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Abstract

Domain dependency is one of the most challenging problems in the field of sentiment
analysis. Although most sentiment analysis methods have decent performance if they are
targeted at a specific domain and writing style, they do not usually work well with texts
that are originated outside of their domain boundaries. Often there is a need to perform
sentiment analysis in a domain where no labelled document is available. To address this
scenario, researchers have proposed many domain adaptation or unsupervised sentiment
analysis methods. However, there is still much room for improvement, as those methods
typically cannot match conventional supervised sentiment analysis methods.

In this thesis, we propose a novel aspect-level sentiment analysis method that
seamlessly integrates lexicon- and learning-based methods. While its performance is
comparable to existing approaches, it is less sensitive to domain boundaries and can
be applied to cross-domain sentiment analysis when the target domain is similar to the
source domain. It also offers more structured and readable results by detecting individual
topic aspects and determining their sentiment strengths. Furthermore, we investigate
a novel approach to automatically constructing domain-specific sentiment lexicons
based on distributed word representations (aka word embeddings). The induced lexicon
has quality on a par with a handcrafted one and could be used directly in a lexicon-
based algorithm for sentiment analysis, but we find that a two-stage bootstrapping
strategy could further boost the sentiment classification performance. Compared to
existing methods, such an end-to-end nearly-unsupervised approach to domain-specific
sentiment analysis works out of the box for any target domain, requires no handcrafted
lexicon or labelled corpus, and achieves sentiment classification accuracy comparable
to that of fully supervised approaches.

Overall, the contribution of this Ph.D. work to the research field of sentiment analysis
is twofold. First, we develop a new sentiment analysis system which can — in a nearly-
unsupervised manner — adapt to the domain at hand and perform sentiment analysis
with minimal loss of performance. Second, we showcase this system in several areas
(including finance, politics, and e-business), and investigate particularly the temporal
dynamics of sentiment in such contexts.
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Chapter 1

Introduction

During its natural evolution, our species has developed various traits that have helped to
improve our ability to survive in our surrounding environment. The ability to express
and understand emotions is one such trait. It has a direct impact on our cognition and
behaviour, and plays an important role in our everyday lives. Although there is no
clear agreement on how to define emotions, some researchers define them using a set
of basic states, such as anger, fear, sadness, disgust, surprise, anticipation,
trust, and joy [61]. Others have expanded this set by including additional emotions
such as moral [84, 225, 170] or even sensory perception [85]. In this thesis, we
use the term “sentiment” to describe a variety of affective states [186, 244], and we
draw a distinction between sentiment attitudes and sentiment emotions, following
the typology proposed by Scherer [216]. By attitude, we mean the narrow sense of
sentiment (as in most research papers on sentiment analysis) — whether people are
positive or negative about something. By emotion, we mean the eight “basic
emotions” in four opposing pairs — joy-sadness, anger-fear, trust-disgust,
and anticipation-surprise, as identified by Plutchik [189].

Emotions and sentiment are present in almost all information sources. Every day,
a large number of opinionated documents are published on the Internet: people post
product reviews, express political views and share their feelings on social networks.
Thus, naturally, this sentiment information not only affects our behaviour but also has
a significant impact on our decision-making process. Prior to making a purchase or
visiting a local restaurant, most individuals check online reviews and read customer
feedback. On social media platforms such as Twitter and Facebook, people also share
attitudes on personally important topics, day traders provide their trading stances and
politicians pitch their messages to voters. More recently, Twitter attracted a lot of
negative attention because of attempts by malicious actors to manipulate public opinion
and political voting [12]. Therefore, the ability to extract sentiments from various
information sources can not only provide invaluable information about people’s views
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on various topics, but also help to predict customer behaviour, stock market movements
or even election results.

Sentiment analysis is a domain-specific problem (i.e. all approaches perform well
only if targeted at a specific domain, and they suffer significant performance loss once
domain boundaries are crossed [200]). Bag-of-words learning approaches [182, 179] are
among the most susceptible to the domain dependency problem. Conversely, numerous
studies have suggested that a typical lexicon-based system [58, 228, 227] has lower
domain sensitivity, may be easier to maintain by a human user, and has an output that is
self-explanatory, yet it cannot match the accuracy of bag-of-words supervised learning.

Thus, considerable effort has been invested in finding an automated way of do-
main adaptation by designing unsupervised sentiment-detection systems [60], various
knowledge transfer methods [65, 27, 25] and systems less prone to cross domain bound-
aries [26]. Unfortunately, most of these approaches suffer from various limitations.
Supervised domain adaptation requires labelled domain-specific training data, and the
collection of such data is an expensive and time-consuming task. Unsupervised ap-
proaches typically have inferior performance and cannot match conventional supervised
sentiment analysis methods.

Moreover, most domain-adaptation methods are designed with specific domain
boundaries and constraints in mind, such as targeting different topics in a social media
[126] or various categories of product reviews [76], thus performing domain adaptation
between similar domains (also known as near domains). Attempts to adapt distant
domains [158, 184] suffer from a significant drop in efficiency. Another important
aspect is that researchers typically work with clearly defined domain boundaries [126,
76], having their datasets split into distinctive and separable categories. However, many
sentiment sources, such as social media, are noisy, having a mix of cross-style or near-
domain documents. In addition to the mentioned limitations, in this thesis we will also
highlight that domain adaptation does not eliminate the domain dependency problem.
Hence, the thesis attempts to address some of these issues.

1.1 Motivation and Objectives

In order to address the problems described in the section above, this thesis introduces a
new approach to domain adaptation and presents our exploration towards answering
several related research questions.

First, is it possible to overcome the above lexicon and bag-of-words learning limita-
tions and reduce sensitivity to crossing domain boundaries? Second, can lexicon-based
systems improve their performance by learning a domain-specific lexicon? Third, can
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an unsupervised domain-adaptation and sentiment-analysis method close the gap to the
performance of supervised methods?

In order to answer the given research questions, the thesis will explore the possibility
of combining lexicon- and machine-learning techniques for opinion analysis. In addition,
it will investigate methods that are less sensitive to crossing domain boundaries, with
lower topic and style dependency compared to a pure bag-of-words machine-learning
implementation. It will also evaluate the advantage of inducing domain-specific senti-
ment lexicons, as well as evidence that different domains have different sentiment vector
spaces. Moreover, it will explore the possibility of building domain-specific sentiment
classifiers with unlabelled documents only, which can achieve sentiment classification
accuracy comparable to that of fully supervised approaches.

Finally, to validate the proposed models, we will explore practical applications and
evaluate domain adaptation in a series of case studies using a diverse range of domains.

We evaluate the realisation of our objectives and the contributions made by this
thesis to the subject of sentiment analysis and domain adaptation in Chapter 7.

1.2 Contributions

As part of the research presented in this thesis, we have made several contributions
to adaptive sentiment analysis and explored various domain-adaptation and cross-
domain sentiment analysis scenarios. Exploration of these questions contributes to
our understanding of adaptive sentiment analysis, which we define as a novel set of
sentiment analysis methods that can adapt to any domain at hand, are less sensitive to
crossing domain boundaries, and can be applied in both supervised and semi-supervised
modes. These features make our approach suitable for a wide range of practical
sentiment analysis applications. Specifically, our main four contributions are listed
below.

First, to overcome the limitations of lexicon- and bag-of-words learning, we have
developed a novel sentiment analysis method, pSenti, which is less sensitive to cross-
ing domain boundaries and has similar performance to the pure learning-based methods.
Here, we have shown that the sentiment analysis results produced by our hybrid ap-
proach are favourable compared to the lexicon-only and learning-only baselines.

Second, we created a novel lexicon-induction method and integrated it into the
previously built pSenti sentiment-detection system. Using our novel approach, we have
demonstrated that a high-quality domain-specific sentiment lexicon can be induced
from word embeddings [160, 185] of that domain with just a few seed words. We have
also confirmed the advantage of generating domain-specific sentiment lexicons and
provided evidence that different domains have different sentiment vector spaces. The
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induced lexicon could be applied directly in a lexicon-based algorithm for sentiment
analysis and operate as an nearly-unsupervised sentiment method. It can effortlessly
adapt to new domains, give high accuracy in a sentiment analysis task, and offer similar
rich features to other lexicon-based sentiment analysis approaches.

Third, we have proposed a system which can, in an nearly-unsupervised man-
ner, adapt to the domain at hand and perform near-cross-domain sentiment analysis
without additional adaptation and with minimum loss of performance. Our results
confirm our deep-learning-based [94] method’s superiority over more traditional SVM-
based approaches [182, 179] in the domain-adaptation task.

Fourth, we have evaluated our models in several areas: (i) we have investigated
the potential of using sentiment attitudes (positive vs. negative) and also sentiment
emotions extracted from financial news or tweets to help predict stock price movements,
(ii) we have considered political-sentiment analysis and stance detection, (iii) we have
analysed product reviews rating seasonality and trend analysis, (iv) we have considered
multidimensional and temporal model integration with a hybrid sentiment analysis
method.

The source code for our implemented systems and the datasets have been made
available to the research community 1 2 3 4.

1.3 Publications

The following publications by the author are related to this thesis:

[1] A. Mudinas, D. Zhang, and M. Levene. “Combining Lexicon and Learning
Based Approaches for Concept-level Sentiment Analysis”. In: Proceedings
of the First International Workshop on Issues of Sentiment Discovery and
Opinion Mining. WISDOM ’12. Beijing, China: ACM Press, 2012. ISBN:
9781450315432.

[2] A. Mudinas, D. Zhang, and M. Levene. “Bootstrap Domain-Specific Sentiment
Classifiers from Unlabeled Corpora”. In: Transactions of the Association for
Computational Linguistics 6 (2018), pp. 269–285.

[3] A. Mudinas, D. Zhang, and M. Levene. “Market Trend Prediction using Senti-
ment Analysis: Lessons Learned and Paths Forward”. In: Proceedings of the
7th KDD Workshop on Issues of Sentiment Discovery and Opinion Mining.
WISDOM ’18. London, UK: ACM Press, 2018.

1http://www.dcs.bbk.ac.uk/~andrius/psenti/
2https://github.com/AndMu/Wikiled.Sentiment
3https://github.com/AndMu/Unsupervised-Domain-Specific-Sentiment-Analysis
4https://github.com/AndMu/Market-Wisdom

http://www.dcs.bbk.ac.uk/~andrius/psenti/
https://github.com/AndMu/Wikiled.Sentiment
https://github.com/AndMu/Unsupervised-Domain-Specific-Sentiment-Analysis
https://github.com/AndMu/Market-Wisdom


Chapter 2

Background

Sentiment analysis, also known as opinion mining, is the computational study of
people’s underlying feelings, opinions, attitudes, appraisals, and emotions towards
entities, events, topics, individuals, issues, and their attributes [155]. It is a mature
research field, whose origins can be traced back to the 1960s. Stone et al. published a
pioneering resource, the General Inquirer lexicon dictionary, which, fifty years later, is
still relevant and maintained [221]. However, significant progress in sentiment analysis
was not achieved until the 1990s after the technological revolution of the Internet made
available enormous volumes of opinionated text. In 1990 Wiebe [245] published work
which established many of the ground rules in the sentiment analysis field. Several
years later, Hatzivassiloglou and McKeown [89] presented a method of predicting the
semantic orientation of adjective words and phrases with a high accuracy of 82%. More
research followed [244, 90] and helped to establish opinion mining and sentiment
analysis as a research area in its own right. In the 2000s, new sentiment analysis
algorithms started to emerge. Turney [232] introduced one of the first algorithms for
document-level sentiment analysis, which achieved an average accuracy of 74% for
product reviews; but on movie reviews, the performance was much worse, only 66%.
In his design, rather than focusing on isolated adjectives, Turney proposed to detect
sentiment based on selected phrases chosen via several part-of-speech (POS) patterns
[232]. The emergence of social media, the much-increased availability of subjective and
opinionated text on the Web, and advances in machine learning and natural language
processing (NLP) techniques started another tide of sentiment analysis publications. As
Mäntylä et al. [150] in their survey found, 99% of sentiment research papers have been
published after 2004.

Nowadays, opinion mining is still attracting interest from many researchers and
covers a broad range of research topics and techniques. Over the past few years, deep-
learning algorithms have made impressive advances, with the introduction of new NLP
techniques such as word embedding [160, 185], creating an opportunity to develop
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novel sentiment analysis methods and investigate sentiment analysis from a different
perspective. The topic has become so popular that various yearly competitions are being
organised, one of the most famous of which is SemEval [222, 252, 171, 206, 205, 172,
204], as well as competitions organised by Kaggle1, ESWC [209] and others [15, 162].
Some approaches are so well tweaked, that in one of Kaggle’s events, "Bag of Words
Meets Bags of Popcorn", one of the participants managed to achieve the impressive
score of 0.99259 for the area under a receiver operating characteristic (ROC) curve
(AUC). The area under the ROC curve (AUC) can be used to describe the quality of
a classification algorithm, which we will also briefly use in later chapters. The ROC
curve is a two-dimensional plot in which the false-positive rate is plotted on the X-axis,
and the true-positive rate is plotted on the Y-axis. Calculating the area under the curve
is one way to present this in a single value, which lies between 0.5 and 1. If classifier A
has a higher AUC than classifier B, then it is considered the better.

The rest of this chapter is organised as follows. In Section 2.1 we describe the main
components required for opinion mining and sentiment analysis, describe data collection
methods and sentiment sources, and introduce text processing and transformation in
the context of the adaptive sentiment analysis story. In Section 2.2 we cover the main
sentiment-detection approaches, starting with the lexicon-based approach and ending
with deep learning. We also discuss word embedding, its importance for domain
adaptation and its integration into existing sentiment analysis approaches, and review
both supervised and unsupervised sentiment analysis methods. In Section 2.3 we
discuss different domain-adaptation methods, the challenges they face and discuss their
importance. Sections 2.4 and 2.5 briefly cover sentiment dimensionality and temporal
sentiment analysis. In Section 2.6 we examine areas of applied sentiment analysis and
discuss how they are related to the thesis. This chapter also discusses aspect extraction,
opinion targets and many other related topics.

2.1 The Components of Sentiment Analysis

Sentiment analysis can be partitioned into components in several ways, depending
on scope, approach and learning algorithm selection. We can group components into
several major categories: data retrieval and pre-processing, feature extraction, learning
method selection and domain adaptation. We note that sentiment information is most
frequently stored in a text format. Therefore, it must be retrieved, normalised and
converted into a machine format, typically numerical feature vectors. Many of the
components are shared with other Information Retrieval (IR) methods. They are well
defined and were established long before the topic of sentiment analysis became popular.

1http://www.kaggle.com

http://www.kaggle.com
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There is also a broad set of various NLP techniques and approaches involved, and their
choice depends on the strategy taken and varies from one method to another.

Methods based on machine learning use varied methods to perform feature extrac-
tion, as well as additional pre-processing. To extract features, classic machine learning
approaches typically use a bag-of-words model [182, 179], in which every single word
is a feature, and it also is not uncommon to enrich them with additional steps. We will
cover the bag-of-words model in more depth later. In this thesis, we use a variety of
strategies to generate features. For example, in Chapter 3, we will limit features to
well-known and potential sentiment words. In Chapter 4, to induce a sentiment lexicon,
we will use multidimensional word vectors, and, finally, in Chapter 5 we will employ
a bag-of-words with multidimensional vectors strategy. A similar feature selection
process can be applied to other tasks such as sentiment summarisation and aggregation,
aspect extraction, identification of an opinion holder, sentiment target and discussed
topics [14, 39].

Component choice also depends on the selection of sentiment analysis learning
method as well as other factors, such as sentiment granularity level selection or the
ability to detect neutral-objective information. Domain adaptation, cross-domain and
multi-language sentiment analysis may require additional components and techniques
(e.g. extracting sentiment analysis from long, professionally edited text is a very different
task compared to extracting sentiment from microblogs). Short text extracted from
Twitter typically requires a unique approach with additional components to normalise
and process irregular language [1]. As we mentioned previously, each of these topics
can be a separate research topic, and we will cover them in more depth in later sections.

2.1.1 Data collection and sources

The rise in popularity of research into sentiment analysis can be directly correlated with
the information technology revolution and the increased availability of subjective text
data sets. Prior to the widespread use of the World Wide Web and social media, there
was little need for methods for sentiment mining and collection. With the extensive
availability of third-party review sites such as CNET2, IMDB3, and Rotten Tomatoes4

(see Figure 2.1), or, more importantly, the increased use of social networks such as
Twitter, Facebook and Reddit, the popularity of sentiment analysis gained significant
traction. In a sense, opinion mining opened the possibility of attaining a sneak peek
into human thoughts on a broad range of topics.

2https://download.cnet.com
3https://www.imdb.com
4https://www.rottentomatoes.com

https://download.cnet.com
https://www.imdb.com
https://www.rottentomatoes.com
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Fig. 2.1: Rotten Tomatoes review

Most early sentiment datasets were acquired by scraping Web pages and normalising
retrieved data [208], a procedure that is well covered in the literature [122] and one
for which there is a wide selection of open-source tools available. A basic Web
scraper can be implemented in a couple lines of Python code. However, in many cases,
implementations may be more complicated, as many content providers are continuously
trying to prevent scrapers from working [51] and even taking legal action against them
[203]. This can also be a challenging problem due to the complexity of page structure.
In some of the experiments, we will make use of a Web scraping; for instance, in
Chapter 3 we will use product reviews scraped from CNET, and in Chapter 6, datasets
collected from the FT and Reuters websites.

Most social networks, including Twitter and Facebook, provide an API to access
their data. In this thesis, we will use the Twitter API to download tweets and user
information. In Chapter 5 we will use messages collected using the Twitter API to
build embeddings and improve semi-supervised domain adaptation. In Chapter 6, we
will collect and use two different Twitter datasets. More specifically, to obtain relevant
sentiment signals in the financial domain, we will assemble an extensive collection of
financial tweets. We will also collect a vast dataset containing 142 million messages
from 7.6 million unique users, in which they express their political stance towards
Donald Trump. Not all functionality is available via the API, thus to collect additional
information from Twitter, such as user profile photos, we will also employ Web scraping.

To annotate datasets and gain quick access to training and testing data, researchers
in a variety of disciplines use crowdsourcing platforms such as Amazon Mechanical
Turk (MTurk)5, CrowdFlower6 and SurveyMonkey7 [237]. In Chapter 5 we will use
a Twitter dataset annotated using CrowdFlower. In Chapter 6 we will use MTurk to
annotate a 2016 US presidential election Twitter dataset. That will allow us to evaluate
our proposed sentiment analysis method efficiency in the political-sentiment domain
and answer a research question on the demographics of Trump’s supporters.

5https://www.mturk.com
6https://www.crowdflower.com
7https://www.surveymonkey.co.uk

https://www.mturk.com
https://www.crowdflower.com
https://www.surveymonkey.co.uk
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Another common strategy for evaluating the proposed sentiment analysis methods is
to use standard benchmark datasets. In papers analysing Amazon customer reviews, the
dataset collected by McAuley and Leskovec [154] is the most commonly employed. In
papers looking into movie reviews, the datasets collected by Maas et al. [144] and Pang
and Lee [179] are often used. The Twitter domain is unique, can cover many topics,
and thus has many datasets, some of the most important of which are from the SemEval
competition [204]. Hence in this thesis, we also use these datasets (Amazon, IMDB,
Twitter), to validate our proposed methods and make a direct comparison with other
researchers.

There are also plenty of commercial datasets. Big players in the financial news
domain and trading, such as Thomson Reuters and Bloomberg, have their own commer-
cial solutions. Many companies, such as Amazon, Twitter and Facebook, also provide
commercial access to their extensive datasets, including to historical data.

2.1.2 Text preprocessing and transformation

Retrieved information must be processed and transformed into a format suitable for
computer processing. The procedure was established as part of the evolution of IR
methods and is similar across many of the sentiment analysis approaches [132]. It
typically starts with text pre-processing. Pre-processing steps such as tokenisation,
stopword removal and morphological normalisation were introduced and developed
in the late 1960s [211]. Each of these steps has a number alternative implementations.
For example, in its simplest form, text tokenisation can be done using a whitespace
tokeniser, which performs down-casing and splitting of the text into any sequence
of whitespace, tab or newline characters. The sample sentence, "I have visited many
countries" would be split into the tokens: "i", "have", "visited", "many" and "countries".

For more sophisticated tokenisation, a wide selection of open-source NLP software
packages is available. Products such as NLTK [19], OpenNlp [7] and CoreNlp [149]
provide not only tokenisation options but also additional functionality, such as sentence
splitting, part-of-speech (POS) annotations, morphological analysis, Named Entity
Recognition (NER), syntactic parsing and co-reference resolution, and can even detect
temporal definitions [40]. In this thesis, we make use of various third-party NLP
software packages and libraries. The core of pSenti from Chapter 3 is a lexicon-based
system, so it shares many common components with NLP processing techniques. It
supports two different NLP frameworks, CoreNlp and OpenNlp, and uses them in
tokenisation, POS and entity tagging. In later chapters, we use NLTK and our custom
regular-expression-based tokeniser for the Twitter domain.

In Chapters 3 and 6, we also extract temporal orientations from a text. A temporal
orientation is calculated using two different methods: using the SuTime temporal tagger
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[40], and using the tense of a sentence. SuTime is a rule-based tagger built on regular-
expression patterns to recognise and normalise temporal expressions in English text
in the form of TIMEX3 tags. TIMEX3 is part of the TimeML annotation language
[193] for marking up events, times and their temporal relationships in documents (see
Table 2.1 for some examples).

Type Text Tag

Date October of 1963 <TIMEX3 tid="t1" value="1963-10" type="DATE"> Octo-
ber of 1963</TIMEX3>

Duration fifty-six years <TIMEX3 tid="t1" type="DURATION" value="P56Y">
fifty-six years</TIMEX3>

Set Every third Sunday <TIMEX3 tid="t1" value="XXXX-WXX-7" type="SET"
quant="every third" periodicity="P3W"> Every third Sun-
day</TIMEX3>

Time 5:05 in the afternoon <TIMEX3 tid="t1" value="2011-08-01T17:05:00"
type="TIME">5:05 in the afternoon</TIMEX3>

Date - written out year winter of nineteen ninety-four <TIMEX3 tid="t1" value="1994-WI" type="DATE">winter
of nineteen ninety-four</TIMEX3>

Duration Range two to three months <TIMEX3 tid="t1" altvalue="P2M/P3M"
type="DURATION">two to three months</TIMEX3>

Holiday last Christmas <TIMEX3 tid="t1" type="DATE" altvalue="20101225">last
Christmas</TIMEX3>

Ambiguous words The spring water was cool and
refreshing

The <TIMEX3 tid="t1" value="2011-SP"
type="DATE">spring</TIMEX3> water was cool
and refreshing

Table 2.1. SuTime tagging examples

Not all information extracted from a text is useful. In many IR approaches it is
considered that stopwords such as "an", "and", "by", "for" and "the" do not carry any
valuable information; they merely represent noise which requires additional unproduc-
tive processing and decreases IR efficiency [215]. Thus, it is quite common in sentiment
analysis to remove stopwords. That can be done using a simple stopword list or by
exploiting POS information. However, as Manning et al. [148] noted, in recent years,
there has been a trend in IR to either keep stopwords in place or to reduce the stop list to
a minimum, as the overhead is not considerable. Eliminating stopwords can also reduce
system performance, as it frequently fails to recognise acronyms such as "IT engineer"
and is thus prone to false positives. In most of our experiments, we remove stopwords,
but not in all. We found that our deep-learning models performed better with stopwords
in texts.

Many sentiment analysis methods also use morphological normalisation [132],
converting words to the singular or applying various stemming procedures. Similar to
the situation with stopwords, we found that stemming improves pSenti performance.
However, it does reduce the performance of deep-learning-based models.

Twitter and other microblogs typically require a unique approach. They use irregular
language, emoticons, Internet slang words and abbreviations, and are full of misspelled
words. As Hogenboom et al. [95] identified, graphical emoticon recognition in these
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domains significantly improves sentiment classification accuracy. Microblog authors
also use misspellings and word lengthening to express their feelings [34]. Short text
snippets are also difficult to process using NLP toolkits and frequently require additional
pre-processing [169]. To address the issue and domain specifics mentioned above, we
incorporate hashtag and emoticon recognition, use a custom-built tokeniser and include
word-lengthening recognition.

NLP methods can be useful not only for the initial text pre-processing but also in
other applications, such as generating additional machine-learning features or perform-
ing many sentiment analysis subtasks. One of the most widely used is so-called POS
information. The Penn Treebank, originally introduced by Marcus et al. [151], opened
up new research capabilities in syntactic sentence analysis. As we will demonstrate
in later chapters, POS information may be employed in stopword removal, aspect
detection and candidate sentiment lexicon generation, and can help with the word sense
disambiguation problem and provide the ability to understand the surrounding context
better. POS information can also be included as a machine-learning feature [165], which
can improve sentiment-detection performance, although some researchers have found
that is not that useful [182, 77]. Among other NLP methods, it is essential to mention
the lexical category and NER information resolution. This information can help with
an aspect, author, attribute or sentiment target resolution, which we will cover in more
depth in later chapters.

Machine-learning-based approaches typically require an additional vectorisation
step, in which selected and processed word tokens are transformed into numerical
vectors. Using the bag-of-words model, a document is represented as an unordered list
of unigrams also known as terms. Vectors are typically generated using a vocabulary
scheme with a high-dimensional feature space, having a tens-of-thousands-element-
long vector for each document. Each dimension can be represented by a binary value
(with 1 indicating term presence) or using other weight calculation approaches. One
of the most common is term frequency or term frequency–inverse document frequency
(tf-idf ), which was originally introduced by Salton and Buckley [212]. Tf-idf consists
of two parts: the term frequency multiplied by the inverse document frequency. Given a
document collection D, a word w, and an individual document d ∈ D, we calculate a
word weight wd using Equation (2.1), where t fw,D is the frequency of w appearance in
d, |D| is the size of the corpus, and fw,D equals the number of documents in which w
appears in D [212]. One of the main advantages of tf-idf weighting is that it reduces
the impact of words that occur very frequently and emphasises features that occur in
a small fraction of in a given corpus. Another, similar approach is one-hot encoding
(OHE), which is commonly used in deep-learning models. Using OHE, each word is
represented by a vector of zeros except for the element at the index representing the
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corresponding word from a vocabulary scheme. Vectorised data also typically requires
additional data normalisation and standardisation.

wd = t fw,d ∗ log
|D|
fw,D

(2.1)

2.1.3 Sentiment granularity

In its simplest form, sentiment detection can be defined as a procedure of binary
document classification into positive and negative classes [232, 182]. Nowadays, using
off-the-shelf machine-learning libraries and a few lines of Python code, it is possible to
create a simple linear bag-of-words support-vector machine (SVM) sentiment classifier
which can achieve as high as 90% accuracy in the binary sentiment classification task.
However, such a document-level approach has many limitations. Most documents
are not monolithic items with a single opinion: they can contain areas with positive,
negative and factual content, which is also known as sentiment-neutral information. A
sentiment author also often expresses multiple opinions and can have different opinions
about various aspects of the discussed topic. Therefore, by just detecting that a given
document is positive or negative, we would lose a lot of information about which aspects
(e.g., product features) the author liked or disliked, and to what degree. To address
that, Hatzivassiloglou and Wiebe [90] proposed sentence-level sentiment analysis, Hu
and Liu introduced the two-step aspect-level method [98], which was later improved
by Popescu and Etzioni [191]. Using the two-step method, the sentiment analysis task
can be divided into two separate subtasks: aspect identification and sentiment-strength
measurement.

According to the output, sentiment analysis can be divided into three families:

• Binary classification into positive and negative classes. As we have already
mentioned, many early machine-learning-based sentiment analysis approaches
treated sentiment analysis as a document-level binary classification problem [232,
182]. Another flavour of binary classification in sentiment analysis would be clas-
sification into subjective and objective classes [246]. This type of classification
is frequently applied to the sentence or paragraph level and can be employed
in multi-stage sentiment analysis to eliminate subjective text [260, 202]. Binary
classification can also be utilised to answer sentiment-related questions. For
example, market sentiment analysis can generate BUY and SELL signals [236].
In Chapter 6 we will investigate the financial domain and sentiment analysis
in financial news. We will use mood and sentiment to generate binary BUY
and SELL signals and will demonstrate that, in some cases, the model using
sentiment information outperforms the baseline method. There are many other ex-
amples of binary sentiment classification applications (e.g. Tumasjan et al. [231]
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demonstrated a model to detect political-sentiment application). In later chapters,
we also discuss the binary sentiment model to find Trump presidential election
supporters.

• Three-class classification into positive, negative and neutral classes. One com-
mon way to handle neutral sentiment is to treat the set of neutral documents
as a separate “neutral” class, which is the method advocated by Koppel and
Schler [116] and investigated by many others [98, 113, 66]. This approach is
more representative of how sentiment can be expressed, as it considers the fact
that sentiment is not a binary value. In a typical opinionated document, most
common areas are not positive or negative, but in fact neutral or factual blocks.
Thus, a simple binary classifier is not able to differentiate between factual and
opinionated information.

• Multi-class classification, regression and ordinal regression. All methods in this
class attempt to measure the sentiment intensity level on a more granular scale
which addresses the fact that many sentiment information sources have a broad
sentiment scale. Amazon product reviews (see Figure 2.2) have an ordinal five-
star rating scale, and IMDB and Rotten Tomatoes (see Figure 2.1) use a ten-star
scale. Thus, to reflect this, some researchers have tried to consider the problem as
a multi-class classification problem. Koppel and Schler [116] investigated the use
of various stacks, and others, such as Almeida et al. [3], designed a multi-class
classifier. Pang and Lee [180] investigated various methods, including regression
with an ordinal rating score with a possibility to measure sentiment strength,
where a value could be measured on a continuous scale from −1 to +1, or from
1 to 5, or from 0 to 100. Goldberg and Zhu [79] also investigated sentiment
rating prediction as both an ordinal regression problem and as a metric regression
problem.

Fig. 2.2: Amazon review
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In general, the one-versus-one (OVO) strategy is regarded as one of the most
effective SVM strategies available [70] for multi-class sentiment analysis. In later
chapters, with the pseudo-labelled training examples of three classes (−1: negative, 0:
neutral, and +1: positive), we tried both standard multi-class classification [97] and
ordinal classification [68]. However, neither of them could deliver a decent performance.
After carefully inspecting the classification results, we realised that it is very difficult to
obtain a set of representative training examples with good coverage for the neutral class.
This is because the neutral class is not homogeneous: a document could be neutral
because it is equally positive and negative, or because it does not hold any sentiment.
In practice, the latter case is more often seen than the former, which implies that the
absence of sentiment word features more often defines the neutral class rather than
their presence, which would be problematic to most supervised learning algorithms.
What we have discovered is that the simple method of identifying neutral documents
from the binary sentiment classifier’s decision boundary works surprisingly well if
appropriate thresholds are found. Specifically, we take the probabilistic outputs of a
binary sentiment classifier, and then put all the documents whose probability of being
positive is close to neither 0 nor 1 but in the middle range into the neutral class.

In Chapter 5, we will cover the probability calibration application in more depth.

2.1.4 Opinion holder and sentiment target

Sentiment analysis typically requires identification of both the opinion holder and the
target. This information can be used in sentiment summarisation and aggregation to
provide a better explanation of sentiment flow and justification. In their study, Choi
et al. [45] also found that the incorporation of semantic roles in sentiment improves the
performance of the opinion recognition task. In product or service reviews, an opinion
holder is typically a review author, and in other sources they can be explicitly mentioned
[18]. The presence of an opinion holder in a sentence or text area is also a good indicator
of an expressed sentiment, and this may be employed for the identification of subjective
areas [32, 249].

In his book, Liu [134] identified two main sentiment types according to their target,
direct sentiment, which is targeted at an object or its feature, and comparative sentiment,
where two or more objects/features are compared to each other. Frequently, both are
present in the opinionated text, as illustrated by the following product review snippet.

These phones are exceptionally portable due to the collapsible head bridge. They
stand up to everyday use and keep sounding good, even after I sweat on the ear piece. I
have not found a better pair after a long search. My only wish would be a lower price
and better availability
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In this example, the author expressed a direct opinion about an item and, at the same
time, compared it to other products. In the case of direct opinion, Liu [134] defined it
as a quintuple (o j, f jk, si jkl , hi, tl), where o j is an object, f jk is an aspect of the object
o j, si jkl is the sentiment polarity or orientation, hi is the opinion holder, and tl is the
time when the opinion is expressed by hi. This definition can be further extended with
to being a temporal sentiment dimension, which defines a temporal opinion target (i.e.
expressed with the past, current or future in mind). For example, "I hope the next
version will be perfect", has a positive sentiment pointing to the future, and "Last year,
I lost my phone" has negative sentiment targeting the past. Each of these dimensions is
an important sentiment analysis component and can be the target of a separate research
topic.

A sentiment target, which is also referred to as an aspect in the literature, also
plays a key role in our thesis and is covered in more depth below and in Chapter 3.
Both opinion-holder and sentiment target identification are also tightly related to the
problem of stance detection (SD) [218]. As defined by Mohammad et al. [167], a
typical sentiment-detection system classifies a text into positive, negative or neutral
categories, while in SD the task is to detect a text that is favourable or unfavourable
to a specific given target. Most of the existing research on SD is focused on the area
of politics [119, 120, 226]. In Chapter 6, in a political-sentiment analysis use case,
we briefly investigate SD, opinion holders and their demographics. More specifically,
we collected and annotated 6200 user profiles, identified their stances towards Donald
Trump, and examined whether Trump supporters prefer whiter areas to move to than
Trump opponents.

2.1.5 Aspect detection and aspect-level sentiment classification

Aspect and view extraction can play multiple roles in sentiment analysis. The most
common application of aspect extraction is in aspect-level sentiment classification,
where the aim is to identify the sentiment polarity of discussed targets [181]. They can
also enrich a sentiment-detection process [115], help in domain adaptation [115], or
be employed to create domain-specific signatures. It is one of the best ways to present
sentiment information [14, 39], as it can provide a quick overview of discussed product
features, as well as visualise what was good and what was not so good in each of them.
Aggregated by aspects, a sentiment analysis result can be consumed by other automatic
processes such as Customer Relation Model (CRM) systems [258], and by doing so,
allow companies to take advantage of collected reviews and customer feedback, and
to improve their sales [43]. It can also help in a product comparison task [98], which
can be presented to both consumers and producers. It has thus attracted the attention of
many researchers.



