SelLeNe - Self E-Learning Networks
IST-2001-39045

SeLeNe

WP4 Deliverable 4.1

Generation and Syndication of Learning Object
Metadata

Philippe Rigaux and Nicolas Spyratos

Laboratoire de Recherche en Informatique
Université Paris-Sud Orsay, France
rigaux@Iri.fr, spyratos@Iri.fr

Abstract

In this report, we propose a simple data model for the composition and metadata
management of Learning Objects (LOs) in a distributed setting that we call a Self-
eLearning Network, or SeLeNe for short. We assume that each LO resides at the
local repository of its provider, so all providers’ repositories, collectively, can be
thought of as a database of LOs spread over the network. Providers willing to
share their LOs with other providers in the network must register them through
the appropriate SeLeNe services (see deliverable 3). In the present deliverable we
focus on the part of the registering, un-registering and querying services that rely
on LO content description. In this respect, we distinguish three kinds of description:
the provider description, the implied description and the registration description.

Each of these descriptions is actually a set of terms from a taxonomy to which
all providers adhere. During registration of a LO, its provider is required to submit
a description that we call the provider description. If the LO is atomic then the

provider description must be nonempty, whereas if the LLO is composite the provider
description can be empty. However, if the LO is composite the provider is also
required to submit all parts of the LO being registered (i.e., all LOs that constitute the
LO being registered). Based on the descriptions of these parts, the registration service
then automatically determines a description that we call the implied description of
the composite LO. The LO registration involves the provider description augmented
by the implied description, after removing all redundant terms (i.e., terms that are
subsumed by other terms). The final set of terms used for registration is what we call
the registration description. In this context, the main contributions of the present
deliverable are:

1. providing appropriate definitions of LO descriptions;
2. providing an algorithm for the automatic computation of implied descriptions;

3. defining the procedures which must be supported by the SeLeNe services to
maintain the correct LO descriptions through registrations and un-registrations;

4. defining the procedures which must be supported by the SelLeNe services to
syndicate LO metadata when the providers use their own, local taxonomies;

5. providing an articulation mechanism between distinct taxonomies for querying
purposes.

We have tested our results in a case study that illustrates some features and function-
alities of a SeLeNe in which the LOs are XML documents (see Appendix A). This
case study has been conducted in the context of a Master thesis, within our research
group. Integration of our results with those of our SeLeNe partners concerns two
activities:

1. Integration of our algorithms into the change propagation module developed by
Birkbeck (see Deliverable 4.4 [13]).

2. Embedding of our model in the RDF Suite developed by ICS-FORTH (see
Appendix B).

We stress the fact that, in this deliverable, we do not deal with the management of
LO content, but only with the management of content description, and in particular
with subject area description. Therefore our model and query language capture only
one part of content description, and further work is needed to extend the model to
other kinds of LO metadata and hence to other modes of querying.

LRI, France

The SeLeNe Project

Life-long learning and the knowledge economy have brought about the need to support a
broad and diverse community of consumers throughout their lifetimes. These consumers
are geographically distributed and highly heterogeneous in their educational backgrounds
and learning needs. The number of learning resources available on the Web is continu-
ously increasing, thus indicating the Web’s enormous potential as a significant resource of
educational material both for consumers and instructors.

The SeLeNe Project aims to elaborate new educational metaphors and tools in order
to facilitate the formation of learning communities that require world-wide discovery and
assimilation of knowledge. To realize this vision, SeL.eNe is relying on semantic metadata
describing educational material. SeLeNe offers advanced services for the discovery, sharing,
and collaborative creation of learning resources, facilitating a syndicated and personalised
access to such resources. These resources may be seen as the modern equivalent of text-
books, comprising rich composition structures, “how to read” prerequisite paths, subject
indices, and detailed learning objectives.

The SeLeNe Project (IST-2001-39045) is a one-year Accompanying Measure funded by
EU FP5, running from 1st November 2002 to 31st October 2003. The project falls into
action line V.1.9 CPA9 of the IST 2002 Work Programme, and is contributing to the ob-
jectives of Information and Knowledge Grids by allowing access to widespread information
and knowledge, with e-Learning as the test-bed application. The project is conducting
a feasibility study of using Semantic Web technology for syndicating knowledge-intensive
resources (such as learning objects) and for creating personalized views over such a Knowl-

edge Grid.

Executive Summary

This deliverable (4.1) is part of the SeLeNe Workpackage 4 on Syndication and Personal-
ization of Educational Resources. Workpackage 4 has two main objectives:
e To investigate techniques for syndication and personalization of distributed, au-
tonomous RDF description bases.

e To design language primitives for defining user views over distributed RDF descrip-
tion bases and for deriving composite learning objects’ descriptions from those of
their constituent learning objects.

Accessing RDF description bases in SeLeNe raises two basic technical challenges: (1)
flexible mediation of the different RDF schemas employed by the RDF description bases,
and (2) personalization of learning objects’ descriptions and schemas according to the edu-
cational needs and interests of learning objects’ providers (i.e., instructors) and consumers.
(i.e., learners).

Concerning problem (1), the IEEE LOM has effectively achieved the integration of the
various educational metadata standards, as is reported in Deliverable 2.1 [16] of Workpack-
age 2. Thus, in the context of a SeLeNe, we are assuming that metadata about learning

3

objects are represented using an RDF/S binding of the IEEE LOM. However, fine-grained
descriptions expressed in domain or topic-specific taxonomies may also be made available
by instructors. Hence, this workpackage is investigating a flexible articulation of different
domain /topic-specific taxonomies which can be used for e-learning, as well as the automatic
generation of semantic descriptions for composite learning objects using the descriptions of
their constituent learning objects. The taxonomies used for this purpose and the resulting
descriptions can easily represented RDF/S. This work is reported in Deliverable 4.1.

Concerning problem (2) above, two major issues are involved: (a) specification by
learners of their educational needs, and (b) adaptation of learning objects to these needs.
Issue (a) requires the representation of educational needs in a “learner profile” using the
e-learning schemas as well as the domain or topic-specific taxonomies available in SeL.eNe.
It also requires unstructured, keyword-based querying facilities, which can be translated
automatically into the structured RDF/S queries supported by the SeLeNe system. The
result of these unstructured queries may be returned in a special form of composite learning
object called “trails”. To address issue (b) we need methods for dynamically adapting
learning material to the preferences of a learner. This requires ranking of query results by
matching the descriptions of the returned learning objects against the a learner’s profile.
These issues are discussed in Deliverable 4.2.

Specifying educational needs or describing educational material according to personal-
ized e-learning RDF /S schemas (for both learners and instructors) requires formalisms for
defining declarative views over learning object descriptions and schemas, and this work is
reported in Deliverable 4.3. This deliverable also discusses the structured RDF /S querying
facilities supported by SeLeNe.

Also needed are techniques for detecting changes in learning objects’ descriptions or
users’ personal profiles, and for notifying users who have subscribed to be notified of such
changes. Techniques for the provision of this kind of reactive functionality over RDF
descriptions of learning objects and users are reported in Deliverable 4.4.

Revision Information

| Revision Date | Version | Changes
September 11, 2003 0.1 First Draft Proposal

October 24, 2003 1.0 First version
November, 5, 2003 1.1 Minor modifications
November, 21, 2003 2.0 Second version, including a revi-

sion of Section 4 according to the
grid-based architecture of deliver-
able 3.

November, 26, 2003 2.1 Minor improvements of the previ-
ous revision.

January 7, 2004 2.2 New section on articulations with
local taxonomies

Table of Contents

Contents

1

2

Introduction

The Representation of a Learning Object
Descriptions of Learning Objects
Descriptions Management in a SeLeNe
Concluding Remarks

A Case Study
A.1 The terminology L
A2 Documents e e

B Embedding in RDF

15

25

29
30
30

35

1 Introduction

In this report, we propose a simple data model for the composition and metadata man-
agement of Learning Objects (LOs) in a distributed setting that we call a Self-eLearning
Network, or SeLeNe for short [14].

