

DETERMINISTIC NONMONOTONE TRAINING OF

RECURRENT NEURAL NETWORKS AND

APPLICATIONS USING SYMBOLIC SEQUENCE DATA

A THESIS SUMBITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FOR THE UNIVERSITY OF LONDON

BY

CHUN-CHENG PENG

SUPERVISOR: DR. G.D. MAGOULAS

SCHOOL OF COMPUTER SCIENCE AND INFORMATION SYSTEMS

February 2010

II

 III

Abstract

Recurrent Neural Networks (RNNs) are well known for their power to model

temporal dependencies and process sequences for classification, recognition and

transduction. Gradient-based methods are a popular choice for training RNNs despite

the inherent limitations of the gradient descent method. Typically, these methods

require monotonicity of the error values, i.e. they reduce the error function at each

iteration. Nevertheless, enforcing monotonicity does not guarantee that a method will

efficiently explore the search space in the sense that it may be trapped in a local

minimum point early on and never jump out to reach a desired solution under ill

conditions.

In this thesis, we propose novel deterministic RNN training algorithms that adopt a

nonmonotone approach. This allows learning behaviour to deteriorate in some

iterations; nevertheless the overall learning performance is improved over time. The

proposed nonmonotone RNN training methods, which take their theoretical basis

from the theory of deterministic nonlinear optimisation, aim at better exploring the

search space and enhancing the convergence behaviour of gradient-based methods.

They generate nonmonotone behaviour by incorporating conditions that employ

forcing functions, which are used to measure the sufficiency of error reduction, and

an adaptive window, whose size is informed by estimating the morphology of the

error surface locally.

The thesis develops nonmonotone first-order and second-order methods and

discusses their convergence properties. The proposed algorithms are applied to

training RNNs of various sizes and architectures, namely Feed-Forward Time-Delay

networks, Elman Networks and Nonlinear Autoregressive Networks with Exogenous

Inputs networks, in symbolic sequence processing problems. Numerical results show

that the proposed nonmonotone learning algorithms train more effectively RNNs for

sequence processing than other gradient-based methods in the literature.

Keywords: Adaptive algorithm, BFGS update, conjugate gradient, deterministic

training, learning horizon, Levenberg-Marquardt approach, nonmonotone learning,

resilient propagation, recurrent neural networks, symbolic sequence processing

IV

Acknowledgements

First of all, I appreciate my supervisor, Prof. George Magoulas, for all his guidance,

advices and helps during the past few years. Without Prof. Magoulas continuing

support and deep knowledge of the matter, I wouldn‟t have been able to achieve this

result.

I also want to express my thanks to the Examiners of my oral examination, Prof. D.

Palmer-Brown and Dr. N. Nikolaev, for their helpful suggestions and corrections.

Lastly, supports from the Peng‟s Family and my wife Wen-Yu are the key points to

implement my overseas studying.

V

Contents

UAbstractU .. III

UAcknowledgements U .. IV

UList of AbbreviationsU ... X

UList of TablesU .. XI

UList of Figures U .. XVIII

U1. Introduction U .. 1

U1.1 Introduction U .. 1

U1.2 Aim of the Research U ... 3

U1.3 Objectives U .. 3

U1.4 Methodology U ... 4

U1.5 Thesis Structure U .. 5

U1.6 Contribution of the Thesis U ... 6

U2. Review of Recurrent Neural Networks U .. 9

Contents

 VI

U2.1 Architectures U ... 11

U2.2 Training Algorithms U ... 18

U2.3 Summary and Contribution of the Chapter U .. 22

U3. Monotone and Nonmonotone Learning in an Unconstrained Optimisation

Framework U.. 24

U3.1 Neural Networks’ Learning as Unconstrained Minimisation U 25

U3.2 Theory of Nonmonotone Learning U ... 29

U3.2.1 Nonmonotone Conditions U ... 31

U3.2.2 Nonmonotone Learning Horizon U ... 39

U3.3 Summary and Contribution of the Chapter U .. 41

U4. Adaptive Nonmonotone Resilient Propagation Algorithm U 43

U4.1 Rprop Methods U ... 44

U4.2 Global Convergence of Rprop Methods U ... 48

U4.3 The Nonmonotone Jacobi Rprop Algorithm U ... 49

U4.4 Experimental Results U ... 51

U4.4.1 The N-Bit Parity Problems U ... 52

U4.4.2 The Sequence Classification Problem U ... 62

U4.4.3 The Sequence Learning Problem U ... 66

Contents

 VII

U4.4.4 The Reading Aloud ProblemU .. 71

U4.5 Summary and Contribution of the Chapter U .. 74

U5. Adaptive Nonmonotone Conjugate Gradient Algorithms U 75

U5.1 Conjugate Gradient Methods U.. 76

U5.2 Global Convergence of Nonmonotone Conjugate Gradient U 80

U5.3 The Proposed Nonmonotone Conjugate Gradient Algorithms: ANMCG

and A2NMCGU ... 82

U5.4 Experimental Results U ... 88

U5.4.1 Parity Problems U ... 89

U5.4 2 Sequence Classification Problem U ... 102

U5.4.3 Sequence Learning Problem U .. 104

U5.4.4 Reading Aloud ProblemU .. 108

U5.5 Summary and Contribution of the Chapter U .. 112

U6. Adaptive Self-Scaling Nonmonotone BFGS AlgorithmU 113

U6.1 Quasi-Newton Methods U ... 114

U6.2 Global Convergence U ... 118

U6.3 Our Proposed AlgorithmU ... 124

U6.4 Experimental Results U ... 130

Contents

 VIII

U6.4.1 The N-Bit Parity Problems U ... 131

U6.4.2 The Sequence Classification Problem U ... 139

U6.4.3 The Sequence Learning Problem U ... 141

U6.4.4 The Reading Aloud ProblemU .. 146

U6.5 Summary and Contribution of the Chapter U .. 148

U7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms U 149

U7.1 Levenberg-Marquardt Methods U ... 150

U7.2 Global Convergence U ... 153

U7.3 Our Proposed Algorithms U .. 155

U7.4 Experimental Results U ... 161

U7.4.1 N-bit Parity Problems U ... 161

U7.4.2 Sequence Classification Problem U ... 172

U7.4.3 Sequence Learning Problem U .. 178

U7.4 Summary and Contribution of the Chapter U .. 187

U8. Conclusions and Future Works U ... 188

UAppendixU ... 192

UA.1 Experimental Applications U ... 192

UA.1.1 The N-Bit Parity Problems U .. 192

Contents

 IX

UA.1.2 The Sequence Classification Problem U... 194

UA.1.3 The Sequence Learning Problem U .. 196

UA.1.4 The Reading Aloud ProblemU ... 198

UA.2 The Nonmonotone LM Algorithms U .. 200

UA.2.1 the NMLM1 AlgorithmU .. 200

UA.2.2 the NMLM2 AlgorithmU .. 201

UA.3 Publication List U .. 202

UReferences U ... 204

X

List of Abbreviations

A2NM-CG Advanced Adaptive Non-Monotone Conjugate Gradient method

ANM-CG Adaptive Non-Monotone Conjugate Gradient method

ANM-JRprop Adaptive Non-Monotone Jacobi Resilient Propagation method

ANM-LM Adaptive Non-Monotone Levenberg-Marquardt methods

ANM-LMAM Adaptive Non-Monotone LMAM method

ANM-OLMAM Adaptive Non-Monotone OLMAM method

ASCNM-BFGS Adaptive Self-sCaling Non-Monotone BFGS method

BFGS Broyden-Fletcher-Goldfarb-Shanno method

CE classification error

FFTD Feed-Forward Time-Delayed Network

LMAM Levenberg-Marquardt method with adaptive momentum

LRN Layered Recurrent Network

MSE mean-squared error

NARX Nonlinear Auto-Regressive network with eXogenous Inputs

OLMAM Optimised LMAM

P5 the Parity-5 problem

P10 the Parity-10 problem

RA the Reading Aloud problem

RNN Recurrent Neural Networks

SC the Sequence Classification problem

SL the Sequence Learning problem

List of Tables

 XI

List of Tables

UTable 2.1 Classification summary of RNNs [148] U .. 17

UTable 2.2 Recurrent neural networks applications and learning algorithms U 23

UTable 3.1 the GLL nonmonotone Newton algorithm U .. 31

UTable 4.1 Key loops of original Rprop methods: (a) Rprop+ and (b) Rprop-U 45

UTable 4.2 Key loops of iRprop methods [93]: (a) iRprop+ and (b) iRprop-U 46

UTable 4.3 Key loop of the JRprop algorithmU ... 47

UTable 4.4 Key loop of the Adaptive Non-Monotone JRprop algorithmU 49

UTable 4.5 Average performance for FFTD networks in the P5 problem: class of

JRprop U ... 54

UTable 4.6 Average performance for LRN networks in the P5 problem: class of

JRprop. U .. 55

UTable 4.7 Average performance for NARX networks in the P5 problem: class of

JRprop. U .. 56

UTable 4.8 Average performance for FFTD networks in the P10 problem: class of

JRprop U ... 58

UTable 4.9 Average performance for LRN networks in the P10 problem: class of

JRprop U ... 59

List of Tables

 XII

UTable 4.10 Average performance for NARX networks in the P10 problem: class

of JRpropU .. 61

UTable 4.11 Average performance for FFTD networks in the SC problem: class of

JRprop U ... 63

UTable 4.12 Average performance for LRN networks in the SC problem: class of

JRprop U ... 64

UTable 4.13 Average performance for NARX networks in the SC problem: class

of JRpropU .. 65

UTable 4.14 Average performance for FFTD networks in the SL problem: class of

JRprop U ... 66

UTable 4.15 Average performance for LRN networks in the SL problem: class of

JRprop U ... 67

UTable 4.16 Average performance for NARX networks in the SL problem: class

of JRpropU .. 68

UTable 4.17 Results of additional simulations for FFTD networks in the SL

problem: class of JRprop U ... 70

UTable 4.18 Results of additional simulations for LRN networks in the SL

problem: class of JRprop U ... 70

UTable 4.19 Results of additional simulations for NARX networks in the SL

problem: class of JRprop U ... 70

List of Tables

 XIII

UTable 4.20 Average performance for FFTD networks in the RA problem: class of

JRprop U ... 72

UTable 4.21 Average performance for NARX networks in the RA problem: class

of JRpropU .. 73

UTable 5.1 Algorithm: Adaptive Non-Monotone CG (ANMCG, [144]) U 83

UTable 5.2 Algorithm: Advanced ANM-CG Algorithm (A2NMCG, [145]) U 84

UTable 5.3 Average performance for FFTD networks in the P5 problem: class of

CGU .. 89

UTable 5.4 Average performance for LRN networks in the P5 problem: class of

CG.U ... 90

UTable 5.5 Average performance for NARX networks in the P5 problem: class of

CG.U ... 91

UTable 5.6 Average performance for FFTD networks in the P10 problem: class of

CG.U ... 96

UTable 5.7 Average performance for LRN networks in the P10 problem: class of

CG.U ... 97

UTable 5.8 Average performance for NARX networks in the P10 problem: class of

CG.U ... 98

UTable 5.9 Results for three RNN architectures in the SC problem: class of CG. U

 .. 102

List of Tables

 XIV

UTable 5.10 Results for three RNNs architectures in the SL problem: class of CG. U

 .. 105

UTable 5.11 MSEs for NARX networks in the SL problem: class of CG. U 105

UTable 5.12 Results of additional simulations for FFTD networks in the SL

problem: class of CGU .. 107

UTable 5.13 Results of additional simulations for LRN networks in the SL

problem: class of CGU .. 107

UTable 5.14 Results of additional simulations for NARX networks in the SL

problem: class of CGU .. 107

UTable 5.15 Results for two RNN architectures in the RA problem: class of CG. U

 .. 109

UTable 6.1 Adaptive Self-scaling Non-monotone BFGS AlgorithmU 125

UTable 6.2 Average performance for FFTD networks in the P5 problem: class of

BFGS U ... 131

UTable 6.3 Average performance for LRN in the P5 problem: class of BFGS U 132

UTable 6.4 Average performance for NARX in the P5 problem: class of BFGS U 132

UTable 6.5 Average performance for FFTD in the P10 problem: class of BFGS U 135

UTable 6.6 Average performance for LRN in the P10 problem: class of BFGS U .. 135

List of Tables

 XV

UTable 6.7 Average performance for NARX in the P10 problem: class of BFGS U

 .. 136

UTable 6.8 Average performance for 3 RNNs in the SC problem: class of BFGS U

 .. 139

UTable 6.9 Average performance for 3 RNNs in the SL problem: class of BFGS. U

 .. 142

UTable 6.10 Average MSEs values for NARX networks in the SL problem: class

of BFGS. U .. 142

UTable 6.11 Results of additional simulations for FFTD networks in the SL

problem: class of BFGS U ... 145

UTable 6.12 Results of additional simulations for LRN networks in the SL

problem: class of BFGS U ... 145

UTable 6.13 Results of additional simulations for NARX networks in the SL

problem: class of BFGS U ... 145

UTable 6.14 Average performance for two RNN architectures in the RA problem:

class of BFGS. U ... 146

UTable 7.1 The monotone Levenberg-Marquardt algorithmU 152

UTable 7.2 Adaptive nonmonotone LM method with adaptive momentum U........ 156

UTable 7.3 Average performance for FFTD networks in the P5 problem: class of

LM. U .. 162

List of Tables

 XVI

UTable 7.4 Average performance for LRN networks in the P5 problem: class of

LM. U .. 163

UTable 7.5 Average performance for NARX networks in the P5 problem: class of

LM. U .. 164

UTable 7.6 Average performance for FFTD networks in the P10 problem: class of

LM. U .. 168

UTable 7.7 Average performance for LRN networks in the P10 problem: class of

LM. U .. 169

UTable 7.8 Average performance for NARX networks in the P10 problem: class of

LM. U .. 170

UTable 7.9 Average performance for FFTD networks in the SC problem: class of

LM. U .. 173

UTable 7.10 Average performance for LRN networks in the SC problem: class of

LM. U .. 174

UTable 7.11 Average performance for NARX networks in the SC problem: class

of LM.U .. 175

UTable 7.12 Average improvement achieved by the nonmonotone LM methods

over their monotone counterparts for the SC problem U 177

UTable 7.13 Average performance for FFTD networks in the SL problem: class of

LM. U .. 179

List of Tables

 XVII

UTable 7.13 Average performance for FFTD networks in the SL problem: class of

LM (cont’d). U .. 180

UTable 7.14 Average performance for LRN networks in the SL problem: class of

LM. U .. 180

UTable 7.14 Average performance for LRN networks in the SL problem: class of

LM (cont’d). U .. 181

UTable 7.15 Average performance for NARX networks in the SL problem: class

of LM.U .. 182

UTable 7.15 Average performance for NARX networks in the SL problem: class

of LM (cont’d). U ... 183

UTable 7.16 Results of additional simulations for FFTD networks in the SL

problem: class of LM. U .. 184

UTable 7.17 Results of additional simulations for LRN networks in the SL

problem: class of LM. U .. 185

UTable 7.18 Results of additional simulations for NARX networks in the SL

problem: class of LM. U .. 185

UTable 7.19 Average improvements achieved by the nonmonotone LM methods

over their monotone counterparts for the SL problem U 186

UTable A.1 Summary of RNN free parameters for the tested problems U 199

XVIII

List of Figures

UFigure 2.1 A three-layer Feed-Forward Time-Delayed network [196][197], with

N input, 1 time-delay, H hidden and M output nodes U ... 12

UFigure 2.2 A three-layer Layered Recurrent Network [57][85], with N input, H

hidden and M output nodes U ... 14

UFigure 2.3 A three-layer Nonlinear Autoregressive Network with Exogenous

Inputs [128][137], with N input, 1 time-delay, H hidden and M output nodes U ... 16

UFigure 2.4 A three-layer fully recurrent network U .. 17

UFigure 4.1 Convergence behaviours in P5: NARX networks trained by

ANM-JRprop U .. 50

UFigure 4.2 Convergence behaviours in P10: NARX networks trained by

ANM-JRprop U .. 51

UFigure 4.3 Examples of learning behaviours (JRprop vs. ANM-JRprop): P5

problem, FFTD network U .. 54

UFigure 4.4 Examples of learning behaviours (JRprop vs. ANM-JRprop): P5

problem, LRN network U .. 55

UFigure 4.5 Examples of learning behaviours (JRprop vs. ANM-JRprop): P5

problem, NARX network U ... 56

UFigure 4.6 Examples of learning behaviours (JRprop vs. ANM-JRprop): P10

problem, FFTD network U .. 58

List of Figure

 XIX

UFigure 4.7 Examples of learning behaviours (JRprop vs. ANM-JRprop): P10

problem, LRN network U .. 59

UFigure 4.8 Examples of learning behaviours (JRprop vs. ANM-JRprop): P10

problem, NARX network U ... 61

UFigure 4.9 Examples of learning behaviours (JRprop vs. ANM-JRprop): SC

problem, FFTD network U .. 63

UFigure 4.10 Examples of learning behaviours (JRprop vs. ANM-JRprop): SC

problem, LRN network U .. 64

UFigure 4.11 Examples of learning behaviours (JRprop vs. ANM-JRprop): SC

problem, NARX network U ... 65

UFigure 4.12 Examples of learning behaviours (JRprop vs. ANM-JRprop): SL

problem, FFTD network U .. 67

UFigure 4.13 Examples of learning behaviours (JRprop vs. ANM-JRprop): SC

problem, LRN network U .. 68

UFigure 4.14 Examples of learning behaviours (JRprop vs. ANM-JRprop): SL

problem, NARX network U ... 69

UFigure 4.15 Examples of learning behaviours (JRprop vs. ANM-JRprop): RA

problem, FFTD network U .. 72

UFigure 4.16 Examples of learning behaviours (JRprop vs. ANM-JRprop): RA

problem, NARX U .. 73

List of Figure

 XX

UFigure 5.1 Convergence behaviours of NARX networks trained with the (a)

ANMCG and (b) A2NMCG methods in the P5 problem. U 86

UFigure 5.2 Convergence behaviours of NARX networks trained with the

ANMCG and A2NMCG methods for the P10 problem. U 87

UFigure 5.3 Examples of convergence behaviour for the CG (blue dashed line)

and the ANMCG (red solid line) in the P5 problem for three RNNs. U 93

UFigure 5.4 Examples of convergence behaviour for the ANMCG (blue dashed

line) and the A2NMCG (red solid line) methods in the P5 problem for three

RNNs.U .. 95

UFigure 5.5 Examples of convergence behaviour for the CG (blue dashed line)

and the ANMCG (red solid line) in the P10 problem for three RNNs. U 100

UFigure 5.6 Examples of convergence behaviour for the ANMCG (blue dashed

line) and the A2NMCG (red solid line) in the P10 problem for three RNNs. U ... 101

UFigure 5.7 Examples of convergence behaviour for the CG and the ANMCG

methods in the SC problem for (a) LRN and (b) NARX. U 103

UFigure 5.8 Example of convergence behaviour for the ANMCG and the

A2NMCG in the SL problem for NARX networks. U .. 106

UFigure 5.9 Examples of convergence behaviour for the CG and the ANMCG

methods n the RA problem for (a) FFTD and (b) NARX. U 110

UFigure 5.10 Examples of convergence behaviour for the ANMCG and the

List of Figure

 XXI

A2NMCG methods in the RA problem for (a) FFTD and (b) NARX. U 111

UFigure 6.1 Convergence behaviours of P5: FFTD, trained by ASCNM-BFGS U

 .. 128

UFigure 6.2 Convergence behaviours of P5: LRN, trained by ASCNM-BFGS U .. 129

UFigure 6.3 Convergence behaviours of P5: NARX, trained by ASCNM-BFGS U

 .. 130

UFigure 6.4 Examples of learning behaviours of 3 RNNs for the P5 problem,

BFGS vs. ASCNMBFGS: (a) FFTD, (b) LRN and (c) NARX U 134

UFigure 6.5 Examples of learning behaviours of 3 RNNs for the P10 problem,

BFGS vs. ASCNMBFGS: (a) FFTD, (b) LRN and (c) NARX U 138

UFigure 6.6 Examples of learning behaviours of 3 RNNs for the SC problem,

BFGS vs. ASCNMBFGS: (a) FFTD, (b) LRN and (c) NARX U 141

UFigure 6.7 Examples of learning behaviours of 3 RNNs for the SL problem,

BFGS vs. ASCNMBFGS: (a) FFTD, (b) LRN and (c) NARX U 144

UFigure. 6.8 Behaviours of BFGS and our method for training (a) FFTD and (b)

NARX networks on the RA problemU .. 147

UFigure 7.1 Convergence behaviours of ANM-LMAM and ANM-OLMAM in the

P5 problem for NARX networks U ... 159

UFigure 7.2 Convergence behaviours of (a) ANM-LMAM and (b) ANM-OLMAM

in the P10 problem for NARX networks U .. 160

List of Figure

 XXII

UFigure 7.3 Examples of convergence behaviours of ANM-LMAM and

ANM-OLMAM in the P5 problem for three RNNs U .. 167

UFigure 7.4 Examples of convergence behaviours of ANM-LMAM and

ANM-OLMAM in the P10 problem for three RNNs U .. 172

UFigure 7.5 Examples of convergence behaviours of ANM-LMAM and

ANM-OLMAM in the SC problem for three RNN architectures U 176

UFigure 7.6 Example of convergence behaviours of ANM-LMAM and

ANM-OLMAM in the SL problem for NARX network U 186

 1

Chapter 1

Introduction

In this Chapter the aim of this research is firstly introduced, followed by definition

and discussion of the main target application, i.e. temporal sequence processing. The

organisation of this thesis is then presented, and in the last section its contribution is

highlighted.

1.1 Introduction

Recurrent networks constitute an elegant way of increasing the capacity of

feedforward networks to deal with complex data in the form of sequences of patterns.

Recurrent neural networks are well known for their power to model temporal

dependencies and process sequences for classification, recognition, and transduction.

Modern RNNs architectures are capable of learning to solve many previously

unlearnable tasks, even in partially observable environments. Recent directions in

RNN research focus on investigating and proposing new ways for better modelling

of non-stationarity in sequences, such as sequences produced when modelling speech

or handwritten characters, with no temporal independence assumptions.

Chapter 1. Introduction

2

With regards to architectures, hybrid models based on combinations of Hidden

Markov Models and RNNs as well as modular structures are considered promising

approaches to solve sequence processing problems that occur in natural language and

speech processing. In addition, a number of applications of the so-called Long

Short-Term Memory RNN [90] have provided some encouraging results,

demonstrating that these recurrent architectures can overcome several of the

fundamental problems of traditional RNNs, and efficiently learn to solve many

previously unlearnable tasks.

As far as RNN training is concerned, which is the main focus of this PhD, gradient

descent approaches, which enforce the monotone decrease of the learning error,

remain popular despite the demonstrated potential of some new approaches that are

based on evolutionary algorithms [174] or nonmonotone learning strategies

[145][146].

In this thesis, we identify some challenges involved in training RNNs and propose

algorithmic approaches based on gradient information for nonmonotone training of

RNNs for sequence processing. The term sequence processing referred here involves

several tasks such as clustering, classification, prediction, and transduction of

sequential data. In the general case data can be symbolic, non-symbolic or mixed.

Examples of symbolic data patterns occur in modelling natural (human) language,

while the prediction of water level of River Thames is an example of processing

non-symbolic data. On the other hand, if the content of a sequence will be varying

through different time steps, the sequence is called temporal or time-series: a

temporal sequence consists of nominal symbols from a particular alphabet, while a

time-series sequence deals with continuous, real-valued elements [13]. Processing

Chapter 1. Introduction

3

both these sequences mainly consists of applying the current known patterns to

produce or predict the future ones, while a major difficulty is that the range of data

dependencies is usually unknown. Therefore, an intelligent system or approach with

memorising and learning capabilities for previous information is crucial for effective

and efficient sequence processing and modelling. In this work, we concentrate on

temporal sequence processing problems where nominal symbols are used to generate

the sequence.

1.2 Aim of the Research

The purpose of this research is to design novel gradient-based algorithms for

effective training of recurrent neural networks (RNNs) and apply them in problems

of symbolic sequence processing.

1.3 Objectives

In order to achieve the above stated aim the research is organised in terms of the

following objectives:

 Review gradient-based training algorithms for RNNs and relevant RNN

architectures;

 Develop and implement adaptive nonmonotone strategies;

 Develop and implement first-order (i.e., resilient propagation and conjugate

gradient) and second-order (i.e., BFGS quasi-Newton and

Chapter 1. Introduction

4

Levenberg-Marquardt) training algorithms, equipped with nonmonotone

strategies;

 Test the proposed algorithms on three different RNN architectures using

symbolic sequence datasets;

1.4 Methodology

Our methodology is based on theory of linear and nonlinear iterative methods, while

the idea of nonmonotone learning is inspired from theories for cognitive

development (see e.g. [59][58]) and recent advances in optimisation methods, which

showed that nonmonotone methods possess properties, such as global and

superlinear convergence, require fewer numbers of line-searches and function

evaluations, and are effective for large-scale unconstrained problems.

We start by developing nonmonotone first-order training algorithms, i.e. variants of

the resilient backpropagation and conjugate gradient methods, and then progressively

move into second-order training algorithms, i.e. the nonmonotone BFGS

quasi-Newton and Levenberg-Marquardt methods. In all cases, the convergence of

the methods is discussed in the framework of deterministic optimisation. The

proposed algorithms are tested and comparatively evaluated in applications from the

domain of temporal processing using symbolic sequences.

Chapter 1. Introduction

5

1.5 Thesis Structure

In the following chapter of the thesis, we review RNN architectures and relevant

training algorithms. An architectural classification scheme for RNNs is proposed

[148] and three architectures from the RNN literature, i.e. Feed-Forward

Time-Delayed network (FFTD) [196][197], Layered Recurrent Network (LRN)

[57][85], Nonlinear Autoregressive Network with Exogenous Inputs (NARX)

[128][137], are chosen in order to evaluate the behaviours of the novel training

algorithms later on.

After dealing with RNNs architectures systematically, the formulation of neural

networks‟ learning in the context of unconstrained optimisation is presented in

Chapter 3. By introducing a general form of the objective function, the problem of

nonmonotone learning is formulated in terms of unconstrained optimisation and

ways to introduce nonmonotone conditions are discussed.

Four nonmonotone training algorithms are then developed and implemented. Two

first-order methods, the nonmonotone Jacobi-Resilient backpropagation and the

adaptive nonmonotone conjugate gradient methods are presented in Chapters 4 and 5

respectively. Then two second-order methods, the adaptive nonmonotone BFGS

quasi-Newton and the adaptive nonmonotone Levenberg-Marquardt methods, are

presented in Chapters 6 and 7. All methods use nonmonotone learning strategy with

adaptive tuning mechanism for the learning horizon.

In Chapters 4-7, besides the parity-N problem, which is one of the classical model

problems to verify the performance for new algorithms, experiments with three

real-world symbolic sequences, the Sequence Learning problem (SL; [124]), the

Chapter 1. Introduction

6

Sequence Classification problem (SC; [116]), and the Reading Aloud problem (RA;

[158]) are also provided and discussed. Our results using three different RNN

architectures provide evidence that the new proposed training algorithms have

potential to contribute to the research in the area of RNNs for temporal sequence

processing. Details of the four classes of simulated applications and relative settings

of experiments for this research can be found in Appendix A.1.

In Chapter 8, conclusions of this thesis are drawn and future work and potential

benefits are discussed.

1.6 Contribution of the Thesis

In Chapter 2, the thesis reviews RNNs architectures and examines gradient-based

training algorithms in order to provide a systematic view of the research area. In

Chapter 3, RNN training is examined in the framework of nonlinear optimisation and

a formulation of the deterministic nonmonotone learning is provided. The thesis then

proposes two first-order (Chapters 4 and 5) and two second-order (Chapters 6 and 7)

training algorithms. These methods generate nonmonotone behaviours by

incorporating conditions that measure the sufficiency of error reduction, and an

adaptive window, whose size is informed by estimating the morphology of the error

surface locally.

In Chapter 4, a gradient descent based heuristic scheme, called nonmonotone

Jacobi-Rprop, that locates an approximation of the subminimiser along each weight

direction is introduced. This training scheme belongs to the Rprop class of training

Chapter 1. Introduction

7

algorithms, which employ sign information, and appears to provide improved

convergence in high dimensional non convex functions when conditions are far from

a minimiser (a situation common in RNN training), and helps avoiding convergence

to local minima in some cases.

In Chapter 5, a class of nonmonotone conjugate gradient methods is proposed. The

two proposed algorithms, i.e. adaptive nonmonotone conjugate gradient (ANM-CG)

and advanced adaptive nonmonotone conjugate gradient (A2NM-CG), possess the

property of global convergence and behave more efficiently and effectively than

their original versions, in terms of fewer training epochs and lower training/testing

errors.

In Chapter 6, a quasi-Newton based learning approach is presented, called adaptive

self-scaling nonmonotone BFGS (ASCNM-BFGS) method. The proposed

ASCNM-BFGS method retains the benefit of the latest works on the self scaling

properties of the Hessian approximation, and the property of global convergence,

and is equipped with the adaptive tuning mechanism of nonmonotone learning

horizon. On the other hand, comparing to the original BFGS approach, the proposed

nonmonotone revision is more effective by applying fewer number of required

hidden nodes.

In Chapter 7, two Levenberg-Marquardt (LM) based nonmonotone methods with

adaptive momentum (AM) terms are introduced, i.e. adaptive nonmonotone LMAM

(ANM-LMAM) and adaptive nonmonotone optimised LMAM (ANM-OLMAM).

The two algorithms inherit the benefits of two recently proposed

Levenberg-Marquardt approaches while the use of nonmonotone strategy alleviates

Chapter 1. Introduction

8

some of the drawbacks of the original monotone versions.

The proposed nonmonotone algorithms are comparatively evaluated against

monotone methods in four applications (see Appendix A.1), using three different

RNN architectures. Results of our experiments provide evidence that the four

proposed nonmonotone learning algorithms are more effective than monotone

approaches outperforming in all cases in terms of convergence.

 9

Chapter 2

Review of Recurrent Neural Networks

A Recurrent Neural Network (RNN) is an artificial neural network in which

self-loops and/or backward connections between nodes are allowed [57][83][112]

[129]-[131][130][173]. Comparing to feedforward neural networks, RNNs are

well-known for their power to memorise time dependencies and model nonlinear

systems [128]. RNNs can be trained from examples to map input sequences to output

sequences and in principle they can implement any kind of sequential behaviour.

They are biologically more plausible and computationally more powerful than other

modelling approaches, such as Hidden Markov Models (HMMs), which have

non-continuous internal states, feedforward neural networks and Support Vector

Machines (SVMs), which do not have internal states at all.

One of the first RNNs was the avalanche network developed by Grossberg in 1969

[83] for learning and processing an arbitrary spatiotemporal pattern. Jordan‟s

sequential network [96] and the simple recurrent network [57] were proposed later.

The first RNNs did not work very well in practical applications, and their operation

was poorly understood. However, several variants of these models were developed

for real-world applications, such as robotics, speech recognition, music composition,

Chapter 2. Recurrent Neural Networks

10

vision, and their potential for solving real-world problems has motivated a lot of

research in the area of RNNs. Current research in RNNs has overcome some of the

major drawbacks of the first models. Progress has come in the form of new

architectures and learning algorithms, and has led in a better understanding of the

RNNs‟ behaviours.

In summary, a RNN consists of two components, i.e., the recurrent architecture, and

the learning algorithm. As has been pointed out in [131] “RNN applications have

been hindered due to the high computational cost of training”. Thus, the drawbacks

of RNNs are mainly caused by inefficient training (e.g. when backpropagation errors

are vanished) and poor generalization (e.g. when no negative samples can be used at

all). In addition, as the architectures of RNNs can be generally adjusted to fit the

various applications, how to select a suitable architecture among the various

recurrent topologies available are consider important issues as well.

In the following subsections, architectures and learning algorithms of RNNs are

reviewed and discussed. The chapter derives a more general and systematic

classification scheme than the ones currently proposed and presents a review on the

reported weaknesses/advantages of various implemented/applied learning methods

[147][148].The chapter concludes with a summary and contribution.

Chapter 2. Recurrent Neural Networks

11

2.1 Architectures

In the literature, several classification schemes have been proposed to organise RNN

architectures starting from different principles for the classification, i.e. some

consider the loops of nodes in the hidden layers, while others take the types of output

into account. For example, they can be organised into canonical RNNs and dynamic

MLPs [193]; autonomous converging and non-autonomous non-converging [24];

locally (receiving feedback(s) from the same or directly connected layer), output

feedback, and fully connected (i.e. all nodes are capable to receive and transfer

feedback signals to the other nodes, even within different layers) RNNs [54]; binary

and analog RNNs [142].

From mathematical point of view [103], assuming that y and z are respectively the

response of the output layer and the output of the hidden layer, a static feedforward

neural network can be formulated as follows:

 II II ,y z b W (2.1)

and

 I I ,z x b W (2.2)

where () denotes nonlinear activation function,
I II and W W the weights of the

hidden layer and the output layer, x the input vector, and b the biases. This general

form could be easily transformed to describe a Feed-Forward Time-Delayed (FFTD,

see Figure 2.1, [196][197]) RNN by substituting the following delayed equations

Chapter 2. Recurrent Neural Networks

12

with time index t,

    II II ,y t z t b W (2.3)

 I I() () ,z t s t b W (2.4)

and

        1 ,s t x t x t x t d      (2.5)

where s(t) denotes the state vector at time t, the Cartesian product, d the number of

delays.

