

Learning feature weights for K-Means clustering

using the Minkowski metric

Renato Cordeiro de Amorim

Department of Computer Science and Information Systems

Birkbeck, University of London

April 2011

Thesis submitted in fulfilment of requirements for degree of PhD

ii

Declaration

I hereby declare that the work presented in this thesis is my own, and that it has not

previously been submitted for a degree or award at this or any other academic

institution.

Signed:

Renato Cordeiro de Amorim

iii

Abstract

K-Means is arguably the most popular clustering algorithm; this is why it is of

great interest to tackle its shortcomings. The drawback in the heart of this project is that

this algorithm gives the same level of relevance to all the features in a dataset. This can

have disastrous consequences when the features are taken from a database just because

they are available. Another issue of our concern is that K-Means results are highly

dependent on the initial centroids.

 To address the issue of unequal relevance of the features we use a three-stage

extension of the generic K-Means in which a third step is added to the usual two steps

in a K-Means iteration: feature weighting update. We extend the generic K-Means to

what we refer to as Minkowski Weighted K-Means method. Specifically, we use

feature weights as scaling coefficients under Minkowski Lp metric at p≥1 and, thus,

attend to a three-stage method for alternating minimisation of Minkowski K-Means

criterion over three groups of variables: (a) feature weights, (b) centroids, and (c)

cluster lists. We extend Mirkin (2005) method of anomalous clusters to initialize the

centroids and feature weights in this setting. In our experiments on both synthetic and

real-world data, MWK-Means method proves superior over those previous ones on

several counts, the most important being the drastic reduction of impact by noisy

features.

To address the issue of feature selection in this context, we develop a method,

iKFS, an extension of a popular method by Mitra et al. (2002), in which we take into

account the cluster structure of the feature set. Another advantage of iKFS is that it

involves no user-specified parameters.

We apply the developed approaches to problems in distinguishing between

different mental tasks over high-dimensional EEG data.

iv

Contents

Acknowledgements .. vi

List of tables .. vii

List of figures ... x

List of publications .. xii

List of equations ... xiii

Chapter 1: Introduction ... 1

1.1 Introduction and objectives ... 1

1.2 Contribution ... 3

1.3 Thesis structure .. 4

Chapter 2: K-Means based clustering, a review .. 5

2.1 Introduction ... 5

2.2 Clustering algorithms ... 9

2.2.1 Hierarchical clustering .. 11

2.2.2 Partitional clustering ... 15

2.3 Use of K-Means .. 21

2.4 Finding the initial centroids in K-Means .. 22

2.5 Cluster validity ... 27

2.5.1 Internal indices .. 28

2.5.2 Relative indices ... 29

2.5.3 External indices ... 30

2.6 Conclusion .. 32

Chapter 3: Feature weighting at K-Means clustering .. 34

3.1 Feature selection and weighting .. 34

3.2 Feature weighting in K-Means ... 39

3.2.1 Weighted K-Means.. 44

3.3 Extensions of Weighted K-Means .. 48

3.3.1 Intelligent Weighted K-Means .. 48

3.3.2 Minkowski metric Weighted K-Means .. 49

3.3.3 Intelligent Minkowski metric Weighted K-Means .. 56

3.4 Setting of the experiment .. 56

3.5 Experimental results and comparisons .. 64

3.5.1 Experiments on original datasets .. 64

3.5.2 Experiments on modified datasets ... 75

v

3.6 Time comparisons .. 88

3.7 Conclusion .. 90

Chapter 4: Learning the Minkowski exponent ... 93

4.1 Semi-supervised learning ... 93

4.2 Semi-supervised learning in K-Means .. 95

4.3 Semi-supervised algorithms for β .. 99

4.3.1 WK-Means ... 100

4.3.2 iMWK-Means .. 101

4.4 Experimental results and comparisons .. 102

4.4.1 Real-world datasets .. 102

4.4.2 Synthetic datasets ... 105

4.5 Conclusion .. 107

Chapter 5: Reducing feature space in high-dimensional data ... 109

5.1 Introduction ... 109

5.2 Setting of the experiment with all features ... 111

5.3 Experimental results with all features ... 113

5.4 Feature-space reduction .. 124

5.4.1 Feature selection using feature similarity... 125

5.4.2 Feature selection through iKFS ... 128

5.5 Experimental results with the reduced datasets ... 131

5.5.1 Experiments with the FSFS method .. 132

5.5.2 Experiments with the iKFS Method .. 140

5.6 Comparison of the methods .. 148

5.7 Conclusion .. 150

Chapter 6: Conclusion and Future Work .. 152

6.1 Research outcomes .. 152

6.2 Observations .. 153

6.3 Limitations .. 154

6.4 Future research .. 155

References ... 157

Appendix A: Results of general experiments per dataset.. 165

Appendix B: Learning the exponent: Results of experiments per dataset 172

vi

Acknowledgements

My most sincere thanks go to my supervisor Prof. Boris Mirkin. His constructive

criticism and profound knowledge regarding clustering (and history!) have surely made

our meetings rather interesting.

Thanks are also due to Prof. John Q. Gan for multiple consultations regarding EEG

data and trial classification, as well as for supplying the datasets we use in the

experiments in Chapter 5.

There are surely a number of other people who I would also like to thank: Prof. Trevor

Fenner and Prof. George Magoulas for their insightful comments regarding the

progress of this research, Phil Greg for making whatever he could to make sure I

always had enough computing power and Sam Szanto for the grammatical review of

this thesis.

Last but not least, this thesis would have never been possible without the strong support

of my parents and grandparents, to who the deepness of my gratitude cannot be

expressed in words.

vii

List of tables

Table 3.1: Accuracies achieved at different versions of K-Means clustering at the original iris dataset

Table 3.2: Comparing clustering results achieved by various algorithms in the original iris dataset

Table 3.3: iMWK-Means cluster-specific feature weights in the iris dataset at =1.2

Table 3.4: Accuracy levels achieved by the six versions of K-Means in the original wine dataset

Table 3.5: Accuracy achieved by other clustering algorithms in the original wine dataset

Table 3.6: Accuracy levels achieved by the six versions of K-Means in the original Pima Indians diabetes dataset

Table 3.7: Accuracy achieved by other clustering algorithms on the original Pima Indians‟ diabetes dataset

Table 3.8: Accuracy levels achieved by the six versions of K-Means in the original hepatitis dataset

Table 3.9: Accuracy achieved by other clustering algorithms in the original hepatitis

Table 3.10: Results of different weighted partitioning methods in the original Australian credit-approval dataset. * The standard

deviation was not reported in Huang et al. (2008)

Table 3.11: Results of different weighted partitioning methods in the original heart disease dataset. * Huang et al. (2008) did not

report the standard deviation

Table 3.12: Average accuracy results for K-Means‟ versions under consideration in the 10 original GM datasets. The best values of

exponent for WMK-Meas and iWMK-Means versions are given for the best overall for the 10 GMs.

Table 3.13: Accuracy levels achieved at different versions of K-Means clustering in the modified iris dataset; in each row, the first

line represents the accuracy at two noise features, and the second line the same at four noise features

Table 3.14: Accuracy of the K-Means‟ versions in the wine dataset, with seven and 13 noise features, shown on the first and second

lines, respectively. *Optimal for the dataset with seven extra noise features. ** Optimal for the dataset with 13 extra noise features

Table 3.15: Accuracy of the K-Means‟ versions at the Pima Indians diabetes dataset with four and eight noise features, shown on

the top and bottom lines, respectively. *Optimal for the dataset with four extra noise features. ** Optimal for the dataset with eight

extra noise features.

Table 3.16: Accuracy of the K-Means‟ versions in the hepatitis dataset with 10 and 20 noise features, shown on the first and second

lines of each row, respectively. *Optimal for the dataset with four extra noise features. ** Optimal for the dataset with eight extra

noise features.

Table 3.17: Accuracy levels at the considered versions of K-Means for the 10 GM datasets with 500 entities, six features and five

clusters with an additional two random-noise features.

Table 3.18: Accuracy levels at the considered versions of K-Means for the five GM datasets with 500 entities, 15 features and five

clusters with additional 10 random noise features

Table 3.19: Accuracy levels at the considered versions of K-Means for the five GM datasets with 1,000 entities, 25 features and 12

clusters with an additional 25 random noise features

Table 3.20: Accuracy levels at the considered versions of K-Means for the five GM datasets with 1,000 entities, 50 features and 12

clusters with an additional 25 random noise features

Table 3.21: The average amount of time in seconds for a single run for all algorithms under consideration. Note that unlike the

others, “intelligent” algorithms (iK-Means, iWK-Means and iMWK-Means) need to be run only once to get an optimal result. The

number of added noise features is in the parenthesis.

Table 4.1: Semi-supervised estimation of β in WK-Means on original datasets (i to vi)

Table 4.2: Semi-supervised estimation of β in iMWK-Means on original datasets (i to vi)

Table 4.3: Semi-supervised estimation of β in WK-Means on modified datasets (i to iv)

viii

Table 4.4: Semi-supervised estimation of β in iMWK-Means on modified datasets (i to iv)

Table 4.5: Semi-supervised estimations of β in WK-Means on Gaussian models with noise, datasets vi to x

Table 4.6: Semi-supervised estimation of β in iMWK-Means on Gaussian models with noise, datasets vi to x

Table 5.1: Accuracies achieved using WK-Means and iMWK-Means clustering at the EEG data for subject A

Table 5.2: Accuracies achieved using WK-Means‟ and iMWK-Means‟ clustering at the EEG data for subject B

Table 5.3: Accuracies achieved using WK-Means‟ and iMWK-Means‟ clustering at the EEG data for subject C

Table 5.4: Accuracies achieved with the WK-Means and iMWK-Means algorithms, using only the features selected using FSFS, on

subject A‟s data; the number of features is shown in parentheses

Table 5.5: Accuracies achieved with the WK-Means and iMWK-Means algorithms, using only the features selected using FSFS, on

the data of subject A: the number of features is shown in parentheses

Table 5.6: Accuracies achieved with the WK-Means and iMWK-Means algorithms, using only the features selected using FSFS, on

subject A‟s data: the number of features is shown in parentheses

Table 5.7: Accuracies achieved with the WK-Means and iMWK-Means algorithms, using only the 20 features selected via iKFS on

subject A‟s data

Table 5.8: Accuracies achieved with the WK-Means and iMWK-Means algorithms, using only the nine features selected via iKFS

on the data of subject B

Table 5.9: Accuracies achieved with the WK-Means and iMWK-Means algorithms, using only the 11 features selected via iKFS

clustering on subject C‟s data

Table 5.10: Comparison of algorithms for subject A; the number of features is shown in parentheses

Table 5.11 Comparison of algorithms for subject B; the number of features is shown in parentheses

Table 5.12: Comparison of algorithms for subject C; the number of features is shown in parentheses

Table A.1: Accuracy levels at the considered versions of K-Means for dataset (vii) – 500 entities, 12 clusters, eight features

including 2 extra noise features.

Table A.2: Accuracy levels at the considered versions of K-Means for the 5 GM datasets with 500 entities, 15 features and 5

clusters with an additional 10 random-noise features.

Table A.3: Accuracy levels at the considered versions of K-Means for the 5 GM datasets with 1000 entities, 25 features and 12

clusters with an additional 25 random-noise features.

Table A.4: Accuracy levels at the considered versions of K-Means for the 5 GM datasets with 1000 entities, 50 features and 12

clusters with an additional 25 random-noise features.

Table B.1: Semi-supervised estimations of β in WK-Means on Gaussian models with noise, dataset (vii) - 500x8, including 2 extra

noise features.

Table B.2: Semi-supervised estimations of β in WK-Means on Gaussian models with noise, dataset (viii) - 500x25, including 10

extra noise features.

Table B.3: Semi-supervised estimations of β in WK-Means on Gaussian models with noise dataset (ix) - 1000x50, including 50

extra noise features.

Table B.4: Semi-supervised estimations of β in WK-Means on Gaussian models with noise, dataset (x) - 1000x75, including 25

extra noise features.

Table B.5: Semi-supervised estimations of β in iMWK-Means on Gaussian models with noise, dataset (vii) - 500x8, including 2

extra noise features.

Table B.6: Semi-supervised estimations of β in iMWK-Means on Gaussian models with noise, dataset (viii) - 500x25, including 10

extra noise features.

ix

Table B.7: Semi-supervised estimations of β in iMWK-Means on Gaussian models with noise dataset (ix) - 1000x50, including 50

extra noise features.

Table B.8: Semi-supervised estimations of β in iMWK-Means on Gaussian models with noise, dataset (x) - 1000x75, including 25

extra noise features.

x

List of figures

Figure 2.1: A visual representation of the Minkowski distance “circles”, a set of points equidistant to the centre, at different p.

Figure 2.2: Example of confusion matrix

Figure 3.1: On the left, the iris dataset, on the right its version with two noise features, on the plane of the first two principal

components, with the clusters shown using different shapes for entities

Figure 3.2: On the left, the wine dataset, on the right its version with 13 noise features, on the plane of the first two principal

components, the clusters shown using different shapes for entities

Figure 3.3: Illustration of one of the generated GM datasets with 500 entities, six features and five clusters on the left, and its

version with two extra noise features on the right. Both are on the plane of their respective first two principal components.

Figure 3.4: Illustration of one of the generated GM datasets with 500 entities, 15 features and five clusters on the left, and its

version with 10 extra noise features on the right. Both are on the plane of their respective first two principal components.

Figure 5.1: PSD data for subject A on the plane of the first two principal components, the clusters are shown using different shapes

for the trials

Figure 5.2: Accuracy of iMWK-Means and WK-Means per beta in subject A‟s data. IMWK-Means and WK-Means are represented

by the solid and dotted lines, respectively

Figure 5.3: Mean of the three final weights (one per cluster) per feature for subject A. IMWK-Means and WK-Means are shown in

the left- and right-hand figures, respectively

Figure 5.4: Standard deviation of weights per beta on subject A: the solid, dashed and dotted lines represent the clusters for tasks

T1, T2 and T3, respectively; the figure of iWMK-Means is on the left while WK-Means is on the right

Figure 5.5: PSD data for subject B on the plane of the first two principal components, the clusters are shown using different shapes

for trials

Figure 5.6: Accuracy of iMWK-Means per beta in subject B data: IMWK-Means and WK-Means are represented by the solid and

dotted lines, respectively

Figure 5.7: Mean of the three final weights (one per cluster) per feature for subject B: IMWK-Means and WK-Means are shown in

the left and right figures, respectively

Figure 5.8: Standard deviation of weights per beta on subject B. The solid, dashed and dotted line represent the clusters for tasks

T1, T2 and T3, respectively: the figure of iWMK-Means is at the left while WK-Means is on the right

Figure 5.9: PSD data for subject C on the plane of the first two principal components, the clusters are shown using different shapes

for trials

Figure 5.10: Accuracy of iMWK-Means per beta in subject C data: IMWK-Means and WK-Means are represented by the solid and

dotted lines, respectively

Figure 5.11: Mean of the three final weights (one per cluster) per feature for subject B: IMWK-Means and WK-Means are the left

and right figures, respectively

Figure 5.12: Standard deviation of weights per beta on subject C: The solid, dashed and dotted line represent the clusters for tasks

T1, T2 and T3 respectively; the figure of iWMK-Means is at the left while WK-Means is at the right

Figure 5.13: PSD of subject A on the plane of the first two principal components, the clusters shown using different shapes for the

trials: the left-hand and centre figures use 28 and 25 features, respectively, selected with the FSFS method; the figure on the right

uses all features

Figure 5.14: Accuracy of iMWK-Means per Beta in subject A‟s data. IMWK-Means and WK-Means are represented by the solid

and dotted lines, respectively: the above was obtained using only the features selected via the FSFS method for each algorithm

Figure 5.15: Mean of the three final weights (one per cluster) in each of the features selected via FSFS for subject A: IMWK-

Means and WK-Means are shown in the left- and right-hand figures, respectively

xi

Figure 5.16: PSD of subject B on the plane of the first two principal components, the clusters are shown using different shapes for

trials: the figures in the left and centre use 393 and 472 features, respectively, selected with the FSFS method: the figure on the

right uses all features

Figure 5.17: Accuracy of iMWK-Means per beta in subject A‟s data: IMWK-Means and WK-Means are represented by the solid

and dotted lines, respectively; the above was obtained using only the features selected via the FSFS method for each algorithm

Figure 5.18: Mean of the three final weights (one per cluster) in each of the features selected via FSFS for subject B: IMWK-Means

and WK-Means are shown in the left- and right-hand figures, respectively

Figure 5.19: PSD of subject C on the plane of the first two principal components, the clusters are shown using different shapes for

trials: the figure on the left uses only the 33 features selected with the FSFS method, while the one on the right uses all of them

Figure 5.20: Accuracy of iMWK-Means per beta in subject A‟s data: IMWK-Means and WK-Means are represented by the solid

and dotted lines, respectively; the above was obtained using only the features selected via the FSFS method for each algorithm

Figure 5.21: Mean of the three final weights (one per cluster) in each of the features selected via FSFS for subject C. IMWK-Means

and WK-Means are shown in the left- and right-hand figures, respectively

Figure 5.22: PSD of subject A on the plane of the first two principal components, the clusters are shown using different shapes for

trials: the figure on the left uses only the 20 features selected with iKFS, while the one on the right uses all

Figure 5.23: Accuracy of iMWK-Means per beta in subject A’s data: IMWK-Means and WK-Means are represented by the solid

and dotted lines, respectively; the above was obtained using only the 20 features selected via iKFS

Figure 5.24: Mean of the three final weights (one per cluster) in each of the 20 features selected with iKFS for subject A: IMWK-

Means and WK-Means are shown in the left- and right-hand figures, respectively

Figure 5.25: PSD of subject B on the plane of the first two principal components, the clusters shown using different shapes for

trials: the figure in the left uses only the nine features selected with iKFS while the one at the right uses all of them

Figure 5.26: Accuracy of iMWK-Means per Beta for subject B‟s data: IMWK-Means and WK-Means are represented by the solid

and dotted lines, respectively; the above was obtained using only the nine features selected via iKFS

Figure 5.27: Mean of the three final weights (one per cluster) in each of the nine features selected with iKFS for subject B: IMWK-

Means and WK-Means are shown in the left- and right-hand figures, respectively

Figure 5.28: PSD for subject C on the plane of the first two principal components, the clusters shown using different shapes for

trials: the figure on the left uses only the 11 features selected with iKFS while the one on the right uses all of them

Figure 5.29: Accuracy of iMWK-Means per beta in subject C data: IMWK-Means and WK-Means are represented by the solid and

dotted lines, respectively; the above was obtained using only the 11 features selected via iKFS

Figure 5.30: Mean of the three final weights (one per cluster) in each of the 11 features selected with iKFS for subject C: IMWK-

Means and WK-Means are shown in the left- and right-hand figures, respectively

xii

List of publications

Amorim, R. C. (2008), Constrained Intelligent K-Means: Improving Results with Limited Previous

Knowledge, Proceeding of Advanced Engineering Computing and Applications in Sciences, IEEE

Computer Society, pp 176-180.

Amorim, R. C., Mirkin, B., Gan J. Q. (2010), A Method for Classifying Mental Tasks in the Space of

EEG Transforms. Technical report BBKCS-10-01, Birkbeck University of London, London.

Amorim, R. C., and Mirkin, B. (2011), Minkowski Metric, Feature Weighting and Anomalous Cluster

Initializing in K-Means Clustering. Pattern Recognition (in revision).

xiii

List of equations

Equation 2.1: Squared Euclidean distance

Equation 2.2: Hamming (also called city block and Manhattan) distance

Equation 2.3: Minkowski distance

Equation 2.4: Single linkage distance

Equation 2.5: Full linkage distance

Equation 2.6: Group average criterion

Equation 2.7: Ward distance

Equation 2.8: General K-means criterion

Equation 2.9: General K-means criterion using the squared Euclidian distance

Equation 2.10: Silhouette width

Equation 2.11: The maximum comparison between cluster i and the other clusters

Equation 2.12: The Davies-Bouldin Index

Equation 2.13: Rand index

Equation 3.1: Loss of meaning between the farthest and nearest entities with the increase of dimensions

Equation 3.2: Weighted K-Means criterion

Equation 3.3: WK-Means weight update

Equation 3.4: Within-cluster variances of feature v

Equation 3.5: The adjusted distance measure to take the weights into account

Equation 3.6: Minkowski metric Weighted K-Means criterion

Equation 3.7: Minkowski centre in MWK-Means

Equation 3.8: Weight update in MWK-Means

Equation 3.9: Dispersion in MWK-Means

Equation 3.10: Minkowski centre in MWK-Means, re-written

Equation 3.11: First derivative of d(c) equation 3.10

Equation 3.12: Second derivative of d(c) equation 3.10

Equation 3.13: Standardisation of numerical features

Equation 5.1: Correlation coefficient

Equation 5.2: Maximal information compression index

Equation 5.3: Defining the quantity of features f selected from a cluster

1

Chapter 1: Introduction

1.1 Introduction and objectives

Advances in technology have allowed the storage of massive amounts of data.

Organisations and even ordinary people can easily acquire and keep larger quantities of

data than ever before. This is evident if one compares the capacity of hard disks sold in

common computers ten years with the ones we have today.

 Data on its own is unlikely to be useful; the user need is normally towards

information. For large datasets we have the whole field of data mining, which takes

into account the intuitive idea that the larger the amount of data, the more difficult it is

to extract information from it. A number of approaches can be used in data mining, and

clustering stands as a popular one. Clustering separates data without the need of

labelled samples; this particularly distinguishable characteristic associates it with

unsupervised learning.

 It is fair to assume that in a dataset not all features are necessarily relevant or

correct, by consequence clustering may benefit from using only a selected subset of the

features. This point has been taken further in a number of papers, including DeSarbo et

al. (1984), Green et al. (1990), Strehl et al. (2000), Makarenkov and Legendre (2001),

Modha and Spangler (2003), Xing et al. (2003), Chan et al. (2004), Frigui and Nasraoui

(2004), Huang et al. (2005, 2008), and Tsai and Chiu (2008). They assume that not all

features, even if they are relevant, will necessarily have the same degree of relevance.

Instead of selecting features using a binary approach, they generalise this idea and set

weights to the features in the range [0, 1]. As expected, setting feature weights without

labelled samples for an algorithm to learn from is not a trivial task. This is probably the

reason why the above referenced papers use at times very different approaches, as we

2

discuss in Chapter 3, Section 3.2.

 This thesis aims to further the research in feature weighting, specifically

analysing the cases of noise features and similar features, allowing the use of the

Minkowski metric (formally introduced in Chapter 2, Section 2.2). Generally speaking,

this metric allows identifying, and in fact, ignoring irrelevant features (Kivinen et al.,

2006). We intend to:

(i) Answer the question:

Can the use of the Minkowski metric improve the accuracy of a weighted

clustering algorithm?

Specifically, we:

a. Review generic clustering, and more specifically feature weighting

clustering algorithms, selecting one of the latter.

b. Introduce an extension to the chosen feature weighting clustering

algorithm that will allow it to use the Minkowski metric.

c. Introduce a deterministic version of the chosen feature weighting

algorithm, yet using the Minkowski metric

d. Define an evaluation criterion, aligned to what has been used in the

literature of the chosen feature weighting clustering algorithm.

e. Acquire and generate datasets, with and without noise features.

f. Compare the introduced algorithms to well established counterparts

g. Investigate the possibility of learning the Minkowski exponent from a

small amount of labelled data.

3

(ii) We analyse the impact of similar features in clustering weighted methods.

To do this we:

a. Apply the weighted algorithms to datasets in a high-dimensional space.

Such datasets are more likely to have similar features than those in a

low-dimensional space.

b. Apply a popular method for similar feature reduction, and re-run the

experiments.

c. Improve the chosen feature reduction algorithm to remove the necessity

of any extra parameter, and make sure it takes the feature structure into

consideration.

d. Compare the new feature reduction algorithm with the chosen popular

one.

1.2 Contribution

In order to meet the objectives, this thesis introduces two clustering methods:

Minkowski Weighted K-Means and intelligent Minkowski Weighted K-Means. These

are formally introduced in Chapter 3, Sections 3.3.2 and 3.3.3 respectively. They

automatically assign K weights to each feature in a dataset, where K is a pre-defined

number of clusters.

 We also develop a new method for reducing the amount of features based on

their similarity, the intelligent K-Means with feature similarity (iKFS), formally

introduced in Chapter 5, Section 5.4.2. In our method we assume that features clustered

together carry similar information and by consequence most can be discarded. If used

as a pre-step, it potentially increases the accuracy of our algorithms in high-

4

dimensional spaces as Chapter 5, Section 5.5.2 shows.

 We conduct extensive experiments to substantiate the use of the introduced

methods.

1.3 Thesis structure

Chapter 2 presents a literature review of clustering as a whole, including algorithms

that are arguably the most important in the field. In this chapter we justify our choice of

K-Means and iK-Means.

Chapter 3 discusses our new methods for feature weighting using the Minkowski

metric. It aims to describe two methods and show their superiority through a

comparison with other well established methods.

Chapter 4 deals with the open issue of finding an optimal Minkowski exponent for a

given dataset. In this we propose a method bases on semi-supervised learning.

Chapter 5 relates to the application of our method in a high-dimensional space. We also

experiment with a popular algorithm used to discard similar features. We introduce a

method with a similar aim that unlike others does not have an extra parameter.

Chapter 6 summarizes the contribution of this thesis, discusses its limitations, and sets

possible paths for future research.

5

Chapter 2: K-Means based clustering, a review

2.1 Introduction

In his book, Hartigan (1975:1) defines clustering as the grouping of similar objects. The

meaning of this brief, but precise, definition may not be clear at first. For instance, it

merely touches upon the loose notion of similarity, that in order for us to group

together similar objects we firstly need a method to quantify the similarity of two

objects. In clustering, this is normally done with a distance (also called dissimilarity)

measure. Since this measure will be used on the objects‟ features, it can also be

concluded that clustering will depend on such features, and is therefore a data-driven

task. As stated by Jain and Dubes (1988:1), the goal of clustering is to produce groups

containing objects that are alike, while objects in different groups are not like. The

clustering task attempts to empirically elucidate the „natural‟, unknown and ideally

interesting groups within data, making their structure implicit.

 Humans quite often perform clustering: most of the time without noticing. For

instance, sorting documents into folders normally involves grouping similar ones

together. Clustering is also a common task in science, which has been applied to a

number of different fields, such as: data mining, computer vision, bioinformatics

(Brohee and Helden, 2006), crime analysis (Hartigan, 1975:30), and the visualisation of

data streams (Wong et al., 2004). Some scholars, including Romesburg (2004:4), take

the view that clustering may be useful to researchers in all fields, as all will need to

make and revise classifications.

 The clustering task is usually performed under a condition that is known as

unsupervised learning. This type of learning does not require object samples to be

labelled in order to group other, similar objects – in contrast to supervised learning.

Clustering algorithms learn from the objects to be grouped and their features, rather

6

than from the given samples. This can be seen as a considerable advantage, as although

acquiring data is much easier nowadays than just a few decades ago, labelling such data

can still be difficult and error prone. Also, algorithms based on supervised learning that

receive wrongly labelled samples from which to learn, or simply receive an insufficient

amount of correctly labelled samples, are likely to underperform.

 Of course, under ideal conditions, algorithms based on supervised learning are

likely to be closer to an optimal result that those based on unsupervised learning. We

can intuitively recognise that it tends to be easier to learn from given samples than from

no samples. The problem is that such ideal conditions cannot always be met. As has

been shown by Duda et al. (2001:517), acquiring recorded speech can have a very

small, at times even negligible, cost, but labelling such speech word by word or

phoneme by phoneme can be very expensive and time consuming. In scenarios where

obtaining a representative quantity of labelled data is unfeasible, or ones in which

labels do exist but are unreliable, supervised learning becomes impractical.

 Another interesting aspect of unsupervised learning is that it does not need to be

the only learning approach. Different learning approaches should not be seen to be in

competition. For instance, clustering can be combined with a supervised learning

method (Callan, 2003:312) to generate a two-phased learning approach for

classification or regression. We can, of course, expand this suggestion to semi-

supervised learning, which is comprised of methods that normally attempt to learn from

a very small amount of labelled data.

 In his monograph, Mirkin (2005:3) presents a list of five objectives for

clustering, acknowledging these may overlap to some degree: they are: (i) structuring:

the objective of which is to find the primary groups of objects and represent the data as

a set of these groups; (ii) description: describing the clusters in relation to their features

7

– within this objective, finding clusters is not a major concern; the desirability of this

description stems from the fact that a good cluster description may be used to enhance

understanding of a cluster, or even for better prediction; (iii) association: uncovering

relationships between clusters and, by consequence, objects – clusters are said to be

related if they are well described twice, but each description relates to a different

aspect; (iv) generalisation: deriving general statements about data – as pointed out by

Hartigan (1988:6), one may refer to the features of clusters rather than to the features of

individual objects; (v) visualisation: a rather general term for mapping data structures

onto a known ground image, in most cases a coordinate place. Jain (2010) states, rather

more succinctly, that the overarching aim of clustering is to find structure in data and

that, as a consequence, it is exploratory in nature.

 After the clustering algorithm identifies the groups of data, which we call

clusters, it should assign objects to them. Witten and Frank (2005:137) define four

categories to this assignment. Each category has a direct impact on the final cluster

structure:

● Non-overlapping

Each object belongs to one cluster only.

● Overlapping

Any object may belong to more than one cluster.

● Probabilistic

An object belongs to each cluster with a certain probability.

● Hierarchical

In this category, the cluster structure looks like a tree in which a cluster

with all its objects represents the root. These clusters can be created

8

following either a top-down, or a bottom-up, approach.

Clearly, clustering is not without flaws, and the inexactitude begins with the

fact that there is no universally agreed definition for the term cluster (Xu and Wunsche,

2010:4), so it becomes then subjective to the problem. Some scholars argue that this

lack of a key definition is the main reason why there are so many clustering algorithms

today (Estivill-Castro, 2002). Also, finding the number of clusters in a dataset can be

quite problematic, as a wide variety of algorithms assume that such number is known

beforehand. The difficulty in defining the term cluster stems from the fact that the

actual number of clusters depends on a series of factors, such as:

 The resolution being used in the analysis (fine versus coarse) (Jain,

1988:2; Nascimento, 2005:2); a change in resolution may then generate

a change in the number of clusters.

 The method being applied. Different algorithms will often result in

different groupings (Mingoti and Lima, 2006) as each implicitly

imposes a structure upon the data (Webb, 2002: 361).

 The distance (sometimes called the dissimilarity) measure, as in some

cases different measures can be incorporated into the same method. The

issue is that there are a number of different distance measures, and each

may look for a different geometrical shape in the data (Pedrycz, 2005:

26). A consequence is that the clusters and their quantities may then

differ.

Although the groups will not necessarily accurately represent the inner structure

of the data, this is the main aim of clustering. This may happen because clustering does

9

not guarantee that the error will reach its global minima. Also, there may be scenarios

in which the data do not present „natural‟ grouping, but clustering algorithms will

group objects anyway (Webb, 2002:361). Finally, after the clustering process is

finished, it is difficult to determine its success, as in most real-world scenarios there are

no labelled test data to compare results (Hand et al., 2010:295).

2.2 Clustering algorithms

Because of the rather large amount of research that has been conducted in the field,

there is now a vast quantity of clustering algorithms. Comprehensive reviews of

examples of such algorithms can be found in the works of: Hartigan (1975),

Aldenderfer and Blashfield (1984), Jain and Dubes (1988), Kaufman and Rousseeuw

(1990), Mirkin (1996, 2005), Romesburg (2004), Pedrycz (2005), Xu and Wunsch II

(2005, 2010), Berkhin (2006), and Jain (2010).

 As previously discussed, the results of clustering algorithms may depend on the

distance measure in use, of which there are a large number. Deza and Deza (2009) have

published a encyclopaedia on the subject, while Perlibakas (2004) presents a shorter,

but still comprehensive review on the subject, focusing in the field of face recognition.

 Probably the most common measure used in clustering algorithms is the squared

Euclidean distance. Assuming two points, x and y, of N dimensions, this can be defined

as follows:

 Equation 2.1: Squared Euclidean distance

10

The Euclidean distance is rather intuitive as it can be viewed through the Pythagoras‟

Theorem.

 The Hamming distance (also known as the city block distance and Manhattan

distance) is in common use as well. In this, the distance is defined by the absolute

difference between two points, as in the equation:

Equation 2.2: Hamming (also called city block and Manhattan) distance

The Minkowski distance is a generalisation of both the Euclidian and Hamming

distances; it is as follows:

Equation 2.3: Minkowski distance

If p is equal to one or two, the results are equivalent to the Hamming distance and

Euclidian distance, respectively. Figure 2.1 shows the effect of different p on the

distance.

 Figure 2.1: A visual representation of the Minkowski distance “circles”, a set of points equidistant to the centre, at different p. This

public domain image can be found in http://en.wikipedia.org/wiki/File:Minkowski2.png

11

Clustering algorithms are commonly divided into Hierarchical and Partitional

clustering, and these are explained in sections 2.2.1 and 2.2.2 respectively.

2.2.1 Hierarchical clustering

Hierarchical clustering produces cluster structures which are often represented as trees.

These structures, also known as dendograms, allow a root cluster to have branch

clusters (each may later become a root cluster and generate more branches). The dataset

features in this type of clustering do not need to be in the same hierarchy.

 In hierarchical clustering, singletons (clusters containing a single object) are

referred to as terminal nodes, and the universal combined cluster consisting of the

entire entity set is referred to as the root of the tree; all other clusters are referred to as

its nodes. Hierarchical clustering can be subdivided into:

 (i) A bottom-up approach known as agglomerative clustering. When using the

agglomerative method, the clustering task normally begins with a set of singletons.

Algorithms in this category will recursively merge the two or more most similar

clusters.

 (ii) An inverse, top-to-bottom approach, known as divise clustering. Algorithms

in this category normally initialise with the root cluster. They recursively split the most

appropriate cluster into smaller units.

 Algorithms in both the agglomerative and divisive categories will continue until

a stopping criterion is met. Berkhin (2006) identifies the vagueness of the termination

criteria, as well as the fact that most hierarchical algorithms do not revisit clusters once

they are constructed, as the major disadvantages of hierarchical clustering. On the other

hand, Berkhin also identifies advantages to this approach, such as the flexibility given

12

regarding the level of granularity, which can be tuned in the stopping criteria and the

easy means of handling any form of similarity or distance measure. Hierarchical

clustering includes algorithms such as single and full linkage, spanning tree, etc.

 As hierarchical clustering will always merge or split clusters, the method used

to determine the distance in between clusters (not to be confused with the previously

discussed distance measure between points) is of key importance. The use of different

methods is a major difference between algorithms as they may, just like distance

measures, impact on an algorithm‟s final outcome. In other words, algorithms using

different methods may produce different cluster structures. There are a number of such

methods, including:

 (i) Single linkage (also called nearest neighbour), which defines the distance

between two clusters as the minimum possible. The method finds the two entities, one

of each cluster, that are the closest to each other, as per the equation below:

Equation 2.4: Single linkage distance

in this equation, the distance between clusters X and Y is given by the distance in

between the two closest entities, and y , in the two clusters. A disadvantage

of this rather simple method is that having two close entities does not necessarily mean

that the whole two clusters can be considered to be close.

 (ii) Full linkage, which uses the opposite of the above. The measure finds the

two entities, and y , that are the farthest from each other.

Equation 2.5: Full linkage distance

13

In terms of disadvantage, we can refer back to the previous method and conclude that

having two entities, and y , which have the maximum distance between

entities of clusters X and Y, small, does not necessarily mean that the two clusters are

close.

 (iii) Group average criterion (GAC) defines the distance between two clusters as

the distance between their centroids. Assuming the centroids are the average of a

cluster, one can define the GAC as follows:

Equation 2.6: Group average criterion

 (iv) The Ward method (Ward, 1963) calculates the distance between two

clusters, taking into account the number of elements in each.

This section will now exemplify hierarchical clustering algorithms based on the

Ward distance, as it is the only one from the above with a non-obvious implementation.

Given two clusters and , represented by the centroids , , and with a total

number of elements , , respectively, the Ward distance would be defined as:

Equation 2.7: Ward distance

where is normally the squared Euclidean distance between the two

centroids. Mirkin (2005: 115) illustrates the agglomerative Ward algorithm as follows:

14

Algorithm 2.1: Agglomerative Ward algorithm

In order to use single or full linkage, change steps 2 and 3, the cluster update and

distance update to use equations 2.4 and 2.5 respectively. This way, the centroids

would be the average of their cluster and the distance measure used would cease to be

Ward‟s distance and be either the minimum or maximum distance.

 The Ward criterion can also be used in divisive clustering. In this approach, the

objective is to split a cluster in two, rather than to merge them. Mirkin (2005: 117)

describes the algorithm as follows:

1. Initial setting

Each entity is set as a singleton cluster with the centroids being

themselves; the initial set of maximal clusters contains all of them.

2. Cluster update

The two clusters with the smallest Ward distance within the maximal

clusters are merged. The new parent cluster contains all entities of the

two initial clusters, and its cardinality is equal to the sum of the previous

two child cluster cardinalities. The new centroids are defined by:

 .

3. Distance update

Remove the child clusters found in step 2 from the maximal clusters, and

replace them with the new parent cluster. Calculate the distance between

the new parent cluster and all other maximal clusters.

4. Repeat

If there is more than one maximal cluster, return to step 2; otherwise,

finish here.

15

Algorithm 2.2: Divisive Ward algorithm

2.2.2 Partitional clustering

Partitional clustering includes algorithms with objective functions to be optimised,

normally in an iterative way. This is done because, in most scenarios, checking all

possible cluster structures is computationally infeasible. Unfortunately, such an

approach tends to lead to a suboptimal configuration of disjointed clusters, which is

nonetheless appealing in practice (Pedrycz, 2005). Each found cluster is nontrivial, for

instance containing some objects but not all; at the same time, the clustering structure

should not be a set of clusters containing a single object, otherwise known as

singletons. Berkhin (2006) identifies as a major advantage of partitional clustering, the

fact that iterative optimisation may gradually improve clusters; he states that with

appropriate data, this results in high quality clusters. This is unlike hierarchical

clustering, as algorithms under that class do not feature re-visits to clusters.

1. Start

Put the universal cluster containing all entities into .

2. Splitting

Split cluster into two sub-clusters, namely and , to maximise

the Ward distance between them, as per equation 2.7.

3. Drawing attributes

Add the two new child nodes, and , to .

4. Cluster set’s update

Get a new by setting it equal to the node of the maximum height of the

current upper cluster hierarchy.

5. Stop

If the stop condition does not hold, return to step 2. Arguably, the most

common stop criterion is the number of leaves reaching a threshold

specified by the user.

16

 There are a number of well-known algorithms in partitional clustering,

including those under the probabilistic approach (EM framework), and others such as

K-Medoids (PAM, CLARA, etc) and the original K-means and its many variations

regarding, for instance, initialisation, feature selection and optimisation.

K-Means (also known as moving centres or straight K-means) originated

independently in the works of MacQueen (1967) and Ball and Hall (1967). K-Means is

arguably the most popular clustering algorithm, which produces non-overlapping

clusters. It is believed to be more efficient than the hierarchical algorithms (Manning et

al., 2008:335). Each cluster has a centroid (also known as a prototype or seed), which

represents the general features of the cluster.

 Give a number K of clusters of a dataset containing a set of N entities, I, and M

measurements, V, and a quantitative entity-to-feature, Y=(), such that represents

the value of feature v V at entity i I. This algorithm attempts to optimise the

clusters by minimising the sum of the within-cluster distances of the N entities to their

respective centroid where k=1, 2, ... K: it produces a partition,

S={ }. Each partition is non-overlapping, so each entity i is assigned to only

one partition, a non-empty subset of – a cluster.

Equation 2.8: General K-means criterion

The distance measure represented by d in Equation 2.8 is usually the squared Euclidian

distance, which can be re-written as follows:

17

Equation 2.9: General K-means criterion using the squared Euclidian distance

in the above, is a Boolean variable representing the cluster membership of i to the

cluster k. Formally, will be equal to one iff . In clustering, any chosen score

function will impact on the homogeneity of the clusters. K-means is guaranteed to

converge, as demonstrated by Manning et al. (2008:334), but the minimisation of its

score function is known to be NP-hard (Drineas, 1999).

 The score function of K-means is clear, but unfortunately there is no closed-

form solution, which means that the error of the final outcome is not necessarily a

global minimum. In real-world problems, it is unlikely to be possible to complete an

exhaustive search for all clustering scenarios, so K-means then becomes essentially a

search problem (Hand et al., 2001:302). In such a scenario, it is feasible to use an

iterative-improvement algorithm, and K-means bases this in expectation maximisation

(EM). Mirkin (2005:80) defines K-means in four steps:

18

Algorithm 2.3: K-Means

K-means has been used to solve numerous problems since the 1960s. After such

amount of time and work, it is no surprise that its weaknesses are well known. In terms

of speed, although the required number of iterations tends to be less than the number of

0. Data pre-processing

One of the main weaknesses of K-means is its inability to deal with

non-numerical attributes (Berkhin, 2006; Xu and Wunsch, 2005).

Consequently, all data should be transformed into a quantitative

matrix, by converting qualitative categories, standardising the data,

and rescaling (Mirkin, 2005:64). This step should not be overlooked,

as pre-processing, as well as post-processing can be as important as

the clustering algorithm itself (Xu and Wunsch, 2005).

1. Initial setting

Define the value of K and the tentative centroids . In the

conventional K-means, the initial centroids are usually randomly

chosen entities. As per the value of K, this is a difficult question. Its

value may come from any expert knowledge relating to the data or

from experiments at different values.

2. Cluster update

Assign the N entities to their respective centroid, , using

the minimum distance rule.

3. Stop condition

The most common stop condition is to check for changes to the

clusters in step 2: should there be none, the clustering task is assumed

to be finished and the generated partitions S={ } are final.

Other possible stop conditions are limiting the number of iterations or

pre-setting a threshold for the objective function.

4. Centroids update

For each cluster, move its centroid to its cluster‟s centre of gravity.

This way, each will represent the general properties of its cluster.

When using the squared Euclidian distance, this can be achieved by

simply moving the centroids to the means of their clusters.

19

entities (Duda et al., 2001:527), Arthur and Vassilvitskii (2006) demonstrate that in the

worst-case scenario, K-mean‟s running time can be superpolynomial.

 The algorithm is also highly dependent on the K initial centroids. These are

obtained randomly and it is, therefore, possible to choose bad initial centroids, such as

outliers that are likely to generate singletons, or even a set of initial centroids that are

simply too close to each other. Also, finding the actual value of K, or the cardinality of

a clustering, may be problematic. The most common solution to both problems is to run

the algorithm a pre-specified number of times at different K and to perform an analysis

of the results.

 Another issue is the fact that the algorithm considers all measurements at the

same level, disregarding the fact that, for instance, the data may be contaminated.

Mingoti and Lima (2006) empirically demonstrate the effect of such contamination in

K-Means. There may also, more simply, be a large number of unnecessary features of

the data.

 The above weaknesses of K-means will be further discussed in the next chapter

of this thesis; unfortunately, these are not the only weaknesses. As a greedy algorithm,

K-means is not always expected to converge to a global minimum, as previously

discussed here, and by Berkhin (2006) and Xu and Wunsch II (2005). Hartigan and

Wong (1979) present a classical solution to this problem by swapping entities between

clusters.

 Despite its many critical weaknesses, this algorithm also has advantages. K-

means may produce tighter clusters than a hierarchical counterpart. This is especially

true when the cluster shapes are well aligned with the distance function: for instance,

spherical shapes when using squared Euclidian distance. Arguably, the main reasons

20

for its popularity are related to its ease of implementation, simplicity, efficiency, and

empirical success (Jain, 2010).

The partition around medoids (PAM) algorithm is rather similar to K-means.

They are both partitional clustering algorithms that attempt to minimise the within-

cluster distances of entities to the cluster‟s centroid (Equation 2.8). Neither guarantee

an optimal solution and by consequence may arrive instead at a local minimum. Also,

they both assume that the number K of clusters is known beforehand. The difference

between them lies in the definition of a prototype. While in K-means, the prototype is a

centroid in the centre of gravity of a cluster, normally its average, in PAM each cluster

has a medoid as a prototype; these are entities initially chosen at random that have the

smallest sum of distances to all other entities within the same cluster. The only change

in the K-means algorithm would be in step four, which then becomes:

Algorithm 2.4: Partition around medoids (PAM). One-step update of the original K-means

There are advantages to using actual entities (medoids) as prototypes, instead of

the centre of gravity of clusters, normally the cluster average (centroids): for instance,

the latter may be too artificial for certain scenarios (Mirkin, 2005:181). Also, by using

real entities, PAM may be able to avoid the effect of outliers to the resulting prototypes

(Xu and Wunsch II, 2010:72).

 The K-Median clustering algorithm is another common variation of K-Means.

The difference is again in the way the prototype is calculated; in K-Median, as the

4. Medoids update

For each cluster, choose as a medoid the entity that has the minimal

average distance to the other entities within the same cluster. This way,

each will represent the general properties of its cluster.

21

name suggests, the prototype is the median rather than the centre of gravity. In this

algorithm, the outliers also have a smaller influence on the centroids, and this may be

the reason why K-Median is regarded by some as comparable to, or better than, K-

Means (Bradley et al., 1997, and references within).

 Here, the specifications of the PAM and K-Median algorithms are purposely

similar to K-Means, to make it easier to visualise any change made to the K-Means

algorithm being easily adaptable to them.

2.3 Use of K-Means

Clustering has been addressed in research since the 1960s. Some of the first related

work took place by scholars in the fields of factor analysis (Holzinger, 1941),

numerical taxonomy (Sneath and Sokal, 1973), and unsupervised learning in pattern

recognition (Duda and Hart, 1973).

 Nowadays, clustering is used in numerous fields. In bioinformatics, it is used in

microarray data analysis (Allison et al., 2006); in fact, bioinformaticians use clustering

so often that researchers have compared clustering algorithms within the field (Yeung

et al., 2001), including the problem of K-means initialisation. Those working within the

field of computer vision also use K-means; an example of its use in this context would

be to cluster entities in an image (Szeliski, 2010) using each pixel‟s features: normally

their colour and position.

 K-Means has also been applied to less scientific fields. Tsiptsis and

Chorianopolous (2009:85) discuss its application in customer segmentation, providing

a clear example of how it can be used in the industry, while Mucherino et al. (2009:47)

present K-Means as a possible clustering solution for agricultural problems.

22

 K-Means is so widely used that it is often pre-implemented in statistical or data

analysis software, such as Matlab, SPSS, R, etc. Thanks to its ease of implementation it

is often used in other commonly used software, such as Microsoft Excel.

2.4 Finding the initial centroids in K-Means

 Automatic detection of the number of centroids is among the desirable

properties of clustering algorithms (Callan, 2003: 313). Of course, in order to find the

initial centroids, it is necessary to know also how many of them there are in a dataset.

Finding the actual value of K and the initial centroids for K-Means is far from a trivial

problem: the former part of it being, in fact, rather controversial. Some view the topic

as baseless, because in many cases the value will depend on the viewing eye instead of

the data and other factors, as discussed in Section 2.1 of this thesis. The problem of

finding K and the centroids has been addressed in a number of publications, which

generally speaking follow one of the following approaches:

(i) K-means is run a number of times with different values for K. Afterwards, a

follow-up analysis determines the „best‟ value for K and the specific centroids based on

the optimisation of an index. Examples can be found in Hartigan (1975), Pelleg and

Moore (2000), Tibshirani et al. (2001) and Monti et al. (2003).

 (ii) The actual value of K and centroids is determined by evaluating the quality

of clustering, using resampled versions of the data. Examples can be found in the work

of McLachlan and Khan (2004), and references therein.

 (iii) Use a hierarchical clustering procedure to determine the properties of

23

clusters and determine the values for K and centroids. Mojena (1977) and Pelleg and

Moore (2000) provide examples of this.

 Mirkin (2005:93) describes the „intelligent‟ K-means (iK-Means) method,

which belongs to the latter group and finds the number of clusters and their specific

centroids using anomalous pattern (AP) clusters. In this method, the non-clustered

entities located the farthest from the initial centre of gravity become, one at a time,

tentative centroids. The cluster is then filled with all entities that are closer to this

tentative centroid than to the centre of gravity itself. After all of the entities are

clustered, the algorithm discards small clusters using a pre-specified threshold.

 The method is intuitively appealing, as it is of easy interpretation even to

those without a background in computer science or statistics. Computationally

speaking, it adds little overhead especially if compared to the method in group (i) that

needs to run K-means a number of times and group (ii) which needs to resample

versions of data. Intelligent K-Means needs to be run only once, and it is a

deterministic algorithm. Formally, the anomalous pattern algorithm can be defined in

the following stages (Mirkin, 2005:91):

24

Algorithm 2.5: Anomalous pattern (AP) algorithm

In the AP algorithm, there is a version of K-means in which there are two clusters. The

centroid of the first cluster is the centre of gravity a of the entire dataset itself, and the

centroid of the second cluster has the values of the furthest entity from a. Anomaly in

data can sometimes show as a cluster (Callan, 2003:314), and this idea is well aligned

with the anomalous pattern approach of extracting clusters. Clearly, such clusters may

demonstrate an ordinary pattern of the data or, possibly, a fault. In the latter case, the

cluster is likely to become a singleton and be discarded.

 Although AP clustering does not guarantee a global minimum for Equation

(2.5), it works quickly and does provide a reproducible starting setting for K-Means

(Stanforth et al., 2007). The intelligent K-means algorithm uses an anomalous pattern

1. Pre-processing

If the centre of gravity of the data is not defined, after standardisation

set it to a = , where M is the number of dimensions.

Assuming the Euclidian squared distance is used, the centre will be

the grand mean of the dataset.

2. Initial setting

Create a centroid, c, with the values of the entity that is the furthest

from a.

3. Cluster update

Create a cluster, S, of entities that are closer to c than to a. An entity

 would be assigned to S iff d(, c) < d(, a).

4. Centroid update

If the centroid is not equal to the centre of gravity of cluster S, update

it to the centre, and return to step 3.

5. Output

Return the list S of entities and centroid c.

25

iteratively to get one cluster at a time and can be formally defined in the following

steps (Mirkin, 2005:93):

Algorithm 2.6: Intelligent K-Means

 IK-Means is particularly efficacious when the clusters are well separated in the

feature space (Mirkin, 2005:93), which is unsurprising, as in such a scenario it would

be easier for the anomalous pattern part of the algorithm to find relevant clusters.

1. Setting

Specify the cluster discarding threshold used to remove all anomalous

clusters whose size is less than the threshold, and standardise the dataset.

2. Anomalous pattern

Apply the anomalous pattern algorithm using the centre of gravity of the

whole data a = , where M is the number of dimensions. The

position of this centre is not changed during any part of the algorithm.

3. Control

Stop if all entities are clustered, otherwise remove the anomalous cluster

found in the previous step from the dataset, and return to step 2.

There are other possible stop conditions that may be useful, depending on

the problem. These conditions are: reaching a pre-specified number of

clusters (iK-Means being useful then to find the clusters and their

centroids) if the first t clusters have a total contribution to the data scatter

bigger than a pre-specified threshold, or if the contribution of a new

cluster is too small.

4. Removal of small clusters

Discard all clusters that are smaller than the pre-specified cluster

discarding threshold. It is advisable to check the singletons, as there may

be errors in the data, possibly data entry mistakes.

5. K-Means

Run K-Means using the found centroids, and the full original dataset.

Note this will effectively re-cluster the entities from the discarded

clusters.

26

Mirkin (2005:110) also argues that iK-Means provides the user with a comfortable

quantity of options for clustering, as it allows them to select options rather than having

them imposed. These options are, for instance, to remove entities that are: (1) deviant,

in that they belong to small, anomalous pattern clusters; (2) intermediate – entities that

are far away from their centroids or have small attraction index values; (3) trivial –

entities close to the centre of gravity of the dataset.

 Intelligent K-Means has been tested in different publications. In a series of

experiments, Chiang and Mirkin (2010) demonstrate that in most cases the original

version of iK-Means outperforms many other K selection algorithms in terms of both

cluster recovery and centroid recovery. These experiments use synthetic Gaussian

clusters with between- and within-cluster spread to model cluster intermix.

 Steinley and Brusco (2007) have further altered the intelligent K-Means

algorithm to include a pre-specified K and no removal of singletons. Unsurprisingly,

the results demonstrated in their experiments are below average. It seems sensible to

discard such modifications when making further alterations to the algorithm to tailor it

to specific problems.

 A different, but also common, way of choosing a value for K, under the

category (i) is discussed by Duda et al. (2001:557). Their suggestion is to run

experiments with different numbers for k, where k=(1, ..., K), and analyse the results.

The squared error criteria (Equation 2.5) will normally produce a smaller error for a

larger K. If the data is intrinsically partitioned into well-separated clusters, the error

would decrease speedily until k= and slowly afterwards. As one can imagine, the

terms slowly and speedily are rather loosely defined, which may lead to difficulties;

also, it may be necessary to perform too many experiments.

 Metaheuristics are computational methods that may get deeper minima to the K-

27

Means criterion by iteratively improving a candidate solution, still without the

guarantee of ever reaching an optimal solution. There are a number of such

computational methods in clustering, including genetic algorithms (Goldberg, 1989;

Maulik and Bandyopadhyay, 2000), particle swarm optimisation (Kennedy and

Eberhart, 1995; Clerc and Kennefy, 2002) and variable neighbourhood search

(Mladenovic and Hansen, 1997; Hansen and Mladenovic, 2001), but this subject is

beyond the scope of this project.

2.5 Cluster validity

Cluster validity represents one of the main issues in clustering. The problem addressed

here is: how can we know if a given cluster structure actually represents the data? This

is a rather difficult question for a number of reasons:

 (i) Clustering falls into unsupervised learning, which means that in most real-

life scenarios the correct labels for the dataset will not be available. As a consequence,

it is difficult to calculate an exact accuracy for the algorithm being used.

 (ii) Different clustering algorithms may produce different cluster structures.

 (iii) In most cases, the „correct‟ number of clusters is unknown.

 (iv) Even if there is no inner structure in the dataset, for instance if the dataset

has a very high level of noise or is simply truly random, clustering algorithms will still

find and output a structure.

 For the latter problem, Smith and Jain (1984) suggest determining the clustering

tendency of the dataset. To avoid wasting time analysing clusters that do not represent

the data structure, the clustering tendency should be found before any clustering

algorithm is run on the dataset.

28

 Cluster validity is also useful because if it is possible to quantify how close a

clustering represents the data, then in principle it would be possible to automate the

process of clustering data at different K and then analyse the structures. The area of

cluster validity has received a considerable research effort and, in consequence, a

number of possible indices can be used (Pedrycz, 2005:18; Dubes, 1987; Mirkin,

2005:232; Duda, 2001:557; Webb, 2002:396; Xu and Wunsch II, 2010:260).

 There are three types of cluster validity indexes that may be used (Jain and

Dubes, 1988:166): internal, external and relative.

2.5.1 Internal indices

An internal index attempts to quantify the relation between a cluster structure generated

by any clustering algorithm and the data itself. The whole process of clustering and

validation uses nothing but the data. Clearly, such indices can also help to determine

the number of clusters (Pedrycz, 2005:18).

 As pointed out by Mirkin (2005:233), silhouette width (Kaufman and

Rousseeuw, 1990:96) is a popular measure that has shown good results (Pollard and

Laan, 2002). It is defined for an entity i I as:

Equation 2.10: Silhouette width

 where a(i) is the average dissimilarity of i with its cluster and b(i) is the smallest

average dissimilarity of i from the other clusters: the larger the index, the more well

clustered the entities.

29

2.5.2 Relative indices

A relative index compares different clustering structures generated by different

clustering algorithms, or the same algorithm with different parameters, and helps to

decide which of the structures is most appropriate.

 A classical example is the Davies-Bouldin index (Davies and Bouldin, 1979).

This index is well aligned with the K-Means criterion (Equation 2.8) as it attempts to

maximise the distance between clusters and minimise the within-cluster distances to the

centroids. As exemplified by (Xu and Wunsch II, 2010:269), it defines an index, ,

which has the maximum comparison between cluster k and the other clusters.

Equation 2.11: The maximum comparison between cluster i and the other clusters

in the above equation, represents the distance between the centroids ck and cj while

 and are their average errors. The Davies-Bouldin index can then be written as:

Equation 2.12: The Davies-Bouldin Index

Unsurprisingly, this type of index is data dependent, which means that different indices

may provide very different outcomes. If choosing this type of index, it is advisable to

run experiments with a set of them and then synthesize the results (Everitt et al., 2001;

Xu and Wunsch II, 2010:271).

30

2.5.3 External indices

An external index measures the cluster structure against the correct labels for the

dataset. Although it is unlikely that labels will be available, and if they are this would

raise the question if clustering is the best approach to separate data, these indices tend

to be very useful for algorithm evaluation. When designing a new algorithm it is not

uncommon to test it with statistically generated data, such as Gaussian Mixtures

Models, or labelled datasets. By doing so it is possible to have a better idea of what one

can expect from them and maybe even the type of scenario in which the algorithm

would excel. Any index under the other categories is not guaranteed, as the statistical

problem of quantifying cluster validity is unfortunately unsolved (Duda, 2001:557). In

this thesis we have chosen to use this type of index for the above reasons.

 When using a clustering algorithm, the outputted labels will not necessarily

match the known labels, even if they do correspond to each other. The issue is: the

correct labels may „name‟ a certain cluster Sk as one while the clustering algorithm may

„name‟ exactly the same cluster as two. That would not mean the clustering is incorrect,

as one would correspond to two. Confusion matrices (also called matching matrices)

are a common tool used to solve this issue. Such matrices normally have rows

representing each cluster found with the clustering algorithm used; and columns

representing the actual clusters; for example:

31

 Actual clusters

One Two Three

F
o

u
n

d
 c

lu
st

er
s

One 0 1 24

Two 23 2 0

Three 2 22 1

Figure 2.2 :Example of confusion matrix

 In the above example, each cluster has 25 entities and it is possible to see a clear

correspondence of cluster labels. For instance, the found cluster one corresponds to the

actual cluster three, as there are 24 out of 25 entities clustered together. Confusion

matrices are also useful for showing which clusters the algorithm is having difficulty

separating. In order to quantify the evaluation of algorithms, we have used an intuitive

measure called the Rand index (Rand, 1971):

Equation 2.13: Rand index

where a represents the number of entities that were clustered together and belong in

fact to the same cluster, b the number of entities that were not clustered together and do

not in fact belong to the same cluster, and N the total number of entities. In this

scenario, the Rand index provides a rate representing the quantity of entities that were

correctly clustered. In our results we multiplied the value by 100, for clarity.

32

2.6 Conclusion

In this chapter, we have demonstrated that there has been a considerable research effort

applied over the years to clustering, and in particular to the K-Means algorithm. Such

effort used clustering to solve the most diverse problems in both: academic and

commercial environments. This has made K-means one of the most widely used

partitional-clustering algorithms there is. Here we claim that although this is not the

algorithm‟s only advantage, this fact alone means it is worthwhile evaluating it

weaknesses and seeking its improvement.

 We have discussed the advantages of K-Means that has led to its popularity,

including its ease of implementation, speed, empirical success and even the fact that it

is an intuitive approach. We have suggested that modifications to K-means can be

easily adapted to other algorithms, such as PAM and K-median. In addition, we have

stated that the lack of clustering re-visit in hierarchical clustering is a major

disadvantage, as the iterative optimisation present in partitional clustering may

gradually improve clusters.

 In this chapter, we have acknowledged that one of K-Means‟ main weaknesses

is that it does not clearly define an approach to identifying the number of clusters and

centroids in a dataset. Mirkin (2005:93) has introduced an interesting algorithm called

intelligent K-Means (iK-Means) to overcome this problem, as far as this is possible.

Inevitably, the number of clusters will eventually depend on the resolution used to

evaluate the number of clusters. The choice of iK-means out of the number of

approaches discussed in the literature (Steinley and Brusco, 2007; Pelleg and More,

2000; Jain and Dubes, 1988) follows the successful experiments run by Chiang and

Mirkin (2010) to demonstrate that, in most cases, iK-Means outperforms many other

33

K-selection algorithms in terms of cluster and centroid recovery.

 Another major weakness of K-Means is the fact that it considers all features of a

dataset to be of equal significance, despite the fact that in most real-world problems this

may not be the case. We do not believe it is merely a matter of selecting the best

features, as two different features, however significant, may be relevant for cluster

separation at different degrees. We also understand that different features may have a

varying degree of relevance at different clusters. We consider it then becomes vital to

adjust the K-Means score function to such scenarios. This weighting should also take

into consideration the classification bias generated by the Euclidian squared distance,

as will be demonstrated in Chapter 3.

 The next chapter of this thesis, 3, will suggest a compact solution to the above

problems. In order to evaluate our algorithm, we have decided to use datasets whose

labels are known; this has allowed for the preparation of a confusion matrix for each

clustering and, therefore, a Rand index.

34

Chapter 3: Feature weighting at K-Means clustering

3.1 Feature selection and weighting

Classification, via clustering or otherwise, requires the formulation of a hypothesis. The

latter is a pattern or function used to predict classes based on given data (Liu and

Modota, 2008). The size of the hypothesis space is directly proportional to the number

of features in the data; more specifically, as argued by Liu and Modota, a linear

increase in the number of features leads to the exponential increase in the hypothesis

space, otherwise known as the curse of dimensionality (Bellman, 1957). The issue we

face here is that a dataset with a large number of features may become too difficult for

a given algorithm to work on. The smaller the number of features, the smaller the

hypothesis space and by consequence the easier it is for a given algorithm to find the

best hypothesis.

 In the case of K-Means based clustering, we face a further issue. The K-Means

criterion (Equation 2.8) uses a distance function to determine how similar entities are,

and decide if they should be put into the same cluster. The precision of a distance

function is then crucial to the criterion but it may be lost with an increase in the number

of dimensions, in which case the difference between the nearest and the farthest entity

may become meaningless (Beyer et al.,1999).

Equation 3.1: Loss of meaning between the farthest and nearest entities with the increase of dimensions

35

 Feature selection may help to track the problems cited above, by reducing the number

of features in the dataset (Dash et al., 2002, Friedman and Meulman, 2004; Raftery and

Dean, 2006). It aims to discard those that are redundant or least information carrying

(Pal and Mitra, 2004:59; Liu and Modota, 2008). Features carrying the least

information may mislead an algorithm as they may be given the same degree of

relevance as information-carrying features. Redundant features, which are a set of two

or more features, each of them being relevant but carrying the same information, are

unlikely to mislead a classifier. Of course, it is possible to face a number of such sets of

redundant features in the data. In this context, we would like to keep only one of the

features per set, so the actual information is not lost. Our aim regarding the latter is to

reduce computational effort as a given algorithm would deal then with a smaller feature

space and avoid a loss of meaning in the distance function.

 There is a further solution to this problem, known as feature extraction. This

type of algorithm follows a different approach for dimensionality reduction. Instead of

simply selecting which features should be used it incorporates them all to create a new

and reduced set of them. Although these new features have a relationship to the original

ones, they are not the same but a transformed version, as achieved for instance by

principal component analysis (PCA), a well-known feature extraction technique.

However, this type of algorithm is out of the scope of this work.

 Dy (2008) finds that feature selection algorithms normally have two main

components:

 (i) Feature search

The search strategies attempt to find an optimal subset of features that will provide

greater class separability. There are a number of examples of these strategies. Whitney

(1971) introduces a common example, sequential forward selection, in which the

36

subset of the selected features is empty at the start, with new features selected one at a

time until one is added that does not improve the subset quality. Whitney was likely to

have been inspired by an earlier algorithm introduced by Marill and Green (1963),

known as sequential backward selection, which intuitively works in the opposite

fashion. In this, the subset of selected features is initialised with the original set‟s

features; the algorithm then removes one feature at a time until removing another

feature does not improve the subset quality.

 However, these classical strategies may become too computationally intensive

in some situations and may not be the best approach when there are interacting features

in the dataset. These type of features usually defy the above heuristic solutions because

the information they carry cannot be detected on an individual basis (Liu and Motoda,

2008). The logical XOR (Guyon and Elisseeff, 2003), is a common example of this, as

both features are necessary to define the class and only one would be useless.

 (ii) Feature evaluation

Each selected feature or subset of selected features needs to be evaluated with a

relevance criterion. In the sequential forward selection and sequential backwards

selection algorithms, it is necessary to evaluate a subset of features in order to decide if

more features should be added or removed. In these algorithms, this involves taking

into account which features contribute the most and the least to the relevance criterion

function.

 Feature evaluation is especially difficult in clustering, as there are no labelled

entities available to be used to find a relation between feature(s) and class(es). It is in

fact the decision of choosing what criterion to use that makes feature selection in

clustering difficult (Dy, 2008).

37

 Feature selection algorithms, as a whole – feature search and feature evaluation,

being these supervised or not, can be categorised in different ways. Arguably, the most

common way of categorising them is based on their dependency of the feature

evaluation method on the learning algorithm. There are then, two primary categories:

 (i) Filter methods

Feature selection algorithms of this type do not depend on the learning algorithm in

use. They use the properties of the data itself to select which features should be kept

without taking into account the classification or clustering algorithm(s) that will be

subsequently applied to the dataset. The method name is intuitive as the idea is to filter

the data before classification or clustering is applied.

 (ii) Wrapper methods

In this method, the feature selection algorithms use the learning algorithm to determine

the quality of the subset of the selected features. If clustering is used, a wrapper method

would incorporate the feature selection algorithm inside the chosen clustering

algorithm.

 In this work, we have chosen K-Means as the initial clustering algorithm to be

enhanced. As Dy (2008) argues that for a particular algorithm a wrapper approach may

produce better results than the filter approach, it seems sensible for us to follow this

approach to feature selection. However, Dy also acknowledges that such an approach

may be more computationally expensive, as there are multiple runs for different feature

subsets. It is worth noting that the number of clusters, and by consequence the quantity

and value of centroids, will depend on the feature subset.

 Another point of interest is that ordinary feature selection follows a binary

approach, in which features are either selected or not selected. Normally, all selected

38

features are then considered of equal relevance in clustering. We acknowledge here that

this may not always be the best approach and that selected features may have a

different degree of relevance when clustering, or in fact, when using any algorithm for

pattern recognition. We follow then a generalisation of feature selection, in which the

features‟ participation is not decided in a binary fashion but in a range [0, 1]. Features

are no longer „selected‟ but „weighted‟. Following this approach does not necessarily

cancel the feature selection mode, as if two features do have the same degree of

importance, this can be achieved by them having the same weight.

 Taking into account the fact that K-Means is an unsupervised algorithm, feature

weighting should follow such a learning method or require a very limited amount of

labelled data: another reason for this is that such data can be expensive to acquire or

subjective to the labeller.

 The goal of feature selection for unsupervised learning is to find the smallest

feature subset that best separates „interesting natural‟ clusters from data (Dy, 2008; Dy

and Brodley, 2004). The definition in no way limits the subset of features to be the

same to all clusters, which leads us to a further way of categorising feature selection

algorithms. These are global in the sense that the same subset of selected features is

valid for all clusters, or local in which the subset of selected features may be different

at different clusters. Local methods in clustering, also called subspace clustering, were

introduced by Agrawal et al. (1998). These are intuitively appealing, as in certain

scenarios different clusters may indeed be easily separated with a different subset of

features; also, it does not cancel a global approach, as a local method may find that the

same subset of features works fine with all clusters. Furthermore, the general idea of

such methods can be easily generalised to feature weighting, in which features‟ weights

may vary at different clusters.

39

 Feature selection or weighting algorithms may, at times, just like K-Means

itself, get trapped in local optima or be too complex or computationally demanding. A

possible solution for these scenarios is to use a randomized algorithm, of which there

are two basic types (Stracuzzi, 2008): Las Vegas and Monte Carlo. The former always

outputs the correct result but may take a long time to do so, while the latter is always

fast but may output an incorrect answer. Randomized algorithms commonly provide

initial solutions fast and improve them overtime, in a similar fashion to anytime

algorithms (Zilberstein, 1996). Genetic algorithms are a general-purpose method for

randomized searches. As our base algorithm, K-Means, suffers from this problem itself,

it becomes rather difficult to track the issue in a wrapper-based feature weighting

algorithm, and we will leave this for further research.

3.2 Feature weighting in K-Means

The primary concern of this chapter is that despite its popularity, K-Means may have

difficulties in clustering data with irrelevant, or noise features. The general idea would

then be to include feature weighting in the K-Means clustering criterion (Equation 2.8),

which revert us to the issue of distance definition. Feature weighting is in fact part of

the definition of the distance measure one utilizes in K-Means or other distance-based

clustering algorithms. The majority of work in clustering uses Euclidean squared

distance (Equation 2.1) to find the dissimilarity between multidimensional entities. We

can see three main approaches for extending this distance measure: (1) extension of the

inner product in the distance definition; (2) nonlinear weights, and (3) the use of other

distance measures.

40

(1) Extending the inner product in the distance definition

This is equivalent to using linear combinations of the original features. It involves a

semi-positive definite weight matrix W, so that

 , where the superscript T denotes transpose; see, for example,

Xing et al. (2003) and Bilenko et al. (2004). In this framework, there is a special case in

which the weight matrix W is diagonal; in such a case,

 and the feature weights are also feature-rescaling factors of : in

this last scenario, the distance measure is defined and performs feature selection

through feature weighting, and the issue of data normalisation is also addressed.

 In this linear approach, the weights are yet data-driven but also based on a

different criterion for clustering (see, for example Modha and Spangler, 2003; and Tsai

and Chiu, 2008) or additional information of the cluster structure to be found (see

Strehl et al., 2000; Xing et al., 2003; and Huang et al., 2008). Strehl et al. and Xing et

al. take a different approach regarding the measurement of the algorithms‟ accuracy, as

they both use a pairwise approach in which paired entities are either in the same cluster

or not, while Huang et al. use cluster labels on all entities. In Huang et al.‟s case, using

the ordinary K-Means criterion would select a single feature, the one with the smallest

within-cluster variance, yet this is unlikely to be an optimal solution in most real-world

scenarios. Taking this issue into account, Modha and Spangler develop an interesting

method that makes major changes to the K-Means criterion. Their method presents a

division of the „within-cluster dispersion‟ over an index representing the „between-

cluster dispersion‟. They evaluate their method in measures of cluster precision and

recall, with 83% accuracy in the Australian credit-card dataset (to be introduced in

Section 3.4). This can be considered as suboptimal if compared with Weighted K-

Means and Intelligent Minkowski Weighed K-Means, which have a maximum

41

accuracy of 85% (Huang et al., 2008) and 86.09%, respectively, for the same dataset, as

we show in Table 3.10; these algorithms are discussed in Section 3.2.1 and Section

3.3.3, respectively. In fact, their lower accuracy does not come as a surprise. While the

two latter algorithms assign one weight per feature in each cluster subspace, Modha

and Spangler assign only two weights pertaining to the subspaces of quantitative and

categorical features.

 Strehl et al. (2000) and Xing et al. (2003) also modify the K-Means criterion.

They use their pairwise lists to impose constraints in clustering entities together or

separately and add a penalising procedure if these constraints are broken.

There have been other researchers who have sought not to change the K-Means

criterion. Tsai and Chiu (2008) introduce a method which also iteratively adjusts the

weights, and experiment with the iris and wine datasets. It is worth commenting that in

their experiments they use the adjusted Rand index which is not the exact same index

we use here (Rand Index), so one should expect lower values to occur in their

experiments. Even so, the correspondent values of accuracies of 0.77 and 0.40 by Tsai

and Chiu (2008:4667), using the adjusted Rand index with the two datasets, are

considerably below those that we show in Table 3.1 and Table 3.4.

(2) Non-linear weights

The non-linear weights considered so far, are weight powers which express the distance

as

 . In this, W is a diagonal feature

weight matrix and T the transpose. To our knowledge, non-linear weights were first

used by Makarenkov and Legendre (2001), at β=2 in their three-stage extension of K-

Means, which minimises the K-Means summary distance criterion as a function of

42

three groups of variables: entity memberships, cluster centroids, and feature weights. It

is worth mentioning that at β=2, the weights become feature-rescaling factors.

 At first, the above method may seem flawed, because as shown by Huang et al.

(2008) it would result in selecting a single feature by setting its weight to one and

disregarding all others; however, this is not the case. The solution comes from the

squares at the weights. A simplified illustrative example is: a combination w1n1+w2n2

of numbers n1=1 and n2=3 would produce a minimum of 1, over the constraints w10,

w20, and w1+w2=1, obviously at w1=1. However, the combination w1
2
n1+w2

2
n2

involving quadratic weights under the same constraints, reaches its minimum of ¾, well

inside the boundaries, at w1=3/4 and w2=1/4.

 Cluster specific feature weights were introduced, to our knowledge, by Frigui

and Nasraoui (2004). They also do not go further than β=2 and have changed the K-

Means criterion as well by introducing „regularisation‟ terms.

 Chan et al. (2004) and the extension of their method to address cluster specific

weights shown in Huang et al. (2005, 2008), further extend the K-Means criterion.

They introduce an arbitrary exponent β but utilise yet the squared Euclidean distance

measure (Equation 2.1). They also measure the success of their algorithm in a different

way; they do not use the summary distance to the centroid but rather intuitively the

recovery of clusters against their labels. Also, it is worth noting that it would not be

possible to compare the values of the summary distance criterion at different values for

β. They also show that most β values are data specific, but unfortunately do not propose

a method to find such values when labels are unknown beforehand. Another issue that

we intend to address in this chapter is that when β≠2, the weights cease to be feature-

rescaling factors; to address this, we generalise the Euclidean squared distance they use

to the Minkowski metric of the same power.

43

 Green et al. (1990) summarise much of the effort produced to their publication

date in non-linear feature weighting, including the early work of DeSarbo et al. (1984).

A continuation of the formers‟ work was undertaken more recently by Makarenkov and

Legendre (2001), who presents an optimal variable weighting method (OVW) also

based on the K-Means criterion using squared Euclidean distance. Their method has

feature weights with rescaling coefficients which makes it equivalent to Minkowski

Weighted K-Means, which we present in Section 3.3.2, at =2. Makarenkov and

Legendre also anticipate a Minkowski Weighted K-Means method by stating: “The

development of an optimal weighting algorithm for Minkowski metric is an interesting

topic for further investigation”.

(3) Minkowski metric and other distances

Equation 2.3 shows the Minkowski p-metric definition. This metric has already found

its use in location analysis (Chakerian and Ghandehari, 1985; Revelle and Eiselt, 2005;

Lawrence, 2006), but its use in clustering is still limited.

 Traditionally, most research effort in clustering uses the Euclidean metric, the

Hamming (also known as the city-block and the Manhattan) and the Chebyshev (or the

maximum metric), the equivalents of the Minkowski metric at β=2, β=1 and β→∞,

respectively; however, recently a few others have considered the use of other values of

p in clustering. In terms of normalisation, Doherty et al. (2004) note that cluster

recovery improves differently with K-Means at different p values. The effects of data

concentration at different p values have been discussed by Rudin (2009) and Francois

et al. (2007), who also cite the possibilities of utilising them for tackling data analysis

problems; the latter paper mentions a number of useful mathematical properties of the

44

Minkowski metric. The Minkowski p-metric has been already incorporated to the least-

squares approach, in prediction by Kivinen et al. (2006),who point to the fact that,

generally speaking, the metric allows us to identify and, in fact, ignore irrelevant

features, in line with the main aim of this chapter.

 Although Banerjee et al. (2005) introduce a number of different metrics; it

seems to us that a comparative analysis of different metrics do not attract much

attention. Of course, there are exceptions to this rule, such as web-page clustering (see,

for example, Strehl et al., 2000).

3.2.1 Weighted K-Means

The Weighted K-Means algorithm (abbreviated as WK-Means) described by Chan,

Huang and their collaborators (Chan et al., 2004; Huang et al., 2005; Huang et al.,

2008) is a modification of the K-Means criterion (equation 2.8) to include unknown

weights, to the features v, v=1,..., M in the dataset. Their approach to the problem

relates feature weights to a set of patterns during the process of clustering, aligned to

the wrapper approach idea for feature selection.

Equation 3.2: Weighted K-Means criterion

45

subject to:

According to the criterion, each feature weight should be non-negative and add to

the unity. The criterion has a user-defined parameter β, which expresses the rate of

impact weights will have on their contribution to the distance. The WK-Means

algorithm follows an iterative optimisation similar to K-Means, and by consequence it

is affected by some of its strengths, such as its convergence in a finite number of

iterations, and its weaknesses, which we shall discuss in further detail shortly in this

section.

 WK-Means presents an extra step in relation to K-Means, as it updates the

feature weights according to Equation 3.3:

Equation 3.3: WK-Means weight update

where is the sum of within-cluster variances of feature v weighted by clusters‟

cardinalities:

46

Equation 3.4: Within-cluster variances of feature v

 As stated in the literature (Chan et al., 2004; Huang et al., 2005; Huang et al., 2008),

there are two scenarios in which Equation 3.3 is not applicable. These are:

 (i) when for a uV

 Note that in such an instance, there would be an undesirable division by zero. To solve

the issue they suggest adding a non-negative constant to each item in the definition of

 , such as the average dispersion of all features in the dataset.

 (ii) when =1

 Note that this would also generate a division by zero. According to the literature on

WK-Means (Chan et al., 2004; Huang et al., 2005; Huang et al., 2008), the minimum of

its criterion (Equation 3.2) is then reached by setting where v* represents the

feature with the smallest sum of within-cluster variance; all other feature weights are

set to 0.

 The distance measure needs to be adjusted to take into account the weights

found in this algorithm. The Equation 3.5 below shows the distance between the feature

v of an entity and the centroid .

Equation 3.5: The adjusted distance measure to take the weights into account

The main steps of WK-Means are shown in algorithm 3.1, below.

47

Algorithm 3.1: Weighted K-Means

As intuition indicates, the optimal weight of a feature may be cluster-dependent.

A feature v may have a high degree of relevance within one cluster k, but a smaller

degree in a different cluster k*. Huang (2005) introduces this characteristic to WK-

Means under the name subspace clustering (Agrawal et al., 1998). This is a rather easy

extension to the above, as all of the equations have only minor adjustments: and

become and respectively, where k=1, ..., K.

 Because of its similarity to K-Means, WK-Means inherits some of the former‟s

weaknesses: for instance, the algorithm yet initialises the centroids randomly, not

guaranteeing an optimal solution. Also the same applies to the weights, creating the

possibility that these could be far from representing the relevance of the features.

1. Initial setting

Similar to K-Means, this method uses an external parameter to

define the number K of clusters. WK-Means then randomly

initialises the centroids and the feature weights, ensuring that they

add up to unity.

2. Cluster update

The cluster update assigns each entity to their closest centroid,

using the adjusted distance measure that takes into account the

feature weights; this is shown in Equation 3.5.

3. Stop condition

This is as per the K-Means algorithm.

4. Centroids update

Updates centroids to the centre of gravity of its cluster. Again, as

the method is based on Euclidean distance, this is achieved by

moving the centroids to the mean of their clusters.

5. Weights update

Updates the weights according to Equation 3.3, constrained by the

condition that the sum of weights should be one.

48

3.3 Extensions of Weighted K-Means

In this section, we present extensions to Weighted K-Means. Apart from the obvious

aim of increasing its cluster recovery and resistance to noise features, we also hope to

generalise its distance measure by using the Minkowski metric and to transform the

feature weights in feature rescaling factors for p ≥ 1.

3.3.1 Intelligent Weighted K-Means

Our first step was to extend the Weighted K-Means algorithm, hoping to supply it with

good initial centroids, instead of random ones. The anomalous cluster initialisation

provided by intelligent K-Means (Mirkin, 2005:93) proved easy to integrate into the

WK-Means algorithm (Algorithm 3.1). An interesting point to note is that the

fundamentals of this pre-initialisation can be expanded to find initial weights for

features, so the weights also cease to be initialised randomly. We have called this

algorithm intelligent Weighted K-Means (abbreviated as iWK-Means); it can be

described with Algorithm 3.2:

49

Algorithm 3.2: Intelligent Weighted K-Means (iWK-Means)

3.3.2 Minkowski metric Weighted K-Means

If we generalise the distance from the WK-Means criterion (Equation 3.2) from squared

Euclidean to Minkowski distance, we will be able to associate the feature weights

1. Initial setting

Each feature‟s weights are initialised with equal values and add

up to unity. This algorithm uses an external parameter to define

the minimum cluster size; the value for this is, typically, two.

2. Cluster update

The non-clustered entity farthest away from the centre of gravity

of the whole dataset, the origin 0, is taken as the tentative

anomalous cluster‟s centroid.

a. Define a cluster S to consist of the entities that are closer

to the tentative centroid than to the origin 0. The distance

measurement takes the weights into account, using

Equation 3.5;

b. Update the centroid to the centre of gravity of S, its

mean;

c. Update the weights for this centroid, using Equation 3.3;

d. If the new centroid differs from the previous one or is the

first centroid for S, return to step a; otherwise, stop and

remove S from the dataset.

3. Cluster all entities

Repeat step 2 until all entities are clustered.

4. Discard less significant clusters

Remove all centroids whose cluster size is smaller than the

initially specified threshold.

5. Run WK-Means

Run WK-Means starting with the found centroids and weights.

50

found by WK-Means with feature-scaling factors for any β ≥ 1.

Equation 3.6: Minkowski metric Weighted K-Means criterion

subject to:

 The difference between the WK-criterion (Equation 3.2) and the above Minkowski

Weighted K-Means (abbreviated as MWK-Means) is the distance exponent which has

been generalised from 2 into: this expression then refers to the power of the

Minkowski distance between the rescaled points yi=(wvyiv) and centroids ck=(wvckv) in

the feature space. For reference, the Minkowski distance is defined in Equation 2.3.

 The MWK-Means criterion above is a weighted version of K-Means that

identifies weights with feature rescaling coefficients, this is possible because the two s

in the criterion are the same. We avoid problems with degeneration by setting entities

as initial centroids, and by looking for relatively small number of clusters.

51

The Minimization of the MWK-Means criterion is rather complex and cannot

be easily solved. We take then an alternating minimization approach over the three

groups of variables: clusters, centroids and weights, similar to the one utilized to

minimize WK-Means (algorithm 3.1). Any necessary change happens solely because of

the exponent .

 When using Euclidean distance, the centre of gravity of data is defined as its

mean; however, here it should be the Minkowski centre. When using Euclidean

distance, the centre of gravity is the point with the smallest average distance to all

entities in a cluster; when using the Minkowski metric, this scheme is not different but

ceases to be the average of the cluster. The point is to minimise the Minkowski

distance, or equivalently its power, to the cluster‟s entities. In MWK-Means this is

given by:

Equation 3.7: Minkowski centre in MWK-Means

In Algorithm 3.4, we show an exact procedure to find the centre as per the above

equation. In terms of weight update, this now has to take into account the , and is

defined then as:

Equation 3.8: Weight update in MWK-Means

52

where the dispersion per feature is:

Equation 3.9: Dispersion in MWK-Means

To prove that Equation 3.8: Weight Update in MWK-Means gives the optimal weights,

given the centroids and clusters, one should follow analogous proofs in Chan et al.

(2004) and Huang et al. (2005). Specifically, by using defined in Equation 3.9:

Dispersion in MWK-Means, the Minkowski criterion can be rewritten as

W(S,C,w)=

 . To minimize this with regard to the constraint

 ,

one should use the first-order optimality condition for the Lagrange function

 . The derivate of L with respect to wv is equal to

 . By equating this to zero, one can easily derive that

, that is,

 . By summing these expressions over

all v, one arrives at equation

 , so that

 . This leads to Equation 3.8 indeed.

 As with the former equation, this does not apply when a feature in the dataset

has a dispersion of zero, and the issue is solved in the same manner by adding a small

constant. We also follow Huang et al. (2005, 2008) solution for β = 1, selecting a single

feature. A formalisation of the differences between MWK-Means and K-Means in steps

2, 4 and 5, at a given , follows:

53

Algorithm 3.3: Minkowski Weighted K-Means (MWK-Means)

For the above algorithm to be practical we need a computationally feasible procedure to

obtain the Minkowski centre of the features at any 1. Note that each feature is in

fact a set of reals yi, i=1,2,…, Nk, where Nk is the number of entities in the cluster k. In

the space of 1, as per Equation 3.7, the Minkowski centre in MWK-Means is a

convex function of c, allowing us to propose minimising it using a steepest-descent

procedure. Another point to consider is that the minimum for =1, which is equivalent

to the Hamming distance (Equation 2.2), is known to be the median of yi, so our

minimising method only needs to consider the cases in which >1.

 We assume that the values in yi are sorted so that y1 y2 … yNk, the

ascending order. Firstly, we prove that the minimum of Equation 3.7 c is in the interval

of [y1, yNk]. If the minimum were to be reached outside the interval, for instance at c >

yNk, then d(yNk)< d(c) because |yi - yNk| < |yi - c| for all i=1,2, …, Nk. The same would

hold for the -th powers of these. This is a contradiction, and by consequence proves

2 Cluster update

Given a set of centroids and a set of weights per feature and cluster,

update the clusters by using the minimum distance rule with the distance

defined as power of Minkowski distance in 2.3.

4 Centroid update

Given a set of clusters and a set of weights per feature and cluster, update

the centroid of each cluster as its Minkowski centre, as per Equation 3.7:

Minkowski centre in MWK-Means.

5 Weights update

Given a set of clusters with respective centroids, update the weights

according to Equation 3.8, constrained by the condition that the sum of

the weights is one.

54

our initial assumption of c being in the interval f [y1, yNk].

 In order to show the convexity, we consider any c in the interval [y1, yNk].

Equation 3.7 can then be re-written as:

Equation 3.10: Minkowski centre in MWK-Means, re-written

where I
+
 represents those indices i=1, 2, ..., Nk in which c>yi and I

-
 those in which c

yi. Then, the first derivative of d(c) can be expressed as:

Equation 3.11: First derivative of d(c) equation 3.10

and the second derivative as:

Equation 3.12: Second derivative of d(c) equation 3.10

for >1, the above equation will always have a positive value: this proves it is convex.

 The convexity of the equation for >1, the only interval we will use, leads to

another useful property: assume d(yi*) is the minimum for every d(yi) value (i=1, 2, ...,

55

Nk) and denote by yi‟ that the yi-value, which is the nearest to yi* among those smaller

than yi*, at which d(yi)<d(yi*). Similarly, denote by yi‟‟ that yi-value, which is the nearest

to yi* among those that are greater than yi*, at which d(yi)>d(yi*). Then, the minimum of

d(c) lies within the interval [yi‟, yi‟‟].

 The above properties validate the following steepest-descent algorithm, which

we use to find the Minkowski‟s centre of a set {yi} of reals y1 y2 … yNk at >1:

Algorithm 3.4: Finding the Minkowski centre with the steepest-descent procedure

1. Initialisation

Initialise with c0=yi*, the minimiser of d(c) on the set {yi}and a positive

learning rate that can be taken, as approximately 10% of the difference

yNk –y1.

2. Update c1

Compute c0 – d‟(c0) and take it as c1 if it falls within the interval [yi‟,

yi‟‟]. Otherwise, decrease by approximately 10%, and repeat this step.

3. Stop condition

Test whether c1 and c0 coincide with a pre-specified threshold. If they do,

halt the process and output c1 as the optimal value of c. If not, move on to

the next step.

4. Update c0

Test whether d(c1) d(c0). If it is, set c0=c1 and d(c0)=d(c1), and go to (2).

If not, decrease a by approximately 10%, and go to (2) without

changing c0.

56

 In this algorithm we find one coordinate centre at a time, reducing the problem

to one dimension only. We do this because to minimize Wβ over ckv =

one minimizes each

 separately.

3.3.3 Intelligent Minkowski metric Weighted K-Means

In this section, we introduce a final algorithm. It uses anomalous clusters found by

using Intelligent K-Means and the Minkowski distance to find the initial centroids and

weights. We call this algorithm intelligent Minkowski Weighted K-Means (iMWK-

Means).

 Through similar experimentation, we found that adding a very small constant to

the Equation 3.4: Within-cluster variances of feature v, such as 0.01, instead of the

average feature variance, as per Huang et al. (2005, 2008) and Chan et al. (2004) tends

to increase accuracy. Note that we only do this in the first, „intelligent‟, step of the

algorithm: MWK-Means remains unchanged.

3.4 Setting of the experiment

We have introduced three K-Means based algorithms and described further three,

including K-Means itself. It seems reasonable to conduct experiments with all of these

in order to get a formal comparison. Our experiments follow two directions:

(1) Test our proposed Minkowski metric based algorithms for cluster recovery,

especially in datasets with a large amount of noise features, and compare them

with the original WK-Means described by Huang et al. (2005, 2008).

57

(2) Explore the behaviour of our proposed methods, and indeed the original WK-

Means with respect to increasing the number of features.

The algorithms used for the experiments are each run with a pre-specified number,

K, of clusters; these are:

 1. K-Means (K-M): we show the result of a hundred runs of generic K-Means at

random initialisations of centroids;

 2. WK-Means (WK-M): we show the results of a hundred runs of the Weighted

K-Means algorithm by Huang et al. (2005, 2008);

 3. MWK-Means (MWK-M): we show the results of a hundred runs of the

Minkowski metric Weighted K-Means;

 4. iK-Means (iK-M): this is the generic K-Means initialised at the centroids of

K largest anomalous clusters, as described by Mirkin (2005:93);

 5. iWK-Means (iWK-M): we show the result of the Weighted K-Means

algorithm initialised at the centroids and weights of the K largest anomalous clusters;

 6. iMWK-Means (iMWK-M): we show the result of the Minkowski metric

Weighted K-Means algorithm initialised at the centroids and weights of the K largest

anomalous clusters.

 In the weighted algorithms among the above (Algorithms 2, 3, 5 and 6), a given

weight depends on a feature and cluster, so one feature may have different weights at

different clusters.

 To facilitate comparison, all datasets used in our experiments are cluster

labelled. This allows us to make a clear comparison of the algorithms‟ accuracy based

on the Rand Index. In order to do so, we prepare a confusion matrix in a very similar

way to Huang et al. (2008); we map each k cluster k=1, ..., K, produced by the

algorithms to a pre-labelled K cluster, one at a time from the largest overlap to the

58

smallest. All of the overlaps are then merged to calculate the proportion of correctly

labelled clusters. As they are not comparable at different‟s, we did not use the values

of the K-Means criterion itself.

 It should be noted that the above algorithms were designed for clustering rather

than classification. Following the work of Chan et al. (2004) and Huang et al. (2005,

2008), in our setting, only β, a single parameter which is the feature-weight exponent,

and in the case of the Minkowski versions a feature-rescaling factor, is subject to

adjustment to the pre-specified class labels. This is rather different from the

adjustments of classifications algorithms in which the number of parameters to be

adjusted always exceed the number of features. An interesting property of this is that

there will likely not be much overfitting, which can happen when a classification

algorithm is run. In this chapter, we find those values of β at which each algorithm

performs best, following the work of Chan et al. (2004) and Huang et al. (2005, 2008).

Next, we describe the synthetic and real datasets used in our experiments. All of

the datasets are labelled, as this is a requirement of the Rand Index, as justified in

Chapter 2, Section 2.5.3.

(1) Real datasets

The real datasets were all acquired in the UCI Machine Learning Repository (Asuncion

and Newman, 2007). These are:

 (i) Iris dataset, comprised of 150 flower specimens, each with features: sepal

length, sepal width, petal length and petal width; and partitioned into three clusters

regarding their species: Setosa, Virginica and Versicolor.

 (ii) Wine dataset, containing the results of chemical analyses of 178 specimens

59

of wine with 13 features, partitioned into three clusters as per their region of

production.

 (iii) Pima Indians diabetes dataset, containing the data of 768 females aged 21

years and over of Pima Indian heritage. The dataset has eight numerical features and is

partitioned into two clusters representing the results of these women‟s positive and

negative tests for diabetes.

 (iv) Hepatitis dataset, containing 155 specimens with 19 features of numerical

and categorical data, partitioned into two clusters representing the status of the subject

as alive or deceased.

 (v) Australian credit-approval dataset, containing 690 specimens of credit

applications with 14 categorical, integer and real features. The dataset is partitioned

into two clusters representing the approval or rejection of a credit application.

 (vi) Heart disease dataset, containing 690 specimens divided into 13 categorical

and real features. The dataset is partitioned into two clusters representing the presence

or absence of a heart condition.

 Datasets (i), (ii), (iii) and (iv) were chosen because of their wide use in the

literature, which makes it easier to compare our method with others‟. The latter two, (v)

and (vi), were chosen because experiments with these datasets were present in the latest

publication regarding WK-Means (Huang et al., 2008) facilitating the comparison of

our method with theirs. Also, some of the datasets have either a rather complex class

structures, or clusters are not well separated. For instance none of the existing

classification algorithms have achieved greater than 70-80% accuracy on the Pima

Indians diabetes dataset.

60

(2) Synthetic datasets

We have also experimented with synthetic datasets and generated the following:

 (vii) 10 Gaussian models, each with 500 entities, six features and partitioned

into five Gaussian clusters with a mixture coefficient equal to 0.2.

 (viii) Five Gaussian models, each with 500 entities, 15 features and partitioned

into five Gaussian clusters with a mixture coefficient equal to 0.2.

 (ix) Five Gaussian models, each with 1,000 entities, 25 features and partitioned

into 12 Gaussian clusters with a mixture coefficient equal to 1/12.

 (x) Five Gaussian models, each with 1,000 entities, 50 features partitioned into

12 Gaussian clusters with a mixture coefficient equal to 1/12.

 The Gaussian models were generated with help from Netlab software and all

have spherical clusters of variance 0.1. Their centres were independently generated

from a Gaussian distribution N (0,1) of zero mean and unity variance.

 One of the main purposes of most of the algorithms in this work is to discern

the degree of importance of each feature. Unfortunately, this degree is not really known

in the real datasets and is equal for each feature in the Gaussian models. With this in

mind, we decided to add features containing uniformly distributed random noise to

most of the datasets above. This noise is within domain, meaning that its maximum and

minimum values are equal to the maximum and minimum values of the dataset. We

have conducted a number of experiments with different quantities of noise features, as

shown in Section 3.5.2.

 Following, we present examples of the impact of the noise features in a few

datasets. These were plotted on the plane of the first two principal components.

61

Figure 3.1: On the left, the iris dataset, on the right its version with two noise features, on the plane of the first two principal

components, with the clusters shown using different shapes for entities

Figure 3.2: On the left, the wine dataset, on the right its version with 13 noise features, on the plane of the first two principal

components, the clusters shown using different shapes for entities

The wine dataset was fairly well separated, but as Figure 3.2 shows, this ceased to be

the case with the addition of 13 noise features.

Figure 3.3: Illustration of one of the generated GM datasets with 500 entities, six features and five clusters on the left, and its

version with two extra noise features on the right. Both are on the plane of their respective first two principal components.

62

Figure 3.4: Illustration of one of the generated GM datasets with 500 entities, 15 features and five clusters on the left, and its

version with 10 extra noise features on the right. Both are on the plane of their respective first two principal components.

 Figures 3.3 and 3.4 show how noise affects the Gaussian mixtures. We have not

plotted the datasets with 1,000 entities partitioned into 12 clusters, because even

without noise these would be difficult to interpret as there would be 12 different shapes

for the entities – one for each cluster.

 All of the data, with or without random noise, has been standardised. The

standardisation of numerical features follows Equation 3.13, below:

Equation 3.13: Standardisation of numerical features

in the above, av is the average value of feature v while bv is its range, the difference

between its maximum and minimum. In statistics, the standard deviation is

conventionally used in the denominator of the Equation 3.13. However, empirical

investigations demonstrated that in clustering, normalization by range leads to a better

recovery of cluster structures Milligan and Cooper 1988, Steinley 2004). This

phenomenon is explained in Mirkin (2005) as follows. If we standardise the data using

the standard deviation we would bias data in favour of unimodal distributions, whereas

63

bimodal distributions should have a higher contribution to clustering (Mirkin, 2005:65).

 We have standardised categorical features in a slightly different way to Huang

et al. (2008): their method involves combining K-Means and K-Prototype in which

centroids are represented by modal categorical values and averaged quantitative values

when numerical. In our approach, we remain faithful to the original K-Means and

follow a strategy close to the one described by Mirkin (2005:64). In this strategy, we

represent a categorical feature with a quantitative binary feature, a dummy that is

assigned one to each entity which falls in the category and zero if it does not. If a

categorical feature has four categories, for example, then the final data matrix will have

four dummy binary features instead.

 The dummy features are then standardised quantitatively by subtracting its

grand mean; in other words, the category‟s proportion. In our approach, the centroids

are then represented by a categorical feature‟s proportion rather than its modal value.

 Of course, we acknowledge that different standardisations may generate

different results. To avoid any such issue for the Australian credit approval and heart

disease datasets, we will provide here the results we obtained with WK-Means and the

results obtained by Huang et al. (2008).

 Another issue with the Australian credit approval dataset is that we have used

the only dataset we could find: the one with 690 instances. In this dataset, all missing

values have been substituted by their feature‟s average or modal value, for numerical

and categorical features respectively, while Huang et al. (2008) use only 666 instances,

the ones with no missing values.

64

3.5 Experimental results and comparisons

We have divided the results into two sections: 3.5.1, where we present the results of the

algorithms with the original datasets in which no random noise features are included,

and 3.5.2, in which the datasets do contain random noise features; the exact quantity of

such features is stated before the results and in the tables‟ caption showing the

experiments‟ results.

 Both sections present the results of the real and the synthetic datasets, and

where applicable the values of exponent adjusted at the best accuracy of cluster

recovery, as in Huang et al.‟s (2008) experiments. We also further extend the results by

reporting the maximum, average accuracy as well as the standard deviation, as these

may help to further evaluate how the algorithms would perform with unlabelled data.

The average accuracy of the six algorithms (K-Means, WK-Means, MWK-Means, iK-

Means, iWK-Means and iMWK-Means) gives a general performance, which is what

one could expect from the algorithm in scenarios where labels cannot be used to

measure their performance because they are not present.

 In order to find the optimal, we have run experiments across the interval of

[1.0, 5.0] in steps of 0.1.

3.5.1 Experiments on original datasets

All of the experiments in this section were conducted with the original datasets, and no

extra noise features were added.

65

(i) The iris dataset

We will firstly deal with the real-world datasets, starting with the iris dataset.

Algorithm Exponent at % accuracy

Distance Weight Mean Std Max

K-Means 2.0 0.0 84.0 12.3 89.3

WK-Means 2.0 1.8 87.1 13.8 96.0

MWK-Means 1.2 1.2 93.3 8.3 96.7

iK-Means 2.0 0.0 88.7

iWK-Means 2.0 1.1 96.7

iMWK-Means at different

2.0

3.0

1.2

2.0

3.0

1.2

94.7

90.0

96.7

Table 3.1: Accuracies achieved at different versions of K-Means clustering at the original iris dataset

 In the above table, both iWK-Means and iMWK-Means reached the optimal

accuracy of 96.7% at rather close’s of 1.1 and 1.2, respectively, meaning that only

five instances were misclassified. In terms of MWK-Means, one of the algorithms

which do not feature the anomalous pattern initialisation of centroids, the same

accuracy appears in the maximum column but was in fact achieved once in a hundred

trials. MWK-Means had average and maximal accuracies higher than WK-Means and

K-Means.

 Our result of 96.7%, obtained with iMWK-Means, compares favourably with

the accuracy achieved by other clustering algorithms, reported in the recent literature,

66

as we show in Table 3.2. It is interesting to note that without a feature weighting

scheme, even supervised and semi-supervised classification algorithms (which

normally tend to have better results) such as SVM (Koggalage and Halgamuge, 2004)

and SS-NMF (Chen et al.,2008) could not achieve such a high result.

 % accuracy Comments

FCM +

MSD

93.3 Combined fuzzy c-means and multidimensional scaling

(Zhong et al., 2009)

SWFCM 91.3 A weighted version of fuzzy c-means (Fan et al., 2009)

TILDE 94.0 Top-down induction of logical decision trees (Blockeel

et al.,1998)

CEFS 92.56 ±2.96 Clustering ensemble based method (Hong, 2008)

SS-NMF 92.7 Semi-supervised non-negative matrix factorisation

(Chen et al., 2008)

Fast SVM 94.7 Supervised fast support vector machine technique

separately classifying each of the classes (Koggalage

and Halgamuge, 2004)

iWMK-

Means

96.7 At = 1.2

 Table 3.2: Comparing clustering results achieved by various algorithms in the original iris dataset

It is a good idea to analyse how feature weights have behaved in iMWK-Means,

as this is one of the key elements of our algorithm. These weights are shown per feature

and per cluster in Table 3.3.

67

Features

 1 2 3 4

Initial anomalous

clusters C
lu

st
er

s

1 0.0022 0.0182 0.9339 0.0458

2 0.0000 0.0000 0.9913 0.0086

3 0.0000 0.0000 1.0000 0.0000

Final
C

lu
st

er
s

1 0.0228 0.1490 0.5944 0.2338

2 0.0508 0.0036 0.5898 0.3558

3 0.0233 0.0386 0.4662 0.4719

Table 3.3: iMWK-Means cluster-specific feature weights in the iris dataset at =1.2

 The above table shows that Features 3 and 4 (petal length and petal width) have

considerably higher weights than the other features. This seems to be correct, as the

literature using such datasets tends to show these features, or their product, as being the

informative ones. It is also interesting to note how the values of the weights of such

features differ according to their cluster.

(ii) The wine dataset

Table 3.4 presents the results of all six algorithms in the wine dataset. In contrast to the

iris dataset, the feature weights scheme does not seem to improve the accuracy in this

rather well-separated dataset. In this dataset, the generic K-Means seems to have the

best performance.

68

 Algorithm Exponent at % accuracy

Distance Weight Mean Std Max

K-Means 2.0 0.0 95.3 0.4 96.6

WK-Means 2.0 4.4 93.9 0.8 94.9

MWK-Means 2.3 2.3 92.6 1.3 96.1

iK-Means 2.0 0.0 94.9

iWK-Means 2.0 1.2 94.9

iMWK-Means at different

1.2

2.0

3.0

1.2

2.0

3.0

94.9

92.1

93.8

Table 3.4: Accuracy levels achieved by the six versions of K-Means in the original wine dataset

The next table shows the optimum results of other algorithms. They appear to

be comparable, as the maximum they could achieve is equivalent to the best run of the

generic K-Means: 96.6%. Our algorithm, iMWK-Means was competitive at 94.9%.

 Accuracy, % Comments

CEFS+PBIL 87.07±0.21 Ensemble based method + incremental

algorithm (Hong et al., 2008)

SGKK-

Means

91.60±2.12 Soft geodesic kernel K-Means (Kim et al.,

2007)

NK-Means 95.8 A neighbourhood-based initialisation for K-

Means (Cao et al., 2009)

SWFCM 96.6% A weighted version of fuzzy c-means (Fan

et al., 2001)

Table 3.5: Accuracy achieved by other clustering algorithms in the original wine dataset

69

(iii) The Pima Indians diabetes dataset

The results shown in the next table demonstrate that the Minkowski metric-based

algorithms do outperform their counterparts; included is the average and maximum

accuracy obtained with the WK-Means algorithm. The overall accuracy obtained by the

six algorithms is not high, however, and can be surpassed by methods that readjust

clusters to reduce the number of misclassifications, as presented by Zeidat and Eick

(2004).

 Algorithm Exponent at % accuracy

Distance Weight Mean Std Max

 K-Means 2.0 0.0 66.7 0.55 66.8

WK-Means 2.0 4.5 64.5 2.98 66.3

MWK-Means 3.9 3.9 68.2 2.85 71.3

 iK-Means 2.0 0.0 66.8

iWK-Means 1.8 1.8 64.7

iMWK-Means 4.9 4.9 69.4

Table 3.6: Accuracy levels achieved by the six versions of K-Means in the original Pima Indians diabetes dataset

In Table 3.7, we show a comparison with other algorithms under the same dataset.

Zeidat and Eick (2004) achieve the best result after 50 random initialisations of their

algorithm.

70

 % accuracy, Comments

PAM 65.6 Partitioning around medoids (Kaufman and

Rousseeuw, 1990), in Zeidat and Eick (2004)

SPAM 77.2 A supervised clustering algorithm that uses a

PAM-based strategy to minimise the number of

wrongly assigned objects (Zeidat and Eick,

2004)

SRIDHCR 79.5 A supervised clustering algorithm that uses

Insertion/deletion hill climbing to minimise the

number of wrongly assigned objects (Zeidat and

Eick, 2004)

iMWK-

Means

69.4 Proposed Minkowski metric-based

Table 3.7: Accuracy achieved by other clustering algorithms on the original Pima Indians‟ diabetes dataset

(iv) The hepatitis dataset

We will now analyse the accuracies of the six algorithms in the hepatitis dataset. The

greatest level of accuracy, 84.5%, was obtained by iMWK-Means; this is higher than

the maximum accuracy obtained by any other algorithm in Table 3.8.

71

 Algorithm Exponent at % accuracy

Distance Weight Mean Std Max

K-Means 2.0 0.0 71.5 1.36 72.3

WK-Means 2.0 1.0 78.7 0.13 80.0

MWK-Means 1.0 1.0 79.0 0.84 80.0

iK-Means 2.0 0.0 72.3

iWK-Means 1.0 1.0 78.7

iMWK-Means 2.3 2.3 84.5

Table 3.8: Accuracy levels achieved by the six versions of K-Means in the original hepatitis dataset

The results obtained by iMWK-Means compare favourably to the results of other

algorithms on the same data recently published by Belacel et al. (2007), and Zainuddin

and Lye (2010). The algorithms in both publications have a different objective to ours.

Here we are interested in clusters, while they both extend the training much further,

producing classifiers. A comparison of the results can be seen in Table 3.9.

72

 % accuracy Comments

RBFC +HKM 79.3 (0.14) Radial basis functions classification network

trained by using Harmony K-Means‟ results

(Zainuddin and Lye, 2010).

PROAFTN

with RVNS

85.8 Prototype-based fuzzy techniques multi-

criterion decision method involving several

manually set parameters (Belacel et al.,

2007).

MSDD

algorithm

80.8 Multi-stream dependency detection (MSDD)

algorithm (Belacel et al., 2007).

iMWK-Means 84.5 Proposed Minkowski metric-based.

Table 3.9: Accuracy achieved by other clustering algorithms in the original hepatitis dataset

(v) Australian credit-approval dataset

We have also compared our results with those provided by Weighted K-Means

presented by Huang et al. (2008) in two datasets from the same repository: Australian

credit approval and heart disease. As discussed in Section 3.4, the standardisation we

use is not exactly the same as Huang‟s, so we also present our results for WK-Means.

73

 Exponent at % accuracy

Distance Weight Mean Std Max

WK-Means combined with prototype

(Huang et al., 2008)

2.0 9 71.93 * 85

WK-Means 2.0 4.9 71.82 13.71 86.52

iWK-Means 2.0 1.8 85.51 - -

iMWK-Means 1.8 1.8 86.09 - -

Table 3.10: Results of different weighted partitioning methods in the original Australian credit-approval dataset. * The standard

deviation was not reported in Huang et al. (2008)

(vi) The heart disease dataset

Table 3.11 shows similar experiments under the same conditions for the heart disease

dataset.

 Exponent at Accuracy, %

Distance Weight Mean Std Max

WK-Means/prototype (Huang et al., 2008) 2.0 9.0 73.55 * 85

WK-Means 2.0 4.2 78.50 6.22 82.59

iWK-Means 2.0 3.8 80.37 - -

iMWK-Means 2.7 2.7 84.07 - -

Table 3.11: Results of different weighted partitioning methods in the original heart disease dataset. * Huang et al. (2008) did not

report the standard deviation

From the two tables above, for datasets (v) and (vi), we can conclude that

iMWK-Means‟ results are indeed superior to those of WK-Means, and competitive

74

with the very best results achieved over one hundred runs of WK-Means/prototype

method as shown by Huang et al. (2008).

(vii) 10 Gaussian mixtures

We will now analyse the accuracy of the six algorithms with synthetic data. In this set

of experiments we use ten Gaussian models with 500 instances, six features and

partitioned into five clusters.

 Exponent at % accuracy

Distance Weight Mean Std Max

K-Means 2.0 0.0 79.8 9.1 89.4

WK-Means 2.0 4.2 78.2 10.6 91.8

MWK-Means 2.5 2.5 77.5 10.7 91.2

iK-Means 2.0 0.0 82.6 7.7 89.4

iWK-Means 2.0 4.5 81.0 9.9 89.8

iWMK-Means at different 2.4

2.0

3.0

2.4

2.0

3.0

81.3

75.4

78.3

9.2

9.9

12.5

90.0

88.8

88.2

Table 3.12: Average accuracy results for K-Means‟ versions under consideration in the 10 original GM datasets. The best values of

exponent for WMK-Means and iWMK-Means versions are given for the single best overall for the 10 GMs.

 In this experiment, the within-cluster feature weights were considerably similar.

This is not surprising because of the way the data is generated where all of the clusters

and features have the same degree of relevance. The results in the Table 3.12 for

75

maximum and average accuracy are rather similar between the algorithms; this is

because the Gaussian models do not confer any special advantage to weighted or

anomalous clusters. This contrasts with the results seen in the real datasets, where

intelligent versions of K-Means (the ones based on anomalous patterns) tend to

outperform the conventional multiple-run schemes. We imagine this would suggest that

the anomalous cluster mode is in general more suitable for real data than to those

generated as the synthetic data we have.

3.5.2 Experiments on modified datasets

In this section, we present the results of experiments with modified versions of the

datasets. This modification includes features made of random noise. We aim to show

that Minkowski and intelligent versions of weighted K-Means do remain steady, or

perform better against these added noise features than Weighted K-Means (Chan et al.,

2004; Huang et al., 2005, 2008). This would be a compelling advantage over

algorithms that are sensitive to data with noise features, such as the original K-Means

and intelligent K-Means. We will firstly analyse the results from the iris dataset.

(1) The iris dataset with noise features

We have run experiments with two and four extra-uniformly distributed random noise

features, which represent an increase of 50% and 100% in the number of features,

respectively. The results can be found in Table 3.13, in the first and second line of each

row, respectively.

76

 Exponent β at Accuracy, %

Distance Weight Mean Std Max

K-Means

2.0 0.0 67.1 6.4 76.7

66.7 7.0 80.0

WK-Means 2.0 1.2 85.5 15.8 96.0

88.7 12.6 96.0

MWK-Means

1.2 1.2 88.2 16.9 96.0

90.0 12.8 96.0

iK-Means 2.0 0.0 68.7

69.3

iWK-Means 2.0 1.1 96.0

96.0

iMWK-Means at different

2.0

2.0

90.7

91.3

3.0

3.0

82.7

87.3

1.1 1.1 96.0

96.0

Table 3.13: Accuracy levels achieved at different versions of K-Means clustering in the modified iris dataset; in each row, the first

line represents the accuracy at two noise features, and the second line the same at four noise features

 It is interesting to note that the optimal for both datasets, with two and four

extra noise features for the WK-Means algorithm is the same, although the actual

results differ slightly. The same happens with MWK-Means at 1.2 and iMWK-Means

at 1.1.

 Another interesting point is that the noise features at both versions of the iris

77

dataset, with two and four extra noise features, had a weight close to zero in each

cluster. MWK-Means produces slightly better results on average than WK-Means.

IMWK-Means and IWK-Means are able to output the maximum results obtained by

MWK-Means and WK-Means with considerably less computations owing to their

anomalous pattern-based initialisation. Next, we present the results for the wine dataset.

(ii) The wine dataset with noise features

As before, the first and second lines of each row present the results for the dataset with

an increase of 54% (the closest we can get to 50% in this case) and 100% in the number

of features, made of uniformly distributed random noise. This represents seven and 13

extra noise features, respectively.

78

Algorithm Exponent β at Accuracy, %

Distance Weight Mean Std Max

K-Means 2.0 0.0 93.0 6.5 96.6

87.5 11.0 93.3

WK-Means

2.0

2.7 91.9 7.1 95.5

2.6 89.4 10.6 94.9

MWK-Means

1.6 1.6 92.2 6.8 95.5

1.4 1.4 88.3 10.6 94.4

iK-Means

2.0 0.0 94.4

93.3

iWK-Means

2.0 1.9 94.9

3.0 93.8

iMWK-Means 2.0

2.0

93.8

93.8

3.0 3.0 87.6

57.3

2.2 2.2 95.5*

1.1 1.1 94.9**

Table 3.14: Accuracy of the K-Means‟ versions in the wine dataset, with seven and 13 noise features, shown on the first and second

lines, respectively. *Optimal for the dataset with seven extra noise features. ** Optimal for the dataset with 13 extra noise features

The summary weight of the noise features on the anomalous cluster step in the

wine dataset with 13 random noise features is less than 1% of the total. Although this

increases to about 10% of the total at the final output, we found through

experimentation that stopping the weights‟ update in the second part of the algorithm

79

considerably reduced the accuracy of the iMWK-Means. Again, iMWK-Means

outperforms WK-Means on average, by outputting the maximum result obtained by the

latter.

(iii) The Pima Indians diabetes dataset

We added four and eight features (first and second rows in Table 3.15 respectively)

made of uniformly random noise to the original dataset. Again, this is an increase of

50% and 100% in the number of features.

80

Algorithm Exponent β at Accuracy, %

Distance Weight Mean Std Max

K-Means 2.0 0.0 52.3 1.1 53.4

51.8 1.2 53.6

WK-Means

2.0

1.9 65.5 3.7 68.4

1.7 66.3 3.2 69.3

MWK-Means

2.0 2.0 63.6 5.4 68.4

1.8 1.8 66.4 3.5 69.8

iK-Means

2.0 0.0 52.9

50.5

iWK-Means

2.0 1.5 66.8

2.0 69.0

iMWK-Means 2.0 2.0 66.3

66.1

3.0 3.0 67.1

66.7

4.1 4.1 67.2*

2.6 2.6 67.2**

Table 3.15: Accuracy of the K-Means‟ versions at the Pima Indians diabetes dataset with four and eight noise features, shown on

the top and bottom lines, respectively. *Optimal for the dataset with four extra noise features. ** Optimal for the dataset with eight

extra noise features.

In the above experiment, the algorithms performed in a similar manner, with the

exception of K-Means and iK-Means, suggesting that feature weighting increases the

accuracy. There was little or no difference in the results when applying the algorithms

to the dataset with four or eight noise features.

81

(iv) The hepatitis dataset

Originally, this dataset had 19 features. From it, we generated two datasets with 10 and

20 extra features made of uniformly distributed noise. The results for each dataset are

presented in Table 3.16, in the first and second line of each row, respectively.

Algorithm Exponent β at Accuracy, %

Distance Weight Mean Std Max

K-Means 2.0 0.0 71.2 1.9 72.9

70.0 1.7 71.0

WK-Means

2.0

1.0 78.7 0.0 78.7

1.5 79.4 6.4 85.2

MWK-Means

1.0 1.0 78.8 0.1 80.0

1.9 1.9 80.2 3.6 85.2

iK-Means

2.0 0.0 72.3

71.0

iWK-Means

2.0 1.0 78.7

2.3 84.5

iMWK-Means 2.0 2.0 63.9

64.5

3.0 3.0 63.2

60.6

4.5 4.5 83.3*

4.5 4.5 79.3**

Table 3.16: Accuracy of the K-Means‟ versions in the hepatitis dataset with 10 and 20 noise features, shown on the first and second

lines of each row, respectively. *Optimal for the dataset with four extra noise features. ** Optimal for the dataset with eight extra

noise features.

82

In the above, the optimal β for WK-Means, MWK-Means, iWK-Means for the

dataset with 10 extra features was the same: one. The iMWK-Means algorithm

produced the best results with nearly 5% difference from WK-Means, outperforming its

maximum. The cluster recovery obtained with iMWK-Means in the dataset with 20

extra noise features was very similar to the average obtained with WK-Means.

We observed that increasing the number of noise features has resulted in

slightly better results for the Iris, Pima Indians diabetes and Hepatities datasets (Tables

3.13, 3.15 and 3.16, respectively). There can be two possible explanations:

 (1) Although this small increase did appear in the mentioned datasets, it did not

appear in all other experiments, suggesting it may not have statistical significance.

 (2) In datasets with many noise features, each distance is affected similarly.

This means the minimum is reached with the correlation between distance matrices,

which are more correlated to the original distances.

Because of the small number of occurrences of this unexpected increase, we

intend to address this in future research.

 We did not conduct experiment with increasing the number of features in the

Australian credit approval (v) nor the heart disease (vi) datasets with uniformly

distributed random noise, because the objective of these two datasets was to enable a

comparison with the work of Huang et al. (2008). Following this, we present further

comparative results applying all six algorithms to the Gaussian mixtures.

(vii) 10 Gaussian models

In our first experiments, two random noise features were added to 10 Gaussian models.

Each of these contained 500 entities and six original features and was partitioned into

83

five clusters. Table 3.17 summarises the results obtained in the 10 datasets; the results

per dataset can be found in Appendix A, Tables A.1 to A.4.

Algorithm Exponent β at Weight Accuracy, %

Mean Std Mean Std of Mean Max Std of Max

K-Means - - 38.5 5.29 47.6 6.44

WK-Means 1.50 0.08 56.6 5.26 78.6 9.45

MWK-Means 1.54 0.07 60.3 6.37 80.5 8.70

iK-Means - - - - 37.7 6.86

iWK-Means 2.14 1.00 - - 66.1 11.58

iMWK-Means 1.79 0.48 - - 70.3 11.91

Table 3.17: Accuracy levels at the considered versions of K-Means for the 10 GM datasets with 500 entities, six features and five

clusters with an additional two random-noise features.

Table 3.17 shows the results of applying the six K-Means based algorithms to the noisy

versions of a Gaussian model, and consistently shows that:

i. The accuracy of the results is considerably less than in the experiments with

no added noise features (see Table 3.8). This is reflected in the fact that the

weights for the original features were two to three times higher than that of

the two noise features, being around 0.13-0.16 and 0.05-0.06, respectively.

This also contrasts with the near-zero weights of noise found in the

experiments conducted with real datasets. However, MWK-Means achieved

the highest maximum, with 80.5% accuracy.

ii. On average, the maximum accuracy of Minkowski Weighted K-Means is

greater than that of WK-Means: of 80.5% and 78.6%, respectively.

84

iii. The intelligent version of K-Means presents a rather modest accuracy,

probably because of the previously cited lack of structure in the synthetic

datasets.

iv. The „intelligent‟ weighted algorithms tend to outperform the average

obtained by their counterparts over 100 runs, with iMWK-Means achieving

the best performance. This shows that when clustering unlabelled data, the

intelligent Minkowski metric K-Means remains a viable option, even when

the data structure is vague.

On average, these experiments demonstrate that the versions of WK-Means that

use the Minkowski metric are quite competitive, and frequently superior to, the

Euclidean metric alternatives in both the original datasets and their noise versions.

 In order to further validate our proposed algorithms and to see how they

perform in larger feature spaces we have conducted further experiments, increasing

the amount of features and entities.

(viii) Five Gaussian models, each with 500 entities and 15 features

Our second set of experiments with synthetics used five Gaussian models of 500

entities and 15 features, partitioned into five spherical clusters. To these datasets we

added 10 features made of within-domain uniformly distributed random noise. The

summary of results for all of the tested algorithms can be found below, and the

results per dataset in Appendix A:

85

Algorithm Exponent β at Weight Accuracy, %

Mean Std Mean Std of Mean Max Std of Max

K-Means - 46.7 9.57 62.8 8.86

WK-Means 3.44 1.55 72.4 9.97 89.8 9.71

MWK-Means 1.40 0.07 78.8 6.58 93.4 4.24

iK-Means - - - - 55.8 16.29

iWK-Means 3.18 1.44 - - 80.8 9.64

iMWK-Means 1.60 0.27 - - 88.8 9.25

Table 3.18: Accuracy levels at the considered versions of K-Means for the five GM datasets with 500 entities, 15 features and five

clusters with additional 10 random noise features

Table 3.18 presents a rather similar pattern to Table 3.17. Algorithms using the

Minkowski metric tend to outperform their counterparts, and those using the

„intelligent‟ initialisation provided by the use of anomalous patterns also tend to, on

average, outperform those based on multiple runs. Unsurprisingly, K-Means is the

algorithm that suffers the most and performs the poorest. Table 3.18 suggests that

weighted algorithms based on the Euclidean metric may be less resistant to noise than

those based on the Minkowski metric.

 The results in Table 3.18 reinforce the point that MWK-Means has a

considerably smaller standard deviation for .

(ix) Five Gaussian models with 1,000 entities and 25 features

In our next set of experiments, yet with synthetic data we generate another five

Gaussian models. These were originally made of 1,000 entities and 25 features

86

partitioned into 12 different clusters. To these datasets, we added a further 25 features

made of within-domain uniformly random noise. Table 3.19 summarises the results; the

results per dataset can be found in Appendix A.

Algorithm Exponent β at Weight Accuracy, %

Mean Std Mean Std of Mean Max Std of Max

K-Means - - 20.7 1.84 28.6 3.79

WK-Means 4.76 0.23 52.0 5.36 71.4 6.66

MWK-Means 1.32 0.04 68.4 3.15 84.1 1.47

iK-Means - - - - 21.9 5.82

iWK-Means 2.88 1.36 - - 39.3 14.47

iMWK-Means 1.48 0.18 - - 54.9 3.27

Table 3.19: Accuracy levels at the considered versions of K-Means for the five GM datasets with 1,000 entities, 25 features and 12

clusters with an additional 25 random noise features

There results in Table 3.19 allow us to conclude that in all five Gaussian

models, the highest average accuracy was achieved by MWK-Means, which suggests

this algorithm could be the most resistant to an increase in the rate of noise features in

relation to the overall number of features, as well as to an increase in the number of

clusters which was increased from five in the previous synthetic data experiments to 12

in this one.

 Another interesting point is that the optimal value for β continued to be

considerably more stable while using MWK-Means than WK-Means. In all

experiments with this algorithm, the results obtained with β 1.3 and 1.4 were either at

the optimal value or had a negligible difference in relation to their optimal accuracy.

87

Although the „intelligent‟ versions had a poor result, considerable β stability can be

seen in iMWK-Means in relation to iWK-Means.

 It also seems that after this increase of features there was a shift from the best

algorithms being those using the „intelligent‟ initialisation to those based on multiple

runs.

(x) Five Gaussian models, each with 1,000 entities and 50 features

In this final set of experiments we generated five Gaussian Models with 1,000 entities

and 50 features, partitioned it into 12 clusters and added 25 features containing within-

domain uniformly random noise. Table 3.20 summarises the results obtained in all

datasets; the results per dataset can be found in Appendix A.

Algorithm Exponent β at Weight Accuracy, %

Mean Std Mean Std of Mean Max Std of Max

K-Means - - 92.8 1.07 99.9 0.04

WK-Means 4.18 0.80 80.4 1.08 93.1 0.62

MWK-Means 1.22 0.04 85.2 8.18 98.7 02.90

iK-Means - - - - 88.5 8.15

iWK-Means 1.84 1.34 - - 37.4 25.41

iMWK-Means 1.90 0.47 - - 70.8 9.84

Table 3.20: Accuracy levels at the considered versions of K-Means for the five GM datasets with 1,000 entities, 50 features and 12

clusters with an additional 25 random noise features

88

 Table 3.20 seems to suggest that a change in pattern is complete. The weighted

algorithms based on the Minkowski metric still outperform their Euclidean-metric

counterparts; however, it is K-Means that presents the best results, in contrast to those

using the „intelligent‟ initialisation, which on this occasion has produced rather poor

results.

 A possible explanation for the above scenario may come from the effects of the

higher dimension sizes explained in Aggarwal et al. (2000). With the distances being

relatively small and similar to each other, the „intelligent‟ initialisation can no longer

discern „anomalous‟ patterns. In the datasets we use here the relevant features prevail,

being two thirds of the total amount of features; they also have similar weights: These

facts may enable K-Means‟ good cluster recovery.

3.6 Time comparisons

We have conducted a number of experiments to consider the computational intensity of

the various versions of K-Means dealt in this thesis.

 The experiments calculate the average CPU time based on 100 runs of each

multi-run algorithm (K-Means, WK-Means, MWK-Means) and a single run of the

deterministic algorithms (iK-Means, iWK-Means and iMWK-Means). For those

algorithms that need a β we have experimented (100 runs or one, depending if the given

algorithm is multi-run or deterministic) in the range from 1.0 to 5.0, inclusive, in steps

of 0.1, in line with all our previous experiments. Table 3.21 shows the average CPU

time of each algorithm per run.

89

Dataset Algorithm

K-

Means

iK-

Means

WK-

Means

iWK-

Means

MWK-

Means

iMWK-

Means

500x(6+2) 0.03 0.08 0.08 0.11 6.59 9.40

500x(15+10) 0.08 0.14 0.19 0.32 22.89 29.82

1000x(25+25) 2.28 2.07 1.05 1.65 119.50 208.23

1000x(50+25) 0.20 0.65 1.05 0.94 124.47 153.96

Iris (+2) 0.01 0.02 0.02 0.45 0.71 1.36

Iris (+4) 0.01 0.02 0.02 0.61 0.99 1.65

Wine (+7) 0.01 0.02 0.05 1.54 3.83 5.69

Wine (+13) 0.02 0.03 0.07 1.69 4.72 6.82

Pima Indians

diabetes (+4)

0.02 0.05 0.04 2.13 17.65 19.57

Pima Indians

diabetes (+8)

0.04 0.04 0.06 2.92 26.40 31.60

Hepatitis (+10) 0.02 0.06 0.11 3.80 2.30 3.02

Hepatitis (+20) 0.02 0.06 0.11 7.12 3.06 4.51

Table 3.21: The average amount of time in seconds for a single run for all algorithms under consideration. Note that unlike the

others, “intelligent” algorithms (iK-Means, iWK-Means and iMWK-Means) need to be run only once to get an optimal result. The

number of added noise features is in the parenthesis.

The amount of time taken by a given algorithm depends on different factors

based on hardware and software. In terms of hardware, the above experiments were run

on a computer with an Intel Core-2 CPU of 2.4 GHz, with 2GB of RAM. The programs

were all written in the MatLab environment, version 2010 which ran under Windows 7.

 The Table 3.21 provide us with a good indication of how the algorithms would

perform in a real life situation. We can clearly see that both, the Anomalous pattern

initialisation found in the „intelligent‟ algorithms, and the feature weighting in

Euclidean space do not add much in terms of CPU time when compared with K-Means.

90

 The Minkowski‟s metric based algorithms did not have such a good

performance, taking one hundred or more times longer to converge than K-Means. This

happens because these algorithms need to find the Minkowski centres in each cluster at

each iteration. The centre of gravity of a cluster in all other algorithms is given by the

average, which is much faster to compute. However, in order to find a good clustering

WK-Means was run a hundred times in our previous experiments, balancing the CPU

time of both, with the difference that iMWK-Means found clusters closer to the given

labels.

 We find rather interesting to see that it is possible for WK-Means and iMWK-

Means to take less time to converge than a hundred runs of K-Means in very noisy

datasets, as it happened with the GM dataset of 1000 entities over 25 features with

extra 25 features of noise.

3.7 Conclusion

In this chapter, we have presented two contributions. Firstly, we introduced the

Minkowski metric criterion (Equation 3.6), which extends the effect of the exponent β

from the weights adjustment as in the original Weighted K-Means (Chan et al., 2004;

Huang et al., 2005; Huang et al., 2008) to the distances between. This new criterion

follows the original K-Means criterion in the sense that it stills attempts to minimise the

summary of distances between entities and their clusters‟ centroids, but also makes the

weights to be the feature rescaling coefficients. The Minkowski metric allowed us to

overcome the drawback of Huang et al. (2005, 2008) lack of meaning of β.

 We have empirically shown that the Minkowski metric does indeed improve

Weighted K-Means‟ accuracy both at the original and noisy datasets with different

91

amounts of features and noise features. We believe this to be a further advance into the

problem of clustering data that has its structure hidden by the presence of irrelevant, or

noisy, features.

Our second contribution comes from utilising the anomalous cluster-based

initialisation provided by iK-Means (Mirkin, 2005:93) to generate good starting

centroids and weights. Both of these were originally started randomly in Weighted K-

Means (Chan et al., 2004; Huang et al., 2005; Huang et al., 2008). We have empirically

shown that this initialisation tends to be beneficial in datasets with a modest to

moderate number of features. We expected an improvement while experimenting with

real-world datasets (i, ii, iii, iv, v and vi), because their structure is likely to be well

aligned with the anomalous cluster mechanism (Mirkin, 2005: 90), unlike our synthetic

datasets (vii, viii, ix and x), which have „rounded‟ clusters. Even under such conditions,

the „intelligent‟ versions of the algorithms proved superior to their multiple run-based

counterparts, on average across the synthetic datasets, as well. We believe this to be an

important finding because in ordinary clustering scenarios, the value of the K-Means

criterion itself (Equation 2.8) is not a reliable indicator as β is variable. Our

experiments in high dimensions have shown a different pattern, however, in which the

„intelligent‟ initialisation ceased to provide good centroids, and this deserves further

investigation.

In general, we have shown that given a good β, our proposed algorithms tend to

provide a high level of accuracy, and the Minkowski metric-based algorithms tend to

have a considerably more stable β.

 The next issue is how to determine the optimal value for the exponent β. This is

also an open question in the case of Weighted K-Means (Chan et al., 2004; Huang et

92

al., 2005; Huang et al., 2008). In an attempt to learn the optimal value for this

exponent, in the next chapter we present experiments using semi-supervised learning.

93

Chapter 4: Learning the Minkowski exponent

4.1 Semi-supervised learning

In this chapter, we will attempt to ascertain whether the Minkowski metric β value can

be learned from the data in a semi-supervised manner. In order to achieve this, we have

conducted a series of experiments involving all of the datasets used for our previous

computations (see Chapter 3, Section 3.4).

 Unsupervised algorithms, such as K-Means and iK-Means, were designed to

deal with scenarios in which there are no labelled samples that can be used to train a

given algorithm. Such scenarios may occur because of the financial and time costs of

labelling data samples. This subject was touched on in Chapter 2, Section 2.1.

 In contrast, algorithms based on supervised learning tend to excel when there is

a considerable amount of correctly labelled data available. The accuracy of the

algorithms tends to conform to the quantity and quality of the labelled data. If there is

insufficient labelled data, the algorithm may not be able to learn a good hypothesis and

by consequence may fail in its generalisation. If too many samples are used in the

learning process, the algorithm may suffer from overfitting, which can occur when the

hypothesis relates to a possible noise, random or not, in the data, rather than to the

relationship between the data and the labels; if some of the labels are incorrect or the

labelled data does not closely represent the dataset, the algorithm may simply learn a

suboptimal hypothesis, generating numerous misclassifications.

 Traditionally, this issue has been clear-cut, and algorithms have used either a

supervised approach for classification or an unsupervised one for clustering, depending

on the availability of labelled data. Issues can arise if, for instance, there is a limited

amount of labelled data. Although the quantity may not be enough to apply a

94

supervised learning approach, intuitively speaking it should improve the hypothesis.

 A classical example of a semi-supervised learning scenario is the Internet.

When clustering web pages into pre-defined clusters, it is easy to acquire a large

amount of unlabelled data from the millions – or more of readily accessible pages, but

the process of labelling a representative amount of such data is very time-consuming

(Witten and Frank, 2005:337; Chapelle et al., 2006); in this case, it may be possible to

label a very small amount of the data and use this labelled sample to improve accuracy.

 Furthermore, human beings perform semi-supervised learning, as empirically

shown by Zhu et al. (2007). There are, generally speaking, two views on this approach:

(1) A supervised learning approach that also learns from unlabelled data; (2) An

unsupervised learning approach that makes use of a small amount of labelled data.

 In terms of the first view, self-learning (also known as self-training, self-

labelling and decision-direct learning) is probably the earliest attempt to use unlabelled

data in classification (Chapelle, 2006). Using this approach, algorithms start by training

on the available labelled data, and label part of the unlabelled data according to the

current hypothesis; then, the algorithm is retrained with all of the original and predicted

labelled data (Scudder, 1965; Fralick, 1967; Agrawala, 1970).

 As regards the second view, we have for instance constrained versions of K-

means and distance training, as discussed in Section 4.2; these normally attempt to limit

the clustering based on what is learnt from a small labelled data sample.

 In this chapter, we will focus on this view of semi-supervised algorithms as

being unsupervised algorithms that make use of a small amount of labelled data: this is

because our algorithms, MWK-Means and iMWK-Means, are K-Means-based, and this

is an unsupervised algorithm.

95

4.2 Semi-supervised learning in K-Means

Clustering is usually regarded as synonymous with labelling data using an unsupervised

learning approach; however, it may be possible to acquire information, even if this is

limited, regarding the problem domain. This information, if integrated into a clustering

algorithm such as K-Means, may direct it to a better set of clusters.

 There have been different approaches to this integration, but generally speaking

they fall into two broad categories: constraint-based and metric-based (Bilenko et al.,

2004).

(1) Constraint-based algorithms

Constraint-based algorithms are fed with pairwise rules, such as whether two entities

should be clustered together or not. These rules are normally known as must-link and

cannot-link (Wagstaff et al., 2001; Basu et al., 2002; Bilenko et al., 2004; Kumar and

K. Kummamuru, 2007; Amorim, 2008): these rules may be pre-determined or

constructed from a labelled dataset.

 Wagstaff et al. (2001) present what is, to our knowledge, the first attempt to use

semi-supervised learning in K-Means, introducing the constrained K-Means (COP-

KMeans) algorithm (4.1).

96

Algorithm 4.1: COP-KMeans

In the cluster-update stage, Wagstaff et al. (2001) modify the K-Means

clustering objective function to include the satisfaction of the given constraints. For

instance, instead of clustering two entities which are close, the COP-KMeans algorithm

will only cluster them if they are close and are not under a cannot-link rule. In terms of

the must-link rule, if two entities are under this rule and one is assigned to a cluster Sk,

the other is automatically assigned to it as well.

 In a later publication, Wagstaff et al. (2006) acknowledge that although the

average accuracy obtained with the constrained version of K-Means tends to exceed

that of the unconstrained version, as intuitively expected, the use of constraints, even if

they do not contain any noise and are of a fixed size, can produce results that are

significantly worse than those elicited by not using constraints at all.

1. Initial setting

Similarly to K-Means, this method starts the centroids at random.

It also requires as input two sets of pairwise rules, one for the

pairs of entities that must be clustered together and one for the

entities that should not be clustered together.

2. Cluster update

This assigns each entity to the closest centroid, making sure it

follows the must-link and cannot-link rules.

3. Stop condition

As per the K-Means algorithm.

4. Centroids update

Updates centroids to their centre of gravity. As the algorithm uses

Euclidean distance, the centre of a cluster is its mean. Then, return

to step 2.

97

 Furthermore, as expected, the COP-KMeans algorithm suffers from the poor

initialisation inherited from K-Means itself. This issue has been addressed with the help

of iK-Means in a previous publication (Amorim, 2008), where we introduce the

constrained intelligent K-Means. This is shown in Algorithm 4.2.

Algorithm 4.2: Constrained Intelligent K-Means

 The above algorithm shows how easy it would be to integrate an anomalous

pattern-based algorithm, such as iMWK-Means, with COP-KMeans.

 Although the constraint-based category is seen as the most popular, it has two

main drawbacks, as pointed out by Kumar and Kummamuru (2007):

1. Initial setting

Specify the cluster-discarding threshold used to remove all

anomalous clusters whose size is less than the threshold.

2. Anomalous pattern

Apply the anomalous pattern algorithm: Algorithm 2.5. When

performing the cluster update (step 3), assign entities to the closer

centroid if it does not break the cannot-link rules. Cluster together

entities under a must-link rule regardless of distance.

3. Stop Condition

As per the intelligent K-Means algorithm.

4. Removal of small clusters

Remove all clusters that have not reached a size equal to the

cluster-discarding threshold.

5. K-Means

Run COP-KMeans using the found centroids.

98

 (i) The entities in the cannot-link constraints may actually lie in the wrong

clusters yet still satisfy the cannot-link constraints;

 (ii) When the pairwise feedback is generated from the labelled part of the

training set, the must-link constraints would mislead the clustering algorithm if the

entities in the cluster belonged to two different clusters of the same class.

 The first drawback could easily affect algorithms like COP-KMeans and CiK-

Means. Kumar and Kummamuru (2007) suggest a partial solution in which the pairwise

rules do not assume that entities belong to a cluster but use instead relative comparisons

which assume only the entities‟ proximity.

 (2) Metric-based algorithms

Metric-based algorithms, on the other hand, aim to train the metric of the algorithm to

satisfy the given labels or constraints (Bilenko et al., 2004); in most cases, this happens

by a weight adjustment.

 In these algorithms, there is normally a clear separation between the metric

learning which does not use unlabelled data and the clustering process per se. Although

not as popular as the constraint-based type, there are a number of algorithms in this

category. For instance, Kleinet et al. (2002) present a method which trains the

Euclidean distance by using a shortest-path algorithm. Xing et al. (2003) have also

produced work with the Mahalanobis distance, and Bar-Hillel et al. (2003) have trained

the distance using a convex optimisation.

 Algorithms that follow the approaches in both categories can be found in the

work of Bilenko et al. (2004), and Kumar and Kummamuru (2007).

99

However, we will pursue a different approach here; rather than seeking the

optimisation of a clustering by using a small amount of labelled data, as the above

algorithms, we seek to learn the exponent β of iMWK-Means. This is an algorithm we

have shown to be competitive or superior to WK-Means in different scenarios, in

Chapter 3. Of course, the same processes we apply here can be used to learn the same

exponent for MWK-Means.

4.3 Semi-supervised algorithms for β

We have carried out experiments with both WK-Means and iMWK-Means in order to

reach a comparison. In general, in these experiments we apply one of the two

algorithms to a dataset subset containing only a small proportion of labelled entities,

20% of the dataset. The aim is to find the a good value for β for the whole dataset, for

this we find the optimal β in the subset, which is the one with the highest average

accuracy within this small labelled dataset, and then apply the given algorithm to the

whole dataset with the found β.

 Semi-supervised algorithms tend to combine a limited amount of labelled data

with a considerably larger amount of unlabelled data; in our experiments with WK-

Means and iMWK-Means, we follow the same framework. In the experiments with

both algorithms, the β is learnt from the limited amount of labelled data and the

weights, from the unlabelled data, as before. Another reason to use two different

datasets for learning the feature weights and the exponent β is to avoid feature-selection

bias, which may occur when feature selection and classification learning take place in

the same dataset (Liu and Modota, 2008).

 To analyse the results we compute the mean, the mode and the proportion of the

100

runs in which the local optimal β is equal to the mode. We show the average accuracy

together with its standard deviation and maximum, although this is of secondary

importance here.

4.3.1 WK-Means

We begin by describing how our algorithm works. The WK-Means algorithm (Chan et

al., 2004; Huang et al., 2005; Huang et al., 2008) was discussed in Section 3.2.1, and its

steps can be found in Algorithm 3.1.

 Algorithm 4.3 was used for the experiments in this section.

Algorithm 4.3: Semi-supervised WK-Means experiments

Run the following 100 times:

1. Select the learning data

Randomly choose 20% of the data plus related labels.

2. Parameter search

Run WK-Means, Algorithm 3.1, 100 times for each β ranging

from 1.0 to 5.0, in steps of 0.1.

3. Evaluation

Set the value of β
*
to the β with highest average accuracy.

4. WK-Means

Run WK-Means with β
*

in the whole dataset 100 times.

101

In the above algorithm, arguably the most evident issue is its required

computational effort. Our range of β is [1, 5], in steps of 0.1; thereby, WK-Means is run

in each of the 100 loops in step 2 alone 4,100 times. We could have reduced the

number of loops, but this would not seem fair or in accordance with our experiments in

Chapter 3.

4.3.2 iMWK-Means

The iMWK-Means algorithm was introduced in Chapter 3, Section 3.3.3. We have used

Algorithm 4.4 in the experiments this section.

Algorithm 4.4: Semi-supervised iMWK-Means experiments

 In terms of computational effort, the above algorithm is visibly cheaper than 4.3

(WK) and, in consequence, faster. This happens because algorithms like iMWK-Means

Run the following 100 times:

1. Select the learning data

Randomly choose 20% of the data plus related labels.

2. Parameter search

Run a series of experiments with β ranging from 1.0 to 5.0, in

steps of 0.1.

3. Evaluation

Set the value of β
*
to the β with the highest accuracy.

4. iMWK-Means

Run iMWK-Means as discussed in Section 3.3.3 with β
*
in the

whole dataset.

102

and iK-Means, which use the anomalous pattern initialisation we described in Chapter

2, Section 2.4, are deterministic; therefore, for a given input the algorithm will always

have the same output, so it will not be necessary to run it a number of times.

4.4 Experimental results and comparisons

We perform experiments with Algorithm 4.3 and Algorithm 4.4, in all datasets

described in Chapter 3, Section 3.4.

4.4.1 Real-world datasets

 We begin by applying the algorithm 4.3, which uses WK-Means, to the original real-

world datasets (i to vi), with no added noise.

Dataset Exponent β at weight % accuracy

Mean Modal Optimal Mean Std of

Mean

Max

Iris 2.98 2.2(8%) 1.8 83.9 2.55 90.0

Wine 3.85 4.5(9%) 4.4 92.5 0.54 93.6

Pima Indians 3.91 4.2(10%) 4.5 62.9 0.87 64.3

Hepatitis 1.38 1.0(83%) 1.0 77.5 2.7 78.8

Australian credit-card

approval

4.41 4.5(11%) 4.9 68.8 2.8 73.0

Heart disease 4.00 4.7(10%) 4.2 76.6 2.0 79.4

Table 4.1: Semi-supervised estimation of β in WK-Means on original datasets (i to vi)

103

 The results of the same datasets, but using the iMWK-Means algorithm, can be

found in Table 4.2.

Dataset

Exponent β at weight % accuracy

Mean Modal Optimal Mean Std of Mean Max

Iris 1.44 1.0(31%) 1.2 93.9 1.88 96.7

Wine 1.74 1.2(22%) 1.2 93.1 1.35 94.9

Pima indians 3.47 3.1 (7%) 4.9 64.5 6.16 69.4

Hepatitis 1.57 1.0 (48%) 2.3 72.9 7.09 84.5

Australian credit-card approval 2.56 1.7 (9%) 1.8 67.0 12.76 86.1

Heart disease 2.25 1.4 (11%) 2.7 76.1 9.44 84.1

Table 4.2: Semi-supervised estimation of β in iMWK-Means on original datasets (i to vi)

 In the above tables, although the modal β seems to be closer to the optimal in

WK-Means than iMWK-Means, possibly because of the higher amount of runs

necessary, it is the latter that has the best maximum accuracies.

 Experiments were conducted on derivate versions of the original datasets, with

an increase of 50% and 100% in the number of features with uniformly distributed,

within-domain random noise. The exact number of features added to each dataset is

shown after their name in parentheses. Table 4.3 shows the results for the WK-Means

algorithm.

104

Dataset

Exponent β at weight % accuracy

Mean Modal Optimal Mean Std of Mean Max

Iris (2) 2.77 2.1(6%) 1.2 74.2 3.48 83.9

Iris (4) 2.72 1.0(8%) 1.2 75.2 5.68 90.5

Wine (7) 3.02 4.7(6%) 2.7 89.3 2.67 92.5

Wine (13) 1.73 1.2(32%) 2.6 77.5 4.57 88.0

Pima Indians (4) 1.47 1.5(32%) 1.9 63.8 1.17 65.2

Pima Indians (8) 1.49 1.5(32%) 1.7 65.6 1.43 66.5

Hepatitis (10) 1.2 1.0(93%) 1.0 78.4 1.45 78.8

Hepatitis (20) 1.26 1.0(89%) 1.5 78.6 0.5 78.8

Table 4.3: Semi-supervised estimation of β in WK-Means on modified datasets (i to iv)

The results for the same datasets using iMWK-Means can be found in

Table 4.4.

Dataset

Exponent β at weight % accuracy

Mean Modal Optimal Mean Std of Mean Max

Iris (2) 1.28 1.1(31%) 1.1 94.5 2.47 96.0

Iris (4) 1.21 1.1(33%) 1.1 94.4 1.85 96.0

Wine (7) 1.49 1.3 (20%) 2.2 91.4 2.59 95.5

Wine (13) 1.32 1.1 (22%) 1.1 92.2 2.03 94.9

Pima indians (4) 2.42 2.0(8%) 4.1 61.7 7.37 67.2

Pima indians (8) 1.85 1.5(14%) 2.6 60.2 5.51 67.2

Hepatitis (10) 2.12 1.0(32%) 4.5 68.2 9.97 78.1

Hepatitis (20) 1.73 1.0(26%) 4.5 66.8 8.66 79.3

Table 4.4: Semi-supervised estimation of β in iMWK-Means on modified datasets (i to iv)

105

 The pattern found in Tables 4.3 and 4.4 is rather similar to that in Tables 4.1

and 4.2, which present the datasets without noise. Again, it is difficult to see a constant

relation between the mean and modal values of β in the datasets with their respective

optimal values. The maximal accuracy obtained with the semi-supervised version of

iMWK-Means was consistently competitive, or considerably superior, to the semi-

supervised version of WK-Means.

4.4.2 Synthetic datasets

We have performed a number of experiments using the synthetic datasets described in

Chapter 3, Section 3.4. To these were added features also consisting of uniformly

random noise; the exact quantity per dataset is shown after their names.

 Table 4.5 presents the results for the semi-supervised version of WK-Means.

The results per dataset, together with the frequency of the modal β, also per dataset, can

be found in Appendix B.

106

Dataset

Exponent β at weight % accuracy

Mean Std of

Mean

Mean of

Modal

Std of

Modal

Mean

Optimal

Mean Std of

Mean

Max Std of

Max

500x8

(2)

1.89 0.25 1.51 0.13 1.5 54.13 5.13 57.68 5.03

500x25

(10)

1.49 0.03 1.44 0.09 3.44 69.29 6.81 72.34 7.56

1000x50

(25)

1.38 0.02 13.4 0.05 4.76 46.51 3.9 49.19 3.7

1000x75

(25)

1.74 0.19 1.52 0.18 4.18 75.16 1.15 78.94 1.63

Table 4.5: Semi-supervised estimations of β in WK-Means on Gaussian models with noise, datasets vi to x

 We present the results for the same datasets for the semi-supervised version of

iMWK-Means in Table 4.6; again, the results per dataset and the frequency of the

modal β, also per dataset, can be found in Appendix B.

107

Dataset

Exponent β at weight % accuracy

Mean Std of

Mean

Mean of

Modal

Std of

Modal

Mean

Optimal

Mean Std of

Mean

Max Std of

Max

500x8

(2)

1.81 0.12 1.45 0.07 1.79 55.8 9.63 70.14 11.96

500x25

(10)

1.61 0.06 1.4 0 1.6 74.6 10.98 89.8 10.21

1000x50

(25)

1.57 0.01 1.46 0.05 1.48 43.92 2.24 54.88 3.26

1000x75

(25)

1.92 0.12 1.38 0.08 1.90 51.0 3.37 70.76 9.83

Table 4.6: Semi-supervised estimation of β in iMWK-Means on Gaussian models with noise, datasets vi to x

 We can observe a clear change in the pattern here. In Table 4.6, the mean of the

exponent β is close to the mean of its optimal value per dataset in all cases. We can

observe that the standard deviation of the mean of β seems to be inversely proportional

to the rate of the noise features (the number of noise features divided by the total

features), and that this standard deviation tends to decrease as the rate of the noise

features increases.

4.5 Conclusion

As one can see in Tables 4.1 to 4.4, the experiment series with real-world data, with

and without noise, even when a rather high proportion of the data is used for estimating

β, it seems that there is not a straightforward relationship between the estimated values

for β in the semi-supervised framework and those that were found to be the optimal

108

values in Chapter 3, Section 3.5, in both WK-Means and iMWK-Means. These

experiments show that finding the best Minkowski metric value at datasets with

unlabeled entities remains an open issue.

 The experiments using Gaussian mixtures were considerably more successful.

The results of these can be found in Tables 4.5 and 4.6; in the latter there is a clear

similarity between the mean of the estimated β value and its optimal, also found in

Chapter 3, Section 3.5. We were also able to observe a possible relationship between

the standard deviation of the estimates and the rate of noise features, which were

inversely proportional. Unfortunately, the accuracy of the semi-supervised version of

iMWK-Means seems to deteriorate in high-dimensional datasets.

 It is not possible to use a semi-supervised approach to attempt to find β if the

labels are not available. In such case it is even more difficult to find a workable value

for β. A Possible solution would be to generate a number of labelled Gaussian mixtures

with different settings, but with the same number of features, entities and clusters as the

dataset to be clustered. One could then apply iMWK-Means at different βs on the

labelled data and use the β with the highest average accuracy on the dataset to be

clustered. We leave the analysis this scenario to future research.

 In Chapter 5, we will address scenarios in which the number of features is far

greater than the number of entities.

109

Chapter 5: Reducing feature space in high-dimensional data

5.1 Introduction

In this chapter, we intend to analyse the behaviour of iMWK-Means and WK-Means

when dealing with a dataset containing a large number of features, as this is now a

common scenario. Examples of this in clustering can be found in the bioinformatics

field: for instance, in gene expression analysis, bio-signal processing, and of course in

other fields such as text clustering.

 One of the main issues with the above scenarios is the curse of dimensionality

(Bellman, 1957), which we discussed in Chapter 3, Section 3.1. This states that a linear

increase in the number of features leads to an exponential increase in a hypothesis

space (Liu and Modota, 2008). Kriegel et al. (2009) identify other issues resulting from

a high-dimensional space such as the effect this space can have in some distance

measures used in conventional clustering algorithms, also discussed in Section 3.1; the

fact that it is impossible to visualise problems in this type of space and by consequence

it is difficult for us to think in it; the irrelevance of some of the features; and that as

there are a large number of features, some may be correlated. Irrelevant or correlated

features may have a major impact on clustering.

 It is difficult to set a hard rule to define how many features are necessary for a

dataset to be considered high-dimensional. In fact, the difficulty in clustering such

datasets also depends on the data itself, as for certain datasets 30 features may be

considered high-dimensional.

 Hand et al. (2001:193) describe the curse of dimensionality from a different

point of view. They state that the amount of data needed to maintain a specific level of

accuracy tends to increase exponentially in relation to the dimensions of a dataset.

110

From this point of view, a possible worst-case scenario for clustering would be one in

which the number of features is much larger than the number of entities and the data

itself has clusters that are not easily separable.

 In Chapters 3 and 4, we explored the behaviour of WK-Means and iMWK-

Means, among others, in datasets with as many as 75 features. In this chapter, we take

this experiment a step further and enter the realm of datasets with thousands of features.

We have decided to use datasets with a far more complex structure than the Gaussian

models that were used previously, choosing instead to cluster Electroencephalography

(EEG) signals.

 The literature widely acknowledges that EEG signals contain information about

the present state or intention of the mind (Drongelen, 2007; Geng et al., 2008; Sanei

and Chambers, 2007; Ungureanu et al., 2005; Lee et al., 2005). The acquisition of this

type of signal falls into the category of non-invasive approaches and can be used to

gather information for mental-task separation.

 There are multiple reasons to analyse EEG signals. Some researchers see them

mainly as an alternative channel of communication, which could be used for instance

by motor-paralysed people who have intact cognitive and sensory functions. Other

scholars have different aims, such as diagnosing mental disorders and other

abnormalities that may happen in a human body (Ungureanu et al, 2004), or among

other possibilities, monitoring the depth of anaesthesia (Ortolani et al., 2002).

 The processing of EEG signals is non-trivial, and patterns tend to be difficult to

discern. The reason for this is unlikely to be related solely to the high dimensionality of

the data, as research suggests that high-dimensional data are of simple structure

(Murtagh, 2009). Aside from the fact that we do not fully understand the inner

workings of the brain, another point to note is that EEG data is particularly noisy. The

111

reasons for this noisiness are many, but most of it tends to come from within the brain

or on the scalp: for instance, these signals are normally acquired via electrodes put on

the scalp of a subject, each of which simultaneously captures signals from thousands of

neurons. Other sources of noise include eye movement, muscle activity, cardiac

activity, respiration, etc. (Sanei and Chambers, 2007:10). In fact, even if the pure

biological EEG source were to be noise-free, the processes of amplification and

digitalisation of the signal (also known as systematic bias) would add this (Drongelen,

2007:35). The exposure to pulse modulated electromagnetic fields, which occurs while

using devices such as mobile phones, may also generate irregularities in EEG patterns,

as research suggests (Klitzing, 1995; Huber et al., 2002), since this may affect cerebral

blood flow in certain areas of the brain.

 EEG data is high dimensional by nature. A recording of one hour using 128

electrodes at 500 samples per second would generate around 0.45GB of data (Sanei and

Chambers, 2007: 14). Although we use only five bipolar electrodes here, the datasets

we introduce in Section 5.2 have 5,680 dimensions.

5.2 Setting of the experiment with all features

In this chapter, we experiment with WK-Means and iMWK-Means: both algorithms

can be found in Chapter 3, Sections 3.2.1 and 3.3.3 respectively. Our objective is to

find these algorithms‟ maximum accuracy in a high-dimensional space where the

number of features is far greater than the number of entities and the data is difficult to

cluster.

 The data used in this experiment comes from three healthy subjects and was

recorded using five bipolar electrodes, generating five channels and a sampling

112

frequency of 250 Hz. Although the literature tends to use considerably more electrodes,

in the order of 32, 64 or even 128, we have decided to follow the example of Tsui et al.

(2009) and use a reduced number to minimise computational effort. Our five electrodes

were placed according to positions standardised in the extended 10-20 system using fc3

to pc3, fc1 to pc1, cz to pz, fc2 to pc2, and fc4 to pc4.

 In each trial, the subject was required to imagine a single task, generating data

which was recorded for eight seconds and had 2,001 samples. The tasks could be

either:

 (T1) Movement of the left hand, or

 (T2) Movement of the right hand, or

 (T3) Movement of the feet.

 The data obtained in a trial was recorded as a three-way function a=f(t, c, r), in

which a represents the amplitude, t corresponds to a sample and ranges from one to

2,001, c to one of five channels c=1,…,5, and r to a trial. The three subjects from

which the data was collected are denoted as A, B and C and had 240, 120 and 350 trials,

respectively; there is no particular reason for the difference in the number of trials. In

our experiment, we aimed to cluster the trials (entities) into the right tasks (clusters).

 EEG patterns are normally found in frequencies rather than amplitudes

(Drongelen, 2007: 3). Taking this issue into account, we have transformed the raw data

into its power spectrum density (psd, also known as spectral density or energy spectral

density) as it helps to identify periodicities and was successfully applied in EEG signal

processing in previous publications including our own (Amorim et al., 2010; Gan,

2006; Chiappa and Bengio, 2004; Millan and Mourino, 2003).

 This process represents a trial as a function of time and frequency channel. Each

trial generated 71 samples relating to time and 80 psd-features for each of the samples;

113

the latter consisted of psds over 8~45Hz (psds in 16 frequency bands from each

channel: we had five channels hence 80 psd-features). The number of features for

clustering represents the 71 time samples and the 80 psd-features; consequently, each

trial had 5,680 (71x80) features. It is interesting to note that this number is far greater

than the number of trials: 240,120 and 350 for subjects A, B and C, respectively.

 All of the datasets were normalised in the same way as described in Chapter 3,

Section 3.4. Unlike some of the datasets presented in Chapter 3, however, those present

here were entirely comprised of numerical features. The data per subject over their two

principal components can be visualised in Figures 5.1, 5.5 and 5.9. Unsurprisingly, the

tasks did not appear to separate well.

5.3 Experimental results with all features

In this section, we analyse the results per subject. For each subject, we will firstly deal

with the accuracies obtained by each algorithm with its respective optimal β and then

analyse the obtained feature weights in each algorithm.

(1) Subject A

The normalised psd data for subject A, on the plane of its first two components, can be

visualised in Figure 5.1. There seems to be a cluster structure in this dataset, but it does

not coincide with the given labels; these labels are represented by different shapes.

114

Figure 5.1: PSD data for subject A on the plane of the first two principal components, the clusters are shown using different shapes

for the trials

The accuracies obtained in each of the algorithms can be found in Table 5.1.

Subject A had 240 trials divided equally between the three clusters, each of which had

80 trials.

Algorithm Exponent β at Accuracy, %

Distance Weight Mean Std Max

WK-Means 2.0 4.3 41.5 5.9 52.5

iMWK-Means 2.0 2.0 50.1

3.0 3.0 35.0

4.0 4.0 35.0

5.0 5.0 34.6

Table 5.1: Accuracies achieved using WK-Means and iMWK-Means clustering at the EEG data for subject A

 The evolution of the accuracy per β for subject A can be seen in Figure 5.2. The

figure shows that iMWK-Means‟ accuracy tends to be below 42%, but with a spike to

115

just over 50% when β =2. The average accuracy of WK-Means per β seems more

stable, but is low, mostly at around 38% but with a maximum of 41.5%.

Figure 5.2: Accuracy of iMWK-Means and WK-Means per beta in subject A‟s data. IMWK-Means and WK-Means are represented

by the solid and dotted lines, respectively

 In terms of weights, in the anomalous pattern step of iMWK-Means, the three

means obtained by averaging the weights over the features are very similar, but their

range is not: for instance, the range of weights of the third cluster is twice as much as

that of the first cluster. The final weights obtained in iMWK-Means, unlike those

obtained with WK-Means, seem to identify some weights as being more information-

carrying than others. Figure 5.3 is a bar chart depicting the mean of the weights per

feature.

116

Figure 5.3: Mean of the three final weights (one per cluster) per feature for subject A. IMWK-Means and WK-Means are shown in

the left- and right-hand figures, respectively

The pattern of the final weights of iMWK-Means shown in Figure 5.3 seems to

be linked to the five channels in the data. These channels are represented in the

features, in blocks of 1,136 (the number of time points: 71, times the number of

frequency bands from each channel: 16). In terms of time, the weights seem to be

higher in the second half of the trials, which conforms to the literature. Figure 5.3

shows that the weights tend to be higher at the end of each of the blocks of 1,136

features.

 Another interesting fact we can identify is the relation between the standard

deviation of the mean of weights over the clusters and β. It seems that the larger the β,

the smaller the standard deviation of weights, for both iMWK-Means and WK-Means,

as if the weights were converging. Figure 5.4 shows this relationship in subject A‟s

data.

117

Figure 5.4: Standard deviation of weights per beta on subject A: the solid, dashed and dotted lines represent the clusters for tasks

T1, T2 and T3, respectively; the figure of iWMK-Means is on the left while WK-Means is on the right

(2) Subject B

We begin the analysis of subject B‟s data by showing the normalised data itself, on the

plane of the first two principal components, in Figure 5.5. The different shapes relate to

the different tasks.

Figure 5.5: PSD data for subject B on the plane of the first two principal components, the clusters are shown using different shapes

for trials

The accuracies obtained in each of the algorithms are recorded in Table 5.2. Subject B

has 120 trials, divided equally between the three clusters.

118

Algorithm Exponent β at Accuracy, %

Distance Weight Mean Std Max

WK-Means 2.0 2.6 45.5 5.9 58.3

iMWK-Means 2.1 2.1 50.1

3.0 3.0 47.5

4.0 4.0 50.0

5.0 5.0 50.0

Table 5.2: Accuracies achieved using WK-Means‟ and iMWK-Means‟ clustering at the EEG data for subject B

The accuracy provided by iMWK-Means, per β, was mostly around 48% to 50%. The

algorithm demonstrated a tendency to stabilise at 50% at higher βs. The average

accuracy of WK-Means was considerably more modest, and evidence of this can be

seen in Figure 5.6.

Figure 5.6: Accuracy of iMWK-Means per beta in subject B data: IMWK-Means and WK-Means are represented by the solid and

dotted lines, respectively

119

 The first set of weights obtained in the anomalous pattern step of iMWK-Means

was equal with a value of 1/5,680 (the total number of features). This signals, again, the

difficulty this mechanism may face when dealing with high-dimensional data. These

identical weights were then used in the initialisation of iMWK-Means‟ second step

which made it, regarding weights, very similar to MWK-Means.

 The final weights obtained by iMWK-Means show a more modest pattern than

for subject A. WK-Means weights‟ are closer to the mean, but this time we can detect

some level of similarity to those obtained with iMWK-Means. Figure 5.7 shows a bar

chart with the means of the weights per feature for subject B.

Figure 5.7: Mean of the three final weights (one per cluster) per feature for subject B: IMWK-Means and WK-Means are shown in

the left and right figures, respectively

 We can observe that the standard deviation of the weights over the features

seems, again, to be inversely proportional to the value of β, and the higher the β the

smaller the standard deviation. The rate of change seems to be rather similar for all

three clusters as shown in Figure 5.8.

120

Figure 5.8: Standard deviation of weights per beta on subject B. The solid, dashed and dotted line represent the clusters for tasks

T1, T2 and T3, respectively: the figure of iWMK-Means is at the left while WK-Means is on the right

(2) Subject C

We begin the analysis of subject C by showing the normalised data on the plane of the

first two principal components in Figure 5.9.

Figure 5.9: PSD data for subject C on the plane of the first two principal components, the clusters are shown using different shapes

for trials

Table 5.3 shows the accuracies obtained for each of the algorithms. Subject C

had 350 trials divided into 119, 113, and 118 trials for tasks T1, T2 and T3,

respectively.

121

Algorithm Exponent β at Accuracy, %

Distance Weight Mean Std Max

WK-Means 2.0 1.9 37.3 1.66 45.7

iMWK-Means 1.5 1.5 38.9

3.0 3.0 36.3

4.0 4.0 35.4

5.0 5.0 36.3

Table 5.3: Accuracies achieved using WK-Means‟ and iMWK-Means‟ clustering at the EEG data for subject C

 Neither iMWK-Means nor WK-Means successfully clustered subject C‟s data,

achieving results that were slightly over random. Figure 5.10 shows the accuracy of

both algorithms per beta for this subject.

Figure 5.10: Accuracy of iMWK-Means per beta in subject C data: IMWK-Means and WK-Means are represented by the solid and

dotted lines, respectively

122

 As for subject A WK-Means had a more stable result than iMWK-Means,

perhaps because the former is a multiple-run algorithm, but again it had a lower

accuracy.

 The set of weights generated at the anomalous pattern step of iMWK-Means, as

in the previous subjects, had similar means for the three clusters over the features.

Their ranges were again different but did not follow the same pattern as for subject A;

this time, the ranges were larger in the clusters for tasks T2 and T1 and T3,

respectively.

 Figure 5.11 shows the time-related pattern of the final mean of weights over the

clusters, obtained by iMWK-Means.

Figure 5.11: Mean of the three final weights (one per cluster) per feature for subject B: IMWK-Means and WK-Means are the left

and right figures, respectively

 Figure 5.12 shows that, as with the previous subjects (Figures 5.4 and 5.8),

subject C‟s data presents a relationship between the standard deviation of weights over

the features and the exponent β. Again, this seems to be inversely proportional in the

sense that the higher the β, the smaller the standard deviation of weights over the

features.

123

Figure 5.12: Standard deviation of weights per beta on subject C: The solid, dashed and dotted line represent the clusters for tasks

T1, T2 and T3 respectively; the figure of iWMK-Means is at the left while WK-Means is at the right

In a previous publication (Amorim et al, 2010) we presented a supervised method for

classifying mental tasks that achieved 67%, 84% and 82% accuracy for subjects A, B

and C, respectively. Of course, we cannot hope to achieve such high accuracies with an

unsupervised algorithm but these accuracy rates do suggest the need to analyse the

shortcomings of weighted clustering methods.

 Weighted methods, such as iMWK-Means and WK-Means, have the following

weaknesses:

 (i) If a set of features carries similar meaningful information, none will be

excluded (assigned a weight zero); in fact, they will all end up with similar weights.

 (ii) Even if a feature weight has a negligible value, computers will have to take

this into account when making their calculations.

 (iii) They analyse one feature at a time so are unable to deal with the XOR

problem.

 In relation to problem (i), Guyin and Elisseeff (2003) suggest that feature

selection (and we extend this here to feature weighting) tends to be suboptimal for

building a predictor in datasets with a high level of redundancy. If a set of features

124

carries similar information, there is no need for the algorithms we deal with in this

thesis to take them all into account.

 Problem (ii) relates to computational effort. It is intuitive that features should

not have negligible weights. Unfortunately, problem (iii) is difficult to solve because

the weights‟ algorithms presented in Chapter 3 follows a wrapper approach and

calculate weights by taking into account one feature at a time. Therefore, we will leave

this for future research.

 Issues (i) and (ii) lead us to believe that algorithms such as WK-Means and

iMWK-Means would benefit from a feature-space reduction in the scenario presented

in this chapter.

5.4 Feature-space reduction

Huang el al. (2008) suggests that WK-Means can be used for feature selection. In their

explanation, they follow a simple method with three steps:

 1- Running WK-Means on the dataset or a subsample of it;

 2 - Removing those features that have a small weight;

 3 - Running WK-Means, or a different clustering algorithm, on the dataset with

the remaining features only.

 At first, the above method could seem to reduce computations, and even to deal

with the issue of features with negligible weights. Unfortunately, Huang el al. (2008)

does not clearly define the smallness of the weight. If we were to follow their method,

we would need to introduce two extra thresholds as parameters: one to define what

125

constitutes a small weight and other to be used as a stop condition. We would rather not

introduce two extra parameters as this could increase the computational effort involved

in finding them.

 Huang et al. (2008) acknowledge that in large datasets several runs of WK-

Means may be necessary, and this may lead to an even greater computational effort.

WK-Means is a multiple-run algorithm; in all our experiments, we have used 100 runs

as a standard. In order to follow their method we would have to run it 100 times per β,

remove the features with small weights (i.g the bottom 10%) and run it another 100

times per β, and so forth, thus creating a computationally-demanding loop.

 In Section 5.4.1, we present Mitra et al.‟s (2002) unsupervised feature-selection

method that deals with redundant features and needs only one extra parameter. We

extend this in Section 5.4.2 by introducing a new method. In our method the number of

extra parameters is reduced to zero.

5.4.1 Feature selection using feature similarity

Mitra et al. (2002) have introduced what is arguably the most popular unsupervised

method for dealing with redundant features. Their method, feature selection using

feature similarity (FSFS), does not present a search process and by consequence is said

to be computationally undemanding. The core of their method involves removing

redundant features by determining a set of maximally independent features and then

discarding similar ones. They begin by presenting the correlation coefficient that is then

used in their introduced index.

126

Equation 5.1: Correlation coefficient

in the above equation, var and cov represent the variance and covariance between two

variables, respectively. Mitra et al. (2002) then present the maximal information

compression index (), which is the smallest eigenvalue of the covariance matrix of

random variables x and y. It measures the minimum amount of information loss or the

maximum amount of information compression possible. They acknowledge that the

definition of this measure is not entirely new, but its use in unsupervised feature

selection is innovative.

Equation 5.2: Maximal information compression index

 ‟s value is zero when the features are linearly dependent, which increases as the

independence decreases. This index has the following properties (Mitra et al., 2002):

(i) 0 ≤ ≤ 0.5(var(x) + var(y))

(ii) = 0, iff x and y are linearly related

(iii) = (symmetric)

(iv) It is invariant to translation of the dataset

(v) It is invariant to rotation.

127

 Although not completely bound to it, the FSFS algorithm (Mitra et al., 2002)

uses the maximum information compression index to select features: this can be found

in Algorithm 5.1.

Algorithm 5.1: Unsupervised feature selection using feature similarity

1. Initial setting

Choose an initial value for k, which has to be smaller or equal to

the number of features, minus 1. Put all features in the reduced

subset R. Standardise the features rather than the entities.

2. Calculate the dissimilarity

For each feature calculate
 , the dissimilarity between

and its kth nearest neighbour feature in R, using the maximal

information compression index (Equation 5.2).

3. Find the feature to be retained

Find the feature for which
 is the minimum. Retain and

discard its k nearest features. Set ε =

4. Adjust k in relation to the number of features

If k > cardinality(R) -1, then k = cardinality(R) -1

5. Stop condition

If k =1, stop and output the reduced feature set.

6. Adjust k in relation to the similarity

While
 ε, do

 6.1 k = k -1.

 =

 6.2 if k=1 go to step 5

Go to step 2.

128

 In Algorithm 5.1, step 2, the use of the maximal information compression index

(Equation 5.2) is not compulsory; instead the dissimilarity may be calculated using

other indexes, such as the correlation coefficient (Equation 5.1): here we use the

former.

 Mitra et al. (2002) have conducted a number of experiments comparing their

FSFS algorithm with others. Their method was successfully compared to a number of

well-known algorithms, using different comparison indices: Brand and Bound‟s

algorithm (Devijver and Kittler, 1982); sequential forward search (Whitney, 1971;

Devijver and Kittler, 1982); sequential floating forward search (Pudil et al., 1994);

stepwise clustering, using the correlation coefficient (King, 1967); and the supervised

Relif-F (Kononenko, I. 1994).

5.4.2 Feature selection through iKFS

The FSFS algorithm does not take into account the cluster structure of the features and

requires an extra parameter, these issues leads us to analyse a possible K-Means based

extension. The use of K-Means for clustering features has been suggested in a number

of publications (Dhillon et al., 2003; Guyon and Elisseeff, 2003; Dy, 2008). It is an

appealing method as if features are clustered together they can be considered similar,

while those in different clusters are dissimilar. The main idea is to replace a whole

cluster of similar features by one feature only: normally, the cluster centroid (Guyon

and Elisseeff, 2003).

 In the clustering of features, we have decided not to use a weighted method

such as WK-Means or iMWK-Means, for the following reasons:

129

(i) Weighted methods excel when different features have different degrees

of relevance for clustering. We will cluster the features themselves;

hence the weights will be given to the trials, which we assume to be of

equal relevance.

(ii) This would increase the number of parameters needed. Both algorithms,

WK-Means and iMWK-Means, rely on a good β. One β would be used

to cluster the features, and probably a different one would then be used

when clustering the trials.

The second possibility would be to use either K-Means or iK-Means (presented

in Section 2.4, Algorithm 2.6). Although the latter did not appear to cope well when

integrated with WK-Means and the Minkowski metric in a high-dimensional space, the

experiments in Section 3.5 show it as a rather competitive to K-Means itself.

 Potentially the greatest advantage of using iK-Means as a starting point is that it

finds clusters in data. This allows us to create a new method for feature selection via

clustering features that has no unspecified parameter. If we were to use K-Means, we

would have to set the number of clusters in the data as a pre-specified parameter. The

reduced computational effort generated by iK-Means is also of interest as a

deterministic method.

 In our approach, which we will call iK-Means with feature similarity (iKFS),

we cluster the features using iK-Means and set its discarding threshold of zero (for

clarification, see Algorithm 2.6, in Chapter 2). This configuration allows iK-Means to

find clusters composed of a single feature. It does not seem intuitive to represent

clusters of different sizes by one feature each, so the number of features selected from

each cluster depends on its size and the total number of clusters in the dataset, as per

Equation 5.3.

130

Equation 5.3: Defining the quantity of features f selected from a cluster

where the number of features selected from a cluster is equal to the cardinality of

cluster (the number of features within this cluster) found in the anomalous pattern

step, divided by the total number of features, times the total number of clusters K,

rounded up. Algorithm 5.2 formally introduces our method.

Algorithm 5.2: iK-Means with feature similarity (iKFS)

1. Initial setting

Standardise the features, rather than the entities, using Equation

3.13.

2. Cluster

Find the clusters of the features using iK-Means, Algorithm 2.6.

The iK-Means threshold should be set to zero, allowing it to find

singletons.

3. Feature selection

For each cluster, find the f features as per Equation 5.3 that have

the largest maximal information compression (Equation 5.2) and

save them in the reduced subset R.

4. Output

Output the subset R of selected features.

131

 Our method also allows the use of measures other than the maximal information

compression (Equation 5.2). In fact, in our early experiments we tried to use the

correlation index (Equation 5.1) but were not as successful or fast. The speed was

particularly low when trying to find a new centroid, an entity with the highest average

absolute correlation to all other entities in the same cluster. In our early experiments we

also sought to set f to a constant, such as one or five, but the results for this were not as

good as those revealed in Section 5.5.2.

 Through experimentation, we found iKFS (Algorithm 5.2) to be considerably

faster than FSFS (Algorithm 5.1).

5.5 Experimental results with the reduced datasets

In Sections 5.5.1 and 5.5.2, we present the results of our experiments with the FSFS

method introduced by Mitra et al. (2002) and our iKFS method.

 As we shown in algorithm 5.1, the FSFS method calculates a dissimilarity index

between all features and their respective kth nearest neighbour, by consequence it

increases the number of parameters we need in one, the k. Our objective in the

following experiments is not to find this k but rather to compare the optimal accuracies

obtained with WK-Means and iMWK-Means with good k and β and compare them to

the accuracies obtained with our iKFS method, which does not require a new

parameter.

 We have run a number of experiments to find a good k; these were in the range

of 4,800 to 5,600, in steps of 100. For each of the generated subset of features, we

applied both WK-Means and iMWK-Means, as before, with β ranging from 1.0 to 5.0

in steps of 0.1. In our experiments with iMWK-Means, we consider k to be optimal

132

when the maximum accuracy using all possible βs with this k is higher than the

maximum accuracy obtained with all other k. Experiments with WK-Means were very

similar, but as this is a multiple-run algorithm we used the maximum of the average

accuracies per β.

5.5.1 Experiments with the FSFS method

In this section, we show the optimal accuracy obtained with both WK-Means and

iMWK-Means using only the features selected by the FSFS method (Mitra et al., 2002).

Note that the amount of features is not necessarily the same for WK-Means and

iMWK-Means, as these may have different optimal ks.

(1) Subject A

We have applied principal component analysis to subject A‟s data, using only the 28

features selected for iMWK-Means and the 25 selected for WK-Means. Figure 5.13

shows these two datasets on the plane of their first two principal components as the top-

left and top-right figures, respectively. For comparison, the bottom figure shows the

dataset on its first two principal components using all features.

133

Figure 5.13: PSD of subject A on the plane of the first two principal components, the clusters shown using different shapes for the

trials: the top-left and top-right figures use 28 and 25 features, respectively, selected with the FSFS method; the figure at the bottom

uses all features

It is difficult to see much improvement, in particular for the features selected for

iMWK-Means, in relation to having all of the features present in the dataset. This is

further validated by the accuracies in Table 5.4.

Algorithm Optimal

k

Exponent β at Accuracy, %

Distance Weight Mean Std Max

WK-Means 5000

(25)

2.0 3.9 48.2 2.5 52.1

iMWK-Means 5300

(28)

3.2 3.2 51.2

3.0 3.0 47.5

4.0 4.0 47.5

5.0 5.0 46.7

Table 5.4: Accuracies achieved with the WK-Means and iMWK-Means algorithms, using only the features selected using FSFS, on

subject A‟s data; the number of features is shown in parentheses

134

Unfortunately, the optimal value for iMWK-Means does not seem to have had a

statistically significant improvement than if no feature selection had been performed.

WK-Means, on the other hand, did present an increase of nearly 7% in its mean value

but had no positive difference in its maximum. We further compare both algorithms in

Figure 5.14, showing its accuracies per β using their respective optimal ks.

Figure 5.14: Accuracy of iMWK-Means per Beta in subject A‟s data. IMWK-Means and WK-Means are represented by the solid

and dotted lines, respectively: the above was obtained using only the features selected via the FSFS method for each algorithm

In terms of the final weights, both algorithms were very similar in all features, as

shown in Figure 5.15.

135

Figure 5.15: Mean of the three final weights (one per cluster) in each of the features selected via FSFS for subject A: IMWK-Means

and WK-Means are shown in the left- and right-hand figures, respectively

(2) Subject B

As for the previous subject, we have applied principal component analysis to this

subject‟s data using only the features selected with FSFS, 393 and 472 for iMWK-

Means and WK-Means, respectively. Figure 5.16 shows these two datasets on the plane

of their first two principal components in the top-left and top-right. Again, we have also

at the bottom the original dataset on its first two principal components using all

features.

136

Figure 5.16: PSD of subject B on the plane of the first two principal components, the clusters are shown using different shapes for

trials: the figures in the top-left and top-right use 393 and 472 features, respectively, selected with the FSFS method: the figure at

the bottom uses all features

On this occasion, there seemed to be some improvement represented in the

considerable increase of accuracy for both subjects, as shown in Table 5.5.