In a SeLeNe, a community of LO providers co-operate in the creation of LOs to be
used also by other providers and by a community of learners. Each provider is also a
“consumer”, in the sense that he creates LOs based not only on other LOs that he himself
has created but also on LOs that other providers have created and are willing to share [6].
In a nutshell, our approach can be described as follows.

We distinguish LOs into atomic and composite. Intuitively, an atomic LO is any individ-
ual piece of learning material (text, image, sound, etc.) that can be identified uniquely and
cannot be decomposed further; its nature and granularity are entirely up to its provider.
A composite LO consists of a set of parts, i.e., a set of other LOs that can be either atomic
or composite. We assume that each LO resides at the local repository of its provider, so
all providers’ repositories, collectively, can be thought of as a database of L.LOs spread over
the network. Typically, a provider wishing to create a new LO will use some of the objects
in his local database as components and will also search for relevant LOs available over the
network.

Providers willing to share their LOs with other providers in the network must register
them through the appropriate SeLeNe services (see deliverable 3 [4]). In the present deliv-
erable we focus on the part of the registering, un-registering and querying processes that
rely on LO content description. In this respect, we distinguish three kinds of description:
the provider description, the implied description and the registration description.

Such descriptions are actually sets of terms from a controlled vocabulary, or tazonomy,
to which all providers adhere. The well known ACM Computing Classification System [1]
is an example of such a taxonomy.

During registration of a LO, its provider is required to submit the following items:

1. The LO identifier, say o; this can be a URI allowing to access the LO.

2. A description of the LO content, that we call the provider description of o; if o is
atomic then the provider description must be nonempty, whereas if o is composite
then the provider description can be empty.

3. If 0 is composite, then registration requires, additionally, the submission of all parts
of 0; using the descriptions of these parts, the registration process then computes
automatically a description that “summarizes” the descriptions of the parts, and
that we call the implied description of o.

To register a LO the registration service uses the provider description augmented by
the implied description, after removing all redundant terms (i.e., terms that are subsumed
by other terms). The final set of terms used for registration is what we call the registration
description.

The Update Service provides an interface that maintains the part of the RDF repository
(see deliverable 3 [4] and 4.3 [8]) concerning the descriptions of registered LOs, called the
catalogue hereafter. During registration of a LO with identifier o, these services insert in
the catalogue a pair (¢, 0), for each term ¢ in the registration description of o.

Providers and consumers searching for LOs that match their needs will rely on the
catalogue for their subject-based queries.

The main issues addressed in this report are:

1. providing appropriate definition of LO description;
2. providing an algorithm for the computation of implied descriptions;

3. defining the procedures which must be supported by the SeLeNe services to maintain
the correct LO descriptions through registrations and un-registrations;

4. defining the procedures which must be supported by the SeL.eNe services to syndicate
LO metadata when the providers use their own, local taxonomies;

5. providing an articulation mechanism between distinct taxonomies for querying pur-
poses.

This report proposes generic solutions to the above issues, i.e., solutions that are valid
independently of questions concerning network configuration and the organization of ser-
vices over this network. We refer to deliverable 3 [4] for a presentation of both the ar-
chitectural framework and the services that support the functionalities presented in the
following.

We have tested our results in a case study that illustrates the features and functionalities
of a Sel.eNe in which the LOs are XML documents, and the network is served by a single
taxonomy acting as a mediator (see Appendix A). This case study has been conducted in
the context of a Master thesis, within our research group. Integration of our results with
those of our Sel.eNe partners concerns two activities:

1. Integration of our algorithms into the change propagation module developed by Birk-
beck (see Deliverable 4.4 [13]).

2. Embedding of our model in the RDF Suite developed by ICS-FORTH (see Ap-
pendix B).

We stress the fact that, in this deliverable, we do not deal with the management of
LO content, but only with the management of content description, and in particular with
subject area description. We are aware that, apart from subject area, there are several
other dimensions of content description such as the format of the LO, its date of creation,
its provider, the language in which the LO content is written (if there is text involved),
and so on. However, in this report, we focus only on the subject area dimension, and when
we talk of content description we actually mean subject area description.

Therefore our model and query language capture only one dimension of content de-
scription, and further work is needed to extend the model to other kinds of LO metadata
and hence to other modes of querying.

2 The Representation of a Learning Object

As mentioned earlier, in our model, a LO is represented by an identifier together with a
composition graph showing how the LO is constructed from other, simpler LOs. We do not
consider the LO content itself, but focus only on its representation by an identifier and a
composition graph, as this is sufficient for our metadata management purposes. Therefore,
hereafter, when we talk of a LO we shall actually mean its representation by an identifier
and a composition graph.

In order to define a LO formally, we assume the existence of a countably infinite set
Obj whose elements are used by all providers for identifying the created LOs. For example,
the set Obj could be the set of all URIs. In fact, we assume that the creation of a LO is
tantamount to choosing a (new) element from Obj and associating it with a set of other
LOs that we call its parts.

Definition 1 (The Representation of a Learning Object) A LO consists of an iden-
tifier o together with a (possibly empty) set of LOs, called the parts of o and denoted as
parts(o). If parts(o) = 0 then o is called atomic, else it is called composite.

Clearly, the choice of parts of a composite object and their arrangement to form a
composition graph should be left entirely up to its provider. For notational convenience,
we shall write 0 = 0+ 02 ...+ 0, to stand for parts(o) = {01, 09, ...,0,}. We can represent
a LO and its parts graphically, as follows: if o has

0; as a part then we draw an arrow from o to o;. Thus, if o = 01 + 02... 4+ 0, then we
represent this graphically as in Figure 1.

AN

Figure 1: A LO and its parts

Based on the concept of part, we can now define the concept of component.

Definition 2 (Components of a Learning Object) Let 0 = 01 +02...+ 0,. The set
of components of o, denoted as comp(0), is defined recursively as follows:

if 0 is atomic then comp(o) = ()
else comp(o) = parts(o) U comp(o1) U comp(o2) U ... U comp(oy,).

In this report, we assume that a LO o and its associated set of components can be
represented as a directed acyclic graph (dag) with o as the only root. We shall refer to this
graph as the composition graph of o. The composition graph of an atomic LO consists of
just one node, the LO identifier itself. We note that the absence of cycles in the composition
graph simply reflects the reasonable assumption that a LO cannot be a component of itself.

8

Clearly, this does not prevent a LLO from being a component of two or more distinct LOs
belonging to the same composition graph, or to two different composition graphs.

It is important to note that in our model the ordering of parts in a composite LO is
ignored because it is not relevant to our purposes. Many different composite LOs, with
different arrangements of the same set of component LOs, have the same representation in
the model. As we shall see shortly, deriving the description of a composite LO from the
descriptions of its parts does not depend on any ordering of the parts. Therefore, we could
see no reason for imposing an ordering on the parts.

3 Descriptions of Learning Objects

As we mentioned in the introduction, LO content descriptions are built based on a con-
trolled vocabulary, or taxonomy, to which all providers adhere. A taxonomy consists of
a set of terms together with a subsumption relation between terms. An example of a
taxonomy is the well known ACM Computing Classification System [1].

Definition 3 (Taxonomy) A tazonomy is a pair (T, <) where T is a terminology, i.e.,
a finite and non-empty set of names, or terms, and < is a reflexive and transitive relation
over T, called subsumption.

Programming
Theory Languages Algorithms
OooL Sort
C++ /Java\\ MergeSort QuickSort BubbleSort
JSP JavaBeans

Figure 2: A taxonomy

If s < ¢ then we say that s is subsumed by t, or that ¢ subsumes s. A taxonomy is usually
represented as a graph, where the nodes are the terms and there is an arrow from term ¢
to term s iff ¢ subsumes s . Figure 2 shows an example of a taxonomy, in which the term
Languages subsumes the term 00L, the term Java subsumes the term JavaBeans, and so
on. We note that the subsumption relation is not antisymmetric, i.e., (s < t) and (¢ < s)
does not necessarily imply s = t. Therefore, we define two terms s and t to be synonyms
iff s <t and t < s. However, in this report, we shall not consider synonyms. From a
technical point of view, this means that we work with classes of synonym terms, rather
than individual terms. Put it differently, we work with just one representative from each
class of synonyms. For example, referring to Figure 2, the term OOL is the representative of

9

a class of synonyms in which one can also find terms such as Object-Oriented Languages,
0-0 Languages, and so on, that are synonyms of 0OL.

