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Abstract

A promising clustering method, “intelligent” versiof K-Means, iK-Means,
which finds the number of clusters K and initiaiz&-Means with the
so-called Anomalous pattern (AP) clusters, has Ipeeposed and tested on
several real-world data sets (Mirkin 2005). Thejsabof this thesis is to
further analyse the performance of iK-Means methodwo versions — L
and L, involving respectively the squared Euclidean atise and mean
centroids, and the city block distance and mediamtroids. Firstly, one
needs to see if there is any difference betwearltsesf these methods at all,
and if there is, what data structures are betteresleby each. Secondly, one
needs to compare the iK-Means with a host of othethods for obtaining
the number of clusters published in the literatumd to this end, to adopt or
develop a technique for simulation studies. We psepa technique for
modelling Gaussian clusters and their intermixekperiments conducted
over this model, iK-Means appear to outperform dkigers on the cluster
and centroid recovery, though it may fail sometinogs the number of
clusters. The iK-Means methods are applied then stidving an
unconventional task in gene expression analysmstirfy genes differently

expressed in different types of cells.
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Chapter 1

K-Means Clustering and its Issues

There are a lot of data and reports generated @énptiblic and private sectors
everyday and how to deal with them efficiently amansfer them into useful
information for decision support is a very impottésue. In order to achieve this
goal, one needs data collection, analysis and atrafu process. Generally, this
process is called knowledge discovery and becdngsdata is stored in a database,
it is also known as knowledge discovery in databds®D) or data mining (Liu
and Motoda 1998).

The definitions of data mining have been proposedmiany publications
(Cabena et al. 1997, Grupe and Owrang 1995, BewyLinoff 1997, Kleissner
1998, Frawley et al. 1992) and the definition thetwley et. al (1992) proposed is
the most common version, that is, the non trividtaction of implicit, previously
unknown, and potentially useful information fromtalaBerry and Linoff (1997)
described a four-stage process of data mining:tifgerg problems, transferring
data into results, analyzing and evaluating resaitd these stages are repeated
during data mining. Data mining involves the usesophisticated data analysis
tools to discover previously unknown, valid patgeamd relationships in large data
sets (Edelstein 1999, Adriaans and Zantinge 1996).

Cluster analysis is an important technique in daitsing and the process is to
partition data into clusters (groups or classes)habd objects in the same cluster

have high similarity in comparison to each othbgttis, homogeneous, but are



very dissimilar to objects in other clusters, tisatheterogeneous (Aldenderfer and
Blashfield 1984, Tian et al. 2005). K-Means is #mmplest, fastest and the most
commonly used clustering method (see Bock 2007nI81e2006) that applies to a
data set involving the set dfl entities, |, the set ofM features,V, and the
entity-to-feature matrixY=(y,), wherey, is the value of featureaW at entity iel.
The method produces a partition St{S,..., &} of | in K non-overlapping
classess, referred to as clusters, each with a centogiqc,,), an M-dimensional
vector in the feature space (k=1,2,...K). Centromisnf setC={c,, G,..., &}. The
criterion, minimized by the method, is the withilister summary distance to

centroids:

K
ws, o=y > d(i,c,) )

k=lieS
where d is a distance measure, typically the Euclideartadi®e squared or
Manhattan distance. In the former case criterign(¢@e page 2) is referred to as
the square error criterion (least square crite(ia) and in the latter, the absolute
error criterion (least moduli criterion {)).

Given K M-dimensional vectors, as cluster centroids, the algorithm updates
clustersS according to the Minimum distance rule: For eantitgi in the data
table, its distances to all centroids are calcdlated the entity is assigned to its
nearest centroid. Given cluste, centroidsc, are updated according to the
distanced in criterion (1) (see page 2), k=1, 2, ..., K. Sfieally, ¢ is calculated
as the vector of within-cluster averaged if (1) is Euclidean distance squared and
as of within-cluster medians if is Manhattan distance. This process is reiterated

until clustersS, stabilize. Before running the algorithm, the anggi data is to be



pre-processed (standardized) by subtracting thedgmeean from each feature and
further divided it by its range in our experimensattings, described on page 46.
This algorithm will be referred to as Straight ocatéh K-Means which will be
implemented in my research.

When the distance d in (1) is indeed the squaredidaan distance, K-Means
can be seen as an implementation of the alternafntignization procedure for
maximization of the maximum likelihood under theswsed mixture of
“spherical” Gaussian distributions model, in whiah covariance matrices are
equal to a diagonal matrix’l where | is the identity matrix anethe variance
value (Hartigan 1975, Banfield and Raftery 1993,LEtthlan and Peel 2000).
Another, somewhat lighter interpretation comes fitb data mining paradigm, in
which (1) is but the least-squares criterion fgoragimation of the data with a data
recovery clustering model (Mirkin 1990, 2005) tktdtes that every entyy, in the
data matrix i(denotes an entity anda feature), can be presented as approximated
by the “hidden” set of clustelS={S,, S,..., &} and their center€={c, C,..., C}

through equations

K
Yiv = Z CiwSik T €y )
k=1

wheres=(si) is S membership vector in which=1 if i €S ands,=0 otherwise,
and g, are residuals to be minimized over unknoenand s (k=1,2,...,K.
Criterion (1) (see page 2) is the least-squardgast-moduli fitting criterion for
model (2) (see page 3) dfin (1) is the squared Euclidean distance or Maahat
distance, respectively.

A version of K-Means in which the number of clustand initial centroids are

determined beforehand with a procedure targetingmafous patterns as the



candidates for the initial centroids has been megdadn Mirkin (2005) under the
title of “intelligent K-Means” (iK-Means). It iniallizes K-Means by standardizing
the data in such a way that the origin is put &fooint, usually the gravity centre
of all the data points, rescaling it by dividingetihange, and iterating then the

so-called Anomalous Pattern algorithm describettiénbox below:

Anomalous Pattern (AP):

1. Find an entity in, which is the farthest from the origin and puasgtthe
AP centroidc.

2. Calculate distanced(y;,,c) andd(y;,0) for eachi &I, and assigy, to the
AP clusterSif d(y; ¢)<d(y;,0).

3. Calculate the centroid of theSfound on step 2. i’ differs fromc, put
C’ asc, and go to step 2, otherwise go to step 4

4. OutputSand its centroid as the Anomalous Pattern.

The APalgorithm starts from that entity, which is thetifest from the origin,
as the initial centroid. After that, a one-cluster version of the gen&rivleans is
utilized. The current AP clust&is defined as the set of all those entities that a
closer toc than to the origin, and the next centragids defined as the center of
gravity of S This process is iterated until convergence. Thavergence is
guaranteed because the process alternates betvirgariaing the criterion (1) (see
page 2) at K=2 with5=S, S=I-S, and centroids,;=c andc,=0, and theorigin

which is kept unchanged through the iteratidr®e final S, along with its centroid



¢ and its contribution to the data scatter, is tlhpot AP cluster. After it is

removed from the data set, the process of extiaohiR clusters is reiterated
without ever changing the origin, until no entigmains. Centroids of those AP
clusters that have more than one entity are used s&t at the initialization of

K-Means.

This is a version of the so-called Principal clusémalysis approach that
emulates the one-by-one strategy of the Principatiponent analysis applied to
model (2) (see page 3): an AP pattern is a cluggved from model (2) (see page
3) atK=1 in such a way that it maximally contributes to ttea scatter (Mirkin
1990). The fact that AP cluster is far away frora drigin conforms to the notion
of interestingness in data mining: the farther frongin, the more interesting
(Fayyad et. al 1996). The iK-Means algorithm itexey applies the Anomalous
Pattern procedure to the yet un-clustered parhefdata until no entities remain
out of the anomalous patterns. Those of the anamafmtterns that are not
numerous, that is, singletons and, in general etndsose cardinality is less than or
equal to a pre-specified discarding threshDl@, are removed from the set of
anomalous patterns. (In our experimerdd,=1.) Those remaining are used to
initialize K-MeansK is the number of remaining APs, and their cengraige taken

to initialize K-Means. The algorithm is formulatedthe box.



Intelligent K-Means:

0. Putt=1 andl; =lI, the original entity set, and standardize the @atach
a way that the origin is put in the grand mean;féaure ranges are used
for scaling.

1. Apply AP tol;to find § andC..

2. If S#1;, putl, €S, t€t+1 and go to step 1, otherwise, proceed to 3.

3. Remove all of the found clusters whose cardinaityess than or equal
to the discarding thresholdT. Denote the number of remaining clustefs
by K and their centroids by, c,..., &.

4. Do Straight K-Means witly, ¢, ..., G as initial centroids.

The intelligent K-Means procedure seems appealioth bntuitively and
computationally, and it leads to interpretable 8ohs in real-world problems.
Therefore, it seems reasonable to put it to engliriesting. A version of the
method, with a pre-specified K and with no remasfasingletons, has been tested
by Steinley and Brusco (2007), leading to ratherdiome results in their
experiments. Here we intend to test the originakiea of the iK-Means as a
device for identifying both the number K and irlitantroids.

The distance and centroids in iIK-Means are defidiffdrently depending on
the criterion in the corresponding data recoverglehoSpecifically, with the least
squares (square error) criteria, the distance didaan squared and the cluster
centroid is defined by the within-cluster featurermges. With the absolute error

criterion, the distance is Manhattan, also refetreds city-block, and the cluster



centroid is defined by the within cluster featuredians.
The iK-Means algorithm has the following features:
(a) it uses just one run of the iterative AP alom over set |,
(b) it utilizes yet another parameter, the disaagdhreshold, which is taken to be
DT=1 in the follow-up experiments,
(c) it involves an automatic determination of btth K and initial centroids.

The main difficulty remaining among the clusteringethods is the
determination of the “right” number of clustersr(i@views, see Jain and Dubes
(1988), Dudoit and Fridlyand (2002), Mirkin (2005teinley (2006)). Ball and
Hall (1965) proposed an ISODATA algorithm. The altfon begins with a random
partition and centroids and any clusters that dohave enough observations are
discarded. Bischof et al. (1999) developed a mebas®d on minimum description
length (MDL). Starting from a large number of Kethlgorithm removes clusters
whenever the description length can be reducedaagdlustering algorithm, for
example, K-Means can be used at each step to aptithe model fit to the data.
The whole process is continued until it convergésthari and Pitts (1999)
proposed a scale-based method for determining timbar of clusters, which
modified the within-cluster summary distance totogds (see Eq (1) on page 2)
of traditional K-Means.

Some papers propose a procedure for estimatingutmder of clusters and
experimentally comparing it to some other methodd aome authors do more
comprehensive experiments and either arrive at semeing procedures, like
Milligan and Cooper (1985) in their seminal study80 indexes for cutting cluster

hierarchies, or obtain inconclusive results likedya(1996) and Dimitraidou et al.



(2002). Milligan and Cooper (1985) proposed a Mo@&rlo evaluation of the
performance of 30 numerous cluster numbers detatiom procedures when
applied to the analysis of artificial data setstaoring 2, 3, 4, or 5 distinct clusters
by four hierarchical clustering methods. MilligamdaCooper (1987) wrote a
clustering methodology review and gave the practéis in clustering some useful
recommendations not only in methods but also iniegmnalysis. Hardy (1996)
evaluates 7 methods over 6 different data setsaggests trying several clustering
techniques on the data and gathers more informabiatetermine the number of
clusters. Dimitraidou et al. (2002) present a camgpa of 15 different validity
indexes for the binary data sets consisting of, 4r$% clusters by two clustering
algorithms: K-Means and hard competitive learnibgf come to no definite
conclusions. Steinley and Henson (2005) pointedtloatt it is very important, in
experiments with simulated data, to maintain a elegif cluster overlap to be able
to derive any realistic conclusions, which was thet case in previously published
experimental studies. They propose a model for dateeration with overlapping
clusters, which however contains too many pararseterd can model only
one-dimensional overlaps. In a follow-up experimaénstudy of different
initialization strategies, Steinley and Brusco (20@ome to the conclusion that
cluster overlap is the property of generated datt tnost affects the cluster
recovery.

A promising clustering method, “intelligent” versiof K-Means, iK-Means,
which initializes K-Means with the so-called Anomas$ pattern (AP) clusters that
are furthest away from the origin of the featuracgp has been proposed and tested

on several real-world data by Mirkin (2005) andsthesearch is oriented towards



investigation of this method. The most importargstion is
(1) Whether iK-Means is good for finding the numbéclusters?
To answer this question, one needs to addressitbeiing issues:
la. Make a review of the literature and select methimadsfinding K
with which to compare
1b. Put a data generator that allows a comparison degtvmethods
along with addressing the issue of modelling therlap between
clusters
1c. Define evaluation criteria for the results of expmmts
1d. Conduct the experiments
le. Using the results of the experiments, find outnf amprovement of
iK-Means is possible at all
If the answer to question 1 is positive in geneea, we expect, we are
interested in
(2) further exploration of the relationship betwdenand L; versions of the
method. Specifically, we are interested to see:
2a. Do these methods give similar results on all datactires, or
could they lead to different results?
If the answer to 2a is that these methods givesdifft results, as we
expect, then we have a more specific issue:
2b. Whether these methods are oriented at differerd datictures?
That is, if there is a data structure type thdddager suitable for L
version and a data structure type that is morealsigit for L

version?



2c. Is it possible to utilise the differences betwela two iK-Means
methods in a concerted application of them to d-wead
problem?

Accordingly, the contents of the thesis is orgashiséong the lines of the
inquiry. The question 1 is treated in Chapter 2/¢ded to 1a), Chapter 3 (devoted
to 1a-1c) and Chapter 4 (devoted to 1d-1e). Ch&ptentains a review of methods
for finding the rightK in K-Means in the published literature. We distirs
between five approaches as based primarily onteslugariance, within-cluster
cohesion versus between-cluster separation, camsedistribution, hierarchical
clustering, and resampling. The setting of our erpents at the comparison of
nine selected methods for finding the “right cluistg” — the data sizes, the cluster
shapes, the within- and between-cluster spreadrgdeas, and evaluation criteria -
is described in Chapter 3. Chapter 4 presentstsestibur experiments in tables
containing the evaluation criteria values, averagest multiple data generations at
each of the twelve data settings, along with issaéesed before the experiments
and answers to them coming from the results. Quegtis treated in Chapter 5 (2a
and 2b) and 6 (2c). Finally the conclusion revid¢hes results and questions which

remain unanswered.
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Chapter 2

Choosing K in K-Means: A Review

There have been a number of different proposatkérliterature for choosing the
right K after multiple runs of K-Means (Halkidi edl. 2001, Maulik and
Bandyopadhyay 2002a, Kothari and Pitts 1999, Vesa&@01, Hansen and
Mladenovic 2001, Steinley 2006, Steinley and Bru2007, Likas et al. 2003,
Hand and Krzanowski 2005, Ray and Turi 1999, Sagar James 2003, Steinley
2004, Shen et. al 2005, Pena et al. 1999, PelldgMwore 2000, Mirkin 1996,
Mirkin 2005, Leisch 2006, Kuncheva, and Vetrov 20REzanowski and Lai 1985,
Kaufman and Rousseeuw 1985, Jain, and Dubes 198kyFand Raftery 2002,
Steinley 2003, Steinbach et. al 2000, Pena et.98P,1Babu and Murty 1993,
Thiesson et al. 1997, Khan and Ahmad 2004, He.€2044, Hamerly and Elkan
2002, Paterlini and Krink 2006, Redmond and Hene@@07, Jiwei 2001, Jain et.
al 1999, Breckenridge 1989 etc.). We can categotimam into five main
approaches:
A. Variance approach: comparing the within-cluster mamy distance to
centroids at differeri;
B. Within-cluster cohesion vs. between-cluster segaratomparing values
of another characteristic of the cluster structure;
C. Consensus approach: using on all random initizahztuns rather than
on just the best one to arrive at a “compromisédtgm;

D. Hierarchical approach: choosifgaccording to the results of a divisive

11



or agglomerative clustering procedure
E. Resampling approach: choosing according to the similarity of

clusterings generated on random samples or peduatdia

We describe them in the following subsections. ustdenote the minimum of
criterion (1) (see page 2) at a specifietdy Wy. Empirically, one can run K-Means
R times starting using random subsetsKoéntities for initialization and use the
minimum value of criterion (1) (see page 2) at olmd clusterings as &k

estimate.

2.1 Variance approach

There have been several differéin based indices proposed to estimate the
number of clustersK (see Calinski and Harabasz (1974), Hartigan (1975)
Krzhanowski and Lai (1985), Tibshirani et al. (2D0%ugar and James (2003)).
The issue is thaW itself cannot be used for the purpose since it otmme
decreases wheK grows. Thus, various “more sensitive” charactessbf the
function have been utilized based on intuitive tatistical modeling of the
situation. Of those, we choose the following fawo heuristic measures that have
been experimentally approved by Milligan and Cood®85): a heuristic rule by
Hartigan (Hartigan 1975), a Fisher-wise criterignCalinski & Harabasz (Calinski
and Harabasz 1974), and two model-based more réodekes: Gap Statistic

(Tibshirani et al. (2001)) and a statistical modaked Jump Statistic (Sugar and

12



James 2003), as a representative set. Before gitiméralgorithm, the original data
is to be normalized in our experiments.

The heuristic rule by Hartigan (Hartigan 1975)imé$ the intuition that when
clusters are well separated. “A crude rule of thynibartigan (1975, p. 91) is
proposed by calculatingdT=(Wi/Wk+1—1)(N-K-1), where N is the number of
entities, while increasini so that the very firsK at whichHT becomes less than
10 is taken as the estimate &f. Hartigan's rule can be considered a
partition-based analogue to the Duda and Hart (L&f&erion involving the ratio
of the criterion (1) (see page 2) at a cluster atnits two-cluster split, which came
very close second-best winner in the experimenidiltifan and Cooper (1985). It
should be noted that, in our experiments, the tmles10 in the rule is not very
sensitive to 10-20% changes.

The Fisher-wise criterion by Calinski and Harab@®74) findsK maximizing

CH=((T-WK)/(K-1))/(Wk/(N-K)), whereT=" > > yZ is the data scatter, that is, the

iel vev

sum of all entitiesy,, squared. The data scatter can be seen as the symma
contributions of all features, where the contribotpf feature v to the data scatter
is defined as the distance of the M-dimensionaumo from zero column:

TV=Zy§. The concept of the data scatter plays an impbortale in data

iel
standardization, which is explained in Section JHis criterion showed the best
performance in the experiments by Miligan and Gmogl1985), and was
subsequently utilized by some authors for choosiveg number of clusters (for

example, Casillas et al. 2003).

13



The Gap Statistic introduced by Tibshirani et @0Q1) has become rather
popular, especially, in the bioinformatics communithis method compares the
value of (1) with its expectation under the unifadistribution. Analogously to the
previously described methods, it takes a rang€ wdlues and find®V for eachK.

To model the reference values, a numBef uniform random reference datasets
over the range of the observed data are generatéthscriterion (1) (see page 2)
values Wy, for eachb=1,...,B are obtained. The Gap statistic is defined as

Gap(K)=1/BY_ log(Wks)-log(Wk). Then the averageK = 1/BY_ log(W;) and
b b

its standard deviatiorsd;[l/BZ (log(W)-GK)] *? are computed leading to
b

usdem. The estimate oK* is the smallesK such that Gap()=
GapK+1)- s+1 (Tibshirani et al. 2001).

