
Defining Peer-to-Peer Data Integration

using Both as View Rules

Peter Mc.Brien1 and Alexandra Poulovassilis2

1 Dept. of Computing, Imperial College, Univ. of London, pjm@doc.ic.ac.uk
2 School of Computer Science and Information Systems, Birkbeck College,

Univ. of London, ap@dcs.bbk.ac.uk

Abstract. The loose and dynamic association between peers in a peer-
to-peer integration has meant that, to date, peer-to-peer systems have
been based on exchange of files identified with a very limited set of
attributes, and no schema is used to describe the data within those files.
This paper extends an existing approach to data integration, called both-
as-view, to be an efficient mechanism for defining peer-to-peer integration
at the schema level, and demonstrates how the data integration can be
used for the exchange of messages and queries between peers.

1 Introduction

The Internet has made available to almost all computer users the basic physical
capability to exchange data. The challenge today is how to effectively harness
this physical connectivity in order to effectively share data between users in a
manner where their participation in data integration is not subject to centralised
control, but instead is conducted in a peer-to-peer (P2P) fashion.
In [MP03] we described the both-as-view (BAV) approach to data integra-

tion, and compared it with the alternative approaches global-as-view (GAV)
and local-as-view (LAV) [Len02]. In BAV, schemas are mapped to each other
using a sequence of bidirectional schema transformations which we call term a
transformation pathway. From these pathways it is possible to extract a def-
inition of the global schema as a view over the local schemas (i.e. GAV) and
it is also possible to extract definitions of the local schemas as views over the
global schema (i.e. LAV). The BAV approach has been implemented as part of
the AutoMed data integration system being developed at Birkbeck and Imperial
Colleges (see http://www.doc.ic.ac.uk/automed).
As we discussed in [MP02,MP03], one advantage of BAV over GAV and LAV

is that it readily supports the evolution of both global and local schemas, includ-
ing the addition or removal of local schemas. Such evolutions can be expressed as
extensions to the existing pathways. New view definitions can then be regener-
ated from the new pathways as needed for query processing. This feature makes
BAV very well suited to the needs of P2P data integration, where peers may join
or leave the network at any time, or may change their set of local schemas, pub-
lished schemas, or pathways between schemas. This paper describes how BAV
can be used in this setting.



Previous work on data integration in P2P environments has used combina-
tions of LAV and GAV rules between schemas and a combination of GAV and
LAV query processing techniques [HIST03,HIMT03]. In our approach described
here, we specify a BAV pathway between any pair of schemas. Due to the implicit
presence of a GAV specification within such BAV pathways, and assuming no
cycles in the inter-connection network between schemas, query answering in our
approach is normally a simple matter of query unfolding using the GAV parts
of the BAV pathways. However, if necessary, we can extract the LAV parts of
the BAV pathways and use LAV query rewriting techniques.
Other complementary work to ours has been carried out within the Edutella

project [Nej03,LNWS03] which uses a superpeer based network topology to pro-
vide better scalability than pure peer-to-peer networks. RDF Schema is used as
the common data model for heterogeneous information sources. Routing indexes
at superpeers store information about the metadata available at the peers di-
rectly connected to them, and aid in the forwarding of query requests only to
relevant peers. Correspondence assertions between global and local schema con-
structs are stored at the superpeers, and these correspondence assertions could
be generated using the BAV techniques we describe here.
The need for a superpeer is avoided in the local relational model (LRM)

[BGK+02], where peers are directly related by a combination of a domain re-
lation that specifies how the data types of the peers are related, together with
coordination formulae that specify that if one predicate is true in one peer,
then another predicate is true in another peer. The BAV approach has previously
been shown to provide such a direct mapping between data sources [MP99a], and
between different data modelling languages [MP99b].
The approach we present in this paper combines the advantages of Piazza

and LRM, by having common virtual superpeer schemas— allowing peers to
reuse the existing integration of other peers with the superpeer schema — but
having no physical superpeer nodes that may act as a bottleneck in the system
— in particular, we show how any peer can combine the different integrations of
other peers with a superpeer schema in order to form direct pathways between
peers for query and update processing.
We begin the paper with an overview of the BAV data integration approach.

We then describe how BAV can be extended to apply in a P2P setting, having
originally been developed for a federated or mediated architecture. We then de-
scribe in more detail our approach to P2P data integration, showing how update
and query requests can be exchanged between peers via superpeer schemas. We
finally give a summary and our conclusions.

