
 1

SeLeNe Report:
Service-based Architecture

Kyriakos Karenos, George Samaras
and Eleni Chistodoulou

cs98kk2@ucy.ac.cy, cssamara@ucy.ac.cy

May 2, 2003

Abstract
In this report we present the “Grid” architecture and propose a possible set

of services that could be applicable in the case of SeLeNe. Generally, a
service-based architecture is proposed that allows a user to submit requests
to the SeLeNe Network (the “educational grid”) for the completion of some
specific task. Although different services may reside at different physical sites,
“authority” sites should be used for providing extended services (such as in a
super-peer model). Service placement produces a number of possible
architectural alternatives.

1 Introduction

Our proposed architectural model is characterized as service-based. Tasks that must be
completed should be submitted to the educational grid (the SeLeNe) via a minimal interface that
should simply support the submission operation. This interface’s implementation should call upon
lower level basic services that every node will have to provide. An example of such an operation
could be the submission of a query or a request for collaboration with another user. However, the
various services – as described in the Open Grid Services Architecture Layers (OGSA) – need
not be implemented within every physical site. (This is also proposed with the SWAP system [8]).
Each node may create and offer different services to the system, included in a predefined set.
Services may require the collaboration of many nodes, thus can be characterized as distributed
(e.g. a search service).

In [4] an attempt is made to provide an infrastructure for future eScience, termed the
“Semantic Grid”. Of our interest, is the adoption of a service-based perspective to meet the needs
of a global and flexible collaborative system for educational – the paper limits it to eScience –
purposes. Three conceptual layers are proposed: The Data layer that deals with the low level,
computational and storage resources, the Information layer that is related to the data
representation, access and maintenance and the Knowledge layer that addresses some specific
high-level problem or objectives while supporting and monitoring the learning procedures. Note
that these levels meet the SeLeNe “three levels of abstraction” defined in the User Requirements.

The simplest P2P services scenario is the following: A node ‘A’ contacts a centralized, known
server ‘S’ and requests a service ‘s1’. ‘S’ replies with the location and API description of service
‘s1’ at a server ‘B’. Node ‘A’ communicates in a P2P manner with ‘B’. Later the reverse procedure
may take place if for example ‘A’ is the owner of a service ‘s2’ requested by ‘B’. The difference in
SeLeNe is that the Grid itself takes the role of ‘S’ (by the use of distributed service/lookup
catalogs and searching indices.)

It is also possible that, after services are discovered, a task may be completed by combining
(reserving) a number of available services by the requesting node/site (Fig. 1,a) or by the
collaboration of several sites through a service composition procedure (Fig. 1,b).

Request site

S4

S2
S3

S1
S2

Si = Services

S4

S2
S3

S1
S2

 2

Finally, it is important to notice that some vital services need to be available at all times (e.g.

secure communication provided by a third party, registration etc) as well as the fact that we need
to provide some method for information integration. Therefore we propose that “authority” sites
should be present (such as in a super-peer model [3]) that will be more reliable and may acquire
the role of mediator (e.g. to interconnect related sites by clustering) or coordinator (e.g. to support
ontology mappings when and if necessary).

At least two leading platforms enable the implementation of service-based systems, namely
JXTA (P2P) and Globus (Grid). JXTA offers a purely Java-based services core [10]. The Globus
project also provides a Java version, the CoG Kit [5].

2 Grid Computing

One definition of the Grid (or Grid Computing) could be: “applying the resources of many
computers in a network to a single problem at the same time - usually to a scientific or technical
problem that requires a great number of computer processing cycles or access to large amounts
of data”. It can also be viewed from a software/hardware combination perspective comprising an
infrastructure for resource access and sharing within and among virtual organizations [6]. The
“infamous” among Grid computing cycles, term “virtual organization” (VO) refers to the individuals
and/or institutions that participate in a conditional sharing system. (Rules that may change over
time define what is shared and who may access it). VOs are not actually the participants of a
Grid; rather a Grid comes into play to address the requirements of VOs: both at the higher level
(i.e. solving the problem itself posed by the VOs) and at the lower level (i.e. the problems
appearing due to the VOs need for interaction.) Therefore we can now spherically conceive the
“Grid problem” definition being:”the coordinated resource sharing and problem solving in
dynamic, multi-institutional virtual organizations”.

