SeLeNe - Self E-Learning Networks
[ST-2001-39045

WP4 Deliverable 4.4

ECA Rule Languages for Active Self e-Learning
Networks

G.Papamarkos, A.Poulovassilis, P.T.Wood
School of Computer Science and Information Systems, Birkbeck, University of London

Abstract
The Semantic Web is based on XML and RDF as its fundamental standards for ex-
changing and storing information on the World Wide Web. Sel.eNe will manage RDF
descriptions of learning objects and users, and will need to provide reactive functionality
over such metadata. We begin this report by summarising which aspects of the user re-
quirements identified in Deliverable 2.2 will be provided by SeLeNe’s reactive functionality,
and discussing why event-condition-action (ECA) rules are a natural candidate for imple-
menting this kind of functionality. We then describe a language for ECA rules on XML
and a prototype implementation of this language. We next describe a language for ECA
rules operating on a graph/triple representation of RDF. We finally describe the architec-
ture of a distributed deployment of such RDF ECA rules. Along the way we identify some
technical challenges and directions of further work necessary for the two languages and for
the architecture.
London, UK
Jan 7, 2004

The SeLeNe Project

Life-long learning and the knowledge economy have brought about the need to support a
broad and diverse community of learners throughout their lifetimes. These learners are
geographically distributed and highly heterogeneous in their educational backgrounds and
learning needs. The number of learning resources available on the Web is continuously
increasing, thus indicating the Web’s enormous potential as a significant resource of edu-
cational material both for learners and instructors.

The SeLeNe Project aims to elaborate new educational metaphors and tools in order
to facilitate the formation of learning communities that require world-wide discovery and
assimilation of knowledge. To realize this vision, Sel.eNe is relying on semantic metadata
describing educational material. SeLLeNe offers advanced services for the discovery, sharing,
and collaborative creation of learning resources, facilitating a syndicated and personalised
access to such resources. These resources may be seen as the modern equivalent of text-
books, comprising rich composition structures, ‘how to read’ prerequisite paths, subject
indices, and detailed learning objectives.

The SeLeNe Project (IST-2001-39045) is a one-year Accompanying Measure funded by
EU FP5, running from 1st November 2002 to 31st October 2003. The project falls into
action line V.1.9 CPA9 of the IST 2002 Work Programme, and is contributing to the ob-
jectives of Information and Knowledge Grids by allowing access to widespread information
and knowledge, with e-Learning as the test-bed application. The project is conducting
a feasibility study of using Semantic Web technology for syndicating knowledge-intensive
resources (such as learning objects) and for creating personalized views over such a Knowl-

edge Grid.

Executive Summary

This deliverable (4.4) is part of the SeLeNe Workpackage 4, on Syndication and Personal-
isation of Educational Resources. Workpackage 4 has two main objectives:
e To investigate techniques for syndication and personalization of distributed, au-
tonomous RDF description bases.

e To design language primitives for defining user views over distributed RDF descrip-
tion bases and for deriving composite learning objects’ descriptions from those of
their constituent learning objects.

Accessing RDF description bases in SeLeNe raises two basic technical challenges: (1)
flexible mediation of the different RDF schemas employed by the RDF description bases,
and (2) personalization of learning objects’ descriptions and schemas according to the edu-
cational needs and interests of learning objects’ providers (i.e., instructors) and consumers
(i.e., learners).

Concerning problem (1), the IEEE LOM has effectively achieved the integration of the
various educational metadata standards, as is reported in Deliverable 2.1 of Workpackage
2. Thus, in the context of a SelLeNe, we are assuming that metadata about learning

objects are represented using the RDF /S binding of the IEEE LOM. However, fine-grained
descriptions expressed in domain or topic-specific taxonomies may also be made available
by instructors. Hence, this workpackage is investigating a flexible articulation of different
domain/topic-specific taxonomies which can be used for e-learning, as well as the automatic
generation of semantic descriptions for composite learning objects using the descriptions of
their constituent learning objects. The taxonomies used for this purpose and the resulting
descriptions can easily represented RDF/S. This work is reported in Deliverable 4.1.

Concerning problem (2) above, two major issues are involved: (a) specification by
learners of their educational needs, and (b) adaptation of learning objects to these needs.
Issue (a) requires the representation of educational needs in a “learner profile” using the
e-learning schemas as well as the domain or topic-specific taxonomies available in SeL.eNe.
It also requires unstructured, keyword-based querying facilities, which can be translated
automatically into the structured RDF/S queries supported by the SeLeNe system. The
result of these unstructured queries may be returned in a special form of composite learning
object called “trails”. To address issue (b) we need methods for dynamically adapting
learning material to the preferences of a learner. This requires ranking of query results by
matching the descriptions of the returned learning objects against the a learner’s profile.
These issues are discussed in Deliverable 4.2.

Specifying educational needs or describing educational material according to personal-
ized e-learning RDF /S schemas (for both learners and instructors) requires formalisms for
defining declarative views over learning object descriptions and schemas, and this work is
reported in Deliverable 4.3. This deliverable also discusses the structured RDF /S querying
facilities supported by SeLeNe.

Also needed are techniques for detecting changes in learning objects’ descriptions or
users’ personal profiles, and for notifying users who have subscribed to be notified of such
changes. Techniques for the provision of this kind of reactive functionality over RDF
descriptions of learning objects and users are reported in Deliverable 4.4.

We begin this Deliverable 4.4 by summarising which aspects of the user requirements
identified in Deliverable 2.2 will be provided by SeLeNe’s reactive functionality and dis-
cussing why event-condition-action (ECA) rules are a natural candidate for implementing
this kind of functionality. We then describe a language for ECA rules on XML and a
prototype implementation of this language. We next describe a language for ECA rules
operating on a graph/triple representation of RDF. We finally describe the architecture
of a distributed deployment of such RDF ECA rules. Along the way we identify some
technical challenges and directions of further work necessary for the two languages and for
the architecture.

Revision Information

‘ Revision Date ‘ Version ‘ Changes

July 25, 2003 0.1 First Draft Proposal

August 15, 2003 0.2 Second Draft Proposal - Minor amendments

October 31, 2003 1.0 Final Version - Final RDF ECA Language.
New examples. Appendices A and B.

Jan 7, 2004 1.1 Minor amendments

Jan 31, 2004 1.2 Minor amendments

Table of Contents

1. Providing SeL.eNe’s Reactive Functionality

2. ECA Rules for XML

2.1 Previous Work in this Area

2.2 Our XML ECA Rule Language

2.3 A Prototype Implementation

2.4 Challenges and Future Work

3. ECA Rules for RDF

3.1 Our RDF ECA Rule Language

3.2 Challenges and Future Work

4. ECA Rules in a Distributed Environment
4.1 A Distributed ECA Architecture

4.2 P2P Scenario

4.3 Mediated Scenario

4.4 Challenges and Future Work

5. Conclusions

References.

Appendix A. BNF of the RDF ECA Language
Appendix B. Computational Completeness of the RDF ECA Language

S O Ot

13
14
14
19
20
20
22
25
25
26
26
28
30

1 Providing SeLeNe’s Reactive Functionality

Peers in a SeLeNe network will store RDF /S descriptions relating to learning objects (LOs)
registered with the SeLLeNe and users of the SeLLeNe. Peers may also store system-related
RDF/S descriptions. In a centralised environment, there will be just one ‘peer’ server
which will manage all of the RDF/S descriptions. In a distributed environment, each peer
will manage some fragment of the overall RDF/S descriptions.