2 An Overview of BAV Data Integration

The basis of the BAV approach to data integration is a low-level hypergraph-
based data model (HDM) and a set of primitive schema transformations
for schemas expressed in this HDM [PM98,MP99a]. Facilities are provided for
defining higher-level modelling languages and primitive schema transformations

2



for them in terms of this lower-level HDM. For example, previous work has shown
how relational, ER, UML, XML, RDF and semi-structured data models can
be defined in terms of the HDM [MP99b,MP01,WP03,Kit03]. For each type of
modelling construct of each modelling language (e.g. Relation, Attribute, Primary
Key and Foreign Key in a relational model; Element, Attribute and Parent-Child
relationship in XML) there will be a set of primitive schema transformations for
adding such a construct to a schema, removing such a construct from a schema
and, in the case of constructs with textual names, renaming such a construct.
Schemas are incrementally transformed by applying to them a sequence of

such primitive schema transformations t1, . . . , tr. Each primitive transformation
ti makes a ‘delta’ change to the schema by adding, deleting or renaming just one
schema construct.
The general form of a primitive transformation that adds a construct c of

type T to a schema s in order to generate new schema s′ is addT (c, qs), where
qs is a query over s specifying the extent of c in terms of the existing constructs
of s. The logical semantics of this kind of transformation are

∀x . c(x)↔ qs(x)

and for this reason we term add an exact transformation. In the AutoMed
system, qs is expressed in a functional intermediate query language (IQL)
[JPZ03], and we shall use IQL for example queries in this paper.
When it is not possible to specify the exact extent of the new construct c being

added in terms of the existing schema constructs, the primitive transformation
extendT (c, qs) must be used instead of add. The logical semantics of this kind of
transformation are

∀x . c(x)← qs(x)

and so we term extend a sound transformation. The query qs may just be the
constant Void, indicating that the extent of the new construct cannot be specified
even partially. In this case the query can be omitted from the transformation,
and a value of Void is implied.
In a similar manner, the exact transformation deleteT (c, qs) when applied to

schema s′ generates a new schema s with construct c of type T removed. The
extent of c may be recovered using the query qs on s, and

∀x . c(x)↔ qs(x)

Note that this implies that from a primitive transformation deleteT (c,qs) used
to transform s′ → s we can automatically derive that addT (c,qs) transforms
s→ s′, and vice versa.
When it is not possible to specify the exact extent of the construct c being

deleted from s′ in terms of the remaining schema constructs, the sound trans-
formation contractT (c,qs) must be used instead of delete, where

∀x . c(x)← qs(x)

Again, it is possible that qs may just be Void, indicating that the extent of c
cannot be specified even partially, in which case it can be omitted from the

3



transformation. Note that from a primitive transformation contractT (c,qs) used
to transform s′ → s we can automatically derive that extendT (c,qs) transforms
s→ s′, and vice versa.
Finally, the transformation renameT (c, c′) causes a construct c of type T in

a schema s to be renamed to c′ in a new schema s′, where in logical terms

∀x . c(x)↔ c′(x)

Note that this implies that from renameT (c, c′) used to transform s→ s′ we can
automatically derive that renameT (c′, c) transforms s′ → s, and vice versa.
GAV defines a global schema as a set of views v over the local schemas, and

LAV defines a local schema as a set of views v over a global schema. We relate v to
a set of BAV schema constructs by a rule of the form v(x) = c0(x0), . . . , cn(xn)
where c0(x0), . . . , cn(xn) is a lossless decomposition of v(x). For example, as-
suming the specification of the relational data model in terms of the HDM we
gave in [MP03], if v is a relation r(k, a1, . . . , an) where k are its key attributes
and a1, . . . , an its non-key attributes, then c0 would be a Relation construct
r(k) and c1, . . . , cn would be Attribute constructs r a1(k, a1), . . . , r an(k, an).
In [MP03] we showed how both LAV and GAV views can be extracted from

a BAV pathway. For each view v we extract from the pathway the group of
add and extend transformations that create c1, . . . , cn. If all transformations in
the group are exact then, in the terminology of [Len02], v is an exact view
definition. If any one of c1, . . . , cn is defined using a sound transformation, then
v in a global schema (i.e. defined by GAV rule) is a sound view definition, and
in a local schema (i.e. defined by a LAV rule) is a complete view definition.

3 Developing BAV for P2P Data Integration

When building an integrated database, one must consider both the logical in-
tegration of the schemas and their logical extents, and the operational in-
tegration of the actual data, defining where data is to be materialised (i.e.
permanently stored) and where data will be virtual (i.e. may be queried, but not
permanently stored). We make the assumption that the logical extent of the lo-
cal schemas equates to the materialised data within such schemas. In past work
on data integration, there have been three basic approaches to the operational
integration of data:

– virtual global schema: in the federated database [SL90] andmediator
[Wie92] approaches, data is only materialised in local schemas. Any queries
on the global schema are answered by rewriting the queries to execute on one
or more local schemas, and the logical extent of the global schema equates
to results of those queries. Hence the operational extent of the global schema
is virtual, and equates to its logical extent.

– materialised global schema: in the data warehouse approach [JLVV02],
data is materialised in both local and global schemas, and queries on each
are answered directly from the data held within each schema. Hence the

4



operational extent of the global schema is fully materialised. However the
logical extent of the global schema is defined in the same way as for the
federated database approach.

– partial virtual global schema: in the workflow approach [vdAvH02], the
global schema is implied by some message format standard, and the logical
extent of the global schema is the union of all the valid messages that all
the local schemas may generate in the format. The operational extent of the
global schema is simply those messages that are in transit at any one time.