Algorithm Optimal

k

Exponent β at Accuracy, %

Distance Weight Mean Std Max

WK-Means 4800

(472)

2.0 4.7 59.2 4.6 73.3

iMWK-Means 5000

(393)

2.0 2.0 65.0

3.0 3.0 60.0

4.0 4.0 63.3

5.0 5.0 52.5

Table 5.5: Accuracies achieved with the WK-Means and iMWK-Means algorithms, using only the features selected using FSFS, on

the data of subject A: the number of features is shown in parentheses

137

The maximum accuracy of WK-Means is reasonably higher than the accuracy obtained

with iMWK-Means, but again its average accuracy using its optima β and k is lower.

Figure 5.17 shows the accuracies of iMWK-Means as well as the average accuracy of

WK-Means per β.

Figure 5.17: Accuracy of iMWK-Means per beta in subject A‟s data: IMWK-Means and WK-Means are represented by the solid

and dotted lines, respectively; the above was obtained using only the features selected via the FSFS method for each algorithm

It seems that WK-Means has a more stable accuracy. This may have happened because

the accuracies are, in fact, averages. Even with a considerably large number of features,

the final weights, shown in Figure 5.18, had rather similar values in WK-Means, which

may also have added to its stability per β.

138

Figure 5.18: Mean of the three final weights (one per cluster) in each of the features selected via FSFS for subject B: IMWK-Means

and WK-Means are shown in the left- and right-hand figures, respectively

(3) Subject C

This subject had the same optimal k for both WK-Means and iMWK-Means; hence in

Figure 5.19, we show only the two first principal components of the dataset with the

selected 33 features on the left and all of the features on the right.

Figure 5.19: PSD of subject C on the plane of the first two principal components, the clusters are shown using different shapes for

trials: the figure on the left uses only the 33 features selected with the FSFS method, while the one on the right uses all of them

It seems that the data became less sparse, but yet was without a clear cluster structure.

Table 5.6 shows that there is, unfortunately, little improvement.

139

Algorithm Optimal

k

Exponent β at Accuracy, %

Distance Weight Mean Std Max

WK-Means 4800

(33)

2.0 4.7 39.6 1.8 42.3

iMWK-Means 4800

(33)

4.6 4.6 42.3

3.0 3.0 41.1

4.0 4.0 40.0

5.0 5.0 38.6

Table 5.6: Accuracies achieved with the WK-Means and iMWK-Means algorithms, using only the features selected using FSFS, on

subject A‟s data: the number of features is shown in parentheses

Figure 5.20 shows the accuracies per beta for both algorithms. Again, WK-Means

seems to be more stable regarding the β.

Figure 5.20: Accuracy of iMWK-Means per beta in subject A‟s data: IMWK-Means and WK-Means are represented by the solid

and dotted lines, respectively; the above was obtained using only the features selected via the FSFS method for each algorithm

140

As for Subject A, the final weights obtained by both algorithms had similar values. This

is shown in Figure 5.21.

Figure 5.21: Mean of the three final weights (one per cluster) in each of the features selected via FSFS for subject C. IMWK-Means

and WK-Means are shown in the left- and right-hand figures, respectively

5.5.2 Experiments with the iKFS Method

In this section, we show the optimal accuracies obtained with both WK-Means and

iMWK-Means using only the features selected with iKFS.

(1) Subject A

For subject A, our method selected only 20 out of 5,680 features. We used PCA in the

reduced dataset; Figure 5.22 shows it on the plane of its first two principal components,

together with the figure that takes into account all of the features for easy comparison.

141

Figure 5.22: PSD of subject A on the plane of the first two principal components, the clusters are shown using different shapes for

trials: the figure on the left uses only the 20 features selected with iKFS, while the one on the right uses all

Although it is difficult to state from a bi-dimensional figure, it seems that a better

cluster structure is now aligned to the x axis. We have applied both WK-Means and

iMWK-Means in the reduced dataset and show the accuracies at an optimal β in Table

5.7.

Algorithm Exponent β at Accuracy, %

Distance Weight Mean Std Max

WK-Means 2.0 1.5 54.1 1.4 56.2

iMWK-Means 4.5 4.5 59.2

3.0 3.0 56.2

4.0 4.0 58.3

5.0 5.0 58.7

Table 5.7: Accuracies achieved with the WK-Means and iMWK-Means algorithms, using only the 20 features selected via iKFS on

subject A‟s data

142

 In this case, iMWK-Means was consistently more accurate than WK-Means.

When using the optimal β, the difference between iMWK-Means and the average

accuracy of WK-Means was just over five percent. Figure 5.23 shows a comparison

between the accuracies of both algorithms per β.

Figure 5.23: Accuracy of iMWK-Means per beta in subject A’s data: IMWK-Means and WK-Means are represented by the solid

and dotted lines, respectively; the above was obtained using only the 20 features selected via iKFS

 The weights found by iMWK-Means were similar to each other on this

occasion. WK-means seems to find a considerably bigger difference in weights but, as

shown in Figure 5.23, this time this does not seem to yield a greater level of accuracy

than that obtained with iMWK-Means.

143

Figure 5.24: Mean of the three final weights (one per cluster) in each of the 20 features selected with iKFS for subject A: IMWK-

Means and WK-Means are shown in the left- and right-hand figures, respectively

(2) Subject B

Our feature-selection method, iKFS, reduced the dataset from 5,680 features to nine.

Figure 5.25 shows the difference between the first two principal components of the

reduced dataset (left) and the whole (right).

Figure 5.25: PSD of subject B on the plane of the first two principal components, the clusters shown using different shapes for

trials: the figure in the left uses only the nine features selected with iKFS while the one at the right uses all of them

Again, it seems that the reduced dataset improved the class separability of the trials.

This is verified in Table 5.8.

144

Algorithm Exponent β at Accuracy, %

Distance Weight Mean Std Max

WK-Means 2.0 3.6 68.5 4.7 76.7

iMWK-Means 2.5 2.5 66.7%

3.0 3.0 65.0%

4.0 4.0 65.0%

5.0 5.0 63.3%

Table 5.8: Accuracies achieved with the WK-Means and iMWK-Means algorithms, using only the nine features selected via iKFS

on the data of subject B

In this case, WK-Means had a considerably better maximum accuracy in relation to

iMWK-Means. The iMWK-Means algorithm was below but competitive to the average

accuracy of WK-Means using their respective optimal βs. Figure 5.26 shows a

comparison of the accuracies of iMWK-Means and the average accuracy of WK-Means

per β.

Figure 5.26: Accuracy of iMWK-Means per Beta for subject B‟s data: IMWK-Means and WK-Means are represented by the solid

and dotted lines, respectively; the above was obtained using only the nine features selected via iKFS

145

Finally, Figure 5.27 shows the feature weights generated by both algorithms to be

similar.

Figure 5.27: Mean of the three final weights (one per cluster) in each of the nine features selected with iKFS for subject B: IMWK-

Means and WK-Means are shown in the left- and right-hand figures, respectively

(3) Subject C

The iKFS method selected 11 out of a total 5,680 features. Figure 5.28 shows the

differences between the first two principal components of the dataset using only the

selected features (left) and all of the features (right).

146

Figure 5.28: PSD for subject C on the plane of the first two principal components, the clusters shown using different shapes for

trials: the figure on the left uses only the 11 features selected with iKFS while the one on the right uses all of them

Again, the dataset using only the selected features seems to have a better cluster

structure than the original with all of them. This is validated with the optimal

accuracies shown in Table 5.9.

Algorithm Exponent β at Accuracy, %

Distance Weight Mean Std Max

WK-Means 2.0 4.5 56.5 0.3 56.9

iMWK-Means 1.8 1.8 58.6%

3.0 3.0 56.9%

4.0 4.0 57.1%

5.0 5.0 57.1%

Table 5.9: Accuracies achieved with the WK-Means and iMWK-Means algorithms, using only the 11 features selected via iKFS

clustering on subject C‟s data

147

IMWK-Means did obtain a higher accuracy than the average and maximal accuracies

obtained by WK-Means, but the latter is competitive. To its advantage, iMWK-Means

shows a small, but consistent, superiority over WK-Means as shown in Figure 5.29.

Figure 5.29: Accuracy of iMWK-Means per beta in subject C data: IMWK-Means and WK-Means are represented by the solid and

dotted lines, respectively; the above was obtained using only the 11 features selected via iKFS

Finally, in terms of feature weights, the ones obtained by WK-Means were similar,

while those obtained by iMWK-Means demonstrated a considerable level of difference

among certain features, as shown in Figure 5.30.

Figure 5.30: Mean of the three final weights (one per cluster) in each of the 11 features selected with iKFS for subject C: IMWK-

Means and WK-Means are shown in the left- and right-hand figures, respectively

148

5.6 Comparison of the methods

As expected, both feature selection algorithms FSFS (Mitra et al., 2002) and our feature

clustering iKFS generally increased the accuracy of iMWK-Means and WK-Means.

 In this section, we compare the results obtained in Sections 5.5.1 and 5.5.2. Our

objective is to clarify the differences in the results as much as possible; we start by

comparing those obtained for subject A, shown in Table 5.10.

Algorithm Feature

Selection

Method

Exponent β at Accuracy, %

Distance Weight Mean Std Max

WK-Means FSFS (25) 2.0 3.9 48.2 2.5 52.1

WK-Means iKFS (20) 2.0 1.5 54.1 1.4 56.2

iMWK-Means FSFS (28) 3.2 3.2 51.2

iMWK-Means iKFS (20) 4.5 4.5 59.2

Table 5.10: Comparison of algorithms for subject A; the number of features is shown in parentheses

When comparing the feature selection algorithms, we can observe that the iKFS has

enabled WK-Means and iMWK-Means to achieve considerably higher accuracies using

a smaller number of features. The iMWK-Means, when using any of the two feature-

selection methods, has provided results that are higher than the average accuracy

obtained with WK-Means, and competitive or higher accuracy than the maximum

achieved by WK-Means.

 Table 5.11 shows a similar comparison for subject B.

149

Algorithm Feature

Selection

Method

Exponent β at Accuracy, %

Distance Weight Mean Std Max

WK-Means FSFS (472) 2.0 4.7 59.2 4.6 73.3

WK-Means iKFS (9) 2.0 3.6 68.5 4.7 76.7

iMWK-Means FSFS (393) 2.0 2.0 65.0

iMWK-Means iKFS (9) 2.5 2.5 66.7

Table 5.11 Comparison of algorithms for subject B; the number of features is shown in parentheses

Again, in terms of feature selection iKFS has enabled both WK-Means and iMWK-

Means to achieve better results using far fewer features than the feature similarity

method. IWMK-Means provides a higher or competitive accuracy when compared to

the average accuracy of WK-Means using both feature-selection methods, but smaller

than WK-Means‟s maximum. Table 5.12 shows the comparison for subject C.

Algorithm Feature

Selection

Method

Exponent β at Accuracy, %

Distance Weight Mean Std Max

WK-Means FSFS (33) 2.0 4.7 39.6 1.8 42.3

WK-Means iKFS (11) 2.0 4.5 56.5 0.3 56.9

iMWK-Means FSFS (33) 4.6 4.6 42.3

iMWK-Means iKFS (11) 1.8 1.8 58.6

Table 5.12: Comparison of algorithms for subject C; the number of features is shown in parentheses

150

The iKFS method seems to provide a much better subset of features than the FSFS

method introduced by Mitra et al. (2002). In this case the accuracy obtained with WK-

Means is less but competitive to that obtained with iMWK-Means.

5.7 Conclusion

Our objective in this chapter has been to examine the behaviour of both WK-Means

and iMWK-Means when dealing with datasets that are set in a high-dimensional space

and have classes that are difficult to separate. For this purpose, we decided to cluster

EEG data, which is widely acknowledged as a difficult problem. We acquired this data

from three healthy subjects, with 5,680 features.

 We have analysed the frequency of the datasets by using the power spectrum

density of the raw data in our experiments. We have found that iMWK-Means tends to

have a better accuracy than the average achieved by WK-Means and the former is, in

most cases, competitive to its maximum accuracy with of course less computational

effort.

 We have also found that reducing large amounts of features that have some

level of similarity (are clustered together) to a considerably reduced subset, can have

positive outcomes in our scenario. Most likely, this is particularly true for both

weighted algorithms because they would equally rate two features carrying the same

information, instead of discarding one of them. We have experimented with the FSFS

method (Mitra et al., 2002) and developed our own method, iKFS, and found that in our

datasets the latter tends to provide better features more quickly and without requiring a

new parameter.

151

 In the next chapter we will conclude this work, summarise our contribution to

the literature, and clearly define the direction of our future research.

152

Chapter 6: Conclusion and Future Work

6.1 Research outcomes

The subject of this thesis is to try to further advance into the problem of data clustering,

and especially high-dimensional data clustering, through the machinery of feature

weighting and selection. We try to take advantage of the popular K-Means clustering

method while attempting to reduce the effects of its drawbacks.

 First, we extend a recent approach by Huang et al. (2005, 2008) to feature

weighting by applying one more, weighting step to the two steps of a K-Means

iteration. The extension of the method to Minkowski metric has allowed us to

overcome the drawback of Huang at al. approach: the lack of meaning in the parameter

β of the method. Moreover, our MWK-Means method has proved in our numerous

experiments to be superior to that of Huang et al. However MWK-Means retains the

drawback of the generic K-Means, that it needs multiple runs to find a proper solution.

To overcome this, we extend Mirkin‟s anomalous pattern method (Mirkin, 2005:93) to

Minkowski metric. We demonstrate that thus modified Minkowski metric K-Means

clustering method, iMWK-Means gives a significant reduction of the computation time,

while maintaining the competitive advantages of the MWK-Means.

 However, to apply this approach to real high-dimensional data, like EEG data

one would need one more step in reducing the data dimensionality: the space dimension

reduction, ie. Feature selection. To do so we apply the most popular feature selection

approach FSFS by Mitra et al. (2002) involving an interesting measure of dissimilarity.

However, in our opinion FSFS suffers from drawbacks that should undermine the

potential of using the measure. FSFS, first involves a manually specified parameter k

and, second it does not take into account the structure of similarities between features.

153

Therefore, we developed our own version of the approach, algorithm iKFS.

 In our experiments, the iKFS method appears to be superior over FSFS indeed.

We conclude by applying our developed techniques to the problem of distinguishing

between the mental tasks which EEG trial data relate to (our special thanks goes to

prof. John Q. Gan for multiple consultations and the data provided with regard to that).

Therefore the main results of this project are:

a. Two Minkowski metric based methods, namely Minkowski Weighted K-Means

(MWK-Means) and intelligent Minkowski Weighted K-Means (iMWK-Means), which

do improve WK-Means‟s accuracy at original and noisy datasets with different

amounts of features and noise features.

b. A method to reduce the feature space of a dataset, intelligent K-Means with feature

similarity (iKFS).

c. A machinery for clustering EEG data involving (a) and (b).

6.2 Observations

In our experiments we have being able to observe the following:

d. The anomalous pattern initialisation tends to provide good initial centroids and

weights in datasets from modest to moderate number of features.

e. iMWK-Means does not seem to work as accurately as MWK-Means in high-

dimensional spaces with Gaussian mixture datasets containing a high amount of noisy

features.

154

f. Minkowski metric-based algorithms tend to have a considerably more stable β.than

the original approach by Huang et al.

g. The experiment using Gaussian mixtures with iMWK-Means shows a clear

similarity between the estimated optimal β, found using 20% of the data, and the

optimal β for the whole dataset.

h. Yet in the same experiment, there is an inversely proportional relationship between

the standard deviation of mean of β, and the rate of noisy features (quantity of noisy

features/Total number of features).

i. Both algorithms, iMWK-Means and WK-Means, tend to benefit from a reduction of

similar features in the datasets.

6.3 Limitations

Clustering algorithms that perform feature weighting have some general limitations,

and the two we have introduced are no different. This type of algorithms calculates the

feature weights based on one feature at a time, and are by consequence unable to detect

interacting features in a dataset. The information this type of features carry cannot be

detected on an individual basis, the XOR problem is a good example of such. Another

point is that such methods seem to excel when noise is distributed according to features

and we have not performed experiments in which the noise is distributed according to

the entities.

 At times feature weighting algorithms may set a negligible weight to a feature,

and even so the weight and by consequence the contribution of the feature to the

clustering task are negligible, it still generates a much higher computational effort than

155

if the feature had not being used at all.

 Probably, the biggest limitation of the weighting algorithms we introduced is

that we did not present a clear method to find the Minkowski exponent that stably

works in different datasets. Unfortunately this issue reminds as an open problem for our

algorithms as it does to the WK-Means parameter (Chan et al., 2004; Huang et al.,

2005, 2008).

 In terms of MWK-Means only, this algorithm can be more computationally

demanding than WK-Means because the Minkowski distance and Minkowski centre

are indeed more difficult to calculate than the Euclidean distance and the mean of a

cluster. Of course, the addition of the anomalous pattern mechanism has helped

iMWK-Means on this regard.

 The iKFS algorithm deals only with the removal of similar features and its parts

from the principle that if two or more features are in the same cluster, they are similar

and by consequence carry similar information. It is intuitive for us that clustering

algorithms may or may not correctly cluster a dataset, and that a wrong clustering of

features will potentially have a negative impact on the feature selection. We also have

to acknowledge that although it had a good outcome, our experiment deals with only

one type of data, the power spectrum density of EEG data explained in Section 5.2.

Finally, the measure of the outcome was performed using only two clustering

algorithms and a single index – their accuracy.

6.4 Future research

We consider the algorithms we have introduced to be rather flexible and they allow us a

wide choice of future research. The most clear starting point for future research is to

156

develop a clear method to find the Minkowski exponent or a framework to cluster data

at unknown β and labels. There are different possibilities regarding this, perhaps by

analysing the behaviour of β and the shape of the datasets or in the case of the former

maybe using semi-supervised learning and pair-wise roles, along the lines set by

Wagstaff et al (2001), which we have applied to iK-Means in a previous publication

(Amorim, 2008).

 Regarding the iKFS algorithm, we intend to perform further validation tests

perhaps with different tasks than clustering. It could be interesting expanding it to

perform subspace feature selection.

157

References

Aggarwal, C.C., Hinneburg, A., Keim D. (2000), On the surprising behavior of distance metrics in high

dimensional space. In: Van den Bussche, J., Vianu, V. (Eds.) ICDT 2001. LNCS, Springer, vol. 1973,

pp. 420-434.

Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan P. (1998) Automatic subspace clustering of high

dimensional data for data mining applications. In Proceedings ACM SIGMOD International

Conference on Management of Data, Seattle, WA, ACM Press, pp. 94–105.

Agrawala, A. K.(1970), Learning with a probabilistic teacher. IEEE Transactions on Information Theory,

vol 16, pp 373–379.

Aldenderfer , M. and Blashfield R. (1984), Cluster analysis . Newbury Park, CA : Sage Publications.

Allison, D.B., Cui, X., Page, G.P., et al. (2006). Microarray data analysis: from disarray to consolidation

and consensus. Nat Rev Genet, vol 7, pp. 55–65.

Amorim, R. C. (2008), Constrained Intelligent K-Means: Improving Results with Limited Previous

Knowledge, Proceeding of Advanced Engineering Computing and Applications in Sciences, IEEE

Computer Society, pp 176-180.

Amorim, R. C., Mirkin, B., Gan J. Q. (2010), A Method for Classifying Mental Tasks in the Space of

EEG Transforms. Technical report BBKCS-10-01, Birkbeck University of London, London.

Arthur, D., Vassilvitskii, S. (2006) How slow is the k-means method? In SCG ’06: Proceedings of the

twenty-second annual symposium on computational geometry. ACM Press.

Asuncion, A., Newman, D.J., UCI Machine Learning Repository [http://www.ics.uci.

edu/~mlearn/MLRepository.html]. Irvine, CA: University of California, School of Information and

Computer Science, 2007. Accessed 3 April 2010.

Ball, G. and Hall, D. (1967) A clustering technique for summarizing multivariate data, Behav. Sci., vol.

12, pp. 153–155.

Banerjee, A., Merugu, S., Dhillon I., Ghosh J. (2005), Clustering with Bregman divergences, Journal of

Machine Learning Research, vol 6, pp. 1705–1749.

Bar-Hillel, A., Hertz, T., Shental, N., and Weinshall, D. (2003). Learning distance functions using

equivalence relations. Proceedings of 20th International Conference on Machine Learning (ICML-

2003), pp. 11–18.

Basu, S., Banerjee, A., & Mooney, R. J. (2002). Semi-supervised clustering by seeding. Proceedings of

19th International Conference on Machine Learning, pp. 19–26.

Belacel, N., Raval, H. B., Punnen, A. P. (2007), Learning multicriteria fuzzy classification method

PROAFTN from data, Computers and Operations Research, vol 34, pp. 1885–1898.

Bellman, R. E. (1957) Dynamic Programming. Rand Corporation, Princeton University Press.

Berkhin, P. (2006) A survey of clustering datamining techniques. In Jacob Kogan, Charles Nicholas, and

Marc Teboulle (eds.), Grouping Multidimensional Data: Recent Advances in Clustering, pp. 25–71.

Springer. 372, 520.

158

Beyer, K., Goldstein, J., Ramakrishnan, R., and Shaft, U. (1999), When is Nearest Neighbor

Meaningful?. Proc. 7th International Conference on Database Theory – ICDT, LNCS 1540, pp. 217–

235.

Bilenko, M., Basu, S. And Mooney, R.J. (2004), Integrating constraints and metric learning in semi-

supervised clustering, Proceedings of the 21
st
 international conference on machine learning, Banff,

Canada, pp. 81-88

Blockeel, H., De Raedt L., and Ramon, J. (1998) Top-down induction of clustering trees, In: J. Shavlik,

(Ed.) Proceedings of the 15th International Conference on Machine Learning, pp. 55-63.

Bradley, P. S., Mangasarian, O. L., and W., Street, N. (1997), Clustering via Concave Minimization, In:

Advances Neural Information Processing Systems 9, M. C. Mozer, M. Jordan, and T. Petsche (Eds.)

pp 368-374, MIT Press.

Brohee S, Van Helden J. (2006) Evaluation of clustering algorithms for protein–protein interaction

networks, BMC Bioinformatics 7:488.

Callan, R. (2003) Artificial Intelligence. Palgrave Macmillan, NY, USA.

Cao, F., Liang, J., Jiang, G. (2009) An initialization method for the K-Means algorithm using

neighborhood model. Comput. Math. Appl. 58:3, pp. 474-483.

Chakerian, G. D. and Ghandehari, M. A. (1985) The Fermat problem in Minkowski spaces. Geometriae

Dedicata, 17, pp. 227-238.

Chan, Y., Ching, W. K., Ng M. K., and Huang J. Z. (2004), An optimization algorithm for clustering

using weighted dissimilarity measures. Pattern Recognition. 37:5, pp. 943-952.

Chapelle, O., Scholkopf, B., and Zien, A., (2006), Semi supervised learning, The MIT Press.

Chen, Y., Rege, M., Dong, M., and Hua, J. (2008), Non-negative matrix factorization for semi-

supervised data clustering, Knowedge Information Systems. 17:3, pp. 355-379.

Chiang, M. M. and Mirkin, B.(2010) Intelligent choice of the number of clusters in k-means clustering:

An experimental study with different cluster spreads, Journal of Classification. 27:1, pp. 1-38.

Chiappa, S., and Bengio S. (2004), Hmm and iohmm modeling of eeg rhythms for asynchronous bci

systems. In European Symposium on Articial Neural Networks ESANN.

Clerc, M. and Kennedy, J. (2002) The Particle Swarm: Explosion, Stability, and Convergence in a Multi-

Dimensional Complex Space. IEEE Transactions on Evolutionary Computation, vol. 6, pp. 58-73

Dash, M., Choi, K., Scheuermann, P. and Liu, H. (2002) Feature Selection for Clustering-a Filter

Solution, Proc. Second International Conf. Data Mining, pp. 115-122.

Davies , D. and Bouldin , D. (1979), A cluster separation measure . IEEE Transactions on

Pattern Analysis and Machine Intelligence , 1, pp. 224–227 .

Desarbo, W. S., Carroll, J. D., Clark, L. A., Green, P. E. (1984) Synthesized clustering: A method for

amalgamating clustering bases with differential weighting variables. Psychometrika. 49:1, pp. 57-78.

Devijver, P. A., and Kittler, J. (1982), Pattern Recogntion: A statistical approach. Englewood Cliffs:

Prentice Hall.

Deza, M. and Deza, E. (2009) Encyclopedia of Distances. Springer.

159

Dhillon, I., Mallela, S., and Kumar, R. (2003), A divisive information-theoretic feature clustering

algorithm for text classification. Journal of Machine Learning Research, vol 3, pp.1265-1287.

Doherty, K. A. J., Adams, R. G., and Davey, N. (2004), Non-Euclidean norms and data normalization.

Proceedings of European Symposium on Artificial Neural Networks, pp. 181-186.

Drineas, P., Frieze, A., Kannan, R., Vempala, S., and Vinay, V. (1999) Clustering large graphs via the

singular value decomposition. Machine learning, 56(1-3), pp 9–33.

Drongelen, W. V. (2007), Signal Processing for Neuroscientists: An Introduction to the Analysis of

Physiological Signals, Academic Press/Elsevier, Burlington MA. USA.

Dubes, R. (1987) How Many clusters are the best? – an experiment, Pattern Recognition, 20 (6), pp.

645-663

Duda, R. O. and Hart, P. E. (1973) Pattern Classification and Scene Analysis, New York: J. Wiley &

Sons.

Duda, R. O., Hart, P. E., and Stork, D. G. (2001) Pattern Classification. John Wiley and Sons, Inc.. New

York, 2nd Edition.

Dy, J G. (2008) Unsupervised Feature Selection. In: H. Liu and H. Motoda (Ed.) Computational Methods

of Feature Selection, Chapman & Hall/CRC, pp. 19-39.

Dy, J. G., and Brodley, C. E. (2004), Feature selection for unsupervised learning. Journal of Machine

Learning Research, vol 5, pp. 845–889.

Estivill-Castro V. (2002). Why so many clustering algorithms – a position paper. SIGKDD Explorations,

4(1):, pp. 65-75.

Everitt, B., Landau, S., and Leese, M. (2001), Cluster analysis, 4
th

 edition . London : Arnold .

Fan, J., Han, M., Wang, J. (2009) Single point iterative weighted fuzzy C-means clustering algorithm for

remote sensing image segmentation. Pattern Recognition. 42:11, pp. 2527-2540.

Fralick, S. C. (1967), Learning to recognize patterns without a teacher. IEEE Transactions on

Information Theory, vol. 13, pp. 57–64.

Francois, D., Wertz, V., and Verleysen M. (2007), The concentration of fractional distances, IEEE

Transactions on Knowledge and Data Engineering, 19(7), pp. 873-886.

Friedman, J. H., Meulman, J. J. (2004) Clustering objects on subsets of attributes. Journal of the Royal

Statistical Society B, vol 66, 4, pp. 815-849.

Frigui, H., Nasraoui, O. (2004) Unsupervised learning of prototypes and attribute weights, Pattern

Recognition. 37, pp. 567-581.

Gan, J.Q. (2006), Self-adapting bci based on unsupervised learning. In 3rd International Workshop on

Brain-Computer Interfaces, Graz, Austria, pp. 50–51.

Geng, T., Gan, J. Q., Dyson, M., Tui, C. S. L. and Sepulveda, F. (2008), A novel design of 4-class BCI

using two binary classifiers and parallel mental tasks, Journal of Computational Intelligence and

Neuroscience, vol 2008, DOI: 10.1155/2008/437306.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Kluwer

Academic Publishers.

160

Green, P. E., Carmone, J., Kim, J. (1990) A preliminary study of optimal variable weighting in k-means

clustering. Journal of Classification, 7:2, pp. 271-285.

Guyon, I., And Elisseeff, A. (2003), An introduction to variable and feature selection. J. Mach. Learn.

Res. vol 3, pp.1157–1182.

Hand, D, Mannila, H. And Smyth, P., (2001), Principles of Data Mining, MIT Press.

Hansen, P. and Mladenovic, N. (2001) Variable neighborhood search: Principles and applications.

Europ. J. Oper. Res. 130, pp. 449–467.

Hartigan, J. A. (1975) Clustering Algorithms, John Wiley and Sons, Inc., New York, NY. USA.

Hartigan, J. A., Wong, M. A. (1979) Algorithm AS 136: A K-Means Clustering Algorithm. Journal of

the Royal Statistical Society, Series C (Applied Statistics) 28(1), pp 100–108.

Holzinger, K. J. and Harman, H. H. (1941) Factor Analysis, Chicago: University of Chicago Press, USA.

Hong, Y., Kwong, S., Chang, Y., Ren, Q. (2008) Unsupervised feature selection using clustering

ensembles and population based incremental learning algorithm. Pattern Recognition. 41:9, pp. 2742-

2756.

Huang J. Z., Ng M. K., Rong, H., and Li, Z. (2005), Automated variable weighting in k-means type

clustering. IEEE Transactions on Pattern Analysis and Machine Learning, 27:5, pp. 657-668.

Huang, J. Z., Xu, J., Ng, M. And Ye, Y. (2008) Weighting Method for Feature Selection in K-Means. In:

H. Liu and H. Motoda (Ed.) Computational Methods of Feature Selection, Chapman & Hall/CRC, pp

193-209.

