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Abstract

XML is fast becoming the standard for information exchange on the Internet. As such,
information expressed in XML will need to be integrated with existing information systems,
which are mostly based on structured data models such as relational, object-oriented or ob-
ject/relational data models. This paper shows how our previous framework for integrating
heterogeneous structured data sources can also be used for integrating XML data sources with
each other and/or with other structured data sources.

In our approach, the constructs and transformations of modelling languages such as ER,
XML etc. are defined in terms of the constructs and transformations of a lower-level graph-
based data model. This allows constructs from multiple modelling languages to co-exist within
the same intermediate schema, thus avoiding the need for a high-level common data model
and the semantic mismatches that this can bring about. Transformations between schemas
are expressed as sequences of primitive transformations and a key feature of them is that they
are automatically reversible. This allows automatic translation of data, queries and updates
between semantically equivalent or overlapping heterogenous schemas.

1 Introduction

The presentation-oriented nature of HTML has been widely recognised as being an impediment to
building efficient search engines and query languages for information available on the WWW. This
has led to the emergence of XML as a more effective means of describing the semantic content
of WWW documents, with presentational information being specified using a separate language
such as XSL. However, although much superior to HTML for describing document content, XML
is still to some extent presentation-oriented in the sense that the structuring of the data for a
particular application tends to be such as to suit the later presentation of the data. This is due to
XML’s hierarchical nature, with tags being nested inside each other, requiring document designers
to make an a priori choice as to the ordering of the nesting. Whilst languages such as DTDs
or XML Schema serve to structure XML documents, rather like a relational model structures
relational databases, it is still the case that an essentially hierarchical model is being used.

For example, consider an application where a bank has records of customers, their accounts,
and the bank site where the account is held. A site may have accounts belong to different customers
and a customer may have accounts at several sites. Figure 2(a) shows how one might list details
of customers in XML, detailing under each customer the account and the site of the account.
Alternatively, Figure 2(b) shows how the same information could be listed by site, with details of
accounts, and the customer holding the account listed under each site.

The example appears to be that of a many-many relationship between customers and sites.
Such choices of ordering as made in Figures 2(a) and (b) do not arise in data models such as ER



or UML, which are based on the classification of entities into types or classes, with relationships
between them. For example, Figure 1 shows an ER model for the same data as in Figures 2(a) and
(b). However, in XML the order of data can be significant and there may be semantic information
embedded within XML documents which is assumed by applications but which is not deducible
from the document itself. Looking at Figure 1(a) for example, it might be the case that the first
account listed for any customer is to be used for charging any banking costs to e.g. charges for
customer Jones will be made to account 4411 and not to account 6676.

This possibility that ordering may or may not be significant in XML means that it is desirable
to use a semantic data model as the basis for integrating XML data sources with each other
and/or with other structured data sources, rather than to use XML itself. Note that this does not
preclude the use of XML as the data transfer mechanism, just that the modelling of multiple data
sources requires something more structured.

The approach that we present in this paper extends our previous work on integrating structured
data sources [20, 16, 15]. In this work, we have used as the common data model a low-level
hypergraph-based data model (HDM). One advantage of this HDM is that it separates the
definition of the data sets from the definition of constraints on the values of these data sets. All
data is held as either nodes representing sets of values, or edges representing relationships between
these sets. Taking the ER schema in Figure 1 as an example, this means that the attributes and
entities are represented as HDM nodes while the associations between attribute and entities, and
the relationships between entities are represented as HDM edges with appropriate constraints on
their cardinality. We will see later in the paper that this separation in the HDM of data sets
and constraints on them is useful for modelling XML data, since ordering of XML elements can
be represented by extra node and edge information, leaving any other constraints on the data
unchanged.

Our previous work defined a set of primitive transformations for adding or deleting nodes,
edges and constraints to or from an HDM schema. Higher-level modelling languages and primitive
schema transformations for those languages are defined in terms of this lower-level HDM and its
primitive transformations. Hence another advantage of using a low-level common data model is
that it provides a unifying semantics for higher-level modelling constructs. In [16] we proposed a
generic method for specifying the semantics of a higher-level modelling language in terms of the
HDM, showing how the set of primitive transformations for the language can then be automatically
derived from this specification. Transformations on higher-level modelling languages can be applied
by a user to map between schemas expressed in the same or in different modelling languages. The
use of a unifying underlying data model allows constructs from different modelling languages to be
mixed within the same intermediate schema. Hence, using the HDM is not a substitute for using
a standard data modelling language, such as the ER, relational, or UML models, but instead a
common underpinning to facilitate the integration of data expressed in these standard languages.

1.1 Outline of the paper

We begin the paper in Section 2 by expanding upon our bank application example described above,
which will serve as the running example for the remainder of the paper.

In Section 3 we extend our previous work to show how XML can be represented in the HDM.
This leads to the first contribution of the paper — providing a common underpinning for structured
data models and XML, and hence the possibility of transforming between them and integrating
them.

In Section 4 we discuss how XML documents can be transformed into an ER representation,
and from there into each other, thus providing a framework in which XML data sources can be
integrated and queried in conjunction with each other and with other structured data sources. This
leads to the second contribution of the paper — providing a method for transforming between ER,
and XML representations which allows complete control over whether the various elements of the
XML representation have set or list-based semantics.

In Section 5 we discuss related work. We give our concluding remarks in Section 6
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Figure 1: ER schema of the Bank database

2 Running Example

Figure 1 illustrates an ER schema for a simple banking application, where the customers of a bank
hold accounts and accounts are managed at various sites where the bank has branches. When
generating an XML representation of information held in such an ER schema, a programmer can
structure the XML to suit the purpose of the application. For example, if a list of customers
is required together with the location of each of their accounts, the XML description shown in
Figure 2(a) may be used. If the application requires a list of the accounts held at each site, the
XML description shown in Figure 2(b) may be used.