SeLeNe’s reactive functionality will provide the following aspects of the user require-
ments discussed in [15]!:

e automatic notification to users of the registration of new LOs of interest to them;

e automatic notification to users of the registration of new users who have information
in common with them in their personal profile;

e automatic notification to users of changes in the description of resources of interest
to them;

e automatic propagation of changes in the description of one resource to the descrip-
tions of other, related resources, including:

— propagating changes in the taxonomical description of a LO to the taxonomical
description of any composite LOs depending on it;

— propagating changes in a learner’s history of searches/accesses of LOs to the
learner’s personal profile;

— propagating changes in a learner’s level of knowledge, learning experience, or
learning goals to the set of recommended trails for that learner;

— similarly updating a group’s set of recommended trails depending on individual
or collective changes to the group’s metadata;

— automatic generation and update of ‘emergent’ trails.

Event-condition-action (ECA) rules automatically perform actions in response to events
provided that stated conditions hold. There are several advantages in using ECA rules
to implement a system’s reactive functionality, rather than implementing it directly in
application code. Firstly, ECA rules allow this functionality to be specified and managed
within a single rule base rather than being encoded in diverse programs, thus enhancing the
system’s modularity, maintainability and extensibility. Secondly, ECA rules have a high-
level, declarative syntax and are thus amenable to analysis and optimisation techniques
which cannot be applied if the same functionality is expressed directly in application code.
Thirdly, ECA rules are a generic mechanism that can abstract a wide variety of reactive

!The term ‘reactive’ refers to a system’s ability to detect the occurrence of specific events or changes
in information content, and to respond by automatically executing the appropriate application logic.

behaviours, in contrast to application code that is typically specialised to a particular kind
of reactive scenario.

Motivated by these advantages of ECA rules, we provide SeL.eNe’s reactive functionality
by means of ECA rules over RDF descriptions. ECA rules have been used in many settings,
including active databases [23, 18], personalisation and publish/subscribe technology [3, 8,
9, 11, 19], and specifying and implementing business processes [2, 10, 13]. An ECA rule
has the general syntax

on event if condition do actions
The event part specifies when the rule should be triggered, the condition part is a query
which determines if the system is in particular state, and the action part states the actions
to be performed automatically if the condition holds. Executing a rule’s actions may in
turn trigger further ECA rules, and the rule execution proceeds until no more rules are
triggered.

The rest of this report is as follows. We begin with a brief review of previous work on
ECA rules for XML, since one possibility in Sel.eNe is that its RDF descriptions will be
serialised as XML. We describe a language for specifying ECA rules on XML repositories,
and present a prototype implementation of it. We are also exploring ECA rule languages
for RDF that will operate on a graph/triple representation, as this is also a possibility in
Sel.eNe, and we present such a language. Finally, we present an architecture for distributed
deployment of XML or RDF ECA rules. Along the way, we discuss directions of further
work for both languages and for the architecture.

2 ECA Rules for XML

2.1 Previous work in this area

In recent work [6, 5], we specified a language for defining ECA rules on XML data, based
on the XPath and XQuery standards. We also developed techniques for analysing the trig-
gering and activation relationships between such rules? and showed how these techniques
can be used to detect possibly non-terminating sets of ECA rules. A number of other ECA
rule languages for XML have also been proposed, although none of this other work has
focussed on analysing the behaviour of the ECA rules.

Reference [8] discusses extending XML repositories with ECA rules in order to support
e-services. Active extensions to the XSLT [25] and Lorel [1] languages are proposed which
handle insertion, deletion, and update events on XML documents. Reference [9] discusses
a more specific application of the approach to push technology where rule actions are
methods that cannot update the repository, and hence cannot trigger other rules.

Reference [7] also defines an ECA rule language for XML. The rule syntax is similar to

2A rule r; may trigger a rule r; if execution of the action of r; may generate an event which triggers
rj. A rule r; may activate another rule r; if r;’s condition may be changed from False to True after the
execution of r;’s action. A rule r; may activate itself if its condition may be True after the execution of
its action.

ours, but the rule execution model is different. In our case we treat insertions or deletions
of XML fragments as “atomic” and rules are triggered only after the completion of such
an update. In contrast, in [7] insertions or deletions of XML fragments are broken up
into a sequence of finer granularity update requests, and triggering of rules is interleaved
with execution of these smaller updates. In general, these semantics may produce different
results for the same initial update and it is a question of future research to determine their
respective performance trade-offs and suitability in different application situations.

ARML [12] provides an XML-based rule description for rule sharing among different
heterogeneous ECA rule processing systems. In contrast to our language, conditions and
actions are defined abstractly as XML-RPC methods which are later matched with system-
specific methods.

GRML [22] is a multi-purpose rule markup language for defining integrity, derivation
and ECA rules. GRML uses an abstract syntax based on RuleML, leaving the mapping
to a real language for each underlying system implementation. GRML aims to provide se-
mantics for defining access over distributed, heterogeneous data sources for rule evaluation
and allows the user to declare most of the semantics necessary for processing a rule, and
to evaluate events and conditions coming from heterogeneous data sources.

Other related work is [21] which proposes extensions to the XQuery language [26] to
incorporate update operations. These are more expressive than the actions supported by
our ECA rule language since they also include renaming and replacement operations, and
specification of updates at multiple levels of documents. Triggers are discussed in [21] as
an implementation mechanism for deletion operations on the underlying relational store of
the XML. However, provision of ECA rules at the “logical” XML level is not considered.

2.2 Our XML ECA Language

An XML repository consists of a set of XML documents. In our XML ECA rule language,
we use XPath [24] and XQuery [26] to specify the event, condition and actions parts of
rules. XPath is used for selecting and matching fragments of XML documents within the
event and condition parts while XQuery is used within insertion actions, where there is a
need to be able to construct new XML fragments.

The event part of an XML ECA rule is an expression of one of the following two forms:

INSERT e

DELETE e
where e is an XPath expression which evaluates to a set of nodes. The rule is triggered if
this set of nodes includes any node in a new XML fragment, in the case of an insertion, or
in a deleted fragment, in the case of a deletion.

The system-defined variable $delta is available for use within the condition and actions
parts of the rule, and its set of instantiations is the set of new or deleted nodes returned
by e.

The condition part of a rule is either the constant TRUE, or one or more XPath expres-
sions connected by the boolean connectives and, or, not. The rule fires if it is triggered
and its condition evaluates to true.

The actions part of a rule is a sequence of one or more actions:
actiony; ...; action,

where each action; is an expression of one of the following three forms:

INSERT r BELOW e BEFORE g

INSERT r BELOW e AFTER gq

DELETE e

Here, r is an XQuery expression, e is an XPath expression and ¢ is either the constant
TRUE or an XPath qualifier.

In an INSERT action, the expression e specifies the set of nodes, N, immediately below
which new XML fragment(s) will be inserted. These fragments are specified by the expres-
sion r. If e or r references the $delta variable, then one XML fragment is constructed for
each instantiation of $delta for which the rule’s condition evaluates to True. If neither
e nor r references $delta, then a single fragment is constructed. The expression ¢ is an
XPath qualifier which is evaluated on each child of each node n € N. For insertions of
the form AFTER ¢, the new fragment(s) are inserted after the last sibling for which ¢ is
True, while for insertions of the form BEFORE ¢, the new fragment(s) are inserted before
the first sibling for which ¢ is True. The order in which new fragments are inserted is
non-deterministic.

In a DELETE action, the expression e specifies the set of nodes which will be deleted
(together with their descendant nodes). Again, e may reference the $§delta variable.

Example 1 Consider an XML repository containing metadata about LLOs available on the
web, as well as personal metadata about users of these LOs. The XML document los.xml
contains information about the LOs, and we show below some of the information held for
a particular book, “Data On the Web”. Under annotations, a new review is appended
every time a user submits a review of the book.

