
An Event�Condition�Action Language for XML

James Bailey�� George Papamarkosy� Alexandra Poulovassilisy� Peter T� Woody

�Department of Computer Science� University of Melbourne
ySchool of Computer Science and Information Systems� Birkbeck College� University

of London

Abstract� XML is now a widespread means of exchanging and storing
information on the Web� Event�condition�action �ECA� rules are a natu�
ral candidate for the support of reactive functionality on XML reposito�
ries� This chapter discusses ECA rules in the context of XML data� We
give a review of related work� and then de�ne a language for specifying
ECA rules on XML repositories� We specify the rule execution model of
our language� and describe a prototype implementation� We also discuss
techniques for analysing the behaviour of sets of ECA rules� in particular
for determining the triggering and activation relationships between pairs
of rules� We conclude with a discussion of some directions for further
research��

� Introduction

XML is becoming a dominant standard for storing and exchanging information
on the Web� With its increasing use in dynamic applications such as data ware�
housing� e�commerce and e�learning ���� ��� �	� ���
�� ��
��� there is a rapidly
growing need for the support of reactive functionality on XML repositories�
Event�condition�action
ECA� rules are a natural candidate for this�

ECA rules automatically perform actions in response to events provided
that stated conditions hold� They are used in conventional data warehouses for
incremental maintenance of materialised views� for validation and cleansing of
the input data streams� and for maintaining audit trails of the data� By analogy�
ECA rules could also be used as an integrating technology for providing this
kind of functionality on XML repositories� Further potential uses include check�
ing key and other constraints on XML documents� and performing automatic
repairs when violations of constraints are detected� In a �push� type environment�
they can be used for automatically broadcasting information to subscribers as
the contents of relevant documents change� They can also be employed as a
�exible means of maintaining statistics about document and web site usage and
behaviour�

There are two main advantages in using ECA rules to support such func�
tionality as opposed to implementing it directly using a programming language
such as Java� Firstly� ECA rules allow an application�s reactive functionality to

� To appear in Web Dynamics� M�Levene and A�Poulovassilis �eds��� Springer ���	

be de�ned and managed within a single rule base rather than being encoded
in diverse programs� This enhances the modularity and maintainability of such
applications� Secondly� ECA rules have a high�level� declarative syntax and are
thus amenable to powerful analysis and optimisation techniques� which cannot
be applied if the same functionality is expressed directly in programming lan�
guage code�

An alternative way to implement the functionality described above might
be to use XSLT to transform source XML documents� However� XSLT would
have to process an entire document after any update to it in order to produce
a new document� whereas we are concerned with the detection and subsequent
processing of updates of much �ner granularity� Also� using ECA rules allows
direct update of a document wheareas XSLT requires a new result tree to be
generated by applying transformations to the source document�

ECA rules have been used in many settings� including active databases
�
��
��� work�ow management� network management� personalisation and pub�
lish�subscribe technology �	� ��� ��� ���
��� and specifying and implementing busi�
ness processes �
� ��� ���� In this chapter� we study ECA rules in the context of
XML data� We begin with a review of related work� We then de�ne a language for
specifying ECA rules on XML repositories� illustrating the language by means
of some examples� We specify the rule execution model of the language� and
describe a prototype implementation� We also discuss techniques for analysing
the behaviour of sets of ECA rules de�ned in our language� in particular for
determining the triggering and activation relationships between pairs of rules�
We conclude with a discussion of directions for further research�

� Event�Condition�Action Rules

An ECA rule has the general syntax
on event if condition do actions

The event part describes a situation of interest and dictates when the rule should
be triggered� Events can be broadly classi�ed into two categories� primitive
events and composite events� Primitive events are atomic� detectable occurrences
such as database updates
e�g� �on insert into relation R�� or the reaching of
a particular time
e�g� �on ��th March ���� at �������� Composite events are
combinations of primitive events� speci�ed using an event algebra ��
� ���� Com�
mon operators in event algebras include�
i� disjunction� event e� � e� occurs if
either event e� occurs or event e� occurs�
ii� sequence� event e�� e� occurs if e�
occurs� having been preceded by e�� and
iii� conjunction� event e� � e� occurs
when both e� and e� have occurred in any order�

However� most implementations of ECA systems do not support an event
algebra as rich as this� Rather� they settle for being able to detect just an ap�
propriate set of primitive events� with no support of event operators� While this
limits the range of situations that can be reacted to� rule execution can be more
easily optimised and analysed�

Events can have associated with them parameters which provide extra in�
formation about the event occurrence� For example� in active databases� these
parameters are known as deltas and may be referenced by the condition and
action parts of the ECA rule� For each event E detectable by the database there
are two deltas� has occurred E and change E� The former is non�empty if event
E occurred during the execution of the last action� and it contains information
about the occurrences of event E� e�g�� the time at which they occurred and
which transaction caused them to occur� change E contains information about
the changes that occurrences of event E made to the database during the exe�
cution of the last action�

For example� in a typical active relational database there may be for each
user�de�ned relation R a set of six delta relations�

� has occurred insertion R� which would be non�empty if one or more IN�
SERT statements on relation R occurred during the execution of the last
action�

� change insertion R� which would contain the set of new tuples inserted into
relation R during the execution of the last action�

� has occurred deletion R� would be non�empty if one or more DELETE
statements on relation R occurred during the execution of the last action�

� change deletion R� would contain the set of tuples deleted from R during
the execution of the last action�

� has occurred update R� would be non�empty if one or more UPDATE state�
ments on relation R occurred during the execution of the last action�

� change update R� would contain a set of pairs
old tuple�new tuple� for each
tuple of R which was updated during the execution of the last action�

The event part of an ECA rule is either has occurred E or change E� for
some event E� The identi�ers has occurred E and change E may also occur
within the rule�s condition and action parts�

A rule is said to be triggered if its event part is non�empty� Allowing ei�
ther has occurred E or change E to appear as rule events means that both
�syntactic� and �semantic� triggering of rules can be supported� Syntactic trig�
gering happens if the rule�s event part is has occurred E and instances of event
E occur� Semantic triggering happens if the rule�s event part is change E and
instances of event E occur and make changes to the database�

The condition part of an ECA rule determines if the database is in particular
state� It is a query over the database and its environment� and its semantics are
the same as that used for the database query language� e�g� SQL� The condition
may also refer to the state before the execution of the event and the state created
after the execution� by making use of the deltas�

The action part of a rule describes the logic to be performed if the condi�
tion evaluates to true� It is usually a sequence of modi�cations applied to the
database� expressed using the same syntax as that used by updates within a
transaction�

More details on the foundations of ECA rules in active databases� and de�
scriptions of a range of implemented active database prototypes can be found in
�
��
���

��� Rule Execution Model

The rule execution model is a speci�cation of the run time behaviour of the
system� In particular� it speci�es�

� when the various components of a rule are executed with respect to one
another� and

� what happens when multiple rules are triggered simultaneously�

This �rst aspect is traditionally handled by the use of coupling modes �����
A coupling mode speci�es the timing activation of one part of an ECA rule with
respect to another� Possible coupling modes for the condition part with respect
to the event part are�

� Immediate� The condition is evaluated immediately the event is detected as
having occurred within the current transaction�

� Deferred� The condition is evaluated within the same transaction� but after
the last operation in the transaction and just before the transaction commits�

� Decoupled� The condition is evaluated within a separate� child transaction�

Possible coupling modes for the actions part with respect to the condition part
are similar�

� Immediate� The action is executed immediately after the condition has been
evaluated
if the condition is found to be True��

� Deferred� The action is performed within the same transaction� but after the
last operation in the transaction and just before the transaction commits�

� Decoupled� The action is performed within a separate� child transaction�

Di�erent types of coupling modes may be more or less suitable for certain
categories of rules� For example� decoupled execution can help response time
since the length of transactions does not grow too large due to rule execution
and hence potentially more concurrency is available� Decoupled execution can
also be useful in situations where the parent transaction aborts� yet rule exe�
cution is nevertheless desired in the child transaction� e�g�� updating an access
log regardless of whether or not authorisation is granted� Maintaining views
is typically done immediately to ensure freshness� and either Deferred or Im�
mediate coupling can be used for checking integrity constraints
Immediate for
constraints that should never be violated� and Deferred for constraints that need
only be satis�ed when the database is in a stable state��

The second aspect of rule execution is the policy employed for determining
which rule to execute next� given that several rules have been previously trig�
gered and are awaiting execution� The time of triggering is an important factor
here and thus maintaining rules in a data structure which re�ects this timing

information is natural� e�g�� a �rst�in��rst�out or a last�in��rst�out list� For rules
which were triggered at precisely the same time by the same event occurrence�
further information such as priorities can be used for tie�breaking� each rule is
assigned a unique priority and rules with higher priority are executed earlier�

��� ECA rules for Object Oriented Databases

Due to the richness of the object�oriented data model� ECA rules for object�
oriented databases often contain additional features compared with ECA rules
for relational databases�

The principal di�erence is the availability of a richer set of primitive event
types� for example events which are triggered on the invocation of methods or on
the creation of objects� Here again� in the same way as for relational databases�
deltas can be used to de�ne event contexts� So in a typical active object�oriented
database there may be classes has occurred M and change M for each method
M whose invocation is detectable as an event by the database� has occurred M
would be non�empty if method M was invoked during the execution of the last
action� change M would contain information about changes made to user�de�ned
database objects by invocations of method M during the last action�

Another important di�erence in active object�oriented databases stems from
the ability to specify rules as objects� Relationships between rules can then be
captured� using properties such as generalisation and specialisation between rule
classes�

��� The SQL� Standard

The SQL
 standard speci�es a syntax and execution model for ECA rules� or
triggers� in relational databases �
���

Rule event parts may be triggered by update� insert or delete operations on
the database� Triggers are of two kinds� BEFORE triggers and AFTER triggers�
The former conceptually execute the condition and action before the triggering
event is executed� The latter execute the condition and action after the triggering
event is executed� using an Immediate coupling mode between both event and
condition� and between condition and action�

Conditions are evaluated on the database state that the action is executed
on� and multiply triggered rules are handled using a last�in��rst�out list� Each
rule is assigned a unique priority� Only syntactic triggering is supported� i�e��
the event parts of triggers have the semantics of the has occurred deltas we
described above�

Another important aspect is that of rule granularity� and two types of gran�
ularity are supported� row�level and statement�level� When a statement�level rule
is triggered by some event E and is then scheduled for execution� one copy of its
action part is placed on the list of pending rules� When a row�level rule is trig�
gered by some event E� one copy of its actions part is placed on the pending list
for each member of change E for which the rule�s condition evaluates to True�

Hence� a single event can give rise to zero� one� or many copies of a triggered
rule�s actions for row�level rules�

��� Analysing Rule Behaviour

One of the key recurring themes regarding the successful deployment of ECA
rules in systems is the need for techniques and tools for analysing their run�time
behaviour ����
��� When multiple ECA rules are de�ned within a system� their
interactions can be di�cult to predict� since the execution of one rule may cause
an event which triggers another rule or set of rules� These rules may in turn
trigger further rules and there is indeed the potential for an in�nite cascade of
rule �rings to occur�

Analysis of ECA rules in active databases is a well�studied topic and a
number of analysis techniques have been proposed� e�g� ��� ��� �� �� ����	� ��� ����
Two key properties of a set of ECA rules are the triggering ��� and activation

��
� relationships between pairs of rules� since this information can be used to
analyse properties such as termination of the ECA rule set� or reachability of
speci�c rules� The triggering and activation relationships between pairs of rules
are de�ned as follows�

A rule ri may trigger a rule rj if execution of the action of ri may generate
an event which triggers rj �

A rule ri may activate another rule rj if rj �s condition may be changed from
False to True after the execution of ri�s action�

A rule ri may activate itself if its condition may be True after the execution
of its action�

The triggering graph ��� represents each rule as a vertex� and there is a
directed arc from a vertex ri to a vertex rj if ri may trigger rj � Acyclicity of the
triggering graph implies de�nite termination of rule execution� Triggering graphs
can also be used for deriving rule reachability information� The activation graph

��
� also represents rules as vertices� In this case there is a directed arc from a
vertex ri to a vertex rj if ri may activate rj � Acyclicity of this graph also implies
de�nite termination of rule execution�

Triggering and activation graphs were combined in ���� in a method called
rule reduction which gives more precise results than either of the triggering or
activation graphs alone� With this method� any vertex which does not have both
an incoming triggering and activation arc can be removed from the graph� along
with its outgoing arcs� This removal of vertices is repeated until there are no
such vertices� If the procedure results in all the vertices being removed� then the
rule set is de�nitely terminating�

More recently� we have proposed using abstract interpretation to analyse
ECA rules ��� ��� With this approach� the ECA rules are �executed� on an ab�
stract database representing a number of real databases� Our abstract interpreta�
tion approach is a more costly� but more precise� technique than the graph�based
approaches since it also tracks how the triggering and activation relationships
between rules evolve during rule execution�

Determining triggering and activation relationships between ECA rules is
more complex for semi�structured data such as XML than for structured databases�
because determining the e�ects of rule actions is not simply a matter of matching
up the names of updated database objects with the event and condition parts
of ECA rules� Instead� the associations between actions and events�conditions
are more implicit� and more sophisticated semantic comparisons between sets of
path expressions are required� In Section 	 we discuss techniques for determining
the triggering and activation relationships for our XML ECA rules�

��� ECA Rules for XML

The semistructured nature of XML data gives rise to new issues a�ecting the
use of ECA rules� These issues are principally linked to choice of appropriate
language syntax and execution model�

� Event Granularity� In the relational model� the granularity of data manipu�
lation events is straightforward� since insert� delete� or update events occur
when a relation is inserted into� deleted from� or updated� respectively� With
XML� this kind of strong typing of events no longer exists� Specifying the
granularity of where data has been inserted or deleted within an XML doc�
ument becomes more complex and path expressions that identify locations
within the document now become necessary�

� Action Granularity� Again in the relational model� the e�ect of data manipu�
lation actions is straightforward� since an insert� delete or update action can
only a�ect tuples in a single relation� With XML� actions now manipulate
entire sub�documents� and the insertion or deletion of sub�documents can
trigger a set of di�erent events� Thus� analysis of which events are triggered
by an action can no longer be based on syntax alone� Also� the choice of an
appropriate action language for XML is not obvious� since there is as yet no
standard for an XML update language�

Compared to rules for relational databases� ECA rules for XML data are
more di�cult to analyse� due to the richer types of events and actions� However�
rules for XML have arguably less analysis complexity than rules for object�
oriented data� This stems from the fact that object�oriented databases may per�
mit arbitrary method calls to trigger events� and determining triggering relation�
ships between rules may therefore be as di�cult as analysing a program written
in a language such as C�� or Java� ECA rules for XML� in contrast� can be
based on declarative languages such as XQuery and XPath� and so are a more
amenable to analysis� particularly with the use of natural syntactic restrictions�
as in this chapter�

In recent work ���� ��� we developed a language for de�ning ECA rules on
XML data� based on the XPath and XQuery standards� We also developed tech�
niques for analysing the triggering and activation relationships between such
rules� This language and the analysis techniques are the subject of the rest of
this chapter� A number of other ECA rule languages for XML have also been

proposed� although none of this work has focussed on analysing the behaviour
of the ECA rules�

Reference ���� discusses extending XML repositories with ECA rules in order
to support e�services� Active extensions to the XSLT �	�� and Lorel ��� languages
are proposed which handle insertion� deletion� and update events on XML docu�
ments � in contrast� we currently support only insertion and deletion events in
our language
see Section
�� Reference ���� discusses a more speci�c application
of the approach to push technology where rule actions are methods that cannot
update the repository� and hence cannot trigger other rules�

Reference ���� also de�nes an active rule language for XML� The rule syntax
is similar to ours� and is based on the syntax of triggers in SQL
� The rule exe�
cution model is rather di�erent from ours though� Generally speaking� insertions
and deletions of XML data may involve document fragments of unbounded size�
���� adopts an execution model whereby each top�level update is decomposed
into a sequence of smaller updates
depending on the contents of the fragment
being inserted�deleted� and then rule execution is interleaved with the execu�
tion of these smaller updates� In contrast� in our language we treat each top�level
update as atomic and rule execution is invoked only after completion of the top�
level update� In general� these semantics may produce di�erent results for the
same top�level update and it is a question of future research to determine their
respective suitability in di�erent applications�

Other related work is �
	� ��
��� �
	� �� discuss monitoring and subscription
in Xyleme� an XML warehouse supporting subscription to web documents� A
set of alerters monitor simple changes to web documents� A monitoring query

processor then performs more complex event detection and sends noti�cations
of events to a trigger engine which performs the necessary actions� including
creating new versions of XML documents� The focus of this reactive functionality
is highly tuned to this speci�c application�

Finally� �
�� proposes extensions to the XQuery language �	�� to incorpo�
rate update operations � we refer the reader to that paper for a review of the
provision of update facilities in other XML manipulation languages� The update
operations proposed are more expressive than the actions supported by our ECA
rule language since they also include renaming and replacement operations� and
speci�cation of updates at multiple levels of documents� Triggers are discussed in
�
�� as an implementation mechanism for deletion operations on the underlying
relational store of the XML� However� provision of ECA rules at the �logical�
XML level is not considered�

� Our ECA Rule Language for XML

An XML repository consists of a set of XML documents� In our language� ECA
rules on XML repositories take the following form�

on event if condition do actions

We use the XPath �	�� and XQuery �	�� languages to specify the event�
condition and actions parts of rules� XPath is used for selecting and matching

fragments of XML documents within the event and condition parts� XQuery is
used within insertion actions� where there is a need to be able to construct new
XML fragments�

The event part of an ECA rule is an expression of the form
INSERT e

or
DELETE e

where e is a simple XPath expression
de�ned in Section
�� below� which evalu�
ates to a set of nodes� The rule is triggered if this set of nodes includes any node
in a new XML fragment� in the case of an insertion� or in a deleted fragment� in
the case of a deletion�

The system�de�ned variable �delta is available for use within the condition
and actions parts of the rule� and its set of instantiations is the set of new or
deleted nodes returned by e�

The condition part of a rule is either the constant TRUE� or one or more
simple XPath expressions connected by the boolean connectives and� or� not�

The actions part of a rule is a sequence of one or more actions�
action�� � � � � actionn

where each actioni is an expression of one of the following three forms�
INSERT r BELOW e BEFORE q
INSERT r BELOW e AFTER q

DELETE e
Here� r is a simple XQuery expression� e is a simple XPath expression and q
is either the constant TRUE or an XPath quali�er � see Section
�� below for
de�nitions of the italicised terms�

In an INSERT action� the expression e speci�es the set of nodes� N � imme�
diately below which new XML fragment
s� will be inserted� These fragments
are speci�ed by the expression r� If e or r references the �delta variable� then
one XML fragment is constructed for each instantiation of �delta for which the
rule�s condition evaluates to True� If neither e nor r references �delta� then a
single fragment is constructed� The expression q is an XPath quali�er which is
evaluated on each child of each node n � N � For insertions of the form AFTER q�
the new fragment
s� are inserted after the last sibling for which q is True� while
for insertions of the form BEFORE q� the new fragment
s� are inserted before the
�rst sibling for which q is True� The order in which new fragments are inserted
is non�deterministic�

In a DELETE action� the expression e speci�es the set of nodes which will
be deleted
together with their descendant nodes�� Again� e may reference the
�delta variable�

Example �	 Consider an XML repository containing metadata about learning
objects
LOs� available on the web� as well as personal metadata about users of
these LOs� The XML document los�xml contains information about the LOs�
and we show below some of the information held for a particular book� �Data
On the Web�� Under annotations� a new annotation is appended every time
a user submits a review of the book�

�LOs�

��

�LO type��book� title��Data On the Web��

�subject�Computer Science��subject�

�creator�S� Abiteboul��creator�

�creator�P� Buneman��creator�

�creator�D� Suciu��creator�

�description�From Relations to Semistructed data and XML

��description�

�publisher�M� Kaufmann��publisher�

�editions�

���

��editions�

�isbn��	

��
	���	Y��isbn�

�annotations�

�annotation�

�reviewer�Teacher Education Review Panel��reviewer�

�date��

�	�
	�
��date�

�rating����rating�

�description�

This book gives a comprehensive� state	of	the art

discussion of data models� query languages and ���

��description�

��annotation�

�annotation�

�reviewer�John Smith��reviewer�

�date��

�	��	�
��date�

�rating��
��rating�

�description�

I found this a great book to learn about querying

semi	structured data� which I didn�t know much

about before�

��description�

��annotation�

��annotations�

��LO�

���

��LOs�

The XML document users�xml contains information about users� and we show
below some of the information held for a particular user �Johnny Mnemonic��
Users can subscribe to be noti�ed of the latest review submitted for books in
subjects that they are interested in� and this information is used to automatically
update their personal metadata�

�users�

���

�user id�������

�name�Johnny Mnemonic��name�

�profession�student��profession�

�subjects�

�subject�Computer Science��subject�

�subject�Mathematics��subject�

�subject�Economics��subject�

��subjects�

�LOs�

���

�LO type��book� title��Data On the Web��

�isbn��	

��
	���	Y��isbn�

�latest	annotation�

�reviewer�John Smith��reviewer�

�date��

�	��	�
��date�

�rating��
��rating�

�description�

I found this a great book to learn about querying

semi	structured data� which I didn�t know much

about before�

��description�

��latest	annotation�

��LO�

���

��LOs�

��user�

���

��users�

MrMnemonic is interested in �Computer Science� and the following rule replaces
the current latest review
if there is one� of any Computer Science book in his
personal metadata by a new review of that book�

ON INSERT document��los�xml���LOs�LO�annotations�annotation

IF �delta�������subject����Computer Science��

DO DELETE document��users�xml���users�user��id��������LOs�LO��type�

�book����title��delta��������title��latest	annotation�

INSERT �latest	annotation����delta������latest	annotation�

BELOW document��users�xml���users�user��id��������LOs�

LO��type��book����title��delta��������title�

AFTER isbn

Here� the system�de�ned �delta variable is bound to a newly inserted annotation
node detected by the event part of the rule� The rule�s condition checks that the
subject of the book in question is Computer Science� The rule�s action then
deletes the existing latest review for this book within Mr Mnemonic�s metadata

if there is one� and inserts the new review�

Suppose now that the following update occurs� appending a new review for
the �Data On the Web� book�

INSERT �annotation�

�reviewer�Neo Anderson��reviewer�

�date��

�	
�	����date�

�rating����rating�

�description�

Very clearly written and very well	organised�

Describes in detail all the ���

��description�

��annotation�

BELOW document��los�xml���LOs�

LO��type��book����title��Data On the Web���annotations

AFTER TRUE

This update triggers the rule above� causing the replacement within in Mr�
Mnemonic�s personal metadata of the previous review submittede by Mr� Smith
by the new review submitted by Mr� Anderson�

Example �	 Consider an XML repository containing an XML document s�xml
that contains information about share prices on a Stock Exchange� We show
below some of the information held for a particular share in the document�
share XYZ� Under day	info the share price is recorded periodically for the spec�
i�ed date� The highest and lowest prices for each day and each month are also
recorded� under day	info and month	info respectively�

�shares�

���

�share name��XYZ��

���

�day	info day��
�� month��
���

�prices�

�price time��
��

�������
��price�

�price time��
��

������

��price�

�price time��
���
������

��price�

��prices�

�high�����

��high�

�low�����

��low�

��day	info�

���

�month	info month��
���

�high������
��high�

�low������
��low�

��month	info�

��share�

�share name��ABC��

���

��share�

���

��shares�

Suppose that this document is updated in response to external events re�
ceived from a share price information service� In particular� an insertion event
will arrive periodically with the current price for share XYZ� For example� such
an insertion event� Ev� might be the following update� which inserts the new
share price of �����
 after the last share price currently recorded�

INSERT �price time��
���
�������
��price�

BELOW document��s�xml���shares�share��name��XYZ���

day	info��day��
�����month��
����prices

AFTER TRUE

The following ECA rule� r�� checks whether the daily high needs to be
updated in response to a new price insertion in some share�

on INSERT document��s�xml���shares�share�day	info�prices�price

if �delta � �delta�������high

do DELETE �delta�������high�

INSERT �high��delta�text����high�

BELOW �delta������ AFTER prices

Here� the �delta variable is bound to the newly inserted price node detected
by the event part of the rule� The rule�s condition checks that the value of this
price node is greater than the value of the high node under the same day	info
node� The action then deletes the existing high node and inserts a high node
whose value is that of the newly inserted price�

The insertion event Ev above would trigger this rule r�� which would then
update the daily high of share XYZ to �����
�

The following ECA rule� r�� similarly checks whether the monthly high price
for a share needs to be updated in response to an insertion of a new daily high
price�

on INSERT document��s�xml���shares�share�day	info�high

if �delta � �delta�������month	info��month��delta�����month��high

do DELETE �delta�������month	info�high�

INSERT �delta

BELOW �delta�������month	info��month��delta�����month�

BEFORE TRUE

In the INSERT action of this rule� a copy of the high node whose insertion
triggered the rule is inserted as the �rst child of the corresponding month	info
node�

The event Ev above would trigger rule r�� and the second action of r� would
in turn trigger rule r�� However� the condition of r� would then evaluate to False
and so its action would not be executed�

Similar ECA rules could be used to update the daily and monthly low prices�
and for undertaking many other potentially useful tasks�

��� Simple XPath and XQuery Expressions

The XPath and XQuery expressions appearing in our ECA rules are restrictions
of the full XPath and XQuery languages� to what we term simple XPath and
XQuery expressions� These represent useful and reasonably expressive fragments
which have the advantage of also being amenable to analysis� a topic which we
discuss in Section 	�

The XPath fragment we use disallows a number of features of the full XPath
language� most notably the use of any axis other than the child� parent� self or
descendant�or�self axes and the use of all functions other than document�� and
text��� Thus� the syntax of a simple XPath expression e is given by the following
grammar� where s denotes a string and n denotes an element or attribute name�

e �� �document�� s ���

 ��� j ���� � p� j
��delta�
��� q ����!

 ��� j ���� � p�"

p �� p ��� p j p ���� p j p ��� q ��� j n j ��� j
���n j ���� j ��� j ���� j �text���

q �� q �and� q j q �or� q j e j p j
p j e j s� o
p j e j s�
o �� ��� j � �� j ���� j ��� j ���� j ���

Expressions enclosed in ��� and ��� in an XPath expression are called quali�ers�
So a simple XPath expression starts by establishing a context� either by a call
to the document function followed by a path expression p� or by a reference to
the variable �delta
the only variable allowed� followed by optional quali�ers q
and an optional path expression p� Note that a quali�er q can comprise a simple
XPath expression e�

The XQuery fragment we adopt disallows the use of full FLWR expressions

involving the keywords �for�� �let�� �where� and �return��� essentially permitting
only the �return� part of such an expression �	��� The syntax of a simple XQuery
expression r is given by the following grammar�

r �� e j c
c �� ��� n a
���� j
��� t� ���� n �����
a ��
n �� ��
s j e�� ��� a�"
t �� s j c j e�

e� �� �f� e �g�

Thus� an XQuery expression r is either a simple XPath expression e
as de�ned
above� or an element constructor c� An element constructor is either an empty
element or an element with a sequence of element contents t� In each case� the
element can have a list of attributes a� An attribute list a can be empty or is a
name equated to an attribute value followed by an attribute list� An attribute
value is either a string s or an enclosed expression e�� Element contents t is
one of a string� an element constructor or an enclosed expression� An enclosed

expression e� is an XPath expression e enclosed in braces� The braces indicate
that e should be evaluated and the result inserted at the position of e in the
element constructor or attribute value�

��� Rule Execution Model

We now describe the rule execution model of our language� The input to the
execution is a schedule s and an XML repository db� The schedule consists of a
list of pairs
actioni�j � deltai�� where actioni�j is the j

th action within the actions
part of rule ri and deltai is a set of instantiations for the �delta variable of rule
ri for which ri�s condition evaluated to True�

Rules whose event parts reference the same XML document can potentially
be triggered by the same update event on that document� To disambiguate the
e�ect of such rules� we require that all rules whose event parts are insertions on
the same document are totally ordered� as are all rules whose event parts are
deletions on the same document� The relative priorities of such rules are speci�ed
by the user when de�ning a new rule�

The schedule which initiates rule execution consists of an action and a set of
instantiations for the �delta variable upon which this action is to be applied� i�e�
the initial schedule is a singleton of the form ��action�delta��� The following
pseudocode expresses how this update request is handled�

while s � �� do �

�a�delta� �� head �s��

s �� tail �s��

�changes�db� �� updateDB �db�a�delta��

for each rule r!i in order of increasing priority do �

if changes�i� � �� then �

�value�delta� �� evalCondition�i�changes�i��db��

if value � True then

for j �� noOfActions�i� downto � do

s �� �action�i�j��delta��s

�

�

�

In the above pseudocode� the function head returns the �rst element of a
list and the function tail returns a list minus its �rst element�

The function updateDB executes the action a that was at the head of the
schedule� If a does not reference the �delta variable� this update is performed
just once on the repository db� If a does reference the �delta variable� a set

of updates is generated by substituting occurrences of �delta within a by each
member of delta� Thus if n is the cardinality of delta� n updates will be gener�
ated�� These updates are then performed in an arbitrary order on the repository�

�
n is guaranteed to be �nite due to the syntax of our update language� which does
not allow in�nite new XML fragments to be created� and the fact that there are a
�nite number of ECA rules�

updateDB returns a pair �changes�db�� where db is the new repository
resulting from the update and changes is an array such that changes�i� is the
set of newly inserted or newly deleted nodes corresponding to the event part
of rule r i� In particular� if a is an insertion then for each r i which may be
triggered by a� the event part of r i is evaluated on the repository after a is
executed� and changes�i� is the intersection of this result and the new nodes
inserted by a� If a is a deletion then for each r i which may be triggered by a�
the event part of r i is evaluated on the repository before a is executed� and
changes�i� is the intersection of this result and the nodes that are subsequently
deleted by a��

The function evalCondition evaluates rule r i�s condition and there are
two possible cases�

i� If the �delta variable occurs in the condition� then the condition is evalu�
ated once for each member of changes�i�� and the subset of changes�i�
for which it evaluates to True is determined� The variable delta is set to
this subset� If delta is non�empty� then the variable value is set to True�
otherwise it is set to False�

ii� If the �delta variable does not occur in the condition� then the condition is
evaluated just once and the variable value is set to the result� The variable
delta is set to changes�i��

noOfActions�i� is the number of actions in the actions part of rule r i� and
actions�i�j� is the jth action of rule r i� The loop for j��noOfActions�i�

downto � do ��� ensures that the actions of a given rule are placed in the
right order onto the schedule� Each such action action�i�j� is paired with
that rule�s delta and pre�xed to the current schedule� by the statement s ��

�action�i�j��delta��s�
Rules are considered in increasing order of their priority in the outer for

loop� Thus the actions of higher�priority rules that have �red will be placed onto
the schedule in front of the actions of lower�priority rules�

The execution proceeds in this manner until the schedule becomes empty�
Non�termination of rule execution is a possibility and thus development of static
rule analysis techniques is important to aid the design of �well�behaved� rules�
We discuss such techniques in Section 	�

There are a number of observations we can make regarding the above rule
execution model�

� Triggering is semantic� not syntactic� since a rule r i is triggered only if
changes�i� is not empty�

� The event�condition coupling mode and the condition�action coupling modes
are both Immediate� since conditions are evaluated immediately after an

� We will see in Section 	 how the set of rules that may be triggered by an action
can be determined� It would also be correct to evaluate the event parts of all rules
since for those that cannot be triggered by the action� changes�i� will necessarily
be empty� Thus� limiting the evaluation to the set of rules that may be triggered is
an optimisation�

event becomes true� and the actions of rules that have �red as a result of the
current set of updates are placed at the head of the schedule�

� Rule conditions are evaluated against the repository state in which the rule
was triggered� unlike in SQL
 where conditions are evaluated against the
database state that the action will be executed on�

It is possible to simulate the behaviour of SQL
 using our rules by adding
the conditions as additional quali�ers to the XPath expression e that is part
of INSERT and DELETE actions� and setting the condition part of the rule to
TRUE�

� Both document�level and instance�level triggering are supported in our ECA
rule language� depending on the occurrence of �delta in the condition and
action parts of a rule�

� If there is no occurrence of �delta in the condition or the action� the
action is executed once if the condition is True � this is document�level
triggering�

� If �delta occurs in the action
and possibly in the condition�� the action
is executed once for each possible instantiation of �delta for which the
condition is True � this is instance�level triggering�

��� A Prototype Implementation

As a proof of concept� we have developed a prototype system that implements
our language and the execution model described above� Due to the current im�
maturity of the existing XML repository products in supporting a su�ciently
expressive update language� for this �rst prototype we have used �at �les and
have exploited the functionality provided by the W
C DOM standard �		� for
interacting with them� The architecture of our system is illustrated in Figure ��

The Parser parses and checks the syntactic validity of a new rule� For
construction of the parser� we have used the JavaCC lexer�parser generator

http���www�webgain�com�� Valid rules are translated into an XML form and
are added by the Registration Unit to the Rule Base
which is an XML �le��
Details about each rule are stored here� including its name� priority� event� con�
dition and action parts�

The Execution Engine encapsulates the rule processing functionality� In par�
ticular� the Event Dispatcher� Condition Evaluator and Action Scheduler imple�
ment these aspects of the rule processing� as described in more detail below� All
of these components interface with the Wrapper in order to send and receive
data to and from the underlying XML �les�

The Wrapper interfaces with the XML �les on disk� All update and query
requests from the upper levels of the system pass through this component� which
coordinates them� It undertakes to open �les� create copies of them� send queries
and modi�cation actions� and receive back results from them� The Wrapper
performs these actions by using the functionality of the Apache Xalan API� The
Wrapper also maintains a history of back versions of XML documents in the
Document History�

Parser for ECA Language
User Interface

Document History

XML Documents

WRAPPER

Rule Base

EXECUTION ENGINE

Action Scheduler Condition Evaluator Event Dispatcher R
ul

e
B

as
e

In
te

rf
ac

e

Update Manager

Registration Unit XML translated rules

Send next action
for execution

Send condition for eval'n
Receive results

Send event query for evaluation.
Receive the changes set

Rule Input

Schedule Manager

Execution Schedule Queue

Connection
Driver

Fig� �� System Architecture

Rule execution begins with a request from the Action Scheduler to the Up�
date Manager to execute the action currently at the head of the schedule� There
are two cases to consider�

� If the current action is a deletion on some document� the Update Manager
adds a copy of the current document to the Document History� if this version
of the document is not already there� Any rules that subsequently �re as a
result of the execution of the current action will have delta sets containing
node IDs from within this copy of the document� The Update Manager then
executes the deletion and places the IDs of the nodes that have been deleted
into a set called updates�

� If the current action is an insertion on some document� the Update Manager
�rst executes the action� and then adds a copy of the new document to
the Document History� Any rules that subsequently �re as a result of the
execution of the current action will have delta sets containing node IDs
within this updated copy of the document� The Update Manager places the
IDs of the new nodes into a set called updates�

A count is kept within the Document History of the number of rule actions
currently on the schedule that reference each back copy of a document� When
the Update Manager executes a rule action referring to a back copy� it decrements
this reference count� When a reference count reaches zero� a back copy can be
removed from the Document History�

Following the execution of an action by the Update Manager� control is then
passed to the Event Dispatcher� This executes the XPath query of the event part
of each rule that may be triggered by the action� If the action was an insertion�
these event parts are executed against the new XML document� If the action was
a deletion� they are executed against the copy prior to the deletion� within the
Document History� The Event Dispatcher then determines for each rule event
part whether the returned result set and the set of updates intersect and it
de�nes the changes�i� set for each rule r i for which this is so�

The Condition Evaluator then executes the condition part of each triggered
rule r i and creates each rule�s delta set� It places the actions of the rules whose
condition is True onto the schedule� together with the corresponding delta set�
Control is then transferred once more to the Action Scheduler� and the cycle
repeats�

Example �	 Consider the XML �le in Example � and the action Ev� Initially the
schedule consists of just this INSERT action� Let us denote the current version
of the XML �le by s�� The Update Manager executes the INSERT action on s��
creating document version s� as well as the updates set containing the ID of
the new price node in s�� Version s� is also added to the Document History�
The Event Dispatcher evaluates on s� the XPath expression for rule r�� which is
the only one of the two rules in Example � that may be triggered by the action�
It determines that the changes��� set contains the ID of the new price node�
The Condition Evaluator executes the condition part of rule r� on s�� �nds it to
be True for the single element of changes��� and so places the two actions of

r� onto the schedule� each paired up with a singleton delta set containing the
ID of the new price node�

The Action Scheduler then pops o� the �rst DELETE action from the sched�
ule� The Update Manager executes the action on s�� creating document version
s� as well as the updates set containing the ID of the deleted high node in s��
No rules can be triggered by this update� and so the Action Scheduler then pops
o� the next INSERT action from the schedule� The Update Manager executes
this action on s�� creating document version s� and the updates set containing
the ID of the new high node in s�� Version s� is also added to the Document
History� The Event Dispatcher evaluates on s� the XPath expression for rule r��
which is the only one of the two rules in Example � that may be triggered by
this action� It determines that the changes��� set contains the ID of the new
high node� The Condition Evaluator executes the condition part of rule r� on
s�� �nds it to be False for the single element of changes��� and so no further
rules are scheduled� The schedule is now empty so rule execution terminates�

� Analysing and Optimising Rule Behaviour

Techniques for determining triggering and activation relationships between rules
can be utilised in a variety of ways for analysing and optimising the behaviour
of XML ECA rules de�ned in our language�

� They can then be �plugged into� existing frameworks for ECA rule analysis

both static and dynamic� such as the approaches we reviewed in Section ��	
above� For example� if we know the pairwise triggering and activation re�
lationships between rules� we can use triggering graph analysis� activation
graph analysis� or the rule reduction method� It is also possible to use trigger�
ing and activation information within an abstract interpretation framework
for a more precise analysis than these graph�based approaches� as discussed
in ����

� Information about which ECA rules may be triggered by the current rule
action can be used during rule execution to limit the set of rule event parts
that need to be evaluated after the execution of this action�

� The activation relationships between pairs of rules can be dynamically up�
dated during rule execution� and this information can be used to avoid eval�
uating rule conditions which can currently be inferred to be de�nitely True
or False�

��� Determining Triggering Relationships

In order to determine triggering relationships between our XML ECA rules� we
need to be able to determine whether an action of some rule may trigger the
event part of some other rule� Clearly� INSERT actions can only trigger INSERT
events� and DELETE actions can only trigger DELETE events�

For any insertion action a of the form
INSERT r BELOW e� BEFOREjAFTER q

in some rule ri and any insertion event ev of the form
INSERT e�

in some rule rj � we need to know whether event ev is independent of action a�
that is� e� can never return any of the nodes inserted by a�

The XQuery r de�nes which nodes are inserted by a� while the XPath
expression e� de�nes where these nodes are inserted� So if it is possible that
some initial part of e� can specify the same path through some document as e�
and the remainder of e� �matches� r� then ev is not independent of a� We now
de�ne these notions more formally�

We de�ne a pre�x of a simple XPath expression e to be an expression e� such
that e e��e�� or e e���e��� We call e�� the su
x of e and e�� For an XQuery
r� let type
r� be the result type of r � this can be determined using the type
inference techniques described in ���� or �	
�� Using the same techniques� we can
test whether or not an XPath expression e can return a nonempty result when
evaluated on documents of type
r� by �rst inferring the output type of e� given
input type
r�� and then checking whether the output type is the inconsistent
type� If so� then e always returns an empty result on input of type
r�� in which
case we say that type
r� cannot satisfy e� If the output type is not the inconsistent
type� we say that type
r� may satisfy e�

Given XPath expressions e� and e�� we say that e� and e� are independent
if� for all possible XML documents d� e�
d� � e�
d� �� We discuss in ��� how
testing for independence of two simple XPath expressions can be done by �nding
an XPath expression that corresponds to e� � e�� and then checking that the
containment e� � e� � � holds
more general fragments of XPath which are
also closed under intersection are presented in ����� while the complexity of the
containment problem for various fragments of XPath is discussed in �

���

Thus� event ev above is independent of action a if for all pre�xes e�
�
of e��

either

�� e� and e�
�
are independent� or

�� type
r� cannot satisfy e��
�
�

Equivalently� a rule ri
containing action a� may trigger rule rj
containing event
ev� if for some pre�x e�

�
of e�� e� and e�

�
are not independent and type
r� may

satisfy e��
�
�

Similarly to insertions� for any deletion action a of the form
DELETE e�

belonging to a rule ri� and any deletion event ev of the form
DELETE e�

belonging to a rule rj � we have that ri may trigger rj if ev is not independent of
a� The test for independence of an action and an event in the case of deletions is
simpler than for the insertion case above� Let e be the XPath expression e�����
Then event ev is independent of action a if expressions e and e� are independent�

Example �	 Consider the insertion event Ev and ECA rules r� and r� from
Example �� We can detect that Ev may trigger r� since
�� this pre�x e

�
�
of the

XPath expression e� in the event part of r��

document��s�xml���shares�share�day	info�prices

and the XPath expression from Ev�

document��s�xml���shares�share��name��XYZ���

day	info��day��
�����month��
����prices

are not independent� and
�� the type of the XQuery fragment in Ev� namely
price� satis�es the su�x e��

�
of e�
also price�� We can also detect that Ev

cannot trigger rule r� since every pre�x of document��s�xml���shares�share�
day	info�high is independent of e��

��� Determining Activation Relationships

In order to determine activation relationships between our ECA rules� we need
to be able to determine

a� whether an action of some rule ri may change the value of the condition part
of some other rule rj from False to True� in which case ri may activate rj �
and

b� whether all the actions of a rule ri will de�nitely leave the condition part of
ri False i�e� whether rule ri is self�disactivating� if not� then ri may activate
itself�

Without loss of generality� we can assume that rule conditions are in dis�
junctive normal form� i�e� they are of the form

l��� and l��� � � � and l��n�� or
l��� and l��� � � � and l��n�� or
� � � or
lm�� and lm�� � � � and lm�nm�

where each li�j is either a simple XPath expression c� or the negation of a simple
XPath expression� not c�

Simple XPath expressions� The following table shows the transitions
that the truth�value of a condition consisting of a single simple XPath expres�
sion can undergo� The �rst column shows the condition�s truth value before the
update� and the subsequent columns its truth value after a non�independent
insertion
NI� and a non�independent deletion
ND��

before after NI after ND

True True True or False
False True or False False

For case
a� above� i�e� when ri and rj are distinct rules� it is clear from this
table that ri can activate rj only if one of the actions of ri is an insertion which
is non�independent of the condition of rj �

Let the condition of rj be the simple XPath expression c� The procedure
for determining non�independence of an insertion from a condition� c� involves
constructing from c a set C of conditions� each of which is an XPath expression
without any quali�ers� The objective is that condition c can change from False
to True as a result of an insertion only if at least one of the conditions in C can

change from False to True as a result of the insertion� We start with set C fcg
and proceed to decompose c into a number of conditions without quali�ers�
adding each one to C� See ��� for details of the decomposition algorithm�

Now let one of the actions a from rule ri be
INSERT r BELOW e� BEFOREjAFTER q

We determine type
r� and consider pre�xes and su�xes of each condition ci � C�
where ci c�i 	 c

��
i � Set C of conditions is independent of a if for each ci � C and

for each pre�x c� of c� either

�� e� and c�i are independent� or

�� type
r� cannot satisfy c��i �

If so� then action a cannot change the truth value of condition c in rule rj from
False to True� Equivalently� we can say that rule ri may activate rule rj if for
some pre�x c�i of some ci � C� e� and c�i are not independent and type
r� may
satisfy c��i �

For case
b� above� if the condition part of ri is a simple XPath expression
c� the rule will be self�disactivating if all its actions are deletions which subsume
c� For each deletion action

DELETE e�
we thus need to test if

e����
 c
For simple XPath expressions and provided additionally that the only operator
appearing in quali�ers is ���� it is known that containment is decidable �

��
The decidability of containment for various larger fragments of XPath is shown
in ����

�� However� even if a fragment of XPath is used for which this property is
undecidable� it is still possible to use conservative approximations� For example�
if there are occurrences of comparison operators other than ��� in the condition
part of a rule� then we can analyse each operand separately against each deletion
action and if either operand is subsumed by the action� then we can infer that
this action makes this condition False�

Example �	 Consider rule r� from Example �� We can detect that its �rst
DELETE�
action makes False its condition� since it deletes the existing high price� However�
we cannot conclude that the rule is self�disactivating since the second action of
r� is an INSERT and there is the possibility that this may insert nodes which
cause r��s condition to remain True� Only a deeper analysis of the rule set would
detect that rule r� is in fact self�disactivating�

Negations of Simple XPath expressions� The following table shows
the transitions that the truth�value of a condition of the form not c� where c is
a simple XPath expression� can undergo� The �rst column shows the truth value
of the condition before the update� and the subsequent columns its truth value
after a non�independent insertion
NI� and a non�independent deletion
ND��

before after NI after ND

True True or False True
False False True or False

For case
a�� where rules ri and rj are distinct� it is clear from this table
that ri can activate rj only if one of the actions of ri is a deletion which is
non�independent of the condition of rj �

Let the condition of rj be not c� We construct the set of conditions C from
c as outlined in Section 	��� Now let an action from rule ri be

DELETE e�
and let e be the query e����� We again use the technique outlined in Section 	��
in order to check whether e is independent of each of the conditions in C� If so�
then e cannot change the truth value of not c from False to True� Otherwise� e
is deemed to be non�independent of not c� and ri may activate rj �

For case
b� above� a rule ri activates itself if it may leave its own condition
True� We again need the notion of a self�disactivating rule� If the condition part
of ri is not c� the rule will be self�disactivating if all its actions are insertions
which guarantee that c will be True after the insertion�

Let an insertion action a from rule ri be
INSERT r BELOW e� BEFOREjAFTER q

and let condition c comprise pre�x c� and su�x c��� Action a guarantees that c
will be True after the insertion if

c�
 e�
and each of the trees in the set of trees denoted by type
r� satis�es c��� Con�
sequently� we need a stronger concept than the fact that type
r� may satisfy

expression c��� as in Section 	��� we can infer the output type of c��� given in�
put type type
r�� if this output type is equivalent to type
r�� then every tree in
type
r� satis�es c��� and we can conclude that ri is self�disactivating�

Conjunctions� For case
a�� if the condition of a rule rj is of the form
lj�� and lj�� � � � and lj�nj

we can use the tests described in the previous two subsections for conditions
that are simple XPath expressions or negations of simple XPath expressions to
determine if a rule ri may turn any of the lj�k from False to True� If so� then ri
may turn rj �s condition from False to True� and may thus activate rj �

For case
b�� suppose the condition of rule ri is of the form
li�� and li�� � � � and li�ni �

There are three possible cases�

i� All the li�j are simple XPath expressions� In this case� ri will be self�disactivating
if each of its actions is a deletion which subsumes one or more of the li�j �

ii� All the li�j are negations of simple XPath expressions� In this case� ri will
be self�disactivating if each of its actions is an insertion which falsi�es one
or more of the li�j �

iii� The li�j are a mixture of simple XPath expressions and negations thereof� In
this case� ri may or may not be self�disactivating�

Disjunctions� For case
a�� if the condition of a rule rj is of the form

l��� and l��� � � � and l��n�� or
l��� and l��� � � � and l��n�� or

� � � or
lm�� and lm�� � � � and lm�nm�
we can use the test for conjunctions described above to determine if a rule ri
may turn any of the disjuncts

lk�� and lk�� � � � and lk�nk
from False to True� If so� then ri may turn rj �s condition from False to True and
may thus activate rj �

For case
b�� suppose the condition of rule ri is of the form

l��� and l��� � � � and l��n�� or
l��� and l��� � � � and l��n�� or

� � � or
lm�� and lm�� � � � and lm�nm�
Then ri will be self�disactivating if it leaves False all the disjuncts of this condi�
tion� This will be so if

i� all the lj�k are simple XPath expressions and ri disactivates all the disjuncts
of its condition as in case
i� for conjunctions above� or

ii� all the lj�k are negations of simple XPath expressions and ri disactivates all
the disjuncts of its condition as in case
ii� for conjunctions above�

In all other cases� ri may or may not be self�disactivating�

� Conclusions

In this chapter we have discussed the provision of ECA rules for XML reposi�
tories� We have reviewed ECA rules in conventional active databases and have
highlighted the main new issues that arise in the context of XML data� We
have described the design of a language for ECA rules on XML� have described
a prototype implementation� and have presented techniques for analysing the
behaviour of ECA rule sets de�ned in our language�

For future work there are several directions to explore�

a� There is as yet no accepted standard update language for XML� If ECA rules
are to be supported on XML repositories� then whatever standard eventually
emerges� there is also the parallel issue of designing the event language to
match up with this update language� In this chapter we have done this
in the context of our particular update language for XML� We have also
shown how triggering and activation relationships can be detected for our
particular ECA rules� In general� the ability to analyse ECA rule sets needs
to be balanced against their complexity and expressiveness� and this issue
also needs to be borne in mind in future developments in ECA rule languages
for XML�

b� We would like to explore more deeply the expressiveness and complexity of
the ECA language that we have de�ned� For example� what types of XML
Schema constraints can be enforced and repaired using rules in this language"

c� In general� updateDB in Section
�� will undertake a set of updates on the
repository� For INSERT actions� this may result in non�determinism in the
order in which a set of new fragments are inserted under a common parent�
since the BEFORE and AFTER constructs only specify the ordering of new
fragments with respect to the existing document content� It is an area of
further work to extend our ECA language to capture ordering relationships
between new fragments being inserted into a document�

d� At present our language supports only semantic triggering� though it would
be easy to extend it to also support syntactic triggering� Similarly� although
we currently assume Immediate coupling mode for event�condition and con�
dition�action� it would straightforward to also allow rules with the full range
of other coupling modes� However� the practical applicability and perfor�
mance implications of these extensions is an area that requires further de�
tailed investigation�

e� We would like to further develop and gauge the e�ectiveness of our rule
analysis and optimisation techniques� For example� incorporating knowledge
that certain documents within the repository are valid with respect to a
document type de�nition
DTD� or XML Schema speci�cation may be useful
in at least two ways� Firstly� this knowledge can allow us to simplify the
XPath expressions used within ECA rules �
��� Secondly� it can help to obtain
more precise type information when doing type inference� which in turn can
allow more precise information on triggering and activation dependencies to
be inferred�

f� A related issue is to develop techniques for determining whether a set of ECA
rules is type�safe� in other words� whether execution of the rules ensures that
each document remains valid with respect to its DTD or XML Schema�

g� We would like to improve our current prototype implementation� For exam�
ple� at the moment entire back copies of documents are kept in the document
history� However� it should be possible to develop techniques for analysing
rule action parts in order to determine those fragments of documents that
need to be placed in the Document History in order to resolve �delta vari�
ables within scheduled rule actions�

h� Clearly� an important issue is to evaluate the applicability and scalability
of our language� its execution model� and implementation� For this� we are
deploying it for providing reactive functionality on distributed RDF repos�
itories of educational metadata� as part of the ongoing EU�funded SeLeNe
project
see http���www�dcs�bbk�ac�uk�selene��
The SeLeNe project is investigating the technical requirements� and possi�
ble technical solutions� for �self e�learning networks�� where we de�ne a self
e�learning network
SeLeNe� to be� �a distributed repository of educational
metadata describing learning objects� collaboratively built and used by any�
one who wishes to use existing learning objects or to construct new learning
objects� in any knowledge domain��
Each SeLeNe will have a peer�to�peer topology� with facilities for peers to
join or leave a SeLeNe� Each peer will manage part of the overall distributed
metadata� possibly with replication across peers� This metadata will be ex�
pressed in RDF which� if stored as XML� will be amenable to direct manip�
ulation by our XML ECA rule language�
Support of such networks will require�
� techniques for reconciliation and integration of metadata describing het�
erogeneous distributed learning objects
LOs��

� de�nition of personalised views over this distributed metadata resource�
� detection and noti�cation of changes to the LO metadata descriptions�

� publish�subscribe functionality� so that peers can publish which events
they can detect� and subscribe to those events of which they want to be
noti�ed�

ECA rules have been used in conventional databases for information integra�
tion� view de�nition� and view maintenance� More recently� they have also
been proposed for providing personalisation and publish�subscribe function�
ality� Thus� the SeLeNe user requirements have a good �t with the func�
tionality that could potentially provided by ECA rules� and will provide a
challenging testbed for application� evaluation and extension of our language
and its implementation� including an opportunity to explore the applicabil�
ity and performance of a variety of rule coupling modes� and to gauge the
e�ectiveness of our analysis and optimisation methods�
The SeLeNe project will also provide an opportunity to assess the impact
of moving from a centralised to a distributed environment� with the addi�
tional challenges of network delay� network reliability� synchronisation of rule
execution� maintaining consistency of the distributed resource� tolerance of
delays and failures etc� Some of these challenges of event�based systems in
a distrubuted environment are taken up by chapters that follow this one in
this section of the book�

Many of the above open questions would make suitable PhD research topics�
for example the questions raised in
a��
c��
e� and
h�� Possible Masters�level
projects would include
b��
d��
f� and
g��

References

� S� Abiteboul� S� Cluet� G� Ferran� and M��C� Rousset� The Xyleme project� Com�
puter Networks� ��
�������� �����

�� S� Abiteboul� D� Quass� J� McHugh� J� Widom� and J�L� Wiener� The Lorel query
language for semistructured data� VLDB Journal�
�
�
������
����

�� S� Abiteboul� V� Vianu� B� S� Fordham� and Y� Yesha� Relational transducers for
electronic commerce� JCSS� �
���
�������� �����

	� A� Adi� D� Botzer� O� Etzion� and T� Yatzkar�Haham� Push technology personal�
ization through event correlation� In Proc ��th Int� Conf� on Very Large Databases�
pages �	���	�� �����

�� A� Aiken� J� Widom� and J� M� Hellerstein� Static analysis techniques for predicting
the behavior of active database rules� ACM TODS� ���
�
��	
�
����

�� J� Bailey and A� Poulovassilis� An abstract interpretation framework for termina�
tion analysis of active rules� In Proc� �th Int� Workshop on Database Programming
Languages� LNCS ��	�� pages �	������ Kinloch Rannoch� Scotland�
����

�� J� Bailey and A� Poulovassilis� Analysis of functional active databases� In
P�M�D�Gray et al�� editor� Functional Approaches to Computing with Data� Springer
Verlag� �����

�� J� Bailey� A� Poulovassilis� and P� Newson� A dynamic approach to termination
analysis for active database rules� In Proc� �st Int� Conf� on Computational Logic

DOOD stream�� LNCS ����� pages

���

��� London� �����

�� J� Bailey� A� Poulovassilis� and P�T� Wood� An Event�Condition�Action Language
for XML� In Proc� WWW
����� pages 	���	��� Hawaii� �����

�� J� Bailey� A� Poulovassilis� and P�T� Wood� Analysis and optimisation for event�
condition�action rules on XML� Computer Networks� ��
�������� �����

� E� Baralis� S� Ceri� and S� Paraboschi� Improved rule analysis by means of triggering
and activation graphs� In T� Sellis� editor� Rules in Database Systems� LNCS ����
pages
���
�
� Springer�Verlag�
����

�� E� Baralis� S� Ceri� and S� Paraboschi� Compile�time and runtime analysis of active
behaviors� IEEE Transactions on Knowledge and Data Engineering�
����
��������

����

�� E� Baralis and J� Widom� An algebraic approach to rule analysis in expert
database systems� In Proceedings of the ��th International Conference on Very
Large Databases� pages 	���	��� Santiago� Chile�
��	�

	� E� Baralis and J� Widom� An algebraic approach to static analysis of active
database rules� ACM TODS� �����
�������� �����

�� Michael Benedikt� Wenfei Fan� and Gabriel M� Kuper� Structural properties of
XPath fragments� In Proc� �th Int� Conf� on Database Theory� LNCS ����� pages
������ Berlin� �����

�� A� Bonifati� D� Braga� A� Campi� and S� Ceri� Active XQuery� In Proc� of the
IEEE Conference on Data Engineering
ICDE�� �����

�� A� Bonifati� S� Ceri� and S� Paraboschi� Active rules for XML
 A new paradigm
for e�services� VLDB Journal�
��
�
���	�� ���
�

�� A� Bonifati� S� Ceri� and S� Paraboschi� Pushing reactive services to XML reposi�
tories using active rules� In Proc� ��th World�Wide�Web Conference� ���
�

�� S� Ceri� R� Cochrane� and J� Widom� Practical applications of triggers and con�
straints
 Success and lingering issues� In Proc� ��th Int� Conf� on Very Large
Databases� pages ��	����� �����

��� S� Ceri and P� Fraternali� Designing Database Applications with Objects and Rules�
The IDEA Methodology� Addison�Wesley�
����

�
� S� Ceri� P� Fraternali� and S� Paraboschi� Data�driven one�to�one web site gen�
eration for data�intensive applications� In Proc� ��th Int� Conf� on Very Large
Databases� pages �
������
����

��� S� Chakravarthy� Architectures and monitoring techniques for active databases

An evaluation� Data and Knowledge Engineering�
��
�

����
����

��� S� Chakravarthy and D� Mishra� Snoop
 An expressive event speci�cation language
for active databases� Data and Knowledge Engineering�
	�
�

����
��	�

�	� S� Cluet� P� Veltri� and D� Vodislav� Views in a large scale XML repository� In
Proc� ��th Int� Conf� on Very Large Databases� pages ��
����� ���
�

��� A� Couchot� Improving the re�ned triggering graph method for active rules ter�
mination analysis� In Proc� BNCOD ����� LNCS �	��� pages

	�
��� She�eld�
�����

��� N� Gehani� H� V� Jagadish� and O� Shmueli� Composite event speci�cation in active
databases
 Model and implementation� In VLDB
��� pages ��������
����

��� Haruo Hosoya and Benjamin C� Pierce� XDuce
 A typed XML processing lan�
guage �preliminary report�� In Proc� WebDB ����� Int� Workshop on the Web and
Databases� pages

�

�� �����

��� H� Ishikawa and M� Ohta� An active web�based distributed database sys�
tem for e�commerce� In Proc� Web Dynamics Workshop� London� ���
�
http���www�dcs�bbk�ac�uk�webDyn��

��� A� Karadimce and S� Urban� Re�ned triggering graphs
 A logic based approach
to termination analysis in an active object�oriented database� In Proc� ICDE
���
pages ��	���
� New Orleans�
����

��� K� et al� Keenoy� Self e�Learning Networks � Functionality and User Requirements�
See http���www�dcs�bbk�ac�uk�selene�reports�UserReqs�pdf� June ����� Se�
LeNe Project Report�

�
� A� Kotz�Dittrich and E� Simon� Active database systems
 Expectations� commer�
cial experience and beyond� In N� Paton� editor� Active Rules in Database Systems�
pages ����	�	� Springer�Verlag�
����

��� K� Kulkarni� N� Mattos� and R� Cochrane� Active database features in SQL��
In N� Paton� editor� Active Rules in Database Systems� pages
����
�� Springer�
Verlag�
����

��� Frank Neven and Thomas Schwentick� XPath containment in the presence of
disjunction� DTDs� and variables� In Proc� �th Int� Conf� on Database Theory�
LNCS ����� pages �
������ Berlin� �����

�	� B� Nguyen� S� Abiteboul� G� Cobena� and M� Preda� Monitoring XML data on the
web� In Proc� ACM SIGMOD Int� Conf� on Management of Data� pages 	���		��
���
�

��� N� Paton� editor� Active Rules in Database Systems� Springer�Verlag�
����
��� J� Pereira� F� Fabret� F� Llirbat� and D� Shasha� E�cient matching for web�based

publish�subscribe systems� In Proc �th Int� Conf� on Cooperative Information
Systems
CoopIS
������ pages
���
��� �����

��� I� Tatarinov� Z� G� Ives� A� Y� Halevy� and D� S� Weld� Updating XML� In Proc�
ACM SIGMOD Int� Conf� on Management of Data� pages 	
��	�	� ���
�

��� J� Widom and S� Ceri� Active Database Systems� Morgan�Kaufmann� San Mateo�
California�
����

��� Peter T� Wood� Containment for XPath fragments under DTD constraints� In Proc�
�th Int� Conf� on Database Theory� LNCS ����� pages �����
	� Berlin� �����

	�� World Wide Web Consortium� XML Path Language �XPath�� Version
��� See
http���www�w��org�TR�xpath� November
���� W�C Recommendation�

	
� World Wide Web Consortium� XSL Transformations �XSLT�� Version
��� See
http���www�w��org�TR�xslt� November
���� W�C Recommendation�

	�� World Wide Web Consortium� XQuery
��
 An XML Query Language� See
http���www�w��org�TR�xquery� November ����� W�C Working Draft�

	�� World Wide Web Consortium� XQuery
�� and XPath ��� Formal Semantics� See
http���www�w��org�TR�query�semantics� November ����� W�C Working Draft�

		� World Wide Web Consortium� Document Object Model �DOM� Level � Core Spec�
i�cation� See http���www�w��org�TR�DOM�Level���Core�� February ����� W�C
Working Draft�

