower bounds of �(n)

33



6 Conclusion

We have presented a general framework for the articulation of conict of interest policies

which includes negative authorisation policies and separation of duty policies as special

cases. We believe our approach o�ers a more complete characterisation of such policies,

and signi�cantly extends the class of policies for role-based access control.

We have not restricted our attention to policies comprised of mutually exclusive pairs,

but noted in Section 4 that separation of duty policies are usually modelled in this way.

The only exception we have found is [2], but the fragments of the language the authors

o�er as examples suggest that although the constraints may have cardinality greater than

two, the policy is violated if any pair of elements from a constraint enters the environment.

With this in mind, we can rewrite an arbitrary conict of interest policy � 2 An as a

policy �0 2 A2
n. Speci�cally, let

� = fAi : 1 6 i 6 ng;

then

�0 = ffaij ; aikg : 1 6 j < k 6 jAij; jAij > 1; 1 6 i 6 ng [ fAi : jAij = 1; 1 6 i 6 ng:

In other words, for all Ai 2 �, if jAij = 1 then include Ai in �0; otherwise replace Ai by

all pairs of elements in Ai. Clearly �
0 4 � with equality when jAij 6 2, for all i 2 I, so �0

is, in general, more restrictive than �. Therefore, an arbitrary conict of interest policy,

� 2 An, can be expressed as a conict of interest policy, �0 2 A2
n, which is at least as

strong as �. It can easily be seen that

jA2
nj > 2(

n
2) = 2

n(n�1)
2

since there are
�
n
2

�
distinct pairs, and any subset of the set of pairs is a valid policy; and
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that the longest policy in A2
n is

2

�
n

2

�
= n(n� 1):

Therefore, assuming that it takes constant time to determine whether x 2 E for any

element x 2 X, the complexity of checking whether adding x to E will violate a policy in

A2
n is O(n2).

Hence, if the usual assumptions are made about the de�nition of conict of interest

policies, the complexity of such policies can be readily described. However, we feel that

the e�ort involved in investigating the general case has been worthwhile. It has led to us

developing a general theorem about �nite partially ordered sets and their embedding into

a complete lattice of subsets of that set [6, 7], which in turn we hope to use to develop a

more sophisticated model of role-based access control.

Lemma 5.1 shows that at worst we will require

dn=2e

�
n

dn=2e

�

tests to determine whether adding x 2 X to E will violate a policy � 2 An. It is clear

therefore, that implementing conict of interest policies using elements ofA2
n will in general

be far more e�cient than using unrestricted elements of An.

In future work we will consider the advantages of adopting our approach (to conict

of interest policies) in role-based access control in more detail. In particular we hope to

show that our approach leads to the possibility of a simpler implementation of conict of

interest policies and to greater expressiveness and granularity in the speci�cation of such

policies.

We hope to �nd upper and lower bounds for jAr
nj. It seems clear that for r 6 dn=2e,

2(
n
r) < jAr

nj < 3(
n
r);

but less clear for the remaining values of r. Nor is it immediately obvious whether the
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proofs of Theorem 5.1 and 5.2 can be amended in some signi�cant way to dramatically

improve on these bounds. Our intuition is that these bounds can be considerably improved

for r 6 bn=2c.

Finally, we intend to generalise the de�nition of symmetric chain partition to an ar-

bitrary poset, P , and thereby produce an upper bound for jA(P )j. This may well be

of particular interest when considering conict of interest policies in a role-based access

control context, since conict of interest policies are members of A(A(R)).
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Appendix A: [Hansel's Result]

We �rst prove three preparatory results. Theorem A.1 asserts that the power set of every

set has a symmetric chain partition. The proof of this result is constructive and we make

use of the notation introduced in this proof in the remainder of the appendix.

We note that Lemma A.1 and Theorems A.2 and 5.1 form the original result due to

Hansel and proved in [16]. We have adopted the style of proof in [13] and split the result

into three parts for ease of presentation. In conclusion we present two examples to illustrate

the construction given in the proof of Theorem 5.1.

Theorem A.1 There exists a symmetric chain partition of P(X).