<L0Os>

<LO type="book" title="Data On the Web">
<subject>Computer Science</subject>
<creator>S. Abiteboul</creator>
<creator>P. Buneman</creator>
<creator>D. Suciu</creator>
<description>From Relations to Semistructured data and XML
</description>
<publisher>Morgan Kaufmann</publisher>
<isbn>1-55860-621-Y</isbn>
<annotations>
<review>
<reviewer>Teacher Education Review Panel</reviewer>
<date>2002-10-20</date>
<rating>9</rating>

<description>
This book gives a comprehensive, state-of-the art
discussion of data models, query languages and ...
</description>
</review>
<review>
<reviewer>John Smith</reviewer>
<date>2002-12-20</date>
<rating>10</rating>
<description>
I found this a great book to learn about querying
semi-structured data, which I didn’t know much about.
</description>
</review>
</annotations>
</LD>

</L0s>
The XML document users.xml contains information about users, and we show below some
of the information held for a particular user “Johnny Mnemonic”. Users can subscribe to

be notified of the latest review submitted for books in subjects that they are interested in,
and this information is used to automatically update their personal metadata:

<users>

<user id="217">
<name>Johnny Mnemonic</name>
<profession>student</profession>
<subjects>
<subject>Computer Science</subject>
<subject>Mathematics</subject>
<subject>Economics</subject>
</subjects>
<LOs>
<LO type="book" title="Data On the Web">
<isbn>1-55860-621-Y</isbn>
<latest-review>
<reviewer>John Smith</reviewer>
<date>2002-12-20</date>
<rating>10</rating>
<description>
I found this a great book to learn about querying

9

semi-structured data, which I didn’t know much about.
</description>
</latest-review>
</L0>
</L0s>
</user>
</users>
Johnny Mnemonic is interested in “Computer Science” and the following rule replaces

the current latest review (if there is one) of any Computer Science book in his personal
metadata by a new review of that book:

ON INSERT document(’los.xml’)/L0s/LO/annotations/review
IF $delta/../../subject[.=’Computer Science’]
DO DELETE document(’users.xml’)/users/user[@id="217"]/L0s/L0O
[isbn=$delta/../../isbn]l/latest-review;
INSERT <latest-review>{$delta/*}</latest-review>
BELOW document(’users.xml’)/users/user[@id="217"]/L0s/
LO[isbn=$delta/../../isbnl]
AFTER isbn

Here, the system-defined $delta variable is bound to a newly inserted review node de-
tected by the event part of the rule. The rule’s condition checks that the subject of the
book in question is Computer Science. The rule’s action then deletes the existing latest
review for this book within Johnny Mnemonic’s metadata (if there is one) and inserts the
new review.

Suppose now that the following update occurs, appending a new review for the “Data
On the Web” book:

INSERT <review>
<reviewer>Neo Anderson</reviewer>
<date>2003-04-29</date>
<rating>9</rating>
<description>
Very clearly written and very well-organised.
Describes in detail all the
</description>
</review>
BELOW document(’los.xml’)/L0Os/LO[isbn="1-55860-621-Y"]/annotations
AFTER TRUE

This update triggers the rule above, causing the replacement within Johnny Mnemonic’s
personal metadata of the previous review submitted by John Smith by the new review
submitted by Neo Anderson.

10

PARSER for ECA
Language User Interface

A

ECA ENGINE

XML translated rules

Read from Rule Base

Rule Base
Interface

-

Registration Rule Input
(Action Scheduler '4—»{ Condition Evaluator H Event Detector

Unit
\ \

Prefix actions to Send condition for eval’n Send event query for eval'n
schedule Receive Results Receive changes set

WRAPPER

Schedule M:
Execution Schedule chedule Manager
Query & Update
—] . Send act f
Pop an action from the end action for Manager

head of the schedule execution

Connection
Driver

Establish connection.
Send updates and queries.
Receive Results.

XML Documents

Figure 1: ECA Engine Architecture

As another example rule, the following rule removes the current latest review (if there is
one) of a Computer Science book in Johnny Mnemonic’s personal metadata if this review
is removed from the list of reviews for this book (this rule assumes that each reviewer
reviews a book only once):

ON DELETE document(’los.xml’)/L0s/LO/annotations/review

IF $delta/../../subject[.=’Computer Science’]

DO DELETE document(’users.xml’)/users/user[@id="217"]/L0s/L0O
[isbn=$delta/../../isbn]l/latest-review[reviewer=$delta/reviewer]

We refer the reader to [6, 5] for a more detailed discussion of the syntax and semantics
of our XML ECA rule language. Here, we next describe a prototype implementation.

2.3 A Prototype Implementation

For this first prototype implementation we have used flat files and have exploited the
functionality provided by the W3C DOM standard [27] for interacting with them. The
architecture of our system is illustrated in Figure 1.

The Parser parses and checks the syntactic validity of a new rule. For construction
of the parser, we have used the JavaCC lexer-parser generator. Valid rules are translated
into an XML form and are added by the Registration Unit to the Rule Base (which is an
XML file). Details about each rule are stored here, including its name, priority, and event,
condition and action parts.

11

The ECA Engine encapsulates the rule processing functionality. In particular, the
Event Detector, Condition Evaluator and Action Scheduler implement these aspects of the
rule processing, as we describe in more detail below. All of these components interface
with the Wrapper in order to send and receive data to and from the underlying XML files.

The Ezecution Schedule contains a sequence of updates — these have the same syntax
as rule actions except that they do not contain any $delta expressions within them. By
“$delta expression” we mean an XPath expression (either stand-alone or possibly nested
within another XPath expression) that starts with $delta. These portions of a rule’s action
part are replaced by the result of evaluating the expressions on the current document —
see below.

The Wrapper interfaces with the XML files on disk. All update and query requests from
the upper levels of the system pass through this component, which coordinates them. It
undertakes to open files, submit queries and updates, and receive back results from them.
The Wrapper performs these services by using the functionality of the Apache Xalan API.
All queries are performed directly by using XPath. For deletions, we identify the set of
nodes that will be deleted by using the XPath expression within the DELETE part of the
request, and we then remove all the subdocuments rooted at the nodes identified. For
insertions, we identify the set of nodes that will be affected by using the XPath expression
within the BELOW part of the request, and we then add the fragment specified within the
INSERT part as a new child of each of the nodes identified, placing it relative to the existing
children according to the AFTER or BEFORE qualifier.

Rule execution begins with a request from the Schedule Manager to the Query & Update
Manager to execute the update currently at the head of the schedule. In case of an insertion,
the Query & Update Manager executes the update and annotates the newly inserted nodes,
while in the case of a deletion it annotates the nodes to be deleted without executing the
deletion yet3.

Following the execution of the update, control then passes to the Event Detector. This
requests the Query & Update Manager to evaluate the XPath query of the event part of
each rule that may be triggered by the update that was just executed. For each rule whose
query result set contains annotated nodes (either newly inserted or about-to-be deleted),
the Event Detector creates a changes set containing these annotated nodes, and the rule
is triggered.

The Condition Evaluator then requests the Query & Update Manager to evaluate the
condition part of each triggered rule on the affected document, using as the evaluation
context either the root node if there are no occurrences of $delta within a query, or each
instance of the changes set otherwise. The rule’s delta set is thus created, consisting of
those members of its changes set for which the condition evaluates to true. If the delta
set is non-empty, the rule fires and control is passed to the Action Scheduler to further
process the rule. Otherwise, processing of this rule ends.