Apart from these variations in how the ER schema is navigated to produce a hierarchical data
structure, there is also a choice as to whether to use XML elements or attributes. The examples
given in Figures 2(a) and (b) use XML elements to represent data (as is usually the case in
most of the literature) but for the ‘leaf’ nodes we could equally well use attributes. Figure 2(c)
takes this approach for the same data as shown in Figure 2(a). XML (with DTDs) also supports
a tuple-based representation of data as illustrated in Figure 2(d) where duplication of data is
avoided.

3 Representing XML in the HDM

In [16] we showed how the HDM can represent a number of higher-level, structured modelling
languages such as the ER, relational and UML data models. We also showed how it is possible
to transform the constructs of one modelling language into those of another during the process of
integrating multiple heterogeneous schemas into a single global schema!. By extending our work
to specify how XML can be represented in the HDM, we are adding XML to the set of modelling
languages whose schemas can be transformed into each other and integrated using our framework.

Structured data models typically have a set-based semantics i.e. there is no ordering on the
extents of the types and relationships comprising the database schema, and no duplicate occur-
rences. XML’s semi-structured nature and the fact that it is presentation-oriented means that
lists need to be representable in the HDM, as opposed to just sets which were sufficient for our
previous work on transforming and integrating structured data models. In particular, lists are
needed because the order in which elements appear within an XML document may be significant
to applications and this information should not be lost when transforming and integrating XML
documents.

Thus we extend the notions of nodes and edges in HDM schemas (which respectively correspond
to types and relationships in higher-level modelling languages) so that the extent of a node or
edge may be either a set or a list. For reasons of space we refer the reader to our earlier work
[20, 16, 15] for a full definition of the HDM. Here we give a simplified summary of it together with
the extensions needed for representing XML:

IThis integration process may be either ‘bottom-up’, as in federated architectures, or ‘top-down’, as in mediator
architectures, and our approach is equally applicable to either.



(customer)
(cname)Jones(/cname)
(account)

(number)4411(/number)
(site)

(sitecode)32(/sitecode)
(/site)

(/account)

(account)
(number)6976(/number)
(site)

(sitecode)56(/sitecode)
(function)Business(/function)
(/site)

(/account)

(/customer)

(customer)
(cname)Frazer(/cname)
(account)

(number)8331(/number)
(site)

(sitecode)32(/sitecode)
(/site)

(/account)

(/customer)

(a) by customer, elements preferred

(customer cname=(Jones))
(account number=(4411))
(site sitecode=(32)/)

(/account)
(account number=(6976))

(site sitecode=(56) function=(Business)/)

(/account)
(/customer)

(customer cname=(Frazer))
(account number=(8331))
(site sitecode=(32)/)
(/account)
(/customer)

(c) by customer, attributes preferred

account aid=(a3) number=
site sid=(s1) sitecode=(32)
site sid=(s2) sitecode=(56)

(site)

(sitecode)32(/sitecode)

(account)
(number)4411(/number)
(customer)

(cname)Jones(/cname)
(/customer)

(/account)

(account)
(number)8331(/number)
(customer)

(cname)Frazer(/cname)
(/customer)
(/account)
(/site)
(site)

(sitecode)56(/sitecode)

(function)Business({/function)

(account)
(number)6976(/number)
(customer)

(cname)Jones(/cname)
(/customer)
(/account)

(/site)

(b) by site, elements preferred

customer cid=(cl) cname=(Jones)/)
customer cid=(c2) cname
account aid=

Frazer)/)

1) number

)

(d) tuple-based

Figure 2: Example XML data files for the Bank database

(
(
(a (4411) cid=(cl) sid=(sl
account aid=(a2) number=(6976) cid=(cl) sid=(s2)/
(
/

function=(Business) /)

)/)

)
8331) cid=(c2) sid=(s1)/)

A schema in the HDM is a triple (Nodes,Edges,Constraints). Nodes and edges are identified

by their schemes, delimited by double chevrons ( ...
the node itself, {n)). The scheme of an edge labelled [ between nodes n, ...
Edges can also link other edges, so more generally the scheme of an edge is (I,s1,. ..,
schemes sy, ...

addNode(s, q,1,c)
addEdge(s, ¢, 1, ¢)

s 18 {(Lna,. ..

». The scheme of a node n consists of just
M)
Sm ) for some
, Sm. Two primitive transformations are available for adding a node or an edge to
an HDM schema, S, to yield a new schema:

Here, s is the scheme of the node or edge being added and ¢ is a query on S which defines the
extent of s in terms of the extents of the existing schema constructs (so adding s does not change



the information content of S)2. i is one of set or list, indicating the collection type of the extent
of s, and c is a boolean condition on instances of S which must hold for the transformation to be
applicable for that particular instance. Optionally, list may take an argument which determines
the ordering of instances of s.

Often the argument ¢ will simply be true, indicating that the transformation applies for all
instances of S, and in our previous work ¢ has always been set. In [15] we allowed ¢ to take the
special value void, meaning that s can not be derived from the other constructs of S. This is
needed when a transformation pathway is being set up between non-equivalent schemas e.g. be-
tween a component schema and a global schema. For convenience, we use addNode(s,q,i) as a
shorthand for addNode(s,q,i,true), addNode(s,q) for addNode(s,q,set,true), and expandNode(s) for
addNode(s,void,set,true). We use similar abbreviations for adding edges.