However, even if we work only with classes of synonyms, a taxonomy is not necessarily
a tree. Nevertheless, most taxonomies used in practice (including the ACM Computing
Classification System mentioned earlier) are in fact trees. In this report, we shall assume
that the taxonomy used by the providers of a SeLeNe to describe the contents of their LOs
is in fact a tree. We shall refer to this tree-taxonomy as “the SeLeNe taxonomy”, or simply
“the taxonomy”, for short.

Now, in order to make a LLO sharable, we must provide a description of the content, so
that users can judge whether the LO in question matches their needs. We define such a
description to be just a set of terms from the taxonomy. For example, if the LO contains
the quick sort algorithm written in Java then we can use the terms QuickSort and Java
to describe its content, and the set of terms {QuickSort, Java} is then a description of
the LO.

Definition 4 (Description) Given a tazonomy (T, <) we call description in T any set
of terms from T'.

However, a problem arises with descriptions: a description can be redundant if some of
the terms it contains are subsumed by other terms. For example, the description
{QuickSort, Java, Sort} isredundant, as QuickSort is subsumed by Sort. If we remove
either Sort or QuickSort then we obtain a non-redundant description: either {QuickSort,
Java} or {Sort, Java}, respectively. As we shall see later, redundant descriptions are
undesirable as they can lead to redundant computations during query evaluation. We shall
therefore limit our attention to non-redundant, or reduced descriptions, defined as follows:

Definition 5 (Reduced Description) A description D in T is called reduced if for any
terms s and t in D, s At and t £ s.

Following the above definition one can reduce a description in (at least) two ways:
removing all but the minimal terms, or removing all but the maximal terms. In this report
we adopt the first approach, i.e., we reduce a description by removing all but its minimal
terms. The reason for our choice lies in the fact that by removing all but minimal terms
we obtain a more accurate description. This should be clear from our previous example,
where the description

{QuickSort, Java} is more accurate than {Sort, Java}.

Definition 6 (Reduction) Given a description D in T we call reduction of D, denoted
reduce(D), the set of minimal terms in D with respect to the
subsumption <.

A LO description can be seen both as a summary of the LO content and as a support
to find and retrieve the LO. In the case of an atomic LO the description can be provided
either by the provider or by the system via a semi-automatic analysis of the LO content. In

10

the case of a composite LO, though, we would like to derive a LLO description automatically
from the descriptions of the LO parts. We shall refer to such a derived description as the
implied description of the composite LO. To get a feeling of the kind of implied description
that we have in mind, for a composite LO, let us see an example.

Example 1 Let o = 01+ 0y be a composite LO with the following descriptions of its parts:
Descr(oy) = {QuickSort, Java} Descr(oy) = {BubbleSort, C++}
Then we would like the implied description of o = 01 + 0y to be {Sort, OOL}.

We shall come back to this example after the formal definition of implied description.
Actually, the main question is: how can one define the implied description of a composite
LO so as to best reflect the contents of its parts. Roughly speaking, what we propose in
this report is that the implied description of a LO should satisfy the following criteria:

e it should be reduced, for the reasons explained earlier;
e it should summarize what the parts have in common;

e it should be minimal.

To illustrate points 2 and 3 above, suppose that a composite LO has two parts with
descriptions {QuickSort} and {BubbleSort}. The term Sort is a good candidate for being
the implied description, as it describes what the two parts have in common. Moreover, as
we can see in Figure 2, Sort is the minimal term with these properties. On the other hand,
the term Algorithm is not a good candidate because, although it describes what the two
parts have in common, it is not minimal (as it subsumes the term Sort).

Coming back to Example 1, following the above intuitions, we would like the implied
description of o to be {Sort, 00L} because:

e {Sort, 0OL} is a reduced description;

e the term Sort summarizes what QuickSort and BubbleSort have in common, and
00L summarizes what Java and C++ have in common;

e it is minimal, as any other description with the above properties will have terms
subsuming either Sort or O0L.

In order to formalize these intuitions, we introduce the following relation on descrip-
tions.

Definition 7 (Refinement Relation on Descriptions) Let D and D' be two descrip-

tions. We say that D is finer than D', denoted D T D', iff for each t' € D', there exists
t € D such thatt <t

11

In other words, D is finer than D’ if every term of D’ subsumes some term of D. To
gain some insight into this ordering, let us see an example. Referring to Figure 2, consider
a LO with two parts having the following reduced descriptions:

D = {JSP, QuickSort, BubbleSort} D' = {Java, Sort}

Then D C D', as each term ' of D' subsumes some term ¢ of D. Indeed, Java subsumes
JSP and Sort subsumes QuickSort (of course, Sort also subsumes BubbleSort, but the
existence of one term in D subsumed by Sort is sufficient).

Note that, according to this ordering, once we have verified that D T D' we may add to
D as many extra terms as we wish, without destroying the ordering. Thus, in our previous
example, if we add to D the term Theory, D still remains finer than D’. This is consistent
with our objective that the implied description should summarize what is common in all
parts (and Theory is not common in the two parts of our example).

Clearly, C is a reflexive and transitive relation over descriptions, but not antisymmetric,
as the following example shows. Consider D; = {00L, Java, Sort} and D, = {Java,
Sort, Algorithms}. It is easy to see that D; C Dy and Dy C Dy, although D; # Ds,.
However, as we have explained earlier, for the purposes of this report, we restrict our
attention to reduced descriptions only; and, as stated in the following proposition, for
reduced descriptions, the relation C becomes also antisymmetric, thus a partial order.

Proposition 1 The relation C s a partial order over the set of all reduced descriptions.

Proof. Indeed, assume D T D' and D' C D, and consider a term ¢’ of D’. Then there
is a term ¢ in D such that ¢ < #'. We claim that ¢ < ¢ as well, and therefore that ¢ = ¢'.
Otherwise, as D' C D and ¢ is in D, there is a term t” (different than t') such that t" < ¢,
and thus t” < #'. Assuming t” # t, we have a contradiction to the fact that D’ is a reduced
description. O

Now, using this ordering, we can define formally the implied description of a composite
LO so as to satisfy the criteria for a “good” implied desription, given earlier. First, we
need the following result:

Theorem 2 (Least Upper Bound of a Set of Reduced Descriptions) Let D =
{Dx,..,D,} be any set of reduced descriptions. Let U be the set of all reduced descriptions
S such that D; C S,;i=1,2,..,n, i.e., U ={S|D; C S,i=1,...,n}. Then U has a least
upper bound, that we shall denote as lub(D,C).

Proof. Let P = D; x Dy X ... X D, be the cartesian product of the descriptions in
D, and suppose that there are k tuples in this product, say P = {Lq, Lo, ..., Ly}. Let
D = {lub<(Ly), lub<(Ls), ..., lub<(Ly)}, where lub<(L;) denotes the least upper bound of
the terms in L; with respect to <. As (T, <) is a tree, this least upper bound exists, for
all : = 1,2,...,n. Now, let R be the reduction of D, i.e., R = reduce(D). We shall show
that R is the smallest element of i.

12

Indeed, it follows from the definition of R that D; C R, for ¢ = 1,2,...,n. Moreover,
let S be any description in U/, and let ¢t be a term in S. It follows from the definition of
U that there is a term v; in each description D; such that v; < t. Consider now the tuple
v collecting all v;’s together, i.e., v =< vy, v9,...,v, >. By the definition of least upper
bound, lub<(v) < t, and as lub<(v) is in R, it follows that R T S, and this completes the
proof. O

With this theorem at hand, we can now give the formal definition of the implied de-
scription of a composite LO.