2.1 The Components of Sentiment Analysis 29

Similar to sentiment classification, the aspect-level sentiment-detection task can be
divided into lexicon- [98, 58] and learning-based [105, 264] approaches. A lexicon-
based approach typically uses a so-called Separate Aspect Sentiment (SAS) model,
which consists of two separate tasks: the aspect detection, and its sentiment pair
prediction [152]. In this approach, aspects are extracted independently and later have
their sentiment value calculated, aggregating contextual sentiment polarity within a pre-
defined token window, sentence or paragraph. A learning-based approach is frequently
based on a Joint Multi-Aspect Sentiment (JMAS) model. In a JMAS model, aspect
sentiment is predicted in pairs, where the aspect is associated with the sentiment, thus
jointly predicting which pairs can be found in the document [152].

Extracting aspects from a “high-quality” text is usually a relatively straightforward
procedure and, in many cases, can be solved using an unsupervised task [35]. As Hu and
Liu [98] have found in their research, the aspect extraction task can be implemented by
selecting frequent nouns and noun phrases. However, customer reviews and microblog
messages are usually short, informal, and sometimes even ungrammatical (e.g., consist-
ing of incomplete sentences), which makes this task more challenging. To overcome
this problem, Hu and Liu [99] proposed using Labelled Sequential Rules (LSR), where
rules are a special kind of sequential pattern. As in a sentiment lexicon generation task,
an aspect’s lexicon can also be generated by exploring synonyms [38]. Similar aspects
can also be discovered using word-embedding solutions.

Machine-learning-based approaches traditionally employ topic modelling and clus-
tering [137, 143, 156, 35]. As an example, Kohail [115], in their work, demonstrated an
aspect extraction method based on Latent Dirichlet Allocation (LDA) topic modelling.
They created an unsupervised framework for extracting dominant topics from multi-
domain document collections and demonstrated that aspects play an influential role
in the domain detection task. The rise in popularity of deep-learning-based methods
opened a way for new, neural-network-based methods [152, 121, 250] and various
solutions based on word embedding [257]. Jebbara and Cimiano [104] and Marx and
Yellin-Flaherty [152] demonstrated that neural networks outperform traditional models
by a significant margin. Such a design also allows seamless integration of extracted
aspect information into neural networks based on sentiment-analysis models.

In the next chapter, we also discuss another motivation to emphasise aspect/view
extraction. We will demonstrate that exclusion of the domain-specific aspect words
from the machine-learning step will reduce the dependence on the domain topic, writing
style or time period. We will use an aspect extraction method similar to those of Hu and
Liu [98], such as generating a list of candidate aspects by including frequent nouns and
noun phrases. The main distinctive difference in our approach is that we use additional
steps to enhance aspect detection, which we will cover in more depth later.
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2.1.6 Subjectivity and objectivity

Many researchers frequently focus only on binary positive/negative sentiment classifica-
tion and ignore neutral sentiment. However, as Koppel and Schler [116] identified in
their research, neutral sentiment detection is a critical part of the sentiment-detection
process. Neutral sentiment can typically be defined as objective or factual information
which does not express any subjective opinion about a discussed topic. It can be a
simple statement of facts, a physical description of an item or any other objective
information. In some information sources, objective information can be dominant and
even use well-known strong sentiment words to express factual information.

To demonstrate the importance of the ability to distinguish between subjective and
objective information, we can take a compelling example from a movie review, in which
the author briefly describes the plot: ’The film opens with a flashback, in which Derek
brutally kills two men vandalising his car’. This sentence does not carry any sentiment
information; the author simply describes the film’s plot. However, what makes this
example especially compelling is that it contains so-called strong sentiment words,
kills and vandalising, and most lexicon-based systems would flag this sentence as a
strong negative opinion. Therefore, the ability to distinguish between objective and
subjective-text blocks is essential for most sentiment-detection systems. This example
also illustrates that objective information can be domain dependent. Any human reader
can understand that it is impossible to kill or hurt somebody in a movie review, and we
tend to ignore such sentiment words depending on the information source and context.

Another excellent example of why the ability to distinguish between subjective
and objective information is essential can be found in Chapter 6. More specifically, in
the political-sentiment analysis use case, all our sentiment-analysis models performed
poorly with the non-related messages class. However, in this case, non-related messages
class has a broader definition and can include sentiment messages targeted at a different
(irrelevant) topic.

One of the approaches of how to handle subjective text is to use the so-called two-
step approach [260, 202]. In the first step, we classify sentences into subjective/objective
classes. Then, in the second step, we classify subjective sentences into positive/nega-
tive. For the implementation of the first step, there are many different options, from
supervised to many different variations of unsupervised methods. As an example, Yu
and Hatzivassiloglou [260] proposed a supervised method for subjectivity detection;
Riloff and Wiebe [202] demonstrated a semi-supervised expressions learning-based
technique; and, more recently, Ortega et al. [174] proposed an unsupervised approach.

Another conventional approach is to incorporate subjectivity as a third class and
consider the problem as a three-class (negative/positive/neutral) classification problem.
In their study, Koppel and Schler [116] compared various three-class sentiment classi-
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fication methods and found that this problem might be best handled using a pairwise
coupling, where a custom stack-based classifier outperformed all other classification
methods. In Figure 2.3 we present the results of various three-class classification meth-
ods. The figure shows the optimal stack, as proposed by Koppel and Schler [116], is
superior to other approaches by a significant margin.

2.2 Sentiment-Detection Methods

Sentiment analysis includes a diverse family of approaches to how to find and measure
sentiment. These can be divided into three main branches (see Figure 2.4): lexicon-
based [58, 228, 227], learning-based [179, 232, 105, 8, 130] and hybrid, between the
two [169, 262]. Most of the early sentiment-analysis methods were lexicon-based. As
the name implies, they are typically designed around a lexicon dictionary. Learning-
based approaches gained popularity slightly later [182, 179], and instantly established
themselves as the default and preferable solutions. Supervised classification is far more
accurate than lexicon-based classification [135, 60]. However, lexicons have not lost
their importance: they are usually easier to understand and to maintain by non-experts,
and they can also be integrated into learning-based approaches [169].

In this thesis, we make use of almost all sentiment-detection methods. We start
Chapter 3 with the lexicon-based method and expand it using the supervised learning
method (linear SVM). In Chapter 4, to induce a high-quality domain-specific sentiment
lexicon, we will use shallow neural networks and compare many supervised and
semi-supervised/transductive learning algorithms. In Chapter 5, we will develop the
unsupervised approach to domain-specific sentiment classification using distributed
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word representations and deep-learning models. We will also discuss and compare
its performance with almost all possible sentiment-detection methods, such as lexicon-
based, unsupervised, semi and fully supervised learning. Finally, in Chapter 6, we will
present several case studies. As in Chapter 5, almost all methods of sentiment detection
and their adaptation to various domains will be demonstrated.

2.2.1 Lexicon-based sentiment detection

As mentioned before, lexicon-based systems require a pre-compiled sentiment lexicon
corpus, where each word has an assigned sentiment value. Such lexicons can be either
manually crafted [221, 133] or automatically generated using seed words [98, 58].
Many research papers use already published and well-known sentiment lexicons, with
one of the first being the General Inquirer sentiment lexicon published by Stone et
al. [221]. More recently, Liu [133] compiled the Opinion Lexicon, which consists of
2,006 positive words and 4,683 negative words, plus misspelled words, slang words
and some morphological variants. Another prominent annotated corpus is the multi-
perspective question-answering (MPQA) compiled by Wiebe et al. [247]. Among many
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others, it is worth mentioning SentiStrength [227, 228], SentiWordnet by Baccianella
et al. [11] and the lexicon compiled by Warriner et al. [241]. Twitter messages have their
lexicons published as part of SemEval tasks [205]. Moreover, in the case of microblogs,
the use of emoticons as a universal sentiment indicator is widely accepted. Lexicons
are typically domain independent and single lexicons, such as that published by Go
et al. [77], can be shared across multiple domains.

The sentiment value of a text snippet in a lexicon-based system can be calculated
by aggregating positive and negative words. In Equation (2.2), we present the most
straightforward aggregation implementation, in which the total sentiment fS is calculated
by counting all the positive words wp and subtracting this number from the count of all
negative words wn.

fS = ∑wp−∑wn (2.2)

However, using such a simple approach, a sentiment score would be unscaled and
typically skewed by document size. There are many methods for performing a sentiment
calculation and scaling, and Lowe et al. [141] highlighted the three most popular:

Absolute proportional difference with bounds [0,1]. Using this calculation method
(see Equation (2.3)), from the sum of all positive words wp we subtract the sum of
all negative words wn and divide then by the total number of word occurrences wa.
The main disadvantage of this method is that a sentiment score can be affected by
non-sentiment words, as the denominator is a count of all words in a document. Besides
that, it is well suited to short text snippets.

fS =
∑wp−∑wn

∑wa
(2.3)

Relative proportional difference with bounds: [−1,1]. In contrast to Equa-
tion (2.3), in Equation (2.4) the denominator includes only the count of sentiment
words. The main disadvantage of this method is that sentiment values cluster around
positive and negative poles and are not evenly distributed.

fS =
∑wp−∑wn

∑wp +∑wn
(2.4)

Logit scale with bounds: [−in f inity,+in f inity]. The logit (also known as log-odds)
[93] is given in Equation (2.5).

fS = log(
p

p−1
) = log(p)− log(1− p) (2.5)

In sentiment-analysis result calculation, we are primarily interested in the relative
balance of positive and negative sentiment, or P

N and as Lowe et al. [141] identified,
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for such a task the logit scale is superior compared to other available methods. In the
original logit equation, p is between 0 and 1, but in the sentiment-analysis case we use a
slightly modified version, where p is the sum of all positive words wp, and 1− p is the
sum of all negative wn (see Equation (2.6)). It has the smoothest sentiment distribution
and is symmetric around zero. β is a fixed coefficient to prevent log(0) from occurring.

fS = log(∑wp +β )− log(∑wn +β ) (2.6)

In other common variations, equations can be expanded to include sentiment strength
as a coefficient or weight and re-scale the final value to fit it into the desirable sentiment
scale.

As we have already highlighted, the basic lexicon-based system can be implemented
by simply counting positive and negative words. On the contrary, most state-of-the-art
systems [63, 169] employ a more sophisticated design using various NLP techniques:

• Negations. The most critical part, which can invert sentiment strength (e.g. ’not
good’ has a negative sentiment).

• Intensification. They can decrease or increase sentiment value strength (e.g.
’much better’).

• Text repair. The use of various heuristic rules to replace idioms, slang and
irregular language.

• Spelling correction. This is especially important when processing user messages
from various microblogging platforms. In the Twitter domain, repeated letters
added to the word (e.g. Miiiiike), or the use of multiple exclamations or question
marks can also be a reliable indicator of expressed emotion or sentiment [227].

In later chapters, we will employ similar sentiment calculation techniques and design.
Unless noted otherwise, we will use Equation (2.6) to calculate the final sentiment
value.

2.2.2 Supervised learning

Widely available training and testing data made the supervised learning-based approach
the most common sentiment-analysis method. Extracting reviews from Amazon or
IMDB and training a linear classifier would give access to a high-accuracy domain-
specific sentiment-analysis system [182].

In their paper, Pang et al. [182] evaluated and compared several different supervised
machine-learning algorithms for classifying a sentiment extracted from movie reviews.
They included the comparison of Naïve Bayes (NB), Maximum Entropy (ME), and
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Support Vector Machines (SVM), with SVM slightly outperforming other learning
algorithms. Using a basic design, SVM trained on unigram features (bag-of-words),
they managed to achieve a high accuracy of 82.9%. This design was further improved
in their later work [179] and achieved an even higher, 87.2%, accuracy. In Figure 2.5
we present the architecture of a typical supervised sentiment-analysis system consisting
of feature extraction, training and classifications steps.

As we already mentioned earlier, the design of a bag-of-words supervised sentiment
system can be implemented in just a few lines of Python code, and such an implementa-
tion can surpass the method proposed by Pang and Lee [179] and achieve 90% accuracy
on the IMDB dataset [144]. In the bag-of-words approach, each word is represented
as a separate and independent feature. Using a linear SVM classifier, the hyperplane
decision boundary can be calculated using Equation (2.7), and items are separated into
positive and negative classes by the straight line (see Figure 2.6).

wtxi +β = 0 (2.7)

Still, as other researchers have found [200], such a straightforward design solely
based on supervised machine learning typically suffers from style, domain, or even time
dependencies. In comparison, lexicon-based sentiment-detection systems have lower
overall accuracy but suffer less from domain dependency. It is important to mention
that lexicon-based systems also have a domain dependency problem but with lower
sensitivity to crossing domain boundaries. In later chapters, we will demonstrate that,
in some domains, lexicon-based systems can suffer a significant performance loss.
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Fig. 2.6: SVM separating hyperplane

In contrast to lexicon systems, a naive document or sentence-level machine-learning-
based implementation is a black-box system, is difficult to understand and maintain by a
human user, and solely relies on training dataset quality. It performs a sentiment classifi-
cation and provides only an overall sentiment score, without any further explanation or
justification. It is possible to extrapolate some explanation using feature weights; how-
ever, that will not explain why a model decided to assign such weights in the first place.
Thus, many attempts have been made to incorporate lexicon knowledge into machine-
learning classifiers [6, 91, 60]. Other researchers have designed so-called multi-stage
systems, in which lexicon and machine learning are employed only for certain subtasks,
such as extending a sentiment lexicon [260] or identification of subjective-text blocks
[179]. In the case of mixed approaches, the first wave followed the increasing popularity
of various generative probabilistic models based on Latent Dirichlet Allocation (LDA)
[91, 105, 130]. However, their sentiment-analysis performance was often worse than the
simple bag-of-words SVM approach [182]. The second, more successful wave followed
advances in deep learning and word-embedding techniques [60].

In Chapter 3, we will explore the possibility of combining lexicon and machine-
learning techniques for opinion analysis. As Mladenić et al. [164] identified, weights
extracted from a linear SVM may be a good indicator of feature importance. This
observation is based on the fact that a feature weight obtained from the linear model
represents a vector coordinate which is orthogonal to the hyperplane, and its direction
indicates the predicted class. The magnitude of a vector or distance from the hyperplane
also tells us how informative the feature is for the classification and its importance in
the data-separation task. By selecting sentiment words and adjectives as SVM features,
we will use machine learning to discover a domain-specific sentiment lexicon, measure
the importance of sentiment words and adjust other lexicon-inspired components. In
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a sense, the training phase will work as an adaptation link between a generic lexicon
approach and a target domain.

2.2.3 Unsupervised learning

Until recently, unsupervised methods in sentiment analysis were less prevalent. Most
frequently they are employed only for one of the sentiment-detection subtasks, such
as dealing with lexicon induction, aspect extraction or a domain-adaptation task. Un-
supervised sentiment-analysis methods are also closely related to lexicon induction
and domain adaptation, which we will cover in more depth in later sections. In one
of the first unsupervised lexicon-induction papers, Turney [232] utilised POS tags to
find candidate sentiment words by exploiting, now a widely accepted fact, that most
sentiment words are adjectives and adverbs. Many other works followed proposing
various methods [10, 78, 110]. In the early days, some researchers tried to exploit
semantic representation using WordNet [98, 111], but typically they suffered from lower
accuracy, and WordNet-based approaches also struggled with domain adaptation. Later
research shifted to LDA-based semantic discovery, and now it is more common to use
word embedding [86] for similar tasks.

As an alternative, other researchers tried various clustering methods [266, 44],
although such an approach typically performed worse than weakly-supervised or multi-
stage methods. As Eisenstein [60] has recently discovered, lexicon-based systems can
improve unsupervised binary sentiment classification, and such a mixed system can
go a considerable way towards closing the gap to supervised methods. As we already
mentioned before, in Chapter 5, we will present our nearly-unsupervised approach
to domain-specific sentiment classification of documents for a new domain based on
distributed word representations (vectors) with performance on a par with conventional
supervised sentiment analysis.

2.2.4 Deep learning

Recent advances in deep-learning techniques have opened up the possibility of using
neural networks to perform sentiment analysis [49, 114, 96]. It has been demonstrated
that deep-learning models are more effective in tackling sentiment-detection problems
[96] and have been extensively applied in the field of NLP and sentiment analysis. They
are better at capturing the semantic relationship between words, and models such as
Long Short-Term Memory (LSTM) recurrent neural network (RNN) [94] allow the
memorisation of long-term contextual information. One of the many appeals of LSTM
is that it can connect previous information to the current context and allow seamless
integration of word embeddings as the projection layer of the neural network; thus, we
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can use domain-aware word vectors. As was reported by Dai and Le [49], the LSTM
RNN can reach or even surpass the performance levels of all previous baselines and
produce better results than other RNNs. Researchers have also reported good results
using other neural networks such as LSTM autoencoders [219] and Convolutional
Neural Networks (CNN) [114, 47].

More recently, Radford et al. [197], using multiplicative LSTM with 4096 units,
discovered the so-called sentiment unit, which learned an accurate representation
of the sentiment, a promising step towards developing a system with unsupervised
sentiment empathy. Despite being trained only to predict the next character in the text
of Amazon reviews, a single "sentiment neuron" was highly predictive of sentiment,
and by tweaking the "sentiment neuron", this network was able to generate positive or
negative reviews.

Technical innovations using attention models have introduced a set of new ap-
proaches that have obtained new state-of-the-art results in a number of NLP tasks,
including sentiment analysis [55]. Such approaches are typically based on bidirectional
training of Transformers [233] to learn a language model (LM), with the most important
research in this area having been undertaken by Radford et al. [198], Devlin et al. [55],
and more recently by Radford et al. [199].

We use various deep-learning networks in Chapters 5 and 6. Our results will show
that for most sentiment-analysis tasks, LSTM neural networks will demonstrate superior
performance, surpassing all other methods. Only in the market-prediction task, in
Chapter 6, SVM with an RBF kernel will outperform the LSTM model, which can be
explained by the size of the training dataset.

2.2.5 Word embedding

Maas et al. [144] were among the first to identify the importance of learning word vectors
and the possibility of using them in the construction of an unsupervised sentiment-
detection system. More recently in sentiment analysis researchers have started using
the two-layer neural networks word2vec [160] and GloVe [185]. The introduction of
word-embedding methods has had a substantial impact on various NLP-related areas
and opened up the possibility of new sentiment-detection methods. Both approaches
learn word vectors from their co-occurrence information that helps understand semantic
relationships between words and allows the grouping of words based on their linguistic
similarity. Representations are typically constructed from a sizeable unlabelled corpus,
and produce a vector space of several hundred dimensions, with each word being
assigned a corresponding vector. Words with similar meaning are usually located
nearby within the vector space, and that vital feature has been exploited in various



2.3 Domain Adaptation 39

sentiment-analysis methods [60]. Many of the latest sentiment-analysis methods use
pre-trained word embeddings as the first (projection) layer of the neural network.

Rothe et al. [207] proposed a DENSIFIER method to reduce the dimensionality
of word embedding without losing semantic information and explored applications
in various domains. DENSIFIER performed slightly worse in the SemEval-2015 task
[205] compared to word2vec, although its training time was shorter by a factor of 21.

We discuss word embedding in more depth in Chapter 4, where we will present our
lexicon-induction approach and confirm that words with different sentiment polarities
form distinct clusters in a word vector space.

2.3 Domain Adaptation

All sentiment-analysis approaches perform well if targeted at a specific domain. How-
ever, they suffer significant performance loss once domain boundaries are crossed
[200]. Read [200] identified three types of boundaries: topic, domain and temporal.
Crossing one of these boundaries typically has a detrimental impact on the performance
of a sentiment system. Kaur and R. Saini [112] also found that writing style has a
significant impact on sentiment-analysis performance and can be classified as another
domain boundary. As Xiao and Guo [254] noted, cross-language sentiment classifica-
tion can be identified as a special domain-adaptation case. We would also mention other
instances of sentiment anomalies, which require adaptation, such as sarcasm and irony.
E.g. sentence ’Nice perfume. Must you marinate in it?’ contains positive sentiment
words. However, it should be classified as a negative sentiment text block.

The simplest way to adapt a sentiment-detection system to an underlying domain
is by collecting labelled domain-specific training data. However, that is an expensive
and time-consuming task. Thus, considerable effort has been invested in finding an
automated method of domain adaptation by designing unsupervised sentiment-detection
systems [60], various knowledge transfer methods [65, 27, 25] and systems less sensitive
to crossing domain boundaries [169]. Research into adaptive sentiment analysis can
be categorised into domain-to-domain and general-to-domain adaptation. Another
approach would be lexicon induction and expansion with domain-specific sentiment
words.

It is also important to mention that most domain-adaptation solutions, even in the
case of unsupervised methods, retain domain dependency and would still have diffi-
culties processing documents from new and unknown domains. To process documents
from multiple domains, we would also need a topic-detection component. Each domain
typically has a distinctive aspect signature, and their extraction can help in domain
identification and classification [115].
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Through this thesis, we explore various domain-adaptation and cross-domain
sentiment-analysis scenarios. In Chapter 3 we will explore the near-cross-domain
environment, or, in other words, cross-style, as both datasets are from the same topic
domain, despite using different writing styles. The experimental results in that chapter
will illustrate one of the principal advantages of our pSenti algorithm (i.e. lower topic
and style dependency compared to a pure bag-of-words machine-learning implementa-
tion). To further improve performance, in Chapter 4 we will explore lexicon induction,
adaptation and expansion with domain-specific sentiment words. Finally, in Chapter 5
we will take this one step further and propose a novel nearly-unsupervised domain-
adaptation method, which almost matches the performance of the supervised method.
In a sense, semi-unsupervised sentiment analysis is one of domain-adaptation methods.
Such a system has the ability to discover domain-specific sentiment without supervision
and adapt to an underlying domain.

The political-sentiment analysis in Chapter 6 will demonstrate the importance of
domain adaptation and the advantages of our proposed method. The lexicon-based
approach with the general-purpose sentiment lexicon will show inferior performance
with 0.584 AUC, just fractionally better than a random selection. However, domain
adaptation will significantly improve its performance. The method based on the lexicon
induction from Chapter 4 will produce reasonable results with 0.723, and the semi-
supervised approach based on the model from Chapter 5 will improve results further
and achieve a high 0.803 AUC.

2.3.1 Knowledge transfer

The purpose of transfer learning is to use the knowledge of a source domain to perform
sentiment analysis in a target domain. In their survey, Pan and Yang [178], categorised
knowledge transfer methods into three main approaches: feature-based, instance-based
and model-parameter-based. Faralli and Navigli [65] proposed a domain-driven Word
Sense Disambiguation (WSD) method, where they iteratively created glossaries for
several domains using a bootstrapping technique. It does not cover sentiment detection,
yet it demonstrated the importance of identifying word sense.

Another approach is based on various techniques for uncovering the correlation
between the source and target domains. For example, Bollegala et al. [27] developed
an unsupervised cross-domain sentiment classifier using an automatically extracted
sentiment-sensitive thesaurus and computing the correlation between the source and
target domains. Similarly, Bollegala et al. [25] created an unsupervised method for
learning cross-domain word representations using a given set of pivots and non-pivots
[25] selected from a source and a target domain. Pan et al. [177] proposed a spectral
feature alignment (SFA) method, based on labelled data from a source domain and a
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set of domain-independent features. Using these classification settings, they managed
to reduce the gap between domain-specific words of the two domains and to improve
sentiment classification performance on a new domain.

It is also popular to use various types of ensembles. For example, Samdani and
Yih [214] and Xia and Zong [253] proposed feature-set-based ensembles, while Li
et al. [127] trained multiple classifiers on different domains for the final decision-
making. However, all these transfer learning approaches are supervised and hence
require labelled data for training.

2.3.2 Lexicon induction

Domain adaptation is also tightly related to the problem of constructing a sentiment
lexicon. Owsley et al. [175] found that to achieve “good” results using a lexicon-based
system you must build a domain-specific lexicon that is related to both the entities
and their sentiment identification. In different domains the same word could have an
opposite meaning or a very different sentiment strength. Moreover, as Lu et al. [142]
found in their research, even a different context may have an impact on a sentiment
orientation. One of the most reliable methods to build a domain-specific lexicon is
to use professional human annotators. Many of the publicly available lexicons were
manually crafted by human annotators (e.g. Mohammad et al., Stone et al., Liu [165,
221, 133]).

A lexicon induction can also be performed using both supervised and semi-supervised
learning methods. Overall, supervised lexicon-induction methods are less common,
yet in Chapter 3 we will present a novel sentiment-analysis method which may also
be employed as a supervised lexicon-induction method. Another common approach
to generating a domain-specific lexicon is to expand it gradually using an initial small
set of seed of words. This family of semi-supervised lexicon-induction algorithms is
far more dominant among other alternatives. Early methods have successfully utilised
WordNet [98, 58]. By exploring synonym and antonym sets in WordNet, they predicted
the semantic orientations of adjectives and expanded sentiment lexicons. However,
it is worth mentioning that such methods do not adjust the sentiment value for each
sentiment word in the lexicon; they merely expand the lexicon with previously unknown
sentiment words. To generate a domain-specific lexicon, it is also necessary to acquire
an adapted version of WordNet, and only a few domains have specific WordNet versions
available.

More recently, Hamilton et al. [86] demonstrated in their work that using label
propagation with high-quality word vector embeddings could induce a domain-specific
sentiment lexicon which can achieve performance competitive with methods that rely
on hand-curated dictionaries.
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Authors Count Emotions

Ekman [62] 6 anger, disgust, fear, joy, sadness, surprise

Parrott [183] 6 anger, fear, joy, love, sadness, surprise

Frijda [69] 6 desire, happiness, interest, surprise, wonder, sorrow

Plutchik [189]
(see Figure 2.7) 8

acceptance, anger, anticipation, disgust, joy, fear, sad-
ness, surprise

Tomkins [230] 9 desire, happiness, interest, surprise, wonder, sorrow

Matsumoto [153] 22
joy, anticipation, anger, disgust, sadness, surprise,
fear, acceptance, shy, pride, appreciate, calmness,
admire, contempt, love, happiness, exciting, reg

Table 2.2. Some existing definitions of basic emotions

As Eisenstein [60] found, lexicon-based systems can also improve an unsupervised
binary sentiment classification, and such a mixed system may be a considerable step
towards closing the gap to supervised methods. However, even a superior-quality
lexicon does not guarantee good performance in a real-life sentiment-analysis task, and
they have not tested the induced lexicon in a sentiment-analysis task. Our results in
Chapter 4 show that lexicon-based systems can be susceptible to borderline noise in a
generated lexicon. We will also demonstrate that better lexicon-induction results can be
achieved using a more straightforward approach. The simple SVM-based model, trained
on only a couple of seed words, can outperform all other models and can be a better
alternative to more complicated label-propagation methods. We will also demonstrate
the advantage of generating domain-specific sentiment lexicons and provide evidence
that different domains have different sentiment vector spaces.

2.4 Sentiment Dimensionality

In real life, sentiment is not a binary value and can have quite a complicated structure,
with more than ninety different emotions which can have a different meaning to differ-
ent people [163]. To understand human emotions, researchers and engineers started
employing various psychological models. One of the most popular emotion-definition
models was introduced by Ekman [61], which defined six primary human emotions and
twenty-four secondary ones. Cambria et al. [36] analysed existing models and proposed
a new biological and psychological emotion-categorisation model. In Table 2.2 we list
some of the most popular approaches, together with a list of primary emotions.

Typically in opinion mining we are trying to answer a two-dimensional question on
how much an audience likes or dislikes something. Thus, not all sentiment dimensions
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Fig. 2.7: Plutchik’s sentiment wheel [190]

are required, and most of the time the distance from the two extreme poles is sufficient.
In other cases, specific dimensions can be instrumental. For example, Zhang et al. [263]
found that sentiment dimensions such as hope and fear displayed a significant positive
correlation with the Market Volatility Index, also known as VIX. Moreover, those
two dimensions in Twitter messages were shown to help stock market prediction.
The multidimensional sentiment is also sensitive to domain boundaries and requires
adaptation; however, not much research has been done in that area yet.

We will first briefly use multidimensional sentiment in Chapter 3. In Chapter 6
we will investigate them in more depth and apply them to multiple sentiment-analysis
scenarios (e.g. we will investigate the causal relationship between sentiment attitude/e-
motion signals and stock price movements using various sentiment signal sources and
different time periods).

2.5 Temporal Analysis and Sentiment Time series

A compelling language characteristic is that lexical word meaning can change over
time, and can have a direct impact on sentiment analysis. Over time, new words and
terms can also be introduced. There are two primary methods to study word sense
change . In the semasiology method [73], we track how a word changes its sense,
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Fig. 2.8: The sentiment of “terrific” changed from negative to positive over the last 150
years [86]

and in the onomasiology [72], we want to find out how a concept expression (in
our case sentiment) changes and what new expression forms arise. A typical change
in word meaning requires one of four triggers [21]: it can be triggered by linguistic,
psychological, sociocultural or cultural forces. Language evolution and change detection
have been investigated by many researchers [117, 159]; however, significantly less so
from the sentiment-analysis perspective. In their work, Hamilton et al. [86] investigated
how sentiment meaning and their polarities can drift over time (see Figure 2.8). They
also demonstrated that a sentiment word could become obsolete due to temporal changes,
yet it frequently requires many decades to appear. All those findings suggested the
importance of a sentiment change point detection and constant domain adaptation.

In Chapter 6, we will analyse temporal sentiment drift in Amazon reviews, and our
results will confirm that temporal dependencies can indeed be observed in Amazon
reviews. This finding will confirm the importance of temporal sentiment monitoring
and continuous sentiment system adaptation to the underlying domain.

Another related topic is sentiment time series and the investigation of its character-
istics. Mei et al. [157, 156] investigated mining subtopics and analysing their dynamics
over time. Others have tried to exploit sentiment data in forecasting market movements
[9], election results [17] and future sales [261]. There have also been attempts to predict
sentiment using its past time-series values [74]. However, we could argue that such
an approach is typical for any time-series data and does not explain why sentiment
changes.

We will investigate sentiment time series in Chapter 6. Our results indicate that
aggregating past sentiment can significantly boost performance and can be employed to
improve the sentiment analysis of customer reviews.
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2.6 Application Areas

As we have already highlighted, sentiment analysis has many practical applications.
One of the most popular applications is product review sentiment analysis, and there are
many commercial review-management platforms to choose from, such as Bazaarvoice8,
PowerReviews9, Yotpo10 among others. They offer numerous services, from promises
to help boost brand recognition, to the possibility of increasing sales by collecting and
analysing product reviews. One of the typical sentiment-analysis examples would be
the Aspectiva11 product, which performs aspect-level review aggregation and analysis
of what people discuss about various product aspects and their feeling towards them.
Others offer more niche services, such as PowerReviews, which promises to detect
fake reviews and attempts to damage a brand. We explore similar sentiment application
scenarios in Chapters 3, 5 and 6, where we detect customers’ feelings towards various
products, analyse movie reviews and provide a detailed explanation of their opinion on
individual aspects.

Twitter is another important source of sentiment information with an even more
extensive range of applications, from brand reputation monitoring12, political campaign
analysis [217, 119, 120, 226] to financial market [28, 9] and movies box office revenue
prediction [13]. Similar trends are delivered on other social platforms as well, where
start-ups such as SentiOne13 offer sentiment monitoring across a set of various sources
from Facebook and Twitter, to public forums and other portals. We will introduce
our novel Twitter analysis method in Chapter 5 and demonstrate various practical
applications in Chapter 6.

The successful campaign and use of Twitter by Barack Obama in 2008 and, more
notably, by Trump in the 2016 US presidential election, confirmed the importance
of social media and its impact on politics. It also demonstrated the importance of
understanding how it affects surrounding society and has been a favourite subject for
research. Numerous studies have been performed to tackle this problem [102, 46].
Borondo et al. [30] even developed a conceptual model to predict the election winner.
More recently, researchers have investigated Trump’s election campaign [234, 136] to
study users who follow the presidential candidates. In Chapter 6, we also investigate
Donald Trump supporters and opponents, and their stances and political-sentiment in
the 2016 US presidential election.

8http://www.bazaarvoice.com
9http://www.powerreviews.com

10http://www.yotpo.com
11http://www.aspectiva.com
12http://www.tweetreports.com
13http://sentione.com

http://www.bazaarvoice.com
http://www.powerreviews.com
http://www.yotpo.com
http://www.aspectiva.com
http://www.tweetreports.com
http://sentione.com
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In recent years, a whole new industry has been formed around financial market senti-
ment detection [256, 255]. Traditional financial news/data providers, notably Thomson
Reuters [67] and Bloomberg [23], have started providing commercial sentiment-analysis
services. As a result, new financial platforms, such as StockTwits14 (see Figure 2.9),
which offers sentiment-analysis tools, have also emerged. Nowadays, many investment
banks and hedge funds are trying to exploit the sentiments of investors to help make
better predictions about the financial market. Some of the most prominent financial
institutions (including DE Shaw, Two Sigma and Renaissance Technologies) have
been reported to utilise sentiment signals [103], in addition to structured transactional
data (such as past prices, historical earnings, and dividends) in their sophisticated
machine-learning models for algorithmic trading.

According to the efficient market hypothesis (EMH) [147], it is impossible to
“beat the market”, since stock market efficiency always causes existing share prices to
incorporate and reflect all relevant market information. However, many people have
challenged this claim and declared that it is possible to predict price movements with
more than 50% accuracy [100, 194].

