
On the Maximum Number

of Common Cards between

Various Classes of Graphs

by Paul Brown

A thesis presented to Birkbeck College

University of London

in the fulfillment of the thesis requirement

for the degree of

Doctor of Philosophy

in

Mathematics

London 2008

c© Paul Brown 2008



I hereby declare that the work presented in this thesis is my own:

Paul Brown.

2



Abstract

On the Maximum Number of Common Cards

between Various Classes of Graphs

The Reconstruction Conjecture is one of the foremost unsolved problems in graph

theory. It conjectures that a graph can be uniquely determined, up to isomorphism,

by its collection of unlabelled vertex-deleted subgraphs (called its deck of cards).

Like many mathematical problems, its appeal lies in the simplicity of its hypothesis

and its accessibility to non-experts. However, although many graph theorists have

tried to resolve the status of conjecture, it is still an open problem.

Since the conjecture has remained unresolved, attention has focused on related re-

construction problems. One such area is the study of the two reconstruction numbers

of some particular graph G: the existential reconstruction number rn(G), defined to

be the minimum k such that there exists k cards from which G can be reconstructed,

and the universal reconstruction number urn(G), defined to be the minimum k such

that G can be reconstructed from any k cards.

Most work on reconstruction numbers yet published concerns rn(G). This thesis

instead focusses on urn(G) and will be one of the first to contain substantial results

on this topic. urn(G) can also be studied in terms of the maximum number of

common cards that G can have with any other graph, and that is the approach that

we take. We find upper bounds for the maximum number of common cards between

pairs of graphs in various classes and, in all cases, we show that these bounds can

be attained by infinite families. Moreover, we completely characterise the families

of pairs of graphs that attain the bounds. In doing so, we present many families of

graph pairs with different values on various parameters that have, by far, the largest

number of common cards yet published.
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A sunshine graph (caterpillar graph) is a graph where the removal of all of its leaves

reduces the graph to a cycle (path). A pair of graphs have a common isomorphic

component C if there is a component isomorphic to C in both graphs. A 2UC graph

pair is a pair of graphs, in which after the iterative removal of all common isomorphic

components, at least one of the resulting graphs is disconnected. For pairs of graphs

of order n, the major results in this thesis are:

(a) The maximum number of common cards between a connected graph and a

disconected graph is
⌊

n
2

⌋
+ 1. Moreover, with the exception of six pairs of

graphs of order at most 7, any such pair that attains the bound is in one of

four families, up to isomorphism.

(b) For n ≥ 62, the maximum number of common cards between a sunshine graph

and a caterpillar graph is
⌊

2(n+1)
5

⌋
. Moreover, in this case there is only one

family of such pairs of graphs with 2(n+1)
5

common cards, up to isomorphism.

(c) For n ≥ 13, the maximum number of common cards between a 2UC graph

pair is 2
⌊

1
3
(n − 1)

⌋
. Moreover, for all values of n ≥ 22, there is precisely one

2UC graph pair when n ≡ 1 or 2 (mod 3), and two 2UC graph pairs when

n ≡ 0 (mod 3) that attain this bound, up to isomorphism.

(d) For n ≥ 11, there are families of 2UC graph pairs with the same number of

edges having 2
⌊

1
3
(n − 4)

⌋
common cards and, for certain values of n ≥ 25,

there is an infinite family of 2UC graph pairs with the same degree sequence

having 2
3
(n + 5 − 2

√
3n + 6) common cards.

(e) There exist other pairs of graphs in various classes with almost as many com-

mon cards as those in (c). In particular, there is a family of pairs of trees with

2
⌊

1
3
(n − 5)

⌋
common cards.
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Additionally we conjecture that, for large enough n:

(i) Every simple finite undirected graph is determined, up to isomorphism, by any

2
⌊

1
3
(n − 1)

⌋
+ 1 of its vertex-deleted subgraphs.

(ii) There are only eighteen distinct families of pairs of graphs, and at most twelve

for any n, that have 2
⌊

1
3
(n − 1)

⌋
common cards.

(iii) Whether a graph is a tree or not can be determined from any
⌊

n
2

⌋
+ 2 of its

vertex-deleted subgraphs.
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Notation

G and H are graphs.

u and v are vertices of G; e is an edge of G.

V (G) vertices of G 17

E(G) edges of G 17

n order (number of vertices) of G 18

m size (number of edges) of G 18

d(v) degree of v 18

di(G) number of vertices of degree i in G 18

di(v) number of vertices of degree i adjacent to v 18

v∗ unique leaf adjacent to v (only meaningful if d1(v) = 1) 18

GC complement of G 18

H ⊆ G H is a subgraph of G 19

G(W ) graph induced by W ⊆ V (G) 19

G − S subgraph of G obtained by deleting every element of S ⊆ V (G) 19

G − T subgraph of G obtained by deleting every edge of T ⊆ E(G) 19

G − v the subgraph of G obtained by deleting the vertex v 19

G − e the subgraph of G obtained by deleting the edge e 19

A + B the disconnected graph consisting

of precisely two components A and B 20

T a collection of components of a graph 21

κ(G) connectivity of G 21

G ∼= H G is isomorphic to H 21

A ⊕ B a disconnected graph consisting of precisely

two components, one isomorphic to A and the other to B 22⊕
k βkHk component structure of H 22

hk order of component isomorphic to Hk 22

T an arbitrary tree 23

Pn path of order n 23

Sk
p k-Star with p spokes 23
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Cn cycle of order n 24

Kn complete graph of order n 24

Kp, q complete bipartite graph of bi-degree (p, q) 25

Sq[F ] graph F with q leaves added to each of its vertices 26

D(G) vertex-deck of G 28

ED(G) edge-deck of G 32

s(F, G) number of subgraphs of G isomorphic to F 33

rn(G) existential or ally reconstruction number of G 40

urn(G) universal or adversary reconstruction number of G 40

AH(G) set of active vertices of G with respect to H 41

aH(G) number of active vertices of G with respect to H 41

B(G, H) bipartite graph with edges joining associated vertices 41

b(G, H) number of common cards of G and H 41

AHj
(G) set of Hj-active vertices of G 48

aHj
(G) number of Hj-active vertices of G 48

aG(Hj) number of active vertices in a component of H

isomorphic to Hj 48

b(G, Hj) number of common cards of G and H

restricted to the Hj-active vertices of G 49

S ′
q[Kp] Sq[Kp] with a single leaf removed 50

S ′
q[Kp] Sq[Kp] with two leaves adjacent to different

vertices removed 50

Xuv component of G − u that contains v 55

U arbitrary unicyclic graph 79

A∗
T (U) set of active non cut-vertices of U with respect to T 80

a∗
T (U) number of active non cut-vertices of U with respect to T 80

b∗(U, T ) number of connected common cards of U and T 80

δi(U) number of vertices of degree i on the unique cycle C of U 80

S arbitrary sunshine graph 81

CT arbitrary caterpillar graph 82

ci(G) number of cut 2-paths of length i in G 86
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li(G) number of leaf 2-paths of length i in G 86

γ number of cut-vertices of S 86

Ai(S) set of vertices of S of degree two adjacent

to i vertices of degree 2 86

|A(S)| d2(S) − b∗(S, CT ) 86

λi(CT ) number of leaves in CT adjacent to a vertex of degree i 90

λ∗(CT ) number of leaves in CT adjacent to a vertex of degree 4

or more 90

gi order of component isomorphic to Gi 110

AZ(Y, G) set of Z-active vertices of G in a component

isomorphic to Y 111

aZ(Y, G) number of Z-active vertices of G in a component

isomorphic to Y 111

AHj
(Gi) set of Hj-active vertices of G in a component

isomorphic to Gi 113

aHj
(Gi) number of Hj-active vertices of G in a component

isomorphic to Gi 113

b(Fk, Fk) number of common cards of G and H

restricted to the Fk-active vertices of G and H 114

b(Gi, Hj) number of common cards of G and H

restricted to the Hj-active vertices of G

and the Gi-active vertices of H 114

aH(Gi) number of non-active vertices of G in a component

isomorphic to Gi 148

bj b(G1, Hj) 148

bj(G) number of Hj-active vertices of G not used for common cards 148

R(G) number of vertices of G in a component isomorphic to some

Gi that is not used for common cards 161

V T2(p−1) 2(p − 1)-regular graph of order 2p 176
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Chapter 1

Preliminaries

In this chapter, we recount some basic graph theoretic terminology and results.

With the exception of the concept of 2-paths, the disconnected graph and p-star

notation, and the construction of the graph S1[F ], all the terminology is standard.

We generally follow Bondy and Murty [10, 11], although we also refer the reader to

Lauri and Scapellato [23] and Wilson [41]. Proofs of the assertions in this chapter

can be found in these references.

1.1 Introductory Concepts

A graph G consists of two disjoint sets: V (G), whose elements are called the vertices

of G, and E(G), whose elements, called the edges of G, are pairs of distinct elements

of V (G). The number of vertices of G is called the order of G and the number of

edges of G is called the size of G. G is finite if both its vertex and edge sets are

finite. If E(G) consists of ordered pairs, then G is called a directed graph; otherwise

G is called an undirected graph.

If E(G) = ∅, then G is said to be an empty graph. Many authors, however, stipulate

that V (G) 
= ∅. In this thesis we follow [11] and allow V (G) to be empty. We call

such a graph the null graph, and define it to have order and size zero. A graph with

only one vertex and no edges is called the trivial graph.
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Let G be a graph and let u and v be two distinct vertices of G. We denote the edge e

consisting of the vertices u and v by uv. The vertices u and v are said to be adjacent

to each other, and the edge e incident to u and v. Two edges are adjacent, if they

are incident to the same vertex. If G is undirected then uv = vu. The vertices of

V (G) that are adjacent to v are called the neighbours of v.

Note that, we have restricted our definition so that a graph must be simple; that is,

G does not contain any loops (edges that are only incident to the same vertex) or

multiple edges (when two or more edges are incident to the same pair of vertices).

In addition, unless otherwise specified, all graphs in this thesis will be finite and

undirected. For the rest of this chapter, G will denote a (simple) finite undirected

graph of order n and size m.

The degree of v, d(v), is the number of vertices adjacent to v. If d(v) = 0, then v is

called an isolated vertex and if d(v) = 1 then v is called a leaf. We denote by di(G)

the number of vertices of degree i in G. If we label the vertices of G by v1, v2, . . . , vn,

where d(vi) ≥ d(vi+1) for all i, then the sequence d(G) = (d(v1), d(v2), . . . d(vn)) is

called the degree sequence of G. If every vertex in G has the same degree d then G

is said to be a d-regular graph. An (n − 1)-regular graph is called a complete graph

with n vertices.

It is often useful to consider the number of vertices of a particular degree that are

adjacent to v. We denote by di(v), the number of neighbours of v of degree i. In

particular, we define a k-leaf adjacent vertex of degree d to be a vertex v such that

d1(v) = k and d(v) = d. If d1(v) = 1, then we denote the leaf of G adjacent to v by

v∗. We sometimes use the term non-leaf to describe any vertex that is not a leaf.

The complement of G is the graph GC with vertex set V (G), such that two vertices

adjacent are in GC if and only if they are not adjacent in G. Clearly, the size of GC

is equal to n(n−1)
2

− m, and the degree of v in GC is equal to n − d(v) − 1.
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Let M ⊆ E(G). Then M is called a matching in G if none of the edges of M are

adjacent. In other words, M is a matching of G if all of the edges in M are incident

to distinct vertices of G. M is a maximum matching if there is no matching in G of

greater size than M .

1.2 Subgraphs

A graph H is a subgraph of G, if V (H) ⊆ V (G), E(H) ⊆ E(G) and for every edge e

of H , both vertices incident to e are in V (H). We denote this relationship by H ⊆ G.

If V (H) 
= V (G), then H is called a proper subgraph of G. If V (H) = V (G), then H

is called a spanning subgraph of G. For any W ⊆ V (G), the subgraph of G induced

by W is the graph G(W ) with vertex set equal to W , and whose edge-set consists

of all the edges of G that join any two vertices in W .

Suppose that G1 and G2 are subgraphs of G. Then G1 and G2 are vertex-disjoint

if V (G1) ∩ V (G2) = ∅, and edge-disjoint if E(G1) ∩ E(G2) = ∅. Since vertex-

disjoint implies edge-disjoint, we use disjoint to mean vertex-disjoint. A collection

of subgraphs of G is disjoint if these are each pair-wise disjoint.

Let S ⊆ V (G) and let T ⊆ E(H). We define G − S, the S vertex-deleted subgraph

of G, to be the subgraph of G induced by V (G) − S. Similarly, we define G − T ,

the T edge-deleted subgraph of G, to be the subgraph of G formed by the deletion

of all the elements of T from E(G). Note that, if S = V (G), then G − S is the null

graph. Similarly, if T = E(G), then G − T is an empty graph with n vertices.

If S = {v}, then G − S is called a vertex-deleted subgraph of G, and is denoted by

G − v. Similarly, if T = {e}, then G − T is called an edge-deleted subgraph and

is denoted by G − e. There are n distinct vertex-deleted subgraphs (one for each

vertex) and m edge-deleted subgraphs of G. These subgraphs form the basis of all

Graph Reconstruction problems.
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1.3 Paths and Connectivity

Suppose that v1, v2, . . . , vs+1 are distinct vertices of G such that every pair vi and

vi+1 are adjacent. Then the sequence P = v1, v2, . . . , vs+1 is called a path in G of

length s from v1 to vs+1 (or between v1 and vs+1). If every vertex of P except v1 and

vs+1 is of degree two in G then P is called a 2-path. More specifically, if d(v1) ≥ 3

and d(vs+1) ≥ 3, then P is called a cut 2-path of length s, whereas if d(v1) ≥ 3 and

d(vs+1) = 1, then P is called a leaf 2-path of length s. In these two cases, the vertices

v1 and vs+1 are called the end-vertices and every other vertex is called an interior

vertex (we discuss 2-paths in greater depth in Chapters 4 and 5). Note that, we

assume that any 2-path is of length at least 1. A cycle C of length s ≥ 3 in G is a

sequence of adjacent vertices C = u1, u2, . . . , us+1 of G, where each u1, u2, . . . , us

is distinct and u1 = us+1.

If u and v are vertices of G, then u and v are said to be connected if there is a path

from u to v. A path between u and v is a shortest path if it has minimum length

over all paths in G between u and v. If s is the length of a shortest path, we say

that the distance between u and v, d(u, v), is equal to s. If there is no path in G

between u and v, then d(u, v) is undefined.

A natural equivalence relation on the vertices of G is defined to be u ∼ v if and only

if u and v are connected. If V1, V2, . . . , Vr are the equivalence classes of ∼, then the

induced-subgraphs G(V1), G(V2), . . . , G(Vr) are called the connected components of

G. If r = 1, then G is said to be connected; otherwise G is said to be a disconnected

graph with r components. We express the component structure of G as

G = G(V1) + G(V2) + . . . + G(Vr). (1.1)

If D = G(Vi) is a component of G, then G−D denotes the subgraph of G with the

component D removed.
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We use the script notation T , S to denote a subgraph of G consisting of a collection

of its components. We usually employ this notation to indicate that our main interest

is in the other components of the graph. If D is a component of T , then T − D

denotes the subgraph of G consisting of all the components of T with D removed.

Note that, if T consists of only the component D, T − D is the null graph.

For a connected graph G, if S ⊂ V (G) such that G−S is a disconnected graph, then

S is said to disconnect G. If S = {v}, then v is called a cut-vertex of G. Similarly,

if S = {u, v} and u and v are not cut-vertices, then u and v are called a cut-pair

of G. The connectivity of G, denoted κ(G), is the size of the smallest such subset

that disconnects G (or reduces G to an isolated vertex). If G is disconnected, then

κ(G) = 0; if G contains a cut-vertex, then κ(G) = 1. G is said to be separable if

κ(G) ≤ 1; G is k-connected if it is of connectivity at least k. Any connected graph

with three or more vertices contains at least two vertices that are not cut-vertices.

1.4 Isomorphism and Isomorphism Classes

Two simple graphs G and H are isomorphic, denoted G ∼= H , if there is a bijection

φ : V (G) −→ V (H) that preserves adjacency. In other words, G and H are isomor-

phic if, for all vertices u and v in G, uv is an edge in G if and only if φ(u)φ(v) is an

edge of H . If φ is the identity map, G and H are said to be identical.

An isomorphism φ from G to itself is called an automorphism of G; in this case, φ is

a permutation of the vertices of G that preserves adjacency. Two vertices u and v

are said to be similar if there is an automorphism φv of G such φv(u) = v. If every

pair of vertices of G are similar, then G is said to be vertex-transitive.

Isomorphism is an equivalence relation on the set of all graphs. We call the equiv-

alence classes, the isomorphism classes. To indicate we are considering some rep-

resentative of a particular graph isomorphism class, we draw graphs without any

labelling of their vertices or edges.
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Let A and B be connected graphs. We denote by A⊕B a disconnected graph with

two components, one isomorphic to A and the other to B. If B = A, then this

denotes a graph with precisely two components both isomorphic to A. For any non-

negative integer β, we frequently denote a graph with β components, all of which

are isomorphic to A, by βA; so 2A and A⊕A denote isomorphic graphs. We further

extend this notation in the natural way when A or B is disconnected. Note that,

when β = 0, βA is the null graph.

Now suppose that H is a disconnected graph whose components are in r distinct

isomorphism classes with representatives H1, H2, . . . , Hr. Then we express the com-

ponent structure of H as

H ∼= β1H1 ⊕ β2H2 ⊕ . . . ⊕ βrHr, or just H ∼=
⊕

k βkHk, (1.2)

where the coefficients β1, β2, . . . , βr are positive integers. We define hi = |V (Hi)|,

and order the isomorphism classes so that h1 ≥ h2 ≥ . . . ≥ hr. Finally, we define

βi = 0 for i > r. Note that, if T ∼= ⊕t
i=1 βiHi and S ∼= ⊕r

j=t+1 βjHj, then H ∼= T ⊕S.

1.5 Graph Parameters

A graph parameter is any function that can be defined on the set of all graphs

and is invariant under isomorphism. For example, the order, size, connectedness,

connectivity and degree sequence are all graph parameters. One parameter, due to

Kelly [20, 21], that has been used extensively in Graph Reconstruction is s(F, G), the

number of subgraphs of G isomorphic to F , for any given graph F . Parameters we

shall also make use of in Chapters 4 and 5 are the numbers of cut 2-paths and leaf

2-paths of G. Whenever we refer to a graph that has some particular value(s) for a

parameter, we mean a representative of the isomorphism class with that parameter

value(s).
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We informally define a family of graphs to be a (usually infinite) set of graphs that

have a similar structure. We further define a class of graphs to be a family of graphs

that is closed under isomorphism. We introduce some common classes of graphs in

the final two sections of this chapter. We extend the notion of a family of graphs to

families of graph pairs in the natural way. Note that, when we refer to a family of

graphs as unique, we mean that family is unique up to isomorphism.

1.6 Trees

A graph is acyclic if it contains no cycles. If such a graph is connected, it is called a

tree; if it is disconnected, it is called a forest. Obviously, all of the components of a

forest must be trees. To distinguish them from other graphs, we denote an arbitrary

tree by T . A spanning tree of G is a spanning subgraph of G that is a tree. Every

connected graph contains a spanning tree.

Let T be a tree of order n ≥ 3. Then |E(T )| = n − 1 and every non-leaf of T is

a cut-vertex; so κ(T ) = 1. Moreover, if v is a vertex of T , then T − v consists of

precisely d(v) components. Any two distinct vertices of T are connected by a unique

path. In addition, since any non-trivial connected graph of order n contains at least

two vertices that are not cut-vertices, T contains at least two leaves.

The simplest type of tree is Pn, the path of order n. This graph consists of n vertices

v1, v2, . . . , vn such that for 2 ≤ i ≤ n − 1, each vi is only adjacent to vi−1 and vi+1,

and additionally both v1 and vn are leaves. So, d1(Pn) = 2 and d2(Pn) = n − 2.

Another common type of tree is Sk
p , the k-star with p spokes. This tree consists of

p copies of Pk with one leaf of each path adjacent to an additional “central” vertex

(and is of order pk + 1).
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Figure 1.1: P6, S1
5 and S2

5 .

S1
n−1 is more commonly called the 1-star of order n (and often denoted by K1, n−1).

Since such a graph consists of a central vertex and n − 1 leaves, d1(S
1
n−1) = n − 1,

dn−1(S
1
n−1) = 1, and di(S

1
n−1) = 0 for all other i. Similarly, S2

n−1
2

is called the

2-star of order n (n must clearly be odd). In this case, d1(S
2
n−1

2

) = d2(S
2
n−1

2

) = n−1
2

,

dn−1
2

(S2
n−1

2

) = 1, and di(S
1
n−1

2

) = 0 for all other i. Figure 1.1 shows the path and

1-star of order 6, and the 2-star of order 11.

1.7 Other Common Graphs

The cycle of order n, denoted by Cn, is the 2-regular connected graph. The size of

Cn is equal to n. For each vertex v of Cn, Cn − v ∼= Pn−1. Since Pn−1 is a tree, it

follows that κ(Cn) = 2.

The complete graph of order n, denoted by Kn, is the (n − 1)-regular connected

graph. Since every vertex v of Kn is adjacent to every other, the size of Kn is equal

to n(n−1)
2

and, in addition, Kn − v ∼= Kn−1, for each vertex v. Moreover, it is easy

to see that, for any subset S ⊂ V (Kn) of cardinality p ≤ n, Kn − S ∼= Kn−p; thus

κ(Kn) = n − 1.
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A bipartite graph G of order n is a graph in which the vertex-set of G can be

partitioned into two disjoint subsets X and Y such that each edge has one incident

vertex in X and one incident vertex in Y . The partition (X : Y ) is called a bipartition

of G.

The complete bipartite graph of degrees (p, q) is the bipartite graph with bipartition

(X : Y ) where |X| = p, |Y | = q, and such that each vertex of X is adjacent to

each vertex of Y . We denote the complete bipartite graph of degrees (p, q) by Kp, q.

Clearly, dp(Kp, q) = q, dq(Kp, q) = p, and di(Kp, q) = 0 for all other i. Furthermore,

for each vertex v of X and w of Y , Kp, q − v ∼= Kp−1, q and Kp, q − w ∼= Kp, q−1. It is

thus easy to see that κ(Kp, q) = min(p, q). The graphs C6, K6 and K2, 3 are shown

in Figure 1.2.

Figure 1.2: C6, K6 and K2, 3.
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Figure 1.3: S1
4 , S1[S

1
4 ] and S1[S

1
4 ] − u∗.

Finally in this chapter, we introduce a new construction that enables the formation

of one graph from another. Let F be a connected graph. We denote by Sq[F ], the

graph that consists of F with q leaves added to each of its vertices. So if S1
p is the

1-star of order p + 1, S1[S
1
p ] is S2

p with an additional leaf u∗ adjacent to its “central”

vertex. Thus, if u is the central vertex of S1
p , then S1[S

1
p ] − u∗ is the 2-star of order

2p + 1. These constructions are illustrated in Figure 1.3.
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Chapter 2

Graph Reconstruction

The Reconstruction Conjecture is one of the foremost unsolved problems in Graph

Theory. It conjectures that a graph can be uniquely determined, up to isomorphism,

by its collection of unlabelled vertex-deleted subgraphs. Like many mathematical

problems, its appeal lies in the simplicity of its hypothesis, and its accessibility

to non-experts. However, although many graph theorists have tried to resolve the

status of conjecture, it is still an open problem.

In this chapter we explain the basic concepts, definitions and results in the area of

Graph Reconstruction. We initially follow the approach and terminology of Bondy

and Hemminger [9], Bondy [6] and Lauri [23], and more information on the mate-

rial in Sections 2.1 to 2.5 can be found there. From Section 2.6, we introduce a

slightly different approach to graph reconstruction - active vertices, common cards

and reconstruction numbers - and give references where necessary. Unless otherwise

specified, G is a simple finite undirected graph of order n.
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2.1 Vertex Deck

Let v be a vertex of G. The vertex-deleted subgraph of G, G − v, is the subgraph

of G obtained by deleting the vertex v and all edges incident to v (see Section 1.2).

There are n such subgraphs of G, one for each vertex. Following Harary [18], we call

such subgraphs cards of G, and the collection of all n cards of G, the (vertex-)deck

of G, denoted by D(G).

All graphs in D(G) are unlabelled; that is, we do not differentiate between cards in

the same isomorphism class. If G has precisely k vertices, v1, v2, . . . , vk, such that

G − v1
∼= G − v2

∼= . . . ∼= G − vk, then a representative of the isomorphism class

G−v1 occurs in the vertex-deck k times, once for each of these vertices. Thus D(G)

is a multi-set, rather than a set, of representatives of isomorphism classes of graphs.

Suppose that D(G) contains r distinct isomorphism classes and αi copies of each

isomorphism class Gi. Then we express D(G) as

D(G) = {(Gi; αi) | 1 ≤ i ≤ r} . (2.1)

If αi = 1, we write Gi instead of (Gi; 1) in D(G).

Let Pn be the path of order n with vertices v1, v2, . . . , vn as in Section 1.6. Then, if

we let P0 denote the null graph, it is easy to see that Pn − vi
∼= Pn−i ⊕ Pi−1. Figure

2.1 shows the non-isomorphic cards in D(P6).

Figure 2.1: The three non-isomorphic cards of P6.
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Now consider the 1-star of order n, S1
n−1. If u is the central vertex and v is any leaf

of S1
n−1, then S1

n−1 − u ∼= (n − 1) K1 and S1
n−1 − v ∼= S1

n−2. Figure 2.2 shows the

non-isomorphic cards in D(S1
5).

Figure 2.2: The two non-isomorphic cards of S1
5 .

Similarly, if u is the central vertex and v is any other non-leaf of the 2-star of order

n, S2
n−1

2

, then S2
n−1

2

− u ∼= n−1
2

P2, S2
n−1

2

− v ∼= S2
n−3

2

⊕ K1, and

S2
n−1

2

− v∗ ∼= S1[S
1
n−3

2

]. Figure 2.3 shows the non-isomorphic cards in D(S2
5).

Figure 2.3: The three non-isomorphic cards of S2
5 .

These observations, together with those in Section 1.7, allow us to write down the

decks of some of the graphs in Chapter 1:

(a) D(Pn) =
{

(Pn−1; 2), (Pn−2 ⊕ P1; 2), . . . , (Pn
2
⊕ Pn−2

2
; 2)
}

, for even n.

(b) D(Pn) =
{

(Pn−1; 2), (Pn−2 ⊕ P1; 2), . . . , 2Pn−1
2

}
, for odd n.

(c) D(S1
n−1) =

{
(S1

n−2; n − 1), (n − 1)K1

}
.

(d) D(S2
n−1

2

) =
{

(S2
n−3

2

⊕ K1;
n−1

2
), S1[(S

1
n−3

2

]; n−1
2

), n−1
2

K2

}
.

(e) D(Cn) = {(Pn−1; n)}.
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(f) D(Kn) = {(Kn−1; n)}.

(g) D(Kp, q) = {(Kp−1, q; p) (Kp, q−1; q)}.

Let F be a disconnected graph and suppose that F = D1 + D2 + . . .Dr and that u

is a vertex in Di. Then, since all edges incident to u are in E(Di),

F − u = (Di − u) +
∑
k �=i

Dk, (2.2)

noting that, if Di
∼= K1, then Di − u is the null graph, and therefore does not

correspond to a component of F − u. Thus, for example, it follows from (f) that

D(Ka⊕Kb⊕Kc) = {(Ka−1 ⊕ Kb ⊕ Kc; a), (Ka ⊕ Kb−1 ⊕ Kc; b), (Ka ⊕ Kb ⊕ Kc−1; c)} .

(2.3)

2.2 Vertex Reconstruction

Let H be a graph of order n. Suppose that D(G) = D(H), that is, there is some

labelling of the vertices of G by v1, v2, . . . , vn and those of H by w1, w2, . . . , wn

such that G − vi
∼= H − wi for 1 ≤ i ≤ n. Then H is called a vertex-reconstruction

of G. If H ∼= G, then clearly D(G) = D(H). G is said to be vertex-reconstructible

if every vertex-reconstruction of G is isomorphic to G.

Not all graphs are vertex-reconstructible. For example, if G = K2 and H = 2K1,

then D(G) = D(H) = {(K1; 2)}. However, these two graphs are the only known

examples of simple finite undirected graphs that are not vertex-reconstructible. The

Reconstruction Conjecture states that these are the only such simple finite undi-

rected graphs.

Conjecture 2.2.1 (Vertex-Reconstruction Conjecture) (Kelly [20], Ulam [40])

All finite simple undirected graphs with at least three vertices are reconstructible.

�
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Bondy [6] equivalently defines a vertex-reconstruction H of G to be a graph with

V (H) = V (G) and D(H) = D(G). He further associates every card in the common

deck with a unique element of V (G). For our purposes it is not necessary to place

this stipulation on our graphs. However, we shall assume that there is an indexing

of the graphs in D(G) (not uniquely) which induces a labelling of the vertices of G

in the natural way.

According to Bondy and Hemminger [9], this conjecture was first “discovered” in

the early 1940s by Kelly and Ulam, with the first published record of the problem

appearing in Kelly’s PhD thesis [20]. No counterexample has ever been found and,

moreover, the conjecture has been shown by exhaustive computer search to be true

for all graphs of order up to and including 11, by McKay [29], and independently

by Baldwin [3], McMullen [30] and Rivshin [38]. It has also been shown to be true

for all trees, all regular graphs and all disconnected graphs (see Section 2.5). In

addition, Müller [32], Myrvold [33] and Bollobás [4] (independently) proved that the

conjecture is true with high probability (that is, the probability of the existence of

a non-reconstructible graph of order n, approaches zero as n approaches infinity).

2.3 Other Reconstruction Areas

This thesis is only concerned with vertex-reconstruction of finite graphs. Other

reconstruction topics are mentioned here for interest only. Subsequent to this section,

all terms relating to reconstruction refer to vertex-reconstruction.
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Analogous to the vertex-deck of G is the edge-deck of G, ED(G). This is defined

to be the collection of edge-deleted subgraphs G − e, for all edges e of G. Note

that, as for the vertex-deck, ED(G) is also a multi-set of isomorphism classes of

graphs. Any graph H such that ED(G) = ED(H) is called an edge-reconstruction

of G and if every edge-reconstruction of G is isomorphic to G, then G is said to be

edge-reconstructible. The pair G = 2K2 and H = P3 ⊕ K1 clearly have identical

edge-decks. In addition, for any k ≥ 1, the pair of graphs

G = K3 ⊕ kK1 and H = S1
3 ⊕ (k − 1)K1

have identical edge-decks. The Edge-Reconstruction Conjecture, first proposed by

Harary in 1964 [18], essentially states that the above graphs are the only finite simple

undirected graphs that are not edge-reconstructible.

Conjecture 2.3.1 (Edge-Reconstruction Conjecture) (Harary[18]) All finite

simple undirected graphs with at least four edges are edge-reconstructible. �

There has been more progress towards proving the Edge-Reconstruction Conjec-

ture than its vertex equivalent. In addition, it has been proved by Greenwell [15]

that any graph without isolated vertices that is vertex-reconstructible, is also edge-

reconstructible.

Manvel [26] has proposed extending the vertex-reconstruction conjecture to the k-

vertex deck of G, that is the multi-set of all
(

n
k

)
subgraphs G− S, where S ⊂ V (G)

is of cardinality k.

Conjecture 2.3.2 (k-Vertex-Reconstruction Conjecture) (Manvel [26]) Given

any positive integer k, there exists an integer f(k) such that all finite simple undi-

rected graphs of order at least f(k) are k-vertex-reconstructible. �

The idea of generalising the Reconstruction Conjecture to the k-vertex deck was

first mentioned by Kelly [20], who observed there are some graphs of small order

that are not determined, up to isomorphism, by their 2-vertex deleted subgraphs.
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Despite his examples, the conjecture is widely believed to be true for larger graphs,

since there are no known counter-examples of large order, for any k. In addition, for

the 2-vertex deck, Giles [16] has proved that the conjecture is true for all trees and

Manvel [25] has proved that it is true for all disconnected graphs with no isolated

vertices.

The reconstruction of directed graphs has been studied intensively by Stockmeyer

[37]. He has shown that digraphs are not in general reconstructible. In addition,

infinite graphs are also not in general reconstructible. For example, if T∞ denotes

a regular tree of infinite degree, then for example, the two graphs G = T∞ and

H = 2T∞ are reconstructions of one another (see Bondy [6]).

For the rest of this thesis, every graph is finite simple and undirected. Furthermore,

since the Reconstruction Conjecture is not true for graphs of order 2, we shall also

assume that the order of G is at least 3.

2.4 Reconstructing Graph Parameters

Let ρ be a graph parameter. Then ρ is said to be reconstructible if ρ(G) takes the

same value on every reconstruction of G; that is, if D(G) = D(H) then ρ(G) = ρ(H).

For example, the order of G is reconstructible since it corresponds to the number

of cards in D(G) (and is one more than the order of any card of G). Since many

classes of graphs are defined by the value they take on one or more parameters,

the reconstruction of parameters is fundamental to the reconstruction of classes of

graphs.

One of the most widely known reconstructible parameters is s(F, G) (see Section

1.5).

Lemma 2.4.1 (Kelly’s Lemma) (Kelly [20]) Let G and F be graphs of orders n

and f , respectively, where f < n. Then s(F, G), the number of subgraphs of G

isomorphic to F , is reconstructible.
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Proof Each subgraph of G that is isomorphic to F occurs in precisely n − f of the

cards of D(G); so

(n − f)s(F, G) =
∑

v∈V (G)

s(F, G − v). (2.4)

Clearly the right hand side of the equation is reconstructible. Therefore, so is the

left hand side. �

Note that if G and F are of the same order, (2.4) would not enable the calculation

of s(F, G). Indeed, if there were a way to extend Lemma 2.4.1 to all subgraphs of

G, then the Reconstruction Conjecture could be easily shown to be true. Lemma

2.4.1 has some important consequences.

Corollary 2.4.2 The size of G is reconstructible. In addition, for any card G − v,

the degree of v can be determined from D(G).

Proof Since an edge of G is a subgraph isomorphic to K2, |E(G)| is reconstructible

by Lemma 2.4.1. The second assertion follows since d(v) = |E(G)| − |E(G − v)|. �

Lemma 2.4.3 Let G and F be graphs, with F of smaller order than G. For any

vertex v of G, let Sv(F, G) be the number of subgraphs of G containing v that are

isomorphic to F . Then {Sv(F, G) | v ∈ G} is reconstructible.

Proof Any subgraph of G that does not contain v is in the card G − v. Therefore,

the number of subgraphs of G containing v that are isomorphic to F is equal to

s(F, G) − s(F, G − v). The result then follows by Lemma 2.4.1. �

Corollary 2.4.4 The degree sequence of G is reconstructible.

Proof This follows directly by Corollary 2.4.2, or alternatively by setting F = K2

in Lemma 2.4.3. �

Corollary 2.4.5 For any vertex v of G, let Nv(G) = {d(u) | uv ∈ E(G)}. Then

{Nv(G) | v ∈ G} is reconstructible.

34



Proof For any card G−v, the degree of v can be determined from D(G) by Corollary

2.4.2. In addition, the degree sequence of G is reconstructible by Corollary 2.4.4.

Let d be the non-increasing degree sequence of G and d′ be the non-increasing

degree sequence of G− v, but with the degree of the vertex v inserted in its correct

position. The non-zero entries of the vector d - d′ occur in positions corresponding

to the neighbours of v. The values of d corresponding to these positions are then

the degrees of the neighbours of v. �

Whilst we are discussing degree sequences, we prove the following relation between

the degree sequences of a graph and any of its cards. We shall make use of this

result in later chapters. We recall from Section 1.1 that if v is a vertex of G, then

di(v) is the number of neighbours of v of degree i.

Lemma 2.4.6 Let G be a graph and v a vertex of G where d(v) = k. Then

(a) dk(G − v) = dk(G) + dk+1(v) − dk(v) − 1;

(b) di(G − v) = di(G) + di+1(v) − di(v), for i 
= k.

Proof The removal of v from G reduces the degree of every vertex adjacent to v by

one. Since the removal of v additionally reduces the total number of vertices of G

of degree d(v) by one, the result follows. �

We now show that the connectivity of a graph is reconstructible. We begin with the

case when κ(G) = 0.

Lemma 2.4.7 The connectedness of G is reconstructible.

Proof Suppose that G is disconnected and that v is a vertex of G. Then G − v is

connected if and only if G has precisely two components and, moreover,

G = {v} + (G − v); so D(G) only contains at most one card that is connected.

35



Suppose, on the other hand, that G is a connected graph. Then G contains at least

two vertices that are not cut-vertices; so D(G) contains at least two cards that are

connected. Since the order of G is at least 3, this implies that the connectedness of

G can be determined from D(G). �

Corollary 2.4.8 κ(G), the connectivity of G, is reconstructible.

Proof If κ(G) = 0, then G is disconnected and the result will follow from Lemma

2.4.7. We therefore assume that G is connected. In this case, it is easy to see that

κ(G) = 1 + min
v∈V (G)

κ(G − v). So κ(G) can be determined from D(G). �

Tutte [39] proved how to reconstruct the number of spanning subtrees of certain

types. Kocay later [22] refined the proof using covers. Although it is of no impor-

tance for any of the main results in this thesis, we state Kocay’s Lemma here, since

its use is widespread in some aspects of reconstruction.

Suppose that F = (F1, F2, . . . , Fk) is a sequence of (not necessarily distinct) graphs.

A cover of G by F is a sequence (G1, G2, . . . , Gk) such that Gi
∼= Fi, 1 ≤ i ≤ k,

k⋃
i=1

V (Gi) = V (G) and
k⋃

i=1

E(Gi) = E(G). The number of covers of G by F is

denoted by c(F , G).

Lemma 2.4.9 (Kocay’s Lemma) (Kocay [22]) Let G be a graph of order n and

let F = (F1, F2, . . . , Fk) be a sequence of graphs such that the order of each Fi is

less than n. Then the parameter

∑
X

c(F , X)s(X, G) (2.5)

is reconstructible, where the sum in (2.5) extends over all isomorphism types X with

|V (X)| = |V (G)|. �

Lemma 2.4.9 has been used to prove the following result.

36



Lemma 2.4.10 (Tutte [39]) Let G be a graph of order n and let F = (F1, F2, . . . , Fk)

be a sequence of graphs such that the order of each Fi is less than n. Then the fol-

lowing parameters are reconstructible:

(a) the number of disconnected spanning subgraphs of G with k components iso-

morphic to F1, F2, . . . , Fk;

(b) the number of (connected) separable spanning subgraphs of G with k blocks

isomorphic to F1, F2, . . . , Fk;

(c) the number of non-separable spanning subgraphs of G with a specified number

of edges;

(d) the number of Hamiltonian cycles of G. �

In addition, Tutte proved that the Tutte polynomial is reconstructible (this can also

be proved using Lemma 2.4.10). From this it follows that the many other algebraic

invariants of a graph can be reconstructed (including the chromatic polynomial, the

dichromatic polynomial and the characteristic polynomial). See [6] or [23] for more

details.

2.5 Reconstructing Classes of Graphs

Let C be a class of graphs. Then C is said to be reconstructible if every graph

in C is reconstructible. The most widely used approach to proving that a class is

reconstructible is to show that the following two conditions are met:

(a) C is recognisable, that is, for each G in C, every reconstruction of G is a member

of C;

(b) C is weakly reconstructible, that is, for each G in C, every reconstruction of G

that is in C is isomorphic to G.

Clearly, if both (a) and (b) hold then C is reconstructible. We demonstrate this

approach to showing the reconstructibility of classes by proving that regular graphs

and disconnected graphs are reconstructible.
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Theorem 2.5.1 For all integers r > 0, the class of r-regular graphs is recon-

structible.

Proof The degree sequence of G is reconstructible by Corollary 2.4.4. Therefore the

class of r-regular graphs is recognisable.

Suppose that G is a r-regular graph and let v be a vertex of G. The only way to

reconstruct a regular graph of degree r from G − v is to make v incident to all the

vertices of G − v that have degree r − 1. Clearly, this uniquely reconstructs G.

Therefore, the class of r-regular graphs is weakly reconstructible. This completes

the proof. �

We next show that disconnected graphs are reconstructible. There have been many

proofs of this. The one we present, due to Manvel [28], is probably the shortest.

Theorem 2.5.2 The class of disconnected graphs is reconstructible.

Proof We note first that the empty graph is immediately reconstructible from Corol-

lary 2.4.4. We therefore only need consider disconnected graphs with at least one

edge.

The connectedness of a graph is reconstructible by Lemma 2.4.7, so the class of

disconnected graphs is recognisable.

Suppose that G is a disconnected graph and let C be a component of maximum

order amongst all the components of the graphs in D(G). Clearly, C must be a

component of G. Since C is connected, there is at least one vertex of C that is not

a cut-vertex. Let w be one such vertex.

