
Semantic Query Routing and
Processing in P2P Database Systems:
The ICS-FORTH SQPeer Middleware ∗

George Kokkinidis and Vassilis Christophides
Institute of Computer Science - FORTH
Vassilika Vouton, P.O. 1385, GR 71110

Heraklion, Greece
and

Department of Computer Science
University of Crete, GR 71409

Heraklion, Greece
{kokkinid, christop}@ics.forth.gr

ABSTRACT
Peer-to-peer (P2P) computing is currently attracting enor-
mous attention. In P2P systems a very large number of au-
tonomous computing nodes (the peers) pool together their
resources and rely on each other for data and services. More
and more P2P data management systems employ nowadays
intensional (i.e., schema) information for integrating and
querying peer bases in, so-called, Semantic Overlay Net-
works (SONs). Such information can be easily captured by
emerging Semantic Web languages such as RDF/S. However,
a fully-fledged framework for evaluating semantic queries
over peer RDF/S bases (materialized or virtual) is miss-
ing. In this paper, we present the ICS-FORTH SQPeer mid-
dleware for routing and processing RQL queries and RVL
views taking into account the data distribution (e.g., verti-
cal, horizontal) involved in peer bases. To the best of our
knowledge, SQPeer is the first middleware exploiting the
full-power of RDF/S-based SONs for both hybrid and ad-
hoc P2P database systems.

Categories and Subject Descriptors
H.2.4 [Database Management Systems]: Distributed
Databases, Query Processing; C.2 [Network Protocols]:
Routing protocols; H.3.3 [Information Storage and Re-
trieval]: Information Search and Retrieval; I.2.4 [Knowledge
Representations Formalisms and Methods]: Semantic
Networks

∗This work was partially supported by the EU projects Se-
LeNe (IST-2001-39045) and Delos (NoE-6038-507618). An
earlier version of this work appears in the Proceedings of
the International Workshop on Peer-to-peer Computing &
DataBases, Heraklion, Crete, Greece, 2004.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HDMS ’04 Athens, Greece
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

1. INTRODUCTION
Peer-to-peer (P2P) computing is currently attracting enor-

mous attention, spurred by the popularity of file sharing
systems such as Napster [23], Gnutella [13], Freenet [10],
Morpheus [22] and Kazaa [18]. In P2P systems a very
large number of autonomous computing nodes (the peers)
pool together their resources and rely on each other for
data and services. P2P computing introduces an interesting
paradigm of decentralization going hand in hand with an in-
creasing self-organization of highly autonomous peers. This
new paradigm bears the potential to realize computing sys-
tems that scale to very large numbers of participating nodes
while ensuring fault-tolerance.

However, current P2P systems offer very limited data
management facilities. In most of the cases, searching infor-
mation relies on simple selection on a predefined set of index
attributes or IR-style string matching. These limitations are
acceptable for file-sharing applications, but in order to sup-
port highly dynamic, ever-changing, autonomous social or-
ganizations (e.g., scientific or educational communities) we
need richer facilities in exchanging, querying and integrat-
ing structured and semi-structured data. To build such net-
centric information systems we essentially need to adapt the
P2P computing paradigm to a distributed data and knowl-
edge management setting. More precisely, we would like
to support loosely coupled communities of databases where
each peer base can join and leave the network at will.

The importance of intensional (i.e., schema) information
for integrating and querying peer bases has been highlighted
by a number of recent projects [3, 24, 14, 1]. In particu-
lar, the notion of Semantic Overlay Networks (SONs) [11,
28], appears to be an intuitive way to cluster together peers
sharing the same schema information about a community
domain or application model. Thus, peers employing one
or more topics (or concepts) of a community schema, are
semantically related and belong to the same SON. This ap-
proach facilitates query routing, since a peer can easily iden-
tify relevant peers instead of broadcasting (flooding) query
requests on the network.

A natural candidate for representing such descriptive schemas
(ranging from simple structured vocabularies to complex

reference models [6]) is the Resource Description Frame-
work/Schema Language (RDF/S). RDF/S (a) enables a mod-

ular design of descriptive schemas based on the mechanism
of namespaces; (b) allows easy reuse or refinement of exist-
ing schemas through subsumption of both class and property
definitions; (c) supports partial descriptions since proper-

ties associated with a resource are by default optional and

repeated and (d) permits super-imposed descriptions in the
sense that a resource may be multiply classified under sev-
eral classes from one or several schemas. These modelling
primitives are crucial for P2P databases where monolithic
RDF/S schemas and resource descriptions cannot be con-
structed in advance and peers may have only incomplete
descriptions about the available resources. In this context,
several declarative languages for querying and defining views
over RDF/S description bases have been proposed in the
literature such as RQL [17] and RVL [21]. However, a fully-
fledged framework for evaluating semantic queries over peer
RDF/S bases (materialized or virtual) is still missing.

In this paper, we present the ongoing SQPeer middleware
for routing and processing semantic queries in P2P database
systems. More precisely, we make the following contribu-
tions:

• In Section 2.1 we illustrate how conjunctive RQL queries
expressed against a SON RDF/S schema can be repre-
sented in our middleware as semantic query patterns.

• In Section 2.2 we introduce a novel technique for ad-
vertise peer RDF/S bases using intentional informa-
tion. In particular, we are employing active-schemas

for declaring the parts of a SON RDF/S schema which
are actually populated (or can be) in a peer base.
Active-schemas are essentially RVL (materialized or
virtual) views of peer bases.

• In Section 2.3 we sketch a semantic query routing algo-
rithm which matches a given RQL query against a set
of active-schemas in order to determine relevant peers.
More precisely, this algorithm relies on query/view
subsumption techniques to produce semantic query pat-

terns annotated with routing information.