A variety of technical approaches to market trend prediction have been proposed
in the research literature, ranging from AutoRegressive Integrated Moving Average
(ARIMA) [239, 176] to ensemble methods [194]. In their work, Huang et al. [100]
demonstrated the superiority of SVM in forecasting weekly movement directions of
the NIKKEI 225 index, and Lin et al. [131] managed to achieve 70% accuracy by
combining decision trees and neural networks. Recent advances in deep learning have
brought a new wave of methods [42, 71] to this field. In particular, the Long Short-Term
Memory (LSTM) (RNN) has been shown to be very effective.

Fig. 2.9: Market sentiment

Numerous studies have been carried out in an attempt to understand the intricate
relationship between sentiment and price on the financial market. Wang et al. [236]
investigated the correlation between stock performance and user sentiment extracted

14http://stocktwits.com

http://stocktwits.com
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from StockTwits and SeekingAlpha15. Ding et al. [57] proposed a deep-learning method
for event-driven stock market prediction and achieved nearly 6% improvements on S&P
500 index prediction. Arias et al. [9] investigated whether information extracted from
Twitter can improve time-series prediction and found that indeed it could help predict
the trend of volatility indices (e.g., VXO, VIX) and historical volatilities of stocks. In
their research, Bollen et al. [28] identified that some emotion dimensions extracted
from Twitter messages can be good market trend predictors. A more recent study by
Tabari et al. [224] drew a similar conclusion. Similar to our approach in Chapter 6,
Deng et al. [54] combined technical analysis with sentiment analysis. However, they
used only a limited set of technical indicators, together with a generic lexicon-based
sentiment-analysis model, and attempted to predict future prices using simple regression
models.

In Chapter 6, we perform various experiments in the financial domain. First, we
use mood and sentiment extracted from Financial Times articles, news headlines and
tweets. Second, Granger causality analysis is carried out to assess whether they have
any potential predictability power on the stock price change. Later, we use mood and
sentiment to generate BUY and SELL signals and demonstrate that, in some cases, the
model using sentiment information outperforms the baseline method. Our experimental
results on stock market prediction show that for some selected stocks both general
sentiment and mood data integration could enhance the baseline and improve prediction
results.

2.7 Conclusion

In this chapter, we provided a broad overview of the sentiment-analysis area and
reviewed previous research related to our work on adaptive sentiment analysis.

In Section 2.1 we briefly described the main components required for the sentiment-
analysis task, data collection methods and sources, text processing and transformation,
as well as how it is crucial to adaptive sentiment analysis. We also reviewed sentiment
granularity levels and their selection, with an overview of why neutral, also known as
subjective, classes are essential in sentiment analysis. In this chapter, we also considered
aspect detection and opinion-holder identification, and described why this is important
to our research topic and domain adaptation.

In Section 2.2 we discussed main sentiment-detection approaches starting from a
lexicon-based approach and ending with a learning-based approach. The chapter also
covered the evolution of sentiment-analysis methods and included design samples of
the most popular sentiment-analysis methods; reviewed research in both supervised and

15https://seekingalpha.com/

https://seekingalpha.com/
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unsupervised methods; and covered deep-learning-based sentiment analysis, including
word embedding.

In Section 2.3 we covered domain-adaptation methods proposed by other researchers
and their evolution over time. We also presented the challenges they face and discuss
their importance. More specifically, we covered knowledge transfer, domain-specific
lexicon selection, and induction and adaptation, as well as unsupervised sentiment
analysis. We reviewed the main components required for domain adaptation, highlighted
the importance of aspect detection and presented the value of word embedding. In
Sections 2.4 and 2.5, we briefly touched on sentiment dimensionality and temporal
sentiment analysis. In Section 2.6 we reviewed the most popular applications and the
challenges they face.

We will also discuss some related work in more detail in later chapters when it is
relevant to specific problems that we consider in our research.



Chapter 3

Concept-Level Domain Sentiment
Discovery

3.1 Introduction

Most of the early sentiment-analysis systems took a lexicon-based approach to a doc-
ument sentiment classification task. This approach is based on the so-called lexicon
design, having domain-specific sentiment lexicons as the main sentiment information
source [58, 228, 227]. Later, the focus of research shifted more to learning-based ap-
proaches [182, 179]. Sentiment-analysis systems based on supervised machine-learning
techniques usually achieve the best performance in sentiment detection. However in
many cases, they are black boxes in the sense that no explanation or justification can be
provided to users.

Another concern in sentiment analysis is the domain dependency problem. With a
large enough training corpus, a supervised learning-based method can perfectly fit a
target domain and achieve a high sentiment classification accuracy. Unfortunately, this
comes at a cost, such as the domain overfitting or dependency issue. Domain dependency
is not unique to learning-based methods. Other approaches also have difficulties dealing
with documents outside of their domain boundaries. However, learning-based methods
are more susceptible to this problem and have a higher sensitivity to crossing domain
boundaries. On the one hand, machine-learning solutions have superior performance,
but they suffer a significant loss of accuracy if domain boundaries are crossed.

To address domain adaptation, researchers have proposed various methods. Almost
all of the domain-adaptation experiments have been done on synthetic datasets, which
have clearly defined domain boundaries. Yet real-world information sources typically
contain a mixture of cross-domain documents and have different characteristics from
static experimental datasets. Moreover, the domain-adaptation process does not make
the underlying sentiment-analysis model less agnostic to domain boundaries. In other
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Customer Review => { (Aspect1: View1), (Aspect2: View2), . . . , (Aspectk: Viewk) },
e.g.,
a user comment on Google Chrome => { (Appearance: +0.8), (Plugins: +0.6), . . . , (Speed: +0.9) }.

Fig. 3.1: An example of pSenti’s aspect-oriented output.

words, even after domain adaptation, learning-based sentiment-analysis methods retain
their sensitivity to crossing domain boundaries and typically have difficulties dealing
with noisy sentiment sources. As we will demonstrate later, lexicon-based systems
are less sensitive near domain boundaries. Thus, there is a need for a concept-level
sentiment-analysis system that could seamlessly integrate lexicon-based and learning-
based approaches to get the best of both.

3.2 Contribution

To overcome the above lexicon and machine-learning limitations, we have developed a
novel sentiment-analysis method which is less sensitive to crossing domain boundaries
and has similar performance to pure learning-based methods. In this chapter, we present
the anatomy of pSenti12 — a concept-level sentiment-analysis system that seamlessly
integrates lexicon-based and learning-based approaches to acquire adaptive sentiment
analysis.

The main advantage of our hybrid approach using a lexicon/learning symbiosis
is to get the best of both worlds — the stability and readability of a carefully hand-
picked lexicon, and the high accuracy from a powerful supervised learning algorithm.
Thanks to the built-in sentiment lexicon and numerous linguistic rules, pSenti can
detect and measure sentiments at the concept level, providing structured and readable
aspect-oriented outputs, as illustrated in Figure 3.1.

The main idea of pSenti is to generate feature vectors for supervised machine
learning in the same fashion as lexicon-based sentiment-analysis systems see it. In a
sense, pSenti is a lexicon-based sentiment-analysis system with an integrated learning-
based domain-adaptation module. Our experimental results confirmed that such a
two-step design is less prone to domain overfitting and less sensitive to a change of
topic or writing style. Compared to pure lexicon-based systems, it achieves significantly
higher accuracy in sentiment-polarity classification and sentiment-strength detection.
Compared to pure learning-based systems, our method offers more structured and
readable results with aspect-oriented explanation and justification, while being less
sensitive to the writing style of a text. Moreover, contrary to a bag-of-words design,
it can be modified and further adjusted after a learning phase (i.e. we can introduce

1https://github.com/AndMu/Wikiled.Sentiment
2http://www.dcs.bbk.ac.uk/~andrius/psenti/

https://github.com/AndMu/Wikiled.Sentiment
http://www.dcs.bbk.ac.uk/~andrius/psenti/
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Fig. 3.2: pSenti article temporal sentiment-analysis output

new linguistic rules or expand a sentiment lexicon at any time to further improve the
system’s performance). Also, in the case of insufficient labelled training data, it can fall
back to a lexicon-based component and perform sentiment analysis of unseen examples.

The ability to perform cross-style sentiment analysis is significant, as it implies that
we can train the system using formal professional reviews as training examples and then
apply the system for sentiment analysis on informal customer reviews. We cover the
anatomy of our proposed approach in Section 3.4. The extensive experiments we have
carried out on two real-world datasets are reported in Section 3.5. Both datasets, CNET
software reviews and IMDB movie reviews, confirm the superiority of the proposed
composite approach over state-of-the-art systems such as SentiStrength [227, 228].

In addition to a single-dimensional sentiment output, it is also able to calculate the
eight Plutchik [189] mood dimensions — anger, anticipation, disgust, fear, joy, sadness,
surprise and trust. Mood dimensions are extracted using the NRC sentiment lexicon
[166] and are generated as an XML output for each document and a whole dataset (see
Listing 3.1).

1 <MoodData>
2 <Mood name=" Anger " v a l u e =" 0 .028 " / >
3 <Mood name=" A n t i c i p a t i o n " v a l u e =" 0 .054 " / >
4 <Mood name=" D i s g u s t " v a l u e =" 0 .011 " / >
5 <Mood name=" Fea r " v a l u e =" 0 .038 " / >
6 <Mood name=" Joy " v a l u e =" 0 .028 " / >
7 <Mood name=" Sadness " v a l u e =" 0 .028 " / >
8 <Mood name=" S u r p r i s e " v a l u e =" 0 .015 " / >
9 <Mood name=" T r u s t " v a l u e =" 0 .108 " / >

10 < / MoodData>

Listing 3.1: Mood information XML output
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pSenti can also resolve four sentiment temporal orientations: past, present, future,
and undefined as well as present results with the greater granularity (see Figure 3.2).
A temporal orientation is calculated using two different methods: using the SuTime
temporal tagger [40] and by finding tense of a sentence.

In later chapters we will make more extensive use of mood and temporal sentiment
information.

3.3 Datasets

To empirically evaluate our pSenti system, we conducted experiments on two real-world
datasets.

• The first dataset: Software-Product-Reviews3 consists of software product re-
views collected by the thesis author from CNET’s software download website.
The dataset includes five software product categories: Browser, Antivirus, Video,
Action Games and Utilities. Most software reviews are written by customers
(average users), but there are some which are written by professionals (CNET
editors).

• The second dataset: Movie Reviews4 consists of movie reviews collected by Pang
and Lee [179] from the IMDB website. It is a well-known standard benchmark
dataset for sentiment analysis.

The first dataset was collected using a custom-built Web scraper by applying the
following procedure:

• Extracted all available product categories from the review website5.

• For each of the categories, crawled all the pages, containing customer and editor
reviews.

• For each review, extracted the name of the user, the text, the time stamp of the
review and the original rating.

A customer review is typically a short text snippet with an average length of a couple of
hundred characters (see Table 3.1). Editor reviews are longer, however, with an average
length of over a thousand characters (see Table 3.1). The following example illustrates
a typical customer review:

3http://www.dcs.bbk.ac.uk/~andrius/psenti/
4http://www.cs.cornell.edu/People/pabo/movie-review-data/
5https://download.cnet.com

http://www.dcs.bbk.ac.uk/~andrius/psenti/
http://www.cs.cornell.edu/People/pabo/movie-review-data/
https://download.cnet.com
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Dataset Labels of Reviews Number of Reviews Avg Length of Reviews

Software Reviews

Miscellaneous (Editor) Pos/Neg 1660 1056.82

Browser (Editor) Pos/Neg 360 1091.61

Browser (Customer) Pos/Neg 2000 158.07

Antivirus (Customer) Pos/Neg 2000 165.06

Video (Customer) Pos/Neg 2000 152.43

Action Games (Customer) Pos/Neg 2000 136.21

Utilities 1 (Customer) Pos/Neg 2000 155.80

Utilities 2 (Customer) 1-5 Stars 1850 295.19

Movie Reviews
Movies 1 Pos/Neg 2000 3892.96

Movies 2 1-5 Stars 5000 2257.44

Table 3.1. The experimental datasets.

“It comes with great features, no worries of updates as it does it all with automatic
updates and keeps your computer running smooth.”

The datasets have been pre-processed to remove duplicates, spam and inconsisten-
cies. A number of researchers [192, 128, 31] have highlighted that a potential concern
when performing sentiment classification is that the training data may contain class im-
balance that can negatively affect classification performance. Thus, to address this issue
and avoid sampling bias, we are using random undersampling to produce a balanced
dataset (i.e. each class has a similar number of reviews). The detailed characteristics of
these datasets are shown in Table 3.1.

3.4 Model

Our concept-level sentiment-analysis system, pSenti, is developed by combining lexicon-
based and learning-based approaches. As shown in Figure 3.3, the supervised machine-
learning component is responsible for multiple tasks, such as adjusting sentiment values
and new sentiment word discovery. To derive the final output, it performs adjustment

Fig. 3.3: The system architecture of pSenti.
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Fig. 3.4: Sentence-level pSenti’s analysis interface

of all lexicon components, including semantic rules. The pSenti system measures and
reports the overall sentiment of a given opinionated text, such as a customer review, as
a real-valued score between −1 and +1, which can then be easily transformed into a
positive/negative classification or a range of 1-5 stars (see Equation (3.3)). It can also
output sentiment as an eight-dimensional mood vector.

The system has a rich UI, making it easy to use to analyse sentiment dynamics
and understand how sentiment changes over time. Using its interface, we can inspect
sentiment changes on both sentence (see Figure 3.4) and word (see Figure 3.5) levels.

3.4.1 Preprocessing

The core of pSenti is its lexicon-based system, so it shares many common NLP process-
ing techniques with other similar approaches. It supports two different NLP frameworks:
Stanford CoreNlp [149] and OpenNlp [7]. During the first step of text processing, we
carry out tokenisation, POS and entity tagging. Before feeding a piece of a document
into the parser, we perform some text clean-up, simplification and transformations.

As part of the transformation, we replace known idioms and emoticons with text
masks. pSenti can read both text emoticons and those encoded as Unicode images. For
example, the emoticon “:-)” or its Unicode representation, will be replaced by the token
EMOTICON_SMILE. EMOTICON_SMILE is listed in the default lexicon as a sentiment word
with +2 sentiment value. Similarly, “:|”, which has a negative sentiment strength −1,
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Fig. 3.5: Word-level pSenti’s analysis interface

will be replaced by the token EMOTICON_CONFUSED. The assumption here is that various
emoticons express different sentiment strength, which has already been measured,
differentiated and added into the standard lexicon. Emoticon tokenisation simplifies
their processing and understanding by machine-learning algorithms, and allows them to
be further adjusted, depending on the underlying domain.

Emoticons are commonly used as a universal method to express sentiment and have
similar sentiment strength across many domains [238]. As they are ubiquitous in social
media domains, pSenti has an option to use the emoticon-only sentiment lexicon. Such
an approach is useful in the procedure of bootstrapping the training sample, which we
extensively employ in the following chapters.

Idioms follow slightly different heuristic rules, and they are replaced using system-
defined tokens. Thus “crocodile tears”, known to have sentiment strength −3, should
be replaced by _Bad_Three_ token. The range of sentiment values for emoticons and
idioms is from −3 to +3. Currently, pSenti knows about 116 emoticons and forty
idioms.

3.4.2 Aspect and view extraction

Aspect and view extraction play multiple roles in sentiment analysis. People very often
express multiple views in a single review (sometimes even of opposite polarity) about
distinct aspects of the same item as a software product or a movie. Therefore, it is
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essential for a practical sentiment-analysis system to extract the discussed aspects and
the corresponding views from each document with a sentiment. A view is subjective
information expressed in relation to an aspect; thus, we include them in the domain-
specific sentiment lexicon-induction step. Aspect detection can also help to create a
domain-specific signature and so contribute to recognising to which domain messages
belong.

The current implementation of pSenti uses a simple aspect and view extraction
algorithm as follows:

• Find candidate aspects. We generate a list of candidate aspects by including
frequent nouns and noun phrases identified by the POS tagger. In this step, we
also use Named Entity Recognition (NER) information. If a word has a named
entity category assigned, we include only location, organisation and person
categories. We excluded all words which have an initial sentiment value, as well
as stopwords.

• Find expressed views. We generate a list of candidates by including adjectives
and known sentiment words which occur near an aspect (in the same sentence)
but excluding all stopwords and all types of named-entities.

• Clean-up. We further remove all candidate aspects or views that occur less than
five times and ensure that the same word can be either an aspect or view.

• Group similar aspects. If multiple aspects share the same stem, they are assigned
to the same aspect group; we also include the phrases in which they occurred.

• Generate final aspects and views. The final list includes only the top 100 of the
aspect group, the top 100 views, plus the top ten views for each selected aspect.

Another motivation for pSenti to emphasise aspect/view extraction is that the domain-
specific aspect words will be excluded from the machine-learning step to reduce the
dependence on the current topic domain, writing style or time period. For example,
in many of the browser category customer reviews, we can observe very negative
sentiments towards “Internet Explorer” and “Microsoft”, so if we include these words in
the machine-learning step, they would be given high negative values. In the bag-of-word
learning-based approach (e.g. using SVM as the learning algorithm), “Microsoft” would
be in the top list with a strong negative weight of −1.36, and “Firefox” would have
a positive weight of +1.07. However, these words do not carry any stable or robust
sentiment value, and it is purely a coincidence that, at the time of sentiment analysis,
Microsoft IE6 had such negative publicity.

After a couple of years, we might find that the sentiment polarity and strength for
these aspect words have become entirely different from their current values. That helps



3.4 Model 57

pSenti not only to be less sensitive to topic-domain boundaries but also less sensitive to
crossing a time-domain boundary.

Besides, aspect/view extraction allows us to find frequently occurring adjectives
(views), which can be used to expand the sentiment lexicon and enables us to perform
context-aware sentiment-value estimation for such adjectives within the given aspect.
For example, the same word, “large”, could have very different sentiment implications
in different contexts: the sentiment for a “large monitor” is usually positive, while the
sentiment for a “large phone” is probably negative.

3.4.3 Lexicon-based sentiment-detection evaluation

For the first pass of sentiment detection, our system uses the sentiment lexicon con-
structed using public resources. It is a mixture of various publicly available lexicons,
including the Opinion Lexicon compiled by Liu [133], the General Inquirer compiled
by Stone et al. [221] and SentiStrength by Thelwall et al. [227]. Currently, the sentiment
lexicon consists of 7048 sentiment words including words with wildcards. The wildcard
character “*” in such words represents a number of any characters or an empty string
(e.g. “graceful*” will match words “graceful”, “gracefully” and “gracefulness”).

Their sentiment values are marked in the range from −3 to +3. Based on this
sentiment lexicon, we apply the following heuristic linguistic rules to detect sentiments
from a text:

• Negation. We included both traditional negation words such as “not” and “don’t”,
as well as pattern-based negations such as “stop” + “vb-ing”, “quit” + “vb-ing”.
Our system also employs an algorithm in which negation could be applied to
more distant sentiments. If a negation word could not be attached to sentiment
or another known adjective, it is treated as a negative sentiment word with a
weight −1.5 and will generate the feature wnot−word for the machine-learning
algorithm. As part of the processing, we perform various sentence repairs using
heuristic rules for more reliable negation detection. For example, the system
detects negation words in phrases such as “not just . . . ” and “not only . . . but
also”, and excludes them as sentiment negations. Besides, it splits words with the
“non-” prefix (e.g. the word “non-violent” will be separated into two words, “not
violent”, in advance).

• Modifier. Since words such as “more” and “less” can boost or reduce the
sentiment value of their associated sentiment word, they are considered by our
sentiment-detection algorithm. Intensifiers increase the sentiment value by several
times, whereas diminishers decrease it several times. Currently, we have forty
such handcrafted modifiers with their impact value in the range from 0.4x to 2.5x.
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The lexicon-based algorithm is presented below:

Algorithm 1 pSenti lexicon-based algorithm
Input: Text Document τ , The Sentiment lexicon L
Output: Sentiment strength Fsenti

procedure LEXICONSENTIMENT

for all wword ∈ τ do
sw←WORDSENTIMENT(wword)
if sw > 0 then

wp← wp + |sw|
else if sw < 0 then

wn← wn + |sw|
Fsenti =

1
2(log2 (∑wp +β )− log2 (∑wn +β ))

procedure WORDSENTIMENT(wword)
if wword ∈L then

sw← GETSTRENGTH(wword) ◃ Get a sentiment value from lexicon
if ISINVERTED(wword) then ◃ Check for a presence of negation

sw←−sw

sw←MODIFIERS(wword)× sw ◃ Apply sentiment strength modifiers
else

if ISINVERTED(wword) then
sw←Cn

3.4.4 Learning-feature extraction

As was already mentioned above, in our proposed model, the learning phase is responsi-
ble for the lexicon part of domain adaptation by adjusting sentiment word values and
participating in a domain-specific lexicon expansion. The supervised machine-learning
algorithm used in our system is the linear SVM implementation from LibSVM6, with
an L2 objective function for optimisation and grid search for parameter tuning. We
chose linear SVM since in previous studies [182] it has been shown that it outperforms
other popular learning algorithms for sentiment analysis. Another reason for this se-
lection was the observation identified by Mladenić et al. [164] that weights extracted
from a linear SVM can be a good indicator of feature importance. A feature weight
obtained from a linear model represents a vector coordinate which is orthogonal to the
hyperplane, and its direction indicates the predicted class. The magnitude also tells us
how informative a feature is for classification and its importance in a data-separation
task.

A classic bag-of-words supervised learning approach takes all words as features;
however, not all words carry sentiment information. Thus, if we limit features only to

6http://www.csie.ntu.edu.tw/cjlin/libsvm/

http://www.csie.ntu.edu.tw/cjlin/libsvm/
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well-known and potential sentiment words, we would be able to use weights extracted
from a linear SVM to learn their importance and impact on a sentiment classification
task. In other words, we would discover their domain-specific sentiment values. Due to
normalisation and standardisation, feature weights discovered in the training phase are
on the same scale, and their interpretation can be mapped back into the lexicon-based
part and represent their domain-specific sentiment strength. Other lexicon features, such
as mood dimensions and overall lexicon-based sentiment strength, are represented by
so-called lexicon bias. In Section 3.4.7, we will further validate our model and confirm
that linear SVM weights can indeed generate a high-quality domain-specific sentiment
lexicon.

To perform domain adaptation the following elements are included:

• Sentiment words. The weight of this feature is its frequency in a given document
multiplied by its absolute sentiment strength. For example, if we have a document
with the word “good” (sentiment value +2), appearing twice, we would generate
the feature wgood with a weight of 2× 2 = 4. A similar calculation would be
performed for the word “bad” (sentiment value−2). It would generate the feature
wbad with a weight of 2×2 = 4. That makes the learning part responsible for the
polarity identification. Such a model is agnostic to an initial lexicon polarity, and
thus transferable across other lexicons and easier to interpret by human users.

In the case of sentiment-value modification, the feature and value generation
are slightly more complicated. If the sentiment source has been inverted, we
generate a new feature to reflect inversion. In the case of the word “good”, the
feature wnot−good would have a sentiment value of −2 with a feature value of
+2 (absolute value). A similar situation arises with intensifiers or diminishers
(e.g. for the bigram “extremely good”, where we have the sentiment word “good”
appearing next to one of the strongest intensifiers with x2.5 impact value, we
would generate the wmore−good feature with +2× 2.5 = +5 as its value). In
the case of “sometimes good”, we would generate wless−good with a value of
+2÷1.5 =+1.33

• Other adjectives. Turney [232] was one of the first to identify that adjectives
are among the most likely sentiment candidates. Thus, by including adjectives
as learning-phase features, we are performing domain-specific sentiment word
discovery. For adjective-based features, we use the term frequency weighting.
For example, if the word “large” appears twice, we would have the feature wlarge

with a value of 2.0. In this case, a negation, intensifier or diminisher does not
modify a feature’s weight but only triggers the generation of a new feature. An
instance such as the “not clean” bigram, would generate the feature wnot−clean.
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• Inverted words. Inverters are typically good indicators of negative sentiment (e.g.
the phrase “not working” does not have any well-known sentiment words in it,
yet it expresses a strong negative sentiment). Negative sentiments in our lexicon
have their strength in the range from −1 to −3, with most words having a value
of −1 or −2. Based on empirical evidence, for inverted words in lexicon-based
sentiment analysis, we use a value of −1.5, which is in the middle of this range.
To mitigate the empirical bias, in the learning phase we use the term frequency
weighting.

• Lexicon-based sentiment score. We call this feature lexicon bias, which is
essential in processing documents which contain sentiment words unseen in
the training examples. The fallback sentiment lexicon-based classifier plays an
important role in a situation where we might have insufficient labelled training
data. In such a case, the sentiment strength of these documents can still be derived
using a standard fallback sentiment lexicon and lexicon-based heuristic rules.
Using this feature, we are measuring how biased the lexicon-based classifier is in
a particular domain.

• Mood dimensions. We have an option to include eight mood dimensions (see
Listing 3.1), extracted using the NRC sentiment lexicon [166]. For each di-
mension, as its feature weight, we use the probability of occurrence in a given
document.

3.4.5 Sentiment scoring

Most of our results are reported in terms of classification into positive and negative
classes. However, the actual output is a real-valued sentiment score in the range of
[−1,+1]. Fsenti is calculated using the log-odds, also known as the logit equation
(see Equation (3.1)). As discussed in Section 2.2.1, this equation has the smoothest
symmetrical distribution in the range of [−1,+1], is symmetric around zero and is
most suitable for representing the proportion of two different sentiment poles. In
Equation (3.1), wp is the sum of positive, and wn of negative (absolute) sentiment
values, and β is a fixed coefficient to prevent ill-defined log2(0). Fsenti has upper-bound
+1 and lower-bound −1 (see Equation (3.2)). If the value is greater than +1.0, it will be
reset to +1.0, and if it is lower than −1.0, it will be reset to −1.0.

F ′senti =
1
2
(log2 (∑wp +β )− log2 (∑wn +β )) (3.1)
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Fsenti =


1, if F ′senti ≥ 1

−1, if F ′senti ≤−1

F ′senti, otherwise

(3.2)

If neither positive nor negative sentiment is detected, our algorithm treats such text
as a neutral text and assigns it the sentiment value 0. The sentiment value can be easily
transformed into a five-star scale using the simple Equation (3.3).

Fstars = 2∗Fsenti +3 (3.3)

It is important to note that the final sentiment calculation also includes fallback
sentiment words adjusted by a penalised lexicon bias coefficient.

3.4.6 Sentiment measurement example

To illustrate the calculation process, consider the following review as an example:

“After reading very good reviews online, I bought this one for Evolution class. It
is a horrible excuse for a new textbook. Do not buy this horrible book unless it is for a
middle school student. If the authors think this book has been written for an advanced
audience, then I would suggest that anyone interested in learning evolution not attend
University of Washington.”

To simplify all calculations, we omit normalisation, mood dimensions and fallback
sentiment words. All calculation steps are presented below in Table 3.3 and the senti-
ment lexicon in Table 3.2. The learning-based logic is also presented in Algorithm 2.

Word Sentiment Value

good +2
horrible −3
excuse −1
advance +1
interest +2

Table 3.2. The sentiment lexicon snapshot

• Lexicon-based sentiment-strength calculation. The review contains five sen-
timent words: “good” (with boosted sentiment value +2.0× 1.5 = +3), two
occurrences of “horrible” (with a sentiment value −3.0× 2 = −6), “excuse”
(with a sentiment value −1.0), “advance” (with a sentiment value +1.0) and
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Algorithm 2 pSenti learning-based algorithm
Input: Text Document τ , SVM weights ν , The Sentiment lexicon L
Output: Sentiment strength Fsenti

procedure LEARNINGSENTIMENT

for all w f eature,wword ∈ τ do
if w f eature ∈ ν then

sw← GETWEIGTH(w f eature) ◃ Retrieve an SVM weight
else if wword ∈L then

sw←WORDSENTIMENT(wword) ◃ Call the pSenti lexicon component
sw← ADJUSTFALLBACK(sw) ◃ Apply fallback penalty

if sw > 0 then
wp← wp + |sw|

else if sw < 0 then
wn← wn + |sw|

Fsenti =
1
2(log2 (∑wp +β )− log2 (∑wn +β ))

“interest” (with a sentiment value +2.0). The review also contains two inverted
verbs: “do not buy” and “not attend”, for which we generate features wnot−buy

and wnot−attend . As described in the previous section, all negated words are
treated as negative sentiment words and given a weight of −1.5. The sum of all
positive sentiment values is wp = 3+1+2 = 6, and the sum of all negative is
wn = 6+1+1.5+1.5 = 10. The lexicon-based sentiment value, calculated using
Equation (3.1), is −0.387.

• Learning features extraction. As it was outlined in the section above, for
each sentiment word, we generate a separate feature and use its aggregated
sentiment value. For each non-sentiment feature, we will use the term frequency.
Following the outlined procedure, we would generate the document vector as:
[+3.0,+6.0,+1.0, +1.0,+1.0,+1.0, +2.0,+1.0,−0.387] (see Table 3.3). The
last value in the vector (−0.387), is the lexicon-based document sentiment value.

• Learning-based weight discovery. All documents in a training dataset have to
be labelled with a positive or negative label. In this phase, we train linear SVM
using a training dataset and extract estimated SVM coefficients from a model.
Sample weights are provided in Table 3.3.

• Learning-based weight adjustment. To demonstrate how we calculate domain-
specific sentiment, we will use the same review. To determine a domain-specific
sentiment value for each feature, we will multiply the previously calculated
weights by their SVM coefficient (e.g. two occurrences of “horrible”, with an
original sentiment value of−2 (absolute +2), has an overall−1.8 domain-specific
sentiment value (−0.3×2×3 =−1.8). On the other hand, some sentiment words
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such as “advance” lost their sentiment value (+1×0 = 0). For the last feature,
which we also call the “pSenti bias”, we include the originally calculated lexicon
sentiment value (−0.387) adjusted by its SVM weight (+0.05) plus the SVM
hyperplane bias (−0.12), with a final value −0.387×0.05+(−0.12) =−0.138.

To calculate the domain-specific sentiment, we follow the same procedure as
above. First, we calculate wp = 0.3+0.1 = 0.4 and wn = 1.8+0.1+0.3+0.05+
0.138 = 2.388. Finally using log-odds (see Equation (3.1)) we calculate the
review sentiment value. In Table 3.4 the results of the sentiment calculation are
shown, with the final sentiment after adjustment (−1), significantly lower than
in the original calculations (−0.368). The final result, transformed into five-star
grades using Equation (3.3), is just one star out of a possible five.

Features
good horrible new excuse not-buy advance interest not-attend Fsenti

Lexicon step +3 −6 0 −1 −1.5 +1 +2 −1.5 −0.387
Learning Vector +3 +6 +1 +1 +1 +1 +2 +1 −0.387
SVM Weights +0.1 −0.3 +0.05 −0.1 −0.3 0 +0.025 −0.05 +0.05
Learning adjustment +0.3 −1.8 +0.05 −0.1 −0.3 0 +0.05 −0.05 −0.138

Table 3.3. Weight adjustment stages

Step ∑wp ∑wn Fsenti Fstars

Lexicon-based 6 10 -0.368 2.263
Learning-based 0.4 2.388 -1 1

Table 3.4. Sentiment rating calculations

3.4.7 Sentiment lexicon information gain evaluation

In this section, to examine the effectiveness of learning-based lexicon adaptation,
we attempt to recreate a sentiment lexicon using the Amazon domain dataset. As a
benchmark, we took the sentiment lexicon compiled by Liu [133]. This lexicon is
not domain specific, but its primary application was in the Amazon domain, and it is
representative enough to allow evaluation of a generated lexicon quality.

To generate a domain-specific lexicon, as described before, we use feature weights
extracted from a linear SVM model. Normalisation and standardisation make feature
weights extracted from different domains comparable, with the values placed on the
same scale. Different features have different information gain, with most of them having
values just fractionally above zero. Figure 3.6 shows the top 40 features with the most
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Fig. 3.6: Top 40 SVM feature weights
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Fig. 3.7: How the performance of lexicon is influenced using feature information gain
filtering

substantial information gain. Thus, to evaluate the adapted lexicon quality, we filter it
using information gain and present the results in Figure 3.6 and Table 3.5.

The results indicate that even if we include all generated features, we will get a
reasonable-quality lexicon with 0.7877 AUC. Imposing a higher cut-off threshold in-
creases lexicon quality and demonstrates that features with the highest information gain
are indeed the most accurate. Taking the top 20% of features generates an impressive
AUC value of 0.9803 (see Table 3.5). Results also confirm that the generated lexicon
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Top AUC FPositive
1 FNegative

1 Size

100% 0.7877 0.6673 0.7113 2064
90% 0.8046 0.6770 0.7393 1872
80% 0.8247 0.7007 0.7556 1654
70% 0.8453 0.7352 0.7823 1444
60% 0.8648 0.7648 0.8035 1238
50% 0.8877 0.7940 0.8254 1032
40% 0.9159 0.8307 0.8529 826
30% 0.9503 0.8862 0.8993 618
20% 0.9803 0.9447 0.9483 412
10% 0.9968 0.9951 0.9951 206
5% 1.0000 1.0000 1.0000 102

Table 3.5. How the performance of lexicon is influenced using feature information
gain filtering

has not only good AUC but also well-balanced F1 scores. Moreover, the actual accuracy
is likely to be much higher, as the benchmark lexicon is not domain specific. Manual
inspection of the top features (see Figure 3.6) confirms that the strongest sentiment
values are indeed identified in words typically associated with customer reviews, such
as “loud”, “issue”, “recommend” and “easy”.

3.5 Experimental Results

The pSenti system, based on the proposed hybrid approach, is compared with the
following baselines:

• LexiconOnly: The pure lexicon-based approach using the same sentiment lexicon
as pSenti;

• LearningOnly: The pure learning-based approach using the same learning algo-
rithm (linear SVM) as pSenti, with bag-of-words features; and

• SentiStrength7: a state-of-the-art sentiment-analysis system free for academic
research [227, 228].

All experimental results are reported using 10-fold cross-validation.