Let S ⊆ D(G) be the set of cards of G that contain the least number of components

isomorphic to C, and let G − v be a card in S that has the maximum number of

components isomorphic to C − w. Then G is uniquely reconstructible from G − v

by replacing a component of G− v that is isomorphic to C −w with C. So the class

of disconnected graphs is weakly reconstructible, which completes the proof. �
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The class of trees was first proved to be reconstructible by Kelly [21]. Bondy [5] has

shown that any tree T is reconstructible from a subdeck S ⊆ D(T ), where each card

in S is formed by the deletion of a peripheral vertex (an end-leaf of a longest path

in T ). In addition, Myrvold [36] has shown that, for n ≥ 5, you only need three

well-chosen cards in its deck to reconstruct a tree.

A connected graph G is a tree if and only if |E(G)| = n − 1. So the recognisability

of trees is immediate by Corollary 2.4.2 and Lemma 2.4.7. Weak reconstructibility

of trees is more difficult to show, however. Most proofs of this consider various

sub-classes of trees and use the fact that the centre (bi-centres) of a tree can be

determined from its deck. The various branches of the tree are then reconstructed

and “glued” back onto its (bi-)centre(s). The simplest proof is probably that by

Bondy [9], although even this proof uses case-by-case analyses.

Unicyclic graphs (connected graphs that contain precisely one cycle) can be easily

shown to be recognisable using Lemma 2.4.1 and Lemma 2.4.7. Cacti (connected

graphs such that no two cycles have an edge in common) are also recognisable since

such graphs contain no subgraph homeomorphic to a complete graph with an edge

deleted. In both cases, however, weak reconstructibility is more difficult to show,

and the proofs are again completed via an examination of various subclasses. For

detailed proofs of the reconstructibility of these classes, see Manvel [27] or Bowler

[12].

Bondy [7] proved that connected separable graphs with no leaves are reconstructible.

Yongzhi [42] made use of this to prove the following very surprising result.

Theorem 2.5.3 (Yongzhi [42]) Every connected graph is reconstructible if and only

if every 2-connected graph is reconstructible. �

Unfortunately, however, no progress has been made in proving that every 2-connected

graph is reconstructible.
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2.6 Subdeck Reconstruction

G is reconstructible from a subdeck A ⊆ D(G) if it is uniquely determined from

A, up to isomorphism; that is, every graph that has A as a subdeck of its deck

is isomorphic to G. Subdeck Reconstruction is concerned with the following two

questions:

(a) What is the minimum k such that G is reconstructible from some subdeck of

size k?

(b) What is the minimum k such that G is reconstructible from any subdeck of

size k?

The minimum such k in (a) is called the existential or ally reconstruction number of

G, denoted by rn(G), and the minimum such k in (b) is called the universal or adver-

sary reconstruction number of G, denoted by urn(G). The existential reconstruction

number is often simply called the reconstruction number of G.

The terms “ally” and “adversary” were introduced by Myrvold [33]. She conceived

of a two-player game in which player A holds the whole deck and gives B cards one

at a time. Player B must then determine the graph from the cards that A gives

him. If A is helping B then she gives him cards from which he can identify the

graph most easily; in this case, the number of cards given is the ally reconstruction

number. On the other hand, if A is obstructing B then she gives him cards that

make it most difficult to identify the graph; in this case, the number of cards given

is the adversary reconstruction number.

One might also ask whether a graph parameter can be reconstructed from a subset

of the deck. Myrvold [35] has proved that the number of edges and hence the

degree sequence can be reconstructed from any subdeck of cardinality n − 1. It

is also relatively straightforward to show that the connectivity of a graph can be

reconstructed from a subdeck of that size.
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We now introduce some new terminology to make the subject of sub-deck recon-

struction more easily accessible. Let G and H be two graphs and suppose that v

and w are vertices of G and H , respectively, such that G−v ∼= H−w. Then v is said

to be an active vertex of G with respect to H , and w is said to be a vertex associated

with v. Clearly this relationship is symmetric, that is w is an active vertex of H

and v is associated with w. We denote the set of active vertices of G with respect

to H by AH(G) and its cardinality by aH(G). Similarly, we denote the set of active

vertices of H with respect to G by AG(H) and its cardinality by aG(H).

Any active vertex in G must have an associated vertex in H (and conversely). How-

ever, for many pairs of graphs, an active vertex of G (or H) may have many as-

sociated vertices. In addition, aH(G) and aG(H) may not be equal. For example,

if G = K3 and H = P3, then both leaves of H are associated with every vertex

of G, and aH(G) > aG(H). So knowing aH(G) is not sufficient to determine the

largest common subdeck of G and H . Assuming (without loss of generality) that

V (G) and V (H) are disjoint, we therefore define a bipartite graph B(G, H) whose

vertices consist of the vertices of G and H . Two vertices are adjacent in B(G, H) if

and only if they are associated active vertices. That is:

V (B(G, H)) = V (G) ∪ V (H),

E(B(G, H)) = {vw | v ∈ V (G), w ∈ V (H), G − v ∼= H − w} . (2.6)

The number of common cards of G and H (or between G and H) is defined to be

the size of a maximum matching in B(G, H). We denote this number by b(G, H).

Clearly, if b(G, H) < n for all graphs H that are not isomorphic to G, then G is

reconstructible. In addition,

urn(G) = max
H �∼=G

b(G, H) + 1, (2.7)

and we define urn(G) = n + 1 if G is not reconstructible.

The Reconstruction Conjecture can now be restated using this terminology.
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Conjecture 2.6.1 (Reconstruction Conjecture) Suppose that G and H are two

finite simple undirected graphs, both of order n ≥ 3. Then b(G, H) < n, unless G

and H are isomorphic. �

Myrvold [35] (amongst others) defines the number of common cards slightly dif-

ferently from this. She makes the following (equivalent) definition: suppose that

v1, v2, . . . , vk and w1, w2, . . . , wk are distinct vertices of G and H , respectively,

such that G − vi
∼= H − wi for all i. Then G − vi and H − wi are common cards

of G and H and we say that G and H have (at least) k cards in common. b(G, H)

is defined to be the maximum number of cards that G and H can have in common.

One can also (equivalently) define it as the cardinality of the multi-set intersection

of D(G) and D(H). However, although these definitions are perhaps more intuitive,

for our purposes it is more convenient to use the previous definition.

2.7 Results on Reconstruction Numbers

Suppose that G − u and G − v are cards of G. We construct a new graph H as

follows: if e = uv is an edge of G, then we define H = G − e; otherwise we define

H = G + e. Then G 
∼= H but both G − u and G − v are cards of H . Therefore

G−u and G−v cannot alone distinguish between G and H . Thus, for all graphs G,

rn(G) > 2. However, a far more important result concerning (ally) reconstruction

numbers has been proved to be true.

Suppose that, for some parameter ρ, the proportion of graphs G of order n such that

ρ(G) 
= k approaches zero as n approaches infinity. Then ρ is said to take the value

k on all graphs with high probability, or on almost all graphs. Myrvold [33] (using

a result by Müller [32]) and Bollobás [4] have independently proved the following

result.

Theorem 2.7.1 (Myrvold [33], Müller [32], Bollobás [4]) Every graph has recon-

struction number 3 with high probability; that is rn(G) = 3, for almost all graphs

G. �
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Of course, this result implies that almost every graph is reconstructible.

Myrvold [33] has also shown that urn(G) = 3, for almost all G. In addition, she

has proved the following results on rn(G). The proof of part (b) was corrected by

Molina [31].

Theorem 2.7.2 (Myrvold [34, 36]) The following results concerning reconstruction

numbers hold:

(a) rn(T ) = 3 for every tree T of order 5 or more;

(b) the reconstruction number of a disconnected graph is 3, except in the case

where all the components are isomorphic;

(c) if G is a disconnected graph in which every component is isomorphic of order

p, then rn(G) ≤ p + 2 (the upper bound is attained when G consists of k

isomorphic copies of Kp);

(d) if G is an r-regular graph of order n, then rn(G) ≤ min {r + 3, n − r − 2} ≤⌊
n
2

⌋
+ 2 (the upper bound is attained when G is either Kp, p or 2Kp). �

Asciak and Lauri [2] further showed that the only graphs that attain the bound in

(c) are those given in the theorem. In addition, Asciak [1] showed that kKr+1 is the

only r-regular graph with ally reconstruction number equal to r + 3.

Although interesting, rn(G) does not give any idea of the degree of similarity between

the deck of G and the deck of any other non-isomorphic graph. To assess this, we

must use urn(G); that is, we must calculate the maximum value of b(G, H) over all

graphs H that are not isomorphic to G.
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The problem of finding the maximum number of common cards was first considered

by Harary and Manvel [19]. They presented an infinite family of pairs of disconnected

graphs of even order with n
2

+ 1 common cards. Twenty years later, Bondy [8]

gave an infinite family of forests with n+3
2

common cards. Where (8n + 9) is a

square, Myrvold [33, 35] then presented an infinite family of pairs of disconnected

graphs with n
2
+ 1

8
(3+

√
8n + 9) common cards and another infinite family of pairs of

disconnected graphs of odd order with the same degree sequence having n+1
2

common

cards. Myrvold’s families are given below.

Example 2.7.3 (Myrvold [33]) Let p be an integer, p ≥ 1. Then, for

n = (p + 1)(2p− 1), the following pair of graphs of order n has n
2

+ 1
8
(3 +

√
8n + 9)

common cards:

G = Kp−1 ⊕ (p − 1)Kp ⊕ pKp+1

H = (p + 1)Kp ⊕ (p − 1)Kp+1.

The removal of any vertex from a component of G isomorphic to Kp and any vertex

in a component of H isomorphic to Kp+1 gives isomorphic cards. So

b(G, H) = p(p + 1). Solving for p in terms of n gives the result. �

Example 2.7.4 (Myrvold [33]) Let p be an integer, p ≥ 1. Then, for n = 6p+5, the

following pair of graphs of order n with the same degree sequence has n+1
2

common

cards:

G = P2 ⊕ C3p+3 ⊕ pK3

H = P3p+2 ⊕ (p + 1)K3.

The removal of any vertex from the C3p+3 component of G and any vertex in a

component of H isomorphic to K3 gives isomorphic cards. So

b(G, H) = 3(p + 1) = n+1
2

. In addition, since both graphs have 6p + 3 vertices of

degree 2, and two leaves, they have the same degree sequence. �
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Myrvold [33, 35] conjectured that her first family had the maximum value of b(G, H)

for all pairs of non-isomorphic graphs G and H of order n, for large n; that is,

b(G, H) ≤ n
2

+ 1
8
(3 +

√
8n + 9), for such n. In addition, she conjectured that her

second family had the maximum value of b(G, H) for pairs with the same degree

sequence, for large n; that is, for such n, any pair with the same degree sequence

has b(G, H) ≤ n+1
2

. These conjectures were repeated by Lauri [24].

For small values of n, there exist pairs of graphs with more common cards than the

number implied by the conjecture: for example, for n = 5 there is a pair with 4

common cards and for n = 6 there is a pair with 5 common cards. Two examples of

these are shown in Figures 2.4 and 2.5. In both cases, G− vi
∼= H −wi. Baldwin [3]

and McMullen [30] recently reported three pairs of graphs of order 8 with 6 common

cards. Rivshin [38] improved on these results and presented four pairs of graphs of

order 10 and six pairs of order 11 with 7 common cards.

Figure 2.4: A pair of graphs of order 5 with 4 common cards.

Figure 2.5: A pair of graphs of order 6 with 5 common cards.
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2.8 Thesis Outline

In this thesis, we examine more thoroughly the question of the maximum number of

common cards between a pair of graphs. We present various methodologies which,

subject to specific criteria, enable us to place bounds on the number of active vertices

of G with respect to H , and vice versa. With the aid of these bounds, we then derive,

and moreover solve, a multitude of equations that bound the number of common

cards between G and H under various conditions. The bounds we prove are as

follows:

(a) Theorem 3.2.5: When G is connected and H is disconnected then

b(G, H) ≤
⌊n

2

⌋
+ 1;

(b) Lemma 4.1.8 and Theorem 4.2.30: When G is a sunshine graph (a graph where

the removal of all of its leaves reduces the graph to a single cycle) and H is a

tree then

b(G, H) ≤
⌊

2(n + 1)

5

⌋
;

(c) Theorem 5.5.11: When G and H are a 2UC graph pair (a pair of graphs, in

which after the iterative removal of all common isomorphic components, at

least one of the resulting graphs is disconnected) then

b(G, H) ≤ 2

⌊
1

3
(n − 1)

⌋
.

A key idea we develop is whether a particular type of active vertex in G (or H)

induces a distinct non-active vertex in either G (or H). For example, suppose that

G contains an active vertex u that is a cut-vertex. If it can be shown that there is

some component Xu of G − u that does not contain any active vertices, then u can

be thought of as inducing the set of non-active vertices V (Xu) ⊂ V (G). Moreover,

since u is a cut-vertex, we can consider u to uniquely induce this set of non-active

vertices. Thus, if we could show that for a subset S ⊂ AH(G), there are disjoint

subgraphs Xu of non-active vertices in G for each u in S, then the number of active

vertices of G is at most

aH(G) ≤ n −
∑
u∈S

|Xu|.
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This notion first occurs in Lemma 3.2.1. There we show that for pairs of cut-vertices

u and v, we can always find two such disjoint subgraphs Xu and Xv of G. It is shown

later in Chapter 3 that, if u and v are active, then, under certain conditions, these

two disjoint subgraphs do not contain any active vertices; thus u and v can be

thought of as inducing a collection of distinct non-active vertices in G. If this can

be shown to be true for many pairs of active vertices, we can obtain a strong bound

on aH(G), and thus b(G, H).

This idea is extended further when we show that certain active vertices in G induce

non-active vertices in H . We construct an isomorphism between various subgraphs

of G and H and look at the images in H of the active vertices of G. We then show

that, in certain cases, these images cannot be active in H . For example, suppose

there is an isomorphism φ from a subgraph U of G to a subgraph W of H . Then, if

S ⊂ U is a collection of distinct active vertices of G such that every vertex of φ(S)

is not active in H , it follows that

aG(H) ≤ n − |S|.

If we can find many such distinct subgraphs in G, again we can place a strong

bound on aH(G). Since b(G, H) ≤ min(aH(G), aG(H)), this process will enable us

to bound b(G, H).

An easy way to assess whether certain vertices are active is to examine the possible

degrees of pairs of associated vertices. This approach is key to the results of Chapter

4. There we combine knowledge of the degrees of these pairs with the isomorphisms

described above to find bounds on the number of non-active vertices in both graphs.

Another useful approach is to consider what effect the existence of certain active

vertices has on the structure of our graphs. We are often able to show that the

presence of a certain number of active vertices in one graph is only possible if this

graph contains a collection of leaf 2-paths. By examining the number and lengths of

various leaf 2-paths in both graphs (again using the isomorphisms mentioned above),

we prove that only certain pairs of graphs contain a large number of particular kinds

of active vertices.
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One thing that is key to all of our analyses, is that we can partition the active vertices

into subsets with a common property and examine these subsets individually. For

example, we consider the active vertices of certain degrees and investigate whether

any of these induce non-active vertices in G or H or we examine all the active cut-

vertices in one of the graphs. What is important to note is that in all of the pairs

that we report on in this thesis, we are able to make useful partitions of the active

vertices so that this case-by-case approach bears fruit.

In Chapters 3 and 5, we partition the active vertices of G in terms of the isomorphism

class of the component in which any associated vertex lies. In Chapter 5, we then

further partition these sets to consider the subsets of cut-vertices and non cut-

vertices of these (already partitioned) sets. In Chapter 4, on the other hand, we

partition the active vertices by their degrees.

This approach additionally allows us to find families that attain these bounds in

each of the cases we examine. Moreover, it allows us to show that the families we

present are unique. The uniqueness is important since it gives an insight into the

nature of any pairs of graphs that have a large number of common cards when n is

large. All the families that attain our bounds possess a large degree of symmetry

and we would conjecture that this is the case for all families of pairs of graphs that

have a large number of common cards. Moreover, this approach has allowed us to

find other families of 2UC graph pairs with certain fixed parameters (for example

the same number of edges) that have a large number of common cards.

In the case of the class of 2UC graph pairs, the bound for b(G, H) is much larger

than the bound in Myrvold’s conjectures. So, since we are able to find a family that

attains this bound, this shows that her first conjecture is false. We now present the

unique family in Example 5.5.12 that attains the bound of b(G, H) = 2(n−1)
3

when

n = 3p + 1 ≡ 1 (mod 3):

G ∼= 2Kp+1 ⊕ Kp−1

H ∼= Kp+1 ⊕ 2Kp. (2.8)
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The removal of a vertex from a component of G isomorphic to Kp+1 and a vertex

from a component of H isomorphic to Kp gives isomorphic cards. This example is

easily extended to all value of n (see Examples 5.5.13 and 5.5.14). The uniqueness

of this example for 2UC graph pairs is shown in Theorem 5.5.11.

The uniqueness of this example is more interesting than the construction itself (it

is perhaps surprising that it was not discovered by previous researchers). The class

of 2UC graph pairs contains many disconnected graph pairs and, moreover, is the

largest family to which the techniques outlined in this thesis can be readily applied

to. Having said that, we believe, with some modifications, that the methods outlined

can be applied to other classes of graphs.

What we are able to do, as developed in Chapter 6, is extend the given example

to find other families of 2UC graph pairs with a large number of common cards.

For example, by replacing the complete graphs in (2.8) with 1-stars, we obtain the

following pair of graphs:

G ∼= 2Sp+1 ⊕ Sp−1

H ∼= Sp+1 ⊕ 2Sp. (2.9)

The removal of a leaf from a component of G isomorphic to Sp+1 and a leaf from

a component of H isomorphic to Sp gives isomorphic cards. So b(G, H) = 2(n−4)
3

when n ≡ 1 (mod 3). In addition, the pair of graphs are both forests with the same

number of components, so have same number of edges.

This example is explained more fully in Theorem 6.2.2. We prove in Theorem 6.2.12

that, for large n, this is one of only two families of 2UC graph pairs (apart from

(2.8) and the extensions above) having this many common cards.

In Example 6.2.13, we show how to construct a family of 2UC graph pairs with the

same degree sequence, which for large n, have many common cards than the bound

in Mryvold’s second conjecture. This shows her second conjecture is incorrect as

well. We briefly present this example here.

49



We recall from Section 1.7 that Sq[Kp] denotes the graph of order p(q + 1) that

consists of Kp with q leaves added to each of its vertices. We let S ′
q[Kp] denote the

graph Sq[Kp] with a single leaf removed, and let S ′′
q [Kp] denote the graph Sq[Kp]

with two leaves, adjacent to different vertices, removed. For n = 3p2 − 2, where

p ≥ 3, let G and H be the following pair of graphs:

G ∼= (Sp−1[Kp] ⊕ S ′′
p−1[Kp]) ⊕ (Sp−1[Kp])

H ∼= (S ′
p−1[Kp] ⊕ S ′

p−1[Kp]) ⊕ (Sp−1[Kp]).

The removal of any leaf from component of G isomorphic to Sp−1[Kp] and an appro-

priate leaf from a component of H isomorphic to S ′
p−1[Kp] give isomorphic cards.

So b(G, H) = 2(p− 1)2 = 2
3
(n + 5− 2

√
3n + 6). In addition, it is easy to see that G

and H have the same degree sequence.

We conclude the thesis by showing how to construct infinite families of pairs of

connected graphs with 2
⌊

1
3
(n − 1)

⌋
or only slightly fewer common cards. The easiest

way to do this it to complement the disconnected graphs given in previous examples.

However, we show in Theorem 6.3.3 that by using the join of two graphs, we can

construct infinite families of pairs of graphs with n vertices and connectivity κ that

have 2
⌊

1
3
(n − κ − 1)

⌋
common cards.

A final important example, presented in Theorem 6.3.4, is a family of pairs of trees

with 2
⌊

1
3
(n − 5)

⌋
common cards. This we do by adding a vertex to each of the

pair of forests in (2.9) and, adding three edges joining this additional vertex to the

centres of the three stars. These, and other examples are explained in more detail

in Section 6.3.

Our investigations suggest two important conjectures, both of which strengthen the

Reconstruction Conjecture. We know of no counter-example to the first conjecture

for n ≥ 13, and none to the second for n ≥ 22.

Conjecture 6.3.5 For large enough n, every simple finite undirected graph is de-

termined, up to isomorphism, by any 2
⌊

1
3
(n − 1)

⌋
+1 of its vertex-deleted subgraphs.
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In other words, we conjecture that urn(G) ≤ 2
⌊

1
3
(n − 1)

⌋
+ 1 for large enough n.

We also conjecture that our families are unique. This conjecture is explained more

fully in Section 6.3.

Conjecture 6.3.6 For large enough n, the only pairs of graphs that attain the

bound in Conjecture 6.3.5 are, up to isomorphism, the 18 families of pairs of graphs

that can be constructed from Example 5.5.12, by any combination of complementing,

and adding up to two isolated vertices or a component isomorphic to K2.
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Chapter 3

The Number of Common Cards

between a Connected Graph and

a Disconnected Graph

By Lemma 2.4.7, the connectedness of a graph is reconstructible. In this chapter we

show that the maximum number of common cards between a connected graph and

a disconnected graph is
⌊

n
2

⌋
+ 1, and thus we can recognise the connectedness of a

graph from any
⌊

n
2

⌋
+ 2 cards of its deck. In addition, we show that this bound is

only attained by three families of pairs of graphs and one “super-family”, together

with a few pairs of order at most 7.

3.1 Active Vertices in Disconnected Graphs

For the whole of this chapter, G will denote a connected graph and H a disconnected

graph, both of order n ≥ 3, where H is expressed as in (1.2). We begin with the

following definition.

52



Let v be a vertex in AH(G). Then v is Hj-active if some associated vertex is in a

component of H isomorphic to Hj. We denote the set of Hj-active vertices of G

by AHj
(G) and its cardinality by aHj

(G). Note that since Hj is a representative

of an isomorphism class, this definition is only meaningful in the context of the

decomposition of H given in (1.2). However, since it will always be clear from the

context which two graphs we are discussing, there will be no confusion with this

definition.

Suppose that v is an Hj-active vertex and that w is a vertex of H associated with

v, which is in some component W . Then, from (1.2) and (2.2),

G − v ∼= H − w ∼= (
⊕

k �=j βkHk) ⊕ (βj − 1)Hj ⊕ (W − w), (3.1)

where W − w ∼= Hj − w′, for some w′ in Hj. We use (3.1) to show the following

result.

Lemma 3.1.1 Let G be a connected graph and H a disconnected graph. Then{
AHj

(G) | 1 ≤ j ≤ r
}

is a partition of AH(G), so

aH(G) =
r∑

j=1

aHj
(G).

Proof Let v be an active vertex of G and suppose that w1 and w2 are distinct vertices

of H associated with v. Let w1 and w2 be in (not necessarily distinct) components

W1 and W2, respectively, where W1
∼= Hs and W2

∼= Ht. By setting j = s and j = t

in (3.1), clearly

G − v ∼= H − w1
∼= (

⊕
k �=s βkHk) ⊕ (βs − 1)Hs ⊕ (W1 − w1) and

G − v ∼= H − w2
∼= (

⊕
k �=t βkHk) ⊕ (βt − 1)Ht ⊕ (W2 − w2),

so

Ht ⊕ (W1 − w1) ∼= Hs ⊕ (W2 − w2).

Since W1
∼= Hs, it follows that s = t and therefore each active vertex of G is

Hj-active for precisely one j. The result then follows. �
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Suppose now that W1 and W2 are isomorphic components of H . Then for each vertex

w1 in W1, we can choose a distinct vertex w2 in W2 such that H − w1
∼= H − w2.

It follows that the number of active vertices of H in W1 must be identical to the

number in W2, that is, isomorphic components of H contain the same number of

active vertices. We therefore write aG(Hj) to denote the number of active vertices

of H that are in a single component isomorphic to Hj. We now extend Lemma 3.1.1

from active vertices to common cards.

Since
{
AHj

(G) | 1 ≤ j ≤ r
}

is a partition of AH(G), it follows that each edge of

B(G, H) joins an Hj-active vertex of G and an active vertex of H that lies in a

component isomorphic to Hj, for some j. We therefore define b(G, Hj) to be the

size of a maximum matching of the subgraph of B(G, H) induced by the set of all

Hj-active vertices of G and all active vertices of H in components isomorphic to Hj ;

thus b(G, H) =
∑r

j=1 b(G, Hj). Clearly, b(G, Hj) ≤ min(aHj
(G), βjaG(Hj)), so we

therefore obtain the following upper bounds on b(G, H).

Corollary 3.1.2 Let G be a connected graph and H a disconnected graph. Then

b(G, H) ≤
r∑

j=1

min
(
aHj

(G), βjaG(Hj)
)
≤

r∑
j=1

min
(
aHj

(G), βjhj

)
≤ aH(G).

So, when H consists of precisely two non-isomorphic components, that is

H = H1 ⊕ H2,

b(G, H) ≤ aH1(G) + min (aH2(G), h2) . (3.2)

Proof This follows immediately from the above discussion, noting that aG(Hj) ≤ hj ,

for all j. �
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3.2 Bounding the Number of Common Cards

between a Connected Graph and a

Disconnected Graph

Before we prove that b(G, H) ≤
⌊

n
2

⌋
+ 1 for G connected and H disconnected, we

prove two simple results concerning the cards of G. These results are also integral

to proving the bounds in Chapter 5. Note that, since any card is a subgraph of G,

all the vertices and edges of a card of G are also vertices and edges of the graph

G itself. Moreover, any component of a disconnected card of G is a vertex-induced

subgraph of G. We can thus talk about a component of a card of G intersecting, or

being contained in, a component of another card of G.

Lemma 3.2.1 Let G be a connected graph of order n containing two distinct ver-

tices u and v. Let Xuv be the component of G − u that contains v, and Xvu the

component of G − v that contains u. Then

(a) (G − u) − Xuv ⊂ Xvu and (G − v) − Xvu ⊂ Xuv;

(b) |V (Xvu)| + |V (Xuv)| ≥ n;

(c) (G − u) − Xuv and (G − v) − Xvu are disjoint.

Figure 3.1: Xuv and Xvu.
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Proof If u is not a cut-vertex then Xuv = G − u; similarly if v is not a cut-vertex

then Xvu = G− v. The results follow immediately in either case, so we may assume

that both u and v are cut-vertices, and therefore G − u and G − v both contain at

least two components.

(a) Suppose that x is a vertex of (G − u) − Xuv. Then there is a path in G from

x to u that does not contain any vertex of Xuv; in particular, it does not contain

v. Hence x and u are in the same component of G − v; so x is in Xvu and thus

(G − u) − Xuv ⊂ Xvu. The second assertion follows by symmetry.

(b) Since Xvu contains u, the result follows from part (a).

(c) Since (G− u)−Xuv and Xuv are disjoint, (G− u)−Xuv and (G− v)−Xvu are

disjoint by part (a). �

Corollary 3.2.2 Let G be a connected graph of order n, and let S ⊆ V (G), with

|S| ≥ 2. Suppose that, for each vertex u in G, Tu is the (possibly empty) collection

of those components of G − u that do not contain a vertex of S. Then

∑
u∈S

(|V (Tu)| + 1) ≤ n.

Proof Let u and v be in S, with u 
= v, and let Xuv and Xvu be as in Lemma

3.2.1. By part (c) of the lemma, (G − u) − Xuv and (G − v) − Xvu are disjoint; so,

since Tu ⊆ (G − u) − Xuv and Tv ⊆ (G − v) − Xvu, Tu and Tv are disjoint. Thus

{Tu | u ∈ S} is a collection of disjoint subgraphs of G, and the result then follows

since these subgraphs are also disjoint from S. �

We now use Lemmas 3.2.1 and Corollary 3.2.2 to prove the bound on b(G, H). We

first prove the following lemma which relates the structure of H to the active vertices

of G.
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Lemma 3.2.3 Let G be a connected graph and H a disconnected graph, both of

order n, with aH(G) ≥ 2. Let u be an active vertex of G and let X be a component

of G − u. We have the following results:

(a) h1 ≥ n
2
;

(b) if |V (X)| = h1, then X contains every active vertex of G except u;

(c) if β2 > 0 and |V (X)| = h2 < h1, then X contains no H1-active vertices.

Furthermore, X contains no active vertices at all unless h1 + h2 = n.

Proof Let v be any vertex in AH(G) − {u}, and let Xuv and Xvu be as in Lemma

3.2.1. By part (b) of the lemma,

|V (Xuv)| + |V (Xvu)| ≥ n. (3.3)

Suppose that X and Xuv are two different components of G − u. Then

|V (X)| + |V (Xuv)| ≤ n − 1; so |V (X)| < |V (Xvu)| by (3.3). Therefore, it follows

that if |V (X)| ≥ |V (Xvu)| then X must be Xuv. Similarly, for any component X̂ of

G − v, if |V (X̂)| ≥ |V (Xuv)|, then X̂ is Xvu.

(a) By (3.1), |V (Xuv)| ≤ h1 and |V (Xvu)| ≤ h1. The result then follows by (3.3).

(b) Since |V (X)| = h1 ≥ |V (Xvu)|, it follows that X is Xuv. So v is in X.

(c) Suppose first that v is H1-active. Then by (3.1), G− v contains a component X̂

of order h2, since β2 > 0. Now, if X is Xuv, then |V (X̂)| = |V (X)| = |V (Xuv)|, so

X̂ is Xvu. Thus 2h2 ≥ n by (3.3), which is impossible since h2 < h1. Therefore X

cannot be Xuv, so v is not in X.

Suppose instead that v is active but not H1-active. Then G−v contains a component

isomorphic to H1, which must contain u by (b); so |V (Xvu)| = h1. Now, if v is in X,

then X is Xuv, so |V (Xuv)| = h2. Thus if X contains any active vertices, h1+h2 ≥ n

by (3.3), and it follows that h1 + h2 = n by (1.2). �
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Lemma 3.2.4 Let G be a connected graph and H a disconnected graph, both of

order n.

(a) If H has at least two components of order h1, then aH(G) ≤ 2.

(b) If H contains at least two components of order less than h1, then

aH(G) ≤
⌊

n
h2+1

⌋
.

(c) If H = H1 ⊕ H2 with h1 > h2, then aH1(G) ≤
⌊

n
h2+1

⌋
and aH2(G) ≤

⌊
n
h2

⌋
.

Proof The results clearly hold if aH(G) ≤ 1, so we may assume that aH(G) ≥ 2.

Thus, by Lemma 3.2.3(a), h1 ≥ n
2
.

(a) Suppose that H has two components of order h1, so h1 = n
2
. Let u be in AH(G).

Then, by (3.1), G− u contains a component X of order h1. Every vertex of AH(G)

except u is in X by Lemma 3.2.3(b). We apply Corollary 3.2.2 with S = AH(G).

Then, since |V (Tu)| = n − 1 − h1 = n
2
− 1, it follows from this corollary that

n
2
aH(G) ≤ n. Therefore aH(G) ≤ 2.

(b) Suppose next that H contains at least two components of order less than h1, so

h1 +h2 +1 ≤ n, by (1.2). Let u be in AH(G). By (3.1), G−u contains a component

X that is isomorphic to either H1 or H2. As in (a), we apply Corollary 3.2.2 with

S = AH(G). Now if X ∼= H1, then X contains every active vertex of G except u

by Lemma 3.2.3(b), so |V (Tu)| = n − 1 − h1 ≥ h2. On the other hand, if X ∼= H2,

then X contains no active vertices by Lemma 3.2.3(c), so |V (Tu)| ≥ h2. It therefore

follows from the corollary that aH(G)(h2 + 1) ≤ n, which yields the result.

(c) Finally, suppose that H = H1 ⊕ H2 with h1 > h2. Suppose first that u is

in AH1(G). By (3.1), G − u has a component X ∼= H2, which contains no H1-

active vertices, by Lemma 3.2.3(c). Clearly we may assume that aH1(G) ≥ 2, so

we may apply Corollary 3.2.2 with S = AH1(G). As in (b), |V (Tu)| ≥ h2, so

aH1(G)(h2 + 1) ≤ n. Thus aH1(G) ≤
⌊

n
h2+1

⌋
.
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Suppose instead that u is in AH2(G). By (3.1), G − u has a component X ∼= H1,

which contains every active vertex of G except u, by Lemma 3.2.3(b). Clearly

we may assume that aH2(G) ≥ 2, so we again may apply Corollary 3.2.2, now with

S = AH2(G). In this case, clearly aH2(G) ≤
⌊

n
h2

⌋
, since |V (Tu)| = n−1−h1 = h2−1.

�

We note that Lemma 3.2.4 covers every possible component structure for H .

Theorem 3.2.5 Let G be a connected graph and H a disconnected graph, both of

order n. Then

b(G, H) ≤
⌊n

2

⌋
+ 1, (3.4)

so the connectedness of a graph can be determined from any
⌊

n
2

⌋
+ 2 of its cards.

In addition, if equality holds in (3.4), then H ∼= H1 ⊕ H2 with h1 > h2.

Proof The result holds trivially for n = 3, so we assume that n ≥ 4. Let H be

expressed as in (1.2). Since b(G, H) ≤ aH(G), by Lemma 3.2.4(a) and (b), (3.4)

holds with strict inequality unless H ∼= H1 ⊕H2 with h1 > h2. In this case, by (3.2)

and Lemma 3.2.4(c),

b(G, H) ≤
⌊

n

h2 + 1

⌋
+ min

(⌊
n

h2

⌋
, h2

)
. (3.5)

Thus the result is trivial for h2 = 1 or h2 ≥ 4. For h2 = 2 or h2 = 3, the result holds

by straightforward calculations. �

We note the bound (3.4) was first obtained by Myrvold in her doctoral thesis (see

[33]).

3.3 Pairs that Attain the Bound of Theorem 3.2.5

We now characterise the graph pairs that attain the bound of Theorem 3.2.5. The

theorem indicates that we only need to consider graphs where H ∼= H1 ⊕ H2 with

h1 > h2. We begin by giving the only four pairs of graphs that attain the bound

when h2 ≥ 2. Note that, in this case, every active vertex of G must be a cut-vertex.
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Example 3.3.1 For n ≥ 4, let G = Pn and H = Pn−2 ⊕ K2. Then the removal of

either leaf-adjacent vertex from G, and either vertex from the K2 component of H ,

gives the card Pn−2 ⊕K1; the removal of a vertex that is a distance of 2 from a leaf

of G, and a leaf from the Pn−2 component of H , gives the card Pn−3 ⊕ K2. There

are thus 2 common cards for n = 4, 3 common cards for n = 5 and 4 common cards

for n ≥ 6. It follows that b(G, H) =
⌊

n
2

⌋
+ 1 for n = 5, 6 or 7. Figure 3.2 shows the

case when n = 6. �

Figure 3.2: P6 and P4 ⊕ K2.

Example 3.3.2 Let G and H be the pair of graphs in Figure 3.3. Then

G − vi
∼= H − wi, for 1 ≤ i ≤ 4; so b(G, H) =

⌊
n
2

⌋
+ 1 = 4. �

Figure 3.3: Connected and disconnected graphs of order 7 with 4 common cards.

We now prove that these four pairs of graphs are the only pairs that attain the bound

when h2 ≥ 2. Before we do so however, we make the following simple observation

concerning the degrees of associated vertices. This observation will be useful in this

and subsequent chapters.

Lemma 3.3.3 Let F and U be a pair of graphs. Suppose that v is an active vertex of

F and that w is a vertex of U associated with v. Then d(v) = d(w)+|E(F )|−|E(U)|.

Proof |E(F )|−d(v) = |E(F−v)| = |E(U−w)| = |E(U)|−d(w), since F−v ∼= U−w.

This implies the result. �
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Lemma 3.3.4 Let G be a connected graph and H a disconnected graph, both of

order n, where H = H1 ⊕ H2 and h1 > h2 ≥ 2. If b(G, H) =
⌊

n
2

⌋
+ 1, then G and

H are one of the four pairs in Examples 3.3.1 and 3.3.2.

Proof Suppose that b(G, H) =
⌊

n
2

⌋
+ 1. Then, by Lemma 3.2.4(c),

aH1(G) ≤
⌊

n

h2 + 1

⌋
and aH2(G) ≤

⌊
n

h2

⌋
. (3.6)

So, by Corollary 3.1.2,

⌊n
2

⌋
+ 1 = b(G, H) ≤ aH1(G) + min(aH2(G), h2) ≤

⌊
n

h2+1

⌋
+ min(

⌊
n
h2

⌋
, h2). (3.7)

Clearly, this cannot hold if h2 ≥ 4. In addition, by straightforward calculations, if

h2 = 3 then n = 9 and if h2 = 2, then n = 5, 6, 7 or 9. Moreover, in all of these

cases, equality holds throughout (3.7). It is then easy to show that, for these values

of h2 and n,

aH1(G) =

⌊
n

h2 + 1

⌋
and aH2(G) ≥ h2. (3.8)

Let {ui} be the vertices in AH1(G) and {vj} be the vertices in AH2(G). For each

vertex vj , G− vj contains a component Yj isomorphic to H1 by (3.1), and the order

of each subgraph G − vj − Yj is equal to h2 − 1. By Lemma 3.2.3(b), every active

vertex of G except vj is in Yj. So, by Lemma 3.2.1(c), for each pair of distinct

H2-active vertices vj and vk, the subgraphs G− vj −Yj and G− vk −Yk are disjoint.

Suppose first that h2 = 3 and n = 9. Then aH2(G) = 3, by (3.6) and (3.8). Thus,

G contains three disjoint subgraphs G − vj − Yj of order 2 that contain no active

vertices. So aH(G) ≤ 3, which contradicts the fact that b(G, H) = 5. Hence this

case is impossible.

We may therefore suppose that h2 = 2. By (3.1), each G − vj
∼= H1 ⊕ K1, so each

vj is adjacent to precisely one leaf. In addition, each G − ui contains a component

Xi isomorphic to K2. There are two possibilities for each Xi: either both vertices of

Xi are of degree two and adjacent to ui, or one vertex is a leaf and the other vertex

is of degree 2 and adjacent to ui. Since n ≥ 5, the Xi are clearly disjoint.
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Figure 3.4: The four “possibilities” for G with n = 9 and h2 = 2.

Suppose that n = 9. Then, since aH1(G) = 3 by (3.8), it follows that

V (G) = X1 ∪ X2 ∪ X3 ∪ AH1(G). So since d1(vj) = 1, each vj must be contained in

precisely one Xi and d(vj) = 2. We may therefore assume without loss of generality

that v1 is adjacent to u1 and v2 is adjacent to u2. Now, v1 is only adjacent to u1

and v∗
1 and v2 is only adjacent to u2 and v∗

2. So since G− v1
∼= G− v2

∼= H1 ⊕K1, it

follows that d(u1) = d(u2). It is thus easy to see that the only possibilities for G are

the four graphs in Figure 3.4; in each case, H is isomorphic to the graph obtained

by deleting the edge u1v1 from G. By inspection, in each of these four cases, the

image of u1 is the only active vertex in H1. So aG(H) ≤ 3, which contradicts the

fact that b(G, H) = 5. So the case n = 9 cannot occur.

We recall that, in all cases, G contains v1 and v2, where d1(v1) = d1(v2) = 1. If

n = 5, then G contains u1 and is connected, so G must be a path. Similarly, if

n = 6, then G contains u1 and u2, and again G must be a path. Finally, if n = 7,

then G contains u1, u2, and an additional vertex which must be adjacent to u1 or

u2, or both, and no other vertex. This additional vertex cannot be a leaf since

G − v1
∼= G − v2. Thus if n = 7, then G is either a path or the graph in Example

3.3.2. This completes the proof. �

We now turn our attention to when h2 = 1. We begin by presenting the three

families and one “super-family” of pairs of graphs that attain the bound. We recall

from Section 1.1, that when v is a vertex of G with d1(v) = 1, we denote the unique

leaf adjacent to v by v∗.
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The first family is the unique family of pairs of graphs of even order that attain the

bound.

Example 3.3.5 Let p be an integer, p ≥ 0. Then, for n = 2(p + 1), the following

pair of graphs of order n has
⌊

n
2

⌋
+ 1 common cards. Let G be isomorphic to S1[S

1
p ]

and let u0 be its central vertex. Let H1 be isomorphic to G − u∗
0 and let x0 be

the central vertex of H1. Now let H ∼= H1 ⊕ K1, and let z be the isolated vertex

of H . Let the other cut-vertices of G and H be u1, u2, . . . , up and x1, x2, . . . , xp,

respectively. Clearly, G − u0
∼= H − x0, G − u∗

0
∼= H − z and G − ui

∼= H − x∗
i , for

each i ≥ 1. So b(G, H) = p + 2 =
⌊

n
2

⌋
+ 1. Figure 3.5 shows these graphs for p = 5.

�

Figure 3.5: The pair of graphs in Example 3.3.5 of order 12 with 7 common cards.

There are three families of odd order that attain the bound. The first two are similar

to the family in Example 3.3.5.

Example 3.3.6 Let p be an integer, p ≥ 0. Then, for n′ = 2p + 3, the following

pair of graphs of order n′ has
⌊

n′
2

⌋
+ 1 common cards. Let G′ and H ′ be the graphs

obtained from G and H in Example 3.3.5 by adding a single leaf to each graph,

adjacent to u0 and x0, respectively. Clearly, G′ and H ′ have the same number of

common cards as G and H . So b(G′, H ′) = p+2 =
⌊

n′
2

⌋
+1. Figure 3.6 shows these

graphs for p = 5. �
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Figure 3.6: The pair of graphs in Example 3.3.6 of order 13 with 7 common cards.