The Jump Statistic (Sugar and James 2003) utilizescriterionW in (1)
extended according to the Gaussian distribution ehdgpecifically, the distance
between an entity and centroid in (1) is calculasdi(i, S)=(yi-CJ I (y-C),

wherel is the within cluster covariance matrikhe jump is defined adh M2 -

-M/2

Wik +™2 assuming thatWy™?=0 and M is the number of dimensions. The

maximum jump JS(K) corresponds to the right number of clusters. Tikis
supported with a mathematical derivation statirgg ththe data can be considered
a standard sample from a mixture of Gaussian bigidns at which distances
between centroids are great enough, then the maxijnmp would indeed occur

atK equal to the number of Gaussian components imikure (Sugar and James

2003).
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Hartigan (HT):

- calculateHT=(Wi/Wk+1 -1)(N-K-1), where N is the number of entities

- increaseK fromK=2 and pick the very firdk at whichHT becomes less
than 10 (The threshold 10 here is “a crude rulhomb” Hartigan (1975),
p. 91, based on the intuition thakifis less than the “right number” of
clusters, then &@1)-cluster partition should be equal to a K-cluster

partition with one of its clusters split in two.)

Calinski and Harabasz (CH):

- calculateCH=((T-WK)/(K-1))/(W/(N-K)), whereT= > >" y2 is the data

iel vev

scatter

- find theK which maximise<CH

Jump Statistic (JS)

for each integek, clusteringS={S,,S,...,&}, and centroid€={c,,c,,... &}

for each &l andk=1,2, ...,K calculated(i, S)=(yi-C) T *(yi-CJ), wherel  is

the within cluster covariance matrix

select a transformation power, typicaily2, where M is the number of

dimension

calculate the jumpdS= W™? - W, ™2 assuming thaiVy

M/ZEO

find theK that maximisegS
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Gap Statistic (GS)

Cluster the observed data and obtafnfor eachK

GeneratdB uniform random reference datasets over the rahtfeo
observed data and obtainé{ for each datasets, whéel,2,...,K

- Compute the estimated Gap statis@ap(k)zlle log(Wky)-log (W)
b

LetGKzllBZ log(Wy), compute the standard deviation
b

sd=[1/B ) (log(We)-GKY]"? and defines=sdv1+1/B
b

Find the smallest K such that GEpE GapK+1)-Sc1

2.2 Within-cluster cohesion vs. between-cluster
separation

A number of approaches utilize indexes comparinthinicluster distances with

between cluster distances: the grater the differ¢he better the fit; many of them
are mentioned in Milligan and Cooper (1985). The@eariments and indices in
Milligan and Cooper (1985) have been widely apptiedlifferent research fields,
for example, bioinformatics. Some of the indiceg apecifically suitable for

hierarchical clustering, for example, Mojena’s upaa rule (Mojena 1977), Duda
and Hart’s (Duda and Hart 1973) error ratio testim@a index (Baker and Hubert
1975), etc and these are described in Section Sofe of those indices are
distribution or likelihood based, for example, aublustering criterion, likelihood

ratio, etc, which are beyond the scope of thisisheghich is confined to K-Means

related methods only.

16



The rest of them will be described briefly in tha@ldwing paragraphs. A
modified version of the Gamma index is so calle¢t{sindex, and the formula is
(2#8)/(ng(ng-1)), where S- is the number of times that a pair ditiea not in the
same cluster had a smaller separation than ahzimtere in the same cluster and
ng is the number of within cluster distances. Theimiim G (+) index indicates

the number of cluster in the data. Davis and Bou{diP79) proposed an index, that

: 1& o +a; . -
|S,DB:EZmaXW), where o; and ¢; is the average within cluster
i=1 C"Cl

distance of cluster i and j and the denominatdhésdistance between centroids ¢
and ¢. The minimum value oDB indicates the number of clusters. This index has
been widely used in some application, for examaléjoinformatics toolbox for
microarray data analysis (Bolshakova et al. 20@xperimental comparison in
color image segmentation (Ray and Turi 1999), le&trove (2006) compared the
Silhouette Width index with the Davis-Bouldin indard the clustering results of
the Silhouette Width index is more accurate thaDRavis-Bouldin index although
the Davis-Bouldin index is more computational efa.

Another within and between cluster related indegrizposed by McClain and
Rao (1975), that is, the ratio of the average wittluster distance divided by the
number of within cluster distances over the averbgiveen cluster distances
divided by the number of between cluster distand&® minimum of the index
indicates the number of clusters. The McClain aad Rdex shows an extremely
good result in Milligan and Cooper (1985). Dunrt974) index, which is based on
the idea of classifying well-separated data, isinduded in Milligan and Cooper

(1985) but has been widely compared in some pulitsiand applied on several
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different fields, for example, image analysis inyRad Turi (1999), and Boutin F.
and Hascoét M. (2004), gene expression data amdlydBolshakova and Azuaje
(2003). This index is the ratio of the minimum @&tluster distance (distance
between two objects from different clusters) ovke tmaximum inter-cluster
distance (distance between two objects from theesauasters) within the range of
0 tow. The maximum value of this index indicates the hanof clusters.

Two of those indexes in Milligan and Cooper (1988 (a) the point-biserial
correlation, that is, the correlation coefficiemtWween the entity-to-entity distance
matrix and the binary partition matrix assigninglegair of the entities 1, if they
belong to the same cluster and 0 otherwise, th@DisDmin)/(DmaxDmin), WhereDy
is the sum of the within cluster dissimilarity farpartition and,.x and Dy, are
the maximum and minimum dd, respectively and (b) its ordinal version, the C
index proposed by Hubert and Levin (1976). Theseitwdlexes show a very good
performance in Milligan and Cooper’s tests. Thiswhver, perhaps can be an
artifact of the very special type of cluster stunetutilized by Milligan and Cooper
(1985): almost equal sizes of the generated chisteideed, a mathematical
investigation described in Mirkin (1996, pp. 25472%5hows that the point-biserial
correlation expresses the so-called “uniform gartihg” criterion, which tends to
produce equal-sized clusters.

There are several other recent publications usiagndexes relating to within-
and between-cluster distance, for example, RayTamnid(1999) proposed a simple
validity index, which is the ratio of the averagedistances between an item and
its cluster centroid over the minimum of the diserbetween the item to other

clusters to obtain the optimal number of clusterscolour image segmentation
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application and the clustering which gives a mimmuwalue for the validity

measure will tell us what the ideal number of @dustis. A more recent effort is
described in Shen et al. (2005), which proposegnamiic validity index based on
the validity index proposed by Ray and Turi (19883 Dunn index (Dunn 1974)
so that the distance between an item to its clustatroid is minimized and the
distance between the item to others clusters isimaed. The dynamic validity
index is incorporated into K-Means algorithm forcnoiarray data clustering. Bel

Mufti et al. (2005) used Loevinger's measure foe ttluster stability, that is,
n'(n'-1)m,. ,

A XT)=1- 2n,(n'—n,)m,.

, WhereA is a cluster in a partitiorx’ is a sample

of original datan’ is the sample sizep, is the cluster size of cluster ANy ., IS

the number of entities of the samples that areher dame clusterm,. is the
number of entities of the original data that argha same clusters. The stability
measure is the average of the sum of Loevingerasome over a large number of
samples.

A well-balanced coefficient, the Silhouette Widtliéx, which has shown good
performance in experiments (Pollard and van deml2@02), was proposed by
Kaufman and Rousseeuw (1990). The concept of sft@uvidth involves the
difference between the within-cluster tightness separation from the rest. First,
the silhouette width is calculated for each entityen the average silhouette width
for each cluster and then the overall average sdtie width for the total clustering.

Specifically, the silhouette widi(i) for entityi €l is defined as:

b(i) - a(i)

0= haxa(), b()

©)

wherea(i) is the average dissimilarity betweieand all other entities of the cluster
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to whichi belongs andb(i) is the minimum of the average dissimilarities bedni
and all the entities in other clusters. The silttmugvidth values lie in the range
from -1 to 1. If the silhouette width value is @o® 1, it means that the set | is
well clustered. If the silhouette width value for entity is about zero, it means that
that the entity could be assigned to another dletewell. If the silhouette width
value is close to —1, it means that the entityischassified.

The largest overall average silhouette width indisathe best number of
clusters. Therefore, the number of clusters with thaximum overall average
silhouette width is taken as the optimal numbethef clusters. The usage of this

index is described in the box below.

Silhouette width (SW)

GivenK, take the best clustering of tRauns. For eachel:

- calculatea(i) = the average dissimilarity between i and all o#dities of the
cluster to which i belong(i) = the minimum of the average dissimilarity
between i and all the entities in other clustens, i) according to (2).

- calculateSW=average s(i)

- find theK that maximize SW

2.3 Consensus approach

The consensus approach relies on the entire sall & clusterings produced at
multiple runs of K-Means, givel, rather than just the best of them. The intuition

is that the clusterings should be more similaraoheother at the righ€. Thus, a
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measure of similarity between clusterings shouldnbeduced and utilized. We
consider two such measures. One is the Conserstuidulion area introduced by
Monti et al. (2003). To define the latter, the camsus matrix is calculated first.
The consensus matr@® is anN XN matrix whosgi,j)-th entry is the proportion
of those clustering runs in which the entitigel are in the same cluster. An ideal
situation is when the matrix contains 0's and Iifyothis is the case when all the
R runs lead to the same clustering. The cumulatistiloution function (CDF) of
entries in the consensus matrix is defined as usual

SUCY (G, )) < X

CDF(x)= - (4)
N(N-1)/2

where 1{cond} denotes the indicator function ttetqual to 1 when cond is true,
and 0 otherwise. The area under the CDF correspgrdiC(K) is calculated using

the conventional formula:

A(K)= (xi-xi.1) CDF(x) (5)

m
i=2
where set {x1,x2,...,xm} is the sorted set of entoé£(K).

We suggest that the average distance between plagtiRons can be utilized as

R
another criterion: the smaller, the better. Thigads avdis(K)zé Z M(S",S"),

u,w=1

where distance M is defined as squared Euclideatartie between binary
matrices of partitions ‘Sand 8. A binary partition matrix is an entity-to-entity
similarity matrix; its (i,j)-th entry is 1 if i ang belong to the same cluster, and 0,
otherwise, so that consensus matrix C(K) is theamee of all R binary partition

matrices. Denote the mean and the variance of x&K) by px and oy’
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respectively. Then the average distance can beegsgd as avdis(K)m*(1— )

— ox?, which also shows how close C(K) is to being bnar

The average distance avdls(K}—— ZM (8,8 = = Z Z(S, S)°.

u,w=1 uw=li,jel

This can be rewritten as avdls(K)-— Z ZS +§"-2§'S". A measure was

i,jeluw=l

suggested in Monti et al. (2003) based on the geepartition matrix which is an

8 t
2.S
entity-to-entity similarity matrix defined b;y(i,j)=ﬁ, where 5is the binary
]
relation matrix corresponding td 8nd &0, otherwise, with R*(i,j) denoting the
number of partitions 'Sat which both i and j are present. Therefore, Wiaio

avdis(K)=

Z(Zﬂ(' J)/R+Zﬂ(l DIR=2u(, uGi, 1) = 2D (uliy i)~ G, 1)°) -

ijel w=1 i,jel

The proof follows then from the definition of thariance of the matrix, g.e.d.
To estimate “the right number of clusters”, thatiee change of the indexes is

utilized. Specifically, the relative change in tBBF area in (4) is defined as

A(K), K=1
AKK+1)=4 A(K +1) — A(K) K> (6)
A(K) o

ThenK which maximises!(K) is determined. The average distance based index is
defined similarly except that it increases rathantdecreases with the growthikof

so thatDD(K)=(avdis(K) - avdis(K+1))/avdis(K+1) The number of clusters is
decided by the maximum value DD(K).

Corresponding algorithms are presented in the blogkesv.
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Consensus Distribution Area (CD):
For each K in its range:
For di=1: R
- calculate the connectivity matrd® whereM®(i,j)=1 if i and |
belong to the same cluster, and 0, otherwise
end di

- calculate the consensus mam%)(i,j)zz M@ @G, /R
di

- determine the cumulative distribution fuaotCDF(x) (3) and the
areaA(K) in (4)

- calculated(K+1) (5)

- find K maximizing4(K)

Average distance between partitions (DD)

- For eaclK, calculate the mean and variance’ of the consensus matri
C(K)

- Computeavdis(K)=ux * (1- ux) - ok’

- DD(K)=(avdis(K)-avdis(K+1))/avdis(K+1)

- Find K maximizingDD(K)

A slightly different approach relating the averatistance/Rand measure and
the entropy of the consensus distribution on real artificial data sets has been

utilized by Kuncheva and Vetrov (2005).

2.4 Hierarchical approach

A number of approaches rely on the hierarchy okteling solutions found by
consecutive merging of smaller clusters into laees (agglomerative clustering)
or by splitting larger clusters into smaller onediviSive clustering). Some

approaches are based on the distribution of theevaf criterion function, where
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the criterion function, for example, could be thatio of the within-cluster
similarity over the between-cluster similarity iredersen and Kulkarni (2006).
Mojena’s upper tail rule (Mojena 1977) is one df thell-known criterion function
distribution based indexes, which i,;>p,+co,, wherep,andg, is the mean and
standard deviation of the distribution of clustgruriterion value. It finds the first
biggest jump of the series of the clustering datewvalues as the number of cluster,
which is in the upper tail of the clustering criter value distribution for
hierarchical agglomerative clustering. If no sucimber can be found then there is
only one cluster. This index shows the best perdfore in the experiments of
Milligan and Cooper (1985).

However, more indices are focused on the withinlaetsveen cluster distances,
for example, the widely implemented Ward's methdéhd 1963), Gamma index
(Baker and Hubert 1975), error ratio index (Dudd Blart 1973), etc. Many papers
have shown that Ward’'s method outperforms othedeuthe condition of less
outliers and cluster overlaps (Aldenderfer and Bietd 1984). Ward’'s method
(Ward 1963) minimizes the summary within clustestaince of two clusters that
formed at each merging step, the so-called Warthmie. Each of the merged
clusters is the smallest increase of the totalimitfuster summary distance to the
merged centroids and it tends to find smaller nunatbelusters (Hair et al. 1995).
The above mentioned Ward method is for agglomezdtierarchical clustering,
and for the divisive clustering, one needs to fthd maximum Ward distance
because of the nature of divisive clustering, iBato build the cluster structure
from the entire data, top to bottom. A specific Kedhs atk=2 clustering can

combine with the Ward divisive clustering methodl dhe combined method, and
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has been named as bisecting K-Means (Steinbadh26QD). It has been tested on
document clustering, suggesting that the bisectialyleans outperforms the
Straight K-Means and agglomerative hierarchicalhmés because of the features
of documents.

Another widely used index for hierarchical clustegris Gamma index (Baker

and Hubert 1975), and the formula—zé%, whereS, is the number of times
+9o

+

that a pair of entities not in the same cluster &d&arger separation than a pair that
were in the same cluster ai®l represents the reverse outcome. The maximum
Gamma index indicates the best partition. Thisugeqgsimilar to the structural
approach -- silhouette width (Kaufman and Rousse#880). The difference is
that the Gamma index is only for hierarchical a@usiy because this index is
defined for the tree diagram, also termed dendrogiauda and Hart's error ratio
(2973), that is,Je(2)/Je(1) where Je(2) is the sum of squared within cluster
distance when data split into two clusters dafll)is the summary within cluster
distance if only one cluster is present. It evadadhe cluster and its subcluster by
taking the ratio of the summary Euclidean distaiactie cluster centroids over the
summary Euclidean distance to the subcluster delstemd a pre-defined threshold
is computed from the standard normal distributibhis index showed very good
performance in the experiments proposed by Milligad Cooper (1985) and can
be applied to agglomerative or divisive clusteningthods.

Frey and Van Groenewoud (1972) proposed an intiex,it, the ratio between
the differences between the between cluster distamnd mean within cluster
distances from two sub-clusters in a hierarchy. Fdry lastK at which the index

becomes above 1 is taken as the estimake ofr here is only one cluster when no
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index is below 1. In the experiments of Milliganda@ooper (1985), this index
tends to find too many clusters.

More recently, a more advanced statistical indexchoosing K, the Bayesian
information criterion (BIC), is utilized typicalljor model selection. It is based on
the posterior probability rather than the distamseasures and requires three
parameters: log likelihood of the data model (Ii) (bhumber of parameters in the
data model (p) and number of entities (n) and ¢mmdila isBIC=-2In (L) + p In
(n). Pelleg and Moore (2000) included the Bayesiaarmation criterion (BIC) to
their X-means algorithm to determine the numberclolsters using a divisive
approach. The X-means algorithm is as follows: comventional K-Means as
initialization, then for each cluster, its BIC seds computed, the partition of the
highest BIC score is kept, and the algorithm stapen reaches a pre-specified
threshold. They tested conventional K-Means and e&ms on both real and
synthetic data and found that X-means outperforotsonly on performance but
also on computational time. An extended versionXafeans is proposed by
Ishioka (2005). The author modified the divisivegedures and the results have
shown the later version is better. The modificatiocludes a 2-means divisive
method, that is, non-recursive divisive functiomplied to one of the two clusters
after each division, that is, to divide one clustetil no further cluster can be
found and then deal with another. This will savefilmction call time if the loop of
division is deep.

Feng and Hamerly (2006) also proposed a 2-meansiwéivmethod, named
PG-means (PG stands for projected Gaussian), to tha number of clusters in

data. This method randomly projects the data andeinm one dimension, test the

26



goodness for each model and a model is selectitchifs been accepted by two
tests shown in the paper. They compare PG-mearis thiee other methods,

including X-means, and the experimental result®@fmeans are better than the
other methods.

Some authors propose versions involving severdinigoes simultaneously.
Casillas et al. (2003) utilize Minimum Spanning dr@ST) with a genetic
algorithm using a rather arbitrary stopping corditito arrive at a number of
clusters. They compare the Calinski & Harabasz ptap rule (Calinski and
Harabasz 1974) and the genetic algorithm on a dentigontaining 14,000 news
items and claim that if the real number of clusterglose to 2, the Calinski &
Harabasz stopping rule (Calinski and Harabasz 19eéfforms better than the
genetic algorithm, and otherwise, the genetic algoris better. Chae et al. (2006)
proposed a method which applied six different ag@lative clustering algorithms
and four different validity measures for comparthg partitions to the generated
data and five of the six methods to real-world deden a beer consumer report in
USA. The number of clusters at which these partg#iare most similar is selected.
This approach obviously can be counted as belongirige consensus framework

because they are based on the similarity measutwapartitions.

2.5 Resampling approach

Resampling means using many randomly generateg@sgpithe data for assessing
statistical properties of a utilized method (sew, ihstance, Mirkin 2005). This

approach can be grouped into 4 main types: (a)orarglib-samples of the data set;
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(b) random splits of the data set into “traininghda“testing” subsets, (c)
bootstrapping, that is, randomly sampling entitié$ replacement, usually to their
original numbers, and (d) adding random noise ¢od#ta entries. The intuition is
that different random copies lead to more simiksuits at the right number of
clusters, for example, Levine and Domany (2001)] Brfti et al. (2005),

Minaei-Bidgoli et al. (2004) for type (a), Dudoihé Fridland (2002) for type (b),
McLachlan and Khan (2004) and Wishart (2004) fopety(c), and Kerr and
Churchill (2001) and Mdller and Radke (2006) faoey(d). Each type is explained

briefly in the remainder of the section.