3.5.1 Same-domain sentiment analysis

Sentiment-polarity classification

In this experiment, we used two datasets: (i) a set of browser reviews, and (ii) a set of
professionally edited reviews of various software products, with both datasets containing

7http://sentistrength.wlv.ac.uk/

http://sentistrength.wlv.ac.uk/
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Dataset pSenti LexiconOnly LearningOnly SentiStrength

Software Reviews

Miscellaneous (Editor) 89.64% 79.40% 90.78% 64.93%

Browser (Editor) 86.94% 76.94% 91.39% 62.77%

Browser (Customer) 79.60% 74.50% 80.54% 52.25%

Antivirus (Customer) 78.55% 70.60% 82.91% 47.85%

Video (Customer) 83.55% 75.95% 85.83% 52.80%

Action Games (Customer) 78.75% 71.55% 82.92% 58.25%

Utilities 1 (Customer) 78.80% 73.70% 82.03% 50.50%

Movie Reviews Movies 1 82.30% 66.00% 86.85% 60.70%

Table 3.6. The sentiment-polarity classification performance (accuracy) in the standard
(single-style) setting.

balanced data. As explored by Straube and Krell [223], F-measure in Information
Retrieval (IR) is a suggested metric for imbalanced classes. However, in the case of a
balanced binary classification task, accuracy is the most straightforward measure and is
sufficient to explain results. Thus, in this section, we report only accuracy, while the
other measures are omitted.

As we can see from the results shown in Table 3.6, our algorithm achieved consistent
results across all domains. Performance on customer reviews is lower in comparison to
professionally prepared editor reviews, but that could be easily explained by the text
quality in customer reviews, rating inconsistencies and different writing styles. In our
experiment we tried to mimic real-life situations and made the assumption that an author
who wrote a review and assigned a rating is objective in his or her valuation; for that
reason, we used all the original review ratings extracted from http://www.donwload.com.
However, authors are not always consistent in their ratings — they may write a positive
review and assign just a 1-star rating. Also, it is not uncommon to find reviews in which
customers express opposite sentiment towards competing products. For example, in our
dataset, we have a 5-star review with the sentence, “Glad to dump Explorer forever!”. In
this review, an author expresses negative sentiment towards “Explorer”, yet, the review
has a 5-star rating because it refers to the Firefox browser. Nevertheless, as we can see
from Table 3.6, the maximum accuracy achieved by our algorithm was 83.55% (for
customer video products), and the lowest accuracy was 78.55% (for antivirus products).
In this thesis, to ensure statistical significance in binary sentiment classification tasks,
we use the two-tailed binomial test [259]. Tests are performed at 95% significance level.
The binomial test is typically used when an experiment has two possible outcomes and as
Salzberg [213] has argued, it is well suited for the comparison of two classifiers. Hence,
this method is commonly used in text categorisation [259] and to compare different
sentiment analysis methods [4]. The binomial test on the same-domain sentiment

http://www.donwload.com


3.5 Experimental Results 67

classification confirmed that pSenti is significantly better (pvalue = 0.000) than the
LexiconOnly and SentiStrength baselines.

In all our experiments using LexiconOnly and SentiStrength we used default config-
urations without any training or sentiment-value adjustments, and in both cases final
sentiment was calculated using Equation (3.1). SentiStrength achieved the lowest scores
in all categories; such low accuracy can be explained by the fact that in many reviews
SentiStrength was not able to detect any sentiment or assigned neutral sentiment value.

To compare our algorithm’s performance with other well-known methods or to
a pure machine-learning implementation, we made use of the Pang and Lee [179]
movie reviews dataset. Another reason for using this dataset is that movie reviews are
usually more difficult to process, as is clearly illustrated in Figure 3.8c, where the pure
lexicon-based approach to sentiment analysis would struggle with customer reviews
in the movie domain. One reason for such a poor performance is that many of the
movie reviews in the given dataset make extensive use of quotes and plot description.
For example, in the sentence “when you get out of jail, you can kill him” the author
uses several negative words. However, he is not expressing an opinion but just quoting
one of the character’s utterances. Such blocks of objective information could be
a significant source of sentiment-value distortion, which can be addressed only by
processing subjective information blocks. As Pang and Lee [179] have demonstrated
in their work, by using such processing it is possible to significantly improve the
accuracy of sentiment detection. We have tried to apply a similar (minimum-cut)
subjectivity detection algorithm to the datasets we have processed; however, so far, this
has not had any positive effect on overall system performance. In this context, we note
that subjectivity detection is domain specific and therefore requires a domain-specific
training dataset. Nevertheless, as we can see from the results shown in Table 3.6, even
without subjectivity detection, our algorithm achieved 82.3% accuracy, a significant
improvement over the state-of-the-art lexicon-based method but lower than the SVM
unigram implementation.

Sentiment-strength detection

All the results have so far been reported as classification into positive/negative classes,
but, as previously highlighted, the actual output is sentiment strength. The last ex-
periment results are shown in Table 3.7. This experiment was conducted to illustrate
performance on 5-star classifications. As the results show, for utility product customer
reviews, our algorithm achieved, on average, an RMSE of 1.56. The one-versus-one
(OVO) strategy is regarded as one of the most effective SVM strategies available [70]
for multi-class sentiment analysis. Thus, in the LearningOnly case, we used a five-class
one-versus-one classification.
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Dataset pSenti LexiconOnly LearningOnly SentiStrength

Software Reviews Utilities 2 (Customer) 1.56 1.50 1.45 1.77

Movie Reviews Movies 2 0.87 0.98 0.60 1.13

Table 3.7. The sentiment-strength detection performance (RMSE) in the standard
(single-style) setting.

Training Testing pSenti LexiconOnly LearningOnly SentiStrength

Browser (Customer) Miscellaneous (Editor) 77.47% 79.40% 71.92% 64.93%

Browser (Customer) Browser (Editor) 77.78% 76.94% 75.28% 62.77%

Miscellaneous (Editor) Browser (Customer) 77.10% 74.50% 68.55% 52.25%

Browser (Editor) Browser (Customer) 75.90% 74.50% 65.80% 52.25%

Table 3.8. The sentiment-polarity classification performance (accuracy) in the cross-
style setting.

3.5.2 Cross-style sentiment analysis

In this experiment we created a near-cross-domain environment, or, in other words,
cross-style, as both datasets are from the same topic domain, yet they use a different
writing style. It is important to note that results in this section are reported using only a
single domain and a limited set of topics.

There are many writing styles on the Web, with very distinct features and charac-
teristics. In this section, we define two types of writing style: formal and informal
expressions. In a formal journalistic style, writers use well-structured sentences and
have a certain composition and length requirement. On the other hand, an informal text
is typically short, has irregular grammar and spelling problems, and shows creativity in
sentiment expressions. It is not uncommon for a sentiment-analysis system to perform
well with one style and significantly worse with another [146]. The experimental results
in this section illustrate one of the principal advantages of our algorithm (i.e. lower
topic and style dependency compared to a pure SVM implementation). To test this, we
made use of two datasets, the professional and informal browser reviews within the
same domain, and trained with both SVM and pSenti on one type of review to evaluate
their performance on another.

As expected, compared to pSenti, the SVM-based model excelled in its performance,
in all cases, on the same dataset. However, when tested on reviews from another type
its performance dropped significantly. In particular, an SVM trained on editor reviews
achieved only 68.55% accuracy on customer reviews, as shown in Table 3.8. Such a drop
in accuracy illustrates the weakness of a pure machine-learning method (i.e. overfitting
on the training dataset). In contrast, pSenti produced consistent results. For customer
reviews, it achieved 77.10%, which is just a small 2.5% drop in accuracy, as shown in
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Training Testing pSenti LexiconOnly LearningOnly SentiStrength

Movies 1 Browser (Customer) 76.00% 74.50% 66.95% 52.25%

Movies 1 Utilities 1 (Customer) 75.30% 73.70% 65.02% 50.50%

Browser (Customer) Movies 1 67.70% 66.00% 67.90% 60.70%

Utilities 1 (Customer) Movies 1 67.75% 66.00% 68.50% 60.70%

Table 3.9. The sentiment-polarity classification performance (accuracy) in the cross-
domain setting.

Table 3.8. This suggests that our mixed algorithm can be trained on one type of reviews
and detect sentiments in another type without incurring a significant performance
penalty. From the practical point of view, such a system simplifies sentiment processing
in less structured social media sources such as Twitter, which usually does not have
reliable training data. Moreover, sentiment-strength labelling using professionally
prepared text is more reliable, which has more content and is less likely to contain
sentiment anomalies. In conjunction with the algorithm’s ability to detect the discussed
aspects, we can train pSenti on different domains and, based on the discussed topic,
switch between domain-specific weighting models.

3.5.3 Distant cross-domain sentiment analysis

In the final part of our experiments, we analysed various aspects of the system’s
performance across distant domain boundaries. As expected, in all scenarios, pSenti was
among the best-performing models. On short, informal text processing (see Table 3.9),
it was the model with the best overall performance, with only the lexicon-based model
producing comparable results.

In the movie reviews dataset, processing performance was significantly lower. We
have already highlighted that this domain uses many sentiment words to describe
objective information, and, without domain adaptation, all methods failed to take that
into account; more specifically, the extensive use of quotes and plot description, as
well as the domination of negative sentiment words. Looking at the lexicon-based
sentiment-analysis results (see Figure 3.8c), we can see a shift towards the negative
sentiment scale, which contributes to lower scores. It would be possible to address these
issues by looking into the distribution graph and using output calibration.

3.6 Summary and Conclusions

According to the experimental results, the pure lexicon-based approach achieved its
best performance on customer software reviews. As Figure 3.8b shows, in this case, the
sentiment values have an evident polarisation into positive and negative clusters (i.e.
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(a) Software Reviews (Editor)
(b) Software Reviews (Cus-
tomer) (c) Movie Reviews)

Fig. 3.8: The lexicon-based sentiment-analysis results.

most reviews have a value of either −1 or +1). In editor software reviews, as shown
in Figure 3.8a, the values are more scattered, but, overall, the classes are still clearly
separable. On the other hand, in movie reviews, as shown in Figure 3.8c, the situation
is more complicated. In this case, both classes tightly overlap, and that is reflected
in the poor performance of the lexicon-based algorithm. Thus, the machine-learning
contribution is especially noticeable, and SVM easily detects and offsets such domain
anomalies.

Another important topic is how the inclusion of lexicon-based calculated sentiment
into the machine-learning vector influenced the system’s performance. As expected, its
influence can be directly correlated to the original performance in the given domain; in
this case, the greatest effect is in customer reviews, and the smallest is in movie reviews.
By removing this feature from the movie classification dataset, accuracy drops by only
0.1%, which shows that this feature is entirely ignored by SVM (this can also be seen
in the low SVM weight). In editor reviews, on the other hand, it has significantly higher
influence. Removing the lexicon-based sentiment feature would result in a loss of 2%
in algorithm accuracy.

We have shown that the sentiment-analysis results produced by our hybrid approach
are favourable compared to the lexicon-only and learning-only baselines. For both
sentiment-polarity classification and sentiment-strength detection, the pSenti system
based on the proposed hybrid approach achieved high accuracy that is very close to
the pure learning-based system and much higher than the pure lexicon-based system.
Furthermore, pSenti can provide sentiment-analysis results in a structured and readable
way by dividing the overall sentiment into aspects (e.g., product features) and their
corresponding views. Moreover, it has much better tolerance to the writing style of
text, as demonstrated by our cross-style experiments where the system is trained on
editor reviews and then tested on customer reviews or vice versa. Compared with
a representative state-of-the-art sentiment-analysis system SentiStrength, the pSenti
system is consistently and significantly better. In summary, our proposed hybrid
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approach combines the best of two worlds: it provides stability, as well as readability,
through a carefully designed lexicon and the high accuracy of a powerful supervised
learning algorithm. Results also demonstrated that a supervised linear SVM model
could be employed to generate a high-quality domain-specific sentiment lexicon.

It would be promising to explore the potential of this approach further, and we will
do so in later chapters.



Chapter 4

Domain Lexicon Induction using
Word Embedding

4.1 Introduction

Machine-learning algorithms are the dominant approaches in sentiment analysis. Su-
pervised learning algorithms typically deliver much higher accuracy in a sentiment
classification than lexicon-based methods. However, lexicons have not entirely lost their
attractiveness: they usually are easier to understand and to maintain by non-experts, and
can be integrated into learning-based sentiment classifiers [169, 60] and used in other
tasks such as aspect detection [169].

In Chapter 3 we introduced pSenti, a concept-level sentiment-analysis system that
seamlessly integrates lexicon-based and learning-based approaches to acquire adaptive
sentiment analysis. In addition to a customisable sentiment lexicon, it also uses shallow
NLP techniques such as part-of-speech (POS) tagging, detection of sentiment inverters
and modifiers (intensifying and diminishing adverbs). Many lexicon-based based
approaches use a pre-compiled out-of-shelf sentiment lexicon [175]. However, to
achieve the best results with a lexicon-based model, it is vital to perform either lexicon
induction, adaptation or expansion with domain-specific sentiment words. The same
word could drastically change its sentiment polarity (and/or strength) if it is used in
a different domain. For example, being “small” is likely to be negative for a hotel
room but positive for a digital camcorder; being “unexpected” may be a good thing
for the ending of a movie but not for the engine of a car; and we will probably enjoy
“interesting” books but not necessarily “interesting” food. The domain can be defined
not only by the topic of the documents but also by the style of writing and can change
over time. For example, the meanings of words such as “gay” and “terrific” would
depend on whether the text was written in a historical era or modern times.
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The experimental results in Chapter 3 confirmed that the lexicon component made
pSenti less sensitive to crossing near-domain boundaries. Lower sensitivity is a desirable
feature of pSenti, especially if an underlying sentiment source is noisy, or contains
cross-style or near-domain documents. Without domain adaptation, in the lexicon-only
mode it performed well in the product review domain; however, in the movie review
domain it was behind the accuracy of the supervised learning-based method. In a sense,
pSenti, in its hybrid mode, uses supervised machine learning to generate a high-quality
domain-specific sentiment lexicon. The ability to adapt a general-purpose lexicon or
bootstrap a specific lexicon from a target domain with minimal supervision would make
the pSenti design even more attractive and close the gap in areas with a non-standard
sentiment language.

The introduction of modern word-embedding techniques such as word2vec [160]
and GloVe [185] have opened the possibility of new sentiment-analysis methods. Those
techniques can learn word co-occurrence information from a large unlabelled text
corpus and produce a vector space of several hundred dimensions, with each word being
assigned a corresponding vector. The resulting vector space helps the understanding of
the semantic relationship between words and allows the grouping of words based on
their linguistic similarity. This feature makes word embedding an attractive option in a
domain-specific lexicon-induction task. Researchers have proposed various methods to
produce sentiment lexicons automatically [98, 58]. However, our experimental results
indicate that word embedding is better at capturing sentiment relationships and context
information. In their recent work, Hamilton et al. [86] demonstrated that, starting from a
small set of seed words and conducting label propagation over the lexical graph derived
from the pairwise proximities of word embeddings, they could induce a domain-specific
sentiment lexicon comparable to a hand-curated one. Intuitively, the success of their
method named SentProp requires a relatively clear separation between sentiment words
of opposite polarity in the vector space, which, as we will show later, is not very realistic.
Moreover, they have focused on the induction of sentiment lexicons alone, while we
are trying to design an end-to-end pipeline sentiment analysis, with domain-specific
sentiment lexicon induction as a critical component.

4.2 Contribution

In this chapter, we propose domain-specific lexicon induction based on distributed word
representations (vectors). This should help to overcome issues with lexicon discovery
and adaptation for new domains and improve the lexicon-based system use case. Our
proposed contribution is twofold: first, we create a novel lexicon-induction method; and
second, we integrate it into the previously built pSenti sentiment-detection system.
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Our investigation indicates that in word embeddings learned from the unlabelled
corpus of a given domain, the distributed word representations (vectors) for opposite
sentiments form distinct clusters, although those clusters are not transferable across
domains. By exploiting such a clustering structure, we would be able to utilise su-
pervised or semi-supervised/transductive learning algorithms to induce a high-quality
domain-specific sentiment lexicon from just a few typical sentiment words (as “seeds”).
The induced lexicon could be applied directly in a lexicon-based algorithm for sentiment
analysis. In other words, the primary motivation for this integration of lexicon-induction
and lexicon-based pSenti is to create an semi-supervised sentiment method which can
effortlessly adapt to new domains, give high accuracy in a sentiment-analysis task, and
offer similar rich features to lexicon-based sentiment-analysis approaches.

The source code for our implemented system and the datasets for our experiments
have been opened to the research community 1.

The rest of this chapter is organised as follows. In Section 4.3, we describe ex-
perimental datasets. In Section 4.4, we investigate and discuss domain-specific word
embeddings, their structure, sentiment cluster visualisation and cross-domain character-
istics. In Section 4.5, we represent the main stages of our approach and in Section 4.6
perform two different experiments: lexicon induction from five domains and sentiment
analysis in two domains. In Section 4.7, we conclude and discuss future work.

4.3 Datasets

To ensure a fair comparison with the state-of-the-art sentiment lexicon-induction tech-
nique SentProp2 [86], we adopt precisely the same datasets for three domains, together
with corresponding publicly available word embeddings, as theirs.
• Standard English. We use the ‘General Inquirer’ lexicon [221] with the-sentiment

polarity scores collected by Warriner et al. [241] and Google News word embeddings3.
• Twitter. We use the sentiment lexicon from the SemEval-2015 Task 10E competition

[205] and word embeddings constructed by Rothe et al. [207].
• Finance. We use the finance-specific sentiment lexicon handcrafted by Hamilton

et al. [86], and their word embeddings learned from the financial 8K corpus4 [124]
using an SVD-based method [148].

In Chapter 3 we identified, that lexicon-based systems with a general-purpose
lexicon perform poorly in some domains. The difference in performance between
lexicon-based and learning-based systems was most significant in processing the movie

1https://github.com/AndMu/Unsupervised-Domain-Specific-Sentiment-Analysis
2https://github.com/williamleif/socialsent
3ttps://code.google.com/archive/p/word2vec/
4https://nlp.stanford.edu/pubs/stock-event.html

https://github.com/AndMu/Unsupervised-Domain-Specific-Sentiment-Analysis
https://github.com/williamleif/socialsent
ttps://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/pubs/stock-event.html
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(a) Sentiment words in 2D plane (b) Sentiment words in 3D plane

Fig. 4.1: Visualisation of the sentiment words in the Standard-English domain

review dataset. To assess the effectiveness of our proposed method, in the second phase
of the experiments we use the following review datasets:
• IMDB. We use 50k film reviews in English from IMDB [144] with 25k labelled

training documents.
• Amazon. We use about 28k product reviews in English across four product categories

from Amazon [22, 154] with 8k labelled training documents.
The sentiment lexicon created by Liu [135] is consistently one of the best for review

analysis [201], so it is used for both domains.

4.4 Word Embedding

4.4.1 Domain-specific sentiment word embedding

Drawing an analogy to the well-known cluster hypothesis in Information Retrieval
(IR) [148], here we put forward the cluster hypothesis for sentiment analysis: words
in the same cluster behave similarly with respect to sentiment polarity in a specific
domain. That is to say, we expect positive and negative sentiment words to form distinct
clusters, given that they have been represented in an appropriate vector space. To verify
this hypothesis, it would be useful to visualise the high-dimensional domain-specific
sentiment word vectors in a 2D plane. We have tried various dimensionality reduction
techniques, including the t-distributed Stochastic Neighbour Embedding (t-SNE) [145],
but we found that simply using the classic Principle Component Analysis (PCA) [20]
works very well for this purpose. In all our figures, "+" denotes positive polarity and
"-", negative polarity.
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Fig. 4.2: A local region of the vector space zoomed in the Standard-English domain

We have found in general that the above cluster hypothesis holds for word embedding
within a specific domain. Figure 4.1a shows that in the Standard-English domain, the
sentiment words with opposite polarities form two distinct clusters. However, it can
also be seen that those two clusters would overlap each other. This is because each
word carries not only a sentiment value but also its linguistic and semantic information.

Zooming into one of the word vector space regions (see Figure 4.2) can help
us to understand why sentiment words with different polarities could be grouped:
‘hail’, ‘stormy’ and ‘sunny’ are linguistically similar, as they all describe weather
conditions, yet they convey very different sentiment values. Moreover, as explained
by Plutchik [189], sentiment could be grouped into multiple dimensions such as joy–
sadness, anger–fear, trust–disgust and anticipation–surprise. Putting that aside, some
sentiment words can be classified as positive or negative depending on the context.
These reasons lead to the phenomenon that many sentiment words are in the overlapping
noisy region between two clusters in the vector space.

4.4.2 Cross-domain vector space characteristics

On visual inspection of the Finance (see Figure 4.3a) and IMDB (see Figure 4.6a)
word-embedding spaces, we can see that their sentiment words with different polarities
form distinct clusters that are mostly separable.

However, if we consider the Finance vector space and apply the IMDB sentiment
weights (see Figure 4.3b), positive and negative words would be mixed and could not
be easily separated.

Positive and negative words typically appear in the same context. For example, we
could say “the room is good” and “the room is bad”. Both are legitimate sentences;
“good” and “bad” have the same context and thus they would result in similar word
embedding vectors. However, in our results, we identified that positive and negative
sentiment words form their respective clusters. The probable reason for the cluster
hypothesis to be true is that, in reality, people tend to use positive sentiment words
together much more often than mixing them with negative sentiment words, and vice
versa. For example, we would much more often see sentences such as “the room is
clean and tidy” than “the room is clean but messy”. It is a long-established fact in
computational linguistics that words with similar meanings tend to occur near each
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(a) In the Finance (same-domain) vector space.
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(b) In the IMDB (different domain) vector space.

Fig. 4.3: Sentiment words of Finance in the same/different domain vector space.

other [161], and sentiment words are no exception [232]. Moreover, it has been widely
observed that online customer reviews are affected by the so-called love-hate, self-
selection bias: users tend to rate only products they either love or hate, leading to many
more 1-star and 5-star ratings than other (moderate) ratings. If they consider the product
just average or so-so, they probably will not bother to leave a review. The polarisation
of online customer reviews would also encourage the clustering of sentiment words into
opposite polarities.

4.5 Model

Our approach to domain-specific lexicon induction is built on the basis of word em-
bedding — distributed word representations that could be learned from an unlabelled
corpus to encode the semantic similarities between words [80].

As shown in Figure 4.4, our approach consists of four stages:
(1) collection of unlabelled domain-specific documents,
(2) extraction of word embeddings from a collected corpus,
(3) domain-specific sentiment lexicon induction, and
(4) sentiment detection using an induced lexicon.

Each stage in our proposed system generates an input to the following step. When
we needed to construct word embeddings, we chose to use word2vec, the most widely
used word-embedding technique, which employs a two-layer neural network [160].
Although any reasonable word-embedding technique could be used in our approach,
the choice of embedding method may affect system performance. In fact, previous
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Fig. 4.4: Domain lexicon induction and integration into pSenti

studies [207, 47] suggest that word2vec usually provides the best word embedding for
sentiment-analysis tasks. In our experiments, we use it with a skip-gram window of
five words to construct word vectors of 500 dimensions, as recommended by previous
studies5. Word embedding exploits statistical properties; thus, to create rich semantic
relatedness, it is necessary to collect a reasonably sized dataset. As Altszyler et al. [5]
found in their study, to achieve good results, word2vec requires datasets with around 10
million words. When the corpus size is reduced, the performance of word2vec severely
decreases.

Many authors [210, 47, 59] have reported a successful application of other word
embedding techniques, such as Glove and FastText [24]. FastText is a subword-based
learning method, an extension to Word2Vec, which allows capturing more subtle
semantic relationships among words. However, in our preliminary experiments, a
simpler Word2vec approach delivered better results. That may be impacted by different
vocabularies while using different word embedding methods and would require further
validation.

The rise in popularity of new language modelling (LM) methods [55, 199] has
introduced more advanced techniques, such as contextualised word-embeddings. They
can produce embeddings for a word based on the context in which it appears, thus
producing different embeddings for each of its occurrences. Although we have not
performed any experiments with contextualised word-embeddings, such approaches
may improve lexicon induction results or even lead to new insights.

Given word embeddings (2) for a specific domain, we can induce a sentiment lexicon
(3) from a few typical sentiment words (as “seeds”). Table 4.1 shows the seed words
for five different domains, which are identical to those used in Hamilton et al. [86]. The
induction of a sentiment lexicon could then be formulated as a simple word sentiment
classification problem with two classes (positive vs. negative): each word is represented

5https://www.kaggle.com/c/word2vec-nlp-tutorial

https://www.kaggle.com/c/word2vec-nlp-tutorial
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Corpus Positive Negative

Standard
English

good, lovely, excellent, fortunate, pleasant,
delightful, perfect, loved, love, happy

bad, horrible, poor, unfortunate, unpleas-
ant, disgusting, evil, hated, hate, unhappy

Twitter love, loved, loves, awesome, nice, amaz-
ing, best, fantastic, correct, happy

hate, hated, hates, terrible, nasty, awful,
worst, horrible, wrong, sad

Finance successful, excellent, profit, beneficial, im-
proving, improved, success, gains, positive

negligent, loss, volatile, wrong, losses,
damages, bad, litigation, failure, down,
negative

IMDB good, excellent, perfect, happy, interest-
ing, amazing, unforgettable, genius, gifted,
incredible

bad, bland, horrible, disgusting, poor, ba-
nal, shallow, disappointed, disappointing,
lifeless, simplistic, bore

Amazon IMDB domain seeds (as above) plus posi-
tive, fortunate, correct, nice

IMDB domain seeds (as above) plus nega-
tive, unfortunate, wrong, terrible, inferior

Table 4.1. The “seeds” for domain-specific sentiment lexicon induction.

as a vector by employing domain-specific word embeddings. The seed words are
labelled with their corresponding classes, while all the other words (i.e. “candidates”)
are unlabelled. The task here is first to learn a classifier from the labelled examples,
and then apply it to predict the sentiment polarity of each unlabelled candidate word.
The probabilistic outputs of such a word sentiment classifier could be regarded as the
measure of confidence in the predicted sentiment polarity. In the end, those candidate
words with a high probability of being either positive or negative would be added to
the sentiment lexicon. The final induced sentiment lexicon would include both the seed
words and the selected candidate words.

As pointed out in Chapter 3, if we consider all words from the given corpus as
candidate words, the word sentiment classifier described above tends to assign sentiment
values not only to sentiment words but also to product features and aspects of the
expressed view. An aspect is a sentiment target and should not be included in a
sentiment lexicon. For example, if many customers do not like the weight of a product,
the word classifier may assign a strong negative sentiment value to “weight”, yet this is
not stable, as the sentiment polarity of a word may be different when a new version of
the product is released, or when the customer preference has changed, and, furthermore,
it probably does not apply to other products. To avoid this potential issue, it would be
necessary to consider only a high-quality list of candidate words, which are likely to
be genuine sentiment words. Such a list of candidate words could be obtained directly
from general-purpose sentiment lexicons. It is also possible to perform natural language
processing on a target domain corpus and extract frequently occurring adjectives or
other typical sentiment indicators such as emoticons as candidate words, which is
beyond the scope of this chapter.

In a set of experiments, we evaluate and compare our lexicon discovery component
with other state-of-the-art techniques. Our results show that the simple SVM-based
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model, trained on only a couple of seed words, outperformed all the baseline models
and can be a better alternative to more complicated label-propagation methods [86].

For the last step of sentiment-detection, step (4), we de-noise an induced lexicon
by applying a cut-off probability threshold for candidate words to enter the induced
lexicon and use it in the pSenti lexicon-based sentiment-detection mode. We evaluate
our final model with Amazon and movie review domains and confirm that an induced
lexicon not only improves the lexicon-based system’s performance but also that the
most improvements are in areas in which the general-purpose lexicon had its worst
accuracy.

4.6 Experimental Results

4.6.1 Lexicon Induction

To examine the effectiveness of different machine-learning algorithms for building
domain-specific word sentiment classifiers, we attempt to recreate known sentiment
lexicons in three domains: Standard English, Twitter, and Finance (see Section 4.3), in
the same way as Hamilton et al. [86] did. Put differently, for evaluation we would use a
known sentiment lexicon in the corresponding domain as the list of candidate words
and see how different machine-learning algorithms would classify those candidate
words based on their domain-specific word embeddings. For those lexicons with ternary
sentiment classification (positive vs. neutral vs. negative), the class-mass normalisation
method [267] used in Hamilton et al. [86] has been applied here to identify the neutral
category. The quality of each induced lexicon for a specific domain is evaluated by
comparing it with its corresponding known lexicon as the ground-truth, according to the
performance metrics, which are precisely the same as in Hamilton et al. [86]: Area Under
the Receiver-Operating-Characteristic (ROC) Curve (AUC) for the binary classifications
(ignoring the neutral class, as is common in previous work), macro-averaged F1 for the
ternary classification (positive vs. neutral vs. negative), and Kendall’s τ rank correlation
coefficient with continuous human-annotated polarity scores. Note that Kendall’s τ

is not suitable for the Finance domain, as its known sentiment lexicon is only binary.
Therefore, our experimental setting and performance measures are all identical to those
of Hamilton et al. [86], which ensures the validity of the empirical comparison between
our approach and theirs.

In Table 4.2 and 4.3, we compare a number of typical supervised and semi-
supervised/transductive learning algorithms for word sentiment classification in the
context of domain-specific sentiment lexicon induction:
• kNN — k Nearest Neighbours [88],
• LR — Logistic Regression [88],
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Corpus Supervised Semi-Supervised/Transductive
kNN LR SVMlin SVMrb f TSVM S3VM CPLE SGT SentProp

AUC
Standard English 0.892 0.931 0.939 0.941 0.901 0.540 0.680 0.852 0.906
Twitter 0.849 0.900 0.895 0.895 0.770 0.521 0.651 0.725 0.860
Finance 0.711 0.944 0.942 0.932 0.665 0.561 0.836 0.725 0.916

τ
Standard English 0.469 0.495 0.498 0.495 0.487 0.038 0.162 0.409 0.440
Twitter 0.490 0.569 0.548 0.547 0.522 0.001 0.211 0.437 0.500

Table 4.2. Comparing the induced lexicons with their corresponding known lexicons
(ground-truth) according to the ranking of sentiment words measured by AUC and
Kendall’s τ .

• SVMlin — Support Vector Machine with the linear kernel [106],
• SVMrb f — Support Vector Machine with the nonlinear RBF kernel [106],
• TSVM — Transductive Support Vector Machine [107],
• S3VM — Semi-Supervised Support Vector Machine [75],
• CPLE — Contrastive Pessimistic Likelihood Estimation [140],
• SGT — Spectral Graph Transducer [108],
• SentProp — a label-propagation-based classification method proposed for the So-

cialSent system [86].
The suitable parameter values for SVM are found via a grid search with cross-validation,
and the probabilistic outputs are given by Platt scaling [188] if the original learning
algorithm does not provide them.

The experimental results shown in Tables 4.2 and 4.3 demonstrate that in almost
every single domain, simple linear-model-based supervised learning algorithms (LR
and SVMlin) can achieve optimal or near-optimal accuracy for the sentiment lexicon-
induction task, and they outperform the state-of-the-art sentiment lexicon-induction
method SentProp [86] by a significant margin. We measured statistical significance
using the two-tailed binomial test [259] with a confidence level of 95%. Results
confirmed that the proposed method produced significantly better results. There does
not seem to be any benefit to utilising semi-supervised/transductive learning algorithms
(TSVM, S3VM, CPLE, SGT and SentProp). The qualitative analysis of the sentiment
lexicons induced by different methods shows that they differ only on those borderline,
ambiguous words (such as “soft”) residing in the noisy overlapping regions between
two clusters in the vector space (see Section 4.4.2). In particular, SentProp is based
on label propagation over the lexical graph of words, so it could easily be misled by
noisy borderline words when sentiment clusters have considerable overlap with each
other, kind of “overfitting” [20]. Furthermore, according to our experiments on the same
machine, those simple linear models are more than seventy times faster than SentProp.
The speed difference is mainly due to the fact that supervised learning algorithms need
to train only on a small number of labelled words (“seeds” in our context) while semi-
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Corpus kNN LR SVMlin SVMrb f SentProp

F1

Standard English 0.647 0.674 0.702 0.723 0.604
Twitter 0.455 0.613 0.616 0.623 0.612
Finance 0.406 0.497 0.549 0.595 0.508

Table 4.3. Comparing the induced lexicons with their corresponding known lexicons
(ground-truth) according to the classification of sentiment words measured by macro-
averaged F1.
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Fig. 4.5: How the accuracy and size of an induced lexicon are influenced by the cut-off
probability threshold.

supervised/transductive learning algorithms need to train on not only a small number of
labelled words but also a large number of unlabelled words.

It has also been observed in our experiments that there is a typical precision/recall
trade-off [148] for the automatic induction of semantic lexicons. Assuming that clas-
sified candidate words would be added to the lexicon in the descending order of their
probabilities (of being either positive or negative) when the lexicon becomes bigger and
bigger, it becomes noisier and noisier. Figure 4.5 shows that imposing a higher cut-off
probability threshold (for a candidate word to enter the induced lexicon) would decrease
the size of the induced lexicon but increase its quality (accuracy). On the one hand, the
induced lexicon needs to contain a sufficient number of sentiment words, especially
when detecting sentiment from short texts, as a lexicon-based method cannot reasonably
classify documents with no (or too few) sentiment words. On the other hand, the noise
(misclassified sentiment words) in the induced lexicon would have a detrimental impact
on the accuracy of the document sentiment classifier built on top of it. Contrary to most
previous work, such as Qiu et al. [196], which tries to expand the lexicon as much as
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Fig. 4.6: Sentiment words about movies in the IMDB vector space before/after filtering.

possible and thus maintain a high recall, we would put more emphasis on precision and
keep tight control of the lexicon size.

4.6.2 Lexicon integration into the pSenti sentiment-analysis model

One of the best ways to evaluate induced lexicon quality is to use it in the actual
sentiment classification task. For the experiments here, we use a list of 7866 sentiment
candidate words constructed by merging two well-known general-purpose sentiment
lexicons that are both publicly available: the ‘General Inquirer’ [221] and the sentiment
lexicon from Liu [133]. This set of candidate words is itself a combined general-purpose
sentiment lexicon, so we name it the GI+BL lexicon. Moreover, we set the cut-off
probability threshold to the reasonable value of 0.7 in our sentiment lexicon-induction
algorithm. Comparing the IMDB vector space, including all the candidate words
(see Figure 4.6a), with that including only the high-probability candidate words (see
Figure 4.6b), it is clear that the positive and negative sentiment clusters become more
clearly separated in the latter.