Example 3.3.7 Let p be an integer, p ≥ 0. Then, for n′′ = 4p + 5, the following

pair of graphs of order n′′ has
⌊

n′′
2

⌋
+ 1 common cards. Let A and B be disjoint

graphs, both isomorphic to S1[S
1
p+1] − t∗0, where t0 is the central vertex of S1[S

1
p+1].

Let v0 and y0 be the central vertices of A and B, respectively, and let v1, v2, . . . , vp+1

and y1, y2, . . . , yp+1 be their other cut-vertices. Now let G′′ and H ′′ be the graphs

obtained by adding the edges u0v0 and x0y0 to G⊕A and H ⊕B, respectively, where

G and H are the graphs in Example 3.3.5. Then G′′−u0
∼= H ′′−x0, G′′−u∗

0
∼= H ′′−z,

G′′ − ui
∼= H ′′ − x∗

i , for all i ≥ 1, and G′′ − vj
∼= H ′′ − y∗

j , for all j ≥ 1. So

b(G′′, H ′′) = 2p + 3 =
⌊

n
2
′′⌋+ 1. Figure 3.7 shows these graphs for p = 5. �
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Figure 3.7: The pair of graphs in Example 3.3.7 of order 25 with 13 common cards.

The last family is a “super-family”, with many graph pairs for each odd n.

Example 3.3.8 Let p be an integer, p ≥ 2. Then, for n = 2p+1, the following pair

of graphs of order n has
⌊

n
2

⌋
+ 1 common cards. Let T be any connected vertex-

transitive graph of order p + 1 and let t be any vertex of T . Now let G = S1[T ]− t∗

and H ∼= S1[T ]− t ∼= S1[T − t]⊕K1, and let z be the isolated vertex of H . For any

vertex u 
= t in T , there is some automorphism φu of T such that φu(u) = t, since T

is vertex-transitive. Let φu(t)
∗ be the leaf of G adjacent to φu(t).

Clearly G − t ∼= H − z. In addition, G − u ∼= S1[T ] − φu(t)
∗ − t ∼= H − x for some

leaf x of H . We will show in Corollary 3.3.16 that we can find a distinct φu(t)
∗, and

thus a distinct x, for each u in AH1(G). So b(G, H) = p + 1 =
⌊

n
2

⌋
+ 1. �

A simple example of this construction is obtained when T ∼= Kp+1, so T − t ∼= Kp

(note that, in this case every leaf of H is associated with every H1-active vertex of

G). Figure 3.8 shows these graphs for T = K8.
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Figure 3.8: A member of the super-family in Example 3.3.8 when T = K8.

We will show, in Lemmas 3.3.13 and 3.3.14, that when h2 = 1, the only pairs

attaining the bound that are not members of the families in Examples 3.3.5 to 3.3.8

are the following two pairs of small graphs.

Figure 3.9: Connected and disconnected graphs of order 5 with 3 common cards.

Example 3.3.9 Let G and H be the pair of graphs in Figure 3.9. Then

G − q ∼= H − z, G − u0
∼= G− s ∼= H − y0

∼= H − x0. So b(G, H) =
⌊

n
2

⌋
+ 1 = 3. �
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Figure 3.10: Connected and disconnected graphs of order 7 with 4 common cards.

Example 3.3.10 Let G and H be the pair of graphs in Figure 3.10. Then

G − q ∼= H − z, G − u0
∼= H − x0, G − s ∼= H − y0 and G − v ∼= H − w. So

b(G, H) =
⌊

n
2

⌋
+ 1 = 4. �

We recall from Section 1.1 that, since G is connected, a non-leaf of G is any vertex

of degree 2 or more.

Lemma 3.3.11 Let G be a connected graph and H a disconnected graph, both of

order n, n ≥ 4, where H = H1 ⊕ H2 and h2 = 1. Suppose that b(G, H) =
⌊

n
2

⌋
+ 1.

(a) If u is in AH1(G), then u is a non-leaf and is adjacent to one more leaf than

any vertex of H associated with u.

(b) aH1(G) =
⌊

n
2

⌋
and aH2(G) ≥ 1.

(c) In any maximum matching of B(G, H), every vertex of AH1(G) is incident to

some edge of the matching.

(d) Every vertex of AH2(G) is not a cut-vertex and is of degree |E(G)| − |E(H)|.

Proof (a) Let u be any vertex in AH1(G) and let x be a vertex of H1 associated with

u. Clearly, u cannot be a leaf, and since H contains precisely one isolated vertex, u

must be adjacent to precisely one more leaf than x.

(b) Since b(G, H) =
⌊

n
2

⌋
+ 1, clearly, aH1(G) ≥

⌊
n
2

⌋
by (3.2). From (a), it follows

that G contains at least aH1(G) leaves, none of which can be H1-active. Therefore

aH1(G) =
⌊

n
2

⌋
, so aH2(G) ≥ 1.

(c) This follows directly from (b) and (3.2).
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(d) Any H2-active vertex of G is associated with the isolated vertex of H , so is

therefore not a cut-vertex and in addition is of degree |E(G)| − |E(H)| by Lemma

3.3.3. �

Corollary 3.3.12 Let G and H be as in Lemma 3.3.11.

(a) If n is even, then d1(G) = n
2

and G contains precisely n
2

H1-active vertices,

each adjacent to precisely one leaf.

(b) If n is odd, then G contains precisely n−1
2

H1-active vertices, and either

(i) d1(G) = n+1
2

, one H1-active vertex is adjacent to precisely two leaves, and

the others are each adjacent to precisely one leaf;
or

(ii) d1(G) = n−1
2

, every H1-active vertex is adjacent to precisely one leaf, and

there is one non H1-active vertex that is neither a leaf nor adjacent to a

leaf.

Proof By parts (a) and (b) of Lemma 3.3.11, G contains
⌊

n
2

⌋
H1-active vertices,

each of which is adjacent to a leaf, from which the result easily follows. �

We first consider the case when |E(G)| − |E(H)| = 1; so by Lemma 3.3.11(b) and

(d), G contains an H2-active leaf.

Lemma 3.3.13 Let G and H be as in Corollary 3.3.12, but not either of the pairs

in Examples 3.3.9 and 3.3.10. Suppose that |E(G)| − |E(H)| = 1, and let q be an

H2-active leaf (so G − q ∼= H1), and let u0 be the vertex of G adjacent to q.

(a) Every vertex in AH1(G) − {u0} is of degree 2.

(b) One of the following three possibilities must hold:

(i) if d1(G) = n
2
, then G and H are the pair described in Example 3.3.5;

(ii) if d1(G) = n+1
2

, then G and H are the pair described in Example 3.3.6;

(iii) if d1(G) = n−1
2

, then G and H are the pair described in Example 3.3.7.
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Proof Let φ be an isomorphism from G−q to H1. Clearly G−u0
∼= H−φ(u0), so u0 is

associated with φ(u0). Thus, since by Lemma 3.3.11(c), in any maximum matching

of B(G, H), every vertex of AH1(G) is incident to some edge of the matching, it

follows that every vertex in AH1(G) − {u0} is associated with some active vertex of

H1 other than φ(u0). Clearly, for any u in V (G) − {u0, q},

d(φ(u)) = d(u) and d1(φ(u)) ≥ d1(u), (3.9)

noting that since n ≥ 4, if u is a leaf then d1(φ(u)) = d1(u) = 0.

(a) Let u be a vertex in AH1(G)−{u0} and let φ(v) be a vertex in V (H1)−{φ(u0)}

associated with u. We shall show that φ(v) is always a leaf. Since d(u) = d(φ(v))+1

by Lemma 3.3.3, the result will then follow. Following Corollary 3.3.12, we consider

three cases: (I) n is even and d1(G) = n
2
; (II) n is odd and d1(G) = n+1

2
; and (III)

n is odd and d1(G) = n−1
2

.

(I) By Corollary 3.3.12(a), d1(u) = 1; so d1(φ(v)) = 0 by Lemma 3.3.11(a). More-

over, by Corollary 3.3.12(a), every non-leaf of G is adjacent to precisely one leaf, so

by (3.9), every vertex of H1, except possibly φ(u0), is either a leaf or adjacent to a

leaf. Therefore, φ(v) must be a leaf.

(II) By Corollary 3.3.12(b)(i), let t be the H1-active vertex of G with d1(t) = 2. In

a similar manner to (I), it is easy to show that φ(v) is a leaf except when u is t. So

every vertex of AH1(G) − {u0} except t is of degree 2 and adjacent to precisely one

non-leaf. This proves the case when t is u0. We now show that the case when t is

not u0 cannot exist.

69



Suppose then t is not u0 and let φ(r) be a vertex of H associated with t. By

(3.9), r is not a leaf since d(φ(r)) = d(r) and d1(φ(r)) = 1; so r is H1-active

by Corollary 3.3.12(b)(i). Clearly, r 
= u0 since d1(φ(u0)) = 0, and r 
= t since

d1(φ(t)) ≥ d1(t) = 2 by (3.9). Thus r is in AH1(G)− {u0, t}, so d(φ(r)) = d(r) = 2.

It follows that d(t) = 3, by Lemma 3.3.3, and thus every vertex in AH1(G) − {u0}

must be adjacent to precisely one non-leaf. Therefore, since G is connected, every

such vertex (including t and r) must be adjacent to u0, so d(u0) ≥ 3. Thus G−t does

not contain a vertex adjacent to two or more leaves. This contradicts the fact that

G − t ∼= H − φ(r), since φ(t)) is clearly adjacent to at least two leaves in H − φ(r).

Therefore, t must be u0, and the result is proved for case (II).

(III) By Corollary 3.3.12(b)(ii), let v0 be the non-leaf of G that is not H1-active.

Then by that corollary and (3.9), every vertex of H1, except possibly φ(u0) and

φ(v0), is a leaf or adjacent to a leaf. Using a similar argument to that in (I), it is

easy to see that φ(v) is a leaf unless v is v0. Thus if φ(v0) is not active, the result

follows. To complete the proof, we shall show that if φ(v0) is active then G and H

are one of the pairs in Examples 3.3.9 and 3.3.10.

So suppose that φ(v0) is active and let s be an H1-active vertex of G associated with

φ(v0). By Lemma 3.3.11(c), every vertex of AH1(G) − {u0, s} must be associated

with some leaf of H1 other than φ(u0) and φ(v0); so every such vertex is leaf-adjacent

and of degree 2. Moreover, since G is connected and n ≥ 5, it follows that each of

these vertices are adjacent to precisely one of u0, s and v0.

Let u0, s and v0 be adjacent to α, β and γ vertices in AH1(G)−{u0, s}, respectively

(see Figure 3.11). Clearly each of u0, s and v0 is adjacent to at least one of the other

two since G is connected. We use a dotted line in the diagram to indicate that the

edge may or may not be present.
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Figure 3.11: The graph G when s is associated to φ(v0).

We first show that α = 0. So suppose that α ≥ 1. Then u0 is the only vertex of G−s

that is adjacent to both a leaf and a leaf-adjacent vertex of degree two unless α = 1

and v0 is not adjacent to u0. Similarly, φ(s) is the only vertex of H − φ(v0) that is

adjacent to both a leaf and a leaf-adjacent vertex of degree 2, unless β = 1 and s is

not adjacent to u0. Since u0 must be adjacent to one of v0 or s, it follows that u0

and φ(s) are the only two such vertices in G − s and H − φ(v0), respectively. By

counting the number of leaf-adjacent vertices of degree 2 adjacent to these vertices,

it is easy to see that this implies that β = α ≥ 1. Thus, H−φ(v0) contains precisely

γ components isomorphic to K2. Similarly, G − s contains precisely β components

isomorphic to K2. Therefore, α = β = γ ≥ 1. It follows that no vertex of G can be

of degree greater than α + 3.

Since G is connected, and the fact that G− s and H − φ(v0) have an equal number

of components, it easy to see that u0 must be adjacent to both v0 and s. It follows

that if v0 is not adjacent to s, then u0 is the unique vertex of G of maximum degree

α + 3, whereas if v0 is adjacent to s, then both s and u0 are of maximum degree

α + 3.
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Let v′ be a vertex of AH1(G) − {u0, s} that is adjacent to v0, and let φ(u′) be

a leaf of H associated with v′. Since v′ is not adjacent to either u0 or s, clearly

dα+3(G − v′) = dα+3(G). However, since d(φ(u0)) = d(u0) − 1 and d(φ(x)) = d(x),

for every other vertex x of G except q, it follows that dα+3(H) = dα+3(G) − 1. So

dα+3(H − φ(u′)) ≤ dα+3(H) = dα+3(G) − 1 = dα+3(G − v′) − 1,

which contradicts the fact that G − v′ 
∼= H − φ(u′). So α = 0, which implies that

d(u0) ≤ 3.

Since s is H1-active, d1(s) = 1. Thus d1(φ(v0)) = 0, so φ(u0) cannot be a leaf

adjacent to φ(v0). So, since α = 0 and G is connected, u0 must be adjacent to s.

Therefore, since u0 and s are the only possible leaf-adjacent vertices of degree 3 or

more, G − s cannot contain a leaf-adjacent vertex of degree greater than 3. So,

H − φ(v0) cannot contain such a vertex and it is easy to see that this implies that

β = 0, thus d(s) ≤ 3. Since H − φ(v0) contains γ components isomorphic to K2, it

follows that either γ = 0 and u0 is adjacent to v0, or γ = 1 and u0 is not adjacent

to v0. Since v0 is not a leaf, the first case is the pair in Example 3.3.9. The second

case is the pair in Example 3.3.10, since G is connected.

(b) Note that cases (i), (ii), and (iii) correspond to the three cases in Corollary 3.3.12,

that is, cases (I), (II) and (III) from part (a). By (a), every vertex of AH1(G)−{u0}

is of degree 2 and, in addition, is adjacent to a leaf by Corollary 3.3.12.

(i) Since G is connected, every vertex of AH1(G) − {u0} must be adjacent to u0.

Noting that H ∼= (G − q) ⊕ K1, it is easy to see that G and H are members of the

family of pairs of graphs described in Example 3.3.5.

(ii) This follows in a similar manner to (i), since the additional leaf must be adjacent

to u0.

(iii) Since v0 is not a leaf, every vertex of AH1(G)−{u0} must be adjacent to either

u0 or v0, since G is connected. By pairing the vertices of AH1(G) − {u0} with their

associated leaves of H1, it is easy to see that G and H must be members of the

family of pairs of graphs in Example 3.3.7. �
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We now consider the case when G contains an H2-active vertex that is not a leaf.

For any connected graph A, we denote the connected subgraph of A obtained by

removing all of its leaves by S−1
1 [A]; so S−1

1 S1[B] = B for any non-trivial connected

graph B.

Lemma 3.3.14 Let G and H be as in Lemma 3.3.11 and suppose that

|E(G)|−|E(H)| ≥ 2. Now let T = S−1
1 [G]. Then T is a (connected) vertex-transitive

graph of order n+1
2

. In addition, for any vertex t of T , G ∼= S1[T ] − t∗ and

H ∼= S1[T ] − t ∼= S1[T − t] ⊕ K1.

Proof By Lemma 3.3.11(b) and (d), there is some H2-active vertex q of G such that

G − q ∼= H1, and d(q) = |E(G)| − |E(H)| ≥ 2. So Corollary 3.3.12(b)(ii) must hold

and q must be the unique vertex of G that is neither a leaf nor H1-active (so not

leaf-adjacent). Thus, since every vertex of G except q is either a leaf or adjacent

to a leaf, it is easy to see that this is also true for H1. It also follows that T is the

subgraph of order n+1
2

induced by q and the vertices of AH1(G).

Let u be any vertex in AH1(G) and let x be a vertex of H1 associated with u. By

Corollary 3.3.12(b)(ii), d1(u) = 1, so d1(x) = 0 by Lemma 3.3.11(a), and therefore x

must be a leaf. So d(u) = d(q) + 1 ≥ 3, by Lemma 3.3.3. Since this holds for every

vertex u in AH1(G), it follows that T is d(q)-regular.

If d(q) = 2, then T is a cycle, since it is regular and connected. Thus T is vertex-

transitive, and it is easy to see that G and H have the required form.

So suppose that d(q) ≥ 3. Then d(u) ≥ 4, so neither G nor H1 contain any vertices

of degree 2. Therefore, with the exception of u∗, a vertex is a leaf in G if and only if it

is a leaf in G−u. Thus S−1
1 [G−u] ∼= (S−1

1 [G]−u)⊕K1, since u∗ is an isolated vertex

in G− u. Similarly, with the exception of x, a vertex is a leaf in H1 if and only if it

is a leaf in H1−x. So S−1
1 [H1 −x] ∼= S−1

1 [H1], and thus S−1
1 [H −x] ∼= S−1

1 [H1]⊕K1.

Therefore, since G − u ∼= H − x, it follows that T − u = S−1
1 [G] − u ∼= S−1

1 [H1].

Since a similar approach shows that T − q = S−1
1 [G]− q ∼= S−1

1 [H1], every card of T

is isomorphic.
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For any pair of vertices v1 and v2 in T , T − v1
∼= T − v2. Moreover, v1 and v2 are

adjacent in T to every vertex of degree d(q) − 1 in T − v1 and T − v2, respectively.

Therefore, the isomorphism between T −v1 and T −v2 can be extended naturally to

an automorphism of T that maps v1 to v2. So, T must be vertex-transitive. If t is q,

then G and H are clearly of the required form. Moreover, since T is vertex-transitive,

this clearly holds for all t in T . �

We now show that the converse of Lemma 3.3.14 holds, that is, the construction

in Example 3.3.8 attains the bound for any connected vertex-transitive graph. We

begin with a lemma concerning transitive permutation groups.

Lemma 3.3.15 Let A be a transitive permutation group on the set R, and let t be

in R. Then there exists a set of |R| distinct permutations {αu | u ∈ R} ⊆ A, such

that for every pair of distinct elements u and v in R,

(a) αu(u) = t;

(b) αu(t) 
= αv(t).

Proof For any u and v in R, let Avu = {α ∈ A |α(u) = v} and let S(u) = {α(t) |α ∈ Atu}.

Since A is transitive Atu 
= ∅, so S(u) 
= ∅. Thus (a) holds for every permutation

αu ∈ Atu. We shall show that

∣∣⋃
u∈I S(u)

∣∣ ≥ |I| for all I ⊆ R. (3.10)

It will then follow by Hall’s theorem [17] that there exists αu ∈ Atu, for each u ∈ R,

such that the elements αu(t) are all distinct. This will complete the proof of the

lemma.

Att is clearly a subgroup of A. Let α be any element of Atu. Then Atu ⊆ Attα, since

βα−1 is in Att for all β in Atu. As Attα ⊆ Atu, it follows that Atu = Attα, so Atu is a

right coset of Att. Therefore |Atu| = |Att| for each u and, by symmetry, |Aut| = |Att|.
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Let I ⊆ R and let S =
⋃

u∈I S(u). We note that for each u in I, if α is in Atu then

α(t) is in S, so α is in
⋃

v∈S Avt. Therefore
⋃

u∈I Atu ⊆
⋃

v∈S Avt. As the Avt are all

mutually disjoint, it follows that

|I||Att| = |
⋃

u∈I Atu| ≤ |
⋃

v∈S Avt| ≤ |S||Att|,

since |Att| = |Atu| = |Avt|, for all u and v. Thus (3.10) holds, which completes the

proof. �

Corollary 3.3.16 For any odd n, let T be a connected vertex transitive graph of

order n+1
2

, and let t be a vertex of T . Let G = S1[T ] − t∗ and H ∼= S1[T ] − t, as in

Lemma 3.3.14. Then b(G, H) = n+1
2

.

Proof Let u be a vertex of T different from t, and let φu be an automorphism

of T for which φu(u) = t. We extend φu to S1[T ] in the natural way, so that

φu(w
∗) = φu(w)∗ for all w in T . Clearly φu induces an isomorphism from S1[T ]−t∗−u

to S1[T ]−φu(t)
∗−t. This implies that there is an isomorphism from G−u to H−x,

for some leaf x of H . Therefore u is in AH1(G). We next show that, moreover, for

each u in V (T )− {t}, we can select a distinct leaf x of H that is associated with u.

Since T is vertex transitive, its automorphism group Aut(T ) is transitive. So, by

Lemma 3.3.15 with A = Aut(T ), there is a distinct automorphism φu for each u in

T , such that φu(u) = t, and φu(t) 
= φv(t), and thus φu(t)
∗ 
= φv(t)

∗, if v 
= u. So,

for each of the n−1
2

vertices u in V (T )−{t}, there is a distinct leaf x in H such that

G − u ∼= H − x. In addition, G − t ∼= H − z, where z is the isolated vertex of H .

Thus b(G, H) = n+1
2

. �

The following theorem characterises every pair of graphs that attain the bound of

Theorem 3.2.5.
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Theorem 3.3.17 Let G be a connected graph and H a disconnected graph, both

of order n. Then b(G, H) =
⌊

n
2

⌋
+ 1 if and only if G and H are either members of

one of the families given in Examples 3.3.5, 3.3.6, 3.3.7 and 3.3.8, or are one of the

six exceptional pairs of graphs in Examples 3.3.1, 3.3.2, 3.3.9 and 3.3.10.

Proof Since the result holds by inspection, for n = 2 or n = 3, we assume that

n ≥ 4. Corollary 3.3.16 shows that the claim in Example 3.3.8 is true. Thus, every

pair in each of these examples clearly attains the bound. We therefore need to show

these are the only such pairs.

Now, by Theorem 3.2.5, the bound can only be attained when H ∼= H1 ⊕ H2, with

h1 > h2. Suppose first that h2 ≥ 2. Then by Lemma 3.3.4, G and H are one of

the four pairs in Examples 3.3.1 and 3.3.2. So suppose instead that h2 = 1, and

that G and H are not either of the pairs in Examples 3.3.9 and 3.3.10. Then if

|E(G)| − |E(H)| = 1, G and H must be one of the pairs in Examples 3.3.5, 3.3.6

or 3.3.7, by Lemma 3.3.13(b). On the other hand, if |E(G)| − |E(H)| ≥ 2, then by

Lemma 3.3.14, G and H must be a member of the family given in Example 3.3.8. �
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Chapter 4

The Number of Common Cards

between a Tree and a Connected

Non-tree

In Chapter 3, we showed that the maximum number of common cards between a

tree and a disconnected graph of order n is
⌊

n
2

⌋
+ 1. A natural question to ask is:

what is the maximum number of common cards between a tree and a connected

graph that is not a tree?

In this chapter, we partially answer this question. We first show that we only need to

consider unicyclic graphs, and then show that, when n ≥ 62, the maximum number

of common cards between a tree and a sunshine graph is
⌊

2(n+1)
5

⌋
. (A sunshine

graph is a unicyclic graph in which every leaf is adjacent to a vertex of the cycle).

Moreover, we show that this bound is only attained when n ≡ 4 (mod 5) and the

pair of graphs belongs to a unique infinite family. For these values of n, this pair

has a greater number of common cards than any previously published tree and a

non-tree. Furthermore, since the tree in this maximal example is a caterpillar graph,

this refutes the claim by Francalanza [13] that the number of common cards between

a caterpillar graph and a sunshine graph is at most n+10
3

.
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Our work has led us to conjecture that, in fact, this family has the largest number

of common cards between a tree and any connected non-tree. This, along with

Theorem 3.2.5, would imply that a tree can be recognised from any
⌊

n
2

⌋
+ 2 of its

cards.

4.1 Common Cards between Trees and other Con-

nected Graphs

Before we examine sunshine graphs, we first give some results concerning the maxi-

mum number of common cards between a tree and any non-tree.

Lemma 4.1.1 Let F be a graph of order n that contains two or more cycles. Then

at least n − 2 of the cards in D(F ) contain a cycle.

Proof Suppose that u is a vertex of F such that F − u is acyclic. Then u must lie

on every cycle in F . It is easy to see that any two cycles of F cannot have more

than two vertices in common. This implies the result. �

Corollary 4.1.2 Let F be a graph containing two or more cycles and let T be a

tree. Then b(F, T ) ≤ aT (F ) ≤ 2.

Proof Since T is a tree, every card of T is acyclic. By Lemma 4.1.1, there are at

most two acyclic cards in D(F ), so the result follows. �

By Corollary 4.1.2, to bound the maximum number of common cards between a

tree and any other connected graph that is not a tree, it is sufficient to restrict our

analysis to unicyclic graphs (connected graphs that contain precisely one cycle).
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We first eliminate the case when the unicyclic graph is a cycle or the tree is a path.

Lemma 4.1.3 Let U be a unicyclic graph and T be a tree, both of order n. Then

(a) b(Cn, T ) ≤ 3;

(b) b(U, Pn) ≤ 3.

Proof (a) It is easy to see that there can be at most three cards in D(T ) that are

isomorphic to Pn−1, and this case only occurs when n = 4 and T ∼= S1
3 . As noted in

Section 2.1, every card of Cn is isomorphic to Pn−1, so it follows that b(Cn, T ) ≤ 3.

(b) By (a), we may assume that U 
∼= Cn. As noted in Section 2.1, every card of Pn

consists of either one or two components, both of which are paths of order less than

n. By inspection, there can be at most 3 cards in D(U) that have this component

structure, and this case only occurs when U consists of a cycle plus precisely one

path adjacent to a single vertex of the cycle. So b(U, Pn) ≤ 3. �

For the rest of this chapter, U will denote a unicyclic graph and T a tree, both of

order n. By Lemma 4.1.3, we assume that U 
∼= Cn and T 
∼= Pn, which implies that

n ≥ 4. Now, since U contains a single cycle, for any edge e of the cycle of U , U − e

is a tree. Thus |E(U)| = n since, as noted in Section 1.6, |E(T )| = n − 1.

Let C denote the unique cycle in U , where C is of length c. Suppose that v is a vertex

of U that does not lie on C. Clearly C is a subgraph of U − v. So, since every card

of T is acyclic, v cannot be in AT (U), thus aT (U) ≤ c. Myrvold (see Francalanza

[13]) used this observation to prove the following (weak) bound on b(U, T ).

Theorem 4.1.4 (Myrvold) Let U be a unicyclic graph and let T be a tree. Then

b(U, T ) ≤
⌈

n
2

⌉
+
⌈

n
2

⌉ 1
2 . �
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Suppose now that v is an active vertex of U and that w is a vertex of T associated

with v. By Lemma 3.3.3, d(v) = d(w) + 1, since |E(U)| = |E(T )|+ 1. In particular,

since T − w is connected if and only if w is a leaf, U − v is connected if and only if

d(v) = 2. We concentrate first on those common cards that are connected.

We define A∗
T (U) to be the set of active vertices v of U such that U −v is connected,

and denote its cardinality by a∗
T (U). We similarly define A∗

U(T ) and a∗
U(T ), and let

b∗(U, T ) denote the maximum number of connected common cards between U and

T . The above discussion yields the following result.

Lemma 4.1.5 Let U be a unicyclic graph with unique cycle C and let T be a

tree. Let δi(U) denote the number of vertices of degree i of U that lie on C. Then

b∗(U, T ) ≤ min (δ2(U), d1(T )).

Proof Every vertex in A∗
T (U) is on C and is of degree 2. Every vertex in A∗

U(T ) is

a leaf. The result then follows since b∗(U, T ) ≤ min(a∗
T (U), a∗

U(T )). �

We now obtain some simple relations between the number of leaves of U and T , in

terms of the number of degree 2 vertices adjacent to any pair of associated vertices

of U and T . We recall the following result from Chapter 2.

Lemma 2.4.6 Let G be a graph and v a vertex of G where d(v) = k. Then

(a) dk(G − v) = dk(G) + dk+1(v) − dk(v) − 1;

(b) di(G − v) = di(G) + di+1(v) − di(v), for i 
= k. �

Corollary 4.1.6 Let U be a unicyclic graph and let T be a tree. Suppose that v is

an active vertex of U of degree 2 and that w is a leaf of T associated with v. Then

(a) d1(T ) = d1(U) + d2(v) − d2(w) + 1;

(b) d1(U) ≤ d1(T ) ≤ d1(U) + 3.
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Proof Since U − v is connected, d1(v) = 0. So, by Lemma 2.4.6(b),

d1(U−v) = d1(U)+d2(v). In addition, since w is a leaf, d1(T−w) = d1(T )+d2(w)−1,

by part (a) of that lemma. Therefore, d1(T ) = d1(U) + d2(v) − d2(w) + 1, since

d1(T −w) = d1(U − v). Part (b) follows immediately from part (a), since d2(w) ≤ 1

and d2(v) ≤ 2. �

Corollary 4.1.7 Let U be a unicyclic graph and let T be a tree. Suppose that v is

an active vertex of U of degree 2 and that w is a leaf of T associated with v.

(a) If d1(T ) = d1(U), then d2(v) = 0 and d2(w) = 1.

(b) If d1(T ) = d1(U) + 1, then either d2(v) = d2(w) = 1, or d2(v) = d2(w) = 0.

(c) If d1(T ) = d1(U) + 2, then either d2(v) = 2 and d2(w) = 1, or d2(v) = 1 and

d2(w) = 0.

(d) If d1(T ) = d1(U) + 3, then d2(v) = 2 and d2(w) = 0.

Proof These all follow directly from Corollary 4.1.6, using the fact that d2(v) ≤ 2

and d2(w) ≤ 1. �

Now, it is possible to show that if b∗(U, T ) = 0 then b(U, T ) ≤
⌊

n
3

⌋
≤
⌊

2(n+1)
5

⌋
.

We shall therefore assume b∗(U, T ) ≥ 1, so precisely one of Corollary 4.1.7(a) to

(d) always holds. However, establishing an upper bound for b(U, T ) is still quite

complicated in cases (b) and (c). So instead, following a suggestion by Myrvold (see

Francalanza [13]), in this thesis we only consider the case when every vertex of U

that is not on C is a leaf. Such a (unicyclic) graph is called a sunshine graph. We

shall denote an arbitrary sunshine graph by S.

The motivation behind this approach is as follows. In order to maximise b(U, T ),

we attempt to maximise b∗(U, T ). So, by Lemma 4.1.5, we need to ensure that both

δ2(U) and d1(T ) are large relative to n. Since d1(U) and d1(T ) do not differ by more

than three, and δ2(U) ≤ c, it follows that we must maximise c and d1(U) relative to

n. Sunshine graphs are precisely those graphs for which c + d1(U) = n.
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Let S be a sunshine graph and let v be a vertex of S. Then, since every vertex not

on C is a leaf, every vertex of S is adjacent to at most two non-leaves. Moreover, it

is easy to see that this also holds for every vertex of S − v.

Suppose now that v is active and that w is a vertex of T associated with v. Then

d1(v) = d1(w), since neither S nor T contain any isolated vertices. Thus, since v is

on C and d(w) = d(v)− 1, it follows that d1(w) = d1(v) = d(v)− 2 = d(w)− 1, and

w is therefore adjacent to precisely one non-leaf. So, since every vertex of T − w is

adjacent to at most two non-leaves, it is easy to see that every vertex of T , except

possibly one exceptional vertex y0, is also adjacent to at most two non-leaves. This

exceptional vertex would be adjacent to exactly three non-leaves and, moreover,

precisely one of the following must occur:

(a) w is a non-leaf that is adjacent to y0;

(b) y0 is adjacent a degree two vertex x0 that is also adjacent to w.

There are therefore two possibilities: either T contains such an exceptional vertex

y0, or every vertex of T is adjacent to at most two non-leaves. Any tree that is of

the latter type is called a caterpillar graph, and consists of a path and a collection of

leaves adjacent to some of the non-leaves of this path. We shall denote an arbitrary

caterpillar graph by CT . The above discussion leads to the following result.

Lemma 4.1.8 Let S be a sunshine graph and let T be a tree. Suppose that T is

not a caterpillar graph. Then b(S, T ) ≤ 6.

Proof Let w be an active vertex of T . Then, every vertex of T −w must be adjacent

to at most two non-leaves and, in addition, d1(w) = d(w) − 1. Since T is not a

caterpillar, T contains precisely one exceptional vertex y0 that is adjacent to three

non-leaves. Moreover, precisely one of the cases (a) and (b) above must occur. It

is easy to see that there are at most six such vertices w of T (three of case (a) and

three of case (b)). Therefore, b(S, T ) ≤ aS(T ) ≤ 6. �
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Myrvold and Francalanza [13] presented the family of pairs with b(S, CT ) = n+7
3

described in Example 4.1.9. Moreover, Francalanza claimed a proof that

b(S, CT ) ≤
⌊

n+10
3

⌋
for any such pair. Myrvold went on to conjecture that her family

had the maximum value of b(U, T ) for any unicyclic graph U and tree T . We show

in the next section that, when n ≥ 62, the bound is in fact b(S, CT ) ≤
⌊

2(n+1)
5

⌋
. In

addition, we show that for these values of n, there is a unique family of graph pairs

with b(S, CT ) = 2(n+1)
5

, when n ≡ 4 (mod 5). Moreover, we conjecture that this

pair has the maximum number of common cards between any tree and any unicyclic

graph for large n. We state this conjecture more formally as Conjecture 4.2.31 at

the end of the chapter.

Example 4.1.9 Let p be an integer, p ≥ 1. Then for n = 3p + 5, the following

pair of graphs has n+7
3

common cards. Let S be the sunshine graph obtained from

the cycle v1, v2, . . . , v2p+4, v1 by adding a single leaf to v2j+1, for 1 ≤ j ≤ p + 1,

and let CT be the caterpillar graph obtained from the path w1, w2, . . . , w2p+5 by

adding a single leaf to w2j+2, for 1 ≤ j ≤ p. S − v2j+2
∼= CT −w∗

2j+2, for 1 ≤ j ≤ p.

In addition S − v2
∼= CT − w1, S − v2p+4

∼= CT − w2p+5, S − v3
∼= CT − w2 and

S − v2p+3
∼= CT −w2p+4. So b(G, H) = p + 4 = n+7

3
. Figure 4.1 shows these graphs

for p = 4. �

S

v3

v4 v6

v8

v10v12 v11

v2

CT
w1 w

2
w4 w6

w8
w10

w
12

w
13

Figure 4.1: The pair of graphs in Example 4.1.9 of order 17 with 8 common cards.
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4.2 Sunshine and Caterpillar Graphs

For the rest of this chapter, we let S denote a sunshine graph and CT a caterpillar

graph, both of order n. We further let C be the unique cycle in S, and suppose that C

is of length c. In addition, we suppose that CT consists of a path P = y1, y2, . . . , yr

and a collection of leaves adjacent to some of the non-leaves of P (that is any of the

vertices of P except y1 and yr). Clearly, P is a longest path of CT and of length

r − 1. Note that, we assume following Lemma 4.1.3 that S 
∼= Cn and CT 
∼= Pn.

Note that if r = 3, then CT ∼= S1
n−1, the 1-star of order n. By inspection, a 1-star

can have at most 2 common cards with any unicyclic graph, except C4. In light

of this, we shall therefore assume that r ≥ 4. So, since CT is not a path, clearly

n ≥ 5. In this case, it is easy to see that for 3 ≤ i ≤ r − 2, d1(yi) = d(yi) − 2 and,

in addition, d1(y2) = d(y2) − 1, d1(yr−1) = d(yr−1) − 1 (and d1(y1) = d1(yr) = 0).

Thus, y2 and yr−1 are the only possible leaf-adjacent vertices of CT of degree 2.

We recall that a∗
S(CT ) is the number of active leaves of CT , and b∗(S, CT ) is the

number of connected common cards of S and CT .

Lemma 4.2.1 Let S be a sunshine graph and let CT be a caterpillar graph. Then

y2 and yr−1 are the only possible active cut-vertices of CT with respect to S.

Proof As noted near the end of Section 4.1, every active vertex of CT is adjacent to

precisely one non-leaf. Since y2 and yr−1 are the only such cut-vertices of CT , the

result follows. �

Corollary 4.2.2 Let S be a sunshine graph and let CT be a caterpillar graph.

Then aS(CT ) ≤ a∗
S(CT ) + 2, and b(S, CT ) ≤ b∗(S, CT ) + 2.

Proof This follows immediately from Lemma 4.2.1. �
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Lemma 4.2.3 Let S be a sunshine graph and let CT be a caterpillar graph. Sup-

pose that y2 is an active cut-vertex of CT and that u is a cut-vertex of S associated

with y2. Then d1(CT ) ≤ d1(S) + 2. Moreover, equality only holds if d2(y2) = 0 and

d2(u) = 2.

Proof Since y2 and u are cut-vertices, d(y2) ≥ 2 and d(u) ≥ 3. Thus, by Lemma

2.4.6(b), d1(CT−y2) = d1(CT )+d2(y2)−d1(y2) and d1(S−u) = d1(S)+d2(u)−d1(u).

So, since d1(y2) = d1(u) and CT − y2
∼= S − u, it follows that

d1(CT ) = d1(S) + d2(u) − d2(y2). The result then follows since d2(y2) ≤ 1 and

d2(u) ≤ 2. �

It follows from Lemma 4.2.3, that if U has an active cut-vertex, then

d1(CT ) ≤ d1(S) + 2. The above results yield the following corollary.

Corollary 4.2.4 Let S be a sunshine graph and let CT be a caterpillar graph.

(a) If d1(CT ) > d1(S) + 3, then b(S, CT ) = 0.

(b) If d1(CT ) = d1(S) + 3, then b(S, CT ) = b∗(S, CT ).

(c) If d1(CT ) = d1(S), then b(S, CT ) ≤ 4.

(d) If d1(CT ) < d1(S) then b(S, CT ) ≤ 2.

Proof If S contains an active vertex of degree 2, then, by Corollary 4.1.6(b), d1(S) ≤

d1(CT ) ≤ d1(S) + 3. In addition, if S contains an active cut-vertex, then, by

Lemma 4.2.3, d1(S) ≤ d1(CT ) + 2. Thus, (a) and (b) follow immediately. Now, by

Corollary 4.2.2, b(S, CT ) ≤ b∗(S, CT ) + 2. This implies (d). So finally, suppose

that d1(S) = d1(CT ). Then, by Corollary 4.1.7(a), d2(w) = 1 for any active leaf w

of CT . The only possible leaf-adjacent vertices of CT of degree 2 are y2 and yr−1;

so a∗
S(CT ) ≤ 2. Therefore, b(S, CT ) ≤ b∗(S, CT ) + 2 ≤ 4. �

For the rest of this chapter, we shall assume, in light of Corollary 4.2.2 and Corollary

4.2.4 that d1(S) + 1 ≤ d1(CT ) ≤ d1(S) + 3 and, in addition, that CT contains some

active leaf.
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We recall from Section 1.3, that a 2-path of length s ≥ 1 in a graph is a path

v1, v2, . . . , vs+1 in which d(vi) = 2 for 2 ≤ i ≤ s, d(v1) ≥ 3 and d(vs+1) 
= 2. If

d(vs+1) ≥ 3, then this 2-path is called a cut 2-path and, if d(vs+1) = 1, then it is

called a leaf 2-path. We denote the number of cut 2-paths of lengths i in a graph F

by ci(F ) and the number of leaf 2-paths by li(F ). Note that, a leaf 2-path of length

1 is simply an edge joining a leaf to a vertex of degree 3 or more.

Suppose that S contains γ ≥ 1 cut-vertices. Then the unique cycle C in S consists

of γ adjacent cut 2-paths of S. Moreover, it is easy to see that every vertex of degree

2 of S is an interior vertex of a unique cut 2-path in S.

We now partition the vertices of degree 2 of S, and so on C, according to how many

of their neighbours are of degree 2. Let Ai(S) = {v ∈ S | d(v) = 2 and d2(v) = i}.

The following equation relates the size of the Ai to γ and d1(S):

n = |A0(S)| + |A1(S)| + |A2(S)| + γ + d1(S). (4.1)

Lemma 4.2.5 Let S be a sunshine graph with γ cut-vertices. Then

γ ≥ |A0(S)| + 1
2
|A1(S)|.

Proof Let Z be a cut 2-path of length k on C. If k = 1, then Z has no interior

vertices; if k = 2, then the unique interior vertex of Z must be in A0(S); finally if

k ≥ 3, then there are precisely two interior vertices of Z in A1(S) and k− 3 interior

vertices in A2(S). Since S contains precisely γ cut 2-paths, all of which are on C,

the result follows. �

We choose some maximum matching of B(S, CT ), the choice of which is irrelevant.

Then we define |A(S)| to be the number of vertices of degree 2 of S that are not

incident to an edge of this matching, so

|A(S)| = |A0(S)| + |A1(S)| + |A2(S)| − b∗(S, CT ). (4.2)
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Clearly, |A(S)| is at least as large as the number of non-active vertices on C of

degree 2. In addition, since b∗(S, CT ) ≤ d1(CT ), by Lemma 4.1.5, we can rearrange

(4.1) to

n = b∗(S, CT ) + γ + d1(S) + |A(S)| (4.3)

= b∗(S, CT ) + d1(CT ) + γ + (d1(S) − d1(CT )) + |A(S)| (4.4)

≥ 2b∗(S, CT ) + γ + (d1(S) − d1(CT )) + |A(S)|. (4.5)

We use these equations to bound b∗(S, CT ), and thus b(S, CT ).

We first consider the case when d1(CT ) = d1(S) + 1.