At the conceptual core of the Grid architecture, the key requirement is Interoperability.
However good the mechanisms may be, the benefit to the system comes to a naught due to the
environmental, platform and language diversity within the Grid context.

Three basic constructs must be considered to support interoperability: Protocols, Services and
APIs / SDKs. Protocols play a primary role to the Grid Architecture which, in fact, is a protocol
architecture. Protocols aim at the externals (interactions) of VOs rather than internals (software,
resource characteristics) allowing for different implementations to each VO with respect to its
internal functional structuring and management. Standard services are also of fundamental
importance towards interoperability and are defined within the contexts of their protocol and
behavior. Finally, APIs and SDKs are required to provide abstractions for sophisticated
application development.

One proposed Grid architecture, which is widely acceptable in term of being largely used,
follows the “hourglass” principles. The narrow neck defines a limited number of core abstractions
and protocols. This is the Resource and Connectivity layer on top of which the broad, Collective
layer is built that defines the high level behaviors. The bottom layer, called Fabric, includes the
underlying technologies and diverse resources. Figure 4 represents this design.

Figure 3: The Grid layers

Request site

Figure 1 (a)

Figure 1 (b)

 3

• Fabric: The Grid Fabric layer provides the resources to which shared access is mediated
by Grid protocols: for example, computational resources, storage systems, catalogs,
network resources, and sensors. A “resource” may be a logical entity, such as a
distributed file system, computer cluster, or distributed computer pool; in such cases, a
resource implementation may involve internal protocols (e.g., the NFS storage access
protocol or a cluster resource management system’s process management protocol), but
these are not the concern of Grid architecture.

• Connectivity: The Connectivity layer defines core communication and authentication
protocols required for Grid-specific network transactions. Communication protocols enable
the exchange of data between Fabric layer resources. Authentication protocols build on
communication services to provide cryptographically secure mechanisms for verifying the
identity of users and resources.

• Resource: The Resource layer builds on Connectivity layer communication and
authentication protocols to define protocols (and APIs and SDKs) for the secure
negotiation, initiation, monitoring, control, accounting, and payment of sharing operations
on individual resources. Resource layer implementations of these protocols call Fabric
layer functions to access and control local resources. Resource layer protocols are
concerned entirely with individual resources and hence ignore issues of global state and
atomic actions across distributed collections; such issues are the concern of the Collective
layer discussed next.

• Collective: While the Resource layer is focused on interactions with a single resource,
the next layer in the architecture contains protocols and services (and APIs and SDKs)
that are not associated with any one specific resource but rather are global in nature and
capture interactions across collections of resources. Because Collective components build
on the narrow Resource and Connectivity layer 'neck' in the protocol hourglass, they can
implement a wide variety of sharing behaviors without placing new requirements on the
resources being shared. Collective functions can be implemented as persistent services,
with associated protocols, or as SDKs (with associated APIs) designed to be linked with
applications. In both cases, their implementation can build on Resource layer (or other
Collective layer) protocols and APIs.

• Applications: The final layer in the Grid architecture comprises the user applications that
operate within a VO environment. Figure 5 illustrates an application programmer’s view of
Grid architecture. Applications are constructed in terms of, and by calling upon, services
defined at any layer. At each layer, well-defined protocols provide access to some useful
service: resource management, data access, resource discovery, and so forth. At each
layer, APIs may also be defined whose implementation (ideally provided by third-party
SDKs) exchange protocol messages with the appropriate service(s) to perform desired
actions.

Figure 4

 4

3 An Early Proposal for SeLeNe Services

3.1 Service Classification

As mentioned earlier, not all services are required to reside at each knowledge site. From a
specific site’s point of view, some services may be local (i.e. implemented at the local machine)
and/or distributed (i.e. implemented at more than one site.) For example, an “integration service”
may be local for one site and remote/distributed for another. The service’s API, however, should
be identical for both sites regarding the same service.