Definition 8 (Implied Description) Let 0 =01+ 0y...+ 0, be a LO and let Dy, .., D,
be the descriptions of its parts, respectively. We call implied description of o, denoted
IDescr(0), the least upper bound of { D1, .., Dy} in C, i.e., IDescr(o) = lub({ Dy, .., D}, C)

Note that, in this definition, the descriptions of the parts are assumed to be known. In
Section 4 we shall describe the mechanism by which we can associate a description to each
part of a LO, prior to the computation of its implied description.

Theorem 2 suggests the following algorithm for the computation of the implied de-
scription of a set of reduced descriptions. Its proof of correctness follows directly from the
theorem.

Algorithm IMPLIEDDESCRIPTION
Input: A composite LOo=0;+...4 0,
The descriptions of the parts, Dy, Dy, ..., D,
Output: The implied description I Descr(o)
begin
Compute P =D x Dy X ... x D,
for each tuple Ly = [t¥, ¢4, ... tk] in P, compute T = lub<(t%, 5, ..., tF)
Let D ={T},...,T;}, where 1 is the cardinality of P
return reduce(D)
end

In this algorithm, the function lub<(t1,...,%,) returns the least upper bound of the set
of terms %y, ...,t, with respect to <. We end this section by working out a few examples

illustrating how this algorithm works, referring to the taxonomy of Figure 2.

Example 2 Consider the LO o = 01 + 02, composed of two parts with the following de-
scriptions:

Descr(o1) = {QuickSort, Java} Descr(oy) = {BubbleSort, C++}

In order to compute the implied description, first we compute the cross-product P =
Descr(o1) x Descr(o). We find the following set of tuples:

13

L, =< QuickSort, BubbleSort >
Ly =< QuickSort, C++>

L; =< Java, BubbleSort >

Ly =< Java, C++>

Next, for each tuple L;, i = 1,...,4, we compute the least upper bound of the set of
terms in L;:

1. T} = Sort
2. Ty = Programming
3. T3 = Programming
4. Ty = 00L
We then collect together these least upper bounds to form the set D:
D = {Sort, Programming, OOL}
Finally we reduce D to obtain the implied description:
Idescr(o) = reduce(D) = {00L, Sort}

In view of our discussions so far, this result can be interpreted as follows: each part of the
LO concerns both, sorting and object-oriented languages.

Example 3 Consider the LO o' = 01 + o3, with the following descriptions of its parts:
Descr(o1)= {QuickSort, Java} Descr(o3) = {BubbleSort}

Proceeding similarly, as in Example 2, we find successively:

1. The cross-product:

p— Ly =< QuickSort, BubbleSort >
" | Ly =< Java, BubbleSort >

2. The set of least upper bounds D = {Sort, Programming}
3. The implied description IDescr(o) = reduce(D) = {Sort}

Regarding Example 3, the following comments are noteworthy:

1. The term Java is not reflected in the implied description of Example 3, as it is not
something that both parts share.

14

2. The fact that Java has disappeared in the implied description means no loss of
information: if a user searches for documents related to Java, o; will be in the answer
and o' will not, which is consistent.

3. If we had put Java in the implied description of o/, this would give rise to the following
problem: when one searches for documents related to Java, the system will return
both o; and o'. Clearly, this answer is both, redundant (as o; is part of o') and
partially irrelevant (as only part of o' concerns Java).

We now give a last example that illustrates an important aspect of implied Descriptions:
the same LO will generate different implied descriptions, depending on its “companion”
parts in a composite LO.

Example 4 Consider the LO 0" = o1 + 04, with the following descriptions of its parts:
Descr(oy) ={Java, QuickSort} Descr(oy) ={C++}
Proceeding similarly, as in Example 2, we find successively:

1. The cross-product

p— L, =< Java, C++>
" | Ly =< QuickSort, C++>

2. The set of least upper bounds D ={00L, Programming}

3. The implied description IDescr(0") = reduce(D) = {00L}

Note that o; participates in the creation of the composite LO in both of the last two
examples, but each time with a different “companion part”: in Example 3, o; has o3 as
companion part in creating o/, whereas in Example 4 o; has o4 as companion part in
creating 0”. The interesting point to note here is that, depending on the companion part,
a different aspect of 0; appears in the implied decription of the created LO: in the implied
decription of o' only the “Sort” aspect of 0; appears, whereas in the implied decription of
0", only the “OOL” aspect of 0; appears.

4 Descriptions Management in a SeLeNe

As we mentioned in the introduction, in a SeLeNe, a community of providers co-operate
in the creation of LOs to be used by other providers and by a community of learners.
Each provider is also a “consumer”, in the sense that he creates LOs based not only on
other LOs that he himself has created but also on LOs that other providers have created
and are willing to share. Each LO resides at the local repository of its provider, so all
providers’ repositories, collectively, can be thought of as a database of LOs spread over the
network. Typically, a provider wishing to create a new LO will use as components some
of the LOs from his local database, and will also search for relevant LOs that reside at

15

the local databases of other providers - assuming of course that those other providers are
willing to share their LOs.

Providers willing to share some or all of their LOs with other providers in the network
must register them, and providers that search for LOs matching their needs must be able to
issue term-based queries, in which the terms are from the taxonomy in use. We refer to such
queries as term-based to distinguish from other kinds of queries (see deliverable 2.2 [6]).
Each of these functionalities involves the coordination of one or several services from the
service-based framework presented in deliverable 3 [4]. In the following we give a high-level
description of the term-based querying and LO registration services, only with respect to
the maintenance of LO descriptions. In particular, we consider:

e support for term-based querying

registration of a LO description

e un-registration of a LO description

description modification

syndication of LO descriptions

Note that these functionalities are all considered only from the point of view of LO
description management. The registration and search of a LO involve many other eL.earn-
ing metadata which are ignored here. The reader is referred to deliverable 2.1 [16] in
this project. It must also be underlined that the algorithms presented thereafter are
architecture-neutral and will be implemented and incorporated as part of the services
described in deliverable 3 [4].

During registration of a LO, its provider is required to submit the LO identifier, say o,
and a description of o that we call the provider description of o, denoted as P Descr(o). If
o0 is atomic then the provider description must be nonempty, whereas if o is composite the
provider description can be empty. However, if o is composite the provider is also required
to submit all parts of 0. Based on the descriptions of the parts, the registration process
then computes (automatically) the implied description of o. Finally, to register o, the
registration process uses the provider description augmented by the implied description,
after removing all redundant terms. The final set of terms used for registration is what we
call the registration description of o.

Definition 9 (Registration Description) The Registration Description of a LO o =
01+ ...+ o,, denoted RDescr (o), is defined recursively as follows:

e if 0 is atomic, then RDescr(o) = reduce(P Descr(0))

e clse RDescr(o) = reduce(P Descr(o) U I Descr(RDescr(o1) U. ..U RDescr(oy)))

16

One may wonder why the provider description is not sufficient for LO registration. The
answer is that the provider of a composite LO o may not describe the parts of o in the same
way as the providers of these parts have done. Let us see an example. Suppose that two
LOs, 0; and 0y, have been created by two different providers, with the following provider
descriptions

PDescr(o;) = {QuickSort, Java} PDescr(o;) = {BubbleSort, C++}

Assume now that a third provider considers these LOs as examples of good program-
ming style, and decides to use them as parts of a new, composite LO o0 = 0; + 0,. Conse-
quently, the provider of o submits the following provider description:

PDescr(o) = {GoodProgrammingStyle}

Although this provider description might be accurate for the provider’s own purposes, the
LO o still can serve to teach (or learn) Java and sorting algorithms. This information
will certainly be of interest to Sel.eNe users searching for LOs containing material on Java
and sorting algorithms. Therefore, before registration, the provider description should
be completed, or augmented by the implied description, i.e., {00L, Sort}, to obtain the
following registration description:

{GoodProgrammingStyle, 00L, Sort}

This description contains all descriptions, i.e., the one given by the provider of o and
those given by the providers of its parts.

During LO registration, the registration description of o is what is actually stored in
the RDF repository. Conceptually, this part of the repository can be thought of as a set
of pairs constructed as follows: during registration of a LO o, one stores a pair (¢,0) for
each term ¢ appearing in the registration description of 0. The set of all such pairs (¢, 0),
for all LOs that are (currently) registered is what we call the SeLeNe Catalogue, or simply
the catalogue.