Lemma 4.2.6 Let S be a sunshine graph and let CT be a caterpillar graph, both

of order n ≥ 5. Suppose that d1(CT ) = d1(S) + 1. Then b(S, CT ) ≤
⌊

n+8
3

⌋
.

Proof By Corollary 4.1.7(b), S has no active vertices in A2(S), so

a∗
CT (S) ≤ |A0(S)| + |A1(S)|. It also follows from that corollary that any active

vertex in A1(S) is associated with some leaf w, for which d2(w) = 1. The only two

possible such leaves in CT are y1 and yr, so b∗(S, CT ) ≤ A0(S) + min(2, |A1(S)|).

Now, by Lemma 4.2.5, γ ≥ |A0(S)| + |A1(S)|
2

. Thus,

b∗(S, CT ) ≤ γ − |A1(S)|
2

+ min(2, |A1(S)|) ≤ γ + 1,

with equality only if |A1(S)| = 2. Therefore, by (4.5) and Corollary 4.2.2,

n ≥ 2b∗(S, CT ) + γ − 1 ≥ 3b∗(S, CT ) − 2 ≥ 3b(S, CT ) − 8,

and the result follows. �

Note that, Example 4.1.9 fits the criteria of Lemma 4.2.6 and almost attains this

bound. We believe that, for large n, this example has the maximum number of

common cards between a caterpillar graph C and a sunshine graph S with

d1(CT ) = d1(S) + 1.
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Before we consider the two cases d1(CT ) = d1(S) + 2 or d1(CT ) = d1(S) + 3, we

first prove some relationships between the number of cut 2-paths and leaf 2-paths

of S and S − v, and CT and CT − w.

Lemma 4.2.7 Let S be a sunshine graph and let v be a vertex of S of degree 2.

Suppose that d3(v) = 0 and, in addition, that v lies on a cut 2-path of length k ≥ 3,

at a distance of x from one of the end-vertices of this cut 2-path. Then

(a) ck(S − v) = ck(S) − 1, and ci(S − v) = ci(S) for all i 
= k,

(b) li(S − v) = li(S) for all i 
= x − 1, k − x − 1. In addition,

(i) if d2(v) = 2 and x = k
2
, then lx−1(S − v) = lx−1(S) + 2;

(ii) if d2(v) = 2 and x 
= k
2
, then lx−1(S − v) = lx−1(S) + 1 and

lk−x−1(S − v) = lk−x−1(S) + 1;

(iii) if d2(v) = 1 then lk−2(S − v) = lk−2(S) + 1.

Figure 4.2: The breaking of a cut 2-path on S.

Proof Note that d2(v) = 1 or d2(v) = 2, since k ≥ 3.

Now, the removal of v from S destroys the cut 2-path in S on which v lies. However,

since d3(v) = 0, its removal does not affect any other cut 2-path in S. Thus (a)

holds.
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Since d3(v) = 0, the removal of v from S does not destroy any leaf 2-paths of S.

Let u1 and u2 be the end-vertices of the cut 2-path that contains v, where u1 is a

distance of x from v. Suppose that d2(v) = 2, and let v1 and v2 be the two vertices

adjacent to v, as in Figure 4.2. Then the removal of v creates two new leaf 2-paths,

one from u1 to v1 of length x − 1, and another from u2 to v2 of length k − x − 1.

The removal of v does not create any other leaf 2-paths, since d3(v) = 0, so either

(b)(i) or (b)(ii) holds in this case. Suppose instead that d2(v) = 1. Then, if v2 is

the vertex of degree 2 adjacent to v, the removal of v creates a leaf 2-path of length

k− 2 from u2 to v2. Since d3(v) = 0, the removal of v does not create any other leaf

2-paths, so (b)(iii) holds. �

We note that this lemma shows that if an active vertex v of S of degree 2 is not

adjacent to any vertex of degree 3, then
∑
i≥1

ci(S − v) =
∑
i≥1

ci(S) − 1.

Lemma 4.2.8 Let CT be a caterpillar graph, and let w be a leaf of CT . Suppose

that w is adjacent to a ys, where d(ys) = k, for some k 
= 3. Then

ci(CT − w) = ci(CT ), for all i. Furthermore, if k ≥ 4, then lj(CT − w) = lj(CT )

for all j ≥ 2.

Proof Suppose first that d(ys) = 2. Then either s = 2 or s = r − 1 and, moreover,

ys is an interior vertex of a leaf 2-path in CT . So the removal of w from CT does

not create or destroy any cut 2-paths. Suppose, on the other hand, that d(ys) ≥ 4.

Then, with the exception of precisely two 2-paths, every 2-path in CT of which ys is

an end-vertex is a leaf 2-path of length 1. Since ys is of degree at least 3 in CT −w,

clearly the removal of w from CT does not affect these two 2-paths. Thus, since the

removal of w can clearly only affect a 2-path in CT in which ys is an end-vertex, it

follows that CT and CT − w must have the same number of cut 2-paths of every

length and leaf 2-paths of length 2 or more. �

We now prove three general results that will be useful in our analysis of the final

two cases. The first two are easy corollaries of Lemma 2.4.6.
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Corollary 4.2.9 Let S be a sunshine graph and let v be a vertex of S of degree 2

that is adjacent to one vertex of degree 2 and another of degree p ≥ 2.

(a) If p = 2, then d1(S−v) = d1(S)+2, d2(S−v) = d2(S)−3, and di(S−v) = di(S)

for all i ≥ 3.

(b) If p = 3, then d1(S−v) = d1(S)+1, d2(S−v) = d2(S)−1, d3(S−v) = d3(S)−1,

and di(S − v) = di(S) for all i ≥ 4.

(c) If p ≥ 4, then d1(S − v) = d1(S) + 1, d2(S − v) = d2(S) − 2,

dp−1(S − v) = dp−1(S) + 1, dp(S − v) = dp(S) − 1, and di(S − v) = di(S), for

all i 
= 1, 2, p − 1, p.

Proof Since d(v) = 2, these all follow directly from Lemma 2.4.6. �

Corollary 4.2.10 Let CT be a caterpillar graph and let w be leaf of CT that is

adjacent to a vertex of degree q.

(a) If q = 2, then d2(CT − w) = d2(CT ) − 1 and dj(CT − w) = dj(CT ) for all

j 
= 2.

(b) If q = 3, then d1(CT − w) = d1(CT ) − 1, d2(CT − w) = d2(CT ) + 1,

d3(CT − w) = d3(CT ) − 1, and dj(CT − w) = dj(CT ) for all j ≥ 4.

(c) If q ≥ 4, then d1(CT − w) = d1(CT ) − 1, dq−1(CT − w) = dq−1(CT ) + 1,

dq(CT − w) = dq(CT ) − 1, and dj(CT − w) = dj(CT ) for all j 
= 1, q − 1, q.

Proof Since d(w) = 1, these all follow directly from Lemma 2.4.6. �

For the rest of this chapter only, we now denote the number of leaves of CT that

are adjacent to a vertex of degree 2 by λ2, the number that are adjacent to a vertex

of degree 3 by λ3, and the number that are adjacent to a vertex of degree 4 or more

by λ∗; so d1(CT ) = λ2 +λ3 +λ∗. We recall that y1 and yr are leaves of CT adjacent

to y2 and yr−1, respectively.
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Lemma 4.2.11 Let CT be a caterpillar graph. Suppose that d2(y1) + d2(yr) = s

and d3(y1) + d3(yr) = t; so s + t ≤ 2. Then

(a) λ2 = s;

(b) λ3 = d3(CT ) + t;

(c) λ∗ =
∑
i≥4

(i − 2)di(CT ) + (2 − s − t).

Proof We note first that y2 and yr−1 are the only possible leaf-adjacent vertices of

degree 2 in CT , so λ2 = s. Now, for 3 ≤ i ≤ r − 2, every non-leaf yi of CT is

adjacent to d(yi) − 2 leaves. The vertices y2 and yr−1 are adjacent to d(y2) − 1 and

d(yr−1) − 1 leaves, respectively. It is therefore easy to see that λ3 = d3(CT ) + t

and, moreover, d1(CT ) =
∑
i≥3

(i − 2)di(CT ) + 2. It then follows immediately that

λ∗ =
∑
i≥4

(i − 2)di(CT ) + (2 − s − t). �

We now begin our analysis of the final two cases. We first bound b(S, CT ) when

every active leaf of CT is adjacent to a vertex of degree 3.

Lemma 4.2.12 Let S be a sunshine graph and let CT be a caterpillar graph, both

of order n ≥ 5, where d1(CT ) = d1(S) + 2 or d1(CT ) = d1(S) + 3. Suppose that

d3(w) = 1 for every active leaf w of CT . If d1(CT ) = d1(S) + 2, then

b∗(S, CT ) ≤
⌊

n+5
3

⌋
, otherwise b∗(S, CT ) ≤

⌊
n+6

3

⌋
.

Proof Since every active leaf of CT is adjacent to a degree 3 vertex,

a∗
S(CT ) ≤ λ3 ≤ d3(CT ) + 2, by Lemma 4.2.11(b). Let v be an active vertex of S of

degree 2 and let w be a leaf of CT associated with v. By Corollary 4.2.10(b),

d3(CT − w) = d3(CT ) − 1 since d3(w) = 1. Thus, since CT − w ∼= S − v,

a∗
S(CT ) ≤ d3(CT ) + 2 ≤ d3(CT − w) + 3 = d3(S − v) + 3. (4.6)
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By Corollary 4.1.7(c) and (d), d2(v) ≥ 1. Suppose that d4(v) 
= 1. Then, by

Corollary 4.2.9, d3(S−v) ≤ d3(S) ≤ γ. Suppose, on the other hand, that d4(v) = 1.

Then by the same corollary, d3(S − v) = d3(S) + 1 ≤ γ, since d4(S) ≥ 1. Thus, in

either case, b∗(S, T ) ≤ a∗
S(CT ) ≤ γ + 3 by (4.6). Therefore, by (4.5),

n ≥ 3b∗(S, CT ) − 3 + (d1(S) − d1(CT )) + |A(S)|,

which implies the result. �

We now consider the case when d1(CT ) = d1(S) + 3 and every active leaf of CT is

adjacent to a vertex of degree 4 or more.

Lemma 4.2.13 Let S be a sunshine graph and let CT be a caterpillar graph, both

of order n ≥ 5. Suppose that d1(CT ) = d1(S) + 3. Suppose that every active leaf of

CT is adjacent to a vertex of degree 4 or more. Then b∗(S, CT ) ≤
⌊

2(n+3)
7

⌋
.

Proof Let w be any active leaf of CT . Since d3(w) = d2(w) = 0, it follows from

Lemma 4.2.8, that CT −w and CT contain precisely the same number of cut 2-paths

and leaf 2-paths of every length greater than 1. Since this holds for each active leaf

w of CT , it must hold for each active vertex v of S of degree 2. Therefore, S − v

contains precisely the same number of cut 2-paths and leaf 2-paths of every length

greater than 1, for every such v.

Now, let v be such an active vertex of S of degree 2. By Corollary 4.1.7(d), d2(v) = 2,

that is, v is in A2(S), and so v is an interior vertex of a cut 2-path of length k ≥ 4,

a distance of at least 2 from each end-vertex of this cut 2-path. Thus, by Lemma

4.2.7(a), ci(S − v) = ci(S), unless i = k, in which case ck(S − v) = ck(S) − 1. It

therefore follows from the above that every such active v of S must be an interior

vertex of a cut 2-path of S of length k.
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Suppose that k = 4 or k = 5. Then, for each cut 2-path of length k, there is at most

one or two active vertices on this cut 2-path. Suppose instead that k ≥ 6, and that

v is a distance of x from one of the end-vertices of this cut 2-path. Then, by Lemma

4.2.7(b), li(S − v) = li(S), unless i = x− 1 or i = k−x− 1. So, since at least one of

x − 1 or k − x − 1 must be greater than 1, it follows that every active vertex must

be a distance of either i = x or i = k − x from the end-vertex of the cut 2-path on

which it lies. There are clearly only two possible such vertices on any cut 2-path of

length k.

Now, every active vertex of S of degree 2 is an interior vertex on a cut 2-path of

length k ≥ 4. Moreover, by the above argument, any such 2-path can contain at

most two active vertices; therefore, aCT (S) ≤ 2γ. In addition, since k ≥ 4, any such

2-path must contain precisely two vertices in A1; so aCT (S) ≤ A1. By Corollary

4.1.7(d), no vertex in A1(S) is active, thus |A(S)| ≥ |A1| ≥ aCT (S). Therefore, by

(4.5),

n ≥ 2b∗(S, T ) + γ − 3 + |A(S)| ≥ 2b∗(S, T ) + aCT (S)
2

+ aCT (S) − 3 ≥ 7b∗(S, CT )
2

− 3,

so b∗(S, CT ) ≤
⌊

2(n+3)
7

⌋
. �

Using the above two results, we now complete the case when d1(CT ) = d1(S) + 3.

Lemma 4.2.14 Let S be a sunshine graph and let CT be a caterpillar graph.

Suppose that d1(CT ) = d1(S) + 3. Then every vertex that is adjacent to an active

leaf of CT is of the same degree k, where k ≥ 3.

Proof By Corollary 4.2.4(b), S contains no active cut-vertices. Let v be an active

vertex of S. Then, by Corollary 4.1.7(d), d2(v) = 2. Therefore, since d(v) = 2, it

follows that the degree sequence of S − v must be identical for every active vertex

v of S. Thus the degree sequence of CT − w must be identical for any active leaf

w of CT . The result then follows immediately from Corollary 4.2.10, noting that

d2(w) = 0, by Corollary 4.1.7(d). �
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Corollary 4.2.15 Let S be a sunshine graph and let CT be a caterpillar graph,

both of order n ≥ 5. Suppose that d1(CT ) = d1(S) + 3. Then b(S, CT ) ≤
⌊

n+6
3

⌋
.

Proof By Corollary 4.2.4(b), b∗(S, CT ) = b(S, CT ). In addition, by Lemma 4.2.14,

every active vertex of CT is adjacent to a vertex of the same degree k ≥ 3. So the

bound of either Lemma 4.2.12 or 4.2.13 must hold. Therefore, b(S, CT ) ≤
⌊

n+6
3

⌋
,

since
⌊

n+6
3

⌋
≥
⌊

2(n+3)
7

⌋
. �

We now turn our attention to the case when d1(S) = d1(CT )+2. In light of Corollary

4.2.2 and Lemma 4.2.12, we assume from now on that CT contains an active leaf

adjacent to a vertex of degree 4 or more.

Lemma 4.2.16 Let S be a sunshine graph and let CT be a caterpillar graph with

d1(CT ) = d1(S)+2. Then, d3(v)−d3(w) = d2(CT )−d2(S)+2, for all active vertices

v of S of degree 2 and all leaves w of CT associated with v.

Proof Let v be an active vertex of S of degree 2 and let w be a leaf of CT associated

with v. Then, by parts (a) and (b) of Lemma 2.4.6,

d2(S − v) = d2(S) + d3(v) − d2(v) − 1 and d2(CT − w) = d2(CT ) + d3(w) − d2(w).

Now, by Corollary 4.1.7(c), d2(v) = d2(w) + 1. So, since S − v ∼= CT −w, it follows

that

d3(v) − d3(w) = d2(CT ) + d2(v) + 1 − d2(S) − d2(w) = d2(CT ) − d2(S) + 2.

�

We note that, each cut-vertex of S is adjacent to at most two vertices in A1(S). This

observation will be useful in the following few lemmas. We recall that we denote the

number of leaves of CT that are adjacent to a degree 3 vertex by λ3.

Lemma 4.2.17 Let S be a sunshine graph and let CT be a caterpillar graph, both

of order n ≥ 5, where d1(CT ) = d1(S)+2. Suppose that d3(v)+d3(w) = 1, for some

active vertex v of S of degree 2 and some leaf w of CT associated with v. Then

b∗(S, CT ) ≤
⌊

n+4
3

⌋
.
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Proof By Lemma 4.2.16, d3(v)−d3(w) is a constant for all active vertices v of degree

2 and all leaves w of CT associated with v. Thus, since d3(v) + d3(w) = 1 for some

such pair of active vertices, it follows that one of the following must occur: either (i)

d3(v) = 1 and d3(w) = 0 for every such pair of active vertices, or (ii) d3(v) = 0 and

d3(w) = 1 for every such pair of active vertices. We note that d3(S−v) = d3(CT−w),

since S − v ∼= CT − w.

(i) Suppose first that d3(v) = 1 and d3(w) = 0. Then, by Corollary 4.2.9(b) and

Corollary 4.2.10(c),

d3(S) − 1 = d3(S − v) = d3(CT − w) ≤ d3(CT ) + 1,

since S − v ∼= CT − w. So d3(S) ≤ d3(CT ) + 2. Now, since no active leaf of CT

is adjacent to a degree 3 vertex, a∗
S(CT ) ≤ d1(CT ) − λ3 ≤ d1(CT ) − d3(CT ), by

Lemma 4.2.11(b). Thus, since d1(S) = d1(CT ) − 2, it follows that

a∗
S(CT ) ≤ d1(S) − d3(S) + 4. Therefore, since every vertex of S of degree 3 is

adjacent to at most two vertices of degree 2, a∗
S(CT ) ≤ d1(S) − 1

2
a∗

CT (S) + 4. So

since d3(S) ≤ γ, it follows from (4.3) that

n ≥ b∗(S, CT ) + b∗(S, CT )
2

+
3a∗

S(CT )

2
− 4 ≥ 3b∗(S, CT ) − 4,

so b∗(S, CT ) ≤
⌊

n+4
3

⌋
.

(ii) Suppose instead that d3(w) = 1 and d3(v) = 0. Then, by Corollary 4.2.9(c) and

Corollary 4.2.10(b),

d3(CT ) − 1 = d3(CT − w) = d3(S − v) ≤ d3(S) + 1,

since S − v ∼= CT − w. So d3(CT ) ≤ d3(S) + 2. Now, since every active leaf of CT

is adjacent to a degree 3 vertex, a∗
S(CT ) ≤ λ3 ≤ d3(CT ) + 2, by Lemma 4.2.11(b).

In addition, since every vertex of S of degree 4 or more is adjacent to at most two

vertices of degree 2, a∗
CT (S) ≤ 2(γ − d3(S)). Therefore,

3b∗(S, CT ) ≤ 2a∗
S(CT ) + a∗

CT (S) ≤ 2(γ − d3(S)) + 2(d3(S) + 4) ≤ 2γ + 8.

So by (4.5),

n ≥ 2b∗(S, CT ) + (3b∗(S, CT )
2

− 4) − 2 ≥ 7b(S, CT )
2

− 6.
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The result then follows since
⌊

2n+6
7

⌋
≤
⌊

n+4
3

⌋
. �

Corollary 4.2.18 Let S be a sunshine graph and let CT be a caterpillar graph,

both of order n ≥ 5, where d1(CT ) = d1(S) + 2. Suppose that b∗(S, CT ) >
⌊

n+4
3

⌋
.

Then d3(v) = d3(w), for all active vertices v of degree 2 of S and all leaves of CT

associated with v.

Proof Let v be an active vertex of S of degree 2 and let w be a leaf of CT associated

with v. Suppose that d3(v) 
= d3(w). Then, by Corollary 4.1.7(c), d3(v) ≤ 1, so

d3(v) + d3(w) = 1. However, in this case, by Lemma 4.2.17, b∗(S, CT ) ≤
⌊

n+4
3

⌋
,

which is a contradiction. �

In light of Corollary 4.2.18, we now assume that d3(v) = d3(w), for any active

vertex v of S of degree 2 and any leaf w of CT associated with v. We now prove

the following two important results.

Lemma 4.2.19 Let S be a sunshine graph and let CT be a caterpillar graph with

d1(CT ) = d1(S) + 2. Suppose that u is an active cut-vertex of S that is associated

with the vertex y2 of CT . Then CT contains at least one more cut 2-path than S

of length 1.

Proof By Lemma 4.2.3, d2(y2) = 0. So y2 is an end-vertex of precisely one cut

2-path, and this cut 2-path is of length 1. Thus, CT − y2 must contain at least one

less cut 2-path of length 1 than CT . By the same lemma, d2(u) = 0, so u is the

end-vertex of precisely two cut 2-paths, neither of which is of length 1. So, S − u

must contain the same number of cut 2-paths of length 1 as S. Therefore, since

S − u ∼= CT − y2, it follows that CT must have at least one more cut 2-path of

length 1 than S. �
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Lemma 4.2.20 Let S be a sunshine graph and let CT be a caterpillar graph with

d1(CT ) = d1(S) + 2. Suppose that v is an active vertex of S of degree 2 and that

w is an active leaf of CT associated with v. Suppose further that v and w are both

adjacent to a vertex of degree 4 or more. Then S contains no active cut-vertices.

Proof Suppose that S contains an active cut-vertex. Then, by Lemma 4.2.19, CT

contains at least one more cut 2-path of length 1 than S.

Now, by Corollary 4.1.7(c), v is an interior vertex of cut 2-path of length k ≥ 3.

So, since v is not adjacent to a vertex of degree 3, by Lemma 4.2.7(a), S − v and

S contain the same number of cut 2-paths of length 1. Similarly, since w is not

adjacent to a vertex of degree 3, then, by Lemma 4.2.8, CT and CT −w contain the

same number of cut 2-paths of length 1, that is at least one more than S. This is

impossible since S−v ∼= CT−w. Therefore, S does not contain an active cut-vertex.

�

We now show that if two vertices of an active pair are both adjacent to a vertex of

the same degree, then the degree sequences of graphs are identical except for their

leaves and degree 2 vertices.

Lemma 4.2.21 Let S be a sunshine graph and let CT be a caterpillar graph with

d1(CT ) = d1(S) + 2. Suppose that v is an active vertex of S of degree 2 and that w

is an active leaf of CT associated with v. Then v and w are adjacent to a vertex of

the same degree if and only if d2(S) = d2(CT )+2 and di(S) = di(CT ), for all i ≥ 3.

Proof By Corollary 4.1.7(c), either d2(v) = 2 and d2(w) = 1, or d2(v) = 1 and

dq(w) = 1, for some q ≥ 3. We first consider the case when d2(v) = 2 and d2(w) = 1.

By Corollary 4.2.9(a), d2(S − v) = d2(S) − 3 and di(S − v) = di(S) for all i ≥ 3.

Similarly, by Corollary 4.2.10(a), d2(CT − w) = d2(CT ) − 1 and dj(S − v) = dj(S)

for all j ≥ 3. So, d2(S) = d2(CT ) + 2, and dj(S) = dj(CT ), for all j ≥ 3. A similar

proof using parts (b) and (c) of the same corollaries shows the result holds for the

other case. This shows sufficiency.

97



The necessity is immediate in the first case. In the second case, necessity follows by

parts (b) and (c) of Corollary 4.2.9 and Corollary 4.2.10, noting that

dq(CT − w) = dq(CT ) − 1, and that di(S − v) = di(CT − w) for all i. �

We can combine the above lemma with Lemma 4.2.11 to give a useful bound on

b∗(S, CT ). We recall that λ∗ denotes the number of leaves of CT adjacent to a

vertex of degree 4 or more.

Lemma 4.2.22 Let S be a sunshine graph and let CT be a caterpillar graph with

d1(CT ) = d1(S) + 2, d2(S) = d2(CT ) + 2, and di(S) = di(CT ) for all i ≥ 3. Now

let Bj be the set of vertices of S of degree 4 or more that are adjacent to j ≤ 2

active vertices of degree 2. Suppose, as in Lemma 4.2.11, that d2(y1) + d2(yr) = s

and d3(y1) + d3(yr) = t. Then

b∗(S, CT ) ≤ d3(S) + |B1| + 2|B2| + t + s ≤ 2γ − d3(S) + t + s. (4.7)

Proof Let v be an active vertex of S of degree 2 and let w be a leaf of CT associated

with v. By Lemma 4.2.21, v and w are adjacent to a vertex of the same degree. So,

since d1(CT ) = λ2 + λ3 + λ∗, it follows that

b∗(S, CT ) ≤ λ2 + λ3 + min(|B1| + 2|B2|, λ∗). (4.8)

Now, by parts (a) and (b) of Lemma 4.2.11, λ2 = s and λ3 = d3(CT )+ t. Therefore,

since d3(S) = d3(CT ), it follows from (4.8) that

b∗(S, CT ) ≤ d3(S) + |B1| + 2|B2| + t + s. Moreover, since γ ≥ d3(S) + |B1| + |B2|,

clearly,

d3(S) + |B1| + 2|B2| + t + s ≤ 2γ − d3(S) + t + s,

so (4.7) holds. �

We now consider the case when both y2 and yr−1 are of degree 3, so

d1(y2) = d1(yr−1) = 2. First we make the following observation, recalling that any

vertex v of S on C is adjacent to precisely d(v) − 2 leaves.
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Lemma 4.2.23 Let S be a sunshine graph and let CT be a caterpillar graph, where

d(y2) = d(yr−1) = 3. Suppose that v is an active vertex of S of degree 2 and that

w is a leaf of CT associated with v. Suppose further that d3(v) = d3(w). Then v is

adjacent to precisely one vertex of degree 2. Moreover, if x is this vertex of degree

2, then d3(x) = 1.

Proof Since d(y2) = d(yr−1) = 3, there are no leaf-adjacent vertices in CT of degree

2. Therefore, by Corollary 4.1.7(c), d2(v) = 1. So, let x and u be the neighbours of

v, where d(x) = 2 and d(u) ≥ 3. Let y be the other vertex adjacent to x. Since x is

a leaf in S − v, y must be adjacent to d(y) − 1 leaves in this card. In addition, in

S − v, clearly u is of degree d(u) − 1 and, moreover, is adjacent to d(u) − 2 leaves.

So, since v is only adjacent to x and u, it follows that u and y are the only vertices

in S − v that are adjacent to precisely one non-leaf.

Suppose that w is not adjacent to either y2 or yr−1. Then CT −w contains precisely

two vertices of degree 3 adjacent to two leaves. So, S − v contains exactly two such

vertices. By the above reasoning, these two vertices must be u and y, thus d(y) = 3,

so d3(x) = 1.

Suppose instead that w is adjacent either y2 or yr−1. Then, CT −w contains exactly

one vertex of degree 3 adjacent to two leaves. So, S − v contains precisely one such

vertex. Now, d(u) = 3, since d3(v) = d3(w). Therefore, this vertex of degree 3 must

be y, so d3(x) = 1. �

Corollary 4.2.24 Let S be a sunshine graph and let CT be a caterpillar graph,

both of order n with d1(CT ) = d1(S) + 2. Suppose that d(y2) = d(yr−1) = 3 and

that n ≥ 8. Then b∗(S, CT ) ≤
⌊

4(n+3)
11

⌋
.

Proof Let v be an active vertex of S of degree 2 and let w be a leaf associated with

v. Since
⌊

4(n+3)
11

⌋
≥
⌊

n+4
3

⌋
, when n ≥ 8, we may assume by Corollary 4.2.18, that

d3(v) = d3(w). So, by Lemma 4.2.23, d2(v) = 1 and, moreover, v is adjacent to

some degree 2 vertex x with d3(x) = 1. Thus, for every pair of active vertices of S

of degree 2, there is at least one degree 3 vertex in S, so a∗
CT (S) ≤ 2d3(S).
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Suppose first that every active vertex of S of degree 2 is adjacent to a vertex of

degree 4 or more. Then, since any vertex of S of degree 4 or more is adjacent to at

most two degree 2 vertices, a∗
CT (S) ≤ 2(γ − d3(S)) ≤ 2γ − a∗

CT (S), so a∗
CT (S) ≤ γ.

Therefore, by (4.5),

n ≥ 2b∗(S, CT ) + a∗
CT (S) − 2 ≥ 3b∗(S, CT ) − 2,

so b∗(S, CT ) ≤
⌊

n+2
3

⌋
≤
⌊

4(n+3)
11

⌋
.

Suppose instead that v is adjacent to some vertex of degree 3. Then w is also

adjacent to a vertex of degree 3, so Lemma 4.2.21 holds, thus

b∗(S, CT ) ≤ 2γ − d3(S) + 2 by (4.7). Therefore, since a∗
CT (S) ≤ 2d3(S), it follows

from (4.5), that

n ≥ 2b∗(S, CT ) + (3b∗(S, CT )
4

− 1) − 2 ≥ 11b∗(S, CT )
4

− 3.

So, b∗(S, CT ) ≤
⌊

4(n+3)
11

⌋
. �

This bound is attained by the following pair of graphs of small order. Note that in

this case, b(G, H) = b∗(G, H).

Example 4.2.25 Let S and CT be the pair of graphs of order 8 in Figure 4.3. Then

S − vi
∼= CT − wi, for 1 ≤ i ≤ 4. So b(G, H) =

⌊
4(n+3)

11

⌋
= 4. �

S

v2

v3
v4

v1

CT
w

1

w
4

w
2

w
3

Figure 4.3: A caterpillar and sunshine graph with 4(n+3)
11

common cards.
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We now consider the case when either y2 or yr−1 is of degree 2.

Lemma 4.2.26 Let S and CT be a caterpillar graph with d1(CT ) = d1(S)+2. Let

v be an active vertex of S of degree 2 and let w be an active leaf of CT associated

with v. Suppose that d3(v) = d3(w) = 0 and that v lies on a cut 2-path of length k.

Then k ≥ 4. In addition, if v′ is some other active vertex of S of degree 2 and w′ is

a leaf of CT associated with v′ with d3(v
′) = d3(w

′) = 0, then v′ also lies on a cut

2-path of length k.

Proof We first note that, since d(y2) = 2, CT contains a leaf 2-path of length 2

or more. Now, since d3(v) = 0, by Lemma 4.2.7(a), S − v contains one less cut 2-

path than S of length k, and the same number of cut 2-paths of every other length.

Moreover, this also holds for CT − w, since S − v ∼= CT − w.

Suppose that d2(v) = 2, so k ≥ 4. Then, by Corollary 4.1.7(c), d2(w) = 1, so by

Lemma 4.2.8, CT − w and CT contain the same amount of cut 2-paths of every

length. Thus, CT contains one less cut 2-path of length k than S, and the same

number of cut 2-paths of every other length.

Suppose instead that d2(v) = 1. Then, by Lemma 4.2.7(b)(iii), S − v contains one

more leaf 2-path of length k−2 than S, and the same number of leaf 2-paths of every

other length. Moreover, this also holds from CT − w. Now, by Corollary 4.1.7(c),

dq(w) = 1 for some q ≥ 4. So, by Lemma 4.2.8, CT − w and CT contain the same

number of cut 2-paths of every length and the same number of leaf 2-paths of every

length greater than 1. Therefore, S − v contains some leaf 2-path of length 2 or

more, thus k ≥ 4. Moreover, CT contains one less cut 2-path of length k than S,

and the same number of cut 2-paths of every other length.

Finally, suppose that v′ is some other active vertex of S of degree 2 and that w′ is

a leaf of CT associated with v′, with d3(v
′) = d3(w

′) = 0. Then, if v′ lies on a cut

2-path of length k′, the same argument as above will show that CT contains one

less cut 2-path of length k′ than S; so k′ = k, and the lemma is proved. �
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Corollary 4.2.27 Let S and CT be a caterpillar graph, both of order n ≥ 5 with

d1(CT ) = d1(S) + 2. Suppose that d(y2) = 2. Then b∗(S, CT ) ≤
⌊

n+6
3

⌋
.

Proof Let v be an active vertex of S of degree 2 and let w be a leaf associated with

v. By Corollary 4.2.18 we may assume that d3(v) = d3(w).

As in Lemma 4.2.22, let B1 and B2 denote the set of vertices of S of degree 4 or more

adjacent to precisely one, and two active vertices, respectively. By Lemma 4.2.26,

every vertex of B1 and B2 is an end-vertex of one or two cut 2-paths of length k,

respectively, for some k ≥ 4. Thus, it is easy to see that, for each pair of vertices

in B1, and for each vertex in B2, there must be at least one distinct cut 2-path in

S of length k. Now, for each such cut 2-path there must be precisely k − 3 distinct

vertices in A2(S). It therefore follows that |A2(S)| ≥ k−3
2

(|B1| + 2|B2|).

As in Lemma 4.2.22, we let d2(y1)+d2(yr) = s, and d3(y1)+d3(yr) = t, so 1 ≤ s ≤ 2

and 0 ≤ t ≤ 1. Now, by Corollary 4.1.7(c), y1 and yr are the only possible vertices

in CT associated with a vertex in A2(S). Thus, in any maximum matching of

B(S, CT ), there are at most s vertices in A2(S) that are incident to any edge of this

matching. So, since there are at least k−3
2

(|B1| + 2|B2|) vertices in A2(S), it follows

that |A(S)| ≥ (k−3)
2

(|B1| + 2|B2|) − s.

Suppose first that there are no active leaves in CT adjacent to a vertex of degree 3.

Then b∗(S, CT ) ≤ |B1| + 2|B2| + s. Therefore, by (4.5),

n ≥ 2b∗(S, CT ) + (|B1| + |B2|) + (k−3)
2

(|B1| + 2|B2|) − s − 2

≥ 2b∗(S, CT ) + (|B1| + 2|B2| + s) − (2s + 2) ≥ 3b∗(S, CT ) − 6,

since |B1| + |B2| ≤ γ. So b∗(S, CT ) ≤
⌊

n+6
3

⌋
.

So suppose instead that v is adjacent to vertex of degree 3. Then, w is also adjacent

to a vertex of degree 3, so Lemma 4.2.21 holds, thus

b∗(S, CT ) ≤ 2m − d3(S) + t + s by (4.7). Therefore, by (4.5),
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n ≥ 2b∗(S, CT ) + (|B1| + |B2| + d3(S)) + (k−3)
2

(|B1| + 2|B2|) − s − 2

≥ 2b∗(S, CT ) + (|B1| + |B2| + d3(S) + t + s) − (2s + t + 2) ≥ 3b∗(S, CT ) − 6,

since |B1| + 2|B2| + d3(S) ≤ γ. Thus b∗(S, CT ) ≤
⌊

n+6
3

⌋
. �

By symmetry, the only remaining case to consider is when d2(y2) ≥ 4 and

d2(yr−1) ≥ 3. For simplicity, we only consider pairs of graphs of order n ≥ 57.

Lemma 4.2.28 Let S be a sunshine graph and let be CT be a caterpillar graph,

both of order n ≥ 57 with d1(CT ) = d1(S)+2. Suppose that there is some active leaf

of CT that is adjacent to vertex of degree 4 or more. Suppose further that d(y2) ≥ 4

and d(yr−1) ≥ 3. Then b(S, CT ) ≤
⌊

2(n+1)
5

⌋
. In addition, if b(S, CT ) = 2(n+1)

5
, then

the following conditions are satisfied:

(a) d3(S) = d3(CT ) = 1, d4(S) = d4(CT ) = γ − 1 and di(CT ) = di(S) = 0, for all

i ≥ 4;

(b) yr−1 is the unique degree in CT of degree 3;

(c) every cut-vertex of S is adjacent to two vertices of degree 2;

(d) |A0(S)| = |A2(S)| = 0.

Proof Let v be an active vertex of S and let w be a leaf associated with v. Since

n ≥ 57, we may assume by Corollary 4.2.18, that d3(v) = d3(w). So, since both y2

and yr−1 are of degree 3 or more, by Corollary 4.1.7(c), d2(v) = 1 and d2(w) = 0.

Now, by assumption there is some active leaf of CT that is adjacent to vertex of

degree 4 or more. So we may initially assume that w is this leaf. Then v must be

adjacent to a vertex of degree four or more, and it follows from Lemma 4.2.20 that

S does not contain an active cut-vertex. Therefore b(S, CT ) = b∗(S, CT ) for these

values of n.
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We fix some maximum matching of B(S, CT ) (the choice of which is irrelevant),

and α be the number of cut-vertices of S that are adjacent to some vertex that is

either not active or not incident to an edge of this matching. Since every cut-vertex

of S is adjacent to at most two vertices in A1(S), we have b∗(S, CT ) ≤ 2γ −α. Let

β = d1(CT ) − b∗(S, CT ). Then, since |A(S)| ≥ |A0(S)| + |A2(S)|, and

b(S, CT ) = b∗(S, CT ), rearranging (4.4), we have

n ≥ 2b(S, CT ) +
b(S, CT ) + α

2
+ |A0(S)| + |A2(S)| + (β − 2)

≥ 5b(S, CT )

2
+ (

α

2
+ |A0(S)| + |A2(S)| + β − 2). (4.9)

We show that α
2

+ β ≥ 1, with equality only when conditions (a) to (d) hold.

The result will then follow. Let d3(y1) + d3(yr) = t, so 0 ≤ t ≤ 1. Then, since

d2(y1) = d2(yr) = 0, by parts (b) and (c) of Lemma 4.2.11, λ2 = 0, λ3 = d3(CT ) + t

and λ∗ =
∑
i≥4

(i − 2)di(CT ) + (2 − t).

Suppose first that no active leaf of CT is adjacent to a degree 3 vertex, so a∗
S(CT ) ≤

λ∗. Clearly, if either d(yr−1) = 3 or d3(CT ) ≥ 2, then β ≥ 2, and α
2

+ β ≥ 2 as

required. We may therefore assume that d(yr−1) ≥ 4 and d3(CT ) ≤ 1. Now, since

every active vertex of S of degree 2 is adjacent to a vertex of degree 4 or more, using

parts (c) of Corollaries 4.2.9 and 4.2.10, it is easy to show that

γ =
∑
i≥3

di(S) =
∑
i≥3

di(CT ). Now, if d3(CT ) = 0, then

β = d1(CT ) − b(S, CT ) ≥ 2γ + 2 − b(S, CT ) ≥ 2,

thus α
2
+β ≥ 2 as required. So, we may therefore assume that d3(CT ) = 1, so β ≥ 1

and α = 0.
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Suppose therefore, that d3(CT ) = 1, so
∑
i≥4

di(CT ) = γ − 1. Since α = 0, every

cut-vertex of S must be adjacent to a pair of active vertices. In particular, it follows

that d3(S) = 0. Suppose that w is adjacent to a vertex of degree 4. Then, by

Corollary 4.2.10(c), d3(CT − w) = 2. However, since d3(S − v) ≤ 1, by Corollary

4.2.9, this contradicts the fact that w is associated with v. It therefore follows

that every active leaf of CT is adjacent to a vertex of degree 5 or more. Clearly,

β ≥ d3(CT ) + 2d4(CT ) ≥ 2, if d4(CT ) ≥ 1. However, if d4(CT ) = 0, then since

b(S, CT ) ≤ 2γ, it follows that

β = d1(CT )− b(S, CT ) ≥
∑
i≥5

(i−2)di(CT )+3− b(S, CT ) ≥ 3(γ−1)+3−2γ ≥ 2,

unless γ = 1. The result holds trivially in this case.

We are therefore left with the case when d3(w) = d3(v) = 1; so by Lemma 4.2.21,

di(S) = di(CT ) for all i ≥ 3. Thus,

d1(CT ) = d3(S) +
∑
i≥4

(i − 2)di(S) + 2 = 2γ − d3(S) +
∑
i≥4

(i − 4)di(S) + 2.

In addition, b(S, CT ) ≤ 2γ − d3(S) + t by (4.7).

Suppose first that d(yr−1) ≥ 4. Then t = 0, thus β = d1(CT ) − b(S, CT ) ≥ 2. So,

suppose instead that d(yr−1) = 3. Then t = 1, so

β = (2γ − d3(S) +
∑
i≥4

(i − 4)di(S) + 2) − b(S, CT ) ≥
∑
i≥4

(i − 4)di(S) + 1. (4.10)

Therefore, β ≥ 1, and the bound holds.

Finally, we note that b(S, CT ) = 2(n+1)
5

, only when (α
2

+ |A0(S)|+ |A2(S)|+ β) = 1

in (4.9). This can only occur when β = 1, so by (4.10), di(S) = 0 for all i ≥ 5. In

addition, in this maximum case, clearly α = |A0(S)| = |A2(S)| = 0. Since α = 0

implies that every cut-vertex of S is adjacent to two vertices of degree 2, it follows

that b(S, CT ) = 2γ and thus d3(S) = d3(CT ) = 1. Therefore, conditions (a) to (d)

hold in the maximum case. �

The bound is attained by the following infinite family of pairs of graphs.
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Example 4.2.29 Let p be an integer, p ≥ 2. Then, for n = 5p−1, the following pair

of graphs has 2(n+1)
5

common cards. Let S be the sunshine graph obtained from the

cycle v1, v2, . . . , v3p, v1 by adding a pair of leaves to each v3j+1, for 1 ≤ j ≤ p − 1,

and a single leaf to v1. Let CT be the caterpillar graph obtained from the path

w1, w2, . . . , w3p by adding a pair of leaves to each w3j−1, for 1 ≤ j ≤ p − 1, and a

single leaf to w3p−1. For 2 ≤ j ≤ p − 1, the removal of either of the leaves adjacent

to w3j−1 gives a card isomorphic to both S−v3j and S−v3(p+1−j)−1. In addition, the

removal of any of the leaves adjacent to w2 gives a card isomorphic to both S − v3

and S − v3p−1. Finally, the removal of either of the leaves adjacent to w3p−1 gives a

card isomorphic to both S − v2 and S − v3p. So b(G, H) = 2(p − 2) + 4 = 2(n+1)
5

.