Additionally, a small set of services is characterized as mandatory or core and should be
implemented at every site. Note that core services may be fully implemented locally or in a
distributed fashion (i.e. the completion of a request for such a service needs to be processed
beyond the local site.)

We need to have in mind that each service is found at some layer of the Open Grid
Architecture and therefore may call upon other, lower level services.

Table 1 presents all proposed services from the system’s point of view. To clarify their target
functionality, the OGSA and ‘Semantic Grid’ corresponding layers are shown. A general
description will be provided in the following subsections.

Service Name Core OGSA

 Layer
‘Semantic
Grid’ Layer

Trail Management
Authoring

Collaboration

Application

Knowledge

Caching
Search

Replication

Collective

Access

Information X

Information

Integration

Resource

Registration

Security
Communication X

Connectivity

Storage X Fabric

Data

Table 1: SeLeNe Services

3.2 Core Services

Core services need to be present at each site of the system (Figure 2). They present the
minimum set of operational entities that are necessary for the functionality of other services. This
does not mean that a service must use the core services to function. It is only meant that a site
may, at any time, assume the existence of the core services at every site of the system. We
briefly describe the functionality of each core service below:
• Information Service:

The information service’s purpose is to provide access to information available in the system
regarding: (i) the metadata about LOs stored at some node as well as any relations between
them (ii) the available services at that site and in the system (e.g. a distributed service
discovery mechanism over UDDI [12]), since some services may be persistent (e.g. at super
nodes) or transient.

• Storage Service:
This service is located at the lower layer of the Grid Architecture (Fabric) and is related to the
actual stored LOs. It should include access methods for local requests as well as appropriate
manipulation of locally stored LOs (e.g. local updates). Physical data that are placed at the
Fabric layer are accessed by this service. For each site we require: the site’s content (LOs),
the metadata and information indices. Indices contain information about neighboring sites.
Manipulation and usage of storage (including indices) is usually done by the Information
service.

• Communication Service:

 5

This service provides the basic communication mechanisms for exchanging data. Current
protocols may be used but we should consider creating a simple “SeLeNe specific”
communication service (i.e. for the exchange of specific type messages e.g. task
submission.)

Core API
Information

Communication
Storage

Figure 2: Minimal SeLeNe site

3.3 Appended (System Required) Services

• Registration Service:
Each site should be able to register to the system mainly in order to advertise its content and
services. Also it should be able to make its presence known to other sites. Registration allows
for the update of the indices of neighbors as well as the directly connected authority site(s).
Site registration (connecting the system) and content advertisement (using the LO metadata)
are two distinct tasks since the latter is an evolving process.

• Search Service:
Searching the system is an important feature, although not a core service, since minimal
search capabilities are provided by the Information Service. The Searching Service is
distributed and should allow for intelligent search message routing in order to forward queries
to sites most possible to provide answers. A good, super-peer based technique is provided in
[2] where a clustering technique is used to mediate heterogeneous schemas. Authority sites
are responsible for keeping semantically meaningful indices about other neighbouring sites.

• Access Service:
The Access Service should provide the API for accessing remote data. We may decide on a
common API for data accessing but we may also allow for each (heterogeneous) LO set to
be accessed using pre-defined methods such as handling defined granularity level accessing.
For example, a “presentation” LO may have an access service method for retrieving a single
“slide.” Access services also allow for a high level “browsing” among remote LOs available in
the system.

• Caching Service:
The caching service provides an API for temporarily storing LOs for future use. Local cache
implementation also defines a replacement policy. LRU is one very possible and functional
suggestion. Caching is also used for temporarily holding locations and descriptions of
services for efficient lookup, since it is very probable that a service may be repeatedly used
within a short time interval (e.g. repeated searches/lookups.) We need to make clearer that
caching is indeed a service: Assume that a site does not have a caching service locally but
wishes to store a request message to a remote site for asynchronous replies. Another
example would be adopting functionality similar to web-proxies; a site sets a neighbouring
site with caching capabilities as its “content proxy.” This would be particularly efficient if both
sites belong to the same cluster. Summarizing, we identify three caching types: content
caching (LOs), services metadata caching and message caching.