Figure 2.1 A three-layer Feed-Forward Time-Delayed network [196][197], with N

Chapter 2. Recurrent Neural Networks

13

input, 1 time-delay, H hidden and M output nodes

Chapter 2. Recurrent Neural Networks

14

By adding a feedback connection from the hidden layer to the delay unit then Eq.

(2.4) can be stated as

      I I1 ,z t z t x t b    W (2.6)

where is a diagonal matrix, which describes an Elman-type RNN, also called

Layered Recurrent Network or Simple Recurrent Network (LRN, see Figure 2.2,

[57][85]).

Figure 2.2 A three-layer Layered Recurrent Network [57][85], with N input, H

hidden and M output nodes

Chapter 2. Recurrent Neural Networks

15

For the Nonlinear Autoregressive Network with Exogenous Inputs (NARX, see

Figure 2.3, [128][137]) the state is described as

               1 1 1 2 ,s t x t x t x t d y t y t y t m             

(2.7)

where m is the number of output feedbacks. The formulations of a fully RNN, as

shown in Figure 2.4, can also be derived by combining Eqs. (2.3) and (2.7) with the

following one:

      I I I1 () .z t z t s t x t b     W W (2.8)

Table 2.1 provides an overview of the various architectures and of the relevant

literature, based on our proposed classification scheme [147][148].

In our previous works [147][148], a general scheme for the architectural

classification of RNNs had been proposed. This scheme considers the networking

topologies of RNNs‟ recurrence by revising the classification proposed by dos

Santos [54], and is shown in Table 2.1. The first row of Table 2.1 divides RNNs into

local (receiving feedback(s) from the same or directly connected layer) and global

by considering their recurrence. It also takes their connectivity into consideration and

separates RNNs as fully (all nodes are capable to receive and transfer feedback

signals to the other nodes, even within different layers) and partially recurrent.

Under this kind of classification, we can include all types of RNNs by creating

combinations of these four classes, such as fully global RNNs and partially local

RNNs. One more advantage of this classification scheme is that we can easily and

Chapter 2. Recurrent Neural Networks

16

systematically observe the relationships between different RNN architectures. For

example, considering the dynamic architectures with one hidden layer, as shown in

Figure 2.5, the topological relationships between the FFTD, LRN, NARX, and fully

RNN can be easily perceived. In Figure 2.5 the boxes with dashed line represent

nodes of the input layer which receive input data and delayed versions of input,

hidden or output signals, depending on the architecture.

Figure 2.3 A three-layer Nonlinear Autoregressive Network with Exogenous Inputs

[128][137], with N input, 1 time-delay, H hidden and M output nodes

Chapter 2. Recurrent Neural Networks

17

Figure 2.4 A three-layer fully recurrent network

Table 2.1 Classification summary of RNNs [148]

Type of

Recurrence
Globally Locally Fully Partially

References [29][102][164] [16][27][186][188][190] [144] All except [144]

Equations (2.3)(2.4)(2.7)
(2.3)(2.4)(2.5) or

(2.3)(2.5)(2.6)
(2.3)(2.7)(2.8)

(see

Globally/Locally)

Chapter 2. Recurrent Neural Networks

18

(b) LRN

Output Layer

Delays

Hidden Layer

Input Vector

(a) FFTD

Output Layer

Delays

Hidden Layer

Input Vector

(c) NARX

Output Layer

Hidden Layer

Input Vector

DelaysDelays

(d) Fully RNN

Output Layer

Hidden Layer

Input Vector

DelaysDelays

Figure 2.5 Schematics of typical dynamic neural networks architectures [148].

2.2 Training Algorithms

As quoted in [130], there are two main classes for derivative computation in RNNs,

i.e., Backpropagation Through Time-BPTT and Real-time Recurrent Learning-RTRL.

The former is a method for unfolding a RNN in time to build an equivalent

feedforward representation so that the derivatives can be computed via standard BP

method, while the latter computes derivatives at each time step by propagating the

gradient history forward in time. In other words, BPTT is suitable for batch/offline

learning and with backward derivative propagation, while RTRL is for

sequential/online mode and with forward derivative propagation.

Followed by the nature of computing and propagating derivatives, two of the

fundamental drawbacks for the BPTT hence are “batch data must be applied and the

extensive memory requirements that are dictated by the need to store significant

amounts of state information.” [31]; while the two major disadvantages for the RTRL

are large computational complexity O(N
4
) [31][131] and storage requirements O(N

3
)

Chapter 2. Recurrent Neural Networks

19

[31], where N is the number of neurons. Furthermore, as indicated in [189] that “both

BPTT and RTRL methods are failed to learning patterns that extend greater than 10

time-steps,” the trade-off between these two classes for RNNs‟ derivative

computation is therefore obvious and depended on applications that requiring batch

or online learning.

With regards to training RNNs and storing information in their internal

representations, Gradient Descent-based (GD) learning algorithms are the most

commonly applied methods, even though it has been claimed that GD has some

drawbacks [25]. Firstly, when the delays or recursive connections are very deep, i.e.

when long-term memory is required, the backpropagation error may be vanished and

the training process could become inefficiently. Secondly, the most common way to

apply GD algorithms into RNN, as mentioned above, is to unfold the recursive layers

and train the whole network as a feedforward network. Another drawback is that the

generalisation is highly affected by the samples in the training dataset - in temporal

processing it is difficult to extract or prepare negative samples from a given training

dataset and the specific RNN then predicts or classifies new coming samples

according to the learned knowledge only.

In [24], besides the Backpropagation Through Time (BPTT [200][201]) method and

real-time gradient computation, approaches with space and/or time locality are also

reviewed. However, local algorithms can be applied to some specific local feedback

RNNs and for short-term memorisation only due to their inherent representation

capabilities. The inefficiency of GD in learning long-term dependencies is mainly

because previous information is treated initially as noise and gradually is ignored

[24][25]. Therefore, two alternative algorithms are revised and discussed in Bengio‟s

Chapter 2. Recurrent Neural Networks

20

works: the time-weighted pseudo-Newton and the discrete error propagation. The

former applies the unfolding method to the pseudo-Newton optimisation and the

later considers the limited case of propagation only; it has to be verified whether this

would work on other more general situation or not.

Two types of learning algorithms are discussed in [143]: the fixed point, and the

non-fixed point. Well-known algorithms such as the BPTT method and Real-time

Recurrent Learning (RTRL) [203] are included in this classification and a way of

introducing time constants and time delays is also suggested. The method of

extended RTRL (eRTRL) is also discussed and other relevant approaches, such as

Elman networks, Jordan networks, the moving targets method, feedforward networks

with state, teach forcing in continuous time and Kalman filter are reviewed.

Pearlmutter in [143] also compares the complexity both in time and space, and

discusses the learning mode, and locality of these algorithms.

For fully connected hidden layer networks and dynamic MLPs, Tsoi [194] has

investigated two first-order gradient learning algorithms. This work discusses some

drawbacks of these methods, such as slow convergence and generalisation, and

derives two 2
nd

-order approaches to speed up the convergence and to tackle the issue

of weight pruning; it also provides a discussion on output sensitivity. The lower

sensitivity of output to a specific adjustable parameter, the better performance of the

network is. Although the related formulas are well defined in this work [194], there

is still a crucial constant which is used to set the level of sensitivity that should be

defined by the users. Quasi-2
nd

 order methods, such as conjugate gradient, scaled

conjugate gradient, and the Newton approach have been also discussed and

suggested as suitable only for batch training, while Kalman filtering and the

Chapter 2. Recurrent Neural Networks

21

extended Kalman filter are classified as 2
nd

-order GD based learning algorithms,

which can be used under online mode, where extended Kalman filter could be used

to prune weights from a RNN.

Kremer [103] reviews 14 kinds of memories used in spatiotemporal connectionist

networks, capable of computing the state vectors, and provides a general formulation

for computing output vectors. The author also summarises 10 different kinds of

updating rules, such as full GD, truncated GD, auto-associative GD, and stack

learning. It examines three open issues: the temporal credit assignment, the

representation capabilities and the knowledge encoding.

From the point of view of time-series modelling, Kolehmainen‟s work in [99] covers

BPTT and RTRL for learning RNNs, while Dietterich [52] suggests BPTT. In the

same vein with [18] and [143], fixed point networks are also considered and five

relative algorithms, such as BPTT and GD learning of time constants, gains and

delays are summarised.

Some attempts have been made to propose second-order learning algorithms, e.g. dos

Santos & von Zuben [54] proposed a quasi 2
nd

-order method. Also, simulated

annealing has given some promising results but the training time is relatively higher

[25]. Table 2.2 provides an overview of RNNs learning, giving examples of training

algorithms for locally and globally RNNs for various applications.

Chapter 2. Recurrent Neural Networks

22

2.3 Summary and Contribution of the Chapter

Artificial neural networks (ANNs) can be classified according to their states into

static and dynamic, and if considering their connective topologies only they are

non-recurrent (feedforward) and recurrent.

In this Chapter, the architectures and learning algorithms for RNNs, mainly for

temporal sequence processing problems, were reviewed and the challenges involved

in training RNNs for sequence processing were discussed. As reviewed in Section

2.1, many schemes have been proposed in the literature in order to classify RNNs

architectures. In relation to these works, we proposed a more general classification

scheme [148], which is based on the ideas of [54] (for classified criteria) and [103]

(for mathematical equations). From our proposed scheme [148] the relationships

between the four sub-classes, i.e., globally, locally, fully, and partially, can be

presented more systematically.

In addition, our review showed that, despite the drawbacks of the GD-based methods

on various applications, most RNNs are trained by first-order learning algorithms

and that no attempt has been made to apply nonmonotone approaches yet. Part of

contents in this Chapter has been published in [148].

Chapter 2. Recurrent Neural Networks

23

Table 2.2 Recurrent neural networks applications and learning algorithms

Recurrent Applications Algorithms* Typical Problems Encountered Reference

Locally

Time series prediction: sunspots,

Mackey-Glass, laser,

reservoir inflows

BPTT, RTRL,

DEKF

 Limited choice of cost functions

 Occasional instability in the convergence of GD
1

 Prior knowledge required about system tuning

 Oversized architecture, poor generalisation

[16][27][28][151]

Symbolic transduction and

Prediction: grammatical inference

BPTT, RTRL,

DEKF

 High computational complexity

 Not suitable for complex sequences
2

[102][151]

Classification of structures
BP, eBPTT,

eRTRL, rBP
 Prior knowledge required [29][175][186][206]

System Identification Casual rBP  Slightly higher computational complexity [36]

Signal processing Rprop, COM  Drawbacks of GD methods [69][188]

Moore Machine SpikeProp-TT

 Discontinuous error surfaces

 Memory vanishing

 Suitable for simpler patterns

[190]

Globally

Time series generation/prediction DEKF  Suitable for short-term and noiseless patterns [163][164]

Sequences classification BP  Drawbacks of GD methods [29]

* The notation used here is: BP- backpropagation; BPTT- BP through time; eBPTT- extended BPTT; RTRL- real time recurrent learning; eRTRL- extended RTRL; rBP- recurrent/recursive BP.; COM- combination of

gradient descent, truncated BPTT and RTRL; DEKF- Decouple Extended Kalman Filter; Rprop- Resilient BP; SpikeProp TT- Spike Propagation Through Time

1 This can be due to sensitivity to initial conditions and the multitudes of local minima 2 For example sequences in the area of natural language processing

24

Chapter 3

Monotone and Nonmonotone Learning

in an Unconstrained Optimisation

Framework

In this chapter the training of RNNs is treated in the framework of unconstrained

minimisation, as the general training goal for RNNs is to achieve a small-enough error

which will hopefully lead to good generalisation. Although this approach does not

directly address the generalisation problem, it has been very popular in neural

networks training [121] because it offers flexibility in the derivation of learning

algorithms by exploiting advances in nonlinear optimisation. In this context,

conventional learning algorithms so far operate in a monotone way, i.e. the value of

the target function f should be constantly reduced at each iteration. In the next

subsection, the problem in the framework of unconstrained optimisation is firstly

formulated, and then a brief review of classical monotone algorithms for

unconstrained optimisation is provided in Section 3.2. As nonmonotone approaches

are proved to be more efficient than their monotone versions, Section 3.3 introduces

the classical theory of nonmonotone learning and provides a review of recent

variations. Section 3.4 concludes this Chapter.

Chapter 3. Unconstrained Optimisation and Theory of Nonmonotone Learning

 25

3.1 Neural Networks’ Monotone Learning as Unconstrained

Minimisation

Let us consider training an RNN as the following unconstrained optimisation problem

 min , ,nf w w R (3.1)

where : nf R R is the learning error function and its gradient,    g g w f w  ,

is available through the method of backpropagation through time (BPTT [200]).

Let the current approximation to the solution of the above problem be ,kw and if

  0,k kg f w  then, in some way, an iterative method finds a stepsize
k along

a search direction ,kd and computes the next approximation 1kw  as follows:

1 .k k k kw w d   (3.2)

Traditional optimisation strategies for RNNs (and for unconstrained optimisation) are

monotone ones, i.e. these strategies compute a step length that reduces the error

function value at each iteration:

1 ,k kf f  (3.3)

which is the most straight-forward way to minimise an objective function.

Unfortunately, even when an algorithm is proved to be globally convergent, there is

no guarantee that the method will efficiently explore the search space in the sense that

it may be trapped in a local minimum point early on and never jump out to a global

one under ill conditions [71], such as poorly initialised weights.

Several attempts have been made to use algorithms from the field of unconstrained

Chapter 3. Unconstrained Optimisation and Theory of Nonmonotone Learning

 26

optimization in training neural networks. In the rest of this section, we look at the

issue from the perspective of monotone learning and consider two broader classes of

techniques for achieving monotone convergence, i.e. line-search and trust-region.

Considering the error function, from unconstrained optimisation point of view there

are two concerns: number of variables (univariate vs. multivariate) and shape of the

objective function (smooth vs. non-smooth). When derivatives are available the

algorithms for unconstrained optimisation can be classified as first-derivative (e.g.

quasi-Newton and steepest descent), second-derivative (e.g. Newton methods), and

non-derivative methods (e.g. finite difference approximation) [71]. In the context of

neural networks, the error function should be generally smooth enough - typical

examples are the total sum of squared errors, or the mean squared error – and

derivatives are available through backpropagation or BPTT.

Various schemes to organise unconstrained optimisation algorithms have been

proposed in the literature:

 Greig‟s [78]: line-search, general-search, gradient, and Newton (including

quasi-Newton) methods;

 Scales‟s [172]: univariate minimization (e.g. polynomial interpolation/

extrapolation and hybrid methods), multivariate minimization (e.g. steepest

descent, Newton, quasi-Newton and conjugate gradient methods) and non-linear

least squares (e.g. small residue and large residue methods);

 Fletcher‟s [68]: Newton-like (e.g. Newton and quasi-Newton methods),

conjugate direction (conjugate gradient and direction set methods), restricted

step (e.g. Levenberg-Marquardt methods), and sums of squares and nonlinear

equations (e.g. over-/well-determined systems and no-derivative methods);

Chapter 3. Unconstrained Optimisation and Theory of Nonmonotone Learning

 27

In terms of the technique used to achieve monotone convergence, nonlinear

optimisation methods can be organised into two boarder classes: step-length-based

(or line-search) methods and trust-region (or restricted-step) methods (pp. 105 and

113, [71]; pp. 21, [68]). The basic structure of the k-th iteration for a line-search (LS)

method [68] is as follows:

(LS-a) determine a direction of search ;kd

(LS-b) find a step-length
k to minimise  k k kf w d with respect to ;

(LS-c) set
1 .k k k kw w d  

Let, at iteration k,
kq be a quadratic function, while

kg and
kG respectively are

the first and second derivatives of object function f. For a trust-region (TR) method it

takes the following form [68][180]:

(TR-a) given kw and ,kh calculate kg and ;kG

(TR-b) solve
k in

 min subject to ;k kq h


  

(TR-c) evaluate  k kf w  and ,k k kr f q  

where  k k k kf f f w     and ;k k k kq f q   

(TR-d) if 0.25,kr  set 1 4;k kh  

if 0.75,kr  and k kh  set 1 2 ;k kh h 

otherwise, set
1 ;k kh h 

(TR-e) if 0,kr  set 1 ;k kw w  else, set 1 ;k k kw w   

while, as indicted in (p. 96, [68]), the above constants 0.25, 0.75, etc. are arbitrary and

the algorithm is quite insensitive to their change.

Chapter 3. Unconstrained Optimisation and Theory of Nonmonotone Learning

 28

Different line-search approaches may correspond to different ways of choosing
kd in

step (LS-a), while step (LS-b) is the so-called line-search sub-problem and is carried

out by repeatedly sampling f(w) and possibly its derivatives for different points

k k kw w d  along the line. In the ideal case, in step (LS-b) the exact minimising

value of  is required (an exact line-search) but this cannot be implemented in

practice in a finite number of operations. “Essentially the nonlinear equation

0df d  must be solved.” (p. 21, [68]) “Also it may be that the minimizing value

of
k might not exist (

k  ). Nonetheless the idea is conceptually useful, and

occurs in some idealized proofs of convergence. In this respect it is convenient to

point out the consequential property that the slope df d at k must be zero,

which gives”

1 0.T

k kg d  (3.4)

On the other hand, both line-search and trust-region methods have the following

common features (pp. 114-115, [71]):

 “If the function is well-behaved, both classes of methods are designed to become

equivalent to Newton‟s method as the solution is approached.”

 “The search direction is implicitly defined by a scalar that is adjusted according

to the degree of agreement between the predicted and actual change in the target

function.”

 “If the Hessian matrix kG is indefinite and norm of the gradient kg is small

or zero, both types of methods must compute a direction of negative curvature

from a factorization of the Hessian matrix or a modified version of it.”

 “If the Hessian matrix becomes indefinite, both types of methods compute 1kw 

Chapter 3. Unconstrained Optimisation and Theory of Nonmonotone Learning

 29

based on information from the positive-definite part of
kG .”

3.2 Theory of Nonmonotone Learning

As mentioned in the previous sections, minimisation problems in the context of

unconstrained optimisation are typically dealt with by trying to reduce the value of

objective function f at each iteration – an approach called monotone learning in this

thesis. Although, the thesis examines the problem of training RNN in the context of

unconstrained nonlinear optimisation, the proposed approaches can also be considered

relevant to the nonmonotone way learning occurs in cognitive development [57].

From optimisation perspective, nonmonotone strategies have been proved to offer

several advantages, such as the properties of global and superlinear convergence,

fewer numbers of line searches and function evaluations, and have demonstrated

effectiveness for large-scale unconstrained optimisation problems [60][78]-[81],

which is a valuable property when training RNNs, as this usually involves optimising

several hundred free parameters.

The motivation for nonmonotone learning is the need to better explore the search

space and accelerate the convergence rate. Nonmonotone strategies, such as the one

introduced in [80] for Newton‟s method, take into consideration the M previous f

values by using a constraint such as the following one

    
0
max ,T

k k k k j k k k
j M

f w d f w g d 
 

   (3.5)

where M is a nonnegative integer and constant  0,1  . In the neural networks

context, M has been named nonmonotone learning horizon [156].

Chapter 3. Unconstrained Optimisation and Theory of Nonmonotone Learning

 30

The proposed nonmonotone approach exploits conditions of the form of Eq. (3.5), by

varying the search direction depending on the designed algorithm and a nonmonotone

learning horizon M that is adapted using local estimations of the Lipschitz constant –

an approach originally introduced in [119] to adapt the learning rate. This allows us to

avoid using a poorly user-defined nonmonotone learning horizon and exploit the

morphology of the error function through a local estimation of the Lipschitz constant

to determine the size of M dynamically. This technique for tuning M proved to work

well in our previous work in the context of static feedforward backpropagation

networks

[156]. Further details on the tuning the learning horizon M and our proposed

nonmonotone approaches are presented in Section 3.2.2, as well as in the

later-presented sections of proposed algorithms in Chapters 4-7 of this thesis.

It is worth mentioning that learning algorithms with momentum terms, such as the

well known momentum backpropagation, do not belong by default to the class of

nonmonotone algorithms discussed here. Although momentum backpropagation may

occasionally exhibit nonmonotone behaviour, it does not formally apply a

nonmonotone strategy, such as the one derived in Eq. (3.5). Nevertheless,

nonmonotone strategies can be combined with momentum parameters, such as in the

work of [156] that proposed nonmonotone learning with momentum and compared it

with momentum backpropagation.

In the rest of this section, after presenting some well known and recently proposed

nonmonotone conditions, the discussion of nonmonotone learning horizon is

provided.

Chapter 3. Unconstrained Optimisation and Theory of Nonmonotone Learning

 31

3.2.1 Nonmonotone Conditions

The first nonmonotone strategy was proposed in [80], which is a line-search method

for Newton methods. Let
k

be a stepsize,

kd

the search direction, g the gradient

of f,
1k k k kx x d   , 0 1    ,

1 2,  two forcing functions, M a nonnegative

integer. Then the Grippo-Lampariello-Lucidi‟s (GLL) nonmonotone Newton method

[80] can be stated as shown in Table 3.1.

Table 3.1 the GLL nonmonotone Newton algorithm

UAlgorithm: Grippo-Lampariello-Lucidi’s nonmonotone Newton method

Step 0. Initialise 0 ,w integer 0,M 
1 0,c  2 0,c   3 0,1 ,c  and  4 0,1 ;c 

Step 1. Set 0,k   0 0m  and compute  0 0 ;f f w

Step 2. If 0,kg  stop;

Else-if kH is singular, set ,k kd g  () 0,m k  and go to Step 5;

Step 3. Compute 1 ;k k kd H g 

If
2

1

T

k k kg d c g or 2 ,k kc g d set ,k kd g  () 0,m k 

and go to Step 5;

Step 4. If 0,T

k kg d  set ;k kd d 

Step 5. Set 1; 

Step 6. Compute  ;kf f w d  

If
 

3
0
max ,T

k j k k
j m k

f f c g d 
 

    set 1 ,kf f  1 ,k k kw w d  

1,k k     min 1 1,m k m k M     and go to Step 2;

Step 7. Set 4c  and go to Step 6

Chapter 3. Unconstrained Optimisation and Theory of Nonmonotone Learning

 32

In the following, after presenting the main theoretical result (Theorem 3.1) of [80],

other variations of the nonmonotone conditions are reviewed.

Theorem 3.1 [80]. Let  kw be a sequence defined by
1 ,k k k kw w d   where

0.kd  Let 0,a   0,1 ,   0,1  and let M be a nonnegative integer.

Assume (A) that

(A1). The level set     0 0:w f w f w  is compact;

(A2). There exist positive numbers
1 2,c c such that

2

1 ,T

k k kg d c g (3.6)

2 ;k kd c g (3.7)

(A3). ,kh

k a  where
kh is the first nonnegative integer h for which

   
0 ()
max ,h h T

k k k j k k
j m k

f w ad f w ag d 
 

   
 

 (3.8)

 where  0 0m  and

   0 min 1 1, ,m k m k M      1.k  (3.9)

Then (T),

(T1). The sequence  kw remains in
0 and every limit point w

satisfies   0;g w 

(T2). No limit point of  kw is a local maximum of f;

(T3). If the number of the stationary points of f in
0 is finite, the sequence

 kw converges.

Chapter 3. Unconstrained Optimisation and Theory of Nonmonotone Learning

 33

When the integer M in Step 6 in Table 3.1 and Eq. (3.8) is set to zero, the GLL

nonmonotone steplength selection rule is reduced to the standard Armijo rule, and

therefore, it can be viewed as a generalisation of the Armijo‟s rule, as indicated in

[80].

The GLL nonmonotone linesearch (NM-GLL) can be summarised as below

[113][114].

 
 

  

 

0

1 3
0

1 4

max
,

,

T

k k j k k k
j m k

T

k k k k

f w f x g d

g w d g d

 



 
 



  


  


 (3.10)

where
3 40 1 2    and m(k) is defined as in Eq. (3.9). Note that in the original

work of Grippo et al., the settings of constants for scaling the amount of changes (in

Eqs. (3.6) and (3.8)) are more relaxed.

In the work of [87], the referred GLL linesearch is as follows.

    
0

1 1
0
max ,T

k k j k k k
j M

f w f w g d  
 

  (3.11)

and

    1 2max ,1 ,
p T

k k k k k kg w d d g d    (3.12)

where  ,1p  ,  1 0,1 ,  and  2 0,1 2  . Although the term “GLL” seems to

represent Grippo-Lampariello-Lucidi, comparing to Step 3 in Table 3.1 and Eq. (3.6),

Han and Liu [87] had actually extended the form of  1k kg w d in Eq. (3.10), by the

curvature condition of the Wolfe linesearch. And the Wolfe linesearch is a special case

of this GLL linesearch [87]. The work of [207] was based on the approach of [87].

Chapter 3. Unconstrained Optimisation and Theory of Nonmonotone Learning

 34

The nonmonotone Armijo rule (NM-Armijo, see e.g. [46][100][185][187]) is revised

from the standard Armijo‟s rule [14] and can be described as follows. Let 0,a 

 0,1  and  0,1  . For each k, let m(k) satisfy  0 0 m  and m(k) satisfy the

definition in Eq. (3.9). Let

 p k

k a  (3.13)

and p(k) be the smallest nonnegative integer p such that

 
 

  
0

1
0
max T

k k j k k k
j m k

f w f w g d 
 

  , (3.14)

where
1 .k k k kw w d   Note that the way of tuning steplength of this approach

[185][187], i.e. p(k) in Eq. (3.13), is different to the GLL nonmonotone linesearch, i.e.,

see assumption (A3) in Theorem 3.1. But in [46], the assumption (A3) in Theorem 3.1

was still applied, as the monotone Armijo‟s rule. Dai also proposed a revised way of

NM-Armijo linesearch as: if NM-Armijo hold, apply the stepsize; else, consider

standard monotone Armijo linesearch, i.e.   0m k  . Another work referring to

NM-Armijo rule is [182] but it takes a slightly different way for updating   :m k

    min 1 , ,m k m k M  1.k 

In [187], there is another referred linesearch approach, i.e., the nonmonotone

Goldstein rule (NM-Goldstein), derived from Goldstein‟s rule [74][73], which can be

defined as below:

 
    

 
  

0 0

2 1 1
0 0
max max ,T T

k j k k k k k j k k k
j m k j m k

f w g d f w f w g d     
   

    (3.15)

Chapter 3. Unconstrained Optimisation and Theory of Nonmonotone Learning

 35

where
1 20 1    . Sun et al. also proposed the nonmonotone F-rule (NM-F) as

stated in Eq. (3.16). Let m(k) satisfy the definition in Eq. (3.9) and 0k  be

bounded above and satisfy

 
 

    
0

1
0
max ,k k j k

j m k
f w f w t 

 
  (3.16)

where  is a forcing function and

.
T

k k
k

k

g d
t

d
  (3.17)

It has been also proved [187] that the NM-Armijo, NM-Goldstein and NM-Wolfe

rules are the special cases of the NM-F linesearch approach.

Deriving from the standard monotone Wolfe‟s rule [203][205], the nonmonotone

Wolfe conditions (NM-Wolfe, see e.g., [101][113][114][187]) are defined as:

    

 

0

1 3
0

1 4

max
,

T

k k j k k k
j M

T T

k k k k

f w f w g d

g w d g d

 



 
 



  

 

 (3.18)

but 3 40 1    and the nonmonotone horizon is a constant, with no iterative

upper bound. As in the case of NM-Armijo (and other nonmonotone approaches),

when the nonmonotone horizon is set to zero, i.e. considering only one previous

function value ,kf NM-Wolfe is reduced to the standard monotone Wolfe rule.

In [61][104] the following nonmonotone linesearch was proposed,

 Step_0. set 1,    1 20,1 ,0 1, 1;M      

 Step_1. if

Chapter 3. Unconstrained Optimisation and Theory of Nonmonotone Learning

 36

 
 

  
0

32

1
0 ,

max ,k k j k
j m k M

f w f w d 
 

  (3.19)

set
k  and stop.

 Step_2. choose  1 2,   , set   and go to Step_1.

while in the approach of [55], the condition for constants further relaxed as

3 40      ,

 
 

  

 

0

1
0

3 1 4

max
,

T

k k j k k k
j m k

TT T

k k k k k k

f w f w g d

g d g w d g d



 

 
 



  


  

 (3.20)

where m(k) satisfies the definition stated in Eq. (3.9).

The work of [181] is as follows. Given  0,0.5 ,  0,1 , and  0.5,1 ,c

2

2

1 k

k

k k

gc
s

L d


  (3.21)

and k is the largest  in  2, , ,s s s  such that

   1
0 ()

2

1 1 1

max T

k k j k k
j m k

T

k k k

f w f w g d

g d c g

 
 

  

  


  

 (3.22)

where m(k) is defined as in Eq. (3.9), and the new search direction
1kd 
 is defined as,

 1 1

1 1 2

T

k k k

k k k

k

g g g
d g d

g

 

 


   (3.23)

and the estimated Lipschitz constant kL in Eq. (3.21) is defined as,

Chapter 3. Unconstrained Optimisation and Theory of Nonmonotone Learning

 37

1

1

1

max , ,
k

k k

k

y
L L









 
   

 

 (3.24)

or

1 1
1 2

1

max , ,
T

k k
k k

k

y
L L





 




 
  

 
 

 (3.25)

with
1 1k k kw w    and 1 1.k k ky g g  

Another work proposed by Shi and Shen [182] can be described as follows. Given

 0,0.5 ,   0,1 ,  0.5,2 ,  kB is the approximated Hessian matrix and

.
T

k k
k T

k k k

g d
s

d B d


  (3.26)

Choose k to be the largest  in  2, , ,s s s  such that

   1
0 ()

1
max ,

2

T T

k k j k k k k k
j m k

f w f w g d d B d  
 

 
   

 
 (3.27)

where m(k) is defined as in Eq. (3.9) and kB is updated by either BFGS, DFP or

other quasi-Newton formulae.

Yin and Du [209] proposed two nonmonotone conditions, the first one is:

         

 

0

1 1 2
0

1

max min ,
,

k k j k k
j M

T T

k k k k

f w f w

g w d g d

    



 
 



  

 

 (3.28)

where

Chapter 3. Unconstrained Optimisation and Theory of Nonmonotone Learning

 38

,
T

k k
k

k

g d

d
   (3.29)

note
k kt   , which is relevant to the term in Eq. (3.17),

and

.T

k k k kg d   (3.30)

The second nonmonotone condition in [209] is defined as below:

      

 

1 1 2

1

min ,
,

k k k k

T T

k k k k

f w C

g w d g d

    







  




 (3.31)

where
k and

k are the same terms as in Eqs. (3.29) and (3.30),  0 0 ,C f w

0 1Q  and

 1

1

1

,
k k k k

k

k

Q C f w
C

Q

 






 (3.32)

with  0,1k  , and

1 1.k k kQ Q   (3.33)

One of the latest works on nonmonotone conditions is [210]: let  0,1 , 1,M 

 min 1, ,km k M  (3.34)

Chapter 3. Unconstrained Optimisation and Theory of Nonmonotone Learning

 39

(note that
km here is different to Eq. (3.9), i.e. considering the iteration counter k,

not the previous size of learning horizon
1km 
), ,kr  0,1,2, , 1kr m  and

ˆ 1,km m 

ˆ

0

1.
m

kr

r




 (3.35)

Given
2 1 0,  

11 0, 
2 0,1 0,   

2
,

T

k k

k

k

g d

d
  (3.36)

 1 2,k k k    and

max , 1,2, ,j

k k j      (3.37)

such that

     
_ 1

2

1 1 2

0

max , .
m k

T T

k k kr k r k k k k k

r

f w f w f w g d d   


 



 
   

 
 (3.38)

All algorithms applying the above nonmonotone conditions have been proved to have

the property of global convergence. More details can be found in the original works

and relative literature.

3.2.2 Nonmonotone Learning Horizon

The key idea of nonmonotone learning is that, for the target function f, to consider not

only the current one iteration kf but also the previous M function values and

Chapter 3. Unconstrained Optimisation and Theory of Nonmonotone Learning

 40

therefore, an increase of function value f is allowed. In the 13 versions of

nonmonotone conditions mentioned in previous subsection, the ways of determining

the size of the nonmonotone learning horizon M are mainly the variations of Eq. (3.9),

while Eqs. (3.11), (3.18) and (3.28) use a fixed value. However, choosing a fixed or

non-adaptive value for all applications is not the proper way of determining the

nonmonotone learning horizon because the curvature of specific target functions for

different applications may have totally different features [156].

As stated in [119][156][195], it is well-known that the Lipschitz constant is closely

related to the morphology of a function, i.e. for a function having steep regions, the

Lipschitz constant is large and when the function is flat the Lipschitz constant is small.

However, in neural networks training practice, neither the morphology of the error

surface nor the value of the Lipschitz constant are known in advance [119]. Therefore,

the following procedure can provide a dynamical way to adapt the size of the

nonmonotone learning horizon at k-th iteration, without additional evaluations of

target function or gradient:

1 1 2

1 1 2

1

1, if

1, if ,

, otherwise,

k k k k

k k k k k

k

M

M M

M

  

  



     

      







 (3.39)

where k is the local approximation of the Lipschitz constant and defined by

1

1

.k k
k

k k

g g

w w






 


 (3.40)

If k constantly increases during consecutive epochs, i.e. the second condition in

Eq. (3.39) is satisfied, it indicates that the sequence of weight vectors kw

approaches a steep region, and the value of kM should be decreased to “avoid

Chapter 3. Unconstrained Optimisation and Theory of Nonmonotone Learning

 41

overshooting a possible minimum point” [156]. On the other hand, when the first

condition in Eq. (3.39) is satisfied, the current point may possibly enter a valley in

the weight space and
kM should be increased in order to enlarge the learning

horizon and fasten the convergent speed.