Figure 4.4 shows these graphs for p = 4. �
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Figure 4.4: The pair of graphs in Example 4.2.29 of order 19 with 8 common cards.
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Theorem 4.2.30 Let S be a sunshine graph and let CT be a caterpillar graph,

both of order n, n ≥ 62. Then b(S, CT ) ≤
⌊

2(n+1)
5

⌋
. Moreover, for these values

of n, if b(S, CT ) = 2(n+1)
5

, then S and CT are a member of the family of pairs of

graphs in Example 4.2.29.

Proof By Corollary 4.2.4, Lemma 4.2.6 and Corollary 4.2.15, we may assume that

d1(S) = d1(CT ) + 2, since n ≥ 62. In addition, for these values of n, we may

assume from Lemma 4.2.12, that there is some active leaf of CT adjacent to a

vertex of degree 4 or more. Now if d(y2) = d(yr−1) = 3, then the bound follows from

Corollary 4.2.24; if d(y2) = 2 or d(yr−1) = 2, the bound then follows from Corollary

4.2.27; otherwise the bound follows by Lemma 4.2.28. Furthermore, to attain the

bound for these values of n, conditions (a) to (d) in Lemma 4.2.28 must be satisfied.

It is easy to see that these conditions define the family in Example 4.2.29. �

Our work has led us to conjecture that this bound is, in fact, the best possible for a

tree and a connected non-tree. If the pairs contain active cut-vertices, they all seem

to have many fewer common cards. We therefore make the following conjecture, of

which we know no counter-example when n ≥ 62.

Conjecture 4.2.31 Let T be a tree and let U be a connected non-tree, both of

order n ≥ 62. Then b(U, T ) ≤
⌊

2(n+1)
5

⌋
, with equality only if n ≡ 4 (mod 5) and

moreover, U and T are the pair in Example 4.2.29.

We note that if this conjecture is correct, then combined with Theorem 3.2.5, this

would imply the following conjecture.

Conjecture 4.2.32 Whether a graph is a tree or not can be determined from any⌊
n
2

⌋
+ 2 of its vertex-deleted subgraphs.
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Chapter 5

The Number of Common Cards

between a 2UC Graph Pair

In this chapter, we introduce a new class of pairs of graphs called 2UC graph pairs.

We show that, if G and H are a 2UC graph pair, then b(G, H) ≤
⌊

2
3
(n + 1)

⌋
. In

addition, we show if n ≥ 13, then b(G, H) ≤ 2
⌊

1
3
(n − 1)

⌋
, and further, when n ≥ 22,

that this bound is only attained by one of four families of 2UC graph pairs. For

pairs of this order, these families have a greater number of common cards than any

previously published pair of graphs.

5.1 2UC Graph Pair Definition

Let G and H be non-isomorphic graphs of order n. We express G and H as

G = G ⊕ PG and H = H⊕PH , where

(i) G and H are non-empty collections of components of G and H , respectively,

such that no component of G is isomorphic to any component of H;

(ii) PG and PH are (possibly empty) collections of components of G and H , re-

spectively, such that PG
∼= PH .
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We call the components of G and H the unmatched components of G and H , and the

components of PG and PH the matched components of G and H . Note that G and H

must be non-empty since G 
∼= H . In addition, G and H may have different numbers

of components, and furthermore, a component of G (or H) may be isomorphic to a

component of PG (or PH). Thus the decompositions of G and H are unique only up

to isomorphism.

Suppose that the Reconstruction Conjecture is false and that A and B are two non-

isomorphic connected graphs, both of order n−1, with identical decks. If G = A⊕K1

and H = B ⊕ K1, then b(G, H) = n − 1. It follows that it is as difficult to find the

maximum number of common cards for pairs with only one unmatched component

as it is in general for connected graph pairs. Therefore, we only consider pairs of

graphs where G or H has at least two Unmatched Components (so at least one of

G or H is disconnected). We call a pair of graphs with this property a 2UC graph

pair. Note that, if G is connected and H is disconnected, then G and H are a 2UC

graph pair; in this case PG is empty and G has only one component.

Both of Myrvold’s examples are families of 2UC graph pairs: Example 2.7.3 can be

expressed as

G = (Kp+1 ⊕ Kp−1) ⊕ ((p − 1)Kp+1 ⊕ (p − 1)Kp)

H = (Kp ⊕ Kp) ⊕ ((p − 1)Kp+1 ⊕ (p − 1)Kp), (5.1)

and Example 2.7.4 as

G = (C3k+3 ⊕ P2) ⊕ (kK3)

H = (P3k+2 ⊕ K3) ⊕ (kK3). (5.2)

Indeed, an examination of the properties of these families motivated our 2UC graph

pair definition. Note that, when describing examples of 2UC graph pairs, we use

brackets to differentiate the unmatched and the matched components of the graphs.
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Let P be a graph that is isomorphic to PG (and thus PH). We divide the components

of P into three groups: G∗, H∗ and F , where every component of G∗, respectively H∗,

is isomorphic to some component G, respectively H, and F consists of the remaining

components of P. Then G and H can be expressed as

G ∼= G ⊕ (G∗ ⊕H∗ ⊕ F)

H ∼= H⊕ (G∗ ⊕H∗ ⊕F). (5.3)

Suppose that G, H and F contain r, s and t distinct isomorphism classes, G1, G2 . . . Gr,

H1, H2 . . .Hs and F1, F2 . . . Ft, respectively, and let gi = |V (Gi)|, hj = |V (Hj)| and

fk = |V (Fk)|. Then we call these r + s + t isomorphism classes the isomorphism

classes of the components of G and H and order them so that gi+1 ≤ gi, hj+1 ≤ hj

and fk+1 ≤ fk. Suppose further that G and G∗ contain αi and λi, respectively,

isomorphic copies of each Gi, that H and H∗ contain βj and μj, respectively, iso-

morphic copies of each Hj, and that F contains γk isomorphic copies of each Fk.

Then in a similar manner to (1.2), we express the component structure of G and H

as

G ∼= (
⊕r

i=1 αiGi) ⊕ (
⊕r

i=1 λiGi

⊕s
j=1 μjHj

⊕t
k=1 γkFk)

H ∼= (
⊕s

j=1 βjHj) ⊕ (
⊕r

i=1 λiGi

⊕s
j=1 μjHj

⊕t
k=1 γkFk), (5.4)

where each αi, βj and γk is positive, and each λi and μj is non-negative. We define

αi = λi = 0 for i > r, βj = μj = 0 for j > s, and γk = 0 for k > t.

5.2 Active Vertices in 2UC Graph Pairs

Throughout the rest of this chapter, we assume that G and H are a 2UC graph pair,

both of order n ≥ 3, expressed as in (5.4). In addition, we assume that H contains

at least two components, so β1 + β2 ≥ 2.

We begin with the following definition, which is an extension of the one given in

Chapter 3.
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Let G and H be a 2UC graph pair and let Z be an isomorphism class of the com-

ponents of G and H . A vertex v in AH(G) is Z-active if some associated vertex is

in a component of H isomorphic to Z. We denote the set of Z-active vertices of

G by AZ(G), and its cardinality by aZ(G). So, for example, if Z = Hb, then v is

Hb-active, the set of Hb-active vertices of G is denoted by AHb
(G), and aHb

(G) is

the number of Hb-active vertices of G. We define AZ(H) and aZ(H), similarly.

We extend this definition to the components of G and H as follows. Suppose that

U1 is a component of G. Then we denote the set of active vertices of G with respect

to H in U1 by AH(U1) and its cardinality by aH(U1). Similarly, we denote the set

of Z-active vertices of G in U1 by AZ(U1) and the cardinality of this set by aZ(U1).

Now suppose that U2 is a component of G isomorphic to U1. Then by (2.2) and

(5.4), for each vertex u1 in U1, we can choose a distinct vertex u2 in U2 such that

G − u1
∼= G − u2; so aZ(U1) = aZ(U2), thus aH(U1) = aH(U2). It follows that if Y

is an isomorphism class of the components of G and H , then every component of G

isomorphic to Y contains the same number of Z-active (and thus active) vertices.

We therefore denote the number of Z-active vertices in a component of G isomorphic

to Y by aZ(Y, G), and the total number of active vertices with respect to H in any

such component by aH(Y ). So, for example, aHb
(Ga, G) is the number of Hb-active

vertices in any component of G isomorphic to Ga, and aH(Ga) is the total number

of active vertices with respect to H in such a component. aZ(Y, H) is similarly

defined.

Note that, since Z is a representative of an isomorphism class, the definition Z-

active is only meaningful in terms of the decompositions of G and H given in (5.4).

However, since it will always be clear from the context which two graphs that we

are discussing, there will be no confusion with this definition.

We now extend Lemma 3.1.1 to 2UC graph pairs. Note, for simplicity, we write⊕
i αiGi instead of

⊕r
i=1 αiGi, and similarly for the other isomorphic components

of G and H .
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Lemma 5.2.1 Let G and H be a 2UC graph pair. Suppose that u is an active

vertex in some component U of G and that w is a vertex of H associated with u,

which is in some component W . Then precisely one of the following holds.

(a) u and w are both Fc-active for a unique c. Moreover,

U − u ∼=
⊕s

j=1 βjHj ⊕ S

W − w ∼=
⊕r

i=1 αiGi ⊕ S, (5.5)

where S is isomorphic to a (possibly empty) collection of components of both

U − u and W − w.

(b) u is Hb-active and w is Ga-active for a unique a and a unique b. Moreover,

U − u ∼=
⊕

j �=b βjHj ⊕ (βb − 1)Hb ⊕R

W − w ∼=
⊕

i�=a αiGi ⊕ (αa − 1)Ga ⊕R, (5.6)

where R is isomorphic to a (possibly empty) collection of components of both

U − u and W − w .

Proof We examine the three possible cases for w: (i) w is Hb-active; (ii) w is Fc-

active; (iii) w is Ga-active.

(i) Suppose first that w is Hb-active, for some b; so U ∼= Hb. Then by (2.2) and (5.4),

G− u contains precisely μb − 1 components isomorphic to Hb, whereas H −w must

contain at least βb + μb − 1 components isomorphic to Hb. Since βb ≥ 1, it follows

that G − u contains fewer components isomorphic to Hb than H −w, contradicting

the fact that G−u ∼= H −w. Therefore w is not Hb-active, for any b. By symmetry,

u is not Ga-active, for any a.

(ii) Suppose instead that w is Fc-active, for some c; so U ∼= Fc. Then again by (2.2)

and (5.4), U − u contains precisely γc − 1 components isomorphic to Fc, so H − w

must also contain precisely γc−1 components isomorphic to Fc. The same equations

then show that W ∼= Fc; that is, u is Fc-active also. Moreover,

G − u ∼= (
⊕

i αiGi) ⊕ (
⊕

i λiGi

⊕
j μjHj

⊕
k �=c γkFk) ⊕ (γc − 1)Fc ⊕ (U − u)

and H − w ∼= (
⊕

j βjHj) ⊕ (
⊕

i λiGi

⊕
j μjHj

⊕
k �=c γkFk) ⊕ (γc − 1)Fc ⊕ (W − w).
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So, since G − u ∼= H − w, it follows that⊕r
i=1 αiGi ⊕ (U − u) ∼=

⊕s
j=1 βjHj ⊕ (W − w)

and (5.5) holds, since U ∼= W ∼= Fc. By symmetry, if u is Fc-active then w is

Fc-active, and it follows that c is unique.

(iii) Finally, suppose that w is Ga-active, for some a; so U ∼= Ga. Then, by the

above arguments, v must be Hb-active, for some b. Moreover,

G − u ∼= (
⊕

i�=a αiGi) ⊕ (
⊕

i λiGi

⊕
j μjHj

⊕
k γkFk) ⊕ (αa − 1)Ga ⊕ (U − u)

and H − w ∼= (
⊕

j �=b βjHj) ⊕ (
⊕

i λiGi

⊕
j μjHj

⊕
k γkFk) ⊕ (βb − 1)Hb ⊕ (W − w).

(5.7)

So H −w contains precisely βb + μb − 1 components isomorphic to Hb. Thus G− u

must contain precisely βb + μb − 1 components isomorphic to Hb and it follows from

(2.2) and (5.4) that b is unique. By symmetry, a must be unique also. Finally, from

(5.7), clearly

(
⊕

i�=a αiGi) ⊕ (αa − 1)Ga ⊕ (U − u) ∼= (
⊕

j �=b βjHj) ⊕ (βb − 1)Hb ⊕ (W − w)

and (5.6) holds. �

We note that, by Lemma 5.2.1, it follows that if a component isomorphic to any Fk

contains any active vertices, then fk >
r∑

i=1

αigi =
s∑

j=1

βjhj .

Since, for all i and j, G contains no Gi-active vertices, we write aHj
(Gi), instead of

aHj
(Gi, G), for the number of Hj-active vertices in any component of G isomorphic

to Gi. Similarly, since H contains no Hj-active vertices, we write aGi
(Hj), instead of

aGi
(Hj, H), for the number of Gi-active vertices in any component of H isomorphic

to Hj . We have the following corollary of Lemma 5.2.1.

Corollary 5.2.2 Let G and H be a pair of 2UC graphs. Then

aH(G) =
r∑

i=1

(αi + λi)
s∑

j=1

aHj
(Gi) +

t∑
k=1

γkaFk
(Fk, G)

aG(H) =

s∑
j=1

(βj + μj)

r∑
i=1

aGi
(Hj) +

t∑
k=1

γkaFk
(Fk, H). (5.8)
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Proof Any active vertex of G is either Hb-active, for a unique b, or Fc-active, for a

unique c, by Lemma 5.2.1. Similarly, any active vertex of H is either Ga-active, for

a unique a, or Fc-active, for a unique c. The result then follows from (5.4). �

As in Chapter 3, we extend Corollary 5.2.2 to common cards. Each edge of B(G, H)

either joins a vertex of G in a component isomorphic to Gi to a vertex of H in a

component isomorphic to Hj , or a pair of vertices in two components isomorphic

to Fk. We therefore define b(Gi, Hj) to be the size of a maximum matching of the

subgraph of B(G, H) induced by the set of all Hj-active vertices of G and all Gi-

active vertices of H . In other words, b(Gi, Hj) is the maximum number of common

cards that are formed by the removal of a pair of vertices from a component of G

that is isomorphic to Gi and a component of H that is isomorphic to Hj. We further

define b(Fk, Fk) to be the size of a maximum matching of the subgraph of B(G, H)

induced by the set of all Fk-active vertices of G and H .

It is clear that b(Gi, Hj) ≤ min
(
(αi + λi)aHj

(Gi), (βj + μj)aGi
(Hj)

)
and

b(Fk, Fk) ≤ min ((γkaFk
(Fk, G), γkaFk

(Fk, H))). In addition,

b(G, H) =
∑r

i=1

∑s
j=1 b(Gi, Hj)+

∑t
k=1 b(Fk, Fk). We therefore obtain the following

upper bounds on b(G, H).

Corollary 5.2.3 Let G and H be a pair of 2UC graphs. Then

b(G, H) ≤
r∑

i=1

s∑
j=1

min((λi + αi)aHj
(Gi), (μj + βj)aGi

(Hj))

+

t∑
k=1

min(γkaFk
(Fk, G), γkaFk

(Fk, H)). (5.9)

Proof This follows directly from the above discussion. �
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5.3 Preliminary Lemmas for the 2UC Bound

In this section, we prove many results that are used to place bounds on the number

of common cards between a 2UC graph pair under various conditions. We begin this

analysis with a simple observation about the number of active vertices in G and H.

Lemma 5.3.1 Let G and H be a 2UC graph pair. Suppose that at least two

components of H contain active vertices. Then α1 = 1, and g1 > h1 > g2. In

addition, any component of G that contains an Hj-active vertex is isomorphic to

G1.

Proof Let w1 and w2 be two active vertices of H in two distinct components W1 and

W2, respectively, of H, where W1
∼= Hb and W2

∼= Hq. Let u1 and u2 be two (not

necessarily distinct) vertices of G associated with w1 and w2, respectively. Suppose

that u1 is in the component U1 and u2 is in the component U2. Then by Lemma

5.2.1, there are a and p such that U1
∼= Ga and U2

∼= Gp. So, by (5.6),

U1 − u1
∼=
⊕

j �=b βjHj ⊕ (βb − 1)Hb ⊕R1

W1 − w1
∼=
⊕

i�=a αiGi ⊕ (αa − 1)Ga ⊕R1

U2 − u2
∼=
⊕

j �=q βjHj ⊕ (βq − 1)Hq ⊕R2

W2 − w2
∼=
⊕

i�=p αiGi ⊕ (αp − 1)Gp ⊕R2,

where R1 and R2 are two (possibly empty) collection of components.

It is easy to see that U1 − u1 contains a component isomorphic to Hq. For if b 
= q,

then this is clearly the case, whereas if b = q, then βq = βb ≥ 2, since W1 and W2

are distinct components of H. Thus for i ≤ a,

gi ≥ ga = |V (U1)| > |V (U1 − u1)| ≥ hq = |V (W2)|.
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Therefore, W2 − w2 cannot contain a component isomorphic to Gi, for any i ≤ a.

A similar argument shows that W1 −w1 cannot contain a component isomorphic to

Gi for any i ≤ p; so p = a = 1, α1 = 1, and thus U1 = U2
∼= G1. Finally, we note

that |V (W1)| ≥ g2, since W1 − w1 must contain a component isomorphic to G2, if

α2 ≥ 1. Therefore, since at least one of U1 − u1 or U1 − u2 contains a component

isomorphic to H1, it follows that g1 = |V (U1)| > h1 ≥ |V (W1)| > g2. �

For any component U of G, we define a vertex u of U to be a component cut-vertex

(of G) if the graph U − u is disconnected. Clearly, if U contains such a vertex, then

|V (U)| ≥ 3. Note that, if G is connected, then u is simply a cut-vertex of G.

We recall two results from Chapter 3, noting that we are using U instead of G to

denote the connected graph. We repeat the diagram here to assist the reader with

the proof of Lemma 5.3.2.

Lemma 3.2.1 Let U be a connected graph containing two distinct vertices u and

v. Let Xuv be the component of U − u that contains v, and Xvu the component of

U − v that contains u. Then

(a) (U − u) − Xuv ⊂ Xvu and (U − v) − Xvu ⊂ Xuv;

(b) |V (Xvu)| + |V (Xuv)| ≥ |V (U)|;

(c) (U − u) − Xuv and (U − v) − Xvu are disjoint.

�

Figure 3.1: Xuv and Xvu.

116



Corollary 3.2.2 Let U be a connected graph and let S ⊆ V (U), with |S| ≥ 2.

Suppose that, for each vertex u in U , Tu is the (possibly empty) collection of those

components of U − u that do not contain a vertex of S. Then

∑
u∈S

(|V (Tu)| + 1) ≤ |V (U)|.

�

Since a component cut-vertex in a component U of G is simply a vertex u such that

U − u is disconnected, we can use these results to find bounds for the number of

active component cut-vertices in the various components of a 2UC graph pair. Note

that, if U contains two or more component cut-vertices, then |V (U)| ≥ 4.

Lemma 5.3.2 Let G and H be a 2UC graph pair and let U be a component of G.

Suppose that, for every u in AH(U), U − u contains two components Xu and X̂u,

where both Xu and X̂u are isomorphic to components of H. Then aH(U) ≤ |V (U)|
hs+1

.

Proof Since |V (U)| ≥ 2hs + 1, the result is true if aH(U) = 1, so we may assume

that aH(U) ≥ 2. Let u be a vertex in AH(U) and, for some a ≤ b, suppose that

U − u contains two components Xu and X̂u, isomorphic to Ha and Hb, respectively.

We shall show that X̂u does not contain any vertex of AH(U). Applying Corollary

3.2.2 with S = AH(U), it will then follow immediately that AH(U) ≤ |V (U)|
hs+1

, since

|V (Tu)| ≥ hb ≥ hs.

So let v be any other vertex in AH(U), and let Xuv and Xvu be as in Lemma

3.2.1. Suppose that X̂u is Xuv, so (U − u) − Xuv contains the component Xu. By

part (a) of that lemma, Xvu contains every component of U − u, except Xuv, so

|V (Xvu)| > |V (Xu)| = ha. In addition, Xuv contains every component of U − u,

except Xvu, thus ha ≥ hb = |Xuv| > |V ((U − v) − Xvu)|. However, by (5.5) and

(5.6), U − v must contain some component isomorphic to either Ha or Hb, which is

clearly impossible. So X̂u is not Xuv and the result holds. �

We use the previous lemma to obtain bounds on the size of some subsets of the

active vertices of G and H .

117



Corollary 5.3.3 Let G and H be a 2UC graph pair. Then we have the following

results.

(a) Every Fk-active vertex of G is a component cut-vertex, and

aH(Fk) ≤ fk

hs+1
≤ fk

2
, for all k.

(b) If β1 + β2 + β3 ≥ 3, then every active vertex of G is a component cut-vertex,

and aH(Gi) ≤ gi

hs+1
≤ gi

2
, for all i.

Proof (a) Let u be an active vertex of G in a component U isomorphic to Fk, for

some k. Since β1 + β2 ≥ 2, by (5.5), there are two components in U − u that are

isomorphic to components of H. Thus u is a component cut-vertex of G, and by

Lemma 5.3.2, aH(U) = aH(Fk) ≤ fk

hs+1
.

(b) Suppose that β1 +β2 +β3 ≥ 3, and let u be an active vertex of U in a component

isomorphic to Gi, for some i. By (5.6), there are two components in U − u that are

isomorphic to components of H. Thus u is a component cut-vertex of G, and by

Lemma 5.3.2, aH(U) = aH(Gi) ≤ gi

hs+1
. �

Since no active vertex of G is in a component isomorphic to any Hj, the above

lemma shows that if H contains three or more components, then b(G, H) ≤ n
2
. By

symmetry, it also follows that b(G, H) ≤ n
2
, if G contains three or more components.

Therefore, for the rest of this section, we assume that G contains at most two

components and H contains precisely two components; that is r, s ≤ 2, α1 + α2 ≤ 2

and β1+β2 = 2. In addition, in light of Lemma 5.3.1, we assume that the component

isomorphic to G1 is the only component of G that contains active vertices.

We have the following corollary of (5.6).

Corollary 5.3.4 Let G and H be a 2UC graph pair and let U and W be components

of G and H , respectively, where U ∼= G1 and W ∼= Hj , for some j. Suppose that u

and w are a pair of associated vertices in AH(U) and AG(W ), respectively. Then we

have the following possibilities for U − u and W − w:
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(a) if u is H1-active and β1 = 2, then U − u ∼= H1 ⊕R;

(b) if u is H1-active and β1 = β2 = 1, then U − u ∼= H2 ⊕R;

(c) if u is H2-active (so β1 = β2 = 1), then U − u ∼= H1 ⊕R;

(d) if α1 = 2, then W − w ∼= G1 ⊕R;

(e) if α1 = α2 = 1, then W − w ∼= G2 ⊕R;

(f) if α1 = 1 and α2 = 0, then W − w ∼= R,

where R is again isomorphic to a (possibly empty) collection of components of both

W − w and U − u (so is of order at most min(g1 − 1, h1 − 1), when W ∼= H1, and

min(g1 − 1, h2 − 1), when W ∼= H2).

Proof This follows immediately from (5.6). �

The above corollary shows that if U is a component of G isomorphic to G1, then for

every vertex u in AH(U), U − u contains precisely one component isomorphic to a

component of H.

We now use techniques similar to those above to obtain bounds for aHj
(G1), when

all the Hj-active vertices of G are component cut-vertices.

Lemma 5.3.5 Let G and H be a 2UC graph pair and let U be a component of G

isomorphic to G1. Suppose that u is a vertex in AHj
(U) and that u is a component

cut-vertex of G. Then every Hj-active vertex of G in a component isomorphic to

G1 is a component cut-vertex. In addition, if X is the component of U − u that is

isomorphic to a component of H, we have the following results:

(a) if X ∼= H1, then every active vertex in U , except u, is in X;

(b) if X ∼= H2, and h2 ≥ g1

2
, then every H1-active vertex in U , except u, is in X;

(c) if X ∼= H2, and h2 < g1

2
, then X contains no H1-active vertices.
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Proof Suppose that u is H1-active and β1 = 2. Then by Corollary 5.3.4(a),

U − u ∼= H1 ⊕ R. Since u is a component cut-vertex, R is not of order 0, so

h1 ≤ g1 − 2. Now suppose that v is another H1-active vertex of G in a component

V isomorphic to G1. Then again by Corollary 5.3.4(a), V − v contains a component

isomorphic to H1. Since h1 ≤ g1 − 2, this component is not the whole of V − v.

So, v must be a cut-vertex of V , and thus a component cut-vertex of G. A similar

argument would show that v is a component cut-vertex if β1 = 1 and either u is

H1-active or u is H2-active.

g1 ≥ 3 since u is a component cut-vertex of G. Parts (a) to (c) are straightforward

if U contains only one active component cut-vertex. So let v be another vertex in

AH(U), and let Xuv and Xvu be as in Lemma 3.2.1. By part (a) of that lemma, Xvu

contains every component of U − u except Xuv, and Xuv contains every component

of U − v except Xvu.

(a) By Corollary 5.3.4(a) and (c), Xvu is of order at most h1, so (U−u)−Xuv cannot

contain a component of order h1. Thus X must be Xuv, and therefore X contains

every active vertex in U , except u.

For (b) and (c), we suppose that v is H1-active, so U − v contains a component

isomorphic to H2.

(b) If h2 ≥ g1

2
, then by Corollary 5.3.4(b), the component of largest order in U − v

is the one isomorphic to H2, since |U | = g1; thus Xvu cannot contain X. So X is

not in (U −u)−Xuv. Hence X is Xuv, and therefore every H1-active vertex, except

u, is in X.

(c) Clearly, X cannot contain a component of order h2. So if X is Xuv, then

|V (Xvu)| = h2 < g1

2
. However, by Lemma 3.2.1(b), |V (Xuv)| + |V (Xvu)| ≥ g1,

and so this is impossible. Thus X is not Xuv, and therefore X does not contain any

H1-active vertices. �
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Note that the proof of the previous lemma shows that if every H2-active vertex

of G is a component cut-vertex, then every H1-active vertex is also a component

cut-vertex (since h2 ≤ h1).

Corollary 5.3.6 Let G and H be as in Lemma 5.3.5. Then aHj
(G1) ≤

⌊
g1

2

⌋
.

Proof Let U be a component of G isomorphic to G1 and let u be a vertex in AHj
(U).

We apply Corollary 3.2.2 with S = AHj
(U). By Corollary 5.3.4, precisely one of

Lemma 5.3.5(a), (b) or (c) must hold for all such u. Let X be the component of

U − u from Lemma 5.3.5. Note that, if parts (b) or (c) of the lemma hold, then u

is H1-active and moreover, h2 ≥ 1 and g1 − h2 − 1 ≥ 1.

Suppose that part (a) of the lemma holds. Then X contains every Hj-active vertex

except u, so |V (Tu)| = g1−h1−1 ≥ 1. Similarly, if part (b) of the lemma holds, then

X contains every H1-active vertex, so again, |V (Tu)| = g1−h2−1 ≥ 1. Finally, if part

(c) of the lemma holds, then X contains no H1-active vertices, so |V (Tu)| ≥ h2 ≥ 1.

Therefore, applying Corollary 3.2.2, it follows that aHj
(G1) ≤

⌊
g1

2

⌋
, in all cases. �

Corollary 5.3.7 Let G and H be a 2UC graph pair with aH(G1) > g1

2
. Suppose

that U is a component of G isomorphic to G1. If every active vertex of U is a

component cut-vertex, then β1 = β2 = 1. Moreover, G contains both H1-active and

H2-active vertices.

Proof Since aH(G1) > g1

2
, this follows immediately from Corollary 5.3.6. �

Now if G contains H1 and H2-active vertices, then α1 = 1, by Lemma 5.3.1. There-

fore by Corollary 5.3.7, we only need to consider the two cases: α1 = α2 = 1, and

α1 = 1 and α2 = 0.
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Lemma 5.3.8 Let G and H be a 2UC graph pair, with α1 = α2 = 1, and

aH(G1) > g1

2
. Suppose that U is a component of G isomorphic to G1 and that

every active vertex in U is a component cut-vertex. Then aG(H1) ≤
⌊

h1

2

⌋
and

aG(H2) ≤
⌊

h2

2

⌋
.

Proof By Corollary 5.3.7, β1 = β2 = 1, and in addition, G contains both H1-active

and H2-active vertices. So, by Lemma 5.3.1, H contains no G2-active vertices.

Suppose that u is in AH1(U) and that w is a vertex of H associated with u, which

is in a component W that is isomorphic to H1. Then by Corollary 5.3.4(b) and (e),

U − u ∼= H2 ⊕ R and W − w ∼= G2 ⊕ R. Since u is a component cut-vertex of G,

R is not of order 0, so w is a component cut-vertex of H . By symmetry, we may

apply Lemma 5.3.5(b) and (c) to W . Thus aG1(H1) ≤
⌊

h1

2

⌋
by Corollary 5.3.6, and

since H contains no G2-active vertices, it follows that aG(H1) ≤
⌊

h1

2

⌋
. A similar

argument shows that aG(H2) ≤
⌊

h2

2

⌋
. �

Lemma 5.3.9 Let G and H be a 2UC graph pair, with α1 = 1, α2 = 0, and

aH(G1) > g1

2
. Suppose that U is a component of G isomorphic to G1 and that every

active vertex in U is a component cut-vertex. Then H ∼= H1⊕H2, where 2 ≤ h2 ≤ 3

and h2 < h1. In addition, aH1(G) ≤
⌊

g1

h2+1

⌋
and aH2(G) ≤

⌊
g1

h2

⌋
.

Proof By Corollary 5.3.7, β1 = β2 = 1, and in addition, G contains both H1-active

and H2-active vertices. Let u be in AH(U) and let w be a vertex of H associated

to u, which is in a component W of H . Now if u is H2-active, then W ∼= H2, so by

Corollary 5.3.4(c) and (f), U − u ∼= H1 ⊕ (W −w). Similarly, if u is H1-active, then

W ∼= H1 and by Corollary 5.3.4(b) and (f), U − u ∼= H2 ⊕ (W − w). It follows that

calculating the number of H1 and H2-active vertices in U is the same as calculating

the number of such vertices if U was a connected graph and H was a disconnected

graph. We may therefore apply the results from Chapter 3. So the conclusions of

the lemma follow from Lemma 3.2.4, noting that if h2 ≥ 4, clearly aH(G1) ≤ g1

2
. �
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We show in Section 5.4 that if every active vertex of G is a component cut-vertex,

then aH(G) ≤
⌊

n
2

⌋
, unless G and H are one of the four exceptional graph pairs in

Examples 3.3.1 and 3.3.2. To enable us to do this, we must prove the relationships

given in Lemmas 5.3.17 and 5.3.18. First, we make the following two observations

that are also used later.

We recall from Chapter 1, that a leaf 2-path of length k ≥ 1 in a graph F is a

path v1, v2, . . . , vk+1, where v1 is of degree 3 or more, vk+1 is a leaf and every other

vertex on the path is of degree 2. We call v1 the root, and vk+1 the end-leaf of this

leaf 2-path. All other vertices on the leaf 2-path are interior vertices. Note that, by

definition, Pn cannot contain a leaf 2-path.

For any connected graph F , we denote the number of leaf 2-paths of length k in F

by lk(F ). For the purposes of Lemma 5.3.10 and Corollary 5.3.11, we let P0 be the

path of zero length, that is the null graph.

Lemma 5.3.10 Let F be a connected graph that contains some leaf 2-path

v1, v2, . . . , vk+1 of length k, rooted at v1. Then

(a) for 2 ≤ i ≤ k + 1, F − vi
∼= A ⊕ Pk+1−i;

(b) for 3 ≤ i ≤ k + 1, lk(A) = lk(F ) − 1, li−2(A) = li−2(F ) + 1 and lj(A) = lj(F ),

for all other j,

where A is some connected graph.

Proof For 2 ≤ i ≤ k + 1, vi lies on a unique leaf 2-path of length k. So F − vi

consists of some component A and a path of length k+1− i, thus (a) holds. Clearly,

the removal of vi destroys this leaf 2-path, and creates a new leaf 2-path rooted at

v1 of length i− 2. It is easy to see that when i ≥ 3, this new leaf 2-path is the only

leaf 2-path that is created by the removal of vi. (b) then follows. �
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Corollary 5.3.11 Let F be a connected graph with two distinct leaf 2-paths of

length k. Suppose that u and v are two vertices on two distinct leaf 2-paths of F

of length k ≥ 1, a distance of i ≥ 2 and j ≥ 2, from their respective roots. Then

(F − u) − v ∼= A ⊕ Pk−i ⊕ Pk−j and lk(A) = lk(F ) − 2, where A is some connected

graph. Furthermore

(a) if i = j, then li−1(A) = li−1(F ) + 2 and lq(A) = lq(F ), for all q 
= i − 1, k;

(b) if i 
= j, then li−1(A) = li−1(F ) + 1, lj−1(A) = lj−1(F ) + 1 and lq(A) = lq(F ),

for all q 
= i − 1, j − 1, k.

Proof Since u and v are not on the same leaf 2-path, this follows by repeated

application of Lemma 5.3.10, noting that an interior vertex that is a distance i from

its root corresponds to the vertex vi+1 in that lemma. �

From Lemma 5.3.12 to Lemma 5.3.18, we now place the following further restrictions

on G and H . We assume that G ∼= G1, H ∼= H1 ⊕ H2, where h1 > h2 = 2. In

addition, we let U be a component of G isomorphic to G1, and suppose throughout

that U 
∼= Pk, for any k . We first consider the H2-active vertices of G.

Lemma 5.3.12 Let v be an H2-active vertex of G. Then d(v) = E(G1) − E(H1)

and d1(v) = 1. So every H2-active vertex of G is a single leaf-adjacent vertex of the

same degree.

Proof |E(G)| − |E(H)| = |E(G1)| − |E(H1)| − 1, since |E(H2)| = 1 and α2 = 0.

Suppose that w is a vertex of H associated with v, which is in a component W .

Then w is a leaf, since W ∼= K2, so by Lemma 3.3.3, d(v) = |E(G1)| − |E(H1)|. In

addition, by Corollary 5.3.4(c) and (f), U − v ∼= H1 ⊕ K1, therefore d1(v) = 1. �

Since an isomorphism of graphs is a bijection between the vertex sets that preserves

adjacency, then for any k, two isomorphic graphs have the same number of leaf

2-paths of length k. We use this observation to prove the following result.
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Corollary 5.3.13 Suppose that every H2-active vertex of G is of degree 2. Then

for some k ≥ 2, every H2-active vertex of G is an interior vertex of a leaf 2-path of

length k. Moreover, every such vertex is a distance of k − 1 from the root of its leaf

2-path.

Proof Let u and v be two vertices in AH2(U). By Lemma 5.3.12, d1(u) = d1(v) = 1.

So, since d(u) = d(v) = 2, both u and v are interior vertices of leaf 2-paths of lengths

k ≥ 2 and l ≥ 2, respectively, a distance of k − 1 and l − 1 from their respective

roots. It remains for us to show that k = l. We therefore suppose that u 
= v.

Suppose first that k = 2, so u is adjacent to a leaf and some vertex of degree r ≥ 3.

Then by Lemma 2.4.6(b), dr(U − u) = dr(U) − 1. In addition, by the same lemma,

dr(U − v) ≥ dr(U) − 1, with equality only if v is also adjacent to a vertex of degree

r. So since U − u ∼= U − v, clearly v must be adjacent to such a vertex, thus l = 2,

and the result holds in this case. So suppose instead that k ≥ 3 and l ≥ 3. Both

U − u and U − v must have the same number of leaf 2-paths of every length, since

U − u ∼= U − v. By applying Lemma 5.3.10(b) to both U − u and U − v, it is easy

to see that l = k in this case we well. �

We next consider the H1-active vertices of G.

Lemma 5.3.14 Let u be a vertex in AH1(U). Then u is a component cut-vertex

and U − u contains some component X isomorphic to H2 that either contains no

active vertices or precisely one H2-active vertex. Moreover, if the latter case holds,

then every H2-active vertex is of degree 2, so |E(G1)| − |E(H1)| = 2.

Proof First note that, since h1 > h2 = 2, then g1 = h1 + h2 ≥ 5. By Corollary

5.3.4(b), U −u contains some component X isomorphic to H2. So u is a component

cut-vertex. By Lemma 5.3.5(c), X does not contain any H1-active vertices, since

g1 ≥ 5. In addition, since every H2-active vertex is adjacent to precisely one leaf by

Lemma 5.3.12, X can contain at most one H2-active vertex. Moreover, if X contains

such a vertex, then this vertex must be of degree 2. Since by Lemma 5.3.12, every

H2-active vertex is of degree |E(G1)| − |E(H1)|, the lemma is proved. �
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We now examine the H1-active vertices that are adjacent to an H2-active vertex.

We recall that if v is a vertex of a graph with d1(v) = 1, then we denote the unique

leaf adjacent to v by v∗.

Lemma 5.3.15 Let A be the subset of AH1(U), such that for every v in A, U − v

contains a component X isomorphic to H2 that contains an H2-active vertex. Then

every vertex of A is of the same degree, and is adjacent to precisely the same number

of leaves.

Proof Let u1 and u2 be two distinct vertices of A and let X1 and X2 be the two

components of U −u1 and U −u2, respectively, of order 2 that contain an H2-active

vertex. X1 and X2 are clearly disjoint, so there are two distinct H2-active vertices v1

and v2 that are adjacent to u1 and u2, respectively. By Lemmas 5.3.12 and 5.3.14,

d(v1) = d(v2) = 2, and d1(v1) = d1(v2) = 1.

By Corollary 5.3.4(c) and (f), U − v1
∼= U − v2

∼= H1 ⊕ K1, so there is some

isomorphism φ from U −v1
∼= U −v2. Clearly φ(v∗

1) = v∗
2, so φ(u1) must be u2, since

v1 is only adjacent to u1 and v∗
1 and v2 is only adjacent to u2 and v∗

2. Therefore

d(u1) = d(u2), since u1 is of degree d(u1)− 1 in U − v1 and u2 is of degree d(u2)− 1

in U − v2. In addition, the removal of neither v1 nor v2 affects the number of leaves

adjacent to either u1 or u2. The result then follows. �

Lemma 5.3.16 Let A be as Lemma 5.3.15 and let W be a component of H isomor-

phic to H1. Suppose that v is an H2-active vertex of U that is adjacent to a vertex

u of A and that φ is some isomorphism from U − v to W ⊕ K1. Suppose further

that x is a leaf of U such that φ(x) is associated with some vertex u′ of A − {u}.

Then x is not adjacent to an H2-active vertex.
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Figure 5.2: U with the vertices u, v, v∗, x and u′ marked.

Proof Since x is not v∗, clearly φ(x) must also be a leaf of W . Thus by Lemmas

3.3.3 and 5.3.14, d(u′) = d(φ(x))+ |E(G1)|− |E(H1)|−1 = 2. Therefore, by Lemma

5.3.15, d(u) = 2 also, so v must be an interior vertex of a leaf 2-path of length

k ≥ 3, and adjacent to u. By Corollary 5.3.13, every H2-active vertex in U is on

a leaf 2-path of length k ≥ 3. In addition, since U − v ∼= W ⊕ K1, by applying

Lemma 2.4.6 to u and v, it follows that d1(H1) = d1(G1), d2(H1) = d2(G1) − 2 and

di(H1) = di(G1), for all other i.

Suppose for a contradiction that x is adjacent to an H2-active vertex. Then x is the

end-leaf of a leaf 2-path of length k. Since x is not v∗, it follows that x and v are

on two distinct leaf 2-paths of lengths 3 or more. Thus since

(U − v) − x ∼= W − φ(x) ⊕ K1, it follows from Corollary 5.3.11, that W − φ(x)

contains precisely two less leaf 2-paths of length k than U , and two more of lengths

less than k. Now, by Lemma 2.4.6, d2(W − φ(x)) = d2(H1) − 1 = d2(G1) − 3,

and di(W − φ(x)) = di(H1), for all other i. Thus since d(u′) = 2, it follows that

d2(u
′) = 2, so since u′ is adjacent to a 1-leaf adjacent vertex of degree 2, u′ must lie

on some leaf 2-path of length r ≥ 4. Thus by Lemma 5.3.10(b), the component of

U−u′ that is isomorphic to W−φ(x) contains one less leaf 2-path of length r than U ,

one more of length r− 3 and the same number of leaf 2-paths of every other length.

This clearly cannot happen since W −φ(x) contains two less leaf 2-paths of length k

than U . This contradiction shows that x cannot be adjacent to an H2-active vertex.

�
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We now use the above results to find a relationship between some of the common

cards of G and H and the order of G1. The first result holds irrespective of the

number of isomorphic copies of H1 in the pair.

Lemma 5.3.17 Suppose that G and H are a 2UC graph pair with the stated re-

strictions. Then g1 − aH(G1) ≥ max(aH1(G1), aH2(G)).