• Replication Service:
Replication services enable underlying distribution of data for optimization purposes (e.g.
replicate popular LOs or copy relevant LOs closer to their users.) In addition, a site should be
able to request an LO to be replicated locally and later on receive any related updates. A
replication service should be available for these purposes, implemented primarily over the
communication and information services. The replication service should include transferring
of LOs as well as update propagation. It should also make extensive use of the Access
Service.
We make the assumption that only a single site owns a specific LO and is the only one
allowed to modify it. However, replicas can be created from an owner as well as from other
replicas. Under this model, only the originator needs to be known for keeping a copy
consistent such as in the master-slave model. In case of user-requested replica creation, pull-
based asynchronous update propagation may suffice. However, when LOs are replicated for

 6

network traffic reduction and faster file copying, updates need to be automatically
propagated. In such cases the Replication Service maintains the replica catalog; a distributed
catalog or index of logical-to-physical object id (one-to-many) mappings. Since sites may
enter and leave independently, the replica catalog cannot be purely hierarchical. A functional
practice is to keep additional (redundant) catalog information on each node (such as in Chord
[8]) in order to increase reliability.

• Security Service:
Each site may adopt a security policy concerning the access rights on its data. This service’s
main purpose it to allow the local site to determine which information should be shared and
which should not and who should be allowed to access them. Additionally a security service
allows for trusted (third-party) authentication.

• Collaboration Service:
A collaboration service should allow the communication between users and groups of users
and it is proposed that this is mediated by a central authority site. At least two sites should
request the creation of a collaboration session and others may be added later. Collaboration
services may include already available systems such as Blackboards, Message Boards, CVS
(for collaborative code writing) or e-mail and instant messaging services. The SeLeNe
Collaboration Service lies above these services in order to provide connections to other
SeLeNe services.

• Integration Service:
The Integration service should be basically responsible for enabling the coordination of
combining different ontologies. This may be mediated or have each site provide necessary
mappings. The Integration service provides the semantic and structured connections among
LOs. This structure can be provided to the Authoring service to be visually presented to (and
edited by) the user.

• Authoring Service:
The Authoring Service should provide an environment for creating new LOs. This could also
be an authoring tool. It may also make use of the Collaboration service. It should also make
use of Integration services and enable the high level creation of user-defined views of LOs.

• Trail Management Service:
This service should provide the methods for creating and maintaining trails that represent the
knowledge of a user. This is obviously located at the Application layer of OGSA (or more
correctly, at the “Knowledge Layer” [4]) and should make use of Storage, Communication and
Searching services while receiving input from the Authoring service. Trail Management is
responsible for the creation of user profiles and using underlying services for the monitoring
of LO access for profile maintenance. An appropriate model should be decided for trail
representation combined with the LO interconnection itself.

3.4 Authorities

Until now, a general understanding of the functionality of “authorities” must have been
perceived. In this subsection we solidify previous dispersed references to “authorities”.

“Authorities” are similar to super-peers in a hybrid P2P model or brokers in a Grid model
(although they provide more than just brokering services in the SeLeNe context). They are
considered more reliable, offer persistent services and are characterized by their static nature
regarding their participation to the system. As such they can be used to provide persistent
services including Collaboration, Caching, Search, Registration, Access, Integration and Security.
It is not obligatory that some authority site should offer all these services, although it is obligatory
that it should ensure the service’s persistency.

Authorities may take care of search message routing as well as integration/mediation of
metadata [2]. They enable the creation of clusters of relevant sites via evolving indices based on
the semantic description of the sites’ content.

Authorities can also serve as the third party in an authentication process between two sites as
well as allow for the collaboration of multiple sites for the creation of collaborative trails.

3.5 Service Availability

 7

An important aspect of the Grid not extensively addressed in the various Grid-based systems
is service availability. The question is: “Can we be sure that a service that will be requested will in
fact be available?” The primary goal is to have multiple instance of the same service running at
different sites, therefore having more than one “starting points” (such as in DNS).