First, we try the induced sentiment lexicons in the lexicon-based sentiment classifier
pSenti and use it with Amazon product reviews. Given a sentiment lexicon, pSenti can
perform not only binary sentiment classification but also ordinal sentiment classification
on a five-point scale. To measure the binary classification performance, we use both
micro-averaged F1 (miF1) and macro-averaged F1 (maF1), which are commonly used in
text categorisation [259]. To measure the five-point scale classification performance,
we use both Cohen’s κ coefficient [148] and Root-Mean-Square Error (RMSE) [20].
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Lexicon
binary 5-point scale

miF1 maF1 Fpos
1 Fneg

1 Cohen’s κ RMSE

general-purpose GI+BL 0.745 0.744 0.764 0.722 0.235 1.325

domain-specific
same domain (Kitchen) 0.761 0.761 0.772 0.750 0.236 1.310
different domain (Electronics) 0.749 0.749 0.750 0.749 0.215 1.373
different domain (Video) 0.736 0.735 0.752 0.717 0.206 1.372

Table 4.4. Lexicon-based sentiment classification of Amazon kitchen product reviews.

As the baseline, we use the previously mentioned combined general-purpose sentiment
lexicon, GI+BL. As we can see from the results shown in Table 4.4, using the induced
lexicon for the target domain would make the lexicon-based sentiment classifier pSenti
perform better than simply employing an existing general-purpose sentiment lexicon,
even though the former is noisier than the latter.

To measure statistical significance, three different tests were carried out. To assess
the binary classification, we performed the two-tailed binomial test; to quantify the
difference between Cohen’s κ coefficients, we performed the two-sample z-test with a
confidence interval for the difference [118, 87]; and to validate RMSE, we performed the
two-sample t-test [48]. To obtain the standard error of κ (SEκ ) we used Equation (4.1),
where P is the observed agreement, Pe is the chance agreement and n is the number of
observations. All calculations were performed with a confidence level of 95%.

In the case of binary sentiment classification, the difference between the proposed
method and the baseline performance was statistically significant (pvalue = 0.04). How-
ever, in the case of the five-point scale classification, we observed a mixed picture.
According to the z-test, the difference in Cohen’s κ was not statistically significant
(SEκ = 0.003; z = 0.224; pvalue = 0.822), yet according to the t-test, the difference in
RMSE was statistically significant (t = 14.981; pvalue = 0.000).

SEκ =

√
P(1−P)

n(1−Pe)2 (4.1)

Second, to evaluate the proposed lexicon-induction method, we make comparisons
on the IMDB dataset (see Table 4.5). As highlighted previously in Chapter 3, movie
reviews is a domain where lexicon-based sentiment classifier with a general-purpose
lexicon typically struggles. To better illustrate our method, as an alternative we added a
mix of Amazon reviews from all four categories. Movie reviews are also significantly
longer than Amazon reviews. Thus, we can consider this experiment as long versus
short text sentiment analysis. As in the previous experiment, pSenti with induced
domain-specific lexicon outperformed the baseline with general-purpose lexicon and
demonstrated the superiority of the proposed method in both short and long texts and was
statistically significant in both experiments. Results also show that the most substantial
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Method
IMDB Amazon

AUC F1 AUC F1

with existing general-purpose lexicon 0.808 0.705 0.818 0.747
with induced domain-specific lexicon 0.841 0.768 0.839 0.771

Table 4.5. pSenti sentiment classification.

performance gains are in IMDB, the domain where, previously, lexicon-based pSenti
had the worst performance. Domain-specific lexicon induction using word embeddings
allowed us to close the gap to supervised sentiment-analysis methods further.

4.7 Summary and Conclusions

Can lexicon-based systems improve their performance by learning a domain-specific
lexicon? This chapter presents our exploration towards answering the above research
question. By capturing word co-occurrence information, word embedding efficiently
discovers sentiment in new domains and simplifies the construction of new domain
sentiment lexicons. We have also confirmed the advantage of generating domain-
specific sentiment lexicons and provided evidence that different domains have different
sentiment vector spaces. To the best of our knowledge, such an approach has not been
tried previously, and our experimental results demonstrate its superiority over other
state-of-art methods.

Specifically, the main contributions of this chapter are as follows.
• We have formulated the cluster hypothesis for sentiment analysis (i.e. words with

different sentiment polarities form distinct clusters) and verified that, in general, it
holds for word embeddings within a specific domain but not across domains.

• We have demonstrated that a high-quality domain-specific sentiment lexicon can be
induced from the word embeddings of that domain together with just a few seed
words. Surprisingly, a simple linear-model-based supervised learning algorithm such
as Logistic Regression is good enough for this purpose; there is no benefit to utilising
nonlinear models or semi-supervised/transductive learning algorithms, due to the
noise at the borders of sentiment word clusters. Using those linear models, our system
outperforms the state-of-the-art sentiment lexicon-induction method — SentProp [86].

• Experimental results show that the proposed methods in this chapter constitute the
semi-supervised sentiment method, which can adapt to new domains and provide rich
aspect-level analysis.

Our proposed lexicon-induction method is an opportunity for lexicon-based designs
to close the gap to learning-based in domains, which requires specific adaptation. In
contrast to the fully supervised hybrid pSenti mode form Chapter 3, the proposed
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induction method requires minimal supervision, as it is nearly-unsupervised. There is a
lot of potential for future work, and it provides a new way to create novel unsupervised
methods for sentiment detection and domain adaptation.



Chapter 5

Semi-supervised Sentiment Analysis

5.1 Introduction

There is often the need to perform sentiment analysis in a domain where no labelled
documents are available. In a previously unseen domain, there are usually neither a
domain-specific lexicon available to employ lexicon-based sentiment classifiers nor a
labelled corpus available to train learning-based sentiment classifiers. Although we
could make use of a general-purpose off-the-shelf sentiment lexicon or a pre-built
sentiment classifier for a different domain, the effectiveness would be inferior to a
supervised domain-adaptation method, with an accuracy from mid-70% to as low as
50%. In Chapter 6, the political-sentiment-analysis task, the lexicon-based approach
with the general-purpose sentiment lexicon shows inferior performance with 0.584
AUC, just fractionally better than a random selection.

In Chapter 3 we established that a lexicon-based system pSenti could be adapted to
an underlying domain using supervised machine learning. In some sense, the hybrid
model is a three-step sentiment-analysis method, in which the first step generates
candidate sentiment lexicon, the second induces a domain-specific lexicon and the last
uses a lexicon-based mode to calculate final sentiment. In Chapter 4 we demonstrated
that a high-quality domain-specific sentiment lexicon could be induced from the word
embeddings of that domain together with just a few seed words. Word embeddings are
learned from an unlabelled corpus of a given domain, thus pSenti from Chapter 4 may be
viewed as an nearly-unsupervised sentiment-detection system and the lexicon-induction
process as an semi-supervised domain-adaptation step.

Recent advances in deep learning [123] have brought sentiment analysis to a new
height [49, 114, 96]. As was reported in Dai and Le [49], the Long Short-Term Memory
(LSTM) [94] Recurrent Neural Network (RNN) can reach or surpass the performance
levels of all previous baselines for sentiment classification of documents. One of the
many appeals of LSTM is that it can connect previous information to the current context
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and allow seamless integration of pre-trained word embeddings as the first (projection)
layer of the neural network. Moreover, more recently Radford et al. [197] discovered
that LSTM could learn sentiment even though it was trained for an entirely different
purpose — to predict the next character in the text of Amazon reviews. They discovered
in a multiplicative LSTM with 4096 units, that one of them can behave as the “sentiment
unit” and learn the perfect representation of text sentiment.

5.2 Contribution

In order to solve the problems described above, in this chapter we will integrate deep
learning into our sentiment-analysis model and explore the possibility of building
domain-specific sentiment classifiers with unlabelled documents only. We propose
an end-to-end, pipelined nearly-unsupervised approach to domain-specific sentiment
classification of documents for a new domain based on distributed word representations
(vectors).

In comparison, in Chapter 3 we adapted to new domains using supervised training.
In Chapter 4 we adapted using an semi-supervised lexicon-based model, which was
created by exploiting domain-specific lexicon induction using word embedding. Finally,
in this chapter, we take this one step further and propose a novel semi-supervised
sentiment-analysis method, which almost matches the performance of the supervised
method.

Our approach to domain-specific sentiment classification of documents is built on the
basis of word embeddings — distributed word representations that could be learned from
an unlabelled corpus to encode the semantic similarities between words [80]. Briefly
speaking, given a large unlabelled corpus for a new domain, we would first set up the
vector space for that domain using word embedding. We would then induce a sentiment
lexicon in the discovered vector space and exploit the induced lexicon in a lexicon-based
document sentiment classifier to bootstrap a more effective learning-based document
sentiment classifier for that domain. Overall, the document sentiment classifier resulting
from our nearly-unsupervised approach does not require any labelled document to be
trained, and it outperforms the state-of-the-art semi-unsupervised method for document
sentiment classification [60].

This was achieved using the pSenti system from Chapter 3 in lexicon-only mode,
the lexicon-induction method from Chapter 4, and a deep-learning classification model.
As in the previous chapter, the induced lexicon can be applied directly in a lexicon-
based method for sentiment classification, but a higher performance could be achieved
through a two-phase bootstrapping method which uses the induced lexicon to first assign
positive/negative sentiment scores to unlabelled documents. Those documents found to
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have clear sentiment signals as pseudo-labelled examples were used to train a document
sentiment classifier via supervised learning algorithms (such as LSTM).

The source code for our implemented system and the datasets for our experiments
are open to the research community 1.

The rest of this chapter is organised as follows. In Section 5.3, we describe the
experimental datasets. In Section 5.4, we present the main stages of our approach, and
in Section 5.5 perform sentiment analysis in short and long texts. In Section 5.6, we
briefly discuss cross-domain and distant cross-domain sentiment analysis using the
semi-supervised lexicon-based model from Chapter 4 and the proposed deep-learning
LSTM model from this chapter. In Section 5.7, we conclude and discuss future work.

5.3 Datasets

In this chapter, we performed two sets of experiments: sentiment classification of long
and short texts. In the long-text experiment, to facilitate a fair comparison with the state-
of-the-art semi-supervised document sentiment classification technique ProbLex-DCM2

[60], we adopt the following two datasets, which are identical to what they used.
• IMDB. We use 50k film reviews in English from IMDB [144] with 25k labelled

training documents.
• Amazon. We use about 28k product reviews in English across four product categories

from Amazon [22, 154] with 25k labelled training documents, which we extracted
from similar product categories.

The average length of each document in the IMDB dataset is 241 words and the
maximum length of a document is 2,526 words. The Amazon dataset is similar, with
an average 123 and maximum 2,801 length.

Source Granularity Count

Collected Unlabelled 2756479

SemEval
2-point 26696
5-point 43011

Table 5.1. Short-text sentiment classification dataset

In the second part, the short-text sentiment classification, we use the dataset from
SemEval-2017 Task 4 [204]. The dataset consists of tweets annotated for sentiment on
2-point and 5-point scales. All annotations were performed on CrowdFlower. SemEval
messages are also tagged with a topic; however, we do not include that information in
our experiments.

1https://github.com/AndMu/Unsupervised-Domain-Specific-Sentiment-Analysis
2https://github.com/jacobeisenstein/probabilistic-lexicon-classification

https://github.com/AndMu/Unsupervised-Domain-Specific-Sentiment-Analysis
https://github.com/jacobeisenstein/probabilistic-lexicon-classification
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Fig. 5.1: Our nearly-unsupervised approach to domain-specific sentiment classification.

We used the Twitter API to download additional tweets, along with corresponding
user information. All the tweets were automatically filtered for duplicates and also
pre-processed by replacing emoticons with their corresponding text representations and
encoding URLs as tokens.

5.4 Model

As shown in Figure 5.1, the proposed approach consists of three main components:
(1) domain-specific sentiment word embedding,
(2) domain-specific sentiment lexicon induction, and
(3) domain-specific sentiment classification of documents.

The first and second components in the proposed method are the same as in Chapter 4
and are considered as the first stage. Given word embeddings for a specific domain,
we induce a sentiment lexicon from a few typical sentiment words (as “seeds”). We
use the same experimental lexicon-induction settings, with emphasis on higher quality
and a smaller-sized lexicon. For us, having a small, high-quality sentiment lexicon is
affordable, because our proposed approach to document sentiment classification will
be able to mitigate the low recall problem of lexicon-based methods by combining
them with learning-based methods. Higher cut-off probability threshold (for candidate
words to enter the induced lexicon) decreases the size of the induced lexicon but
increase its quality (accuracy). In Section 4.5 we gave a more detailed description of
the lexicon-induction approach.

Given the induced sentiment lexicon, we propose to use a lexicon-based sentiment
classifier to classify unlabelled documents, and then use those classified documents
containing at least three sentiment words as pseudo-labelled documents to be used later
for the training of a learning-based sentiment classifier. The condition of “at least three
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sentiment words” is to ensure that only reliably classified documents would be further
utilised as training examples.

Why would the two-phase bootstrapping method described above be able to work
better than running a lexicon-based sentiment classifier with the induced lexicon? The
reason is actually quite similar to that of pseudo-relevance feedback, aka blind relevance
feedback, in Information Retrieval (IR) [148]. The induced lexicon is analogous to the
original keyword query from the user; the pseudo-labelled documents are analogous
to the most highly ranked search results with respect to that query. It has been shown
in IR research that pseudo-relevance feedback which assumes the most highly ranked
search results to be truly relevant and then makes use of them to estimate the relevance
of all other documents via supervised learning [101] can often bring performance
improvements as real relevance feedback does. It is a similar story here.

Zhang et al. [263] tried to address the low recall problem of lexicon-based methods
for Twitter sentiment classification by training a learning-based sentiment classifier
using the noisy labels generated by a lexicon-based sentiment classifier [58]. Although
the basic idea of their work is similar to what we do in our approach (see Section 5.5),
there exist several notable differences. First, they adopted a single general-purpose
sentiment lexicon provided by Ding et al. [58] and used it for all domains, while
we would induce a different lexicon for each different domain. Consequently, their
method could have a relatively large variance in the document sentiment classification
performance because of the domain mismatch (e.g. F1 = 0.874 for the “Tangled”
tweets and F1 = 0.647 for the “Obama” tweets), whereas our approach would perform
quite consistently over different domains. Second, they would need to strip out all
the previously known opinion words in their single general-purpose sentiment lexicon
from the training documents in order to prevent training bias and force their document
sentiment classifier to exploit domain-specific features. But doing this would obviously
lose the very valuable sentiment signals carried by those opinion words. In contrast,
we would be able to utilise all terms in the training documents, including those opinion
words appearing in our automatically induced domain-specific lexicons as features
when building our document sentiment classifiers. Third, they designed their method
specifically for Twitter sentiment classification, while our approach would work not
only for short texts such as tweets (see Section 5.5.2) but also for long texts such as
customer reviews (see Section 5.5.1). Fourth, they had to use an intermediate step to
identify additional opinionated tweets (according to the opinion indicators extracted
through the χ2 test on the results of their lexicon-based sentiment classifier) in order
to handle the neutral class, but we would not require that time-consuming step, as we
would use the calibrated probabilistic outputs of our document sentiment classifier to
detect the neutral class (see Section 5.5.3).
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5.5 Experimental Results

In this section, we present the results of two experiments. We tested the proposed
approach in two very different domains: in a long-text domain with well-structured
text, and with unstructured short text messages from Twitter. In the Twitter domain, we
performed two experiments: binary and five-class classification with a neutral sentiment.

5.5.1 Sentiment classification of long texts

First, we try the induced sentiment lexicons in the lexicon-based sentiment classifier
pSenti to see how good they are. Given a sentiment lexicon, pSenti is able to perform
not only binary sentiment classification but also ordinal sentiment classification on a
five-point scale. To measure binary classification performance, we use both micro-
averaged F1 (miF1) and macro-averaged F1 (maF1), which are commonly used in text
categorisation [259]. To measure five-point scale classification performance, we use
both Cohen’s κ coefficient [148] and also Root-Mean-Square Error (RMSE) [20].

In the lexicon baseline, we use the combined general-purpose sentiment lexicon,
GI+BL, mentioned previously in Chapter 4, which was constructed by merging two
well-known general-purpose sentiment lexicons that are both publicly available: the
‘General Inquirer’ [221] and the sentiment lexicon from Liu [133]. As we found in
the previous chapter, using an adapted sentiment lexicon for a target domain results in
better performance than by employing an existing general-purpose sentiment lexicon.
Moreover, using the sentiment lexicons induced from the same domain would lead to a
much better performance than using the sentiment lexicons induced from a different
domain. Thus, to ensure a fair comparison, we also included pSenti with an induced
domain-specific lexicon.

Second, to evaluate the proposed two-phase bootstrapping method, we make empiri-
cal comparisons between the IMDB and Amazon datasets using a number of represen-
tative methods for document sentiment classification:
• pSenti — a concept-level hybrid sentiment classifier,
• ProbLex-DCM — a probabilistic lexicon-based classification using the Dirichlet

Compound Multinomial (DCM) likelihood to reduce effective counts for repeated
words [60],

• SVMlin — Support Vector Machine with the linear kernel [106],
• CNN — Convolutional Neural Network [114], bootstrapped by pSenti training data.
• LSTM — Long Short-Term Memory, a Recurrent Neural Network (RNN) that can

remember values over arbitrary time intervals [94, 49].
To increase the training speed of the deep-learning algorithms CNN and LSTM with

a word-embedding projection layer, we use mini-batch training. To support batching,
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Method
IMDB Amazon

AUC F1 AUC F1

Unsupervised

Lexicon-
based

pSenti with existing general-purpose lexicon 0.808 0.705 0.818 0.747

pSenti with induced domain-specific lexicon 0.841 0.768 0.839 0.771

ProbLex-DCM [60] 0.884 0.806 0.836 0.756

Learning-
based

SVMlin trained on pseudo-labelled data 0.863 0.771 0.845 0.763

CNN trained on pseudo-labelled data 0.879 0.781 0.849 0.773

LSTM trained on pseudo-labelled data 0.890 0.810 0.850 0.776

Supervised
Learning-
based

LSTM trained on real labelled data (full size) 0.971 0.912 0.933 0.860

” (1/2 size) 0.934 0.862 0.913 0.835

” (1/4 size) 0.892 0.821 0.875 0.795

” (1/8 size) 0.850 0.746 0.833 0.756

pSenti trained on real labelled data (full size) 0.928 0.852 0.877 0.803

Table 5.2. Sentiment classification of long texts.

we fix the review size to 500 words, truncating reviews longer than that and padding
shorter reviews with null values. As pointed out by Greff et al. [82], the hidden layer
size is an important hyperparameter of LSTM: usually, the larger the network, the better
the performance but the longer the training time. In our experiments, we used an LSTM
network with 400 units on the hidden layer, which is the capacity that a PC with one
Nvidia GTX 1080 Ti GPU can afford and a dropout rate [235] of 0.5, which is the most
common setting in research literature [220, 96, 47].

As shown in Table 5.2, the two-phase bootstrapping method described above has
been demonstrated to be beneficial: the learning-based sentiment classifiers trained on
pseudo-labelled data are superior to lexicon-based sentiment classifiers, including the
state-of-the-art semi-supervised sentiment classifier ProbLex-DCM [60]. Furthermore,
the two-phase bootstrapping method is a general framework which can utilise any
lexicon-based sentiment classifier to produce pseudo-labelled data. Therefore, the more
sophisticated ProbLex-DCM could also be used instead of pSenti in this framework,
which is likely to bring us even higher performances. Among the three learning-based
sentiment classifiers, LSTM achieved the best performance on both datasets, which is
consistent with the observations in other studies such as Dai and Le [49].

Comparing the LSTM-based sentiment classifiers trained on pseudo-labelled and
real labelled data, we can also see that using a large number of pseudo-labelled examples
could achieve a similar effect as using 25/4 ≈ 6k and 25/8 ≈ 3.12k real labelled
examples for IMDB and Amazon, respectively. This suggests that the semi-supervised
approach is actually preferable to the supervised approach if there are only a few
thousand (or fewer) labelled examples. As expected, in the hybrid mode and trained
on real labelled data, pSenti performed worse than the supervised LSTM method and



5.5 Experimental Results 94

System Acc F1

Semi-supervised
Baseline all positive 0.398 0.285
Baseline all negative 0.602 0.376
OursLSTM 0.804 0.795

Supervised
Worst system 0.412 0.372
Median system 0.802 0.801
Best system 0.897 0.890

Table 5.3. Sentiment classification of short texts into two categories — SemEval-2017
Task 4B.

was not far ahead of the proposed semi-supervised method. As in previous chapters,
we calculated the two-tailed binomial test [259] with a confidence level of 95%, and it
confirmed the proposed method superiority over the method introduced in the previous
chapter (pvalue = 0.000).

5.5.2 Sentiment classification of short messages

To evaluate our proposed approach to sentiment classification of short texts, we car-
ried out experiments on the Twitter sentiment classification benchmark dataset from
SemEval-2017 Task 4B [204], which classifies 6185 tweets as either positive or negative.
In addition to the Twitter-domain seed words listed in Table 4.1, we have also made use
of common positive/negative emoticons, which are ubiquitous on Twitter, as additional
seeds for the task of sentiment lexicon induction. Note that in all our experiments, we
do not use the sentiment labels and the topic information provided in the training data.

Making use of the provided training data and our own unlabelled data collected
from Twitter, we have constructed the domain-specific word embeddings, induced the
sentiment lexicon, and bootstrapped the pseudo-labelled tweet data to train the binary
tweet sentiment classifier. As the learning algorithm, we have chosen LSTM with a
hidden layer of 150 units, which would be enough for tweets, as they are quite short
(with an average length of only twenty words).

The official performance measures for this short-text sentiment classification task
[204] include accuracy (Acc) and F1. Although our approach is nearly-unsupervised
(without any reliance on labelled documents), its performance on this benchmark dataset
is comparable to that of supervised methods: it would be placed roughly the middle of
all the participating systems in this competition (see Table 5.3).

5.5.3 Detecting neutral sentiment

Many real-world applications of sentiment classification (e.g., on social media) are
not simply a binary classification task but also involve a neutral category. Although
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many lexicon-based sentiment classifiers, including pSenti, can detect neutral sentiment,
extending the above learning-based sentiment classifier (trained on pseudo-labelled data)
to recognise neutral sentiment is challenging. To investigate this issue, we have done
experiments on the Twitter sentiment classification benchmark dataset from SemEval-
2017 Task 4C [204], which classifies 12379 tweets into an ordinal five-point scale (−2,
−1, 0, +1, +2), where 0 represents the neutral class.

One common way to handle neutral sentiment is to treat the set of neutral documents
as a separate class for the classification algorithm, which is the method advocated
by Koppel and Schler [116]. With the pseudo-labelled training examples of three
classes (−1: negative, 0: neutral, and +1: positive), we tried both standard multi-class
classification [97] and ordinal classification [68]. However, neither of them could deliver
a decent performance. After carefully inspecting the classification results, we realised
that it is very difficult to obtain a set of representative training examples with good
coverage for the neutral class. This is because the neutral class is not homogeneous:
a document could be neutral because it is equally positive and negative, or because it
does not contain any sentiment. In practice, the latter case is more often seen than the
former case, and it implies that the absence of sentiment words more often defines the
neutral class features rather than their presence, which would be problematic to most
supervised learning algorithms.

What we have discovered is that the simple method of identifying neutral documents
from the binary sentiment classifier’s decision boundary works surprisingly well, as
long as the right thresholds are found. Specifically, we take the probabilistic outputs
of a binary sentiment classifier, and then put all the documents whose probability is
not close to 0 or 1 but in the middle range into the neutral class. It turns out that
probability calibration [173] is crucially important for this simple method to work.
Some supervised learning algorithms for classification can give poor estimates of the
class probabilities, and some do not even support probability prediction. For instance,
maximum-margin learning algorithms such as SVM focus on hard samples that are
close to the decision boundary (the support vectors), which makes their probability
prediction biased. The technique of probability calibration allows us to calibrate the
probabilities of a given classifier better or to add support for probability prediction.
If a classifier is well calibrated, its probabilistic output should be able to be directly
interpreted as a confidence level of the prediction. For example, among the documents
to which such a calibrated binary classifier gives a probabilistic output close to 0.8,
approximately 80% of the documents would actually belong to the positive class.

Using the sigmoid model of Platt [188] with cross-validation on the pseudo-labelled
training data, we carry out probability calibration for our LSTM-based binary sentiment
classifier. Figure 5.2 shows that the calibrated probability prediction aligns with the true
confidence of prediction much better than the raw probability prediction. In this case,
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Fig. 5.2: The probability calibration plot of our LSTM-based sentiment classifier on the
SemEval-2017 Task 4C dataset.
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Fig. 5.3: The probability curve with a region of intermediate probabilities representing
the neutral class.

the Brier loss [33] that measures the mean squared difference between the predicted
probability and the actual outcome could be reduced from 0.182 to 0.153 by probability
calibration.

If we rank the estimated probabilities of being positive from low to high, the curve
of probabilities would be in an “S”-shape, with a distinct middle range where the
slope is steeper than the two ends, as shown in Figure 5.3. The documents with their
probabilities of being positive in such a middle range should be neutral. Therefore, the
two elbow points in the probability curve would make appropriate thresholds for the
identification of neutral sentiment, and they could be found automatically by a simple
algorithm using the central difference to approximate the second derivative. Let pL

and pU denote the identified thresholds (pL < pU), then we assign class label “−1” to
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System MAEµ MAEM miF1 maF1

Semi-supervised

Baseline all -2 1.895 2.000 0.006 0.014
Baseline all -1 0.923 1.400 0.089 0.286
Baseline all 0 0.525 1.200 0.133 0.500
Baseline all +1 1.127 1.400 0.063 0.188
Baseline all +2 2.105 2.000 0.004 0.011
Lexicon-based 0.939 1.135 0.253 0.189
OursLSTM 0.536 0.815 0.537 0.326

Supervised
Worst system 0.985 1.325 0.250 0.121
Median system 0.509 0.823 0.545 0.299
Best system 0.554 0.481 0.504 0.405

Table 5.4. Sentiment classification of short texts on a five-point scale — SemEval-2017
Task 4C.

all those documents with a probability below pL, “+1” to all those documents with a
probability above pU, and “0” to all those documents with a probability within [pL, pU].

The official performance measures for this sentiment classification task [204] are
MAEµ and MAEM, which stand for micro-averaged and macro-averaged Mean Absolute
Error (MAE), respectively. We would also like to report the micro-averaged and macro-
averaged F1 scores which are denoted as miF1 and maF1, respectively. As shown in
Figure 5.3, the thresholds identified from the raw probability curve are roughly at the
55th and 75th percentiles, which would yield MAEµ = 0.632 and MAEM = 0.832; the
thresholds identified from the calibrated probability curve are roughly at the 40th and
80th percentiles, which would yield much better scores MAEµ = 0.536 and MAEM =

0.815. So, with the aid of probability calibration, our proposed approach would be able
to comfortably outperform all the baselines, including the lexicon-based method pSenti
and compete with the average (median) participating systems (see Table 5.4). Please
note that this is not a fair comparison: our approach is at a great disadvantage because
(i) it is nearly-unsupervised, without any reliance on labelled documents, whereas all the
other systems are supervised; and (ii) it performs only ternary classification, whereas
all the other systems perform classification on the full five-point scale.

5.6 Cross-Domain Sentiment Analysis

In the last part of our experiments, we compared the semi-supervised lexicon-based
model pSenti from Chapter 4 and the proposed deep-learning LSTM model from this
chapter in cross-domain sentiment analysis.

In this section, we use the terms near and distant cross-domain to define the relative
distance between the domains in question. In Chapter 3 we referred to Amazon and
IMDB domains as distant domains. However, the distance between Twitter and other
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Target Source
LSTM pSenti4

AUC F1 AUC F1

Amazon
IMDB 0.940 0.865 0.900 0.812
Twitter 0.761 0.702 0.783 0.752

IMDB
Amazon 0.885 0.802 0.859 0.786
Twitter 0.582 0.596 0.781 0.713

Twitter
Amazon 0.736 0.634 0.787 0.719
IMDB 0.734 0.658 0.808 0.711

Table 5.5. Cross-domain sentiment classification

domains is even greater. Hence, in this context, we define the distance between Amazon
and IMDB as near and Twitter as distant to all other domains.

As we can see from the results shown in Table 5.5, the model from this chapter
performed remarkably well in cross-domain sentiment analysis between Amazon and
IMDB domains and outperformed pSenti. However, its performance dropped signifi-
cantly once distant domain boundaries were crossed. The most significant drop was
observed in the transition from IMDB to the Twitter domain. Such a drop in accuracy
may illustrate the same weakness of a machine-learning-based approach, which we
identified in previous chapters. Alternatively, it could be merely a case of inability to
handle a transition from regular to irregular language. More research is needed to iden-
tify how to address this issue, as we believe that it may be possible to soften this effect
by adding additional text pre-processing and using intermediate text representation to
reduce language differences.

5.7 Summary and Conclusions

In this chapter, we explored the possibility of building domain-specific sentiment
classifiers with only unlabelled data. Specifically, the main contributions of this chapter
are as follows.
• Our proposed semi-supervised domain-adaptation method was significantly better

compared to the method from the previous chapter. We have shown that similar to
pseudo-relevance feedback, a lexicon-based sentiment classifier could be enhanced by
using its outputs as pseudo-labels and employing supervised learning algorithms such
as LSTM to train a learning-based sentiment classifier on pseudo-labelled documents.
Our end-to-end pipelined approach, which is overall unsupervised (except for the
very small set of seed words), works better than the state-of-the-art semi-supervised
technique for document sentiment classification — ProbLex-DCM [60], and its
performance is at least on a par with an average fully supervised sentiment classifier
trained on real labelled data [204].
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• We have revealed the crucial importance of probability calibration to the detection of
neutral sentiment, which was overlooked in previous studies [116]. With the right
thresholds found, neutral documents can be simply identified at the binary sentiment
classifier’s decision boundary.

• Our results confirmed a deep-learning method superiority over more traditional SVM-
based approaches in the domain-adaptation task.

• We have shown that our proposed method performs remarkably well in cross-domain
sentiment analysis; however, its performance drops significantly once distant domain
boundaries are crossed.

• The proposed approach may be further improved by introducing the latest state-of-
the-art. New LM methods [55, 199] demonstrated an improvement over existing
sentiment analysis methods and introduced several new techniques. More specifically,
contextualised word-embeddings may further improve both the lexicon induction
and the bootstrap components. Besides, the LSTM classifier from the last sentiment
classification component may be replaced with a more sophisticated BERT (Bidirec-
tional Encoder Representations from Transformers) [55], using our model to fine-tune
BERT for a sentiment classification task.



Chapter 6

Case Studies

6.1 Introduction

In previous chapters, we introduced our approach to adaptive sentiment analysis and
its evolution from the hybrid approach using a lexicon/learning symbiosis to the semi-
supervised sentiment-detection system. In this chapter, to demonstrate a practical
application of our sentiment-analysis methods, we present four case studies in three
different domains.

Section 6.2 focuses on Amazon product reviews and investigation into sentiment
time-series dynamics, which also covers seasonality analysis and design of a temporal-
hybrid sentiment-analysis system. The resulting system is an enhanced version of
pSenti which considers past sentiment history to improve its performance. Section 6.3
examines temporal dependency in Amazon reviews using static and dynamic learning
approaches. Our results will confirm temporal dependency existence and the importance
of continuous system adaptation to the underlying domain.

Financial market forecasting is one of the most attractive practical applications
of sentiment analysis. In Section 6.4, we investigate the potential of using sentiment
attitudes (positive vs. negative) and also sentiment emotions extracted from financial
news or tweets to help predict stock price movements. We conduct the Granger
causality test [81] to find out whether sentiment attitudes and sentiment emotions cause
stock price changes, or if it is actually the other way around. We carry out extensive
experiments to see if a strong baseline model that utilises fifteen technical indicators for
market trend prediction can be further enhanced by adding sentiment attitude and/or
sentiment emotion features.

In Section 6.5 we will perform a sentiment analysis of the 2016 US presidential
election and examine Donald Trump supporters and opponents. More specifically, we
will use geotagged Twitter data to explore questions of ’white flight’ and political-
sentiment demographics. Some of our findings contradict those of other researchers,
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such as Trump support in highly educated areas and among younger age groups. The
experimental results will confirm the importance of domain adaptation, as pSenti with
the general-purpose lexicon performed just fractionally better than a random selection.
We will also investigate two-stage lexicon induction and demonstrate that it could be
used to improve domain adaptation further.

Finally, we complete the section with concluding remarks and discuss future direc-
tions.

6.2 Amazon Product Reviews Case Study

The Amazon product reviews domain is a favourite target for evaluating sentiment-
analysis algorithms. Analysis of customer reviews has many practical applications, as
millions of people daily base their purchases on product ratings generated by reviews.
We have already made use of Amazon reviews in Chapters 3 to 5, but in this chapter we
take a different perspective, looking at the temporal aspect. While considerable research
has been done into opinion and sentiment extraction, little work has so far been done
to investigate how sentiment changes over time, or on the importance of opinion shift
detection. Notably, we study sentiment fluctuations, looking at whether they follow a
trend, and whether the information can be utilised to forecast future sentiment.

6.2.1 Datasets

In this section, we analyse a set of product reviews from the Amazon dataset collected by
McAuley and Leskovec [154]. It contains reviews from twenty-four different categories,
but we use only a small subset of this dataset. Specifically, we use reviews from
electronics, video, kitchen categories (see Table 6.1). To carry out product-oriented
analysis, we selected their top two reviews from each category (see Table 6.2). This
selection is justified by the need to have a reasonably sized sample to allow for the
statistical analysis and model validation tests.