Proof Every H2-active vertex in U is adjacent to a leaf by Lemma 5.3.12. So, if

aH2(G1) ≥ aH1(G1), the result clearly holds, since no leaf in U is active. So suppose

that aH1(G1) > aH2(G1) and let u be a vertex in AH1(U). By Lemma 5.3.14, U − u

contains some component X isomorphic to K2 that contains at most one active

vertex. Moreover, any such vertex is H2-active. So we may therefore assume that

aH1(G1) ≥ 2 and let v be another vertex in AH1(U). Then, U − v must also contain

some component X̂ that contains a non-active vertex and in addition, contains no

H1-active vertex. Since v is not in X and u is not in X̂, by Lemma 3.2.1(c), X and

X̂ are disjoint. So, for each vertex in AH1(U), there is a distinct non-active vertex.

Therefore, aH1(G1) ≤ g1 − aH(G1) and the result follows. �

We finally consider the case when there is only one component in G and H that is

isomorphic to H1. We recall from Section 5.2, that we denote by b(G1, Hj), the size

of a maximum matching of the subgraph of B(G, H), in which all the vertices are

adjacent to an Hj-active vertex of G and a G1-active vertex of H .

Lemma 5.3.18 Suppose that G and H are a 2UC graph pair with the stated restric-

tions, and in addition, with μ1 = 0 and aH(G1) > g1

2
. Then we have the following

inequalities:

(a) if b(G1, H1) ≥ 4, then (λ1 + 1)(g1 − aH(G1)) ≥ (λ1 + 1)aH1(G1) + b(G1, H1)−1
3

;

(b) if aH2(G1) ≥ aH1(G1) and b(G1, H1) ≥ 4, then

(λ1 + 1)(g1 − aH(G1)) ≥ (λ1 + 1)aH1(G1) + b(G1, H1)+2
3

;

(c) if b(G1, H1) = 3, then (λ1 + 1)(g1 − aH(G1)) ≥ (λ1 + 1)aH1(G1) + b(G1, H1)−1
2

;

(d) if aH2(G1) ≥ aH1(G1) and b(G1, H1) = 3, then

(λ1 + 1)(g1 − aH(G1)) ≥ (λ1 + 1)aH1(G1) + b(G1, H1)+1
2

.
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Proof By Lemma 5.3.8, we may assume that G contains both H1 and H2-active

vertices. Let u and v be vertices in U that are H1 and H2-active, respectively. By

Lemma 5.3.12, d1(v) = 1, and by Lemma 5.3.14, u is a component cut-vertex. Let

W be the component of H isomorphic to H1, so there is some isomorphism φ from

U − v to W ⊕ K1. Note that b(G1, H1) ≤ aG(W ), since μ = 0.

Let A be as in Lemma 5.3.15 and let B = AH1(U) − A. For each vertex u′ in A

there is a distinct H2-active vertex adjacent to u′ and a non-active leaf. In addition,

by Lemma 5.3.14, for each vertex r of B, there is a component of U − r of order 2

that contains no active vertices. Let Tu and Tv be the collection of components of

U −u and U − v, respectively, that contain no active vertices. Clearly, |Tv| ≥ 1, and

if u is not in A, then |Tu| ≥ 2. Applying Corollary 3.2.2 with S = AH(U) and Tu

and Tv as given, it is easy to see that

g1 ≥ 3|B| + 2|A|+ aH2(G1) + max(aH2(G1) − |A|, 0). (5.10)

Since aH(G1) > g1

2
, it follows that A 
= ∅, so we may therefore assume that u is

adjacent to v. In addition if d1(u) = 1, then by Lemma 5.3.15, every vertex in A is

adjacent to a leaf, and g1 ≥ 3|B|+3|A|+aH2(G1)+max(aH2(G1)−|A|, 0) ≥ 2aH(G1).

So we additionally assume that d1(u) = 0.

We may clearly associate u and φ(u). So since μ1 = 0, we can choose a maximum

matching of B(G, H), in which we associate any vertex of A other than u with some

vertex of V (W )−{φ(u)}. Let A∗ be the vertices of AG(W ) that are associated with

some vertex of A− {u}, and in addition, are incident to an edge of this matching.

So, b(G1, H1) ≤ (λ1 + 1)|B| + |A∗| + 1. Now if A∗ = ∅, then by (5.10),

(λ1 + 1)g1 ≥ (λ1 + 1)(aH(G1) + aH1(G1)) + b(G1, H1)− 1, thus (a) to (d) hold, since

b(G1, H1) ≥ 3. So let φ(x) be a vertex in A∗ and suppose that u′ is a vertex in

A− {u} associated with φ(x).
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By Lemma 5.3.15, every vertex in A is of the same degree. So, every vertex of A∗

must also be of the same degree, thus d(φ(x)) = d(φ(u)) = d(u)−1. Hence, since x is

not adjacent to v, x is not in A. In addition, since d1(u
′) = 0, d1(x) = d1(φ(x)) = 0,

then x is not in AH2(U). Finally, by Lemma 5.3.16, x is not a leaf adjacent to an

H2-active vertex. Therefore if (AH2(U))∗ is the set of leaves of U that are adjacent

to an H2-active vertex, x must be in (V (U) −A− AH2(U) − (AH2(U))∗). Let R be

this subset of V (U), so |R| ≥ |A∗|, and moreover,

g1 = |R| + 2|A|+ aH2(U) + max(aH2(G1) − |A|, 0). (5.11)

Now if B = ∅, then |R| ≥ b(G1, H1) − 1, and (a) to (d) clearly follow from (5.11),

since b(G1, H1) ≥ 3. We may therefore assume that B 
= ∅. Now as stated above,

for each vertex r in B, there is a component X in U − r of order 2 that contains no

active vertices. Clearly, there is one vertex s of X of degree 2 in U that is adjacent

to r, and another vertex t that is either the vertex s∗, or is only adjacent to s and

r. Suppose that d(s) = d(t) = 2. Then x = s or x = t if and only if φ(r) is not in

A∗, since d(r) ≥ 3. Suppose on the other hand that t = s∗. Then x 
= s, and in

addition, x = t if and only if φ(r) is not in A∗, since d(r) ≥ 2. We may therefore

partition the vertices of B as follows.

Figure 5.3: The different vertices in AH1(U).
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Let B1 and B2 be the subsets of B such that these components of order 2 contain

one vertex, or two or more vertices, respectively, whose image under φ is in A∗. Let

B0 and B∗
0 be the subsets of B such that these components contain no such vertices,

and in addition, the image of every vertex in B∗
0 is in A∗ and the image of every

vertex in B0 is not in A∗. In Figure 5.3, any vertex labelled x0, x1 and x2 has an

image under φ in A∗, and any vertex labelled r1, r2, s0, s1 or t0 has an image under

φ that is not in A∗. In addition, any vertex labelled x0, r1 and r2 is in B∗
0, B1 and

B2, respectively. It is easy to see that |R| ≥ 3|B0| + 2|B∗
0| + 2|B1| + |B2| + |A∗| and

|A∗| ≥ |B∗
0| + |B1| + 2|B2|.

Suppose that |B2| ≥ 1, so b(G1, H1) ≥ 4. Then |R| ≥ 7|B|
3

+ |A∗|
3

. Thus, since

b(G1, H1) ≤ (λ1 + 1)|B| + |A∗| + 1, it follows that

(λ1+1)(|R|+2|A|) ≥ (λ1+1)(2|B|+2|A|+ |B|+|A∗|
3

) ≥ 2(λ1+1)aH1(G1)+
(b(G1, H1)−1)

3
.

(5.12)

Suppose on the other hand that |B2| = 0. Then |R| ≥ 5|B|
2

+ |A∗|
2

and again since

b(G1, H1) ≤ (λ1 + 1)|B| + |A∗| + 1,

(λ1+1)(|R|+2|A|) ≥ (λ1+1)(2|B|+2|A|+ |B|+|A∗|
2

) ≥ 2(λ1+1)aH1(G1)+
(b(G1, H1)−1)

2
.

(5.13)

Now, if aH2(G1) ≥ aH1(G1), then max(aH2(G1) − |A|, 0) ≥ 1 since B 
= ∅. (a) and

(b) then follow from (5.12) and (5.11), and (c) and (d) follow from (5.13) and (5.11).

�

The above results give us all the information necessary to bound b(G, H) when

all the active vertices of G are component cut-vertices. We now examine the case

when G contains an active vertex that is not a component cut-vertex. Note that by

Corollary 5.3.3(a), the only such active vertices of G are in components isomorphic

to G1 or G2. Note further that, by Lemma 5.3.5, either every Hj-active vertex in

every component U that is isomorphic to G1 is a component cut-vertex, or no such

vertex is.

The following result is immediate from Corollary 5.3.4.
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Corollary 5.3.19 Let G and H be a 2UC graph pair and let U , W , u and w be as

in Corollary 5.3.4. Suppose that u is not a component cut-vertex. Then w is also

not a component cut-vertex. In addition,

(a) if u is H1-active and β1 = 2, then U − u ∼= H1, so g1 = h1 + 1;

(b) if u is H1-active and β1 = β2 = 1, then U − u ∼= H2, so g1 = h2 + 1;

(c) if u is H2-active (so β1 = β2 = 1), then U − u ∼= H1, so g1 = h1 + 1;

(d) if α1 = 2, then W − w ∼= G1, so |V (W )| = g1 + 1;

(e) if α1 = α2 = 1, then W − w ∼= G2, so |V (W )| = g2 + 1;

(f) if α1 = 1 and α2 = 0, then W ∼= K1.

Proof Let R be as in Corollary 5.3.4. Since u is not a cut-vertex of U , then U − u

contains precisely one component, so R is the null graph. Therefore, W −w contains

one component, so w is also not a cut-vertex of W . The six cases follow immediately,

noting that in case (f), W − w is of order 0 if and only if W ∼= K1. �

Corollary 5.3.20 Let G and H be a 2UC graph pair, and let U and u be as in

Corollary 5.3.19. If β2 = 2 or u is H2-active, then d(u) = |E(G1)| − |E(H1)|. If

β2 = 1 and u is H1-active, then d(u) = |E(G1)| − |E(H2)|.

Proof The result follows by Corollary 5.3.19(a) to (c), since the degree of u is equal

to the difference in the number of edges of U and H1, respectively H2. �

We now consider 2UC graph pairs in which G contains both H1 and H2-active

vertices and in addition, the H1-active vertices are cut-vertices and the H2-active

vertices are not. We begin with the following three results, the first of which is

similar to Corollary 3.2.2.
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Corollary 5.3.21 Let U be a connected graph of order n, and let S ⊂ V (U) and

R ⊂ V (U), where |S| ≥ 2. For each vertex s in S, let Ts denote the collection of

those components of U − s that do not contain a vertex of S. Suppose that each Ts

contains some vertex of R. Then |R| ≥ |S|.

Proof By Lemma 3.2.1(c), {Ts | s ∈ S} is a collection of disjoint subgraphs of U . So

each Ts contains a distinct vertex of R. Since there are precisely |S| subgraphs Ts

in U , the result follows. �

The next two lemmas are necessary to identify subgraphs of U that contain no active

vertices.

Lemma 5.3.22 Let U be a connected graph of order 5 or more with a cut-vertex

u such that U − u contains a component X, where 2 ≤ |V (X)| < |V (U)|
2

. Suppose

that s and v are two vertices in X. Then (U − s) − v contains one component of

order at least equal to |V (U)| − |V (X)|, and every other component is of order at

most |V (X)| − 2. In particular, (U − s) − v does not contain a component of order

|V (X)| − 1.

Proof Since u is a cut-vertex, every vertex in V (U)−V (X) is in the same component

of (U−s)−v. This component is of order at least equal to |V (U)|−|V (X)| > |V (X)|,

since |V (X)| < |V (U)|
2

. Furthermore, any other component of (U −s)−v is contained

in X, so must be of order at most |V (X)| − 2, since s and v are both in X. �

Lemma 5.3.23 Let U be a connected graph of order 5 or more with a cut-vertex

u such that U − u contains a component X, where 1 ≤ |V (X)| < |V (U)|
2

. Suppose

that for every v in X, U −v is isomorphic to the same connected graph. Then every

such v is adjacent to u, so of degree d(v) − 1 in U − u.
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Proof The result is trivial if |V (X)| = 1, so we assume that |V (X)| ≥ 2. Suppose

that U − u contains precisely k components of order |V (X)| − 1 ≥ 1. Since X is

connected, X contains at least one vertex that is not a cut-vertex (of X). Let v be

such a vertex of U , so (U − u) − v contains k + 1 components of order |V (X)| − 1.

For any subgraph Z of U , let B(Z) be a set of vertices of U such that z is in B(Z) if

and only if Z − z contains precisely k + 1 components of order |V (X)| − 1. Clearly,

u is in B(U − v) but not in B(U). We shall first show that B(U − v) = B(U) ∪ {u}.

Moreover, we shall show that every vertex in B(U − v), except possibly u, is of the

same degree in both u and U − v.

Let s be some vertex of V (U) − {u}. Suppose first that s is not a cut-vertex of U ,

so s is not in B(U). Now if s is in X, then by Lemma 5.3.22, s is not in B(U − v).

On the other hand, if s is not in X, then since u is a cut-vertex and v is not a

cut-vertex, s and v cannot be a cut-pair, so again, s is not in B(U − v). Thus, if s

is not a cut-vertex, then s is not in either B(U) or B(U − v).

So suppose instead that s is a cut-vertex, so s is not in X. Since u is a cut-vertex,

every vertex of X must be in some component Y of U − s that also contains u.

Clearly, v cannot be a cut-vertex of Y , since v is in X (so not a cut-vertex of U) and

u is a cut-vertex of U . So Y − v must be a (connected) component of (U − v) − s,

and hence (U −v)−s and U −s contain the same number of components. Moreover,

since |V (Y )| ≥ |V (X)| + 1, it follows that any component of either (U − v) − s or

U−s of order |V (X)|−1 must be in the subgraphs isomorphic to (U−s)−Y of these

two graphs. So, (U −v)−s and U −s must contain the same number of components

of order |V (X)| − 1. Therefore, s is in B(U) if and only if s is in B(U − v), and it

follows that B(U − v) = B(U)∪ {u}. Moreover, since s is in B(U) only if s is not in

X then, since u is a cut-vertex of U , s cannot be adjacent to v. Therefore, s is of

the same degree in both U and U − v.
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Now, let t be some other vertex in X. Then |B(U−t)| = |B(U−v)| since U−t ∼= U−v.

Moreover, the number of vertices in B(U − t) and B(U − v) of degree d(u)− 1 must

be identical.

Suppose that t is a cut-vertex of X, so (U−u)−t contains only k components of order

|V (X)|−1. Then, using a similar argument to the above, it is easy to see that for any

s in V (U)−{u}, s is in B(U) if and only if s is in B(U−t). So, since u is not in either

B(U) or B(U−t), clearly |B(U−t)| = |B(U)| 
= |B(U−v)|. This contradiction shows

that t is not a cut-vertex of X, and it follows that B(U−t) = B(U−v) = B(U)∪{u}

for all t in X. In particular, this holds for all t in X adjacent to u. Since for any

such t, u is of degree d(u)− 1 in U − t, the number of vertices of degree d(u)− 1 in

B(U − t) is therefore one greater than the number of such vertices in B(U). Since

the number of such vertices must be the same for all v in X, it follows that every v

in X must be adjacent to u. This completes the proof. �

For the rest of this section, we now place the following restrictions on G and H .

We assume that β1 = β2 = 1 and that G contains both H1-active and H2-active

vertices, so that α = 1 and g1 > h1 ≥ h2 by Lemma 5.3.1. We further assume that

every H1-active vertex of G is a component cut-vertex, and every H2-active is not a

component cut-vertex.

For ease of notation, in all the following lemmas and corollaries, we let U be a

component of G isomorphic to G1, and let W1 and W2 be two components of H

isomorphic to H1 and H2, respectively. In addition, we suppose that u and v are

two distinct vertices in U , and that u is an H1-active and v is H2-active. We further

suppose that w is a vertex in W2 associated with v.

By Corollary 5.3.4(b), U − u contains some component isomorphic to H2. We shall

denote this component by Xu. In addition, by Corollary 5.3.19(c), U − v ∼= H1, so

we let φ : U − v −→ W1 be an isomorphism. Note that, by Corollary 5.3.20, every

H2-active vertex is of degree |E(G1)| − |E(H1)|.
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The following results determine some relationships between aH1(G1), aH2(G1), aG(H1)

and aG(H2), in the following three cases (which cover all possibilities for the order of

h2 in relation to g1): when 2 ≤ h2 < g1

2
; when h2 = 1; when g1

2
≤ h2 ≤ g1 −1. These

relationships are used in Section 5.4 to place bounds on b(G, H) when G contains

H1-active vertices that are component cut-vertices and H2-active vertices that are

not. We begin when 2 ≤ h2 < g1

2
.

Lemma 5.3.24 Let G and H be a 2UC graph pair with the stated restrictions, and

in addition, with 2 ≤ h2 < g1

2
. Suppose that every vertex of Xu is an H2-active

vertex of G. Suppose further that s is a vertex in V (U) − {u} such that φ(s) is an

active vertex of H in W1. Then s is a component cut-vertex and, moreover, there

is some component Xs of U − s of order g2 that contains at least one non-active

vertex. In addition, no vertex in V (φ(Xs)) is an active vertex of H .

Proof Since every vertex of Xu is H2-active, we may assume that v is in Xu. By

Corollary 5.3.20, every vertex of Xu is of degree |E(G1)| − |E(H1)| in U , and by

Lemma 5.3.23, every vertex of Xu is of degree |E(G1)| − |E(H1)| − 1 in U − u. So

since Xu
∼= H2 in U − u, it follows that every vertex of H2 is regular of degree

|E(G1)| − |E(H1)| − 1.

Since φ(s) is active and g2 = h2 − 1 ≥ 1, by Corollary 5.3.4(e), W1 − φ(s) contains

some component isomorphic to G2. Thus, since (U − v)− s ∼= W1 − φ(s), it follows

that (U − v) − s contains some component isomorphic to G2. Since u is a cut-

vertex, and |V (Xu)| = h2 < g1

2
, by Lemma 5.3.22, (U − v) − t does not contain

any component of order |V (Xu)| − 1, for any t in Xu. So s is not in Xu, since

|V (Xu)| − 1 = g2. Thus s and v are not in the same component of G − u, and

it follows that s must be a cut-vertex of U . Therefore, since s 
= u, clearly U − s

contains some component Xs isomorphic to G2 (see Figure 5.4).
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Figure 5.4: Xu and Xs.

Now since s is a cut-vertex and g2 < g1

2
, it is easy to see that for every vertex u′ in

Xs, U −u′ contains precisely one component of order at least g1−g2 > h2 and every

other component is of order at most g2 − 1. Thus, Xs cannot contain any H1-active

vertices. So suppose that every vertex in Xs was H2-active. Then by the above

reasoning, every vertex of Xs must be of degree |E(G1)|− |E(H1)|−1 in U −s. But

this is impossible since W2
∼= H2 and W2 −w ∼= G2. Therefore, Xs contains at least

one non-active vertex. Finally, since v is not in Xs, then for all u′ in Xs, there is no

component of order g2 in (U − v) − u′, so no vertex in V (φ(Xs)) can be an active

vertex of H . �

Corollary 5.3.25 Let G and H be as in Lemma 5.3.24. Then

g1 ≥ aH(U) + aG(W1) − 1.

Proof We may clearly assume that W1 contains at least two active vertices. So since

U − v ∼= W1, there is some vertex s 
= u such that φ(s) is active. By Lemma 5.3.24,

s is a component cut-vertex and, moreover, there is some component Xs of U − s

of order g2 = h2 − 1 that contains some non-active vertex. In addition, the same

lemma tells us that there is no vertex t in Xs such that φ(t) is active.

Now if aG(W1) = 2, then g1 ≥ aH(U)+ |Xs| ≥ aH(U)+1 ≥ aH(U)+aG(W1)−1. We

may therefore assume that aG(W1) ≥ 3 and let S = {s ∈ U |φ(s) ∈ AG(W1) and s 
= u}.

Now let R = V (U) − AH(U) and let Ts be as in Corollary 5.3.21. Clearly each

Xs ⊂ Ts. Therefore, since each Xs contains at least one vertex of R, applying that

corollary gives |V (U) − AH(U)| ≥ |S|, so g1 − aH(U) ≥ aG(W1) − 1. �
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Corollary 5.3.26 Let G and H be a 2UC graph pair with the stated restrictions,

and in addition, with 2 ≤ h2 < g1

2
. Then at least one of the following holds:

(a) g1 − aH(G1) ≥ aH1(G1);

(b) g1 − aH(G1) ≥ aG(H1) − 1.

Proof We may clearly assume that aH1(G1) ≥ 1. Now by Corollary 5.3.4(b), for

every vertex s in AH1(U), there is some component Xs of U − s isomorphic to H2.

By Lemma 5.3.5(c), no vertex in this component is H1-active. Moreover, each of

the Xs are disjoint by Lemma 3.2.1(c). Suppose first there is no such s such that

every vertex of Xs is H2-active. (a) clearly holds immediately if aH1(G1) = 1. On

the other hand, if aH1(G1) ≥ 2, then by applying Corollary 5.3.21, with S = AH1(U)

and R = V (U) − AH(U), gives g1 − aH(G1) ≥ aH1(G1), and again (a) holds. So

suppose instead that there is such an s such that every vertex of Xs is H2-active.

Then by Corollary 5.3.25, (b) holds. This completes the proof. �

We now deal with the case when H2
∼= K1, so α1 = 1 and α2 = 0.

Lemma 5.3.27 Let G and H be a 2UC graph pair with the stated restrictions, and

in addition, with h2 = 1. Suppose that x is a vertex in W1 associated with u. Then

d1(u) = d1(x) + 1, so every H1-active vertex in U is adjacent to at least one leaf.

Proof H contains one more component isomorphic to K1 than G, so x is adjacent

to one less leaf than u. �

Corollary 5.3.28 Let G and H be a 2UC graph pair with the stated restrictions,

and in addition, with h2 = 1. Suppose that every leaf adjacent to an H1-active

vertex in U is not active. Then g1 − aH(G1) ≥ aH1(G1). Note that, this result holds

in particular, when the H2-active vertices are not leaves.

Proof Every H1-active vertex in U is adjacent to a leaf by Lemma 5.3.27. Thus for

each H1-active vertex of U , there is a unique non-active leaf in U . This implies the

result. �
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We now consider the case when v is a leaf. Note that, |E(U)| = |E(W1)| + 1, since

U − v ∼= H1.

Lemma 5.3.29 Let G and H be a 2UC graph pair with the stated restrictions, and

in addition, with h2 = 1. Suppose that v is a leaf and that v is adjacent to some

vertex s.

(a) If d(s) ≥ 3, then d1(U) = d1(W1)+1, whereas if d(s) = 2, then d1(U) = d1(W1).

(b) Every H2-active leaf in U is adjacent to a d1(s)-leaf adjacent to a vertex of

degree d(s).

Proof (a) By Lemma 2.4.6(a), d1(U − v) = d1(U) + d2(v) − 1. So if d(s) = 2, then

d1(U − v) = d1(U), otherwise d1(U − v) = d1(U)− 1. (a) follows immediately, since

U − v ∼= W1.

(b) Suppose now that v′ is another H2-active leaf in U and that v′ is adjacent to some

vertex s′. The result is trivial if g1 ≤ 3, so we assume that g1 ≥ 4. Now, if d(s) = 2,

then d1(U) = d1(W1) by (a). So since by Corollary 5.3.19(c), W1
∼= U − v ∼= U − v′,

applying again (a) to s′ shows that d(s′) = 2 also. Clearly, d1(s) = d1(s
′) = 1, since

g1 ≥ 4. Therefore, both s and s′ are 1-leaf adjacent vertices of degree 2 and (b)

holds when d(s) = 2.

So suppose that d(s) ≥ 3. Then every vertex of U , except s, is adjacent to the

same number of leaves in both U and U − v; s is adjacent to one less in U − v than

in U . It follows that U − v contains one less d1(s)-leaf adjacent vertex of degree

d(s) than U , one more (d1(s) − 1)-leaf adjacent vertex of degree d(s) − 1, and the

same number of i-leaf adjacent vertices of degree j, for all i and j. Now by (a),

d1(U − v) = d1(W1) = d1(U) − 1. So since U − v′ ∼= U − v, applying (a) again to

U − v′, clearly d(s′) ≥ 3 also. Therefore, U − v′ contains one less d1(s
′)-leaf adjacent

vertex of degree d(s′) than U ′, one more (d1(s
′) − 1)-leaf adjacent vertex of degree

d(s′) − 1, and the same number of i-leaf adjacent vertices of degree j, for all i and

j. Since U − v ∼= U − v′, clearly d(s) = d(s′) and d1(s) = d1(s
′), so (b) must hold

when d(s) ≥ 3 also. �
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We now show that if the image of every active leaf of U is active in H , then, except

in one exceptional case G1, and hence H1, must be a path.

Lemma 5.3.30 Let G and H be a 2UC graph pair with the stated restrictions,

and in addition with h2 = 1. Suppose that v is a leaf and that v is adjacent to u.

Suppose further that there exists some other H2-active leaf s in U such that φ(s) is

an active vertex of H . Then one of the following must occur:

(a) d(u) = 3 and s is adjacent to u (so d1(u) = 2);

(b) d(u) = 2 and G1 is a path.

Proof Suppose that such an s exists and let q be its adjacent vertex. Then

d(q) = d(u) by Lemma 5.3.29(b). Since s is a leaf of U , s is a leaf of U − v, so φ(s)

is a leaf of W1. Now if d1(φ(s)) = 1, then clearly u = q and G1
∼= P3. We therefore

assume that d1(φ(s)) = 0.

Let t be a vertex in U associated with φ(s). Then by Corollary 5.3.4(b) and (f),

U − t ∼= (W1 − φ(s)) ⊕ K1. d1(t) = 1 by Lemma 5.3.27(a). In addition, since

|E(W1)| = |E(U)| − 1, by Corollary 5.3.20, it follows that

|E(U) − t| = |E(W1) − φ(s)| = |E(U)| − 2, therefore, d(t) = 2.

Suppose that d(u) ≥ 3, so d(q) ≥ 3. Then by Lemma 5.3.29(a), d1(W1) = d1(U)−1.

In addition, d1(W1 − φ(s) ⊕ K1) = d1(U) − 2, unless d(φ(q)) = 2, in which case,

d1(W1 − φ(s) ⊕ K1) = d1(U) − 1. Since d1(t) = 1, clearly d1(U − t) ≥ d1(U) − 1.

Therefore, t is not associated to φ(s), unless d(φ(q)) = 2, that is, q is u and d(u) = 3.

Suppose instead that d(u) = d(q) = 2. Then by Lemma 5.3.29(a), d1(W1) = d1(U).

Moreover, since d(φ(q)) = 2, it follows that d1(W1−φ(s)) = d1(U) also. In addition,

by Lemma 2.4.6(b), d1(U − t) = d1(U)+d2(t)−1. So since U − t ∼= W1−φ(s) ⊕ K1,

it follows that d2(t) = 1, thus t is adjacent to a degree 2 vertex. We now show that

U must be a path.
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Suppose that U is not a path. Then since v is a leaf adjacent to a degree 2 vertex,

v is an end-leaf of a leaf 2-path of length m ≥ 2. So by Lemma 5.3.10(b), U − v

contains one less leaf 2-path of length m, and one more of length m − 1, and the

same number of leaf 2-paths of every other length. Since U −v ∼= U −s, by applying

the same lemma to U − s, it is easy to see that s must be the end-leaf of another

leaf 2-path of length m ≥ 2. So by Corollary 5.3.11, (U − v) − s ∼= W1 − φ(s) must

contain two less leaf 2-paths of length m than U and two more of length m − 1.

Now since d(t) = 2 and d2(t) = d1(t) = 1, t must be on some leaf 2-path of length

l ≥ 3. So, by Lemma 5.3.10(b), the non-path component of U − t contains one less

leaf 2-path than U of length l, and one more of length l − 2, and the same number

of leaf 2-paths of every other length. It follows that U − t and (U − v) − s contain

a different number of leaf 2-paths of length m. Since isomorphic graphs must have

the same number of leaf 2-paths of every length, t cannot be associated with φ(s).

This contradiction shows that U must be a path. �

Note that, since a path only contains two leaves, it follows from the above lemma

that if v is a leaf adjacent to u, then s is the only H2-active in U such that φ(s) is

active.

Lemma 5.3.31 Let G and H be a 2UC graph pair as in Lemma 5.3.30. Suppose

that G1 is not a path and that H1 
∼= P4. Then there is some non-active leaf y in G1

such that φ(y) is not active.

Proof Since G1 is not a path, the lemma shows that d(u) = 3 and s is adjacent to

u. Let t be a vertex in U associated with φ(s), so by Corollary 5.3.4(b) and (f),

U − t ∼= (W1 −φ(s))⊕K1. As in Lemma 5.3.30, it is easy to show that d(t) = 2 and

d1(t) = 1. Let x be the non-leaf adjacent to t (existence guaranteed since g1 ≥ 4).

Then, since d(u) = 3 and U − t ∼= (W1 − φ(s)) ⊕ K1
∼= (U − v) − s, it follows from

Lemma 2.4.6(b) that d(x) = 3.
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Since d(u) = 3 and d1(u) = 2, clearly W1
∼= U − v contains two less leaf 2-path of

length one than U . So, since d(φ(u)) = 2, it follows that U contains at least one

more leaf 2-path of length one than W1 − φ(s). Therefore, since isomorphic graphs

must contain the same number of leaf 2-paths of length one, the removal of t from

U must reduce the number of leaf 2-paths in U by at least one. Since t is an interior

vertex of a leaf 2-path of length two, the only way this can happen is if d1(x) ≥ 1.

Now, if d1(x) = 2, then g1 = 5, u is x and U−v ∼= H1
∼= P4; so d1(x) = 1. Therefore,

since d1(u) = 2, x∗, the leaf adjacent to x, is not H2-active by Lemma 5.3.29(b), so

not active. In addition, since u is not x, it is easy to show using the argument from

Lemma 5.3.30 that φ(x) is also not active. Setting x∗ = y in the statement of the

lemma gives the result. �

Corollary 5.3.32 Let G and H be a 2UC graph pair with the stated restrictions,

and in addition with h2 = 1. Suppose that every H2-active vertex of G is a leaf.

Suppose further that G1 is not a path and H1 
∼= P4. If aH1(G1) > g1 − aH(G1) then

h1 − aG(H1) ≥ aH2(G) − 1.

Proof Suppose that aH1(G1) > g1 − aH(G1). Then by Corollary 5.3.28, there must

be some H2-active leaf that is adjacent to an H1-active vertex. We may therefore

assume that v is adjacent to u. Now, if there is no H2-active vertex s in U such that

φ(s) is active in W1, then the number of non-active vertices in W1 is at least equal

to aH2(G) − 1 and the result holds. So suppose that such an s exists. Then, since

G1 is not a path, by Lemma 5.3.30, d(u) = 3, and s is adjacent to u. Clearly, the

image of every vertex of AH2(U) − {v, s} is not active. In addition, since H1 
∼= P4,

by Lemma 5.3.31, there must be some non-active leaf y in U such that φ(y) is not

active in W1. Therefore, the number of non-active vertices in W1 must be at least

equal to |AH2(U) − {v, s} | + 1. So h1 − aG(H1) ≥ aH2(G) − 1. �

We use the above corollary to form a relation between the number of non-active

vertices in G1 and H1, and the order of g1.
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Corollary 5.3.33 Let G and H be a 2UC graph pair as in Corollary 5.3.32. Suppose

that aH1(G1) > g1 − aH(G1). Then g1 − 2 ≤ 2(g1 − aH(G1)) + 2(h1 − aG(H1).

Proof Every H1-active vertex of G in U is adjacent to a leaf by Lemma 5.3.27. Let

A be the set of H1-active vertices in U that are adjacent to an H2-active leaf. Then

the number of non-active vertices of G is at least equal to aH1(G1) − |A|. So since

aH2(G1) ≥ |A|, it follows that aH1(G1) − aH2(G1) ≤ g1 − aH(G), thus

g1−2aH2(G1) ≤ 2(g1−aH(G)), since aH(G1) = aH1(G1)+aH2(G1). Now by Corollary

5.3.32, 2(aH2(G1)− 1) ≤ 2(h1 − aG(H1)). Combining the two expressions, yields the

result. �

We now consider the case when there is an H1-active vertex of G whose image under

φ is active in H .

Lemma 5.3.34 Let G and H be a 2UC graph pair with the stated restrictions, and

in addition with h2 = 1. Suppose that v is a leaf and that v is adjacent to u. Let

s 
= u be an H1-active vertex in U such that φ(s) is an active vertex of H . If s is a

d1(u)-leaf adjacent vertex of degree d(u), then any vertex in U associated with φ(s),

except possibly u, is adjacent to some non-active leaf.

Proof Let t 
= u be a vertex in U associated with φ(s). By Lemma 3.3.3,

d(t) = d(φ(s)) + 1 = d(s) + 1 since |E(U)| − |E(W1)| = 1. Thus by 5.3.29(b), no

leaves adjacent to t can be active. Since d1(t) ≥ 1 by Lemma 5.3.27, the result

follows. �

Corollary 5.3.35 Let G and H be a 2UC graph pair with the stated restrictions,

and in addition with h2 = 1 and μ1 = 0 (so H contains only one component isomor-

phic to H1). Suppose that every H2-active vertex of G is a leaf and that G1 is not

a path. Then (λ1 + 1)(g1 − aH(G1)) ≥ b(G1, H1) − 1.
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Proof Suppose that there is no H1-active vertex in U adjacent to an H2-active

leaf. Then by Corollary 5.3.28, g1 − aH(G1) ≥ aH1(G1), and the result holds since

(λ1+1)aH1(G1) ≥ b(G1, H1). We may therefore assume that v is adjacent to u. Since

u is clearly associated with φ(u), we choose a maximum matching of B(G, H), in

which u and φ(u) are adjacent. We may clearly assume that b(G1, H1) ≥ 2.

Figure 5.5: U with the vertices u, v, q and t marked.

Since μ1 = 0, there is some vertex t 
= u of U such that qφ(t) is an edge of this

matching, for some vertex q 
= u of G. Suppose that t is H2-active. Then since G1

is not a path, by Lemma 5.3.30, d(u) = 3, and t is a leaf adjacent to u. Clearly

d(q) = 2 and d1(q) = 1, so the leaf-adjacent to q cannot be active by Lemma

5.3.29(b). Suppose, on the other hand that t is H1-active, so t must be adjacent to a

leaf. Now if every leaf adjacent to t is active, then by Lemma 5.3.29(b), d(t) = d(u)

and d1(t) = d1(u). But in this case, by Lemma 5.3.34, q is adjacent to a non-active

leaf.

It follows that in both cases, either t or q is adjacent to a non-active leaf. Therefore,

for each edge of this matching, that is incident to an H1-active vertex of G and a

vertex in W1, except possibly uφ(u), there is a distinct non-active leaf in G. Since

the number of non-active vertices in G is equal to (λ1 + 1)(g1 − aH(G1)), the result

follows. �

Finally we consider the case when h2 ≥ g1

2
(and so g2 ≥ 1).
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s
Yu

u

Xu ≅≅≅≅≅ H2 Xs ≅≅≅≅≅ G2

Figure 5.6: U when h2 ≥ g1

2
.

Lemma 5.3.36 Let G and H be a 2UC graph pair with the stated restrictions, and

in addition, with h2 ≥ g1

2
. Suppose that v is in some component Yu 
= Xu in U − u.

Then for every active vertex in W1, except possibly φ(u), there is a cut vertex in

W2.

Proof Let s 
= u be a vertex of U such that φ(s) is active. Then by Corollary

5.3.4(e), W1 − φ(s), and thus (U − v) − s, contains a component isomorphic to G2.

|V (U)| − |V (Xu)| > |V (Yu)|, since Xu and Yu are distinct components in U − u.

Thus since |V (Xu)| = h2, it follows that |Yu| < g1

2
. Now by Lemma 5.3.22, for all t

in Yu, (U −v)− t contains one component of order at least equal to |V (U)|− |V (Yu)|

and no other component of order greater than |V (Yu)| − 2. Thus it follows that for

all such t, (U − v) − t, cannot contain a component of order g2. Therefore, s is not

in Yu, so s must be a cut-vertex of U .

145



Now since h2 − 1 = g2 ≥ g1

2
− 1, there is no component in U − s of greater order

than g2. Let Xus and Xsu be as in Lemma 3.2.1. Then by part (c) of that lemma,

Xsu must contain every component of U − s, except Xus. So since Xu is of order

h2 = g2 + 1, clearly Xus = Xu, so s is in Xu. Since s is a cut-vertex of U , it is easy

to see that s must also be a cut-vertex of Xu. Therefore, for every active vertex in

W1, except possibly φ(u), there is a cut-vertex in Xu. Since Xu
∼= W2, the result

follows. �

The above lemma allows us to bound the number of active vertices in U or W2, when

μ1 = 0 and h2 ≥ g1

2
.

Corollary 5.3.37 Let G and H be a 2UC graph pair with the stated restrictions,

and in addition with h2 ≥ g1

2
, and μ1 = 0. Then at least one of the following hold:

(a) g1 − aH(G1) ≥ aH1(G1);

(b) h2 − aG(H2) ≥ aG(H1) − 1.

Proof We may clearly assume that aH1(G1) ≥ 1. Now by Corollary 5.3.4(b), for

every vertex s in AH1(U), there is some component Xs of U − s isomorphic to H2.

By Lemma 5.3.5(b), every H1-active vertex in U except s is in Xs. Thus for every

such s, there is some component Ys of U − s that contains no H1-active vertices.

Moreover, by Lemma 3.2.1(c), each of the Ys are disjoint. Suppose first there is no

such s such that every vertex of Ys is H2-active. (a) clearly holds immediately if

aH1(G1) = 1. On the other hand, if aH1(G1) ≥ 2, then by applying Corollary 5.3.21,

with S = AH1(U) and R = V (U) −AH(U) gives g1 − aH(G1) ≥ aH1(G1), and again

(a) holds. We may therefore assume that Yu contains an H2-active vertex. Then

by Lemma 5.3.36, W1 contains at least aG(H1) − 1 cut-vertices. Since by Corollary

5.3.19(e), no active vertex in W2 is a cut-vertex, (b) holds, which completes the

proof. �
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5.4 Bounding the Number of Common Cards be-

tween a 2UC Graph Pair

We now use the results from Sections 5.2 and 5.3 to place upper bounds on b(G, H)

for any 2UC graph pair G and H . By Corollary 5.3.3, b(G, H) ≤
⌊

n
2

⌋
, if either H

or G contains three or more components. So, since we wish to find 2UC graph pairs

with a large number of common cards, we assume, as in Section 5.3, that α1+α2 ≤ 2

and β1 + β2 = 2.

By Corollary 5.3.3(a), aH(F , G) =
∑
k

γkaH(Fk, G) ≤ |F|
2

. We therefore assume that

G contains at least one active vertex. Moreover, we do not need to express F in

terms of its components.

Now, by Lemma 5.3.1, if both components of H contain active vertices, then only

one component of G contains active vertices. We therefore assume, without loss

of generality, that both components of H can contain active vertices but only one

component of G can contain active vertices. This implies immediately that α1 = 1

and all the active vertices in H are G1-active. Moreover, since we are assuming that

H does not contain any G2-active vertices, we assume that λ2 = 0.

In light of these assumptions, we write G and H as

G ∼= (G1 ⊕ α2G2) ⊕ (λ1G1 ⊕ μ1H1 ⊕ μ2H2 ⊕F)

H ∼= (β1H1 ⊕ β2H2) ⊕ (λ1G1 ⊕ μ1H1 ⊕ μ2H2 ⊕ F), (5.14)

where 0 ≤ α2 ≤ 1, β1 + β2 = 2 and 1 ≤ β1 ≤ 2. Thus,

n = (1 + λ1)g1 + α2g2 + μ1h1 + μ2h2 + |V (F)|

= (β1 + μ1)h1 + (β2 + μ2)h2 + λ1g1 + |V (F)|. (5.15)

We now show that, for any fixed maximum matching of B(G, H), we can express n

in terms of b(G, H), g1, and the total number of vertices in G and H that are not

incident to any edge of this matching.

147



Let aH(G1) = (g1 − aH(G1)), aG(H1) = (h1 − aG(H1)), aG(H2) = (h2 − aG(H2)) and

aH(F) = (|V (F)| − aH(F)). With this notation, we rearrange (5.15) to give

n = (1 + λ1)aH1(G1) + (1 + λ1)aH2(G1) + (β1 + μ1)aG(H1) + (β2 + μ2)aG(H2)

+ (1 + λ1)aH(G1) + (β1 + μ1)aG(H1) + (β2 + μ2)aG(H2) + aH(F) + aH(F)

+ α2g2 − β1h1 − β2h2. (5.16)

We fix some maximum matching of B(G, H) (the choice of which is irrelevant), and

let b1 = b(G1, H1), b2 = b(G1, H2) and bF =
∑t

k=1 b(Fk, Fk), so that

b(G, H) = b1 + b2 + bF . We denote the active vertices of G and H that are not

incident to any edge of this matching as follows:

(a) b1(G) = (1 + λ1)aH1(G1) − b1;

(b) b2(G) = (1 + λ1)aH2(G1) − b2;

(c) b1(H) = (β1 + μ1)aG(H1) − b1;

(d) b2(H) = (β2 + μ2)aG(H2) − b2;

(e) bF (G) = aH(F) − bF .