The Action Scheduler reformulates a given rule’s action(s) in order to eliminate any

3The annotation of nodes is performed using non-DOM methods provided by Apache Xerces API that
allow us to attach data to XML nodes without affecting the physical representation of the file.

12

instances of $delta expressions within them. The reformulation algorithm performs the
following steps for each node within the rule’s delta set:

e Replaces the $delta variable in each of the $delta expressions by the current node
of the delta set.

e Evaluates each of the modified $delta expressions with respect to the updated docu-
ment.

e Replaces each $delta expression within the rule’s action(s) by the corresponding result
of the previous step.

The outcome of this reformulation is that one instance of the rule’s action(s) is created
for each node in the rule’s delta set. These updates are now prefixed, in an arbitrary
order, to the front of the schedule — this is known as Immediate scheduling, although
other alternatives are also possible (see [18]). If multiple rules have fired as a result of
the last update executed, then the updates that result from their actions are prefixed the
schedule in order of the rules’ specified priorities. Control then passes once more to the
Schedule Manager and the cycle repeats. If the last update executed by the Query &
Update Manager was a DELETE, then before control passes back to the Schedule Manager,
the actual deletion of the annotated nodes is first performed.

2.4 Challenges and Future Work

There is as yet no accepted standard update language for XML. If ECA rules are to be
supported on XML repositories, then whatever standard eventually emerges, there is also
the parallel issue of designing the event language to match up with this update language.

In this report we have seen how this was done in the context of our particular update
language for XML. Elsewhere [5] it is shown how triggering and activation relationships
can be detected for our particular XML ECA rules. In general, the ability to analyse and
optimise ECA rules needs to be balanced against their complexity and expressiveness, and
this issue also needs to be borne in mind in future developments in ECA rule languages
for XML, and indeed for RDF.

It would be straightforward to extend our language to also support REPLACE events and
actions. A REPLACE event would have the syntax

REPLACE e
while a REPLACE action would have the syntax
REPLACE e BY r

where e is an XPath expression and r is an XQuery expression. The meaning of a REPLACE
action is that the set of nodes identified by e (and their descendants) should be replaced
by the XML fragments denoted by r. For example, the pair of actions in the first rule in
Example 1 could be replaced by the single action

REPLACE document (’users.xml’)/users/user[@id="217"]/L0s/L0O
[isbn=$delta/../../isbn]/latest-review

13

BY <latest-review>{$delta/*}</latest-review>

In general, our INSERT actions may result in non-determinism in the order in which a
set, of new fragments are inserted under a common parent, since the BEFORE and AFTER
constructs only specify the ordering of new fragments with respect to the existing document
content. It is an area of further work to extend our XML ECA language to capture ordering
relationships between new fragments being inserted into a document.

At present we assume Immediate scheduling of rules that have fired, though it would
be straightforward to also allow rules with other scheduling modes. However, the practical
applicability and performance implications of these extensions is an area that requires
further investigation.

Another important area is combining ECA rules with transactions and consistency
maintenance in XML repositories.

3 ECA rules for RDF

The above language can be used for RDF which has been serialised as XML. However, we
are also exploring ECA rule languages for RDF that will operate directly on a graph/triple
representation. We described an archetypal such language in [17]. Since the publication of
that paper, our language has evolved to match more closely the update facilities provided
by FORTH’s RDFSuite [4], which is ultimately likely to be SeLeNe’s RDF repository.

3.1 Our RDF ECA Rule Language

In our RDF ECA rule language, the event part of a rule is an expression of one of the
following three forms:

1. [let-expressions IN] (INSERT | DELETE) e [AS INSTANCE OF class] [USING
NAMESPACE nspacel

This detects insertions or deletions of resources described by the expression e. e is
a path expression which evaluates to a set of nodes. Optionally, class is the name
of the RDF Schema class to which at least one of the nodes identified by e must
belong in order for the rule to trigger. To ensure uniqueness and be more specific on
the resources that trigger the rule we can also optionally specify the namespace they
belong to.

let-expressions is an optional set of local variable definitions of the form let variable
:= ¢/, where ¢’ is a path expression.

The rule is triggered if the set of nodes returned by e includes any new node (in the
case of an insertion) or any deleted node (in the case of a deletion) that is an instance
of the class, if specified. The system-defined variable $delta is again available for
use within the condition and actions parts of the rule, and its set of instantiations is
the set of new or deleted nodes that have triggered the rule.

14

2. [let-ezpressions IN] (INSERT | DELETE) triple

This detects insertions or deletions of arcs specified by triple, which has the form
(source_node, arc_name, target_node). The wildcard ¢_* is allowed in the place of
any of a triple’s components.

The rule is triggered if an arc labelled arc_name from source_node to target_node is
inserted/deleted. The variable $delta has as its set of instantiations the values of
source_node of the arc(s) which have triggered the rule.

3. [let-ezpressions IN] UPDATE upd_triple

This detects updates of arcs. wupd_triple is a special form of triple. Its form is
(source_node, arc_name, old_-target_-node — new_target_node). Here, old_target_node
is where the arc labelled arc_name from source_node used to point before the update,
and new_target_node is where this arc points after the update. Again, the wildcard
¢_? is allowed in the place of any of these components.

The rule is triggered if an arc labelled arc_name from source_node changes its tar-
get from old_target_node to new_target_node. The variable $delta has as its set of
instantiations the values of source_node of the arc(s) which have triggered the rule.

The condition part of a rule is a query which may reference the $delta variable. Anal-
ogously to our XML ECA rule language, condition queries consist of conjunctions, disjunc-
tions and negations of path expressions.

The actions part of a rule is a sequence of one or more actions. Actions can INSERT or
DELETE a resource — specified by its URI — and INSERT, DELETE or UPDATE an arc. The
actions language has the following form for each one of these cases (note that this actions
language can also serve more generally as an update language for RDF):

1. [let-expressions IN] INSERT e AS INSTANCE OF class

[USING NAMESPACE nspacel

[let-expresstons IN] DELETE e [AS INSTANCE OF class]
[USING NAMESPACE nspacel

for expressing insertion and deletion of a resource.

2. [let-expressions IN] (INSERT | DELETE) triple (°,’ triple)*

for expressing insertion or deletion of the arcs(s) specified.

3. [let-expressions IN] UPDATE wupd_triple (°,’ upd_triple)x*
for updating arc(s) by changing their target node.
The AS INSTANCE OF keyword classifies, according to the RDF Schema, the resource
to be deleted or inserted. In the case of insertions, the classification of the new resource is

obligatory, while in the case of deletions it is optional. Specification of the namespace where
the resource belongs, using the USING NAMESPACE nspace construct, is also optional.

15

The triples in the case of arc manipulation have the same form as in the event sub-
language. In the case of arc insertion and deletion they have the form (source_node,
arc_name, target_node) while in the case of arc update, the old and the new target node
are also specified, so that the triple has the form (source_node, arc_name, old_target-node
— new_target_node).

The wildcard ‘_’ may also appear inside triples in the action sub-language, as follows:
In the case of a new arc insertion, ’_’ is allowed in the place of the source_node and has
the effect of inserting the new arc for all stored resources. In the case of arc deletion, if >_’
replaces the arc_name then all the arcs from source_node pointing to target_node will be
deleted; if >_’ replaces the source_node, the action deletes all the arcs labelled arc_name;
replacing the target_node by ’_’ deletes the arc arc_name from the source_node regardless
of where it points to. In case of a arc update, ’_’ can be used in place of the source_node
or the old_target_node; in the first case, it indicates replacement of the target node for all
arcs labelled arc_name; in the second case, use of ’_’ indicates update of the target node
regardless of its previous value. The use of combinations of the above wildcards in a triple
is also allowed, in order to express more complex update semantics that combine those
given above.