There are also two primitive transformations for deleting a node or an edge from an HDM
schema S, delNode(s, ¢, 4, c) and delEdge(s, q, 1, ¢), where s is the scheme of the node or edge being
deleted and q is a query which defines how the extent of s can be reconstructed from the extents
of the remaining constructs (so deleting s does not change the information content of S), and i
the collection type of s. ¢ is again a boolean condition on instances of S which must hold for the
transformation to be applicable for that particular instance. Similar shorthands as for the add
transformations are used. There are similarly two primitive transformations for adding/deleting
a constraint from an HDM schema, addConstraint(s, constraint) and delConstraint(s, constraint).

Supporting a list collection type does not actually require the HDM to be extended and the
above primitive transformations on the HDM can be viewed as ‘syntactic sugar’ for the primitive
transformations we used in previous work. In particular, lists can be supported by introducing a
reserved node order, the extent of which is the set of natural numbers. For any scheme s whose
extent needs to be viewed as a list, an extra unlabelled edge ((-,s,order)) is used whose instances
assign an ordinality to each instance of s. The instances of ((_,s,order)) do not necessary need to
be numbered consecutively, and the ordering of instances of s can be relative to the ordering of
instances other schemes.

3.1 Specifying XML in terms of the HDM

Table 1 summarises how the methodology we described in [16] can be used to build an HDM
representation of an XML document. In particular:

1. An XML element may exist by itself and is not dependent on the existence of any other
information. Thus, each XML element e is what we term a nodal construct [16] and is
represented by a node ((xml:e)) in the HDM?. Each instance of e in an XML document
corresponds to an instance of the HDM node ((xml:e)).

2. An XML attribute a of an XML element e may only exist in the context of e, and hence
a is what we term a nodal-linking construct. It is represented by a node xml:e:a in the
HDM, together with an associated unlabelled edge {(_,xml:e,xml:e:a)) connecting the HDM
node representing the attribute a to the HDM node representing the element e. A constraint
states that each instance of the attribute is related to at least one instance of the element?.

2We first developed our definitions of schema equivalence, schema subsumption and schema transformation in
the context of an ER common data model [13, 14] and then applied them to the more general setting of the HDM
[20]. A comparison with other approaches to schema equivalence and schema transformation can be found in [14].

3Because it is possible to have present within the same HDM schema constructs from schemas expressed in
different higher-level modelling notations, higher-level constructs are distinguished at the HDM level by adding a
prefix to their name. This prefix is xml for XML constructs and er for ER constructs.

4We use some short-hand for expressing cardinality constraints, makecard(({l,s1,s2),{l1...u1},{l2...u2}),
which denotes the following cardinality constraint on the edge ((, s1, s2)):

(Vi1 € s1. 0 < H{yl (@, y) € (I, s1,82) Az =i} Sur) A(Viz € s2. 12 < [{z(z,y) € (I, 51,52) Ay =12} Su2)



Higher Level Construct Equivalent HDM Representation
Construct element (Elem)

Class nodal, set Node {(xml:e))

Scheme  {(e))

Construct attribute (Att) Node {(xml:e:a))
Class nodal-linking, Edge {(_xml:e,xml:e:a))
constraint, list Links {(xml:e))
Scheme  ((e, a)) Cons makeCard({(-,xml:e,xml:e:a), {0..1}, {1..N})
Construct nest-list (List)

Edge {(_xml:e,xml:e,)), (-, (-, xml:e,xml:e)), order))
Links {(xml:e)), {xml:es)
Cons makeCard({(,{(—.xml:e,xml:es)),order)), {1..1}, {0..N})

Class linking,

constraint, list
Scheme  ((e,es))
Construct nest-set (Set)
Class linking, set
Scheme  ((e,es))

Edge {(_xml:e,xml:e,))
Links {(xml:e)), {(xml:e)

Table 1: Specifying XML constructs in the HDM

3. XML allows any number of elements ej,...,e, to be nested within an element e. This
nesting of ey,. .., e, is represented by a set of edges {(_,xml:e,xml:e1)), ..., {_xml:e,xml:e,)).
Each such edge is an individual linking construct, with scheme {{_,xml:e,xml:es)).

Each such edge may have list or set semantics. For list semantics, there is an extra edge
between the edge {(_,xml:e,xml:e;)) and the node order, and a cardinality constraint which
states that each instance of {(_,xml:e,xml:e)) is related to precisely one instance of order.

4. XML allows plain text to be placed within a pair of element tags. If a DTD is present, then
this text is denoted as . We thus assume there is an HDM node called pcdata whose
extent consists of plain text instances. An element e can then be associated with a fragment
of plain text by means of an edge ((_,e,pcdata)).

To illustrate this representation of XML documents in the HDM, we show in Figure 3 the HDM
schemas corresponding to the XML documents of Figure 2 (we have now shown the constraints
and the links that each edge has to the order node). In the HDM schema (d), the common child
node cid between site and customer, and aid between site and account, arise if we assume the
presence of a DTD in XML document (d) with ID attributes cid and aid on customer and account,
and corresponding IDREF attributes on site.

In general, elements within an XML document may be repeated, with identical attributes
and nested elements within them. Hence elements and attributes are uniquely identified by their
position within the document. In representing an XML document as an instance of an HDM
schema, we thus assume that all nodes are assigned unique identifiers which are generated in some
way from their position within the document. For example, the XML elements customer, cname
and account of Figure 2(a) can be represented by the following instance of the schemes ((root)),
{(customer)), {(cname)), {(pcdata)), and {(account)) of the HDM schema in Figure 3(a), where r1, c1,
c2, cnl, cn2, al, a2, a3 are unique identifiers:

root)={rl}
customer))={cl,c2}
cname)={cnl, cn2}
pcdata))={Jones, Frazer}
{account)={al,a2,a3}

