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Abstract 

Recurrent Neural Networks (RNNs) are well known for their power to model 

temporal dependencies and process sequences for classification, recognition and 

transduction. Gradient-based methods are a popular choice for training RNNs despite 

the inherent limitations of the gradient descent method. Typically, these methods 

require monotonicity of the error values, i.e. they reduce the error function at each 

iteration. Nevertheless, enforcing monotonicity does not guarantee that a method will 

efficiently explore the search space in the sense that it may be trapped in a local 

minimum point early on and never jump out to reach a desired solution under ill 

conditions. 

In this thesis, we propose novel deterministic RNN training algorithms that adopt a 

nonmonotone approach. This allows learning behaviour to deteriorate in some 

iterations; nevertheless the overall learning performance is improved over time. The 

proposed nonmonotone RNN training methods, which take their theoretical basis 

from the theory of deterministic nonlinear optimisation, aim at better exploring the 

search space and enhancing the convergence behaviour of gradient-based methods. 

They generate nonmonotone behaviour by incorporating conditions that employ 

forcing functions, which are used to measure the sufficiency of error reduction, and 

an adaptive window, whose size is informed by estimating the morphology of the 

error surface locally.  

The thesis develops nonmonotone first-order and second-order methods and 

discusses their convergence properties. The proposed algorithms are applied to 

training RNNs of various sizes and architectures, namely Feed-Forward Time-Delay 

networks, Elman Networks and Nonlinear Autoregressive Networks with Exogenous 

Inputs networks, in symbolic sequence processing problems. Numerical results show 

that the proposed nonmonotone learning algorithms train more effectively RNNs for 

sequence processing than other gradient-based methods in the literature. 

Keywords: Adaptive algorithm, BFGS update, conjugate gradient, deterministic 

training, learning horizon, Levenberg-Marquardt approach, nonmonotone learning, 

resilient propagation, recurrent neural networks, symbolic sequence processing 
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Chapter 1  

Introduction 

 

In this Chapter the aim of this research is firstly introduced, followed by definition 

and discussion of the main target application, i.e. temporal sequence processing. The 

organisation of this thesis is then presented, and in the last section its contribution is 

highlighted. 

 

1.1 Introduction 

Recurrent networks constitute an elegant way of increasing the capacity of 

feedforward networks to deal with complex data in the form of sequences of patterns. 

Recurrent neural networks are well known for their power to model temporal 

dependencies and process sequences for classification, recognition, and transduction. 

Modern RNNs architectures are capable of learning to solve many previously 

unlearnable tasks, even in partially observable environments. Recent directions in 

RNN research focus on investigating and proposing new ways for better modelling 

of non-stationarity in sequences, such as sequences produced when modelling speech 

or handwritten characters, with no temporal independence assumptions.  
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With regards to architectures, hybrid models based on combinations of Hidden 

Markov Models and RNNs as well as modular structures are considered promising 

approaches to solve sequence processing problems that occur in natural language and 

speech processing. In addition, a number of applications of the so-called Long 

Short-Term Memory RNN [90] have provided some encouraging results, 

demonstrating that these recurrent architectures can overcome several of the 

fundamental problems of traditional RNNs, and efficiently learn to solve many 

previously unlearnable tasks.  

As far as RNN training is concerned, which is the main focus of this PhD, gradient 

descent approaches, which enforce the monotone decrease of the learning error, 

remain popular despite the demonstrated potential of some new approaches that are 

based on evolutionary algorithms [174] or nonmonotone learning strategies 

[145][146].  

In this thesis, we identify some challenges involved in training RNNs and propose 

algorithmic approaches based on gradient information for nonmonotone training of 

RNNs for sequence processing. The term sequence processing referred here involves 

several tasks such as clustering, classification, prediction, and transduction of 

sequential data. In the general case data can be symbolic, non-symbolic or mixed. 

Examples of symbolic data patterns occur in modelling natural (human) language, 

while the prediction of water level of River Thames is an example of processing 

non-symbolic data. On the other hand, if the content of a sequence will be varying 

through different time steps, the sequence is called temporal or time-series: a 

temporal sequence consists of nominal symbols from a particular alphabet, while a 

time-series sequence deals with continuous, real-valued elements [13]. Processing 
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both these sequences mainly consists of applying the current known patterns to 

produce or predict the future ones, while a major difficulty is that the range of data 

dependencies is usually unknown. Therefore, an intelligent system or approach with 

memorising and learning capabilities for previous information is crucial for effective 

and efficient sequence processing and modelling. In this work, we concentrate on 

temporal sequence processing problems where nominal symbols are used to generate 

the sequence. 

 

1.2 Aim of the Research 

The purpose of this research is to design novel gradient-based algorithms for 

effective training of recurrent neural networks (RNNs) and apply them in problems 

of symbolic sequence processing.  

 

1.3 Objectives 

In order to achieve the above stated aim the research is organised in terms of the 

following objectives: 

 Review gradient-based training algorithms for RNNs and relevant RNN 

architectures; 

 Develop and implement adaptive nonmonotone strategies; 

 Develop and implement first-order (i.e., resilient propagation and conjugate 

gradient) and second-order (i.e., BFGS quasi-Newton and 
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Levenberg-Marquardt) training algorithms, equipped with nonmonotone 

strategies; 

 Test the proposed algorithms on three different RNN architectures using 

symbolic sequence datasets;  

 

1.4 Methodology 

Our methodology is based on theory of linear and nonlinear iterative methods, while 

the idea of nonmonotone learning is inspired from theories for cognitive 

development (see e.g. [59][58]) and recent advances in optimisation methods, which 

showed that nonmonotone methods possess properties, such as global and 

superlinear convergence, require fewer numbers of line-searches and function 

evaluations, and are effective for large-scale unconstrained problems. 

We start by developing nonmonotone first-order training algorithms, i.e. variants of 

the resilient backpropagation and conjugate gradient methods, and then progressively 

move into second-order training algorithms, i.e. the nonmonotone BFGS 

quasi-Newton and Levenberg-Marquardt methods. In all cases, the convergence of 

the methods is discussed in the framework of deterministic optimisation. The 

proposed algorithms are tested and comparatively evaluated in applications from the 

domain of temporal processing using symbolic sequences. 
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1.5 Thesis Structure 

In the following chapter of the thesis, we review RNN architectures and relevant 

training algorithms. An architectural classification scheme for RNNs is proposed 

[148] and three architectures from the RNN literature, i.e. Feed-Forward 

Time-Delayed network (FFTD) [196][197], Layered Recurrent Network (LRN) 

[57][85], Nonlinear Autoregressive Network with Exogenous Inputs (NARX) 

[128][137], are chosen in order to evaluate the behaviours of the novel training 

algorithms later on. 

After dealing with RNNs architectures systematically, the formulation of neural 

networks‟ learning in the context of unconstrained optimisation is presented in 

Chapter 3. By introducing a general form of the objective function, the problem of 

nonmonotone learning is formulated in terms of unconstrained optimisation and 

ways to introduce nonmonotone conditions are discussed.  

Four nonmonotone training algorithms are then developed and implemented. Two 

first-order methods, the nonmonotone Jacobi-Resilient backpropagation and the 

adaptive nonmonotone conjugate gradient methods are presented in Chapters 4 and 5 

respectively. Then two second-order methods, the adaptive nonmonotone BFGS 

quasi-Newton and the adaptive nonmonotone Levenberg-Marquardt methods, are 

presented in Chapters 6 and 7. All methods use nonmonotone learning strategy with 

adaptive tuning mechanism for the learning horizon.  

In Chapters 4-7, besides the parity-N problem, which is one of the classical model 

problems to verify the performance for new algorithms, experiments with three 

real-world symbolic sequences, the Sequence Learning problem (SL; [124]), the 
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Sequence Classification problem (SC; [116]), and the Reading Aloud problem (RA; 

[158]) are also provided and discussed. Our results using three different RNN 

architectures provide evidence that the new proposed training algorithms have 

potential to contribute to the research in the area of RNNs for temporal sequence 

processing. Details of the four classes of simulated applications and relative settings 

of experiments for this research can be found in Appendix A.1. 

In Chapter 8, conclusions of this thesis are drawn and future work and potential 

benefits are discussed.  

 

1.6 Contribution of the Thesis 

In Chapter 2, the thesis reviews RNNs architectures and examines gradient-based 

training algorithms in order to provide a systematic view of the research area. In 

Chapter 3, RNN training is examined in the framework of nonlinear optimisation and 

a formulation of the deterministic nonmonotone learning is provided. The thesis then 

proposes two first-order (Chapters 4 and 5) and two second-order (Chapters 6 and 7) 

training algorithms. These methods generate nonmonotone behaviours by 

incorporating conditions that measure the sufficiency of error reduction, and an 

adaptive window, whose size is informed by estimating the morphology of the error 

surface locally.  

In Chapter 4, a gradient descent based heuristic scheme, called nonmonotone 

Jacobi-Rprop, that locates an approximation of the subminimiser along each weight 

direction is introduced. This training scheme belongs to the Rprop class of training 
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algorithms, which employ sign information, and appears to provide improved 

convergence in high dimensional non convex functions when conditions are far from 

a minimiser (a situation common in RNN training), and helps avoiding convergence 

to local minima in some cases. 

In Chapter 5, a class of nonmonotone conjugate gradient methods is proposed. The 

two proposed algorithms, i.e. adaptive nonmonotone conjugate gradient (ANM-CG) 

and advanced adaptive nonmonotone conjugate gradient (A2NM-CG), possess the 

property of global convergence and behave more efficiently and effectively than 

their original versions, in terms of fewer training epochs and lower training/testing 

errors.  

In Chapter 6, a quasi-Newton based learning approach is presented, called adaptive 

self-scaling nonmonotone BFGS (ASCNM-BFGS) method. The proposed 

ASCNM-BFGS method retains the benefit of the latest works on the self scaling 

properties of the Hessian approximation, and the property of global convergence, 

and is equipped with the adaptive tuning mechanism of nonmonotone learning 

horizon. On the other hand, comparing to the original BFGS approach, the proposed 

nonmonotone revision is more effective by applying fewer number of required 

hidden nodes. 

In Chapter 7, two Levenberg-Marquardt (LM) based nonmonotone methods with 

adaptive momentum (AM) terms are introduced, i.e. adaptive nonmonotone LMAM 

(ANM-LMAM) and adaptive nonmonotone optimised LMAM (ANM-OLMAM). 

The two algorithms inherit the benefits of two recently proposed 

Levenberg-Marquardt approaches while the use of nonmonotone strategy alleviates 



Chapter 1. Introduction 
 

8 

some of the drawbacks of the original monotone versions. 

The proposed nonmonotone algorithms are comparatively evaluated against 

monotone methods in four applications (see Appendix A.1), using three different 

RNN architectures. Results of our experiments provide evidence that the four 

proposed nonmonotone learning algorithms are more effective than monotone 

approaches outperforming in all cases in terms of convergence.  
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Chapter 2 

Review of Recurrent Neural Networks 

 

A Recurrent Neural Network (RNN) is an artificial neural network in which 

self-loops and/or backward connections between nodes are allowed [57][83][112] 

[129]-[131][130][173]. Comparing to feedforward neural networks, RNNs are 

well-known for their power to memorise time dependencies and model nonlinear 

systems [128]. RNNs can be trained from examples to map input sequences to output 

sequences and in principle they can implement any kind of sequential behaviour. 

They are biologically more plausible and computationally more powerful than other 

modelling approaches, such as Hidden Markov Models (HMMs), which have 

non-continuous internal states, feedforward neural networks and Support Vector 

Machines (SVMs), which do not have internal states at all. 

One of the first RNNs was the avalanche network developed by Grossberg in 1969 

[83] for learning and processing an arbitrary spatiotemporal pattern. Jordan‟s 

sequential network [96] and the simple recurrent network [57] were proposed later. 

The first RNNs did not work very well in practical applications, and their operation 

was poorly understood. However, several variants of these models were developed 

for real-world applications, such as robotics, speech recognition, music composition, 
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vision, and their potential for solving real-world problems has motivated a lot of 

research in the area of RNNs. Current research in RNNs has overcome some of the 

major drawbacks of the first models. Progress has come in the form of new 

architectures and learning algorithms, and has led in a better understanding of the 

RNNs‟ behaviours.  

In summary, a RNN consists of two components, i.e., the recurrent architecture, and 

the learning algorithm. As has been pointed out in [131] “RNN applications have 

been hindered due to the high computational cost of training”. Thus, the drawbacks 

of RNNs are mainly caused by inefficient training (e.g. when backpropagation errors 

are vanished) and poor generalization (e.g. when no negative samples can be used at 

all). In addition, as the architectures of RNNs can be generally adjusted to fit the 

various applications, how to select a suitable architecture among the various 

recurrent topologies available are consider important issues as well. 

In the following subsections, architectures and learning algorithms of RNNs are 

reviewed and discussed. The chapter derives a more general and systematic 

classification scheme than the ones currently proposed and presents a review on the 

reported weaknesses/advantages of various implemented/applied learning methods 

[147][148].The chapter concludes with a summary and contribution. 

 



Chapter 2. Recurrent Neural Networks 

 

11 

2.1 Architectures 

In the literature, several classification schemes have been proposed to organise RNN 

architectures starting from different principles for the classification, i.e. some 

consider the loops of nodes in the hidden layers, while others take the types of output 

into account. For example, they can be organised into canonical RNNs and dynamic 

MLPs [193]; autonomous converging and non-autonomous non-converging [24]; 

locally (receiving feedback(s) from the same or directly connected layer), output 

feedback, and fully connected (i.e. all nodes are capable to receive and transfer 

feedback signals to the other nodes, even within different layers) RNNs [54]; binary 

and analog RNNs [142].  

From mathematical point of view [103], assuming that y and z are respectively the 

response of the output layer and the output of the hidden layer, a static feedforward 

neural network can be formulated as follows: 

 II II ,y z b W                              (2.1) 

and 

 I I ,z x b W                              (2.2) 

where ( ) denotes nonlinear activation function,
I II and W W the weights of the 

hidden layer and the output layer, x the input vector, and b the biases. This general 

form could be easily transformed to describe a Feed-Forward Time-Delayed (FFTD, 

see Figure 2.1, [196][197]) RNN by substituting the following delayed equations 
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with time index t,  

    II II ,y t z t b W                           (2.3) 

 I I( ) ( ) ,z t s t b W                            (2.4) 

and 

        1 ,s t x t x t x t d                           (2.5) 

where s(t) denotes the state vector at time t, the Cartesian product, d the number of 

delays.  

 

Figure 2.1 A three-layer Feed-Forward Time-Delayed network [196][197], with N 
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input, 1 time-delay, H hidden and M output nodes 
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By adding a feedback connection from the hidden layer to the delay unit then Eq. 

(2.4) can be stated as  

      I I1 ,z t z t x t b    W                        (2.6) 

where is a diagonal matrix, which describes an Elman-type RNN, also called 

Layered Recurrent Network or Simple Recurrent Network (LRN, see Figure 2.2, 

[57][85]). 

 

Figure 2.2 A three-layer Layered Recurrent Network [57][85], with N input, H 

hidden and M output nodes  

 



Chapter 2. Recurrent Neural Networks 

 

15 

For the Nonlinear Autoregressive Network with Exogenous Inputs (NARX, see 

Figure 2.3, [128][137]) the state is described as 

               1 1 1 2 ,s t x t x t x t d y t y t y t m                     

(2.7) 

where m is the number of output feedbacks. The formulations of a fully RNN, as 

shown in Figure 2.4, can also be derived by combining Eqs. (2.3) and (2.7) with the 

following one:  

      I I I1 ( ) .z t z t s t x t b     W W               (2.8) 

Table 2.1 provides an overview of the various architectures and of the relevant 

literature, based on our proposed classification scheme [147][148].  

In our previous works [147][148], a general scheme for the architectural 

classification of RNNs had been proposed. This scheme considers the networking 

topologies of RNNs‟ recurrence by revising the classification proposed by dos 

Santos [54], and is shown in Table 2.1. The first row of Table 2.1 divides RNNs into 

local (receiving feedback(s) from the same or directly connected layer) and global 

by considering their recurrence. It also takes their connectivity into consideration and 

separates RNNs as fully (all nodes are capable to receive and transfer feedback 

signals to the other nodes, even within different layers) and partially recurrent. 

Under this kind of classification, we can include all types of RNNs by creating 

combinations of these four classes, such as fully global RNNs and partially local 

RNNs. One more advantage of this classification scheme is that we can easily and 
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systematically observe the relationships between different RNN architectures. For 

example, considering the dynamic architectures with one hidden layer, as shown in 

Figure 2.5, the topological relationships between the FFTD, LRN, NARX, and fully 

RNN can be easily perceived. In Figure 2.5 the boxes with dashed line represent 

nodes of the input layer which receive input data and delayed versions of input, 

hidden or output signals, depending on the architecture.  

 

Figure 2.3 A three-layer Nonlinear Autoregressive Network with Exogenous Inputs 

[128][137], with N input, 1 time-delay, H hidden and M output nodes 
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Figure 2.4 A three-layer fully recurrent network 

 

Table 2.1 Classification summary of RNNs [148] 

Type of 

Recurrence 
Globally Locally Fully Partially 

References [29][102][164] [16][27][186][188][190] [144] All except [144] 

Equations (2.3)(2.4)(2.7) 
(2.3)(2.4)(2.5) or 

(2.3)(2.5)(2.6) 
(2.3)(2.7)(2.8) 

(see 

Globally/Locally) 
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(b) LRN

Output Layer

Delays

Hidden Layer

Input Vector

(a) FFTD

Output Layer

Delays

Hidden Layer

Input Vector

(c) NARX

Output Layer

Hidden Layer

Input Vector

DelaysDelays

(d) Fully RNN

Output Layer

Hidden Layer

Input Vector

DelaysDelays

 

Figure 2.5 Schematics of typical dynamic neural networks architectures [148]. 

 

2.2 Training Algorithms 

As quoted in [130], there are two main classes for derivative computation in RNNs, 

i.e., Backpropagation Through Time-BPTT and Real-time Recurrent Learning-RTRL. 

The former is a method for unfolding a RNN in time to build an equivalent 

feedforward representation so that the derivatives can be computed via standard BP 

method, while the latter computes derivatives at each time step by propagating the 

gradient history forward in time. In other words, BPTT is suitable for batch/offline 

learning and with backward derivative propagation, while RTRL is for 

sequential/online mode and with forward derivative propagation.  

Followed by the nature of computing and propagating derivatives, two of the 

fundamental drawbacks for the BPTT hence are “batch data must be applied and the 

extensive memory requirements that are dictated by the need to store significant 

amounts of state information.” [31]; while the two major disadvantages for the RTRL 

are large computational complexity O(N
4
) [31][131] and storage requirements O(N

3
) 
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[31], where N is the number of neurons. Furthermore, as indicated in [189] that “both 

BPTT and RTRL methods are failed to learning patterns that extend greater than 10 

time-steps,” the trade-off between these two classes for RNNs‟ derivative 

computation is therefore obvious and depended on applications that requiring batch 

or online learning.  

With regards to training RNNs and storing information in their internal 

representations, Gradient Descent-based (GD) learning algorithms are the most 

commonly applied methods, even though it has been claimed that GD has some 

drawbacks [25]. Firstly, when the delays or recursive connections are very deep, i.e. 

when long-term memory is required, the backpropagation error may be vanished and 

the training process could become inefficiently. Secondly, the most common way to 

apply GD algorithms into RNN, as mentioned above, is to unfold the recursive layers 

and train the whole network as a feedforward network. Another drawback is that the 

generalisation is highly affected by the samples in the training dataset - in temporal 

processing it is difficult to extract or prepare negative samples from a given training 

dataset and the specific RNN then predicts or classifies new coming samples 

according to the learned knowledge only. 

In [24], besides the Backpropagation Through Time (BPTT [200][201]) method and 

real-time gradient computation, approaches with space and/or time locality are also 

reviewed. However, local algorithms can be applied to some specific local feedback 

RNNs and for short-term memorisation only due to their inherent representation 

capabilities. The inefficiency of GD in learning long-term dependencies is mainly 

because previous information is treated initially as noise and gradually is ignored 

[24][25]. Therefore, two alternative algorithms are revised and discussed in Bengio‟s 
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works: the time-weighted pseudo-Newton and the discrete error propagation. The 

former applies the unfolding method to the pseudo-Newton optimisation and the 

later considers the limited case of propagation only; it has to be verified whether this 

would work on other more general situation or not.  

Two types of learning algorithms are discussed in [143]: the fixed point, and the 

non-fixed point. Well-known algorithms such as the BPTT method and Real-time 

Recurrent Learning (RTRL) [203] are included in this classification and a way of 

introducing time constants and time delays is also suggested. The method of 

extended RTRL (eRTRL) is also discussed and other relevant approaches, such as 

Elman networks, Jordan networks, the moving targets method, feedforward networks 

with state, teach forcing in continuous time and Kalman filter are reviewed. 

Pearlmutter in [143] also compares the complexity both in time and space, and 

discusses the learning mode, and locality of these algorithms.  

For fully connected hidden layer networks and dynamic MLPs, Tsoi [194] has 

investigated two first-order gradient learning algorithms. This work discusses some 

drawbacks of these methods, such as slow convergence and generalisation, and 

derives two 2
nd

-order approaches to speed up the convergence and to tackle the issue 

of weight pruning; it also provides a discussion on output sensitivity. The lower 

sensitivity of output to a specific adjustable parameter, the better performance of the 

network is. Although the related formulas are well defined in this work [194], there 

is still a crucial constant which is used to set the level of sensitivity that should be 

defined by the users. Quasi-2
nd

 order methods, such as conjugate gradient, scaled 

conjugate gradient, and the Newton approach have been also discussed and 

suggested as suitable only for batch training, while Kalman filtering and the 
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extended Kalman filter are classified as 2
nd

-order GD based learning algorithms, 

which can be used under online mode, where extended Kalman filter could be used 

to prune weights from a RNN. 

Kremer [103] reviews 14 kinds of memories used in spatiotemporal connectionist 

networks, capable of computing the state vectors, and provides a general formulation 

for computing output vectors. The author also summarises 10 different kinds of 

updating rules, such as full GD, truncated GD, auto-associative GD, and stack 

learning. It examines three open issues: the temporal credit assignment, the 

representation capabilities and the knowledge encoding.  

From the point of view of time-series modelling, Kolehmainen‟s work in [99] covers 

BPTT and RTRL for learning RNNs, while Dietterich [52] suggests BPTT. In the 

same vein with [18] and [143], fixed point networks are also considered and five 

relative algorithms, such as BPTT and GD learning of time constants, gains and 

delays are summarised.  

Some attempts have been made to propose second-order learning algorithms, e.g. dos 

Santos & von Zuben [54] proposed a quasi 2
nd

-order method. Also, simulated 

annealing has given some promising results but the training time is relatively higher 

[25]. Table 2.2 provides an overview of RNNs learning, giving examples of training 

algorithms for locally and globally RNNs for various applications.  
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2.3 Summary and Contribution of the Chapter 

Artificial neural networks (ANNs) can be classified according to their states into 

static and dynamic, and if considering their connective topologies only they are 

non-recurrent (feedforward) and recurrent.  

In this Chapter, the architectures and learning algorithms for RNNs, mainly for 

temporal sequence processing problems, were reviewed and the challenges involved 

in training RNNs for sequence processing were discussed. As reviewed in Section 

2.1, many schemes have been proposed in the literature in order to classify RNNs 

architectures. In relation to these works, we proposed a more general classification 

scheme [148], which is based on the ideas of [54] (for classified criteria) and [103] 

(for mathematical equations). From our proposed scheme [148] the relationships 

between the four sub-classes, i.e., globally, locally, fully, and partially, can be 

presented more systematically.  

In addition, our review showed that, despite the drawbacks of the GD-based methods 

on various applications, most RNNs are trained by first-order learning algorithms 

and that no attempt has been made to apply nonmonotone approaches yet. Part of 

contents in this Chapter has been published in [148]. 
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Table 2.2 Recurrent neural networks applications and learning algorithms  

Recurrent Applications Algorithms* Typical Problems Encountered Reference 

Locally 

Time series prediction: sunspots, 

Mackey-Glass, laser,  

reservoir inflows 

BPTT, RTRL,  

DEKF 

 Limited choice of cost functions 

 Occasional instability in the convergence of GD
1
 

 Prior knowledge required about system tuning 

 Oversized architecture, poor generalisation 

[16][27][28][151] 

Symbolic transduction and  

Prediction: grammatical inference 

BPTT, RTRL,  

DEKF 

 High computational complexity 

 Not suitable for complex sequences
2
 

[102][151] 

Classification of structures 
BP, eBPTT,  

eRTRL, rBP 
 Prior knowledge required [29][175][186][206] 

System Identification Casual rBP  Slightly higher computational complexity [36] 

Signal processing Rprop, COM  Drawbacks of GD methods [69][188] 

Moore Machine SpikeProp-TT 

 Discontinuous error surfaces 

 Memory vanishing 

 Suitable for simpler patterns 

[190] 

Globally 

Time series generation/prediction DEKF  Suitable for short-term and noiseless patterns [163][164] 

Sequences classification BP  Drawbacks of GD methods [29] 

* The notation used here is: BP- backpropagation; BPTT- BP through time; eBPTT- extended BPTT; RTRL- real time recurrent learning; eRTRL- extended RTRL; rBP- recurrent/recursive BP.; COM- combination of 

gradient descent, truncated BPTT and RTRL; DEKF- Decouple Extended Kalman Filter; Rprop- Resilient BP; SpikeProp TT- Spike Propagation Through Time  

1 This can be due to sensitivity to initial conditions and the multitudes of local minima 2 For example sequences in the area of natural language processing
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Chapter 3 

Monotone and Nonmonotone Learning 

in an Unconstrained Optimisation 

Framework 

 

In this chapter the training of RNNs is treated in the framework of unconstrained 

minimisation, as the general training goal for RNNs is to achieve a small-enough error 

which will hopefully lead to good generalisation. Although this approach does not 

directly address the generalisation problem, it has been very popular in neural 

networks training [121] because it offers flexibility in the derivation of learning 

algorithms by exploiting advances in nonlinear optimisation. In this context, 

conventional learning algorithms so far operate in a monotone way, i.e. the value of 

the target function f should be constantly reduced at each iteration. In the next 

subsection, the problem in the framework of unconstrained optimisation is firstly 

formulated, and then a brief review of classical monotone algorithms for 

unconstrained optimisation is provided in Section 3.2. As nonmonotone approaches 

are proved to be more efficient than their monotone versions, Section 3.3 introduces 

the classical theory of nonmonotone learning and provides a review of recent 

variations. Section 3.4 concludes this Chapter. 
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3.1 Neural Networks’ Monotone Learning as Unconstrained 

Minimisation 

Let us consider training an RNN as the following unconstrained optimisation problem 

 min ,  ,nf w w R                         (3.1) 

where : nf R R  is the learning error function and its gradient,    g g w f w  , 

is available through the method of backpropagation through time (BPTT [200]).  

Let the current approximation to the solution of the above problem be ,kw  and if 

  0,k kg f w   then, in some way, an iterative method finds a stepsize 
k  along 

a search direction ,kd  and computes the next approximation 1kw   as follows: 

1 .k k k kw w d                          (3.2) 

Traditional optimisation strategies for RNNs (and for unconstrained optimisation) are 

monotone ones, i.e. these strategies compute a step length that reduces the error 

function value at each iteration: 

1 ,k kf f                            (3.3) 

which is the most straight-forward way to minimise an objective function. 

Unfortunately, even when an algorithm is proved to be globally convergent, there is 

no guarantee that the method will efficiently explore the search space in the sense that 

it may be trapped in a local minimum point early on and never jump out to a global 

one under ill conditions [71], such as poorly initialised weights.  

Several attempts have been made to use algorithms from the field of unconstrained 



Chapter 3. Unconstrained Optimisation and Theory of Nonmonotone Learning 

 

 26 

optimization in training neural networks. In the rest of this section, we look at the 

issue from the perspective of monotone learning and consider two broader classes of 

techniques for achieving monotone convergence, i.e. line-search and trust-region.  

Considering the error function, from unconstrained optimisation point of view there 

are two concerns: number of variables (univariate vs. multivariate) and shape of the 

objective function (smooth vs. non-smooth). When derivatives are available the 

algorithms for unconstrained optimisation can be classified as first-derivative (e.g. 

quasi-Newton and steepest descent), second-derivative (e.g. Newton methods), and 

non-derivative methods (e.g. finite difference approximation) [71]. In the context of 

neural networks, the error function should be generally smooth enough - typical 

examples are the total sum of squared errors, or the mean squared error – and 

derivatives are available through backpropagation or BPTT. 

Various schemes to organise unconstrained optimisation algorithms have been 

proposed in the literature: 

 Greig‟s [78]: line-search, general-search, gradient, and Newton (including 

quasi-Newton) methods; 

 Scales‟s [172]: univariate minimization (e.g. polynomial interpolation/ 

extrapolation and hybrid methods), multivariate minimization (e.g. steepest 

descent, Newton, quasi-Newton and conjugate gradient methods) and non-linear 

least squares (e.g. small residue and large residue methods); 

 Fletcher‟s [68]: Newton-like (e.g. Newton and quasi-Newton methods), 

conjugate direction (conjugate gradient and direction set methods), restricted 

step (e.g. Levenberg-Marquardt methods), and sums of squares and nonlinear 

equations (e.g. over-/well-determined systems and no-derivative methods); 
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In terms of the technique used to achieve monotone convergence, nonlinear 

optimisation methods can be organised into two boarder classes: step-length-based 

(or line-search) methods and trust-region (or restricted-step) methods (pp. 105 and 

113, [71]; pp. 21, [68]). The basic structure of the k-th iteration for a line-search (LS) 

method [68] is as follows:  

(LS-a) determine a direction of search ;kd  

(LS-b) find a step-length 
k  to minimise  k k kf w d  with respect to ;  

(LS-c) set 
1 .k k k kw w d    

Let, at iteration k, 
kq  be a quadratic function, while 

kg  and 
kG  respectively are 

the first and second derivatives of object function f. For a trust-region (TR) method it 

takes the following form [68][180]: 

(TR-a) given kw  and ,kh  calculate kg  and ;kG  

(TR-b) solve 
k  in 

 min  subject to ;k kq h


    

(TR-c) evaluate  k kf w   and ,k k kr f q    

where  k k k kf f f w      and ;k k k kq f q     

(TR-d) if 0.25,kr   set 1 4;k kh     

if 0.75,kr   and k kh   set 1 2 ;k kh h    

otherwise, set 
1 ;k kh h   

(TR-e) if 0,kr   set 1 ;k kw w   else, set 1 ;k k kw w     

while, as indicted in (p. 96, [68]), the above constants 0.25, 0.75, etc. are arbitrary and 

the algorithm is quite insensitive to their change. 
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Different line-search approaches may correspond to different ways of choosing 
kd  in 

step (LS-a), while step (LS-b) is the so-called line-search sub-problem and is carried 

out by repeatedly sampling f(w) and possibly its derivatives for different points 

k k kw w d   along the line. In the ideal case, in step (LS-b) the exact minimising 

value of   is required (an exact line-search) but this cannot be implemented in 

practice in a finite number of operations. “Essentially the nonlinear equation 

0df d   must be solved.” (p. 21, [68]) “Also it may be that the minimizing value 

of 
k  might not exist (

k   ). Nonetheless the idea is conceptually useful, and 

occurs in some idealized proofs of convergence. In this respect it is convenient to 

point out the consequential property that the slope df d  at k  must be zero, 

which gives” 

1 0.T

k kg d                            (3.4) 

On the other hand, both line-search and trust-region methods have the following 

common features (pp. 114-115, [71]):   

 “If the function is well-behaved, both classes of methods are designed to become 

equivalent to Newton‟s method as the solution is approached.” 

 “The search direction is implicitly defined by a scalar that is adjusted according 

to the degree of agreement between the predicted and actual change in the target 

function.” 

 “If the Hessian matrix kG  is indefinite and norm of the gradient kg  is small 

or zero, both types of methods must compute a direction of negative curvature 

from a factorization of the Hessian matrix or a modified version of it.” 

 “If the Hessian matrix becomes indefinite, both types of methods compute 1kw   
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based on information from the positive-definite part of 
kG .” 

 

3.2 Theory of Nonmonotone Learning 

As mentioned in the previous sections, minimisation problems in the context of 

unconstrained optimisation are typically dealt with by trying to reduce the value of 

objective function f at each iteration – an approach called monotone learning in this 

thesis. Although, the thesis examines the problem of training RNN in the context of 

unconstrained nonlinear optimisation, the proposed approaches can also be considered 

relevant to the nonmonotone way learning occurs in cognitive development [57]. 

From optimisation perspective, nonmonotone strategies have been proved to offer 

several advantages, such as the properties of global and superlinear convergence, 

fewer numbers of line searches and function evaluations, and have demonstrated 

effectiveness for large-scale unconstrained optimisation problems [60][78]-[81], 

which is a valuable property when training RNNs, as this usually involves optimising 

several hundred free parameters.  

The motivation for nonmonotone learning is the need to better explore the search 

space and accelerate the convergence rate. Nonmonotone strategies, such as the one 

introduced in [80] for Newton‟s method, take into consideration the M previous f 

values by using a constraint such as the following one  

    
0
max ,T

k k k k j k k k
j M

f w d f w g d 
 

                (3.5) 

where M is a nonnegative integer and constant  0,1  . In the neural networks 

context, M has been named nonmonotone learning horizon [156].  
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The proposed nonmonotone approach exploits conditions of the form of Eq. (3.5), by 

varying the search direction depending on the designed algorithm and a nonmonotone 

learning horizon M that is adapted using local estimations of the Lipschitz constant – 

an approach originally introduced in [119] to adapt the learning rate. This allows us to 

avoid using a poorly user-defined nonmonotone learning horizon and exploit the 

morphology of the error function through a local estimation of the Lipschitz constant 

to determine the size of M dynamically. This technique for tuning M proved to work 

well in our previous work in the context of static feedforward backpropagation 

networks
 
[156]. Further details on the tuning the learning horizon M and our proposed 

nonmonotone approaches are presented in Section 3.2.2, as well as in the 

later-presented sections of proposed algorithms in Chapters 4-7 of this thesis.  

It is worth mentioning that learning algorithms with momentum terms, such as the 

well known momentum backpropagation, do not belong by default to the class of 

nonmonotone algorithms discussed here. Although momentum backpropagation may 

occasionally exhibit nonmonotone behaviour, it does not formally apply a 

nonmonotone strategy, such as the one derived in Eq. (3.5). Nevertheless, 

nonmonotone strategies can be combined with momentum parameters, such as in the 

work of [156] that proposed nonmonotone learning with momentum and compared it 

with momentum backpropagation. 

In the rest of this section, after presenting some well known and recently proposed 

nonmonotone conditions, the discussion of nonmonotone learning horizon is 

provided. 
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3.2.1 Nonmonotone Conditions 

The first nonmonotone strategy was proposed in [80], which is a line-search method 

for Newton methods. Let 
k
 
be a stepsize, 

kd
 
the search direction, g the gradient 

of f, 
1k k k kx x d   , 0 1    , 

1 2,   two forcing functions, M a nonnegative 

integer. Then the Grippo-Lampariello-Lucidi‟s (GLL) nonmonotone Newton method 

[80] can be stated as shown in Table 3.1. 

Table 3.1 the GLL nonmonotone Newton algorithm 

UAlgorithm: Grippo-Lampariello-Lucidi’s nonmonotone Newton method 

Step 0. Initialise 0 ,w integer 0,M 
1 0,c  2 0,c   3 0,1 ,c  and  4 0,1 ;c   

Step 1. Set 0,k    0 0m   and compute  0 0 ;f f w  

Step 2. If 0,kg   stop;  

Else-if kH  is singular, set ,k kd g  ( ) 0,m k   and go to Step 5; 

Step 3. Compute 1 ;k k kd H g    

If 
2

1

T

k k kg d c g  or 2 ,k kc g d  set ,k kd g   ( ) 0,m k   

and go to Step 5; 

Step 4. If 0,T

k kg d   set ;k kd d   

Step 5. Set 1;   

Step 6. Compute  ;kf f w d     

If 
 

3
0
max ,T

k j k k
j m k

f f c g d 
 

     set 1 ,kf f   1 ,k k kw w d    

1,k k      min 1 1,m k m k M      and go to Step 2; 

Step 7. Set 4c   and go to Step 6 
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In the following, after presenting the main theoretical result (Theorem 3.1) of [80], 

other variations of the nonmonotone conditions are reviewed.  

Theorem 3.1 [80]. Let  kw  be a sequence defined by 
1 ,k k k kw w d    where 

0.kd   Let 0,a    0,1 ,    0,1   and let M be a nonnegative integer. 

Assume (A) that 

(A1). The level set     0 0:w f w f w   is compact; 

(A2). There exist positive numbers 
1 2,c c  such that 

2

1 ,T

k k kg d c g                         (3.6) 

2 ;k kd c g                          (3.7) 

(A3). ,kh

k a   where 
kh  is the first nonnegative integer h for which 

   
0 ( )
max ,h h T

k k k j k k
j m k

f w ad f w ag d 
 

   
 

           (3.8) 

   where  0 0m   and  

   0 min 1 1, ,m k m k M       1.k               (3.9) 

Then (T),  

(T1). The sequence  kw  remains in 
0  and every limit point w     

satisfies   0;g w   

(T2). No limit point of  kw  is a local maximum of f; 

(T3). If the number of the stationary points of f in 
0  is finite, the sequence  

 kw  converges.   
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When the integer M in Step 6 in Table 3.1 and Eq. (3.8) is set to zero, the GLL 

nonmonotone steplength selection rule is reduced to the standard Armijo rule, and 

therefore, it can be viewed as a generalisation of the Armijo‟s rule, as indicated in 

[80].  

The GLL nonmonotone linesearch (NM-GLL) can be summarised as below 

[113][114]. 

 
 

  

 

0

1 3
0

1 4

max
,

,

T

k k j k k k
j m k

T

k k k k

f w f x g d

g w d g d

 



 
 



  


  


           (3.10) 

where
3 40 1 2     and m(k) is defined as in Eq. (3.9). Note that in the original 

work of Grippo et al., the settings of constants for scaling the amount of changes (in 

Eqs. (3.6) and (3.8)) are more relaxed.  

In the work of [87], the referred GLL linesearch is as follows. 

    
0

1 1
0
max ,T

k k j k k k
j M

f w f w g d  
 

                (3.11) 

and 

    1 2max ,1 ,
p T

k k k k k kg w d d g d                 (3.12) 

where  ,1p  ,  1 0,1 ,  and  2 0,1 2  . Although the term “GLL” seems to 

represent Grippo-Lampariello-Lucidi, comparing to Step 3 in Table 3.1 and Eq. (3.6), 

Han and Liu [87] had actually extended the form of  1k kg w d  in Eq. (3.10), by the 

curvature condition of the Wolfe linesearch. And the Wolfe linesearch is a special case 

of this GLL linesearch [87]. The work of [207] was based on the approach of [87]. 
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The nonmonotone Armijo rule (NM-Armijo, see e.g. [46][100][185][187]) is revised 

from the standard Armijo‟s rule [14] and can be described as follows. Let 0,a   

 0,1   and  0,1  . For each k, let m(k) satisfy  0 0 m  and m(k) satisfy the 

definition in Eq. (3.9). Let  

 p k

k a                           (3.13) 

and p(k) be the smallest nonnegative integer p such that  

 
 

  
0

1
0
max T

k k j k k k
j m k

f w f w g d 
 

  ,             (3.14) 

where 
1 .k k k kw w d    Note that the way of tuning steplength of this approach 

[185][187], i.e. p(k) in Eq. (3.13), is different to the GLL nonmonotone linesearch, i.e., 

see assumption (A3) in Theorem 3.1. But in [46], the assumption (A3) in Theorem 3.1 

was still applied, as the monotone Armijo‟s rule. Dai also proposed a revised way of 

NM-Armijo linesearch as: if NM-Armijo hold, apply the stepsize; else, consider 

standard monotone Armijo linesearch, i.e.   0m k  . Another work referring to 

NM-Armijo rule is [182] but it takes a slightly different way for updating   :m k  

    min 1 , ,m k m k M   1.k   

In [187], there is another referred linesearch approach, i.e., the nonmonotone 

Goldstein rule (NM-Goldstein), derived from Goldstein‟s rule [74][73], which can be 

defined as below:  

 
    

 
  

0 0

2 1 1
0 0
max max ,T T

k j k k k k k j k k k
j m k j m k

f w g d f w f w g d     
   

     (3.15) 
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where 
1 20 1    . Sun et al. also proposed the nonmonotone F-rule (NM-F) as 

stated in Eq. (3.16). Let m(k) satisfy the definition in Eq. (3.9) and 0k   be 

bounded above and satisfy 

 
 

    
0

1
0
max ,k k j k

j m k
f w f w t 

 
                (3.16) 

where   is a forcing function and  

.
T

k k
k

k

g d
t

d
                          (3.17) 

It has been also proved [187] that the NM-Armijo, NM-Goldstein and NM-Wolfe 

rules are the special cases of the NM-F linesearch approach. 

Deriving from the standard monotone Wolfe‟s rule [203][205], the nonmonotone 

Wolfe conditions (NM-Wolfe, see e.g., [101][113][114][187]) are defined as:   

    

 

0

1 3
0

1 4

max
,

T

k k j k k k
j M

T T

k k k k

f w f w g d

g w d g d

 



 
 



  

 

            (3.18) 

but 3 40 1     and the nonmonotone horizon is a constant, with no iterative 

upper bound. As in the case of NM-Armijo (and other nonmonotone approaches), 

when the nonmonotone horizon is set to zero, i.e. considering only one previous 

function value ,kf  NM-Wolfe is reduced to the standard monotone Wolfe rule. 

In [61][104] the following nonmonotone linesearch was proposed,  

 Step_0. set 1,     1 20,1 ,0 1, 1;M        

 Step_1. if 
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 
 

  
0

32

1
0 ,

max ,k k j k
j m k M

f w f w d 
 

              (3.19) 

set 
k   and stop. 

 Step_2. choose  1 2,   , set   and go to Step_1. 

while in the approach of [55], the condition for constants further relaxed as 

3 40      ,  

 
 

  

 

0

1
0

3 1 4

max
,

T

k k j k k k
j m k

TT T

k k k k k k

f w f w g d

g d g w d g d



 

 
 



  


  

             (3.20) 

where m(k) satisfies the definition stated in Eq. (3.9).  

The work of [181] is as follows. Given  0,0.5 ,   0,1 ,  and  0.5,1 ,c  

2

2

1 k

k

k k

gc
s

L d


                         (3.21) 

and k  is the largest  in  2, , ,s s s   such that 

   1
0 ( )

2

1 1 1

max T

k k j k k
j m k

T

k k k

f w f w g d

g d c g

 
 

  

  


  

              (3.22) 

where m(k) is defined as in Eq. (3.9), and the new search direction 
1kd 
 is defined as, 

 1 1

1 1 2

T

k k k

k k k

k

g g g
d g d

g

 

 


                   (3.23) 

and the estimated Lipschitz constant kL  in Eq. (3.21) is defined as, 
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1

1

1

max , ,
k

k k

k

y
L L









 
   

 

                    (3.24) 

or 

1 1
1 2

1

max , ,
T

k k
k k

k

y
L L





 




 
  

 
 

                   (3.25) 

with 
1 1k k kw w     and 1 1.k k ky g g    

Another work proposed by Shi and Shen [182] can be described as follows. Given 

 0,0.5 ,    0,1 ,   0.5,2 ,  kB  is the approximated Hessian matrix and  

.
T

k k
k T

k k k

g d
s

d B d


                         (3.26) 

Choose k  to be the largest   in  2, , ,s s s   such that 

   1
0 ( )

1
max ,

2

T T

k k j k k k k k
j m k

f w f w g d d B d  
 

 
   

 
        (3.27) 

where m(k) is defined as in Eq. (3.9) and kB  is updated by either BFGS, DFP or 

other quasi-Newton formulae. 

Yin and Du [209] proposed two nonmonotone conditions, the first one is:  

         

 

0

1 1 2
0

1

max min ,
,

k k j k k
j M

T T

k k k k

f w f w

g w d g d

    



 
 



  

 

      (3.28) 

where  
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,
T

k k
k

k

g d

d
                            (3.29) 

note 
k kt   , which is relevant to the term in Eq. (3.17), 

and  

.T

k k k kg d                          (3.30) 

The second nonmonotone condition in [209] is defined as below: 

      

 

1 1 2

1

min ,
,

k k k k

T T

k k k k

f w C

g w d g d

    







  




           (3.31) 

where 
k  and 

k  are the same terms as in Eqs. (3.29) and (3.30),  0 0 ,C f w  

0 1Q   and 

 
 1

1

1

,
k k k k

k

k

Q C f w
C

Q

 






                    (3.32) 

with  0,1k  , and  

1 1.k k kQ Q                          (3.33) 

One of the latest works on nonmonotone conditions is [210]: let  0,1 ,  1,M    

 min 1, ,km k M                       (3.34) 
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(note that 
km  here is different to Eq. (3.9), i.e. considering the iteration counter k, 

not the previous size of learning horizon 
1km 
), ,kr   0,1,2, , 1kr m   and 

ˆ 1,km m   

ˆ

0

1.
m

kr

r




                          (3.35) 

Given 
2 1 0,    

11 0,   
2 0,1 0,      

2
,

T

k k

k

k

g d

d
                          (3.36) 

 1 2,k k k     and  

max , 1,2, ,j

k k j                        (3.37) 

such that 

     
_ 1

2

1 1 2

0

max , .
m k

T T

k k kr k r k k k k k

r

f w f w f w g d d   


 



 
   

 
   (3.38) 

All algorithms applying the above nonmonotone conditions have been proved to have 

the property of global convergence. More details can be found in the original works 

and relative literature. 

 

3.2.2 Nonmonotone Learning Horizon 

The key idea of nonmonotone learning is that, for the target function f, to consider not 

only the current one iteration kf  but also the previous M function values and 
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therefore, an increase of function value f is allowed. In the 13 versions of 

nonmonotone conditions mentioned in previous subsection, the ways of determining 

the size of the nonmonotone learning horizon M are mainly the variations of Eq. (3.9), 

while Eqs. (3.11), (3.18) and (3.28) use a fixed value. However, choosing a fixed or 

non-adaptive value for all applications is not the proper way of determining the 

nonmonotone learning horizon because the curvature of specific target functions for 

different applications may have totally different features [156].  

As stated in [119][156][195], it is well-known that the Lipschitz constant is closely 

related to the morphology of a function, i.e. for a function having steep regions, the 

Lipschitz constant is large and when the function is flat the Lipschitz constant is small. 

However, in neural networks training practice, neither the morphology of the error 

surface nor the value of the Lipschitz constant are known in advance [119]. Therefore, 

the following procedure can provide a dynamical way to adapt the size of the 

nonmonotone learning horizon at k-th iteration, without additional evaluations of 

target function or gradient: 

1 1 2

1 1 2

1

1,  if 

1,  if ,

,       otherwise,

k k k k

k k k k k

k

M

M M

M

  

  



     

      







                (3.39) 

where k  is the local approximation of the Lipschitz constant and defined by  

1

1

.k k
k

k k

g g

w w






 


                       (3.40) 

If k  constantly increases during consecutive epochs, i.e. the second condition in 

Eq. (3.39) is satisfied, it indicates that the sequence of weight vectors kw  

approaches a steep region, and the value of kM  should be decreased to “avoid 
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overshooting a possible minimum point” [156]. On the other hand, when the first 

condition in Eq. (3.39) is satisfied, the current point may possibly enter a valley in 

the weight space and 
kM  should be increased in order to enlarge the learning 

horizon and fasten the convergent speed. 

All proposed nonmonotone learning algorithms in this thesis apply the above 

adaptive procedure, i.e. Eqs. (3.39)-(3.40), to dynamically determine the size of 

nonmonotone learning horizon. As mentioned in all relative works, 
kM  has to be a 

non-negative integer. Since our experimental results show that the upper bound of 

kM  ( maxM ) is not critical for different applications and different recurrent 

architectures, i.e. there is no significant difference between max 100,M 
max 50M   

and max 15,M   the boundaries of 
kM  is set to 3 15,kM   for all the 

simulations in this thesis. 

 

3.3 Summary and Contribution of the Chapter  

The unconstrained-optimisation formulation of neural networks learning reveals the 

possibility of applying a large base of algorithms from the field of unconstrained 

optimisation into the ANNs training problem. The review of unconstrained 

optimisation provides a basic and rough sketch of the classical minimisation 

approaches for this research. As indicated in Chapter 2, the most commonly applied 

training algorithms for RNNs belong to the class of the gradient-based methods, even 

it has been claimed may not be the best choice.  

This chapter also presented a theory for nonmonotone learning, while the basic steps 
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of the nonmonotone learning strategy at the k-th iteration [156] can be summarised as:  

(1). Update the weights 
1 ;k k k kw w d    

(2). If a nonmonotone condition, such as the one in Eq. (3.8), is satisfied, store 
1,kw 

 

set 1k k   and go to Step (1); else, go to Step (3); 

(3). Use a tuning technique for 
k  and return to Step (2). 

Different approaches to determine the steplength 
k  and search direction 

kd  will 

compose different algorithms for unconstrained optimisation. As indicated in [156], 

the nonmonotone learning strategy can be incorporated in any batch training 

algorithm as a sub-procedure that secures and accelerates the convergence of a batch 

training algorithm. 

Forcing functions are the terms, such as h T

k kag d  in Eq. (3.8),  kt  in Eq. 

(3.16), 
32

kd  in Eq. (3.19), 
1

2

T T

k k k k kg d d B d 
 

  
 

 in Eq. (3.27), 

    1 2min ,k k      in Eq. (3.28), and 
2

1 2

T T

k k k k kg d d     in Eq. (3.38), 

used to guarantee a sufficient change for the next function value 
1.kf 

 From the 

mentioned examples in Subsection 3.3.1, it is obvious that there is not only one type 

of forcing functions can be applied. In this thesis, the one in Eq. (3.8) was chosen for 

the four proposed nonmonotone algorithms. 

Lastly, all the nonmonotone learning algorithms that are presented in the rest of the 

thesis apply the adaptive procedure of Eqs. (3.39)-(3.40), to dynamically determine 

the size of nonmonotone learning horizon.  
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Chapter 4 

Adaptive Nonmonotone Resilient 

Propagation Algorithm 

 

As presented later in this chapter, the Resilient Propagation (Rprop, also called 

Resilient backpropagation [165]-[168]) has been designed to tackle the drawbacks of 

the traditional BP method by exploiting information from the signs of the gradients of 

the cost function in the two successive iterations. In this chapter, we propose 

nonmonotone first-order methods [149] based on the Rprop algorithm. In particular 

we use the Jacobi-Rprop (JRprop) variant [11]- a recently proposed modification of 

the Rprop algorithm that combines the sign-based updates of the original Rprop with 

ideas from the composite nonlinear Jacobi method.  

The rest of this chapter is organised as follows. The original Rprop method and the 

recent modifications [11][93] are reviewed in Section 4.1, while their global 

convergence is discussed in Section 4.2. The proposed nonmonotone Rprop methods 

are then described in Section 4.3, followed by experimental results in Section 4.4. 

Concluding remarks are made in Section 4.5. 
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4.1 Rprop Methods 

Aiming to overcome the disadvantages of the pure gradient descent backpropagation 

procedure, the first version of Resilient Propagation algorithm was proposed in [165], 

which was based on the so-called “Manhattan Learning” rule, revised below 

,   if  0

,   if  0,

0,       else

k k

k k k

g

w g

 


   



                    (4.1) 

where 
kw  is the update amount of weight vector ,kw  

k  a predefined 

problem-dependent constant, and 
kg  the gradient. The second learning rule of the 

Rprop approach is as follows,  

1 1

1 1

1

,   if  0

,   if  0 ,

,          else

T

k k k

T

k k k k

k

g g

g g







 



 



 


   



                (4.2) 

with 0 1 .      Table 4.1 shows the two original versions of the Rprop 

methods , where “Rprop+” represents the original Rprop with weight back-tracking 

[166] and “Rprop-” is the version without back-tracking [167][168]. As observed 

from Eqs. (4.1) and (4.2), the original intent of Rprop is to increase the steplength 

when the signs of two joined gradients remain the same, and to decrease the 

steplength when the signs of two were different.  

The “Improved Rprop” (iRprop) methods were then proposed by Igel & Hüsken [93], 

as shown in Table 4.2. The revision of Anastasiadis et al. [9], i.e. the Jacobi-Rprop 

(JRprop) method, combined the sign-based updates of the original Rprop algorithm 

with the composite nonlinear Jacobi method, as shown in Table 4.3. Experiments in [9] 
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have shown that the JRprop algorithm is more efficient and superior to both the 

original Rprop and the iRprop algorithms. Thus, we focus on the JRprop approach to 

develop a nonmonotone variant of the Rprop method in this chapter. 

 

Table 4.1 Key loops of original Rprop methods: (a) Rprop+ and (b) Rprop- 

U(a) Loop of Rprop+
U

 [166] 

for each 
kw  do{ 

if 1* 0T

k kg g    then{ 

 1 maxmin , ;k k 

      

 sign ;k k kw g     } 

elseif 1* 0T

k kg g    then{ 

 1 minmax , ;k k 

      

1;k kw w     

0;kg      } 

elseif 1* 0T

k kg g    then{. 

1;k k    

 sign ;k k kw g     } 

1 ;k k kw w w    

} 

U(b) Loop of Rprop-
U

 [167][168] 

for each 
kw  do{ 

if 1* 0T

k kg g    then{ 

 1 maxmin , ;k k 

       } 

elseif 1* 0T

k kg g    then{ 

 1 minmax , ;k k 

       } 

 1 sign ;k k k kw w g     

} 
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Table 4.2 Key loops of iRprop methods [93]: (a) iRprop+ and (b) iRprop- 

U(a) Loop of iRprop+ 

for each 
kw  do{ 

if 
1* 0T

k kg g    then { 

 1 maxmin , ;k k 

      

 sign ;k k kw g        } 

elseif 1* 0T

k kg g    then{ 

 1 minmax , ;k k 

      

If 1t tE E   then{ 

1;k kw w     

0;kg   }           } 

elseif 1* 0T

k kg g    then{. 

 sign ;k k kw g        } 

1 ;k k kw w w    

} 

U(b) Loop of iRprop- 

for each 
kw  do{ 

if 
1* 0T

k kg g    then{ 

 1 maxmin , ;k k 

      

} 

elseif 1* 0T

k kg g    then{ 

 1 minmax , ;k k 

      

0;kg   

} 

 1 sign ;k k k kw w g     

} 
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Table 4.3 Key loop of the JRprop algorithm 

ULoop of JRprop U [9] 

if 
1k kE E   then{ 

for each 
kw  do{ 

if 
1 0T

k kg g    then{ 

 1 maxmin , ;k k 

       sign ;k k kw g     

1 ;k k kw w w              
1 ;k kg g   

1 ;k kw w                              } 

elseif 1 0T

k kg g    then{ 

 1 minmax , ;k k 

      
1 0;kg     } 

elseif 1 0T

k kg g    then{. 

 sign ;k k kw g           1 ;k k kw w w     

1 ;k kg g                             } 

  1;q   

} } 

elseif 1k kE E   then{ 

 1 1

1
;

2
k k kq

w w w     

 1;q q   

} 
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4.2 Global Convergence of Rprop Methods 

In this section, global convergence of the Rprop class is discussed. Before stating the 

resulted theorem of global convergence proved in [8], the assumptions (H4.1) and 

(H4.2) should be made.  

(H4.1) For a given point 
0

nw R  and for every w in some region that contains the 

initial weight vector 0w , the level set  0 0( ) ( )nL w R f w f w    is bounded.  

(H4.2) In some neighbourhood B of the level set 
0L , the error function is continuous 

differentiable and the gradient g is Lipschitz continuous, i.e. there exists 0L   

for every pair vw,  such that  

( ) ( ) , ,g w g v L w v w v B                       (4.3) 

Theorem 4.1 [8]. Suppose that the assumption (H4.1) and (H4.2) hold. For any 

0

nw R  and 0,k   any sequence  
0k k

w



 generated by the Rprop scheme  

   1

1 - diag , , , , sign ,i n

k k k k k k kw w g                    (4.4) 

where 0k   satisfying Wolfe’s conditions, m

k   1,2, , 1, 1, ,m i i n    are 

small positive real numbers generated by Rprop’s learning rates procedure and 

       
1,

,

n j j

k kj j ii

k i

k

g

g

 


 


 


                       (4.5) 

with 0 ,   0,i

kg   it holds that  

lim 0.k
k

g


                             (4.6) 
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As we focus on the JRprop method [9] in this chapter, the revision of 

globally-convergent Rprop approaches shall be implemented in our future works. 

 

4.3 The Nonmonotone Jacobi Rprop Algorithm 

The proposed nonmonotone version of JRprop method is presented in this section. 

Followed the same way as other versions of Rprop, the key loop of our proposed 

algorithm, i.e. Adaptive Non-Monotone JRprop (ANM-JRprop), is presented in Table 

4.4. ANM-JRprop applies one-step subminimisation by employing an Rprop-based 

heuristic scheme to locate an approximation of the subminimiser along each weight 

direction as the original JRprop does. The main difference between the original 

JRprop [9] and our ANM-JRprop is that the subminimisation procedure of the 

composite nonlinear Jacobi method operates in a nonmonotone way. When the current 

training error kE  is not larger than the error of previous training epoch 1,kE   the 

weights (and biases) are updated according to the JRprop‟s rules; otherwise, the 

subminimisation is performed under the predefined adaptive nonmonotone condition.  

Table 4.4 Key loop of the Adaptive Non-Monotone JRprop algorithm 

ULoop of ANM-JRprop  

If 1k kE E   then{ 

update 1kw   by Rprop; 

 set 1;q      } 

Else { 

if  
0
max

k

k k j k k k
j M

E E g d
 

   then { 

1 1

1
;

2
k k kq

w w w     

  1;q q   } } 
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Examples of convergence behaviours for the parity-5 (P5) and the parity-10 (P10) 

problems are shown in Figures 4.1 and 4.2, respectively, illustrating the evolution of 

the MSE during training NARX networks, the stepsizes, and the adaptive 

nonmonotone learning horizon, where the maximum number of hidden nodes from 

the ones listed in Table A.1 was used, i.e., 7 for the P5 and 10 for the P10. 
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Figure 4.1 Convergence behaviours in P5: NARX networks trained by ANM-JRprop 
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Figure 4.2 Convergence behaviours in P10: NARX networks trained by ANM-JRprop  

 

4.4 Experimental Results 

Four problems are tested in this chapter: the parity-N, Sequence Classification (SC, 

[116]), Sequence Learning (SL, [124]) and Reading Aloud (RA, [158]) problems. 

More details on these problems, such as description, information about the datasets, 

numbers of weights and biases, settings of training parameters, and stopping criteria, 

are provided in Appendix A.1. 

In the following subsections, simulation results of these four applications for 3 

different RNNs architectures, i.e. FFTD ([196][197]), LRN ([57][85]), and NARX 

([128][137]), are presented and examples of learning behaviours are provided. 

Mathematical models of these RNNs architectures can be found in Chapter 2. All 

numerical results are averaged from 100 random initialized runs, while in the 
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following Tables #hid is the number of hidden nodes used, Conv shows the percentage 

of runs that reach the predefined training goal, MSE and STD are respectively the 

mean-squared-error and corresponding standard deviation in percentage. In addition, 

the columns under Epoch represent the average (Ave), minimum (Min), maximum 

(Max) and standard deviation (Std) of the training epochs for the converged runs, 

while the definitions of convergence for the four simulated applications are provided 

in Appendix A.1. A dash (-) indicates no single run converged under the specified 

termination conditions, and this results to placing a 0 in the Conv column.   

 

4.4.1 The N-Bit Parity Problems 

Being a typical application for testing new algorithms, the parity-N problem plays an 

important role for testing the ability of how an algorithm handles nonlinear separable 

datasets with lots of local minima. Appendix A.1.1 provides for further details on the 

particular problem, including latest references applying this application, such as 

[41][84][110][125][136][158][183]. We choose two instances, i.e. parity-5 (P5) and 

parity-10 (P10) for our experiments.  

Tables 4.5-4.7 and Figures 4.3-4.5 show the simulation results and learning 

behaviours examples of the P5 problems, while Tables 4.8-4.10 and Figures 4.6-4.8 

for the P10 problems. From these numerical results, it can be easily observed that for 

the P5 problem, the ANM-JRprop is better than the JRprop in terms of MSE with 

improvements ranging between 26% and 45% for FFTD networks and LRNs, where 

by applying 5 and 7 hidden nodes, our approach can reach the training goal 

(MSE=0.01): 11 and 37 runs for FFTD, 12 and 37 runs for LRN converged. Although 

for NARX networks, the MSEs of our approach are not all better than JRprop‟s, i.e., 
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only 0.01% and 0.007% higher for 1 and 7 hidden nodes, respectively, our approach 

does converge for all the random 100 runs and achieves much smaller number of 

converged epochs in terms of average, minimum, maximum and standard deviation. 

For example, as shown in Table 4.7, when using 2 hidden nodes for NARX networks, 

JRprop has 99 runs converged to MSE  0.01, while the averaged epoch is 84, 

maximum epoch of converged runs is 401, and standard deviation of epochs for all 99 

converged runs is 70. Our approach, ANM-JRprop, has 100% convergence rate, with 

61.9% smaller average, 87.7% smaller maximum, and much more robust standard 

deviation (91.4%) of converged epochs. 

Note that, in Figures 4.3-4.5, the behaviours of the JRprop method are caused by the 

condition of 
1,k kE E   where, according to the original description of the JRprop 

algorithm (see Table 4.3), the updates of weights and biases are given by 

1 1

1
,

2
k k kq

w w w     and 1.q q   Under this situation the JRprop method will 

consider only the error function of the previous epoch, i.e. 1,kE   and as a result, the 

JRprop method in Figures 4.3-4.5 then behaves in a pseudo-nonmonotone way, just as 

the ones in Figures 4.6-4.8. 
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Table 4.5 Average performance for FFTD networks in the P5 problem: class of 

JRprop 

Algorithms #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epoch 

Ave Min Max Std 

JRprop 

1 0 49.393 0.573 - - - - 

2 0 49.305 0.601 - - - - 

5 0 48.251 0.495 - - - - 

7 0 47.466 0.454 - - - - 

ANM-JRprop 

1 0 23.668 2.581 - - - - 

2 0 18.137 6.047 - - - - 

5 11 6.007 4.352 997 356 1696 533 

7 37 3.288 5.618 708 227 1766 431 
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Figure 4.3 Examples of learning behaviours (JRprop vs. ANM-JRprop): P5 problem, 

FFTD network 
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Table 4.6 Average performance for LRN networks in the P5 problem: class of JRprop. 

Algorithms #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epoch 

Ave Min Max Std 

JRprop 

1 0 49.154 0.499 - - - - 

2 0 49.124 0.516 - - - - 

5 0 48.251 0.478 - - - - 

7 0 48.020 0.433 - - - - 

ANM-JRprop 

1 0 23.326 2.150 - - - - 

2 0 17.698 4.938 - - - - 

5 12 6.521 4.503 747 362 1793 418 

7 37 3.387 4.990 758 234 1852 406 
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Figure 4.4 Examples of learning behaviours (JRprop vs. ANM-JRprop): P5 

problem, LRN network 
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Table 4.7 Average performance for NARX networks in the P5 problem: class of 

JRprop. 

Algorithms #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epoch 

Ave Min Max Std 

JRprop 

1 100 0.791 0.163 99 23 643 88 

2 99 1.223 0.406 84 23 401 70 

5 100 0.693 0.288 55 18 182 47 

7 100 0.691 0.282 44 15 227 36 

ANM-JRprop 

1 100 0.818 0.140 37 20 64 9 

2 100 0.737 0.257 32 23 49 6 

5 100 0.692 0.304 26 18 46 5 

7 100 0.698 0.133 25 15 40 5 
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Figure 4.5 Examples of learning behaviours (JRprop vs. ANM-JRprop): P5 problem, 

NARX network 
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Comparing to P5, the P10 problem is more difficult, and convergence rates of FFTD 

and LRN are therefore relatively small. Similar to the improved range of the P5 

problem, the differences in terms of MSEs made by our approach are between 25% 

and 45%. In this problem LRNs training requires extensive computational resources, 

so we have left simulations with 2, 5, and 7 hidden nodes for our future works.  

For NARX networks, as in the case of the P5, the MSEs of the ANM-JRprop are 

slightly higher than JRprop, where the largest difference is 0.05%, but again our 

approach does achieve very promising results in the converged runs, in terms of much 

fewer training epochs, as shown in Table 4.10. For example, applying 10 hidden 

nodes for NARX networks, both JRprop and ANM-JRprop are 100% converged. But 

when our approach takes only 27 epochs in average to converge, JRprop needs 104 

training epochs, which is about 4 times higher. Furthermore, we have the same best 

20-epoch minimum number in the converged run as JRprop, and the maximum 

number of epochs within the 100 random runs drops from 284 for JRprop to 38 for 

our ANM-JRprop. This is an improvement of 86.6% in the most difficult case (maybe 

caused by poor initial weights) for the simulated runs.  

As revealed in the P5 problem, our approach has more concrete behaviours as the 

values of standard deviation are relative smaller than JRprop, and the ratios between 

standard deviation (Std) and average epochs (Ave) of our approach are about 11.1% to 

22.2%, while the same ratios of JRprop are from 54.8% to 85.0%. Behaviour of the 

JRprop algorithm in Figure 4.6 can be explained in the same way as in the P5 

problem. 
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Table 4.8 Average performance for FFTD networks in the P10 problem: class of 

JRprop 

Algorithms #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epoch 

Ave Min Max Std 

JRprop 

1 0 49.992 0.606 - - - - 

2 0 49.972 0.727 - - - - 

5 0 49.681 0.594 - - - - 

7 0 49.835 0.549 - - - - 

10 0 49.665 0.511 - - - - 

ANM-JRprop 

1 0 24.983 2.731 - - - - 

2 0 23.660 3.127 - - - - 

5 0 15.568 5.535 - - - - 

7 0 9.495 4.608 - - - - 

10 2 4.554 6.710 3696 3527 3864 238 
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Figure 4.6 Examples of learning behaviours (JRprop vs. ANM-JRprop): P10 problem, 

FFTD network 
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Table 4.9 Average performance for LRN networks in the P10 problem: class of 

JRprop 

Algorithms #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epoch 

Ave Min Max Std 

JRprop 

1 0 49.989 0.473 - - - - 

10 0 49.674 0.594 - - - - 

ANM-JRprop 

1 0 24.971 3.842 - - - - 

10 0 4.724 5.107 - - - - 
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Figure 4.7 Examples of learning behaviours (JRprop vs. ANM-JRprop): P10 problem, 

LRN network 
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As illustrated in Figure 4.3, both methods behave exactly the same within the first 

couple training epochs, since the same weight-updating condition (the original Rprop) 

was invoked; Figures 4.5 and 4.8 provide more local examples of NARX networks for 

this type of situations. After that point ANM-JRprop has a generally decreasing trend 

and converges at 382 epochs (i.e. Figure 4.3), but JRprop seems to be trapped in a 

local state by considering only the error of the previous epoch. Similar situations can 

be observed in Figures 4.4 and 4.6. 

One more point is worth mentioning is that shown in Figure 4.6. Starting from the 

same initialisation point, while JRprop has stopped its training at about 1500 epochs 

because the gradient was smaller than the specified threshold or equal to zero, i.e. the 

minimum gradient is set to 1e-100 in all simulations of this thesis, our approach 

ANM-JRprop can be trained till the predefined 4000-epoch. Lastly, Figure 4.7 shows 

that, at the beginning of training, ANM-JRprop behaves differently to JRprop, and 

when JRprop is trapped to a local minimum with MSE of about 0.26, our approach 

exploits the power of non-monotonicity to decrease the MSE effectively. 
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Table 4.10 Average performance for NARX networks in the P10 problem: class of 

JRprop 

Algorithms #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epoch 

Ave Min Max Std 

JRprop 

1 100 0.815 0.148 164 27 402 90 

2 99 1.174 0.394 120 22 619 102 

5 100 0.645 0.273 89 23 278 60 

7 100 0.699 0.282 95 21 287 68 

10 100 0.669 0.195 104 20 284 61 

ANM-JRprop 

1 100 0.816 0.143 36 25 92 8 

2 100 0.715 0.214 32 22 51 6 

5 100 0.667 0.258 28 22 44 4 

7 100 0.720 0.221 27 21 36 3 

10 100 0.707 0.147 27 20 38 4 
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Figure 4.8 Examples of learning behaviours (JRprop vs. ANM-JRprop): P10 problem, 

NARX network 
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4.4.2 The Sequence Classification Problem 

Simulation results in terms of MSEs and CEs (Classification Errors) for both training 

and testing datasets of the SC problem are shown in Tables 4.11-4.13, while examples 

of learning behaviours for the FFTD, LRN and NARX networks are provided in 

Figures 4.9-4.11. More details on the experimental parameters and the recurrent 

architectures used in this application are listed in Appendix A.1.2.  

Although the largest improvements are made by FFTD networks, i.e. 10.0% (MSE) 

and 10.7% (CE) for the training dataset, and 30.8% (MSE) and 24.2% (CE) for the 

testing dataset, the average improvements of our ANM-JRprop are 3.6% (MSE) and 

3.7% (CE) for LRN, and, 5.8% (MSE) and 0.8% (CE) for NARX on the training set, 

while for the testing set performances of ANM-JRprop are 10.4% (MSE) and 2.8% 

(CE) superior to JRprop for LRN, and, 16.8% (MSE) and 2.6% (CE) better than 

JRprop for NARX.  

Figure 4.9 displays a typical example of why nonmonotone JRprop provides large 

improvement for FFTD networks. As this figure shows JRprop is generally trapped at 

local minima with values around an MSE=0.425, while our approach ANM-JRprop 

exhibits the benefits of nonmonotone learning and achieves improvements which are 

larger than a half of JRprop‟s training MSE.  

Learning behaviours shown in Figures 4.10 and 4.11 illustrate that since JRprop 

considers the MSE of previous training epoch only, both RNN architectures suffer 

from improper weight updates and the MSEs jump to high level at the end of training, 

while the nonmonotone horizon and adaptive tuning of our ANM-JRprop efficiently 

prevent this kind of situations. 
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Table 4.11 Average performance for FFTD networks in the SC problem: class of 

JRprop 

Algorithm #hid 

MSE (%) CE (%) 

Train/STD Test/STD Train/STD Test/STD 

JRprop 

5 29.168/2.693 27.698/2.185 78.828/5.732 55.685/5.003 

10 28.258/2.940 26.451/2.774 82.552/6.033 55.795/5.146 

15 28.592/2.822 27.389/2.901 78.690/5.591 51.068/4.790 

ANM-JRprop 

5 19.146/4.373 16.918/3.044 51.724/6.158 31.507/5.998 

10 19.145/4.373 16.917/3.044 51.724/6.158 31.507/5.998 

15 19.145/4.372 16.917/3.043 51.724/6.158 31.507/5.998 
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Figure 4.9 Examples of learning behaviours (JRprop vs. ANM-JRprop): SC problem, 

FFTD network 
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Table 4.12 Average performance for LRN networks in the SC problem: class of 

JRprop 

Algorithm #hid 

MSE (%) CE (%) 

Train/STD Test/STD Train/STD Test/STD 

JRprop 

5 12.672/2.143 11.828/1.906 42.714/3.729 14.973/2.484 

10 10.058/1.059 8.901/1.663 34.645/2.957 10.178/2.093 

15 10.039/1.007 9.214/1.815 36.330/3.631 8.232/1.732 

ANM-JRprop 

5 7.013/3.870 6.067/2.713 26.576/3.992 7.657/2.036 

10 7.434/4.073 6.450/3.588 27.887/4.271 8.917/5.673 

15 7.413/4.125 6.249/3.402 27.828/4.200 8.328/5.227 
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Figure 4.10 Examples of learning behaviours (JRprop vs. ANM-JRprop): SC problem, 

LRN network 
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Table 4.13 Average performance for NARX networks in the SC problem: class of 

JRprop 

Algorithm #hid 

MSE (%) CE (%) 

Train/STD Test/STD Train/STD Test/STD 

JRprop 

5 10.701/2.479 19.593/4.263 36.330/3.498 30.712/5.125 

10 7.661/1.952 17.314/5.217 26.813/3.120 27.315/6.012 

15 7.397/1.847 17.576/4.970 26.803/3.754 27.740/5.991 

ANM-JRprop 

5 2.842/1.423 17.091/2.578 13.394/2.762 26.192/4.903 

10 2.633/1.392 17.326/2.720 13.034/2.693 25.781/4.888 

15 2.605/1.350 17.410/2.954 13.069/2.813 25.767/4.821 
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Figure 4.11 Examples of learning behaviours (JRprop vs. ANM-JRprop): SC problem, 

NARX network 
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4.4.3 The Sequence Learning Problem 

Tables 4.14-4.16 present simulated results of this application using 1, 2, 5 and 10 

hidden nodes for the three RNN architectures. For both training and testing datasets 

our approach ANM-JRprop performs better than JRprop in terms of MSE, while, on 

average, the testing improvements are 3.2% for FFTD networks, 2.0% for LRNs, and 

1.3% for NARX networks.  

Figures 4.12-4.14 show examples of learning comparing JRprop and ANM-JRprop. 

As indicated in previous subsection nonmonotone learning scheme does help our 

approach behave better, and in general, exhibit a more robust training process than 

JRprop method.  

 

Table 4.14 Average performance for FFTD networks in the SL problem: class of 

JRprop 

Algorithm #hid 

Training Testing 

MSE (%) STD (%) MSE (%) STD (%) 

JRprop 

1 43.199 22.764 43.179 23.602 

2 32.136 15.817 32.131 16.688 

5 28.356 12.263 28.327 14.271 

10 26.806 14.085 26.740 13.995 

ANM-JRprop 

1 39.481 18.356 39.424 18.200 

2 28.960 13.784 28.897 13.607 

5 25.034 10.349 24.986 10.331 

10 24.239 10.060 24.268 10.243 
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Figure 4.12 Examples of learning behaviours (JRprop vs. ANM-JRprop): SL problem, 

FFTD network 

Table 4.15 Average performance for LRN networks in the SL problem: class of 

JRprop 

Algorithm #hid 

Training Testing 

MSE (%) STD (%) MSE (%) STD (%) 

JRprop 

1 36.630 13.792 37.449 16.074 

2 27.200 11.503 28.291 11.990 

5 21.359 9.005 23.065 10.784 

10 20.388 8.376 21.682 9.132 

ANM-JRprop 

1 35.487 10.324 36.379 11.021 

2 26.308 11.097 27.428 12.191 

5 18.880 8.412 20.804 9.778 

10 15.521 6.309 17.923 6.571 
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Figure 4.13 Examples of learning behaviours (JRprop vs. ANM-JRprop): SC problem, 

LRN network 

Table 4.16 Average performance for NARX networks in the SL problem: class of 

JRprop 

Algorithm #hid 

Training Testing 

MSE (%) STD (%) MSE (%) STD (%) 

JRprop 

1 35.077 11.792 36.660 12.046 

2 26.814 9.984 28.495 11.737 

5 18.274 10.003 21.897 12.854 

10 14.030 8.314 17.839 11.402 

ANM-JRprop 

1 33.932 9.458 35.493 10.880 

2 25.431 10.671 27.345 11.724 

5 16.809 5.477 20.733 7.999 

10 12.027 4.890 16.160 8.005 
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Figure 4.14 Examples of learning behaviours (JRprop vs. ANM-JRprop): SL problem, 

NARX network 

 

Since these experiments in the thesis were designed with the aim to verify how 

effective and efficient the proposed nonmonotone algorithms could be, the training 

processes are extended, i.e., from the 23-epoch simulation of the original work for this 

problem, [124], to additional 200- and 1000-epoch runs in order to make a more 

extensive comparison of the two methods. Results are shown in Tables 4.17-4.19. 

Note that, in the additional simulated runs, the same behaviours (as it has been 

indicated on page 53 for Figures 4.3-4.5) of the JRprop method appeared again and 

this caused poor performance for this method for the three RNN architectures. 
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Table 4.17 Results of additional simulations for FFTD networks in the SL problem: 

class of JRprop 

Algorithms 

200-epoch 1000-epoch 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

JRprop 44.6/97.8 47.3/99.1 29.9/91.2 31.0/93.5 

ANM-JRprop 21.2/74.6 22.3/75.5 18.4/47.5 21.7/73.4 

 

Table 4.18 Results of additional simulations for LRN networks in the SL problem: 

class of JRprop 

Algorithms 

200-epoch 1000-epoch 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

JRprop 33.5/95.1 33.1/94.3 29.8/90.8 31.2/93.2 

ANM-JRprop 13.3/31.3 14.9/38.8 11.4/28.6 13.2/30.7 

 

Table 4.19 Results of additional simulations for NARX networks in the SL problem: 

class of JRprop 

Algorithms 

200-epoch 1000-epoch 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

JRprop 22.5/78.4 24.1/82.3 17.6/43.4 17.3/42.1 

ANM-JRprop 12.3/29.2 14.0/34.5 5.9/17.5 8.7/20.8 
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4.4.4 The Reading Aloud Problem 

This high-dimensional problem consists of 2998 training patterns which require 

RNNs with 105 input and 61 output nodes. The description of this application, 

numbers of weights for our simulations, and other experimental parameters are stated 

in Appendix A1.4. Simulation results are shown in Tables 4.20 and 4.21, while 

examples of learning behaviours are provided in Figures 4.15 and 4.16. 

The training MSE improvements of the proposed ANM-JRprop using 5 and 10 hidden 

nodes are about 4.9% and 10.4% for FFTD networks, and 8.9% and 10.8% for NARX 

networks, respectively. For the exclusive 30-word testing dataset, ANM-JRprop is 

8.7% and 3.8% better for FFTD, and 6.6% and 4.8% for NARX, in terms of testing 

MSE. 

Figure 4.15 shows an example that when JRprop fails to train this application 

successfully, our ANM-JRprop behaves relatively better and converges to a smaller 

MSE. On the other hand, as shown in Figure 4.16, when JRprop is trapped to a local 

solution with an MSE value of about 0.05 our approach trains the NARX network 

better, demonstrating a general trend of descending errors. 
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Table 4.20 Average performance for FFTD networks in the RA problem: class of 

JRprop 

Algorithm #hid 

Training Testing 

MSE (%) STD (%) MSE (%) STD (%) 

JRprop 

5 15.765 6.785 22.540 13.335 

10 10.225 4.301 17.508 8.996 

ANM-JRprop 

5 5.359 2.713 13.844 7.088 

10 5.309 2.005 13.795 6.792 
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Figure 4.15 Examples of learning behaviours (JRprop vs. ANM-JRprop): RA problem, 

FFTD network 
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Table 4.21 Average performance for NARX networks in the RA problem: class of 

JRprop 

Algorithm #hid 

Training Testing 

MSE (%) STD (%) MSE (%) STD (%) 

JRprop 

5 12.608 4.728 24.215 11.288 

10 13.843 5.925 22.800 9.264 

ANM-JRprop 

5 3.750 1.847 17.663 6.340 

10 3.009 2.296 18.055 7.111 
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Figure 4.16 Examples of learning behaviours (JRprop vs. ANM-JRprop): RA problem, 

NARX 
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4.5 Summary and Contribution of the Chapter  

In this chapter, starting from original versions of the Rprop approach, four 

modifications were discussed in Section 4.1, while the property of global convergence 

was reviewed in Section 4.2. A nonmonotone version of Rprop algorithm was 

developed in Section 4.3. This approach exploits function comparisons to produce an 

Rprop-inspired scheme that can be theoretically considered as a composite nonlinear 

Jacobi method. The subminimisation process of the nonlinear Jacobi locates 

subminimisers along each weight direction by employing Rprop steps with a 

nonmonotone strategy. As shown in Section 4.4 simulation results prove that our 

modification of Rprop algorithm is superior to the recently proposed JRprop approach, 

which in previous work demonstrated better performance than other four Rprop 

methods discussed in Section 4.1. In our tests, the nonmonotone algorithm 

outperformed the monotone JRprop version in terms of lower training MSEs, higher 

rates of convergence, fewer epochs in the converged runs, and smaller standard 

deviations of the converged runs for the P5 and P10 problems. It also exhibited 

smaller MSEs and CEs in both training and testing for the SC problem, as well as 

lower MSEs in both training and testing for the SL and RA problems.  
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Chapter 5 

Adaptive Nonmonotone Conjugate 

Gradient Algorithms 

 

The famous conjugate gradient (CG) method was originally proposed in 1952 [88] for 

linear functions, while the non-linear version was introduced in 1964 [65]. As stated 

in Chapter 1 of this thesis, one objective of the research is focusing on the class of CG 

methods. Therefore, the traditional monotone (such as [3][26][37][32][33][38][49][62] 

[53][54][61][71][75][133][159][161][166][3][172][76]) and the latest nonmonotone 

revisions (such as [113][114][185][55][181][182]) are firstly discussed, followed by 

the proposed adaptive nonmonotone CG approaches and their concrete simulation 

results on one artificial (i.e. N-bit parity) and three real-world (i.e. SC [116], SL [124] 

and RA [158]) applications. In the experiments, three different RNN architectures are 

used (i.e. FFTD [196][197], LRN [57][85] and NARX [128][137], see discussion in 

Section 2.1 for further details) with different numbers of hidden nodes (precise 

settings of these RNNs are provided in Appendix A.1, while the summary of free 

parameter amounts for simulated problems is depicted in Table A.1).   

The rest of this chapter is organised as follows. In Section 5.1, the CG methods are 

firstly reviewed, and then global convergence of the nonmonotone version is 
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discussed in Section 5.2, followed by our proposed nonmonotone CG algorithms 

(Section 5.3, [146][147]) and experimental results in Section 5.4. Section 5.5 

concludes this Chapter.  

 

 

5.1 Conjugate Gradient Methods 

Conjugate Gradient methods are in principle approaches suitable for large-scale 

problems [71]. The basic idea of CG methods is to find the stepsize in Eq. (3.2) along 

a linear combination of the current gradient vector and the previous search direction. 

The ways of determining search direction d can be expressed as follows:  

0 0d g                            (5.1) 

1 1,  if 1k k k kd g d k      ,                  (5.2) 

where the well-known choices of the parameter   are: the Hestenes-Stiefel formula 

[88] 
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and the Polak-Ribière approach [159] 
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Traditional CG methods [3][161][172][76] are designed for static neural networks 

(NNs). There are however some CG approaches proposed for dynamic networks, such 

as [32][33][38]. Using the information of the Hessian matrix and/or proper line search 

methods, these CG approaches are guaranteed to find a local minimum rapidly. The 

larger the scale of the problem is, the more obvious the benefits of using CGs [71]. 

By using two product-calculating techniques [33], the direct calculation of the 

Hessian matrix in the scaled conjugate gradient (SCG) method [133] was prevented, 

and then two new 2
nd

-order dynamic SCG-based algorithms were proposed. By 

recursively determining the CG direction, the SCG requires only O(N) memory usage, 

where N is the number of weights [133]. However, instead of directly calculating, the 

SCG has used an estimation of the Hessian matrix. The statement of [33] was not 

exactly correct. Furthermore, the simulations in [33] only compared the authors‟ 

revised version with RBP (recursive backpropagation, [32][34] and TRBP (truncated 

RBP, [35]) and no direct comparisons with the original SCG was made. Thus, claims 

for „better‟ performance need to be verified experimentally, as in [53].  

Through deriving general formulas, the works in [53][54] applied their improved SCG 

to dynamic NNs, and simulation results in nonlinear system identification and time 

series prediction problems showed that the performance is better than the original 

SCG. The improved SCG [53] uses the hybrid choice of direction parameter and exact 

multiplication by the Hessian matrix, while the approach of exact multiplication is the 

method indicated in [33]. Comparing to the original SCG, the performance of the 

hybrid SCG [53] is better, involving the usage of their output feedback RNN 

(OFRNN) and fully RNN (FRNN). The cases of equivalences between globally RNN, 

locally RNN, OFRNN and FRNN are more clearly indicated in [54]. From the 

discussions in [53][54] it is worth mentioning that when a very large number of 
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training iterations is involved the numerical precision in the direct calculation of the 

Hessian matrix is gradually lost so it might make sense to estimate the Hessian 

instead. 

One other advantage in [33] as the authors claim is the adoption of the revised SCG 

into a dynamic version. Applying the two product-calculation techniques to the RBP 

and TRBP, the learning algorithms designed for IIR-MLP, the formulas of forward 

and backward phases are obtained. The ambiguous question here refers to the 

relationships between RBP/TRBP and SCG. As the name indicating the moving step 

of SCG is scaled by a formula consisting of the 1
st
- and 2

nd
-order information through 

the recursively decided conjugate direction. If the revised SCGs of [33] only applied 

the product methods into RBP and TRBP and then became CG-based dynamic 

algorithms, RBP and TRBP must have some equivalence to SCG, i.e. for example, 

usage of the Hessian matrix. However, since they are gradient descent methods, only 

the 1
st
-order information is used, it seems almost all benefits of the original SCG are 

gone, even though RBP and TRBP are suitable for dynamic NNs. The question of 

how to compare the dynamic version of SCG to the static version under very different 

basis of network complexity should be explored further.  

The work in [38] modified the real time recurrent learning (RTRL) with conjugate 

gradient and proposed a CGRL algorithm. The pros and cons between the BPTT and 

RTRL were also discussed, while more details about comparison of BPTT and RTRL 

can be found in [49]. Feng [62] proposed a study of the CG method, while a latest 

extended review reveals its dynamic behaviour in [169]. Bhaya and Kaszkurewicz [26] 

built various connections between CG and BP with momentum for modifying the 

convergence properties. More discussions about gradient descent and CG approaches 

can be found in [37]. Different CG methods had been compared in [115][178] for both 
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static and dynamic neural networks. The authors in [135] proposed an adaptive CG 

for linear minimisation, while González and Dorronsoro [76] introduced natural 

gradient into CG for training perceptrons. Numerous applications and developments 

for CG methods can be found in the literature, such as the works in [1][4][17][92][108] 

[139][153][191][199]. 

The nonmonotone version of CG methods has been also studied in the context of 

optimisation [113][114][185][55][181][182], and there is theoretical evidence that 

these variants are globally convergent for both convex [55][113][181][182] and 

nonconvex [185] objective functions. Furthermore, nonmonotone methods for general 

nonconvex functions have been analysed in [46] and conditions for global 

convergence have also been established [45]. Note that the global convergence 

property is totally different from global optimisation; it means that starting from 

almost any initial weight these methods will always reach a minimiser [118] but not 

necessarily the global minimum.  

Considering the objective functions of RNNs‟ learning are nonconvex, we present 

below the main theoretical results for global convergence of nonmonotone CG 

methods which hold in this case. It is worth mentioning that proving global 

convergence for nonconvex objective functions is a very challenging problem. Here 

we are based on the work of Liu and Wei [114], and apply the nonmonotone 

Grippo-Lampariello-Lucidi (GLL) line-search [80], which can be stated as follows 

 
 

  
0

1
0
max T

k k k k j k k k
j m k

E w d E w g d  
 

   ,            (5.5) 

  2, T

k k k k k kg w d d g d    ,                 (5.6) 
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where
1 and

2 are constants, 1 20 1 2    , and  m k  is updated by the 

following rule: 

 

    

0 0
.

min 1 1,

m

m k m k M




  

                      (5.7) 

 

5.2 Global Convergence of Nonmonotone Conjugate Gradient 

Before presenting the main theorems for global convergence, the following 

Assumption (H5) and Property (P) are needed. 

(H5.1) For a given point 
0

nw R  and for every w in some region that contains the 

initial weight vector 0w , the level set  0 0( ) ( )nL w R f w f w    is bounded.  

(H5.2) In some neighbourhood B of the level set
0L , the error function is continuous 

differentiable and the gradient g is Lipschitz continuous, i.e. there exists 

0L   for every pair ,w v  such that  

( ) ( ) , ,g w g v L w v w v B                       (5.8) 

(H5.3) The search direction kd satisfies the following sufficient decrease condition, i.e., 

there exists a positive constant 0c such that 

2

0, .k k kg d c g                        (5.9) 

Property (P) [70]. Consider a CG method defined by Eqs. (3.2), (5.1) and (5.2), and 

suppose that  
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1 20 kg                          (5.10) 

for all 1k  , where 
1  and 

2  are constants. Under this assumption, the CG 

method is called to have property (P) if there exist constants 
3 1   and 0a  such 

that, for all k,  

3,k                            (5.11) 

1
3

1

2k k k
w w a 


                       (5.12) 

Below we present the theorems by Liu and Wei [114] which need part of Property (P) 

on the sufficient descent condition and Assumptions (H5) to establish the global 

convergence of the nonmonotone CG method. 

Theorem 5.1 [114]. Suppose that Assumptions (H5) hold. Let  kw  and  kd  be 

generated by the CG rule, Eqs. (3.2), (5.1) and (5.2), using the Fletcher-Reeves, Eq. 

(5.3), or the Polak-Ribière, Eq. (5.4), update. 3,k   and the stepsize k  

satisfies the nonmonotone GLL linesearch, Eqs. (5.5)-(5.7). If Eq. (5.10) holds, then 

2
0

1
.

k kd





                         (5.13) 

Assumption (H5.1) holds in RNN training, defined in Chapters 2 and 3, because the 

error function f is bounded below in nR  since f ≥ 0: for a RNN with a fixed 

architecture and a finite set of training patterns, if a 
w  exists such that 0)( wE , 

then 
w  is the global minimum; otherwise the vector w with the smallest available 

value is the “global” minimiser. Assumption (H5.2) also holds for RNNs that use 
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smooth enough activations functions (the derivatives of order p are available and 

continuous), such as the well know hyperbolic tangent and logistic (used in our 

experiments) activations. Moreover, (H5.2) implies that there exists a constant   

such that Bwwg  ,)(  . Lastly, Gilbert and Nocedal [70] have shown that the 

condition of Eq. (5.9) is important to ensure global convergence of CG methods, and 

suggested that can be guaranteed by incorporating bracketing procedures in the 

method.  

Using the result of Theorem 5.1, the following Theorem can establish the property of 

global convergence.  

Theorem 5.2 [114]. Suppose that Assumptions (H5) hold. Let  ,kw  ,kd and 

 k  be generated as in Theorem 5.1, where 0k   satisfy Property (P). Then  

liminf 0.k
k

g


                        (5.14) 

A detailed proof is provided in
 
[114], which shows that the limit of Eq. (5.14) is the 

best type of global convergence result that can be obtained for nonconvex functions. 

 

5.3 The Proposed Nonmonotone Conjugate Gradient Algorithms: 

ANMCG and A2NMCG 

In this section, the two nonmonotone CG-class approaches [146][147] are presented. 

The first version of our proposed algorithm is the Adaptive Non-Monotone CG 

(ANMCG, [146]), as stated in Table 5.1, then the improved version of ANMCG is 

shown in Table 5.2, i.e., the Advanced ANMCG (A2NMCG, [147]). 
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Table 5.1 Algorithm: Adaptive Non-Monotone CG (ANMCG, [144])  

UAlgorithm: ANMCG 

STEP 0. Initialize
0 ,w  k, boundaries of ,kM and 

0 0d g  ; 

STEP 1. If 0kg   stop; 

STEP 2. Adapt 
kM  by the following conditions: 

1 1 2

1 1 2

1

1,  if 

1,  if ,

,       otherwise,

k k k k

k k k k k

k

M

M M

M

  

  



     


      



 

where
1

1

;
k k

k

k k

g g

w w






 


 

STEP 3. Find a step length k  satisfying the following nonmonotone condition: 

     

1 2

1 2

0

For 0  and , (0,1), at each iteration, one chooses a parameter  

such that the step length ,  where ( , ),  satisfies 

max

k

k

k

l

k k k

T

k k k k j k k k
j M

l

E w d E w f w d

   

     

  
 

  

  

      
 

; 

STEP 4. Generate new point by 1 ;k k k kw w d    

STEP 5. Update search direction by 1 1,k k k kd g d      where
k

PR

k  or ;
k

FR  

STEP 6. STEP 6. Let 1,k k   go to STEP 1. 
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Table 5.2 Algorithm: Advanced ANM-CG Algorithm (A2NMCG, [145]) 

UAlgorithm: A2NMCG 

STEP 0. Initialise
0 ,w k=0, 0 0M  , maxM  is an upper boundary for ,kM

0 0,l   

 0 , , 0,1a     and 
0 0d g  ; 

STEP 1. If  0kg  , then stop; 

STEP 2. If  k ≥ 1, calculate a local approximation of  the Lipschitz as 1

1

,k k
k

k k

g g

w w






 


 

and adapt 
kM  by the following conditions: 

1 1 2

1 1 2

1

1,  if 

1,  if ,

,       otherwise,

k k k k

k k k k k

k

M

M M

M

  

  



     

      







 

where  maxmin , ;k kM M M  

STEP 3. For all k ≥ 1, find a stepsize  
1

2 kl

k k 


    satisfying the following condition: 

   
0

max ,
kj M

T

k k k k j k k kE w d E w dg  
 

         

where 1k kl l  ; 

STEP 4. Generate a new point by 
1k k k kw w d   ; 

STEP 5. Update search direction 
1 1k k k kd g d     , where

k

PR

k   or 
k

FR
  and is 

greater than zero; 

STEP 6. Let 1,k k   go to STEP 1. 

 

The main difference between the Adaptive Non-Monotone Conjugate Gradient 

(ANMCG) method and the A2NMCG method lies in the way the stepsize in Step 3 is 

adapted. In ANMCG we use the steplength of the previous iteration as the new 

stepsize, while A2NMCG takes a local approximation of the Lipschitz constant at 

each iteration as the initial trail steplength to satisfy the nonmonotone condition. The 
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Lipschitz constant is related to the morphology of a function. The local approximation 

used here provides information regarding the local shape of the error function. Thus, 

the local approximation gets large values in steep regions and small values in flat 

regions (see also [119][195] for the usefulness of this estimate).  

To illustrate the behaviour of the new algorithm we provide below typical examples 

of convergence behaviour from learning the partity-5 and parity-10 problems [176] 

using RNNs that belong to the NARX group of models. Figures 5.1 and 5.2 illustrate 

the behaviour of the MSE, the stepsize, and the adaptive learning horizon for the P5 

and P10 problems using a 2-hidden-node NARX network, which was trained to reach 

an error goal of 1e-100 within 1000 epochs. In all cases, the use of an adaptive 

learning horizon M did not affect stable behaviours (i.e. faster convergence to training 

goals) of the methods. Moreover, Figures 5.1 and 5.2 show that the trend for the 

adaptive M is to increase in all cases, despite temporary reductions at some iterations; 

an observation which is in accordance with theoretical results [113][114].  
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 (b) A2NMCG 

Figure 5.1 Convergence behaviours of NARX networks trained with the (a) ANMCG 

and (b) A2NMCG methods in the P5 problem. 
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 (b) A2NMCG 

Figure 5.2 Convergence behaviours of NARX networks trained with the ANMCG and 

A2NMCG methods for the P10 problem. 
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5.4 Experimental Results 

The five simulated problems used here include two instances of the N-bit parity (P5 

and P10), a sequence classification (SC) [116] problem, the sequence learning (SL) 

task [124] and the reading aloud (RA) [158] problem, while full descriptions can be 

found in Appendix A.1 and Table A.1 summarises the numbers of the three RNNs‟ 

adjustable parameters used in the experiments of the thesis.  

In the tables below, Algo denotes the training algorithm, #hid stands for the number of 

hidden nodes, and Conv denotes the convergence success in terms of the number of 

runs that reached the predefined training goals out of 100. MSE is the average of the 

mean-squared-error (in percentage) achieved in the 100 runs (i.e. the average MSE 

has been calculated over the total number of runs and not only the converged ones to 

provide an estimate of the overall performance of the methods for practical 

applications when it is difficult for the user to set precise values for the training goal 

and the number of epochs), while STD is the corresponding standard deviation of the 

MSE values. Ave, Min, Max and Std respectively denote the average, minimum, 

maximum, and standard deviation of epochs for the converged runs. In all cases, the 

nonmonotone parameters were set to max 15,M   0.01,   and 0.1,   in order to test 

the robustness and generalisation of the proposed algorithms. 

Besides the numerical results in the tables for each simulated problem, the graphical 

examples of convergence behaviours are provided to illustrate the improvements 

made by our proposed nonmonotone algorithms.  
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5.4.1 Parity Problems 

We tested RNNs with 1, 2, 5 and 7 hidden nodes for the P5 problem and 1, 2, 5, 7 and 

10 hidden nodes for the P10 problem. The training goal was to reach an MSE of 0.01 

within 2000 epochs for P5 and 4000 epochs for P10. Tables 5.3-5.5 show the results 

for P5, while Tables 5.6-5.8 for P10. Figures 5.3-5.6 are examples of typical learning 

behaviours from these problems, comparing the monotone CG with the ANMCG, and 

illustrate some of the improvements made by the A2NMCG method. 

Table 5.3 Average performance for FFTD networks in the P5 problem: class of CG 

Algo #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epoch 

Ave Min Max Std 

CG 

1 0 24.981 8.500 - - - - 

2 0 22.315 7.032 - - - - 

5 12 10.546 4.117 406 62 1638 417 

7 41 3.782 2.929 215 22 1097 172 

ANMCG 

1 2 14.781 7.891 1565 1565 1565 0 

2 5 10.332 4.272 1198 981 1833 695 

5 23 4.459 1.950 842 254 1826 523 

7 76 1.972 1.005 645 167 1828 434 

A2NMCG 

1 5 13.450 5.020 1097 524 1547 833 

2 13 8.518 2.982 850 494 1789 714 

5 34 2.762 1.117 484 127 1313 457 

7 81 1.404 0.705 357 106 1922 398 
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Table 5.4 Average performance for LRN networks in the P5 problem: class of CG. 

Algo #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epoch 

Ave Min Max Std 

CG 

1 0 23.302 8.674 - - - - 

2 0 20.964 7.183 - - - - 

5 14 7.610 3.871 202 46 610 145 

7 37 5.678 3.007 189 39 561 239 

ANMCG 

1 9 18.776 6.409 1452 62 1994 1275 

2 22 11.351 4.032 1378 334 1851 977 

5 32 4.699 2.595 1135 213 1947 633 

7 84 2.785 1.730 798 61 1933 492 

A2NMCG 

1 13 16.641 5.875 981 54 1959 860 

2 27 9.765 3.711 1039 231 1937 1084 

5 36 3.561 2.194 587 148 1894 571 

7 86 1.866 1.364 532 56 1908 445 
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Table 5.5 Average performance for NARX networks in the P5 problem: class of CG. 

Algo #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epoch 

Ave Min Max Std 

CG 

1 24 10.589 4.779 73 21 283 46 

2 30 6.985 3.261 44 13 136 33 

5 76 3.451 1.604 38 9 161 14 

7 95 0.915 0.047 42 6 1199 124 

ANMCG 

1 97 1.110 0.951 32 2 1341 138 

2 98 1.063 0.730 20 4 151 23 

5 99 0.833 0.054 14 4 36 11 

7 99 0.812 0.013 12 4 54 18 

A2NMCG 

1 96 1.419 1.288 21 2 150 21 

2 99 0.998 0.684 18 5 71 15 

5 100 0.729 0.066 13 4 34 8 

7 100 0.638 0.004 11 4 23 6 

 

The results show that the A2NMCG algorithm consistently converges to desired 

solutions, even with fewer adjustable variables. In certain cases the use of the 

nonmonotone strategy may result in an increase in the number of epochs but this 

additional cost allows the new method to locate minimisers with smaller error values. 

Even when the nonmonotone methods do not reach an MSE = 0.01 within 2000 

epochs, they always achieve smaller errors than the CG method. For example, in 

Table 5.3, CG-trained FFTD networks with 2 hidden nodes cannot reach the training 

goal within 2000 epochs (Conv = 0 in Table 5.3) and on the average generate an 

MSE=22.315%. Although only 5% of the ANMCG-trained FFTD networks reach the 
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training goal, these networks produce on the average significantly lower error values, 

i.e. the average MSE over the total number of runs (not only the converged ones) is 

10.332%. For A2NMCG-trained FFTD networks, results in Table 5.3 show that 13% 

reach the training goal within 2000 epochs, and that the average MSE over the total 

number of runs is 8.518%, which constitutes a significant improvement over the other 

two methods. 
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Figure 5.3 Examples of convergence behaviour for the CG (blue dashed line) and the 

ANMCG (red solid line) in the P5 problem for three RNNs. 



Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm 

 

 94 

Examples of learning behaviours for the CG and the nonmonotone version in the P5 

and P10 problems are illustrated in Figures 5.3-5.4 and 5.5-5.6, respectively. In 

particular, Figure 5.3a provides an example of the robustness of the approach even 

when there are large variations in the M previous error function values. Figure 5.4 

demonstrates the improved behaviour of the A2NMCG over the ANMGG. 
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(b) LRN  
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(c) NARX 

Figure 5.4 Examples of convergence behaviour for the ANMCG (blue dashed line) 

and the A2NMCG (red solid line) methods in the P5 problem for three RNNs. 
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Table 5.6 Average performance for FFTD networks in the P10 problem: class of CG. 

Algo #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epoch 

Ave Min Max Std 

CG 

1 0 24.997 7.643 - - - - 

2 0 24.841 7.081 - - - - 

5 1 20.119 8.990 775 775 775 0 

7 10 15.597 5.287 966 318 2976 780 

10 28 8.197 4.901 554 207 1001 216 

ANM-CG 

1 11 18.013 7.275 1698 30 2744 1707 

2 19 15.604 7.006 1451 585 2315 1321 

5 23 13.531 6.804 1302 287 2355 1219 

7 32 9.387 5.103 1394 334 2477 1588 

10 39 6.156 2.834 1164 210 2753 1251 

A2NM-CG 

1 15 15.635 6.101 1345 30 3112 938 

2 22 13.851 6.382 1181 563 2320 994 

5 29 10.944 5.719 936 216 2131 1027 

7 35 7.368 3.504 878 192 2537 815 

10 45 4.581 1.933 872 186 2710 702 
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Table 5.7 Average performance for LRN networks in the P10 problem: class of CG. 

Algo #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epoch 

Ave Min Max Std 

CG 

1 0 24.991 7.433 - - - - 

10 42 8.441 4.827 523 196 2328 264 

ANMCG 

1 0 25.001 7.109 - - - - 

10 52 3.189 3.203 3155 179 3852 2561 

A2NMCG 

1 9 22.752 5.410 1431 80 3942 1130 

10 61 1.984 2.788 2548 142 3756 854 
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Table 5.8 Average performance for NARX networks in the P10 problem: class of CG. 

Algo #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epoch 

Ave Min Max Std 

CG 

1 35 7.473 5.832 42 23 119 29 

2 43 6.161 4.991 35 15 99 21 

5 97 1.238 2.489 26 12 82 13 

7 100 0.920 0.073 18 11 65 9 

10 100 0.854 0.058 21 14 47 6 

ANMCG 

1 61 4.562 3.862 827 42 3849 563 

2 66 3.089 1.997 564 41 3154 471 

5 100 0.931 0.084 383 54 1128 125 

7 99 0.889 0.068 210 61 1251 124 

10 100 0.924 0.077 194 67 325 59 

A2NMCG 

1 98 1.079 0.993 12 4 299 30 

2 99 0.894 0.764 15 5 68 11 

5 100 0.636 0.082 12 4 34 5 

7 100 0.695 0.091 11 4 28 5 

10 100 0.639 0.088 12 4 235 23 

 

In Figures 5.5a and 5.5b, two cases are illustrated, for a FFTD network and a LRN 

respectively, where the nonmonotone CG escapes from local minima. Figure 5.6 

provides examples of the improvements made by A2NMCG compared to the 

ANMCG.  
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(c) NARX 

Figure 5.5 Examples of convergence behaviour for the CG (blue dashed line) and the 

ANMCG (red solid line) in the P10 problem for three RNNs. 
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(b) LRN 
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 (c) NARX 

Figure 5.6 Examples of convergence behaviour for the ANMCG (blue dashed line) 

and the A2NMCG (red solid line) in the P10 problem for three RNNs. 
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5.4.2 Sequence Classification Problem 

Table 5.9 shows the results; Epo is the average number of epochs for the converged 

runs out of 100 and CE represents the classification error, in percentage, while the two 

columns under STD (in percentage) depict the standard deviations of the training 

MSEs and testing CEs, respectively. The LRN performed better than the other RNN 

models and the A2NMCG method produced slightly lower errors in testing in all 

cases (the average MSE values have been calculated over the total number of runs – 

not only the converged ones). Examples of learning behaviours are in Figure 5.7, 

showing how the nonmonotone strategy helps locating minimisers with lower error 

function values, leading in the particular case to lower average classification error 

during testing (cf. with Table 5.9). 

Table 5.9 Results for three RNN architectures in the SC problem: class of CG. 

RNN Algo 
Conv 

(%) 
Epo 

Training Testing 

MSE (%) STD (%) CE (%) STD (%) 

FFTD 

CG 0 - 22.004 3.085 34.685 7.140 

ANMCG 0 - 22.109 3.770 34.685 7.038 

A2NMCG 80 108 5.016 0.921 8.789 2.353 

LRN 

CG 0 - 14.029 4.851 20.548 3.692 

ANMCG 0 - 13.553 4.730 18.178 4.070 

A2NMCG 0 - 10.756 3.908 14.685 3.947 

NARX 

CG 58 470 2.816 2.493 38.986 5.924 

ANMCG 84 446 1.435 1.006 37.466 4.027 

A2NMCG 91 452 0.940 0.237 36.986 5.300 
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Figure 5.7 Examples of convergence behaviour for the CG and the ANMCG methods 

in the SC problem for (a) LRN and (b) NARX. 
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5.4.3 Sequence Learning Problem 

Results are shown in Tables 5.10 and 5.11. Table 5.10 compares the performances of 

the algorithms using the three RNN architectures. The MSEs of the nonmonotone 

methods are, in all cases, better than the original CG because the nonmonotone 

versions appear to locate better approximations of the optimal weight set. For 

comparison, we should mention that the approach of the original work by McLeod et 

al. in 1998 is based on LRNs trained with the GD method. It uses 10 hidden nodes 

and produces an MSE of 25% in training and 22% in testing. Thus CG methods, in 

general, produce better results than GD methods in this problem.  

In order to have further comparison we also performed experiments with different 

numbers of hidden nodes for the NARX architecture. Table 5.11 shows that promising 

results can be obtained using 2 or 5 hidden nodes, making the application of CG 

methods to this difficult dataset a promising alternative against GD methods. An 

example of learning behaviour is shown in Figure 5.8, for NARX networks. 
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Table 5.10 Results for three RNNs architectures in the SL problem: class of CG. 

RNN Algorithm 

Training Testing 

MSE (%) STD (%) MSE (%) STD (%) 

FFTD 

CG 18.743 8.138 18.654 9.072 

ANMCG 17.856 5.854 17.673 7.110 

A2NMCG 15.342 2.708 15.389 3.205 

LRN 

CG 17.266 6.877 17.286 6.919 

ANMCG 16.392 4.912 16.405 4.886 

A2NMCG 14.732 2.082 14.681 1.794 

NARX 

CG 18.321 7.698 18.146 7.447 

ANMCG 15.485 4.001 15.164 3.592 

A2NMCG 10.859 1.171 11.819 1.341 

Table 5.11 MSEs for NARX networks in the SL problem: class of CG.  

Algo #hid 

Training Testing 

MSE (%) STD (%) MSE (%)  STD (%) 

CG 

2 16.534 6.132 16.761 6.810 

5 16.921 6.477 17.025 6.956 

10 18.321 7.698 18.146 7.447 

ANMCG 

2 16.601 6.737 16.462 7.005 

5 15.275 5.892 15.377 6.014 

10 15.485 4.001 15.164 3.592 

A2NMCG 

2 21.951 9.237 22.689 10.039 

5 13.449 3.206 14.206 4.836 

10 10.859 1.171 11.819 1.341 
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Figure 5.8 Example of convergence behaviour for the ANMCG and the A2NMCG in 

the SL problem for NARX networks. 

In order to fairly exhibit the improved performance of the proposed nonmonotone CG 

algorithms, the default 23-epoch training process of the SL problem is extended to the 

200- and 1000-epoch ones, as presented in Tables 5.12-5.14. 
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Table 5.12 Results of additional simulations for FFTD networks in the SL problem: 

class of CG 

Algorithms 

200-epoch 1000-epoch 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

CG 16.1/39.4 16.8/40.6 14.7/38.2 16.4/39.9 

ANM-CG 13.9/31.3 14.5/38.2 11.3/24.7 13.9/31.2 

A2NM-CG  9.4/22.4 10.6/23.8  8.6/21.4 11.1/25.4 

 

Table 5.13 Results of additional simulations for LRN networks in the SL problem: 

class of CG 

Algorithms 

200-epoch 1000-epoch 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

CG 16.7/40.6 17.2/42.2 14.9/38.9 16.6/40.3 

ANM-CG 14.4/38.2 15.9/39.7 12.6/25.7 14.3/38.0 

A2NM-CG 13.5/26.9 15.5/39.1 11.0/25.5 12.9/26.0 

 

Table 5.14 Results of additional simulations for NARX networks in the SL problem: 

class of CG 

Algorithms 

200-epoch 1000-epoch 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

CG 17.0/41.7 18.3/46.2 15.5/38.9 17.3/42.1 

ANM-CG 13.4/26.2 15.8/39.6  9.3/22.6 10.9/23.2 

A2NM-CG  9.1/22.0 11.3/24.8  7.6/19.4  9.2/22.6 
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5.4.4 Reading Aloud Problem 

In the work of [158] a specially designed RNN architecture with 100 hidden nodes 

(26582 adjustable parameters) is needed to solve this problem. Here we tried to solve 

it using FFTD and NARX networks. Architectures with 5 and 10 hidden nodes and 

300 training epochs are used for this problem; a FFTD with 5 hidden nodes has 1421 

adjustable parameters (weights plus biases), while a NARX network with 5 hidden 

nodes has 2031 parameters. 

As shown in Table 5.15, our approaches are more effective than the original CG. It is 

noteworthy that, in the work of [158], the training process takes 1900 epochs to 

achieve similar results, which is about 6 times more than the results of the CG 

methods. Figures 5.9 and 5.10 show typical learning behaviours for this problem, and 

of the improvements achieved by the A2NMCG method against ANMCG. 

 



Chapter 5. Adaptive Nonmonotone Conjugate Gradient Algorithm 

 

 109 

 

 

Table 5.15 Results for two RNN architectures in the RA problem: class of CG. 

RNNs Algo #hid 

Training Testing 

MSE (%) STD (%) MSE (%) STD (%) 

FFTD 

CG 

5 10.500 8.892 8.378 6.993 

10 4.499 3.784 6.732 2.196 

ANMCG 

5 11.899 8.015 6.523 3.509 

10 7.499 4.223 3.129 3.005 

A2NMCG 

5 10.734 7.483 5.946 3.007 

10 8.197 4.829 2.657 2.221 

NARX 

CG 

5 8.294 7.725 7.849 6.894 

10 4.796 4.108 5.824 3.003 

ANMCG 

5 10.063 6.342 6.057 4.777 

10 6.690 3.557 3.283 2.095 

A2NMCG 

5 8.942 6.590 4.610 4.051 

10 7.879 4.178 2.182 1.457 
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(a) FFTD  

0 50 100 150 200 250 300
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Epochs

M
S

E

CG:0.074677

ANMCG:0.053844

 

 

CG

ANMCG

 

(b) NARX 

Figure 5.9 Examples of convergence behaviour for the CG and the ANMCG methods 

n the RA problem for (a) FFTD and (b) NARX. 
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(b) NARX 

Figure 5.10 Examples of convergence behaviour for the ANMCG and the A2NMCG 

methods in the RA problem for (a) FFTD and (b) NARX. 
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5.5 Summary and Contribution of the Chapter  

In this chapter, the traditional monotone CG methods were firstly introduced and the 

versions of nonmonotone CG (NMCG) approaches were discussed. After the 

properties and theorems of global convergence for the NMCG methods in the 

literature were reviewed, two NMCG algorithms, i.e. ANMCG and A2NMCG (see 

Tables 5.1 and 5.2) were presented.  

Experimental results using RNNs from three different architectures, i.e. FFTD, LRN 

and NARX, in five applications, i.e. P5, P10, SC, SL, and RA, showed that our 

proposed algorithms perform well, in terms of higher convergence rates, fewer 

training epochs for P5 and P10, lower training MSEs for all the five classes of 

simulations, smaller testing CEs for SC, and better testing MSEs for SL and RA. 

Graphical examples of learning behaviours for all RNNs in each application reveal the 

benefits of our nonmonotone algorithms. 
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Chapter 6 

Adaptive Self-Scaling Nonmonotone 

BFGS Algorithm 

 

In this chapter, starting from the introduction of quasi-Newton (QN) methods 

[47][48] in Section 6.1, the most well known update formulas [160][30][47] 

[64][67][72][157][179] of the approximated Hessian matrix and scaling techniques 

[4][124][138][140][141][209] are reviewed. After a discussion on the traditional 

monotone QN approaches, Section 6.2 focuses on cases of nonmonotone QN 

[79][81][86][187][212], and the relative assumptions to build theorems of global 

convergence. The proposed algorithm of QN class is developed in Section 6.3, while 

experimental results for the N-bit parity, SC [116], SL [124] and RA [158] 

applications (details are provided in Appendix A.1), using the three different RNN 

architectures, i.e. FFTD [196][197], LRN [57][85] and NARX [128][137] (structural 

topologies defined in Chapter 2), are shown in Section 6.4. Conclusions are made in 

Section 6.5. 
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6.1 Quasi-Newton Methods 

In the context of deterministic unconstrained optimisation, QN methods, sometimes 

called variable metric methods, are well-known algorithms for finding local minima 

of functions in the form of Eq. (3.1). The original method was firstly proposed in 

1959 by W.C. Davidon [47] and finally published in 1991 [48]. QN methods are 

based on Newton's method to find the stationary point of a function, where the 

gradient is zero. Newton's method assumes that the function can be locally 

approximated by a quadratic function in the region around the optimum, and requires 

the first and second derivatives [68], i.e. the gradient vector and the Hessian matrix, 

to find the stationary point. Moreover, the Newton's method and its variants require 

that the Hessian is positive definite - a condition that is difficult to guarantee in 

practice. 

QN methods exploit the idea of building up curvature information as the iterations of 

the training method are progressing. This is achieved by using the objective function 

values and its gradient to estimate the Hessian matrix. Thus, a new approximated 

Hessian matrix 
1kB 
 is required at each iteration to satisfy the QN condition 

1 ,k k kB s y   where ks  and ky  are the changes in function variable and in gradient, 

respectively. At the k-th iteration, a QN method has the following basic structure: 

(1) Set ;k k kd H g   

(2) Apply linesearch along kd  giving 1 ;k k k kw w d    

(3) Update kH  giving 1;kH   
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where d  is the search direction, H is the Hessian approximation, g denotes the first 

derivative, and   the stepsize. The initial H is any given n n  symmetric positive 

definite matrix, and 1.k kH B  

Some of the most famous approaches for updating 
1kB 

 are the 

Powell-Symmetric-Broyden (PSB) update equation [160]:  

      

 
1 1 2

1
,

k

T

T k k k kPSB T T

k k k k k k k k k k kT T
k k k k

y B s s
B B y B s s s y B s s s

s s s s
 


        (6.1) 

the Davidon-Fletcher-Powell (DFP) formula [47][64]:  

 1 1

1 1
,

1 1

DFP T T T T

k k k k k k k k k k k k kT T

k k k k k

k k k kT T

k k k k k

B B B s s B y y s B s r r
s B s y s

r y B s
y s s B s

    

 

        (6.2) 

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) [30][67][72][179]:  

1 1

1 1
,BFGS T T

k k k k k k k kT T

k k k k k

B B B s s B y y
s B s y s

                   (6.3) 

and the Broyden‟s class of methods, which uses a linear combination of the DFP and 

the BFGS updates:  

   1 1 11 , 0,1 ,Broyden BFGS DFP

k k kB B B                       (6.4) 

while the most commonly used update technique for training neural networks is the 

BFGS [63]. 

There are relatively large number of applications, where QN methods have been 
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used for training static Artificial Neural Networks (ANNs), e.g. [1][6][23][77][80] 

[94][98][110][111][126][127][156][176][177][183][186][193][209].  

As mentioned in [91][176][177] the QN method for training ANNs is very fast to 

converge but in many cases it converges to a local minimum. Although several 

efforts have been made to reduce the memory requirement of updating the Hessian 

approximation [17][95][111][126][170][193], the need of using a monotone line 

search and the drawback of getting trapped in neighbourhoods of local minimum 

points limit the application of these methods in real-world applications. Another 

problem in neural networks applications is that QN methods suffer from large 

eigenvalues in the approximated Hessian matrices of the objective function as 

Powell discovered in 1986. 

Despite the emergence of the self-scaling approaches for the Hessian approximation 

in the field of numerical optimisation [209] (the fundamental concept of self-scaling 

is to accommodate the change of target variables efficiently), self-scaling is rarely 

introduced when training ANNs [136]. In addition, the literature of RNNs includes 

only very few attempts to train RNNs using QN methods with limited results 

[17][21][22][54][91][103].  

The self-scaling techniques can resolve problems caused by larger eigenvalues by 

scaling the Hessian approximation before it is updated at each iteration to keep the 

eigenvalues of the approximated Hessian matrix within a suitable range [209]. This 

technique was first proposed in [140][141], and was used to update the approximated 

Hessian as follows: 
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1 ,
T T

Oren Tk k k k
k k T T

k k k k

B y y B pp
B B

y B y p y
 

 
    
 

             (6.5) 

where  

,kp B g                           (6.6) 

 
1

2 ,T k k
k k k T T

k k k k

B yp
y B y

p y y B y


 
  

 
                 (6.7) 

 1 ,
T

k

T

k k k k k

p yg p

g B y y B y
  


  


                  (6.8) 

and  , 0,1 .    After these attempts, more relative works have been developed, 

such as in [4][138]. 

In our approach, presented in detail in the following sections, we use the scaling 

factor k  which was introduced for the BFGS method by [209]. This is defined as  

1 ,
T T

SCBFGS k k k k k k
k k k T T

k k k k k

B s s B y y
B B

s B s y s


 
   

 
               (6.9) 

where 

.
T

k k
k T

k k k

y s

s B s
                          (6.10) 

Numerical evidence has shown that methods that apply a scaling factor for 1kB   are 

superior to the original QN methods. Especially in real-world applications the 
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scaling factor could potentially play an important role: when 
k  is sufficiently 

large, the eigenvalues of 
1kB 

 are relative small, with strong self-correcting 

property [126][209]. Despite this looks particularly appealing for training RNNs, to 

the best of our knowledge it has not been exploited at all in this area to improve the 

effectiveness of second-order training algorithms. Another useful characteristic of 

the factor ,k  which makes it useful in RNN training, is that it takes only the 

information of the most current point to scale the Hessian approximation and no 

user-defined parameters, compared to the factor   in Eq. (6.8). This is particularly 

helpful when dealing with high-dimensional search spaces, such as the ones 

encountered in the applications discussed in this thesis. 

 

6.2 Global Convergence 

From a deterministic optimisation perspective, nonmonotonicity can be introduced 

through conditions, such as those initially proposed by Grippo et. al. [80], for finding 

a stepsize that occasionally permits an increase in the function value while retaining 

global convergence of the minimisation method: 

  1
0 ( )
max ( ) ,T

k k k k j k k k
j m k

E w d E w g d  
 

                 (6.11) 

and 

  2 ,
T T

k k k k k kg w d d g d                      (6.12) 

where  1 2

1
0 , 0 0,

2
m      
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    min 1 1, ,m k m k M                     (6.13) 

As discussed in Chapter 3, the parameter  m k  plays the role of a memory element, 

or buffer, and is typically a non-decreasing integer (cf. with Eq. (6.13)), bounded by 

a nonnegative prefixed integer M . Another approach proposed recently is to 

replace max in Eq. (6.11) by an average of function values [212]. Lastly, Grippo et. 

al. [81] proposed the use of a slightly different approach that employs the following 

condition instead of Eq. (6.12) 

,h

kd                          (6.14) 

where 0   and  0,1   are user-defined real numbers and h  is an integer 

that increases by one unit whenever the condition is satisfied. If Eq. (6.14) is 

satisfied 1k   and the new point, 1kw   is accepted without evaluating the 

objective function. If Eq. (6.14) does not hold then Eq. (6.11) is used to determine 

the stepsize k . 

Grippo et al. also proved the following theorem that describes the convergence 

properties of quasi-Newton algorithms that adopt a nonmonotone strategy. 

Theorem 6.1 [81]. Let kw  be a sequence produced by an iterative scheme of the 

form 1k k k kw w d   , where the stepsize k is computed by Eqs. (6.11) and (6.14). 

Assume that:  

(H6.1.1) the level set     0w E w E w    is compact. 
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(H6.1.2) positive numbers 
1, ,c p  and 

2p  exist such that the following conditions 

hold: 

1 ,
pT

k k kg d g   

2 .
p

k kd c g  

Then either the algorithm terminates at some point w  such that   0,g w   or it 

generates an infinite sequence such that: 

(1). the sequence  kw  remains in a compact set and every limit point 

*w  belongs to the level set and satisfies  * 0;g w   

(2). no limit point of  kw  is a local maximum of ;E  

(3). if the number of stationary points of E  in   is finite or there 

exists a limit point where H  is nonsingular, the sequence  kw  

converges. 

Although Grippo et al. [81] do not directly make any assumptions about the 

convexity of the objective function, they assume that the search direction is 

computed by minimising a quadratic approximation of the objective function at the 

current point. Furthermore, they demonstrate that this scheme works well even when 

the search direction is computed approximately by means of a truncated 

quasi-Newton algorithm with finite difference approximations of second-order 

derivatives. 
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Theorem 6.1 can be specialised to algorithms of the Newton class, such as those 

employing the updates defined in Eqs. (6.1)-(6.4), by imposing appropriate form in 

the conditions H6.1.2. Thus, when the search direction is defined by 

1 ,k k kd B g   

and  kB  is a sequence of symmetric positive definite matrices with uniformly 

bounded eigenvalues   ,kB  i.e. there exist  ,   such that for all k : 

 0 .i kB      

Then 

21 ,T

k k kg d g   

1 .k kd g  

Since RNNs' error functions are nonconvex, we present and discuss below the main 

theoretical results for global convergence of nonmonotone BFGS methods that hold 

in this case. It is worth mentioning that proving global convergence for nonconvex 

objective functions is a very challenging problem that has not been explored totally 

yet. Also it is important to distinguish between the notion of global convergence and 

that of global optimisation: a globally convergent algorithm always reaches a 

minimiser (not necessarily the global minimiser) starting from almost any initial 

weight [118]. Here we are based on the work of Yin and Du [209] which applies the 

nonmonotone technique of Han and Liu [86] stated as follows: 
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      1 2
0 ( )
max ( ) min , ,k k k k j k k

j m k
E w d E w     

 
           (6.15) 

and 

  ,
T T

k k k k k kg w d d g d                      (6.16) 

where  

,
T

k k
k

k

g d

d
                           (6.17) 

,T

k k kg d   0 1,     and 
1  and 2  are two forcing functions, which are 

used to measure the sufficiency of descent and prove convergence. As shown in [86], 

Eqs. (6.15) and (6.16) formulate one of the most general types of line search, which 

has as special cases many monotone and nonmonotone techniques. Furthermore, Sun 

et al. [187] have shown that the nonmonotone Armijo rule, the nonmonotone 

Goldstein rule, and the nonmonotone Wolfe rule employ special forms of forcing 

functions. 

Before presenting the main theorem for global convergence, the following 

Assumptions (H6.2) are needed. 

(H6.2.1) The level set     0:nw E w E w    is bounded. 

(H6.2.2) In some neighbourhood    of  , the gradient of  E w ,  g w is 

Lipschitz continuous, that is, there exists a constant 0L   such that for all ,w  
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  ,w   

    .g w g w L w w                     (6.18) 

Below we present the theorem of Yin and Du that needs Assumptions (H6.2). It 

makes use of the BFGS property to generate positive definite matrices BFGS

kB  [68], 

and exploits their own result that shows the update Equation (6.9) preserves the 

positive definiteness of the matrices SCBFGS

kB . 

Theorem 4.2 [209]. Suppose that Assumptions (H6.2) hold, and let us assume that 

0w  is any starting point, 
0B  is any symmetric positive definite matrix, and that the 

sequence  kw  is generated by the iterative scheme, i.e. 1 ,k k k kw w d    where 

 
1

,SCBFGS

k k kd B g


   and the stepsize k  is determined by Eqs. (6.15) and (6.16). 

If there exists a positive constant 1K   for which 

 ˆ 1k ky g   

for all ,k K  then 

liminf 0.k
k

g


                       (6.19) 

Assumption (H6.2.1) holds for training RNNs of a fixed architecture on a finite set 

of training patterns because the error function is bounded below in 
n  since 

0:E   if a 
*w  exists such that  * 0E w   then 

*w  is the global minimum; 

otherwise the vector w  with the smallest available value is the global minimiser. 
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Assumption (H6.2.2) also holds for RNNs that use smooth enough activation 

functions (the derivatives of order p  are available and continuous), such as the 

logistic function that is used in our experiments later in the chapter. Moreover, 

H6.2.2 implies that there exists a constant c  such that kg c   .w    A 

detailed proof is provided in [209], which shows that the limit of Eq. (6.19) is the 

best type of global convergence result that can achieved for nonconvex functions.  

 

6.3 Our Proposed Algorithm 

In this section we present the proposed algorithm, named Adaptive Self-scaling 

Non-Monotone BFGS (ASCNM-BFGS), through the high-level description 

presented below. 
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Table 6.1 Adaptive Self-scaling Non-monotone BFGS Algorithm  

UAlgorithm: ASCNM-BFGS 

STEP 0.  Initialise 
0 , 0,w k   a symmetric positive definite matrix 

0 ,B 0 ,M
maxM  

(boundary of nonmonotone learning horizon
kM ),  0 1 2, ,    

1 20     are 

positive constants,  0 0d g w   and  , 0,1 ;    

STEP 1.  If 0,kg   stop; 

STEP 2.  If 1,k   calculate a local approximation of the Lipschitz constant 

1 1k k k k kg g w w      and adapt 
kM  by the following scheme: 

1 1 2

1 1 2

1

1,  if 

1,  if ,

,       otherwise,

k k k k

k k k k k

k

M

M M

M

  

  



     


      



  

where  maxmin , ;k kM M M  

STEP 3.  1,k   set  1max , ,k k k    where 12
,

k k

k T

k k

E E

g w d
 

  and check that     

k  satisfies the nonmonotone condition 

   
0
max ;

k

T

k k k k j k k k
j M

E w d E w g d  
 

      
 

 

otherwise, find stepsize ql

k k    that satisfies the above condition, setting 

each time 1;q ql l   

STEP 4.  Generate a new weight vector 1 ;k k k kw w d    

STEP 5.  Update the search direction 1 ,k k kd B g   using the Hessian approximation kB     

calculated by the self-scaling BFGS formula 

1 ,
T T

k k k k k k
k k k T T

k k k k k

B s s B y y
B B

s B s y s


 
   

 
 

where 1 1,  k k k k k ks w w y g g      and ;
T

k k
k T

k k k

y s

s B s
   

STEP 6.  Let 1k k   and 0,ql   go to STEP 1. 

 

A feature of the ASCNM-BFGS method is the use of an adaptive memory term kM , 

called nonmonotone learning horizon, instead of a fixed heuristic value. To this end, 

it calculates in Step 2 a local estimation of the Lipschitz constant, which could 

provide helpful information on the morphology of a function, and uses it to 
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automatically adapt the size of M . The local estimation of the Lipschitz constant 

gets large values in steep regions of search space and small values in flat areas. At 

the beginning, i.e. 3k  , there is not enough information to adapt M  through the 

local estimation of the Lipschitz, and as a result the nonmonotone conditions in Step 

3 actually operates as a monotone one comparing the new function value against the 

previous one. 

Also the initial choice of the stepsize merits some attention. At 0k   the stepsize is 

an arbitrary positive real number randomly chosen in the interval  1 2,   and the 

algorithm operates in the direction of the negative of the gradient,  0 0 .d g w   

That quickly changes, 1,k   as the search direction is updated through the 

self-scaling BFGS update equation, which tunes the Hessian approximations at every 

iteration the eigenvalues possess large values; when k  is sufficiently large, then 

the eigenvalues of SCBFGS

kB  are small. The stepsize is then initialised through   

following a technique suggested by Charalambous [39], and constantly tuned to 

ensure that, whilst it is not smaller than the stepsize of the previous iteration, it 

satisfies the nonmonotone condition in Step 3. This condition regulates the sufficient 

decrease of the error function through the forcing function   ,T

k k kg w d   

whilst for 1,2k   this condition is reduced to the monotone Armijo rule (cf. with 

Theorem 2, [119]). 

The algorithm also employs some heuristic parameters: an upper bound for kM  to 

help the algorithm concentrate on the recent past, while, in Step 4,   regulates the 

stepsize, i.e. the larger   the smaller trial stepsize is used, while   controls the 
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amount of change. The error function E  is calculated through the Mean Squared 

Error (MSE) formula, while the gradient is calculated using the 

Backpropagation-through-time (BPTT) formulae [18]. 

To illustrate the behaviour of the method we provide below some examples of 

convergence behaviour from learning the parity-5 problem, [176], using RNNs of the 

three types discussed above, namely the FFTD network, the LRN and the NARX 

network, where 7 hidden nodes were used as listed in Table A.1. Figures 6.1-6.3 

illustrate the behaviour of the MSE, the stepsize, the value of M , and the scaling 

factor. Despite the nonmonotone behaviour that one can observe in the MSE values, 

it is clear that there is a trend toward smaller learning errors, whilst in all cases, the 

use of adaptive M  does not affect the convergent behaviours of the method. The 

scaling factor behaviour indicates the self-correcting property of the method, which 

results in smaller eigenvalues for SCBFGS

kB  for relatively larger   values. 
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Figure 6.1 Convergence behaviours of P5: FFTD, trained by ASCNM-BFGS 
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Figure 6.2 Convergence behaviours of P5: LRN, trained by ASCNM-BFGS 
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Figure 6.3 Convergence behaviours of P5: NARX, trained by ASCNM-BFGS 

 

6.4 Experimental Results 

As mentioned in Chapter 4, all settings of the simulations in the thesis are the same 

and are provided in Appendix (A.1), e.g. types of RNNs, amounts of hidden nodes, 

relative delays, boundaries of learning horizon M, and the constant   used for the 

nonmonotone linesearch. The notations used in the following Tables have been 

explained in Section 4.4, e.g. a dash indicates that the algorithm did not converge 
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within the predefined iterations limit. 

 

6.4.1 The N-Bit Parity Problems 

The numerical results of the P5 and P10 problems are shown in Tables 6.2-6.4, and 

6.5-6.7, respectively, while examples of learning behaviours, where 7 hidden nodes 

are used for P5 and 10 nodes for P10, are provided in Figures 6.4 and 6.5. More 

details of experimental parameters are presented in Appendix A.1. 

 

Table 6.2 Average performance for FFTD networks in the P5 problem: class of 

BFGS 

Algorithm #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epochs 

Ave Min Max Std 

BFGS 

1 0 23.825 7.647 - - - - 

2 0 20.862 6.130 - - - - 

5 4 9.229 3.583 1933 53 1171 331 

7 19 5.131 1.706 1679 33 1719 682 

ASCNM-BFGS 

1 0 23.794 6.833 - - - - 

2 0 17.487 5.028 - - - - 

5 30 3.336 1.584 1616 52 1974 653 

7 74 1.772 0.594 803 61 1983 327 
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Table 6.3 Average performance for LRN in the P5 problem: class of BFGS 

Algorithm #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epochs 

Ave Min Max Std 

BFGS 

1 0 23.195 8.327 - - - - 

2 0 19.978 6.720 - - - - 

5 5 9.205 4.579 1928 53 1568 339 

7 15 5.635 2.852 1173 34 1927 573 

ASCNM-BFGS 

1 0 22.849 6.558 - - - - 

2 0 17.699 5.061 - - - - 

5 30 3.316 1.915 1617 54 1978 652 

7 77 2.029 1.783 758 63 1951 762 

 

Table 6.4 Average performance for NARX in the P5 problem: class of BFGS   

Algorithm #Hid. 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epochs 

Ave Min Max Std 

BFGS 

1 15 24.979 6.004 903 254 1983 1003 

2 31 11.370 4.137 688 121 1537 892 

5 59 3.862 1.662 373 72 1244 538 

7 68 1.979 0.721 146 63 893 301 

ASCNM-BFGS 

1 100 0.551 0.214 14 3 62 10 

2 100 0.586 0.470 17 5 53 10 

5 100 0.543 0.333 16 3 39 6 

7 100 0.595 0.403 15 5 33 5 
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Figure 6.4 Examples of learning behaviours of 3 RNNs for the P5 problem, BFGS vs. 

ASCNMBFGS: (a) FFTD, (b) LRN and (c) NARX 

As shown in Tables 6.2-6.4, the performance of the new method for the P5 problem 

employing three different neural architectures, i.e. FFTD, LRN and NARX, using 1, 

2, 5 or 7 hidden nodes is always better than the original BFGS. For example, 

BFGS-trained NARX networks using 5 hidden nodes converged in 59 out of 100 

runs (see Table 6.4), exhibiting a 100-run average MSE of 0.09229, while the 

proposed method reaches 100% convergence rate with improvements that are 6 

times better in terms of MSE, 22 times smaller in the average and minimum number 

of training epochs, 30 times smaller in the maximum number of training epochs, and 

a 88 times smaller in the value of standard deviation for the converged runs.  
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Table 6.5 Average performance for FFTD in the P10 problem: class of BFGS 

Algorithm #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epoch 

Ave Min Max Std 

BFGS 

1 0 24.977 7.599 - - - - 

2 0 23.307 6.736 - - - - 

5 0 14.067 4.325 - - - - 

7 4 9.612 5.827 2022 1047 3091 859 

10 12 6.428 3.283 3697 327 3949 912 

ASCNM-BFGS 

1 0 24.925 6.382 - - - - 

2 0 23.349 6.931 - - - - 

5 1 11.253 2.966 1520 1520 1520 0 

7 15 2.938 1.991 1848 711 3743 856 

10 57 1.786 0.824 2798 671 3983 1198 

 

Table 6.6 Average performance for LRN in the P10 problem: class of BFGS 

Algorithm #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epoch 

Ave Min Max Std 

BFGS 

1 0 24.862 8.126 - - - - 

10 0 5.873 3.463 - - - - 

ASCNM-BFGS 

1 0 24.794 6.210 - - - - 

10 100 0.964 0.026 1736 889 1970 841 
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Table 6.7 Average performance for NARX in the P10 problem: class of BFGS 

Algorithm #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epochs 

Ave Min Max Std 

BFGS 

1 0 24.998 8.037 - - - - 

2 0 17.632 5.440 - - - - 

5 34 7.659 3.131 1352 591 3439 1387 

7 52 4.205 1.984 855 273 2155 601 

10 67 3.837 2.003 492 107 1563 489 

ASCNM-BFGS 

1 100 0.788 0.136 13 4 121 12 

2 100 0.739 0.147 21 6 91 14 

5 100 0.742 0.230 18 6 40 6 

7 100 0.726 0.177 17 5 30 5 

10 100 0.730 0.206 18 5 28 4 

 

In general, experimental results in Tables 6.2-6.7 provide evidence that the new 

method is able to locate minimisers with smaller function values than the original 

method, which is important in certain real-world problems to provide good 

generalisation. For example, in Table 6.5, 12% of the BFGS-trained FFTD networks 

reached an MSE=0.01 in a maximum of 3949 epochs, while the average MSE 

achieved by BFGS in that case was 0.06428. That was caused by the fact that the 

majority of the BFGS-trained networks did not reach the MSE goal within 4000 

training epochs; some of them stuck to minima with higher function values while 

others failed to converge because of instabilities in the Hessian. When BFGS fails to 

reach the error goal we only provide the average error obtained. Also a 0% 
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convergence in Tables 6.2-6.3 and 6.5-6.7 indicates that not a single run of the BFGS 

method converged within the predefined number of epochs, and since only epochs of 

the converged runs are reported, we enter the symbol “-” in the corresponding cells. 

We observed that the ASCNM-BFGS method provided consistently a stable 

behaviour with the use of the scaling factor and a better ability to escape from 

swallow local minima, which could be attributed to its nonmonotone behaviour; 

some examples of improved learning behaviour are illustrated in Figures 6.4-6.5.  
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Figure 6.5 Examples of learning behaviours of 3 RNNs for the P10 problem, BFGS 

vs. ASCNMBFGS: (a) FFTD, (b) LRN and (c) NARX 
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6.4.2 The Sequence Classification Problem 

The 100-run averaged results are shown in Table 6.8, while learning examples are in 

Figure 6.6. Table 6.8 shows the average performance in terms of MSE (%) achieved 

in training and CE (%) in testing. In all cases, the proposed algorithm achieves better 

MSE, from 0.1% to 12%, and CE, from 0.2% to about 20%, with LRNs producing 

better generalisation (i.e. lower CE) than the other RNNs. Examples of learning 

behaviours are in Figure 6.6, showing how the nonmonotone strategy helps locating 

minimisers with lower error values, which leads to lower average classification error 

in testing (cf. with Table 6.8). 

 

Table 6.8 Average performance for 3 RNNs in the SC problem: class of BFGS 

RNN Algorithm 
Training Testing 

MSE (%) STD (%) CE (%) STD (%) 

FFTD 

BFGS 21.484 6.247 33.363 8.772 

ASCNM-BFGS 20.326 4.891 32.041 7.213 

LRN 

BFGS 21.518 5.903 32.301 7.867 

ASCNM-BFGS 9.175 2.213 11.534 4.566 

NARX 

BFGS 7.496 4.259 27.247 7.386 

ASCNM-BFGS 7.100 3.881 27.082 6.832 
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Figure 6.6 Examples of learning behaviours of 3 RNNs for the SC problem, BFGS 

vs. ASCNMBFGS: (a) FFTD, (b) LRN and (c) NARX 

 

6.4.3 The Sequence Learning Problem 

We made 100 runs for each of the three RNN architectures to estimate the average 

generalisation performance of the two algorithms. It is worth mentioning that the 

results in Table 6.9 were achieved using RNNs with 10 hidden nodes, while the work 

in [124] requires 16 hidden nodes to produce an average MSE of 25% using a 

first-order training method. For the purpose of further comparison another set of 

simulations were carried out for the NARX networks, as shown in Table 6.10, with 2, 

5 and 10 hidden nodes. Typical examples of learning behaviours for the three RNNs 

are provided in Figure 6.7. 
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Table 6.9 Average performance for 3 RNNs in the SL problem: class of BFGS. 

RNN Algorithm 

Training Testing 

MSE (%) STD (%) MSE (%) STD (%) 

FFTD 

BFGS 21.485 9.027 17.437 16.128 

ASCNM-BFGS 17.275 6.537 15.457 7.117 

LRN 

BFGS 23.347 7.820 16.492 14.371 

ASCNM-BFGS 17.854 6.233 15.070 6.821 

NARX 

BFGS 8.991 3.435 9.846 5.823 

ASCNM-BFGS 7.584 2.428 8.313 3.007 

 

Table 6.10 Average MSEs values for NARX networks in the SL problem: class of 

BFGS.  

Algorithm #hid 

Training Testing 

MSE (%) STD (%) MSE (%) STD (%) 

BFGS 

2 20.196 10.267 20.824 9.782 

5 11.029 6.641 12.119 6.020 

10 8.991 3.435 9.846 5.823 

ASCNM-BFGS 

2 19.972 8.621 20.792 8.883 

5 9.740 5.418 10.360 5.892 

10 7.584 2.428 8.313 3.007 
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Figure 6.7 Examples of learning behaviours of 3 RNNs for the SL problem, BFGS vs. 

ASCNMBFGS: (a) FFTD, (b) LRN and (c) NARX 

 

Tables 6.11-6.13 exhibit the results of additional simulations for FFTD, LRN and 

NARX networks in order to explore the generalisation performance when additional 

training iterations take place, as done in Subsections 4.4.3, 5.4.3.  
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Table 6.11 Results of additional simulations for FFTD networks in the SL problem: 

class of BFGS 

Algorithms 

200-epoch 1000-epoch 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

BFGS 20.5/71.9 21.1/73.4 16.6/40.3 17.4/45.1 

ANM-BFGS 16.4/40.2 16.9/40.8 14.7/32.5 15.1/38.4 

 

Table 6.12 Results of additional simulations for LRN networks in the SL problem: 

class of BFGS 

Algorithms 

200-epoch 1000-epoch 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

BFGS 20.6/72.1 16.0/39.6 14.2/31.7 15.0/38.5 

ANM-BFGS 15.6/39.3 14.8/37.8 11.0/26.7 13.5/29.9 

 

Table 6.13 Results of additional simulations for NARX networks in the SL problem: 

class of BFGS 

Algorithms 

200-epoch 1000-epoch 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

BFGS 7.8/20.1 9.4/23.5 7.2/19.4 8.7/21.6 

ANM-BFGS 6.0/17.6 7.9/20.3 5.8/17.0 7.4/19.9 
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6.4.4 The Reading Aloud Problem 

This task requires a special RNN architecture and is computationally expensive in 

training. As our purpose was to test the new method on standard RNN architectures, 

we didn‟t deploy the special architecture proposed by [158] which was trained for 

1900 epochs. Instead, we used general type RNNs, i.e. FFTD and NARX networks, 

with only 5 hidden nodes that produced good results in previous tests, and trained 

them for 500 epochs. Figure 6.8 presents examples of convergence behaviour for 

BFGS and the ASCNMBFGS. The computational cost was still very high but we 

produced good solutions (see Table 6.14) using the ASCNMBFGS and BFGS 

algorithm. The heuristic parameters were set to the same values as in the parity 

problems. It is worth mentioning the error reported in [158] was applied 100 hidden 

nodes and 3 times larger number of training epochs. 

Table 6.14 Average performance for two RNN architectures in the RA problem: class 

of BFGS. 

RNNs Algorithm #hid 
Training Testing  

MSE (%) STD (%) MSE (%) STD (%) 

FFTD 

BFGS 

5 10.665 5.298 18.716 7.625 

10 6.982 3.613 15.840 5.834 

ASCNM-BFGS 

5 9.558 4.779 18.143 7.032 

10 6.081 3.043 15.652 4.990 

NARX 

BFGS 

5 8.589 4.106 16.625 5.428 

10 6.248 2.733 15.407 3.961 

ASCNM-BFGS 

5 7.080 2.824 16.106 4.752 

10 5.184 3.039 14.547 4.006 
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Figure. 6.8 Behaviours of BFGS and our method for training (a) FFTD and (b) 

NARX networks on the RA problem  
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6.5 Summary and Contribution of the Chapter  

In this chapter we proposed a nonmonotone approach which is based on the BFGS 

method, a well-known quasi-Newton method. It employs self-scaling of the 

approximations of the Hessian matrix. Furthermore, it is equipped with an adaptive 

nonmonotone strategy to better exploit information collected as it searches the space 

of the adjustable parameters. Comparing to the traditional monotone learning 

approach, our experiments using various data sequences provide evidence that the 

self-scaling BFGS with Adaptive Nonmonotone Strategy enhances the convergence 

behaviour of RNNs and is more effective for training networks of various RNN 

architectures than the BFGS, even when hidden nodes‟ numbers are smaller than the 

ones typically reported in the literature for these problems.  
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Chapter 7 

Adaptive Nonmonotone 

Levenberg-Marquardt Algorithms 

 

Equipped with a damping factor, the Levenberg-Marquardt (LM, so-called damped 

Gauss-Newton) methods [106][121] are capable of relaxing the difficulties of 

Hessian-based training, i.e. the ill-conditioning of the Hessian matrix. In addition, 

when the damping factor is zero, the LM methods become identical to the 

Gauss-Newton approach; while as the damping factor gets close to infinity, the LM 

methods are then get equivalent to the steepest descent method. More details are 

provided within this chapter and can also be found in the latest relevant literature 

such as [129][130].  

In the rest of this chapter, the original LM methods [106][121] are firstly reviewed in 

Section 7.1 with a discussion of their applications to train neural networks [7][42][60] 

[84][97][105][134][149][171][191][192][198][208][215] and a formulation of the 

learning problem [7][85][106][121]. After discussing global convergence for 

monotone [7] and nonmonotone [213] LM methods in Section 7.2, we present the 

proposed nonmonotone algorithms in Section 7.3. Experimental results for two 
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artificial (i.e., N-bit parity, P5 and P10) and three real-world (i.e., SC [116], SL [124] 

and RA [158]) on three different RNNs architectures (i.e. FFTD [196][197], LRN 

[57][85] and NARX [128][137]) are provided in Section 7.4, while Section 7.5 

concludes this chapter. Note that full descriptions of the simulated applications, 

relative structural settings, and definitions of the applied RNNs can be found in 

Appendix A.1 and Section 2.1, respectively. 

 

 

7.1 Levenberg-Marquardt Methods 

Since the first attempt [85] to train static neural networks, the Levenberg-Marquardt 

(LM) method [106][121] has been revised to incorporate adaptive-momentum terms 

[7] and attracted a lot of attention in training neural networks [43][60][97][105][134] 

[149][171][191][192][198][208][215]. Among these works only [43][134][171] 

concern dynamic or recurrent neural networks (RNN) mostly for time-series 

problems. All these LM-type algorithms are descent methods, i.e. they accept the 

next weight iterate if its associated error function value is smaller than the value of 

the current iterate. This property of monotonicity ensures that each successful 

iteration produces a weight set that is better than any previous one in terms of 

learning error value.  

From the perspective of the Levenberg-Marquardt method, the error function E is a 

nonlinear least-square problem with zero or small residual:   
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         
2 2

12
1 2 1 2 ,

p

ii
E w e w e w


       (7. 1) 

 

where the i
th

 component of the p-dimensional vector e(w) is 

      ,i i ii
e w y w y w       (7. 2) 

                     (7.3) 

with the network‟s output y and desired output ,y  and  ie w  is twice 

continuously differentiable,  e w  is termed residual at w.  

Assume that the current approximation to the solution of the above problem is kw  

and 
kJ  denotes the Jacobian matrix of e(w), if 0,k k kg J e   then the LM method 

is based on a set of linear equations in order to determine the increment ,k  the 

so-called optimal step or Newton step  

  ,k k k k kH D g                        (7.4) 

where ,T

k k kH J J k  represents a nonnegative scalar,  k kD D w  is a continuous, 

positive-definite diagonal matrix.  

Besides the most common way that considers 

  ,D w I                          (7.5) 



Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms 

 

 152 

where constant 0   and I  the identity matrix,  D w  can be chosen as 

        11 22diag , , , ,nmD w H w H w H w I           (7.6) 

where  ii
H w  is the i-th diagonal element of  H w  and   a small positive 

constant. As with other second-order methods, this formulation assumes that we can 

have a local quadratic approximation of E denoted by E ,  

     , 1 2 ,T T

k k k k k k kE w w E w g H                 (7.7) 

which is defined in Eq. (7.7). More details and discussions about the LM method can 

be found in the literature, such as in [7][85][106][121]. Note that k  in Eq. (7.4) 

controls both the magnitude and direction of .k  When k  is zero, Eq. (7.4) is 

identical to the Gauss-Newton method; while as k  is closed to infinity, Eq. (7.4) is 

equivalent to the steepest descent method. For easy reference, we recall the 

pseudo-code of the monotone LM method (MLM) here.  

Table 7.1 The monotone Levenberg-Marquardt algorithm 

UMLM Algorithm U [106][121] 

STEP 0. Initialize 0 0,  1,   0,1 , 
0 ,w 0 ,D  and 0k  ; 

STEP 1. If 0,k k kg J e   calculate ;T

k k kH J J  otherwise, stop; 

STEP 2. Compute k  in Eq. (7.4); 

STEP 3. Calculate 

     1 , , ,k k k k k k k kE E E w w E w w 
                (7.8) 

where E  is defined by Eq. (7.7); 

STEP 4. If ,k   set k k   and go to Step 2; Else, k k    and 

1 ;k k kw w      

STEP 5. Set 1,k k   go to STEP 1. 
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In the following sections, we explore the possibility of removing the monotonicity 

restriction by equipping LM methods with strategy that allows the sequence of error 

values at the weight iterates to be nonmonotone. To this end, we develop 

nonmonotone versions of two LM algorithms, which were originally proposed for 

training static neural networks [7], i.e. the LM with adaptive momentum (LMAM) 

and the optimised LMAM (OLMAM). In the original work, these methods were 

comparatively evaluated against the original LM, the BFGS method, and conjugate 

gradient algorithms, and achieved outstanding performances on three applications, 

i.e. one N-bit parity problem and two non-symbolic classification problems.  

 

7.2 Global Convergence 

In this section, we briefly review the theory for global convergence of nonmonotone 

LM methods [213] in relation to the methods proposed in [7]. For both works, [7] 

and [213], the following assumptions were firstly made, which are the hypotheses of 

the Zoutendijk‟s theorem. 

Assumptions [7][213]. The error function E is bounded and continuously 

differentiable in a neighborhood N of the level set  0 0( ) ( ) ( ) ,nL w w R E w E w    

while L is compact. 

Similar to the first Wolfe‟s condition referred in [7], i.e. 

    
0
max ,k k k j

j M
E w E w 

 
                      (7.9) 
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where   is an adaptive term that measures the sufficiency of the error decrease, the 

so-called forcing function. Moreover, [213] proved there exists constant 0   such 

that the inequality (7.9) holds, while the second Wolfe‟s condition was ignored. Then, 

under the above Assumptions, the following three theorems were proved [213]. 

Theorem 7.1 [213]. If the sequence  kw  is generated by the NMLM1 & NMLM2 

(both algorithms are described in Appendix A.2), then  

liminf 0.k
k

g


                        (7.10) 

 

Theorem 7.2 [213]. If sequence  kw  is generated by the NMLM1, and if the 

approximated Hessian matrix ( )kT w  is uniformly positive definite for sufficiently 

large k, then  

lim 0.k
k

g


                          (7.11) 

Furthermore, if the set of stationary points of  E w  is finite, say  1 , , ,mw w   

then there is an integer q, 1 ,q m   such that 

lim .k q
k

w w


                          (7.12) 

 

Theorem 7.3 [213]. Suppose that w
 is the unique stationary point of  f w  on 
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 0 ,L w   0,f w   and  T w  is positive definite. If  kw  is generated by 

NMLM1, then 

lim .k
k

w w


                          (7.13) 

 

Comparing to [7], only Eq. (7.11) in Theorem 7.2 was proved by applying 

Zoutendijk‟s theorem. 

 

7.3 Our Proposed Algorithms 

Our proposed revisions of LMAN and OLMAN [7], named Adaptive Non-Monotone 

LMAM (ANM-LMAM) and Adaptive Non-Monotone OLMAM (ANM-OLMAM), 

are as follows. Compared to the standard monotone LM algorithm, presented in 

Table 7.1, STEP 2 of the LMAM method includes two adaptive momentum terms, 

i.e., 1  and .2 , defined in Eqs. (7.15) and (7.16). 
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Table 7.2 Adaptive nonmonotone LM method with adaptive momentum 

UAlgorithm: ANM-LMAMU  

STEP 0. Initialize 1,  , 
0 ,w 0 ,D max ,M ,  0,1 ,   0,1 ,  c, and 0;k   

STEP 1. If 0,k k kg J e   calculate ;T

k k kH J J  otherwise, stop; 

STEP 2. Compute 
k  by  

 
1

1
1

2 2

1
,

2 2
k k k k k kH D g


  

 



                    (7.14) 

where  

2
1 1

2
,

T

k k

T

k k k

g

g H g

  




 
                       (7.15) 

 
1

2 21

1 1

2 1 2 2

1
,

2

T T T

k k k k k k k k

T

k k k

H g H g g

g H g

  






 



  
 
  
 

              (7.16) 

and  

 
1 2

1 ;T

k k kc g H g                          (7.17)  

STEP 3. If k ≥ 1, calculate the local Lipschitz approximation 
k

  by  

1

1

,k k
k

k k

g g

w w






 


                      (7.18) 

and update 
kM  by   

1 1 2

1 1 2

1

1,  if 

1,  if ,

,       otherwise,

k k k k

k k k k k

k

M

M M

M

  

  



     

      







                (7.19) 

where  maxmin , ;k kM M M  

STEP 4. If Eq. (7.9) is not satisfied, k k   and go to Step 2;  

Else, k k    and 1 ;k k kw w     

STEP 5. 1,k k   go to Step 1. 
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To derive the ANM-OLMAM algorithm, following the OLMAM method‟s 

description in [7], the two constants   and c, which are initialized in Step 0 and 

used in Step 2, are revised by  

 
1 2

1 ,T

k k kg H g                        (7.20) 

and  

 
1 2

2

1

1

1

1 .

T

k k

T T

k k k k k k

g
c

g H g H



 







 
  
 
 

                  (7.21) 

Therefore, following the changes in Step 0 and Step 2, we have the second proposed 

LM-like algorithm, i.e. ANM-OLMAM. The derivation processes of Eqs. 

(7.10)-(7.13) and (7.16)-(7.17) can be found in [7]. 

As reported in [7], the settings of the first Wolfe condition are 0.1   and the 

forcing function ;T

k kg    therefore, comparing to LMAM and OLMAM, there is 

only one extra free parameter within our proposed algorithms, i.e. the upper bound of 

nonmonotone learning horizon M
k
. As already stated in previous chapters, we have 

found setting M
max

 to 15 generally provides good performance in all applications 

[145][146].  

Examples of convergence behaviour for ANM-LMAM and ANM-OLMAM trained 

NARX networks (7 hidden nodes for the P5 and 10 for the P10 were used, as listed 

in Table A.1) are shown in Figures 7.1 and 7.2 using relatively small training goals. 

Despite temporary reductions in the size of the sliding window, Figures 7.1 and 7.2 

show that there is a trend to enlarge the length of the window and that the methods 
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produce from time to time large values for elements of 
k , which speeds up the 

process. It is worth noticing that this behaviour is in accordance with theoretical and 

empirical results about the behaviour of nonmonotone methods [82][79][146]. 

Examples of nonmonotone convergence behaviours for the simulated problems are 

provided in the next section. 
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Figure 7.1 Convergence behaviours of ANM-LMAM and ANM-OLMAM in the P5 

problem for NARX networks  

ANM-LMAM 

ANM-OLMAM 



Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms 

 

 160 

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

epochs

M
S

E

0 500 1000 1500 2000 2500 3000 3500 4000
-200

0

200

epochs

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

epochs

M
be

ta

ANM-LMAM

 

0 10 20 30 40 50 60 70 80
0

0.5

epochs

M
S

E

0 10 20 30 40 50 60 70 80
-200

0

200

b
e

ta

epochs

0 10 20 30 40 50 60 70 80
0

10

20

epochs

M

ANM-OLMAM

 

Figure 7.2 Convergence behaviours of (a) ANM-LMAM and (b) ANM-OLMAM in 

the P10 problem for NARX networks 
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7.4 Experimental Results 

As mentioned in previous chapters, relative references and numerical settings of 

the simulations in this thesis can be found in Appendix (A.1), i.e. types of RNNs, 

amounts of hidden nodes, relative delays, boundaries of learning horizon M, and the 

constant   used for the nonmonotone strategy, while all results shown are the 

average of 100 runs initialised randomly. MSE and CE values are shown in 

percentage, while the STD column represents the corresponding standard deviation. 

The forcing function   is the same as the one applied in Chapters 4, 5 and 6, while 

the other parameters are set to 2,   0.03,  0.95,c   and 
0D  denotes the 

identity matrix. Details about the notations used in the following Tables can be found 

in Section 4.4. 

7.4.1 N-bit Parity Problems 

Simulation results of the P5 problem are shown in Tables 7.3-7.5, while Tables 

7.6-7.8 exhibit results for the P10 problem. From these results it can be easily 

observed that all the monotone versions of LM methods, i.e. LM, LMAM and 

OLMAM, failed to converge and were trapped in some local minimum points, while 

the proposed nonmonotone modifications, i.e., ANM-LMAM and ANM-OLMAM, 

perform generally much better. Although there are some non-converged cases for 

ANM-OLMAM trained networks with 1 or 2 hidden nodes, as shown in Table 7.7, 

the average MSEs for 100-runs when using 1 or 2 hidden nodes are about 13% better 

than the ones achieved by OLMAM. Examples of learning behaviours for the P5 and 

P10 problems are shown in Figures 7.3 and 7.4, respectively.  
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Table 7.3 Average performance for FFTD networks in the P5 problem: class of LM. 

Algorithms #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epochs 

Ave Min Max Std 

LM 

1 0 37.686  2.317 - - - - 

2 0 38.819 2.592 - - - - 

5 0 36.319 3.214 - - - - 

7 0 35.945 2.763 - - - - 

LMAM 

1 0 22.453 3.930 - - - - 

2 0 18.328 7.622 - - - - 

5 0 35.816 2.338 - - - - 

7 0 36.225 2.846 - - - - 

ANM-LMAM 

1 24 17.855 2.753 62 46 107 11 

2 50 10.934 3.105 66 46 151 25 

5 67 4.086 1.992 164 47 646 111 

7 99 0.910 0.073 172 63 312 52 

OLMAM 

1 0 36.865 1.995 - - - - 

2 0 37.572 2.658 - - - - 

5 0 36.057 2.472 - - - - 

7 0 35.632 2.208 - - - - 

ANM-OLMAM 

1 26 16.520 2.335 214 46 587 172 

2 43 9.686 1.850 283 46 1194 234 

5 85 1.781 1.421 267 46 1883 356 

7 99 0.974 0.147 64 37 364 36 

 



Chapter 7. Adaptive Nonmonotone Levenberg-Marquardt Algorithms 

 

 163 

Table 7.4 Average performance for LRN networks in the P5 problem: class of LM. 

Algorithms #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epochs 

Ave Min Max Std 

LM 

1 0 37.520 2.872 - - - - 

2 0 38.462 2.701 - - - - 

5 0 36.319 3.338 - - - - 

7 0 36.649 2.940 - - - - 

LMAM 

1 0 37.920 2.717 - - - - 

2 0 38.416 3.023 - - - - 

5 0 36.319 3.402 - - - - 

7 0 36.649 2.785 - - - - 

ANM-LMAM 

1 20 15.650 3.572 133 54 1439 308 

2 37 13.714 2.856 64 46 199 28 

5 66 4.325 1.184 165 47 646 111 

7 100 0.645 0.032 175 60 427 65 

OLMAM 

1 0 37.244 2.692 - - - - 

2 0 37.912 2.836 - - - - 

5 0 36.075 3.307 - - - - 

7 0 36.424 2.655 - - - - 

ANM-OLMAM 

1 9 20.277 4.256 267 57 444 135 

2 44 8.731 1.730 282 46 910 233 

5 85 1.800 0.954 270 46 1883 363 

7 96 1.089 0.147 98 41 1332 165 
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Table 7.5 Average performance for NARX networks in the P5 problem: class of LM. 

Algorithms #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epochs 

Ave Min Max Std 

LM 

1 0 37.953 2.748 - - - - 

2 0 37.851 2.503 - - - - 

5 0 36.205 2.115 - - - - 

7 0 36.391 2.628 - - - - 

LMAM 

1 0 38.448 3.224 - - - - 

2 0 37.851 2.682 - - - - 

5 0 36.205 2.006 - - - - 

7 0 36.391 2.439 - - - - 

ANM-LMAM 

1 73 3.032 1.731 108 63 168 21 

2 85 2.689 1.340 120 86 204 27 

5 99 0.955 0.003 132 89 225 28 

7 99 0.970 0.010 155 52 289 40 

OLMAM 

1 0 38.386 3.309 - - - - 

2 0 36.205 2.731 - - - - 

5 0 36.093 2.488 - - - - 

7 0 36.247 3.067 - - - - 

ANM-OLMAM 

1 96 0.625 1.047 72 33 571 86 

2 95 1.081 0.793 59 37 349 37 

5 100 0.945 0.008 47 38 77 6 

7 100 0.943 0.008 47 32 80 7 
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More precisely, the results show that considerable improvements in terms of MSE 

can be achieved by the ANM-LMAM and ANM-OLMAM methods. For example, 

when using FFTD networks with 7 hidden nodes both ANM-LMAM and 

ANM-OLMAM in Table 7.3 outperform LMAM and OLMAM by 35.2% and 32.5%, 

respectively. Similar improvements can be seen in Tables 7.4 and 7.5 for LRNs 

(35.9% and 34.2%) and NARX (35.4% and 35.2%) networks. The improvements in 

the MSE for the P10 problem using FFTD, LRN and NARX recurrent networks with 

10 hidden nodes are approximately 20.7%, 29.7%, 33.4% for the ANM-LMAM, and 

35.4%, 32.0%, 24.5% for the ANM-OLMAM, as shown in Tables 7.6-7.8. It also 

appears that the ANM-OLMAM converges more times than the ANM-LMAM 

consistently. Taking the simulations with 10 hidden nodes in Table 7.8 as an example, 

ANM-OLMAM achieves a 100% convergence, with 10 times less training epochs on 

average. This result is in line with observations about the behaviour of the original 

LMAM and OLMAM in training static neural networks [7]. 

Figures 7.3-7.4 show some examples of nonmonotone convergence behaviour. 

Figure 7.3 provides an example of how the convergence behaviour of ANM-LMAM 

and ANM-OLMAM differ in a case where ANM-LMAM has stuck in the 

neighbourhood of a local minimum whilst ANM-OLMAM still trains the LRN 

network and continuously reduces the training MSE for P5. Similar behaviour is 

observed in Figure 7.4 for NARX networks in P10, where ANM-OLMAM appears 

to be better than ANM-LMAM. 
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(c) NARX 

Figure 7.3 Examples of convergence behaviours of ANM-LMAM and 

ANM-OLMAM in the P5 problem for three RNNs  
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Table 7.6 Average performance for FFTD networks in the P10 problem: class of 

LM. 

Algorithms #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epochs 

Ave Min Max Std 

LM 

1 0 37.871 3.782 - - - - 

2 0 38.623 4.126 - - - - 

5 0 36.707 3.006 - - - - 

10 0 35.543 2.997 - - - - 

LMAM 

1 0 24.040 3.116 - - - - 

2 0 38.436 3.907 - - - - 

5 0 35.825 2.793 - - - - 

10 0 27.340 3.670 - - - - 

ANM-LMAM 

1 0 24.304 3.256 - - - - 

2 8 19.822 2.071 699 250 1071 286 

5 14 6.970 1.939 869 289 2065 571 

10 31 6.669 1.451 968 155 2588 533 

OLMAM 

1 0 37.715 4.697 - - - - 

2 0 38.436 3.852 - - - - 

5 0 35.825 2.792 - - - - 

10 0 36.157 3.239 - - - - 

ANM-OLMAM 

1 0 23.931 2.894 - - - - 

2 4 20.831 2.383 1149 410 1899 688 

5 14 12.975 3.671 815 146 3900 1007 

10 51 0.769 1.836 438 69 3760 774 
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Table 7.7 Average performance for LRN networks in the P10 problem: class of LM. 

Algorithms #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epochs 

Ave Min Max Std 

LM 

1 0 37.739 3.529 - - - - 

2 0 38.444 3.788 - - - - 

5 0 36.801 2.813 - - - - 

10 0 36.043 2.954 - - - - 

LMAM 

1 0 37.744 3.733 - - - - 

2 0 38.283 4.107 - - - - 

5 0 36.639 3.242 - - - - 

10 0 36.122 2.871 - - - - 

ANM-LMAM 

1 1 23.890 2.847 1959 1959 1959 0 

2 4 21.319 2.575 673 599 820 103 

5 9 12.689 1.813 761 626 925 221 

10 30 6.448 1.045 1047 367 3398 550 

OLMAM 

1 0 37.744 3.733 - - - - 

2 0 38.283 4.107 - - - - 

5 0 36.639 3.242 - - - - 

10 0 36.122 2.871 - - - - 

ANM-OLMAM 

1 0 24.089 3.118 - - - - 

2 0 22.098 2.707 - - - - 

5 18 11.703 1.543 1249 311 2749 1330 

10 47 4.160 0.837 467 68 3990 860 
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Table 7.8 Average performance for NARX networks in the P10 problem: class of 

LM. 

Algorithms #hid 
Conv 

(%) 

MSE 

(%) 

STD 

(%) 

Epochs 

Ave Min Max Std 

LM 

1 0 37.536 2.797 - - - - 

2 0 38.210 3.203 - - - - 

5 0 36.283 2.999 - - - - 

10 0 35.275 2.740 - - - - 

LMAM 

1 0 37.933 2.962 - - - - 

2 0 37.012 2.719 - - - - 

5 0 26.394 4.621 - - - - 

10 0 34.434 2.193 - - - - 

ANM-LMAM 

1 93 1.388 1.925 651 394 834 89 

2 95 1.868 1.203 627 413 869 71 

5 85 1.823 2.337 563 139 1073 114 

10 70 1.002 1.306 592 224 964 119 

OLMAM 

1 0 37.933 2.714 - - - - 

2 0 27.297 6.398 - - - - 

5 0 26.973 5.023 - - - - 

10 0 25.409 2.711 - - - - 

ANM-OLMAM 

1 98 0.960 0.046 64 39 293 35 

2 98 0.966 0.049 68 41 268 35 

5 99 0.958 0.037 54 35 91 12 

10 100 0.950 0.033 53 37 159 14 
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(c) NARX 

Figure 7.4 Examples of convergence behaviours of ANM-LMAM and 

ANM-OLMAM in the P10 problem for three RNNs 

 

7.4.2 Sequence Classification Problem 

Tables 7.9-7.11 show the results of FFTD, LRN and NARX networks for 3 

monotone LM methods and the proposed nonmonotone approaches, while examples 

of learning behaviours for the three RNN architectures are provided in Figure 7.5. 

From the numerical results of Tables 7.9-7.11, the smallest improvements made by 

our proposed nonmonotone algorithms are about 16.6% in MSE and 20.7% in CE, 

while 40.5% in MSE and 85.9% in CE for the largest improvements. More details 

for different RNNs are provided in Table 7.12. 
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Table 7.9 Average performance for FFTD networks in the SC problem: class of LM. 

Algorithms #hid 

MSE (%) CE (%) 

Train/STD Test/STD Train/STD Test/STD 

LM 

5 40.259/12.102 40.134/14.488 85.325/13.712 64.205/22.274 

10 42.174/13.374 42.472/12.843 88.862/14.537 69.438/23.780 

15 40.236/11.896 40.715/15.325 87.241/14.661 65.164/23.028 

LMAM 

5 39.987/12.558 39.289/12.301 86.478/14.070 62.082/21.837. 

10 40.753/12.147 40.693/12.476 89.212/14.525 66.315/23.342 

15 40.224/12.384 40.235/11.706 86.473/14.193 67.288/24.826 

ANM-LMAM 

5 24.000/8.734 22.032/8.993 63.837/7.887 39.356/14.782 

10 24.874/9.383 22.740/9.572 62.759/7.030 36.247/15.013 

15 22.146/7.070 20.780/8.094 65.502/8.127 38.411/14.339 

OLMAM 

5 39.624/14.307 38.908/16.060 85.596/15.673 61.027/22.947 

10 39.509/13.856 39.489/14.986 84.956/14.918 60.370/21.892 

15 39.687/14.482 39.703/15.344 85.108/15.702 65.712/24.380 

ANM-OLMAM 

5 19.226/9.004 17.001/8.991 51.724/6.285 31.507/10.807 

10 19.561/9.153 17.301/9.481 52.207/5.432 32.041/11.427 

15 19.826/9.543 17.746/9.720 53.936/5.046 32.575/11.921 
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Table 7.10 Average performance for LRN networks in the SC problem: class of LM. 

Algorithms #hid 

MSE (%) CE (%) 

Train/STD Test/STD Train/STD Test/STD 

LM 

5 42.250/11.995 42.404/12.676 87.877/14.147 69.466/21.303 

10 41.282/11.036 41.662/11.580 87.030/12.993 63.904/24.677 

15 39.715/9.495 39.531/9.177 89.414/13.738 66.411/22.581 

LMAM 

5 42.328/12.163 42.781/12.277 88.626/11.945 65.685/23.227 

10 39.633/12.726 39.793/14.971 87.591/15.261 64.849/22.031 

15 40.044/11.839 39.701/11.887 88.789/10.704 66.849/21.364 

ANM-LMAM 

5 20.817/7.004 17.214/7.358 66.094/8.397 31.973/12.786 

10 24.802/8.121 22.182/8.778 63.212/7.401 29.685/11.005 

15 25.011/9.730 22.592/9.170 64.261/7.997 29.219/10.792 

OLMAM 

5 41.999/11.868 42.459/11.913 88.571/11.077 65.164/22.899 

10 39.546/12.343 39.230/14.577 85.118/14.981 66.644/23.630 

15 41.471/11.395 41.506/12.257 88.153/10.219 64.205/23.388 

ANM-OLMAM 

5 6.316/1.983 5.508/1.307 24.631/3.975 6.095/1.411 

10 6.320/2.017 5.441/1.043 24.631/3.881 5.958/1.103 

15 7.133/3.872 6.136/1.729 26.404/4.585 8.095/2.678 
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Table 7.11 Average performance for NARX networks in the SC problem: class of 

LM. 

Algorithms #hid 

MSE (%) CE (%) 

Train/STD Test/STD Train/STD Test/STD 

LM 

5 40.161/11.465 39.947/12.602 86.172/14.627 65.082/22.536 

10 41.161/12.361 40.947/14.124 85.443/15.478 67.315/23.674 

15 41.555/11.840 42.561/14.100 88.478/14.183 63.863/23.801 

LMAM 

5 42.385/11.614 42.101/12.447 88.000/10.320 69.890/22.933 

10 40.192/10.835 39.942/9.997 86.517/9.776 65.589/20.335 

15 40.243/10.361 39.949/9.982 87.227/9.871 64.082/21.632 

ANM-LMAM 

5 18.921/6.949 22.998/8.030 69.069/8.825 45.397/19.803 

10 11.701/4.072 13.277/3.718 63.833/6.579 38.658/14.906 

15 8.850/5.100 17.938/6.998 66.493/6.947 42.493/17.281 

OLMAM 

5 40.713/10.074 41.600/11.837 88.044/10.733 65.233/21.739 

10 38.586/9.003 38.431/9.238 85.512/8.276 64.466/20.117 

15 40.268/9.989 40.145/11.204 89.537/11.372 66.137/21.472 

ANM-OLMAM 

5 0.617/0.226 12.630/3.782 2.004/0.973 19.397/4.554 

10 0.347/0.183 10.954/1.993 1.113/1.207 15.712/3.102 

15 0.180/0.087 11.083/3.186 0.758/0.367 16.247/3.972 
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(a) FFTD  
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(b) LRN  
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(c) NARX 

Figure 7.5 Examples of convergence behaviours of ANM-LMAM and 

ANM-OLMAM in the SC problem for three RNN architectures 
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Table 7.12 Average improvement achieved by the nonmonotone LM methods over 

their monotone counterparts for the SC problem 

Algorithms RNN 

MSE (%) CE (%) 

Train Test Train Test 

ANM-LMAM 

FFTD 16.648 18.222 23.355 27.224 

LRN 17.125 20.096 23.813 35.502 

NARX 27.783 22.953 20.783 24.338 

ANM-OLMAM 

FFTD 20.484 22.419 34.016 32.310 

LRN 33.969 34.956 63.095 58.905 

NARX 40.559 29.108 85.956 49.402 

 

Improvements in terms of both MSE and CE were observed for all RNN 

architectures when nonmonotone learning methods were used. Taking the average 

CE in testing as an example, results for FFTD networks in Table 7.9 show that 

networks trained with the ANM-LMAM and ANM-OLMAM methods exhibit 

significant reduction in CE compared with the original monotone methods. As 

shown in Tables 7.10 and 7.11 improvements for LRNs and NARX networks are 

large as well. The largest improvement in testing CE was achieved for 

ANM-OLMAM-trained LRNs using 5 hidden nodes: a difference of 59.1% in CE 

compared to OLMAM-trained LRNs.  
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7.4.3 Sequence Learning Problem 

Simulation results of the SL problem are shown in Tables 7.13-7.15, for FFTD, LRN 

and NARX networks, respectively, while Figure 7.6 provides examples of learning 

behaviours. Tables 7.16-7.18 exhibit results when increasing the number of epochs 

from 23 to 200 and then to 1000 epochs. Table 7.19 summaries the average 

improvements of our proposed ANMLM methods for the three RNNs. 

The results for FFTD networks in Table 7.13 show that improvements in terms of 

MSE (%) in testing for ANM-LMAM and ANM-OLMAM range from 0.5% to 3.9% 

and from 15.4% to 16.5%, respectively. Improvements in Table 7.14 appear to be 

larger for LRN networks, ranging from 0.6% to 14.5% for ANM-LMAM and from 

17.2% to 32.1% for ANM-OLMAM. In Table 7.15, ANM-LMAM and 

ANM-OLMAM trained NARX networks are 3.0% and 31.4% better respectively 

than networks trained with the original monotone versions. Figure 7.6 provides an 

example of nonmonotone learning behaviour for NARX showing how 

ANM-OLMAM achieves a relative smaller MSE than ANM-LMAM. 
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Table 7.13 Average performance for FFTD networks in the SL problem: class of 

LM. 

Algorithms #hid 

Training Testing 

MSE (%) STD (%) MSE (%) STD (%) 

LM 

1 44.045 23.873 43.997 24.023 

2 44.388 24.018 44.525 25.129 

5 40.646 21.996 40.669 21.634 

7 41.108 22.726 40.998 21.836 

10 41.063 22.549 41.199 22.037 

LMAM 

1 46.545 24.518 46.620 24.001 

2 42.970 23.076 42.966 24.336 

5 41.317 22.672 41.280 24.428 

7 41.231 22.901 41.051 22.693 

10 41.559 22.892 41.373 23.152 

ANM-LMAM 

1 42.513 21.373 42.662 22.857 

2 42.045 22.167 42.062 22.263 

5 40.792 20.637 40.756 21.439 

7 40.708 20.552 40.530 21.097 

10 41.034 21.348 40.848 21.652 
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Table 7.13 Average performance for FFTD networks in the SL problem: class of LM 

(cont‟d). 

Algorithms #hid 

Training Testing 

MSE (%) STD (%) MSE (%) STD (%) 

OLMAM 

1 46.437 24.052 46.547 23.919 

2 41.527 22.378 41.511 22.027 

5 41.273 23.551 41.294 22.073 

7 40.434 22.753 40.517 22.784 

10 39.753 22.004 39.836 21.712 

ANM-OLMAM 

1 30.070 17.233 30.927 18.742 

2 27.304 14.592 27.305 14.172 

5 25.818 13.848 25.871 14.335 

7 25.089 13.863 25.089 15.027 

10 24.932 12.045 24.860 12.783 

 

Table 7.14 Average performance for LRN networks in the SL problem: class of LM. 

Algorithms #hid 

Training Testing 

MSE (%) STD (%) MSE (%) STD (%) 

LM 

1 46.447 23.847 46.639 23.299 

2 43.809 22.714 44.011 21.076 

5 42.503 22.378 42.468 20.281 

7 40.437 22.530 40.554 20.949 

10 40.982 21.029 40.828 20.027 
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Table 7.14 Average performance for LRN networks in the SL problem: class of LM 

(cont‟d). 

Algorithms #hid 

Training Testing 

MSE (%) STD (%) MSE (%) STD (%) 

LMAM 

1 46.583 23.427 46.765 24.176 

2 42.813 23.129 42.885 23.853 

5 41.933 21.612 41.686 22.394 

7 40.424 21.238 40.454 21.227 

10 38.782 20.857 38.703 20.788 

ANM-LMAM 

1 45.542 22.145 45.718 21.635 

2 41.798 21.623 41.957 22.291 

5 41.253 21.804 41.028 21.982 

7 39.763 20.061 39.813 19.169 

10 24.209 18.776 24.229 19.438 

OLMAM 

1 46.927 22.712 46.564 23.927 

2 43.358 21.489 43.592 21.367 

5 40.695 19.687 40.711 20.474 

7 40.966 20.323 40.994 20.755 

10 39.995 19.128 39.795 19.762 

ANM-OLMAM 

1 26.482 17.448 26.815 17.629 

2 24.946 16.002 25.667 17.241 

5 20.555 14.127 21.794 14.924 

7 17.068 11.341 18.302 11.877 

10 10.203 7.865 10.867 8.048 
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Table 7.15 Average performance for NARX networks in the SL problem: class of 

LM. 

Algorithms #hid 

Training Testing 

MSE (%) STD (%) MSE (%) STD (%) 

LM 

1 47.467 23.129 47.981 23.730 

2 42.918 22.908 43.233 22.675 

5 40.843 21.437 40.728 21.661 

7 39.012 21..010 39.548 22.476 

10 40.672 22.105 40.602 22.240 

LMAM 

1 46.665 22.672 46.176 23.237 

2 42.892 21.859 43.249 22.541 

5 41.548 21.178 41.805 21.704 

7 41.713 22.603 41.142 23.813 

10 40.813 21.230 40.723 21.392 

ANM-LMAM 

1 45.784 21.917 46.132 22.342 

2 43.331 21.265 43.505 21.493 

5 39.427 20.222 38.871 19.904 

7 39.190 20.197 38.631 19.737 

10 40.039 21.989 39.949 20.556 
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Table 7.15 Average performance for NARX networks in the SL problem: class of 

LM (cont‟d). 

Algorithms #hid 

Training Testing 

MSE (%) STD (%) MSE (%) STD (%) 

OLMAM 

1 45.729 21.007 45.866 22.571 

2 44.246 20.379 43.918 22.097 

5 41.380 20.827 41.213 20.329 

7 40.071 20.520 40.027 20.125 

10 40.672 21.833 40.602 20.578 

ANM-OLMAM 

1 21.773 12.487 22.142 13.625 

2 14.937 9.843 15.552 11.450 

5 11.540 7.204 11.831 7.925 

7 12.836 8.746 12.919 9.186 

10  9.115 5.044  9.374 6.458 

 

Referring to the errors for each prediction, this tends to be high when predicting 

consonants and low when predicting vowels. Given the semi-random nature of the 

sequence, this behaviour is not unusual: once a network has received a consonant at 

the input, it learns to predict the identity of the following vowel but at the end of the 

vowel sequence it has no way to predict what the next consonant will be; thus it 

produces a high error at these time points. In order to investigate the generalisation 

performance of the RNNs further we conducted additional tests using RNNs with 

10-hidden nodes. These were trained for 1000 epochs and were tested using a 

randomly generated sequence of length 30 that conformed to the same regularities 
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that underlie the training sequence. In Tables 7.16-7-18, results are presented in the 

form of MSE/CE (in percentage) obtained after 200 and 1000 epochs in both training 

and testing. Note that the notation “--” used in these tables indicates that the 

monotone LMAM and OLMAM failed to train the RNNs because they got stuck, 

and as the result, both the training and testing MSE/CE values were identical to the 

ones reached at the 200th-epoch. In contrast, results for the nonmonotone methods 

indicate that they have potential to improve error performance as training progresses 

successfully beyond 200 epochs (up to the termination condition of 1000 epochs). 

This allows ANM-LMAM and ANM-OLMAM to achieve significant reductions in 

the MSE/CE (%) values for all RNN architectures in this task.  

 

Table 7.16 Results of additional simulations for FFTD networks in the SL problem: 

class of LM. 

Algorithms 

200-epoch 1000-epoch 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

LMAM 43.7/91.7 45.0/93.6 -- -- 

ANM-LMAM 37.3/83.6 39.7/86.8 22.9/67.1 22.8/69.4 

OLMAM 41.5/88.9 43.4/91.3 -- -- 

ANM-OLMAM 33.2/74.1 34.4/78.2 21.7/64.0 22.3/66.8 
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Table 7.17 Results of additional simulations for LRN networks in the SL problem: 

class of LM. 

Algorithms 

200-epoch 1000-epoch 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

LMAM 40.6/88.1 39.5/87.4 -- -- 

ANM-LMAM 22.7/79.9 23.1/81.2 16.3/47.6 18.2/53.2 

OLMAM 36.5/84.4 34.9/85.0 -- -- 

ANM-OLMAM  9.0/45.8  9.4/48.5 5.6/33.3 7.9/42.5 

 

Table 7.18 Results of additional simulations for NARX networks in the SL problem: 

class of LM. 

Algorithms 

200-epoch 1000-epoch 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

Train 

(MSE/CE) 

Test 

(MSE/CE) 

LMAM 28.5/89.1 28.1/72.4 -- -- 

ANM-LMAM 23.3/81.0 22.6/54.5 9.7/21.3 12.4/25.1 

OLMAM 26.7/86.7 26.2/69.8 -- -- 

ANM-OLMAM  7.3/34.2  7.7/43.1 4.2/12.6 5.8/16.9 
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Table 7.19 Average improvements achieved by the nonmonotone LM methods over 

their monotone counterparts for the SL problem 

Algorithms RNN 

MSE (%) 

Train Test 

ANM-LMAM 

FFTD 1.306 1.286 

LRN 3.594 3.549 

NARX 1.172 1.201 

ANM-OLMAM 

FFTD 15.242 15.131 

LRN 22.256 21.410 

NARX 28.379 27.961 
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Figure 7.6 Example of convergence behaviours of ANM-LMAM and 

ANM-OLMAM in the SL problem for NARX network 
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7.4 Summary and Contribution of the Chapter  

The chapter looked at the classical LM methods and explored its application in 

training ANNs. A discussion on the global convergence of the nonmonotone versions, 

was provided and two adaptive nonmonotone LM approaches were proposed to 

investigate the potential of incorporating nonmonotone strategies in LM methods. 

Experimental results show that our nonmonotone approaches dramatically improve 

LM methods performance, i.e. not only by increasing the speed of learning in the 

N-bit parity problems, but also provide more efficient training in two difficult 

real-world applications.  

In this chapter we developed nonmonotone learning algorithms by equipping the 

Levenberg-Marquardt algorithms proposed in [7] with nonmonotone strategy. In this 

way we extended the application of the LM with adaptive momentum (LMAM) and 

the optimized LMAM (OLMAM) methods to training recurrent neural networks and 

enhanced their performance through the use of an adaptive nonmonotone strategy. 

We examined the behaviour of these nonmonotone variants in a set of experiments 

that involved training RNNs of various dimensions belonging to three different 

architectures, i.e., FFTD, ERN, and NARX, in symbolic sequence processing 

problems. Results are promising as these algorithmic extensions outperformed the 

original monotone versions managing to train effectively RNNs of smaller size than 

the original methods and produced better results in testing using unknown data. 
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Chapter 8  

Conclusions and Future Works 

 

Recurrent networks constitute an elegant way of increasing the processing 

capabilities of feedforward networks to deal with high-dimensional data in the form 

of sequences of real vectors and are well known for their power to model temporal 

dependencies and process sequences for classification, recognition, and transduction. 

Modern RNNs architectures are capable of learning to solve many previously 

not-learnable tasks, even in partially observable environments. From the literature 

reviews of architectures and learning algorithms for RNNs in Chapter 2, a more 

general classification scheme of recurrent architecture was proposed [148] and 

highlighted the fact that in the literature very few attempts have been made to train 

RNNs by second-order approaches.  

By providing a general formulation for the neural networks‟ learning task in Chapter 

3, the nature of training neural networks can be considered as a minimisation 

problem of unconstrained optimisation. An overview of traditional and classical 

methods in the field of nonlinear unconstrained optimisation was then provided, 

followed by the introductions of the new class of approaches, i.e. the nonmonotone 

learning, which is the main feature of our proposed algorithms. 
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The aim of this research was to design novel algorithms for training RNNs 

effectively and efficiently, in order to tackle the processing problems of temporal 

sequences. The new algorithms, i.e. the nonmonotone Rprop, CG, BFGS, and LM 

were proposed in Chapters 4-7, respectively.  

The reported experimental results show that the goal of this research has been 

successfully achieved by the adaptive nonmonotone approaches, in terms of faster 

and better rate of convergence, and smaller average training and testing errors.  

The proposed algorithms apply an adaptive way to determine the size of the 

nonmonotone learning horizon, which prevents the manual setting of 

application-dependent constant, i.e. size of learning horizon, alleviating the need for 

user defined values. The application of nonmonotone conditions and the adaptive 

mechanism provide deterministic nonmonotone training that exploits curvature 

information, and as a result, the influence of application-dependent settings can be 

eliminated to an extremely small degree.  

Despite a variety of available measures to use in these applications, such as the 

normalized mean squared error (NMSE), the root mean squared error (RMSE), and 

the mean absolute percentage error (MAPE), we have used the MSE as this was used 

in the other works in the literature and thus makes comparison of our approach with 

other approaches quite straightforward. 

In the future we are planning to extend our list of applications, e.g. solve the Reading 

Aloud (RA) problem for three different types of RNNs (FFTD, LRN and NARX) 

using LM-type of methods (these methods frequently encounter out-of-memory 
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run-time errors in implementations when high dimensions are required as in RA), 

and RA for LRN networks using the JRprop method. Simulations of RNNs in 

general, and for the RA problem in particular, require more computational resources 

than training static neural networks, and therefore, we are planning to convert our 

Matlab codes into other programming languages such as C, or, to upgrade our 

computational resources in order to tackle them. 

Another extension of our work is to produce an experimental comparison of 

nonmonotone conditions, since most of all proposed nonmonotone approaches focus 

on proving the properties of their global convergence, and rarely make any 

comparison with each other. In Chapter 3 of this thesis we provided an overview of 

these approaches, which covers approaches from the first ones proposed up to the 

latest published work in this area. Since choosing the right recurrent architecture and 

learning algorithm is application-dependent, the choice of applying nonmonotone 

conditions is still an open problem in the field of nonlinear optimisation. According 

to our experimental results, the proposed adaptive approach can alleviate this 

application-dependent nature of nonmonotone learning and reduce the number of 

user-defined parameters or constants to a relative small amount.  

In our future work we are also planning to extend the applicability of the 

nonmonotone approach to other methods of the Rprop family, e.g. develop a 

nonmonotone revision of the GRprop [9] and the GJRprop [10]. 

As the thesis focused on temporal sequence processing problem, and made 

simulations on real-world applications of thousands adjustable parameters, as 

indicated in Appendix A.1, another part of our future agenda is to extend the 
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application of nonmonotone methods in other domains such as bioinformatics where 

several important problems can be modelled and processed as symbolic sequences. 

This will hopefully reveal further information about the ability and limitations of our 

proposed nonmonotone learning algorithms. 
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Appendix 

A.1 Experimental Applications 

The four simulated applications are described in this section, while each of them 

with relative reference, problem descriptions, and the setting of parameters and 

stopping criteria of the training process. Table A.1 provides a summary of the 

number of adjustable parameters for the three RNN architectures with different 

amounts of hidden nodes, which are uniformly used in this thesis. In addition, all the 

weights and biases of the RNNs applied in this thesis are randomly initialised in the 

range of [-1, 1]. 

A.1.1 The 5-bit and 10-bit Parity Problems 

References: [23][40][42][41][51][84][94][98][110][125][136][158] [183]  

Problem Description: The class of N-bit parity problems, which are typically 

nonlinear separable and possess a multitude of local minima, have been widely used 

to verify performances of novel training algorithms, such as in the latest works 

[41][84][134][154][182]. In this problem, a one-bit output string, containing either 

0 or 1, is generated from an N-bit long input string that consists of values from the 

set {0,1}, implementing a parity function. There are 32 and 1024 patterns for the 

5-bit (P5) and the 10-bit (P10) problems, respectively.  
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P5 patterns are of the form 

1 0 1 0 1  1 

while P10 patterns are 

1 0 1 1 0 1 1 0 0 0  1, 

where the binary string in the left-side of the arrow denotes an input pattern and the 

1s on the right side of the arrow denotes the desired output. 

Parameters and Stopping Criteria: Training goals for both P5 and P10 are set to 

0.01, within 2000 training epochs for P5 and 4000 for P10. When any of these two 

conditions, i.e. training goal or epoch, is reached, the training process then stops.  
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A.1.2 The Sequence Classification Problem 

Reference: [116] 

Problem Description: This problem concerns labelling the task from a sequence of 

events presented at the input of the RNNs. In sequence processing problems of this 

type, a sequence s = {s1, s2, … sn} is read and a single value, label or pattern c, taken 

from a suitable set C, is computed from it. A tracking engine monitors states of 

interface objects in a personalised system and produces this sequence of events as a 

user interacts with the software. A task consists of a sequence of events, such as 

opening a browser window, searching for information, saving information from the 

search results or storing bookmarks.  

This is a challenging problem as individual users may execute the same task in 

slightly different ways, i.e. they generate slightly different event sequences where, 

for example, one chain of events generated for a task might be more complex from 

another chain of events generated for the same task. Moreover, certain events (e.g. a 

mouse right click event) might occur during execution of more than one task making 

the sequence more “noisy”. A sequence of 203 events was used for training and a 

sequence of 73 events, which was generated by a different user, was used for testing. 

Each event is coded by a 36-dimensional binary vector and a task by a 3-dimensional 

vector. For example, two of the training vectors are shown below, in the form of 

“36-bit input  3-bit output”: 

#202: 0000 0000 0000 0001 0000 0000 0000 0000 0000  101 

#203: 0000 1000 0000 0000 0000 0000 0000 0000 0000  001. 
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The training sequence is wrapped around so that the first event of the sequence is 

presented again after the last one. 

Parameters and Stopping Criteria: For this problem, all 10-hidden-node RNNs were 

trained 200 epochs and the training goal is set to MSE=0. The amounts of 

input/output delays are 5 for FFTD and 1-input-1-output delays for NARX. 
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A.1.3 The Sequence Learning Problem 

Reference: [124] 

Problem Description: This problem belongs to the class of sequence continuation or 

prediction problems, where a processor reads a sequence s1, s2, … sn and produces at 

the output a possible continuation of this sequence sn+1, sn+2… Interesting 

applications of this approach can be found in time series prediction problems, where 

the aim is to predict the future behaviour of a system, and in predictive coding and 

compression. If the prediction is good enough in terms of a mean-squared-error type 

criterion, the difference between the predicted continuation of the sequence and its 

actual continuation may be transmitted using a channel with a lower bandwidth or a 

lower bit rate such as in applications of speech coding in digital cellular phone 

systems [183]. 

In the particular instance of the problem, a symbolic sequence is used [57][124]. It 

concerns a set of 6 letters, {a,b,d,i,g,u}, where each letter is coded by a 

4-dimensional binary vector. The letters formulate the strings {ba}, {dii} and {guuu}, 

and all possible permutations of these 3 strings are legal. For example, part of a 

sequence that one can generate using this alphabet is: 

babaguuudiiguuu… 

1100 0100 1100 0100 1001 0001 0001 0001 1010 0010 0010 1001 0001 0001 0001… 

This type of sequence is semi-random because the consonants occur randomly but 

the identity and number of vowels is regular. 
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In terms of sequence processing application, this is a symbolic sequence prediction 

task which requires predicting successive letters in a semi-random sequence of 1000 

words and each word consists of one of the above 3 consonant-vowel combinations. 

This type of serial patterns are longer in duration than those produced in the parity 

sequences discussed above, they are of variable length so that a prediction depends 

upon a variable amount of temporal context. 

The training regime involves presenting each one of the 4-bit input vectors in 

sequence. The task for the RNN is to predict the next input, and thus gradually is 

learning to predict the vowels from the consonants and also the fact that a consonant 

follows the vowels, although it might not be possible to predict which one. So the 

best one could expect from an RNN is to predict that all three consonants are equally 

likely to occur in word-initial positions but once one of them is received at the input 

then the identity and number of the following vowels should be predicted with 

accuracy. A sequence of length 2993 (4×2993 binary serial patterns) is used for 

training, as in [124]. RNNs are then tested on a shorter sequence of length 30 (4×30 

patterns), which conforms to the same regularities that underlie the training sequence 

but is created from a different initial randomization. The training sequence is 

wrapped around so that the first pattern is presented again after the last one. 

Parameters and Stopping Criteria: All RNNs apply 10 hidden nodes, 0.01,  and 

training goal is 0.01, where training processes 23 epochs only, as in the original work 

[124]. Amounts of delays are as following. NARX networks apply (5,5) input-output 

delays and 5 for input-delays for FFTD. Furthermore, 300-epoch simulations were 

also carried out, for the sake of comparison of behaviours. 
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A.1.4 The Reading Aloud Problem 

Reference: [158] 

Problem Description: This task concerns learning the mapping of a set of 

orthographic representation to their phonological forms. Both subsets of orthography 

and phonology have 3 different parts, i.e. onset, vowel and coda, with 30, 27 and 48, 

and 23, 14 and 24 possible characters, respectively. There are 105-dimensional input 

patterns and 61-dimensional output patterns, while the training dataset has 2998 

patterns. Ideally, a specially designed RNN architecture with 100 hidden nodes, 

which is described in detail in [158], is needed to solve this problem. Although in the 

original work there is no special testing dataset, we choose 30 words which are not 

included in the original training set from an online dictionary in order to verify our 

algorithm‟s generalisation ability. 

Parameters and Stopping Criteria: 10 hidden nodes and 300 training epochs are 

used for this problem, while is set to the same value of the SL problem, i.e., 0.01. 2 

delays were applied, i.e., 2 input delays for FFTD, and 2-input-2-output delays for 

NARX. 

Table A.1 summarises the numbers of RNN adjustable parameters used in the 

experiments of the thesis: I/O represents the number of the input and output nodes of 

the RNNs, #hid is the number of hidden nodes for each problem and the total 

number of RNNs‟ adjustable parameters (weights plus biases) for each one of the 

architectures discussed in the thesis (i.e. FFTD, LRN and NARX).  
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Table A.1 Summary of RNN free parameters for the tested problems 

Problem  

(I/O) 
#hid 

RNN Architecture 

FFTD 

[196][197] 

LRN 

[57][85] 

NARX 

[128][137] 

P5 

(5/1) 

1 13 9 15 

2 25 19 29 

5 61 61 71 

7 85 99 99 

P10 

(10/1) 

1 23 14 25 

2 45 29 49 

5 111 86 121 

7 155 134 169 

10 221 221 241 

SC 

(36/3) 

5 383 228 304 

10 763 503 433 

15 1143 828 648 

SL 

(4/4) 

1 17 14 25 

2 30 26 46 

5 69 74 109 

7 95 116 151 

10 134 194 214 

RA 

(105/61) 

5 1421 921 2031 

10 2781 1831 4001 
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A.2 The Nonmonotone LM Algorithms 

For the sake of discussion of global convergence for nonmonotone LM approaches 

in section 7.2, the two algorithms proposed in [213], i.e. NMLM1 and NMLM2, are 

reviewed below.  

A.2.1 the NMLM1 Algorithm 

0. Choose 
0 0, 0, 1,1 0,a         an integer 0,M   an initial point 

0 ,x , 

and a continuous, positive-definite and diagonal matrix function  ;W x  

1. Set 0,k   compute    00 ;f f x   

2. Calculate 
kA  and  .k kg g x  If 0,kg   set *

kx x  and stop; otherwise, 

compute ;T

k k kT A A  

3. Solve the problem  k k k kT W g     to obtain the solution  , ;k k kx    

compute  1 ;k k kf f x     

4. Compute  

       ( ) ( ) ( ) 1, , , ,l k k l k l k k k k k k kx f f f x x f x x   
        

    
,                                                                             if 0;

min , , , ,  otherwise;
k

k k k k k k k

M

g f x x f x x




   


 

    

 

where        
1

, ,
2

T

k k k k k k kf x x f g x x x x T x x      and 

        ( ) ( ) 1max , , , ,l k l k k k k Mf f x f x f x f x    with the convention that, 

for any negative integer  , jj f x  does not exist. 
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5. If 
 

,kl k
   set 

k k   and go to Step 3; otherwise, set 
1 ,k k kx x     

1 ;k k     

6. Set 1,k k  k = k +1; go to Step 2. 

 

A.2.2 the NMLM2 Algorithm 

This algorithm is similar to the NMLM1 Algorithm except that: 

1. The 
k  and 

k  in the NMLM1 Algorithm are replaced by  

       ( ) ( ) ( ) 1, , , ,l k k l k l k k k k k k kx f f f x x f x x   
        

    
,                                                                             if 0;

min , , , ,  otherwise;
k

k k k k k k k

M

g f x x f x x




   


 

    

 

where         
1

, ;
2

TT

k k k k k k k k kf x x f g x x x x T W x x        

2. When 
 

,kl k
   the parameter k  in Step 5 is updated by 

 1 minmax , ,k k      where min  is a positive constant chosen at Step 0. 
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International Journal on Artificial Intelligence Tools (IJAIT), 17(5), pp. 

963-984. 

2. UC.-C. PengU and G.D. Magoulas (2011), “Nonmonotone BFGS-trained 

Recurrent Neural Networks for Temporal Sequence Processing”, Applied 

Mathematics and Computation, 217(12), pp. 5421-5441. 

3. UC.-C. PengU and G.D. Magoulas (forthcoming), “Improved Levenberg- 

Marquardt Algorithms for Training Recurrent Neural Networks Using 

Adaptive Nonmonotone Strategy”, Neural Computing and Applications. 

4. UC.-C. PengU and G.D. Magoulas (under review), “Adaptive Nonmonotone 

Resilient Propagation Learning for Recurrent Neural Networks”, Applied 

Numerical Mathematics.  

Book chapter 

5. UC.-C. PengU and G.D. Magoulas (2008), “Sequence Processing with 
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Conference papers 
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Workshop paper 
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