Examples. These examples refer to the LO metadata illustrated in Figure 2 and to the
fragment of a user’s personal metadata illustrated in Figure 3. In Figure 3, extl is the
IMS-LIP schema and ext3 the SeLeNe User Profile schema (see [14]).

Suppose that user 128 wants to be notified whenever that a new user registers with
the system who has an area of interest in common with user 128. When such a new user
registers, the following ECA rule adds a new arc linking the newly registered user into the
new_users collection in user 128’s personal messages:

ON INSERT resource() AS INSTANCE OF Learner USING NAMESPACE ext3
IF $delta/target(extl:interest)/element()/target(extl:interest_typename)
= resource(http://www.dcs.bbk.ac.uk/users/128)
/target (extl:interest)/element () /target (extl:interest_typename)
DO LET $new_users := resource(http://www.dcs.bbk.ac.uk/users/128)
/target (ext3:messages) /target (ext3:new_users) IN
INSERT ($new_users,seq++,$delta);;

Here, the event part of the rule checks whether a new resource belonging to the Learner
class in namespace ext3 has been added. The condition part checks if the new user has an
area of interest in common with user 128. If so, the action part inserts a new arc between
the new_users collection in user 128’s personal messages and the resource representing the
new user (we use the syntax seq++ to indicate an increment in the collection’s element
count).

As another example, if a LO is inserted whose subject is the same as one of user 128’s
areas of interest, then the following rule adds a new arc linking the newly inserted LO into
the new_LOs collection in user 128’s personal messages:

16

Book
Data On the
Web
dc:type dc:title . rdf:Bag
P Computer rdf:type
Science
dc:subject 1 JAuthors/
— Abitebul
dc:creator rdf:_2 Authors/
Buneman
df:_3
http://www.dcs.bbk.ac.uk/LOs/BK187 dc:description From Relations to
Semistructured
Data
dc:annotation
rdf:type
N.
dc:reviewer Anderson
. dc:date
dft ~Tttp:/iwww.des bbk.ac.uki 2001-12-01
books/AN1289
dc:details
rdf:_2 Fantastic
book ...
dc:reviewer
J. Smith
http://www.dcs.bbk.ac.uk/
books/AN1297 de:date
dc:details 2002-10-02

Figure 2: Example of LO Metadata

17

rdf:Bag

rdf:type,

http://www.dcs.bbk.ac.uk/

users/194

rdf:_1
ext3:new_users http://www.dcs.bbk.ac.uk/
rdf:2 users/176
Personal
Messages
etx3:Messages ext3:new_LOs
rdf:type
P rdf:Bag
http://www.dcs.bbk.ac.uk/
users/128 &L

http://www.dcs.bbk.ac.uk/

LOs/761

gxt3:updated_LOs
. rdf:type
extl:interest rdf:Bag
df:_1

http://www.dcs.bbk.ac.uk/

LOs/2176

rdf:type
@ rdf:.Bag
Music - Playing
rdf:_1 extl:interest_description, Drums
rdf:_2 extlinterest_typenam
Recreational

extlinterest_description
Programming
Languages

extl:interest_typename Computer
Science

Figure 3: Example of User Metadata

18

ON INSERT resource() AS INSTANCE OF LO
IF $delta/target(dc:subject)
= resource (http://www.dcs.bbk.ac.uk/users/128)
/target (extl:interest)/element () /target (extl:interest_typename)
DO LET $new_los := resource(http://www.dcs.bbk.ac.uk/users/128)
/target (ext3:messages)/target (ext3:new_LOs) IN
INSERT ($new_los,seq++,$delta);;

Here, the event part checks if a new resource belonging to the LO class has been inserted.
The condition part checks if the inserted LO has a subject which is the same as of one user
128’s areas of interest. The LET clause in the rule’s action defines the variable $new_los
to be user 128’s new LOs collection. Finally, the INSERT clause inserts a new arc from
$new_los to the newly inserted LO.

As a third example, if the description of a LO whose subject is the same as one of user
128’s areas of interest changes, then a new arc is inserted from user 128’s updated_LOs
collection to the modified LO:

ON UPDATE (resource(),dc:description,_->_)
IF $delta/target(dc:subject)
= resource (http://www.dcs.bbk.ac.uk/users/128)
/target (extl:interest)/element () /target (extl:interest_typename)
DO LET $updated_lo_list := resource(http://www.dcs.bbk.ac.uk/users/128)
/target (ext3:messages) /target (ext3:updated_LOs) IN
INSERT ($updated_lo_list,seq++,$delta);;

3.2 Challenges and Future Work

There is as yet no standard query/update language for RDF and hence our RDF ECA
language is even more prototypical than our XML ECA language. Some of the observations
we made in Section 2.4 regarding the XML ECA language also apply here, namely the need
to match up the event sub-language with the update sub-language, the need to balance
expressiveness of ECA rules against the ability to analyze and optimize them, the possibility
of a variety of scheduling modes beyond Immediate rule scheduling, and combining ECA
rules with transactions and consistency maintenance in RDF repositories.
For the immediate future, we plan to

e explore more deeply the expressiveness our RDF ECA language (Appendix B shows
that it is computationally complete, but we plan to investigate its query and update
expressiveness as well);

e implement the language over FORTH’s RDFSuite [4]; and

e experiment with the language using as a testbed Sel.eNe’s learning object and user
metadata.

19

4 ECA Rules in a Distributed Environment

4.1 A Distributed ECA Architecture

The architecture described in Section 2.3 for our XML ECA rules is applicable also for
centralised management and processing of our RDF ECA rules, with suitable modifications
to particular components to handle RDF rather than XML rules and data. One ECA
Engine is installed on the central server hosting the RDF /S repository. Any update request
to this repository passes through the ECA Engine, which in coordination with Sel.eNe’s
Update service enables both event detection and update processing at the server.

Beyond the above centralised version of our system, we are investigating a distributed
version supporting ECA rules on distributed RDF repositories. In a distributed environ-
ment, an ECA rule generated by one peer might be triggered, evaluated, and executed at
different peers of the network. The architecture that we envisage is illustrated in Figure 4.
Each ‘super-peer’ server shown in that diagram may be coordinating a group of further
‘peer’ servers, as well as itself hosting a fragment of the overall RDF/S descriptions. At
each super-peer there is installed one local ECA Engine, which has the same features and
components as the centralised architecture discussed in Section 2.3 and illustrated in Fig-
ure 1. One possibility is that each local ECA Engine can operate as a Web Service and
that the communication between them can be via XML messages (e.g. SOAP).

Whenever a new ECA rule r is registered at a peer P, it will be sent to P’s super-peer
for storage. As we will see below, from there r will also be sent to all other super-peers,
and a replica of it will be stored at those super-peers that are relevant to r i.e. where an
event may occur that may trigger r’s event part, or which may participate in evaluating
r’s condition part, or where r’s actions may have to be scheduled for execution.

Within the event, condition and action parts of Sel.eNe’s ECA rules, there might or
might not be references to specific RDF sources i.e. ECA rules may be resource-specific
or generic. In this first version of our distributed ECA architecture, we assume that at
run-time rules are triggered by events occuring within a single peer’s local RDF repository
and that individual rule actions execute within a single peer’s RDF repository. In other
words, there is no need for distributed event detection or distributed execution of individual
actions (although the condition parts of rules may be distributed, and different actions from
one rule may execute at different peers). These assumptions are justified by the nature of
SeLeNe’s metadata descriptions, since the description relating to a LO registered at a peer
will be stored at that peer, and similarly the personal profile of a user will be stored locally
at one peer. Mechanisms to ensure that ECA rules indeed conform to these restrictions is
a topic requiring further investigation.