(
(
(
(

The nesting relationships between these elements are then represented by the following instance
of the schemes ((_,root,customer)), ((_,{(-,root,customer)),order)), {(_,customer,cname)), ((_,{(-,customer, cname)),order)),
{(-,cname,pcdata)), {(-,{(-,cname,pcdata)},order)), {(_,customer,account)), and {(_,{(-, customer,account)),order))



root root root

l i l

customer site customer
AN SN /N
cname  account sitecode function account C“Csrfgmgr: account
ARN ARN N\
number site number customer anc;;ir;: site
RN i
sitecode  function Ccname sitizi:de fuzig;;n
(a) HDM for Figure 2(a) (b) HDM for Figure 2(b) (c) HDM for Figure 2(c)
root
R
customer account site
N N L
cname cid aid number sid function sitecode

(d) HDM for Figure 2(d)

Figure 3: HDM schemas for the XML Documents (a)-(d)

of Figure 3(a). This states that the one root document rl of the XML document contains two
ordered customers cl and c2, that cl contains, in order, one cname cnl and two accounts al and
a2, and that c2 contains, in order, one cname cn2 and one account a3:

(- root,customer))= {(rl,cl), (rl,c2)}

(. (- root,customer)y,order)y={((rl,cl),1), ((r1,c2),2)}
{(-,customer,cname))={(cl,cnl), (c2,cn2)}
{(-,{(-,customer,cname)),order))={((c1,cnl),1}), ((c2,cn2),1)}
{(-.cname,pcdata))={(cn1,Jones), (cn2,Frazer)}
{-,{(-.cname,pcdata)),order)) ={({(cn1,Jones),1), ({(cn2,Frazer),1)}
{(-,customer,account))={(cl,al), (cl,a2), (c2,a3)}

(-, {(-,customer,account)),order) ={((cl,al),2), ((c1,a2),3), ((c2,a3),2)}

An HDM representation which assumed set-based as opposed to list-based semantics for ele-
ment containment would not contain the schemes ((_, (- root,customer)),order)), (-, {(-,customer, cname})),order)),
{(-.{(-,.cname,pcdata)),order)) and ((_,{(-,customer,account)),order)), and would have the same extents
as above for the remaining schemes.
An HDM representation of the entire XML document of Figure 2(a) would list and order all
the elements in a similar way to the above fragments.

3.2 Primitive Transformations on XML

In [16] we describe how, once the constructs of some higher-level modelling language have been
defined in terms of the HDM constructs, this definition can be used to automatically derive the
necessary set of primitive transformations on schemas expressed in that language. Thus, from
the specification of XML given in Table 1 and described in the previous section, the primitive



Transformation on XML
renameElem, .1(e.e')

Equivalent Transformation on HDM
renameNode({(xml:e)},{(xml:e’)})

addElem, i(e,q)

addNode({(xml:e)),q)

delElem, ((e,q)

delNode({{(xml:e}),q)

renameAtt, . i(a,a’)

renameNode(({(xml:e:a)),{(xml:e:a)))

addAtt, | (e,a,qatt Gassoc)

addNode({(xml:e:a)},qqs¢); addEdge({(_,xml:e,xml:e:a)),qassoc);
addConstraint(z € {(xml:e:a)) — (., z) € (-, xml:e,xml:e:a)))

delAtt, [ (€,8,qatt ,Gassoc)

delConstraint(z € ((xml:e:a)) — (_,z) € ((_, xml:e,xml:e:a));)
delEdge({(_,xml:e,xml:e:a)),qussoc); delNode({(xml:e:a)),qqst)

addListXm

| d
deIListxm| («6, es>>7q7 )

addEdge({(_,xml:e,xml:e;)), ,Iist(p;)
delEdge({(_,xml:e,xml:es)),q,list(p))

addEdge({{_xml:e,xml:e,)),q)

o~

delEdge({(_,xml:e,xml:es)),q)

Table 2: Derived transformations on XML

(site)

(sitecode)32(/sitecode)
(account)

(number)4411(/number)
(customer)

(cname)Jones(/cname)

(/customer)

(/account)

(/site)

(site)

(sitecode)32(/sitecode)
(account)

(number)8331(/number)
(customer)

(cname)Frazer(/cname)

(/customer)

(/account)

(/site)

(site)

(sitecode)56(/sitecode)
(function)Business(/function)
(account)

(number)6976(/number)
(customer)

(cname)Jones(/cname)

(/customer)

(/account)

(/site)

transformations shown in Table 2 can be automatically derived. The left-hand column of this
table gives the names and arguments of the XML transformations and the right-hand column
gives their implementation as sequences of the primitive transformations on the underlying HDM

representation.

To illustrate the use of these primitive transformations on XML, we give below a sequence of
primitive transformations that transform the document in Figure 2(a) to that in Figure 4. The
HDM schema representation of the former is shown in Figure 3(a) and of the latter in Figure 3(b).

addList, | ({(root,site)), {(r1, z) | (

addList, . ({(site,account)),{(z,

Figure 4: Transformed XML

x) € ((site) }, after({(root,customer))))
y) |

(y,z) € {(account,site)) }, after({(site,function))))



addList {(account,customer) {(x,y) | (y,x) € {(customer,account))}, after({account,number))))

xmi( (y,
deIListxm||((( ccount,site)), {(z,y) | (y,z) € ((snte account)) }, after({(account,customer))))
delList, ,[({customer,account)) {(z y) | (y,z) € {(account,customer))}, after({{customer,cname})))
delList, | ({root,customer)) {(rl,z) | (x) € ((customer))}, before(((root,site))))

Notice that the above transformation consists of a ‘growing phase’ where new constructs are
added to the XML model, followed by a ‘shrinking phase’ where the constructs now rendered
redundant are removed. This is a general characteristic of schema transformations expressed
within our framework.