• In Section 2.4 we describe how SQPeer query plans

are generated from annotated semantic query patterns
taking into account the involved data distribution (e.g.,
vertical, horizontal). Then, a query plan is executed
with the deployment of appropriate communication
channels between the relevant peers.

• In Section 2.5 we discuss several compile or run-time

optimization opportunities for SQPeer query plans.

• In Section 3 we present how the SQPeer semantic query
routing and processing algorithms can be actually used
in order to deploy both hybrid and ad-hoc P2P database
systems.

Finally, Section 4 discusses related work and Section 5
summarizes our contributions and presents our future work.

2. THE SQPEER MIDDLEWARE
In order to design an effective query routing and process-

ing middleware for peer RDF/S bases, we need to address
the following issues:

1. How peer nodes formulate queries?

2. How peer nodes advertise their bases?

3. How peer nodes route a query?

Figure 1: An RDF/S schema of a SON, an RVL peer
active-schema and an RQL query pattern

4. How peer nodes process a query?

5. How distributed query plans are optimized?

In the following subsections, we will present the main de-
sign choices for SQPeer in response to the above fundamen-
tal issues.

2.1 RQL Queries of Peers
Each peer node in SONs provides RDF/S descriptions

about information resources available in the network that
conform to a number of community RDF/S schemas (e.g.,
for e-learning). Peer nodes employing the same schema to
construct such descriptions can be considered to belong to
the same SON. In the upper part of Figure 1 we can see an
example of the schema defined in a specific namespace (i.e.,
n1) with four classes, C1, C2, C3 and C4, that are connected
with three properties, prop1, prop2 and prop3. There are
also two subclasses, C5 and C6, of classes C1 and C2 respec-
tively, which are related with the subproperty prop4 of the
property prop1.

Queries in SQPeer are formulated by client-peers in RQL,
according to a community RDF/S schema as for example
the schema identified by the namespace n1. A graphical
end-user interface1 may be used to assist RQL query formu-
lation. For instance, in the bottom right part of Figure 1 we
can see an RQL query Q returning all the resources binded
by the variables X and Y. The path expressions in the from-
clause imply a join on Y between the target resources of
the property prop1 and the origin resources of the property
prop2. The where-clause filters, as usual, the binded re-
sources according to the provided boolean conditions (e.g.,
on variable Z).

Since peer nodes in a SON can use one or more community
RDF/S schemas either to actually populate their descrip-
tion bases or alternatively to define virtual views over their
legacy (XML or relational) databases, we need logic support
to reason on the intension of both query requests and peer
base contents. To this end, we rely on the notion of query

patterns for capturing the schema information employed by

1See for instance the RQL interactive demo at
http://139.91.183.30:8999/RQLdemo/

Figure 2: An annotated RQL query pattern

an RQL query. Query patterns are extracted from the path
expressions appearing in the from clause of an RQL query
in conjunction with the employed schema namespaces. The
right middle part of Figure 1 illustrates the query pattern of
query Q, where X and Y resource variables are marked with
“*” to denote projections. Note that the end-point classes
C1, C2 and C3 of properties prop1 and prop2 are obtained
from their corresponding definitions in the namespace n1.
In the rest of this paper, we are focusing on conjunctive
query patterns formed only by RQL path expressions and
projections (filtering conditions are ignored).

2.2 RVL Advertisements of Peer Bases
In the context of a SON, each peer node should be able to

advertise its base to other peers. Peer base advertisement in
SQPeer relies on materialized or virtual RDF/S schema(s).
In the former case, a peer RDF/S base actually holds re-
source descriptions created according to the employed com-
munity schema(s), while in the latter, schema(s) can be pop-
ulated on demand with data residing in a relational or an
XML peer base. In both cases, community RDF/S schemas
may contain numerous classes and properties not necessarily
populated with data in a peer base. Therefore, we need a
fine-grained definition of schema-based advertisements. We
employ the notion of active-schemas to denote essentially
the subset of a community RDF/S schema(s) for which all
classes and properties are (in the materialized scenario) or
can be (in the virtual scenario) populated in a peer base.
The active-schema may be broadcasted to (or requested by)
other peer nodes, thus informing the rest of the P2P system
of what is actually available inside the peer bases.

The bottom left part of Figure 1 illustrates the RVL state-
ment employed to advertise a peer base according to the
community RDF/S schema identified by the namespace n1.
This statement populates the classes C5 and C6 and the prop-
erty prop4 (in the view-clause) with appropriate instances
from the peer’s base (in the from-clause). In the middle
left part of Figure 1 we can see the corresponding active-
schema obtained by this RVL view. A more complex ex-
ample is illustrated in the left part of Figure 2, comprising
the active-schemas of four peers. Peer P1 contains resources
related through the properties prop1 and prop2, while peer
P4 contains resources related through the properties prop4

and prop2. Peer P2 contains resources related by prop1,

while peer P3 contains resources related by prop2.
We can note the similarity in the intensional representa-

tion of peer base advertisements and query requests, respec-
tively, as active-schemas and query patterns. This represen-
tation provides a uniform logical framework to route queries
through the distributed peer bases, while also yielding sig-
nificant performance gains. First, by representing in the
same way what is queried by a peer and what is contained
in a peer database, we can reuse the RQL query/RVL view
(sound and complete) subsumption techniques, proposed in
the Semantic Web Integration Middleware (SWIM [9]). Sec-
ond, compared to global schema-based advertisements [24],
we expect that the load of queries processed by each peer
is smaller, since a peer receives only relevant to its base
queries. This also affects the amount of network bandwidth
consumed by the P2P system.