In P2P networks, local schemas will be autonomous and membership of the
network is likely to be highly dynamic. Thus, maintaining a materialised global
schema is likely to be unachievable in practise, and even answering queries on the
global schema is difficult due to the varying nature of the local schemas. Hence
we regard the workflow model as the most promising for development as a basis
for P2P integration, but we use superpeer schemas (see Section 4 below) to
make explicit the notion of a global schema that is only implied in the workflow
approach. However, we do not assume physical superpeer nodes; rather, we rely
on peers publishing via a directory service such as UDDI their integration with
standard superpeer schemas that might be owned by any peer.

3.1 BAV Sound Queries and Complete Queries

To use BAV for P2P data integration, it is now necessary that we are able write
transformation rules that capture the looser relationship between local and global
schemas. BAV sound transformation rules allow local schemas to provide a lower
bound on what data is available in the global schema, but up to now BAV did
not have a method of specifying that the logical extent of the global schema is
an upper bound on the logical extent of the local schema. For the purposes of
applying BAV to P2P data integration, we now extend it to support this facility.
In particular, we extend the extend and contract transformations discussed above
to take a second query as an argument:

The transformation extendT (c, ql, qu) adds a new construct c of type T to a
schema s to form a schema s′, where ql determines from s what is the minimum
extent of c in s′ (and may be Void if no lower bound on the extent can be
specified) and qu determines from s what is the maximal extent of c in s′ (and
may be Any if no upper bound on the extent can be specified). We write the
extent of c, Ext(c), specified by such a transformation as an interval [ql, qu]. In
logical terms it means that

∀x . c(x)← ql(x) ∧ ∀x . c(x)→ qu(x)

Note that the semantics of add are such that addT (c, qs) ≡ extendT (c, qs, qs).

Similarly, the transformation contractT (c, ql, qu) removes a construct c of type
T from a schema s′ to form a new schema s, where ql determines from s what
is the minimum extent of c in s′, and qu determines from s what is the maximal

5



extent of c in s′. As before, q1 may be Void and qu may be Any. In logical terms
it means that

∀x . c(x)← ql(x) ∧ ∀x . c(x)→ qu(x)

Note that the semantics of delete are such that deleteT (c, qs) ≡ contractT (c, qs, qs).
We refer to the first query in an extend or contract transformation as defining

the sound extent of the construct, and the second query as defining the com-
plete extent; and the transformation as a whole is a sound-complete trans-
formation. In the terminology of [Len02], when used to generate GAV views the
first query generates sound views and the second query generates complete views.
When used to generate LAV views the first query generates complete views and
the second query sound views.
In general, a construct c in a global schema will be derived from a number of

local schemas l1, . . . , ln with an extent [qli , qui
] derived from each local schema.

Hence, there will be a number of lower bound queries over the local schemas,
ql1 , . . . , qln , and a number of upper bound queries, qu1

, . . . , qun
. The extent of

c will have a lower bound which is the union of all the lower bounds, and an
upper bound which is the intersection of all the upper bounds. Hence, writing
the extent of c as an interval, we have Ext(c) = [ql1 ∪ . . . ∪ qln , qu1

∩ . . . ∩ qun
].

4 P2P Data Integration via Superpeer Schemas

We assume that in a P2P network peers are able to create schemas and make
them available to the other peers (i.e. to publish them) — we term such publicly
available schemas superpeer schemas. We will see below how BAV transforma-
tions with sound queries and complete queries within them give a natural method
for defining superpeer schemas.
In addition to such public schemas, peers may also manage one or more local

schemas, which may be either materialised or virtual. Each peer is able to create
transformation pathways between its own local schemas and superpeer schemas
made public by itself or other peers. Such pathways can be stored at the peer, but
we assume that peers are able to publish the fact that they support a pathway
to a superpeer schema (without necessarily publishing the actual pathway). A
superpeer schema has a logical extent that is the union of all the peer schemas
from which there exists a pathway to the superpeer schema.
Suppose now a peer P wishes to send a query or update request formulated

with respect to one of its local schemas, l, to other peers that have access to
data semantically related to l. P can find out to which superpeer schemas, s,
there exists in its own metadata repository a pathway l → s. P can also find
out which other peers support pathways to s. Suppose P ′ is such a peer; then P
can request from P ′ its set of pathways to s. Suppose l′ → s is one of this set of
pathways. P can then combine the reverse pathway s→ l′ with its own pathway
l → s to obtain a pathway from l to l′ (consisting of l → s followed by s → l′).
P can then use this pathway to translate a query or update request expressed
on its own schema l to an equivalent query or update expressed on l′ which can
then be sent to P ′ for processing.

6



4.1 Method for Generating Pathways

To integrate a peer schema psi with a superpeer schema sps, the following steps
need to be followed in order to generate a pathway psi → sps:

1. Decide which constructs of sps have no relationship with psi and use extend
transformations with a [Void,Any] extent to add these constructs.

2. For each remaining construct c in sps, use extend transformations on psi in
order to derive c with a sound query that specifies how constructs in psi can
be used to derive global instances of c.

3. Decide which constructs of psi have no relationship with sps, and use contract
transformations with a [Void,Any] extent to remove these constructs.

4. For each remaining construct c in psi, use contract transformations on psi

in order to derive c with a complete query that specifies how constructs in
sps can be used to derive local instances of c.