Type Count

Electronics 1194638
Video 656559
Kitchen 95799

Table 6.1. Amazon dataset partitioned by categories
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Type Product Product Code Total

Electronics Sennheiser RS120 B0001FTVEK 3185
Electronics Creative ZEN 30 GB Player B000E99YRM 1042
Video Blade Runner B001EC2J1G 1731
Video True Blood: Season 1, Episode 1 B006GM8NXM 1079
Kitchen Keurig B70 Platinum Brewing System B000GTR2F6 1427
Kitchen Crane Adorable 1 Gallon Cool Mist Humidifier B000GWE2U6 1926

Table 6.2. Amazon dataset partitioned by products

6.2.2 Sentiment time-series analysis

A historical sentiment trend is a form of univariate discrete time series. Such time series
can be described using a general model having two components (see Equation (6.1)): a
signal or trend part g(t); and a stochastic sequence δt , also called noise.

Sg = g(t)+δt (6.1)

Many researchers [138, 83] employ temporal sentiment analysis to find opinion
change points and anomalies. In contrast, our goal is an investigation into temporal
sentiment dynamics, understanding the mechanisms involved in generating the series,
and exploiting them in a future sentiment prediction based on a past value trend. The
research will also attempt to uncover temporal domain dependency and possible methods
to mitigate it.

Traditionally, time-series investigation is focused on decomposition into a trend,
seasonal effect and irregular fluctuations [41]. We started with the hypothesis that for
short time spans, a sentiment trend for any product should follow a random walk as a
stochastic stationary signal. However, over the longer term, it should form an observable
and predictable trend that should help to improve future sentiment prediction.

For our experiments, we selected the electronics (see Figure 6.1), video and kitchen
Amazon product review categories with an expectation that products in these categories
would exhibit different temporal characteristics and popularity patterns. Each group is
represented by two products (see Table 6.2), with at least a thousand reviews. Our results
identified that products from each of the groups indeed have distinctive characteristics.
However, one thing was common to many of the reviews: at the end of each year, there
was a spike in the number of published reviews. One explanation for such an activity
burst could be the fact that retail has strong seasonal factors falling around the Christmas
holiday period. Heavy discounting and sales typically rise sharply in November, with
sales peaking around the so-called Black Friday and Cyber Monday. Products from the
kitchen category (see Figure 6.2) are somewhat typical examples of such seasonality.
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Fig. 6.1: Electronic product sentiment trends

Notably, the rise in the number of reviews can frequently be correlated to a significant
change in the average rating. For example, robust seasonal activity can be observed in
the Crane Adorable Humidifier (see Figure 6.2a), and similar patterns can also be found
in the Keurig B70 Brewing System (see Figure 6.2b). Both product reviews suffer from
average sentiment degradation, with the Keurig B70 suffering a significant sentiment
drop at the end of 2009.

Analysis of video product reviews (see Figure 6.3) uncovers slightly different
patterns. In the Blade Runner movie review results (see Figure 6.3a) there is a massive
spike in published reviews around the end of 2007, with a considerable jump in customer
rating. That can be explained by the fact that in 2007 this movie was remastered and
re-released as The Final Cut version, which caused this anomaly. In the case of the True
Blood TV series (see Figure 6.3b), popularity peaked on release and slowly diminished
over time, yet its sentiment’s yearly moving average remained constant.

The Sennheiser RS120 headphones (see Figure 6.4a) from electronic products,
has similar yearly fluctuations to those earlier examined kitchen products, except for
the end of 2009, which had very low customer activity. Its yearly moving average
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(a) Crane Adorable 1 Gallon Cool Mist Humidi-
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(b) Keurig B70 Platinum Brewing System

Fig. 6.2: Kitchen products
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(a) Blade Runner
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(b) True Blood: Season 1, Episode 1

Fig. 6.3: Video products

remained constant throughout the covered period, with a significant spike at the end
of 2011, followed by a sentiment-strength drop. The Creative ZEN 30GB player (see
Figure 6.4b) had a very short lifespan, with a single activity spike mid-life, after which
customer expectations turned around, followed by sentiment degradation. Only two out
of six products over time had a constant rating. All others had a diminishing sentiment,
with occasional anomalies, such as with the Blade Runner movie. The pattern of
diminishing average sentiment was reported in several studies [265, 53] and explained
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(a) Sennheiser RS120 headphones
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(b) Creative ZEN 30GB player

Fig. 6.4: Electronic products

by self-selection bias. It is quite common for the average sentiment in the first couple
of months to be significantly higher than that in later months. Based on the evidence we
collected, it is also possible that a product can have multiple life-cycles based on such
factors as promotions or price changes. Each cycle starts with a significant increase in
popularity and average rating, and diminishes within a couple of months.

6.2.3 Sentiment seasonality

As the previous section identified, in most cases sentiment does not have a constant
value. Moreover, even if some products have a stable yearly moving average, their
monthly trend is typically less stable. Fluctuations in monthly averages can indicate that
sentiment has strong seasonal influence. As we already mentioned, average sentiment
drop frequently follows an increase in the number of reviews, typically around the end of
the year (see Figure 6.4a) and is consistent with self-selection bias theory. Furthermore,
looking into all electronic product moving averages (see Figure 6.1), we can see that
they are similar to a harmonic signal with mean reversion (yearly moving average)
(see Figures 6.2a and 6.4a). To confirm our conjecture regarding the seasonality of
sentiment, we performed time-series decomposition analysis as additional experiments.

First, we investigated monthly sentiment fluctuation for each year (see Figure 6.5).
Based on our previous analysis, we expected to see the sentiment drop in January.
However, that was not the case. Every year followed a different trend and did not
correlate with well-known retail cycles.
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Fig. 6.5: Electronic product sentiment fluctuation by year

Following initial time-series decomposition, we performed a more in-depth sea-
sonality analysis. The seasonal dependency is a general component of the time-series
pattern that can be examined using autocorrelation diagrams [251]. Therefore, we
performed autocorrelation with a three-year window (see Figure 6.6) and found the
presence of a long-lasting and robust correlation, similar to the long-memory process.
The long-memory process is a class of stationary processes where the autocorrelations
decay much more slowly over time than in the case of the ARMA processes [16]. We
also observed strong negative autocorrelation with a significant lag, pointing to the
previously mentioned diminishing sentiment and self-selection bias. These findings
indicate that the average sentiment should be somewhat predictable.

One of the conventional methods in seasonal pattern analysis is using exponential
smoothing. De Livera et al. [52] developed the so-called TBATS model (Trigonometric
Seasonal, Box-Cox Transformation, ARMA residuals, Trend and Seasonality), which is
among the most wildly used exponential smoothing methods. After we established the
correlation, we performed TBATS analysis using models in R, and our experimental
results (see Table 6.3) confirmed seasonality presence for five out of the eleven periods.
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Fig. 6.6: Average rating autocorrelation

Date Seasonal

2001-01-01 - 2004-01-01 False
2002-01-01 - 2005-01-01 True
2003-01-01 - 2006-01-01 False
2004-01-01 - 2007-01-01 False
2005-01-01 - 2008-01-01 True
2006-01-01 - 2009-01-01 True
2007-01-01 - 2010-01-01 False
2008-01-01 - 2011-01-01 True
2009-01-01 - 2012-01-01 True
2010-01-01 - 2013-01-01 False
2011-01-01 - 2014-01-01 False

Table 6.3. Seasonality TBATS analysis

We do not have a full explanation for why some years produced anomalous results,
however as we can see in the example of the Blade Runner (see Figure 6.3a), the launch
of a new product or its enhancement can introduce a significant anomaly. Also, as we
highlighted before, promotions, discounts, fake reviews and other events can create new
artificial product cycles or trigger sentiment bias. Amazon is launching new products
daily, and vendors start promotions and social marketing events, which can naturally
have a significant impact on the shape of seasonal patterns.
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6.2.4 Temporal-hybrid temporal sentiment analysis with autoregres-
sive sentiment

Even if seasonality investigation failed to pinpoint well-established seasonal patterns,
we found that product reviews followed various patterns. One of the most visible
and present in every set of product reviews is the mean reversion pattern, also called
regression to the mean [243]. It is typically observable at the more granular level in
aggregated daily and monthly data. This information may be exploited to predict future
sentiment.

A number of researchers have established that machine-learning techniques are
more effective than the statistical methods in time-series forecasting [195, 29]. Thus
we attempted to create a machine-learning-based model using various sentiment time-
series-based features.

The first version of the sentiment-analysis method is based on plain linear regression
with only four features (see Equation (6.2)). We call this method pSenti Regression, as
it is based on regression in pSenti results. All features are generated using pSenti output:
XPredicted is the sentiment prediction for the current review, and the other three are simple
moving averages of past sentiment (i.e. XWeekly is weekly, XMonthly is monthly and XDaily

is daily). Each of the β coefficients is calculated during the training phase. We selected
linear regression rather than a more complex method, as it is the most straightforward
proof of concept machine-learning approach. Our aim was not to achieve the best result
but instead to confirm that such an approach, in principle, improves sentiment analysis.

Ŷr = β̂1XPredicted + β̂2XWeekly + β̂3XMonthly + β̂4XDaily (6.2)

To validate the proposed model, we executed experiments on the Amazon dataset
(see Table 6.1) for each year from 2003 to 2011. In the experiment, we evaluated several
sentiment-detection approaches and assessed how their performance compared to the
proposed pSenti Regression sentiment-detection model. As a baseline, we selected
pSenti in lexicon-based and learning-based modes. All learning-based approaches
use the training dataset, which included reviews from the same domain before the
year 2002. The pSenti Regression model uses learning-based pSenti to calculate both
past and current sentiments. In a sense, it uses the past knowledge to help future
sentiment learning. Tables 6.4 and 6.5 show that the proposed model outperformed
both baselines. Comparing to the baseline, simple regression over past pSenti sentiment
data produced significantly better results. The best improvement was achieved in the
electronics dataset, in some years with up to 16% gains in prediction compared to the
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best learning-based baseline. Results indicate that integration of the past knowledge
improves future sentiment learning.

Year
RMSE Hybrid Improvement vs.

Lexicon pSenti pSenti Regression Hybrid pSenti pSenti Regression Lexicon

2003 1.37 1.19 1.11 1.11 6.75% 0.60% 19.00%
2004 1.36 1.23 1.13 1.12 9.19% 1.17% 17.67%
2005 1.32 1.23 1.08 1.06 13.88% 1.72% 19.27%
2006 1.35 1.26 1.08 1.07 14.83% 0.71% 20.59%
2007 1.40 1.31 1.11 1.10 15.89% 0.58% 21.34%
2008 1.41 1.31 1.11 1.10 15.95% 0.50% 21.68%
2009 1.43 1.27 1.10 1.09 14.01% 0.38% 23.48%
2010 1.42 1.19 1.07 1.07 10.12% 0.22% 24.96%
2011 1.42 1.21 1.02 1.01 16.53% 0.51% 28.58%

Table 6.4. Method comparison on electronic products

Year
RMSE Hybrid Improvement vs.

Lexicon pSenti pSenti Regression Hybrid pSenti pSenti Regression Lexicon

2003 1.59 1.28 1.28 1.26 1.58% 1.71% 20.80%
2004 1.56 1.32 1.30 1.27 3.49% 2.53% 18.61%
2005 1.54 1.22 1.20 1.19 2.89% 0.86% 22.97%
2006 1.45 1.17 1.18 1.16 0.62% 1.52% 19.99%
2007 1.45 1.21 1.20 1.18 2.44% 1.67% 18.29%
2008 1.48 1.32 1.30 1.27 3.96% 2.66% 13.95%
2009 1.46 1.27 1.26 1.24 2.49% 2.14% 15.16%
2010 1.43 1.22 1.19 1.17 4.59% 1.58% 18.11%
2011 1.37 1.18 1.08 1.04 11.41% 3.53% 23.92%

Table 6.5. Method comparison on video products

Following the improvement, we expanded pSenti Regression and created the so-
called temporal-hybrid model with eleven additional features as in Equation (6.3),
making use of eight Plutchik [189] mood dimensions (anger, fear, sadness, disgust,
surprise, anticipation, trust, and joy) and four sentiment temporal orientations. Mood
dimensions were extracted using the NRC sentiment lexicon [166] and calculated as a
relative frequency.

Ŷh = Ŷr + β̂1XPresent + β̂2XFuture + β̂3XPast + β̂4XAnger + β̂5XAnticipation + β̂6XDisgust

+β̂7XFear + β̂8XJoy + β̂9XSadness + β̂10XSurprise + β̂11XTrust

(6.3)

In this experiment pSenti sentiment output is transformed from a single dimension
into a multi-dimension output. We tag each sentence part with one of four time dimen-
sions (past/present/future/unknown) and calculate their sentiment strength. Temporal
orientation is resolved using two different methods. Using the first method we identify
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(a) Yearly granularity (b) Monthly granularity

Fig. 6.7: pSenti article temporal sentiment analysis

temporal expressions using the SuTime temporal tagger [40]. SuTime is a rule-based
tagger built on regular-expression patterns to recognise and normalise temporal expres-
sions in English text in the form of TIMEX3 tags. TIMEX3 is part of the TimeML
annotation language [193] for marking up events, times and their temporal relations in
documents. It recognises both relative times, such as next Month, as well as absolute
times, such as 12 January 2000. Relative time can be transformed into absolute time
using the underlying document creation time. As an example, in the sentence ’I hope
next year they will release an improved version’ we would identify ’next year’ as a
future pointer with a positive sentiment ’improved’. Such an occurrence would generate
a positive output for the ’future-sentiment’ feature.

Temporal detection seamlessly integrates into the pSenti output and illustrates
sentiment dynamics across the time axis. In Figure 6.7a we can see temporal sentiment
for the financial news article, extracted as part of Section 6.4 experiments. In the sample
article, most of the negative sentiments were expressed in sentences referring to the
year 2012, the date on which the article was published, with some positive sentiment
pointing to the future. The application can handle almost any time granularity level.
As an example Figure 6.7b illustrates sentiment distribution with monthly granularity.
Another method, which we employ in the temporal context, is to identify sentence tense
and use it to decide which sentiment–time dimension should be assigned to the part.

Incorporation of additional features (see Equation (6.3)) further improves perfor-
mance (i.e. the last method outperformed all other methods), but by a small margin
only (see Tables 6.4 and 6.5). The additional features proved more useful for sentiment
analysis of electronic product reviews, most likely due to the specific domain differ-
ences. As an example, they also have different review sizes: video product reviews
have an average length of eighty-nine words, and electronic reviews are shorter at
sixty-six words on average. Our results indicate that due to its simple design and similar
performance, a regression over past values is preferable to the hybrid model. It can be
integrated into any sentiment-analysis method and exploit historical data to improve
sentiment-analysis performance.
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6.3 Temporal Dependency

As we already covered in Chapter 2, more specifically in Section 2.3, most sentiment-
analysis approaches perform well only if targeted at a specific domain, and they suffer
significant performance loss once domain boundaries are crossed. There are three main
types of sentiment boundaries: style, domain and temporal. Both style and domain
dependencies were covered in previous chapters, and in this section we expand our
investigation by conducting the temporal domain dependency experiment.

For this experiment, we looked at Amazon’s electronics and video product reviews
dataset (see Table 6.1). This dataset covers a significant period, starting from the year
2000 and ending with 2012, and concentrates on consumer products. A lexical word
meaning can change over time, but this change requires a significant period to happen.
We hope that twelve years is a long enough span for that process to happen.

The dataset was split into two parts: reviews before 2003, and reviews after 2003.
All experiments on this dataset we performed using learning-based pSenti in two
different modes. The ’static’ system was trained once using the same domain reviews
before the year 2003. The ’dynamic’ was re-trained for each run using the previous two
years’ reviews. A two-year batch was selected to make sure that only recent reviews
participated in the training, and that its size would be comparable to the static system
and large enough for reliable training. Natural expectations were that, due to the nature
of the underlying domain, there should not be a significant drift in sentiment definition,
and that the performance of both static and dynamic systems should be similar.

Results in Table 6.6 show that in the case of electronic reviews, each following year
the gap between the two models increases, with the most significant jump in the final
2011 step. In the second experiment, using the video reviews dataset, the performance
of both models was very similar up until the end, and only at the last two stages did
the dynamic model significantly improve its performance. It is possible that the jump
observed in 2011 was due to some significant change in the underlying sentiment
lexicon or just a one-off occurrence, as the static system performance was constant over
all periods, and we did not observe any drops in its performance. It is difficult to draw a
conclusion from our results; more experiments are needed. Though it does look that
temporal dependencies can indeed be observed in Amazon reviews, yet it requires a
significant period to detect drift in sentiment values and is not necessarily observed in
all products.

6.4 Market Sentiment Case Study

Many portfolio managers and traders are using so-called ’Trade the news’ strategy,
which is broadly divided into two main categories: periodic trading and unexpected
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Year
Electronics Video

Dynamic Static Improvement Dynamic Static Improvement

2003 1.11 1.11 0% 1.26 1.26 0%
2004 1.12 1.12 0.25% 1.27 1.29 1.49%
2005 1.06 1.08 1.36% 1.19 1.21 1.51%
2006 1.07 1.10 2.82% 1.16 1.14 -1.28%
2007 1.10 1.13 2.95% 1.18 1.19 0.63%
2008 1.10 1.14 3.09% 1.27 1.28 1.07%
2009 1.09 1.13 3.50% 1.24 1.24 0.20%
2010 1.07 1.12 5.10% 1.17 1.20 2.66%
2011 1.01 1.12 9.37% 1.04 1.16 10.12%

Table 6.6. Dynamic vs. static sentiment analysis (RMSE)

news trading [187]. Periodic news are issued at regular intervals and usually contain
general economic data, such as interest rate announcements and company-specific
reports (e.g. quarterly earnings). On the other hand, unexpected news is typically related
to some adverse developments in the world or economy, or it could be company specific.
Examples of such news might be a terrorist attack, Brexit or the BP oil spill. In the case
of periodic news, most traders follow a set of standard trades to hedge their portfolios for
possible outcomes. It is interesting to note that, using these strategies, good news is not
always a signal to buy, and it is quite common that shares drop, sometimes significantly,
after positive news [125]. Too high expectations can be followed by a disappointment,
even if an announcement is positive.

Market sentiment is one of the most significant drivers in bull and bear runs. Thus,
the capability to detect sudden shifts could provide a competitive advantage over
other market participants. Detecting too high or too low expectations before periodic
announcements, as well as monitoring for unexpected news, can be processed by an
automatic sentiment- analysis system and classified by machine-learning models. In this
section, we describe our investigation into the relationship between investors’ sentiment
and stock market prices.

Throughout this section, we use the term “sentiment” to describe all kinds of
affective states [186, 244], and we draw a distinction between sentiment attitudes and
sentiment emotions, following the typology proposed by Scherer [216]. By attitude, we
mean the narrow sense of sentiment (as in most research papers on sentiment analysis)
— whether people are positive or negative about something. By emotion, we mean
the eight “basic emotions” in four opposing pairs: — joy-sadness, anger-fear,
trust-disgust, and anticipation-surprise, as identified by Plutchik [189].

Twitter market sentiment analysis is also related to the problem of stance detection
(SD) [218]. Most of the existing research on SD is focused on the area of politics [119,
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120, 226]. Financial market participants also often express strong stances towards
particular stocks (which can be divided into the so-called “bulls” and “bears”). However,
there are non-trivial differences between political sentiment and market sentiment, as
the financial market is usually more cyclical and dynamic, has different sentiment
drivers, and can be impacted by various external factors (e.g., company performances
and geopolitical events). Moreover, market sentiment extracted from news articles rather
than social media would exhibit different characteristics: the former is less about the
authors’ stance and more about the facts and interpretation of events in a significantly
richer context.

In this section, we aim to re-examine the application of sentiment analysis in the
financial domain. Specifically, we try to answer the following research question:

Can market sentiment really help to predict stock price movements?

Although our intuition and experience both tell us that sentiment and price are correlated,
it is not clear which is the cause and which is the effect. Furthermore, we also have
little idea of what exact types of sentiment are really relevant.

The source code for our implemented market-prediction system is open to the
research community1.

6.4.1 Datasets

To obtain relevant sentiment signals, we have collected three Financial Times (FT)2

datasets covering different time periods (see Table 6.7). During each period, we
collected all daily published articles and extracted the article text, the authors’ and
company names, and the time stamp of the article. Collected FT articles have an average
length of 626 words (see Figure 6.8).

In addition, from Kaggle3 we have obtained a large set of historical news headlines
from Reddit’s WorldNews Channel (RWNC): for each date in the time period we picked
the top twenty-five headlines ranked by Reddit users’ votes. They have an average
length of eighteen words and can be illustrated by the following example:

“Four oil giants to return to Iraq: Exxon Mobil, Shell, Total and BP”

Moreover, we have also gathered from Twitter a large collection of financial tweets
which contain in their text one or more “cashtags”. A cashtag is simply a ‘$’ sign
followed by a stock symbol (ticker). For example, the cashtag for the company Apple

1https://github.com/AndMu/Market-Wisdom
2http://www.ft.com
3https://www.kaggle.com/rootuser/worldnews-on-reddit

https://github.com/AndMu/Market-Wisdom
http://www.ft.com
https://www.kaggle.com/rootuser/worldnews-on-reddit
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Fig. 6.8: The FT article snapshot

Source From To Count

Financial Times I 2011-04-01 2011-12-25 11978
Financial Times II 2014-04-01 2014-10-26 9731
Financial Times III 2014-10-26 2015-03-08 6037
Reddit 2008-06-08 2016-07-01 76600
Twitter 2014-05-01 2015-02-01 1145784

Table 6.7. Financial market datasets used in our experiments.

Inc., whose ticker is AAPL on the stock market, would be $AAPL. Here, we have collected
only the tweets mentioning stocks from the S&P 500 index.

For the stock price data, we have used the end of day (EOD) adjusted close price. In
our experiments, we have focused on several representative companies, Apple (AAPL),
Google (GOOGL), Hewlett-Packard (HPQ), and JPMorgan Chase & Co. (JPM), a
couple of the most liquid FX currency pairs, EUR/USD and GBP/USD and the Dow
Jones Industrial Average (DJIA) index. All financial market data was acquired from
public datasets published by Quandl4, Kaggle5, and Bloomberg6.

6.4.2 Causality

To verify whether market sentiments can indeed be useful for predicting stock price
movements, we started the investigation with a Granger causality test [81], which is a
time-series data-driven method for identifying causality based on a statistical hypothesis
test that determines whether one time series is instrumental in forecasting the other.
The Granger causality test has been widely accepted in econometrics as a technique to

4https://www.quandl.com
5https://www.kaggle.com
6https://www.bloomberg.com/

https://www.quandl.com
https://www.kaggle.com
https://www.bloomberg.com/
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Fig. 6.9: Stationary analysis for DJIA close prices on the FT I dataset.

discover causality in time-series data. In the sense of Granger causality, x is a cause of
y if it is instrumental in forecasting y, where ‘instrumental’ means that x can be used to
increase the accuracy of y’s prediction compared with considering only the past values
of y itself. Essentially, a Granger causality test is a null hypothesis significance test
(NHST): the null hypothesis is that the lagged x-values do not explain the variation in
y. If the p-value given by the test is less than 0.10, we would be able to reject the null
hypothesis and claim that x indeed Granger-causes y.

Through our experiments, we try to find the answers to two questions: Does market
sentiment cause changes in stock price?, and conversely, Does stock price cause changes
in market sentiment?.

6.4.3 Time series

Before performing causality tests, it is necessary to ensure that both time series are
stationary, because otherwise the results can lead to spurious causality [92]. The
stationarity check is typically done by analysing the autocorrelation (ACF) and par-
tial autocorrelation (PACF) functions, and performing the Ljung-Box [139] or the
augmented Dickey-Fuller (ADF) [56] t-statistic tests. A market price is typically a
non-stationary process, which is also true in our case. As we will explain later, the price
of a stock is less important than change direction or trend. Thus, in our analysis, we
replace EOD with a price-change (delta) time-series. Using the above methods, all our
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(b) Financial Times II
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(c) Financial Times III
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Fig. 6.10: The cross-correlation between sentiment attitudes and S&P 500 prices.
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Fig. 6.11: The market close price changes (%).

selected time series were verified to be stationary. Figure 6.9 shows the stationarity
check results of the FT-I and DJIA market datasets.

The next step in our investigation into the relationship between sentiment and price
time series is to look at their cross-correlation function (CCF). Although “correlation
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does not imply causation”, it is frequently used as a test to discover possible causal
relationship from data. In Figure 6.10 we present the cross-correlation analysis results
for the S&P 500 index on all three FT news and RWNC headlines datasets. In the first
dataset (see Figure 6.10a) we have a strong CCF between sentiment attitudes and stock
prices; in the second (see Figure 6.10b) the CCF is significant in the lower left and
upper right quadrants. However, in the FT III (see Figure 6.10c) dataset, the CCF is not
significant (below the confidence threshold). This seems to suggest that the relationship
between market sentiments and stock prices can be quite complex and may exist only
in certain time periods. It is unsurprising that the financial market exhibited different
behaviours in different time periods. As shown in Figure 6.11, from 2011 to mid-2013
we had a volatile market without a clear trend, whereas from 2013 to 2015 we saw a
strong bull run with continual rising prices. Then we calculated the CCF between the
sentiment attitudes found in RWNC headlines and the index prices for a longer time
span from 2008 to 2016 (see Figure 6.10d), but still could not detect any long-term
correlation.
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Fig. 6.12: The cross-correlation between sentiment attitudes and S&P 500 price changes.

Most of the real-life automated trading systems need to make BUY or SELL
decisions for the given stocks. Therefore, from the trading perspective, the actual price
of a stock is less crucial, and the profit relies on the price changes (often measured
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in percentages). Similar to the previous experiments on the cross-correlation between
sentiment attitudes and stock prices (see Figure 6.10), additional experiments on the
cross-correlation between sentiments and stock price changes were performed (see
Figure 6.12). Contrary to the previous results, we found correlations in all the FT news
articles (see Figures 6.12a to 6.12c) and the RWNC headlines (see Figure 6.12d). This
suggests that the percentage changes of stock prices would have higher predictability
than stock prices themselves. However, the correlations are often present only with
a substantial lag. Therefore, it is still valid that sentiment attitudes are unlikely to be
useful in market trend prediction.

6.4.4 Experimental setup

To further analyse the relationship, we performed a set of Granger causality tests for
the S&P 500 index and four selected stocks using the FT I dataset in which we detected
the strongest correlation. The lags in the causality tests were set to just one or two
days, considering that the financial market usually reacts to relevant news events almost
instantaneously.

The sentiment analysis was performed using both a standard model and an enhanced
temporal model. In the latter, we associate the sentiments with the corresponding
temporal orientations by labelling each sentence with one of the four temporal categories
(past/present/future/unknown) and calculate the sentiment strength accordingly. Here,
we use a similar methodology to extract temporal orientation as in the section above.
Intuitively, only the sentiments about the present and the future value of the stock would
have significant impacts on its price. Therefore, we would filter out all sentiment scores
with the past tag.

In each of our causality test experiments, two competing hypotheses would be
examined: market sentiments cause stock price changes, and vice versa.

6.4.5 Experimental results

The results obtained from the experiments (see Table 6.8) show a mixed picture. In
all the experiments, we failed to discover any sign that sentiment attitudes Granger-
cause stock price changes, which would suggest that in general sentiment attitudes
probably cannot be useful for the prediction of stock price movements. However, in
many cases, we found that the opposite was true: stock price changes Granger-cause
sentiment attitudes in the news, with the strongest causality found using the temporal
sentiment-analysis model.

The individual stocks also produced mixed results, with each company behaving
differently. For the Apple stock, we failed to detect any causality. For the Google stock,



6.4 Market Sentiment Case Study 119

Stock Model Lag
Attitude Price⇒
⇒Price Attitude

S&P 500
Standard

1 0.1929 0.1105
2 0.2611 0.0780

Temporal
1 0.2689 0.0495
2 0.1692 0.0940

AAPL
Standard

1 0.7351 0.4253
2 0.9117 0.6426

Temporal
1 0.9478 0.6725
2 0.9715 0.8245

GOOGL
Standard

1 0.5285 0.4035
2 0.8075 0.0418

Temporal
1 0.6920 0.5388
2 0.8516 0.0422

HPQ
Standard

1 0.1534 0.3996
2 0.1877 0.5322

Temporal
1 0.4069 0.0836
2 0.5097 0.1180

JPM
Standard

1 0.8991 0.0461
2 0.9963 0.0435

Temporal
1 0.9437 0.1204
2 0.7722 0.2720

Table 6.8. Sentiment attitude Granger causality on the FT I dataset.

we identified that the prices would Granger-cause sentiment attitudes, but only with
a two-day lag. For the HP stock, we detected causality only in temporal sentiment
and only with a one-day lag. For the JPM stock, we found causality using standard
sentiment, but it was absent using temporal sentiment. It is difficult to draw a general
conclusion from such varying results. According to the Granger causality test with a
one-day or two-day lag, sentiment attitudes do not seem to be useful for predicting
stock price movements. However, the opposite seems to be true: the sentiment attitudes
should be predictable using stock price movements. It is still possible that the Granger
causality from sentiment attitudes to stock price changes is present at a finer time
granularity (e.g., minutes), but we are unable to perform such an analysis using our
current datasets.

Bollen et al. [28] attempted to predict the behaviour of the stock market by measuring
the sentiment emotion of people on Twitter and identified that some of the emotion
dimensions have predictive power. To verify their findings, we employed a similar
model based on Plutchik’s emotion dimensions extracted using the NRC sentiment
lexicon [166] and pSenti. In the S&P 500 index analysis (see Table 6.9), we found that
only sadness could Granger-cause stock price changes, which is different from the
results of Bollen et al. [28]. Such a discrepancy might be explained by the fact that
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Emotion Lag
Standard Temporal

Emotion Price⇒ Emotion Price⇒
⇒Price Emotion ⇒Price Emotion

anger
1 0.3815 0.6299 0.2555 0.4155
2 0.3402 0.9153 0.3097 0.6886

anticipation
1 0.5320 0.2650 0.9216 0.9389
2 0.4989 0.5765 0.4930 0.7173

disgust
1 0.6668 0.0688 0.2482 0.2031
2 0.7166 0.3118 0.1160 0.2852

fear
1 0.5821 0.1255 0.8698 0.0591
2 0.8934 0.2601 0.9888 0.1604

joy
1 0.6972 0.5549 0.3521 0.1530
2 0.5567 0.8451 0.4045 0.4089

sadness
1 0.3885 0.1067 0.0258 0.1019
2 0.6166 0.2027 0.0983 0.1423

surprise
1 0.5866 0.7022 0.3830 0.2315
2 0.9802 0.8414 0.8445 0.3838

trust
1 0.9983 0.6892 0.9490 0.1124
2 0.5534 0.8523 0.9586 0.2239

Table 6.9. Sentiment emotion Granger causality: S&P 500.

Emotion Lag
Standard Temporal

Emotion Price⇒ Emotion Price⇒
⇒Price Emotion ⇒Price Emotion

anger
1 0.9452 0.3512 0.6490 0.2352
2 0.9851 0.4367 0.7703 0.1461

anticipation
1 0.5237 0.8272 0.3032 0.1245
2 0.6368 0.3331 0.595 0.1518

disgust
1 0.2412 0.4128 0.1376 0.9851
2 0.5154 0.5877 0.3392 0.3130

fear
1 0.3717 0.0867 0.2727 0.5577
2 0.5609 0.1698 0.4139 0.1114

joy
1 0.3301 0.9946 0.7916 0.2580
2 0.6657 0.5264 0.9843 0.4312

sadness
1 0.2217 0.8139 0.2280 0.6620
2 0.1669 0.4266 0.1710 0.3245

surprise
1 0.9413 0.1960 0.1083 0.6093
2 0.9733 0.2433 0.2033 0.2609

trust
1 0.5663 0.8439 0.3219 0.3539
2 0.8760 0.5520 0.4473 0.2608

Table 6.10. Sentiment emotion Granger causality: AAPL.

Bollen et al. [28] used different emotion dimensions and lexicons, and a different time
period in their analysis.
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Emotion Lag
Standard Temporal

Emotion Price⇒ Emotion Price⇒
⇒Price Emotion ⇒Price Emotion

anger
1 0.2706 0.4460 0.4420 0.1530
2 0.1709 0.7454 0.2457 0.2677

anticipation
1 0.1137 0.1951 0.2720 0.4348
2 0.1487 0.4839 0.3363 0.7986

disgust
1 0.4459 0.3250 0.4000 0.5865
2 0.7031 0.4294 0.6608 0.8880

fear
1 0.3362 0.1020 0.2874 0.1211
2 0.2763 0.0757 0.3011 0.1765

joy
1 0.4718 0.0417 0.8350 0.0959
2 0.7855 0.0998 0.9755 0.2282

sadness
1 0.4184 0.1316 0.3917 0.1782
2 0.6599 0.1236 0.5286 0.3844

surprise
1 0.6551 0.0606 0.6869 0.0755
2 0.7604 0.1166 0.6626 0.2156

trust
1 0.5008 0.0727 0.7541 0.0680
2 0.5991 0.1302 0.8334 0.1052

Table 6.11. Sentiment emotion Granger causality: GOOGL.

Emotion Lag
Standard Temporal

Emotion Price⇒ Emotion Price⇒
⇒Price Emotion ⇒Price Emotion

anger
1 0.2129 0.8639 0.1300 0.9466
2 0.4084 0.9521 0.2234 0.9689

anticipation
1 0.0757 0.6288 0.1316 0.7853
2 0.2279 0.9059 0.3371 0.8986

disgust
1 0.4868 0.8126 0.2001 0.4536
2 0.3803 0.9353 0.2252 0.6722

fear
1 0.2679 0.4841 0.1214 0.8193
2 0.5361 0.4741 0.2371 0.9319

joy
1 0.0399 0.8186 0.0902 0.6261
2 0.1255 0.8945 0.2410 0.7273

Sadness
1 0.0106 0.8669 0.0110 0.9208
2 0.0416 0.9365 0.0388 0.8456

surprise
1 0.0217 0.6825 0.0010 0.3890
2 0.0759 0.7830 0.0064 0.3034

trust
1 0.0447 0.8620 0.0766 0.7693
2 0.1340 0.9034 0.2158 0.7948

Table 6.12. Sentiment emotion Granger causality: HPQ.

