

Programming and Formal Verification of Network Communication
Protocols Implementations
Research Aims
The goal of the research is to explore ways how to build formally
verifiable and efficient implementations of network protocols for
industrial mission-critical systems by using modern declarative
programming principles. The ultimate goal of the research is to
develop a programming framework, which would allow Software
Engineers to develop any kind of formally verifiable communication
protocol stacks. Such a framework will be implemented as a library
with a working name PCL (Protocol Combinators Library), which can
be linked with programs developed in an industrial programming
language, such as C11 or C++14. One of the goals of the research is
to keep it relevant in the context of the modern embedded software
development industry, hence the choice of programming languages.

Research Methodology
Each network protocol specification addresses two large topics:
1. Protocol messages processing. Message processing usually

includes: parsing, validation, encryption, compression.
2. Higher level semantics definition of the protocol. The semantics

of the protocol can be represented as some kind of reactive
system or a finite state automaton, which can react on the
messages of the protocol in a correct way and which, ideally,
cannot be put into an undefined state by an incorrect message or
by an illegal message sequence. The set of valid behaviours
includes: authentication and authorization mechanisms, routing
of the messages, higher level dialogs implementation,
concurrency issues.

We are going to implement PCL using latest results achieved in each
of these fields and additionally, as the library name suggests, we are
going to use PCL as a test platform to research the problem of formal
verification of protocol combinations, e.g. communication
subsystems, which use composed communication protocols or
protocol stacks. The critical parts of the PCL will be formally verified
themselves by using the Coq proof assistant and the Verified
Software Toolchain. The currently chosen implementation language of
the library is C11, because it makes it easy to reuse a wealth of
already existing verification tactics for C programs already developed
by the Coq community.

Research Approach

Figure 1. Concept Map of the PCL project

The following problems are being addressed during our work on the
Protocol Combinator Library:
1. Implementation of a generic top-down message parsing DSEL

(domain-specific embedded language) suitable for the use with
C11 (short name Wraith, because its main inspiration is
Boost.Spirit from the C++ universe).

2. Implementation of the declarative reactive DSL, which would
allow programming the high level logic of communication
protocols as well as combining protocol definitions into protocol
stacks. The DSL’s semantics will be based on the results from the
fields of Process Algebras, mainly π-calculus and Session Types,
and Functional Reactive Programming (FRP).

3. For research purposes and in an attempt to make the library as
advanced as possible, the latest results from the following fields
will be used in order to implement PCL and its DSL: NetKAT,
Network Coding, Universal Composability Framework.

4. The new idea of using SMT solvers in order to estimate upper
bounds of the network bandwidth used by traffic generated by
the software implemented using PCL will be tested as a part of
the research. This idea was inspired by the KoAT project.

Department of Computer
Science and Information

Systems

Research Student
Maxim Belov

Supervisors

Carsten Fuhs
Trevor Fenner

	Research Aims
	Research Student
	Maxim Belov
	Supervisors
	Carsten Fuhs
	Trevor Fenner