2.3 Semantic Query Routing
Query routing is responsible for finding the relevant to a

query peers by taking into account data distribution (ver-
tical, horizontal and mixed) of peer bases committing to a
community RDF/S schema. The query-routing algorithm
takes as input a query pattern and annotates each involved
path pattern with the peers that can actually answer it, thus
outputting an annotated query pattern. The query/view
subsumption techniques of [9], are employed to determine
which part of a query can be answered by an active-schema
and rewrite accordingly the query sent to a peer. A pseu-
docode description on how this algorithm works is given in
the next page.

Figure 2 illustrates an example of how SQPeer routing al-
gorithm works given an RQL query Q composed of two path
patterns, namely Q1 and Q2, as well as the active-schemas
of four peers. The middle part of the figure depicts how
each query pattern matches one of the four active-schemas.
P1’s active-schema is equal to the path patterns Q1 and Q2,
so both path patterns are annotated with P1. P2’s active-
schema is equal to path pattern Q1 and P3’s active-schema
is equal to Q2, so Q1 and Q2 are annotated with P2 and
P3 respectively. Finally, P4’s active-schema is subsumed by
path patterns Q1 and Q2, since prop4 is a subproperty of
prop1. Similarly to P1, Q1 and Q2 are annotated with P4.
In the right part of the figure we can see the annotated query
pattern returned by the SQPeer routing algorithm.

Figure 3: Query plan generation and channel deployment in SQPeer

Query-Routing Algorithm:

Input: A query pattern AQ.

Output: An annotated query pattern AQ’.

1. AQ’:=Construct empty annotations for query

pattern AQ
2. for all query path patterns AQiεAQ, i=1 . . . n do

for all active schemas ASj, j=1 . . . m do

for all active schemas path patterns

ASjkεASj, k=1 . . . l do

if isSubsumed(ASjk, AQi) then

Annotate AQ′

i with peer Pj

end if

end for

end for

end for
3. return AQ’

2.4 Semantic Query Processing
Query processing in SQPeer is responsible for generat-

ing distributed query plans according to the information re-
turned by the routing algorithm. In order to create the nec-
essary foundation for executing distributed query (sub)plans,
as well as for exchanging data between the involved peers,
SQPeer relies on appropriate communication channels [26].

Through channels, peers are able to route (sub)plans and
exchange the intermediary results according to the queries
requested by client-peers. In addition, channels allows each
peer to further route and process autonomously the received
queries, by contacting peers independently of the previous
routing operations. Finally, channel deployment can be
adapted during query execution in order to response to net-
work failures or peer nodes processing limitations. Each
channel has a root and a destination node. The root node
of a channel is responsible for the management of the chan-
nel using its local unique id. Data packets are sent through
each channel from the destination to the root node. Be-
side query results, these packets can also contain “changing
plan” and failure information or even statistics useful for
query optimization. The channel construct and operations
of ubQL [26] are employed to implement the above function-
ality in the SQPeer middleware.

The query-processing algorithm receives as input an an-
notated query pattern and outputs its corresponding query
plan. A pseudocode description on how this algorithm works
is also given below.

Figure 3 illustrates an example of how the RQL query Q
shown in Figure 1 can be executed over the peer bases pre-
sented in Figure 2, given the already produced annotated
query pattern. In this example, we assume that P1 runs

Query-Processing Algorithm:

Input: An annotated query pattern AQ and current

path pattern PP (initially the root).

Output: A query plan QP corresponding to the

annotated query pattern AQ.

1. QP:=∅

2. P:={P1 . . . Pn}, set of peers obtained by the

annotation of PP in AQ
3. if P=∅

QP:=PP@?
else

for all peers PxεP do

QP:=QP
⋃
PP@Px

--Horizontal Distribution--

end for
4. for all PPiεchildren(PP)

TPi:=Query-Processing-Algorithm(PPi, AQ)

end for

QP:=./Cp(QP, TP1, . . ., TPn)

--Vertical Distribution--
5. return QP

the query-processing algorithm in order to generate a corre-
sponding query plan. The algorithm initially starts from the
root of the annotated query pattern, i.e., the path pattern
Q1, for which it runs the horizontal distribution algorithm
in order to create Subplan 1, shown in Figure 3 (i.e., P1,
P2 and P4 can effectively answer the subquery). The partial
results obtained by these peers should be “unioned” (hori-
zontal distribution). Next, the children of Q1 are examined,
i.e., Q2. The query-processing algorithm is executed with
input the path pattern Q2 and Subplan 2 is formulated
and returned (i.e., P1, P3 and P4 can effectively answer
the subquery). Then, the returned query plan concerning
Q2 is “joined” (vertical distribution) with Subplan 1, thus
producing the final plan shown in Figure 3. This is the fi-
nal query plan produced by the algorithm, since the whole
query Q has been processed. As we can easily observe from
our example, taking into account the vertical distribution
ensures correctness of query results (i.e., produce a valid
answer), while considering horizontal distribution in query
plans favours completeness (i.e., produce several valid an-
swers).

In this context, a natural question that arises is how the
SQPeer query processing algorithm behaves in cases where
there is no sufficient routing information to produce a valid
query answer (e.g., when there are no peers that can an-
swer subquery Q2). In this case, SQPeer produces partial

query plans with “holes” about relevant peers (denoted by

Figure 4: Optimizing query plans by applying algebraic equivalences and transformation rules

?) which need to be filled by other peers receiving the plan.
This interleaved query routing and processing depends on
the particular architectural setting of the P2P system and
it will be detailed in Section 3.

It should be also stressed that SQPeer is capable to re-
formulate queries expressed against a SON RDF/S schema
in terms of heterogeneous descriptive schemas employed by
remote peers. This functionality is supported by SWIM [9]
powerful mappings to RDF/S of both structured relational
and semistructured XML peer bases.