All proposed nonmonotone learning algorithms in this thesis apply the above

adaptive procedure, i.e. Eqs. (3.39)-(3.40), to dynamically determine the size of

nonmonotone learning horizon. As mentioned in all relative works,
kM has to be a

non-negative integer. Since our experimental results show that the upper bound of

kM (maxM) is not critical for different applications and different recurrent

architectures, i.e. there is no significant difference between max 100,M 
max 50M 

and max 15,M  the boundaries of
kM is set to 3 15,kM  for all the

simulations in this thesis.

3.3 Summary and Contribution of the Chapter

The unconstrained-optimisation formulation of neural networks learning reveals the

possibility of applying a large base of algorithms from the field of unconstrained

optimisation into the ANNs training problem. The review of unconstrained

optimisation provides a basic and rough sketch of the classical minimisation

approaches for this research. As indicated in Chapter 2, the most commonly applied

training algorithms for RNNs belong to the class of the gradient-based methods, even

it has been claimed may not be the best choice.

This chapter also presented a theory for nonmonotone learning, while the basic steps

Chapter 3. Unconstrained Optimisation and Theory of Nonmonotone Learning

 42

of the nonmonotone learning strategy at the k-th iteration [156] can be summarised as:

(1). Update the weights
1 ;k k k kw w d  

(2). If a nonmonotone condition, such as the one in Eq. (3.8), is satisfied, store
1,kw 

set 1k k  and go to Step (1); else, go to Step (3);

(3). Use a tuning technique for
k and return to Step (2).

Different approaches to determine the steplength
k and search direction

kd will

compose different algorithms for unconstrained optimisation. As indicated in [156],

the nonmonotone learning strategy can be incorporated in any batch training

algorithm as a sub-procedure that secures and accelerates the convergence of a batch

training algorithm.

Forcing functions are the terms, such as h T

k kag d in Eq. (3.8),  kt in Eq.

(3.16),
32

kd in Eq. (3.19),
1

2

T T

k k k k kg d d B d 
 

  
 

 in Eq. (3.27),

    1 2min ,k k     in Eq. (3.28), and
2

1 2

T T

k k k k kg d d    in Eq. (3.38),

used to guarantee a sufficient change for the next function value
1.kf 

 From the

mentioned examples in Subsection 3.3.1, it is obvious that there is not only one type

of forcing functions can be applied. In this thesis, the one in Eq. (3.8) was chosen for

the four proposed nonmonotone algorithms.

Lastly, all the nonmonotone learning algorithms that are presented in the rest of the

thesis apply the adaptive procedure of Eqs. (3.39)-(3.40), to dynamically determine

the size of nonmonotone learning horizon.

43

Chapter 4

Adaptive Nonmonotone Resilient

Propagation Algorithm

As presented later in this chapter, the Resilient Propagation (Rprop, also called

Resilient backpropagation [165]-[168]) has been designed to tackle the drawbacks of

the traditional BP method by exploiting information from the signs of the gradients of

the cost function in the two successive iterations. In this chapter, we propose

nonmonotone first-order methods [149] based on the Rprop algorithm. In particular

we use the Jacobi-Rprop (JRprop) variant [11]- a recently proposed modification of

the Rprop algorithm that combines the sign-based updates of the original Rprop with

ideas from the composite nonlinear Jacobi method.

The rest of this chapter is organised as follows. The original Rprop method and the

recent modifications [11][93] are reviewed in Section 4.1, while their global

convergence is discussed in Section 4.2. The proposed nonmonotone Rprop methods

are then described in Section 4.3, followed by experimental results in Section 4.4.

Concluding remarks are made in Section 4.5.

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 44

4.1 Rprop Methods

Aiming to overcome the disadvantages of the pure gradient descent backpropagation

procedure, the first version of Resilient Propagation algorithm was proposed in [165],

which was based on the so-called “Manhattan Learning” rule, revised below

, if 0

, if 0,

0, else

k k

k k k

g

w g

 


   



 (4.1)

where
kw is the update amount of weight vector ,kw

k a predefined

problem-dependent constant, and
kg the gradient. The second learning rule of the

Rprop approach is as follows,

1 1

1 1

1

, if 0

, if 0 ,

, else

T

k k k

T

k k k k

k

g g

g g







 



 



 


   



 (4.2)

with 0 1 .     Table 4.1 shows the two original versions of the Rprop

methods , where “Rprop+” represents the original Rprop with weight back-tracking

[166] and “Rprop-” is the version without back-tracking [167][168]. As observed

from Eqs. (4.1) and (4.2), the original intent of Rprop is to increase the steplength

when the signs of two joined gradients remain the same, and to decrease the

steplength when the signs of two were different.

The “Improved Rprop” (iRprop) methods were then proposed by Igel & Hüsken [93],

as shown in Table 4.2. The revision of Anastasiadis et al. [9], i.e. the Jacobi-Rprop

(JRprop) method, combined the sign-based updates of the original Rprop algorithm

with the composite nonlinear Jacobi method, as shown in Table 4.3. Experiments in [9]

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 45

have shown that the JRprop algorithm is more efficient and superior to both the

original Rprop and the iRprop algorithms. Thus, we focus on the JRprop approach to

develop a nonmonotone variant of the Rprop method in this chapter.

Table 4.1 Key loops of original Rprop methods: (a) Rprop+ and (b) Rprop-

U(a) Loop of Rprop+
U

 [166]

for each
kw do{

if 1* 0T

k kg g   then{

 1 maxmin , ;k k 

    

 sign ;k k kw g    }

elseif 1* 0T

k kg g   then{

 1 minmax , ;k k 

    

1;k kw w   

0;kg  }

elseif 1* 0T

k kg g   then{.

1;k k  

 sign ;k k kw g    }

1 ;k k kw w w  

}

U(b) Loop of Rprop-
U

 [167][168]

for each
kw do{

if 1* 0T

k kg g   then{

 1 maxmin , ;k k 

     }

elseif 1* 0T

k kg g   then{

 1 minmax , ;k k 

     }

 1 sign ;k k k kw w g   

}

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 46

Table 4.2 Key loops of iRprop methods [93]: (a) iRprop+ and (b) iRprop-

U(a) Loop of iRprop+

for each
kw do{

if
1* 0T

k kg g   then {

 1 maxmin , ;k k 

    

 sign ;k k kw g    }

elseif 1* 0T

k kg g   then{

 1 minmax , ;k k 

    

If 1t tE E  then{

1;k kw w   

0;kg  } }

elseif 1* 0T

k kg g   then{.

 sign ;k k kw g    }

1 ;k k kw w w  

}

U(b) Loop of iRprop-

for each
kw do{

if
1* 0T

k kg g   then{

 1 maxmin , ;k k 

    

}

elseif 1* 0T

k kg g   then{

 1 minmax , ;k k 

    

0;kg 

}

 1 sign ;k k k kw w g   

}

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 47

Table 4.3 Key loop of the JRprop algorithm

ULoop of JRprop U [9]

if
1k kE E  then{

for each
kw do{

if
1 0T

k kg g   then{

 1 maxmin , ;k k 

      sign ;k k kw g   

1 ;k k kw w w  
1 ;k kg g 

1 ;k kw w   }

elseif 1 0T

k kg g   then{

 1 minmax , ;k k 

    
1 0;kg   }

elseif 1 0T

k kg g   then{.

 sign ;k k kw g    1 ;k k kw w w  

1 ;k kg g  }

 1;q 

} }

elseif 1k kE E  then{

 1 1

1
;

2
k k kq

w w w   

 1;q q 

}

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 48

4.2 Global Convergence of Rprop Methods

In this section, global convergence of the Rprop class is discussed. Before stating the

resulted theorem of global convergence proved in [8], the assumptions (H4.1) and

(H4.2) should be made.

(H4.1) For a given point
0

nw R and for every w in some region that contains the

initial weight vector 0w , the level set  0 0() ()nL w R f w f w   is bounded.

(H4.2) In some neighbourhood B of the level set
0L , the error function is continuous

differentiable and the gradient g is Lipschitz continuous, i.e. there exists 0L 

for every pair vw, such that

() () , ,g w g v L w v w v B     (4.3)

Theorem 4.1 [8]. Suppose that the assumption (H4.1) and (H4.2) hold. For any

0

nw R and 0,k  any sequence  
0k k

w



 generated by the Rprop scheme

   1

1 - diag , , , , sign ,i n

k k k k k k kw w g       (4.4)

where 0k  satisfying Wolfe’s conditions, m

k  1,2, , 1, 1, ,m i i n   are

small positive real numbers generated by Rprop’s learning rates procedure and

1,

,

n j j

k kj j ii

k i

k

g

g

 


 


 


 (4.5)

with 0 ,  0,i

kg  it holds that

lim 0.k
k

g


 (4.6)

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 49

As we focus on the JRprop method [9] in this chapter, the revision of

globally-convergent Rprop approaches shall be implemented in our future works.

4.3 The Nonmonotone Jacobi Rprop Algorithm

The proposed nonmonotone version of JRprop method is presented in this section.

Followed the same way as other versions of Rprop, the key loop of our proposed

algorithm, i.e. Adaptive Non-Monotone JRprop (ANM-JRprop), is presented in Table

4.4. ANM-JRprop applies one-step subminimisation by employing an Rprop-based

heuristic scheme to locate an approximation of the subminimiser along each weight

direction as the original JRprop does. The main difference between the original

JRprop [9] and our ANM-JRprop is that the subminimisation procedure of the

composite nonlinear Jacobi method operates in a nonmonotone way. When the current

training error kE is not larger than the error of previous training epoch 1,kE  the

weights (and biases) are updated according to the JRprop‟s rules; otherwise, the

subminimisation is performed under the predefined adaptive nonmonotone condition.

Table 4.4 Key loop of the Adaptive Non-Monotone JRprop algorithm

ULoop of ANM-JRprop

If 1k kE E  then{

update 1kw  by Rprop;

 set 1;q  }

Else {

if  
0
max

k

k k j k k k
j M

E E g d
 

  then {

1 1

1
;

2
k k kq

w w w   

 1;q q  } }

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 50

Examples of convergence behaviours for the parity-5 (P5) and the parity-10 (P10)

problems are shown in Figures 4.1 and 4.2, respectively, illustrating the evolution of

the MSE during training NARX networks, the stepsizes, and the adaptive

nonmonotone learning horizon, where the maximum number of hidden nodes from

the ones listed in Table A.1 was used, i.e., 7 for the P5 and 10 for the P10.

0 10 20 30 40 50 60 70 80 90
0

0.5

epochs

m
s
e

0 10 20 30 40 50 60 70 80 90
-50

0

50

epochs

s
te

p
 s

iz
e

c
o

rr
e

c
ti
o

n

0 10 20 30 40 50 60 70 80 90
0

10

20

epochs

v
a

lu
e

 o
f
M

Figure 4.1 Convergence behaviours in P5: NARX networks trained by ANM-JRprop

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 51

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

epochs

m
s
e

0 10 20 30 40 50 60 70 80 90 100
-50

0

50

epochs

s
te

p
 s

iz
e

c
o

rr
e

c
ti
o

n

0 10 20 30 40 50 60 70 80 90 100
0

10

20

epochs

v
a

lu
e

 o
f
M

Figure 4.2 Convergence behaviours in P10: NARX networks trained by ANM-JRprop

4.4 Experimental Results

Four problems are tested in this chapter: the parity-N, Sequence Classification (SC,

[116]), Sequence Learning (SL, [124]) and Reading Aloud (RA, [158]) problems.

More details on these problems, such as description, information about the datasets,

numbers of weights and biases, settings of training parameters, and stopping criteria,

are provided in Appendix A.1.

In the following subsections, simulation results of these four applications for 3

different RNNs architectures, i.e. FFTD ([196][197]), LRN ([57][85]), and NARX

([128][137]), are presented and examples of learning behaviours are provided.

Mathematical models of these RNNs architectures can be found in Chapter 2. All

numerical results are averaged from 100 random initialized runs, while in the

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 52

following Tables #hid is the number of hidden nodes used, Conv shows the percentage

of runs that reach the predefined training goal, MSE and STD are respectively the

mean-squared-error and corresponding standard deviation in percentage. In addition,

the columns under Epoch represent the average (Ave), minimum (Min), maximum

(Max) and standard deviation (Std) of the training epochs for the converged runs,

while the definitions of convergence for the four simulated applications are provided

in Appendix A.1. A dash (-) indicates no single run converged under the specified

termination conditions, and this results to placing a 0 in the Conv column.

4.4.1 The N-Bit Parity Problems

Being a typical application for testing new algorithms, the parity-N problem plays an

important role for testing the ability of how an algorithm handles nonlinear separable

datasets with lots of local minima. Appendix A.1.1 provides for further details on the

particular problem, including latest references applying this application, such as

[41][84][110][125][136][158][183]. We choose two instances, i.e. parity-5 (P5) and

parity-10 (P10) for our experiments.

Tables 4.5-4.7 and Figures 4.3-4.5 show the simulation results and learning

behaviours examples of the P5 problems, while Tables 4.8-4.10 and Figures 4.6-4.8

for the P10 problems. From these numerical results, it can be easily observed that for

the P5 problem, the ANM-JRprop is better than the JRprop in terms of MSE with

improvements ranging between 26% and 45% for FFTD networks and LRNs, where

by applying 5 and 7 hidden nodes, our approach can reach the training goal

(MSE=0.01): 11 and 37 runs for FFTD, 12 and 37 runs for LRN converged. Although

for NARX networks, the MSEs of our approach are not all better than JRprop‟s, i.e.,

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 53

only 0.01% and 0.007% higher for 1 and 7 hidden nodes, respectively, our approach

does converge for all the random 100 runs and achieves much smaller number of

converged epochs in terms of average, minimum, maximum and standard deviation.

For example, as shown in Table 4.7, when using 2 hidden nodes for NARX networks,

JRprop has 99 runs converged to MSE  0.01, while the averaged epoch is 84,

maximum epoch of converged runs is 401, and standard deviation of epochs for all 99

converged runs is 70. Our approach, ANM-JRprop, has 100% convergence rate, with

61.9% smaller average, 87.7% smaller maximum, and much more robust standard

deviation (91.4%) of converged epochs.

Note that, in Figures 4.3-4.5, the behaviours of the JRprop method are caused by the

condition of
1,k kE E  where, according to the original description of the JRprop

algorithm (see Table 4.3), the updates of weights and biases are given by

1 1

1
,

2
k k kq

w w w    and 1.q q  Under this situation the JRprop method will

consider only the error function of the previous epoch, i.e. 1,kE  and as a result, the

JRprop method in Figures 4.3-4.5 then behaves in a pseudo-nonmonotone way, just as

the ones in Figures 4.6-4.8.

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 54

Table 4.5 Average performance for FFTD networks in the P5 problem: class of

JRprop

Algorithms #hid
Conv

(%)

MSE

(%)

STD

(%)

Epoch

Ave Min Max Std

JRprop

1 0 49.393 0.573 - - - -

2 0 49.305 0.601 - - - -

5 0 48.251 0.495 - - - -

7 0 47.466 0.454 - - - -

ANM-JRprop

1 0 23.668 2.581 - - - -

2 0 18.137 6.047 - - - -

5 11 6.007 4.352 997 356 1696 533

7 37 3.288 5.618 708 227 1766 431

0 50 100 150 200 250 300 350 400
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Epochs

M
S

E

JRprop

ANM-JRprop

Figure 4.3 Examples of learning behaviours (JRprop vs. ANM-JRprop): P5 problem,

FFTD network

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 55

Table 4.6 Average performance for LRN networks in the P5 problem: class of JRprop.

Algorithms #hid
Conv

(%)

MSE

(%)

STD

(%)

Epoch

Ave Min Max Std

JRprop

1 0 49.154 0.499 - - - -

2 0 49.124 0.516 - - - -

5 0 48.251 0.478 - - - -

7 0 48.020 0.433 - - - -

ANM-JRprop

1 0 23.326 2.150 - - - -

2 0 17.698 4.938 - - - -

5 12 6.521 4.503 747 362 1793 418

7 37 3.387 4.990 758 234 1852 406

0 50 100 150 200 250
0.1

0.15

0.2

0.25

0.3

0.35

Epochs

M
S

E

JRprop

ANM-JRprop

Figure 4.4 Examples of learning behaviours (JRprop vs. ANM-JRprop): P5

problem, LRN network

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 56

Table 4.7 Average performance for NARX networks in the P5 problem: class of

JRprop.

Algorithms #hid
Conv

(%)

MSE

(%)

STD

(%)

Epoch

Ave Min Max Std

JRprop

1 100 0.791 0.163 99 23 643 88

2 99 1.223 0.406 84 23 401 70

5 100 0.693 0.288 55 18 182 47

7 100 0.691 0.282 44 15 227 36

ANM-JRprop

1 100 0.818 0.140 37 20 64 9

2 100 0.737 0.257 32 23 49 6

5 100 0.692 0.304 26 18 46 5

7 100 0.698 0.133 25 15 40 5

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Epochs

M
S

E

JRprop

ANM-JRprop

Figure 4.5 Examples of learning behaviours (JRprop vs. ANM-JRprop): P5 problem,

NARX network

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 57

Comparing to P5, the P10 problem is more difficult, and convergence rates of FFTD

and LRN are therefore relatively small. Similar to the improved range of the P5

problem, the differences in terms of MSEs made by our approach are between 25%

and 45%. In this problem LRNs training requires extensive computational resources,

so we have left simulations with 2, 5, and 7 hidden nodes for our future works.

For NARX networks, as in the case of the P5, the MSEs of the ANM-JRprop are

slightly higher than JRprop, where the largest difference is 0.05%, but again our

approach does achieve very promising results in the converged runs, in terms of much

fewer training epochs, as shown in Table 4.10. For example, applying 10 hidden

nodes for NARX networks, both JRprop and ANM-JRprop are 100% converged. But

when our approach takes only 27 epochs in average to converge, JRprop needs 104

training epochs, which is about 4 times higher. Furthermore, we have the same best

20-epoch minimum number in the converged run as JRprop, and the maximum

number of epochs within the 100 random runs drops from 284 for JRprop to 38 for

our ANM-JRprop. This is an improvement of 86.6% in the most difficult case (maybe

caused by poor initial weights) for the simulated runs.

As revealed in the P5 problem, our approach has more concrete behaviours as the

values of standard deviation are relative smaller than JRprop, and the ratios between

standard deviation (Std) and average epochs (Ave) of our approach are about 11.1% to

22.2%, while the same ratios of JRprop are from 54.8% to 85.0%. Behaviour of the

JRprop algorithm in Figure 4.6 can be explained in the same way as in the P5

problem.

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 58

Table 4.8 Average performance for FFTD networks in the P10 problem: class of

JRprop

Algorithms #hid
Conv

(%)

MSE

(%)

STD

(%)

Epoch

Ave Min Max Std

JRprop

1 0 49.992 0.606 - - - -

2 0 49.972 0.727 - - - -

5 0 49.681 0.594 - - - -

7 0 49.835 0.549 - - - -

10 0 49.665 0.511 - - - -

ANM-JRprop

1 0 24.983 2.731 - - - -

2 0 23.660 3.127 - - - -

5 0 15.568 5.535 - - - -

7 0 9.495 4.608 - - - -

10 2 4.554 6.710 3696 3527 3864 238

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Epochs

M
S

E

JRprop

ANM-JRprop

Figure 4.6 Examples of learning behaviours (JRprop vs. ANM-JRprop): P10 problem,

FFTD network

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 59

Table 4.9 Average performance for LRN networks in the P10 problem: class of

JRprop

Algorithms #hid
Conv

(%)

MSE

(%)

STD

(%)

Epoch

Ave Min Max Std

JRprop

1 0 49.989 0.473 - - - -

10 0 49.674 0.594 - - - -

ANM-JRprop

1 0 24.971 3.842 - - - -

10 0 4.724 5.107 - - - -

0 50 100 150 200 250 300 350 400
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Epochs

M
S

E

JRprop

ANM-JRprop

Figure 4.7 Examples of learning behaviours (JRprop vs. ANM-JRprop): P10 problem,

LRN network

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 60

As illustrated in Figure 4.3, both methods behave exactly the same within the first

couple training epochs, since the same weight-updating condition (the original Rprop)

was invoked; Figures 4.5 and 4.8 provide more local examples of NARX networks for

this type of situations. After that point ANM-JRprop has a generally decreasing trend

and converges at 382 epochs (i.e. Figure 4.3), but JRprop seems to be trapped in a

local state by considering only the error of the previous epoch. Similar situations can

be observed in Figures 4.4 and 4.6.

One more point is worth mentioning is that shown in Figure 4.6. Starting from the

same initialisation point, while JRprop has stopped its training at about 1500 epochs

because the gradient was smaller than the specified threshold or equal to zero, i.e. the

minimum gradient is set to 1e-100 in all simulations of this thesis, our approach

ANM-JRprop can be trained till the predefined 4000-epoch. Lastly, Figure 4.7 shows

that, at the beginning of training, ANM-JRprop behaves differently to JRprop, and

when JRprop is trapped to a local minimum with MSE of about 0.26, our approach

exploits the power of non-monotonicity to decrease the MSE effectively.

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 61

Table 4.10 Average performance for NARX networks in the P10 problem: class of

JRprop

Algorithms #hid
Conv

(%)

MSE

(%)

STD

(%)

Epoch

Ave Min Max Std

JRprop

1 100 0.815 0.148 164 27 402 90

2 99 1.174 0.394 120 22 619 102

5 100 0.645 0.273 89 23 278 60

7 100 0.699 0.282 95 21 287 68

10 100 0.669 0.195 104 20 284 61

ANM-JRprop

1 100 0.816 0.143 36 25 92 8

2 100 0.715 0.214 32 22 51 6

5 100 0.667 0.258 28 22 44 4

7 100 0.720 0.221 27 21 36 3

10 100 0.707 0.147 27 20 38 4

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Epochs

M
S

E

JRprop

ANM-JRprop

Figure 4.8 Examples of learning behaviours (JRprop vs. ANM-JRprop): P10 problem,

NARX network

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 62

4.4.2 The Sequence Classification Problem

Simulation results in terms of MSEs and CEs (Classification Errors) for both training

and testing datasets of the SC problem are shown in Tables 4.11-4.13, while examples

of learning behaviours for the FFTD, LRN and NARX networks are provided in

Figures 4.9-4.11. More details on the experimental parameters and the recurrent

architectures used in this application are listed in Appendix A.1.2.

Although the largest improvements are made by FFTD networks, i.e. 10.0% (MSE)

and 10.7% (CE) for the training dataset, and 30.8% (MSE) and 24.2% (CE) for the

testing dataset, the average improvements of our ANM-JRprop are 3.6% (MSE) and

3.7% (CE) for LRN, and, 5.8% (MSE) and 0.8% (CE) for NARX on the training set,

while for the testing set performances of ANM-JRprop are 10.4% (MSE) and 2.8%

(CE) superior to JRprop for LRN, and, 16.8% (MSE) and 2.6% (CE) better than

JRprop for NARX.

Figure 4.9 displays a typical example of why nonmonotone JRprop provides large

improvement for FFTD networks. As this figure shows JRprop is generally trapped at

local minima with values around an MSE=0.425, while our approach ANM-JRprop

exhibits the benefits of nonmonotone learning and achieves improvements which are

larger than a half of JRprop‟s training MSE.

Learning behaviours shown in Figures 4.10 and 4.11 illustrate that since JRprop

considers the MSE of previous training epoch only, both RNN architectures suffer

from improper weight updates and the MSEs jump to high level at the end of training,

while the nonmonotone horizon and adaptive tuning of our ANM-JRprop efficiently

prevent this kind of situations.

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 63

Table 4.11 Average performance for FFTD networks in the SC problem: class of

JRprop

Algorithm #hid

MSE (%) CE (%)

Train/STD Test/STD Train/STD Test/STD

JRprop

5 29.168/2.693 27.698/2.185 78.828/5.732 55.685/5.003

10 28.258/2.940 26.451/2.774 82.552/6.033 55.795/5.146

15 28.592/2.822 27.389/2.901 78.690/5.591 51.068/4.790

ANM-JRprop

5 19.146/4.373 16.918/3.044 51.724/6.158 31.507/5.998

10 19.145/4.373 16.917/3.044 51.724/6.158 31.507/5.998

15 19.145/4.372 16.917/3.043 51.724/6.158 31.507/5.998

0 50 100 150 200 250

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Epochs

M
S

E

JRprop

ANM-JRprop

Figure 4.9 Examples of learning behaviours (JRprop vs. ANM-JRprop): SC problem,

FFTD network

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 64

Table 4.12 Average performance for LRN networks in the SC problem: class of

JRprop

Algorithm #hid

MSE (%) CE (%)

Train/STD Test/STD Train/STD Test/STD

JRprop

5 12.672/2.143 11.828/1.906 42.714/3.729 14.973/2.484

10 10.058/1.059 8.901/1.663 34.645/2.957 10.178/2.093

15 10.039/1.007 9.214/1.815 36.330/3.631 8.232/1.732

ANM-JRprop

5 7.013/3.870 6.067/2.713 26.576/3.992 7.657/2.036

10 7.434/4.073 6.450/3.588 27.887/4.271 8.917/5.673

15 7.413/4.125 6.249/3.402 27.828/4.200 8.328/5.227

0 50 100 150 200 250
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Epochs

M
S

E

JRprop

ANM-JRprop

Figure 4.10 Examples of learning behaviours (JRprop vs. ANM-JRprop): SC problem,

LRN network

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 65

Table 4.13 Average performance for NARX networks in the SC problem: class of

JRprop

Algorithm #hid

MSE (%) CE (%)

Train/STD Test/STD Train/STD Test/STD

JRprop

5 10.701/2.479 19.593/4.263 36.330/3.498 30.712/5.125

10 7.661/1.952 17.314/5.217 26.813/3.120 27.315/6.012

15 7.397/1.847 17.576/4.970 26.803/3.754 27.740/5.991

ANM-JRprop

5 2.842/1.423 17.091/2.578 13.394/2.762 26.192/4.903

10 2.633/1.392 17.326/2.720 13.034/2.693 25.781/4.888

15 2.605/1.350 17.410/2.954 13.069/2.813 25.767/4.821

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Epochs

M
S

E

JRprop

ANM-JRprop

Figure 4.11 Examples of learning behaviours (JRprop vs. ANM-JRprop): SC problem,

NARX network

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 66

4.4.3 The Sequence Learning Problem

Tables 4.14-4.16 present simulated results of this application using 1, 2, 5 and 10

hidden nodes for the three RNN architectures. For both training and testing datasets

our approach ANM-JRprop performs better than JRprop in terms of MSE, while, on

average, the testing improvements are 3.2% for FFTD networks, 2.0% for LRNs, and

1.3% for NARX networks.

Figures 4.12-4.14 show examples of learning comparing JRprop and ANM-JRprop.

As indicated in previous subsection nonmonotone learning scheme does help our

approach behave better, and in general, exhibit a more robust training process than

JRprop method.

Table 4.14 Average performance for FFTD networks in the SL problem: class of

JRprop

Algorithm #hid

Training Testing

MSE (%) STD (%) MSE (%) STD (%)

JRprop

1 43.199 22.764 43.179 23.602

2 32.136 15.817 32.131 16.688

5 28.356 12.263 28.327 14.271

10 26.806 14.085 26.740 13.995

ANM-JRprop

1 39.481 18.356 39.424 18.200

2 28.960 13.784 28.897 13.607

5 25.034 10.349 24.986 10.331

10 24.239 10.060 24.268 10.243

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 67

0 100 200 300 400 500 600
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Epochs

M
S

E

JRprop

ANM-JRprop

Figure 4.12 Examples of learning behaviours (JRprop vs. ANM-JRprop): SL problem,

FFTD network

Table 4.15 Average performance for LRN networks in the SL problem: class of

JRprop

Algorithm #hid

Training Testing

MSE (%) STD (%) MSE (%) STD (%)

JRprop

1 36.630 13.792 37.449 16.074

2 27.200 11.503 28.291 11.990

5 21.359 9.005 23.065 10.784

10 20.388 8.376 21.682 9.132

ANM-JRprop

1 35.487 10.324 36.379 11.021

2 26.308 11.097 27.428 12.191

5 18.880 8.412 20.804 9.778

10 15.521 6.309 17.923 6.571

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 68

0 100 200 300 400 500 600

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Epochs

M
S

E

JRprop

ANM-JRprop

Figure 4.13 Examples of learning behaviours (JRprop vs. ANM-JRprop): SC problem,

LRN network

Table 4.16 Average performance for NARX networks in the SL problem: class of

JRprop

Algorithm #hid

Training Testing

MSE (%) STD (%) MSE (%) STD (%)

JRprop

1 35.077 11.792 36.660 12.046

2 26.814 9.984 28.495 11.737

5 18.274 10.003 21.897 12.854

10 14.030 8.314 17.839 11.402

ANM-JRprop

1 33.932 9.458 35.493 10.880

2 25.431 10.671 27.345 11.724

5 16.809 5.477 20.733 7.999

10 12.027 4.890 16.160 8.005

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 69

0 100 200 300 400 500 600

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Epochs

M
S

E

JRprop

ANM-JRprop

Figure 4.14 Examples of learning behaviours (JRprop vs. ANM-JRprop): SL problem,

NARX network

Since these experiments in the thesis were designed with the aim to verify how

effective and efficient the proposed nonmonotone algorithms could be, the training

processes are extended, i.e., from the 23-epoch simulation of the original work for this

problem, [124], to additional 200- and 1000-epoch runs in order to make a more

extensive comparison of the two methods. Results are shown in Tables 4.17-4.19.

Note that, in the additional simulated runs, the same behaviours (as it has been

indicated on page 53 for Figures 4.3-4.5) of the JRprop method appeared again and

this caused poor performance for this method for the three RNN architectures.

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 70

Table 4.17 Results of additional simulations for FFTD networks in the SL problem:

class of JRprop

Algorithms

200-epoch 1000-epoch

Train

(MSE/CE)

Test

(MSE/CE)

Train

(MSE/CE)

Test

(MSE/CE)

JRprop 44.6/97.8 47.3/99.1 29.9/91.2 31.0/93.5

ANM-JRprop 21.2/74.6 22.3/75.5 18.4/47.5 21.7/73.4

Table 4.18 Results of additional simulations for LRN networks in the SL problem:

class of JRprop

Algorithms

200-epoch 1000-epoch

Train

(MSE/CE)

Test

(MSE/CE)

Train

(MSE/CE)

Test

(MSE/CE)

JRprop 33.5/95.1 33.1/94.3 29.8/90.8 31.2/93.2

ANM-JRprop 13.3/31.3 14.9/38.8 11.4/28.6 13.2/30.7

Table 4.19 Results of additional simulations for NARX networks in the SL problem:

class of JRprop

Algorithms

200-epoch 1000-epoch

Train

(MSE/CE)

Test

(MSE/CE)

Train

(MSE/CE)

Test

(MSE/CE)

JRprop 22.5/78.4 24.1/82.3 17.6/43.4 17.3/42.1

ANM-JRprop 12.3/29.2 14.0/34.5 5.9/17.5 8.7/20.8

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 71

4.4.4 The Reading Aloud Problem

This high-dimensional problem consists of 2998 training patterns which require

RNNs with 105 input and 61 output nodes. The description of this application,

numbers of weights for our simulations, and other experimental parameters are stated

in Appendix A1.4. Simulation results are shown in Tables 4.20 and 4.21, while

examples of learning behaviours are provided in Figures 4.15 and 4.16.

The training MSE improvements of the proposed ANM-JRprop using 5 and 10 hidden

nodes are about 4.9% and 10.4% for FFTD networks, and 8.9% and 10.8% for NARX

networks, respectively. For the exclusive 30-word testing dataset, ANM-JRprop is

8.7% and 3.8% better for FFTD, and 6.6% and 4.8% for NARX, in terms of testing

MSE.

Figure 4.15 shows an example that when JRprop fails to train this application

successfully, our ANM-JRprop behaves relatively better and converges to a smaller

MSE. On the other hand, as shown in Figure 4.16, when JRprop is trapped to a local

solution with an MSE value of about 0.05 our approach trains the NARX network

better, demonstrating a general trend of descending errors.

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 72

Table 4.20 Average performance for FFTD networks in the RA problem: class of

JRprop

Algorithm #hid

Training Testing

MSE (%) STD (%) MSE (%) STD (%)

JRprop

5 15.765 6.785 22.540 13.335

10 10.225 4.301 17.508 8.996

ANM-JRprop

5 5.359 2.713 13.844 7.088

10 5.309 2.005 13.795 6.792

0 50 100 150 200 250 300 350
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Epochs

M
S

E

JRprop

ANM-JRprop

Figure 4.15 Examples of learning behaviours (JRprop vs. ANM-JRprop): RA problem,

FFTD network

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 73

Table 4.21 Average performance for NARX networks in the RA problem: class of

JRprop

Algorithm #hid

Training Testing

MSE (%) STD (%) MSE (%) STD (%)

JRprop

5 12.608 4.728 24.215 11.288

10 13.843 5.925 22.800 9.264

ANM-JRprop

5 3.750 1.847 17.663 6.340

10 3.009 2.296 18.055 7.111

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Epochs

M
S

E

JRprop

ANM-JRprop

Figure 4.16 Examples of learning behaviours (JRprop vs. ANM-JRprop): RA problem,

NARX

Chapter 4. Adaptive Nonmonotone Resilient Propagation Algorithm

 74

4.5 Summary and Contribution of the Chapter

In this chapter, starting from original versions of the Rprop approach, four

modifications were discussed in Section 4.1, while the property of global convergence

was reviewed in Section 4.2. A nonmonotone version of Rprop algorithm was

developed in Section 4.3. This approach exploits function comparisons to produce an

Rprop-inspired scheme that can be theoretically considered as a composite nonlinear

Jacobi method. The subminimisation process of the nonlinear Jacobi locates

subminimisers along each weight direction by employing Rprop steps with a

nonmonotone strategy. As shown in Section 4.4 simulation results prove that our

modification of Rprop algorithm is superior to the recently proposed JRprop approach,

which in previous work demonstrated better performance than other four Rprop

methods discussed in Section 4.1. In our tests, the nonmonotone algorithm

outperformed the monotone JRprop version in terms of lower training MSEs, higher

rates of convergence, fewer epochs in the converged runs, and smaller standard

deviations of the converged runs for the P5 and P10 problems. It also exhibited

smaller MSEs and CEs in both training and testing for the SC problem, as well as

lower MSEs in both training and testing for the SL and RA problems.