(a) Subsampling

Levine and Domany (2001) proposed a resamplingguha® based on the
consensus matrix, which is described in Section Ph& samples are obtained by
selecting fN size of the original data randomlyenhf is named as dilution factor
between 0 and 1 and N is the total number of estith clustering algorithm with
pre-specified parameters is applied to those saaid the consensus matrices of
these partitions are calculated. By comparing thesesensus matrices with the
consensus matrix of the original data, a figurenefit measure is calculated. The
parameters of the clustering algorithm are themgbd and the whole process run
again until the local maximum of the measure isnthuOnce the optimal
parameters of the clustering algorithm are fouhd,dtable partition is found. Bel
Mufti et al. (2005) named the similar sampling paere proportionate stratified
sampling, which selects the number of elements aiahyd without replacement

proportional to the number of elements in eachtetusf partition obtained from
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the original data. This proportion has to be chdsetween 0.7 and 0.9 based on
experimental analysis. If all partitions obtainednh these samples are close in
structure to the partition of the original datah® partition P is claimed as stable.
For eachK, the Loevinger’s measure is calculated and theimmax of these
indices is taken as the number of the clusters.

Minaei-Bidgoli et al. (2004) proposed a clustergrgsemble algorithm, which
generates subsamples of the data and obtainsigregtiby running K-Means
clustering algorithm on each of the subsamplese& partition of the original data
is to combine the partition of each subsample abttie entities in the partition of
the original data are more similar in same clustieas in different clusters and in
order to achieve this, one needs to calculate dmsensus matrix, that is, the
similarity measure between entities. Monti et 2D(3) also use the subsampling
procedure to resample the data, but the way thgiraa the partitions is via the
consensus distribution area, described in Secti®nThe subsample size proposed
in Minaei-Bidgoli et al. (2004) is within an intealutilized by the total number of
entities and Monti et al. (2003) generate the sarfmeim 80% of the original data.
The authors of both publications compare bootstrapand subsampling methods
and both methods show similar results but prefdrsampling because of the
computer complexity and the possibility of the fesnflation of bootstrapping.
Mitra et al. (2002) proposed a density-based msdttale data condensation
(DBMSDC) algorithm for data subsampling based aemsity criterion. Instead of
a rather arbitrary subsampling size, this subsamgplalgorithm is to first
pre-specifyK, and then calculates the distance of each entitheooriginal data

using K-nearest neighbor method. The next two séepsterated until the original
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data set is empty: select the entities that hagddwest distance and remove the
entities in the original data sets that lie witlsindisc of radius of two times of
centroids of the selected entities. This algorigdong with six other subsampling
methods including random sampling has been testedsame well-known
real-world data and it has been found that thisamipling method is superior to
others. Some publications use subsampling as &alimation of the clustering
algorithm, for example, the mixture likelihood apach proposed by Rocke and
Dai (2003) and others use subsampling for idemtifythe tight and stable clusters

in data, for example, a sequential approach prapbgdseng and Wong (2003).

(b) Random splitting

Dudoit and Fridland (2002) proposed a popular ptaoe named Clest,
following the pioneering work by Breckenridge (1989his method has been
tested on both the generated data and four mieypatatasets. For eadh a
number B of the following operations is performed: the det split into
non-overlapping training and testing sets, afteictvithe training part is partitioned
into K parts; then a classifier is trained on the trajréet clusters and applied for
predicting clusters on the testing set entitieee Plredicted partition of the testing
set is compared with that found, with the same gulace, on the testing set. The
result of theseB iterations is the median value t(K) of the indexsamilarity
measure between two partitions of the testingthat, predicted from the training
set and that found directly. The reason for usireglian instead of mean is not
stated in Dudoit and Fridland (2002): probably hseathe median is more robust

in the presence of outliers than the mean. Aftat thnumber of data sets of the
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same size is generated randomly and the same pmecagplies to each of them
producing the average value of the ind4K) under the null hypothesis. The
estimatedK is that maximizing the differencéK)-t'(K) under some additional
conditions. This procedure, as well as other resampschemes, involves a
number of important parameters such as the typtassifier (taken to be the linear
discriminant analysis with the diagonal covarianearix in Dudoit and Fridlyand
2002), the training-testing split proportion (takenbe 2:1), numbers of iterations
and reference sets generated (taken to be 2ahréehold orK values (taken to be
5 or 10), the similarity between partitions indek;. On the same data generating
mechanisms, the approach was outperformed by alrbaded statistic as reported

by McLachlan and Khan (2004).

(c) Bootstrapping

Bootstrapping is one of the most popular resampdipgroaches in machine
learning. One of its advantages is that the nurobéems of generated samples is
the same as the original data. The identical rafdtt samples are generated
times by replacement from the original data, so ¢hestering algorithm might
claim thosen entities as a cluster, which are actuallseplicates of the same item.
Some authors prefer other resampling approachselgampling, for determining
the number of clusters. The bootstrapping methapgsed by MclLachlan and
Khan (2004) is to generate samples under the nppibthesis ofK; clusters from
the parametric mixture model with unknown parangeteplaced by its maximum
log-likelihood (og L) estimate from the original data. The hypothesisisH:

K=K, vs. the alternative hypothedity: K=K, (K;>K,). The likelihood ratio test
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statistic-2 log 4 is computed for each sample after fitting the migtmodel fork;
andK; clusters and this process is iterated severaktiifiee number of clusters is
determined whether the number of clusters is tHehypothesis or not. Wishart
(2005) proposed a bootstrap validation method whkmimpares dendrogram, and
searches for the partition that manifests the gstatepartures from randomness.
The dendrogram obtained from the original datammgared with the dendrograms
obtained from the sampling data in order to finé thiggest departures from

randomness.

(d) Adding noise to the data

Kerr and Churchill (2001) proposed a sampling meéthabmbining the
bootstrapping and adding noise. They first fit tteta to a linear model, found
parameters and residue, and then obtained thetlzgmgg data by randomly
sampling with replacement among those parametadsresidue using the same
linear model. This sampling method is applied toegexpression data and the
clustering method they apply is based on corredatizetween genes, that is, data
with high correlations form clusters. A comparisofi resampling methods is
proposed by Méller and Radke (2006), which appé/ghbsampling, bootstrapping
and adding noise on three gene expression datdoandvell-known real-world
data and found the adding noise resampling methagedorms others. The
subsampling rate taken as 80%, within the rangée-90%, of the original data,
coincides with other published subsampling ratesekample, Monti et al. 2003.
They add 1%, 5%, and 10% of the original data $tt the same size to be noise

and found 10% is the best rate among three expetaihg
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In general, the procedure of the resampling apprémas follows: generating
copies related to the original data, running aalé algorithm, for example,
K-Means, evaluating and merging the clusteringlteftom the original data and
copies. The clustering algorithm is done in the esavay as it was on the original
data, except for the case of random splitting, thathe algorithm is only applied
to the training sets. This difference is appliedhe evaluation procedure, that is,
the patrtition of the training sets are comparedh whie testing sets while others are
compared with the original data.

Most of the publications use similarity measure ctumpare the partition
obtained from the original data and copies, forneple, the subsampling case in
Minaei-Bidgoli et al. (2004), but the similarity mmsure is specifically suitable for
the splitting case because the two partitions obthifrom the testing set, that
predicted from the training set and that found aliyeby applying algorithm is
closer the better. For other copies-generatingscazge can use any validation
index, for example, the Rand index, described ictiSe 3.4. McLachlan and Khan
(2004) and Wishart (2004) both use test statigiicefvaluating the performance

between the original data and copies and Levine @aohany (2001) choose

K J
22 Ng-N
average overlap index for evaluation, thatﬁ%, whereNy; is the

co-occurant counts in a confusion table describe8dction 3.4 andll is the total
number of entities.

The widely applied method to merge the partitiosutes of the original data
and copies is to average the evaluation resultsefmh copy and the average

evaluated result can be taken as a result of gwitdm (Diday 1971, Diday et al.
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1979). Therefore, one can select the best algoritheed on the testing results of
algorithms, for example, the method proposed byineevand Domany (2001).
However, Levine and Domany (2001) use the testiegult for selecting the
parameters within the same algorithm, for examible,number of clusters. Other
ways of merging the results is to average and coentiie mode if the models
have same and different formats respectively. df, éxample, the hierarchical
cluster structures have the same format, thesebeaaveraged into a similar
structure with the clusters that are found in nafsthe structures (Margush and
McMorris 1981). If these structures have differfartnats, one can combine these

structures to make a joint structure.

2.6 Summary

K-Means is arguably the most intuitive, computagihn easy and the most
commonly used clustering method and this is whyl\shg its properties is of
interest not only to the classification, data meimnd machine learning
communities, but also to the increasing numbergpraftitioners in marketing
research, bioinformatics, customer managementneagng and other application
areas. Five different approaches to estimatingrigbt” number of cluster&* in
K-Means are described in this chapter. Clearlyfedint clustering methods and
criterion for choosing K can suggest different tesswhen applied to the same data
sets. The best way for determining the number oftels is to use several
clustering techniques and to analyse all the resulbrder to have a clearer picture

of the data.
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Chapter 3

Experiment Setting for Comparison of
Methods for Choosing K

The data for experimental comparisons can be téken real-world applications
or generated artificially. In the published litenas, several clustering experiments
conducted over real-world data sets only, for eXampasillas et al. (2003) apply
the document clustering on a Spanish newspaper W00 news items,
Minael-Bidgoli et al (2005) apply the resamplingthed on five famous datasets,
such as Iris, Wine, and etc, Shen et al. (2005)yape dynamic validity index on
the microarray data, and etc. More publications/ dotus on generated data, for
instance, Hand and Krzhanowski (2005), Hardy (20@8)ioka (2005), Milligan
and Cooper (1985), Steinley and Brusco (2007), e&tod Some publications use
both the generated data and the real-world datagxample, Chae et al. 2006,
Dudoit and Fridland (2002), Feng and Hamerly (200&)ncheva and Vetrov
(2005), Maulik and Bandyopadhyay (2000) etc. For &iMeans clustering
experiments, we consider generated data only)daw als to control the parameters
of the experiments. Having the set of parameteunesmlspecified, we generate a
number of datasets so that the results reportelefuon are averaged over these
datasets. Initially we generated 20 random datdeetsach parameter setting (as
did Dudoit and Fridlyand 2002) — these are refl@dteTables 4.1 and 4.2, but then
for the sake of time, we reduced the number of ge¢ed datasets to 10 (in Tables

4.3, 4.4 and 4.5). The following issues are to keidkd upon before a data

35



generator is set:

(A) Data sizes,

(B) Cluster sizes,

(C) Cluster shapes,

(D) Cluster intermix, and
(E) Data standardization.

These are described in Section 3.1.

3.1 Modelling cluster structure

A. Data sizes.First of all, the quantitative parameters of tlenerated data and
cluster structure are specified: the number oftiestN, the number of generated
clustersK*, and the number of variabl&4. In most publications, these are kept
relatively small:N ranges from about 50 to 204@,is in many cases 2 and, anyway,
not greater than 10, at is of the order of 3, 4 or 5 (see, for examplesils et
al. 2003, Chae et al. 2006, Hand and KrzanowskbzbB@rdy 1996, Kuncheva and
Petrov 2005, McLachlan and Khan 2004, Milligan &wbper 1985). Larger sizes
appear in Feng and Hamerly (2006)=(4000,M is up to 16 andk*=20) and
Steinley and Brusco (2007 (s up to 5000M=25, 50 and 125, ari¢* =5, 10, 20).
Our choice of these parameters is based on thehdéshe data should imitate the
conditions of real-world data analysis, under tlming constraints of the
computational capacity. That means tihashould be in thousands while limiting
M within one or two dozens, to mimic the situationwhich the data analysts

select only features relevant to the problem athatall” data table cases) rather
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than using all features or key words available ¢&tidata table case); the latter
should be treated in a different experiment. Anotbensideration taken into
account is that, according to our real-world cluetg experiences, it is not the
absolute values d#l andK* but rather their ratios, the average cluster sites
affect the clustering results. As the major foctisur experiment is the effects of
within and between cluster spreads on the clugfegaults, we decided to keep the
ratio restricted, while maintaining two rather st values ofK*. Therefore, two
settings for the sizes are: (i)=1000,M=15,K*=7 and 9 — about 110 entities in a
cluster on average, and (N=3000,M=20,K*=21 — about 145 entities in a cluster
on average. These are obviously at the upper ertieokizes in the published
reports (Casillas et al. 2003, Chae et al. 2006dHmnd Krzanowski 2005, Hardy
1996, Kuncheva and Petrov 2005, MclLachlan and Kga@é4, Milligan and
Cooper 1985).

It is probably worth mentioning that we do not ddes the so-called irrelevant,
or noisy, features: The presence of features e hothing to do with the cluster
structure was considered by Milligan and Cooper8§)9 see also Dudoit and
Fridlyand (2002) and Kuncheva and Vetrova (2005Mé&ans partitioning can be
and has been applied when no visible cluster sireas present, just to dissect the
domain into manageable chunks as advocated by $p88) among the others and
a similar goal has been pursued by the so-calletoveuantization (VQ) and
learning vector quantization (LVQ) (Lloyd 1982 aRdllard 1982), the concepts
that, basically, resemble the cluster centroidKiMeans. The issue of noisy

features, in this perspective, deserves a sepewatederation.
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B. Cluster sizesThe term “size” is ambiguous in the clustering eatitbecause it
may refer to both the number of entities and spatiume taken by a cluster. We
use it here for the number only, in accordance wulith practice of Computer
Sciences, while utilizing the term “spread” for theometric size. (Steinley and
Brusco 2007 term the cluster size as the “clustesity” — we prefer to utilize this
regarding a probabilistic density function.) Th#etence in cluster sizes can affect
the outcome of a clustering process if it is driien a criterion, such as the
point-biserial correlation, that depends on them mon-linear way. As mentioned
in section 3.2, this may have affected some of exy@ntal results in Milligan and
Cooper (1985) because of the relatively equal etusizes utilized by them.
However, criterion (1) (see page 2) always involtbe same numbeN of
distances, whichever cluster sizes these are,atcchinster sizes should not much
matter. Steinley and Brusco (2007), who maintaitteee different patterns for
cluster size distributions, report no differenaeghieir results regarding the patterns.
Therefore, we decided to disregard this aspecthef ¢luster structure: our
generated clusters have uniformly random sizeiligtons. To generate a random
distribution of the cluster size proportiops(ps,...,[x+) under the condition that
elements op are positive and sum up to 1, one can randomlgrgeak*-1 real
numbergy, 1y, ... k1 in the interval (0,1), sort them in the ascendinder so that
ri< r< ...< rge1, Setre=0 andry =1, after which the uniformly random

proportions are computed ps= r- 1 (k=1,...,K¥).

C. Cluster shapes. This property is not typically taken into accoasta variable

to control, because K-Means is conventionally seem method for fitting the
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Gaussian mixture model with spherical Gaussiansd-this, in fact, is a property
which is directly associated with the Minimum dista rule. However, in
real-world applications clusters may have more dem@nd elongated shapes,
which can be, to an extent, be caught by the ellifad shape of the Gaussian
clusters (see also McLachlan and Khan 2004, p. BBus, we generate data
entities in each cluster by independently sampfiogn a Gaussian distribution.
We take the conventional spherical shape of Gausdisters versus another one,
much more elongated. Since the number of parameteesled to define the
covariance matrix of a Gaussian distribution ikumdreds for our size settings, we
utilize a version of the covariance matrix defirveith a smaller number of control
variables in a MatLab toolbox NetLab (see Genenatid Gaussian mixture
distributed data 2006). According to the so-call®dobabilistic Principal
Component Analysis (PPCA) model (Tipping and Bishb@99), the MxM
covariance matrix of a Gaussian distribution irs imolbox is defined by selecting

the hidden dimensiog as:

Cov(E)=Wg*W, + 0%l yxu (7)
Wherqu:( ¥ J Inxn IS @nnxn identity matrix, andl,x, a nxM matrix
(M-a)xq
whose all entries are equal to 1. The PPCA modw with the manifest number of

featuresM and the hidden dimensioq. The hidden factor structure is also

advocated in Maclachlan and Peel (2000).
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I
It is easy to show thﬁlov(O):( & Lou-a)

. Obviously, the
]TM -a)xq ql(M -a)x(M-q) J

eigen-values ofov() are the same as those@iv(0)with ¢° added to each;
the eigen vectors are the same as well.

The structure of eigenvalues Gbv(0) has been investigated by Wasito and
Mirkin (2006) who found that, ofj nonzero eigenvalues, the maximal one is
A=1+(M-q)q whereas all the othey-1 eigen-values are equal to unity. In order to
prove the eigenvalues @fov(0) let us consider an M-dimensional veckan the
form x=(Xq, Xu-q) Wherex, andxy-q denote subvectors withandM—-q components,
respectively. Also denote the sum of elements, by a and the sum of elements of
Xw-q Dy b. Obviously, to be an eigenvector @bv(0) corresponding to its
eigenvalue 4, x must satisfy the following equationsx;+bl=4x, and
(a+qb)ly-=Axm-q. Summing up components of these vector equatiansslto (i)
a+bg=4a and (ii) (a+bq)(M—q)= /b, respectively. Let us see first that= 0
impliesb = 0 andA = 1. Having puta = 0 into (i) one obviously getls = 0 as well.
This implies thata + bg = 0so that(a + bg)Lnq = AXuq can hold only aky.=0,
provided tha# # 0. Similarly, X, +b1, =/x; can hold only ifx, = Ax,, that is, ifA =
1, which proves that = 1 is an eigenvalue. Moreover, the rankioé subspace of
eigenvectors correspondingic= 1 is equal tag — 1, because they all are defined
by the condition that the sum of their components0.

Let us now assume thais not zero. Eq. (i) implies thaa can be put foa +
gbin (ii), leading tola(M — q) = Ab. Thus, withl # 0, a(M - q) = bandb/a=M -

g. ButA = 1 +gb/aaccording to (i), which leads #o= 1 +q(M - q) and proves the
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statementThis provides for really elongated shapes, sowmsatan check whether
this change of the shape indeed affects the clogtegsults.

The actual data generation process is based asptwtral decomposition of
matrix Cov(0) such as described in Murtagh and Raftery (1984 Rraley and
Raftery (2002). In our experimengsis set to be 6. The variane@is taken to be
0.1, which is not very important because, in angecat is multiplied by the
within-cluster spread values described in the foihg itemD.

Therefore, the generic PPCA covariance matrix geedris defined by
formula (7) with g=6 an@®=0.1. The generic covariance matrix of the Sphérica
Gaussian distribution is taken to be the identigtn®. These are multiplied then
by different values to model different versionsttod distribution of cluster spatial

volumes.

D. Clusters intermix. The possibility of controlling cluster intermixs ia
much-desired property in clustering experimentginty and Henson (2005)
noted that this issue had never been satisfactadtiressed in the literature and
proposed a mechanism for generating clusters witbxalicitly formalized degree
of overlap, i.e. set-theoretic intersection. Speally, their model involves a
value of the intersection for each pair of clustever each single feature, thus
having a disadvantage of “restricting the genenatibthe joint distribution clusters
to be the product of the marginal distributionstefBley and Henson 2005, p. 245).
Another problem with this mechanism is by far toany parameters which are not
necessarily directly related to parameters of teaegated clusters themselves.

There is also an issue of how relevant is the usdgeverlapping clusters for
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evaluation of a partitioning method. We considext the cluster overlap should be
modelled as the spatial intermix rather than imtetion, for which parameters of

distributions used for modelling individual clusterre convenient to use.