The availability of a transformation pathway from one schema to another allows queries ex-
pressed on one schema to be automatically translated onto the other. For example, the following
query on Figure 3(a) finds the names of customers with accounts at site 32°:

{n | (r,c) € {(root,customer)) A (c,n) € {customer,name)) A (c,a) € {customer,account)) A
(a, s) € ((account,site)) A (s, sc) € ((site,sitecode)) A sc= 32}

By substituting deleted constructs appearing in this query by their restoring query i.e. by the
3rd argument of the delList, () transformations above, it is possible to translate the query into the
following equivalent query on Figure 3(b) (see [15] for a general discussion of query/update/data
translation in our framework):

{n|(rcel(l,z) | ()€
(c;a) € {(x,y) | (y, )
(a,5) € {(z,y) | (y, )

Any sequence of primitive transformations t1; ... ;t, is automatically reversible by the sequence
tols. .. ;tl_l, where the inverse of an add transformation is a del transformation with the same
arguments, and vice versa. Thus, the reverse transformation from Figure 3(b) to Figure 3(a) can
be automatically derived to be:

{(customer) } A (c,n) € {{customer,name)) A
{(account,customer)) } A

S
€ ((site,account)} A (s, sc) € ((site,sitecode)y A sc = 32}

addList, | ({(root,customer)) ,{{r1,z) | (x) € ((customer))}, before(((root,site))))
addList, | ({((customer,account)), {(z, y) | (y, ) € {(account,customer))}, after({{customer,cname))))
addListy | (((account,site)) {(z, ) | (y,z) € ((site,account))}, after({(account,customer))))
delList,,[({account,customer)) {(z,y) | (y,z) € ((customer,account))}, after({{account,number))))
deILlstxm|(((snte,account)) {z,y) | (y,z) € ((account,site))}, after({(site,function))))

delList, ,(({root site)) {(r1, :z:) | (z) € ((site))}, after({root,customer)}))

This reverse transformation can now be used to translate queries on Figure 3(b) to queries on
Figure 3(a).

We finally observe the similarity of Figure 4 to the document in Figure 2(b), which in fact
has the same schema, Figure 3(b). It is not possible to capture the non-duplication of site 32 in
Figure 2(b) using the above XML-to-XML transformation. It is however possible to transform
Figure 2(a) to Figure 2(b) going via the ER model of Figure 1, and we discuss how in Section 4
below.

3.3 Additional information supplied by a DTD

A DTD constrains an XML schema, limiting which elements may appear in a document and the
order in which they appear. In [6] DTDs are treated as an integral component of XML. We choose
here to separate the definition of XML from the definition of DTDs for XML documents in order
to facilitate future incorporation into our framework of the emerging XML Schema standard [10]
instead of DTDs. Figure 5 shows DTDs for the XML examples in Figure 2.



(IELEMENT bank (customer)) (IELEMENT bank (site)+)
('"ELEMENT customer (cname, accountx)) (!IELEMENT site (sitecode, function?, accounts))
('"ELEMENT cname ( )) (TELEMENT sitecode ( ))
(!ELEMENT account (number, site)) (IELEMENT function ( ))
('"ELEMENT number ( )) (TELEMENT account (number, customer))
('ELEMENT site (sitecode, function?)) (TELEMENT number ( ))
(!ELEMENT sitecode ( ) (IELEMENT customer (cname))
(IELEMENT function ( ) (IELEMENT cname ( )
(a) (b)
(IELEMENT bank (customer | account | site)x)
(IELEMENT customer
| .
(IELEMENT bank (customer)) Elﬁgt:g E“::Zm:' z'da . ) )
(!ELEMENT customer (accountx)) ) ustomer cnam
(IELEMENT site )
(!ATTLIST customer cname ) N
: (IATTLIST site sid )
('ELEMENT account (site)) (ATTLIST site sitecode )
(!ATTLIST account number Y he srteco
. (IATTLIST site function )
(IELEMENT site )
o (IELEMENT account )
(IATTLIST site sitecode ) .
(IATTLIST site function ) (1ATTLIST account aid )
' (IATTLIST account number )
©) (IATTLIST account sid )
(IATTLIST account cid )
(d)

Figure 5: DTDs for the Bank XML examples

Higher Level Construct Equivalent HDM Representation
Construct required (REQ) Links (xml:c:a))

Class constraint . —

Scheme (e, a) Cons makeCard({(-,xml:e,xml:e:a), {1..N}, {1..N})
Construct fixed (FIX) Links {(xml:e:a))

Class constraint C makeCard(((-,xml:e xml:e:a)), {1..1}, {1..N});
Scheme (e, a)) ons makeCard({(xml:e:a)), {1..1})

Construct identity (ID) . .

Class Tinking, Edge {(xml:a,xml:e,id))

Links {(xml:e)), ((id))
Cons makeCard({(xml:a,xml:e,id), {1..1},{0..1})

constraint, list
Scheme (e, a))
Construct identity (IDREF)
Class linking,

constraint, list
Scheme (e, a)

Edge {(xml:a,xml:e,id))
Links {(xml:e}), (id))
Cons makeCard({(xml:a,xml:e,id)), {1..1},{0..N})

Table 3: Specifying !ATTLIST DTD constraints in the HDM

3.3.1 Handling the !ATTLIST DTD construct

The general form of a DTD attribute definition is
(IATTLIST element_name attribute_name
and Table 3 summarises how ATTLIST DTD constraints are represented in the HDM. We see

5We do not consider in this paper the issue of translating between different query languages, and assume a
‘neutral’ intermediate query notation, namely set comprehensions, into which queries submitted to local or global
schemas can be translated as a first step.
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that for the most part DTD constructs translate into constraints on the HDM nodes and edges
representing the XML constructs. The one exception is the representation of 1D, and
attributes. In more detail:

1. An attribute constraint of is assumed by our representation of XML attributes
in Table 1 since the attributes there are optional. Other attribute types serve to restrict this
default constraint as follows:

. has a mandatory constraint added to the edge between a pair of element
and attribute nodes.