A functional framework, with respect to SeLeNe, for supporting service availability is provided
in [1]. The proposed framework is based on the assumption that a set of services exists (such as
our proposed SeLeNe services) on servers able to communicate with each other (also possible
with SeLeNe). Each service is statefull and allows access in user sessions. During a session,
other servers are notified on the current state of the user. Therefore, in case of failure another
server can continue offering the service. Not surprisingly, the authors in this paper selected a
“search service” and an “educational service” (where a user/student accesses LOs) as two of the
basic example scenarios.

 Some additional ideas on how we can maximize the possibility of some service being
available are proposed below:
• Basic services are made core.
• Reliable sites (authorities) provide popular/demanding services.
• Allow for appended services to be added (installed) onto sites. (Service replication.)
• Break services to smaller components (or services).
• A site may include some (appended) service but may not have it “running” (e.g. to preserve

resources). Remotely starting a service may be done via any one RPC implementation.
• Handling of predictable service shutdown (i.e. when a site voluntarily disconnects from the

Grid).

4 Some Scenarios

4.1 Set up

Consider the following network of SeLeNe sites along with their offered services:

Site Services
A Core, Search, Access,
B Core, Collaboration, Registration, Integration, Search,

Replication
C Core, Search, Authoring, Cache
D Core, Search

4.2 Scenario 1

� an individual author registering a new base LO and its associated metadata
Suppose that site ‘A’ has used the some Authoring service and created an LO. Firstly, the LO
needs to be registered locally and its metadata and relation to other local (user) LOs need to be
defined via the Information Service. Then the user looks up a Registration Service. The
Registration service is available in at least one Authority site (‘B’), which updates its index to
include site ‘A’. The LO description remains at the authority site until it is searched for.

4.3 Scenario 2

A

C

D

B

E

 8

� an individual author creating a new derived LO and its associated metadata from other LOs
Using the Search Service the user at site ‘C’ identifies sites ‘A’ and ‘D’ to contain relevant LOs.
The Integration service at site ‘B’ is used to return a joint structure of connections between LOs in
‘A’ and ‘D’ which is used as input to the user’s Authoring service to create a user-understandable
view. The user may use the Access service at site ‘A’ to access the relevant LOs (saved at the
local cache) and finally decides to replicate locally a part of the LO at ‘D’ and the LO from ‘A’ (via
the Replication Service at ‘B.’) The Information service is used to produce the newly created
interconnections/relationships between local LOs.

4.4 Scenario 3

� a group of learners collaborating in retrieving and using LOs and in maintaining a shared trail
space
A Collaboration service is used at ‘B’ to create a session between ‘A’ and ‘D.’ The role of this
service is to keep the state of the current procedure and to allow for the creation of common
views on accessed LOs (similar to the views created locally at scenario 1.) The Collaboration
service will only create the structure of the views. Each user will visualize the view in a
personalized manned, based on local user profile (e.g. local ontology). Any new LOs created are
registered with both Information services but only one user becomes the owner.

5 The Service-based “Consumer-Broker-Producer” Model

5.1 General and Alternatives

 We still maintain the service-oriented focus but we somewhat shift the architectural paradigm
towards the Consumer-Broker-Producer (C-B-P) model (or “roles”). As the name implies, this
model categorizes its participants into three distinct roles: consumer services carriers,
intermediary brokering servers and content producers.

We have noted that a service-based design remains our target concept where, in the C-B-P
model, node/site roles are more strictly specified. Comparing this approach to the previous one
we note that service provision and placement is predefined in the sense that, depending on the
type of each site, specific services must be supported. In other words we view each type being
built up as a set of pre-specified services. In the following subsections we provide a proposal as
to which services could be supported by consumers, brokers or producers, extensively based on
the previous sections’ discussion.

Regarding this model, two alternatives are proposed. Placing service sets at different sites,
produces different setups from which we may choose. In the first setup Producers can be viewed
as LO repositories which are accessed by consumers with Brokers’ mediation. Each site must be
either of the three. In the second setup the separation of Producer/Consumer functionality (by the
services included in each set) is purely made for organizational purposes meaning that a single
site may support both functional sets. Also the role of the Broker differs slightly in each case.