4.2 An Example

The schemas in Figure 1 are adapted from the example given in [BGK+02]. Peer
schema PS1 is the schema for a hospital’s patient database. Each patient is as-
signed a unique hospital identifier (hid) and a record is kept of their national
insurance number (ni), name, sex, age, and the name of their gp (General Prac-
titioner, or family doctor). Patients receive treatments. Each treatment has a
unique identifier (tid), and a record is kept of the patient (via their hid), date,
description and the Consultant who authorised the treatment.
Peer PS2 is the schema for the database maintained by General Practitioner

Dr Davies. He identifies his patients by their ni number and records their first
name (fName), last name (lName), sex and address. His database also records in
the event table all treatments and consultations for each of his patients as plain
text descriptions within the field desc.

PS1 patient(hid,ni,name,sex,age,gp)
treatment(tid,hid,date,desc,consultant)

PS2 patient(ni,fName,lName,sex,address)
event(ni,date,desc)

SPS1 allPatients(ni,name,sex,gp)
allTreatments(ni,date,desc)

Fig. 1. Peer schemas

In Figure 1, a possible superpeer schema SPS1 is given. Let us suppose that
the hospital owning PS1 wishes to exchange the information in its patient table,
which we denote PS1.patient, with other peers. Any patient record in PS1 might
be sent to another peer conforming to SPS1. Conversely, a patient record from
another peer conforming to SPS1 might be imported into PS1. The BAV pathway
from PS1 to SPS1 is as follows:

7



PS1 → SPS1

1 contractTable(〈〈treatment, tid, hid, date, desc, consultant〉〉,Void,Any)
2 extendTable(〈〈allTreatments, ni, date, desc〉〉,Void,Any)
3 contractAtt(〈〈patient, age〉〉,Void,Any)
4 contractAtt(〈〈patient, hid〉〉,Void,Any)
5 extendTable(〈〈allPatients, ni, name, sex, gp〉〉, 〈〈patient, ni, name, sex, gp〉〉,Any)
6 contractTable(〈〈patient, ni, name, sex, gp〉〉,Void, 〈〈allPatients, ni, name, sex, gp〉〉)

The first two steps above mean that no association is drawn between the
PS1.treatment and SPS1.allTreatments tables. The next two steps remove infor-
mation about patients’ ages and hospital identifier from the schema. The next
step indicates that SPS1.allPatients is a superset of PS1.patient, while the final
step indicates that PS1.patient is a subset of SPS1.allPatients.

Also note that the contractTable and extendTable transformations are a short-
hand for a sequence transformations on the Rel construct and its associated Att
constructs. For example, contractTable is defined as follows, where k denotes the
sequence of primary key attributes of relation r:

contractTable(〈〈r, a1, . . . , an〉〉, q1, q2) = contractRel(〈〈r〉〉, πkq1, πkq2)
contractAtt(〈〈r, a1〉〉, πk,a1

q1, πk,a1
q2)

. . .

contractAtt(〈〈r, an〉〉, πk,an
q1, πk,an

q2)

The composite transformations extendTable, addTable and deleteTable are simi-
larly defined in terms of a sequence of extend, add and delete primitive transfor-
mations on the Rel construct and its associated Att constructs.

As we saw in Section 3.1 above, each BAV primitive transformation has an
automatically derivable reverse transformation, in that each add/extend transfor-
mation is reversed by a delete/contract transformation with the same arguments,
while each rename transformation is reversed by another rename transformation
with the two arguments swapped. Hence the BAV pathway SPS1 → PS1 is au-
tomatically derivable as the reverse of the above pathway PS1 → SPS1:

SPS1 → PS1

6 extendTable(〈〈patient, ni, name, sex, gp〉〉,Void, 〈〈allPatients, ni, name, sex, gp〉〉)
5 contractTable(〈〈allPatients, ni, name, sex, gp〉〉, 〈〈patient, ni, name, sex, gp〉〉,Any)
4 extendAtt(〈〈patient, hid〉〉,Void,Any)
3 extendAtt(〈〈patient, age〉〉,Void,Any)
2 contractTable(〈〈allTreatments, ni, date, desc〉〉,Void,Any)
1 extendTable(〈〈treatment, tid, hid, date, desc, consultant〉〉,Void,Any)

Similarly, let us suppose that Dr Davies maintaining PS2 wishes to exchange
the information contained in his patient table with other peers. Any patient
record in PS2 might be sent to another peer conforming to SPS1. Conversely, a
patient record from another peer conforming to SPS1 might be imported into
PS2. The BAV pathway from PS2 to SPS1 is as follows:

8



PS2 → SPS1

7 contractTable(〈〈event, ni, date, desc〉〉,Void,Any)
8 extendTable(〈〈allTreatments, ni, date, desc〉〉,Void,Any)
9 addAtt(〈〈patient, gp〉〉, [(x, ‘Davies’) | x← 〈〈patient〉〉])
10 addAtt(〈〈patient, name〉〉, [(x, concat(y1, ‘ ’, y2)) |