. has a mandatory constraint added, and in addition makes the attribute node
single valued.

2. Table 1 is correct for the and attribute types in that no further con-
straints are needed in the HDM. For the attribute type , the constraint on the
edge (-, xml:e,xml:e:a)) in Table 1 would be modified so that each instance of the element e
can be associated with 0../V instead of 0..1 instances of the attribute a. For the other DTD
attribute types, the following alterations are needed:

e An attribute of type identifies an element. Since there is a document-wide name
space for element identifiers we use a single HDM node id whose extent consists of all
instances of attributes which are element identifiers (as opposed to using a different
node for each such attribute). There is a one-to-one association between the element e
and id, forcing each instance of e to be associated with exactly one instance of id, and
each instance of id to be associated with no more than one instance of e.

e An attribute of type is similarly associated with the id node, with the difference
that the constraint for id is now many-valued, since any number of elements can have an
instance pointing to the same element. For attribute type (not shown

in Table 3) the cardinality of e would be 1..N instead of 1..1.

3.3.2 Handling the !ELEMENT DTD construct

The general form of a DTD element definition is:

(IELEMENT element_name (content_pattern))

The (content_pattern) places constraints on the extents of the edges representing XML element
nesting. The definition of set-based element nesting in Table 1 allows the instances of nested
elements ey, ..., e, of an element e to appear in any order, which corresponds to the DTD content
pattern . A DTD occurrence operator m, such as the * in (eq,...,e,)*, will generate extra
cardinality constraints on the links between the edges representing the nesting of elements and the
node order. We refer to the absence of an occurrence operator as m = none. For content patterns
of the form (e;...e,)m we map m to a cardinality constraint by applying the following rules,
where mapOcc(none) = 1..1, mapOcc(?) = 0..1, mapOcc(+) = 1..N, and mapOcc(*) = 0..N:

e A single element (es)m generates the cardinality constraint:
makeCard({z | (y,z) € {(-.{(-.xml:e,xml:es),order)) }, mapOcc(m))

e The choice pattern (e; | ... | en)m generates the cardinality constraint:
makeCard({z | (y,x) € {(-.{(-.xml:e,xml:e1)),order)) V...V
(y,z) € (., ((-xml:e,xml:e,)),order)) }, mapOcc(m))

e The sequence pattern (ey,...,e,)m generates the cardinality constraint:
makeCard({z | (y,z) € {(_,{(L,xml:e,xml:e;)),order)), mapOcc(m)}) V...V
makeCard({z | (y,x) € {(-.{(-.xml:e,xml:e,)) order)), mapOcc(m)})

For pairs of elements es, e;) appearing within a sequence (..., es,..., €, ...), we may also infer
the following pair of constraints:
(z,y) € (-.(-xmlexmles),order)) — z.(z,z) € (-, {(-xml:e,xml:e.),order)) Ay < z
(x,z) € (L. {-xmlexml:e ) order)) — Jy.(x,y) € (- (- xmlexmles),order) Ay < z
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4 Transforming between ER Models and XML Documents

In [16] we showed how ER schemas can be represented in the HDM, and we refer the reader to that
paper for details. Here we recall that ER entity classes are nodal constructs represented by HDM
nodes, ER relationships are linking constructs represented by an HDM edge and a cardinality
constraint, and ER attributes are nodal-linking constructs represented by a node, an edge linking
this node to the node representing the attribute’s entity class, and a cardinality constraint. The
primitive transformations on ER schemas consist of the operations add, del, expand, contract and
rename on the constructs Entity, Attribute or Relationship.

4.1 Automated generation of a canonical ER schema from XML

Using the sets of primitive transformations on XML and ER schemas, an XML document or set
of documents can be automatically transformed into a ‘canonical’ ER schema by applying the
rules given below. For ease of reading, we have specified these rules at the level of the HDM, and
the primitive transformations on the HDM, rather than at the higher level of the XML and ER
constructs. As with the example in Section 3.2 above, the transformation consists of a ‘growing
phase’ where new ER constructs are added to the schema, followed by a ‘shrinking phase’ where
the XML constructs now rendered redundant are removed:

1. Each node representing an XML element (i.e. is named xml:e for some e and is not id, order
or pcdata) generates an ER entity class of the same name e, with a key attribute also named
e (this explicit key attribute is needed because there is no implicit notion of unique object
identifiers in the ER model):

addNode({(er:e)),{(xml:e))
addNode({(er:e:e)),{(xml:e))
addEdge({(_.er.e.eree)), {{z,z) | x € {(xmle)})
addConstraint(makeCard(((_er:e,er:e:e)),1..1,1..1))

Note that for the purposes of this rule, the root of the document should also be considered
as a node, so there will always be a root entity in the ER model. Each instance of the root
entity will represent a distinct XML document.

2. Each node representing an XML attribute (i.e. is named xml:e:a for some e and a) generates
an attribute of the ER entity class e5:

addNode({er:e:a)),{(xml:e:a)))
addEdge({(_er:e.er:e:a)y, (-, xml:e,xml:e:a)))
addConstraint(copyCard({(_,xml:e,xml:e:a)), {(_.er.eer.e:a)))

3. Each node linked by an edge to ((pcdata)) has an attribute added called pcdata whose extent
will consist of the instances of {{pcdata)) with which instances of the node are associated:

addNode(((er:e:pcdata)), {z | (,z) € {(-.xml:e,xml:e:pcdata))})
addEdge({(_,er:e,er:e:pcdata)), (-, xml:e,xml:e:pcdata)))
addConstraint(copyCard({(_,xml:e,xml:e:pcdata)), ((_er:e,er:e:pcdata))))

4. Each nesting edge between two XML elements generates an edge between the two corre-
sponding ER entity classes representing a relationship between them:

addEdge({(_.er:e.er:es), (-, xml:e,xml:e;)))

6Here, the function copyCard() translates the constraint on an XML edge to the same constraint on an ER edge.
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For list-based nestings, each instance of the XML nesting edge will be linked to the order
node. This information can be represented as an attribute order of the new ER. relationship:

addEdge({(_,{(.er:e.eres),order)), ((_,{(-.xml:e,xml:es)),order)))

Any constraint on the XML nesting edge should also be copied over onto the new ER
relationship.