(D

Figure 3.1 An illustration of the cluster interndepending on the distance between clusteraiist (represente
by pentagrams), and their geometric sizes (reptegdday ellipses): two clusters on the right areelto each oth
but well separated, whereas the cluster on théslédirther away but not separated because dadiitgef spread.

Since we utilize Gaussian clusters, their interrabe modelled by using the
Gaussian characteristics of location, centres, ahgter shape and spread,
covariance matrices. In this way, the intermix agh@waussian clusters can be
captured as a consequence of the two not necgsezldted aspects: the distance
between cluster centroids (“between-cluster spieadd the magnitude of their
variance/covariance values (“within-cluster sprgads illustrated in Figure 3.1, at
which the centers of two clusters are close to edbbr (a small between-cluster
spread) but are well separated because of smallaitances, while another cluster,
with its center being much further away, may intermith either or both of them,

because of its large (co)variances.
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Figure 3.2 Two Gaussian clusters with their derfsityctions drawn using agen and blue line respectively. *
interval (A,B) is the only place at which the bliree cluster is more likely than the green linestér.

Yet Figure 3.1 may introduce some perception oas by representing Gaussian
clusters as ellipses. When dealing with differerthin-cluster variances, the
perception of Gaussian clusters as being “compzmet’be misleading, to an extent.
Consider, for example, densities of two one-dimemali Gaussian clusters drawn
in Figure 3.2. One, on the left, is centered atith vis standard deviation equal to
0.5, the other on the right is centered at 4 arxdisastandard deviation equal to 2.
The clusters are well intermixed, but the clustettee right is spread not only over
the right part, but over the left as well — its signfunction is greater than that of
the left cluster in all points to the left of A figure 3.2. This contradicts the
compact cluster intuition. This is why, in the s®tof cluster generation from
probabilistic distributions, we prefer the termeirrhix rather than overlap.

To control the within-cluster spread, one can rplytihe cluster’s covariance
matrix by a value. The number of these values imktp the number of generated

clusters K*. To keep things simple, one shouldttryefine such a distribution of

43



the within-cluster spreads that can be controllgdabsingle parameter. One
obvious definition comes from the model of sphdratasters — all the spreads are
equal to each other, that is, all clusters areesapted by spheres with a constant
radius. This pattern fits well into the theoretiqg@rspective of K-Means as a
maximum likelihood method for fitting a Gaussiarstdbution mixture model in
which all individual distributions are sphericaltivithe same variance (Banfield
and Raftery 1993). However, within the data-minfngmework, clusters to be
found may have different spatial sizes. To fit itlis perspective, one may use
different settings such as several, two or thredoar, different within-cluster
spread values — which would lead then to the tdskebining the proportions for
each of these types, for which we could find nodgatce in the literature or our
personal experiences. Therefore, we decided tdoym @ less challenging path by
designing two types of the variant within-clusteread values: the “linear” and
“quadratic” ones. Specifically, we take the witluluster spread value to be
proportional to the cluster’s indéx(the linear, ok-proportional distribution) ok®
(the quadratic, okz-proportional distribution)k=1, 2, ..., K* That is, with the
variable within-cluster spreads, the greater theegmted cluster index, the greater
its spatial size. For example, the within clustgresad of cluster 7 will be greater
than that of cluster 1, by the value of kiproportional model and by the value of
49 in k*-proportional model. Since the clusters are geedratdependently, the
within-cluster spread values can be consideredsagraed to clusters randomly.
Hence, three different models for the within-clustpread values utilized in our
experiments are: (i) constant, (iproportional, and (iii}’-proportional.

To control the distance between clusters with glsiparameter, we utilize a
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special two-step mechanism for the generationugtet locations. On the first step,
all cluster centroids are generated randomly ardliaarigin, so that each centroid
entry is independently sampled from a normal distion N(0,1) with the mean 0
and standard deviation 1. On the second step, elatese centroids is shifted
away from 0, and from the others, along the linsspay through the centroid and
space origin, by multiplying it with a positive wa: the greater the value, the
greater the shift, and the greater the distancegslea centroids.

The cluster shift value is taken the same for afitmids. In our experiments,
we consider two types of the between-cluster spréadye” and “small” ones.
These should be defined in such a way that theering algorithms recover the
generated clusters well at the large spreads,emsdthan well at the small spreads.
This idea has been implemented experimentally l&sifs: given the within-cluster
spread and shape, put the between-cluster spréad ansuch a value that the
generated clusters are recovered on average devidleof 0.95 of the ARI index of
cluster recovery, which is defined by equation i(8)Section 3.4. This value is
accepted then as the “large” between-cluster spremide. For a “small”
between-cluster spread value, we have chosen desmalue, such that the best
cluster recovery achieved reaches ARI index valli@bmut 0.4. Thus chosen
between-cluster spread values at different withiister spread and shape models
are presented in Table 3.1.

Typical configurations of datasets wikf=9 clusters generated as explained
above are illustrated in Figure 3.3. These are tjustdimensional projections of
multidimensional spreads, thus hiding many of ttegiatial interactions, but still

bearing some of them and shown here for purelgtildive purposes.
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Figure 3.3 Examples of datasets generated at eliffefata models on a plane defined by the two $amincipal
components, from the most confusing pattern onethi¢PPCA clusters with the quadratic within-clrsspread
and the between-cluster spread value equal to2}tear-cut pattern on the right (the same clustatel, but the

between-cluster spread value grows to 28). Thedlirsters are shown with symbots:, +, o, x, [, %, V,
Between-cluster Within-cluster spread type
spread
Constant k-proportional “proportional
Large 1.6 8 8
Small 0.16 0.4 1.6

Table 3.1 Between-cluster spread values dependirigeowithin-cluster spread-shape types in the raxgats

E. Feature standardization In many publications, starting from Milligan and

Cooper (1985), the data are generated in such athedyfeatures are comparable

and no data standardization is needed, which isfeeifrom the real case scenario.

In real-world data, features are usually incomplaraie that some form of data

standardization is needed. Conventionally, datadstalization is conducted as an
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independent transformation of each individual featwy shifting its origin with the
rescaling either using the standard deviation erémge.

In statistics, the most popular standardizatiothé so-called z-scoring which
shifts the origin of each feature to its grand maad then rescales the feature into
the units of its standard deviation. This standaatitbn is rooted in the invariance
properties of the one-dimensional Gaussian didiobuln the neural network and
support vector machine learning literature, thenddadization is conventionally
performed in a distribution-free way — by shiftittge origin to the midrange and
relating the result to the half-range so that theraary values become -1 and +1,
which is very convenient for working with targeafares that tend to have a range
between —1 and 1. (Vapnik 2006).

Published clustering experiments have demonstratieat the mixed
standardization in which the origin is shifted be fgrand mean and rescaled using
the range is better for cluster recovery than thatthe standard deviation, for
example, in Milligan and Cooper 1988, Steinley 20@dsanto 2001, etc. We can
contribute to the debate with the following argumebividing the feature scale
over the standard deviation is counter-intuitivetire following example that
involves two features of the same ranges, so thatod them is uni-modal and the
other is bi-modal, as shown on Figure 3.4, (a) @drespectively. The standard
deviation of the former is much smaller than thathe latter so that after dividing
by the standard deviations the uni-modal featwaagje and, thus, contribution to
the distances, will be by far greater than thatttef multimodal feature. But
intuition tells us that it is rather the bi-moda&afture which is more useful for

clustering, because the two modes lead to natutareups while the uni-modal
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feature tends to put all, except for the outliers) the same group.

NN

@ | ®)

Figure 3.4 Uni-modal distribution shape on (a) uera bi-modal distribution shape on (b): the steshdaviation
of the latter is greater, thus making the lattes Isignificant under the z-scoring standardizatidrich is odd in
the clustering context.

Milligan and Cooper (1988) compare seven standatidiz methods and found
out that range normalization is the best standatidz among those (see also a
review in Milligan and Cooper 1987). The experinsenft Steinley (2004) also
support this experimental finding and suggest tlmimalized by maximum of the
data performs quite well (see also a review inrBtgi 2006). Vesanto (2001)
compare only the range normalization and z-scoand suggest that the range
normalization performs better than z-scoring.

The standardization issue addressed above explidtates to established
statistics concepts when using mixed scale datak{iM2005), that is, the data
table contains quantitative, nominal and categbrieatures. By doing the data
standardization, there are not many constant sffentthe data scatter and the
feature contributions to the data scatter. The chisiandardization is adopted in

our experiments
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3.2 Selection of algorithms

Five different approaches to estimating the “rightimber of clusterd* in
K-Means are described in the previous sectionVéijiance based, (ii) Structural,
(i) Consensus distribution, (iv) Hierarchical, afM Resampling. Of these, we
take only three, (i), (ii), and (iii), for our expements. Each of the other two
approaches, both (iv) Hierarchical and (v) Resamgplinvolves too many diverse
parameters that are absent from the variance bssadiural based and consensus
distribution based approaches. Since the thesirdined to K-Means related
clustering methods only, the hierarchical methods laeyond the scope. The
resampling methods involve many parameters, fomgka, the type of classifier,
the training-testing split proportion, number @rdtions, reference sets generated,
the threshold value on K, etc, and the choicestli@se parameters are not
well-defined or well-specified. As the (i) Varianbased approach relates to the
criterion of K-Means and has received most thecaktsupport (Krzanowski and
Lai 1985, Sugar and James 2003 Tibshirani et a01pOwe take all four
procedures referred to in section 2.1 — Hartigdniéee of thumb”, Calinski and
Harabash criterion, Gap statistic and Jump statigie also take in the Silhouette
width statistic, as the most versatile procedwanf(ii) Structural approaches, and
two procedures from the (iii) Consensus distributagpproach. Table 3.2 presents
the selection oK* estimating methods that participate in our expernits, along

with their acronyms used in the remainder of thesith
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Method Acronym

Calinski and Harabasz index CH
Hartigan rule HT

Gap statistic GS
Jump statistic JS
Silhouette width SW
Consensus distribution area CD
Average distance between partitions DD
Square error iK-Means oL
Absolute error iK-Means L

Table 3.2 Set of methods for estimation of the nemndb clusters in K-Means under comparison

It is probably worth noting that almost all the hnads utilize Euclidean square
distance throughout, except for two cases: (a)raive of intelligent K-Means L
is based on Manhattan metric, and (b) the Jumjsstautilizes Mahalanobis
distance within clusters.

The seven methods from the three selected appreatiiee the same format
of computations: they run K-Means at differ&h&nd then choose “the best” fitting
value among the Ks as the estimat&df Thus, we need to specify the rangeof
values for the experiments. Since the data is gégetimany times for each of the
chosen value&*=7 and 9 anK*=21, and the between-cluster spread values are
large enough to have several of the clusters wplhsated, we decided, to keep the
computations within a reasonable time limit, thia¢ range of teste& values

should be within an interval of about a dozen within the middle; thus, the range
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of testedK values is from 4 to 14 &*=7 and 9 and from 15 to 25l&t=21.

As is well known, the clustering and criterion \@lproduced by K-Means
depends on the initialization. The user typicalbes not have a clear implication
about the initial centroids. Several attempts araluations have been reported to
solve the cluster initialization problem. Babu aktirty (1993) published a
near-optimal centroid selection method using ger@ibgramming and the fitness
of each centroid selection is assessed by runtirgk-Means algorithm until
convergence and then calculating the distance messiihe fitness solutions will
then reproduce to create a second generation ati@md and this process is
repeated until a predetermined number of geneatiave been created. Given if
the optimum solution in many cases can be foundieler, it becomes infeasible
in a large database due to the need for repeatexdafuthe K-Means algorithm.
Thiesson et al. (1997) suggested a rather simpk idking the mean of the entire
dataset and randomly perturbingkittimes to produce K centroids. Khan and
Ahmad (2004) proposed a cluster center initialaratilgorithm (CCIA) under the
assumption of Gaussian distributed features, whish generates initial clusters
for each feature using Euclidean distance betweeatufe values based on the
mean, standard deviation, and the percentile ofghtire and the entities in that
feature and then runs the K-Means algorithm on ésatfure and the whole data set.
The percentile is obtained based on the equal aneler the partitions of the
Gaussian curve of features. They treated the joagitobtained from each feature
as a sampling result; therefore they applied théIBBC sampling algorithm to
merge these partitions, described in Section 2.5.

Comparisons among several different initializatimethods also have been
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proposed. Pena et al. (1999) presented a comparatvdy for different
initialization methods for the K-Means algorithm darthe results of their
experiments illustrate that the random and the KWamnf approach (Kaufman and
Rousseeuw 1990, 1999) outperforms the rest of timepared methods as they
make the K-Means more effective and more independerinitial clustering and
on instance order. Steinley and Brusco (2007) ewetl 12 different initializing
K-Means options and found that Ward's (1963) hignaal cluster analysis
suggested by Milligan (1980) performs the bestofe#d closely by a multiple
random initialization strategy. The multiple randonitialization strategy is highly
recommended for most of the situations, except whersize of the data set, the
number of variables, or the number of clusters ta large to estimate the
distribution of the solution. Kaufman and Roussedd®99) suggested that the
first centroid locates on the most central pointhef whole data set and then, which
of the points in the databases and which when chasethe next centroid will
produce the greatest reduction in the distance unessare examined. Once the
second centroid is chosen, the third centroid Iscsed in the same way and
continues untiK centroids are chosen. If this algorithm is to basidered useful
for large databases, a sub-sample of the instanoss be used instead when find
the centroids (He et al. 2004).

Since several experimental evidences have suggdsiethe multiple random
initialization strategy outperforms other initidilon methods in real-world
conditions (see Pena et al. 1999, Hand and Krzan®@®5, Steinley and Brusco
2007), we propose the following initialization medis: at eactK from the ranges

defined above, the Batch K-Means is Rhtimes, each time from a random set of
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entities taken as initial centroids. Of tHe resulting clusterings, that one
minimizing the value of criterion (1) (see pagei®)chosen, and the value of
criterion (1) (see page 2) at it is denotedvidy We accepR=100. This choice is
consistent with, first, Hand and Krzanowski (208&)ommendatiof®=20 for N of
the order of 200 in their experiments, and, secand, desire to simulate the
constraints of real-world computations.

It should be noted that there have been suggesaegt improvements over the
Straight K-Means version, leading to deeper minahtoe criterion (1) (see page 2)
for the same initializations, such as the adaptabknge of centroids after each
entity’s Minimum distance assignment (McQueen 19d7kas et al. (2003)
presented a global K-Means algorithm which aimsgtadually increase the
number of clusters untiK are found and this algorithm can be taken as an
initialization of other clustering techniques (8teiy and Brusco 2007). This
algorithm starts at one cluster and its centroidhésgrand mean, and they then run
the K-Means clustering algorithm with a graduakr@ase in the number of clusters
N times, where N is the number of entities. Theynpared their method with
multiple runs of the K-Means algorithm and clainmattithe global K-Means
algorithm shows the best quality. Hansen and Mladieh (2001) proposed a
J-Means algorithm, where the centroids of clusaeesrelocated to entities which
have not yet been selected as centroids ratherethiiies in clusters which may
move to other clusters in K-Means and all entiti€shat cluster are reassigned to
their closest centroids. This method along withit820 methods have been applied
on several famous real-world datasets, and J-Mslams's very good performance

on the cluster quality but the worst on the compomal time. Other authors
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compared different versions of K-Means, for examptesecting K-Means

(Steinbach et al. 2000) clustering method, desdribeSection 2.4. Hamerly and
Elkan (2002) proposed a G-means (G stands for @en)sslustering method to

ensure the entities in each cluster are Gaussiamibdited. It runs Straight

K-Means starting from one cluster or a small nundderiusters, then if the entities
in a cluster are Gaussian under hypothesis test,cthster centroid remains;
otherwise, the centroid of the cluster splits imteo by adding two numbers
obtained from a principal component based methdtidaentroid. The advantage
of G-means is that only one parameter needs to peeified, that is, the

significance level of the hypothesis test, whichugt be set in a standard way.

Another K-Means related improvement can be done npdifying the
summary within cluster squared Euclidean distantech can be generalized as a
cost function (Kothari and Pitts 1999). The addednt of the modified cost
function further ensures the summary within cluslistance is minimal; therefore
if the algorithm starts from a large number of tdus, the centriods are much
closer to each other because of this added terrthaikiocand Pitts (1999) applied
this modification on four data sets and used therDindex (Dunn 1974) to
validate the clustering results.

Another improvement can be done by applying theetienalgorithm, for
example, GA-clustering proposed by Maulik and Bamhdhyay (2000) (also see
Bandyopadhyay and Maulik 2002) a genetic algoribased clustering technique,
from the idea of the evolutionary genetics, whigtpioves K-Means by a process
of selection, crossover and mutation until a teation criterion is reached. It

creates a population of solutions based on theaBeecfitness function and finds
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the good solution for the next generation accordinthe process iteratively. The
fitness function is the multiplicative inverse dfet summary within the cluster
absolute Euclidean distance; therefore, to minintilee summary distance is to
maximize the fitness function. A different versiohthe fithess function with the
summary within cluster squared Euclidean distascago tested and similar good
performance of GA-clustering has been shown irptiqger cited. A comparison of
four methods including GA-clustering has been psagboby Paterlini and Krink
(2006) and they suggest that the differential emiumethod is superior to the
other methods, which uses a more complex crosspr@redure, because the
mutation procedure of other methods is rather randearch in the existing
solutions.

Some authors propose a centroid-based clusteriggriddm, for example,
Leisch (2006) generalized the K-centroids metholdictv finds centroids which
average distances between entities to the closasttoads is minimal, and nominal
data clustering algorithm K-modes, which have biegpiemented in R statistical
software package. The distance measure of K-maiés count the number of
dimensions of which an entity and its centroid dmt have the same value.
Modified criteria have been utilized by many (ske,reviews, Steinley 2006 and
Bock 2007). These all are left outside of our ekpents: only Straight K-Means is

being tested since the thesis is confined to bed&i4 related methods only.
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3.3 Evaluation: distance between centroids

Since the generated data is a collection of estftiem K* Gaussian clusters, the
results of a K-Means run can be evaluated by thaityuof recovery of the
following components of the generated clusterstifg)numbeK*, (2) the cluster
centroids, and (3) the clusters themselves. Tladdeaus to using three types of
criteria based on comparison of each of these ctaistics as produced by the
algorithm with those in the generated data. Thetelurecovery conventionally is
considered of greater importance than the other two
The recovery oK* can be evaluated by the difference betwk&rand the

number of clustersK in the clustering produced with a procedure under
consideration. Measuring the distance between famd generated centroids is
not quite straightforward even wh&sK*. Some would argue that this should be
done based on a one-to-one correspondence betvesdroids in the two sets,
hence the best pair-wise distance matching betweersets. Others may consider
that such a matching would not necessarily be Isigithecause of the asymmetry
of the situation — one should care only about haill the generated centroids are
reproduced by those found ones, so that if twdheffound centroids are close to
the same generated centroids, both should be a@pdidits empirical
representations. We adhere to the latter viewtbee so that this becomes even
more relevant, both conceptually and computatignalhenK differs fromK*.

Another issue that should be taken into accouof ithe difference in cluster
sizes: should the centroid of a smaller cluster e same weight as the centroid

of a larger cluster? Qon the contrary, should the relative cluster skeévolved
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so that the smaller clusters have less of an efiethe total? To address this issue,
we use both weighting schemes in the experimemdustied, to find out which of
them is more consistent with cluster recovery ttanother.