These give us the following relations:

(1 + λ1)g1 = b1 + b2 + b1(G) + b2(G) + (1 + λ1)aH(G1) (5.17)

(β1 + μ1)h1 = b1 + b1(H) + (β1 + μ1)aG(H1) (5.18)

(β2 + μ2)h2 = b2 + b2(H) + (β2 + μ2)aG(H2) (5.19)

b1 = (1 + λ1)aH1(G1) − b1(G) = (β1 + μ1)aG(H1) − b1(H) (5.20)

b2 = (1 + λ1)aH2(G1) − b2(G) = (β2 + μ2)aG(H1) − b2(H). (5.21)

Finally, using the fact that b(G, H) = b1 + b2 + bF and g1 + α2g2 = β1h1 + β2h2, we

substitute (a) to (e) into (5.16) to express n as

n = 2b(G, H) + b1(G) + b2(G) + b1(H) + b2(H) + (1 + λ1)aH(G1)

+ (β1 + μ1)aG(H1) + (β2 + μ2)aG(H2) + (aH(F) + bF(G) − bF) − g1,

(5.22)

noting that by Corollary 5.3.3(a), aH(F) − bF ≥ 0.

We begin with a simple observation from above.
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Lemma 5.4.1 Let G and H be a 2UC graph pair, both of order n ≥ 3. If λ1 ≥ 1,

then b(G, H) ≤
⌊

(1+λ1)n
1+2λ1

⌋
≤
⌊

2n
3

⌋
. Moreover, when n ≥ 11, equality can only hold

if λ1 = 1.

Proof b(G, H) = b1 + b2 + bF . So, by (5.17),

g1 = 1
1+λ1

(b(G, H) + b1(G) + b2(G)− bF)) + aH(G1). Thus, by substituting for g1 in

(5.22),

n =
(1 + 2λ1)b(G, H)

1 + λ1

+
(λ1(b1(G) + b2(G)) + bF

1 + λ1

+ λ1aH(G1) + b1(H) + b2(H) + (β1 + μ1)aG(H1) + (β2 + μ2)aG(H2)

+ (aH(F) − bF ) + bF (G). (5.23)

Therefore, since aH(F)− bF ≥ 0, it follows that n ≥ (1+2λ1)b(G, H)
1+λ1

, which implies the

bound. When n ≥ 11, straightforward calculations show that equality holds only if

λ1 ≥ 1. �

We now show that if one of the components of H does not contain any active

vertices, the bound on b(G, H) is much tighter for all values of λ1. We recall from

Lemma 5.3.5 that either every Hj-active vertex of G is a component cut-vertex, or

no Hj-active vertex of G is a component cut-vertex.

Lemma 5.4.2 Let G and H be a 2UC graph pair, both of order n ≥ 3. Suppose

that β2 = 1 and that G contains no H2-active vertices. Then b(G, H) ≤
⌊

n+1
2

⌋
, with

equality only if μ2 = 0. Moreover, this bound is attained for all n.

Proof By Corollary 5.3.3(a), aH(F) ≤
⌊
|V (F)|

2

⌋
. Suppose first that every H1-active

vertex of G is a component cut-vertex. Then, by Corollary 5.3.6, aH(G1) ≤
⌊

g1

2

⌋
.

So, since aH2(G) = 0,

b(G, H) ≤ (1 + λ1)aH1(G) + aH(F) ≤ (1 + λ1)
⌊

g1

2

⌋
+
⌊
|V (F)|

2

⌋
≤
⌊

n
2

⌋
,

and the result follows.
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So suppose instead that no H1-active vertex of G is a component cut-vertex. Then,

by Corollary 5.3.19(b), g1 = h2 + 1. Thus, since aG(H2) = h2, by (5.22),

n ≥ 2b(G, H) + (1 + μ2)h2 − g1 ≥ 2b(G, H) − 1,

and equality holds in this expression only if μ2 = 0. We will present a family of

graph pairs in Example 5.5.1 that shows this bound is attained for all n. �

We note that, an identical proof would show that we have the same bound for

b(G, H) if β2 = 1 and that G contains no H1-active vertices. In light of this, for the

rest of this section we only consider 2UC graph pairs where either β1 = 2, or β1 = 1

and G contains both H1 and H2-active vertices.

We now prove a bound on b(G, H) when there exists precisely one component iso-

morphic to G1 in G and, in addition, every active vertex in this component is not a

cut-vertex.

Lemma 5.4.3 Let G and H be a 2UC graph pair, both of order n ≥ 3. Suppose

that none of the active vertices in components isomorphic to G1 are cut-vertices. If

λ1 = 0, then b(G, H) ≤
⌊

n
2

⌋
+ 1. Moreover, this bound is attained for all n.

Proof By Lemma 5.4.2, we may assume that if β1 = β2 = 1, then G contains both

H1 and H2-active vertices. It therefore follows by Corollary 5.3.19, that if β2 = 0,

then h1 = g2 + 1 and g1 = h1 + 1, and if β2 = 1, then h1 = h2 = g2 + 1 and

g1 = h1 + 1. So g1 = g2 + 2 in either case, noting that by part (f) of that corollary,

this relationship still holds if α2 = 0. Therefore, since by (5.17), b1 + b2 ≤ g1 and by

Corollary 5.3.3(a), |V (F)| ≥ 2bF , it follows from (5.15) that,

n ≥ g1 + α2g2 + |V (F)| ≥ b(G, H) + b(G, H) − 2 = 2b(G, H) − 2,

and the result follows. As noted by Harary and Manvel [19], the bound is attained

by the pair G = Kp+1 ⊕ Kp−1 and H = Kp ⊕ Kp. �
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We now prove tighter bounds on b(G, H) when some active vertex in a component

isomorphic to G1 is a component cut-vertex. Note that, as explained following

Lemma 5.3.5, if G contains an H2-active component cut-vertex then all the active

vertices of G must be cut-vertices. We first give the bound when all the active

vertices of G are cut-vertices.

Lemma 5.4.4 Let G and H be a 2UC graph pair of order n ≥ 3. Suppose that all

the active vertices of G are component cut-vertices. Then b(G, H) ≤
⌊

n
2

⌋
unless G

and H are one of the four exceptional graph pairs given in Examples 3.3.1 and 3.3.2

(in which case, b(G, H) =
⌊

n
2

⌋
+ 1).

Proof Suppose that b1 + b2 ≤
⌊

n−|V (F)|
2

⌋
. Then, since b(G, H) = b1 + b2 + bF and

bF ≤
⌊
|V (F)|

2

⌋
, it follows that b(G, H) ≤

⌊
n
2

⌋
. We may therefore assume that

2(b1 + b2) > n − |V (F)| = (1 + λ1)g1 + μ1h1 + μ2h2

= (1 + μ1)h1 + (1 + μ2)h2 + λ1g1. (5.24)

Clearly, (5.24) does not hold if aH(G) ≤
⌊

g1

2

⌋
, since b1 + b2 ≤ (1 + λ1)aH(G).

Therefore, by Corollary 5.3.7, we may also assume that β1 = β2 = 1 and, moreover,

G contains both H1 and H2-active vertices (so b1 ≥ 1 and b2 ≥ 1).

Suppose first that α1 + α2 = 2. Then, by Lemma 5.3.8, aG(H1) ≤
⌊

h1

2

⌋
and

aG(H2) ≤
⌊

h2

2

⌋
, so (5.24) does not hold, since

b1 + b2 ≤ (1 + μ1)aG(H1) + (1 + μ2)aG(H2). We may therefore assume that α2 = 0,

so g1 = h1 + h2. So, by Lemma 5.3.9, h1 > h2, 2 ≤ h2 ≤ 3 and, moreover,

aH1(G1) ≤
⌊

g1

h2 + 1

⌋
and aH2(G1) ≤

⌊
g1

h2

⌋
. (5.25)

We now determine another relation between some of the variables in (5.22) and the

orders of g1 and h2, for these particular types of 2UC graph pairs.

Suppose that

(1+λ1)aH(G1)+2b1(G)+b2(G)+b2(H)+μ1g1 ≥ (1+μ1)h2+(1+λ1)aH1(G1). (5.26)
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Then

(1 + λ1)aH(G1) + b1(G) + b2(G) + b1(H) + b2(H) +

((1 + μ1)(g1 − h2) − (1 + λ1)aH1(G1) + b1(G) − b1(H)) ≥ g1.

Now, since g1 = h1 + h2 and h1 = aG(H1) + aG(H1), it follows from (5.20) that

(1+μ1)aG(H1) = (1+μ1)(h1−aG(H1)) = (1+μ1)(g1−h2)−(1+λ1)aH1(G1)+b1(G)−b1(H),

thus

(1 + λ1)aH(G1) + b1(G) + b2(G) + b1(H) + b2(H) + (1 + μ1)aG(H1) ≥ g1.

Therefore, if (5.26) holds, b(G, H) ≤
⌊

n
2

⌋
by (5.22). We show the assumption (5.24)

implies that (5.26) holds unless λ1 = μ1 = μ2 = 0. We consider the three cases: (I)

h2 = 3; (II) h2 = 2 and G1 is a path; (III) h2 = 2 and G1 is not a path. Note that

in case (I), g1 ≥ 7 and in cases (II) and (III), g1 ≥ 5.

(I) Suppose that h2 = 3. Then by (5.25), aH1(G) ≤
⌊

g1

4

⌋
and aH2(G) ≤

⌊
g1

3

⌋
, so

aH(G1) ≥ g1 − (
⌊

g1

4

⌋
+
⌊

g3

3

⌋
). Simple calculations show that (5.26) holds unless

λ1 = μ1 = 0 and g1 = 8, 9 or 12. So suppose that this is the case. Then since

n − |V (F)| = g1 + 3μ2, and b1 + b2 ≤
⌊

g1

4

⌋
+
⌊

g1

3

⌋
, it is easy to see that

2(b1 + b2) ≤ n − |V (F)| for any of these values of g1, unless μ2 = 0. So (5.24), does

not hold unless μ2 = 0 also.

We now deal with cases (II) and (III). Note that, if U is a component of G isomor-

phic to G1, then for any H1-active vertex u in U , U − u contains some component

isomorphic to K2, and for any H1-active vertex v in U , U−v ∼= H1⊕K1. In addition,

clearly aG(H2) = 0.

(II) Suppose that h2 = 2 and G1
∼= Pk, for k ≥ 5. Then, since there are only two

leaf-adjacent vertices in G1, it follows that H1
∼= Pk−2 and aG(H2) = aH2(G1) = 2,

thus b2 ≤ min(2(1 + λ1), 2(1 + μ2)). In addition, it is easy to see that aH1(G1) = 1

for k = 5, and aH1(G1) = 2 for k ≥ 6. So aH(G1) ≥ aG(H1) for all values of k.

Therefore, if μ1 ≥ 1, the inequality (5.26) holds immediately. We may therefore

assume that b1 ≤ (λ1 + 1)aH1(G) ≤ 2.
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Now since μ1 = 0,

(λ1 + 1)g1 + 2μ2 = (k − 2)(1 + λ1) + 2(1 + λ1) + 2μ2

≥ (k − 2)(1 + λ1) + b2 + (b2 − 2) + 2(b1 − 2)

≥ (k − 2)(1 + λ1) + 2(b1 + b2) − 6. (5.27)

So (5.24) does not hold when λ1 ≥ 1. But if λ1 = 0, then b2 ≤ 2, and it is easy to

see that (5.24) cannot hold in this case unless μ2 = 0 also.

(III) Suppose now that h2 = 2 and G1 is not a path. By Lemma 5.3.17,

(1 + λ1)aH(G) ≥ (1 + λ1) max(aH1(G), aH2(G)) = max(b1(G) + b1(G), b2 + b2(G)).

So, if either μ1 ≥ 1, b1(G) ≥ 1 or b2(H) ≥ 2, then since h2 ≥ 2 and g1 ≥ 5, (5.26)

holds. We therefore assume that none of these conditions apply. In this case, since

b2 ≤ 2(1 + μ2) and h2 = 2,

n − |V (F)| = (1 + λ1)g1 + 2μ2 ≥ b1 + 2b2 − 2 + max(b1, b2 + b2(G)).

So by (5.24), we only need to consider the case where b2 ≤ b1 + 1. We recall that by

(5.25), aH1(G) ≤
⌊

g1

3

⌋
.

Suppose that b2 = 2. Then,

2(b1 + b2) ≤ 2(1 + λ1)
⌊

g1

3

⌋
+ 4 ≤ (1 + λ1)g1 + 2μ2,

unless (1 + λ1)g1 + 6μ2 ≤ 11. So (5.24) does not hold unless this condition is

met. However, straightforward calculations show that this equality only holds when

λ1 = μ2 = 0, so we are done in this case. We are therefore left to consider the case

when b2 ≥ 3, so b1 ≥ 2 and μ2 ≥ 1.

Suppose now that b1 ≥ 5. Then by Lemma 5.3.18(a),

(1 + λ1)aH(G1) ≥ (1 + λ1)aH1(G1) + b1−1
3

≥ (1 + λ1)aH1(G1) + 2.

Thus, the inequality (5.25) clearly holds.
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Suppose next that b1 = 4, so (1 + λ1)g1 ≥ (1 + λ1)aH1(G) ≥ 12 and thus

n− |V (F)| ≥ 14, since μ2 ≥ 1; so we may assume that b2 = 4 or b2 = 5. By Lemma

5.3.18(b),

(1 + λ1)aH(G1) ≥ (1 + λ1)aH1(G1) + b1+2
3

= 6.

Thus, it follows that when b2 = 4, (1+λ1)g1+2μ2 ≥ b1+b2+(1+λ1)aH(G)+2μ2 ≥ 16

and, similarly, when b2 = 5 (so μ2 = 2), (1 + λ1)g1 + 2μ2 ≥ 19. Since both of these

cases would contradict (5.24), the case b1 = 4 cannot occur.

Suppose now that b1 = (1 + λ1)aH1(G) = 3. Then, since b2 ≥ 3, we may apply

Lemma 5.3.18(d). Thus, (1 + λ1)aH(G1) ≥ (1 + λ1)aH1(G1) + b1+1
2

≥ 5, so (5.26)

holds.

Finally, suppose that b1 = 2 and b2 = 3. Then, again by Lemma 5.3.18(d),

(1 + λ1)aH(G1) ≥ 3, so (1 + λ1)g1 ≥ b1 + b2 + (1 + λ1)aH(G1) ≥ 8, and thus

(1 + λ1)g1 + μ2 ≥ 10. This again contradicts (5.24).

This completes the three cases; that is we have shown that when any of λ1, μ1 or

μ2 are not zero, b(G, H) ≤
⌊

n
2

⌋
. So to complete the proof, we now suppose that

λ1 = μ1 = μ2 = 0. In this case, G ∼= G ⊕ F , H ∼= H ⊕ F , and moreover, b1 + b2

is the number of common cards between a connected and disconnected graph, in

which neither of the components of the disconnected graph is an isolated vertex.

By Lemma 3.3.4, b1 + b2 ≤
⌊

g1

2

⌋
, unless G and H are one of the four exceptional

graph pairs. Moreover, b1 + b2 =
⌊

g1

2

⌋
+ 1, in any of these exceptional cases. Since

bF ≤ |V (F)|
2

, it follows that b(G, H) ≤
⌊

n
2

⌋
in all cases, and moreover, the bound is

only attained when F is the null graph. This completes the proof. �

The above result shows that the highest number of common cards between a 2UC

graph pair in which every active vertex is a component cut-vertex occurs when G

is connected and H is disconnected. Moreover, there are only four pairs of graphs

of order at most seven with b(G, H) >
⌊

n
2

⌋
. We now consider the case when every

H1-active vertex of G is a component cut-vertex, and every H2-active vertex of G is

not a component cut-vertex.
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Lemma 5.4.5 Let G and H be a 2UC graph pair, both of order n ≥ 3. Suppose

that each component of G isomorphic to G1 contains some active vertices that are

cut-vertices and some active vertices that are not. Suppose further that G1 is not

isomorphic to either P4 or P3. Then b(G, H) ≤
⌊

n
2

⌋
+ 1 and, moreover, this bound

is attained for all n.

Proof By Lemma 5.3.5, β1 = β2 = 1 and, in addition, G contains H1-active vertices

and H2-active vertices. Furthermore, as noted following that lemma, if the H2-active

vertices are cut-vertices then so are the H1-active vertices. Therefore it follows that

the H1-active vertices must be cut-vertices and the H2-active vertices cannot be

cut-vertices.

We show that

b1(G) + b2(G) + b1(H) + b2(H) + (1 + λ1)aH(G1) +

(1 + μ1)aG(H1) + (1 + μ2)aG(H2) + bF (G) + aH(F) ≥ g1 − 2, (5.28)

unless G1 is either P3 or P4. The result will then follow from (5.22). Note that

g1 ≥ 4, since G1 contains a component cut-vertex and G1 
∼= P3.

Suppose first that G1
∼= Pk, for k ≥ 5. Then H1

∼= Pk−1, H2
∼= K1 and

aH1(G) = aH2(G) = aG(H1) = 2. So aH(G1) = k − 4 and aG(H1) = k − 2, and since

g1 = k, it is easy to see that the inequality (5.28) holds. We may therefore assume

that G1 is not a path of length 5 or more.

We now consider the two cases: (I) α2 = 0 and (II) α2 = 1. By Corollary 5.3.19, in

case (I), h2 = 1, and in case (II), h2 = g2 + 1 ≥ 2; in both cases, g1 = h1 + 1. Note

that, if μ1 ≥ 1 and aG(H1) ≥ h1

2
, then (5.28) clearly holds; we therefore assume that

this is never the case. We make frequent use of (5.20) and (5.21).
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(I) α2 = 0 and h2 = 1.

Suppose first that no H2-active vertex is a leaf. Then by Corollary 5.3.28,

aH(G1) ≥ aH1(G1), thus by (5.20),

(1 + λ1)aH(G1) ≥ (1 + λ1)aH1(G1)

≥ (1 + μ1)aG(H1) − b1(H) + b1(G)

≥ (1 + μ1)(h1 − aG(H1)) − b1(H) + b1(G).

Therefore,

(1 + λ1)aH(G1) + (1 + μ1)aG(H1) + b1(H) ≥ (1 + μ1)h1 ≥ g1 − 1, (5.29)

so (5.28) holds.

Suppose instead that every H2-active vertex is a leaf. Now if H1
∼= P4, then since

G1 is not a path, it is easy to see that G1 consists of a path of length four with an

additional leaf adjacent to one of the leaf-adjacent vertices. In this case, aH(G1) = 1

and aG(H1) = aG(H2) = 0. Since g1 = 5, the inequality (5.28) holds. We may

therefore assume that H1 
∼= P4.

Now, by Corollary 5.3.33, 2(aH(G1) + aG(H1)) ≥ g1 − 2. Thus, (5.28) clearly holds

if both λ1 ≥ 1 and μ1 ≥ 1. So suppose that λ1 = 0 and μ1 ≥ 1, so aG(H1) ≤ h1

2
.

Then aH1(G1) ≤ g1

2
, by Corollary 5.3.6. So since g1 = aH1(G1) + aH2(G1) + aH(G1),

it follows that

(aH2(G1) + aH(G1)) ≥ aH1(G), so

b1(H) + (aH2(G1) + aH(G1)) ≥ (1 + μ1)aG(H1).

Now if aH(G1) ≥ aH1(G1), then (5.28) will hold, using a similar proof to that involved

in (5.29). So we may assume that this is not the case, thus by Corollary 5.3.32,

aG(H1) ≥ aH2(G) − 1. Therefore, since μ1 ≥ 1 and aG(H1) ≥ h1

2
,

b1(H) + (aG(H1) + aH(G1)) − 1 ≥ (1 + μ1)aG(H1) − 1 ≥ h1 − 1.

So again, (5.28) holds.
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Finally, suppose that μ1 = 0. Then by Corollary 5.3.35, aH(G1) ≥ b1−1. Therefore,

(1 + λ1)aH(G1) + b1(H) + aG(H1) ≥ aG(H1) + aG(H1) − 1 = h1 − 1,

and again (5.28) holds.

(II) α2 = 1 and h2 = g2 + 1.

By Corollaries 5.3.26 and 5.3.37, at least one of the following hold:

(i) aH(G1) ≥ aH1(G1); (ii) aH(G1) ≥ aG(H1)−1; (iii) aG(H2) ≥ aG(H1)−1. In case

(i), it is easy to show that (5.28) holds as in Case (I). In case (ii),

(1 + λ1)aH(G1) + (1 + μ1)aG(H1) ≥ h1 − 1,

whilst in case (iii),

(1 + μ2)aG(H2) + (1 + μ1)aG(H1) ≥ h1 − 1.

Thus, in any of these three cases, (5.28) holds, which completes the proof.

We present a family of graph pairs in Example 5.5.2 that shows this bound is attained

for all n. �

We now consider the exceptional case, that is when G1
∼= P4 or G1

∼= P3. In the

former case, H1
∼= P3 whilst in the latter case, H1

∼= K2; in both cases H2
∼= K1.

Lemma 5.4.6 Suppose that G and H are either of the following families of 2UC

graph pairs, both of order n ≥ 3:

(a) G ∼= (P4)⊕ (λ1P4 ⊕μ1P3 ⊕ μ2K1) and H ∼= (P3 ⊕K1)⊕ λ1P4 ⊕ μ1P3 ⊕μ2K1);

(b) G ∼= (P3)⊕ (λ1P3⊕μ1K2⊕μ2K1) and H ∼= (P2⊕K1)⊕ (λ1P3⊕μ1K2⊕μ2K1).

Then b(G, H) ≤
⌊

n+3
2

⌋
. Furthermore, b(G, H) = n+3

2
if and only if

(i) G = (P4) ⊕ (K1) and H = (P3 ⊕ K1) ⊕ (K1);

(ii) G = (P3) ⊕ ((2β1 + 1)P3 ⊕ β1K2 ⊕ (4β1 + 3)K1)

H = (K2 ⊕ K1) ⊕ ((2β1 + 1)P3 ⊕ β1K2 ⊕ (4β1 + 3)K1), for any β ≥ 0.
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Proof (a) In any component of G isomorphic to G1, the H1-active vertices are its

leaf-adjacent vertices, and the H2-active vertices are its leaves. The active vertices

of H are the leaves of the components isomorphic to H1, plus the vertices of the

components isomorphic to K1. So aH(G1) = aG(H2) = 0 and aG(H1) = 1. Thus,

b1 = min (2(λ1 + 1), 2(μ1 + 1)), b2 = min (2(λ1 + 1), μ2 + 1), and it follows that

b1(G)+b1(H) = |2λ1−2μ1| and b2(G)+b2(H) = |2λ1 +1−μ2|. Therefore by (5.22),

n = 2b(G, H) + (μ1 + 1) + |2λ1 − 2μ1| + |2λ1 + 1 − μ2| − 4.

So the bound holds for (a), with equality if and only if λ1 = μ1 = 0 and μ2 = 1.

(b) In any component of G isomorphic to G1, the H1-active vertex is its leaf-adjacent

vertex, and the H2-active vertices are its leaves. The active vertices of H are the

vertices of the components isomorphic to H1, plus the vertices of the components

isomorphic to K1. So aH(G1) = aG(H1) = aG(H2) = 0. Thus,

b1 = min ((λ1 + 1), 2(μ1 + 1)), b2 = min (2(λ1 + 1), μ2 + 1), and it follows that

b1(G) + b1(H) = |λ1 − 2μ1 − 1| and b2(G) + b2(H) = |2λ1 + 1 − μ2|. Therefore, by

(5.22),

n = 2b(G, H) + |λ1 − 2μ1 − 1| + |2λ1 + 1 − μ2| − 3. (5.30)

The bound in (b) thus holds, with equality if and only if

|λ1 − 2μ1 − 1| = |2λ1 +1−μ2| = 0; that is λ1 = 2μ1 +1 and μ2 = 2λ1 +1 = 4μ1 +3.

�

This completes the bounds for the b(G, H) when G contains an H1-active component

cut-vertex. We now have bounds for all 2UC graph pairs, depending on whether they

contain a component cut-vertex or not, and the value of λ1. We now concentrate on

finding 2UC graph pairs that attain the various bounds.
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5.5 2UC Graph Pairs that Attain the Bound

In this section, we give some examples of graphs that attain the bounds of the

previous section. In particular, we show that for n ≥ 10, no 2UC graph pair has

b(G, H) ≤ 2
⌊

(n−1)
3

⌋
and, for n ≥ 22, that this bound is attained by one of four graph

pairs, up to isomorphism. Since we are only interested in pairs with b(G, H) >
⌊

n
2

⌋
,

we again assume that G and H are of the form given in (5.14).

We begin by presenting examples of 2UC graph pairs that attain the bounds of

Lemmas 5.4.2 and 5.4.5.

Example 5.5.1 Let p be an integer, p ≥ 1. Then, for n = 2p + 1, the following

2UC graph pair has n+1
2

common cards, so attains the bound of Lemma 5.4.2:

G = (Kp+1) ⊕ (pK1)

H = (Kp ⊕ K1) ⊕ (pK1). (5.31)

The removal of any vertex of the Kp+1 component of G and any of the isolated

vertices of H gives isomorphic cards. There are p + 1 such cards, so

b(G, H) = p + 1 = n+1
2

. Figure 5.7 shows these graphs for p = 5. �

Figure 5.7: The pair of graphs in Example 5.5.1 of order 11 with 6 common cards.
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Example 5.5.2 Let p be an integer, p ≥ 1. Then, for n = 2(p + 1), the following

2UC graph pair has n
2

+ 1 common cards, so attains the bound of Lemma 5.4.5:

G = (S1
p+1) ⊕ (pK1)

H = (S1
p ⊕ K1) ⊕ (pK1). (5.32)

The removal of any leaf of the S1
p+1 component of G and any of the isolated vertices

of H gives isomorphic cards. In addition, the removal of the cut-vertex of the S1
p+1

component of G and the cut-vertex of the S1
p component of H gives an isomorphic

card. Since G contains p + 1 leaves, b(G, H) = p + 2 = n
2

+ 1. Figure 5.8 shows

these graphs for p = 5. �

Figure 5.8: The pair of graphs in Example 5.5.2 of order 12 with 7 common cards.

The next few results show that we need only consider certain 2UC graph pairs when

n ≥ 22.

Corollary 5.5.3 Let G and H be a 2UC graph pair of order n. Suppose that β2 = 1

and that G contains no H2-active vertices.

(a) If n ≥ 10, then b(G, H) ≤ 2
⌊

(n−1)
3

⌋
.

(b) If n ≥ 16, then b(G, H) < 2
⌊

(n−1)
3

⌋
.

Proof By Lemma 5.4.2, b(G, H) ≤
⌊

(n+1)
2

⌋
. The result then follows by simple

calculations. �
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Corollary 5.5.4 Let G and H be a 2UC graph pair of order n. Suppose that G

contains an H1-active component cut-vertex.

(a) If n ≥ 13, then b(G, H) ≤ 2
⌊

(n−1)
3

⌋
.

(b) If n ≥ 22, then b(G, H) < 2
⌊

(n−1)
3

⌋
.

Proof By Corollary 5.5.3, we may assume that if β2 = 1, then G contains both H1

and H2-active vertices. So b(G, H) ≤
⌊

(n+3)
2

⌋
, by Lemmas 5.4.4, 5.4.5 and 5.4.6.

Both (a) and (b) follow by simple calculations, unless n = 15 and b(G, H) = (n+3)
2

.

However, for this value of n, Lemma 5.4.6 shows that no such 2UC graph pair exist.

�

In light of the above two results, we now concentrate on 2UC graph pairs when no

active vertex in a component of G isomorphic to G1 is a component cut-vertex and,

if β2 = 1, when G contains both H1 and H2-active vertices. By Corollary 5.3.19,

g1 = h1 + 1 (and h2 = h1 if β2 = 1). So, by (5.17), (5.18) and (5.19), it follows that

h1(μ1 + μ2 + 1 − λ1) = b1(H) + b2(H) + (β1 + μ1)aG(H1) + (β2 + μ2)aG(H2)

− b1(G) − b2(G) − (λ1 + 1)aH(G1) + (λ1 + 1). (5.33)

We rearrange (5.23) to get

b(G, H) =
1

2λ1 + 1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λ1 + 1)
(
n − b1(H) − b2(H) − (β1 + μ1)a(H1) − (β2 + μ2)a(H2)

)
−λ1

(
b1(G) + b2(G)) + (λ1 + 1)a(G1)

)
−(λ1 + 1)(bF(G) + aH(F)) + λ1bF (G)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.34)

and let

R(H) = b1(H) + b2(H) + (β1 + μ1)aG(H1) + (β2 + μ2)aG(H2)

R(G) = b1(G) + b2(G) + (λ1 + 1)aH(G1)

R(F) = (λ1 + 1)(bF (G) + aH(F)) − λ1bF(G), (5.35)

so that (5.33) can be expressed as h1(μ1+μ2 +1−λ1) = R(H)−R(G)+(λ1+1) and

(5.34) can be expressed as b(G, H) = 1
2λ1+1

((λ1 + 1)n − (λ1 + 1)R(H) − λ1R(G) − R(F)).
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Note that since every Fk-active vertex is a component cut-vertex and aH(F) ≥

aH(F), it follows that if |V (F)| ≥ 2, then R(F) ≥ 2, otherwise R(F) = |V (F)| = 1.

We first consider the case when λ1 ≥ 2.

Lemma 5.5.5 Let G and H be as in 2UC graph pair, both of order n ≥ 10, such

that no active vertex of G is a component cut-vertex and, if β2 = 1, then G contains

both H1 and H2-active vertices. If λ1 ≥ 2, then b(G, H) ≤ 2
⌊

(n−1)
3

⌋
, with equality

only if n ≤ 22.

Proof Suppose first that λ1 ≥ 3. Then by (5.34), b(G, H) ≤
⌊

4n
7

⌋
≤ 2

⌊
(n−1)

3

⌋
, for

n ≥ 10. In addition, equality holds only if n ≤ 21, so the result is true in this case.

Suppose instead that λ1 = 2 and let K = 3R(H) + 2R(G) + R(F). Then by

(5.34), b(G, H) = 3n−K
5

≤ 2
⌊

(n−1)
3

⌋
for n ≥ 10 and K ≥ 2. In addition, when

n ≥ 22, straightforward calculations show that equality never holds if K ≥ 3. So

the result holds immediately unless R(H) = 0, and either R(G) = 1 and R(F) = 0,

or R(G) = 0 or R(F) ≤ 2. Now when K ≤ 2, it is easy to see that 1 ≤ h1 ≤ 3,

since h1(μ1 + μ2 − 1) = R(H) − R(G) + 3 by (5.33). We can thus find all values of

b(G, H), μ1 + μ2 and n in this case. The results are summarised in the table below.

The result then follows immediately.

h1 μ1 + μ2 min n max(b(G, H)) max n s.t. max(b(G, H)) ≥ 2
⌊

n−1
3

⌋
1 3 9 5 9

1 4 10 6 12

2 2 13 8 15

3 2 20 12 21

�

An example of a 2UC graph pair with b(G, H) = 2
⌊

(n−1)
3

⌋
when λ1 = 2 and n = 20

is presented here.
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Example 5.5.6 For n = 20, the following 2UC graph pair has b(G, H) = 12:

G = (K4 ⊕ K2) ⊕ (2K4 ⊕ 2K3)

H = (K3 ⊕ K3) ⊕ (2K4 ⊕ 2K3). (5.36)

The removal of any vertex of G in a component isomorphic to K4 and any vertex of

H in a component isomorphic to K3 gives isomorphic cards. So b(G, H) = 12. �

By Lemma 5.4.3, b(G, H) ≤
⌊

(n+1)
2

⌋
when λ1 = 0. So, the only case left to consider

is when λ1 = 1.

Lemma 5.5.7 Let G and H be as in 2UC graph pair, both of order n ≥ 11, such

that no active vertex of G is a component cut-vertex and, if β2 = 1, then G contains

both H1 and H2-active vertices. Suppose that λ1 = 1. Then b(G, H) ≤ 2
⌊

(n−1)
3

⌋
.

In addition, when n ≥ 22, equality holds only if μ1 = μ2 = aG(H1) = aG(H2) =

b1(H) + b2(H) = 0, and moreover, either aH(G1) = 1 and b1(G) + b2(G) = 0, or

b1(G) + b2(G) = 2 and aH(G1) = 0.

Proof Let K = 2R(H)+R(G)+R(F). Then by (5.34), b(G, H) = 2n−K
3

≤ 2
⌊

(n−1)
3

⌋
,

for n ≥ 11 and K ≥ 4. In addition, when n ≥ 22, straightforward calculations show

that equality holds only if K ≤ 6. We therefore assume that K ≤ 6, so R(H) ≤ 3.

Note that, if n ≥ 22, and K = 5 or K = 6, then b(G, H) < 2
⌊

(n−1)
3

⌋
, unless n ≡ 0

(mod 3).

Now by (5.33), h1(μ1 + μ2) = R(H)−R(G) + 2. So since R(H) ≤ 3, it follows that

0 ≤ h1(μ1 + μ2) ≤ 5. Moreover, h1(μ1 + μ2) = 0 only if R(G) = R(H) + 2. We

therefore calculate all the possible values for max(b(G, H)), when 1 ≤ h1 ≤ 5 and

μ1 + μ2 
= 0. The results are summarised in the table below. This shows that the

result holds immediately except when R(G) = R(H) + 2.
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h1 μ1 + μ2 min n max(b(G, H)) max n s.t. max(b(G, H)) ≥ 2
⌊

n−1
3

⌋
1 1 5 3 7

1 2 6 4 9

2 1 9 6 12

3 1 13 8 15

4 1 17 10 18

5 1 21 12 21

So suppose that R(G) = R(H)+2, so K = 3R(H)+2+R(F) and μ1+μ2 = 0. Then

it is easy to show that b(G, H) > 2
⌊

n−1
3

⌋
, unless R(H) = 0, or R(H) = 1, noting

that in the latter case that n ≡ 0 (mod 3), when n ≥ 22. Now since μ1 + μ2 = 0,

it follows that n = 3h1 + 1 + |V (F)|. So when n ≡ 0 (mod 3), |V (F)| = 2. Thus if

R(H) = 1 and n ≡ 0 (mod 3), K = 8 and the bound is not attained. Therefore, the

bound is only attained when R(H) = 0 and R(G) = 2. This completes the proof. �

An example of a 2UC graph pair with b(G, H) = 2
⌊

(n−1)
3

⌋
when λ1 = 1 and n = 21

is presented here.

Example 5.5.8 For n = 21, the following 2UC graph pair has b(G, H) = 12:

G = (K6 ⊕ K4) ⊕ (K6 ⊕ K5)

H = (K5 ⊕ K5) ⊕ (K6 ⊕ K5). (5.37)

The removal of any vertex of G in a component isomorphic to K6 and any vertex of

H in a component isomorphic to K5 gives isomorphic cards. So b(G, H) = 12. �

We now show that only when the components are complete graphs is the bound

attained for n ≥ 22. First we prove the following result.

Lemma 5.5.9 Let F be a connected graph of order q and let S ⊆ V (F ). Suppose

that, for every vertex v in S, d(v) = k, and that F − v is regular. Then precisely

one of the following holds.
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(a) F ∼= Kq, S = V (F ), so F − v ∼= Kq−1 for all v in S;

(b) |S| ≤
⌊

q
2

⌋
+ 1.

Proof Since any connected graph of order 2 or less is complete, we may assume that

F is of order 3 or more. In addition, since (b) clearly holds if |S| = 1, we may

assume that |S| ≥ 2. We show that (i) if F 
∼= Kq and any pair of vertices in S are

adjacent then (b) holds, and that (ii), (b) holds if any pair of vertices in S are not

adjacent. This implies the result. Let u and v be two vertices in S.

(i) Suppose then that F is not complete and that v is adjacent to u. Then since

d(u) = k − 1 in F − v, and F − v is regular, the degree of every vertex in F − v

must be equal to k − 1. So every vertex of F adjacent to v is of degree k, and every

other vertex of F is of degree k − 1. Thus since d(v) = k, it follows that there are

precisely q − k − 1 vertices of F of degree k − 1. Therefore, since every vertex of S

is of degree k, it follows that q − k − 1 ≤ q − |S|. Now, since F is not complete,

k 
= q − 1, so there must be at least one vertex of degree k − 1 in F . Since such a

vertex can clearly not be adjacent to any vertex in S, it follows that k−1 ≤ q−|S|.

Thus |S| ≤
⌊

q
2

⌋
+ 1, and (b) holds.

(ii) Now suppose that u and v are not adjacent, so d(u) = k in F − v. Then since

F −v is regular, the degree of every vertex in F −v is equal to k, and it follows that

every vertex of F adjacent to v is of degree k +1, and every other vertex is of degree

k. Now since d(v) = k, there are precisely k vertices of F of degree k + 1 and q − k

vertices of degree k, thus |S| ≤ q − k. Now since F is connected, k ≥ 1, so there

is at least one vertex of degree k + 1. Clearly, any such vertex must be adjacent to

every vertex of S, so k + 1 ≥ |S|. Therefore, |S| ≤ q+1
2

and again (b) holds. �

Corollary 5.5.10 Let G and H be as a 2UC graph pair such that no active vertex

of G is a component cut-vertex and, if β2 = 1, then G contains both H1 and H2-

active vertices. Suppose that g1 ≥ 5, aH(G1) ≤ 1 and aG(H1) = aG(H2) = 0. Then

G1
∼= Kg1, H1

∼= Kg1−1 and β1 = 2.
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Proof aH(G1) >
⌊

g1

2

⌋
+ 1, since g1 ≥ 5 and aH(G1) ≤ 1. Let U be a component

of G isomorphic to G1 and let W1 and W2 be the two components in H. Then for

all vertices w1 and w2 in W1 and W2, respectively, W1 − w1
∼= W2 − w2

∼= G2 by

Corollary 5.3.19, so both W1 and W2 must be regular. Moreover, since D(W1) and

D(W2) are identical, it follows from Lemma 2.4.2 that W1 and W2 must have the

same degree sequence, so W1 and W2 are both regular of the same degree. Now again

by Corollary 5.3.19, for active vertex v in U , either U − v ∼= W1 or U − v ∼= W2.

Thus every active vertex in U is of the same degree. Therefore, setting S = AH(U)

in Lemma 5.5.9, it follows U ∼= Kg1. So, since every card of a complete graph with

g1 vertices is a complete graph with g1 − 1 vertices, Hg1−1 and β2 = 2, so the result

holds. �

The above results give the following theorem.

Theorem 5.5.11 Let G and H be a 2UC graph pair, both of order n.

(a) For n ≥ 13, the maximum value of b(G, H) is 2
⌊

1
3
(n − 1)

⌋
. Moreover, this

bound is attained for all such n.

(b) Suppose that n ≥ 22 and b(G, H) = 2
⌊

1
3
(n − 1)

⌋
. If n ≡ 1 or 2 (mod 3)

then G and H are unique (see Examples 5.5.12 and 5.5.13), whereas if n ≡ 0

(mod 3) then G and H are one of precisely two pairs of graphs (see Example

5.5.14).

(c) For n ≤ 12, there are a small number of 2UC graph pairs exceeding the bound

in (a), but in all cases b(G, H) ≤
⌊

2
3
(n + 1)

⌋
.

Proof By Corollary 5.3.3, we may assume that G and H can be expressed as (5.14).

(a) This follows from Lemma 5.4.3, Corollaries 5.5.3 and 5.5.4 and Lemmas 5.5.5

and 5.5.7. Examples 5.5.12, 5.5.13 and 5.5.14 show that the bound is attained for

all such n.
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(b) The same results show that for n ≥ 22, b(G, H) = 2
⌊

1
3
(n − 1)

⌋
only when

λ1 = 1, μ1 = μ2 = 0, aH(G1) ≤ 1 and aG(H1) = aG(H2) = 0. Since n ≥ 22, it

follows that g1 ≥ 5, so by Corollary 5.5.10, G1
∼= Kg1, H1

∼= Kg1−1 and β1 = 2.

Simple calculations show that |V (F)| must be of order 0, when n ≡ 1 (mod 3), of

order 1 when n ≡ 2 (mod 3), and of order 2 when n ≡ 0 (mod 3).

(c) Noting that
⌊

n+3
2

⌋
≤
⌊

2
3
(n + 1)

⌋
, (c) holds by Lemmas 5.4.1 to 5.4.6. �

Example 5.5.12 Let p be an integer, p ≥ 1. Then, for n = 3p + 1, the following

2UC graph pair has 2(n−1)
3

common cards, so attains the bound of Theorem 5.5.11:

G ∼= (Kp+1 ⊕ Kp−1) ⊕ (Kp+1)

H ∼= (Kp ⊕ Kp) ⊕ (Kp+1).

The removal of any vertex from a component of G isomorphic to Kp+1, and any

vertex from a component of H isomorphic to Kp gives isomorphic cards. So

b(G, H) = 2p = 2(n−1)
3

. Figure 5.9 shows these graphs for p = 6. �

G

H

Figure 5.9: The pair of graphs in Example 5.5.12 of order 16 with 10 common cards.
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For n 
≡ 1 (mod 3), we must ensure |V (F)| ≤ 2. In each of the examples, the

common cards are formed in an identical manner to those are in Example 5.5.12.