(x, y1)← 〈〈patient, fName〉〉; (x, y2)← 〈〈patient, lName〉〉])
11 deleteAtt(〈〈patient, fName〉〉, [(x, substring(z, 0, pos(z, ‘ ’))) |

(x, z)← 〈〈patient, name〉〉]
12 deleteAtt(〈〈patient, lName〉〉, [(x, substring(z, pos(z, ‘ ’) + 1)) |

(x, z)← 〈〈patient, name〉〉]
13 contractAtt(〈〈patient, address〉〉)
14 extendTable(〈〈allPatients, ni, name, sex, gp〉〉, 〈〈patient, ni, name, sex, gp〉〉,Any)
15 contractTable(〈〈patient, ni, name, sex, gp〉〉,Void, 〈〈allPatients, ni, name, sex, gp〉〉)
Again the pathway SPS1 → PS2 is automatically derivable as the reverse of

this. The pathway PS1 → PS2 is just the composition of PS1 → SPS1 and SPS1

→ PS2. Similarly, the pathway PS2 → PS1 is the composition PS2 → SPS1; SPS1

→ PS1 or, equivalently, the reverse of PS1 → PS2

Such BAV pathways between peers, going via common superpeer schemas,
can be used for translating messages between peers. Starting with a message
expressed with respect to a schema of one peer, say PS1, the steps in the pathway
to a schema of another peer, say PS2, can be used to translate the message so
that it is expressed in terms of PS2. Messages may contain update requests
or query requests, both of which can be translated using the techniques we
described in [MP99a] in the context of federated database architectures but
which apply also in this context. The translation uses the queries present within
each transformation step to incrementally rewrite the message at each step, and
we discuss it in more detail now.

4.3 Sending Update Requests Over BAV Pathways

We assume that update requests to be sent from a data source S1 to another
data source S2 will be of the form insert m, delete m, or update m for some
expression m. The message translation process has two aspects, the first per-
forming a logical translation of the message so that it may be applied to S2,
and the second performing an operational interpretation of the message to
decide if it should be applied to S2.
For the logical translation, we regard the data as having a lower bound dl

which is minimum set of values that should be inserted, deleted or updated,
and an upper bound du which is the maximal set of values that should be
inserted, deleted or updated. We write this range as the interval [dl, du]. When
some data d is to be sent from S1 to S2, we begin with [d, d] appearing within
the message expression m. The translation then proceeds as follows for each
successive transformation t in the transformation pathway S1 → S2:

1. if t = rename(c, c′), rename all occurrences of c in m by c′;
2. if t = add(c, q) and q is not Void, add c to m with range [q,q].

9



3. if t = extend(c, ql, qu) and qu is not Void, add c to m with range [ql, qu]. The
value of its associated extent will be within [ql, qu] but this is decided by the
operational aspect of the process.

4. if t = contract(c, ql, qu) or t = delete(c, q) and c appears in m then remove
c from the m.

The operational aspect of the process determines how the values associated
with constructs that appear in extend steps are handled: if the logical value for
a construct derived from a pathway is [ql, qu], the maximal interpretation will
give the construct the value qu and the minimal interpretation will give the
construct the value ql.

For sending data from a peer schema psi to a peer schema psj via a superpeer
schema sps, we define the superpeer minmax interpretation as taking the
minimal interpretation for deriving the extent of constructs in sps from psi, and
then the maximal interpretation for deriving the extent constructs in psj from
sps. Intuitively, the superpeer minmax interpretation ensures that only definite
information from psi is transmitted to psj , and that all such information is
transmitted. Example 1 illustrates this process applied to a message to convert
an insert request expressed on PS1 to an insert request expressed on PS2, using
the superpeer maxmin interpretation.

Example 1 Using pathways to update requests Suppose the update re-
quest insert patient(10000,’ZS341234P’,’Joe Bloggs’,’M’,56,’Davies’) is to be sent
from PS1 to PS2. Transformations 3 and 4 convert the record to

patient(’ZS341234P’,’Joe Bloggs’,’M’,’Davies’)
making it union compatible with allPatients in schema SPS1. Transformation
5 then states that this patient data is a lower bound of what should be in-
serted into allPatients in the superpeer schema SPS1, and using the superpeer
maxmin interpretation, giving the range of values of the message in SPS1 as:

[allPatients(’ZS341234P’,’Joe Bloggs’,’M’,’Davies’),

allPatients(’ZS341234P’,’Joe Bloggs’,’M’,’Davies’)]

Transformation 15 then states upper bound of the the patient record in PS2

is that of allPatients in SPS1. Transformation 13 then inserts a Void value for
the patient’s address while transformations 12 , 11 and 10 break up and replace
the name attribute to make the record

patient(’ZS341234P’,’Joe’,’Bloggs’,’M’,’Davies’,Void)
Finally, step 9 removes the gp attribute; note that the query associated with
this step allows one to reject records which do not have Void or ‘Davies’ as the
gp attribute. This finally gives

insert patient(’ZS341234P’,’Joe’,’Bloggs’,’M’,Void)
as the message that will be sent to PS2. If the address is nullable, then this
insertion can be applied at PS2 without further processing. However if address
cannot be Null, the insertion will be rejected. A user must then be prompted to
find the value of the address attribute before the insertion can be performed.