Below, we consider two possible scenarios for the way in which super-peers coordinate
the information managed by their peers — mediated and peer-to-peer. In a mediated
scenario, each peer manages a local RDF Schema to which its RDF descriptions conform.
Each super-peer manages a global RDF Schema G'S which semantically integrates the set
of local RDF Schemas of its own peer group LSi,..., LS, as well as the global schemas
of the other super-peers GSi,...,GS,, to which it is connected — thus, in effect, each

20

LO Metadata

User Metadata

Action
Rule Base 1 Scheduler

Execution Schedule

User Metadata

/-—Local ECA Engine

User Metadata

LO Metadata

LO Metadata

Ea:} /—Local ECA Engine —

—l é

—l

— Event Condition
Detector Evaluator

~ Local ECA Engine ————————

Event Condition
Detector Evaluator

—
Action
Rule Base 3 Scheduler

==

Event Condition =
Detector Evaluator I-E_:I
—
—
—

Action
Rule Base 2 Scheduler =
i)
i
Execution Schedule

— | User Metadata

N~

N A

| Execution Schedule |

LO Metadata

~N_

Figure 4: Distributed System Architecture

super-peer has the role of a mediator. The set of mappings between GS and LS, ..., LS,,
GSi,...,GS,, is managed by the super-peer as part of SeLeNe’s Syndication service [20].
These schemas and mappings may evolve with time, but this will be driven by changes to
the local or global RDF Schemas, under the control of the overall Sel.eNe system.

In a P2P scenario each peer again stores a fragment of the overall distributed RDF
descriptions, but this need not conform to the global RDF Schema of its coordinating
super-peer, and changes to local and global RDF Schemas may occur as a result of changes
to the peers’ RDF descriptions. Moreover, peers may dynamically join or leave the SeL.eNe
network. We discuss first this scenario, and then consider the simpler mediated scenario.

4.2 P2P Scenario
4.2.1 Indexing at Peers and Super-Peers

In order to determine the relevance of super-peers to particular ECA rules, a simple index
can be kept at each peer and super-peer. There are a number of possibilities for doing this
and we indicate here one solution:

As the RDF descriptions stored at each peer change over time, so each peer maintains
an annotated copy of its local RDF Schema, which shows for each node in the schema
whether or not there is RDF data of this type at this peer (a ’0’ or "1’ bit).

This information is also propagated to the peer’s coordinating super-peer. This super-
peer maintains a combined RDF Schema which is annotated so that each node shows the
set of peers in its own peer group that manage data of this type (a set of peer IDs), and
also the remote super-peers to which it is connected and whose peer group manages such
data (a set of super-peer IDs).

The latter information is gathered and maintained as follows. If a node in the RDF
Schema of a super-peer, SP, changes from not having any data in this peer group to having
data, or vice versa, this change is notified to SP’s neighbouring super-peers, so that these
too can update the relevant annotation in their RDF Schemas. If one of these RDF Schemas
changes from not having data associated with a particular RDF Schema node to having
such data, this change is notified to this super-peer’s neighbours. The process repeats,
thereby propagating the necessary changes throughout the network of super-peers.

Note that in general the super-peers may hold heterogeneous RDF Schemas, so there
will need to be an RDF Schema mapping service between super-peers’ RDF Schemas —
as is indeed envisaged for Sel.eNe, and is provided by its Syndication service.

Finally, as well as this annotated RDF Schema, each super-peer also keeps for each
node annotated with a ’1” in its RDF Schema a list of the RDF resources of this type
that each peer in its peer group references — we call these lists of RDF resources resource
indexes.

Comparison with related approaches: Querying and indexing data in a distributed
RDF-based P2P network is more complex than for distributed structured databases. In the
latter, the database servers and the database schema at each of them is known and fixed

22

whereas in the former peers may dynamically join or leave the network and may manage
data conforming to varying schema fragments. Schema-based routing indexes have been
proposed to address this problem in Edutella [16]. Edutella uses two kinds of routing
indexes: Super-Peer/Peer (SP/P RI) and Super-Peer/Super-Peer (SP/SP RI).

An SP/P RI stores information about metadata usage in each peer in its peer group.
This includes information such as the schemas (e.g., dc or lom) or properties (e.g., dc:subj-
ect) used, as well as possibly conventional indexes on property values. When a peer regis-
ters with a super-peer, it provides the super-peer with its metadata usage, a process called
advertisement. The peer undertakes to keep this advertisement up-to-date by informing
its super-peer each time that a change affecting the advertised metadata takes place. At
each super-peer, query fragments are matched against the SP/P Rls in order to determine
peers that are relevant to this query (although this gives no guarantee that the returned
result set from a peer is not empty). A similar approach is used in SP/SP Rls, but at
a higher level of granularity and possibly only representing approximations of the infor-
mation regarding their peers. A further difference to the SP/P RI is that an SP/SP RI
contains information only about its neighbouring super-peers in the network. Update of
SP/SP Rls is again based on broadcast messages sent between super-peers.

For our purposes, we want to maintain more precise information about where various
forms of metadata reside in the network and, as far as possible, do not want unnecessary
routing of queries and updates to peers and super-peers that are not relevant. Hence, we
have adopted the approach of using annotations on a full RDF schema and also resource
indexes. The scalability of our proposal, however, still needs to be investigated.

4.2.2 Registering an ECA rule

When a new rule is generated at a peer, it is sent to the peer’s own super-peer for storage
in its local rule base. The super-peer annotates the event, condition and action parts of
the rule with the local peers that are relevant to each part (a list of peer IDs).

This can be determined by matching each part of the rule against the super-peer’s
annotated RDF Schema and/or its resource indexes — the former is useful if no resource
is specified in this part of the rule and the latter is useful if a resource is specified. As the
annotated RDF Schema and resource indexes at the super-peer evolve, so the annotations
on the ECA rules can also be evolved to maintain consistency.

The rule is also sent to all connected super-peers that may be relevant to it — this
is determined from the super-peer ID annotations on the originating super-peer’s RDF
Schema. These super-peers repeat the process of matching each part of the rule against
their own annotated RDF Schema, and storing the resulting annotated rule in their own
rule base if it is indeed relevant to any of their peer group. We note that, due to schema
heterogeneity, the rule may first have to be translated so that its parts are expressed with
respect to the local RDF Schema — this is done by calling Sel.eNe’s Syndication service
[20], using the mappings between schemas. This first round of super-peers then propagate
the rule to relevant super-peers to which they are connected, and the process continues,
thereby propagating the rule through the whole network. The final result is a replica of

23

the rule at each super-peer which is relevant to the rule, annotated with local information
about which peers may be affected by each part of the rule.

As the information at super-peers changes with time, it may be that an ECA rule is
no longer relevant to that super-peer, in which case the rule can be deactivated in the
super-peer’s local rule base. Conversely, an ECA rule stored somewhere else may become
relevant to a super-peer.

For the first case, if a peer, P, changes so that it no longer has any data associated with
a particular RDF Schema node, this change is propagated to the combined RDF Schema
stored at the P’s super-peer, SP. Using this updated RDF Schema, the annotation of each
part of each rule in SP’s rule base is updated. If as a result there is a rule r such that the
annotation of each part of r is empty, then the rule can be deactivated in SP’s rule base
(it is not deleted, in case subsequent changes in data require it to be reactivated).

Conversely, if a peer, P, changes so that it now has data associated with a particular
RDF Schema node, this change is again propagated to the RDF Schema stored at the P’s
super-peer, SP. The annotation of each part of each rule in SP’s rule base is again updated.
Moreover, if the combined RDF Schema at SP has changed from having no data associated
with a particular RDF Schema node to now having such data, this change is notified to
SP’s neighbouring super-peers. If any of these neighbours have ECA rules which may have
been made relevant by the new change at SP, they send these ECA rules to SP. These
super-peers also request from their neighbours (other than SP) their current set of ECA
rules which are potentially relevant to the change, and they forward these rules on to SP.
This process repeats until all the potentially relevant ECA rules throughout the network
have been sent to SP.

4.2.3 Rule triggering and execution

At run-time, whenever an event E occurs at a peer P, it will notify its super-peer. This will
determine whether E may trigger any ECA rule annotated with P’s ID. If a rule r might
have been triggered, the super-peer will send P r’s event query to evaluate.

If r has indeed been triggered, its condition will need to be evaluated, after generating
an instantiation of it for each value of the $delta variable if this is present in the condition.
The annotations on r can be used to determine to which local peers and other super-peers
sub-queries of the condition should be dispatched for evaluation. If the $delta variable is
present in the condition, it will have been instantiated and so we also consult the super-
peers’ resource indexes for more precise information about which local peers are relevant
to sub-queries of the instantiated condition.

If a condition evaluates to true, each corresponding rule action will be sent to, and
scheduled, by the super-peers that will execute it. Again this can be determined by the
annotations on the rule action and consulting the super-peers’ resource indexes.

24

4.3 Mediated Scenario

In this case, each super-peer manages a global RDF Schema that semantically integrates
the local RDF Schemas of its own peer group as well as the global schemas a fixed set of
other super-peers. The set of mappings between the local and global RDF Schemas are
also managed by the super-peer. These schemas and mappings may evolve with time, but
this will be driven by changes to the local or global RDF Schemas, under the control of the
overall SeLL.eNe system. It will not be possible for a peer’s RDF description not to conform
to the peer’s local RDF Schema. Peers cannot dynamically join or leave the network, and
so there is no need for an advertisement process from peers to super-peers.

As with the P2P scenario, each super-peer maintains for each node in its global RDF
Schema a list of the RDF resources of this type that each peer in its peer group references
(a resource index).

Registration of new ECA rules is handled as in the P2P scenario. However, in the
mediated scenario RDF Schemas are likely to evolve much less frequently than in the P2P
scenario, and so annotations on existing ECA rules are likely to need much less frequent
update.

Rule triggering and execution is handled as in the P2P scenario.

4.4 Challenges and Future Work

There are several open issues remaining in realising the distributed ECA architecture we
describe above:

e developing algorithms for matching rule event, condition and action parts with the
schema-based indexes;

e defining the syntax of messages that will be passed between peers for distributed
processing of ECA rules;

e defining the coordination with Sel.eNe’s distributed query processor for the evalua-
tion of rule conditions;

e defining the coordination with SeLeNe’s syndication service, for translating data and
rules between heterogeneous schemas;

e more generally, mapping this distributed ECA functionality onto SeL.eNe’s service-
based architecture;

e exploring distributed transactional aspects of the ECA rules (even though we assume
that individual events and actions will occur at a single peer, the execution of an ECA
rule may trigger another ECA rule and this whole cascade of rule firings may need
to have the semantics of a single transaction).

25

5 Conclusions

In this report we have discussed the requirements for SeLeNe’s reactive functionality and
its provision via ECA rules over XML or RDF repositories. We have highlighted some of
the new issues that arise in the context of such data. We have described a language for
ECA rules on XML, and a language for ECA rules on a graph/triple representation of RDF.
We have described a prototype centralised implementation of the XML ECA rule language,
and the architecture of a distributed implementation of the RDF ECA rule language.

There are several challenges and directions to explore, as highlighted in Sections 2.4,
3.2 and 4.4 above. An important issue is to evaluate the applicability and scalability of our
languages, their execution models, and implementation. Deployment in an implementation
of the envisaged SeL.eNe architecture will allow us to assess the impact of moving from a
centralised to a distributed environment, with the additional challenges of network delay,
network reliability, synchronisation of rule execution, transactional issues and maintaining
consistency of the distributed metadata, tolerance of delays and failures etc.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J.L.. Wiener. The Lorel query
language for semistructured data. VLDB Journal, 1(1):68-88, 1997.

[2] S. Abiteboul, V. Vianu, B. S. Fordham, and Y. Yesha. Relational transducers for
electronic commerce. JCSS, 61(2):236-269, 2000.

3] A. Adi, D. Botzer, O. Etzion, and T. Yatzkar-Haham. Push technology personalization
through event correlation. In Proc 26th Int. Conf. on Very Large Databases, pages
643-645, 2000.

[4] S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and K. Tolle. The
ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases. In Proc. 2nd.
Int. Workshop on the Semantic Web (SemWeb 2001), 2001.

[5] J. Bailey, A. Poulovassilis, and P.T. Wood. An Event-Condition-Action Language for
XML. In Proc. WWW’2002, Hawaii, 2002.

(6] J. Bailey, A. Poulovassilis, and P.T. Wood. Analysis and optimisation for event-
condition-action rules on XML. Computer Networks, 39:239-259, 2002.

(7] A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active XQuery. In Proc. of the IEEE
Conference on Data Engineering (ICDE), 2002.

(8] A. Bonifati, S. Ceri, and S. Paraboschi. Active rules for XML: A new paradigm for
e-services. VLDB Journal, 10(1):39-47, 2001.

26

9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

A. Bonifati, S. Ceri, and S. Paraboschi. Pushing reactive services to XML repositories
using active rules. In WWW’01, 2001.

S. Ceri and P. Fraternali. Designing Database Applications with Objects and Rules:
The IDEA Methodology. Addison-Wesley, 1997.

S. Ceri, P. Fraternali, and S. Paraboschi. Data-driven one-to-one web site generation
for data-intensive applications. In Proc. 25th Int. Conf. on Very Large Databases,
pages 615-626, 1999.

E. Cho, I. Park, S. J. Hyum, and M. Kim. ARML: an active rule mark-up language
for heterogeneous active information systems. In Proc. RuleML 2002, Sardinia, June
2002.

H. Ishikawa and M. Ohta. An active web-based distributed database sys-
tem for e-commerce. In Proc. Web Dynamics Workshop, London, 2001.
http://www.dcs.bbk.ac.uk/webDyn/.

K. Keenoy, M. Levene, and D. Peterson. Personalisation and Trails in Self e-Learning
Networks. See http://www.dcs.bbk.ac.uk/selene/reports/Deld2.pdf, October
2003. SeL.eNe Project Deliverable 4.2, Version 1.1.

K. Keenoy et al. Self e-Learning Networks — Function-
ality, User Requirements and Exploitation Scenarios. See
http://www.dcs.bbk.ac.uk/selene/reports/Del22.pdf, August 2003. SeLeNe
Project Deliverable 2.2.

W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst, and
A. Loser. Super-peer-based routing and clustering strategies for RDF-based peer-to-
peer networks. In Proc. WWW2003, pages 536543, 2003.

G. Papamarkos, A. Poulovassilis, and P.T. Wood. Event-condition-action rule lan-
guages for the semantic web. In Proc. Workshop on Semantic Web and Databases, at
VLDB’03, Berlin, 2003.

N. Paton, editor. Active Rules in Database Systems. Springer-Verlag, 1999.

J. Pereira, F. Fabret, F. Llirbat, and D. Shasha. Efficient matching for web-based
publish /subscribe systems. In Proc 7th Int. Conf. on Cooperative Information Systems
(CooplS’2000), pages 162-173, 2000.