In our first alternative consumer sites represent the end-users. Their capabilities are limited to
looking up learning material, browsing and retrieving LOs. This is done via the mediation of
brokers which keep metadata on available resources and manage the LO “inventory”. Brokers
can also be similar (but not identical) to Authorities as proposed in subsection 2.4 regarding their
possible roles. Brokers, however, must always support defined mediation services but are not
required to ensure their availability. The brokers’ metadata “inventory” is built up as producers
communicate with them subscribing offered LOs. LO subscription is assigned only to Producers.
LOs are located and maintained physically at Producers. (This can also be called a “client-broker-
repository” model). On discovering and selecting the requested LOs brokers should be viewed as
producers, transparently to consumers.

The second alternative allows a single site to act both as a consumer and a producer. In
particular, services for the creation of base and derived LOs are mainly local from the user’s
viewpoint. Of course a site can support just the consumer or just the producer services in which
case collaboration of at least one consumer site and one producer site will be necessary. This will
become clearer in the following sections.

Closing this subsection we present two views pertaining to the structure of the C-B-P
architecture. As shown in Figure 3, Consumers, Brokers and Producers are linked together over

 9

the E-learning Network, which – reminding the reader – is actually composed and constructed by
the service protocols and interfaces gluing together the Grid’s sites. Another view to this model
can be related to a Super Peer model where super peers (brokers) are mediators in a localized
setting (communicate with neighboring nodes – either in a hierarchical or flat structure). The slight
difference is rather conceptual since implementers may find a number of common aspects in the
two models. In the C-B-P Grid-like model (and Grid computing in general) the Grid infrastructure
is used to allow communication between all participating sites. For example, a consumer may
contact any broker it wishes, whereas the super peer concept usually considers super peers
servicing a number of neighboring nodes and extending their functionality by contacting other
neighboring super peers.

Figure 3: Views to the C-B-P Model

5.2 Alternatives

The first alternative considers a “client-broker-repository” setup for placement of services at
consumers, brokers and producers, respectively.

Consumers represent the end-users. They contain and provide services for the actual users of
the LOs, which may look up, browse and retrieve LOs. Consumers communicate with brokers in
order to search and retrieve interesting LOs. A consumer may communicate with more than a
single broker, although it is preferable that consumers simply view brokers as a unified
middleware. Consumers can create derived LOs but cannot make any changes to them and thus
produce new LOs. This role is assigned only to producers (see subsection 4.3). Consider
consumers as the analogue of database users who may define views. Continuing this analogy,
Producers may execute database insertions, deletions and updates whereas consumers will need
to receive updates on their “views” and may, at some point, “materialize” them. In addition
consumers may also collaborate to create a joint definition on their derived LOs but must
eventually subscribe them with some producer.

It is proposed that consumers should support a modified core services set generally similar to
the one described in 2.2. These include the storage, communication and information service
with the addition of the security service. In this model the communication service acts as an
“external interaction” module and as a request managing mechanism. The caching service must
be available to all consumers. Since consumers represent users who will regularly interact, it is
expected that they will also need to exchange stored content directly. In order for this to be
possible the access service must also be available. As mentioned in 2.3 the access service will
allow browsing remote LOs

Finally we need to include an additional capability for the consumers, that is, visualization.
This will take care of presenting the available contents based on the information service
personalization configuration.

Producers include a set of services that allows the creation of new LOs and communicate with
brokers to report availability of these LOs. Additionally they may receive requests for LO

Consumers Producers

Brokers

S e L e N e

Consumer

Producer

Broker

The C-B-P Grid-like Model Super Peer–like Model

Broker

 10

integration and creation of derived LOs. Reporting new LOs is done by the use of the
registration service provided by brokers.

Producers are primarily equipped with an authoring service, which will allow for the creation
of new LOs. Note that since this is a service it can be also provided to consumers. Producers can
also combine LOs, therefore producing new, derived LOs as specified in the User Requirements
document. This will require the integration service – which must support some sort of an
integration mechanism at the lower layer.