Once a peer creates a query plan, it is responsible for its
execution by deploying the necessary channels in the system
(Figure 3). A channel is created having as root the peer
launching the execution of the query and as destination one
of the peers that need to be contacted each time according
to the plan. Although each of these peers may contribute in
the execution of the plan by answering to more than one sub-
queries, only one channel is of course created. This is one
of the objectives of the optimization techniques presented in
the sequel.

2.5 Query Optimization
In SQPeer we distinguish two possible optimization strate-

gies of distributed query plans. First, compile-based opti-
mization rely on algebraic equivalences (e.g., distribution of
joins and unions) allowing us to push as much as possible
query evaluation to the same peers, as well as on statistics
held by each peer enabling us to choose between different ex-
ecution policies for the query plans (e.g., data versus query
shipping).

As we have seen in Figure 3, the query plan produced
by the query processing algorithm contains unions only at
the bottom of the plan tree. We can use the following al-
gebraic equivalence to push unions on the top of our query
plan, since pushing joins below the unions produces smaller
intermediate results.

Distribution of joins and unions:
Given a subquery ./ (

⋃
(Q11, . . . , Q1n),

⋃
(Q21, . . . , Q2m)),

and rewriting it into
⋃

(./ (Q11, Q21), ./ (Q11, Q22), . . . , ./

(Q1n, Q2m)) is beneficial, if the expected size of the join re-

sult is smaller than any of the inputs.

According to the above algebraic equivalence, the query
plan of Figure 3 is transformed using heuristics into the
equivalent query Plan 2 of Figure 4. This plan decreases
the data transferring cost between the peers due to smaller
intermediate results, as well as offers the ability to evaluate
this plan in a pipeline way.

One can easily observe that query Plan 2 does not take
into account the fact that one peer (e.g., P4) can answer
more than one successive path patterns. To this end, we are
applying the two following transformation rules for identify-
ing those subplans that can be answered by the same peer.

Transformation Rule 1:
Given a subquery ./ (Q1@Pi, . . . , Qn@Pi) rewrite it into

Q@Pi, where Q = Q1

⋃
. . .

⋃
Qn.

Transformation Rule 2:
Given a subquery ./ (./ (QP, Q1@Pi), Q2@Pi) rewrite it

into ./ (QP, Q@Pi), where Q = Q1

⋃
Q2.

By applying these two transformation rules on query Plan

2, query Plan 3 will be produced reducing the number of
subplans that need to be sent to the relevant peers (i.e.,
pushing the join on property prop1 and prop2 to peer P1
and P4).

Furthermore, statistics about the communication cost be-
tween peers (e.g., measured by the speed of their connec-
tion) can be used to decide between different channel de-
ployments. Additionally, the expected size of peers’ query
results can be considered for the optimization choice. The
processing load of the peers should also be taken into ac-
count, since a peer that processes fewer queries, even if its
connection is slow, may offer a better execution time. This
processing load can be handled by the existence of slots in
each peer, which show the amount of queries that can be
handled simultaneously. Having these statistics in hand, a
peer node can decide at compile-time between data, query or

hybrid shipping execution policies. In the example of Fig-
ure 5 we can see two alternatives on how P1 handles the

Figure 5: Data and Query Shipping Example

generated query plan. In the left part of the figure we can
see the data shipping alternative, since P1 sends queries Q2
and Q3 to peers P2 and P3 and joins their results locally.
In the right part of the query we can see the query shipping
alternative, since P1 decides to forward the join operation
down to P2, which in turn receives the results from P3 and
executes the join locally before sending the full answer to P1
for further processing. At the bottom of the figure, we can
see the deployment of the channels in SQPeer for each of
these two alternative policies. In a scenario where the com-
munication cost between peers P1 and P3 is greater than
the cost between peers P2 and P3, query-shipping is prefer-
able, since it exploits the fastest peer connection. In the case
where peer P2 has a heavy processing load, data-shipping
should be chosen, since P1 will process both the union and
the join of the plan. Alternatively, if peer’s P2 intermediate
results of subquery Q2 are large, query-shipping is the most
beneficial.

On the other hand, run-time adaptability of query plans
is an essential characteristic of query processing when peer
bases join and leave the system at free will or more in gen-
eral when system resources are exhausted. For example,
the optimizer may alter a running query plan by observing
the throughput of a certain channel. This throughput can
be measured by the number of incoming or outgoing tuples
(i.e., resources related through a property). Changing query
plans may alter an already installed channel, as well as the
query plans of the root and destination node of the channel.
These changes include deciding at execution time between
data or query shipping or discovering alternative peers for
answering a certain subplan. The root node of each channel
is responsible for identifying possible problems caused by
environmental changes and for handling them accordingly.
It should also inform all the involved nodes that are affected
by the alteration of the plan. Since the alteration is done on
a subplan and not on the whole query plan, only the nodes
related to this subplan should be informed and possibly a
few other nodes that contain partial results of the execution
of the failed plan. Finally, the root node should create a

new query plan by re-executing the routing and processing
algorithm and not taking into consideration those peers that
became obsolete.

We should keep in mind that switching to a different query
plan in the middle of the query execution may cause some
problems. Previous results, which were already created by
the execution of the query to possible multiple peer nodes,
have to be handled, since the new query plan will produce
new results. Two are the possible solutions to this issue.
The ubQL approach [26] proposes to discard previous in-
termediate results and all on-going computations are termi-
nated. Alternatively [15] proposes a phased query execution,
in which each time the query plan is changed, the system
enters into a new phase. The final phase, which is called the
cleanup phase, is responsible for combining the sub-results
from the other phases in order to obtain a full answer. In
SQPeer middleware, we have adopted the ubQL approach.