75

Chapter 5

Adaptive Nonmonotone Conjugate

Gradient Algorithms

The famous conjugate gradient (CG) method was originally proposed in 1952 [88] for

linear functions, while the non-linear version was introduced in 1964 [65]. As stated

in Chapter 1 of this thesis, one objective of the research is focusing on the class of CG

methods. Therefore, the traditional monotone (such as [3][26][37][32][33][38][49][62]

[53][54][61][71][75][133][159][161][166][3][172][76]) and the latest nonmonotone

revisions (such as [113][114][185][55][181][182]) are firstly discussed, followed by

the proposed adaptive nonmonotone CG approaches and their concrete simulation

results on one artificial (i.e. N-bit parity) and three real-world (i.e. SC [116], SL [124]

and RA [158]) applications. In the experiments, three different RNN architectures are

used (i.e. FFTD [196][197], LRN [57][85] and NARX [128][137], see discussion in

Section 2.1 for further details) with different numbers of hidden nodes (precise

settings of these RNNs are provided in Appendix A.1, while the summary of free

parameter amounts for simulated problems is depicted in Table A.1).

The rest of this chapter is organised as follows. In Section 5.1, the CG methods are

firstly reviewed, and then global convergence of the nonmonotone version is

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 76

discussed in Section 5.2, followed by our proposed nonmonotone CG algorithms

(Section 5.3, [146][147]) and experimental results in Section 5.4. Section 5.5

concludes this Chapter.

5.1 Conjugate Gradient Methods

Conjugate Gradient methods are in principle approaches suitable for large-scale

problems [71]. The basic idea of CG methods is to find the stepsize in Eq. (3.2) along

a linear combination of the current gradient vector and the previous search direction.

The ways of determining search direction d can be expressed as follows:

0 0d g  (5.1)

1 1, if 1k k k kd g d k      , (5.2)

where the well-known choices of the parameter  are: the Hestenes-Stiefel formula

[88]
 

 
1

1 1

,

T

k k kHS

k T

k k k

g g g

d g g
 

 





 the Fletcher-Reeves update [65]

1 1

T
FR k k
k T

k k

g g

g g


 

 (5.3)

and the Polak-Ribière approach [159]

 1

1 1

T

k k kPR

k T

k k

g g g

g g
 

 


 , (5.4)

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 77

Traditional CG methods [3][161][172][76] are designed for static neural networks

(NNs). There are however some CG approaches proposed for dynamic networks, such

as [32][33][38]. Using the information of the Hessian matrix and/or proper line search

methods, these CG approaches are guaranteed to find a local minimum rapidly. The

larger the scale of the problem is, the more obvious the benefits of using CGs [71].

By using two product-calculating techniques [33], the direct calculation of the

Hessian matrix in the scaled conjugate gradient (SCG) method [133] was prevented,

and then two new 2
nd

-order dynamic SCG-based algorithms were proposed. By

recursively determining the CG direction, the SCG requires only O(N) memory usage,

where N is the number of weights [133]. However, instead of directly calculating, the

SCG has used an estimation of the Hessian matrix. The statement of [33] was not

exactly correct. Furthermore, the simulations in [33] only compared the authors‟

revised version with RBP (recursive backpropagation, [32][34] and TRBP (truncated

RBP, [35]) and no direct comparisons with the original SCG was made. Thus, claims

for „better‟ performance need to be verified experimentally, as in [53].

Through deriving general formulas, the works in [53][54] applied their improved SCG

to dynamic NNs, and simulation results in nonlinear system identification and time

series prediction problems showed that the performance is better than the original

SCG. The improved SCG [53] uses the hybrid choice of direction parameter and exact

multiplication by the Hessian matrix, while the approach of exact multiplication is the

method indicated in [33]. Comparing to the original SCG, the performance of the

hybrid SCG [53] is better, involving the usage of their output feedback RNN

(OFRNN) and fully RNN (FRNN). The cases of equivalences between globally RNN,

locally RNN, OFRNN and FRNN are more clearly indicated in [54]. From the

discussions in [53][54] it is worth mentioning that when a very large number of

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 78

training iterations is involved the numerical precision in the direct calculation of the

Hessian matrix is gradually lost so it might make sense to estimate the Hessian

instead.

One other advantage in [33] as the authors claim is the adoption of the revised SCG

into a dynamic version. Applying the two product-calculation techniques to the RBP

and TRBP, the learning algorithms designed for IIR-MLP, the formulas of forward

and backward phases are obtained. The ambiguous question here refers to the

relationships between RBP/TRBP and SCG. As the name indicating the moving step

of SCG is scaled by a formula consisting of the 1
st
- and 2

nd
-order information through

the recursively decided conjugate direction. If the revised SCGs of [33] only applied

the product methods into RBP and TRBP and then became CG-based dynamic

algorithms, RBP and TRBP must have some equivalence to SCG, i.e. for example,

usage of the Hessian matrix. However, since they are gradient descent methods, only

the 1
st
-order information is used, it seems almost all benefits of the original SCG are

gone, even though RBP and TRBP are suitable for dynamic NNs. The question of

how to compare the dynamic version of SCG to the static version under very different

basis of network complexity should be explored further.

The work in [38] modified the real time recurrent learning (RTRL) with conjugate

gradient and proposed a CGRL algorithm. The pros and cons between the BPTT and

RTRL were also discussed, while more details about comparison of BPTT and RTRL

can be found in [49]. Feng [62] proposed a study of the CG method, while a latest

extended review reveals its dynamic behaviour in [169]. Bhaya and Kaszkurewicz [26]

built various connections between CG and BP with momentum for modifying the

convergence properties. More discussions about gradient descent and CG approaches

can be found in [37]. Different CG methods had been compared in [115][178] for both

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 79

static and dynamic neural networks. The authors in [135] proposed an adaptive CG

for linear minimisation, while González and Dorronsoro [76] introduced natural

gradient into CG for training perceptrons. Numerous applications and developments

for CG methods can be found in the literature, such as the works in [1][4][17][92][108]

[139][153][191][199].

The nonmonotone version of CG methods has been also studied in the context of

optimisation [113][114][185][55][181][182], and there is theoretical evidence that

these variants are globally convergent for both convex [55][113][181][182] and

nonconvex [185] objective functions. Furthermore, nonmonotone methods for general

nonconvex functions have been analysed in [46] and conditions for global

convergence have also been established [45]. Note that the global convergence

property is totally different from global optimisation; it means that starting from

almost any initial weight these methods will always reach a minimiser [118] but not

necessarily the global minimum.

Considering the objective functions of RNNs‟ learning are nonconvex, we present

below the main theoretical results for global convergence of nonmonotone CG

methods which hold in this case. It is worth mentioning that proving global

convergence for nonconvex objective functions is a very challenging problem. Here

we are based on the work of Liu and Wei [114], and apply the nonmonotone

Grippo-Lampariello-Lucidi (GLL) line-search [80], which can be stated as follows

 
 

  
0

1
0
max T

k k k k j k k k
j m k

E w d E w g d  
 

   , (5.5)

  2, T

k k k k k kg w d d g d    , (5.6)

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 80

where
1 and

2 are constants, 1 20 1 2    , and  m k is updated by the

following rule:

 

    

0 0
.

min 1 1,

m

m k m k M




  

 (5.7)

5.2 Global Convergence of Nonmonotone Conjugate Gradient

Before presenting the main theorems for global convergence, the following

Assumption (H5) and Property (P) are needed.

(H5.1) For a given point
0

nw R and for every w in some region that contains the

initial weight vector 0w , the level set  0 0() ()nL w R f w f w   is bounded.

(H5.2) In some neighbourhood B of the level set
0L , the error function is continuous

differentiable and the gradient g is Lipschitz continuous, i.e. there exists

0L  for every pair ,w v such that

() () , ,g w g v L w v w v B     (5.8)

(H5.3) The search direction kd satisfies the following sufficient decrease condition, i.e.,

there exists a positive constant 0c such that

2

0, .k k kg d c g  (5.9)

Property (P) [70]. Consider a CG method defined by Eqs. (3.2), (5.1) and (5.2), and

suppose that

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 81

1 20 kg    (5.10)

for all 1k  , where
1 and

2 are constants. Under this assumption, the CG

method is called to have property (P) if there exist constants
3 1  and 0a  such

that, for all k,

3,k  (5.11)

1
3

1

2k k k
w w a 


    (5.12)

Below we present the theorems by Liu and Wei [114] which need part of Property (P)

on the sufficient descent condition and Assumptions (H5) to establish the global

convergence of the nonmonotone CG method.

Theorem 5.1 [114]. Suppose that Assumptions (H5) hold. Let  kw and  kd be

generated by the CG rule, Eqs. (3.2), (5.1) and (5.2), using the Fletcher-Reeves, Eq.

(5.3), or the Polak-Ribière, Eq. (5.4), update. 3,k  and the stepsize k

satisfies the nonmonotone GLL linesearch, Eqs. (5.5)-(5.7). If Eq. (5.10) holds, then

2
0

1
.

k kd





  (5.13)

Assumption (H5.1) holds in RNN training, defined in Chapters 2 and 3, because the

error function f is bounded below in nR since f ≥ 0: for a RNN with a fixed

architecture and a finite set of training patterns, if a
w exists such that 0)(wE ,

then
w is the global minimum; otherwise the vector w with the smallest available

value is the “global” minimiser. Assumption (H5.2) also holds for RNNs that use

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 82

smooth enough activations functions (the derivatives of order p are available and

continuous), such as the well know hyperbolic tangent and logistic (used in our

experiments) activations. Moreover, (H5.2) implies that there exists a constant 

such that Bwwg  ,)( . Lastly, Gilbert and Nocedal [70] have shown that the

condition of Eq. (5.9) is important to ensure global convergence of CG methods, and

suggested that can be guaranteed by incorporating bracketing procedures in the

method.

Using the result of Theorem 5.1, the following Theorem can establish the property of

global convergence.

Theorem 5.2 [114]. Suppose that Assumptions (H5) hold. Let  ,kw  ,kd and

 k be generated as in Theorem 5.1, where 0k  satisfy Property (P). Then

liminf 0.k
k

g


 (5.14)

A detailed proof is provided in

[114], which shows that the limit of Eq. (5.14) is the

best type of global convergence result that can be obtained for nonconvex functions.

5.3 The Proposed Nonmonotone Conjugate Gradient Algorithms:

ANMCG and A2NMCG

In this section, the two nonmonotone CG-class approaches [146][147] are presented.

The first version of our proposed algorithm is the Adaptive Non-Monotone CG

(ANMCG, [146]), as stated in Table 5.1, then the improved version of ANMCG is

shown in Table 5.2, i.e., the Advanced ANMCG (A2NMCG, [147]).

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 83

Table 5.1 Algorithm: Adaptive Non-Monotone CG (ANMCG, [144])

UAlgorithm: ANMCG

STEP 0. Initialize
0 ,w k, boundaries of ,kM and

0 0d g  ;

STEP 1. If 0kg  stop;

STEP 2. Adapt
kM by the following conditions:

1 1 2

1 1 2

1

1, if

1, if ,

, otherwise,

k k k k

k k k k k

k

M

M M

M

  

  



     


      



where
1

1

;
k k

k

k k

g g

w w






 



STEP 3. Find a step length k satisfying the following nonmonotone condition:

     

1 2

1 2

0

For 0 and , (0,1), at each iteration, one chooses a parameter

such that the step length , where (,), satisfies

max

k

k

k

l

k k k

T

k k k k j k k k
j M

l

E w d E w f w d

   

     

  
 

  

  

      
 

;

STEP 4. Generate new point by 1 ;k k k kw w d  

STEP 5. Update search direction by 1 1,k k k kd g d     where
k

PR

k  or ;
k

FR

STEP 6. STEP 6. Let 1,k k  go to STEP 1.

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 84

Table 5.2 Algorithm: Advanced ANM-CG Algorithm (A2NMCG, [145])

UAlgorithm: A2NMCG

STEP 0. Initialise
0 ,w k=0, 0 0M  , maxM is an upper boundary for ,kM

0 0,l 

 0 , , 0,1a    and
0 0d g  ;

STEP 1. If 0kg  , then stop;

STEP 2. If k ≥ 1, calculate a local approximation of the Lipschitz as 1

1

,k k
k

k k

g g

w w






 



and adapt
kM by the following conditions:

1 1 2

1 1 2

1

1, if

1, if ,

, otherwise,

k k k k

k k k k k

k

M

M M

M

  

  



     

      







where  maxmin , ;k kM M M

STEP 3. For all k ≥ 1, find a stepsize  
1

2 kl

k k 


   satisfying the following condition:

   
0

max ,
kj M

T

k k k k j k k kE w d E w dg  
 

       

where 1k kl l  ;

STEP 4. Generate a new point by
1k k k kw w d   ;

STEP 5. Update search direction
1 1k k k kd g d     , where

k

PR

k  or
k

FR
 and is

greater than zero;

STEP 6. Let 1,k k  go to STEP 1.

The main difference between the Adaptive Non-Monotone Conjugate Gradient

(ANMCG) method and the A2NMCG method lies in the way the stepsize in Step 3 is

adapted. In ANMCG we use the steplength of the previous iteration as the new

stepsize, while A2NMCG takes a local approximation of the Lipschitz constant at

each iteration as the initial trail steplength to satisfy the nonmonotone condition. The

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 85

Lipschitz constant is related to the morphology of a function. The local approximation

used here provides information regarding the local shape of the error function. Thus,

the local approximation gets large values in steep regions and small values in flat

regions (see also [119][195] for the usefulness of this estimate).

To illustrate the behaviour of the new algorithm we provide below typical examples

of convergence behaviour from learning the partity-5 and parity-10 problems [176]

using RNNs that belong to the NARX group of models. Figures 5.1 and 5.2 illustrate

the behaviour of the MSE, the stepsize, and the adaptive learning horizon for the P5

and P10 problems using a 2-hidden-node NARX network, which was trained to reach

an error goal of 1e-100 within 1000 epochs. In all cases, the use of an adaptive

learning horizon M did not affect stable behaviours (i.e. faster convergence to training

goals) of the methods. Moreover, Figures 5.1 and 5.2 show that the trend for the

adaptive M is to increase in all cases, despite temporary reductions at some iterations;

an observation which is in accordance with theoretical results [113][114].

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 86

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

epochs

m
s
e

ANMCG:1.1163e-105

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

epochs

lo
g
1
0
(s

te
p
 s

iz
e
)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

epochs

v
a
lu

e
 o

f
M

(a) ANMCG

0 10 20 30 40 50 60 70 80
0

0.2

0.4

epochs

m
s
e

A2NMCG:2.1546e-106

0 10 20 30 40 50 60 70 80
-2

0

2

epochs

lo
g
1
0
(s

te
p
 s

iz
e
)

0 10 20 30 40 50 60 70 80
0

10

20

epochs

v
a
lu

e
 o

f
M

 (b) A2NMCG

Figure 5.1 Convergence behaviours of NARX networks trained with the (a) ANMCG

and (b) A2NMCG methods in the P5 problem.

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 87

0 10 20 30 40 50 60 70
0

0.5

epochs

m
s
e

ANMCG:6.0065e-103

0 10 20 30 40 50 60 70
-5

0

5

epochs

lo
g
1
0
(s

te
p
 s

iz
e
)

0 10 20 30 40 50 60 70
0

10

20

epochs

v
a
lu

e
 o

f
M

(a) ANMCG

0 20 40 60 80 100 120
0

0.5

epochs

m
s
e

A2NMCG:4.428e-238

0 20 40 60 80 100 120
-5

0

5

epochs

lo
g
1
0
(s

te
p
 s

iz
e
)

0 20 40 60 80 100 120
0

10

20

epochs

v
a
lu

e
 o

f
M

 (b) A2NMCG

Figure 5.2 Convergence behaviours of NARX networks trained with the ANMCG and

A2NMCG methods for the P10 problem.

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 88

5.4 Experimental Results

The five simulated problems used here include two instances of the N-bit parity (P5

and P10), a sequence classification (SC) [116] problem, the sequence learning (SL)

task [124] and the reading aloud (RA) [158] problem, while full descriptions can be

found in Appendix A.1 and Table A.1 summarises the numbers of the three RNNs‟

adjustable parameters used in the experiments of the thesis.

In the tables below, Algo denotes the training algorithm, #hid stands for the number of

hidden nodes, and Conv denotes the convergence success in terms of the number of

runs that reached the predefined training goals out of 100. MSE is the average of the

mean-squared-error (in percentage) achieved in the 100 runs (i.e. the average MSE

has been calculated over the total number of runs and not only the converged ones to

provide an estimate of the overall performance of the methods for practical

applications when it is difficult for the user to set precise values for the training goal

and the number of epochs), while STD is the corresponding standard deviation of the

MSE values. Ave, Min, Max and Std respectively denote the average, minimum,

maximum, and standard deviation of epochs for the converged runs. In all cases, the

nonmonotone parameters were set to max 15,M  0.01,  and 0.1,  in order to test

the robustness and generalisation of the proposed algorithms.

Besides the numerical results in the tables for each simulated problem, the graphical

examples of convergence behaviours are provided to illustrate the improvements

made by our proposed nonmonotone algorithms.

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 89

5.4.1 Parity Problems

We tested RNNs with 1, 2, 5 and 7 hidden nodes for the P5 problem and 1, 2, 5, 7 and

10 hidden nodes for the P10 problem. The training goal was to reach an MSE of 0.01

within 2000 epochs for P5 and 4000 epochs for P10. Tables 5.3-5.5 show the results

for P5, while Tables 5.6-5.8 for P10. Figures 5.3-5.6 are examples of typical learning

behaviours from these problems, comparing the monotone CG with the ANMCG, and

illustrate some of the improvements made by the A2NMCG method.

Table 5.3 Average performance for FFTD networks in the P5 problem: class of CG

Algo #hid
Conv

(%)

MSE

(%)

STD

(%)

Epoch

Ave Min Max Std

CG

1 0 24.981 8.500 - - - -

2 0 22.315 7.032 - - - -

5 12 10.546 4.117 406 62 1638 417

7 41 3.782 2.929 215 22 1097 172

ANMCG

1 2 14.781 7.891 1565 1565 1565 0

2 5 10.332 4.272 1198 981 1833 695

5 23 4.459 1.950 842 254 1826 523

7 76 1.972 1.005 645 167 1828 434

A2NMCG

1 5 13.450 5.020 1097 524 1547 833

2 13 8.518 2.982 850 494 1789 714

5 34 2.762 1.117 484 127 1313 457

7 81 1.404 0.705 357 106 1922 398

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 90

Table 5.4 Average performance for LRN networks in the P5 problem: class of CG.

Algo #hid
Conv

(%)

MSE

(%)

STD

(%)

Epoch

Ave Min Max Std

CG

1 0 23.302 8.674 - - - -

2 0 20.964 7.183 - - - -

5 14 7.610 3.871 202 46 610 145

7 37 5.678 3.007 189 39 561 239

ANMCG

1 9 18.776 6.409 1452 62 1994 1275

2 22 11.351 4.032 1378 334 1851 977

5 32 4.699 2.595 1135 213 1947 633

7 84 2.785 1.730 798 61 1933 492

A2NMCG

1 13 16.641 5.875 981 54 1959 860

2 27 9.765 3.711 1039 231 1937 1084

5 36 3.561 2.194 587 148 1894 571

7 86 1.866 1.364 532 56 1908 445

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 91

Table 5.5 Average performance for NARX networks in the P5 problem: class of CG.

Algo #hid
Conv

(%)

MSE

(%)

STD

(%)

Epoch

Ave Min Max Std

CG

1 24 10.589 4.779 73 21 283 46

2 30 6.985 3.261 44 13 136 33

5 76 3.451 1.604 38 9 161 14

7 95 0.915 0.047 42 6 1199 124

ANMCG

1 97 1.110 0.951 32 2 1341 138

2 98 1.063 0.730 20 4 151 23

5 99 0.833 0.054 14 4 36 11

7 99 0.812 0.013 12 4 54 18

A2NMCG

1 96 1.419 1.288 21 2 150 21

2 99 0.998 0.684 18 5 71 15

5 100 0.729 0.066 13 4 34 8

7 100 0.638 0.004 11 4 23 6

The results show that the A2NMCG algorithm consistently converges to desired

solutions, even with fewer adjustable variables. In certain cases the use of the

nonmonotone strategy may result in an increase in the number of epochs but this

additional cost allows the new method to locate minimisers with smaller error values.

Even when the nonmonotone methods do not reach an MSE = 0.01 within 2000

epochs, they always achieve smaller errors than the CG method. For example, in

Table 5.3, CG-trained FFTD networks with 2 hidden nodes cannot reach the training

goal within 2000 epochs (Conv = 0 in Table 5.3) and on the average generate an

MSE=22.315%. Although only 5% of the ANMCG-trained FFTD networks reach the

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 92

training goal, these networks produce on the average significantly lower error values,

i.e. the average MSE over the total number of runs (not only the converged ones) is

10.332%. For A2NMCG-trained FFTD networks, results in Table 5.3 show that 13%

reach the training goal within 2000 epochs, and that the average MSE over the total

number of runs is 8.518%, which constitutes a significant improvement over the other

two methods.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Epochs

T
ra

in
in

g
 E

rr
o
rs

 (
M

S
E

)

CG:0.052734

ANMCG:0.026051

CG

ANMCG

(a) FFTD

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 93

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Epochs

T
ra

in
in

g
 E

rr
o
rs

 (
M

S
E

)

CG:0.02501

ANMCG:0.0092117

CG

ANMCG

(b) LRN

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Epochs

T
ra

in
in

g
 E

rr
o
rs

 (
M

S
E

)

CG:0.11218

ANMCG:0.0097369

CG

ANMCG

(c) NARX

Figure 5.3 Examples of convergence behaviour for the CG (blue dashed line) and the

ANMCG (red solid line) in the P5 problem for three RNNs.

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 94

Examples of learning behaviours for the CG and the nonmonotone version in the P5

and P10 problems are illustrated in Figures 5.3-5.4 and 5.5-5.6, respectively. In

particular, Figure 5.3a provides an example of the robustness of the approach even

when there are large variations in the M previous error function values. Figure 5.4

demonstrates the improved behaviour of the A2NMCG over the ANMGG.

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Epochs

M
S

E

ANMCG

A2NMCG

(a) FFTD

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 95

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Epochs

M
S

E

ANMCG

A2NMCG

(b) LRN

0 50 100 150 200 250 300 350 400 450
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Epochs

M
S

E

ANMCG

A2NMCG

(c) NARX

Figure 5.4 Examples of convergence behaviour for the ANMCG (blue dashed line)

and the A2NMCG (red solid line) methods in the P5 problem for three RNNs.

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 96

Table 5.6 Average performance for FFTD networks in the P10 problem: class of CG.

Algo #hid
Conv

(%)

MSE

(%)

STD

(%)

Epoch

Ave Min Max Std

CG

1 0 24.997 7.643 - - - -

2 0 24.841 7.081 - - - -

5 1 20.119 8.990 775 775 775 0

7 10 15.597 5.287 966 318 2976 780

10 28 8.197 4.901 554 207 1001 216

ANM-CG

1 11 18.013 7.275 1698 30 2744 1707

2 19 15.604 7.006 1451 585 2315 1321

5 23 13.531 6.804 1302 287 2355 1219

7 32 9.387 5.103 1394 334 2477 1588

10 39 6.156 2.834 1164 210 2753 1251

A2NM-CG

1 15 15.635 6.101 1345 30 3112 938

2 22 13.851 6.382 1181 563 2320 994

5 29 10.944 5.719 936 216 2131 1027

7 35 7.368 3.504 878 192 2537 815

10 45 4.581 1.933 872 186 2710 702

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 97

Table 5.7 Average performance for LRN networks in the P10 problem: class of CG.

Algo #hid
Conv

(%)

MSE

(%)

STD

(%)

Epoch

Ave Min Max Std

CG

1 0 24.991 7.433 - - - -

10 42 8.441 4.827 523 196 2328 264

ANMCG

1 0 25.001 7.109 - - - -

10 52 3.189 3.203 3155 179 3852 2561

A2NMCG

1 9 22.752 5.410 1431 80 3942 1130

10 61 1.984 2.788 2548 142 3756 854

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 98

Table 5.8 Average performance for NARX networks in the P10 problem: class of CG.

Algo #hid
Conv

(%)

MSE

(%)

STD

(%)

Epoch

Ave Min Max Std

CG

1 35 7.473 5.832 42 23 119 29

2 43 6.161 4.991 35 15 99 21

5 97 1.238 2.489 26 12 82 13

7 100 0.920 0.073 18 11 65 9

10 100 0.854 0.058 21 14 47 6

ANMCG

1 61 4.562 3.862 827 42 3849 563

2 66 3.089 1.997 564 41 3154 471

5 100 0.931 0.084 383 54 1128 125

7 99 0.889 0.068 210 61 1251 124

10 100 0.924 0.077 194 67 325 59

A2NMCG

1 98 1.079 0.993 12 4 299 30

2 99 0.894 0.764 15 5 68 11

5 100 0.636 0.082 12 4 34 5

7 100 0.695 0.091 11 4 28 5

10 100 0.639 0.088 12 4 235 23

In Figures 5.5a and 5.5b, two cases are illustrated, for a FFTD network and a LRN

respectively, where the nonmonotone CG escapes from local minima. Figure 5.6

provides examples of the improvements made by A2NMCG compared to the

ANMCG.

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 99

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Epochs

M
S

E

CG:0.25

ANMCG:0.0099493

CG

ANMCG

(a) FFTD

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Epochs

M
S

E

CG:0.25

ANMCG:0.032425

CG

ANMCG

(b) LRN

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 100

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Epochs

T
ra

in
in

g
 E

rr
o
rs

 (
M

S
E

)

CG:0.0095822

ANMCG:0.0098741

CG

ANMCG

(c) NARX

Figure 5.5 Examples of convergence behaviour for the CG (blue dashed line) and the

ANMCG (red solid line) in the P10 problem for three RNNs.

0 200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Epochs

M
S

E

ANMCG

A2NMCG

(a) FFTD

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 101

0 100 200 300 400 500 600 700 800 900
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Epochs

M
S

E

ANMCG

A2NMCG

(b) LRN

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Epochs

M
S

E

ANMCG

A2NMCG

 (c) NARX

Figure 5.6 Examples of convergence behaviour for the ANMCG (blue dashed line)

and the A2NMCG (red solid line) in the P10 problem for three RNNs.

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 102

5.4.2 Sequence Classification Problem

Table 5.9 shows the results; Epo is the average number of epochs for the converged

runs out of 100 and CE represents the classification error, in percentage, while the two

columns under STD (in percentage) depict the standard deviations of the training

MSEs and testing CEs, respectively. The LRN performed better than the other RNN

models and the A2NMCG method produced slightly lower errors in testing in all

cases (the average MSE values have been calculated over the total number of runs –

not only the converged ones). Examples of learning behaviours are in Figure 5.7,

showing how the nonmonotone strategy helps locating minimisers with lower error

function values, leading in the particular case to lower average classification error

during testing (cf. with Table 5.9).

Table 5.9 Results for three RNN architectures in the SC problem: class of CG.

RNN Algo
Conv

(%)
Epo

Training Testing

MSE (%) STD (%) CE (%) STD (%)

FFTD

CG 0 - 22.004 3.085 34.685 7.140

ANMCG 0 - 22.109 3.770 34.685 7.038

A2NMCG 80 108 5.016 0.921 8.789 2.353

LRN

CG 0 - 14.029 4.851 20.548 3.692

ANMCG 0 - 13.553 4.730 18.178 4.070

A2NMCG 0 - 10.756 3.908 14.685 3.947

NARX

CG 58 470 2.816 2.493 38.986 5.924

ANMCG 84 446 1.435 1.006 37.466 4.027

A2NMCG 91 452 0.940 0.237 36.986 5.300

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 103

0 20 40 60 80 100 120 140 160 180 200
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Epochs

M
S

E

CG:0.11993

ANMCG:0.069235

CG

ANMCG

(a) LRN

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Epochs

M
S

E

CG:0.087028

ANMCG:8.0891e-005

CG

ANMCG

(b) NARX

Figure 5.7 Examples of convergence behaviour for the CG and the ANMCG methods

in the SC problem for (a) LRN and (b) NARX.

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 104

5.4.3 Sequence Learning Problem

Results are shown in Tables 5.10 and 5.11. Table 5.10 compares the performances of

the algorithms using the three RNN architectures. The MSEs of the nonmonotone

methods are, in all cases, better than the original CG because the nonmonotone

versions appear to locate better approximations of the optimal weight set. For

comparison, we should mention that the approach of the original work by McLeod et

al. in 1998 is based on LRNs trained with the GD method. It uses 10 hidden nodes

and produces an MSE of 25% in training and 22% in testing. Thus CG methods, in

general, produce better results than GD methods in this problem.

In order to have further comparison we also performed experiments with different

numbers of hidden nodes for the NARX architecture. Table 5.11 shows that promising

results can be obtained using 2 or 5 hidden nodes, making the application of CG

methods to this difficult dataset a promising alternative against GD methods. An

example of learning behaviour is shown in Figure 5.8, for NARX networks.

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 105

Table 5.10 Results for three RNNs architectures in the SL problem: class of CG.

RNN Algorithm

Training Testing

MSE (%) STD (%) MSE (%) STD (%)

FFTD

CG 18.743 8.138 18.654 9.072

ANMCG 17.856 5.854 17.673 7.110

A2NMCG 15.342 2.708 15.389 3.205

LRN

CG 17.266 6.877 17.286 6.919

ANMCG 16.392 4.912 16.405 4.886

A2NMCG 14.732 2.082 14.681 1.794

NARX

CG 18.321 7.698 18.146 7.447

ANMCG 15.485 4.001 15.164 3.592

A2NMCG 10.859 1.171 11.819 1.341

Table 5.11 MSEs for NARX networks in the SL problem: class of CG.

Algo #hid

Training Testing

MSE (%) STD (%) MSE (%) STD (%)

CG

2 16.534 6.132 16.761 6.810

5 16.921 6.477 17.025 6.956

10 18.321 7.698 18.146 7.447

ANMCG

2 16.601 6.737 16.462 7.005

5 15.275 5.892 15.377 6.014

10 15.485 4.001 15.164 3.592

A2NMCG

2 21.951 9.237 22.689 10.039

5 13.449 3.206 14.206 4.836

10 10.859 1.171 11.819 1.341

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 106

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Epochs

M
S

E

ANMCG

A2NMCG

Figure 5.8 Example of convergence behaviour for the ANMCG and the A2NMCG in

the SL problem for NARX networks.

In order to fairly exhibit the improved performance of the proposed nonmonotone CG

algorithms, the default 23-epoch training process of the SL problem is extended to the

200- and 1000-epoch ones, as presented in Tables 5.12-5.14.

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 107

Table 5.12 Results of additional simulations for FFTD networks in the SL problem:

class of CG

Algorithms

200-epoch 1000-epoch

Train

(MSE/CE)

Test

(MSE/CE)

Train

(MSE/CE)

Test

(MSE/CE)

CG 16.1/39.4 16.8/40.6 14.7/38.2 16.4/39.9

ANM-CG 13.9/31.3 14.5/38.2 11.3/24.7 13.9/31.2

A2NM-CG 9.4/22.4 10.6/23.8 8.6/21.4 11.1/25.4

Table 5.13 Results of additional simulations for LRN networks in the SL problem:

class of CG

Algorithms

200-epoch 1000-epoch

Train

(MSE/CE)

Test

(MSE/CE)

Train

(MSE/CE)

Test

(MSE/CE)

CG 16.7/40.6 17.2/42.2 14.9/38.9 16.6/40.3

ANM-CG 14.4/38.2 15.9/39.7 12.6/25.7 14.3/38.0

A2NM-CG 13.5/26.9 15.5/39.1 11.0/25.5 12.9/26.0

Table 5.14 Results of additional simulations for NARX networks in the SL problem:

class of CG

Algorithms

200-epoch 1000-epoch

Train

(MSE/CE)

Test

(MSE/CE)

Train

(MSE/CE)

Test

(MSE/CE)

CG 17.0/41.7 18.3/46.2 15.5/38.9 17.3/42.1

ANM-CG 13.4/26.2 15.8/39.6 9.3/22.6 10.9/23.2

A2NM-CG 9.1/22.0 11.3/24.8 7.6/19.4 9.2/22.6

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 108

5.4.4 Reading Aloud Problem

In the work of [158] a specially designed RNN architecture with 100 hidden nodes

(26582 adjustable parameters) is needed to solve this problem. Here we tried to solve

it using FFTD and NARX networks. Architectures with 5 and 10 hidden nodes and

300 training epochs are used for this problem; a FFTD with 5 hidden nodes has 1421

adjustable parameters (weights plus biases), while a NARX network with 5 hidden

nodes has 2031 parameters.

As shown in Table 5.15, our approaches are more effective than the original CG. It is

noteworthy that, in the work of [158], the training process takes 1900 epochs to

achieve similar results, which is about 6 times more than the results of the CG

methods. Figures 5.9 and 5.10 show typical learning behaviours for this problem, and

of the improvements achieved by the A2NMCG method against ANMCG.