Proof (By induction on jXj) We present this constructive proof [4, 13] in detail, as it

gives rise to some notation which will be used later in the paper. Clearly from Example 2.1

there is a symmetric chain partition of f1; 2; 3g. Suppose now that jXj = N and that there

is a symmetric chain partition SCPN�1. For each chain C = c0 l : : :l ck of SCPN�1 we

construct the chains

C 0 = c0 l : : :l ck l (ck [ fN + 1g) and (18)

C 00 = (c1 [ fN + 1g)l : : :l (ck�1 [ fN + 1g): (19)

(If jCj = 1 we only construct C 0.) Clearly, by construction, the resulting chains form a

symmetric chain partition of SCPN+1.

Example A.1 The construction of a symmetric chain partition of f1; 2; 3; 4g from that of
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f1; 2; 3g given in Example 2.1 is shown below.

; � f1g � f1; 2g � f1; 2; 3g !

8>><
>>:

; � f1g � f1; 2g � f1; 2; 3g � f1; 2; 3; 4g

f4g � f1; 4g � f1; 2; 4g

f2g � f2; 3g !

8>><
>>:

f2g � f2; 3g � f2; 3; 4g

f2; 4g

f3g � f1; 3g !

8>><
>>:

f3g � f1; 3g � f1; 3; 4g

f3; 4g

Lemma A.1 Let c0 l c1 l � � �l cr be a chain in SCPn. If jc0j = i then r = n� 2i+ 1.

Proof If jc0j = i then jcrj = n� i since jc0j+ jcrj = n. Since c0l � � �l cr, jc0j; : : : ; jcrj are

consecutive integers. There are jcrj � jc0j+ 1 = (n� i)� i+ 1 = n� 2i+ 1 such integers.

Theorem A.2 For every chain, C, in SCPn, and for every set of three consecutive mem-

bers ca�1 l ca l ca+1 of C, there is some ca such that ca�1 l ca l ca+1 and ca is contained

in a chain D with jDj = jCj � 2.

Proof (Induction on n) Clearly the theorem is true for the case n = 2 by inspection of

the symmetric chain partition of f1; 2g below.

; �f1g � f1; 2g

f2g

Suppose the result is true for all n 6 N , and let SCPN+1 be constructed inductively

from SCPN (see the proof of Theorem A.1).

We �rst consider the case where ca�1; ca; ca+1 belong to a chain of the form C 0 - see (18).

If N +1 62 ca+1, then ca�1; ca; ca+1 2 C where C 2 SCPN , and by the inductive hypothesis
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there exists a chain D 2 SCPN such that ca 2 D, jDj = jCj � 2 and ca�1 l ca l ca+1.

Furthermore, ca 2 D0, D0 2 SCPN+1 and jD0j = jC 0j�2 since jDj = jCj�2. If N+1 2 ca+1

then ca = ck (where ck is the maximal element in C, the chain from C 0 is constructed)

and we can take ca to be ca�1 [ fN + 1g which belongs to the chain C 00 - see (19), and

jC 00j = jC 0j � 2 by construction.

We now consider the case where ca�1; ca; ca+1 belong to a chain of the form C 00. Then

there exists C 2 SCPN such that C = d0l � � �ldk and ci = di[fN +1g for 0 6 i 6 k�1.

By the inductive hypothesis, there exists a chain D 2 SCPN containing an element da

with da�1 l da l da+1 and jDj = jCj � 2. Note that da+1 cannot be the maximal element

in C since C 00 = d0 [ fN + 1g l � � � l dk�1 [ fN + 1g. Therefore da is not the maximal

element of D. (If da is maximal then jDj 6 jCj � 4 since da l da+1 l � � � l dk and, by

Lemma A.1, the length of a chain reduces by two when the size of a maximal element

is reduced by one.) Thus da [ fN + 1g belongs to D00 and is the required element since

jD00j = jDj � 1 = jCj � 3 = jC 00j � 2.

Proof of Theorem 5.1 We �rst recall we wish to prove that for all n > 2

2� 6 �(n) 6 3� where � =

�
n

bn=2c

�
:

The left-hand side of the inequality is proved in Corollary 5.1. To prove the right-hand side

of the inequality we assume we have a symmetric chain partition of P(X), SCPn, which

has been constructed inductively, and in which we have arranged the chains in order of

increasing length. We proceed to construct all the �lters of P(X) (noting that the set of

�lters has the same magnitude as the set of antichains), by deciding whether the elements

of each chain in SCPn belong to a �lter, F . For chains of length at most two, we have

at most three choices of elements to include in F , namely neither element, the maximal

element or the minimal element (and hence the maximal element as well).