¤

10



4.4 Sending Query Requests Over BAV Pathways

We assume that query requests to be sent from a data source S1 to another data
source S2 will be of the form query e where e is some IQL expression expressed
on the constructs of S1. The message translation process again has two aspects,
the first performing a logical translation of the message so that is may be
applied to S2, and the second performing an operational interpretation of
the message.
The logical translation of e proceeds as follows for each successive transfor-

mation t in the transformation pathway S1 → S2:

1. if t = rename(c, c′), rename all occurrences of c in e by c′;
2. if t = add(c, q) or t = extend(c, ql, qu) ignore t as c cannot appear within the
current query expression e;

3. if t = del(c, q) replace all occurrences of c in e by the interval [q, q];
4. if t = contract(c, ql, qu) replace all occurrences of c in e by the interval [ql, qu];

The operational aspect of the process determines how the interval queries
associated with constructs that appear in contract steps are handled: if an inter-
val query is [ql, qu], the maximal interpretation will select qu and the minimal
interpretation will select ql.
For sending query requests from a peer schema psi to a peer schema psj via

a superpeer schema sps, we define the superpeer maxmin interpretation as
taking first the maximal interpretation for selecting queries over the intermediate
schema sps, and then the minimal interpretation for selecting queries over the
target schema psj . Intuitively, the superpeer maxmin interpretation ensures that
only definite information from psj will be used to answer the query request and
that all such information will be used.

Example 2 Using pathways to translate queries Suppose the following
query is to be sent from PS1 to PS2:
[(x, n) | x← 〈〈patient〉〉; (x, s)← 〈〈patient, sex〉〉; s = ’F’; (x, n)← 〈〈patient, ni〉〉]
Step 6 results in this query on the superpeer SPS1, where the notation q1 ..

q2 denotes a pair of set-valued queries respectively returning a lower and upper
bound:
[(x, n) | x← Void..〈〈allPatients〉〉; (x, s)← Void..〈〈allPatients, sex〉〉; s = ’F’;
(x, n)← Void..〈〈allPatients, ni〉〉]
Retaining only the upper bound queries, by the superpeer maxmin interpre-

tation, gives:
[(x, n) | x← 〈〈allPatients〉〉; (x, s)← 〈〈allPatients, sex〉〉; s = ’F’;
(x, n)← 〈〈allPatients, ni〉〉]
Step 14 now results in this query on schema PS2:
[(x, n) | x← 〈〈patient〉〉..Any; (x, s)← 〈〈patient, sex〉〉..Any; s = ’F’;
(x, n)← 〈〈patient, ni〉〉..Any]
Retaining only the lower bound queries, by the superpeer maxmin interpre-

tation, gives this final query on PS2:
[(x, n) | x← 〈〈patient〉〉; (x, s)← 〈〈patient, sex〉〉; s = ’F’; (x, n)← 〈〈patient, ni〉〉]

11



After this is evaluated at PS2, the resulting set of records can be translated
back to PS1 using the translation scheme for update requests in Section 4.3. ¤

Example 3 Queries which cannot be answered As an example of P2P
query processing involving unavailable information suppose the following query
is to be sent from PS1 to PS2:
[(x, n) | x← 〈〈patient〉〉; (x, a)← 〈〈patient, age〉〉; a > 65; (x, n)← 〈〈patient, ni〉〉]
Steps 3 and 6 result in this query on the intermediate schema SPS1:
[(x, n) | x← Void..〈〈allPatients〉〉; (x, a)← Void..Any; a > 65;
(x, n)← Void..〈〈allPatients, ni〉〉]
Applying the maxmin interpretation, this becomes:
[(x, n) | x← 〈〈allPatients〉〉; (x, a)← Any; a > 65; (x, n)← 〈〈allPatients, ni〉〉]
Step 14 results in this query on schema PS2:
[(x, n) | x← 〈〈patient〉〉..Any; (x, a)← Any; a = ’F’; (x, n)← 〈〈patient, ni〉〉..Any]
Applying the maxmin interpretation, this finally simplifies to:
[(x, n) | x← 〈〈patient〉〉; (x, a)← Any; a = ’F’; (x, n)← 〈〈patient, ni〉〉]
The presence of Any in the above query implies an absence of information

and the query will evaluate to the empty set: as we would expect, no information
can be extracted from PS2 for the original query since it involves people’s ages,
about which there is no information in SPS1. ¤

In general, a peer may wish to assemble results to a query from more than
one peer that can provide such results, or from all such peers. This is easily
supported in our framework:
Suppose a peer P wishes to send a query request formulated with respect to

one of its local schemas, l, to other peers that have access to data semantically
related to l. P can find out to which superpeer schemas, s, there exists in its
own metadata repository a pathway l → s. P can also find out which other
peers support pathways to s and request from them the pathways from their
local schemas to s. P can then construct a set of pathways from its local schema
l going via a superpeer schema s to other peers’ local schemas. A query request
can be sent individually to each of these local schemas and the data returned
merged at P in order to answer the original query expressed on l.
We note that multiple levels of superpeer schemas are possible with our

approach, c.f. [BRM02], and the inter-connection network between schemas in
our P2P network may be a tree of arbitrary depth as opposed to having just
one level. At present we assume no cycles in this inter-connection network, and
it is an area of further work to explore what their impact would be on query
processing, c.f. [HIST03]. For translating update requests and data sent from one
peer schema l to another l′, we can use ‘minmax’ semantics with respect to the
lowest common ancestor superpeer schema, sps, of l and l′ while for translating
queries from l to l′ we can use ’maxmin’ semantics with respect to sps.
We finally note that the BAV approach can also handle OO models. Once a

BAV pathway has been specified between two schemas, any query that uses inher-
itance needs to be rewritten to make that inheritance explicit, before being trans-
lated using the techniques described above, and then making the inheritance im-
plicit again. For example, suppose we had a subclass of patient called inpatient in

12



PS1 which inherits the attributes of patient. The query 〈〈inpatient, name〉〉 on PS1

would first be translated to [(x, y) | (x)← 〈〈inpatient〉〉; (x, y)← 〈〈patient, name〉〉]
before being translated using the techniques already described.

4.5 Changes to an Integration Network and Schema Evolution

The highly dynamic nature of P2P integration means that we must handle two
types of changes in an efficient manner. First, a peer might wish to change
what parts of one of its local schemas are taking part in an integration network.
Second, the local schemas or superpeer schemas may evolve, and thus we need
to reuse the old integration network to form a new one.

To handle alterations to what constructs of a local schema take part in an
integration network we simply need to keep a record of what actions were taken
when performing steps (1)–(4) in Section 4.1, and see if those actions need to be
reviewed. In particular, if it is decided that a superpeer construct is now to be
related to the peer schema, then the transformation for the construct covered by
step (1) would be replaced by one or more covered by step (2). If a construct in
the peer schema is then in part derivable from the superpeer schema, then the
transformation for the construct covered by step (3) would be replaced by one
or more covered by step (4).

In our running example, it might be decided to relate treatment information
held in PS1 with that in SPS1. This will cause an update to pathway PS1 → SPS1

to be made, replacing the subpathway where the treatment table was contracted
(steps 1 and 2 ) by a new subpathway that transforms PS1.treatment into
SPS1.allTreatments as follows:
16 addAtt(〈〈treatment, ni〉〉, [(x, z) | (x, y)← 〈〈treatment, hid〉〉;

(y, z)← 〈〈patient, ni〉〉])
17 deleteAtt(〈〈treatment, hid〉〉, [(x, z) | (x, y)← 〈〈treatment, ni〉〉;

(z, y)← 〈〈patient, ni〉〉])
18 contractAtt(〈〈treatment, consultant〉〉,Void,Any)
19 contractAtt(〈〈treatment, tid〉〉,Void,Any)
20 extendTable(〈〈allTreatments, ni, date, desc〉〉, 〈〈treatment, ni, date, desc〉〉,Any)
21 contractTable(〈〈treatment, ni, date, desc〉〉,Void, 〈〈allTreatments, ni, date, desc〉〉)
Evolution of peer or superpeer schemas can be handled using our existing

techniques for schema evolution in BAV [MP02]. The approach is that any evo-
lution of a schema should be described as a BAV pathway from the original
schema. It is then possible to reason about the composite pathway between
other schemas, the old schema and the new schema. For example, let us suppose
that a peer decides to publish a new version of SPS1 called SPS′

1
such that all-

Patients now includes an attribute age. This may be expressed by the single-step
pathway SPS1 → SPS′

1
:

22 extendAtt(〈〈allPatients, age〉〉,Void,Any)

Now if a peer schema PS3 integrates with SPS′
1
via pathway PS3 → SPS′

1
it

is possible to exchange messages and data between PS1 and PS2 and the new
schema PS3 using the techniques already described.

13



Using the techniques of [Ton03], the pathways may be analysed to determine
if the integration of the peer schemas with the new superpeer schema might be
refined. For example, considering the pathway PS1 → SPS′

1
which now consists

of 16 –21 , 3 – 6 ,22 , it can be shown that 22 may be reordered to appear
just before 5 if we change 5 to include the age attribute, and change 22 to
operate on the patient table instead of the allPatients table. A suggestion can then
be made to the peer managing PS1 that the age attribute of patient might be
included in the data integration since there is an apparently redundant contract
and extend of the 〈〈patient, age〉〉 construct.