According to the “asymmetric” perspective above, stmre the similarity
between the generated centroigs,®, ..., & , and those obtained using one of
the chosen algorithms in Table 362, &, ..., &, we utilize a procedure consisting
of the following three steps:

(a) pair-wise matching of the obtained centroids teséhgenerated:
For eactk=1,....K* assigrgx with thate (j=1,...,K) which is the nearest to it. Any

not yet assigned centroglthen is matched to its nearegt

(b) calculating distances between matching centroids:

Let E¢ denote the set of thosethat have been assignedgg anday = g/|E ,
wheregj is the proportion of entities ipth found cluster (weighted version) @k
=1 (unweighted version). Define, for eachl,...,K, dis(k) = 2¢jcex d(0.8)* -
The weighted distance is the average weightedraisthetween the generated and
the set of matching centroids in the computed ehsstthe unweighted distance is
just the summary distance between all matchingspirclusters. (The distance

here is Euclidean squared distance.)

(c) averaging the distances:

K*
CalculateD= Z p, * dis(k) wherep=Ni= |Ny, is the number of entities in the
k=1

generated k-th cluster (in the weighted version)p@ 1/K* (in the unweighted

version).
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3.4 Evaluation: confusion between partitions

To measure similarity between two partitions, tbatimgency (confusion) table of
the corresponding partitions bfis used. Entries in the contingency table are the
co-occurrence frequencies of the generated partdiosters (row categories) and
the obtained clusters (column categories): theytla@ecounts of entities that fall
simultaneously in both. Four coefficients, thataidjusted Rand index ARI (Hubert
and Arabie 1985, Yeung and Ruzzo 2001), averagdap/g, the relative distance
M, and Tchouproff's coefficienT (Mirkin 2005), are used for measuring the
similarities between two partitions and the foureffcients capture different
structural properties of partitions and expose ediffit behaviour in our
experiments, but regarding our main conclusiony ttesmd to show the same
outcome. This is why in the experimental resulidakin Chapter 4 and 5 we
present only values of ARI coefficient.

Denote the generated clusters (rows) khythe obtained partition clusters
(columns) byj and the co-occurrence counts Idy. The frequencies of row and
column categories (cluster sizes) are denotedNpy and N,;. The relative
frequencies are defined accordinglymgsN,i/N, p=Ni./N, andp.;=N.;/N, where
N is the total number of entities. We use a coneaali similarity measure, the
adjusted Rand index ARI defined by the followingnhola (Hubert and Arabie

1985, Yeung and Ruzzo 2001):
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AR|=1KN1LN NN N ®)
- k+ + +l _ [ k+ [ +l Jj|/( J
2 A G
[NJ: N(N -2)
where \ 2 2 AR captures the similarities in the contents airg of

entities belonging to the same clusters. The greh2ARI, the more similar are
the partitions.
The relative distance to the real partitidh and the relative chi-square

contingency coefficient are:

M=2p5++zpfl_zzzpé )

keT jeu keT jeU

Yy Py

_ keT jeU pk+ p+] (10)

CJK-DE-1

whereK is the real number of clusters aBds the estimated number of clusters.
Average overlaf\ is another criterion related to the contingendjeaTwo tables
are formed as follows: the row of the contingeratyle is divided by the number of
items in the obtained cluster list and the colurhthe contingency table is divided
by the number of items in the real cluster listtable is obtained by summing up
the previous two tables and is divided by 2. Theyen the table is then multiplied
by the corresponding probability; pvhich will form a new table. Then the average
overlap is calculated across the new table. Theageeoverlap index captures the

similarities in the contents of entities, not theermf entities. The relative distance
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is quite similar to ARI but not normalized. Tchoaffis coefficient captures the

statistical dependence, which goes against thistatat independence.

3.5 Summary

The bulk of the experimental study addresses ortheofnost controversial issues
in clustering: the right number of clusters, whisbme may view as baseless
because in many cases, “clusters are not in ddtantibe viewing eye.” In the
experiments, we try to maintain the case when efssire in the data. The data are
generated as sets of entities randomly drawn fraaoisSian clusters, with the
cluster sizes (proportions) drawn randomly as wéding Gaussian clusters allows
us to address the issue of modelling the clusterrinix in an intuitively appealing
way in terms of within- and between-cluster spreallsis also enables us to
conduct experiments by confronting two types afatibns: well separated clusters
(large between-cluster spread) and not well sepdratlusters (small
between-cluster spread). We combine these withettddferent models of
within-cluster spread and shape. One of the modetf conventional spherical
cluster with a constant variance; the other twoolme elongated clusters and
different cluster variances. The twelve combinedadsettings provide rather
different cluster structures for comparing diffdremethods. To be closer to the
real-world data analyses, we maintain relativelygéadata sizes (one or three
thousand entities) and cluster numbers (7, 9 and Rdother feature of our
experimental setting is that to evaluate the resule utilize the centroid recovery

performance of a clustering method in additiorhi ¢conventional cluster recovery
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performance.
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Chapter 4
Analysis of the Results

4.1 First series of evaluation tables and their angsis

The experiment is conducted in two instalments. filseinstalment is, basically,

to see whether our assumptions are right, speltyfica

(1) If one of the two distance formulas, weighted andeighted, is any

better then the other;

(i) If the randomness in the generated cluster sizastialization of

centroids makes a difference, and if it does, wdalo about it;

(iif)  Are there any patterns in the recovery of the nurobgenerated
clusters K*, that go across the lines of the witlsind between-cluster
spread models accepted for the experiment? If #werecan they be

used for enhancing the clustering procedures?

(iv)  Are there any patterns in the cluster recoveryiwithn across the

within- and between-cluster spread models?

The major parameters of the first instalment of #eriment are six
spread-shape models that are the result of congpitwio types of models: (a)
either of the three cluster models according todik&ibution of the within-cluster
spreads and associated shape formats (the spreragae for the constant spreads,

and the elongated NetLab (see Generation of Gaussigture distributed data
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2006) covariance for the variant within-cluster esats), and (b) either of two
modes of the between-cluster spreads, the “largd™amall”, according to Table
3.1

The results of our experiments are presented iheTéli, 4.2 and 4.3, for the
cases of 7, 9 and 21 Gaussian clusters generaspéctevely. The entries are
averages of the respective evaluation values taken 20 data sets generated,
along with their standard deviations. In the experital result tables, the standard
deviations are divided by the averages, expresspdricent. The reason for this is
the presentational purpose. The cluster shapeadmed spatial sizes are taken
according to Table 3.1 in Section 3.2. In Table 4.2 and 4.3, we highlight two
winners among the nine algorithms under comparispregach of the six spread
patterns (three cluster spread-shape models timebeétween-cluster spreads), by
using the bold font. The two different between-tdusspreads are presented in
different columns while the three cluster spreagpghmodels are reflected within

the cells by three rows, as explained in the captio
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Comparison of iK-Means with 7 other methods at cluer=7 and 3 cluster structural models

Estimated number of] Weighted distance between | Unweighted distance between Adjusted Rand Index
clusters centroids centroids
LaS SmS LaS SmS LaS SmS LaS SmS
8.28/5 4.00/0 48116.80/16| 360.91/14* 326.49/14* 380.77/20| 0.77/12 0.40/11
CH | 10.70/6 4.00/0 | 1558562.68/15 3621.98/16| 9699.31/14* 3279.99/14| 0.64/11 0.31/12
8.30/5 4.30/12| 1595574.32/13] 55930.42/12| 10448.37/13*| 56453.01/13| 0.74/13 0.43/13
7.39/6 6.20/10 128684.97/17 390.98/13 329.66/15 388.65/18| 0.75/12 0.39/12
HT 7.55/5 8.89/10 | 1799188.85/16] 3030.92/15 9656.33/15 3047.52/18| 0.76/13 0.38/12
7.55/6 8.70/10| 1746987.36/14] 60371.09/15| 10440.73/12| 58707.33/15| 0.72/11 0.50/12
5.25/7 5.85/11 49584.52/11 475.85/11 338.38/11 425.89/11| 0.80/11 0.37/12
GS 5.75/8 5.12/9| 1492546.32/14) 3785.25/11 9642.58/11 3280.65/11| 0.81/12 0.31/12
5.95/7 5.25/11| 1458569.52/11] 59351.25/12| 10589.52/12| 54963.74/12| 0.79/12 0.44/11
10.67/6 4.00/0 51148.43/15 360.90/12 325.04/13 353.96/19| 0.60/15 0.40/11
JS | 10.00/0 4.78/10 | 1456705.09/14) 3441.78/15| 9743.94/13* 3018.44/15| 0.74/12 0.37/11
10.40/6 4.80/10| 1766608.06/13] 72390.75/12| 10491.41/14*| 58712.23/16| 0.6911 0.50/15
4.89/5 4.65/10 44560.63/15 359.24/12 325.59/15 379.24/16| 0.93/12 0.41/12
Sw 6.60/6 5.44/10 | 1412019.54/13] 3375.02/15| 9672.26/14* 2997.17/16| 0.90/11 0.40/11
5.60/5 5.40/11| 1696914.01/15 62581.11/14| 10408.32/13| 55420.80/14*| 0.94/12 0.57/13
5.22/6 5.05/4 45201.58/17 476.60/15 341.30/14* 379.84/16| 0.79/11 0.36/10
CD 5.00/0 5.00/0| 1365256.89/12] 3178.91/15 9741.09/14 3283.51/15| 0.74/12 0.32/11
5.00/0 5.00/0| 1390176.82/15 56446.03/13| 10476.44/13| 56759.32/17| 0.77/11 0.45/15
5.00/0 5.95/12 45638.01/16 483.02/15 342.90/15 445.71/17| 0.82/14 0.38/12
DD 6.70/4 5.11/10 | 1423139.34/15 3849.27/14 9740.43/14 3307.85/16| 0.75/12 0.30/11
6.20/6 5.30/9| 1488715.14/14] 56111.21/16] 10486.01/15] 56261.32/19| 0.71/13 0.45/12
5.44/5 17.90/18 44586.72/15| 1142.03/15 328.19/13* 476.86/23| 0.97/13 0.41/12
Lo 5.90/6 10.89/19| 1358256.30/15 2869.79/14 9658.11/13 3096.48/20| 0.98/12 0.33/15
5.40/6 9.40/18 | 1348704.94/14] 60274.25/17| 10504.31/13*| 55334.98/20| 0.95/11 0.53/15
16.78/7| 35.00/21 58992.53/14 439.60/12 340.97/15 647.83/29| 0.66/12 0.28/13
L1 7.70/6 7.67/18 | 1513975.39/14] 2883.21/15 9739.12/15 3007.08/21| 0.73/11 0.28/14
9.10/4 18.10/19| 1499187.03/13] 64655.17/15| 10507.21/14| 55290.32/22| 0.74/15 0.37/15

* within 1% of the best value

Table 4.1 The average values of evaluation criteria-clusters data sets with NetLab Gaussian @wee matrix for the
large and small spread values (LaS and SmS, résglgrtin Table 3.1. The standard deviations areid#id by the
averages, expressed after slash in per cent. Tée talues in a cell refer to the three clustercstire models: the spherical
shape with constant cluster sizes on top, the PBI#tical shape with k-proportional cluster sizashe middle, and the
PPCA elliptical shape with?proportional cluster sizes in the bottom. Two vérsiof the eight methods are highlighted
using the bold font, for each of the options.
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Comparison of iK-Means with 7 other methods at cluer=9 and 3 cluster structural models

Estimated number of] Weighted distance between | Unweighted distance betwegn Adjusted Rand Index
clusters centroids centroids
LaS SmS LaS SmS LaS SmS LaS SmS
11.55/8 4.00/0 53057.85/13 832.87/15 403.85/12 419.27/12| 0.82/9 0.25/12
CH | 12.10/4 5.30/5| 1462774.95/11| 465599.77/14| 11788.38/14*| 2932.79/19| 0.81/8 0.21/12
11.15/8 4.11/8| 1560337.21/11] 50703.90/12| 12146.83/13*| 53779.46/15| 0.79/9 0.22/12
8.27/6 7.60/10 47293.32/13 742.47/13 412.40/13 386.01/14| 0.89/9 0.29/10
HT 8.55/7 9.40/9| 1332058.56/15 409831.54/14| 11833.21/14*| 2965.56/15| 0.90/9 0.37/11
9.35/7 9.12/10| 1495325.18/14] 51941.10/15] 12154.99/15| 55286.55/14| 0.84/9 0.28/12
6.25/7 5.75/8 47295.85/11 795.52/11 438.33/12 385.25/12| 0.77/11 0.28/13
GS 6.75/8 5.95/10| 1305125.52/10] 394596.52/11| 11758.62/12| 2991.15/12| 0.77/12 0.28/12
5.95/8 6.25/9| 1395568.25/11] 51845.25/11| 12185.62/13| 54258.63/13| 0.76/12 0.29/12
12.12/8 450/0 55417.22/15 798.96/13 403.38/13 419.27/13| 0.77/10 0.25/12
JS | 12.75/9 6.15/8| 1548757.47/12| 510687.27/15| 11785.21/13*| 2908.33/15| 0.82/8 0.24/13
12.10/8 4.45/5| 1570361.91/12] 50716.82/12| 12131.86/12*| 53699.24/14| 0.80/8 0.22/11
6.29/8 4.54/10 46046.56/15 805.3015 418.26/12 418.66/14| 0.92/10 0.26/13
SW | 6.95/7 4.95/4| 1299190.70/15 393227.66/14| 11876.31/13*| 2846.31/16| 0.92/8 0.27/12
7.15/8 4.28/11| 1462999.91/12] 50383.53/13] 12203.58/12| 53583.12/16| 0.85/6 0.22/13
5.31/7 5.11/9 47122.13/14 791.76/12 429.96/12 373.93/12| 0.78/12 0.27/13
CD 5.30/6 5.10/10 | 1305051.80/14| 394572.84/13| 11943.98/13| 2897.61/18| 0.78/12 0.28/14
5.20/6 5.31/9| 1350841.29/13 51968.86/12| 12265.98/12| 55040.86/15| 0.75/12 0.25/13
5.67/3 6.42/8 47190.83/15 792.15/15 435.37/12 409.97/13| 0.75/12 0.27/12
DD 4.90/3 5.60/9| 1306014.88/13 395524.66/12| 11979.30/13| 2996.28/18| 0.74/12 0.24/12
5.30/3 5.83/8| 1394892.59/14| 50813.28/15] 12286.43/12| 53912.13/13| 0.71/12 0.27/10
8.67/6 13.00/18 49095.21/15 1110.88/13 402.47/12 335.91/23| 0.99/9 0.48/12
Lo 8.80/6 10.80/16| 1485719.73/12| 486979.24/14| 11771.70/12| 2661.41/20| 0.99/10 0.42/12
7.95/7 13.44/18| 1444645.99/15 51226.10/12| 12031.13/11| 54026.92/15| 0.90/9 0.45/12
9.33/6 | 25.00/18 54478.33/13 705.61/15 400.18/12 381.12/25| 0.92/9 0.38/12
L1 8.80/7 16.10/17| 1487335.77/13| 487940.63/13| 11767.34/13| 2648.60/20| 0.99/10 0.41/12
10.00/6 | 23.11/18| 2092537.57/12| 50506.80/12| 12114.01/12| 53507.21/16| 0.84/10 0.41/12

* within 1% of the best value

Table 4.2 The average values of evaluation critarif-clusters data sets with NetLab Gaussian @wvee matrix for the
large and small spread values (LaS and SmS, résglgktin Table 3.1. The standard deviations areiddid by the
averages, expressed after slash in per cent. Tée talues in a cell refer to the three clustercttire models: the spherical
shape with constant cluster sizes on top, the PEld#tical shape with k-proportional cluster sizasthe middle, and the
PPCA elliptical shape with?proportional cluster sizes in the bottom. Two vérsof the eight methods are highlighted
using the bold font, for each of the options.
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Comparison of iK-Means with 7 other methods at clugr=21 and 3 cluster structural models

Estimated number of Weighted distance between | Unweighted distance between Adjusted Rand
clusters centroids centroids Index

LaS SmS LaS SmS LaS SmS LaS SmS
33.25/11| 14.52/10 68196.52/11 1052.63/11 578.42/12* 498.42/12| 0.81/10| 0.35/12

CH 34.95/10| 14.85/10| 178529.52/12| 24584.52/12| 12685.52/11| 6574.54/12*| 0.82/11| 0.34/12
31.45/10| 13.95/12| 181648.52/11| 61458.63/12| 14896.54/11| 35145.25/12| 0.79/12| 0.29/12
20.72/11| 19.85/10 66524.85/12 958.46/12 569.12/11* 487.65/11*| 0.81/12| 0.34/12

HT | 20.45/11* | 20.42/10| 177389.63/12| 22548.63/12| 12578.12/10*| 6585.19/11*| 0.82/11| 0.33/11
21.85/10* | 21.79/10| 179526.12/11] 59851.58/12| 14746.49/11| 34719.49/11*| 0.82/12| 0.35/10
17.52/10| 14.36/11 67521.95/12 984.65/11 571.45/12* 491.48/12*| 0.79/12| 0.34/11

GS 16.85/10| 15.42/10| 178528.62/12| 23758.96/12| 12694.28/12| 6512.75/11*| 0.81/12| 0.29/12
16.45/10| 16.52/11| 182176.52/13] 61953.25/11] 14940.63/11| 34751.85/12*| 0.81/12| 0.30/10
32.15/10| 13.99/11 67195.52/12 975.27/12 574.45/12* 489.75/10*| 0.82/12| 0.32/12

JS 34.12/10| 14.85/12| 179526.52/13| 23579.48/12| 12501.27/11*| 6541.51/11*| 0.81/11| 0.33/12
32.62/11| 15.75/12| 182274.85/12| 61847.52/11| 14975.75/12| 34275.15/12*| 0.83/11| 0.34/10
15.42/10| 14.18/12 66745.85/12 931.42/12 562.15/10* 485.42/12*| 0.79/11| 0.33/12

SW | 16.65/10| 15.95/10| 176859.52/12| 21587.54/12| 12649.57/11| 6524.75/11*| 0.81/11| 0.29/11
14.85/10| 16.85/11| 180493.85/11| 60157.24/11*| 14734.15/10| 34815.16/12*| 0.80/12| 0.31/10
17.29/10| 15.85/11| 67085.12/12* 942.35/12* 571.16/10* 486.52/11*| 0.81/12| 0.29/10

CD 16.76/10| 15.52/10| 176384.85/11| 21465.18/12| 12534.75/11*| 6518.27/12*| 0.82/12| 0.32/12
18.45/12| 17.04/12* | 180052.63/11] 59941.11/12| 14576.67/11| 34842.19/11*| 0.80/11| 0.34/12
16.78/10| 17.85/12| 66975.52/12* 954.25/12 572.42/10* 482.45/11*| 0.79/12| 0.34/12

DD 18.65/10| 16.49/10| 179416.85/12| 22951.54/11| 12549.42/11*| 6547.73/11*| 0.81/12| 0.33/12
17.95/12| 17.42/10| 181756.85/12| 60175.52/12*| 14594.12/11| 34768.42/10*| 0.82/11| 0.29/12
20.12/11* | 26.85/20 69015.52/11| 942.16/12* 571.48/12 479.48/11| 0.99/11| 0.42/12

L, 20.85/12| 28.45/22| 179526.75/12| 22568.42/12| 12347.57/11| 6498.15/10| 0.99/12| 0.44/11
21.32/10| 30.42/10| 181085.63/12| 59975.54/10*| 14259.54/12| 34152.57/12| 0.99/10| 0.43/10
20.35/10| 39.45/18 68759.52/12 934.16/10 570.85/12 480.45/12| 0.98/12| 0.45/12

Ly 21.42/11| 38.63/19| 179528.53/12| 21984.85/11*| 12468.27/11| 6501.57/12| 0.99/11| 0.44/11
20.95/12| 39.52/21| 182163.52/13| 60846.18/12*| 14375.25/12] 34271.45/12| 0.95/12| 0.43/10

* within 1% of the best value

Table 4.3 The average values of evaluation crit@rial-clusters data sets with NetLab Gaussianr@nae matrix for the
large and small spread values (LaS and SmS, résglgktin Table 3.1. The standard deviations areiddid by the
averages, expressed after slash in per cent. Tée ¥alues in a cell refer to the three clustercstire models: the spherical
shape with constant cluster sizes on top, the PEid#tical shape with k-proportional cluster sizasthe middle, and the
PPCA elliptical shape with?proportional cluster sizes in the bottom. Two vérsof the eight methods are highlighted
using the bold font, for each of the options.
With respect to the issues (i)-(iv) raised for thistch of experiments, one can
notice the following:
® The orderings of estimates according to the wethlaied unweighted
distances between centroids differ considerablye Minners with
respect to the centroid recovery closely matchwimaers with respect to
the cluster recovery when the unweighted distarcased, and do not

match at all, when the weighted distance is usé@ goes in line with

the view that K-Means clustering results can berpreted as a form of
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(ii)

(iif)

typology at which centroids represent its so-callgeénsional, that is,
conceptual, part. According to this view, the disis should not be
weighted by the cluster sizes. The results in et support this view
and make us use only the unweighted distance ifuttiger experiments.
The averages reported in Table 4.1, 4.2 and 4.8atiner stable: all the
standard deviations lie within 15% of the averagkies (except for L
and L, at the small between-cluster spread associateu weity high
numbers of clusters found — these two will be mediflater on). That
means that the randomness of the choice of inigaitroids and the
randomness in cluster sizes do not affect the teghét much, and can
be considered justifiable.