5. We also need to handle the association of nodes and edges in the HDM to the ((id)) node:

e Each node ((xml:e)) linked to ((id)) where the cardinality constraint is such that the
edge cannot be multivalued (i.e. the link represents an |D attribute) generates a new
ER attribute a whose extent consists of those instances of ((id)) that are linked to the
corresponding entity class:

addNode(((er:e:a)), {(z) | (-, z) € {(xml:a,xml:e,id))})
addEdge({(_er:e.er:e:a)), {(xml:a, xml:e,id)))
addConstraint(makeCard(((_,er:e,er:e:a)),1..1,0..1))

e Each node {(xml:e}) linked to ((id)) where the cardinality constraint is such that the edge
can be multivalued (i.e. the link represents an or attribute) generates
an ER relationship between the ER entity e and the “parent” ER entity e, with the
same ID attribute:

addEdge(({(_.er:e.er:ep)), {(z,2) | (z,w) € {(xmla,xmle,id) A (z,w) € {(xml:a,xml:e,,id))})
addConstraint(makeCard(((_er:e.er:e,),1..1,0..N))

6. As a result of the above add transformations, all the XML constructs are rendered seman-
tically redundant and can finally be progressively removed from the schema by applying a
sequence of del transformations.

The result of applying the above rules to the four HDM schemas representing the XML doc-
uments of Figure 2 is shown in Figure 6. We observe that each differs to a greater or lesser
extent from the ER schema of Figure 1 which we assumed was used to generate the original XML
documents. We now study how to derive the original ER schema.

4.2 Manual refinement of canonical ER schemas

Comparing Figures 6(a) and (b) with Figure 1, we notice the following characteristics of using
XML to represent ER data, and hence possible refinements that may be made to the canonical
ER schemas automatically generated by the method described in the previous subsection:

1. It is often the case that the ordering of elements in XML is not semantically significant, in
which case the order attribute in the ER schema can be ignored. For example, if the order
of site and number within account is not significant in Figure 2(a), then the order attribute
in Figure 6(a) can be removed from the relationship between account and number, and from
that between account and site, as follows:

contractAttributeer({({{-,account,number)),order)))
contractAttributeer({({{-,account,site)),order)))

In contrast if, as discussed in the introduction, the order of accounts within customers was
significant, then the order attribute must remain on ((_,customer,account)).
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function pcdata sitecode pcdata root
T T T T order T
. 1:1 . :
function 1 sitecode root
number pcdata order customer cname pcdata
T T T order T T
1:1
number account customer i cname
(a)
function pcdata site sitecode pcdata root
T T order T T order T
. 0:1] . :
function 1 sitecode root
number pcdata customer cname pcdata
T T order T order T T
1:1
number account customer T cname
(b)
root customercname accountpymber sitecode
T order T T T T order sij(\ T ])function#
1:1 : .
root 5N customer account site
(c)
cid aid sitecode
customer (XT]) cname  account (XT]) number siﬁ(‘ T 7) function#
1:1 0:N . .
customer b account 1 site —O sid
order order

™0 root

Figure 6: Canonical ER representations of the XML documents (a)-(d)

2. Using XML elements to represent attributes in the original ER schema has resulted in entity
classes being created in the new ER schema.

For both Figures 6(a) and (b) we see that function, number, cname and sitecode all have this
property. The reason that this has occurred is because XML documents contain additional
information regarding the position of constructs within the document, which is reflected by
the order information being stored in the corresponding ER edges and the generation of a
unique identifier for each XML element. If this ordering information need not be preserved in
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the ER schema (i.e. rule (1) above has been applied), these entity classes can be transformed
into attributes, using a standard pattern of transformations which we give below for the case
of the sitecode entity class:

addAttributeer(((site sitecode)), {(z, z) | (z,y) € ((_ site,sitecode) A

(y,z) € {(sitecode,pcdata)) }, copyCard(((-,site sitecode)), ((site,sitecode))))
contractAttributeer (((sitecode,pcdata)))
contractAttributeer (((sitecode,sitecode)))
contractRelationshiper({(_,site,sitecode)))
contractEntityer({(sitecode)))

The result of applying these transformations to function, number, cname and sitecode entities
in Figure 6(a) results in the ER schema shown in Figure 6(c) i.e. the ER schema generated
from the XML document of Figure 2(c).

3. The order in which elements are nested within each other in an XML document effects the
cardinality of the relationships between the corresponding ER entity classes.