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 109

Table 5.15 Results for two RNN architectures in the RA problem: class of CG.

RNNs Algo #hid

Training Testing

MSE (%) STD (%) MSE (%) STD (%)

FFTD

CG

5 10.500 8.892 8.378 6.993

10 4.499 3.784 6.732 2.196

ANMCG

5 11.899 8.015 6.523 3.509

10 7.499 4.223 3.129 3.005

A2NMCG

5 10.734 7.483 5.946 3.007

10 8.197 4.829 2.657 2.221

NARX

CG

5 8.294 7.725 7.849 6.894

10 4.796 4.108 5.824 3.003

ANMCG

5 10.063 6.342 6.057 4.777

10 6.690 3.557 3.283 2.095

A2NMCG

5 8.942 6.590 4.610 4.051

10 7.879 4.178 2.182 1.457

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 110

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Epochs

T
ra

in
in

g
 E

rr
o
rs

 (
M

S
E

)

CG:0.052327

ANMCG:0.039671

CG

ANMCG

(a) FFTD

0 50 100 150 200 250 300
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Epochs

M
S

E

CG:0.074677

ANMCG:0.053844

CG

ANMCG

(b) NARX

Figure 5.9 Examples of convergence behaviour for the CG and the ANMCG methods

n the RA problem for (a) FFTD and (b) NARX.

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 111

10 20 30 40 50 60 70 80 90 100

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Epochs

M
S

E

ANMCG

A2NMCG

(a) FFTD

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Epochs

M
S

E

ANMCG

A2NMCG

(b) NARX

Figure 5.10 Examples of convergence behaviour for the ANMCG and the A2NMCG

methods in the RA problem for (a) FFTD and (b) NARX.

Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm

 112

5.5 Summary and Contribution of the Chapter

In this chapter, the traditional monotone CG methods were firstly introduced and the

versions of nonmonotone CG (NMCG) approaches were discussed. After the

properties and theorems of global convergence for the NMCG methods in the

literature were reviewed, two NMCG algorithms, i.e. ANMCG and A2NMCG (see

Tables 5.1 and 5.2) were presented.

Experimental results using RNNs from three different architectures, i.e. FFTD, LRN

and NARX, in five applications, i.e. P5, P10, SC, SL, and RA, showed that our

proposed algorithms perform well, in terms of higher convergence rates, fewer

training epochs for P5 and P10, lower training MSEs for all the five classes of

simulations, smaller testing CEs for SC, and better testing MSEs for SL and RA.

Graphical examples of learning behaviours for all RNNs in each application reveal the

benefits of our nonmonotone algorithms.

113

Chapter 6

Adaptive Self-Scaling Nonmonotone

BFGS Algorithm

In this chapter, starting from the introduction of quasi-Newton (QN) methods

[47][48] in Section 6.1, the most well known update formulas [160][30][47]

[64][67][72][157][179] of the approximated Hessian matrix and scaling techniques

[4][124][138][140][141][209] are reviewed. After a discussion on the traditional

monotone QN approaches, Section 6.2 focuses on cases of nonmonotone QN

[79][81][86][187][212], and the relative assumptions to build theorems of global

convergence. The proposed algorithm of QN class is developed in Section 6.3, while

experimental results for the N-bit parity, SC [116], SL [124] and RA [158]

applications (details are provided in Appendix A.1), using the three different RNN

architectures, i.e. FFTD [196][197], LRN [57][85] and NARX [128][137] (structural

topologies defined in Chapter 2), are shown in Section 6.4. Conclusions are made in

Section 6.5.

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 114

6.1 Quasi-Newton Methods

In the context of deterministic unconstrained optimisation, QN methods, sometimes

called variable metric methods, are well-known algorithms for finding local minima

of functions in the form of Eq. (3.1). The original method was firstly proposed in

1959 by W.C. Davidon [47] and finally published in 1991 [48]. QN methods are

based on Newton's method to find the stationary point of a function, where the

gradient is zero. Newton's method assumes that the function can be locally

approximated by a quadratic function in the region around the optimum, and requires

the first and second derivatives [68], i.e. the gradient vector and the Hessian matrix,

to find the stationary point. Moreover, the Newton's method and its variants require

that the Hessian is positive definite - a condition that is difficult to guarantee in

practice.

QN methods exploit the idea of building up curvature information as the iterations of

the training method are progressing. This is achieved by using the objective function

values and its gradient to estimate the Hessian matrix. Thus, a new approximated

Hessian matrix
1kB 
 is required at each iteration to satisfy the QN condition

1 ,k k kB s y  where ks and ky are the changes in function variable and in gradient,

respectively. At the k-th iteration, a QN method has the following basic structure:

(1) Set ;k k kd H g 

(2) Apply linesearch along kd giving 1 ;k k k kw w d  

(3) Update kH giving 1;kH 

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 115

where d is the search direction, H is the Hessian approximation, g denotes the first

derivative, and  the stepsize. The initial H is any given n n symmetric positive

definite matrix, and 1.k kH B

Some of the most famous approaches for updating
1kB 

 are the

Powell-Symmetric-Broyden (PSB) update equation [160]:

      

 
1 1 2

1
,

k

T

T k k k kPSB T T

k k k k k k k k k k kT T
k k k k

y B s s
B B y B s s s y B s s s

s s s s
 


      (6.1)

the Davidon-Fletcher-Powell (DFP) formula [47][64]:

 1 1

1 1
,

1 1

DFP T T T T

k k k k k k k k k k k k kT T

k k k k k

k k k kT T

k k k k k

B B B s s B y y s B s r r
s B s y s

r y B s
y s s B s

    

 

 (6.2)

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) [30][67][72][179]:

1 1

1 1
,BFGS T T

k k k k k k k kT T

k k k k k

B B B s s B y y
s B s y s

    (6.3)

and the Broyden‟s class of methods, which uses a linear combination of the DFP and

the BFGS updates:

   1 1 11 , 0,1 ,Broyden BFGS DFP

k k kB B B        (6.4)

while the most commonly used update technique for training neural networks is the

BFGS [63].

There are relatively large number of applications, where QN methods have been

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 116

used for training static Artificial Neural Networks (ANNs), e.g. [1][6][23][77][80]

[94][98][110][111][126][127][156][176][177][183][186][193][209].

As mentioned in [91][176][177] the QN method for training ANNs is very fast to

converge but in many cases it converges to a local minimum. Although several

efforts have been made to reduce the memory requirement of updating the Hessian

approximation [17][95][111][126][170][193], the need of using a monotone line

search and the drawback of getting trapped in neighbourhoods of local minimum

points limit the application of these methods in real-world applications. Another

problem in neural networks applications is that QN methods suffer from large

eigenvalues in the approximated Hessian matrices of the objective function as

Powell discovered in 1986.

Despite the emergence of the self-scaling approaches for the Hessian approximation

in the field of numerical optimisation [209] (the fundamental concept of self-scaling

is to accommodate the change of target variables efficiently), self-scaling is rarely

introduced when training ANNs [136]. In addition, the literature of RNNs includes

only very few attempts to train RNNs using QN methods with limited results

[17][21][22][54][91][103].

The self-scaling techniques can resolve problems caused by larger eigenvalues by

scaling the Hessian approximation before it is updated at each iteration to keep the

eigenvalues of the approximated Hessian matrix within a suitable range [209]. This

technique was first proposed in [140][141], and was used to update the approximated

Hessian as follows:

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 117

1 ,
T T

Oren Tk k k k
k k T T

k k k k

B y y B pp
B B

y B y p y
 

 
    
 

 (6.5)

where

,kp B g  (6.6)

 
1

2 ,T k k
k k k T T

k k k k

B yp
y B y

p y y B y


 
  

 
 (6.7)

 1 ,
T

k

T

k k k k k

p yg p

g B y y B y
  


  


 (6.8)

and  , 0,1 .   After these attempts, more relative works have been developed,

such as in [4][138].

In our approach, presented in detail in the following sections, we use the scaling

factor k which was introduced for the BFGS method by [209]. This is defined as

1 ,
T T

SCBFGS k k k k k k
k k k T T

k k k k k

B s s B y y
B B

s B s y s


 
   

 
 (6.9)

where

.
T

k k
k T

k k k

y s

s B s
  (6.10)

Numerical evidence has shown that methods that apply a scaling factor for 1kB  are

superior to the original QN methods. Especially in real-world applications the

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 118

scaling factor could potentially play an important role: when
k is sufficiently

large, the eigenvalues of
1kB 

 are relative small, with strong self-correcting

property [126][209]. Despite this looks particularly appealing for training RNNs, to

the best of our knowledge it has not been exploited at all in this area to improve the

effectiveness of second-order training algorithms. Another useful characteristic of

the factor ,k which makes it useful in RNN training, is that it takes only the

information of the most current point to scale the Hessian approximation and no

user-defined parameters, compared to the factor  in Eq. (6.8). This is particularly

helpful when dealing with high-dimensional search spaces, such as the ones

encountered in the applications discussed in this thesis.

6.2 Global Convergence

From a deterministic optimisation perspective, nonmonotonicity can be introduced

through conditions, such as those initially proposed by Grippo et. al. [80], for finding

a stepsize that occasionally permits an increase in the function value while retaining

global convergence of the minimisation method:

  1
0 ()
max () ,T

k k k k j k k k
j m k

E w d E w g d  
 

     (6.11)

and

  2 ,
T T

k k k k k kg w d d g d    (6.12)

where  1 2

1
0 , 0 0,

2
m    

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 119

    min 1 1, ,m k m k M   (6.13)

As discussed in Chapter 3, the parameter  m k plays the role of a memory element,

or buffer, and is typically a non-decreasing integer (cf. with Eq. (6.13)), bounded by

a nonnegative prefixed integer M . Another approach proposed recently is to

replace max in Eq. (6.11) by an average of function values [212]. Lastly, Grippo et.

al. [81] proposed the use of a slightly different approach that employs the following

condition instead of Eq. (6.12)

,h

kd  (6.14)

where 0  and  0,1  are user-defined real numbers and h is an integer

that increases by one unit whenever the condition is satisfied. If Eq. (6.14) is

satisfied 1k  and the new point, 1kw  is accepted without evaluating the

objective function. If Eq. (6.14) does not hold then Eq. (6.11) is used to determine

the stepsize k .

Grippo et al. also proved the following theorem that describes the convergence

properties of quasi-Newton algorithms that adopt a nonmonotone strategy.

Theorem 6.1 [81]. Let kw be a sequence produced by an iterative scheme of the

form 1k k k kw w d   , where the stepsize k is computed by Eqs. (6.11) and (6.14).

Assume that:

(H6.1.1) the level set     0w E w E w   is compact.

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 120

(H6.1.2) positive numbers
1, ,c p and

2p exist such that the following conditions

hold:

1 ,
pT

k k kg d g 

2 .
p

k kd c g

Then either the algorithm terminates at some point w such that   0,g w  or it

generates an infinite sequence such that:

(1). the sequence  kw remains in a compact set and every limit point

w belongs to the level set and satisfies   0;g w 

(2). no limit point of  kw is a local maximum of ;E

(3). if the number of stationary points of E in  is finite or there

exists a limit point where H is nonsingular, the sequence  kw

converges.

Although Grippo et al. [81] do not directly make any assumptions about the

convexity of the objective function, they assume that the search direction is

computed by minimising a quadratic approximation of the objective function at the

current point. Furthermore, they demonstrate that this scheme works well even when

the search direction is computed approximately by means of a truncated

quasi-Newton algorithm with finite difference approximations of second-order

derivatives.

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 121

Theorem 6.1 can be specialised to algorithms of the Newton class, such as those

employing the updates defined in Eqs. (6.1)-(6.4), by imposing appropriate form in

the conditions H6.1.2. Thus, when the search direction is defined by

1 ,k k kd B g 

and  kB is a sequence of symmetric positive definite matrices with uniformly

bounded eigenvalues   ,kB i.e. there exist  ,  such that for all k :

 0 .i kB    

Then

21 ,T

k k kg d g 

1 .k kd g

Since RNNs' error functions are nonconvex, we present and discuss below the main

theoretical results for global convergence of nonmonotone BFGS methods that hold

in this case. It is worth mentioning that proving global convergence for nonconvex

objective functions is a very challenging problem that has not been explored totally

yet. Also it is important to distinguish between the notion of global convergence and

that of global optimisation: a globally convergent algorithm always reaches a

minimiser (not necessarily the global minimiser) starting from almost any initial

weight [118]. Here we are based on the work of Yin and Du [209] which applies the

nonmonotone technique of Han and Liu [86] stated as follows:

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 122

      1 2
0 ()
max () min , ,k k k k j k k

j m k
E w d E w     

 
     (6.15)

and

  ,
T T

k k k k k kg w d d g d   (6.16)

where

,
T

k k
k

k

g d

d
   (6.17)

,T

k k kg d   0 1,    and
1 and 2 are two forcing functions, which are

used to measure the sufficiency of descent and prove convergence. As shown in [86],

Eqs. (6.15) and (6.16) formulate one of the most general types of line search, which

has as special cases many monotone and nonmonotone techniques. Furthermore, Sun

et al. [187] have shown that the nonmonotone Armijo rule, the nonmonotone

Goldstein rule, and the nonmonotone Wolfe rule employ special forms of forcing

functions.

Before presenting the main theorem for global convergence, the following

Assumptions (H6.2) are needed.

(H6.2.1) The level set     0:nw E w E w    is bounded.

(H6.2.2) In some neighbourhood    of  , the gradient of  E w ,  g w is

Lipschitz continuous, that is, there exists a constant 0L  such that for all ,w

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 123

  ,w 

    .g w g w L w w   (6.18)

Below we present the theorem of Yin and Du that needs Assumptions (H6.2). It

makes use of the BFGS property to generate positive definite matrices BFGS

kB [68],

and exploits their own result that shows the update Equation (6.9) preserves the

positive definiteness of the matrices SCBFGS

kB .

Theorem 4.2 [209]. Suppose that Assumptions (H6.2) hold, and let us assume that

0w is any starting point,
0B is any symmetric positive definite matrix, and that the

sequence  kw is generated by the iterative scheme, i.e. 1 ,k k k kw w d   where

 
1

,SCBFGS

k k kd B g


  and the stepsize k is determined by Eqs. (6.15) and (6.16).

If there exists a positive constant 1K  for which

 ˆ 1k ky g 

for all ,k K then

liminf 0.k
k

g


 (6.19)

Assumption (H6.2.1) holds for training RNNs of a fixed architecture on a finite set

of training patterns because the error function is bounded below in
n since

0:E  if a
w exists such that   0E w  then

*w is the global minimum;

otherwise the vector w with the smallest available value is the global minimiser.

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 124

Assumption (H6.2.2) also holds for RNNs that use smooth enough activation

functions (the derivatives of order p are available and continuous), such as the

logistic function that is used in our experiments later in the chapter. Moreover,

H6.2.2 implies that there exists a constant c such that kg c  .w   A

detailed proof is provided in [209], which shows that the limit of Eq. (6.19) is the

best type of global convergence result that can achieved for nonconvex functions.

6.3 Our Proposed Algorithm

In this section we present the proposed algorithm, named Adaptive Self-scaling

Non-Monotone BFGS (ASCNM-BFGS), through the high-level description

presented below.

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 125

Table 6.1 Adaptive Self-scaling Non-monotone BFGS Algorithm

UAlgorithm: ASCNM-BFGS

STEP 0. Initialise
0 , 0,w k  a symmetric positive definite matrix

0 ,B 0 ,M
maxM

(boundary of nonmonotone learning horizon
kM),  0 1 2, ,  

1 20    are

positive constants,  0 0d g w  and  , 0,1 ;  

STEP 1. If 0,kg  stop;

STEP 2. If 1,k  calculate a local approximation of the Lipschitz constant

1 1k k k k kg g w w     and adapt
kM by the following scheme:

1 1 2

1 1 2

1

1, if

1, if ,

, otherwise,

k k k k

k k k k k

k

M

M M

M

  

  



     


      



where  maxmin , ;k kM M M

STEP 3. 1,k  set  1max , ,k k k   where 12
,

k k

k T

k k

E E

g w d
 

 and check that

k satisfies the nonmonotone condition

   
0
max ;

k

T

k k k k j k k k
j M

E w d E w g d  
 

      
 

otherwise, find stepsize ql

k k   that satisfies the above condition, setting

each time 1;q ql l 

STEP 4. Generate a new weight vector 1 ;k k k kw w d  

STEP 5. Update the search direction 1 ,k k kd B g  using the Hessian approximation kB

calculated by the self-scaling BFGS formula

1 ,
T T

k k k k k k
k k k T T

k k k k k

B s s B y y
B B

s B s y s


 
   

 

where 1 1, k k k k k ks w w y g g     and ;
T

k k
k T

k k k

y s

s B s
 

STEP 6. Let 1k k  and 0,ql  go to STEP 1.

A feature of the ASCNM-BFGS method is the use of an adaptive memory term kM ,

called nonmonotone learning horizon, instead of a fixed heuristic value. To this end,

it calculates in Step 2 a local estimation of the Lipschitz constant, which could

provide helpful information on the morphology of a function, and uses it to

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 126

automatically adapt the size of M . The local estimation of the Lipschitz constant

gets large values in steep regions of search space and small values in flat areas. At

the beginning, i.e. 3k  , there is not enough information to adapt M through the

local estimation of the Lipschitz, and as a result the nonmonotone conditions in Step

3 actually operates as a monotone one comparing the new function value against the

previous one.

Also the initial choice of the stepsize merits some attention. At 0k  the stepsize is

an arbitrary positive real number randomly chosen in the interval  1 2,  and the

algorithm operates in the direction of the negative of the gradient,  0 0 .d g w 

That quickly changes, 1,k  as the search direction is updated through the

self-scaling BFGS update equation, which tunes the Hessian approximations at every

iteration the eigenvalues possess large values; when k is sufficiently large, then

the eigenvalues of SCBFGS

kB are small. The stepsize is then initialised through 

following a technique suggested by Charalambous [39], and constantly tuned to

ensure that, whilst it is not smaller than the stepsize of the previous iteration, it

satisfies the nonmonotone condition in Step 3. This condition regulates the sufficient

decrease of the error function through the forcing function   ,T

k k kg w d 

whilst for 1,2k  this condition is reduced to the monotone Armijo rule (cf. with

Theorem 2, [119]).

The algorithm also employs some heuristic parameters: an upper bound for kM to

help the algorithm concentrate on the recent past, while, in Step 4,  regulates the

stepsize, i.e. the larger  the smaller trial stepsize is used, while  controls the

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 127

amount of change. The error function E is calculated through the Mean Squared

Error (MSE) formula, while the gradient is calculated using the

Backpropagation-through-time (BPTT) formulae [18].

To illustrate the behaviour of the method we provide below some examples of

convergence behaviour from learning the parity-5 problem, [176], using RNNs of the

three types discussed above, namely the FFTD network, the LRN and the NARX

network, where 7 hidden nodes were used as listed in Table A.1. Figures 6.1-6.3

illustrate the behaviour of the MSE, the stepsize, the value of M , and the scaling

factor. Despite the nonmonotone behaviour that one can observe in the MSE values,

it is clear that there is a trend toward smaller learning errors, whilst in all cases, the

use of adaptive M does not affect the convergent behaviours of the method. The

scaling factor behaviour indicates the self-correcting property of the method, which

results in smaller eigenvalues for SCBFGS

kB for relatively larger  values.

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 128

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

epochs

m
 s
 e

0 50 100 150 200 250
-5

0

5

epochs

l o
 g

 1
 0

 (s
 t e

 p
 s

 i
 z
e

)

0 50 100 150 200 250
0

10

20

epochs

v
a

 l u
 e

 o
 f

 M

0 50 100 150 200 250
0

0.2

0.4

epochs

s
c
a

 l i
 n

 g
 f

 a
 c
 t o

 r

Figure 6.1 Convergence behaviours of P5: FFTD, trained by ASCNM-BFGS

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 129

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

epochs

m
 s
 e

0 50 100 150 200 250 300
-5

0

5

epochs

l o
 g

 1
 0

 (s
 t e

 p
 s

 i
 z
e

)

0 50 100 150 200 250 300
0

10

20

epochs

v
a

 l u
 e

 o
 f

 M

0 50 100 150 200 250 300
0

0.5

epochs

s
c

a
 l i
 n

 g
 f

 a
 c
 t o

 r

Figure 6.2 Convergence behaviours of P5: LRN, trained by ASCNM-BFGS

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 130

0 5 10 15 20 25 30 35 40 45
-5

0

5

epochs

l o
 g
 1
 0
 (
s

 t e
 p

 s
 i z

 e
)

0 5 10 15 20 25 30 35 40 45
0

2

4

6

epochs

v
 a
 l u

 e
 o

 f
 M

0 5 10 15 20 25 30 35 40
0

0.1

0.2

epochs

s
 c
 a
 l i n

 g
 f

 a
 c

 t o
 r

E pochs

0 5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
 r
a

 i n
 i n

 g
 E

 r
r o

 r
s

 (
M

 S
 E

)

Figure 6.3 Convergence behaviours of P5: NARX, trained by ASCNM-BFGS

6.4 Experimental Results

As mentioned in Chapter 4, all settings of the simulations in the thesis are the same

and are provided in Appendix (A.1), e.g. types of RNNs, amounts of hidden nodes,

relative delays, boundaries of learning horizon M, and the constant  used for the

nonmonotone linesearch. The notations used in the following Tables have been

explained in Section 4.4, e.g. a dash indicates that the algorithm did not converge

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 131

within the predefined iterations limit.

6.4.1 The N-Bit Parity Problems

The numerical results of the P5 and P10 problems are shown in Tables 6.2-6.4, and

6.5-6.7, respectively, while examples of learning behaviours, where 7 hidden nodes

are used for P5 and 10 nodes for P10, are provided in Figures 6.4 and 6.5. More

details of experimental parameters are presented in Appendix A.1.

Table 6.2 Average performance for FFTD networks in the P5 problem: class of

BFGS

Algorithm #hid
Conv

(%)

MSE

(%)

STD

(%)

Epochs

Ave Min Max Std

BFGS

1 0 23.825 7.647 - - - -

2 0 20.862 6.130 - - - -

5 4 9.229 3.583 1933 53 1171 331

7 19 5.131 1.706 1679 33 1719 682

ASCNM-BFGS

1 0 23.794 6.833 - - - -

2 0 17.487 5.028 - - - -

5 30 3.336 1.584 1616 52 1974 653

7 74 1.772 0.594 803 61 1983 327

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 132

Table 6.3 Average performance for LRN in the P5 problem: class of BFGS

Algorithm #hid
Conv

(%)

MSE

(%)

STD

(%)

Epochs

Ave Min Max Std

BFGS

1 0 23.195 8.327 - - - -

2 0 19.978 6.720 - - - -

5 5 9.205 4.579 1928 53 1568 339

7 15 5.635 2.852 1173 34 1927 573

ASCNM-BFGS

1 0 22.849 6.558 - - - -

2 0 17.699 5.061 - - - -

5 30 3.316 1.915 1617 54 1978 652

7 77 2.029 1.783 758 63 1951 762

Table 6.4 Average performance for NARX in the P5 problem: class of BFGS

Algorithm #Hid.
Conv

(%)

MSE

(%)

STD

(%)

Epochs

Ave Min Max Std

BFGS

1 15 24.979 6.004 903 254 1983 1003

2 31 11.370 4.137 688 121 1537 892

5 59 3.862 1.662 373 72 1244 538

7 68 1.979 0.721 146 63 893 301

ASCNM-BFGS

1 100 0.551 0.214 14 3 62 10

2 100 0.586 0.470 17 5 53 10

5 100 0.543 0.333 16 3 39 6

7 100 0.595 0.403 15 5 33 5

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 133

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Epochs

T
ra

in
in

g
 E

rr
o
rs

 (
M

S
E

)

BFGS:0.020833

ASCNMBFGS:0.0082552

BFGS

ASCNMBFGS

(a) FFTD

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Epochs

T
ra

in
in

g
 E

rr
o
rs

 (
M

S
E

)

BFGS:0.046875

ASCNMBFGS:0.009641

BFGS

ASCNMBFGS

(b) LRN

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 134

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Epochs

M
S

E

BFGS

ASCNM-BFGS

(c) NARX

Figure 6.4 Examples of learning behaviours of 3 RNNs for the P5 problem, BFGS vs.

ASCNMBFGS: (a) FFTD, (b) LRN and (c) NARX

As shown in Tables 6.2-6.4, the performance of the new method for the P5 problem

employing three different neural architectures, i.e. FFTD, LRN and NARX, using 1,

2, 5 or 7 hidden nodes is always better than the original BFGS. For example,

BFGS-trained NARX networks using 5 hidden nodes converged in 59 out of 100

runs (see Table 6.4), exhibiting a 100-run average MSE of 0.09229, while the

proposed method reaches 100% convergence rate with improvements that are 6

times better in terms of MSE, 22 times smaller in the average and minimum number

of training epochs, 30 times smaller in the maximum number of training epochs, and

a 88 times smaller in the value of standard deviation for the converged runs.

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 135

Table 6.5 Average performance for FFTD in the P10 problem: class of BFGS

Algorithm #hid
Conv

(%)

MSE

(%)

STD

(%)

Epoch

Ave Min Max Std

BFGS

1 0 24.977 7.599 - - - -

2 0 23.307 6.736 - - - -

5 0 14.067 4.325 - - - -

7 4 9.612 5.827 2022 1047 3091 859

10 12 6.428 3.283 3697 327 3949 912

ASCNM-BFGS

1 0 24.925 6.382 - - - -

2 0 23.349 6.931 - - - -

5 1 11.253 2.966 1520 1520 1520 0

7 15 2.938 1.991 1848 711 3743 856

10 57 1.786 0.824 2798 671 3983 1198

Table 6.6 Average performance for LRN in the P10 problem: class of BFGS

Algorithm #hid
Conv

(%)

MSE

(%)

STD

(%)

Epoch

Ave Min Max Std

BFGS

1 0 24.862 8.126 - - - -

10 0 5.873 3.463 - - - -

ASCNM-BFGS

1 0 24.794 6.210 - - - -

10 100 0.964 0.026 1736 889 1970 841

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 136

Table 6.7 Average performance for NARX in the P10 problem: class of BFGS

Algorithm #hid
Conv

(%)

MSE

(%)

STD

(%)

Epochs

Ave Min Max Std

BFGS

1 0 24.998 8.037 - - - -

2 0 17.632 5.440 - - - -

5 34 7.659 3.131 1352 591 3439 1387

7 52 4.205 1.984 855 273 2155 601

10 67 3.837 2.003 492 107 1563 489

ASCNM-BFGS

1 100 0.788 0.136 13 4 121 12

2 100 0.739 0.147 21 6 91 14

5 100 0.742 0.230 18 6 40 6

7 100 0.726 0.177 17 5 30 5

10 100 0.730 0.206 18 5 28 4

In general, experimental results in Tables 6.2-6.7 provide evidence that the new

method is able to locate minimisers with smaller function values than the original

method, which is important in certain real-world problems to provide good

generalisation. For example, in Table 6.5, 12% of the BFGS-trained FFTD networks

reached an MSE=0.01 in a maximum of 3949 epochs, while the average MSE

achieved by BFGS in that case was 0.06428. That was caused by the fact that the

majority of the BFGS-trained networks did not reach the MSE goal within 4000

training epochs; some of them stuck to minima with higher function values while

others failed to converge because of instabilities in the Hessian. When BFGS fails to

reach the error goal we only provide the average error obtained. Also a 0%

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 137

convergence in Tables 6.2-6.3 and 6.5-6.7 indicates that not a single run of the BFGS

method converged within the predefined number of epochs, and since only epochs of

the converged runs are reported, we enter the symbol “-” in the corresponding cells.

We observed that the ASCNM-BFGS method provided consistently a stable

behaviour with the use of the scaling factor and a better ability to escape from

swallow local minima, which could be attributed to its nonmonotone behaviour;

some examples of improved learning behaviour are illustrated in Figures 6.4-6.5.

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Epochs

M
S

E

BFGS

ASCNM-BFGS

(a) FFTD

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 138

0 100 200 300 400 500 600 700 800
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Epochs

M
S

E

BFGS

ASCNM-BFGS

(b) LRN

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Epochs

M
S

E

BFGS

ASCNM-BFGS

(c) NARX

Figure 6.5 Examples of learning behaviours of 3 RNNs for the P10 problem, BFGS

vs. ASCNMBFGS: (a) FFTD, (b) LRN and (c) NARX

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 139

6.4.2 The Sequence Classification Problem

The 100-run averaged results are shown in Table 6.8, while learning examples are in

Figure 6.6. Table 6.8 shows the average performance in terms of MSE (%) achieved

in training and CE (%) in testing. In all cases, the proposed algorithm achieves better

MSE, from 0.1% to 12%, and CE, from 0.2% to about 20%, with LRNs producing

better generalisation (i.e. lower CE) than the other RNNs. Examples of learning

behaviours are in Figure 6.6, showing how the nonmonotone strategy helps locating

minimisers with lower error values, which leads to lower average classification error

in testing (cf. with Table 6.8).

Table 6.8 Average performance for 3 RNNs in the SC problem: class of BFGS

RNN Algorithm
Training Testing

MSE (%) STD (%) CE (%) STD (%)

FFTD

BFGS 21.484 6.247 33.363 8.772

ASCNM-BFGS 20.326 4.891 32.041 7.213

LRN

BFGS 21.518 5.903 32.301 7.867

ASCNM-BFGS 9.175 2.213 11.534 4.566

NARX

BFGS 7.496 4.259 27.247 7.386

ASCNM-BFGS 7.100 3.881 27.082 6.832

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 140

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

Epochs

M
S

E

BFGS

ASCNM-BFGS

(a) FFTD

0 50 100 150 200 250
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Epochs

M
S

E

BFGS

ASCNM-BFGS

(b) LRN

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 141

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

Epochs

M
S

E

BFGS

ASCNM-BFGS

(c) NARX

Figure 6.6 Examples of learning behaviours of 3 RNNs for the SC problem, BFGS

vs. ASCNMBFGS: (a) FFTD, (b) LRN and (c) NARX

6.4.3 The Sequence Learning Problem

We made 100 runs for each of the three RNN architectures to estimate the average

generalisation performance of the two algorithms. It is worth mentioning that the

results in Table 6.9 were achieved using RNNs with 10 hidden nodes, while the work

in [124] requires 16 hidden nodes to produce an average MSE of 25% using a

first-order training method. For the purpose of further comparison another set of

simulations were carried out for the NARX networks, as shown in Table 6.10, with 2,

5 and 10 hidden nodes. Typical examples of learning behaviours for the three RNNs

are provided in Figure 6.7.

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 142

Table 6.9 Average performance for 3 RNNs in the SL problem: class of BFGS.

RNN Algorithm

Training Testing

MSE (%) STD (%) MSE (%) STD (%)

FFTD

BFGS 21.485 9.027 17.437 16.128

ASCNM-BFGS 17.275 6.537 15.457 7.117

LRN

BFGS 23.347 7.820 16.492 14.371

ASCNM-BFGS 17.854 6.233 15.070 6.821

NARX

BFGS 8.991 3.435 9.846 5.823

ASCNM-BFGS 7.584 2.428 8.313 3.007

Table 6.10 Average MSEs values for NARX networks in the SL problem: class of

BFGS.

Algorithm #hid

Training Testing

MSE (%) STD (%) MSE (%) STD (%)

BFGS

2 20.196 10.267 20.824 9.782

5 11.029 6.641 12.119 6.020

10 8.991 3.435 9.846 5.823

ASCNM-BFGS

2 19.972 8.621 20.792 8.883

5 9.740 5.418 10.360 5.892

10 7.584 2.428 8.313 3.007

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 143

0 50 100 150 200 250 300 350 400

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Epochs

M
S

E

BFGS

ASCNM-BFGS

(a) FFTD

0 100 200 300 400 500 600

0.2

0.25

0.3

0.35

0.4

Epochs

M
S

E

BFGS

ASCNM-BFGS

(b) LRN

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 144

0 50 100 150 200 250 300 350 400 450 500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

M
S

E

BFGS

ASCNM-BFGS

(c) NARX

Figure 6.7 Examples of learning behaviours of 3 RNNs for the SL problem, BFGS vs.

ASCNMBFGS: (a) FFTD, (b) LRN and (c) NARX

Tables 6.11-6.13 exhibit the results of additional simulations for FFTD, LRN and

NARX networks in order to explore the generalisation performance when additional

training iterations take place, as done in Subsections 4.4.3, 5.4.3.

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 145

Table 6.11 Results of additional simulations for FFTD networks in the SL problem:

class of BFGS

Algorithms

200-epoch 1000-epoch

Train

(MSE/CE)

Test

(MSE/CE)

Train

(MSE/CE)

Test

(MSE/CE)

BFGS 20.5/71.9 21.1/73.4 16.6/40.3 17.4/45.1

ANM-BFGS 16.4/40.2 16.9/40.8 14.7/32.5 15.1/38.4

Table 6.12 Results of additional simulations for LRN networks in the SL problem:

class of BFGS

Algorithms

200-epoch 1000-epoch

Train

(MSE/CE)

Test

(MSE/CE)

Train

(MSE/CE)

Test

(MSE/CE)

BFGS 20.6/72.1 16.0/39.6 14.2/31.7 15.0/38.5

ANM-BFGS 15.6/39.3 14.8/37.8 11.0/26.7 13.5/29.9

Table 6.13 Results of additional simulations for NARX networks in the SL problem:

class of BFGS

Algorithms

200-epoch 1000-epoch

Train

(MSE/CE)

Test

(MSE/CE)

Train

(MSE/CE)

Test

(MSE/CE)

BFGS 7.8/20.1 9.4/23.5 7.2/19.4 8.7/21.6

ANM-BFGS 6.0/17.6 7.9/20.3 5.8/17.0 7.4/19.9

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 146

6.4.4 The Reading Aloud Problem

This task requires a special RNN architecture and is computationally expensive in

training. As our purpose was to test the new method on standard RNN architectures,

we didn‟t deploy the special architecture proposed by [158] which was trained for

1900 epochs. Instead, we used general type RNNs, i.e. FFTD and NARX networks,

with only 5 hidden nodes that produced good results in previous tests, and trained

them for 500 epochs. Figure 6.8 presents examples of convergence behaviour for

BFGS and the ASCNMBFGS. The computational cost was still very high but we

produced good solutions (see Table 6.14) using the ASCNMBFGS and BFGS

algorithm. The heuristic parameters were set to the same values as in the parity

problems. It is worth mentioning the error reported in [158] was applied 100 hidden

nodes and 3 times larger number of training epochs.