With regard to the numbd€¢* recovery, one can easily notice that the
differences in within-cluster shape/spread do mmtear to affect the
outcomes. However, with respect to between-clugteead differences,
there can be discerned four different patterns: Hd) consistently
choose« values that are very close K§=7, 9 and 21; (b) Land L,
closely followK*=7, 9 and 21 at the large spread and lead to nauge
Ks at the small spread — this especially concerngd) whenkK*=7, 9
and 21, both CH and JS overestim#té at the large spread and
underestimate it at the small spread, and (d) wkferv, 9 and 21, GS,
SW, CD, and DD underestimat€* at both between-cluster spreads,
though wherk*=9, SW is close at the large spread and DD atrtiadl s
spread, but wheK*=7, SW is close at the small spread and DD at the

large spread.
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(iv) With respect to the cluster recovery, the commotiepa is that the
larger spreads lead to better reproduction of elgsthan the small
spreads for all of the algorithms. Overall, theoaithm L, outperforms
other methods but whelk*=7, the algorithms SW and HT join; when
K*=9, the algorithms SW and,ljoin and when K*=21, the algorithm, L

joins.

4.2 Adjusted intelligent K-Means

According to the experiment, iK-Means methodsahd L, may lead to excessive
numbers of clusters, while HT, on the other handkes a very good recovery of
the number of clusters. This leads us to suggestttte HT number-of-cluster
results should be taken as a reference to adjeighthshold for removing small AP
clusters for the initial setting in iK-Means. Sa,fanly AP singletons are removed
from the initial setting. If other “smaller” AP dters are removed, the choden
will be smaller and, thus, closerkd. A straightforward option would just remove
all AP clusters whose sizes are less than or efgual pre-specified discarding
threshold DT. Given Ky, found with the Hartigan rule, a suitable discagdi
thresholdDT can be found in such a way that the number otetak identified
with DT, taken as the discarding threshold, is close éméal,. This can be done
by gradually increasin®T from the default valu®T=1. A typical sequence of
steps, at a giveK,, sayK, =9, could be like this: aDT=1, the number of AP
clusters isKpr =32; at DT=2, stillKpr =32, that is, no doubletons among the AP

clusters; therk; =29, K, =24, Kg =20, Ky; =14,K;, =11, andKy4 =8 (the omitted
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DT values give no reduction iKpr values). ThereforeDT should be taken as
DT=14. SinceK, value is not necessarily correct but rather irtdiea DT=12,
leading to 11 clusters, is also acceptable, esihedi&*=10 or 11. Thus, one can
use a computational routine of increasing DT oneobg untilKpr becomes less
thanoKy,. When we pub=1.1, the nexKpr value is typically less thal,, whereas
0=1.2 leaveXKp rather large, bud=1.15 produces reasonable approximations of

K. We refer to thus HT conditioned versions efand L as AL, and AL;.

HT-adjusted iK-Means

0. HT-number: Find the number of clusté&sby using R runs of Straight
K-Means at eacK with the Hartigan rule.

1. iK-Means number: Find the number of clusters bygs$K-Means with
the discarding thresholdT=1. Let it beK for L, andK, for L;.

2. Adjust: If K (or Ky is 1.15 times greater th&, increase the
discarding threshold by 1 and go to step 1 withuh@atedDT.
Otherwise, halt. (The adjustment factor value @blas been found

experimentally.)
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4.3 Second series of the experiment and their analg

The second series of our experiments differs floenfirst one in three aspects:
(1) The adjusted versions of iK-Means clustering, And Aly, are included in the
list of methods;
(2) Data sets with the number of clusters K* irethwersions, 7, 9 and 21 clusters,
are generated as described in section 3.1;
(3) The cluster shapes and cluster distances Byecfossed.
Therefore, the set of data structures generatesl isegxpanded to 24 models by
fully crossing the following four values:
(a) Three versions of the number of clusters K*, 7né a1 clusters;
(b) Two versions of the cluster shape, either sphermalelliptical, as
described in section 3.1.C;
(c) Three versions of the within-cluster spread — cmtsiinear and quadratic,
as described in section 3.1.D;
(d) Two versions of the between-cluster spread, largesmall, as described
in section 3.1.D with the spread values presemtddble 3.1.
The issues to be addressed in these experimentthase (ii)-(iv) above, and,
additionally, as follows:
0] Is there any pattern of (dis)similarity between tweo data size
formats;

(ii) Are the HT-adjusted iK-Means methods better thanottiginal ones;
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(i) Are the algorithms’ recovery properties at the ¢ans spherical
within-cluster-spread model any better than thoseha elongated
not-constant spread clusters?

The averaged, over ten to twenty data setsrgttkat each of the 24 patterns,
evaluation criteria values are presented in Tadbléto 4.9. Each of the four tables
corresponds to one of the four combinations ofsilae (a) and shape (b), whereas
the six combinations of spread (c) and (d) areqmiesl within each of the Tables
4.4104.9.

The cluster centroid recovery results in Tablestd 4.9 are presented with a
change in reporting: the weighted distance caseemsoved so that only the
unweighted distances are left. Moreover, the diganare rescaled to achieve
comparability across the between-cluster spreadetapdo that issue (vii) can be
addressed with just visual inspection by a naked. &he distance between
centroids recovery is calculated in a Euclidearcgpaot in a squared Euclidean
space. When we move the centroids by multiplyingakue, for example 30, the
squared distance becomes the square of the vaategrin this case, 36000.

The rescaling is conducted according to the inester spread values in
Table 3.1 and takes into account that, at the smi#lin-cluster spreads, the spread
value atk’-proportional model, 2, is four times greater thiat atk-proportional
model, 0.5, and 10 times greater than that at thealespread model, 0.2. By
multiplying the distances between centroids atetpeal spread model by 100210
and at the k-proportional model by 18=they are made comparable with those at
the k*-proportional model. (Note that the distance betweentroids is squared

Euclidean, which implies the quadratic adjustmdrthe values.) Similarly, at the
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large spreads, the within-cluster spread valugkeavariant spread models are the
same while that at the constant spread modelimméstsmaller, so we multiply the
distances between centroids at the equal spread|mpd=25.

Here are the findings related to each of the isabese:

v) Tables 4.4 to 4.9 show a remarkable degree ofaiityilregarding the
main findings of the first series of experiments:

a. The relatively small standard deviations;

b. The same four groupings of the procedures with roega the
number of clusters K* recovery, with the obvious . Adnd Al
effects;

c. The same winners over a bulk of the experimentalditimns,
though HT at K*=21 shows winning performances oseme of
the conditions too.

(vi)  The HT-adjusted iK-Means methods are not betten tive original
ik-Means with respect to the cluster recovery; thewever, are better
with respect to the number of clusters. It is somewsurprising that
the absolute error based methodi& on par with the square error
based method 4. in spite of the fact that the data is generated
according to Gaussian distributions favouring sgdalistances.

(vii)  The algorithms’ recovery properties at the equahiwicluster-spread
model are not much better than those at the eledgabt-constant
spread clusters, whichever measure is used — ftheo or cluster
recovery. Yet most methods perform better whendhster spatial

sizes are less different: at the constant sizesbt#wt, and at the
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k?-proportional sizes the worst. However, the effedtslifferences in

within-cluster spread-shape patterns are ratheommin

Comparison of adjusted iK-Means with 9 other method at cluster=7, cluster shape=spherical

Estimated number of clusters| Adjusted distance between centroids Adjusted Rand Index

LaS SmS LaS SmS LaS SmS

8.28/5 4.00/0 8162.25/14* 38077.00/20 0.77/12| 0.40/11

CH 9.56/7 5.00/0 9218.27/12 42578.25/12 0.58/12| 0.35/11
9.25/7 5.84/8 9957.24/13 48249.26/12 0.72/12| 0.48/12

7.39/6 6.20/10 8241.50/15 38865.00/18 0.75/12| 0.39/12

HT 7.65/7 8.7517 9217.57/12 42671.48/10 0.65/12| 0.34/11
7.12/7 9.15/9 9910.24/12 47527.75/10* 0.73/12| 0.42/11

5.25/7 5.85/11 8459.29/11 42589.52/11 0.80/11| 0.37/12

GS 5.14/6 6.14/11 9312.59/11 43057.85/12 0.75/11| 0.32/11
5.18/7 5.79/10 9917.24/10 47562.75/10* 0.68/10| 0.44/11

10.67/6 4.00/0 8126.00/13 35396.00/19 0.60/15| 0.40/11

JS 9.7517 9.49/9 9327.45/11 42759.42/10 0.68/12| 0.35/15
10.71/7 10.24/8 10048.18/9 48217.35/12 0.69/12| 0.42/12

4.89/5 4.65/10 8139.74/15* 37983.00/16 0.93/12| 0.41/12

SW 7.7516 6.54/11 9299.48/10 42873.15/10 0.78/12| 0.31/12
6.49/7 5.75/10 10057.26/10 47657.85/12 0.85/13| 0.47/12

5.22/6 5.05/4 8532.50/14 37984.00/16 0.79/11| 0.36/10

CD 4.50/0 5.271/8 9314.67/10 42496.18/12 0.75/10| 0.37/12
4.50/0 4.85/11 9957.15/10 48018.72/11 0.76/10| 0.45/10

5.00/0 5.95/12 8572.50/15 44571.00/17 0.82/14| 0.38/12

DD 5.85/7 6.27/8 9327.18/10 42579.27/12 0.68/12| 0.38/10
6.37/7 5.85/11 9948.26/10 47524.52/12 0.71/13| 0.43/15

5.44/5 17.90/18 8240.75/13* 47686.00/23 0.97/13| 0.41/12
L, 4.96/7 12.75/25 9248.52/11 42279.52/18 0.96/10| 0.37/14
5.17/6 11.49/18 9968.85/12 48078.21/20 0.94/10| 0.42/13

16.78/7 35.00/21 8524.25/15 64783.00/29 0.66/12| 0.28/13

Ly 6.95/7 14.48/18 9247.35/12 41917.35/12 0.68/12| 0.34/12
7.28/7 17.48/21 9952.49/11 47495.57/21 0.72/13| 0.45/10

6.44/5 6.10/7 8129.75/13 37780.00/9 0.97/13| 0.60/10

AL 7.15/7 72418 9095.45/12 42175.25/12 0.94/11| 0.57/10
7.25/8 7.7517 9745.18/12 48256.52/10 0.95/10| 0.52/13

16.78/7 6.10/9 8224.25/15 29727.00/11 0.76/14| 0.60/12

ALy 7.49/6 74216 9125.75/13 42834.27/12 0.71/13| 0.56/12
8.47/8 73717 9713.25/13 48527.17/13 0.72/13| 0.49/11

* within 1% of the best value

Table 4.4 The average values of evaluation critfiathe large and small between-cluster spreatbfadin
columns LaS and SmS, respectively) as presentéfhalile 3.1. The standard deviations are dividedHzy t
averages, expressed after slash in per cent. The thalues in a cell refer to the three within-t#uspread
models: the constant on top, the k-proportionastelusizes in the middle, and thegtoportional cluster sizes in
the bottom. The rows correspond to ten K-Means auti{eight listed in Table 3.2 plus Aladjusted k) and
AL; (adjusted k) . Two winners of 10 in each category are highkghusing the bold font. Distances between
centroids are rescaled as described above accdaifagtors in Table 3.1.
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Comparison of adjusted iK-Means with 9 other method at cluster=9, cluster shape=elliptical

Estimated number of clusters| Adjusted distance between centroids Adjusted Rand Index

LaS SmS LaS SmS LaS SmS
5.25/7 3.82/8 9375.18/11 47957.19/12 0.58/11| 0.35/12
CH 10.70/6 4.00/0 9699.31/14 52479.84/14 0.64/11| 0.31/12
8.30/5 4.30/12 10448.37/13* 56453.01/13 0.74/13| 0.43/13
8.07/8 78719 9317.26/12 47967.52/13 0.69/11| 0.38/11
HT 7.55/5 8.89/10 9656.33/15* 48760.32/18 0.76/13| 0.38/12
7.55/6 8.70/10 10440.73/12* 58707.33/15 0.72/11| 0.50/12
5.17/8 4.01/8 9297.47/12* 47634.48/12* 0.74/11| 0.39/11
GS 5.75/8 5.12/9 9642.58/11 52489.52/11 0.81/12| 0.31/12
5.95/7 5.25/11 10589.52/12 54963.74/12 0.79/12| 0.44/11
9.74/9 493/9 9275.81/12 48921.75/13 0.64/13| 0.40/11
JS 10.00/0 8.78/10 9743.94/13 48295.04/15 0.74/12| 0.37/11
10.40/6 10.80/10 10491.41/14 58712.23/16 0.69/11| 0.50/15
4.73/8 5.49/8 9301.75/12 48276.96/12 0.89/13| 0.40/11
SW 6.60/6 4.78/10 9672.26/14* 47954.72/16 0.90/11| 0.40/11
5.60/5 5.40/11 10408.32/13* 55420.80/14 0.94/12| 0.57/13
5.11/7 5.17/8 9395.17/11 48672.45/12 0.80/10| 0.38/11
CD 5.00/0 5.00/0 9741.09/14 52536.16/15 0.74/12| 0.32/11
5.00/0 5.00/0 10476.44/13 56759.32/17 0.77/11| 0.45/15
5.88/7 5.23/9 9401.57/12 49019.46/12 0.81/13| 0.39/13
DD 6.70/4 5.11/10 9740.43/14 52925.60/16 0.75/12| 0.30/11
6.20/6 5.30/9 10486.01/15 56261.32/19 0.71/13| 0.45/12
4.8417 15.48/21 9297.15/12* 46218.12/18| 0.91/12* | 0.40/11
L, 5.90/6 10.89/19 9658.11/13* 49543.68/20 0.98/12| 0.33/15
5.40/6 9.40/18 10504.31/13 55334.98/20 0.95/11| 0.53/15
9.23/7 17.64/18 9285.49/12* 48567.52/19 0.92/11| 0.34/12
Ly 7.70/6 7.67/18 9739.12/15 48122.88/21 0.73/11| 0.28/14
9.10/4 18.10/19 10507.21/14 55290.32/22 0.74/15| 0.37/15
7.24/8 7.35/9 9276.49/11 47349.75/12 0.93/13| 0.63/13
AL 6.90/6 7.2418 9595.11/13 46592.16 /9 0.97/13| 0.53/12
6.40/6 7.7517 10369.31/13 56806.21/10 0.95/11| 0.55/11
8.49/7 7.29/9 9308.46/11 48086.75/13 0.74/13| 0.65/11
ALy 8.70/6 74216 9635.12/15 47203.20/11 0.88/11| 0.53/12
9.10/4 73717 10386.21/14 57908.32/13 0.74/15| 0.41/11

* within 1% of the best value

Table 4.5 The average values of evaluation critfiathe large and small between-cluster spreatbifadin

columns LaS and SmS, respectively) as presentéfhalile 3.1. The standard deviations are dividedHzy t

averages, expressed after slash in per cent. The thalues in a cell refer to the three within-tduspread

models: the constant on top, the k-proportionastelusizes in the middle, and thegtoportional cluster sizes in

the bottom. The rows correspond to ten K-Means attt{eight listed in Table 3.2 plus Aladjusted k) and

AL, (adjusted L). Two winners of 10 in each category are highkghtising the bold font. Distances between

centroids are rescaled as described above accdaifagtors in Table 3.1.
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Comparison of adjusted iK-Means with 9 other method at cluster=9, cluster shape=spherical

Estimated number of Adjusted distance between centroids  Adjusted Rand Index
clusters

LaS SmS LaS SmS LaS SmS
11.55/8 4.00/0 10096.25/12* 41927.00/12 0.82/9 0.25/12
CH 10.76/9 5.17/8 13859.21/12 48657.52/13 0.78/10 0.28/11
9.98/9 54917 19247.63/12|  49657.52/11* 0.82/9 0.25/11
8.27/6 7.60/10 10310.00/13 38601.00/14 0.89/9 0.29/10
HT 8.06/8 9.77/11 13795.45/12 49349.42/13 0.89/10 0.23/11
9.07/9 9.85/12 19067.85/12 50348.52/12 0.84/9 0.27/12
6.25/7 5.75/8 10958.25/12 38526.96/12 0.77/11 0.28/13
GS 6.47/8 4.35/12 13957.32/13 48963.75/12 0.79/12 0.27/11
7.34/8 5.67/11 19123.52/12|  49446.52/13* 0.79/12 0.30/13
12.12/8 450/0 10084.50/13 41927.00/13 0.77/10 0.25/12
JS 11.95/7 5.19/8 13967.52/12 49052.75/14 0.79/10 0.27/14
12.07/6 5.75/8 19635.75/12 50217.53/12 0.80/8 0.25/12
6.29/8 4.54/10 10456.50/12 41866.00/14 0.92/10 0.26/13
SW 5.85/7 6.96/10 13769.75/12 49135.86/14 0.89/10 0.28/13
6.07/7 5.08/11 19452.49/11 49834.47/13 0.85/8 0.25/11
5.31/7 511/9 10749.00/12 37393.00/12 0.78/12 0.27/13
CD 5.18/8 6.49/12 13994.63/12 49235.36/12 0.77/11 0.30/11
4.75/7 4.98/8 19379.85/13 49576.74/13* 0.79/11 0.27/11
5.67/3 6.42/8 10884.25/12 40997.00/13 0.75/12 0.27/12
DD 4.76/7 5.79/8 14027.67/12 49726.45/13 0.78/11 0.26/11
6.85/8 6.98/8 19459.63/11 50176.35/12 0.71/12 0.28/9
8.67/6 | 13.00/18 10061.75/12 33591.00/23 0.99/9 0.48/12
L, 8.76/8 | 15.79/19 13867.63/11 45367.16/18 0.98/10 0.45/11
8.92/7 25.46/21 19196.85/12* 49174.37/17 0.91/10 0.42/11
9.33/6 | 25.00/18 10004.50/12 38112.00/25 092/9 0.38/12
Ly 8.74/7 | 17.69/19 13982.52/12 46397.53/21 0.99/10 0.43/11
9.86/9 21.64/21 19237.45/13 49324.52/21 0.89/11 0.47/12
8.50/5 7.60/6 10086.75/12*|  33849.00/12* 0.99/11 0.50/11
AL, 8.36/8 9.25/10 13846.38/11 47219.56/13 0.99/10 0.43/12
9.24/8 9.77/11 18963.52/11| 49734.54/12* 0.94/11 0.40/11
8.70/6 750/6 10504.50/12 30556.00/12 0.99/12 0.44/10
ALy 9.98/8 8.95/12 13725.19/12 47652.36/12 0.99/11 0.41/12
9.37/8 9.38/11 19035.16/13|  49652.46/13* 0.93/12 0.38/10

* within 1% of the best value

Table 4.6 The average values of evaluation critfiathe large and small between-cluster spreatbfadin
columns LaS and SmS, respectively) as presentéfhlile 3.1. The standard deviations are dividedHey t
averages, expressed after slash in per cent. The thalues in a cell refer to the three within-tduspread
models: the constant on top, the k-proportionastelusizes in the middle, and thegtoportional cluster sizes in
the bottom. The rows correspond to ten K-Means austi{eight listed in Table 3.2 plus Aladjusted k) and
AL, (adjusted k) . Two winners of 10 in each category are highkghusing the bold font. Distances between

centroids are rescaled as described above accdaifagtors in Table 3.1.
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Comparison of adjusted iK-Means with 9 other method at cluster=9, cluster shape=elliptical

Estimated number of Adjusted distance between centroid Adjusted Rand Index
clusters

LaS SmS LaS SmS LaS SmS
9.43/12 6.52/11 11969.34/12 45793.48/12 0.81/10 0.27/11
CH 12.10/4 5.30/5 11788.38/14* 46924.64/19 0.81/8 0.21/12
11.15/8 4.11/8 12146.83/13 53779.46/15 0.79/9 0.22/12
8.57/11* 8.97/12 11785.34/12* 43967.25/13 0.85/10 0.28/11
HT 855/7 9.40/9 11833.21/14* 47448.96/15 0.90/9 0.37/11
9.35/7 9.12/10 12154.99/15 55286.55/14 0.84/9 0.28/12
5.00/0 6.95/12 11795.36/12* 44369.27/12 0.79/10 0.28/13
GS 6.75/8 5.95/10 11758.62/12 47857.52/12 0.77/12 0.28/12
5.95/8 6.25/9 12185.62/13 54258.63/13 0.76/12 0.29/12
11.75/10 5.29/12 12084.37/11 45736.18/12 0.77/11 0.26/11
JS 12.75/9 6.15/8 11785.21/13* 46533.28/15 0.82/8 0.24/13
12.10/8 445/5 12131.86/12 53699.24/14 0.80/8 0.22/11
7.65/9 5.08/11 11936.47/12 45739.27/11 0.91/11 0.28/12
SW 6.95/7 495/4 11876.31/13* 45540.96/16 092/8 0.27/12
7.15/8 4.28/11 12203.58/12 53583.12/16 0.85/6 0.22/13
5.19/9 4.00/0 11997.52/12 45691.34/11 0.77/11 0.25/14
CD 5.30/6 5.10/10 11943.98/13 46361.76/18 0.78/12 0.28/14
5.20/6 5.31/9 12265.98/12 55040.86/15 0.75/12 0.25/13
4.00/0 6.39/12 11857.20/12* 44637.18/11 0.77/11 0.27/11
DD 490/3 5.60/9 11979.30/13 47940.48/18 0.74/12 0.24/12
5.30/3 5.83/8 12286.43/12 53912.13/13 0.71/12 0.27/10
8.95/9 11.69/19 11753.19/12 43593.14/18 0.99/9 0.51/13
L2 8.80/6| 10.80/16 11771.70/12 42582.56/20 0.99/10 0.42/12
7.95/7 13.44/18 12031.13/11 54026.92/15 0.90/9 0.45/12
8.47/9| 17.96/18 11896.49/12 43829.76/17 0.91/10 0.40/11
Ly 8.80/7| 16.10/17 11767.34/13 42377.60/20 0.99/10 0.41/12
10.00/6 23.11/18 12114.01/12 53507.21/16 0.84/10 0.41/12
8.69/10 9.31/12 11763.52/12 45324.76/13 0.99/10 0.50/13
AL, 8.70 / 7* 9.90/7 11871.70/15* 43536.32/11 0.99/11 0.42/12
8.70/9 9.40/9 11031.13/12 52098.21/12 0.95/11 0.38/12
9.64/9 9.81/11 11967.54/13 44679.52/13 0.99/13 0.48/11
AL, 8.70 / 7* 10.60/9 11867.34/15* 44298.88/11 0.99/10 0.38/11
9.50/9 9.60/9 10114.01/13 53057.21/11 0.92/13 0.35/9

* within 1% of the best value

Table 4.7 The average values of evaluation critfiathe large and small between-cluster spreatbfadin
columns LaS and SmS, respectively) as presentéfhlile 3.1. The standard deviations are dividedHey t
averages, expressed after slash in per cent. The thalues in a cell refer to the three within-tduspread
models: the constant on top, the k-proportionastelusizes in the middle, and thegtoportional cluster sizes in
the bottom. The rows correspond to ten K-Means austi{eight listed in Table 3.2 plus Aladjusted k) and
AL, (adjusted L). Two winners of 10 in each category are highkghtising the bold font. Distances between
centroids are rescaled as described above accdaifagtors in Table 3.1.
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Comparison of adjusted iK-Means with 9 other method at cluster=21, cluster shape=spherical

Estimated number of clusters Adjusted distance between Adjusted Rand Index
centroids

LaS SmS LaS SmS LaS SmS
24.56 /9 15.00/0 14598.62/10* 24583.26/10 0.79/8 0.24/11
CH 23.49/11 16.83/8 16658.37/13 25869.74/13 0.82/9 0.28/12
24.63/9 17.09/10 19254.52/12 28563.64/13 0.79/9 0.25/12
20.45/8 18.50/8 14378.52/11* 26164.25/13 0.90/9 0.21/11
HT 20.95/8 20.39/10 16764.96/13 26946.37/13 0.88/11 0.39/12
22.85/7 22.79/10 19246.34/13 28837.96/13 0.88/10 0.30/12
18.32/9 15.32/10 15489.65/10 24354.25/11 0.81/11 0.25/11
GS 18.75/10 17.91/10 16431.05/13 25736.48/13 0.81/11 0.26/12
18.19/11 18.04/10 19113452/13 28543.65/13 0.78/11 0.29/11
255817 15.00/0 14478.96/12* 24583.26/10 0.76/10 0.24/11
JS 23.271/8 17.63/9 16776.14/12 25960.81/13 0.83/8 0.27/13
24.08/11 16.74/8 19248.52/13 28619.57/11 0.82/10 0.25/11
19.35/8 17.50/10 15895.52/11 22267.25/12* 0.93/10 0.26/12
SwW 17.87/10 17.38/8 16737.57/13 25842.51/13 0.90/10 0.28/11
18.65/8 18.29/9 19376.19/11 28736.11/13 0.83/8 0.25/12
17.52/9 17.00/0 15254.95/11 27154.26/12 0.79/12 0.30/11
CD 18.17/7 17.82/9 16493.24/13 25964.75/13 0.78/11 0.29/12
17.51/9 18.07/10 19237.82/13 28893.12/14 0.77/10 0.31/13
17.84/9 17.25/8 15269.52/11 26458.25/10 0.79/12 0.35/11
DD 16.38/8 17.64/10 16793.52/13 26019.57/13 0.74/10 0.29/12
17.74/10 18.19/12 19436.42/11 28631.75/13 0.70/11 0.31/10
20.85/7 25.85/8 14254.85/11 26954.23/12 0.99/9 0.36/10
Lo 21.43/8 29.42/12 16237.10/13 25234.27/13 0.98/10* 0.46/12
20.741/9 31.48/15 18934.26/13 28443.59/13 0.94/10 0.41/12
21.56/8 37.45/18 15254.85/11 24586.23/12 0.96 / 9* 0.40/11
Ly 21.96/10 34.63/17 16634.91/13 25336.52/19 0.99/10| 0.43/11*
22.16/10 39.67/19 18896.17/13 28651.63/16 0.90/11 0.39/11
20.32/8 19.85/6 14358.95/11 22145.85/10 0.99/11 0.50/11
AL, 21.76/9 20.7917 16349.27/13 25729.15/13 0.99/11 0.45/11
21.87/9 22.10/9 19234.71/12 28931.25/10 0.98/11 0.37/12*
21.25/9 225216 15254.95/11 21856.32/12 0.99/12 0.45/11
AL, 21.07/9 22.61/10 16836.49/12 26167.29/13 0.99/11 0.39/11
22.13/8 21.63/8 19273.85/13 28392.24/11 0.95/12| 0.36/10*

* within 1% of the best value

Table 4.8 The average values of evaluation crittafathe large and small between-cluster spreatbifaq(in

columns LaS and SmS, respectively) as present&dhte 3.1. The standard deviations are dividechbyaverages,
expressed after slash in per cent. The three vafuescell refer to the three within-cluster spreaddels: the
constant on top, the k-proportional cluster sizethe middle, and the’proportional cluster sizes in the bottom.
The rows correspond to ten K-Means methods (eigted in Table 3.2 plus Al(adjusted k) and AL (adjusted
Ly). Two winners of ten in each category are highigghusing the bold font. Distances between cerdraig

rescaled as described above according to factdrahite 3.1.
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Comparison of adjusted iK-Means with 9 other method at cluster=21, cluster shape=elliptical

Estimated number of clusters Adjusted distance between Adjusted Rand Index
centroids

LaS SmS LaS SmS LaS SmS
25.6717 18.59/9 16948.49/12 21654.51/13 0.81/9 0.27/10
CH 24.96/8 17.35/9 18789.25/11* 37856.25/19 0.80/8 0.23/12
23.45/9 16.45/9 20984.62/10 55145.89/12 0.82/10 0.21/12
20.97/8 22.08/9 15949.52/11 20369.85/13 091/7 0.20/11
HT 21.12/8 21.45/10 18457.52/10* 38152.52/15 0.89/8 0.45/12
21.52/7 21.12/11 20761.95/10 59254.56/11 0.87/10 0.35/12
19.57/8 17.64/12 16495.49/13 21549.18/13 0.82/11 0.26/12
GS 17.56/9 16.52/11 21278.32/11 37524.21/11 0.77/10 0.27/11
17.52/8 18.32/10 21859.32/11 55328.45/11 0.79/11 0.26/10
19.24/8 17.67/13 16627.49/13 21687.13/12 0.78/11 0.23/12
JS 24.65/8 18.75/9 18546.32/11* 37526.25/15 0.82/8 0.25/13
25.25/7 15.85/7 21254.74/10 56254.85/14 0.81/9 0.25/11
18.00/0 18.26/10 16762.56/12 21026.84/13 0.91/11 0.26/12
SW 18.35/8 16.85/7 21587.85/10 37859.26/16 091/8 0.26/12
18.52/8 17.38/7 22459.45/12 56859.25/16 0.85/8 0.23/13
17.97/8 17.32/13 16596.19/13 21738.16/11 0.81/11 0.26/12
CD 18.52/7 17.25/8 21148.52/11 37152.56/18 0.78/11 0.27/14
16.45/9 18.52/9 22984.52/11 55492.17/15 0.77/10 0.29/13
18.46/7 16.85/12 16815.24/13 21267.19/13 0.81/11 0.33/12
DD 15.95/8 16.52/9 20365.14/11 38185.54/18 0.76/10 0.25/12
17.52/9 17.25/9 21523.65/11 56874.82/13 0.76/12 0.27/10
21.96/7 25.49/13 15536.28/13 20035.15/13 0.99/9 0.33/11
Lo 20.75/7 27.65/9 18254.65/11 31459.25/18 0.99/10 0.40/12*
18.96/7 30.45/9 22351.85/11 53462.52/15 0.90/10 0.42/12
22.07/9 27.10/15 15863.87/13 20469.25/15* 0.98/9* 0.43/11
L1 20.65/9 36.25/16 18754.25/11 29025.52/17 0.99/10| 0.42/12*
22.45/9* 38.12/17 22145.88/11 52854.21/16 0.86/10 0.40/12
21.72/7 21.95/13 15532.45/12 21354.56/13 0.99/11 0.54/11
AL, 21.85/9* 21.87/8 19658.52/11 38452.95/10 0.99/11 0.45/12
21.42/8 21.85/9 20542.65/11 51954.65/12 0.97/11| 0.39/12*
22.49/9 21.72/12 15767.63/13 20861.57/13 0.99/12 0.52/11
ALy 20.12/8* 23.45/9 18236.12/11 37529.52/10 0.99/10 0.38/11
21.85/7* 21.45/ 8* 22956.25/11 52018.85/11 0.95/13 0.38/9*

* within 1% of the best value

Table 4.9The average values of evaluation criteria for taeyeé and small between-cluster spread factors (in
columns LaS and SmS, respectively) as presentédtite 3.1. The standard deviations are dividechbyatverages,
expressed after slash in per cent. The three vafuescell refer to the three within-cluster spreaddels: the
constant on top, the k-proportional cluster sizethe middle, and the’proportional cluster sizes in the bottom.
The rows correspond to ten K-Means methods (eigted in Table 3.2 plus Al(adjusted k) and Al (adjusted

Ly). Two winners of ten in each category are highigghusing the bold font. Distances between cerdraig
rescaled as described above according to factdrahite 3.1.

4.4 Summary

In this chapter, we compare the iK-Means relatedhous with seven other
methods described in Chapter 2 and 3. In the §estion of this chapter, we

compare the two versions of iK-Means with sevenhoes$ by checking how well
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the generated clusters can be reproduced by thwl fones. The two versions of
IK-Means perform well apart from the number of tdws recovery. HT index
performs well on the number of clusters recoverfisTleads to the adjusted
version of iK-Means algorithm. In the second serggsthe experiments, we
compare the adjusted version of iK-Means method$ wine other methods
including the two versions of iK-Means methods.shows that HT-adjusted

iK-means methods perform the best among the eleathods.
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Chapter 5
Relationship between L, & L , Versions

5.1 The difference of the methods

Another issue that remains unanswered is whetleee ik a difference between the
two versions of the iK-Means method. Therefore, a@aduct a series of similar
experiments as above but only at the two versidrikeniK-Means method, where
the centroids and cluster recovery are evaluateddam these two versions, rather
than with the generated partition. In this set @peximents, the unweighted
distance between centroids is applied becauseowslhat the weighted distance
between centroids has no correlation with clusteovery and number of cluster
recovery in the experimental results shown in Tdbleto 4.3. The cluster shape is
the conventional spherical shape of Gaussian chidbecause the spherical
Gaussian clusters are one of the simplest datetstes. The between-cluster and
within-cluster spread values are taken from Tahkle Bhe two settings for the data
sizes are: (i)N=1000, M=15, K*=7 and 9 — about 110 entities in a cluster on
average, and (iiN=3000, M=20, K*=21 — about 145 entities in a cluster on
average.

Tables 5.1 to 5.3 show the experimental resultghef comparison. The
averages reported in Tables 5.1 to 5.3 are rathbtes all the standard deviations
lie within 15% of the average values, except when hetween-cluster spread is

small and this match with the findings of the poes experiments. The values of
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the ARI index are rather small compared to thos&ainles 4.1 to 4.9 in both large
and small between-cluster spreads. The ARI index Lfp method in large
between-cluster spreads in Table 4.1 is 0.97; vesetlee ARI index in Table 5.1
for L, method in large between-cluster spreads is 0.62a¥@rage, the ARI index
for L, and Ly methods in Table 4.1 to 4.9 is 0.99; whereas tR¢ iAdex in Table
5.1 to 5.3 is 0.65. This indicates that the twosiars of iK-Means may produce

very different results.

Comparison of L, and L, at clusters=7 and cluster shape=spherical

Estimated number of clusters Adjusted distance between Adjusted Rand Index
centroids

LaS SmS LaS SmS LaS SmS
6.12/9 15.42/25 1524.75/11 345.85/23 0.62/11 0.29/12
L, 7.85/10 17.45/25 27451.85/14| 2719.52/24 0.67/10 0.31/13
6.75/11 14.85/21 38254.52/13| 48529.12/27 0.61/9 0.31/12
6.45/11 16.45/21 1425.74/12 349.52/25 0.59/9 0.31/12
L1 7.12/11 24.52/24 28519.52/11| 2465.85/20 0.61/11 0.29/12
8.25/11 19.52/24 39219.14/12| 41296.12/25 0.64/12 0.30/13

* within 1% of the best value

Table 5.1 The data entities in each cluster arepkaimfrom Gaussian distribution. The average vahfes
evaluation criteria for the large and small betwelister spread factors (in columns LaS and SmS,
respectively) as presented in Table 3.1. The stdndiaviations are after slash, per cent. The thadees in a
cell refer to the three within-cluster spread med#ie constant on top, the k-proportional clustees in the
middle, and the kproportional cluster sizes in the bottom.

Comparison of L, and L, at clusters=9 and cluster shape=spherical

Estimated number of clusters Adjusted distance between Adjusted Rand Index
centroids

LaS SmS LaS SmS LaS SmS

8.27/10 12.85/20 1242.65/12 236.52/24 0.64/9 0.32/12
L, 8.75/11 11.75/25 24785.12/13| 2513.25/20 0.63/10 0.24/12

8.45/12 14.75/27 32478.95/14| 37589.52/17 0.67/9 0.34/12

8.95/12 27.45/21 1469.02/12 374.52/23 0.65/9 0.31/12
L1 8.12/14 18.45/18 27458.96/15| 2614.56/20 0.66/10 0.29/12

9.45/13 20.45/18 37859.12/13| 47851.36/18 0.67/10 0.30/12

* within 1% of the best value

Table 5.2 The data entities in each cluster arepkaimfrom Gaussian distribution. The average vahfes
evaluation criteria for the large and small betwelister spread factors (in columns LaS and SmsS,
respectively) as presented in Table 3.1. The stdndleviations are after slash, per cent. The thadees in a
cell refer to the three within-cluster spread med#ie constant on top, the k-proportional clustees in the
middle, and the kproportional cluster sizes in the bottom.
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Comparison of L, and L, at clusters=21 and cluster shape=spherical

Estimated number of clusters Adjusted distance between Adjusted Rand Index
centroids

LaS SmS LaS SmS LaS SmS

20.74/11 25.15/20 1745.52/12 358.12/25 0.65/10 0.32/10
L, 21.85/12 28.15/28 29483.12/11 3015.52/20 0.63/10 0.31/10

22.15/11 27.56/12 30158.52/10| 39581.26/21 0.60/11 0.32/11

20.95/11 40.51/30 1625.42/11 294.52/20 0.61/11 0.32/11
L1 21.15/12 38.05/12 26859.12/10 3125.65/24 0.62/10 0.31/10

21.65/11 33.15/12 36152.85/10| 39415.12/23 0.60/12 0.30/10

* within 1% of the best value

Table 5.3 The data entities in each cluster arepkaihfrom Gaussian distribution. The average valbfes
evaluation criteria for the large and small betwekrster spread factors (in columns LaS and SmS,
respectively) as presented in Table 3.1. The stdrdiaviations are after slash, per cent. The thadges in a
cell refer to the three within-cluster spread med#ie constant on top, the k-proportional clustees in the
middle, and the %proportional cluster sizes in the bottom.