3. P2P ARCHITECTURES AND SQPEER
SQPeer can be used in different P2P architectural set-

tings. Even though the P2P architecture affects the peers
behavior, our proposed query processing and routing algo-
rithms work independently of the particular architectural
setting. Before going more on details regarding these issues,
we explicitate the possible roles that peers may play in each
case and their corresponding computing capabilities.

On the one hand, we have client-peers, which may fre-
quently join or leave the system. These peers have only the
ability to pose RQL queries to the rest of the P2P system.
Since these peers usually have limited computing capabili-
ties and they are connected to the system for short period
of time, they do not participate in the query routing and
processing in the way the other peers do.

On the other hand, we may have simple-peers that also act
autonomously by joining or leaving the system, maybe not
so frequently as client-peers. Their corresponding descrip-
tion bases can be shared by others during their connection to
the P2P system. When they join the system, simple-peers
can broadcast their active-schema information or alterna-
tively request the active-schema of their known neighbors.
Thus, a simple-peer identifies and connects physically with
the SON(s) it belongs to and becomes known to its new
neighborhood. Simple-peers have also the ability to pose
queries as client-peers, but with the extra functionality of
executing these queries against their own local bases.

Additionally, a small percentage of the peers may play
the role of super-peers. A super-peer acts as a centralized
server for a subset of simple-peers. Super-peers are mainly
responsible for routing queries through the system and for
managing a cluster of simple-peers which are responsible for.
In this scenario, queries received and processed by a simple-
peer are first send to its corresponding super-peer, which un-
dertakes the routing process by replying to the simple-peer
an annotated query pattern for further processing. Super-
peers are usually highly-available nodes offering high com-
puting capabilities.

In this context, we consider two architectural alternatives
distinguished according to the distribution of knowledge on
a P2P system regarding peer base advertisements. The first
scenario corresponds to a hybrid P2P architecture based on
the notion of Super-Peer Nodes (like Morpheus or Kazaa)
while the second one is closer to an ad-hoc P2P architecture
(like Freenet or Gnutella).

Figure 6: SQPeer query processing in a hybrid P2P system

3.1 Hybrid P2P SONs
In a hybrid P2P system [29] [24] each peer is connected

with at least one super-peer, who is responsible for collect-
ing the active-schemas (materialized or virtual) of all its
simple-peers. The peers that provide RDF descriptions for
the same community RDF/S schema are clustered under
the same super-peer. Thus, each peer implicitly knows the
active-schemas of all its semantic neighbors in the sense that
they employ the same community RDF/S schema. When a
peer connects to a super-peer, it forwards its correspond-
ing active-schema (push). All super-peers are aware of each
other, in order to be able to answer queries expressed in
terms of different RDF/S schemas, while a simple-peer can
be connected to multiple super-peers when it provides de-
scriptions conforming to more than one schema. The topol-
ogy of the super-peer network depends on the number of
the super-peers, which in turn depends on the number of
simple-peers and the processing capability of each super-
peer. A multi-layered hierarchical organization of the super-
peers network can be employed by using appropriate articu-
lations (aka mappings) of the classes and properties defined
in each super-peer RDF/S schema.

A client-peer can connect with a simple-peer and send
a query request for further processing to the system. The
simple-peer forwards the query to the appropriate super-
peer according to the schema employed by the query. If this
schema is unknown to the simple-peer, it sends the query
randomly to one of its known super-peers, which will con-
secutively discover the appropriate super-peer through the
super-peers backbone. In this scenario, we distinguish two
sequential query evaluation phases: the first corresponds to
query routing, which is done exclusively at super-peers, and
the second to query processing and execution, which is per-
formed by the simple-peers.

Figure 6, illustrates an example of how this scenario works.
We consider a super-peer backbone containing three super-
peers, SP1, SP2 and SP3, and a set of client peers, P1 to
P5. All the simple-peers are connected with at least SP1,
since they contain data conforming to the schema that SP1
is responsible for. When P1 receives a query Q, it initially
contacts SP1, which is the super-peer responsible for the
SON on which the query is addressed (Figure 6a). SP1 ex-
amines the active-schemas of all its simple-peers and creates
an annotated query pattern containing the information that
P2 and P3 can answer only the Q1 path pattern, while P5
can answer the Q2 path pattern. SP1 sends this annotated
pattern to P1 in order to generate the appropriate query

plan and create the two channels with P2 and P3 for gath-
ering the results (Figure 6b). P2, P3 and P5 send their
results back to P1, who joins them locally in order to pro-
duce the final answer. We should point out that since super-
peers contain all the active-schema information of a SON,
the annotated query pattern for a relevant query contains
essentially the routing information for producing not only a
correct but also a complete query plan, in the sense that it
will not contain any holes and thus no further broadcasting
and processing of the query is necessary.

3.2 Ad-hoc P2P SONs
Alternatively, we can consider an ad-hoc P2P architec-

ture [7] [8]. In this alternative, when a peer first joins the
system, it becomes aware only of its physically close neigh-
bors. The peer should identify, by sending appropriate re-
quests, at least one other related peer for each of its RDF/S
community schemas. The related peers identified in this
way, form the semantic neighborhood of the peer. In the
next step, the peer explicitly requests the active-schemas
of its neighbor peers (pull). Then, when a peer receives
a relevant query, it applies locally the query routing algo-
rithm and create a query plan. When the peer receives a
query, whose schema is unknown or which cannot be an-
swered by the semantic neighbors of the peer, it could re-
quest the active-schema information of a 2-depth, 3-depth,
etc. neighborhood2, until a relevant peer is found and thus
constructing progressively self-adaptive SONs.

Unlike super-peers, in the ad-hoc scenario there are no
real guarantees that a peer can actually generate a com-
plete query plan. The query processing algorithm produces
a query plan according to its local knowledge about relevant
peers and therefore the query plan may contain “holes”, i.e.
subplans with incomplete peer information (denoted by ?).
In order to discover these peers and fill the holes, the query
plan is forwarded to other peers which are known to be able
to answer at least a part of the initial query plan. By estab-
lishing appropriate channels, the peers receiving a partial
plan can in turn interleave query processing and routing us-
ing their local knowledge of the P2P system. The first peer
that is able to fill all the “holes” and generate a complete
query plan, holds also the responsibility of executing it and
send the results back to the root peer through the already
deployed channels.

Figure 7 depicts an example where peers P1 to P5 are

2More elaborated techniques based on DHT for RDF/S
schemas can be used in this respect.

Figure 7: SQPeer query processing mechanism in an ad-hoc P2P system

connected in a self adaptive SON. P1 is aware of the active-
schema of its neighbor peers, i.e., P2, P3 and P4. When P1
receives the query Q, it uses the already gathered active-
schemas in order to apply locally the routing algorithm (Fig-
ure 7a). Since P2 and P3 can answer the Q1 part of Q and
since no known neighbor peer can answer the Q2 part, P1
creates the query plan Plan 1 =

⋃
(./ (Q1@P2, Q2@?), ./

(Q1@P3, Q2@?)). P1 establish two channels with those
peers and forwards them the corresponding partial plans.
Since P3 is not connected with any new peer, the channel
between P1 and P3 fails. On the other hand, when P2 re-
ceives the query plan from P1, executes the query routing
algorithm and identifies that P5 can answer the Q2 part of
the query (Figure 7b). P2 creates the query plan Plan 2 =⋃

(./ (Q1@P2, Q2@P5), ./ (Q1@P3, Q2@P5)) and executes
the plan by deploying the necessary channels between the
involved peers. The appropriate subplans are sent to peers
P3 and P5 and the results are returned to P2, where there
are “joined” and “unioned” locally before they are sent back
to P1 as a complete answer.

These two architectural alternatives exhibit different be-
havior in the routing, processing and execution of a query. In
the ad-hoc architecture, SONs are created in a self-adaptive
way, while in the super-peer architecture SONs are created
in a more static way, since each super-peer is responsible for
the creation and further management of SONs. The exis-
tence of SONs leads to minimizing the broadcasting (flood-
ing) in the P2P system, since a query is received and pro-
cessed only by the relevant peers in both architectures. It
should be stressed that while in the ad-hoc architecture,
peers handle both the query routing and processing load,
super-peers are only responsible for routing and simple-peers
for processing of the queries. Additionally, super-peers con-
tain a global knowledge of the active-schemas of the peers
in a SON and therefore can create a query plan offering
completeness in the results. In the ad-hoc alternative, peers
are aware only of a small number of active-schemas in the
SON, and thus they can’t guarantee completeness of query
plans. Finally, super-peers may handle the role of a me-
diator in a scenario where a query expressed in terms of a
global-known schema needs to be reformulated in terms of
the schemas employed by the local bases of the simple-peers
by using appropriate mapping rules.

4. RELATED WORK
Several projects address query processing issues in P2P

database systems. Query Flow [19] is a system offering dy-

namic and distributed query processing using the notion of
HyperQueries. HyperQueries are essentially subplans that
exist in peer nodes and guide the processing of a query
through the network. Furthermore, ubQL [26] provides a
suite of process manipulation primitives that can be added
on top of any traditional query language to support dis-
tributed query optimization. UbQL distinguishes the de-
ployment from the execution phase of a query and sup-
ports adaptability of query plans during the execution phase.
Compared to these projects, SQPeer does not require an a
priori knowledge of the relevant to a query peers.

Mutant Query Plans (MQPs) [25] are logical query plans,
where leaf nodes may consist of URN/URL references, or of
materialized XML data. The references to resource locations
(URLs) refer to peers where the actual data reside, while the
abstract resource names (URNs) can be seen as the thematic
topics of the requested data in a SON. MQPs are themselves
serialized as XML elements and are exchanged among the
peers. When a peer N receives a MQP M, N can resolve
URN references, materialize URL references, evaluate or re-
optimize MQP subplans, or just route M to another peer.
When a MQP is fully evaluated, i.e. is reduced to XML code
only, the result is returned to the target peer, which has ini-
tiated the query. The efficient routing of MQPs is preserved
by information derived from multi-hierarchic topic names-
paces (e.g., for educational material on computer science
and for geographical information) organized by assigning
different roles to certain peers. This approach is similar to
a super-peer architecture, with the difference of distribut-
ing the super-peer role (i.e., the routing of the query) to
more than one peers. Unlike SQPeer, this approach reduces
the optimization opportunities of MQP by simply migrat-
ing possibly big XML fragments of query plans along with
partial results of subqueries. In addition, it is not clear how
subtopics can be exploited by query routing.

AmbientDB [7] addresses P2P data management issues in
an digital environment, i.e. audio players exchanging music
collections. AmbientDB assumes the existence of a common
global schema, although client-peers may contain their own
schemas (mappings are used in this case). AmbientDB re-
lies on the relational data model and algebra. The query
processing mechanism is based on a three-level translation
of an “abstract global algebra” into multi-wave stream pro-
cessing plans, distributed over an ad-hoc and self-organizing
P2P network. Initially, a query is translated into standard
relational operators for selection, join, aggregation and sort
over “abstract table types“. Then, this abstract query plan

becomes concrete by instantiating the abstract table types
with concrete ones, i.e., the local or distributed tables that
exist in the peer bases. Finally at the execution level, the
concrete query plan is executed by selecting between differ-
ent query execution strategies. AmbientDB P2P protocol is
responsible for the query routing and relies on temporary
(logical) routing trees, which are created on-the-fly as sub-
graphs of the Chord network. Chord can also be used to
implement clustered indices of distributed tables in Ambi-
entDB as DHTs. Each AmbientDB peer contains the index
table partition that corresponds to it after hashing the key-
values of all tuples in the distributed table. The user decides
for the use of such DHTs, thus accelerating relevant lookup
queries. Compared to AmbientDB, SQPeer provides a richer
data framework, as well as exhibits a run-time adaptability
of generated query plans.