Table 6.14 Average performance for two RNN architectures in the RA problem: class

of BFGS.

RNNs Algorithm #hid
Training Testing

MSE (%) STD (%) MSE (%) STD (%)

FFTD

BFGS

5 10.665 5.298 18.716 7.625

10 6.982 3.613 15.840 5.834

ASCNM-BFGS

5 9.558 4.779 18.143 7.032

10 6.081 3.043 15.652 4.990

NARX

BFGS

5 8.589 4.106 16.625 5.428

10 6.248 2.733 15.407 3.961

ASCNM-BFGS

5 7.080 2.824 16.106 4.752

10 5.184 3.039 14.547 4.006

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 147

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Epochs

M
S

E

BFGS

ASCNM-BFGS

(a) FFTD

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Epochs

M
S

E

BFGS

ASCNM-BFGS

(b) NARX

Figure. 6.8 Behaviours of BFGS and our method for training (a) FFTD and (b)

NARX networks on the RA problem

Chapter 6. Adaptive Self-Scaling Nonmonotone BFGS Algorithm

 148

6.5 Summary and Contribution of the Chapter

In this chapter we proposed a nonmonotone approach which is based on the BFGS

method, a well-known quasi-Newton method. It employs self-scaling of the

approximations of the Hessian matrix. Furthermore, it is equipped with an adaptive

nonmonotone strategy to better exploit information collected as it searches the space

of the adjustable parameters. Comparing to the traditional monotone learning

approach, our experiments using various data sequences provide evidence that the

self-scaling BFGS with Adaptive Nonmonotone Strategy enhances the convergence

behaviour of RNNs and is more effective for training networks of various RNN

architectures than the BFGS, even when hidden nodes‟ numbers are smaller than the

ones typically reported in the literature for these problems.

149

Chapter 7

Adaptive Nonmonotone

Levenberg-Marquardt Algorithms

Equipped with a damping factor, the Levenberg-Marquardt (LM, so-called damped

Gauss-Newton) methods [106][121] are capable of relaxing the difficulties of

Hessian-based training, i.e. the ill-conditioning of the Hessian matrix. In addition,

when the damping factor is zero, the LM methods become identical to the

Gauss-Newton approach; while as the damping factor gets close to infinity, the LM

methods are then get equivalent to the steepest descent method. More details are

provided within this chapter and can also be found in the latest relevant literature

such as [129][130].

In the rest of this chapter, the original LM methods [106][121] are firstly reviewed in

Section 7.1 with a discussion of their applications to train neural networks [7][42][60]

[84][97][105][134][149][171][191][192][198][208][215] and a formulation of the

learning problem [7][85][106][121]. After discussing global convergence for

monotone [7] and nonmonotone [213] LM methods in Section 7.2, we present the

proposed nonmonotone algorithms in Section 7.3. Experimental results for two

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 150

artificial (i.e., N-bit parity, P5 and P10) and three real-world (i.e., SC [116], SL [124]

and RA [158]) on three different RNNs architectures (i.e. FFTD [196][197], LRN

[57][85] and NARX [128][137]) are provided in Section 7.4, while Section 7.5

concludes this chapter. Note that full descriptions of the simulated applications,

relative structural settings, and definitions of the applied RNNs can be found in

Appendix A.1 and Section 2.1, respectively.

7.1 Levenberg-Marquardt Methods

Since the first attempt [85] to train static neural networks, the Levenberg-Marquardt

(LM) method [106][121] has been revised to incorporate adaptive-momentum terms

[7] and attracted a lot of attention in training neural networks [43][60][97][105][134]

[149][171][191][192][198][208][215]. Among these works only [43][134][171]

concern dynamic or recurrent neural networks (RNN) mostly for time-series

problems. All these LM-type algorithms are descent methods, i.e. they accept the

next weight iterate if its associated error function value is smaller than the value of

the current iterate. This property of monotonicity ensures that each successful

iteration produces a weight set that is better than any previous one in terms of

learning error value.

From the perspective of the Levenberg-Marquardt method, the error function E is a

nonlinear least-square problem with zero or small residual:

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 151

         
2 2

12
1 2 1 2 ,

p

ii
E w e w e w


   (7. 1)

where the i
th

 component of the p-dimensional vector e(w) is

      ,i i ii
e w y w y w  (7. 2)

 (7.3)

with the network‟s output y and desired output ,y and  ie w is twice

continuously differentiable,  e w is termed residual at w.

Assume that the current approximation to the solution of the above problem is kw

and
kJ denotes the Jacobian matrix of e(w), if 0,k k kg J e  then the LM method

is based on a set of linear equations in order to determine the increment ,k the

so-called optimal step or Newton step

  ,k k k k kH D g    (7.4)

where ,T

k k kH J J k represents a nonnegative scalar,  k kD D w is a continuous,

positive-definite diagonal matrix.

Besides the most common way that considers

  ,D w I (7.5)

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 152

where constant 0  and I the identity matrix,  D w can be chosen as

        11 22diag , , , ,nmD w H w H w H w I  (7.6)

where  ii
H w is the i-th diagonal element of  H w and  a small positive

constant. As with other second-order methods, this formulation assumes that we can

have a local quadratic approximation of E denoted by E ,

     , 1 2 ,T T

k k k k k k kE w w E w g H     (7.7)

which is defined in Eq. (7.7). More details and discussions about the LM method can

be found in the literature, such as in [7][85][106][121]. Note that k in Eq. (7.4)

controls both the magnitude and direction of .k When k is zero, Eq. (7.4) is

identical to the Gauss-Newton method; while as k is closed to infinity, Eq. (7.4) is

equivalent to the steepest descent method. For easy reference, we recall the

pseudo-code of the monotone LM method (MLM) here.

Table 7.1 The monotone Levenberg-Marquardt algorithm

UMLM Algorithm U [106][121]

STEP 0. Initialize 0 0,  1,   0,1 , 
0 ,w 0 ,D and 0k  ;

STEP 1. If 0,k k kg J e  calculate ;T

k k kH J J otherwise, stop;

STEP 2. Compute k in Eq. (7.4);

STEP 3. Calculate

     1 , , ,k k k k k k k kE E E w w E w w 
      (7.8)

where E is defined by Eq. (7.7);

STEP 4. If ,k  set k k  and go to Step 2; Else, k k   and

1 ;k k kw w   

STEP 5. Set 1,k k  go to STEP 1.

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 153

In the following sections, we explore the possibility of removing the monotonicity

restriction by equipping LM methods with strategy that allows the sequence of error

values at the weight iterates to be nonmonotone. To this end, we develop

nonmonotone versions of two LM algorithms, which were originally proposed for

training static neural networks [7], i.e. the LM with adaptive momentum (LMAM)

and the optimised LMAM (OLMAM). In the original work, these methods were

comparatively evaluated against the original LM, the BFGS method, and conjugate

gradient algorithms, and achieved outstanding performances on three applications,

i.e. one N-bit parity problem and two non-symbolic classification problems.

7.2 Global Convergence

In this section, we briefly review the theory for global convergence of nonmonotone

LM methods [213] in relation to the methods proposed in [7]. For both works, [7]

and [213], the following assumptions were firstly made, which are the hypotheses of

the Zoutendijk‟s theorem.

Assumptions [7][213]. The error function E is bounded and continuously

differentiable in a neighborhood N of the level set  0 0() () () ,nL w w R E w E w  

while L is compact.

Similar to the first Wolfe‟s condition referred in [7], i.e.

    
0
max ,k k k j

j M
E w E w 

 
    (7.9)

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 154

where  is an adaptive term that measures the sufficiency of the error decrease, the

so-called forcing function. Moreover, [213] proved there exists constant 0  such

that the inequality (7.9) holds, while the second Wolfe‟s condition was ignored. Then,

under the above Assumptions, the following three theorems were proved [213].

Theorem 7.1 [213]. If the sequence  kw is generated by the NMLM1 & NMLM2

(both algorithms are described in Appendix A.2), then

liminf 0.k
k

g


 (7.10)

Theorem 7.2 [213]. If sequence  kw is generated by the NMLM1, and if the

approximated Hessian matrix ()kT w is uniformly positive definite for sufficiently

large k, then

lim 0.k
k

g


 (7.11)

Furthermore, if the set of stationary points of  E w is finite, say  1 , , ,mw w 

then there is an integer q, 1 ,q m  such that

lim .k q
k

w w


 (7.12)

Theorem 7.3 [213]. Suppose that w
 is the unique stationary point of  f w on

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 155

 0 ,L w   0,f w  and  T w is positive definite. If  kw is generated by

NMLM1, then

lim .k
k

w w


 (7.13)

Comparing to [7], only Eq. (7.11) in Theorem 7.2 was proved by applying

Zoutendijk‟s theorem.

7.3 Our Proposed Algorithms

Our proposed revisions of LMAN and OLMAN [7], named Adaptive Non-Monotone

LMAM (ANM-LMAM) and Adaptive Non-Monotone OLMAM (ANM-OLMAM),

are as follows. Compared to the standard monotone LM algorithm, presented in

Table 7.1, STEP 2 of the LMAM method includes two adaptive momentum terms,

i.e., 1 and .2 , defined in Eqs. (7.15) and (7.16).

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 156

Table 7.2 Adaptive nonmonotone LM method with adaptive momentum

UAlgorithm: ANM-LMAMU

STEP 0. Initialize 1,  ,
0 ,w 0 ,D max ,M ,  0,1 ,   0,1 , c, and 0;k 

STEP 1. If 0,k k kg J e  calculate ;T

k k kH J J otherwise, stop;

STEP 2. Compute
k by

 
1

1
1

2 2

1
,

2 2
k k k k k kH D g


  

 



      (7.14)

where

2
1 1

2
,

T

k k

T

k k k

g

g H g

  




 
 (7.15)

 
1

2 21

1 1

2 1 2 2

1
,

2

T T T

k k k k k k k k

T

k k k

H g H g g

g H g

  






 



  
 
  
 

 (7.16)

and

 
1 2

1 ;T

k k kc g H g    (7.17)

STEP 3. If k ≥ 1, calculate the local Lipschitz approximation
k

 by

1

1

,k k
k

k k

g g

w w






 


 (7.18)

and update
kM by

1 1 2

1 1 2

1

1, if

1, if ,

, otherwise,

k k k k

k k k k k

k

M

M M

M

  

  



     

      







 (7.19)

where  maxmin , ;k kM M M

STEP 4. If Eq. (7.9) is not satisfied, k k  and go to Step 2;

Else, k k   and 1 ;k k kw w   

STEP 5. 1,k k  go to Step 1.

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 157

To derive the ANM-OLMAM algorithm, following the OLMAM method‟s

description in [7], the two constants  and c, which are initialized in Step 0 and

used in Step 2, are revised by

 
1 2

1 ,T

k k kg H g  (7.20)

and

 
1 2

2

1

1

1

1 .

T

k k

T T

k k k k k k

g
c

g H g H



 







 
  
 
 

 (7.21)

Therefore, following the changes in Step 0 and Step 2, we have the second proposed

LM-like algorithm, i.e. ANM-OLMAM. The derivation processes of Eqs.

(7.10)-(7.13) and (7.16)-(7.17) can be found in [7].

As reported in [7], the settings of the first Wolfe condition are 0.1  and the

forcing function ;T

k kg   therefore, comparing to LMAM and OLMAM, there is

only one extra free parameter within our proposed algorithms, i.e. the upper bound of

nonmonotone learning horizon M
k
. As already stated in previous chapters, we have

found setting M
max

 to 15 generally provides good performance in all applications

[145][146].

Examples of convergence behaviour for ANM-LMAM and ANM-OLMAM trained

NARX networks (7 hidden nodes for the P5 and 10 for the P10 were used, as listed

in Table A.1) are shown in Figures 7.1 and 7.2 using relatively small training goals.

Despite temporary reductions in the size of the sliding window, Figures 7.1 and 7.2

show that there is a trend to enlarge the length of the window and that the methods

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 158

produce from time to time large values for elements of
k , which speeds up the

process. It is worth noticing that this behaviour is in accordance with theoretical and

empirical results about the behaviour of nonmonotone methods [82][79][146].

Examples of nonmonotone convergence behaviours for the simulated problems are

provided in the next section.

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 159

0 50 100 150 200 250 300
0

0.5

epochs

M
S

E

ANM-LMAM:5.8734e-104

0 50 100 150 200 250 300
-100

0

100

epochs

b
et

a

0 50 100 150 200 250 300
0

10

20

epochs

M

0 100 200 300 400 500 600
0

0.5

epochs

M
S

E

ANM-OLMAM:9.427e-009

0 100 200 300 400 500 600
-2000

0

2000

b
e

ta

epochs

0 100 200 300 400 500 600
0

10

20

epochs

M

Figure 7.1 Convergence behaviours of ANM-LMAM and ANM-OLMAM in the P5

problem for NARX networks

ANM-LMAM

ANM-OLMAM

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 160

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

epochs

M
S

E

0 500 1000 1500 2000 2500 3000 3500 4000
-200

0

200

epochs

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

epochs

M
be

ta

ANM-LMAM

0 10 20 30 40 50 60 70 80
0

0.5

epochs

M
S

E

0 10 20 30 40 50 60 70 80
-200

0

200

b
e

ta

epochs

0 10 20 30 40 50 60 70 80
0

10

20

epochs

M

ANM-OLMAM

Figure 7.2 Convergence behaviours of (a) ANM-LMAM and (b) ANM-OLMAM in

the P10 problem for NARX networks

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 161

7.4 Experimental Results

As mentioned in previous chapters, relative references and numerical settings of

the simulations in this thesis can be found in Appendix (A.1), i.e. types of RNNs,

amounts of hidden nodes, relative delays, boundaries of learning horizon M, and the

constant  used for the nonmonotone strategy, while all results shown are the

average of 100 runs initialised randomly. MSE and CE values are shown in

percentage, while the STD column represents the corresponding standard deviation.

The forcing function  is the same as the one applied in Chapters 4, 5 and 6, while

the other parameters are set to 2,  0.03, 0.95,c  and
0D denotes the

identity matrix. Details about the notations used in the following Tables can be found

in Section 4.4.

7.4.1 N-bit Parity Problems

Simulation results of the P5 problem are shown in Tables 7.3-7.5, while Tables

7.6-7.8 exhibit results for the P10 problem. From these results it can be easily

observed that all the monotone versions of LM methods, i.e. LM, LMAM and

OLMAM, failed to converge and were trapped in some local minimum points, while

the proposed nonmonotone modifications, i.e., ANM-LMAM and ANM-OLMAM,

perform generally much better. Although there are some non-converged cases for

ANM-OLMAM trained networks with 1 or 2 hidden nodes, as shown in Table 7.7,

the average MSEs for 100-runs when using 1 or 2 hidden nodes are about 13% better

than the ones achieved by OLMAM. Examples of learning behaviours for the P5 and

P10 problems are shown in Figures 7.3 and 7.4, respectively.

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 162

Table 7.3 Average performance for FFTD networks in the P5 problem: class of LM.

Algorithms #hid
Conv

(%)

MSE

(%)

STD

(%)

Epochs

Ave Min Max Std

LM

1 0 37.686 2.317 - - - -

2 0 38.819 2.592 - - - -

5 0 36.319 3.214 - - - -

7 0 35.945 2.763 - - - -

LMAM

1 0 22.453 3.930 - - - -

2 0 18.328 7.622 - - - -

5 0 35.816 2.338 - - - -

7 0 36.225 2.846 - - - -

ANM-LMAM

1 24 17.855 2.753 62 46 107 11

2 50 10.934 3.105 66 46 151 25

5 67 4.086 1.992 164 47 646 111

7 99 0.910 0.073 172 63 312 52

OLMAM

1 0 36.865 1.995 - - - -

2 0 37.572 2.658 - - - -

5 0 36.057 2.472 - - - -

7 0 35.632 2.208 - - - -

ANM-OLMAM

1 26 16.520 2.335 214 46 587 172

2 43 9.686 1.850 283 46 1194 234

5 85 1.781 1.421 267 46 1883 356

7 99 0.974 0.147 64 37 364 36

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 163

Table 7.4 Average performance for LRN networks in the P5 problem: class of LM.

Algorithms #hid
Conv

(%)

MSE

(%)

STD

(%)

Epochs

Ave Min Max Std

LM

1 0 37.520 2.872 - - - -

2 0 38.462 2.701 - - - -

5 0 36.319 3.338 - - - -

7 0 36.649 2.940 - - - -

LMAM

1 0 37.920 2.717 - - - -

2 0 38.416 3.023 - - - -

5 0 36.319 3.402 - - - -

7 0 36.649 2.785 - - - -

ANM-LMAM

1 20 15.650 3.572 133 54 1439 308

2 37 13.714 2.856 64 46 199 28

5 66 4.325 1.184 165 47 646 111

7 100 0.645 0.032 175 60 427 65

OLMAM

1 0 37.244 2.692 - - - -

2 0 37.912 2.836 - - - -

5 0 36.075 3.307 - - - -

7 0 36.424 2.655 - - - -

ANM-OLMAM

1 9 20.277 4.256 267 57 444 135

2 44 8.731 1.730 282 46 910 233

5 85 1.800 0.954 270 46 1883 363

7 96 1.089 0.147 98 41 1332 165

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 164

Table 7.5 Average performance for NARX networks in the P5 problem: class of LM.

Algorithms #hid
Conv

(%)

MSE

(%)

STD

(%)

Epochs

Ave Min Max Std

LM

1 0 37.953 2.748 - - - -

2 0 37.851 2.503 - - - -

5 0 36.205 2.115 - - - -

7 0 36.391 2.628 - - - -

LMAM

1 0 38.448 3.224 - - - -

2 0 37.851 2.682 - - - -

5 0 36.205 2.006 - - - -

7 0 36.391 2.439 - - - -

ANM-LMAM

1 73 3.032 1.731 108 63 168 21

2 85 2.689 1.340 120 86 204 27

5 99 0.955 0.003 132 89 225 28

7 99 0.970 0.010 155 52 289 40

OLMAM

1 0 38.386 3.309 - - - -

2 0 36.205 2.731 - - - -

5 0 36.093 2.488 - - - -

7 0 36.247 3.067 - - - -

ANM-OLMAM

1 96 0.625 1.047 72 33 571 86

2 95 1.081 0.793 59 37 349 37

5 100 0.945 0.008 47 38 77 6

7 100 0.943 0.008 47 32 80 7

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 165

More precisely, the results show that considerable improvements in terms of MSE

can be achieved by the ANM-LMAM and ANM-OLMAM methods. For example,

when using FFTD networks with 7 hidden nodes both ANM-LMAM and

ANM-OLMAM in Table 7.3 outperform LMAM and OLMAM by 35.2% and 32.5%,

respectively. Similar improvements can be seen in Tables 7.4 and 7.5 for LRNs

(35.9% and 34.2%) and NARX (35.4% and 35.2%) networks. The improvements in

the MSE for the P10 problem using FFTD, LRN and NARX recurrent networks with

10 hidden nodes are approximately 20.7%, 29.7%, 33.4% for the ANM-LMAM, and

35.4%, 32.0%, 24.5% for the ANM-OLMAM, as shown in Tables 7.6-7.8. It also

appears that the ANM-OLMAM converges more times than the ANM-LMAM

consistently. Taking the simulations with 10 hidden nodes in Table 7.8 as an example,

ANM-OLMAM achieves a 100% convergence, with 10 times less training epochs on

average. This result is in line with observations about the behaviour of the original

LMAM and OLMAM in training static neural networks [7].

Figures 7.3-7.4 show some examples of nonmonotone convergence behaviour.

Figure 7.3 provides an example of how the convergence behaviour of ANM-LMAM

and ANM-OLMAM differ in a case where ANM-LMAM has stuck in the

neighbourhood of a local minimum whilst ANM-OLMAM still trains the LRN

network and continuously reduces the training MSE for P5. Similar behaviour is

observed in Figure 7.4 for NARX networks in P10, where ANM-OLMAM appears

to be better than ANM-LMAM.

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 166

0 20 40 60 80 100 120 140 160 180 200
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Epochs

M
S

E

ANM-LMAM

ANM-OLMAM

(a) FFTD

0 20 40 60 80 100 120 140

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Epochs

M
S

E

ANM-LMAM

ANM-OLMAM

(b) LRN

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 167

0 20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

Epochs

M
S

E

ANM-LMAM

ANM-OLMAM

(c) NARX

Figure 7.3 Examples of convergence behaviours of ANM-LMAM and

ANM-OLMAM in the P5 problem for three RNNs

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 168

Table 7.6 Average performance for FFTD networks in the P10 problem: class of

LM.

Algorithms #hid
Conv

(%)

MSE

(%)

STD

(%)

Epochs

Ave Min Max Std

LM

1 0 37.871 3.782 - - - -

2 0 38.623 4.126 - - - -

5 0 36.707 3.006 - - - -

10 0 35.543 2.997 - - - -

LMAM

1 0 24.040 3.116 - - - -

2 0 38.436 3.907 - - - -

5 0 35.825 2.793 - - - -

10 0 27.340 3.670 - - - -

ANM-LMAM

1 0 24.304 3.256 - - - -

2 8 19.822 2.071 699 250 1071 286

5 14 6.970 1.939 869 289 2065 571

10 31 6.669 1.451 968 155 2588 533

OLMAM

1 0 37.715 4.697 - - - -

2 0 38.436 3.852 - - - -

5 0 35.825 2.792 - - - -

10 0 36.157 3.239 - - - -

ANM-OLMAM

1 0 23.931 2.894 - - - -

2 4 20.831 2.383 1149 410 1899 688

5 14 12.975 3.671 815 146 3900 1007

10 51 0.769 1.836 438 69 3760 774

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 169

Table 7.7 Average performance for LRN networks in the P10 problem: class of LM.

Algorithms #hid
Conv

(%)

MSE

(%)

STD

(%)

Epochs

Ave Min Max Std

LM

1 0 37.739 3.529 - - - -

2 0 38.444 3.788 - - - -

5 0 36.801 2.813 - - - -

10 0 36.043 2.954 - - - -

LMAM

1 0 37.744 3.733 - - - -

2 0 38.283 4.107 - - - -

5 0 36.639 3.242 - - - -

10 0 36.122 2.871 - - - -

ANM-LMAM

1 1 23.890 2.847 1959 1959 1959 0

2 4 21.319 2.575 673 599 820 103

5 9 12.689 1.813 761 626 925 221

10 30 6.448 1.045 1047 367 3398 550

OLMAM

1 0 37.744 3.733 - - - -

2 0 38.283 4.107 - - - -

5 0 36.639 3.242 - - - -

10 0 36.122 2.871 - - - -

ANM-OLMAM

1 0 24.089 3.118 - - - -

2 0 22.098 2.707 - - - -

5 18 11.703 1.543 1249 311 2749 1330

10 47 4.160 0.837 467 68 3990 860

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 170

Table 7.8 Average performance for NARX networks in the P10 problem: class of

LM.

Algorithms #hid
Conv

(%)

MSE

(%)

STD

(%)

Epochs

Ave Min Max Std

LM

1 0 37.536 2.797 - - - -

2 0 38.210 3.203 - - - -

5 0 36.283 2.999 - - - -

10 0 35.275 2.740 - - - -

LMAM

1 0 37.933 2.962 - - - -

2 0 37.012 2.719 - - - -

5 0 26.394 4.621 - - - -

10 0 34.434 2.193 - - - -

ANM-LMAM

1 93 1.388 1.925 651 394 834 89

2 95 1.868 1.203 627 413 869 71

5 85 1.823 2.337 563 139 1073 114

10 70 1.002 1.306 592 224 964 119

OLMAM

1 0 37.933 2.714 - - - -

2 0 27.297 6.398 - - - -

5 0 26.973 5.023 - - - -

10 0 25.409 2.711 - - - -

ANM-OLMAM

1 98 0.960 0.046 64 39 293 35

2 98 0.966 0.049 68 41 268 35

5 99 0.958 0.037 54 35 91 12

10 100 0.950 0.033 53 37 159 14

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 171

0 50 100 150 200 250 300 350 400
0.2

0.25

0.3

0.35

0.4

0.45

Epochs

M
S

E

ANM-LMAM

ANM-OLMAM

(a) FFTD

0 50 100 150 200 250 300 350 400
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Epochs

M
S

E

ANM-LMAM

ANM-OLMAM

(b) LRN

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 172

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Epochs

M
S

E

ANM-LMAM

ANM-OLMAM

(c) NARX

Figure 7.4 Examples of convergence behaviours of ANM-LMAM and

ANM-OLMAM in the P10 problem for three RNNs

7.4.2 Sequence Classification Problem

Tables 7.9-7.11 show the results of FFTD, LRN and NARX networks for 3

monotone LM methods and the proposed nonmonotone approaches, while examples

of learning behaviours for the three RNN architectures are provided in Figure 7.5.

From the numerical results of Tables 7.9-7.11, the smallest improvements made by

our proposed nonmonotone algorithms are about 16.6% in MSE and 20.7% in CE,

while 40.5% in MSE and 85.9% in CE for the largest improvements. More details

for different RNNs are provided in Table 7.12.

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 173

Table 7.9 Average performance for FFTD networks in the SC problem: class of LM.

Algorithms #hid

MSE (%) CE (%)

Train/STD Test/STD Train/STD Test/STD

LM

5 40.259/12.102 40.134/14.488 85.325/13.712 64.205/22.274

10 42.174/13.374 42.472/12.843 88.862/14.537 69.438/23.780

15 40.236/11.896 40.715/15.325 87.241/14.661 65.164/23.028

LMAM

5 39.987/12.558 39.289/12.301 86.478/14.070 62.082/21.837.

10 40.753/12.147 40.693/12.476 89.212/14.525 66.315/23.342

15 40.224/12.384 40.235/11.706 86.473/14.193 67.288/24.826

ANM-LMAM

5 24.000/8.734 22.032/8.993 63.837/7.887 39.356/14.782

10 24.874/9.383 22.740/9.572 62.759/7.030 36.247/15.013

15 22.146/7.070 20.780/8.094 65.502/8.127 38.411/14.339

OLMAM

5 39.624/14.307 38.908/16.060 85.596/15.673 61.027/22.947

10 39.509/13.856 39.489/14.986 84.956/14.918 60.370/21.892

15 39.687/14.482 39.703/15.344 85.108/15.702 65.712/24.380

ANM-OLMAM

5 19.226/9.004 17.001/8.991 51.724/6.285 31.507/10.807

10 19.561/9.153 17.301/9.481 52.207/5.432 32.041/11.427

15 19.826/9.543 17.746/9.720 53.936/5.046 32.575/11.921

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 174

Table 7.10 Average performance for LRN networks in the SC problem: class of LM.

Algorithms #hid

MSE (%) CE (%)

Train/STD Test/STD Train/STD Test/STD

LM

5 42.250/11.995 42.404/12.676 87.877/14.147 69.466/21.303

10 41.282/11.036 41.662/11.580 87.030/12.993 63.904/24.677

15 39.715/9.495 39.531/9.177 89.414/13.738 66.411/22.581

LMAM

5 42.328/12.163 42.781/12.277 88.626/11.945 65.685/23.227

10 39.633/12.726 39.793/14.971 87.591/15.261 64.849/22.031

15 40.044/11.839 39.701/11.887 88.789/10.704 66.849/21.364

ANM-LMAM

5 20.817/7.004 17.214/7.358 66.094/8.397 31.973/12.786

10 24.802/8.121 22.182/8.778 63.212/7.401 29.685/11.005

15 25.011/9.730 22.592/9.170 64.261/7.997 29.219/10.792

OLMAM

5 41.999/11.868 42.459/11.913 88.571/11.077 65.164/22.899

10 39.546/12.343 39.230/14.577 85.118/14.981 66.644/23.630

15 41.471/11.395 41.506/12.257 88.153/10.219 64.205/23.388

ANM-OLMAM

5 6.316/1.983 5.508/1.307 24.631/3.975 6.095/1.411

10 6.320/2.017 5.441/1.043 24.631/3.881 5.958/1.103

15 7.133/3.872 6.136/1.729 26.404/4.585 8.095/2.678

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 175

Table 7.11 Average performance for NARX networks in the SC problem: class of

LM.

Algorithms #hid

MSE (%) CE (%)

Train/STD Test/STD Train/STD Test/STD

LM

5 40.161/11.465 39.947/12.602 86.172/14.627 65.082/22.536

10 41.161/12.361 40.947/14.124 85.443/15.478 67.315/23.674

15 41.555/11.840 42.561/14.100 88.478/14.183 63.863/23.801

LMAM

5 42.385/11.614 42.101/12.447 88.000/10.320 69.890/22.933

10 40.192/10.835 39.942/9.997 86.517/9.776 65.589/20.335

15 40.243/10.361 39.949/9.982 87.227/9.871 64.082/21.632

ANM-LMAM

5 18.921/6.949 22.998/8.030 69.069/8.825 45.397/19.803

10 11.701/4.072 13.277/3.718 63.833/6.579 38.658/14.906

15 8.850/5.100 17.938/6.998 66.493/6.947 42.493/17.281

OLMAM

5 40.713/10.074 41.600/11.837 88.044/10.733 65.233/21.739

10 38.586/9.003 38.431/9.238 85.512/8.276 64.466/20.117

15 40.268/9.989 40.145/11.204 89.537/11.372 66.137/21.472

ANM-OLMAM

5 0.617/0.226 12.630/3.782 2.004/0.973 19.397/4.554

10 0.347/0.183 10.954/1.993 1.113/1.207 15.712/3.102

15 0.180/0.087 11.083/3.186 0.758/0.367 16.247/3.972

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 176

0 50 100 150 200 250
0.19

0.2

0.21

0.22

0.23

0.24

0.25

Epochs

M
S

E

ANM-LMAM

0 50 100 150 200 250
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Epochs

M
S

E

ANM-OLMAM

(a) FFTD

0 50 100 150 200 250
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Epochs

M
S

E

ANM-LMAM

0 50 100 150 200

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

Epochs

M
S

E

ANM-OLMAM

(b) LRN

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Epochs

M
S

E

ANM-LMAM

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Epochs

M
S

E

ANM-OLMAM

(c) NARX

Figure 7.5 Examples of convergence behaviours of ANM-LMAM and

ANM-OLMAM in the SC problem for three RNN architectures

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 177

Table 7.12 Average improvement achieved by the nonmonotone LM methods over

their monotone counterparts for the SC problem

Algorithms RNN

MSE (%) CE (%)

Train Test Train Test

ANM-LMAM

FFTD 16.648 18.222 23.355 27.224

LRN 17.125 20.096 23.813 35.502

NARX 27.783 22.953 20.783 24.338

ANM-OLMAM

FFTD 20.484 22.419 34.016 32.310

LRN 33.969 34.956 63.095 58.905

NARX 40.559 29.108 85.956 49.402

Improvements in terms of both MSE and CE were observed for all RNN

architectures when nonmonotone learning methods were used. Taking the average

CE in testing as an example, results for FFTD networks in Table 7.9 show that

networks trained with the ANM-LMAM and ANM-OLMAM methods exhibit

significant reduction in CE compared with the original monotone methods. As

shown in Tables 7.10 and 7.11 improvements for LRNs and NARX networks are

large as well. The largest improvement in testing CE was achieved for

ANM-OLMAM-trained LRNs using 5 hidden nodes: a difference of 59.1% in CE

compared to OLMAM-trained LRNs.

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 178

7.4.3 Sequence Learning Problem

Simulation results of the SL problem are shown in Tables 7.13-7.15, for FFTD, LRN

and NARX networks, respectively, while Figure 7.6 provides examples of learning

behaviours. Tables 7.16-7.18 exhibit results when increasing the number of epochs

from 23 to 200 and then to 1000 epochs. Table 7.19 summaries the average

improvements of our proposed ANMLM methods for the three RNNs.

The results for FFTD networks in Table 7.13 show that improvements in terms of

MSE (%) in testing for ANM-LMAM and ANM-OLMAM range from 0.5% to 3.9%

and from 15.4% to 16.5%, respectively. Improvements in Table 7.14 appear to be

larger for LRN networks, ranging from 0.6% to 14.5% for ANM-LMAM and from

17.2% to 32.1% for ANM-OLMAM. In Table 7.15, ANM-LMAM and

ANM-OLMAM trained NARX networks are 3.0% and 31.4% better respectively

than networks trained with the original monotone versions. Figure 7.6 provides an

example of nonmonotone learning behaviour for NARX showing how

ANM-OLMAM achieves a relative smaller MSE than ANM-LMAM.

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 179

Table 7.13 Average performance for FFTD networks in the SL problem: class of

LM.

Algorithms #hid

Training Testing

MSE (%) STD (%) MSE (%) STD (%)

LM

1 44.045 23.873 43.997 24.023

2 44.388 24.018 44.525 25.129

5 40.646 21.996 40.669 21.634

7 41.108 22.726 40.998 21.836

10 41.063 22.549 41.199 22.037

LMAM

1 46.545 24.518 46.620 24.001

2 42.970 23.076 42.966 24.336

5 41.317 22.672 41.280 24.428

7 41.231 22.901 41.051 22.693

10 41.559 22.892 41.373 23.152

ANM-LMAM

1 42.513 21.373 42.662 22.857

2 42.045 22.167 42.062 22.263

5 40.792 20.637 40.756 21.439

7 40.708 20.552 40.530 21.097

10 41.034 21.348 40.848 21.652

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 180

Table 7.13 Average performance for FFTD networks in the SL problem: class of LM

(cont‟d).