Huber, R., Treyer, V., Borbe, A. A., Schuderer, J., Gottselig, J. M., Landol, H. P., Werth, E., Berthold,

T., Kuster, N., Buck, A., Achermann, P. (2002), Electromagnetic fields, such as those from mobile

phones alter regional cerebral blood flow and sleep and awaking EEG, Journal of Sleep Research,

vol. 11, no. 4, pp. 289-295

Jain, A. K. (2010), Data Clustering: 50 Years Beyond K-Means, Pattern Recognition Letters, vol 31 pp

651-666.

Jain, A. K. And Dubes, R. C. (1988) Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs,

NJ, USA.

Kaufman, L. and Rousseeuw, P. (1990) Finding Groups in Data: An Introduction to Cluster Analysis,

New York: J. Wiley & Son.

Kennedy, J. and Eberhart, R. C. (1995) Particle swarm optimization, Proc. IEEE Int. Conf. Neural

Networks, Perth, Australia, pp. 1942–1948.

Kim, J., Shim, K. H., and Choi S. (2007) Soft geodesic kernel k-means, in Proc. 32nd IEEE Int. Conf. on

Acoustics, Speech, and Signal Processing, pp. 429-432.

King, B. (1967), Step-wise clustering procedures, J. Am. Statistical Assoc., pp.86-101.

Kivinen, J., Warmuth, M. K., Hassibi B. (2006), The p-Norm generalization of the LMS algorithm for

adaptive filtering, IEEE Transactions on Signal Processing, 54(5), pp. 1782-1793.

Klein, D., Kamvar, S. D., & Manning, C. (2002). From instancelevel constraints to space-level

constraints: Making the most of prior knowledge in data clustering. Proceedings of the The

Nineteenth International Conference on Machine Learning (ICML-2002), pp. 307–314.

161

Klitzing, L. V. (1995), Low-frequency pulsed electromagnetic fields influence EEG of man, Physica

Med, vol. 11, pp. 77-90

Koggalage, R., Halgamuge, S.(2004) Reducing the Number of Training Samples for Fast Support Vector

Machine Classification. In Neural Information Processing. 2:3, pp. 57-65

Kononenko, I. (1994), Estimating attributes: Analysis and extensions of Relief. In Proceedings of the

European Conference on Machine Learning.

Kriegel, H. P., Kröger, P., Zimek, A. (2009), Clustering high-dimensional data: A survey on subspace

clustering, pattern-based clustering, and correlation clustering, ACM Transactions on Knowledge

Discovery from Data (New York, NY: ACM), 3 (1), pp. 1–58.

Kumar, N. and Kummamuru, K. (2007), Semi-supervised clustering with metric learning using relative

comparisons. IEEE Trans. on Knowledge and Data engineering, 20(4), pp. 496-503.

Lawrence, V. S. (2006) Facility location under uncertainty: A review. IIE Transactions, 38(7), pp. 537–

554.

Lee, F., Scherer, R., Leeb, R., Neuper, C., Bischof, H., Pfurtscheller, G. (2005), A Comparative analysis

of multi-class EEG classification for brain computer interface, Proceedings of the 10
th

 Computer

Vision Winter Workshop, pp.195-204

Li, H., and Motoda, H. (2008) Less Is More. In: H. Liu and H. Motoda (Ed.) Computational Methods of

Feature Selection, Chapman & Hall/CRC, pp. 3-17.

MacQueen, J. (1967) Some methods for classification and analysis of multivariate observations. In

Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–

297.

Makarenkov, V., Legendre, P. (2001), Optimal variable weighting for ultrametric and additive trees and

K-Means partitioning, Journal of Classification. Vol 18, pp. 245-271.

Manning, C. D., Raghavan P., and Schutze, H. (2008) Introduction to Information Retrieval. Cambridge

University Press, UK.

Marill, T. and Green, D. M. (1963) On the Effectiveness of receptors in recognition systems. IEEE

Transactions on Information Theory, vol 9, pp. 11-17.

Maulik, U. and Bandyopadhyay, S. (2000) Genetic algorithm-based clustering technique. Pattern

Recognition, 33, pp. 1455–1465.

McLachlan, G.J., Khan, N. (2004) On a resampling approach for tests on the number of clusters with

mixture model-based clustering of tissue samples, Journal of Multivariate Analysis. Vol 90, 1005.

Millan, J. R. and Mourino, J. (2003) Asynchronous BCI and local neural classifiers: An overview of the

Adaptive Brain Interface project. IEEE Transactions on Neural Systems and Rehabilitation

Engineering, Special Issue on Brain-Computer Interface Technology.

Milligan, G. W. And Cooper, M. C. (1988) A study of standardization of the variables in cluster analysis,

Jornal of Classification, 5, pp. 181-204.

Mingoti, S. A., Lima, J. O. (2006) Comparing SOM neural network with Fuzzy c-means, K-means and

traditional hierarchical clustering algorithms. European Journal of Operational Research 174,

pp1742-1759.

Mirkin, B. (1996), Mathematical classification and clustering. Dordrecht: Kluwer Academic Pub.

162

Mirkin, B. (2005) Clustering for Data Mining: A Data Discovery Approach, Boca Raton Fl., Chapman

and Hall/CRC.

Mitra, P., Murthy,C., And Pal, S. (2002), Unsupervised feature selection using feature similarity. IEEE

Trans. Pattern Anal. Mach. Intell. 24, 3, pp. 301–312.

Mladenovic, N. and Hansen, P. (1997) Variable neighborhood search. Computers and Operations

Research, vol. 24, pp. 1097-1100.

Modha, D.S., Spangler, W.S. (2003) Feature weighting in K-Means clustering, Machine Learning. 52,

pp. 217-237.

Mojena, R. (1977) Hierarchical grouping methods and stopping rules: an evaluation, The Computer

Journal, 20:4, pp. 359-363.

Monti, S., Tamayo, P., Mesirov, J. and Golub, T. (2003) Consensus clustering: A resampling-based

method for class discovery and visualization of gene expression microarray data, Machine Learning.

Vol 52, pp. 91-118.

Mucherino, A., Papajorgji, P., Pardalos, P.M.(2009) Data Mining in Agriculture, Springer.

Murtagh, F. (2009), The remarkable simplicity of very high dimensional data: application to model-

based clustering. Journal of Classication, vol. 26, pp. 249-277.

Nascimento, S. (2005) Fuzzy Clustering Via Proportional Membership Model. In: Frontiers in Artificial

Intelligence and Applications, vol. 119, IOS Press, Amsterdam.

Netlab Neural Network software, http://www.ncrg.aston.ac.uk/netlab/index.php, accessed 3 April 2010.

Ortolani, O., Conti, A., Di Filippo, A., Adembri, C., Moraldi, E., Evangelisti, A., Maggini, M., Roberts,

S. J. (2002), EEG signal processing in anaesthesia: Use of neural network technique for monitoring

depth of anaesthesia, British Journal of Anaesthesia , vol. 88, no. 5, pp. 644-648.

Pal, S.K., Mitra, P. (2004) Pattern Recognition Algorithms for Data Mining, CRC Press, Boca Raton,

Florida

Pedrycz, W (2005) Knowledge-Based Clustering: From Data to Information Granules. Hoboken, NJ:

Wiley.

Pelleg, D., Moore, A. (2000) Xmeans: Extending kmeans with efficient estimation of the number of

clusters, Proc. 17th International Conference on Machine Learning, pp. 727-734.

Perlibakas, V. (2004) Distance measures for PCA-based face recognition, Pattern Recognit. Lett., vol.

25, no. 6, pp. 711-724.

Pollard, K.S. and Laan, V. M. J. (2002) A method to identify significant clusters in gene expression data,

U.C. Berkeley Division of Biostatistics Working Paper Series, 107.

Pudil, P., Novovicova, J., and Kittler, J. (1994), Floating Search Methods in Feature Selection, Pattern

Recognition Letters, vol. 15, pp. 1119-1125.

Raftery, A. E., Dean, N. (2006) Variable selection for Model-based clustering. Journal of the American

Statistical Association, 101, pp. 168-178.

Rand , W. (1971), Objective criteria for the evaluation of clustering methods. Journal of the American

Statistical Association, vol 66, pp.846–850 .

163

ReVelle, C.S. and Eiselt, H.A. (2005) Location analysis: A synthesis and survey. Euro. J. Oper. Res.,

165(1), pp. 1–19.

Romesburg, C. (2004), Cluster Analysis For Researchers. Morrisville, NC: Lulu Press.

Rudin, B. (2009), The P-Norm Push: A simple convex ranking algorithm that concentrates at the top of

the list, Journal of Machine Learning Research, vol 10, pp. 2233-2271.

Sanei, S., Chambers, J. A. (2007), EEG Signal Processing. UK: WileyBlackwell.

Scudder, H. J. (1965), Probability of error of some adaptive pattern-recognition machines. IEEE

Transactions on Information Theory, vol 11, pp.363–371.

Sneath, P.H.A. and Sokal, R. R. (1973) Numerical Taxonomy, San Francisco: W.H. Freeman.USA.

Smith, S. P., And Jain, A. K. (1984), Testing for uniformity in Multidimensional data. IEEE Trans. on

pattern analysis and machine intelligence, 6(1), pp. 73–81.

Stanforth, R., Kolossov, E. and Mirkin, B. (2007), A Measure of Domain of Applicability for QSAR

Modelling Based on Intelligent K-Means Clustering. QSAR. Comb. Sci., vol s26, pp. 837–844.

Steinley, D., and Brusco, M. (2007), Initializing K-Means Batch Clustering: A Critical Evaluation of

Several Techniques, Journal of Classification, 22, pp. 221-250.

Stracuzzi, D. J. (2008) Randomized Feature Selection. In: H. Liu and H. Motoda (Ed.) Computational

Methods of Feature Selection, Chapman & Hall/CRC, pp. 41-62.

Strehl, A., Ghosh, J., Mooney, R. J., Impact of similarity measures on web-page clustering. Proc. of

AAAI Workshop on AI for Web Search, 2000.

Szeliski, R. (2010) Computer Vision: Algorithms and Applications. Springer.

Tibshirani, R., Walther G. And Hastie, T. (2001) Estimating the number of clusters in a dataset via the

Gap statistics, Journal of the Royal Statistical Society B. Vol 63, pp. 411-423.

Tsai, C.Y., Chiu, C.C. (2008) Developing a feature weight adjustment mechanism for a K-Means

clustering algorithm, Computational Statistics and Data Analysis. 52, pp. 4658-4672.

Tsiptsis, K., Chorianopolous, A. (2009) Data Mining Techniques in CRM: Inside Customer

Segmentation. UK: John Wiley & Sons Ltd..

Tsui, C., Gan, J. Q., Roberts, S. (2009), A self-paced brain-computer interface for controlling a robot

simulator: an online event labelling paradigm and an extended Kalman filter based algorithm for

online training, Medical and Biological Engineering and Computing, vol. 47, pp 257-265.

Ungureanu, M., Bigan, C., Strungaru, R., Lazarescu, V. (2004), Independent component analysis applied

in biomedical signal processing, Measurement Science Review, vol. 4, Section 2, pp. 1-8

Wagstaff, K. L., Basu, S., and Davidson, I. (2006), When is Constrained Clustering Benefical and why?,

The 21
st

 National Conference on Artificial Intelligence and the 18
th

 Innovative Applications of

Artificial Intelligence Conference, AAAI Press, Boston USA.

Wagstaff, K. L., Cardie, C., Rogers, S., and Schroedl, S. (2001), Constrained K-means Clustering with

Background Knowledge, Proceedings of the 18
th

 International Conference on Machine Learning,

pp. 577-584

164

Ward Jr, J.H. (1963) Hierarchical grouping to optimize an objective function, Journal of the American

Statistical Association, vol 58, pp. 236-244.

Webb, A. (2002) Statistical Pattern Recognition, John Wiley and Sons, Inc., UK.

Whitney, A. W. (1971) A direct method of nonparametric measurement selection. IEEE Transactions on

Computers, vol 20, pp. 1100-1103.

Witten, I. H. and Frank E. (2005) Data Mining: Practical Machine Learning Tools and Techniques. San

Francisco: Morgan Kaufmann, 2
nd

 Edition.

Wong, P. C., Foote, H., Adams, D., Cowley, W., Leung, L. R., Thomas, J. (2005) Visualizing Data

Streams. In: Kovolerchuk, B. And Schwing, J., ed. Visual and Spatial Analysis – Advances in Data

Mining, Reasoning, and Problem Solving. Springer.

Xing, E. P., Karp, R. M. (2001), Cliff: Clustering of high-dimensional microarray data via iterative

feature filtering using normalised cuts. In 9
th

 International Conference on Intelligence Systems for

Molecular Biology.

Xing, E. P., Ng, A. Y., Jordan, M. I., and Russell, S. (2003). Distance metric learning, with application to

clustering with sideinformation. Advances in Neural Information Processing Systems, vol 15, pp.

505–512.

Xu, R., and Wunsch II, D. C. (2005) Survey of clustering algorithms. IEEE Trans. on Neural Networks,

16(3), pp 645–678.

Xu, R., and Wunsch II, D. C. (2010), Clustering, John Wiley & Sons, 2010

Yeung, K. Y., Haynor, D. R. and Ruzzo, W. L. (2001) Validating clustering for gene expression data.

Bioinformatics, vol 17, pp. 309–318.

Zainuddin, Z., Lye, W. K. (2010), Improving RBF Networks Classification Performance by using K-

Harmonic Means, World Academy of Science, Engineering and Technology, vol 62, pp. 983-986.

Zeidat, N. M., Eick, C. F. (2004), K-medoid-style clustering algorithms for supervised summary

generation. IC-AI, pp. 932-938.

Zhong, L., Jinsha, Y., Weihua, Z. (2009), Fuzzy C-Mean Algorithm with Morphology Similarity

Distance, Sixth International Conference on Fuzzy Systems and Knowledge Discovery. 3, pp. 90-94.

Zhu, X., Rogers, T., Qian, R., and Kalish, C., (2007) Humans perform semi-supervised classification too.

22
nd

 AAAI conference on Artificial Intelligence, AAAI Press California, pp 864-870.

Zilberstein, S. (1996) Using anytime algorithms in intelligent systems. AI Magazine, 17(3).

165

Appendix A: Results of general experiments per dataset

The tables in this section show the results obtained with all K-Mean based algorithms

in all Gaussian models, rather than a summary of the results, as shown in Chapter 3. A

brief description of each Gaussian model can be found in the tables‟ captions. Chapter

3 presents an extended description in Section 3.4.

Dataset Algorithm Exponent at Accuracy, %

Distance Weight Mean Std Max

GM 1 K-Means 2 - 36.2 5.43 51.4

WK-Means 2 1.6 58.0 11.08 78.0

WMK-Means 1.6 1.6 61.3 9.83 86.2

iK-Means 2 - - - 33.6

iWK-Means 2 2.1 - - 65.8

iWMK-Means 2.9 2.9 - - 67.0

GM 2 K-Means 2 - 37.2 2.23 45.2

WK-Means 2 1.5 57.4 9.12 74.8

WMK-Means 1.5 1.5 61.05 8.89 74.0

iK-Means 2 - - - 37.0

iWK-Means 2 1.5 - - 69.6

iWMK-Means 1.4 1.4 - - 69.4

GM 3 K-Means 2 - 38.1 1.88 42.6

WK-Means 2 1.5 46.9 5.58 57.6

WMK-Means 1.6 1.6 47.2 7.07 63.2

iK-Means 2 - - - 39.0

iWK-Means 2 1.6 - - 51.2

iWMK-Means 1.9 1.9 - - 48.6

GM 4 K-Means 2 - 48.5 5.21 57.8

WK-Means 2 1.4 65.6 9.11 90.6

WMK-Means 1.4 1.4 71.8 10.64 90.2

166

iK-Means 2 - - - 50.4

iWK-Means 2 1.4 - - 73.0

iWMK-Means 1.3 1.3 - - 74.8

GM 5 K-Means 2 - 32.3 3.23 41.8

WK-Means 2 1.4 54.7 11.23 89.4

WMK-Means 1.5 1.5 59.7 12.41 88.0

iK-Means 2 - - - 28.6

iWK-Means 2 1.7 - - 53.4

iWMK-Means 1.6 1.6 - - 87.6

GM 6 K-Means 2 - 41.7 4.65 51.2

WK-Means 2 1.6 56.9 7.91 72.6

WMK-Means 1.6 1.6 58.1 6.55 71.6

iK-Means 2 - - - 40.6

iWK-Means 2 1.7 - - 65.2

iWMK-Means 1.6 1.6 - - 66.0

GM 7 K-Means 2 - 39.2 5.4 53.8

WK-Means 2 1.6 59.5 8.87 79.4

WMK-Means 1.5 1.5 63.5 8.76 85.4

iK-Means 2 - - - 35.2

iWK-Means 2 4.7 - - 75.0

iWMK-Means 2 2 - - 69.6

GM 8 K-Means 2 - 34.3 2.39 42.4

WK-Means 2 1.4 54.7 9.48 77.2

WMK-Means 1.6 1.6 61.7 12.02 86.2

iK-Means 2 - - - 32.4

iWK-Means 2 1.8 - - 85.4

iWMK-Means 1.6 1.6 - - 85.4

GM 9 K-Means 2 - 32.5 1.79 38.0

WK-Means 2 1.5 50.7 10.78 85.2

WMK-Means 1.6 1.6 54.7 10.83 83.4

iK-Means 2 - - - 32.8

iWK-Means 2 3.0 - - 49.8

iWMK-Means 1.4 1.4 - - 57.0

GM 10 K-Means 2 - 45.0 2.27 52.0

WK-Means 2 1.5 61.2 9.50 80.8

167

WMK-Means 1.5 1.5 63.6 7.72 77.0

iK-Means 2 - - - 47.4

iWK-Means 2 1.9 - - 72.8

iWMK-Means 2.2 2.2 - - 77.4

Table A.1: Accuracy levels at the considered versions of K-Means for dataset (vii) – 500 entities, 12 clusters, eight features

including 2 extra noise features.

Dataset Algorithm Exponent at Accuracy, %

Distance Weight Mean Std Max

GM 1 K-Means 2 - 46.31 3.98 55.2

WK-Means 2 3.9 64.69 9.22 94.4

WMK-Means 1.3 1.3 74.11 10.27 93.8

iK-Means 2 - - - 49.8

iWK-Means 2 1.3 - - 72.8

iWMK-Means 1.4 1.4 - - 94.49

GM 2 K-Means 2 - 50.82 8.0 64.40

WK-Means 2 2.4 66.97 8.97 81.0

WMK-Means 1.4 1.4 75.88 7.28 91.8

iK-Means 2 - - - 58.8

iWK-Means 2 4.6 - - 77.6

iWMK-Means 1.6 1.6 - - 91.6

GM 3 K-Means 2 - 32.55 5.84 57.4

WK-Means 2 4.8 85.08 12.4 98.4

WMK-Means 1.4 1.4 87.30 10.23 97.8

168

iK-Means 2 - - - 33.2

iWK-Means 2 2 - - 85.6

iWMK-Means 1.7 1.7 - - 97.6

GM 4 K-Means 2 - 45.06 6.1 59.4

WK-Means 2 1.3 64.15 8.5 77.8

WMK-Means 1.5 1.5 72.48 7.95 87.0

iK-Means 2 - - - 59.4

iWK-Means 2 4.1 - - 72.6

iWMK-Means 1.3 1.3 - - 74.0

GM 5 K-Means 2 - 58.79 9.13 77.4

WK-Means 2 4.8 81.32 7.43 97.6

WMK-Means 1.4 1.4 84.31 7.28 96.4

iK-Means 2 - - - 78.0

iWK-Means 2 3.9 - - 95.2

iWMK-Means 2 2 - - 86.4

Table A.2: Accuracy levels at the considered versions of K-Means for the 5 GM datasets with 500 entities, 15 features and 5

clusters with an additional 10 random-noise features.

169

Dataset Algorithm Exponent at Accuracy, %

Distance Weight Mean Std Max

GM 1 K-Means 2 - 23.09 3.97 34.7

WK-Means 2 5 60.28 7.06 76.9

WMK-Means 1.3 1.3 72.8 7.24 85.8

iK-Means 2 - - - 28.8

iWK-Means 2 3.2 - - 46.0

iWMK-Means 1.7 - - 59.5

GM 2 K-Means 2 - 21.49 2.98 28.7

WK-Means 2 4.4 49.11 7.87 77.2

WMK-Means 1.3 1.3 69.29 7.13 84.0

iK-Means 2 - - - 17.0

iWK-Means 2 2.7 - - 45.5

iWMK-Means 1.3 - - 51.4

GM 3 K-Means 2 - 18.37 2.16 25.1

WK-Means 2 4.7 45.92 7.15 60.8

WMK-Means 1.4 1.4 64.54 8.2 82.0

iK-Means 2 - - - 15.8

iWK-Means 2 4.8 - - 36.3

iWMK-Means 1.3 - - 56.8

GM 4 K-Means 2 - 21.26 2.88 28.7

WK-Means 2 4.9 52.93 6.87 71.5

WMK-Means 1.3 1.3 66.37 8.57 83.7

iK-Means 2 - - - 27.0

170

iWK-Means 2 2.7 - - 53.2

iWMK-Means 1.6 - - 54.0

GM 5 K-Means 2 - 19.5 2.15 25.8

WK-Means 2 4.8 52.03 7.28 70.4

WMK-Means 1.3 1.3 69.16 8.56 85.2

iK-Means 2 - - - 21.0

iWK-Means 2 1.0 - - 15.8

iWMK-Means 2 1.5 - - 52.7

Table A.3: Accuracy levels at the considered versions of K-Means for the 5 GM datasets with 1000 entities, 25 features and 12

clusters with an additional 25 random-noise features.

Dataset Algorithm Exponent at Accuracy, %

Distance Weight Mean Std Max

GM 1 K-Means 2 - 92.31 7.98 1

WK-Means 2 5 79.15 8.13 93.0

WMK-Means 1.2 1.2 83.99 10.41 99.9

iK-Means 2 - - - 88.6

iWK-Means 2 1.2 - - 24.1

iWMK-Means 1.8 1.8 - - 84.6

GM 2 K-Means 2 - 92.48 6.37 1

WK-Means 2 4.5 81.94 7.15 94.2

WMK-Means 1.3 1.3 84.29 6.76 93.5

iK-Means 2 - - - 89.3

iWK-Means 2 4.2 - - 78.4

171

iWMK-Means 2 2 - - 69.8

GM 3 K-Means 2 - 91.41 6.72 1

WK-Means 2 4 80.2 7.7 92.9

WMK-Means 1.2 1.2 84.56 7.1 100

iK-Means 2 - - - 87.9

iWK-Means 2 1.0 - - 16.2

iWMK-Means 2.6 2.6 - - 61.7

GM 4 K-Means 2 - 93.95 6.34 0.99

WK-Means 2 2.9 81.02 7.55 92.9

WMK-Means 1.2 1.2 86.5 8.88 100

iK-Means 2 - - - 99.9

iWK-Means 2 1.2 - - 22.8

iWMK-Means 1.8 1.8 - - 61.6

GM 5 K-Means 2 - 93.81 6.76 1

WK-Means 2 4.5 79.81 7.41 92.6

WMK-Means 1.2 1.2 86.75 7.77 100

iK-Means 2 - - - 76.9

iWK-Means 2 1.6 - - 45.3

iWMK-Means 1.3 1.3 - - 76.1

Table A.4: Accuracy levels at the considered versions of K-Means for the 5 GM datasets with 1000 entities, 50 features and 12

clusters with an additional 25 random-noise features.

172

Appendix B: Learning the exponent: Results of experiments per

dataset

The tables in this section show the results obtained with WK-Means and iMWK-Means

while attempting to learn their parameter using semi-supervised learning. Chapter 4

provides more details in such experiments and a summary of them. A brief description

of each Gaussian model can be found in the tables‟ captions, while Chapter 3 presents

an extended description in Section 3.4.

(i) Experiments with the weighted K-Means

Dataset

Exponent β at weight % accuracy

Mean Std of

Mean

Modal Optimal Mean Std of

Mean

Max

1 1.99 0.06 1.7 1.6 55.59 1.88 58.52

2 1.67 0.04 1.4 1.5 54.95 2.41 59.24

3 2.28 0.10 1.6 1.5 44.27 1.79 47.45

4 1.69 0.06 1.4 1.4 62.9 1.83 66.4

5 1.76 0.06 1.5 1.4 51.5 3.56 56.33

6 2.01 0.08 1.4 1.6 55.49 1.28 57.73

7 2.06 0.08 1.5 1.6 57.43 1.39 60.13

8 1.65 0.04 1.5 1.4 53.03 2.07 56.78

9 1.55 0.04 1.4 1.5 48.8 2.10 52.94

10 2.27 0.09 1.7 1.5 57.37 2.14 61.26

Table B.1: Semi-supervised estimations of β in WK-Means on Gaussian models with noise, dataset (vii) - 500x8, including 2 extra

noise features.

173

Dataset

Exponent β at weight % accuracy

Mean Std of

Mean

Modal Optimal Mean Std of

Mean

Max

1 1.51 0.04 1.4 3.9 63.79 0.93 66.01

2 1.53 0.02 1.6 2.4 66.18 0.96 69.32

3 1.46 0.01 1.4 4.8 76.05 1.89 81.14

4 1.44 0.01 1.4 1.3 63.19 1.17 65.48

5 1.49 0.02 1.4 4.8 77.23 1.51 79.76

Table B.2: Semi-supervised estimations of β in WK-Means on Gaussian models with noise, dataset (viii) - 500x25, including 10

extra noise features.

Dataset

Exponent β at weight % accuracy

Mean Std of

Mean

Modal Optimal Mean Std of

Mean

Max

1 1.36 0.09 1.3 5.0 52.28 1.13 54.51

2 1.36 0.06 1.4 4.4 46.43 1.45 50.29

3 1.38 0.09 1.3 4.7 41.3 0.91 44.27

4 1.41 0.06 1.4 4.9 46.62 0.88 48.29

5 1.38 0.09 1.3 4.8 45.90 1.55 48.62

Table B.3: Semi-supervised estimations of β in WK-Means on Gaussian models with noise dataset (ix) - 1000x50, including 50

extra noise features.

174

Dataset

Exponent β at weight % accuracy

Mean Std of

Mean

Modal Optimal Mean Std of

Mean

Max

1 1.78 0.06 1.4 5.0 74.6 1.52 81.12

2 1.96 0.07 1.8 4.5 76.83 1.39 80.19

3 1.89 0.06 1.6 4.0 75.48 1.19 78.31

4 1.54 0.02 1.4 2.9 75.16 0.94 77.76

5 1.54 0.03 1.4 4.5 73.72 1.13 77.34

Table B.4: Semi-supervised estimations of β in WK-Means on Gaussian models with noise, dataset (x) - 1000x75, including 25

extra noise features.

(ii) Experiments with the intelligent Minkowski Weighted K-Means

Dataset

Exponent β at weight % accuracy

Mean Std of

Mean

Modal Optimal Mean Std of

Mean

Max

1 1.919 0.06 1.4 2.9 56.82 6.77 65.6

2 1.831 0.06 1.4 1.4 60.33 8.33 69.4

3 1.972 0.07 1.4 1.9 42.35 4.42 48.60

4 1.74 0.04 1.4 1.3 64.7 7.15 74.80

5 1.74 0.05 1.5 1.6 42.42 14.63 87.60

6 1.868 0.06 1.6 1.6 55.33 7.75 66.0

7 1.959 0.05 1.5 2.0 57.72 11.1 69.6

8 1.609 0.04 1.4 1.6 68.13 15.13 85.40

9 1.676 0.05 1.4 1.4 44.71 10.43 57.0

10 1.816 0.05 1.5 2.2 65.52 9.26 77.4

Table B.5: Semi-supervised estimations of β in iMWK-Means on Gaussian models with noise, dataset (vii) - 500x8, including 2

extra noise features.

175

Dataset

Exponent β at weight % accuracy

Mean Std of

Mean

Modal Optimal Mean Std of

Mean

Max

1 1.584 0.03 1.4 1.4 72.41 13.7 99.4

2 1.629 0.04 1.4 1.6 73.24 13.85 91.6

3 1.538 0.03 1.4 1.7 88.94 10.92 97.6

4 1.68 0.04 1.4 1.3 58.94 10.66 74.0

5 1.664 0.04 1.4 2.0 79.61 8.33 86.4

Table B.6: Semi-supervised estimations of β in iMWK-Means on Gaussian models with noise, dataset (viii) - 500x25, including 10

extra noise features.

Dataset

Exponent β at weight % accuracy

Mean Std of

Mean

Modal Optimal Mean Std of

Mean

Max

1 1.571 0.02 1.4 1.7 45.02 8.34 59.5

2 1.547 0.02 1.4 1.3 40.29 5.62 51.4

3 1.566 0.02 1.5 1.3 44.85 8.1 56.8

4 1.579 0.02 1.5 1.6 43.39 9.51 54.0

5 1.587 0.02 1.5 1.5 46.13 6.05 52.7

Table B.7: Semi-supervised estimations of β in iMWK-Means on Gaussian models with noise dataset (ix) - 1000x50, including 50

extra noise features.

176

Dataset

Exponent β at weight % accuracy

Mean Std of

Mean

Modal Optimal Mean Std of

Mean

Max

1 2.105 0.06 1.4 1.8 47.85 14.25 84.60

2 1.887 0.05 1.3 2.0 54.19 8.19 69.80

3 1.875 0.06 1.3 2.6 46.96 9.17 61.7

4 1.791 0.05 1.4 1.8 53.67 6.87 61.6

5 1.978 0.06 1.5 1.3 52.27 12.34 76.1

Table B.8: Semi-supervised estimations of β in iMWK-Means on Gaussian models with noise, dataset (x) - 1000x75, including 25

extra noise features.