An interesting finding we obtained from the experimental results is that some indi-
vidual stocks, such as HP (see Table 6.12) and JPM (see Table 6.13), have significantly
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Emotion Lag
Standard Temporal

Emotion Price⇒ Emotion Price⇒
⇒Price Emotion ⇒Price Emotion

anger
1 0.1788 0.0488 0.1796 0.2349
2 0.4903 0.1223 0.3155 0.3713

anticipation
1 0.3893 0.1360 0.1389 0.5989
2 0.7729 0.3145 0.3389 0.4732

disgust
1 0.2168 0.1260 0.2208 0.2267
2 0.5297 0.2913 0.3611 0.1637

fear
1 0.0298 0.1565 0.0214 0.2072
2 0.1173 0.2495 0.0210 0.1187

joy
1 0.3417 0.2169 0.1073 0.9574
2 0.8544 0.3905 0.3293 0.9086

sadness
1 0.6079 0.3038 0.3985 0.5781
2 0.9297 0.5856 0.4495 0.4194

surprise
1 0.1351 0.0303 0.0498 0.1145
2 0.4296 0.0593 0.0850 0.0461

trust
1 0.0991 0.2218 0.0458 0.6664
2 0.1232 0.2066 0.0165 0.6645

Table 6.13. Sentiment emotion Granger causality: JPM

more emotion dimensions with predictive power than others. It could be seen in those
cases that some emotion dimension other than sadness, including surprise, fear,
joy and trust, also demonstrated predictive power. On both Google (see Table 6.11)
and Apple (see Table 6.10) stock price data, we failed to find any emotion causality on
their stock price. These results indicate that even if in some cases there is substantial
Granger causality from sentiment emotions to stock price changes, it is not a general
pattern and should be looked at on a case-by-case basis. To find out why that is happen-
ing, it would be necessary to perform a further investigation, which is beyond the scope
of this thesis.

6.4.6 Prediction

The causality analysis in Section 6.4.2 has revealed that in some cases sentiment
emotions could be good indicators of stock price changes. In the next set of experiments,
we would like to investigate how sentiment attitudes and/or sentiment emotions could
be exploited in a machine-learning model for market trend prediction to improve its
accuracy.

Basically, there are two types of stock market analysis: fundamental and tech-
nical. The former evaluates a stock based on its corresponding company’s business
performance, whereas the latter evaluates a stock based on its volume and price on the
financial market, as measured by a number of so-called technical indicators [129]. Both
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types of analysis generate trading signals, which would be monitored by human traders
or automated trading systems who then use that information to execute trades. In our
experiments, only technical analysis has been utilised. It is likely that incorporating
fundamental analysis and employing more technical indicators would improve the
predictive model’s performance. However, our research objective is not to create an
optimal market trend prediction system but to analyse and understand the predictive
power of sentiments on the financial market. For this purpose, a baseline model with
several common technical indicators should be good enough.

6.4.7 Baseline

We first built a baseline machine-learning model to predict stock price changes with
a number of selected technical indicators, and then tried to incorporate additional
sentiment-based features (i.e. sentiment attitudes and sentiment emotions).

In order to construct a decent baseline model, we made use of ten common technical
indicators, which led to a total of fifteen features, as follows.

• Moving Averages (MA). A moving average is frequently defined as a support or
resistance level [129]. Many basic trading strategies are centred around breaking
support and resistance levels. In a rising market, a 50-day, 100-day or 200-day
moving average may act as a support level and, in a falling market, as resistance. We
calculated 50-day, 100-day and 200-day moving averages and included each of them
as a feature.

• Williams %R. This indicator was proposed by Larry Williams to detect when a stock
was overbought or oversold [129]. It tells us how the current price compares with the
highest price over the past period (10 days).

• Momentum (MOM) [129]. This indicator measures how the price has changed over
the last N trading days. We used two momentum-based features: one-day momentum
and five-day momentum.

• Relative Strength Index (RSI). This is yet another indicator to find overbought and
oversold stocks [129]. It compares the magnitude of gains and losses over a specified
period. We used the period most commonly used: fourteen days.

• Moving Average Convergence Divergence (MACD) [129]. This is one of the most
effective momentum indicators and shows the relationship between two moving
averages. It generates three features: MACD, signal and histogram values.

• Bollinger Bands is one of the most widely used technical indicators [129]. It was
developed and introduced in the 1980s by the famous technical trader John Bollinger.
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It represents two standard deviations away from a simple moving average, and can
thus help price pattern recognition.

• Commodity Channel Index (CCI) is another a momentum indicator, introduced by
Donald Lambert in 1980 [129]. This indicator can help to identify a new trend or
warn of extreme conditions by detecting overbought and oversold stocks. Its normal
movement is in the range from -100 to +100, so going beyond this range is considered
a BUY/SELL signal.

• Average Directional Index (ADX) is a non-directional indicator which quantifies the
price trend strength using values from 0 to 100 [129]. It is useful for identifying
strong price trends.

• Triple Exponential Moving Average (TEMA) was developed by Patrick Mulloy and
first published in 1994 [129]. It serves as a trend indicator and, in contrast to moving
averages, does not have the associated lag.

• Average True Range (ATR) is a non-directional volatility indicator developed by
Wilder [248]. The stocks and indexes with higher volatility typically have higher
ATR.

The features were all normalised to zero mean and unit variance in advance.
In our context, the machine-learning model is just a binary classifier that generates

two kinds of signal: BUY (+1) and SELL (−1). It aims to predict whether or not the
stock’s price, n days in the future, will be higher (+1) or lower (−1) than today’s price.
In the preliminary experiments, we tried to find out which machine-learning algorithm
would perform best and how far into the future the model would be able to predict.

Following the research literature in this area [100, 42, 71], we evaluated the two
most popular machine-learning approaches to market trend prediction, SVM (with
the RBF kernel) and the LSTM recurrent neural network. Each dataset was randomly
divided into two sets: two-thirds for training and one-third for testing. The parameters
of the SVM and LSTM algorithms were set via grid search on the training set. The final
LSTM model consists of a single LSTM layer with 400 units and utilises a dropout rate
of 0.5 [235, 220].

It is common for such market trend prediction models to use a time lag of a few
days and, by doing so, avoid short-term price volatility [50]. In our experiments, we
tried both three- and five-day lags. Similar to the previous studies by Cao and Tay [37]
and Thomason [229], using five-day lags was found to be optimal.

The preliminary experimental results, as shown in Table 6.14, indicate that SVM
outperformed LSTM on all the datasets. The F1 scores suggest that LSTM often
favoured the positive class over the negative class and produced unbalanced results.
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Type Method
3-day ahead 5-day ahead

Acc Fup
1 Fdown

1 Acc Fup
1 Fdown

1

DJIA
SVM 0.616 0.738 0.282 0.700 0.754 0.615
LSTM 0.559 0.706 0.120 0.585 0.728 0.127

AAPL
SVM 0.577 0.676 0.391 0.685 0.723 0.634
LSTM 0.547 0.693 0.138 0.521 0.641 0.282

JPM
SVM 0.677 0.747 0.552 0.673 0.733 0.578
LSTM 0.541 0.665 0.269 0.573 0.676 0.373

EUR/USD
SVM 0.642 0.607 0.672 0.671 0.620 0.710
LSTM 0.509 0.423 0.572 0.563 0.370 0.665

GBP/USD
SVM 0.610 0.589 0.630 0.714 0.705 0.723
LSTM 0.500 0.604 0.323 0.633 0.646 0.618

Table 6.14. Market trend prediction using main technical indicators — the baseline
model.

The reason could be that the size of the dataset is relatively small: there are 670 data
points in the analysed time period 2011–2015. Contrary to LSTM, SVM always yielded
balanced and stable results.

In the end, SVM with a five-day lag was selected as the baseline model, which
produced a reasonable accuracy of around 70% and similar F1 scores for both classes.

6.4.8 Using sentiment signals in news

In the next set of experiments, we evaluated the predictive power of sentiments extracted
from financial news articles/headlines. The time granularity here is a single day (i.e., all
sentiment-based features –including both attitudes and emotions – would be aggregated
by calculating their daily averages). If there was no sentiment information available on
that day, the value zero would be assigned to the corresponding sentiment features.

The proposed new model consists of the same technical indicator features as in the
baseline, plus nine additional sentiment-based features:

• Sentiment attitudes. The average daily sentiment attitudes, extracted using pSenti,
with values in the range from -1 to +1.

• Sentiment emotions in eight categories: anger, anticipation, disgust, fear,
joy, sadness, surprise, and trust, with values being the normalised occurrence
frequency.

Sentiment attitudes and emotions were extracted from the FT news articles and
the RWNC headlines in the time period from 2011 to 2015. The experimental results,
as shown in Table 6.15, indicate that incorporating sentiment attitudes and sentiment
emotions from the headlines actually had a negative impact on the predictive model’s
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Type
Baseline Financial Times Reddit Headlines

Acc Fup
1 Fdown

1 Acc Fup
1 Fdown

1 Acc Fup
1 Fdown

1

DJIA 0.700 0.754 0.615 0.706 0.752 0.639 0.618 0.716 0.417
AAPL 0.685 0.723 0.634 0.652 0.723 0.531 0.624 0.700 0.496
JPM 0.673 0.733 0.578 0.679 0.739 0.583 0.615 0.713 0.415
EUR/USD 0.641 0.715 0.518 0.653 0.691 0.605 0.638 0.684 0.578
GBP/USD 0.714 0.705 0.723 0.711 0.708 0.715 0.615 0.625 0.605

Table 6.15. Market trend prediction using FT news articles and RWNC headlines
(2011–2015).

performance. This is consistent with the previous section, in which no correlation
or causality link was established between headline sentiments and stock prices. It
might be explained by the fact that headlines are very short text snippets and therefore
provide little chance for us to reliably detect sentiment attitudes and sentiment emotions.
The sentiments extracted from FT news articles painted a quite different picture. The
sentiment-enriched model outperformed the baseline model in half of the scenarios: it
demonstrated slightly better results for DJIA, JPM and EUR/USD, but slightly worse
results for AAPL and GBP/USD. These experimental results are consistent with the
previous section and confirm again that, for some stocks, sentiment emotions could be
used to improve the baseline model for market trend prediction.

6.4.9 Using sentiment signals in tweets

In the last set of experiments, we created the enriched model based on sentiment
attitudes and sentiment emotions extracted from financial tweets. The time period
of the Twitter messages dataset is significantly shorter: 2014 to 2015. Consequently,
the experiments were performed on a shorter time period with only 275 data points.
In this time period, almost all stock prices were continually rising (see Figure 6.11).
Such a so-called bull run makes it even more difficult to assess a predictive model’s
performance, as any basic strategy such as buy and hold would be a winning strategy.

Let us consider three different scenarios. In the first scenario (“all+attitude+emotion”),
both sentiment attitudes and sentiment emotions were extracted from all financial tweets
and used as additional features. This allowed us to verify how useful sentiment infor-
mation is for market trend prediction. In the second scenario (“all+emotion”), only
those eight sentiment emotions were used as additional features. This provided an
opportunity to validate the usefulness of sentiment emotions alone. For the last scenario
(“filtering+emotion”), only the Twitter messages (tweets) mentioning the company of
our interest were utilised to extract sentiment emotions as additional features.
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Type
baseline all+attitude+emotion all+emotion filtering+emotion

Acc Fup
1 Fdown

1 Acc Fup
1 Fdown

1 Acc Fup
1 Fdown

1 Acc Fup
1 Fdown

1

DJIA 0.810 0.854 0.727 0.810 0.846 0.750 0.778 0.829 0.682 - - -
AAPL 0.889 0.918 0.829 0.810 0.860 0.700 0.794 0.847 0.683 0.794 0.831 0.735
JPM 0.746 0.800 0.652 0.730 0.779 0.653 0.746 0.789 0.680 0.778 0.829 0.682
GBP/USD 0.708 0.387 0.808 0.662 0.389 0.766 0.631 0.294 0.750 - - -
EUR/USD 0.685 0.627 0.727 0.685 0.627 0.727 0.692 0.626 0.739 - - -

Table 6.16. Market trend prediction using financial tweets from Twitter (01/04/2014 –
01/04/2015).

Fig. 6.13: Twitter Market Bot

The experimental results, as shown in Table 6.16, indicate that, most of the time,
the baseline model would actually outperform the expanded model with sentiment
attitudes, sentiment emotions or both as additional features. Only for the JPM stock did
we see noticeable performance improvements in the “filtering+emotion” setting. Once
again these results are consistent with the causality analysis in Section 6.4.2 and the
market trend prediction experiments using financial news in Section 6.4.8 — the JPM
stock demonstrated that integrating sentiment emotions has the potential to enhance the
baseline model. Our results have also confirmed that sentiment attitudes on their own
are probably not very useful for market trend prediction, but at least for some particular
stocks sentiment emotions could be exploited to improve machine-learning models such
as SVM to achieve better market trend prediction.

Our findings are mostly in line with other researchers’ results [28]. However, there
are still many questions remaining unanswered in this area. As part of our analysis,
we also created the prototype Twitter bot (see Figure 6.13), which is continuously
monitoring Twitter, various news outlets and market situations, and provides trading
recommendations.
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6.5 Political Sentiment Case Study

In this section, we present the results of political-sentiment analysis using the 2016 US
presidential election Twitter data. More specifically, together with Birkbeck Department
of Politics, we used Twitter analytics and sentiment analysis to examine questions of
white flight, and the contextual basis of support for anti-immigration politicians. Our
principal methodology was to categorise individuals on Twitter into pro- and anti-Trump
categories using geotagged social media data. We used Trump support as a proxy, albeit
an imperfect one, for immigration sentiment, thereby surmounting some of the problems
presented by the absence of large-scale American longitudinal data on attitudes and
voting. Though just 0.06% of tweets are tagged with coordinates, the scale of the data
was sufficient to compare the ethnic contexts of Trump opponents and supporters.

Political sentiment in the research literature is also known as stance detection
(SD) [119, 120, 226]. It can be defined as a speaker’s opinion towards a particular target
and is closely related to sentiment analysis. As defined by Mohammad et al. [167], a
typical sentiment-detection system classifies a text into positive, negative or neutral
categories, while in SD the task is to detect a text that is favourable or unfavourable
to a specific given target. By analysing how attitudes and actual residential behaviour
interact over time, geolocation technology and SD open new possibilities for research
and provide an opportunity to examine the demographics of right-wing populists.

6.5.1 Datasets

Type Values

Tags #MakeAmericaGreatAgain, #NeverTrump; #DonaldTrump,
#Trump2016, #Trump

Users @realDonaldTrump

Table 6.17. 2016 US presidential election dataset

In order to carry out the analysis, we gathered a large collection of tweets related to
the 2016 presidential campaign of Donald Trump. From April to November 2016, using
the Twitter API, we collected all tweets expressing a strong stance towards Trump (see
Table 6.17). The collected dataset consists of:

• 142 million unique messages from 7.6 million users (including re-tweets);

• 55 million original messages;

• 49 million messages with geographical tags;
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Fig. 6.14: 2016 US presidential election Twitter messages

Fig. 6.15: Twitter messages by tag

• 53 million messages with user location tags;

• 3 million messages with place tags;

• 82 thousand messages with coordinates;

• around 12 thousand user profiles with an identifiable profile image.

All the tweets were automatically filtered for duplicates. Only tweets from users
with less than 50 thousand followers were included. All tweets were pre-processed
by replacing emoticons with their corresponding text representations and encoding
URLs with tokens. Not all functionality was available via the Twitter API. Therefore,
to collect user profile photos, we also employed Web scraping. In Figure 6.14 we
presented tweets’ distribution by date and in Figure 6.15 by hashtags.

To create the SD test set, we randomly selected 2488 tweets and annotated them
using the MTurk crowdsourcing platform. In MTurk, a single annotation task is called
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Source FAVOUR AGAINST NONE

mTurk 562 852 176
SemEval 148 299 260

Table 6.18. Trump stance classification test datasets

a Human Intelligence Task (HIT). In each of the HITs, the annotators were asked to
annotate three tweets with the following tags:

• IN FAVOUR: a tweet expresses positive stance towards Donald Trump;

• AGAINST: a tweet expresses negative stance towards Donald Trump;

• NONE: a tweet is neutral or not related to Donald Trump.

The annotation methodology followed established natural language processing
standards. Only annotators with at least 80% approval rate participated. Annotators
worked to agreed guidelines, with at least two annotators annotating each message. In
the final dataset, only tweets where agreement passed a threshold were included. We
also used a “Known Answer Review Policy”. It was implemented by including a single
“Known Answer” question in each of HITs. Known answer questions are questions
where we know the answer, and if an annotator failed to answer it correctly, we rejected
his annotation as unreliable. From original 2488 messages, only 1590 satisfied quality
requirements. The final dataset consists of 562 messages in favour, 852 against and
176 not related to Donald Trump (see Table 6.18).

We also annotated the profiles of all users who posted geotagged tweets (11969).
To annotate user profiles, we collected their public profile images, extracted profile
names and asked annotators to indicate if they could classify them by age, sex and race.
Out of 11969, only 8403 profiles were successfully annotated.

In the last stance detection experiment, we use the dataset from SemEval-2016 Task
6B [167]. The dataset consists of 707 tweets annotated into in favour, against or not
related to Donald Trump (see Table 6.18). Compared to our collected dataset, this
dataset has a larger proportion of non-related messages.

In the Trump supporter demographic analysis, we processed all geotagged tweets
using a geographic information system (GIS). For each tweet, we extracted its coordi-
nates and located the corresponding zip code tabulation area (ZCTA). This information
allowed us to link each message with the most recent US census data.

6.5.2 Stance detection

To evaluate our proposed stance detection approach in the political domain, we carried
out three experiments. In the first experiment, we classified all tweets from the first
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For Trump Against Trump

#trumpnight, #trumpolympics, #trumpforpres-
ident, #teamtrumppa, #gotrump, #lovetrump,
#godblesstrump, #trumpiswithus, #usafortrump,
#trump2016, #takebackamerica, #trumpfor-
president2016, #trumpcare, #trump4president,
#trumpcares, #trump16, #thedonald, #trumpwill-
win, #deplorablesfortrump, #great, #best, #pow-
erful, #draintheswamp, #saveusa’, #trumprally,
#hilaryforprison, #hillary4prison2016, #hillary-
forjail, #hillarysucks, #neverclinton, #neverever-
hillary, #neverhillaryclinton, #nomoreclintons,
#crookedclinton

#clinton2016, #voteclinton, #votehillaryclin-
ton, #hillaryforpresident, #hillaryforamerica,
#hillaryclintonforpresident, #hillaryclinton2016,
#hillaryclinton, #hiliary, #hillary, #hillary2016,
#hilaryclinton, #fuckdonaldtrump, #sexualpred-
itor, #notmypresident, #rapisttrump, #coward-
lytrump, #racisttrump, #dangerousdonald, #fuck-
youtrump, #nevertrumpers, #predator

Table 6.19. Specific “seeds” for the presidential candidate political-sentiment lexicon
induction.

labelled dataset into three classes: in support, against or not related to Donald Trump.
In the second we removed non-related messages and performed binary classification. In
the last experiment, we compared our SD method with other participants in SemEval-
2016 Task 6B competition [167] using the SemEval dataset.

Following the first two experiments, we compared four different SD methods: (i)
pSenti with the general-purpose lexicon, (ii) pSenti with the induced domain lexicon
using generic seeds and (iii) specific seeds, and (iv) the semi-supervised approach
from Chapter 5, based on a deep-learning LSTM model. Similar to Chapter 5, for
calibration of our LSTM-based binary sentiment classifier, we employed the sigmoid
model of Platt [188] with cross-validation on pseudo-labelled training data. To induce
the domain-specific lexicon, this research followed a similar procedure to that outlined
in Chapter 4. As it is common in political tweets to express a stance using hashtags, we
included in the sentiment candidate list all hashtags discovered in the dataset.

As mentioned above, we evaluated two different strategies for the domain-specific
lexicon induction. The first method uses generic Twitter seeds from Chapter 4. The
second method is based on the so-called two-stage method. The first stage is the
same as in the first method and is based on generic seeds. The second stage uses the
output of the previous stage, selects the most revealing hashtags (see Table 6.19) and
uses them as seeds for the second induction pass. In a sense, the first pass gave us a
better understanding of the political domain, and in the second pass we exploited this
knowledge to induce a better-quality stance detection lexicon. The selection process
was manual and required a human annotator to verify selected seeds. It is likely that
selection processes can be automated. However, that was outside the scope of this thesis.
Our aim was merely to compare the performance of the generic and specific seeds.
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System FFavour
1 FAgainst

1 FNone
1

pSenti with existing general-purpose lexicon 0.444 0.607 0.193
pSenti with induced (generic seeds) lexicon 0.585 0.691 0.220
pSenti with induced (specific seeds) lexicon 0.593 0.691 0.222
Semi-supervised model from Chapter 5 0.638 0.707 0.225

Table 6.20. Trump support messages classification into three classes

System AUC FFavour
1 FAgainst

1

Random Selection Classifier (Stratified) 0.509 0.454 0.553
pSenti with existing general-purpose lexicon 0.584 0.471 0.686
pSenti with induced (generic seeds) lexicon 0.714 0.620 0.739
pSenti with induced (specific seeds) lexicon 0.723 0.629 0.734
Semi-supervised model from Chapter 5 0.803 0.679 0.758

Table 6.21. Trump support messages classification into two classes

As expected, in the first experiment (see Table 6.20), the semi-supervised model
outperformed all other methods by a significant margin, yet all models performed
poorly with the non-related messages class. This can be explained by the fact that
those non-related tweets, being only a tiny fraction of the dataset (11%), are not easy
to define and are more likely just sentiment anomalies. This suggests that to improve
the performance further, we would need to perform additional domain adaptation, most
likely with two-step classification. In the first step, we would remove all non-related
messages and later classify political messages into binary classes.

The binary political support classification task (see Table 6.21) demonstrated our
domain-adaptation superiority more clearly. In all experiments, we measured statistical
significance using the two-tailed binomial test [259] with a confidence level of 95%
and confirmed that each following model was significantly better than its previous
version. In all scenarios, the performance of the general-purpose sentiment lexicon
was inferior and could not be efficiently employed in the political message analysis.
It was just marginally better than random selection. Domain adaptation significantly
improved performance. The induced lexicon produced reasonable results, with 0.723,
and the semi-supervised model achieved 0.803 AUC. Experiments also demonstrated
that although a slight increase in performance may be achieved by using the two-stage
lexicon induction, the improvement is marginal and requires additional effort.

6.5.3 Evaluation of the method on the SemEval 2016 dataset

Finally, to evaluate our proposed stance detection approach, we carried out experiments
on the Trump SD benchmark dataset from SemEval-2016 Task 6B [167], which is
to classify 707 tweets as either in favour or against Donald Trump (see Table 6.18).
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System FFavour
1 FAgainst

1 FAverage
1

OursLSTM 0.4344 0.4650 0.4497
Worst system 0.1659 0.3487 0.2573
Median system 0.1796 0.5020 0.3408
Best system 0.5739 0.5517 0.5628

Table 6.22. Results for SemEval-2016 Task 6B.

No training data labelled with the stance towards “Donald Trump” was provided, but
participants were free to use data from SemEval-2016 Task A to generate a training
dataset. Thus, many of the proposed methods were either supervised or nearly super-
vised. Contrary to our nearly-unsupervised approach, the winner’s method [242] was a
supervised approach.

As we can see from the results shown in Table 6.22, our approach from Chapter 5,
based on a deep-learning LSTM model was second best. It outperformed all participants
by a significant margin and lost only to the supervised approach proposed by Wei
et al. [242].

6.5.4 Demographics of Trump supporters

To investigate the “white flight” research question and the demographics of anti-
immigration politicians’ supporters, we selected only users who published tweets
with geographical tags. From our Twitter dataset, we identified 11969 such users, who
generated more than 382 thousand messages. As mentioned above, these user profiles
were annotated using MTurk to determine their gender, race and age. The annotation
revealed that most Twitter profiles belong to white males (see Figures 6.17a and 6.18a)
with a median age of 32 (see Figure 6.16a).

To extract the Trump political support level, we employed the SD methodology
explained in the section above. All calculations were made using the best-performing
deep-learning (LSTM) model, adapted to the 2016 presidential election domain. We
classified all messages into two classes, such as in favour or against Donald Trump.
We assigned people to the supporters or opponents of Donald Trump if at least 75% of
their messages expressed the same stance. Users with a lower proportion were assigned
to the balanced stance group.

The political-sentiment (stance) analysis results uncovered several demographic
patterns, which in some instances contradict the official statistics and other research
papers. Our results in this section are based on a relatively small sample and, as
Kahneman and Egan [109] highlighted, experiments using small samples can suffer
from a number of limitations. Such experiments have replicability issues, may yield
extreme results and can lead to overinterpretation of findings. In addition, we have
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Fig. 6.16: Political demographics by age

numerous dataset sampling constraints, such as having only messages with coordinates
and only with a strong stance towards Trump, which should explain some of our result
outliers. Based on all this we treat our findings as indicative results only which would
need to be validated and explored by further, more extensive experiments in future.

One of the first observations from our results is that Trump political support de-
creases with increasing supporter age (see Figure 6.16b). This is opposite from what
was found in other research papers [240] and in the 2016 election exit polls [64].

Similar surprising results have been obtained in the analysis by sex groups (see
Figure 6.17b), where we found that Trump has higher support among women. In the
case of race (see Figure 6.18b), our results were somewhat consistent with other sources:
Trump has the lowest support among the Black population; however, contrary to the
2016 election exit polls [64], we found that he also has high support among the Asian
and Hispanic population.

To analyse the distribution of Trump supporters using other demographic groups we
made use of the earlier extracted ZCTA and the most recent US census data. In the case
of income (see Figure 6.19), we identified that Trump has the strongest support among
the lowest and highest income groups. The data analysis by education seems even
more controversial (see Figure 6.20). According to the experimental results, Trump
has significantly higher support in areas with the most-educated voters. Our findings
contradict other researchers’ findings, such as those stating that Trump supporters are
predominantly middle-aged, non-Hispanic whites, especially those without a college
degree, living in small cities and rural areas [168]. More research is needed to identify
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Fig. 6.17: Political demographics by sex
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Fig. 6.18: Political demographics by race

why our results are different. It might be related to our geotagging requirement or some
other unidentified anomalies.

Besides that, we performed user movement analysis to answer the “white flight”
research question. Using geotagged messages, we attempted to find out whether Trump
supporters were more likely to move home to significantly whiter areas. To ascertain
whether an individual has moved home or if it is just commuting/travelling/on holiday,
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Fig. 6.19: Political demographics by income (thousands)
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Fig. 6.20: Political demographics by degree

we performed the temporal and spatial clustering of their message location points.
Typically, people have two gravity centres (home and work), going back and forth [2].
A one-directional shift detection from one location to another one that might indicate
permanent relocation. As a simplified solution, we selected out-of-work messages
(between 7 p.m. and 8 a.m.), calculated distance from the centre of the USA for
each message and clustered the data using K-means into two and three clusters (using
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Fig. 6.21: Twitter messages by tag

normalised distance). Preliminary results (see Figure 6.21) identified that white Trump
supporters are indeed more likely to move to white areas.

6.6 Summary and Conclusions

In this chapter, we presented four use case studies of our sentiment-analysis method
pSenti and its application in various domains, from customer reviews to financial news
articles and tweets. In Section 6.2 we focused on Amazon product reviews and sentiment
time-series dynamics; in Section 6.2.3 we expanded that investigation into seasonality
detection; and finally, in Section 6.2.4, a temporal-hybrid sentiment-analysis system
was proposed. Experimental results indicate that the proposed temporal-hybrid system
outperformed the baseline and on average achieved between 5% and 15% better results.
We also identified that a simpler design using a regression over past achieved similar
performance may be a more practical alternative. This indicates that aggregating past
sentiment significantly boosts performance and may be employed in customer review
sentiment analysis.

We found, contrary to initial expectations, that product sentiment is a dynamic pro-
cess and frequently degrades over time. The sentiment value is also exposed to various
anomalies and, under their influence, can significantly change strength. Our results also
identified temporal dependencies and confirmed the importance of continuous sentiment
system adaptation to an underlying domain.

In Section 6.4 we empirically re-examined the feasibility of applying sentiment
analysis to make market trend predictions. Our experiments investigated the causal
relationship between sentiment attitude/emotion signals and stock price movements
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using various sentiment signal sources and different time periods. The experimental
results indicate that the interaction between sentiment and price is complex and dynamic:
while some stocks in some time periods exhibited strong cross-correlation, it was absent
in other cases. We have discovered that in general sentiment attitudes do not seem to
have any Granger causality with respect to stock prices, but sentiment emotions do seem
to Granger-cause price changes for some particular stocks (e.g., JPM). Furthermore,
we have attempted to incorporate sentiment signals into machine-learning models
for market trend prediction. Specifically, we have compared two popular machine-
learning approaches and finally selected SVM (with an RBF kernel) as the baseline,
which was trained using fifteen technical indicators. On average, this method achieved
70% accuracy for five-day market trend prediction. The baseline model was then
expanded using sentiment attitudes and sentiment emotions extracted from financial
news or financial tweets as additional features. In some scenarios, the proposed model
outperformed the baseline model and demonstrated that sentiment emotions could be
employed to help predict stock price movements, whereas sentiment attitudes could not.
The sentiment emotions extracted form Financial Times news articles yielded better
performances than those extracted from Reddit news headlines.

An important research question for future work is how to identify stocks whose
price changes are indeed predictable using sentiment emotions. Although the Granger
causality test on the historical data could find stocks that had been predictable in the
past, there is no guarantee that they would continue to be predictable in the future. It is
possible that a more sophisticated classifier for this purpose could be developed.

Finally, in Section 6.5 we examined Donald Trump supporters and opponents and
performed stance detection on their tweets. Using geotagged social media data, which
repeatedly measures the attitudes and locations of large numbers of individuals, we shed
new light on how patterns of ethnic segregation are reproduced. Some of our findings
contradicted those of other researchers, such as finding that Trump has significant
support in highly educated areas and among younger age voter groups. Such disparity
may be explained by the fact that our results were based on a small sample, with
numerous sampling limitations. This use case once more confirmed the superiority and
flexibility of our domain-adaptation method, which had significantly better performance
than the baseline. It also demonstrated that, using a multi-stage approach, generic seeds
might be helpful in generating higher-quality domain-specific seeds. Although such
an approach requires additional effort and produces only a slight increase over generic
seeds, it demonstrated that this approach could, in principle, improve sentiment analysis
on domain adaptation. However, more research is needed to answer all the remaining
questions.
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Conclusion

Most of today’s sentiment analysis systems are based on either a ready-made lexicon or
a supervised learning technique. A typical lexicon-based sentiment analysis system is
easy to understand and maintain by human users as it can provide an aspect-oriented
explanation, but it cannot match supervised learning accuracy. On the contrary, learning-
based sentiment analysis systems usually achieve the best performance in sentiment
detection and classification, but they are by and large black boxes in the sense that no
explanation or justification can be provided to the users.

A big concern in sentiment analysis is the domain dependency problem (i.e., the
methods perform well only if they are targeted at a specific domain). On one hand,
supervised learning solutions have superior performance but suffer a significant accuracy
loss when domain boundaries are crossed. The simplest way to adapt such a sentiment
analysis system to a particular domain is by collecting labelled domain-specific training
data. However, that will be very expensive and time-consuming. Researchers have
proposed many techniques to tackle the problem of domain adaptation, but they have
various limitations. Supervised domain adaptation is not very dissimilar from supervised
sentiment analysis, with the same components and requirements. Unsupervised domain
adaptation methods in general have inferior performance and cannot match conventional
supervised sentiment analysis methods. Moreover, many domain adaptation methods
are designed with particular domain boundaries and constraints in mind. In the research
literature, there are not many methods for domain adaptation between distant domains
(e.g., between Twitter messages and newspaper articles). Those few that try to perform
distant domain adaptation [158] have to make sacrifices in performance. Besides, as
we have highlighted in a number of chapters of this thesis, in almost all cases, domain
adaptation does not completely remove the domain dependency problem, and many
of the available solutions suffer from significant sensitivity to domain boundaries,
especially among distant domains. This issue makes them unsuitable for processing
noisy sentiment sources containing cross-style or near-domain documents.
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In order to address the problems described above, this thesis introduces a new
approach to domain adaptation for sentiment analysis and presents our exploration
towards answering the following research questions.

• Is it possible to overcome the above mentioned limitations of lexicon-based or
learning-based methods and reduce their sensitivity to domain boundaries?

• Can lexicon-based systems improve their performance by learning a domain-
specific lexicon?

• Are we able to narrow or close the performance gap between unsupervised
methods and supervised methods?

Chapter by chapter, we have tried to chart the evolution of our pSenti sentiment
analysis method along with the development of novel domain adaptation techniques.
The research has concluded with the proposal of a system which can, in an nearly-
unsupervised manner, adapt to the domain at hand and perform sentiment analysis
with minimal loss of performance. The strengths of the system have been further
demonstrated by multiple use case studies.

To report in greater detail what has been carried out within this scope, we summarise
the key contributions of each chapter here.

In Chapter 3, we introduced pSenti, a concept-level sentiment-analysis system
that seamlessly integrates lexicon-based and learning-based approaches to acquire
adaptive sentiment analysis. The learning-based part of the proposed method was
responsible for domain-specific lexicon discovery and adaptation to an underlying
domain. While it is comparable to existing approaches, the experimental results from
Chapter 3 illustrated one of the principal advantages of our pSenti algorithm (i.e.
lower topic and style dependency compared to a pure bag-of-words machine-learning
implementation).