Definition 10 (Catalogue) A catalogue C over (T, =) is a set of pairs (t,0), where t is
a term of T and o is a LO.

Figure 3 shows a catalogue over the taxonomy of Figure 2. The dotted lines indicate
the pairs (¢, 0) of the catalogue, relating terms with LOs. Roughly speaking, the catalogue
is a “shopping list” in which Sel.eNe users look for LOs that match their needs. In what
follows, we discuss in more detail how to use the catalogue to support the search of LOs
through term-based queries, and the maintenance of LO descriptions.

Term-based Query Language

We present a simple query language which specifically addresses the descriptions of LOs.
Queries are “term-based” in the sense that they rely on terms chosen from the common tax-
onomy. Term-based queries can be submitted as annotated keyword queries, as described

17

Programming

N T

Theory Languages Algorithms
OOL Sort

s /\\

‘1 ‘2
06 r

Figure 3: A catalogue

by Deliverable 2.2 [6], and can easily be incorporated in RQL queries over the RDF global
medatada, thanks to a simple translation similar to that presented in Deliverable 4.2 [5].
A term-based query is either a single term or a boolean combination of terms, as stated in
the following definition.

Definition 11 (Term-based Query Language) A term-based query over the SeLeNe
catalogue is any string derived by the following grammar, where t is a term and € is the
empty query:

qg=tlgAd|qgVdlgA—q|(g)le

As all queries considered in this deliverable are term-based queries, hereafter, we shall
write “query” to stand for “term-based query”. Roughly speaking, the answer to a query
is computed as follows. If the query is a single term, then the answer is the set of all LOs
related either to ¢ or to a term subsumed by t. If the query is not a single term then we
proceed as follows. First, for each term appearing in the query, replace the term by the set
of all LOs computed as explained above; then replace each boolean combinator appearing
in the query by the corresponding set-theoretic operator; finally, perform the set-theoretic
operations to find the answer. These intuitions are reflected in the following definition of
answer.

Definition 12 (Query Answer) The answer to a query q over a catalogue C, denoted
by ans(q), is a set of LOs defined as follows, depending on the form of q (refer to Defini-
tion 11):

Case 1: q is a single term t from T, i.e., g =1

18

ans(t) = U{I(s)|s 2 t}, where I(s) = {o|(s,0) € C}
Case 2: q is a general query
ans(g) =
if g =t then ans(t)
else
begin
if ¢ =q1 N go, ans(q) = ans(q1) Nans(g)
if q=q1V g2, ans(q) = ans(q1) U ans(gs)
if ¢ = q1 N g2, ans(q) = ans(q1)\ans(gs)
end
Case 3: q is the empty query
ans(e) = 0

Example 5 Consider the query ¢ = C++ V Sort. Applying the above definition we find

ans(q) = {o0s,06} U {03, 04,06} = {03, 04,05, 06}
Similarly, for the query g = C++ A— BubbleSort we find ans(q) = {os}.

Registration of LO descriptions

A provider wishes to make a LO available to other users in the network.

To make a LO available to other users in the network, its provider must submit the
following three items:

1. the LO identifier, say o;

2. a description (the provider description of o, which must be nonempty for each atomic
component of o, including o itself if it is atomic);

3. the identifiers of the parts of o, if o is composite.

The registration process then computes the registration description of o on which the
actual registration will be performed. To do this, it uses the following algorithm, whose
correctness is an immediate consequence of Definition 9. The algorithm takes as input
the above items, and updates the catalogue. The updated catalogue is the old catalogue
augmented by a set of pairs (¢, 0), one for each term ¢ in the registration description of o).

Algorithm RDESCR
Input: A LO o, the provider description Pdescr(o), the parts {01, 09,...,0,} of 0
begin
D=0
for each o; € parts(o) do
if (o; is already registered)
Take the registration description R; from the catalogue

19

else
R; = RDESC (0;, Pdescr(o;), parts(o;)) [Recursive call to RDESC]

endif
D:=DUR;

end for

Let R = reduce(IDescr(o) U PDescr(0))

for each t in R, insert the pair (¢,0) in the catalogue

end

Note that the computations performed by this algorithm depend on the nature of the
parts of o, as well as on whether these parts have been registered beforehand or not:

e if a part o; of 0 has already been registered then its registration description is taken
from the catalogue, independently of whether o; is atomic or composite;

e else if o; is composite and not yet registered, then its registration description is
recursively computed from the registration descriptions of the parts of o; (in this
case, the full composition graph of o; is required as input);

e else if o; is atomic then its provider description is required as input, and its registra-
tion description is the reduction of its provider description.

We assume that a LO o, whether atomic or composite, can be registered only if its
registration description is nonempty. This assumption is justified by the fact that term-
based search for LOs of interest by SeL.eNe users is based on descriptions. As a consequence,
if we allow registration of a LO with an empty description, then such a LO would be
inaccessible by SeLeNe users. Therefore, one needs at least one term ¢, in order to insert
the pair (t,0) in the catalogue, and make o accessible by SeLeNe users. This is ensured by
the following constraint.

Constraint 1 (Registration Constraint) A LO can be registered only if its registration
description is nonempty

For atomic LOs this is tantamount to requiring that the provider decription be nonempty.

Constraint 2 (Registration Constraint for Atomic LOs) An atomic LO can be reg-
istered only if its provider description is nonempty

If the LO is composite, then the registration constraint implies that either the provider
description must be nonempty or the implied description must be nonempty. A suffi-
cient condition for the implied description to be nonempty (and thus for the registration
constraint to be satisfied) is that all parts of the LO be registered, or (reasoning recur-
sively) that all atomic components of the LO be registered. Indeed, if all atomic compo-
nents have already been registered, then the registration process will be able to compute a
nonempty implied description, and thus a nonempty registration description, independently
on whether the provider descriptions of one or more components are missing. Therefore
the following sufficient condition for the registration of a composite LO:

20

Constraint 3 (Sufficient Condition for Composite LO Registration) If every atomic
component of a composite LO is registered then the LO can be registered

Figure 4 shows an example of composite LO registration. As shown in the figure, two
atomic LOs, o3 and o4 have already been registered in the catalogue C, and so has the
composite LO 0o, whose parts are o3 and o4. The provider descriptions of all three LOs are
shown in the figure. Although the provider description of 05 is empty, its registration was
possible as both its parts have nonempty provider descriptions. Note that the registration
descriptions of o3 and o4 coincide with their provider descriptions (since both LOs are
atomic and their provider descriptions happen to be reduced). The registration description
of 0y is easily seen to be {00L}.

o ADescr {Theory}
aspyADescr o/ o \fli%?f%ffi?f 0
{C++}ADeSCT ' og 04 IADeSCT {Javabeans, Quicksort}

Figure 4: Registration description of a composite LO

Now, suppose that a provider wishes to reuse o, (and its parts) in order to create a new
LO o, composed of two parts: 0; and o0y, where oy is an atomic LO from the provider’s
local database. Suppose now that in order to register o, the provider provides descriptions
for o and o1, as shown in the figure. Based on these descriptions, and the registration
description of 0y (computed earlier), one will then compute the registration description of
o - which is easily seen to be {00L, Theory}. Finally, using this registration description,
one will enter in the catalogue the two pairs (00L, 0) and (Theory, o).

Unregistration:

A provider wishes to remove from the catalogue one of his registered LOs

To unregister a LO, its provider must submit the LO identifier, say 0. The SeLeNe services
(see deliverable 3 [4]) are then required to perform the following tasks:

e Notify all users using o as a component in their composite objects
e Remove from the catalogue each pair (¢, 0);

e Re-compute the registration descriptions of all composite LOs affected by the removal
of o;

21

e Use the re-computed registration descriptions to maintain the catalogue.