5 Summary and Conclusions

We have defined in this paper an extension to the BAV data integration approach
to allow it to specify both sound queries and complete queries in transformations,
and have demonstrated how this extension may be used for P2P data integration.
The sound queries are used where a minimum answer is required, and serve as
the basis for moving data from peer schemas to superpeer schemas, and for
answering queries on a superpeer schema from a peer schema. The complete
queries are used where a maximal answer is required, and serve as the basis for
moving data from superpeer schemas to peer schemas, and for answering queries
on a peer schema from a superpeer schema. Hence we use ‘minmax’ semantics in
moving data from a peer schema via a superpeer schema to another peer schema,
and ‘maxmin’ semantics in moving queries over a similar path.
We have shown how the pathways are easy to update to reflect changes in

the P2P data integration, and our previous work [MP02] has demonstrated how
we handle schema evolution. Redundancy in the pathways between schemas may
be removed using the techniques described in [Ton03].
The BAV approach has been adopted within the AutoMed data integration

system (http://www.doc.ic.ac.uk/automed). All source schemas, intermedi-
ate schemas and global schemas, and the pathways between them are stored in
AutoMed’s metadata repository [BMT02], and a suite of tools have been devel-
oped for creating and editing a schema integration network, processing queries
(using GAV query processing) [JPZ03], and analysing the contents of schemas to
suggest integration rules. Future work will extend this suite of tools to support
the new P2P extensions reported in this paper. We will also investigate using
this technology for integration of RDF/S descriptions of learning objects in the
SeLeNe project (http://www.dcs.bbk.ac.uk/selene).

References

[BGK+02] P.A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Ser-
afini, and I. Zaihrayeu. Data management for peer-to-peer computing: a
vision. In Proceedings of WebDB02, pages 89–94, 2002.

[BMT02] M. Boyd, P.J. McBrien, and N. Tong. The AutoMed Schema Integration
Repository. In Proceedings of BNCOD02, volume 2405 of LNCS, pages
42–45. Springer-Verlag, 2002.

14



[BRM02] Z. Bellahsene, M. Roantree, and L. Mignet. A functional architecture for
large scale integration. Technical report, Univ. of Montpellier, 2002.

[HIMT03] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazza: Data manage-
ment infrastructure for semantic web applications. In WWW 2003, 2003.

[HIST03] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema mediation in
peer data management systems. In Proceedings of ICDE03. IEEE, 2003.

[JLVV02] M. Jarke, M. Lenzerini, Y. Vassiliou, and P. Vassiliadis. Fundamentals of
Data Warehouses. Springer-Verlag, 2nd edition edition, 2002.

[JPZ03] E. Jasper, A. Poulovassilis, and L. Zamboulis. Processing IQL Queries and
Migrating Data in the AutoMed toolkit. Technical report, AutoMed Tech-
nical Report, 2003. Available fromhttp://www.doc.ic.ac.uk/automed/.

[Kit03] S. Kittivoravitkul. Transformation-based approach for integrat-
ing semi-structured data. Technical report, AutoMed Project,
http://www.doc.ic.ac.uk/automed/, 2003.

[Len02] M. Lenzerini. Data integration: A theoretical perspective. In Proceedings
of PODS 2002, pages 233–246. ACM, 2002.

[LNWS03] A. Loser, W. Nejdl, M. Wolpers, and W. Siberski. Information integration
in schema-based peer-to-peer networks. In Proceedings of CAiSE 2003,
LNCS. Springer-Verlag, 2003.

[MP99a] P.J. McBrien and A. Poulovassilis. Automatic migration and wrapping of
database applications — a schema transformation approach. In Proceedings
of ER99, volume 1728 of LNCS, pages 96–113. Springer-Verlag, 1999.

[MP99b] P.J. McBrien and A. Poulovassilis. A uniform approach to inter-model
transformations. In Advanced Information Systems Engineering, 11th In-

ternational Conference CAiSE’99, volume 1626 of LNCS, pages 333–348.
Springer-Verlag, 1999.

[MP01] P.J. McBrien and A. Poulovassilis. A semantic approach to integrating
XML and structured data sources. In Proceedings of 13th CAiSE, volume
2068 of LNCS, pages 330–345. Springer-Verlag, 2001.

[MP02] P.J. McBrien and A. Poulovassilis. Schema evolution in heterogeneous
database architectures, a schema transformation approach. In Advanced In-
formation Systems Engineering, 14th International Conference CAiSE2002,
volume 2348 of LNCS, pages 484–499. Springer-Verlag, 2002.

[MP03] P.J. McBrien and A. Poulovassilis. Data integration by bi-directional
schema transformation rules. In Proceedings of ICDE03. IEEE, 2003.

[Nej03] W. Nejdl et al . Super-peer-based routing and clustering strategies for RDF-
based peer-to-peer networks. In WWW 2003, 2003.

[PM98] A. Poulovassilis and P.J. McBrien. A general formal framework for schema
transformation. Data and Knowledge Engineering, 28(1):47–71, 1998.

[SL90] A. Sheth and J. Larson. Federated database systems. ACM Computing

Surveys, 22(3):183–236, 1990.
[Ton03] N. Tong. Database schema transformation optimisation techniques for the

automed system. In Proceedings of BNCOD, LNCS. Springer-Verlag, 2003.
[vdAvH02] W. van der Aalst and K. van Hee. Workflow Management: Models, Meth-

ods, and Systems. MIT Press, 2002.
[Wie92] G. Wiederhold. Mediators in the architecture of future information systems.

IEEE Computer, 25(3):38–49, March 1992.
[WP03] D. Williams and A. Poulovassilis. Representing RDF and RDF

Schema in the HDM. Technical report, AutoMed Project,
http://www.doc.ic.ac.uk/automed/, 2003.

15