Although consumers may use authoring and integration services they cannot register new
LOs. If an LO needs to be registered this is done by a producer. This way we maintain the
architectural semantics: Consumers will always request LOs with broker mediation, since LOs
can only be provided by producers. Additionally producers are the only ones allowed to
change/update an LO. Therefore any updates or changes that consumers will need to make to
LOs must be reported to providers. Producers can be seen as LO repositories to which access is
provided to consumers through the mediators at a higher level (i.e. at the application layer
through the authoring service.)

The brokers, beside core services, provide two other basic services: searching and
registration.

Searching services will be extensively used by consumers. This is actually a distributed
service which will require message exchanging by a number of brokers which will look up their LO
metadata catalogs to return possible results to consumers. The searching technique can be
based on the information service as proposed previously in this document. In any case, brokers
will need to build up some kind of topology in order to efficiently process searching requests.

Registration service is provided for producers. During this process base and derived LOs
metadata are reported and included to the broker’s catalog. It is also supposed that a parallel
catalog can be maintained by brokers that will map ontological information to metadata if this
mechanism is not integrated within the metadata itself. This should allow for the same LOs to be
viewed in multiple ways regarding different consumers.

Brokers should also support services as described in the case of Authorities presented in
subsection 2.4. These include trail management, collaboration services as well as user logging
and charging (since they mediate LO access to and from Producers.)

In the second service setup, a site may support both consumer and producer services. In this
way LOs can be stored at the site at which they were created. Having a site support both sets of
services makes the creation procedure faster, although in service-based models provision of
services is transparent to the users. Consumers may make changes directly to their stored LOs.
A site may only support consumer or only producer services. For example a teacher – the
producer – that provides the base LOs, working with a group of students – the consumers – and
together built up new LOs, which the producer stores and registers.

Proposed services for a consumer and producer site are similar to the first alternative except
for the fact that they may coexist at the same site.

Replication

Another basic service (that will be provided by Producers) is replication. For the first

alternative, with broker mediation (brokers mediate all requests) producers will be instructed to
copy and maintain LOs located at another, remote producer site. Since producers are equipped
with an updating and access mechanism this should be possible. In this way the role of the
producers does not change (after copying an LO they immediately suppose that the replicated LO
is simply part of their collection. We may also completely remove this responsibility from
producers and have brokers copy LOs to producers and register them automatically – i.e.
producers: copy by themselves and then register OR brokers: copy, add to producer (update) and
register automatically.)

For second alternative we propose that replication is done at the broker sites. LOs can be
cached at consumer sites but more permanent and updatable copies should be stored at brokers
that can directly serve requesting users. Changes can be made at any consumer site (instead of
producer sites) and updates are forwarded to the brokers currently holding the updated LO’s
replica.

5.3 Comparison

 11

A brief comparison of three models is presented focusing on the distribution of services,
dynamicity and managerial ease / independence aspects. The architectures are: the Pure Grid,
the Peer-to-Peer /Grid hybrid and the C-B-P Grid.

The pure Grid model concentrates its services at a relatively small number of static locations
(server sites) and thus is described as rather “heavy”. Much weight is put on the server side
nodes whereas the Grid/P2P hybrid and C-B-P architectures distribute the services to all sites
thus making them more flexible. In addition, the hybrid model allows for sites of various
capabilities (e.g. low storage capability or processing power) to be included in the system since
they may contribute any services they can support. On the other hand, the C-B-P model
encounters some difficulties, since it requires a number of specific services to run on each site.

In all three models dynamic addition and removal of services is possible. This is directly linked
with connecting and disconnecting a node to and from the SeLeNe. It is thus obvious that there
are higher chances that the system can continue functioning normally with the Grid/P2P hybrid
since services can be accessed from other supporting sites. On the other hand, locating a service
should take more time with this strategy. In a pure Grid model, losing a server can cause
problems to the system since a number of services will not be available. Still mechanisms for
ensuring service persistence are possible. Concerning the “dynamicity versus service availability”
trade-offs the C-B-P model seems to be the most promising.