Algorithms #hid

Training Testing

MSE (%) STD (%) MSE (%) STD (%)

OLMAM

1 46.437 24.052 46.547 23.919

2 41.527 22.378 41.511 22.027

5 41.273 23.551 41.294 22.073

7 40.434 22.753 40.517 22.784

10 39.753 22.004 39.836 21.712

ANM-OLMAM

1 30.070 17.233 30.927 18.742

2 27.304 14.592 27.305 14.172

5 25.818 13.848 25.871 14.335

7 25.089 13.863 25.089 15.027

10 24.932 12.045 24.860 12.783

Table 7.14 Average performance for LRN networks in the SL problem: class of LM.

Algorithms #hid

Training Testing

MSE (%) STD (%) MSE (%) STD (%)

LM

1 46.447 23.847 46.639 23.299

2 43.809 22.714 44.011 21.076

5 42.503 22.378 42.468 20.281

7 40.437 22.530 40.554 20.949

10 40.982 21.029 40.828 20.027

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 181

Table 7.14 Average performance for LRN networks in the SL problem: class of LM

(cont‟d).

Algorithms #hid

Training Testing

MSE (%) STD (%) MSE (%) STD (%)

LMAM

1 46.583 23.427 46.765 24.176

2 42.813 23.129 42.885 23.853

5 41.933 21.612 41.686 22.394

7 40.424 21.238 40.454 21.227

10 38.782 20.857 38.703 20.788

ANM-LMAM

1 45.542 22.145 45.718 21.635

2 41.798 21.623 41.957 22.291

5 41.253 21.804 41.028 21.982

7 39.763 20.061 39.813 19.169

10 24.209 18.776 24.229 19.438

OLMAM

1 46.927 22.712 46.564 23.927

2 43.358 21.489 43.592 21.367

5 40.695 19.687 40.711 20.474

7 40.966 20.323 40.994 20.755

10 39.995 19.128 39.795 19.762

ANM-OLMAM

1 26.482 17.448 26.815 17.629

2 24.946 16.002 25.667 17.241

5 20.555 14.127 21.794 14.924

7 17.068 11.341 18.302 11.877

10 10.203 7.865 10.867 8.048

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 182

Table 7.15 Average performance for NARX networks in the SL problem: class of

LM.

Algorithms #hid

Training Testing

MSE (%) STD (%) MSE (%) STD (%)

LM

1 47.467 23.129 47.981 23.730

2 42.918 22.908 43.233 22.675

5 40.843 21.437 40.728 21.661

7 39.012 21..010 39.548 22.476

10 40.672 22.105 40.602 22.240

LMAM

1 46.665 22.672 46.176 23.237

2 42.892 21.859 43.249 22.541

5 41.548 21.178 41.805 21.704

7 41.713 22.603 41.142 23.813

10 40.813 21.230 40.723 21.392

ANM-LMAM

1 45.784 21.917 46.132 22.342

2 43.331 21.265 43.505 21.493

5 39.427 20.222 38.871 19.904

7 39.190 20.197 38.631 19.737

10 40.039 21.989 39.949 20.556

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 183

Table 7.15 Average performance for NARX networks in the SL problem: class of

LM (cont‟d).

Algorithms #hid

Training Testing

MSE (%) STD (%) MSE (%) STD (%)

OLMAM

1 45.729 21.007 45.866 22.571

2 44.246 20.379 43.918 22.097

5 41.380 20.827 41.213 20.329

7 40.071 20.520 40.027 20.125

10 40.672 21.833 40.602 20.578

ANM-OLMAM

1 21.773 12.487 22.142 13.625

2 14.937 9.843 15.552 11.450

5 11.540 7.204 11.831 7.925

7 12.836 8.746 12.919 9.186

10 9.115 5.044 9.374 6.458

Referring to the errors for each prediction, this tends to be high when predicting

consonants and low when predicting vowels. Given the semi-random nature of the

sequence, this behaviour is not unusual: once a network has received a consonant at

the input, it learns to predict the identity of the following vowel but at the end of the

vowel sequence it has no way to predict what the next consonant will be; thus it

produces a high error at these time points. In order to investigate the generalisation

performance of the RNNs further we conducted additional tests using RNNs with

10-hidden nodes. These were trained for 1000 epochs and were tested using a

randomly generated sequence of length 30 that conformed to the same regularities

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 184

that underlie the training sequence. In Tables 7.16-7-18, results are presented in the

form of MSE/CE (in percentage) obtained after 200 and 1000 epochs in both training

and testing. Note that the notation “--” used in these tables indicates that the

monotone LMAM and OLMAM failed to train the RNNs because they got stuck,

and as the result, both the training and testing MSE/CE values were identical to the

ones reached at the 200th-epoch. In contrast, results for the nonmonotone methods

indicate that they have potential to improve error performance as training progresses

successfully beyond 200 epochs (up to the termination condition of 1000 epochs).

This allows ANM-LMAM and ANM-OLMAM to achieve significant reductions in

the MSE/CE (%) values for all RNN architectures in this task.

Table 7.16 Results of additional simulations for FFTD networks in the SL problem:

class of LM.

Algorithms

200-epoch 1000-epoch

Train

(MSE/CE)

Test

(MSE/CE)

Train

(MSE/CE)

Test

(MSE/CE)

LMAM 43.7/91.7 45.0/93.6 -- --

ANM-LMAM 37.3/83.6 39.7/86.8 22.9/67.1 22.8/69.4

OLMAM 41.5/88.9 43.4/91.3 -- --

ANM-OLMAM 33.2/74.1 34.4/78.2 21.7/64.0 22.3/66.8

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 185

Table 7.17 Results of additional simulations for LRN networks in the SL problem:

class of LM.

Algorithms

200-epoch 1000-epoch

Train

(MSE/CE)

Test

(MSE/CE)

Train

(MSE/CE)

Test

(MSE/CE)

LMAM 40.6/88.1 39.5/87.4 -- --

ANM-LMAM 22.7/79.9 23.1/81.2 16.3/47.6 18.2/53.2

OLMAM 36.5/84.4 34.9/85.0 -- --

ANM-OLMAM 9.0/45.8 9.4/48.5 5.6/33.3 7.9/42.5

Table 7.18 Results of additional simulations for NARX networks in the SL problem:

class of LM.

Algorithms

200-epoch 1000-epoch

Train

(MSE/CE)

Test

(MSE/CE)

Train

(MSE/CE)

Test

(MSE/CE)

LMAM 28.5/89.1 28.1/72.4 -- --

ANM-LMAM 23.3/81.0 22.6/54.5 9.7/21.3 12.4/25.1

OLMAM 26.7/86.7 26.2/69.8 -- --

ANM-OLMAM 7.3/34.2 7.7/43.1 4.2/12.6 5.8/16.9

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 186

Table 7.19 Average improvements achieved by the nonmonotone LM methods over

their monotone counterparts for the SL problem

Algorithms RNN

MSE (%)

Train Test

ANM-LMAM

FFTD 1.306 1.286

LRN 3.594 3.549

NARX 1.172 1.201

ANM-OLMAM

FFTD 15.242 15.131

LRN 22.256 21.410

NARX 28.379 27.961

0 10 20 30 40 50 60
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Epochs

M
S

E

ANM-LMAM

ANM-OLMAM

Figure 7.6 Example of convergence behaviours of ANM-LMAM and

ANM-OLMAM in the SL problem for NARX network

Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms

 187

7.4 Summary and Contribution of the Chapter

The chapter looked at the classical LM methods and explored its application in

training ANNs. A discussion on the global convergence of the nonmonotone versions,

was provided and two adaptive nonmonotone LM approaches were proposed to

investigate the potential of incorporating nonmonotone strategies in LM methods.

Experimental results show that our nonmonotone approaches dramatically improve

LM methods performance, i.e. not only by increasing the speed of learning in the

N-bit parity problems, but also provide more efficient training in two difficult

real-world applications.

In this chapter we developed nonmonotone learning algorithms by equipping the

Levenberg-Marquardt algorithms proposed in [7] with nonmonotone strategy. In this

way we extended the application of the LM with adaptive momentum (LMAM) and

the optimized LMAM (OLMAM) methods to training recurrent neural networks and

enhanced their performance through the use of an adaptive nonmonotone strategy.

We examined the behaviour of these nonmonotone variants in a set of experiments

that involved training RNNs of various dimensions belonging to three different

architectures, i.e., FFTD, ERN, and NARX, in symbolic sequence processing

problems. Results are promising as these algorithmic extensions outperformed the

original monotone versions managing to train effectively RNNs of smaller size than

the original methods and produced better results in testing using unknown data.

188

Chapter 8

Conclusions and Future Works

Recurrent networks constitute an elegant way of increasing the processing

capabilities of feedforward networks to deal with high-dimensional data in the form

of sequences of real vectors and are well known for their power to model temporal

dependencies and process sequences for classification, recognition, and transduction.

Modern RNNs architectures are capable of learning to solve many previously

not-learnable tasks, even in partially observable environments. From the literature

reviews of architectures and learning algorithms for RNNs in Chapter 2, a more

general classification scheme of recurrent architecture was proposed [148] and

highlighted the fact that in the literature very few attempts have been made to train

RNNs by second-order approaches.

By providing a general formulation for the neural networks‟ learning task in Chapter

3, the nature of training neural networks can be considered as a minimisation

problem of unconstrained optimisation. An overview of traditional and classical

methods in the field of nonlinear unconstrained optimisation was then provided,

followed by the introductions of the new class of approaches, i.e. the nonmonotone

learning, which is the main feature of our proposed algorithms.

Chapter 8. Conclusions and Future Works

 189

The aim of this research was to design novel algorithms for training RNNs

effectively and efficiently, in order to tackle the processing problems of temporal

sequences. The new algorithms, i.e. the nonmonotone Rprop, CG, BFGS, and LM

were proposed in Chapters 4-7, respectively.

The reported experimental results show that the goal of this research has been

successfully achieved by the adaptive nonmonotone approaches, in terms of faster

and better rate of convergence, and smaller average training and testing errors.

The proposed algorithms apply an adaptive way to determine the size of the

nonmonotone learning horizon, which prevents the manual setting of

application-dependent constant, i.e. size of learning horizon, alleviating the need for

user defined values. The application of nonmonotone conditions and the adaptive

mechanism provide deterministic nonmonotone training that exploits curvature

information, and as a result, the influence of application-dependent settings can be

eliminated to an extremely small degree.

Despite a variety of available measures to use in these applications, such as the

normalized mean squared error (NMSE), the root mean squared error (RMSE), and

the mean absolute percentage error (MAPE), we have used the MSE as this was used

in the other works in the literature and thus makes comparison of our approach with

other approaches quite straightforward.

In the future we are planning to extend our list of applications, e.g. solve the Reading

Aloud (RA) problem for three different types of RNNs (FFTD, LRN and NARX)

using LM-type of methods (these methods frequently encounter out-of-memory

Chapter 8. Conclusions and Future Works

 190

run-time errors in implementations when high dimensions are required as in RA),

and RA for LRN networks using the JRprop method. Simulations of RNNs in

general, and for the RA problem in particular, require more computational resources

than training static neural networks, and therefore, we are planning to convert our

Matlab codes into other programming languages such as C, or, to upgrade our

computational resources in order to tackle them.

Another extension of our work is to produce an experimental comparison of

nonmonotone conditions, since most of all proposed nonmonotone approaches focus

on proving the properties of their global convergence, and rarely make any

comparison with each other. In Chapter 3 of this thesis we provided an overview of

these approaches, which covers approaches from the first ones proposed up to the

latest published work in this area. Since choosing the right recurrent architecture and

learning algorithm is application-dependent, the choice of applying nonmonotone

conditions is still an open problem in the field of nonlinear optimisation. According

to our experimental results, the proposed adaptive approach can alleviate this

application-dependent nature of nonmonotone learning and reduce the number of

user-defined parameters or constants to a relative small amount.

In our future work we are also planning to extend the applicability of the

nonmonotone approach to other methods of the Rprop family, e.g. develop a

nonmonotone revision of the GRprop [9] and the GJRprop [10].

As the thesis focused on temporal sequence processing problem, and made

simulations on real-world applications of thousands adjustable parameters, as

indicated in Appendix A.1, another part of our future agenda is to extend the

Chapter 8. Conclusions and Future Works

 191

application of nonmonotone methods in other domains such as bioinformatics where

several important problems can be modelled and processed as symbolic sequences.

This will hopefully reveal further information about the ability and limitations of our

proposed nonmonotone learning algorithms.

192

Appendix

A.1 Experimental Applications

The four simulated applications are described in this section, while each of them

with relative reference, problem descriptions, and the setting of parameters and

stopping criteria of the training process. Table A.1 provides a summary of the

number of adjustable parameters for the three RNN architectures with different

amounts of hidden nodes, which are uniformly used in this thesis. In addition, all the

weights and biases of the RNNs applied in this thesis are randomly initialised in the

range of [-1, 1].

A.1.1 The 5-bit and 10-bit Parity Problems

References: [23][40][42][41][51][84][94][98][110][125][136][158] [183]

Problem Description: The class of N-bit parity problems, which are typically

nonlinear separable and possess a multitude of local minima, have been widely used

to verify performances of novel training algorithms, such as in the latest works

[41][84][134][154][182]. In this problem, a one-bit output string, containing either

0 or 1, is generated from an N-bit long input string that consists of values from the

set {0,1}, implementing a parity function. There are 32 and 1024 patterns for the

5-bit (P5) and the 10-bit (P10) problems, respectively.

Appendix

 193

P5 patterns are of the form

1 0 1 0 1  1

while P10 patterns are

1 0 1 1 0 1 1 0 0 0  1,

where the binary string in the left-side of the arrow denotes an input pattern and the

1s on the right side of the arrow denotes the desired output.

Parameters and Stopping Criteria: Training goals for both P5 and P10 are set to

0.01, within 2000 training epochs for P5 and 4000 for P10. When any of these two

conditions, i.e. training goal or epoch, is reached, the training process then stops.

Appendix

 194

A.1.2 The Sequence Classification Problem

Reference: [116]

Problem Description: This problem concerns labelling the task from a sequence of

events presented at the input of the RNNs. In sequence processing problems of this

type, a sequence s = {s1, s2, … sn} is read and a single value, label or pattern c, taken

from a suitable set C, is computed from it. A tracking engine monitors states of

interface objects in a personalised system and produces this sequence of events as a

user interacts with the software. A task consists of a sequence of events, such as

opening a browser window, searching for information, saving information from the

search results or storing bookmarks.

This is a challenging problem as individual users may execute the same task in

slightly different ways, i.e. they generate slightly different event sequences where,

for example, one chain of events generated for a task might be more complex from

another chain of events generated for the same task. Moreover, certain events (e.g. a

mouse right click event) might occur during execution of more than one task making

the sequence more “noisy”. A sequence of 203 events was used for training and a

sequence of 73 events, which was generated by a different user, was used for testing.

Each event is coded by a 36-dimensional binary vector and a task by a 3-dimensional

vector. For example, two of the training vectors are shown below, in the form of

“36-bit input  3-bit output”:

#202: 0000 0000 0000 0001 0000 0000 0000 0000 0000  101

#203: 0000 1000 0000 0000 0000 0000 0000 0000 0000  001.

Appendix

 195

The training sequence is wrapped around so that the first event of the sequence is

presented again after the last one.

Parameters and Stopping Criteria: For this problem, all 10-hidden-node RNNs were

trained 200 epochs and the training goal is set to MSE=0. The amounts of

input/output delays are 5 for FFTD and 1-input-1-output delays for NARX.

Appendix

 196

A.1.3 The Sequence Learning Problem

Reference: [124]

Problem Description: This problem belongs to the class of sequence continuation or

prediction problems, where a processor reads a sequence s1, s2, … sn and produces at

the output a possible continuation of this sequence sn+1, sn+2… Interesting

applications of this approach can be found in time series prediction problems, where

the aim is to predict the future behaviour of a system, and in predictive coding and

compression. If the prediction is good enough in terms of a mean-squared-error type

criterion, the difference between the predicted continuation of the sequence and its

actual continuation may be transmitted using a channel with a lower bandwidth or a

lower bit rate such as in applications of speech coding in digital cellular phone

systems [183].

In the particular instance of the problem, a symbolic sequence is used [57][124]. It

concerns a set of 6 letters, {a,b,d,i,g,u}, where each letter is coded by a

4-dimensional binary vector. The letters formulate the strings {ba}, {dii} and {guuu},

and all possible permutations of these 3 strings are legal. For example, part of a

sequence that one can generate using this alphabet is:

babaguuudiiguuu…

1100 0100 1100 0100 1001 0001 0001 0001 1010 0010 0010 1001 0001 0001 0001…

This type of sequence is semi-random because the consonants occur randomly but

the identity and number of vowels is regular.

Appendix

 197

In terms of sequence processing application, this is a symbolic sequence prediction

task which requires predicting successive letters in a semi-random sequence of 1000

words and each word consists of one of the above 3 consonant-vowel combinations.

This type of serial patterns are longer in duration than those produced in the parity

sequences discussed above, they are of variable length so that a prediction depends

upon a variable amount of temporal context.

The training regime involves presenting each one of the 4-bit input vectors in

sequence. The task for the RNN is to predict the next input, and thus gradually is

learning to predict the vowels from the consonants and also the fact that a consonant

follows the vowels, although it might not be possible to predict which one. So the

best one could expect from an RNN is to predict that all three consonants are equally

likely to occur in word-initial positions but once one of them is received at the input

then the identity and number of the following vowels should be predicted with

accuracy. A sequence of length 2993 (4×2993 binary serial patterns) is used for

training, as in [124]. RNNs are then tested on a shorter sequence of length 30 (4×30

patterns), which conforms to the same regularities that underlie the training sequence

but is created from a different initial randomization. The training sequence is

wrapped around so that the first pattern is presented again after the last one.

Parameters and Stopping Criteria: All RNNs apply 10 hidden nodes, 0.01,  and

training goal is 0.01, where training processes 23 epochs only, as in the original work

[124]. Amounts of delays are as following. NARX networks apply (5,5) input-output

delays and 5 for input-delays for FFTD. Furthermore, 300-epoch simulations were

also carried out, for the sake of comparison of behaviours.

Appendix

 198

A.1.4 The Reading Aloud Problem

Reference: [158]

Problem Description: This task concerns learning the mapping of a set of

orthographic representation to their phonological forms. Both subsets of orthography

and phonology have 3 different parts, i.e. onset, vowel and coda, with 30, 27 and 48,

and 23, 14 and 24 possible characters, respectively. There are 105-dimensional input

patterns and 61-dimensional output patterns, while the training dataset has 2998

patterns. Ideally, a specially designed RNN architecture with 100 hidden nodes,

which is described in detail in [158], is needed to solve this problem. Although in the

original work there is no special testing dataset, we choose 30 words which are not

included in the original training set from an online dictionary in order to verify our

algorithm‟s generalisation ability.

Parameters and Stopping Criteria: 10 hidden nodes and 300 training epochs are

used for this problem, while is set to the same value of the SL problem, i.e., 0.01. 2

delays were applied, i.e., 2 input delays for FFTD, and 2-input-2-output delays for

NARX.

Table A.1 summarises the numbers of RNN adjustable parameters used in the

experiments of the thesis: I/O represents the number of the input and output nodes of

the RNNs, #hid is the number of hidden nodes for each problem and the total

number of RNNs‟ adjustable parameters (weights plus biases) for each one of the

architectures discussed in the thesis (i.e. FFTD, LRN and NARX).

Appendix

 199

Table A.1 Summary of RNN free parameters for the tested problems

Problem

(I/O)
#hid

RNN Architecture

FFTD

[196][197]

LRN

[57][85]

NARX

[128][137]

P5

(5/1)

1 13 9 15

2 25 19 29

5 61 61 71

7 85 99 99

P10

(10/1)

1 23 14 25

2 45 29 49

5 111 86 121

7 155 134 169

10 221 221 241

SC

(36/3)

5 383 228 304

10 763 503 433

15 1143 828 648

SL

(4/4)

1 17 14 25

2 30 26 46

5 69 74 109

7 95 116 151

10 134 194 214

RA

(105/61)

5 1421 921 2031

10 2781 1831 4001

Appendix

 200

A.2 The Nonmonotone LM Algorithms

For the sake of discussion of global convergence for nonmonotone LM approaches

in section 7.2, the two algorithms proposed in [213], i.e. NMLM1 and NMLM2, are

reviewed below.

A.2.1 the NMLM1 Algorithm

0. Choose
0 0, 0, 1,1 0,a        an integer 0,M  an initial point

0 ,x ,

and a continuous, positive-definite and diagonal matrix function  ;W x

1. Set 0,k  compute    00 ;f f x

2. Calculate
kA and  .k kg g x If 0,kg  set *

kx x and stop; otherwise,

compute ;T

k k kT A A

3. Solve the problem  k k k kT W g    to obtain the solution  , ;k k kx  

compute  1 ;k k kf f x   

4. Compute

       () () () 1, , , ,l k k l k l k k k k k k kx f f f x x f x x   
      

    
, if 0;

min , , , , otherwise;
k

k k k k k k k

M

g f x x f x x




   


 

    

where        
1

, ,
2

T

k k k k k k kf x x f g x x x x T x x      and

        () () 1max , , , ,l k l k k k k Mf f x f x f x f x   with the convention that,

for any negative integer  , jj f x does not exist.

Appendix

 201

5. If
 

,kl k
  set

k k  and go to Step 3; otherwise, set
1 ,k k kx x   

1 ;k k   

6. Set 1,k k  k = k +1; go to Step 2.

A.2.2 the NMLM2 Algorithm

This algorithm is similar to the NMLM1 Algorithm except that:

1. The
k and

k in the NMLM1 Algorithm are replaced by

       () () () 1, , , ,l k k l k l k k k k k k kx f f f x x f x x   
      

    
, if 0;

min , , , , otherwise;
k

k k k k k k k

M

g f x x f x x




   


 

    

where         
1

, ;
2

TT

k k k k k k k k kf x x f g x x x x T W x x      

2. When
 

,kl k
  the parameter k in Step 5 is updated by

 1 minmax , ,k k     where min is a positive constant chosen at Step 0.

Appendix

 202

A.3 Publication List

Journal papers

1. UC.-C. PengU and G.D. Magoulas (2008), “Advanced Adaptive Nonmonotone

Conjugate Gradient Training Algorithm for Recurrent Neural Networks”,

International Journal on Artificial Intelligence Tools (IJAIT), 17(5), pp.

963-984.

2. UC.-C. PengU and G.D. Magoulas (2011), “Nonmonotone BFGS-trained

Recurrent Neural Networks for Temporal Sequence Processing”, Applied

Mathematics and Computation, 217(12), pp. 5421-5441.

3. UC.-C. PengU and G.D. Magoulas (forthcoming), “Improved Levenberg-

Marquardt Algorithms for Training Recurrent Neural Networks Using

Adaptive Nonmonotone Strategy”, Neural Computing and Applications.

4. UC.-C. PengU and G.D. Magoulas (under review), “Adaptive Nonmonotone

Resilient Propagation Learning for Recurrent Neural Networks”, Applied

Numerical Mathematics.

Book chapter

5. UC.-C. PengU and G.D. Magoulas (2008), “Sequence Processing with

Recurrent Neural Networks”, Encyclopedia of Artificial Intelligence, ISBN:

9781599048499, pp. 1411-1417.

Conference papers

6. UC.-C. PengU and G.D. Magoulas (2007), “Effective Modification of BFGS

Appendix

 203

Method for Training Recurrent Neural Networks”, Proc. Conf. Numerical

Analysis (NumAn’07), 3-7 September 2007, Kalamata, Greece, pp. 113-117.

7. UC.-C. PengU and G.D. Magoulas (2007), “Adaptive Self-Scaling

Non-Monotone BFGS Training Algorithm for Recurrent Neural Networks”,

Proc. Int’l Conf. Artificial Neural Networks 2007 (ICANN’07), 9-13

September 2007, Porto, Portugal, pp. 259-268.

8. UC.-C. PengU and G.D. Magoulas (2007), “Adaptive Nonmonotone Conjugate

Gradient Training Algorithm for Recurrent Neural Networks”, Proc. 19
th

IEEE Int’l Conf. Tools with Artificial Intelligence 2007 (ICTAI’07), 29-31

October 2007, Patras, Greece, pp. 374-381.

9. UC.-C. PengU and G.D. Magoulas (2009), “Nonmonotone Learning of

Recurrent Neural Networks in Symbolic Sequence Processing Application”,

Proc. 11
th

 Int’l Conf. Engineering Applications of Neural Networks

(EANN’09), 22-29 August 2009, London, England, pp. 325-335.

Workshop paper

10. UC.-C. PengU and G.D. Magoulas (2007), “Second-order Algorithm Based on

the BFGS Update Rule for Training Recurrent Neural Architectures”, Proc.

2007 UK Workshop on Computational Intelligence (UKCI), 23-24 July,

London, 2007.

204

References

[1] Abraham, A. (2004). Meta learning evolutionary artificial neural networks.

Neurocomputing, 56, 1-38.

[2] Adamowski, J. F. (2008). Development of Levenberg-Marquardt, Resilient

Back-Propagation, and Conjugate Gradient Powell-Beale Artificial Neural

Networks for Peak Urban Water Demand Forecasting in Nicosia, Cyprus,

American Geophysical Union Fall Meeting Abstracts, C874.

[3] Adeli, H. & Hunc, S.L. (1994). An adaptive conjugate gradient learning

algorithm for efficient training of neural networks, Applied Mathematics and

Computation, 62(1), 81-102.

[4] Aizenberg, I., Paliy, D.V., Zurada, J.M. & Astola, J.T. (2008). Blur

Identification by Multilayer Neural Network Based on Multivalued Neurons,

IEEE Trans. Neural Networks, 19(5), 883-898.

[5] Al-Baali, M. (1998). Numerical experience with a class of self-scaling

quasi-Newton algorithms, J. Optimization Theory and Applications, 96(3),

533–553.

[6] Alpsan, D., Towsey, M., Ozdamar, O., Tsoi, A.C. & Ghista, D.N. (1995).

Efficiency of modified backpropagation and optimisation methods on a

real-world medical problem. Neural Networks, 8(6), 945-962.

Reference

 205

[7] Ampazis, N. & Perantonis, S.J. (2002). Two highly efficient second-order

algorithms for training feedforward networks. IEEE Trans. Neural Networks, 13,

1064-1074.

[8] Anastasiadis, A., Magoulas, G.D. & Vrahatis, M.N. (2005a). New Globally

Convergent Training Scheme Based on the Resilient Propagation Algorithm.

Neurocomputing, 64, 253-270.

[9] Anastasiadis, A., Magoulas, G.D. & Vrahatis, M.N. (2005b). Sign-based

Learning Schemes for Pattern Classification. Pattern Recognition Letters, 26,

1926–1936.

[10] Anastasiadis, A., Magoulas, G.D., & Vrahatis, M.N. (2006). Improved

sign-based learning algorithm derived by the composite nonlinear Jacobi

process. Journal of Computational and Applied Mathematics, 191, 166-178.

[11] Anastasiadis, A.D., Magoulas, G.D. & Vrahatis, M.N. (2003). An efficient

improvement of the Rprop algorithm. In: Gori & Marinai (eds.), Artificial

Neural Networks in Pattern Recognition, Proc. 1
st
 Int’l Association of Pattern

Recognition-TC3 Workshop, Florence, Italy, September 2003, Firenze: Stampa

Digitale, 197-201.

[12] Anastasiadis, A.D., Magoulas, G.D. & Vrahatis, M.N. (2004). A New Learning

Rates Adaptation Strategy for the Resilient Propagation Algorithm. In: Proc.

European Symposium on Neural Networks (ESANN-04), Bruges, Belgium, 1-6.

[13] Antunes, C.M. & Oliveira, A.L. (2001). Temporal data mining: an overview. In:

Proc. KDD Workshop on Temporal Data Mining, San Francisco, CA, 26 August

2001, 1-13.

[14] Armijo, L. (1966). Minimization of function having Lipschitz continuous first

partial derivatives. Pacific J. Mathematics, 16, 1-3.

Reference

 206

[15] Asirvadam, V.S., McLoone, S.F. & Irwin, G.W. (2004). Memory efficient BFGS

neural-network learning algorithms using MLP-network: a survey. In: Proc.

IEEE Int’l Conf. Control Application. 586-591.

[16] Assaad, M., Boné, R. & Cardot, H. (2005). Study of the behaviour of a new

boosting algorithm for recurrent neural networks. In: Duch W. et al. (eds.) Proc.

15
th

 Int’l Conf. Artificial Neural Networks (ICANN), 169-174.

[17] Bajramovic, F., Gruber, C. & Sick, B. (2004). A comparison of first- and

second- order training algorithms for dynamic neural networks. In: Proc. IEEE

Int’l Joint Conf. Neural Networks, 837-842.

[18] Baldi, P. (1993). Gradient descent learning algorithm overview: a general

dynamical systems perspective. IEEE Trans. Neural Networks, 6(1), 182-195.

[19] Baldi, P., Brunak, S., Soda, G. & Pollastri, G. (1999). Exploiting the past and the

future in protein secondary structure prediction, Bioinformatics, 15, 937-946.

[20] Battiti, R. (1992). First- and second-order methods for learning: between

steepest descent and Newton‟s method. Neural Computation, 4, 141-166.

[21] Becerikli, Y., Konar, A.F. & Samad, T. (2003). Intelligent optimal control with

dynamic neural networks. Neural Networks, 16, 251-259.

[22] Becerikli, Y., Oysal, Y. & Konar, A.F. (2004). Trajectory priming with dynamic

fuzzy networks in nonlinear optimal control. IEEE Trans. Neural Networks,

15(2), 383-394.

[23] Beigi, H.S.M. (1993). Neural networks learning through optimally conditioned

quadratically convergent methods requiring no line search. In: Proc. 36
th

Midwest Symposium on Circuits and Systems, 109-112.

[24] Bengio, Y., Frasconia, P. & Gori, M. (1993). Recurrent neural networks for

adaptive temporal processing. In: Proc. 6
th

 Italian Workshop on Parallel

Reference

 207

Architectures and Neural Networks, 85-117.

[25] Bengio, Y., Simard, P. & Frasconi, P. (1994). Learning long-term dependencies

with gradient descent is difficult. IEEE Trans. Neural Networks, 5(2), 157-166.

[26] Bhaya, A. & Kaszkurewicz, E. (2004). Steepest descent with momentum for

quadratic functions is a version of the conjugate gradient method, Neural

Networks, 17, 65-71.

[27] Boné, R. & Cardot, H. (2005). Time delay learning by gradient descent in

recurrent neural networks. In: Duch W. et al. (eds.) Proc. 15
th

 Int’l Conf.

Artificial Neural Networks (ICANN), 175-180.

[28] Boné, R., Crucianu, M. & de Beauville, J.-P.A. (2002). Learning long-term

dependencies by the selective addition of time-delayed connections to recurrent

neural networks. Neurocomputing, 48, 251-266.

[29] Brouwer, R.K. (2005). Training of a discrete recurrent neural network for

sequence classification by using a helper FNN. Soft Computing, 9, 749-756.

[30] Broyden, C.G. (1970). The convergence of a class of double-rank minimization

algorithms. J. The Institute of Mathematics and Its Applications, 6, 76-90.

[31] Budik, D. & Elhanany, I. (2006). TRTRL: a localized resource-efficient learning

algorithm for recurrent neural networks. In: Proc. 2006 IEEE Int’l Midwest

Symposium on Circuits & Systems (MWSCAS).

[32] Campolucci, P., Piazza, F. & Uncini, A. (1995). On-line learning algorithms for

neural networks with IIR synapses, In: Proc. IEEE Int’l Conf. Neural Networks,

865-870.

[33] Campolucci, P., Sunibettu, M., Uncini, A. & Piazza, F. (1998). New

second-order algorithms for recurrent neural networks based on conjugate

Reference

 208

gradient, In: Proc. 2
nd

 IEEE World Congress on Computational Intelligence,

384-398.

[34] Campolucci, P., Uncini, A. & Piazza, F. (1997a). A unifying view of gradient

calculations and learning for locally recurrent neural networks, In: Proc. Italian

Workshop on Neural Networks (WIRN97), Springer-Verlag Ed.

[35] Campolucci, P., Uncini, A. & Piazza, F. (1997b). A new IIR-MLP learning

algorithm for on-line signal processing, In: Proc. Int’l Conf. Acoustic Speech

and Signal Processing (ICASSP97).

[36] Campolucci, P., Uncini, A., Piazza, F. & Rao, B.D. (1999). On-line learning

algorithms for locally recurrent neural networks. IEEE Trans. Neural Networks,

10(2), 253-271.

[37] Caruana, R., Lawrence, S. & Giles, L. (2000). Overfitting in neural nets:

Backpropagation, conjugate gradient and early stopping, In: Proc. Neural and

Information Processing Systems, 402-408, MIT Press.

[38] Chang, W.F. & Mak, M.W. (1999). A conjugate gradient learning algorithm for

recurrent neural networks, Neurocomputing, 24, 173-189.

[39] Charalambous, C. (1992). A conjugate gradient algorithm for the efficient

training of artificial neural networks. In: IEE Proceedings Part G. 139, 301

-310.

[40] Chella, A., Gentile, A., Sorbello, F. & Tarantino, A. (1993). Supervised learning

for feed-forward neural networks: a new minimax approach for fast

convergence. In: Proc. IEEE Int’l Conf. Neural Networks, 605-609.