Example 5.5.13 Let p be an integer, p ≥ 1. Then, for n = 3p + 2, the following

2UC graph pair has 2(n−2)
3

common cards, so attains the bound of Theorem 5.5.11:

G ∼= (Kp+1 ⊕ Kp−1) ⊕ (Kp+1 ⊕ K1)

H ∼= (Kp ⊕ Kp) ⊕ (Kp+1 ⊕ K1).

�

Example 5.5.14 Let p be an integer, p ≥ 1. Then, for n = 3p+3, the following two

2UC graph pairs have 2(n−3)
3

common cards, so both attain the bound of Theorem

5.5.11:

G ∼= (Kp+1 ⊕ Kp−1) ⊕ (Kp+1 ⊕ 2K1)

H ∼= (Kp ⊕ Kp) ⊕ (Kp+1 ⊕ 2K1),

and

G ∼= (Kp+1 ⊕ Kp−1) ⊕ (Kp+1 ⊕ K2)

H ∼= (Kp ⊕ Kp) ⊕ (Kp+1 ⊕ K2).

�

Our investigations have shown that the unique 2UC graph pair (up to isomorphism)

with b(G, H) = 2
3
(n + 1), is the pair given in Lemma 5.4.6(b)(i). In addition, the

pair given in Lemma 5.4.6(b)(ii) has b(G, H) =
⌊

2
3
(n + 1)

⌋
, when n = 9. Another

example that has b(G, H) =
⌊

2
3
(n + 1)

⌋
, when n = 9, is the following pair of graphs.

Example 5.5.15 For n = 9, the following pair of graphs has

b(G, H) =
⌊

2
3
(n + 1)

⌋
= 6:

G = (K3 ⊕ K1) ⊕ (K3 ⊕ K2)

H = (K2 ⊕ K2) ⊕ (K3 ⊕ K2).

�
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As a coda to this chapter, we show that the number of components of a graph can

be determined from
⌊

n+5
2

⌋
of its cards.

Theorem 5.5.16 Let G and H be a pair of graphs, both of order n ≥ 3, that

contain a different number of components. Then

b(G, H) ≤
⌊

n + 3

2

⌋
. (5.38)

So the number of components of a pair of graphs is recognisable by
⌊

n+5
2

⌋
of its

cards.

Proof Since G and H contain a different number of components, they are a 2UC

graph pair, with
r∑

i=1

αi 
=
s∑

j=1

βj . Now if either graph contains three or more compo-

nents, then by Corollary 5.3.3(b), b(G, H) ≤
⌊

n
2

⌋
. We may therefore assume that

α1 = 1, α2 = 0, and β1 + β2 = 2. In addition, by Lemma 5.4.2, we may assume that

if β2 ≥ 1, then G contains both H1-active and H2-active vertices.

Suppose that G1 does not contain any active component cut-vertices. Then since

α2 = 0, by Corollary 5.3.19(f), both components of H must be isomorphic to K1

and G1
∼= K2. Thus G ∼= (λ1 + 1)K2 ⊕ μ1K1 ⊕ F , and it is easy to show that

b(G, H) ≤ n+2
2

≤
⌊

n+3
2

⌋
. On the other hand, if G1 contains an active component

cut-vertex, then b(G, H) ≤
⌊

n+3
2

⌋
by Lemmas 5.4.5 and 5.4.6. �

Finally, we note that by Lemmas 5.4.4, 5.4.5 and 5.4.6, if G and H contain a different

number of components, then b(G, H) = n+3
2

only if G and H are members of the

family of pairs of paths presented in Lemma 5.4.6(b)(ii) or are the exceptional pair

in Lemma 5.4.6(b)(i).
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Chapter 6

Extending the 2UC Results

In this chapter, we extend some of the results of the previous chapter. We show that,

for n ≥ 46, there are only two other families of 2UC graph pairs of order n, with

2
⌊

(n−4)
3

⌋
or more common cards, that are not constructed from Example 5.5.12.

For one of these families, the pair of graphs are both forests, which shows that

there exists a 2UC graph pair with the same number of edges and approximately 2n
3

common cards.

For appropriate values of n, we also present an infinite family of pairs of graphs

with the same degree sequence having 2
3
(n + 5 − 2

√
3n + 6) common cards. For

large n (certainly n ≥ 200), this family has the highest number of common cards

yet published, amongst all pairs of graphs with the same degree sequence. However,

we make no claims on whether there are other families of pairs of graphs with the

same degree sequence and a higher number of common cards.
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Finally, we present infinite families of pairs of connected graphs with 2
⌊

1
3
(n − 1)

⌋
,

or slightly fewer, common cards. These are obtained by simple transformations of

the 2UC examples given in Sections 5.5 and 6.1. In particular, we show how to

construct infinite families of pairs of graphs with arbitrary connectivity κ that have

2
⌊

1
3
(n − κ − 1)

⌋
common cards and, in addition, we show how to construct a family

of trees with 2
⌊

(n−5)
3

⌋
common cards. Amongst all pairs of trees, this family of trees

has a greater number of common cards than any other published pair of trees, for

large n.

Throughout this chapter, any 2UC graph pair G and H is assumed to be expressed

as in (5.4). We begin with a few observations on other families discussed in the

previous chapters.

6.1 Observations on Families Previously Discussed

The families of graph pairs presented by Harary and Manvel [19], Bondy [8] and

Myrvold are clearly 2UC [33]. Thus, using the methodologies given in Chapter 5,

we can ascertain the number of common cards between each pair.

The family of graph pairs presented by Bondy [8] is the collection of paths given in

Lemma 5.4.6(b). The conclusion of that lemma is that the number of common cards

between the two graphs is
⌊

n+3
2

⌋
. The family presented by Harary and Manvel [19]

is the pair G = Kp+1 ⊕ Kp−1 and H = 2Kp. So α1 = α2 = 1, β1 = 2 and every

other coefficient equal to zero. In addition, no active vertex of G is a cut-vertex.

By Lemma 5.4.3, the maximum number of common cards between such a pair is⌊
n
2

⌋
+ 1.

As stated at the beginning of Chapter 5, both of Myrvold’s families of pairs of graphs

are 2UC. In her first family (Example 2.7.3), α1 = α2 = 1, β1 = 2, λ1 = μ1 = p − 1

and β2 = λ2 = μ2 = 0. Since no active vertex of G is a cut-vertex, by (5.34)

b(G, H) ≤ pn
2p−1

. Since n = (p + 1)(2p− 1), we can express p in terms of n to obtain

the bound. In her second family (Example 2.7.4), G does not contain any H1-active

vertices. By Lemma 5.4.2, any such pair has at most
⌊

n+1
2

⌋
common cards.
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Finally, since any graph pair in which G is connected and H is disconnected is

2UC, we can find the maximum number of common cards between such a pair.

If H has three or more components then by Corollary 5.3.3, b(G, H) ≤
⌊

n
2

⌋
. On

the other hand if H has only two components, then either b(G, H) = 1 or there

must be some active vertex of G that is a cut-vertex. By Lemmas 5.4.4 and 5.4.5,

b(G, H) ≤
⌊

n
2

⌋
+ 1, for such pairs.

6.2 2UC Graph Pairs with Specific Parameters

For each of the 2UC graph pairs discussed in Section 6.1, b(G, H) is much less than

the upper bound of 2
⌊

n−1
3

⌋
, for large n. This is because in each case, one of the

following possibilities occurs: β2 = 1 but G contains only H1-active vertices; G1

contains active cut-vertices; λ1 
= 1. So, to find other families of 2UC graph pairs

that have b(G, H) close to 2
⌊

n−1
3

⌋
, we should look for pairs where λ1 = 1, none of

the active vertices of G are cut-vertices and, if β2 = 1, then G contains both H1

and H2-active vertices. In addition, since we wish to find infinite families of graph

pairs, it is necessary to not limit the size of h1; so by (5.33), we look for pairs where

μ1 = μ2 = 0 also. We now show how to construct three families in this manner.

Moreover, we show that for large n, two of our families are the unique families of

2UC graph pairs with b(G, H) = 2
⌊

(n−4)
3

⌋
, that are not extensions of Example

5.5.12.

In trying to maximise b(G, H), a reasonable strategy would be to maximise the

number of active vertices in the subgraphs G and H. We now explain an approach

to accomplish this.

Let U be a component of G isomorphic to G1 and let W be a component of H

isomorphic to H1. Suppose that β1 = 2 and that no active vertex in U is a cut-

vertex (so that no active vertex in W is a cut-vertex either). Let u be an H1-active

vertex in U and w be vertex in W associated with u. By Corollary 5.3.19, U − u is

isomorphic to W and W − w ∼= G2. Therefore, there must be some other vertex v

in U such that (U − u) − v ∼= G2.
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Now, since we wish to maximise the number of active vertices in U and W , we must

minimise the number of u such that U − u 
∼= W and the number of w such that

W − w 
∼= G2. Thus we must minimise the number of pairs of vertices u and v in U

such that (U−u)−v 
∼= G2. Since similar arguments would give the same conclusion,

if β2 = 1 and u is H2-active, it follows that to find a family of 2UC graph pairs such

that G and H contain a large number of active vertices, we are required to find a

connected graph U that satisfies the following criterion: for as many pairs of vertices

u and v of U as possible, (U − u) − v is isomorphic to the same connected graph.

For p ≥ 2, we consider the 1-star of order p, S1
p−1. Since as commented in Section

2.1, D(S1
p−1) =

{
(S1

p−2; p − 1), (p − 1)K1

}
, it follows that for any pair of leaves u

and v in S1
p−1, (S1

p−1 − u)− v ∼= S1
p−3. So, since every vertex of S1

p−1 except one is a

leaf, S1
p−1 satisfies the stated criteria. It follows that the 2UC graph pair obtained

by setting β1 = 2, G1
∼= S1

p+1 and H1
∼= S1

p , will have a large number of common

cards. In addition, since G1 and H1 are both trees, G and H are both forests, and

therefore have the same number of edges.

Example 6.2.1 Let p be an integer, p ≥ 2. Then for n = 3p+4, the following 2UC

graph pair has the same number of edges and 2
3
(n − 4) common cards:

G = (S1
p+1 ⊕ S1

p−1) ⊕ (S1
p+1)

H = (S1
p ⊕ S1

p) ⊕ (S1
p+1).

The removal of any leaf from a component of G isomorphic to S1
p+1 and any leaf

from a component of H isomorphic to S1
p gives isomorphic cards. So

b(G, H) = 2p = 2
3
(n − 4). Since G and H are forests with the same number of

components, they have the same number of edges. Figure 6.1 shows these graphs

for p = 5. �
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Figure 6.1: The pair of forests in Example 6.2.1 of order 19 with 10 common cards.

We can extend this example as in Example 5.5.12 to give the following result.

Theorem 6.2.2 For all n ≥ 7, there exist pairs of non-isomorphic graphs with the

same number of edges that have b(G, H) ≥ 2
⌊

1
3
(n − 4)

⌋
. Moreover, these graphs

are forests.

Proof For n ≡ 1, the pair in Example 6.2.1 attains the bound. For n ≡ 0 or 2

(mod 3), we add components of total order 1 and 2, respectively (as in Examples

5.5.13 and 5.5.14). We note that, if we set p = 1 in the example, then b(G, H) = 4,

so we can extend the theorem to all values of n ≥ 7. �

Before we give the next example, we make the following three observations, the first

of which will be useful here and in Section 6.3. We recall from Section 1.1, that if F

is a graph, then the complement of F is the graph F C with vertex set V (F ), such

that for any pair of vertices u and v of F , uv in E(F C) if and only if uv is not in

E(F ).
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Lemma 6.2.3 Let F be a graph and let S ⊂ V (F ). Then (F − S)C = F C − S.

Proof (F − S)C and F C − S both have the same vertex-set, V (F −S). Let u and v

be a pair of distinct vertices of F − S. Then, since V (F − S) does not contain any

edges incident to a vertex in S, uv is in E((F −S)C) if and only if uv is not in E(F ),

that is, if and only if uv is in E(F C). So since u and v are not in S, it follows that uv

is in E((F − S)C) if and only if uv is in E(F C −S). So E((F − S)C) = E(F C −S),

and the result follows. �

The above lemma yields the following corollary.

Corollary 6.2.4 Let F and U be a pair of graphs. Then b(F C , UC) = b(F, U).

Proof Suppose that v is an active vertex of F and that w is a vertex of U associated

with v. Then since F − v ∼= U − w, it follows from Lemma 6.2.3 that

F C − v ∼= (F − v)C ∼= (U − w)C ∼= UC − w. So v is an active vertex of F C

and w is a vertex of UC associated with v. Therefore, B(F, U) = B(F C , UC), so

b(F, U) = b(F C , UC).

�

We use Corollary 6.2.4 in Section 6.3 to find families of connected graph pairs with

a large number of common cards. Here we use these observations to present another

family of graph pairs with b(G, H) = 2(n−4)
3

.

Lemma 6.2.5 Let F be a connected (n − 2)-regular graph of order n ≥ 4. Then

F C ∼= n
2
K2. So n is even and, moreover, F is unique up to isomorphism.

Proof Let v be a vertex of F . Then v is adjacent to every vertex of F , except one.

Thus v is only adjacent to one vertex of F C , so d(v) = 1 in F C . It follows that every

vertex in F C is of degree 1, so F C ∼= n
2
K2, since n ≥ 2. Clearly n is even, and since

K2 is unique up to isomorphism, so is F . �
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In light of Lemma 6.2.5, for p ≥ 1, we let V T2(p−1) denote the 2(p − 1)-regular

graph of order 2p. In addition, we denote the graph constructed from V T2(p−1) by

adding a single vertex adjacent to every vertex of V T2(p−1) by V T ′
2(p−1), and the

graph constructed from V T2(p−1) by adding two vertices adjacent to every vertex

of V T2(p−1), and additionally to each other, by V T ′′
2(p−1). It is easy to see that for

p ≥ 3, ((p − 1)K2 ⊕ K1)
C ∼= V T ′

2(p−2) and ((p − 2)K2 ⊕ 2K1)
C ∼= V T ′′

2(p−3). Note

that, V T ′
2(p−2) contains 2(p − 1) vertices of degree 2p − 3 and one vertex of degree

2p − 2. The following result is immediate.

Lemma 6.2.6 Let p be an integer, p ≥ 4, and let v be any vertex of V T2(p−1). Then

V T2(p−1)−v ∼= V T ′
2(p−2). In addition, (V T2(p−1)−v)−u ∼= V T ′′

2(p−3), for every vertex

u that is adjacent to v.

Proof By Lemma 6.2.5, (V T2(p−1))
C ∼= pK2, so we can identify the vertices of

V T2(p−1) with the vertices of pK2. Let u and v be adjacent vertices of (V T2(p−1))
C .

Then u and v are not adjacent in pK2. Clearly, pK2 − v ∼= (p − 1)K2 ⊕ K1, and

(pK2 − v) − u ∼= (p − 2)K2 ⊕ 2K1. Therefore, by Lemma 6.2.3,

V T2(p−1) − v ∼= (pK2 − v)C ∼= ((p − 1)K2 ⊕ K1)
C ∼= V T ′

2(p−2), and

(V T2(p−1) − v) − u ∼= ((pK2 − v) − u)C ∼= ((p − 2)K2 ⊕ 2K1)
C ∼= V T ′′

2(p−3). �

Corollary 6.2.7 Let p be an integer, p ≥ 4. Then V T ′
2(p−2) − w ∼= V T ′′

2(p−3) for

every vertex w of V T ′
2(p−2), except the unique vertex of degree 2p − 2.

Proof This follows immediately from Lemma 6.2.6, noting that d(v) = 2p − 2, for

every vertex v of V T2(p−1). �

We now use the above results to construct another family with b(G, H) = 2
3
(n− 4).

Example 6.2.8 For n = 6p − 2, where p ≥ 3, the following 2UC graph pair has

2
3
(n − 4) common cards:

G = (V T2(p−1) ⊕ V T ′′
2(p−3)) ⊕ (V T2(p−1))

H = (V T ′
2(p−2) ⊕ V T ′

2(p−2)) ⊕ (V T2(p−1)).
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Figure 6.2: The pair of graphs in Example 6.2.8 of order 16 with 8 common cards.

By Lemma 6.2.6 and Corollary 6.2.7, the removal of any vertex from a component

of G isomorphic to V T2(p−1) and any vertex of degree 2p − 3 from a component of

H isomorphic to V T ′
2(p−2) gives isomorphic cards. There are 4p − 4 such vertices in

H , so b(G, H) = 4p − 4 = 2
3
(n − 4). Figure 6.2 shows these graphs for p = 3. �

We may clearly extend this example to all values of n in a similar manner to Example

6.2.1.

Now, using the notation from Section 5.4, in Example 6.2.1, aH(G1) = aG(H1) = 1

and b1(G) = 2, and in Example 6.2.8, b1(G) = 4 and aG(H1) = 1; in both examples,

λ1 = 1 and μ1 = μ2 = β2 = 0. Thus the fact that b(G, H) = 2
3
(n − 4) is directly

calculable by (5.34). We shall prove that the these two families (and their extensions)

are, for n ≥ 46, the only 2UC graph pairs that have b(G, H) = 2
⌊

(n−4)
3

⌋
and are

not constructed from Example 5.5.12. We first prove an interesting result about any

graph in which all but one of the cards in the deck are isomorphic.

Lemma 6.2.9 Let F be a non-regular connected graph of order q ≥ 3. Suppose

that u is a vertex of F such that all cards in D(F ) are isomorphic, except F − u.

Then d(u) = q − 1, and F − u is a vertex-transitive graph of order q − 1. Moreover,

under these conditions, F can be uniquely reconstructed from any of its cards.
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Proof All cards in the deck of F are isomorphic, except F −u. So, every vertex of F

except u must be of the same degree, since F is not regular. Let v 
= u be a vertex

of F and let k = d(v). Now if u and v are adjacent then dk−1(F − v) = k − 1, since

d(u) 
= k. On the other hand, if u and v are not adjacent, then dk−1(F − v) ≥ k.

Thus, since every card in D(F ) except F − u is isomorphic, it follows that every

vertex of F (except u) is adjacent to u or no vertex is. Since F is connected, u must

be adjacent to at least one vertex of F . Therefore, u is adjacent to every vertex of

F , so d(u) = q − 1. It follows that F can be uniquely reconstructed from F − u.

Since u is adjacent to every vertex of F and all the cards in D(F ) are isomorphic,

except F − u, it is easy to see that (F − v) − u is isomorphic, for each v 
= u in

F . Thus, every card in D(F − u) is isomorphic, so F − u is regular and, moreover,

vertex-transitive. Therefore, as noted in the proof of Theorem 2.5.1, F − u can be

uniquely reconstructed from any of its cards. Now, since d(u) = q − 1, u is adjacent

to every vertex of F − v. Thus, the removal of any vertex of degree q−2 from F − v

gives a graph isomorphic to (F − u)− v. Hence, for any v 
= u, we can always form

a graph isomorphic to (F − u) − v from F − v, so we can uniquely construct the

card F − u from F − v. Since we can uniquely reconstruct F from F − u, therefore

we can uniquely reconstruct F from F − v. �

Lemma 6.2.10 Let F be as in Lemma 6.2.9. Suppose that U is a graph of order

n ≥ 6, such that every card in D(U), is isomorphic to F , except at most two. If U

is regular, then n = 2p and U ∼= V T2(p−1); otherwise U ∼= S1
n−1.

Proof Since all cards in D(U) are isomorphic, except at most two, it follows that

every vertex of U , except at most two, is of the same degree. Let v be a vertex of U

such that U − v ∼= F , and let u be the unique vertex of U such that (U − v) − u is

not isomorphic to (U − v)−w, for all other w in U . By Lemma 6.2.9, u is of degree

n− 2 in U − v, and since U − v ∼= F , every other vertex of U − v must be of degree

k, for some k ≤ n − 3.
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Suppose first that d(v) = 1. Then k = 1 and every vertex of U except at most two

must be a leaf. Since d(u) ≥ n − 2 in U − v, there are only two possibilities: either

v is adjacent to u, and every vertex of U except u is a leaf; or v is adjacent to some

vertex x where d(x) = 2 and d(u) = n − 2. In the latter case, the removal of any

leaf w from U except v gives a card that contains a vertex of degree two (that is

x). Since this is impossible, the former case must occur. Therefore, U must be the

1-star of order n.

We may therefore assume that d(v) ≥ 2. We first consider the case when u is

adjacent to v, so d(u) = n − 1 in U . Since U − v contains only one vertex of degree

n − 2, every other vertex of U is of degree at most n − 2 in U .

Now, if d(v) = k, then v cannot be adjacent to any vertices of degree d(v), so

d(v) = k = 2, thus every vertex of U except at most two is of degree two. Since

u is the only vertex of U of degree n − 1, it is easy to see that there must be pair

of adjacent vertices of degree two. But the cards of either of these vertices would

contain a leaf, so this case cannot occur. It follows that d(v) 
= k, so every vertex

of U of degree d(v) must be adjacent to v and d(v) = k + 1. Thus d(v) = n− 2 and

k = n − 3. Therefore, there must be a unique vertex that is not adjacent to any of

the n − 2 vertices of degree n − 2. So k = 1, which contradicts the fact that n ≥ 6.

We may therefore assume that u is not adjacent to v in U , so d(u) = n − 2 in U .

Every vertex w such that U − w ∼= F is adjacent to u. Thus k = n − 3 ≥ 3 since

n ≥ 6. So v is adjacent to every vertex in U − w except u; therefore, d(v) = n − 3

if w is not adjacent to v and d(v) = n − 2 otherwise. In the former case, v cannot

be adjacent to any vertex of degree d(v). Since there are at least four vertices in U

of degree n − 3, this cannot occur. Therefore d(v) = n − 2, and U contains at least

n − 1 vertices of degree n − 2. It is easy to see that U must contain n vertices of

degree n − 2. Therefore, every vertex of U is of degree n − 2 and U ∼= V T2(p−1),

where n = 2p. �
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Lemma 6.2.11 Let F be a connected graph of order n, and let S and T be two

disjoint subsets of V (F ), both of size 4 or more. Suppose that every vertex u in

S, is of the same degree and furthermore, that for each such u, F − u is d-regular,

for some d. Suppose further that every vertex v in T is of the same degree and, in

addition, for each such v, every vertex of F − v, except at most two, is of degree d′,

for some d′. If |S| + |T | ≥ n − 2, then F ∼= Kn.

Proof Suppose that |S| + |T | ≥ n − 2, and let u and v be vertices in S and T ,

respectively, where d(u) = k and d(v) = l. Since every vertex in S must be of degree

k, either d = k − 1 or d = k. Moreover, if d = k − 1, then either l = k − 1 or l = k,

whereas if d = k, then either l = k or l = k + 1.

Suppose first that d = k − 1. Then F contains precisely k + 1 vertices of degree k

and n − k − 1 vertices of degree k − 1. Moreover, no vertex of F of degree k − 1

can be adjacent to any vertex in S. So, if l = k − 1, then F − v contains at least

four vertices of degree k and at least three vertices of degree k − 1 or less, that is,

all the other vertices of T , which contradicts our assumption on F − v. So we may

therefore assume that l = k, so all the vertices in S and T are of the same degree.

Now since |S| + |T | ≥ n − 2, F contains at most two vertices of degree k − 1; so

n − k − 1 ≤ 2, thus k ≥ n − 3. It follows that any vertex of degree k − 1 in F must

be adjacent to at least n − 4 vertices not in S. But since |S| ≥ 4, no such vertex

can exist. Therefore, n − k − 1 = 0 and F ∼= Kn.

Suppose instead that d = k. Then F contains precisely k vertices of degree k + 1

and n− k vertices of degree k. Moreover, every vertex of F of degree k + 1 must be

adjacent to every vertex of S. Now if l = k + 1, then F − v contains at least four

vertices of degree k − 1 and at least three vertices of degree k or more, that is, all

the other vertices of T . This again contradicts our assumption on F − v. On the

other hand, if l = k, then since |S|+ |T | ≥ n−2, F can contain at most two vertices

of degree k + 1, so k ≤ 2. But no vertex of degree 3 or less can be adjacent to every

vertex of S, since |S| ≥ 4, again contradicting our assumptions. �
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It is easy to see we can construct a 2UC graph pair with b(G, H) = 2
⌊

1
3
(n − 4)

⌋
by

the addition of components of small orders to an appropriate pair from the family

in Example 5.5.12. We now use Lemmas 6.2.9 to 6.2.11 to show that the only two

families of 2UC graph pairs with this many common cards, that are not constructed

in this family are constructed from the families in Examples 6.2.1 and 6.2.8.

As in Section 5.5, we let

R(H) = b1(H) + b2(H) + (β1 + μ1)aG(H1) + (β2 + μ2)aG(H2),

R(G) = b1(G) + b2(G) + (λ1 + 1)aH(G1),

R(F) = (λ1 + 1)(bF(G) + aH(F)) − bF(G), (6.1)

and

b(G, H) =
1

2λ1 + 1
((λ1 + 1)n − (λ1 + 1)R(H) − λ1R(G) − R(F)) . (6.2)

Theorem 6.2.12 For n ≥ 46, let G and H be a 2UC graph pair of order n, that is

not constructed from Example 5.5.12 by the addition of components of small order.

Suppose that b(G, H) ≥ 2
⌊

1
3
(n − 4)

⌋
. Then G and H are isomorphic to the pair in

either Example 6.2.1 or 6.2.8 or their extensions.

Proof Suppose that G and H are a 2UC graph pair of order n, n ≥ 46, such that

b(G, H) ≥ 2
⌊

(n−4)
3

⌋
. As in Theorem 5.5.11, we may assume that G and H are

expressed as in (5.14). Moreover, since n ≥ 46, by Corollaries 5.5.3 and 5.5.4, we

may assume that no active vertex of either G or H is a cut-vertex, and if β1 = 1,

that G contains both H1 and H2-active vertices.

Now, using the notation of (6.1), if (1 + λ1)R(H) + λ1R(G) + R(F) > 12, then

b(G, H) < 2
⌊

1
3
(n − 4)

⌋
, by (6.2). Thus, using an identical technique to that used

in Lemma 5.5.5 and 5.5.7, it is easy to show that since n ≥ 46, λ1 = 1, μ1 = μ2 = 0

and R(G) = R(H) + 2. Furthermore, since if (1 + λ1)R(H) + λ1R(G) + R(F) ≥ 11,

then b(G, H) ≥ 2
⌊

1
3
(n − 4)

⌋
, only when |V (F)| = 2, we only need consider the

cases when R(G) ≤ 4 and R(H) ≤ 2, so aH(G1) ≤ 2.
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Suppose first that β2 = 1, and let W1 and W2 be components of H isomorphic to

H1 and H2, respectively. Let w1 be an active vertex of H in W1, and let w2 be

an active vertex of H in W2. By Corollary 5.3.19, W1 − w1
∼= W2 − w2

∼= G2.

Now if W1 is regular, then as noted in the proof of Theorem 2.5.1, W1 can be

uniquely reconstructed from G2. A similar observation holds for W2. So since

W1 
∼= W2, clearly at least one of W1 and W2 must be not regular, thus at least

one aG(H1) or aG(H2) must be non-zero. Moreover, since R(H) ≤ 2, by (5.35),

we may assume that one of the following holds: (i) aG(H1) = aG(H2) = 1; (ii)

aG(H1) = 0 and 1 ≤ aG(H2) ≤ 2; (iii) aG(H2) = 0 and 1 ≤ aG(H1) ≤ 2. Note that,

if aH1(G1) < 4, then b(G, H) ≤ h2 + 6 < 2
⌊

1
3
(n − 4)

⌋
, for these values of n. Since a

similar observation holds for aH2(G1), we may clearly assume that aH1(G1) ≥ 4 and

aH2(G1) ≥ 4.

(i) Suppose that aG(H1) = aG(H2) = 1. Then every card in the decks of both W1

and W2 is isomorphic, except at most one in each deck. So, by Lemma 6.2.9, W1 and

W2 can be uniquely reconstructed from G2. But this is impossible since W1 
∼= W2.

(ii) Suppose instead that aG(H1) = 0 and 1 ≤ aG(H2) ≤ 2. Let U be a component

of G isomorphic to G1 and let u and v be vertices in U , where u is H1-active and v

is H2-active. By Corollary 5.3.19, U − u ∼= H2 and U − v ∼= H1. Since aG(H1) = 0,

H1 and thus U −v is regular. Similarly, since aG(H2) ≤ 2, the degree of every vertex

of U − u, except at most two, must be the same. By Corollary 5.3.20, the degree of

every H1-active vertex is the same, and the degree of every H2-active vertex is the

same.

Since aH1(G1) ≥ 4 and aH2(G1) ≥ 4, we let S = AH1(U) and T = AH2(U) in Lemma

6.2.11. Then since aH(G1) ≤ 2, clearly |S| + |T | ≥ g1 − 2, so it follows from the

lemma that U is complete. This contradiction shows that case (ii) cannot occur.

(iii) This clearly holds by symmetry.
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We are left to consider the case when β1 = 2. Clearly aG(H1) ≤ 1, since R(H) ≤ 2.

In addition, since G1 is not complete, by Corollary 5.5.10, aG(H1) = 1. Now, if H1

is regular, then for any component U of G isomorphic to G1, by setting S = AH(U)

in Lemma 5.5.9, it is easy to show that R(G) ≥ 6. So we may therefore assume that

H1 is not regular. Then, since aG(H1) = 1 and aH(G) ≤ 2, setting H1 to be the

graph F in Lemma 6.2.10, either U ∼= F g1
2

or U ∼= S1
g1−1. Noting that we can extend

these families as shown in Examples 6.2.1 and 6.2.8 completes the proof. �

The above theorem shows that the family of forests in Example 6.2.1 has, for large

enough n, the highest number of common cards for any 2UC graph pair with the

same number of edges. We now show how to construct a family of 2UC graph pairs

with the same degree sequence and a large number of common cards. Note that, we

do not claim that this example is maximal with respect to the number of common

cards (as we have shown for previous examples).

We recall from Section 1.7, that if F is a connected graph of order p, then Sq[F ]

denotes the graph of order p(q + 1) that consists of F with q leaves added to each

of its vertices. For F ∼= Kp, we let S ′
q[Kp] denote the graph Sq[Kp] with a single

leaf removed, and let S ′′
q [Kp] denote the graph Sq[Kp] with two leaves, adjacent to

different vertices, removed. Then,

(a) dp+q−1(Sq[Kp]) = p, dp+q−2(Sq[Kp]) = 0, d1(Sq[Kp]) = pq and di(Sq[Kp]) = 0

for all i 
= 1, p + q − 2, p + q − 1;

(b) dp+q−1(S
′
q[Kp]) = p − 1, dp+q−2(S

′
q[Kp]) = 1, d1(S

′
q[Kp]) = pq − 1 and

di(S
′
q[Kp]) = 0 for all i 
= 1, p + q − 2, p + q − 1;

(c) dp+q−1(S
′′
q [Kp]) = p − 2, dp+q−2(S

′′
q [Kp]) = 2, d1(S

′′
q [Kp]) = pq − 2 and

di(S
′′
q [Kp]) = 0 for all i 
= 1, p + q − 2, p + q − 1.

By construction, for any leaf v of Sq[Kp], there is an isomorphism φ from Sq[Kp]− v

to S ′
q[Kp]. Moreover, S ′

q[Kp] − φ(w) ∼= S ′′
q [Kp], for any leaf w of Sq[Kp], adjacent to

a different vertex than v. This discussion leads to our example.
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Figure 6.3: The pair of graphs in Example 6.2.13 of order 46 with 18 common cards.

Example 6.2.13 For n = 3p2 − 2, where p ≥ 3, the following 2UC graph pair has

the same degree sequence and b(G, H) = 2(p − 1)2 = 2
3
(n + 5 − 2

√
3n + 6).

G = (Sp−1[Kp] ⊕ S ′′
p−1[Kp]) ⊕ (Sp−1[Kp])

H = (S ′
p−1[Kp] ⊕ S ′

p−1[Kp]) ⊕ (Sp−1[Kp]).

The removal of any leaf from component of G isomorphic to Sp−1[Kp] and an appro-

priate leaf from a component of H isomorphic to S ′
p−1[Kp] gives isomorphic cards.

So b(G, H) = 2(p − 1)2 = 2
3
(n + 5 − 2

√
3n + 6). (a) to (c) above shows that they

have the same degree sequence. Figure 6.3 shows these graphs for p = 4. �

By extending this example, we can find pairs of any order with the same degree

sequence and a large number of common cards.

Theorem 6.2.14 For n ≥ 10, there exist 2UC graph pairs with the same degree

sequence having at least b(G, H) = 2
⌊√

n+2
3

− 1
⌋2

≥ 2
3
(n + 15 − 4

√
3n + 9).
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Proof For n = 3p2 − 2, where p ≥ 3, the pair in Example 6.2.13 attains the bound.

We can extend this example to all values of n ≥ 25 by replacing G and H by G⊕F

and H ⊕F , respectively, for some graph F , where 1 ≤ |V (F)| ≤ 6p+2 (in a similar

manner to the extension of Example 5.5.12). This gives b(G, H) = 2
⌊√

n+2
3

− 1
⌋2

,

which has a minimum value of 2
3
(n+15−4

√
3n + 9). For many values of n 
= 3p2−2,

we can usually increase the value of b(G, H) by slightly changing the number of

leaves adjacent to each of the vertices of the complete graphs Kp.

Finally, we note that when p = 2, the pair in Example 6.2.13 have

b(G, H) = 4 > (p − 1)2. So the theorem can therefore be extended to all values of

n ≥ 10. �

We note that, instead of adding leaves to each vertex of each Kp component in

Example 6.2.13, we could add p − 1 vertices, all adjacent to each other, as well as

the vertex of Kp. These pair of graphs would clearly have the same degree sequence

as each other and, in addition, would have the same number of common cards as

the pair in the example.

The pair in Example 6.2.13, or the above variant, has a larger number of common

cards than any pair with the same degree sequence yet published, for large n. It is

easy to extend the example to find a pair of forests with the same degree sequence

and a large number of common cards.

Example 6.2.15 By replacing each of the complete graphs Kp in Example 6.2.13

by the star S1
p , and adjoining the sets of p− 1 (or p− 2) leaves only to the leaves of

the stars, we can form a pair of forests with the same degree sequence that has the

same number of common cards as the graphs in Example 6.2.13 and only three more

vertices. We can extend this example to all values of n ≥ 10 in the same way as in

the proof of Theorem 6.2.14. So, for all n ≥ 10, there exists pairs of such graphs

with at least 2
3
(n + 12 − 4

√
3n) common cards. �
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6.3 Families of Connected Graph Pairs with a

Large Number of Common Cards

In all of the examples of infinite families of graph pairs with a large number of

common cards that we have presented in this thesis, at least one of the graphs has

been disconnected. We can, however, easily modify these infinite families to obtain

pairs of connected graphs that have approximately 2n
3

common cards. The examples

in the section illustrate this. We begin by complementing our examples.

Theorem 6.3.1 For all n ≥ 4, there exist non-isomorphic connected graphs G and

H with 2
⌊

1
3
(n − 1)

⌋
common cards.

Proof The complement of a disconnected graph is connected. So, for any 2UC graph

pair G and H where both G and H contain at least two components, GC and HC

must be a pair of connected graphs. By Lemma 6.2.4, b(GC , HC) = b(G, H). Thus,

by taking the complements of the graphs in Examples 5.5.12, 5.5.13 and 5.5.14, we

obtain families of pairs of connected graphs with 2
⌊

1
3
(n − 1)

⌋
common cards. �

We now consider pairs of graphs of arbitrary connectivity. We first make the fol-

lowing observation. Let A and B be a pair of graphs of orders a and b, respectively.

Then the join of A and B, denoted A∨B, is the connected graph constructed from

A and B by adding ab new edges that join every vertex of A to every vertex of B

(see [11]).

Lemma 6.3.2 Let G, H and A be graphs. Then b(G ∨ A, H ∨ A) ≥ b(G, H).

Proof Let v and w be vertices of G and H , respectively, such that G − v ∼= H − w.

Since v is incident to every vertex of the subgraph of G ∨ A induced by V (A), and

similarly for w and H ∨ A, it is easy to see that (G ∨ A) − v ∼= (H ∨ A) − w. The

result then follows. �

This observation leads to the following theorem.
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Theorem 6.3.3 For all n ≥ 4 and all κ ≤ n− 4, there exist non-isomorphic graphs

G and H of connectivity κ with 2
⌊

1
3
(n − κ − 1)

⌋
common cards.

Proof For any κ ≤ n−4, let G∗ and H∗ be (one of) the appropriate pair of graphs of

order n−κ in Example 5.5.12, 5.5.13 and 5.5.14. Let G ∼= G∗∨Kκ and H ∼= H∗∨Kκ.

Clearly, G and H have connectivity κ. Moreover, b(G, H) ≥ 2
⌊

1
3
(n − κ − 1)

⌋
, by

Lemma 6.3.2. �

We can also construct pairs of graphs with high connectivity that have many com-

mon cards. If we replace G∗ and H∗ in the proof of Theorem 6.3.3 by their comple-

ments, it is not difficult to show that the resulting G and H both have connectivity⌈
1
3
(2n + κ − 2)

⌉
, and the same number of common cards as in the theorem. We can

clearly form pairs of graphs with the same number of edges or degree sequence of

arbitrary connectivity and a large number of common cards using the above con-

struction on the pairs in Examples 6.2.1 and 6.2.13.

A similar construction can be applied to the other families in Section 5.5. The

following is of particular interest since the pair has the largest number of common

cards for a pair of trees yet published, for large n.

Theorem 6.3.4 For all n ≥ 11, there exists non-isomorphic trees G and H with

2
⌊

1
3
(n − 5)

⌋
common cards.

Proof For p =
⌊

n−5
3

⌋
, let G∗ and H∗ be the forests in (6.2.1) of order 3p + 4. Let G

be the tree constructed from G∗ by adding a new “central” vertex and three edges

joining this vertex to the three cut-vertices of G∗. We construct the tree H in a

similar manner from H∗. This pair of trees has b(G, H) = 2p and is of order 3p+5.

We can extend this to the cases when n ≡ 0 or 1 (mod 3) by adding one or two

leaves to the new “central’ vertices. Figure 6.4 shows these trees for p = 4. �
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Figure 6.4: The pair of trees in Theorem 6.3.4 of order 17 with 8 common cards.

We can use a similar construction by adjoining a cycle of length 4 or 5 to the central

vertices of these trees, and form pairs of unicyclic graphs having only slightly fewer

common cards. For n ≡ 1 (mod 3), however, we may simply add three edges joining

the three cut-vertices of Example 6.2.1 to obtain a pair of unicyclic graphs with

b(G, H) = 2
3
(n − 4). Figure 6.5 shows these graphs for p = 4.

Figure 6.5: A pair of unicyclic graphs of order 16 with 8 common cards.
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Finally, by using the tree construction described in Theorem 6.3.4 on the pair of

forests in Example 6.2.15, we can form an infinite family of pairs of trees having the

same degree sequence and at least 2
3
(n + 11 − 4

√
3n − 3) common cards. We can

similarly construct pairs of unicyclic graphs with the same degree sequence and at

least 2
3
(n + 7 − 4

√
3n − 7) common cards.

By employing methods similar to which we have used above, we can find families of

graph pairs with a large number of common cards that belong to various different

classes of graphs, both connected and disconnected. More importantly, however,

as far as we are able to ascertain, no family of graph pairs with a higher number

of common cards has yet been published. We therefore conjecture that no pair of

graphs can have more than 2
⌊

1
3
(n − 1)

⌋
common cards.

Conjecture 6.3.5 For large enough n, every finite simple undirected graph is de-

termined, up to isomorphism, by any 2
⌊

1
3
(n − 1)

⌋
+1 of its vertex-deleted subgraphs.

Additionally we conjecture, that for large n, we can construct pairs of graphs from

many classes that approach this bound.

We have shown that for these values of n, the only family of 2UC graph pairs that

attain the bound of Conjecture 6.3.5 are those given in Examples 5.5.12, 5.5.13

and 5.5.14. Moreover, the only examples in this chapter that attain the bound are

those formed by complementing the aforementioned examples, that is those given in

Theorem 6.3.1.

We can also construct families that attain the bound by adding either one or two

isolated vertices, or a component isomorphic to K2, to the example in Theorem 6.3.1

when n ≡ 1 (mod 3). We can similarly construct a family that attains the bound by

adding a single isolated vertex to the family from this theorem with n ≡ 2 (mod 3).

Finally, we could construct a family that attains the bound by taking the example

in Theorem 6.3.1 when n ≡ 1 (mod 3), adding an isolated vertex, complementing

both whole graphs, and then adding another isolated vertex.
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We finish this thesis by conjecturing that the examples in Examples 5.5.12, 5.5.13

and 5.5.14, these extra families, plus all of their complements, are, up to isomor-

phism, the only other ones that attain the bound, for large enough n. It is easy to

see there are, up to isomorphism, 18 distinct families of pairs of graphs constructed

in this way. Again, we know of no counter-example for n ≥ 22.

Conjecture 6.3.6 For large enough n, the only pairs of graphs that attain the

bound in Conjecture 6.3.5 are, up to isomorphism, the 18 families of pairs of graphs

that can be constructed from Example 5.5.12, by any combination of complementing,

and adding up to two isolated vertices or a component isomorphic to K2.
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