Other projects address mainly query routing issues in SONs.
In [12] indices are used to identify peers that can handle con-
tainment queries (e.g., in XML). For each keyword in the
query, a peer node searches its indices and returns a set of
nodes that can answer it. According to the operators used
to connect these keywords, the peer node decides whether
to union or intersect the sets of relevant peers. In this ap-
proach, queries are directly sent to the set of peers returned
by the routing algorithm with no further details on how a set
of semantically related peers can actually execute a complex
query involving vertical and horizontal distribution.

RDFPeers [8] is a scalable distributed RDF/S repository
based on an ad-hoc P2P architecture. RDF-triple-storing
nodes are used to store RDF/S triples at three peers in the
network according to the subject, the predicate or the ob-
ject value. An extension to Chord, called Multi-Attribute
Addressable Network (MAAN), is used to store these triples
and to route disjunctive, range and conjunctive multi- predi-
cate queries to the appropriate peers. This approach ignores
RDF/S schema information during query routing, while dis-
tributed query processing and execution policies are not ad-
dressed.

In [27], a super-peer like P2P architecture is introduced,
which relies on the extent of an existing RDF/S store. Au-
thors propose an index structure for all the property paths
that can be specified given an RDF/S schema. The paths
in the index are organized hierarchically according to their
length (simple properties appear as leaves of the tree). For
each path in the tree, the index maintains information about
the peers that can answer it, as well as the size of path in-
stantiations. A query answering algorithm that determines
all possible combinations of the subpaths of the given query
path and determines the sources to answer it is described.
The proposed index structure, which is considered to be con-
trolled by a mediator, is difficult to be updated and handled
in a situation where peers frequently enter and leave the
system. The routing information concerning different paths
is held in a centralized way, in contrast to SQPeer, where
this knowledge is distributed and obtained throughout the
routing phase. Although schema information is used for
indexing, RDF/S subsumption is not considered. Finally,
optimization (based on a cost model) is focused only on join
re-orderings, which is a subset of the optimizations consid-
ered in SQPeer.

The Edutella project [24] explores the design and imple-
mentation of a schema-based P2P infrastructure for the Se-
mantic Web. In Edutella, peer content is described by dif-

ferent and extensible RDF/S schemas. Super-peers are re-
sponsible for message routing and integration/mediation of
peer bases. The routing mechanism is based on appropri-
ate indices to route a query initially within the super-peer
backbone and then between super-peers and their respective
peers. A query processing mechanism in such a schema-
based P2P system is presented in [5]. Query evaluation
plans (QEPs) containing selection predicates, compression
functions, joins, etc., are pushed from clients to simple or
super-peers where they are executed. Super-peers dispose
an optimizer for generating partial query plans determining
the parts of the query to be sent to the next (super-)peers
and the operators to be locally executed for combining the
results. The proposed query processing facility does not take
into account the possible existence of subsumption relation-
ships of RDF/S classes and properties. Additionally, this
approach does not consider run-time adaptability of query
plans.

Finally, although the use of indices and super-peer topolo-
gies facilitate query routing, the cost of maintaining (XML
or RDF) indices of entire peer bases is important compared
to the cost of maintaining peer active-schemas (i.e., views),
as in the case of SQPeer. Last but not least, SQPeer can be
used to deploy both hybid and ad-hoc P2P systems.

5. SUMMARY AND FUTURE WORK
In this paper, we have presented the ICS-FORTH SQPeer

middleware offering sophisticated query routing and pro-
cessing middleware in P2P data management systems. We
presented how (conjunctive) RQL path queries expressed
against a SON RDF/S schema can be represented as seman-
tic query patterns and how peers can advertise their bases
using active-schemas expressed in the same formalism. We
sketched a semantic query routing algorithm, which relies on
query/view subsumption techniques to annotate semantic
query patterns with information concerning relevant peers.
We also presented how SQPeer query plans are created and
executed by taking into account the data distribution in peer
bases. Finally, we have discussed several compile and run-
time optimization opportunities for SQPeer query plans, as
well as possible architectural alternatives for static or self-
adaptive RDF/S-based SONs.

Several issues remain open with respect to the optimiza-
tion of distributed and adaptive queries in SQPeer borrow-
ing ideas from related works [2] [4] [16]. We plan to study the
trade-off between result completeness and processing load
using the concepts of Top N (or Bottom N) queries [20].
In the same direction, we can use constraints regarding the
number of peer nodes that each query is broadcasted and
further processed. Finally, we want to investigate the possi-
ble use of Distributed Hash Tables [28] for RDF/S schemas
with subsumption information, used in the query routing
process.

Acknowledgments
We would like to thank Val Tannen for fruitful discussions
on peer channels.

6. REFERENCES
[1] Aberer, K., Cudre-Mauroux, P., Hauswirth, M.: The

Chatty Web: Emergent semantics through gossiping.

In Proceedings of the 12th International World Wide
Web Conference (WWW), Budapest, Hungary, 2003.

[2] Avnur, R., Hellerstein, J.M.: Eddies:Continuously
Adaptive Query Processing. ACM SIGMOD,
p.261-272, Dallas, TX, May 2000.

[3] Bernstein, P.A., Giunchiglia, F., Kementsietsidis, A.,
Mylopoulos, J., Serafini, L., Zaihrayeu, I.: Data
management for peer-to-peer computing: A vision. In
Proceedings of the 5th International Workshop on the
Web and Databases (WebDB), Madison, Wisconsin,
2002.