[41] Chen, K., Xu, L. & Chi, H. (1999). Improved learning algorithms for mixture of

experts in multiclass classification, Neural Networks, 12, 1229-1252.

[42] Chen, O.T.-C. & Sheu, B.J. (1994). Optimization schemes for neural network

Reference

 209

training. In: Proc. IEEE Int’l Conf. Neural Networks, 817-822.

[43] Chu, Y.-C. & Huang, J. (1999). A neural-network method for the nonlinear

servomechanism problem. IEEE Trans. Neural Networks, 10, 1412-1423.

[44] Clarke, F.H. (1990). Optimization and Nonsmooth Analysis, Philadelphia:

SIAM.

[45] Dai, Y.H. (2002). A nonmonotone conjugate gradient algorithm for

unconstrained optimization, J. Systems Science and Complexity, 15(2), 139-145.

[46] Dai, Y.H. (2002). On the Nonmonotone Line Search, J. Optimization Theory

and Applications, 112(2), 315–330.

[47] Davidon, W.C. (1959). Variable metric method for minimization. A.E.C.

Research Develop. Report ANL-5990, Argonne National Laboratory, Argonne,

Illinois.

[48] Davidon, W.C. (1991). Variable metric method for minimization. SIAM J.

Optimization, 1(1), 1-17.

[49] De Jesus, O. & Hagan, M.T. (2001). Forward perturbation algorithm for a

general class of recurrent network, Proc. Int’l Joint Conf., vol.4, 2626-2631.

[50] Dennis, J.E. & Schnabel, R.B. (1989). A view of unconstrained optimization. In:

Nemhauser et al. (eds) Optimization, Amsterdam: Elsevier Science, 1-72.

[51] Denton, J.W. & Hung, M.S. (1996). A comparison of nonlinear methods for

supervised learning in multilayer feedforward neural nets. European J.

Operational Research, 93, 358-368.

[52] Dietterich, T.G. (2002). Machine learning for sequential data: a review. In: Proc.

Joint IAPR Workshop on Structural, Syntactic, and Statistical Pattern

Recognition, Lecture Notes in Computer Science, 2396, 15-30.

Reference

 210

[53] dos Santos, E.P. & Von Zuben, F.J. (1999). Improved second-order training

algorithms for globally and partially recurrent neural networks, Proc. Int’l Joint

Conf. Neural Networks (IJCNN99), 3, 1501-1506.

[54] dos Santos, E.P. & von Zuben, F.J. (2000). Efficient second-order learning

algorithms for discrete-time recurrent neural networks. In: Medsker& Jain

(eds.): Recurrent Neural Networks: Design and Applications. New York: CRC

Press, 47-75.

[55] Du, S.Q. & Chen, Y.Y. (2004). Convergence analysis of a class of nonmonotone

conjugate gradient methods without sufficient decrease condition, Chinese

Quart. J. Mathematics, 19(2), 142-145.

[56] Duch, W. & Korczak, J. (1998). Optimisation and global minimisation methods

suitable for neural networks, Neural Computing Surveys, 2.

[57] Elman, J.L. (1990). Finding structure in time. Cognitive Science, 14, 179-211.

[58] Elman, J.L. (2005). Connectionist models of cognitive development: where next?

Trends in Cognitive Sciences, 9(3), 111-117.

[59] Elman, J.L., Bates, E.A., Johnson, M.H., Karmiloff-Smith, A., Parisi D. &

Plunkett, K. (1997). The shape of change. In Rethinking Innateness: A

Connectionist Perspective on Development, Cambridge, MA: MIT Press, ch. 6.

[60] Erdogmus, D., Fontenla-Romero, O., Principe, J., Alonso-Betanzos, A., &

Castillo, E. (2005). Linear-least-squares initialization of multilayer perceptrons

through backpropagation of the desired response. IEEE Trans. Neural Networks,

16, 325-337.

[61] Fasano, G., Lampariello, F. & Sciandrone, M. (2006). A truncated nonmonotone

Gauss-Newton method for large-scale nonlinear least-squares problems.

Computational Optimization and Applications, 34, 343-358.

Reference

 211

[62] Feng, Y.T. (2006). On the discrete dynamic nature of the conjugate gradient

method, Journal of Computational Physics, 211(1), 91-98.

[63] Fischer, M.M. & Staufer, P. (1999). Optimisation in an error backpropagation

neural network environment with a performance test on a spectral pattern

classification problem. Geographical Analysis, 31(2), 89-108.

[64] Fletcher, R. & Powell, M.J.D. (1963). A rapid convergent descent method for

minimization. Computer Journal, 6, 163-168.

[65] Fletcher, R. & Reeves, C.M. (1964). Function minimization by conjugate

gradients. Computer Journal, 7, 149-154.

[66] Fletcher, R. (1969). A review of methods for unconstrained optimization. In:

Fletcher (ed.) Optimization, London: Academic Press, 1-12.

[67] Fletcher, R. (1970). A new approach to variable metric algorithms. Computer

Journal, 13, 317-322.

[68] Fletcher, R. (1987). Practical methods of optimization. Edn. 2
nd

, West Sussex:

Wiley, reprinted 2006.

[69] Franklin, J.A. & Locke, K.K. (2004). Recurrent neural networks for musical

pitch memory and classification. Int’l J. Artificial Intelligence Tools, 14(9),

329-342.

[70] Gilbert, J.C. & Nocedal, J. (1992). Global convergence properties of conjugate

gradient methods for optimization, SIAM J. Optimization, 2, 21-42.

[71] Gill, P.E., Murray, W. & Wright, M.H. (1981). Practical Optimization, London:

Academic Press.

[72] Goldfarb, D. (1970). A family of variable metric updates derived by variational

means. Mathematics of Computation, 24, 23-26.

[73] Goldstein, A.A. & Price, J.F. (1967). An effective algorithm for minimization.

Reference

 212

Numerical Mathematics, 10, 184-189.

[74] Goldstein, A.A. (1962). Cauchy‟s method of minimization. Numerical

Mathematics, 4, 146-150.

[75] Goldstein, A.A. (1965). On steepest descent. SIAM J. Control, 3, 147-151.

[76] González, A. & Dorronsoro, J.R. (2008). Natural conjugate gradient training of

multilayer perceptrons, Neurocomputing, 71, 2499-2506.

[77] Gordienko, P. (1993). Construction of efficient neural networks: algorithms and

tests. In: Proc. IEEE Int’l Joint Conf. Neural Networks, 313-316.

[78] Greig, D.M. (1980). Optimisation, London: Longman.

[79] Grippo, L. & Sciandrone, M. (2002). Nonmonotone globalization techniques

for the Barzilai-Borwein gradient method, Computational Optimization and

Applications, 23, 143-169.

[80] Grippo, L., Lampariello, F. & Lucidi, S. (1986). A nonmonotone line search

technique for Newton‟s method. SIAM J. Numerical Analysis, 23, 707-716.

[81] Grippo, L., Lampariello, F. & Lucidi, S. (1990). A quasi-discrete Newton

algorithm with a nonmonotone stabilization technique. J. Optimization Theory

and Applications, 64(3), 495-510.

[82] Grippo, L., Lampariello, F. & Lucidi, S. (1991). A class of nonmonotone

stabilization methods in unconstrained optimization. Numerische Mathematik,

59, 779-805.

[83] Grossberg, S. (1969). Some networks that can learn, remember, and reproduce

any number of complicated space-time patterns. Int’l J. Mathematics and

Mechanics, 19, 53-91.

[84] Gruber, C. & Sick, B. (2003). Fast and efficient second-order training of the

dynamic neural network paradigm. In: Proc. IEEE Int’l J. Conf. Neural

Reference

 213

Networks, 2482-2487.

[85] Hagan, M.T. & Menhaj, M.B. (1994). Training feedforward networks with the

Marquardt algorithm. IEEE Trans. Neural Networks, 5, 989-993.

[86] Han, J.Y. & Liu, G.H. (1995). General form of stepsize selection rule of line

search and relevant analysis of global convergence of BFGS algorithm. Acta

Mathematicae Applicatae Sinica, 18, 112-122.

[87] Han, J.Y. & Liu, G.H. (1997). Global convergence analysis of a new

nonmonotone BFGS algorithm on convex objective functions. Computational

Optimization and Applications, 7, 277-289.

[88] Hestenes, M.R. & Stiefel, E. (1952). Methods of conjugate gradients for solving

linear systems. J. Research of the National Bureau of Standards, 49(6),

409-436.

[89] Hestenes, M.R. (1980). Conjugate direction methods in optimization, New York:

Springer-Verlag.

[90] Hochreiter, S. & Schmidhuber, J. (1997). Long Short-Term Memory. Neural

Computation, 9(8), 1735-1780.

[91] Hui, L.C.K., Lam, K.-Y. & Chea, C.W. (1997). Global optimisation in neural

network training. Neural Computing and Applications, 5, 58-64.

[92] Huseynov, J.J., Baliga, S.B., Widmer, A. & Boger, Z. (2008). An adaptive

method for industrial hydrocarbon flame detection, Neural Networks, 21(2-3),

398-405.

[93] Igel, C. & Hüsken, M. (2003). Empirical evaluation of the improved Rprop

learning algorithms. Neurocomputing, 50, 105-123, 2003.

[94] Irwin, G., Lightbody, G. & McLoone, S. (1994). Comparison of gradient based

training algorithms for multilayer perceptrons. In: Proc. IEE Colloquium

Reference

 214

Advances in Neural Networks for Control and Systems, 11/1-11/6.

[95] Ishikawa, T., Tsukui, Y. & Matsunami, M. (1996). Optimization of

electromagnetic devices using artificial neural network with quasi-Newton

algorithm, IEEE Trans. Magnetics, 32(3), 1226-1229.

[96] Jordan, M.I. (1986). Attractor dynamics and parallelism in a connectionist

sequential machine. In: Proc. 8
th

 Annual Conf. the Cognitive Science Society,

531-546.

[97] Jordanov, I. & Georgieva, A. (2007). Neural network learning with global

heuristic search. IEEE Trans. Neural Networks, 18, 937-942.

[98] Karjala, T.W., Himmelblau, D.M. & Miikkulainen, R. (1992). Data rectification

using recurrent (Elman) neural networks. In: Proc. IEEE Int’l J. Conf. Neural

Networks, 901-906.

[99] Kolehmainen, M. (2003). Lecture notes on time-series modeling using neural

networks. University of Kuopio.

[100] Kostopoulos, A., Glotsos, D., Spyridonos, P., Nikiforidis, G., Sotiropoulos,

D. & Grapsa, T. (2004a). Comparative evaluation of feedforward and

probabilistic neural networks for the automatic classification of brain tumours.

In: Proc. 1
st

International Conference “From Scientific Computing to

Computational Engineering” (IC-SCCE), Athens, Greece, 8-10 September.

[101] Kostopoulos, A.E., Sotiropoulos, D.G. & Grapsa, T.N. (2004b). A new

efficient variable learning rate for Perry‟s conjugate gradient training method.

In: Proc. 1
st
 International Conference “From Scientific Computing to

Computational Engineering” (IC-SCCE), Athens, Greece, 8-10 September.

[102] Kremer, S.C. & Kolen, J.F. (1998). Dynamical Recurrent Networks for

Sequential Data Processing. In Wermter & Sun (eds.) Hybrid Neural Systems,

Reference

 215

Revised Papers From A Workshop (December 04-05, 1998), Lecture Notes in

Computer Science, 1778, 107-122.

[103] Kremer, S.C. (2001). Spatiotemporal connectionist networks: a taxonomy

and review. Neural Computation, 13, 249-306.

[104] Lampariello, F. & Sciandrone, M. (2003). Use of the minimum-norm

search direction in a nonmonotone version of the Gauss-Newton method, J.

Optimization Theory and Applications, 119(1), 65-82.

[105] Lera, G. & Pinzolas, M. (2002). Neighborhood based

Levenberg-Marquardt algorithm for neural network training. IEEE Trans.

Neural Networks, 13, 1200-1203.

[106] Levenberg, K. (1944). A method for the solution of certain problems in

least squares. Quart. Applied Mathematics, 5, 164-168.

[107] Li, C.J. & Yan, L. (1995). Mechanical system modelling using recurrent

neural networks via quasi-Newton learning methods, Applied Mathematical

Modelling, 19, 421-428.

[108] Li, H. & Adali, T. (2008). A Class of Complex ICA Algorithms Based on

the Kurtosis Cost Function, IEEE Trans. Neural Networks, 19(3), 408-420.

[109] Lightbody, G. & Irwin, G.W. (1995). A novel neural internal model control

structure. In: Proc. American Control Conference, 350-354.

[110] Lightbody, G. & Irwin, G.W. (1996). Multi-layer perceptron based

modelling of nonlinear systems. Fuzzy Sets and Systems, 79, 93-112.

[111] Likas, A. & Stafylopatis, A. (2000). Training the random neural network

using quasi-Newton methods. European J. Operational Research, 126,

331-339.

[112] Lin, C.-T. & Lee, C.S.G. (1996). Neural Fuzzy Systems: A Neuro-Fuzzy

Reference

 216

Synergism to Intelligent Systems. New Jersey: Prentice Hall.

[113] Liu, G.H., Jing, L.L., Han, L.X. & Han, D. (1999). A class of nonmonotone

conjugate gradient methods for unconstrained optimization, J. Optimization

Theory and Applications, 101(1), 127-140.

[114] Liu, Y. & Wei, Z. (2002). A class of nonmonotone conjugate gradient

methods for nonconvex functions, Applied Mathematics J. Chinese University

Ser. B, 17(2), 208-214.

[115] Ma, W.H. (1997). A study of conjugate gradient recurrent network on time

series problems, M.Sc. thesis, Hong Kong Polytechnic University.

[116] Magoulas, G.D., Chen, S.Y. & Dimakopoulos, D. (2004). A personalised

interface for web directories based on cognitive styles. In: Proc. 8th ERCIM

Workshop on User Interfaces for All, Lecture Notes in Computer Science, 3196,

159-166.

[117] Magoulas, G.D., Plagianakos, V.P. & Vrahatis, M.N. (2000). Development

and convergence analysis of training algorithms with local learning rate

adaptation. In: Proc. INNS-IEEE Int’l J. Conf. Neural Networks, 24-27 July

2000, Como, Italy, v. 1, 21-26.

[118] Magoulas, G.D., Plagianakos, V.P. & Vrahatis, M.N. (2002). Globally

convergent algorithms with local learning rates. IEEE Trans. Neural Networks,

13(3), 774-779.

[119] Magoulas, G.D., Vrahatis, M.N. & Androulakis, G.S. (1997). Effective

backpropagation with variable stepsize. Neural Networks, 10, 69-82.

[120] Magoulas, G.D., Vrahatis, M.N. & Androulakis, G.S. (1997). Effective

back-propagation training with variable stepsize, Neural Networks, 10, 69-82.

[121] Magoulas G. and Vrahatis M.N. (2006) Adaptive Algorithms for Neural

Reference

 217

Network Supervised Learning: A Deterministic Optimization Approach.

International Journal of Bifurcation and Chaos, 16(7), 1929–1950.

[122] Marquardt, D. (1963). An algorithm for least squares estimation of

nonlinear parameters. J. Society for Industrial and Applied Mathematics, 11(2),

431-441.

[123] Marwala, T. (2001). Scaled conjugate gradient and Bayesian training of

neural networks for fault identification in cylinders. Computers and Structures,

79, 2793-2803.

[124] McLeod, P., Plunkett, K. & Rolls, E.T. (1998). Introduction to

connectionist modelling of cognitive processes, Oxford: Oxford University

Press, 148-151.

[125] McLoone, S. & Irwin, G.W. (1997). Fast parallel off-line training of

multilayer perceptrons. IEEE Trans. Neural Networks, 8(3), 646-653.

[126] McLoone, S. & Irwin, G.W. (1999). A variable memory quasi-Newton

training algorithm. Neural Processing Letters, 9, 77-89.

[127] McLoone, S., Asirvadam, V.S. & Irwin, G.W. (2002). A memory optimal

BFGS neural network training algorithm. In: Proc. IEEE Int’l J. Conf. Neural

Networks, 513-518.

[128] Medsker, L.R. & Jain, L.C. (2000). Recurrent neural networks: design and

applications, Boca Raton, FL: CRC Press.

[129] Mirikitani, D. & Nikolaev, N. (2007). Recursive Bayesian Levenberg-

Marquardt training of recurrent neural networks. In: Proc. Int’l Joint Conf.

Neural Networks (IJCNN’07), 282-287.

[130] Mirikitani, D. & Nikolaev, N. (2010). Recursive Bayesian Recurrent

Neural Networks for Time Series Modeling. IEEE Trans. Neural Networks,

21(2), 262-274.

Reference

 218

[131] Mirikitani, D. and Nikolaev, N. (2010). Efficient Online Recurrent

Connectionist Learning with the Ensemble Kalman Filter. Neurocomputing,

73(4-6), 1024-1030.

[132] Mizutani, E. (1999). Powell‟s dogleg trust-region steps with the

quasi-Newton augmented Hessian for neural nonlinear least-squares learning. In:

Proc. IEEE Int’l Joint Conf. Neural Networks (IJCNN’99), 1239-1244.

[133] Moller, M.F. (1993). A scaled conjugate gradient algorithm for fast

supervised learning, Neural Networks, 6(4), 525-533.

[134] Morejon, R. & Principe, J. (2004). Advanced search algorithms for

information-theoretic learning with kernel-based estimators. IEEE Trans.

Neural Networks, 15, 874-884.

[135] Nagaraja, G. & Jagadeesh Chandra Bose, R.P. (2006). Adaptive conjugate

gradient algorithm for perceptron training, Neurocomputing, 69, 368-386.

[136] Nawi, N.M., Ransing, M.R. & Ransing, R.S. (2006). An improved learning

algorithm based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method for

back propagation neural networks. In: Proc. 6
th

 Int’l Conf. Intelligent Systems

Design and Applications, 152-157.

[137] Nelles, O. (2000). Nonlinear System Identification, Berlin: Springer.

[138] Nocedal, J. & Yuan, Y. (1993). Analysis of a self-scaling quasi-Newton

method. Mathematical Program, 61, 19–37.

[139] Olivier, C. (2007) Training a Support Vector Machine in the Primal,

Neural Computation, 19(5), 1155-1178.

[140] Oren S.S. (1972). Self-scaling variable metric algorithms for unconstrained

minimization, PhD Thesis, Stanford University, California, USA.

[141] Oren, S.S. & Luenberger, D.G. (1974). Self-scaling variable metric

(SSVM) algorithms, Part I: Criteria and sufficient conditions for scaling a class

Reference

 219

of algorithms, Management Science, 20, 845–862.

[142] Orponen, P. (2000). An overview of the computational power of recurrent

neural networks. In: Proc. 9
th

 Finnish AI Conference, Vol. 3: “AI of Tomorrow”,

89-96.

[143] Pearlmutter, B.A. (1995). Gradient calculations for dynamic recurrent

neural networks: a survey. IEEE Trans. Neural Networks, 6(5), 1212-1228.

[144] Pedersen, M.W. (1997). Optimization of recurrent neural networks for time

series modelling. PhD Thesis. Technical University of Denmark.

[145] Peng C.-C. & Magoulas G.D. (2007a). Adaptive self-scaling nonmonotone

BFGS training algorithm for recurrent neural networks. In: Proc. 17
th

 Int’l Conf.

Artificial Neural Networks (ICANN’07), 9-13 September, Porto, Portugal,

259-268.

[146] Peng, C.-C. & Magoulas, G.D. (2007b). Adaptive Nonmonotone Conjugate

Gradient Training Algorithm for Recurrent Neural Networks. In: Proc. 19
th

IEEE Int’l Conf. Tools with Artificial Intelligence (ICTAI’07), 29-31 October,

Patras, Greece, 374-381.

[147] Peng, C.-C. & Magoulas, G.D. (2008a). Advanced Adaptive Nonmonotone

Conjugate Gradient Training Algorithm for Recurrent Neural Networks. Int’l J.

Artificial Intelligence Tools (IJAIT), 17(5), 963-984.

[148] Peng, C.-C. & Magoulas, G.D. (2008b). Sequence Processing with

Recurrent Neural Networks. Encyclopedia of Artificial Intelligence, 1411-1417.

[149] Peng, C.-C. & Magoulas, G.D. (2009), Nonmonotone Learning of

Recurrent Neural Networks in Symbolic Sequence Processing Application. In:

Proc. 11
th

 Int’l Conf. Engineering Applications of Neural Networks (EANN’09),

22-29 August 2009, London, England, pp. 325-335.

Reference

 220

[150] Peng, H., Ozaki, T., Haggan-Ozaki, V. & Toyoda, Y. (2003). A parameter

optimization method for radial basis function type models. IEEE Trans. Neural

Networks, 14, 432-438.

[151] Pérez-Ortiz, J.A., Calera-Rubio, J. & Forcada, M.L. (2001). Online

symbolic-sequence prediction with discrete-time recurrent neural networks. In:

Dorffner, Bischof & Hornik (eds.) Int’l Conf. ANNs, Lecture Notes in Computer

Science, 2130, 719-724.

[152] Phua, P.K.H. & Ming, D. (2003). Parallel nonlinear optimization

techniques for training neural networks. IEEE Trans. Neural Networks, 14(6),

1460-1468.

[153] Phung, S.L. & Bouzerdoum, A. (2007). A pyramidal neural network for

visual pattern recognition, IEEE Trans. Neural Networks, 18(2), 329-343.

[154] Plagianakos V.P., Magoulas G.D. & Vrahatis M.N. (2006). Improved

learning of neural nets through global search. In: Global Optimization -

Scientific and Engineering Case Studies, János D. Pintér (ed.), Series:

Nonconvex Optimization and Its Applications, vol. 85, NY: Springer-Verlag,

361-388.

[155] Plagianakos, V.P., Magoulas, G.D. & Vrahatis, M.N. (1999). Optimization

strategies and backpropagation neural networks. In: Proc. 7
th

 Hellenic

Conference on Informatics, Ioannina, Greece, 26-29 August, 88-95.

[156] Plagianakos, V.P., Magoulas, G.D. & Vrahatis, M.N. (2002). Deterministic

nonmonotone strategies for effective training of multi-layer perceptrons. IEEE

Trans. Neural Networks, 13(6), 1268-1284.

[157] Plagianakos, V.P., Sotiropoulos, D.G. & Vrahatis, M.N. (1998). A

nonmonotone backpropagation training method for neural networks. Technical

Reference

 221

Report, TR98-04, University of Patras.

[158] Plaut, D., McClelland, J., Seidenberg, M. & Patterson, K. (1996).

Understanding normal and impaired word reading: computational principles in

quasi-regular domains, Psychological Review, 103(1), 56-115.

[159] Polak, E. (1971). Computational methods in optimization: a unified

approach. New York: Academic Press.

[160] Powell, M.J.D. (1970). A new algorithm for unconstrained optimization. In:

Rosen et al. (eds.) Nonlinear Programming, London: Academic Press, 31-65.

[161] Powell, M.J.D. (1977). Restart procedures for the conjugate gradient

method, Mathematical Programming, 12, 241-254.

[162] Powell, M.J.D. (1986). How bad are the BFGS and DPF methods when the

objective function is quadratic? Math. Program, 34, 34–47.

[163] Priel, A. & Kanter, I. (2003). Time series generation by recurrent neural

networks. Annals of Mathematics and Artificial Intelligence, 39, 315-332.

[164] Puskorius, G.V. & Feldkamp, L.A. (1994). Neurocontrol of nonlinear

dynamical systems with Kalman filter trained recurrent networks. IEEE Trans.

Neural Networks, 5(2), 279-297.

[165] Riedmiller, M. & Braun, H. (1992). Rprop – a fast adaptive learning

algorithm. In: Proc. Int’l Symposium on Computer and Information Sciences,

Antalya, Turkey, 279-285.

[166] Riedmiller, M. & Braun, H. (1993). A direct adaptive method for faster

backpropagation learning: the Rprop algorithm. In: Ruspini E.H. (ed): Proc.

IEEE Int’l Conf. Neural Networks, San Francisco, 586-591.

[167] Riedmiller, M. (1994a). Rprop – description and implementation details.

Technical Report.

Reference

 222

[168] Riedmiller, M. (1994b). Advanced supervised learning in multi-layer

perceptrons – from backpropagation to adaptive learning algorithms. Computer

Standards and Interfaces, 16(5), 265-278.

[169] Sahari, M.L. & Djellit, I. (2009). The complex dynamic of

conjugate gradient method, International Journal of Computer Mathematics,

86(3), 407-422.

[170] Saini, L.M. & Soni, M.K. (2002). Artificial neural network based peak

load forecasting using Levenberg-Marquardt and quasi-Newton methods. In:

Proc. Generation, Transmission and Distribution, 578-584.

[171] Savran, A. (2007). Multifeedback-layer neural network. IEEE Trans.

Neural Networks, 18, 373-384.

[172] Scales, L.E. (1985). Introduction to non-linear optimization, London:

McMillan, 56-109.

[173] Schalkoff, R.J. (1997). Artificial Neural Networks, New York:

McGraw-Hill.

[174] Schmidhuber J., Wierstra D., Gagliolo M., & Gomez F. (2007). Training

Recurrent Networks by Evolino. Neural Computation, 19(3), 757-779.

[175] Seow, M.J. & Asari, V.K. (2006). Recurrent neural network as a linear

attractor for pattern association. IEEE Trans. Neural Networks, 17(1), 246-250.

[176] Setiono, R. & Hui, L.C.K. (1993). Some n-bit parity problems are solvable

by feed-forward networks with less than n hidden units. In: Proc. IEEE Int’l

Joint Conf. Neural Networks, 305-308.

[177] Setiono, R. & Hui, L.C.K. (1995). Use of a quasi-Newton in a

feedforward\d neural network construction algorithm. IEEE Trans. Neural

Networks, 6(1), 273-277.

Reference

 223

[178] Shaheed, M.H. (2004). Performance analysis of 4 types of conjugate

gradient algorithms in the nonlinear dynamic modelling of a TRMS using

feedforward neural networks, In: IEEE Proc. Systems, Man and Cybernetics, 6,

5985- 5990.

[179] Shanno, D.F. (1970). Conditioning of quasi-Newton methods for function

minimization. Mathematics of Computation, 24, 647-655.

[180] Shepherd, A.J. (1997). Second-Order Methods for Neural Networks: Fast

and Reliable Training Methods for Multi-Layer Perceptrons, Perspectives in

Neural Computing series, London: Springer-Verlag.

[181] Shi, Z.-J. & Shen, J. (2006a). Convergence of PRP method with new

nonmonotone line search. Applied Mathematics and Computation, 181,

423-431.

[182] Shi, Z.J. & Shen, J. (2006b). Convergence of nonmonotone line search

method, J. Computational and Applied Mathematics, 193(2), 397-412.

[183] Sluijter, R., Wuppermann, F., Taori, R., Kathmann, E. (1995) State of the

art and trends in speech coding, Philips Journal of Research, 49(4), 455-488.

[184] Sorensen, P.H., Norgaard, M., Ravn, O. & Poulsen, N.K. (1999).

Implementation of neural network based non-linear predictive control.

Neurocomputing, 28, 37-51.

[185] Sotiropoulos, D.G., Kostopoulos, A.E. & Grapsa, T.N. (2002). A spectral

version of Perry‟s conjugate gradient method for neural network training. In:

Proc. 4
th

 GRACM Congress on Computational Mechanics, 291-298.

[186] Sperduti, A. & Starita, A. (1997). Supervised neural networks for the

classification of structures. IEEE Trans. Neural Networks, 8(3), 714-735.

[187] Sun, W., Han, J. & Sun, J. (2002). Global convergence of nonmonotone

Reference

 224

descent methods for unconstrained optimization problems. J. Computational

and Applied Mathematics, 146, 89–98.

[188] Temurtasm, F., Yumusak, N., Gunturkun, R. Temurtas, H. & Cerezci, O.

(2004). Elman‟s recurrent neural networks using resilient back propagation for

harmonic detection. In: Zhang C. et al. (eds.): Proc. Pacific Rim Int’l Conf.

Artificial Intelligence, 422-428.

[189] Tiflin, C. & Omlin, C.W. (2003). LSTM Recurrent Neural Networks for

Signature Verification. In: Proc. Southern African Telecommunication Networks

& Applications Conference (SATNAC 2003).

[190] Tiňo, P. & Mills, A. (2005). Learning beyond finite memory in recurrent

networks for spiking neurons. In: Wang L. et al. (eds.): Proc. Int’l Conf. Natural

Computation 2005, Lecture Notes in Computer Science, 3611, 666-675.

[191] Tivive, F.H.C. & Bouzerdoum, A. (2005). Efficient training algorithms for

a class of shunting inhibitory convolutional neural networks. IEEE Trans.

Neural Networks, 16, 541-556.

[192] Toledo, A., Pinzolas, M., Ibarrola, J. & Lera, G. (2005). Improvement of

the neighborhood based Levenberg-Marquardt algorithm by local adaptation of

the learning coefficient. IEEE Trans. Neural Networks, 16, 988-992.

[193] Tsoi, A.C. (1998a). Recurrent neural network architectures: an overview.

In: Giles C.L. & Gori M. (eds.): Adaptive processing of sequences and data

structures. Berlin: Springer-Verlag, 1-26.

[194] Tsoi, A.C. (1998b). Gradient based learning algorithms. In: Giles C.L. &

Gori M. (eds.): Adaptive processing of sequences and data structures. Berlin:

Springer-Verlag, 27-62.

[195] Vrahatis, M.N., Andreoulakis, G.S., Lambrinos, J.N. & Magoulas, G.D.

Reference

 225

(2000). A class of gradient unconstrained minimisation algorithms with

adaptive stepsize, J. Computational and Applied Mathematics, 114, 367-386.

[196] Waibel, A. (1989). Modular construction of time-delay neural networks for

speech recognition, Neural Computation, 1(1), 39-46.

[197] Waibel, A., Hanazawa, T., Hilton, G., Shikano, K., Lang, K.J. (1989).

Phoneme recognition using time-delay neural networks, IEEE Trans. Acoustics,

Speech, and Signal Processing, 37, 328-339.

[198] Wan, S. & Banta, L. (2006). Parameter incremental learning algorithm for

neural networks. IEEE Trans. Neural Networks, 17, 1424-1438.

[199] Wei, C., Chong, J.O. & Keerthi, S.S. (2006). An improved conjugate

gradient scheme to the solution of least squares SVM, IEEE Trans. Neural

Networks, 16(2), 1045-9227.

[200] Werbos, P.J. (1974). Beyond Regression: New Tools for Prediction and

Analysis in the Behavioral Sciences. Doctoral Dissertation, Applied

Mathematics, Harvard University, Boston, MA. (BPTT)

[201] Werbos, P.J. (1990). Backpropagation through time: what it does and how

to do it. In: Proc. IEEE, 78, 1550-1560.

[202] Wilde, D.J. & Beightler, C.S. (1967). Foundations of Optimization.

Englewood Cliffs: Prentice Hall.

[203] Williams, R. and Zipser, D. (1989). A learning algorithm for continually

running fully recurrent neural networks. Neural Computation, 1(2), 270-280.

[204] Wolfe, P. (1969). Convergence conditions for ascent methods, SIAM

Mathematical Review, 11, 226-235.

[205] Wolfe, P. (1971). Convergence conditions for ascent methods II: Some

corrections, SIAM Mathematical Review, 13, 185-188.

Reference

 226

[206] Xiangrui, W. & Chaudhari, N.S. (2004). Recurrent neural networks for

learning mixed k
th

-order Markov chains. In: Pal N.R et al. (eds.): Proc. Int’l

Conf. Neural Information Processing, 477-482.

[207] Xu, D.C. (2003). Global convergence of the Broyden‟s class of

quasi-Newton methods with nonmonotone linesearch, Acta Mathematicatae

Applicatae Sinica, English Series, 19(1), 19-24.

[208] Yam, J. & Chow, T. (1997). Extended least squares based algorithm for

training feedforward networks. IEEE Trans. Neural Networks, 8, 806-810.

[209] Yin, H.X & Du, D.L. (2006). The global convergence of self-scaling

BFGS algorithm with nonmonotone line search for unconstrained nonconvex

optimization problems. Acta Math. Sinica, published online, 11 September

2006.

[210] Yu, Z.S., Zhang, W.G. & Wu, B.F. (2007). Strong global convergence of an

adaptive nonmonotone memory gradient method, Applied Mathematics and

Computation, 185(1), 681-688.

[211] Zanghirati, G. (2000). Global convergence of nonmonotone strategies in

parallel methods for block-bordered nonlinear systems, Applied Mathematics

and Computation, 107, 137-168.

[212] Zhang, H. & Hager, W.W. (2004). A nonmonotone line search technique

and its application to unconstrained optimization. SIAM J. Optim., 14,

1043-1056.

[213] Zhang, J.Z. & Cheng, L.H. (1997). Nonmonotone Levenberg-Marquardt

algorithms and their convergence analysis. J. Optimization Theory and

Applications, 92, 393-418.

[214] Zhang, L.-J., Li, Y.-D. & Chen, H.-M. (1995). A novel global training

Reference

 227

algorithm and its convergence theorem for fuzzy neural networks. In: Proc.

IEEE Int’l Conf. Neural Networks, 1001-1006.

[215] Zhou, G. & Si, J. (1998). Advanced neural-network training algorithm with

reduced complexity based on Jacobian deficiency. IEEE Trans. Neural

Networks, 9, 448-453.

[216] Zimmer, W., Keats, J.B. & Prairie, R.R. (1998). Characterization of

non-monotone hazards. In: IEEE Proc. Annual Reliability and Maintainability

Symposium, 176-181.