In Chapter 4, we demonstrated that a high-quality domain-specific sentiment
lexicon could be induced by using word embeddings in that domain, together with just
a few seed words. The notable advantage of the proposed method over existing ones
is that neither hand-crafting nor a labelled corpus are needed, and the induced lexicon
quality is on a par with the handcrafted one. Lexicon induction enabled lexicon-based
pSenti to work as an semi-supervised sentiment-detection system, which can not only be
adapted to any new domain but also retains its former properties such as lower domain
dependency.

As mentioned above, an induced lexicon can be applied directly to a lexicon-based
algorithm for sentiment analysis; however, in Chapter 5 we achieve a higher performance
through a two-stage bootstrapping approach and efficiently creating an end-to-end semi-
supervised approach to domain-specific sentiment analysis. Compared to existing
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methods, it has the advantage of working on any target domain, does not need labelled
documents, and achieves sentiment classification accuracy comparable to that of fully
supervised approaches.

Through this thesis, we also explored numerous domain-adaptation and cross-
domain sentiment-analysis scenarios across a diverse set of domains. We investigated
professional and customer reviews, and financial and political microblogs, and extracted
sentiment from news articles and headlines. Some of our experimental choices were
guided by the available datasets and we believe there is significant scope for improve-
ment. Namely, the selection for products and product categories in customer review
experiments and the use of a small dataset in the political stance detection use case. It
is important to view some of the individual results in the context of other experiments,
each of them presenting only small pieces of the puzzle rather than the full picture.

In Chapter 3, we explored a near-cross-domain environment, or, in other words,
cross-style, as both datasets were from the same topic domain, although they used a
different writing style. We identified that our mixed algorithm could be trained on one
type of reviews and detect sentiments in another type, without a substantial penalty in its
performance. We also briefly investigated and reported results on distant cross-domain
sentiment analysis, where our proposed method outperformed the competing methods.
Although some of our cross-domain experiments in Chapter 3 relied on a limited choice
of domains and product categories, we believe that the gap was filled by our experiments
from later chapters.

In Chapter 5, we compared all our proposed sentiment adaptation methods and
demonstrated that they perform remarkably well in cross-domain sentiment analysis. As
expected, pSenti with an induced lexicon, produced more stable results than any other
method. By contrast, the deep-learning-based approach had some difficulties dealing
with the change from regular to irregular language, which we believe might be resolved
using additional text pre-processing and normalisation.

In Chapter 6, we presented four case studies, using lexicon-based, supervised and
semi-supervised sentiment-analysis methods. Our case studies demonstrate the impor-
tance of domain adaptation and the advantages of our proposed method. They confirm
that our semi-supervised domain-adaptation method might be universally applied to
any target domain. We achieved good adaptation results in social media, customer
and professional review, as well as with news articles. We discovered that historical
sentiment information may be utilised to forecast future sentiment and proved the
existence of temporal domain dependency. It was surprising that a temporal sentiment
shift may be observed within a moderately short period. Moreover, the change can be
observed in the Amazon domain, which has stringent boundaries and straightforward
sentiment language. This finding confirmed that nowadays language evolution is a more
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rapid process, recognising the importance of continuous sentiment system adaptation to
an underlying domain.

In the market sentiment use case, we empirically re-examined the feasibility of
applying sentiment analysis to make market trend predictions. The experimental results
indicated that the interaction between sentiment and price is complex and dynamic:
while some stocks in some time periods exhibited strong cross-correlation, it was absent
in other cases. Furthermore, we have attempted to incorporate sentiment signals into
machine-learning models for market trend prediction. In some scenarios, the proposed
model outperformed the baseline model and demonstrated that sentiment emotions
could be employed to help predict stock price movements, though sentiment attitudes
could not.

In the political-stance detection use case, we examined Donald Trump supporters
and opponents and performed stance detection on their tweets. The experimental results
uncovered that in some domains it is not recommended to use vanilla sentiment-analysis
methods, and that to get reliable results it is vital to perform domain adaptation. In the
political-stance detection task, the general-purpose sentiment lexicon showed inferior
performance, just fractionally better than random selection. Demographic pattern
analysis has produced results which in some instances contradicted the official statistics
and research papers. That may be due to the dataset size and sampling limitations and
would require a further, more thorough investigation.

Admittedly, there are numerous opportunities to extend and enhance this work, and
we name just a few as follows.

• Further investigation is required into the sensitivity of a learning-based approach
to distant-domain boundaries, which is somewhat related to the ability of “trans-
lating” between the different languages spoken in different domains.

• Chapter 6 have identified some weaknesses in the current non-relevant message
detection process which still need to be addressed.

• Some ideas that we have introduced in the development of our pSenti system
still have much mileage and it is promising to expand them, e.g., the multi-stage
approach to generating higher-quality domain-specific seeds, the exploitation of
historical data to improve sentiment analysis, and so on.

• Recent advances in LM methods [55, 199] have brought great potential for
future research. They demonstrate an improvement over existing, state-of-the-art
sentiment analysis methods, and to improve our semi-supervised method from
Chapter 5 we could consider replacing LSTM with a more sophisticated BERT
[55]. Moreover, BERT’s ability to capture context-specific information offers an
opportunity to investigate new domain-independent sentiment analysis methods.
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Provided with enough training data from a diverse set of domains, it may be
possible to use its transfer learning capabilities and detect sentiment on any target
domain without additional adaptation and with minimum loss of performance.

• Contextualised word-embeddings [55] are another interesting research topic worth
considering in the future. It may further improve both the lexicon induction and
the pseudo-labelled documents’ bootstrap component.

• Several research directions, from Chapter 6 use case studies, are worth further
investigation. A more in-depth analysis of seasonal review patterns and political
stance using a larger dataset could provide a better insight into outstanding
research questions and address current research limitations.
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[44] E. Ş. Chifu, T. Ş. Leţia, and V. R. Chifu. “Unsupervised Aspect Level Sentiment
Analysis Using Ant Clustering and Self-organizing Maps”. In: International
Conference on Speech Technology and Human-Computer Dialogue. IEEE. 2015,
pp. 1–9.

[45] Y. Choi, E. Breck, and C. Cardie. “Joint Extraction of Entities and Relations
for Opinion Recognition”. In: Proceedings of the 2006 Conference on Empiri-
cal Methods in Natural Language Processing. Association for Computational
Linguistics. ACM Press, 2006, pp. 431–439. ISBN: 1932432736.

[46] M. Choy, M. L. F. Cheong, M. N. Laik, and K. P. Shung. “A Sentiment Anal-
ysis of Singapore Presidential Election 2011 Using Twitter Data with Census
Correction”. In: arXiv preprint arXiv:1108.5520 (2011).

[47] M. Cliche. “BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis
with CNNs and LSTMs”. In: Proceedings of the 11th International Workshop
on Semantic Evaluation. Vancouver, Canada: Association for Computational
Linguistics, 2017, pp. 573–580.

[48] N. A. C. Cressie and H. J. Whitford. “How to Use the Two Sample T-test”. In:
Biometrical Journal 28.2 (1986), pp. 131–148.

[49] A. M. Dai and Q. V. Le. “Semi-Supervised Sequence Learning”. In: Advances
in Neural Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems. Montreal, Quebec, Canada, 2015, pp. 3079–
3087.

[50] S. P. Das and S. Padhy. “Support Vector Machines for Prediction of Futures
Prices in Indian Stock Market”. In: International Journal of Computer Applica-
tions 41.3 (2012).

[51] J. Dastin. Amazon Trounces Rivals in Battle of the Shopping ’bots’. 2017. URL:
https : / /www.reuters .com/article /us - amazon- com- bots - insight /amazon-
trounces-rivals-in-battle-of-the-shopping-bots-idUSKBN1860FK.

[52] A. M. De Livera, R. J. Hyndman, and R. D. Snyder. “Forecasting Time Series
with Complex Seasonal Patterns Using Exponential Smoothing”. In: Journal of
the American Statistical Association 106.496 (2011), pp. 1513–1527.

[53] C. Dellarocas, X. M. Zhang, and N. F. Awad. “Exploring the Value of Online
Product Reviews in Forecasting Sales: The Case of Motion Pictures”. In: Journal
of Interactive Marketing 21.4 (2007), pp. 23–45.

[54] S. Deng, T. Mitsubuchi, K. Shioda, T. Shimada, and A. Sakurai. “Combining
Technical Analysis with Sentiment Analysis for Stock Price Prediction”. In:
IEEE Ninth International Conference on Dependable, Autonomic and Secure
Computing. IEEE. 2011, pp. 800–807.

https://www.reuters.com/article/us-amazon-com-bots-insight/amazon-trounces-rivals-in-battle-of-the-shopping-bots-idUSKBN1860FK
https://www.reuters.com/article/us-amazon-com-bots-insight/amazon-trounces-rivals-in-battle-of-the-shopping-bots-idUSKBN1860FK


References 148

[55] J. Devlin, M. Chang, K. Lee, and K. Toutanova. “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding”. In: arXiv preprint
arXiv:1810.04805 (2018).

[56] D. A. Dickey and W. A. Fuller. “Distribution of the Estimators for Autoregres-
sive Time Series with a Unit Root”. In: Journal of the American Statistical
Association 74.366a (1979), pp. 427–431.

[57] X. Ding, Y. Zhang, T. Liu, and J. Duan. “Deep Learning for Event-driven Stock
Prediction”. In: Proceedings of the 24th International Conference on Artificial
Intelligence. IJCAI’15. Buenos Aires, Argentina: AAAI Press, 2015, pp. 2327–
2333. ISBN: 978-1-57735-738-4.

[58] X. Ding, B. Liu, and P. S. Yu. “A Holistic Lexicon-based Approach to Opinion
Mining”. In: Proceedings of the International Conference on Web Search and
Web Data Mining. WSDM ’08. Palo Alto, California, USA: ACM Press, 2008,
pp. 231–240.

[59] X. Dong and G. Melo. “A Helping Hand: Transfer Learning for Deep Sentiment
Analysis”. In: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics. 2018, pp. 2524–2534.

[60] J. Eisenstein. “Unsupervised Learning for Lexicon-Based Classification”. In:
Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Fran-
cisco, CA, USA, 2017, pp. 3188–3194.

[61] P. Ekman. “An Argument for Basic Emotions”. In: Cognition and Emotion
6.3-4 (May 1992), pp. 169–200. ISSN: 1464-0600.

[62] P. Ekman, W. V. Friesen, and P. Ellsworth. Emotion in the Human Face: Guide-
lines for Research and an Integration of Findings. Pergamon general psychology
series. Elsevier Science, 2013. ISBN: 9781483147635.

[63] A. Esuli and F. Sebastiani. “SentiWordNet: A Publicly Available Lexical Re-
source for Opinion Mining”. In: Proceedings of the Fifth International Confer-
ence on Language Resources and Evaluation. Genoa, Italy: European Language
Resources Association (ELRA), 2006.

[64] Exit Polls 2016. Nov. 2016. URL: https://edition.cnn.com/election/2016/results/
exit-polls.

[65] S. Faralli and R. Navigli. “A New Minimally-supervised Framework for Domain
Word Sense Disambiguation”. In: Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural
Language Learning. EMNLP-CoNLL ’12. Jeju Island, Korea: Association for
Computational Linguistics, 2012, pp. 1411–1422.

[66] M. Farhadloo and E. Rolland. “Multi-class Sentiment Analysis with Clustering
and Score Representation”. In: IEEE 13th International Conference on Data
Mining Workshops. IEEE, 2013, pp. 904–912.

[67] M. Finnegan. Thomson Reuters Adds Twitter Sentiment Analysis to Eikon Trad-
ing Terminal. 2014. URL: https:/ /www.computerworlduk.com/it- vendors/
thomson- reuters-adds- twitter- sentiment-analysis- eikon- trading- terminal-
3499978.

[68] E. Frank and M. A. Hall. “A Simple Approach to Ordinal Classification”. In:
Proceedings of the 12th European Conference on Machine Learning. Freiburg,
Germany, 2001, pp. 145–156.

https://edition.cnn.com/election/2016/results/exit-polls
https://edition.cnn.com/election/2016/results/exit-polls
https://www.computerworlduk.com/it-vendors/thomson-reuters-adds-twitter-sentiment-analysis-eikon-trading-terminal-3499978
https://www.computerworlduk.com/it-vendors/thomson-reuters-adds-twitter-sentiment-analysis-eikon-trading-terminal-3499978
https://www.computerworlduk.com/it-vendors/thomson-reuters-adds-twitter-sentiment-analysis-eikon-trading-terminal-3499978


References 149

[69] N. H. Frijda. “The Laws of Emotion”. In: American Psychologist 43.5 (1988),
p. 349.

[70] M. Galar, A. Fernández, E. Barrenechea, and F. Herrera. “DRCW-OVO: Distance-
based Relative Competence Weighting Combination for one-vs-one Strategy in
Multi-class Problems”. In: Pattern Recognition 48.1 (2015), pp. 28–42.

[71] Q. Gao. “Stock Market Forecasting Using Recurrent Neural Network”. PhD
thesis. University of Missouri–Columbia, 2016.

[72] D. Geeraerts. Diachronic Prototype Semantics: A Contribution to Historical
Lexicology. Oxford Studies in Lexicography. Clarendon Press, 1997. ISBN:
9780198236528.

[73] D. Geeraerts and H. Cuyckens. “Introducing Cognitive Linguistics”. In: The
Oxford Handbook of Cognitive Linguistics. 2007.

[74] A. Giachanou and F. Crestani. “Tracking Sentiment by Time Series Analysis”.
In: Proceedings of the 39th International ACM SIGIR conference on Research
and Development in Information Retrieval. Association for Computational
Linguistics. ACM Press, 2016, pp. 1037–1040. ISBN: 9781450340694.

[75] F. Gieseke, A. Airola, T. Pahikkala, and O. Kramer. “Sparse Quasi-Newton
Optimization For Semi-Supervised Support Vector Machines”. In: Proceedings
of the 1st International Conference on Pattern Recognition Applications and
Methods. Vilamoura, Algarve, Portugal: SciTePress - Science, 2012, pp. 45–54.
ISBN: 9789898425997.

[76] X. Glorot, A. Bordes, and Y. Bengio. “Domain Adaptation for Large-scale
Sentiment Classification: A Deep Learning Approach”. In: Proceedings of the
28th international conference on machine learning. 2011, pp. 513–520.

[77] A. Go, R. Bhayani, and L. Huang. “Twitter Sentiment Classification Using
Distant Supervision”. In: CS224N Project Report, Stanford 1.2009 (2009),
p. 12.

[78] N. Godbole, M. Srinivasaiah, and S. Skiena. “Large-Scale Sentiment Analysis
for News and Blogs”. In: The International AAAI Conference on Web and Social
Media 7.21 (2007), pp. 219–222.

[79] A. B. Goldberg and X. Zhu. “Seeing Stars when there aren’t many Stars: Graph-
based Semi-supervised Learning for Sentiment Categorization”. In: Proceedings
of the First Workshop on Graph Based Methods for Natural Language Pro-
cessing. TextGraphs-1. Stroudsburg, PA, USA: Association for Computational
Linguistics, 2006, pp. 45–52.

[80] Y. Goldberg. “Neural Network Methods for Natural Language Processing”. In:
Synthesis Lectures on Human Language Technologies 10.1 (2017), pp. 1–309.
ISSN: 1947-4059.

[81] C. W. J. Granger. “Investigating Causal Relations by Econometric Models and
Cross-spectral Methods”. In: Econometrica: Journal of the Econometric Society
(1969), pp. 424–438.

[82] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber.
“LSTM: A Search Space Odyssey”. In: IEEE Transactions on Neural Networks
28.10 (Oct. 2017), pp. 2222–2232. ISSN: 2162-2388.



References 150

[83] S. Günnemann, N. Günnemann, and C. Faloutsos. “Detecting Anomalies in
Dynamic Rating Data: A Robust Probabilistic Model for Rating Evolution”. In:
Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining. Association for Computational Linguistics. ACM
Press, 2014, pp. 841–850.

[84] J. Haidt. “The Moral Emotions”. In: R. J. Davidson, K. R. Scherer, and H. H.
Goldsmith. Handbook of Affective Science. Oxford University Press, 2003.
ISBN: 9780198029120.

[85] Y. Hamilakis. “The Past As Oral History”. In: Thinking through the Body.
Springer, 2002, pp. 121–136.

[86] W. L. Hamilton, K. Clark, J. Leskovec, and D. Jurafsky. “Inducing Domain-
Specific Sentiment Lexicons from Unlabeled Corpora”. In: Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing.
Austin, TX, USA: Association for Computational Linguistics, 2016, pp. 595–
605.

[87] P. J. Hardin and J. M. Shumway. “Statistical Significance and Normalized
Confusion Matrices”. In: Photogrammetric Engineering and Remote Sensing
63.6 (1997), pp. 735–739.

[88] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
2nd ed. Springer New York, 2009. ISBN: 9780387848587.

[89] V. Hatzivassiloglou and K. R. McKeown. “Predicting the Semantic Orientation
of Adjectives”. In: Proceedings of the 35th Annual Meeting of the Association
for Computational Linguistics and Eighth Conference of the European Chapter
of the Association for Computational Linguistics. ACL ’98. Madrid, Spain:
Association for Computational Linguistics, 1997, pp. 174–181.

[90] V. Hatzivassiloglou and J. M. Wiebe. “Effects of Adjective Orientation and
Gradability on Sentence Subjectivity”. In: Proceedings of the 18th Conference
on Computational Linguistics. COLING ’00. Saarbrücken, Germany: Associa-
tion for Computational Linguistics, 2000, pp. 299–305. ISBN: 155860717X.

[91] Y. He. “Incorporating Sentiment Prior Knowledge for Weakly Supervised Senti-
ment Analysis”. In: ACM Transactions on Asian Language Information Pro-
cessing 11.2 (2012), p. 4.

[92] Z. He and K. Maekawa. “On Spurious Granger Causality”. In: Economics
Letters 73.3 (2001), pp. 307–313.

[93] J. M. Hilbe. “Logistic Regression”. In: International Encyclopedia of Statistical
Science. Springer, 2011, pp. 755–758.

[94] S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780. ISSN: 1530-888X.

[95] A. Hogenboom, D. Bal, F. Frasincar, M. Bal, F. de Jong, and U. Kaymak.
“Exploiting Emoticons in Sentiment Analysis”. In: Proceedings of the 28th
Annual ACM Symposium on Applied Computing. Association for Computational
Linguistics. ACM Press, 2013, pp. 703–710.

[96] J. Hong and M. Fang. “Sentiment Analysis with Deeply Learned Distributed
Representations of Variable Length Texts”. In: Stanford University Report
(2015). URL: https://cs224d.stanford.edu/reports/HongJames.pdf.

https://cs224d.stanford.edu/reports/HongJames.pdf


References 151

[97] C. Hsu and C. Lin. “A Comparison of Methods for Multiclass Support Vector
Machines”. In: IEEE Transactions on Neural Networks 13.2 (2002), pp. 415–
425.

[98] M. Hu and B. Liu. “Mining and Summarizing Customer Reviews”. In: Pro-
ceedings of the 2004 ACM Sigkdd International Conference on Knowledge
Discovery and Data Mining. KDD ’04. Seattle, WA, USA: ACM Press, 2004,
pp. 168–177.

[99] M. Hu and B. Liu. “Opinion Feature Extraction Using Class Sequential Rules”.
In: AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs.
Stanford, CA, USA, 2006, pp. 61–66.

[100] W. Huang, Y. Nakamori, and S.-Y. Wang. “Forecasting Stock Market Movement
Direction with Support Vector Machine”. In: Computers & Operations Research
32.10 (2005), pp. 2513–2522.

[101] X. Huang, Y. Huang, M. Wen, A. An, Y. Liu, and J. Poon. “Applying Data
Mining to Pseudo-Relevance Feedback for High Performance Text Retrieval”.
In: Proceedings of the 6th IEEE International Conference on Data Mining.
Hong Kong, China, 2006, pp. 295–306.

[102] B. J. Jansen, M. Zhang, K. Sobel, and A. Chowdury. “Twitter Power: Tweets
As Electronic Word of Mouth”. In: Journal of the Association for Information
Science and Technology 60.11 (2009), pp. 2169–2188.

[103] S. Jansen. Hands-On Machine Learning for Algorithmic Trading: Design and
implement investment strategies based on smart algorithms that learn from data
using Python. Packt Publishing, 2018. ISBN: 9781789342710.

[104] S. Jebbara and P. Cimiano. “Aspect-Based Sentiment Analysis Using a Two-
Step Neural Network Architecture”. In: Semantic Web Evaluation Challenge.
Springer. 2016, pp. 153–167.

[105] Y. Jo and A. H. Oh. “Aspect and Sentiment Unification Model for Online Review
Analysis”. In: Proceedings of the Fourth ACM International Conference on Web
Search and Data Mining. WSDM ’11. Hong Kong, China: ACM Press, 2011,
pp. 815–824. ISBN: 9781450304931.

[106] T. Joachims. “Text Categorization with Support Vector Machines: Learning with
Many Relevant Features”. In: Proceedings of the 10th European Conference on
Machine Learning. Chemnitz, Germany, 1998, pp. 137–142.

[107] T. Joachims. “Transductive Inference for Text Classification using Support
Vector Machines”. In: Proceedings of the 16th International Conference on
Machine Learning. Bled, Slovenia, 1999, pp. 200–209.

[108] T. Joachims. “Transductive Learning via Spectral Graph Partitioning”. In: Pro-
ceedings of the 20th International Conference on Machine Learning. Washing-
ton, DC, USA, 2003, pp. 290–297.

[109] D. Kahneman and P. Egan. Thinking, Fast and Slow. Vol. 1. Penguin Books
Limited, 2011, p. 512. ISBN: 9780141918921.

[110] N. Kaji and M. Kitsuregawa. “Building Lexicon for Sentiment Analysis from
Massive Collection of HTML Documents”. In: Empirical Methods in Natural
Language Processing and Computational Natural Language Learning. 2007,
pp. 1075–1083.



References 152

[111] J. Kamps, M. Marx, R. J. Mokken, M. De Rijke, et al. “Using WordNet to
Measure Semantic Orientations of Adjectives”. In: International Conference on
Language Resources and Evaluation. Vol. 4. 2004, pp. 1115–1118.

[112] J. Kaur and J. R. Saini. “Emotion Detection and Sentiment Analysis in Text
Corpus: A Differential Study with Informal and Formal Writing Styles”. In:
International Journal of Computer Applications 101.9 (2014).

[113] S. Kim and E. Hovy. “Extracting Opinions, Opinion Holders, and Topics Ex-
pressed in Online News Media Text”. In: Proceedings of the Workshop on
Sentiment and Subjectivity in Text. SST ’06. Sydney, Australia: Association for
Computational Linguistics, 2006, pp. 1–8. ISBN: 1-932432-75-2.

[114] Y. Kim. “Convolutional Neural Networks for Sentence Classification”. In: Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing. Doha, Qatar: Association for Computational Linguistics, 2014,
pp. 1746–1751.

[115] S. Kohail. “Unsupervised Topic-Specific Domain Dependency Graphs for As-
pect Identification in Sentiment Analysis”. In: Recent Advances in Natural
Language Processing. 2015, pp. 16–23.

[116] M. Koppel and J. Schler. “The Importance of Neutral Examples for Learning
Sentiment”. In: Computational Intelligence 22.2 (2006), pp. 100–109.

[117] V. Kulkarni, R. Al-Rfou, B. Perozzi, and S. Skiena. “Statistically Significant
Detection of Linguistic Change”. In: Proceedings of the 24th International
Conference on World Wide Web. International World Wide Web Conferences
Steering Committee. 2015, pp. 625–635.

[118] M. L McHugh. “Interrater Reliability: The Kappa Statistic”. In: Biochemia
Medica 22 (Oct. 2012), pp. 276–82.

[119] M. Lai, D. I. H. Farías, V. Patti, and P. Rosso. “Friends and Enemies of Clin-
ton and Trump: Using Context for Detecting Stance in Political Tweets”. In:
Mexican International Conference on Artificial Intelligence. Springer. 2016,
pp. 155–168.

[120] M. Lai, V. Patti, G. Ruffo, and P. Rosso. “Stance Evolution and Twitter Inter-
actions in an Italian Political Debate”. In: International Conference on Appli-
cations of Natural Language to Information Systems. Springer. 2018, pp. 15–
27.

[121] H. Lakkaraju, R. Socher, and C. Manning. “Aspect Specific Sentiment Analysis
Using Hierarchical Deep Learning”. In: NIPS Workshop on Deep Learning and
Representation Learning. 2014.

[122] R. Lawson. Web Scraping with Python. Packt Publishing Ltd, 2015, p. 174.
ISBN: 9781782164371.

[123] Y. LeCun, Y. Bengio, and G. Hinton. “Deep Learning”. In: Nature 521.7553
(May 2015), pp. 436–444.

[124] H. Lee, M. Surdeanu, B. MacCartney, and D. Jurafsky. “On the Importance of
Text Analysis for Stock Price Prediction”. In: Proceedings of the Ninth Inter-
national Conference on Language Resources and Evaluation. 2014, pp. 1170–
1175.

[125] M. Lee. Why Would My Stock’s Value Decline Despite Good News Being
Released? 2018. URL: https : / / www. investopedia . com / ask / answers / 06 /
stockdeclinegoodnews.asp.

https://www.investopedia.com/ask/answers/06/stockdeclinegoodnews.asp
https://www.investopedia.com/ask/answers/06/stockdeclinegoodnews.asp


References 153

[126] H. Li, N. Guevara, N. Herndon, D. Caragea, K. Neppalli, C. Caragea, A. C.
Squicciarini, and A. H. Tapia. “Twitter Mining for Disaster Response: A Do-
main Adaptation Approach”. In: Information Systems for Crisis Response and
Management. 2015.

[127] S. Li, C. Huang, and C. Zong. “Multi-Domain Sentiment Classification with
Classifier Combination”. In: Journal of Computer Science and Technology 26.1
(2011), pp. 25–33. ISSN: 1860-4749.

[128] S. Li, Z. Wang, G. Zhou, and S. Y. M. Lee. “Semi-Supervised Learning for
Imbalanced Sentiment Classification”. In: Twenty-Second International Joint
Conference on Artificial Intelligence. 2011.

[129] M. A. Lim. The Handbook of Technical Analysis+ Test Bank: The Practitioner’s
Comprehensive Guide to Technical Analysis. John Wiley & Sons, 2015, p. 800.
ISBN: 9781118498934.

[130] C. Lin and Y. He. “Joint Sentiment/Topic Model for Sentiment Analysis”.
In: Proceedings of the 18th ACM Conference on Information and knowledge
management. CIKM ’09. Hong Kong, China: ACM Press, 2009, pp. 375–384.
ISBN: 978-1-60558-512-3.

[131] X. Lin, Z. Yang, and Y. Song. “Short-term Stock Price Prediction Based on Echo
State Networks”. In: Expert Systems with Applications 36.3 (2009), pp. 7313–
7317.

[132] B. Liu. Web Data Mining. Data-Centric Systems and Applications. Springer
Berlin Heidelberg, 2011. ISBN: 9783642194603.

[133] B. Liu. “Sentiment Analysis and Opinion Mining”. In: Synthesis lectures on
human language technologies 5.1 (2012), pp. 1–167.

[134] B. Liu. Sentiment Analysis and Subjectivity. Morgan & Claypool, 2012, p. 167.
ISBN: 9781608458844.

[135] B. Liu. Sentiment Analysis. Mining Opinions, Sentiments, and Emotions. Cam-
bridge University Press, 2015. ISBN: 9781139084789.

[136] D. Liu and L. Lei. “The Appeal to Political Sentiment: An Analysis of Donald
Trump’s and Hillary Clinton’s Speech Themes and Discourse Strategies in the
2016 US Presidential Election”. In: Discourse, Context & Media 25 (Oct. 2018),
pp. 143–152. ISSN: 2211-6958.

[137] J. Liu, Y. Cao, C. Lin, Y. Huang, and M. Zhou. “Low-Quality Product Review
Detection in Opinion Summarization”. In: Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language Learning. Vol. 7. 2007,
pp. 334–342.

[138] Z. Liu, Y. Lin, M. Wang, and Z. Lu. “Discovering Opinion Changes in Online
Reviews via Learning Fine-Grained Sentiments”. In: IEEE 2nd International
Conference on Collaboration and Internet Computing. IEEE. 2016, pp. 1–10.

[139] G. M. Ljung and G. E. P. Box. “On a Measure of Lack of Fit in Time Series
Models”. In: Biometrika 65.2 (1978), pp. 297–303.

[140] M. Loog. “Contrastive Pessimistic Likelihood Estimation for Semi-supervised
Classification”. In: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 38.3 (2016), pp. 462–475. ISSN: 2160-9292.

[141] W. Lowe, K. Benoit, S. Mikhaylov, and M. Laver. “Scaling Policy Preferences
from Coded Political Texts”. In: Legislative Studies Quarterly 36.1 (2011),
pp. 123–155.



References 154

[142] Y. Lu, M. Castellanos, U. Dayal, and C. Zhai. “Automatic Construction of a
Context-aware Sentiment Lexicon: An Optimization Approach”. In: Proceed-
ings of the 20th international conference on World wide web. Association for
Computational Linguistics. ACM Press, 2011, pp. 347–356.

[143] Y. Lu and C. Zhai. “Opinion Integration through Semi-supervised Topic Model-
ing”. In: Proceedings of the 17th International Conference on World Wide Web.
Association for Computational Linguistics. ACM Press, 2008, pp. 121–130.
ISBN: 9781605580852.

[144] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. “Learning
Word Vectors for Sentiment Analysis”. In: Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language
Technologies. Portland, Oregon: Association for Computational Linguistics,
2011, pp. 142–150. ISBN: 978-1-932432-87-9.

[145] L. Maaten and G. Hinton. “Visualizing Data Using t-SNE”. In: Journal of
Machine Learning Research 9 (2008), pp. 2579–2605.

[146] H. Maeda, K. Shimada, and T. Endo. “Twitter Sentiment Analysis Based on
Writing Style”. In: Advances in Natural Language Processing. Springer, 2012,
pp. 278–288.

[147] B. G. Malkiel. “The Efficient Market Hypothesis and its Critics”. In: Journal of
Economic Perspectives 17.1 (2003), pp. 59–82.

[148] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information
Retrieval. New York, NY, USA: Cambridge University Press, 2008. ISBN:
9780521758789.

[149] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. McClosky.
“The Stanford CoreNLP Natural Language Processing Toolkit”. In: Proceedings
of 52nd Annual Meeting of the Association for Computational Linguistics: Sys-
tem Demonstrations. Association for Computational Linguistics, 2014, pp. 55–
60.

[150] M. V. Mäntylä, D. Graziotin, and M. Kuutila. “The Evolution of Sentiment
Analysis—a Review of Research Topics, Venues, and Top Cited Papers”. In:
Computer Science Review 27 (Feb. 2018), pp. 16–32. ISSN: 1574-0137.

[151] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. “Building a Large Anno-
tated Corpus of English: The Penn Treebank”. In: Computational Linguistics
19.2 (June 1993), pp. 313–330. ISSN: 0891-2017.

[152] E. Marx and Z. Yellin-Flaherty. “Aspect Specific Sentiment Analysis of Un-
structured Online Reviews”. In: Stanford University Report (2015). URL: https:
//cs224d.stanford.edu/reports/MarxElliot.pdf.

[153] D. Matsumoto. “More Evidence for the Universality of a Contempt Expression”.
In: Motivation and Emotion 16.4 (1992), pp. 363–368.

[154] J. McAuley and J. Leskovec. “Hidden Factors and Hidden Topics”. In: Proceed-
ings of the 7th ACM conference on Recommender systems. RecSys ’13. Hong
Kong, China: ACM Press, 2013, pp. 165–172. ISBN: 9781450324090.

[155] W. Medhat, A. Hassan, and H. Korashy. “Sentiment Analysis Algorithms
and Applications: A Survey”. In: Ain Shams Engineering Journal 5.4 (2014),
pp. 1093–1113.

https://cs224d.stanford.edu/reports/MarxElliot.pdf
https://cs224d.stanford.edu/reports/MarxElliot.pdf


References 155

[156] Q. Mei, X. Ling, M. Wondra, H. Su, and C. Zhai. “Topic Sentiment Mixture.
modeling facets and opinions in weblogs”. In: Proceedings of the 16th In-
ternational Conference on World Wide Web. Association for Computational
Linguistics. ACM Press, 2007, pp. 171–180. ISBN: 9781595936547.

[157] Q. Mei, C. Liu, H. Su, and C. Zhai. “A Probabilistic Approach to Spatiotemporal
Theme Pattern Mining on Weblogs”. In: Proceedings of the 15th International
Conference on World Wide Web. Association for Computational Linguistics.
ACM Press, 2006, pp. 533–542. ISBN: 1595933239.

[158] Y. Mejova and P. Srinivasan. “Crossing Media Streams with Sentiment: Do-
main Adaptation in Blogs, Reviews and Twitter”. In: The International AAAI
Conference on Web and Social Media. 2012.

[159] J. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, T. G. B. Team, J. P.
Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, S. Pinker, M. A. Nowak,
and E. L. Aiden. “Quantitative Analysis of Culture Using Millions of Digitized
Books”. In: Science 331.6014 (2011), pp. 176–182.

[160] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. “Distributed
Representations of Words and Phrases and their Compositionality”. In: Ad-
vances in Neural Information Processing Systems 26: Annual Conference on
Neural Information Processing Systems. Vol. 26. Lake Tahoe, NV, USA, 2013,
pp. 3111–3119.

[161] G. A. Miller and W. G. Charles. “Contextual Correlates of Semantic Similarity”.
In: Language and Cognitive Processes 6.1 (1991), pp. 1–28.

[162] T. Miller, D. Benikova, and S. Abualhaija. “GermEval 2015: Lexsub–a shared
task for German-language lexical substitution”. In: Proceedings of the First
Workshop on German Lexical Substitution. 2015, pp. 1–9.

[163] M. Minsky. The Emotion Machine: Commonsense Thinking, Artificial Intelli-
gence, and the Future of the Human Mind. Simon and Schuster, 2007, p. 400.
ISBN: 9781416579304.
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