We note that notification can be done either by broadcasting the removal of o to all
users, or by first finding the users concerned and then notifying only those concerned.
The first solution is probably cheaper but may create inconvenience to those users not
concerned, whereas the second avoids inconvenience but requires searching the catalogue
for finding the users concerned (assuming that the SeL.eNe keeps track of the “foreign LOs”
used by each user). The ECA Services presented in deliverable 4.4 [13] will be able to deal
with notifying only those users affected. Once notified of the (pending) unregistration of
0, the users concerned have the option of first creating (in their local database) a copy of o
and then proceeding to re-register all composite LOs in which o appears as a component.
Otherwise, the registration description of such LOs might become empty.

Description modification:
A provider wishes to modify the description of one of his registered LOs
To modify the description of a LO, its provider must submit the LO identifier, say o, and

the new provider description, say . The SeLeNe services are then required to perform
the following tasks:

Notify all users using o as a component in some of their composite objects;

e Remove from the catalogue each pair (¢, 0);

Using the new provider description D, compute the new registration description
RDescr(o) from the catalogue;

e Re-compute the registration descriptions of all composite LOs affected by the modi-
fication.

As in the case of un-registration, notification can be handled by the ECA rules (deliv-
erable 4.4 [13]). However, now, there is no need for any action on the part of the user: all
modified descriptions can be obtained by querying the catalogue.

Syndication of LO descriptions

The basic assumption underlying L.LO descriptions management has been so far the existence
of a network-wide SeL.eNe Taxonomy, i.e., a central taxonomy according to which LOs are
described and term-based queries are formulated.

However, we can relax this assumption, i.e., we can let each provider, or group of
providers have their own (possibly non-standard) taxonomy in order to describe their LOs
locally and to formulate term-based queries to their local repositories. In such a scenario,
we would like each provider to be able to register his LOs with the SeLeNe registration
service and to query the central taxonomy based on the terms of his own local taxonomy.

22

Clearly, in order to allow this functionality, we need to translate the provider’s LO
descriptions and queries, into descriptions and queries over the central taxonomy. This
requires the establishment of articulations, i.e., semantic mappings between the terms of
each local taxonomy and those of the central taxonomy.

Definition 13 (Articulation) Let S and T be two tazonomies. An articulation from S
to T is a set A of pairs of the form (s, A(s)), such that:

1. s is a term of S;
2. A(s) is a set of terms from T,

3. every term s of S appears at most once in A.

In other words, an articulation from S to 7" is a partial mapping from S to the powerset
of T. The use of articulations in translating LO descriptions and queries over a local
taxonomy to descriptions and queries over the central taxonomy of a SeL.eNe is described
in the following definition.

Definition 14 (Translation) In a SeLeNe, let S be a local tazonomy, T the cenral taz-
onomy and A an articulation from S to T. Then LO descriptions and queries over S are
translated to descriptions and queries over T as follows:

1. Description
Let D be a LO description over S. The translation of D over T, denoted A(D), is
defined by: A(D) = U{A(s)/(s, A(s)) € A}

2. Query

Let Q) be a query over S. The translation of Q over T, denoted A(Q), is obtained by
replacing each term s of QQ appearing in A by the conjunction of all terms in A(s).

For example, suppose that a provider uses (locally) a taxonomy S articulated to the
central taxonomy 7" of a SeL.eNe by the following articulation:

A = {(L00, C++, Java), (Tri, QuickSort, MergeSort), ...}

Such an articulation might simply reflect the facts that

e this provider’s local taxonomy is in French (in French, LOO stands for “Langages
Orienté-Objet” and means “object-oriented languages”, and “ITri” means “Sort”);

e the local taxonomy describes LOs at a granularity coarser than that of the central
taxonomy 7.

Suppose now that this provider wishes to register an atomic LO and, to this effect, he
submits the LO identifier and the following LO description:

23

D = {100, Tri}

Then following the previous definition, the translation A(D) is obtained by taking the
union of the images of the terms LO0 and Tri under A:

A(D) = {C++, Java, QuickSort, MergeSort}

Next, suppose that this provider issues the following query to the mediator: () =L00 A—
Tri. Following the previous definition, the translation A(Q) is obtained by replacing (in Q)
LO0 by the conjunction C++ A Java and Tri by the conjunction QuickSort A MergeSort:

A(Q) = {(C++ A Java) A — (QuickSort A MergeSort)}

In a SeLeNe, the articulations between local taxonomies and the central taxonomy
are stored and used whenever a provider uses his local taxonomy to register a LO or to
formulate a query.

Indeed, in a SeL.eNe, a provider is able to submit provider descriptions and queries based
on his local taxonomy and, subsequently, the Sel.eNe registration and querying services
translate them into descriptions and queries over the central taxonomy (by accessing the
stored articulations).

Once this translation has been performed, querying the central taxonomy, registering a
LO description, un-registering a LO description, and modifying a LO description can pro-
ceed as described earlier, in the previous subsections. The SeLeNe service that stores and
manages articulations (and translations) from local taxonomies to the central taxonomy is
called the Syndication Service. This service is called upon whenever the need arises to:

1. store/delete an articulation, when a new user (or group of users) connects/disconnects
to/from a SeLeNe;

2. translate a LO description when a user registers/modifies/unregisters a LO;
3. translate a query when a user formulates one based on his local taxonomy.

A more detailed discussion on the syndication service and its interactions with other
SeLeNe services can be found in Deliverable 3 [4].

We end this section with two remarks concerning articulations and their role in the
functioning of a SeLeNe. The first remark concerns the form of articulation introduced
here (i.e., local taxonomy terms mapped to sets of central taxonomy terms), which is
certainly not the most general one. Articulations can actually have more complex forms,
leading though to more complex translation schemes (see [19, 20]) and the ICS-FORTH
Semantic Web Integration Middleware (SWIM)!. We believe that the form of articulation
introduced here is quite flexible without being too complex to handle.

The second remark concerns communication in a SeLL.eNe through articulations. Roughly,
we can distinguish three basic scenarios, that we call Centralized, Local-to-Central and Au-
tonomic.

1See ftp://ftp.research.microsoft.com/pub/debull/A03dec/issuel.htm.

24

1. Centralized: There is a central taxonomy and each user (provider and/or learner) uses
that taxonomy - in other words, there is no local taxonomy. Put it differently, the
local taxonomies are each identical to the central taxonomy (and their articulations
to the central taxonomy are identities).

2. Local-to-Central: There is a central taxonomy but each user may use his own local
taxonomy. Each local taxonomy, in turn, is articulated to the central taxonomy.

3. Autonomic: There is no central taxonomy. Each user or group of users has his own
taxonomy and is free to articulate that taxonomy to one or more other taxonomies
(the resulting network of articulated taxonomies is also called a (pure) peer-to-peer
network).

In this report, we have studied in some detail the first two scenarios (centralized and
local-to-central). Some preliminary work on the third scenario (autonomic or peer-to-peer)
is reported in ER’03 [18]. Also, recent work at Birkbeck presents a new approach to con-
structing articulation mappings between heterogeneous schemas in P2P environments [9].
In this approach, mappings consist of a sequence of bidirectional schema transformations.
These sequences are easily extensible, making the approach well-suited to the needs to P2P
data integration, where the set of schemas managed by peers, and the mappings between
schemas, may change at any time.

5 Concluding Remarks

We have presented a model for composing LLOs from other simpler LOs and we have seen an
algorithm for computing implied descriptions of composite L.Os based on the descriptions
of their parts.

In our model, a LO is represented by an identifier together with a composition graph
which shows how the LO is composed from other, simpler LOs. Each LO is also associated
with three kinds of description, each of them being a set of terms coming from the SeL.eNe
taxonomy:

1. The provider description, i.e., a set of terms provided explicitly by the provider and
coming either from the SeLeNe taxonomy (in the Centralized scenario) or from the
provider’s local taxonomy (in the local-to-central scenario); in the latter case, the
provider description is translated into a set of terms from the SeLeNe taxonomy
based on the stored articulations.

2. The implied description, i.e., a set of terms coming from the SeL.eNe taxonomy and
implied by the descriptions of the parts; the implied description is computed during
registration.

3. The registration description, i.e., a set of terms coming from the SeL.eNe taxonomy
and computed from the previous two descriptions; the registration description is used
to register the LO.