Suppose now that we now have to make a choice of elements from the chain c0 l c1 l

� � �l ck and that we have already chosen the elements from the preceding chains (ordered

by length), thus �xing some part of a �lter F . By Theorem A.2 there exist c1; : : : ; ck�1
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such that ci�1 l ci l ci+1 for 1 6 i 6 k � 1 and each ci belongs to a shorter chain. In

other words we already know whether ci 2 F for 1 6 i 6 k � 1. De�ne l to be the largest

index such that cl 62 F and u to be the smallest index such that cu 2 F . If ci 2 F for

1 6 i 6 k � 1 de�ne l = 0 and if ci 62 F for 1 6 i 6 k � 1 de�ne u = k. Note that either

u� l = 1 or u� l 6 �1.

When u� l = 1 we have

c0 l � � �l cl| {z }
62F

l cu l � � �l ck| {z }
2F

;

and when u� l 6 �1 we have

c0 l � � �l cu�1| {z }
62F

l cu
2F
l cu+1 l � � �l cl�1| {z }

?

l cl
62F
l cl+1 l � � �l ck| {z }

2F

:

Now c1; : : : ; cl�1 62 F since c1l � � �lcl�1lcl; and cu+1; : : : ; ck 2 F since culcu+1l � � �lck.

Hence F can only be extended by the inclusion of cl and cu.

If u� l 6 �1 we cannot extend F without either duplication (since cu+1 6 cl 2 F ) or

violation of the conditions outlined in the preceding paragraph (since cu 6 cl�1 62 F ).

If u� l = 1 then we have

c0 l � � �l cl�1| {z }
62F

l cl l cu l cu+1 l � � �l ck| {z }
2F

and hence we can make at most three choices to extend F . Namely, we can choose neither

cl nor cu, choose cu, or choose cl (which is equivalent to choosing both cl and cu).

Example A.2 below gives explicit examples of the construction of �lters and how the

value of u� l a�ects the choice of elements from a chain.

Hence for each of the � chains we have at most three choices. The result follows.
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Example A.2 Tables 5 and 6 illustrate the construction used in the proof of Theorem 5.1.

Column C contains the chains in SCP4. Bold entries in this column indicate that an

element has been selected from the chain for inclusion in the �lter F . Column C contains

the elements c1; : : : ; ck�1. Bold entries in this column indicate that an element has already

been included in F by the construction to date. The next two columns indicate the elements

cl and ck, respectively, and the �nal column denotes the reduction of the �lter F to canonical

form (in order to conserve space, and to emphasise that counting �lters is equivalent to

counting CIPs).

C C cl cu �

f2; 4g � � � ;

f3; 4g � � � f3; 4g

f2g �f2; 3g �f2; 3; 4g f2; 4g f2; 3g f2; 3; 4g f3; 4g

f3g �f1; 3g �f1; 3; 4g f3; 4g f3g f1; 3g f3g

f4g �f1; 4g �f1; 2; 4g f2; 4g f2; 4g f1; 2; 4g f3g

; �f1g �f1; 2g �f1; 2; 3g �f1; 2; 3; 4g f2g; f1; 3g; f1; 2; 4g f1; 2; 3g f1; 2g f3g

Table 5: A �lter construction in which u� l 6 �1 for a chain in SCP4

In the �nal row of Table 5 we have u� l = �1. Notice that f1; 2; 3g 2 F since f3g 2 F ,

and that f1; 2g cannot be added to F since it is known that f1; 2; 4g 62 F . In other words,

as noted in the proof, if u� l 6 �1 for some chain then we cannot make any choices from

that chain to extend the �lter.

1.5
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C C cl cu �

f2; 4g � � � ;

f3; 4g � � � f3; 4g

f2g �f2; 3g �f2; 3; 4g f2; 4g f2; 3g f2; 3; 4g f3; 4g

f3g �f1; 3g �f1; 3; 4g f3; 4g f3g f1; 3g f3g

f4g �f1; 4g �f1; 2; 4g f2; 4g f1; 4g f1; 2; 4g f3g; f1; 2; 4g

; �f1g �f1; 2g �f1; 2; 3g �f1; 2; 3; 4g f2g; f1; 3g; f1; 2; 4g f1g f1; 2g f3g; f1; 2g

Table 6: A �lter construction in which u� l = 1 for all chains in SCP4

45