For example, in Figure 6(a) sites are repeated for each customer, and thus each site entity is
associated with only one account (there will be two sites with sitecode 32 in our example, each
with one account). This can be corrected by changing the key of site from the automatically
generated, position-related, key to be sitecode instead. This involves renaming the site
entity to site’, creating a new site entity with the new sitecode key, copying the attributes
and relationships across from site’ to site, and finally removing site’:

renameEntityer({(site)), {(site')))
addEntityer(((site)) {z | (-, ) € ((site’,sitecode))})
addAttributeer(((site sitecode) {{x, x) | () € {(site’ sitecode})},1..1,1..1)
addAttributeer(((site,function)),
{{z,y) | (z,z) € ((site’ sitecode)) A (z,y) € {(site’ function))},
copyCard({(site’ function)),((site,function))))
addRelationshiper({(-,site,account)),
{{z,y) | (z,z) € ((site’ sitecode)) A (z,-,y) € {_.site’,account))},
copyCard({(_,site’,account)),{(_,site,account))))
contractAttributeer(((site’,function)))
contractAttributeer(((site’,sitecode)))
contractAttributeer (((site',site)))
contractRelationshiper(((_,site’, account)))
contractEntityer({(site’)))

As already discussed, Figure 6(c) is an intermediate stage of the transformations applied to
Figure 6(a) and only changing the key of entity classes from the automatically generated position-
related key to another attribute remains to be done.

Finally, the ‘flat’ representation of information in the XML document of Figure 2(d) results
in the ER schema of Figure 6(d). This is the closest to Figure 1, with both the same attributes
present and the same cardinality constraints. If they are not required for applications, we can
simply drop the id nodes using contractAttributeer(((site,id))). We can also apply the key transfor-
mation rules to change the key from the position-related key to another attribute.

In summary, we have shown in this section how four XML documents dy,...,ds can be au-
tomatically transformed into ER schemas eri,...,ers which may then be manually transformed
into a single ER schema er. To transform an XML document d; to another XML document d;
the forward transformation d; — er; — er can be applied, followed by the reverse transformation
er — er; — dj.
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5 Related Work

XML has received much attention as a language for the exchange of information on the Internet,
and there has been much work on translation between XML and structured data models and
between different XML formats. [1] describes the whole area and the issues involved

Considering first the issue of translating between different XML document formats, a common
approach is to use one of the many proposed XML query languages to build a new XML document
as a view of another XML document. A survey of five XML languages is presented in [5]. XSL
[8] is perhaps the most established of these languages, being used in several tools concerned with
the presentation of XML into HTML. In common with other approaches to representing XML
or semi-structured data, e.g. [19, 3, 2, 4, 21, 9, 1], we use a graph-based data model in which to
represent XML data (the HDM) which supports the notion of unique identifiers for XML elements.
One difference with our approach is how the ordering information found in XML documents is
represented. Our use of the order node in the HDM graph allows list semantics to be preserved
with the data if desired. On the other hand, if only set semantics for the XML data are needed the
links to order can be ignored and a set-based representation results. This is possible because of the
support of nested edges in the HDM. These arose naturally in [20] in order to model attributes of
relationships in the ER model. Generally, the provenance of the HDM as a common data model
for structured as opposed to semi-structured or XML data gives it a rather different flavour to data
models which have an XML or semi-structured data provenance e.g. the presence of constraints
as well as structure in an HDM schema, and our use of nodal, liking and nodal-linking constructs
to represent XML documents in Section 3.1 as opposed to just nodes and edges.

Considering the issue of translating between structured data models and XML, this has also
received considerable attention in the literature. YAT [7] and SilkRoute [11] allow XML documents
to be materialised from relational databases. Quilt [11] both translates between XML document
formats and can materialise relational data in XML form. For the reverse process of translating
XML into relational form, [12] represents all XML data in one table and studies the performance of
using relational databases for querying this data. [22] considers the translation in both directions
between XML and the relational model, and commercial tools with more limited capabilities exist
which also provide this functionality e.g. Oracle8i. [2] considers the translation between SGML
and OO data models, using correspondence rules between constructs expressed in the different
data models. [18, 4] also consider the translation between SGML and OO data models, in this
case via virtual graphs.

The approach that we have proposed here is a general method for translating between struc-
tured and XML representations of data and is not tied to any specific structured data model.
Through the use of the HDM and our previous work on providing a methodology for using the
HDM to represent any of the common structured data models [16], we have provided a transfor-
mation and integration route between XML and any structured data model. The specification of
XML in the HDM has allowed the set of primitive transformations on XML to be automatically
derived in terms of sequences of primitive transformations on the HDM. Both high and low-level
transformations are automatically reversible in our framework because they require the specifica-
tion of a constructing/restoring query for add/del transformations. These two-way transformation
pathways between schemas can be used to auomatically translate data, queries and updates in
either direction. The work on schema translation and matching [2, 18, 4] could be utilised to en-
hance our framework by automatically or semi-automatically deriving the constructing/restoring
query in add/del transformations where possible.

6 Concluding Remarks

We have developed our previous work which supports the integration of structured data sources
to also handle XML documents. As such, we have provided a framework which allows the free
movement of data and queries between structured and XML data sources. We have demonstrated
how XML documents can be automatically transformed into ER schemas, and have discussed
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how to further transform such schemas so that they are semantically closer to the original source
database schema that the XML documents may have been generated from. This restructuring is
based on the application of well-understood schema transformation rules that might be used in
any database integration exercise.

In [15] we developed a second distinguishing feature of our framework, namely that our schema
transformations are automatically reversible. Thus, schema transformations set up a two-way
transformation pathway between pairs of schemas. These pathways can be used to automatically
translate data, queries and updates in either direction between two semantically equivalent or
overlapping schemas, for example between a global schema and a component schema.

The process of restructuring the ER schema would be a more complex task for data sources
where the information has never been held in a structured form i.e. ‘really’ semi-structured data.
In [23] techniques are presented for discovering structured associations from such data, and we are
currently studying how our framework can be adapted to use such techniques.

In a longer version of this paper [17] we show how to represent in the HDM the additional
information available in an XML DTD, if present. We are also studying how the approach proposed
in this paper may be adapted to use XML Schema definitions [10] in place of DTDs, which will
enable some of the restructuring rules for ER models to be automatically inferred.
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