25

We have also outlined the algorithm which must be triggered by the appropriate Sel.eNe
services for registering, modifying or unregistering L.Os descriptions, notifying users of
changes, maintaining the SeLLeNe Catalogue and answering term-based queries by providers
and/or consumers.

Work in progress aims at:

e validating our model in the context of a prototype, in which the LOs are XML
documents (see Appendix A as well as a Master’s Thesis by B. Gueye, in French,
contained in this deliverable as a separate document);

e embedding our model in the RDF Suite developed by ICS-FORTH, a SeL.eNe partner
(see Appendix B);

e integrating our description generating algorithms into the change propagation module
developed by Birkbeck, a SeLeNe partner (see Deliverable 4.4 [13]).

Our results were presented assuming a centralized scenario, i.e., assuming a network-
wide taxonomy according to which LOs are described and queries are formulated. However,
we have seen that this assumption can be relaxed through the use of articulations to allow
a provider, or a group of providers to use their own, local taxonomies.

Future work aims at relaxing this assumption even further, in order to arrive at a pure
peer-to-peer network. This will be done in two steps, as follows.

First, we will investigate more complex forms of articulation between local taxonomies
and the central taxonomy, to allow for richer forms of communication between providers
and the Sel.eNe services. Work in that direction will be based on previous work on medi-
ation [19, 20, 15, 21, 17, 10].

Second, we will assume that the services of LO Registration, Querying and Syndica-
tion are available at each peer, based on the local taxonomy. The Syndication Service
(see Deliverable 3 [4]) will then translate descriptions and term-based queries using the
articulations between peers.

Another line of future research concerns a personalized interaction with the network.
Indeed, from a conceptual point of view, all one has to do is to let the network user express
his needs in terms of a set of named queries, or views of the form:

<term-name> = <query-to-the SeLeNe>

The set of terms thus declared (plus, eventually, a user-defined subsumption relation)
will then constitute the user-defined taxonomy, that will serve as the personalized interface
to the network. Queries to this personalized taxonomy can be answered by simple sub-
stitution, based on the user declarations defining the terms of the personalized taxonomy.
Work on the personalization aspects is ongoing and will be reported later.

26

References
[1] The ACM Computing Classification System. ACM, 1999. http://www.acm.org/class/.

[2] S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and K. Tolle. The
ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases. In Proc. Intl.
Conf. on Semantic Web, 2001.

[3] J. Kahan and M. Koivunen. Annotea: an Open RDF Infrastructure for Shared Web
Annotations. In Proc. Intl. World Wide Web Conference (WWW), pages 623—-632,
2001.

[4] K. Karenos and G. Samaras. A Grid-service Framework for Seld e-Learning networks.
Technical report, SeLeNe Consortium, 2003. www.dcs.bbk.ac.uk/selene/.

[5] K. Keenoy, M. Levene, and D. Peterson. Personalisation and Trails in Self e-Learning
Networks. Technical report, SeLLeNe Consortium, 2003. www.dcs.bbk.ac.uk/selene/.

[6] K. Keenoy, G. Papamarkos, A. Poulovassilis, D. Peterson, and G. Loizou. Self e-
Learning Networks — Functionality, User Requirements and Exploitation Scenarios.
Technical report, SeLeNe Consortium, 2003. www.dcs.bbk.ac.uk/selene/.

[7] B. Kieslinger, B. Simon, G. Vrabic, G. Neumann, J. Quemada, N. Henze, S. Gun-
nersdottir, S. Brantner, T. Kuechler, W. Siberski, and W. Nejdl. ELENA Creating a
Smart Space for Learning. In Proc. Intl. Semantic Web Conference, volume 2342 of
LNCS. Springer Verlag, 2002.

[8] A. Magkanaraki, V. Christophides, G. Karvounarakis, and D. Plexousakis. Views and
Structured Querying in Self e-Learning Networks. Technical report, SeLeNe Consor-
tium, 2003. www.dcs.bbk.ac.uk/selene/.

[9] P. McBrien and A. Poulovassilis. Defining Peer-to-Peer Data Integration using Both as
View Rules. In Proc. Workshop on Databases, Information Systems and Peer-to-Peer
Computing, 2003. Berlin, september 2003.

[10] C. Meghini, Y. Tzitzikas, and N. Spyratos. An Abduction-based Method for Index
Relaxation in Taxonomy-based Sources. In Proc. Intl. Symp. on Mathematical Foun-
dations of Computer Science (MFCS’03), Bratislava, Slovak Republic, 2003.

[11] W. Neidl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst, and
A. Loser. Super-Peer Based Routing and Clustering Strategies for RDF-based Peer-
to-Peer networks. In Proc. Intl. World Wide Web Conference (WWW), 2003.

[12] W. Nejdl, B. Worlf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmer,
and T. Risch. EDUTELLA: a P2P networking Infrastruture Based on RDF. In Proc.
Intl. World Wide Web Conference (WWW), page 604:615, 2002.

27

[13] G. Papamarkos, A. Poulovassilis, and P.T. Wood. ECA Rule Languages for
Active Self e-Learning Networks. Technical report, Sel.eNe Consortium, 2003.
www.dcs.bbk.ac.uk/selene/.

[14] SeLeNe: Self eLearning Networks. www.dcs.bbk.ac.uk/selene/.

[15] N. Spyratos, V. Christophides, and Y. Tzitzikas. On Personalizing the Catalogs of
Web Portals. In Proc. Intl. FLAIRS Conf, special track on semantic Web, Pensacola,
Floride, 2002.

[16] M. Stratakis, V. Christophides, K. Keenoy, and A. Magkanaraki. E-learning Standard.
Technical report, SeLeNe Consortium, 2003. www.dcs.bbk.ac.uk/selene/.

[17] Y. Tzitzikas, A. Analyti, N. Spyratos, and P. Constantopoulos. An Algebra for Specify-
ing Compound Terms in Faceted Taxonomies. In Proc. European-Japanese Conference
on Information Modelling and Knowledge Base, Kitakyushu, Japan, 2003.

[18] Y. Tzitzikas, C. Meghini, and N. Spyratos. Taxonomy-based Conceptual Modeling
for Peer-to-Peer Networks. In Proc. Intl. Conf. on Conceptual Modeling (ER’03),
Chicago, Illinois, 2003.

[19] Y. Tzitzikas, N. Spyratos, and P. Constantopoulos. Mediators over Ontology-based
Information Sources. In Proc. Intl. Conf. on Web Information Systems Engineering
(WISE’01), 2001.

[20] Y. Tzitzikas, N. Spyratos, and P. Constantopoulos. Query Evaluation for Mediators
over Web Catalogs. In Proc. Intl. Conf. on Information and Communication Tech-
nologies and Programming, Primorsko, Bulgaria, 2002.

[21] Y. Tzitzikas, N. Spyratos, P. Constantopoulos, and A. Analyti. Extended Faceted On-
tologies (short paper). In Proc. Advanced Information Systems Engineering, Toronto,
Canada, 2002.

[22] N. Walsh and Leonard Muellner. DocBook, the definitive guide. O’Reilly, 1999.

[23] The XPath language recommandation (1.0). World Wide Web Consortium, 1999.
http://www.w3.org/ TR /xpath.

28

A A Case Study

Authors: B. Gueye, Ph. Rigaux, N. Spyratos

We are currently implementing a prototype to experiment in a practical setting the
functionalities of the model. In this prototype the LOs and their components are XML
documents, and the system relies on XML tools and languages for addressing and trans-
formation tasks.

The architecture of the system is summarized in Figure 5. Here are some comments,
before looking into the technical details. First the composite LOs are represented in this
specific implementation by XML documents which are valid with respect to the DocBook
DTD [22]. The hierarchical nature of XML documents fits well with the composition
mechanism of our model, which allows to construct composite LOs from simpler ones.
Each fragment of the XML structure (i.e, each subtree) corresponds to a LO, and the
leaves are the atomic LOs introduced in the model. When submitting a document to the
system, it is required that each of the leaves is labelled with a set of terms form the network
terminology.

] — Mediator
O\. Indexing ?\
5 <query>
g| Query
O\. 5 evaluation
@ ? Storage
DocBook Indexing -
documents with XPath Visualization Materialization

/monitoring

Figure 5: Overview of the system’s architecture

From these documents, a program (written with the XML transformation language,
XSLT) produces the description for each document. Descriptions are sent to the Update
Service which stores them in a repository, creates description on objects, and proposes
querying services. Finally users can create composite LOs as DocBook documents aug-
mented with the <query> element. The content of such an element is a query which is
executed and replaced by its result at run-time. ;From this the user can:

e either browse through the query result, visualize the fragments

coming from atomic documents, and possibly remove some of them,

29

e or materialize the document, including the result of queries, and store it locally.

We now embark in a detailed description of each part.

A.1 The terminology

The terminology used in the system is the ACM Computing Classification System (see
hitp://www.acm.org/class/). It is initially designed to classify published works in the field
of computer science. Here is a small part of this terminology.

<?xml version="1.0" encoding="IS0-8859-1"7>
<term name="Computer_Science">
<term name="Artificial_intelligence">

<term name="Knowledge_representation"/>

<term name="Machine_learning">

<term name="analytical_learning"/>

<term name="artificial_neural_networks"/>
<term name="algorithms_for_pattern_discovery"/>

...)

</term>

(...)

</term>

<term name="Databases">
<term name="Database_management_system">

...

</term>

<term name="SQL">
...
</term>
</term>
</term>

A.2 Documents

DocBook is a DTD for writing structured documents using SGML or XML. It is particularly
well-suited to books and papers about computer hardware and software, though it is by no
means limited to them. DocBook is an easy-to-understand and widely used DTD: dozens
of organizations use DocBook for millions of pages of documentation, in various print and

30

online formats, worldwide. Many publishers use DocBook to represent and exchange their
books or parts of their books, and given the wide acceptance of this DTD and its maturity,
it seems reasonable to adopt it as a de facto standard.

It is worth mentioning however that any other DTD would do, the important assump-
tion here being that all authors in the system provide their LO content in a common
format. This assumption is mostly motivated by practical considerations. Indeed the ex-
change of fragments and their integration is greatly facilitated by the homogeneity of the
representation. In particular, it is easy with minimal effort to ensure that inserting a Doc-
Book fragment in a DocBook document keeps the whole document valid with respect to
the DTD.

We distinguish in a DocBook document the following tags that identifiy the structure
of the document: book, chapter, section and subsection. Elements of type subsection
are considered to form the leaves of the composition graph, to which a description must
be associated. The inference mechanism described in the model is then used to create the
descriptions for the upper-level elements book, chapter and section. As an example, here
is a (quite simplified) document:

<book title="Databases">

<chapter title="Conceptual modelling">
Some text ...
<section title="The Entity-relationship model">
Some text ...
</section>
<section title="Schema design'">
Some text ...
</section>
</chapter>

<chapter title="Database programming">
Some text ...
</chapter>
</book>

Beyond the (somehow heavy) syntax of XML, we are interested in the structure of the
information contained in this document. This structure is defined by the tags and is better
represented as a tree, shown in Figure 6.

Essentially, nodes of type Text represent the content, while nodes of type Element
represent the structure. The role of the author, before submitting such a document, is to
describe the elements located at the lower level in the structure (here <section>) with
terms from the terminology. This is simply done by adding an attribute to the <section>,
as illustrated in the document below:

31

Element
book
Databases

Element Element
chapter chapter
Conceptual modelling Database programming

Text Element Element Text
- section section -
Some text The E/R model Schema design using FD Some text
Text Text
Some text Some text

Figure 6: The hierarchical structure of the document

<book title="Databases'">

<chapter title="Conceptual modelling">
Some text ...
<section title="The E/R model" term="E/R">
Some text ...
</section>
<section title="Schema design"
term="FD">
Some text ...
</section>
</chapter>

<chapter title="Database programming">
Some text ...
</chapter>
</book>

We obtain a new structure derived from the previous one, and illustrated in Figure 7.
The document represented in this figure contains descriptions for all the elements, at any
level. The descriptions for <chapter> and <book> elements have been derived automati-

cally from the descriptions of the leaves in the way explained earlier.

Finally the composition graph together with the descriptions of the leaves is sent to the
mediator who stores, with each term of the terminology, the path to the XML subtree(s)
that relate(s) to this term. Currently we use the XPath language [23] to refer to these
subtrees, and complete XPath expressions with the URL of the document. The table below
shows the information handled by the mediator to refer to the nodes of the document used

so far.

32

—-——-

- -
-

-~ ~
14 Attr
| term

\ databases /
~

-

\ -

Element
chapter

Conceptual modelling

—_—_— -
-
-
-
-~ -
-

I
- ~N
/ Attr \ Text
term) -
\ modelling Some text
~ -

g

Element
book
Databases

Element Element
section section
The E/R model Schema design using FD
/ /
_ 7/
7 N 7N
/ Attr \ Text / Attr \ Text
| term | - | term | -
\ E/R Some text \ FD / Some text
N_~/ ~N_~

-
4

\ programming
~ -

Element
chapter

Database programming

/
pp——1
- ~
~
Attr AN Text
term) -

Some text

SNS—_—_ -

Figure 7: A document enriched with descriptions

Element Element\
chapter chapter
My database course

Element
book
My courses

Element

section
My notes on data

modelling

—
Element
query

Element Element Te_xt
Text query
o JDBC programming
Text Text
My personnal notes modelling

Figure 8:

A derived document

33

Term XPath expression

databases /book

modelling /book/chapter[1]

E/R /book/chapter[1]/section[1]
E/R /book/chapter[1]/section[2]
programming | /book/chapter[2]

Finally let us illustrate how one can create composite documents by inserting queries.
The example of Figure 8 shows the structure of a DocBook document, enriched with
<query> elements that allow to express queries. In this particular example, the document
is that of a student who collect course notes, introduces his own course notes, and mixes
them with fragments/LO extracted from the set of available sources. When submitted to
the mediator via a client/server dialog whose description is omitted here, the <query> is
replaced by the content of the answer to the query (or, more generally, by the concatenation
of the contents of the set of XML subtrees obtained as query results).

34

B Embedding in RDF

Authors: V. Christophides, Ph. Rigaux, N. Spyratos

In this appendix we describe briefly integration activities in progress between LRI and
ICS-FORTH, aiming at embedding the model proposed by LRI in Deliverable 4.1 into the
RDF Suite developed by ICS-FORTH [2].

In a nutshell, Deliverable 4.1 proposes a model for composing LOs from other simpler
LOs and an algorithm for generating descriptions of composite LOs based on the descrip-
tions of their parts.

A LO is represented by an identifier together with a composition graph which shows the
structure of the LO. The description of a LO is seen as a set of terms from a network-wide
taxonomy, the SeLeNe Taxonomy, and consists of two parts, a part provided by the author
and a part implied by the LO structure. A central server maintains the SeL.eNe Catalogue
and answers queries by providers and/or consumers.

Below, we summarize the guidelines that we have agreed upon, for the embedding of
this model into the RDF Suite. These guidelines have already been used while conducting
the case study (see Appendix A).

1. A SeLeNe Taxonomy will be represented as a RDF scheme:

e cach term of the SeLLeNe Taxonomy will be represented as a class name;

e each subsumption relationship as a ISA link between the corresponding classes.

2. The SeLeNe Catalogue will be represented as a RDF database:

e cach LO will be represented as a RDF resource;

e cach LO (resource) will be classified under each of the terms (class names)
appearing in its description.

3. RQL facilities will be used for browsing, querying, and LO composition.

In this respect, we note that RQL facilities include browsing and querying facilities
that cover the SeL.eNe requirements identified so far, as well as primitives for expressing
that a set of resources constitute parts of a given resource. This last feature is essential
for expressing that the LLOs appearing in the answer of a query are parts of a composite
LO under construction.

Moreover, the RQL facilities provide graphic interfaces for user-friendly interaction.

35