G. Samaras, K. Karenos, and E. Christodoulou. A Grid Service Framework for Self
e-Learning Networks. See http://www.dcs.bbk.ac.uk/selene/reports/Del3.pdf,
August 2003. SeL.eNe Project Deliverable 3.

I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating XML. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 413-424, 2001.

27

[22] G. Wagner. How to design a general rule markup language? In Invited talk at the
Workshop XML Technologien fir das Semantic Web (XSW 2002), Berlin, June 2002.

[23] J. Widom and S. Ceri. Active Database Systems. Morgan-Kaufmann, San Mateo,
California, 1995.

[24] World Wide Web Consortium. XML Path Language (XPath), Version 1.0. See
http://www.w3.org/TR/xpath, November 1999. W3C Recommendation.

[25] World Wide Web Consortium. XSL Transformations (XSLT), Version 1.0. See
http://www.w3.org/TR/xslt, November 1999. W3C Recommendation.

[26] World Wide Web Consortium. XQuery 1.0: An XML Query Language. See
http://www.w3.org/TR/xquery, November 2002. W3C Working Draft.

[27] World Wide Web Consortium. Document Object Model (DOM) Level 3 Core Spec-
ification. See http://www.w3.org/TR/DOM-Level-3-Core/, February 2003. W3C
Working Draft.

A BNF of the RDF ECA Language

rule ::= 0N’ event
>TF’ condition
’DO’ action ’;;°

event = [’LET’ let-expr (’,’ let-expr)* ’IN’]
((’INSERT’ | ’DELETE’) e [’AS’ ’INSTANCE’ ’0F’ class]
[’USING’ °’NAMESPACE’ nspacel
|
(’INSERT’ | ’DELETE’) triple
|
'UPDATE’ upd_triple
)
condition ::= [’not’] ce (((’and’ | ’or’) [’not’] ce)+)? | ’TRUE’
action = ([’LET’ let-expr (’,’ let-expr)* ’IN’]

((’INSERT’ | ’DELETE’) triple (’,’ triple)* ’;’
|

>UPDATE’ upd_triple (’,’ upd_triple)x* ’;’

|

>INSERT’ e ’AS’ ’INSTANCE’ °’0F’ class
[’USING’ °’NAMESPACE’ nspace] ’;’

|

28

’DELETE’ e [’AS’ ’INSTANCE’ ’0F’ class]
[’USING’ °’NAMESPACE’ nspace] ’;’

)+
)+
e = ’resource(’ URI ’)’ (/> p)? | var (C[’ q ’17)* (C/’ p)7?
p =p’/>plp’[q’]” | *target’ ’>(’ arc_name ’)’
| ’source(’ arc_name ’)’ | ’element()’ | ()’
q t:=q’and’ q | q’or’ gl e | p | (p | e) operator (p | e | literal)
ce ::= e (operator e)?
let-expr ::= var ’:=’ e
triple ::= ?(’ source_node ’,’ arc_name ’,’ target_node ’)’
upd_triple::= ’(’ source_node ’,’ arc_name ’,’ target_node ’->’ target_node ’)’

(e | ’_?) [’AS’ ’INSTANCE’ ’0F’ class]
[’USING’ °’NAMESPACE’ nspacel

source_node: :

arc_name ::= (string | ’_’) [’USING’ ’NAMESPACE’ nspacel

target_node::= (e | ’_’ | string) [’AS’ ’INSTANCE’ ’0F’ classl

[’USING’ ’NAMESPACE’ nspacel

var ::= ’$’ attribute
class ::= string
nspace ::= string
URI ::= string

29

B Computational Completeness of the RDF ECA Lan-
guage

To show computational completeness of our language over integers, we can show that it sim-
ulates while programs (which are themselves a higher-level syntax for counter programs).
While programs are constructed from the following constructs:

1. sequential composition of statements: s_1; s.2;...; sn

2. variables x, y, z ...over natural numbers

3. assignment statements: x:= 0, x:=x+1, x :=y, x:=x—1

4. conditional statements, where s and s’ are statements: if x = 0 then s else s’
5. while statements, where s is a statement: while x > 0 do s

We can encode while programs in our RDF ECA Language as follows:

In the RDF description base, the natural numbers are represented as resources of a class
Number. There is a property succ from instances of Number to instances of Number (the
successor function) such that: one instance of Number has label 0, no incoming succ arc,
and one outgoing succ arc (to the resource representing 1); all other instances of Number
have one incoming succ arc (from their predecessor) and one outgoing succ arc (to their

SUCCessor).
Given a while program P, let s_1; s_2; ...; s_m be all the statements appearing in P.
Assume there is a class Counter of resources labelled flag 1, flag 2, ...flag m, where

flag_i is associated with statement s_i. Also, assume that initially there are no instances
of Counter present.
The encoding of the constructs of a while program P is then as follows:

1. Sequential composition of statements s_1; s_2; ...; s_n:
As stated above, we assume that initially there are no instances of Counter present.

The sequence of statements is triggered by the insertion of resource flag_1 associated
with stagement s_1.

The sequential composition of the statements s_1;s_2; ...; s_n is encoded by the fol-
lowing set of ECA rules, which has a lower priority than the rule encoding statement
s_-1 (so that the ECA rule(s) encoding s_1 will be executed first, followed by this
rule):

ON INSERT resource(’flag_1’) AS INSTANCE OF Counter

IF TRUE

DO INSERT resource(’flag_2’) AS INSTANCE OF Counter;
INSERT resource(’flag_n’) AS INSTANCE OF Counter;

30

2. Variables x, y, z ...over natural numbers:

Variables x, y, z ... are represented as resources of a class Variable, and are labelled
XY, Z ...

There is property has-value from instances of Variable to instances of Number,
which indicates the current value of each variable.
3. An assignment statement s_i:

This is represented by a rule with event part ON INSERT resource(’flag_i’), con-
dition part TRUE and action part as follows:

For x:=0:
UPDATE (x,has-value,_->0); DELETE resource(’flag_i’);
For x:=y:

LET $new = resource(’y’)/target(has-value) IN
UPDATE (x,has-value,_->new); DELETE resource(’flag_i’);

For x:=x+1:

LET $new = resource(’x’)/target(has-value)/target(succ) IN
UPDATE (x,has-value,_->new); DELETE resource(’flag_i’);

For xi=x—1:
LET $new = resource(’x’)/target(has-value)/source(succ) IN
UPDATE (x,has-value,_->,new); DELETE resource(’flag_i’);

4. A conditional statement s_i of the form if x = 0 then s_j else s k:

This is represented by two ECA rules:

ON INSERT resource(’flag_i’)

IF resource(’x’) [target (has-value)=’0"]

DO INSERT resource(’flag_j’) AS INSTANCE OF Counter;
DELETE resource(’flag_i’);

ON INSERT resource(’flag_i’)

IF not resource(’x’) [target (has-value)=0"]

DO INSERT resource(’flag_k’) AS INSTANCE OF Counter;
DELETE resource(’flag_i’);

5. A while statement s_i of the form while x > 0 do s_j:

This is represented by the following two ECA rules:

ON INSERT resource(’flag_i’)
IF not resource(’x’) [target (has-value)=0"]

31

DO

ON
IF
DO

DELETE resource(’flag_i’);
INSERT resource(’flag_j’) AS INSTANCE OF COUNTER;
INSERT resource(’flag_i’) AS INSTANCE OF COUNTER;

INSERT resource(’flag_i’)

resource(’x’) [target (has-value)="0"]
DELETE resource(’flag_i’)

32