[4] Braumandl, R., Keidl, M., Kemper, A., Kossmann,
D., Kreutz, A., Seltzsam, S., Stocker, K.:
ObjectGlobe: Ubiquitous query processing on the
Internet. In VLDB Journal 10, pp.48-71, 2001.

[5] Brunkhorst, I., Dhraief, H., Kemper, A., Nejdl, W.,
Wiesner, C.: Distributed Queries and Query
Optimization in Schema-Based P2P-Systems. In
Proceedings of the International Workshop on
Databases, Information Systems and Peer-to-Peer
Computing (DBISP2P), Berlin, Germany, 2003.

[6] Maganaraki, A., Alexaki, S., Christophides, V.,
Plexousakis, D.: Benchmarking RDF Schemas for the
Semantic Web. In Proceedings of the 1st International
Semantic Web Conference (ISWC’02), 2002.

[7] Boncz, P., Treijtel, C.: AmbientDB: relational query
processing in a P2P network. In Proceedings of the
International Workshop on Databases, Information
Systems and Peer-to-Peer Computing (DBISP2P),
LNCS 2788, Springer Verlag, 2003.

[8] Cai, M., Frank, M.: RDFPeers: A Scalable
Distributed RDF Repository based on A Structured
Peer-to-Peer Network. In 13th International World
Wide Web Conference (WWW), New York, 2004.

[9] Christophides, V., Karvounarakis, G., Koffina, I.,
Kokkinidis, G., Magkanaraki, A., Plexousakis, D.,
Serfiotis, G., Tannen, V.,: The ICS-FORTH SWIM: A
Powerful Semantic Web Integration Middleware. In
Proceedings of the First International Workshop on
Semantic Web and Databases (SWDB), Co-located
with VLDB 2003, Humboldt-Universitat, Berlin,
Germany, 2003.

[10] Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.:
Freenet: A Distributed Anonymous Information
Storage and Retrieval System. In Proceedings of the
International Workshop on Design Issues in
Anonymity and Unobservability, volume 2009 of
LNCS, Springer-Verlag, 2001.

[11] Crespo, A., Garcia-Molina H.: Semantic Overlay
Networks for P2P Systems. Stanford Technical
Report, 2003.

[12] Galanis, L., Wang, Y., Jeffery, S.R., DeWitt, D.J.:
Processing Queries in a Large P2P System. In
Proceedings of the 15th International Conference on
Advanced Information Systems Engineering (CAiSE),
2003.

[13] The Gnutella file-sharing protocol. Available at :
http://gnutella.wego.com

[14] Halevy, A. Y., Ives, Z. G., Mork, P., Tatarinov, I.:
Piazza: Data Management Infrastructure for Semantic
Web Applications. In Proceedings of the 12th
International World Wide Web Conference (WWW),

2003.

[15] Ives, Z. G.: Efficient Query Processing for Data
Integration. phD Thesis, University of Washington,
2002.

[16] Ives, Z. G., Levy, A. Y., Weld, D. S., Florescu, D.,
Friedman, M.: Adaptive Query Processing for Internet
Applications. IEEE Data Engineering Bulletin, Vol.23,
No.2, pp.19-26, 2000.

[17] Karvounarakis, G., Alexaki, S., Christophides, V.,
Plexousakis, D., Scholl, M.: RQL: A Declarative
Query Language for RDF. In Proceedings of the 11th
International World Wide Web Conference (WWW),
Honolulu, Hawaii, USA, 2002.

[18] The Kazaa file-sharing system. Available at :
http://www.kazaa.com

[19] Kemper, A., Wiesner, C.: HyperQueries: Dynamic
Distributed Query Processing on the Internet. In
Proceedings of the International Conference on Very
Large Data Bases (VLDB), Rome, Italy, 2001.

[20] Kossmann, D.: The State of the Art in Distributed
Query Processing. ACM Computer Surveys, Vol.32,
No.4, pp.422-469, 2000.

[21] Magkanaraki, A., Tannen, V., Christophides, V.,
Plexousakis, D.: Viewing the Semantic Web Through
RVL Lenses. In Proceedings of the 2nd International
Semantic Web Conference (ISWC), 2003.

[22] The Morpheus file-sharing system. Available at:
http://www.musiccity.com

[23] The Napster file-sharing system. Available at :
http://www.napster.com

[24] Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C.,
Schlosser, M., Brunkhorst, I., Loser, A.:
Super-Peer-Based Routing and Clustering Strategies
for RDF-Based P2P Networks. In Proceedings of the
12th International World Wide Web Conference
(WWW), Budapest, Hungary 2003.

[25] Papadimos, V., Maier, D., Tufte, K.: Distributed
Query Processing and Catalogs for P2P Systems. In
Proceedings of the 2003 CIDR Conference, 2003.

[26] Sahuguet, A.: ubQL: A Distributed Query Language
to Program Distributed Query Systems. phD Thesis,
University of Pennsylvania, 2002.

[27] Stuckenschmidt, H., Vdovjak, R., Houben, G.,
Broekstra, J.: Index Structures and Algorithms for
Querying Distributed RDF Repositories. In
Proceedings of the International World Wide Web
Conference (WWW), New York, USA, 2004.

[28] Triantafillou, P., Pitoura, T.: Towards a Unifying
Framework for Complex Query Processing over
Structured Peer-to-Peer Data Networks. In
Proceedings of the Workshop on Databases,
Information Systems, and Peer-to-Peer Computing
(DBISP2P), Collocated with VLDB ’03, 2003.

[29] Yang, B., Garcia-Molina, H.: Designing a Super-Peer
Network. In Proceedings of the 19th International
Conference Data Engineering (ICDE), IEEE
Computer Society Press, Los Alamitos, CA, 2003.