Finally, regarding managerial ease the pure Grid and C-B-P models are highly manageable
since service placement and sets of services are more strictly specified with the pure Grid being
the stricter of the two. The Grid/P2P model is difficult to manage since each node is rather
independent with respect to the services provided, but highly dependent on the services provided
by other sites. The C-B-P is less dependent on other sites’ service provision.
In conclusion, it is still an open question to decide which is the most befitting hybrid architecture
for SeLeNe. We venture to suggest C-B-P with Grd-like services. (?)

6 Acknowledgements

We would like to thank Konstantinos Spyrou and Elena Charalambous for their valuable
assistance.

7 References

[1] Alan Fekete, Idit Keidar: A Framework for Highly Available Services Based on Group
Communication

[2] Alexander Löser, Walfgang Nejdl, Martin Wolpers, Wolf Siberski: Information Integration in
Schema-Based Peer-to-Peer Networks

[3] Beverly Yang, Hector Garcia-Molina, Comparing Hybrid Peer-to-Peer Systems

[4] Beverly Yang, Hector Garcia-Molina, Designing a Super-Peer Network

[5] DataGrid Data Management (WP2) – Architecture Report

[6] David De Roure, Nicholas R. Jennings, Nigel R. Shadbolt: The Semantic Grid: A Future
eScience Infrastructure.

[7] George Papamarkos, Projects Related to SeLeNe

[8] Globus CoG Kit: Available at www-unix.globus.org/cog/java/

[9] Gribble, S., Halcry, A., Ives, Z., Rodrig, M., Suciu, D., "What can Peer-to-Peer do for
databases, and vica versa?”

[10] Houda Lamehamedi, Boleslaw Szymanski, and Zujun Shentu, Ewa Deelman: Data
Replication Strategies in Grid Environments

[11] Ian Foster, Carl Kesselman, Steven Tuecke, The Anatomy of the Grid Enabling Scalable
Virtual Organizations

[12] Ian Foster, Carl Kesselman, Steven Tuecke: The Physiology of the Grid (OGSA)

 12

[13] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan: Chord: A
Scalable Peer-to-peer Lookup Service for Internet Applications

[14] Jim Gray, Pat Helland, Patrick O’Neil, Dennis Shasha, The Dangers of Replication and a
Solution

[15] Karl Aberer, P-Grid: A self-organizing access structure for P2P information systems

[16] Kevin Keenoy, George Papamarkos, SeLeNe Report: Existing Learning Management
Systems and Learning Object Reporitories

[17] Kevin Keenoy, SeLeNe - Preliminary Report: Learning Objects, Meta-Data and Standards

[18] Leonidas Galanis, Yuan Wang Shawn, R. Jeffery David J. DeWitt: Processing XML
Containment Queries in a Large Peer-to-Peer System

[19] Luciano Serafini, Fausto Giunchiglia, John Mylopoulos, Philip A. Bernstein, The Local
Relational Model: Model and Proof Theory (2001)

[20] Philip A. Bernstein, Fausto Giunchiglia, Anastasios Kementsietsidis, John Mylopoulos,
Luciano Serafini, and Ilya Zaihrayeu, Data Management for Peer-to-Peer Computing: A
Vision

[21] Project JXTA. Available at www.jxta.org and Edutella at edutella.jxta.org

[22] SeLeNe Kick-off Meeting Presentations (Summary of the SeLeNe Kick-Off Meeting)

[23] SeLeNe Project User Requirements - Draft 1.0

[24] The Garlic project available at http://www.almaden.ibm.com/cs/garlic/homepage.html

[25] The SWAP System available at http://swap.semanticweb.org/public/index.htm

[26] The TSIMMIS project available at http://www-db.stanford.edu/tsimmis/tsimmis.html

[27] The Universal Description, Discovery and Integration Protocol available at www.uddi.org

[28] Wee Siong Ng, Beng Chin Ooi Kian-Lee Tan, BestPeer: A Self-Configurable Peer-to-Peer
System

[29] Wee Siong,Ng, Beng Chin Ooi Kian-Lee Tan Aoying Zhou, PeerDB: A P2P-based System for
Distributed Data Sharing

[30] Wolfgang Hoschek, Peer-to-Peer Grid Databases for Web Service Discovery