5.2 Suitable data structures

The experimental results in Chapter 4 show thagdneral L. always performs
better than L The cluster shapes in those experiments are (@auskisters in
spherical and ellipsoidal and the data entitieseath cluster are generated
independently sampling from a Gaussian distributiime experimental results in
Chapter 4 are in line with the view that \tersion of K-Means is a method for
fitting with Gaussian mixture model. Given n indegent Gaussian distributed
random numbers;xXs, ..., %, in order to find the maximum likelihood estimatio

of the parameters mean of the continuous Gaussian joint probability dgnsi

function f(X;,X,,....X,) = )), one needs to

(F)H e

n
minimize the sumZ(xi—,u)z. This sum is exactly the square Euclidean
i=1

distance, also known as the least square critégmnighMeans clustering.
The above calculation can simply apply to thentmuous exponential

distribution. Therefore, in order to find the maxim likelihood parameter
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estimation of its continuous joint probability d@épgunction given n independent

distributed numbers 1 X X2, ... Xy

exponentially

f (X, X%50.0X,) = L Hexpu), the sum that needs to be minimized

(B)" ia B

n
becomes) [, — 4| . This is the Manhattan distance, also known as |¢ast
i=1

moduli criterion in K-Means clustering.

The experiment settings are similar with thpeziments in Section 5.1 of the
spherical cluster structure with 7, 9 and 21 geedralusters. The two settings for
the data sizes are: (§=1000,M=15,K*=7 and 9 — about 110 entities in a cluster
on average, and (ilN=3000,M=20, K*=21 — about 145 entities in a cluster on
average. The clustering results of &nd L, methods are compared with the
generated clusters to see how well the generatsstiecs can be reproduced by the
two versions of iK-Means. The constant within-clusspread values are taken in
this set of experiments. The simulation resultsstu@vn in Table 5.4, 5.5 and 5.6.
The results clearly show that, Loutperforms L, which proves the above

implication.

Comparison of Ly, Ly, AL, and AL, with the generated clusters at clusters=7 and cltexr shape=spherical

Estimated number of clusters Unweighted distance between centroids Adjusted Rand Index

LaS SmS LaS SmS LaS SmS

L, 7.55/10 9.20/10 860857.45/10]  133587.52/10 0.75/10| 0.53/11
Ly 7.30/9 7.55/10 852579.52/10]  128945.76/11 0.79/9| 0.65/10
AL, 6.25/11 8.25/11 861075.85/11] 131269.85/11 0.77/11| 0.54/11
AL, 7.08/11 7.15/10 850798.85/10]  129125.19/11 0.80/10| 0.69/10

Table 5.4 The data entities in each cluster arepkahfrom exponential distribution. The averageueal of
evaluation criteria for the large and small betwelrster spread factors (in columns LaS and Snspegively)
as presented in Table 3.1. The standard deviatienafter slash, per cent.
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Comparison of Ly, L1, AL, and AL, with the generated clusters at clusters=9 and cltex shape=spherical

Estimated number of clusters Unweighted distance between Adjusted Rand Index
centroids
LaS SmS LaS SmS LaS SmS
L, 7.70/12 8.20/13 7640.98/11 1044.68/10| 0.83/8 0.39/8
Ly 9.60/7 8.20/13 7618.69/10 1039.43/9| 0.93/8 0.55/9
AL, 8.12/10 8.15/10 7630.48/12 1045.36/8| 0.82/9 0.41/12
AL, 95417 8.80/12 7615.85/10 1038.54/8| 0.96/8 0.56/10

Table 5.5 The data entities in each cluster arepkaihfrom exponential distribution. The averageueal of
evaluation criteria for the large and small betwelrster spread factors (in columns LaS and Snspetively)
as presented in Table 3.1. The standard deviasienafter slash, per cent.

Comparison of Ly, Ly, AL, and AL, with the generated clusters at clusters=21 and ddter shape=spherical

Estimated number of Unweighted distance between Adjusted Rand Index
clusters centroids
LaS SmS LaS SmS LaS SmS
L, 15.74/11 16.54/10 26503.32/10 3021.45/10 0.87/11 0.38/11
L, 20.52/10 21.12/10 26401.96/12 2941..52/10 0.91/11 0.41/11
AL, 20.34/10| 20.45/11 26543.85/11 3104.52/10 0.89/11 0.40/10
ALy 21.29/10| 20.95/10 26429.54/11 3012.85/11 0.95/10 0.45/10

Table 5.6 The data entities in each cluster arepkahfrom exponential distribution. The averageueal of
evaluation criteria for the large and small betwelerster spread factors (in columns LaS and Snspegively)
as presented in Table 3.1. The standard deviatianafter slash, per cent.

5.3 Summary

In this chapter, we compare lzersion with L, version of iK-Means method to see
(1) whether if there is any difference between tleemd (2) which data structure is
more suitable for Lversion. We run a series of experiments by compatie L
version partitions with 4 version partitions, not comparing those partitiovith
the generated ones. It clearly shows the two vessid iK-Means are different by
comparing the cluster recovery. In order to anstiversecond question, we run a
series of experiments where the data entries i eatster are independently
generated from exponential distributions. We compghe clustering of Land L,

versions of iK-Means with the generated clustei$iashows that L performs the
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best on all evaluation criteria.
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Chapter 6

Application of L ; and L, K-Means to

Gene Expression Data

From the experimental results described above, #&h methods outperform
other methods in terms of the centroids and clustsvery but not on the number
of clusters, which can be solved by the HT-adjustadion iK-Means methods. To
find the patterns of gene expression data has become of the most popular
research fields and many authors have applied wargdustering techniques on
gene expression data, for example, Dudoit andyend (2002), Shen et al. (2005),
etc. Obviously, iK-Means can be applied for clusigrgene expression data too,
but this is not exactly our goal. We are interesteditilizing the discrepancies
between L and L, methods for a biological meaningful problem. Sacproblem
emerged on research of Prof. B. Chain, Virology &#pent, UCL. Their team has
produced two data sets based on the same gengea@dragments, one related to
gene expression in dendritic cells and the otheaimcerous dendritic cells. We are
indeed interested in finding which genes differvistn DC and Mutz3. This is
because many people would like to use dendritis cerived from leaukaemias to
stimulate an immune response which could potent@dhtrol the leukemia itself.
However, it doesn’'t work. One reason may be thastmme reason dendritic cells
which are derived from leukaemic cells are diffé@md not as good as) dendritic
cells from normal monocytes (i.e. normal blood £&thich are not cancerous). So

we want to know, at a molecular level, what diffeses there are between a
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“normal” dendritic cell (which we call DC) and anmterous dendritic cell (which
we call Mutz33). To answer this question computetlty, one first needs to select
a data pre-processing option, because the genessxpn data is subject to many
potential failings of the expression process. As/pn in Section 5.1, the land L,
methods may produce different results --- we arag@oo exploit this by using
those parts of the found clusters that are stadiievden the two and it can be used
for analyzing the difference in gene activity asrogene expression data in
different cells. Since our gene expression datdaoas highly correlated signals,
we develop a special normalization method for sstjmar of the physical condition
of the gene expression experiment from its biolalgipart, the pivot-based
normalization (PBR). The following section is orgaed as follows: we briefly
described the existing literature of pre-processingection 6.1, pre-processing,
clustering dendritic and tumor cells gene expresd@ta using iK-Means methods
and we compare the results with three differentgroeessing methods in Section

6.2.

6.1 The issue of gene expression data pre-processin

DNA microarrays are a technology to investigate #pression levels of
thousands of genes simultaneously, which is a gme@rovement over the
traditional genomic research that has focused ensthdy of single gene, single
protein, or a single reaction at a time. The thodsaof affixed DNA sequences
known as probes can be placed on a single DNA micag. The probes are
normally oligonucleotides or complementary DNA (cBNn spotted microarrays

and the probes are short oligonucleotides sequenakgonucleotide microarrays
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for matching part of the sequences to known or ipted genome portions. A
well-known DNA microarray manufacturer Affymetrixquces the sequence for
oligonucleotide array and now the term “Affymetri’ not only a company name
but also the data obtained from an oligonuclecticday. Each spotted microarray
has been hybridized with cDNA from two samples .(digease tissue vs. healthy
tissue or experimental data vs. synthetic dataumaoalysis) labeled with different
fluorescent dyes. A two-colored dye is used fohesample so that we can tell the
two samples apart on the array. Fluorescent dysisde Cy5 and Cy3, referred to
by convention as red and green, accordingly. Tha arepresented as a matrix
with rows (genes) and columns (different conditiamrstime). The data which
measures the expression level of genes in a cartaidition at different instances
of time is called temporal data (versus non-tempeta).

In order to reduce the ill-effects of variowsal corruption circumstances, data
pre-processing is necessary for the effective aimlpf gene expression data.
However, there may be some inconsistencies afepmcessing, for example,
different scales among different conditions of geewpression data, gene
expression data obtained from different arrayslicaied gene expression data or
etc. Many techniques and approaches have beennprdst tackle the above
inconsistencies. They have been reviewed and,ypadimpared in a number of
articles (Yang et al. 2002, Bolstad et al. 2003kF& al. 2003, Pandey et al. 2007,
etc). However, as we limit ourselves with more #jedata types akin to those
developed in the Virology Department of Universiipllege London (UCL), we
found convenient to categorize the pre-processingeulures being applied in the

gene expression data analysis as follows:

88



A.

Standardization, that is, to minimize various idoizs between rows
and/or columns of the data

Functional transformation, that is, to perform adtional transformation,
for example, logarithmic transformation (Yang et2002), sigmoid-based
normalization (Pandey et al. 2007), etc ; and

Filtering outliers, that is, to filter the differéy expressed genes (Saviozzi

and Calogero 2003, Jiang et al. 2004);

Each of these admits different approaches thatbeasystematized, based on

the body of published literature, as follows:

A.

Standardization:
A.1 Column normalization:

A.1.1 by itself: dividing by scaling values, fexample, Z score based
normalization (Jiang et al. 2004, Tamayo et al.91%headle et al. 2003,
Pandey et al. 2007), optimization-based genetiordhgn (Shmulevich
and Zhang 2002), etc;

A.l.2 by green from the same column: LOWESS/LOESS
normalization for cDNA arrays (Yang et al. 2001,aQkenbush 2002), or
etc;

A.1.3 by replicates comparison: Combining repsaDraghici 2003),
parametric normalization (Liggett 2006), pivot-bdswith removals
normalization method (Chiang and Mirkin 2008), etc;

A.1.4 by samples comparison: centralization (Z2601), etc

A.2 Row normalization: quantile normalization (Bald et al. 2003), etc;
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One of the most commonly used column normalizati@thods is called Z
score (Tamayo et al. 1999, Cheadle et al. 2003]d3aet al. 2007), that is, to shift
the red or green signal values in a vector by tleamof their values and scale
them by the standard deviation. Z score is poptdarthe transformation of
temporal gene expression data (Tamayo et al. 1®B&)gmann et al. (2003)
proposed an algorithm for analyzing the gene esmadglata, that is, to iteratively
refine the genes and conditions until they mat@hdefined transcription modules
and the normalization method they used is matheaitiequivalent to Z score.
Shmulevich and Zhang (2002) proposed a normalzafitocedure: apply the
optimization-based genetic algorithm then binarizhe data. The
optimization-based genetic algorithm chooses sgalparameters so that the
sample mean and standard deviation are minimizddeanure that the maximum
gene expression levels after normalized is largeantboth the maximum
un-normalized gene expression levels and one. Theses with high expression
levels are binarized to 1, otherwise 0, where tireshold is the first difference
between sorted gene expression levels exceedirgrgppcified value.

However for cDNA arrays, Z score adjusts the ovené¢nsities of the gene
expression data but does not address the dye meariy (Draghici 2003).
Therefore, there are several normalization tectasquhich are specifically for the
cDNA or Affymetrix data, for example, use LOWESSESS normalization
(Yang et al. 2001, Quackenbush 2002) to eliminag¢aritensity dependent bias for
cDNA data, the detection calls (Draghici 2003) iempénted in several Affymetrix

analysis software, and etc. LOWESS normalizati@ands for locally weighted
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scatter plot smoothing and LOESS stands for locallgighted polynomial
regression. Both of them use the linear polynoriuattion to normalize the red
signals by the green signals, but LOESS uses araiagolynomial to solve the
over-fitting and the excessive twisting and turnprgblems. Berger et al. (2004)
proposed a LOWESS-based method, which aims for sthgahe best fraction
used in the local regression so that the mean-edudifference function between
LOWESS estimates and normalization reference lisvelinimized. This fraction
is between 0 and 1, and in general, the smallervidiae, the more that the
LOWESS curves follow data points. Piece-wise noizaéibn (Draghici 2001) is
another LOWESS-similar normalization method, whicimproves the
computational efficiency of LOWESS. Detection calteracterize genes into three
states using a non-parametric hypothesis testipgoaph as either present (P),
absent (A), or marginal (M), which means that tkpression level is higher, lower,
or similar to the minimum detection level, respesly. Other various
normalization methods specifically either for cDMlata or Affymetrix data are
presented in several publications, such as Li aont¢\2001, Li and Wong 2001a,
Wang et al. 2002, Finkelstein et al. 2002, etc.

Because of the large amount of noise with the raicay data, scientists tend
to repeat the microarray experiments. It is corsenio combine all the replicates
to a unique value in some circumstances; howewer,dss of information may
happen by using the above normalization and tramsfoon methods. Two
approaches described in the book by Draghici (26@8) be attempted to solve the
loss of information problem. The first approachidsstore the parameters of the

distribution of the original values and the secapproach is to filter out the
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outliers. Both of these approaches need to cakulaé mean, the standard
deviation, and other parameters of the distributbthe original data. Data points
outside some given interval are considered asepsithnd will be eliminated. The
parameters of the remaining data will be re-catedlaand the process is iterated
until no outliers can be found.

In some cases, the variability in the red signady fve partly attributed to the
physical conditions of the experiments, and thie ba captured in the green
signals. If this hypothesis is true, then we caaoigrove the reproducibility of red
signals, by taking into account the physical caod# as caught up on the green
signals. Liggett (2006) proposed a parametric népaigon approach by
normalizing the red by the physical condition, bigigett used the results of factor
analysis of greens to normalize the reds, whicluireq user-specified parameters.
If the replicates show highly linearly correlatatie parametric normalization
approach may not be suitable. Therefore we propagasiot-based normalization
method, which can capture the differences amondicetps by using linear
regression analysisWe consider one replicate green signgl, ap a pivot and
express others as linear functions gf pecifically, if a replicate green signal g
can be expressed as gy where a and b are constants, then it is reatona
assume that these constants take into accouniffeeedce in physical conditions

that produced signals, @nd g. If the conditions would have been the sahe,

! Alinear regression line has an equation of thenfé=aX+b, where X is the explanatory
variable and Y is the dependent variable, a istbee and b is the intercept. In order to

obtain a and b, the mean and standard deviatidhaofd Y are computed, denoted as

X.,Y ,0x, oy andthe equations for calculating a and b arelisis: a=0* gy /0 x

and b=Y -a*X , Where @ is the correlation coefficient between X and Y.
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signals should be the sameg=g. Therefore, to take into account the differeimce
the physical conditions over replicag gnd g, one should normalize g into
g'=(g-b)/a. The same normalization should be appitethe red signal in g-replica
to make it compatible, over physical conditionsemothe red in greplica. This
pivot-based linear regression normalization algonit with removals is
implemented as shown in the box below, along witimes data cleaning steps, so

that the regressions found in the green can beaeabial the red.

Pivot-based linear regression normalization algorttim

A. Check the correlations between the green replindsselect that one that
makes the highest summary correlation with therotisethe pivot, g and
make regressions of each of the othegsoger the pivot

B. The red signals are pivot-adjusted according to régressions: the ref

—

corresponding to the green pivot remains as is sabtracting the intercep

and dividing by the slope adjust two other rediogsl.

The Quantile normalization method proposed by Bolstt al. (2003) is a
popular normalization method commonly used for Afétrix data, which is
available in the MATLAB bioinformatics toolbdxIt takes the means across rows
(gene) of a column-sorted gene expression dataixtetd assigns the mean to
each element in the row to get a quantile equalimedrix. Then the quantile

equalized matrix is rearranged to have the samerood the original gene

2 http://www.mathworks.com/products/bioinfo
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expression data matrix. This procedure makes theilgition of the expression
level of each array identical and the drawback miggh some loss of information
during the normalization process. A number of pafeive been presented for row
(gene) normalization, such as Workman et al. (200)re et al. (2004), etc.

Zein et al. (2001) proposed a sample-based norataiiz method,
centralization, which is applied after the replesainormalization methods. They
use a maximum likelihood approach to find a scafexgtor after computing the
probability distributions for the pairwise scalirigr every pair of the sample
measurement. Based on their assumption that masésgare not or only
moderately regulated or the numbers of genes whiglregulated or
down-regulated are approximately the same, cemtédn reproduces the results

of other normalization methods.

B. Functional transformation

The logarithmic transformation has been widely ugedmicroarray data
pre-processing (Yang et al. 2002) because it ivemient for later data analysis.
Ease of interpretation is another well-known reasimn the logarithmic
transformation and the log transformed data wilhimre meaningful to biologists.
Sigmoid-based normalization methods (Pandey et2@07) are based on the
sigmoid function and double sigmoid function whtake into account not only the
outliers but also the distribution of the gene eggion data. Pandey et al. (2007)
modify the sigmoid function so that it considers thene expression value

distribution and smooths the center of the distidsu The main parameters of the
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modified sigmoid function are the mean and variaotéhe normal distribution.
These functions have been applied to other stuthas firstly applied to
bioinformatics domain for gene expression analgsid they perform very well for

non-temporal data (Pandey et al. 2007).

C. Filtering outliers

A number of papers have been published to estatishimportance of
filtering the genes that have significantly diffiet@xpression patterns between two
data sets; for example, Nimgaonkar et al. (2003pne27% of negative correlation
between the two data sets they use. Thereforeradilering methods have been
published. Saviozzi and Calogero (2003) firstly osm the genes that have a
similar expression level with the background anentfiurther remove the genes
that show low hybridization quality, generated frdme dCHIP software (Li and
Wong 2001a). Jiang et al. (2004) apply the studertest to filter the outliers and
the p-value is set to be 0.00001.

Several evaluations of normalization methods haeenbpublished, for
example, Park et al. (2003) compared seven norat&iz methods for replicates
and found that the normalization methods perfommilarly when the original data
has a high linear correlation, the intensity-deggrtdnormalization method
performs better among others and the performandetefsity-dependent linear
and non-linear methods are quite similar. Steinhaffd Vingron (2006)
summarized several normalization approaches anddfdbat the choice of the

normalization methods depends on the gene expresSa and Qin (2006)
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evaluated different normalization strategies onitaileitity estimation, which are
implemented in software such as MAS 5.0 (Mircropaiaalysis Suite), dChip, or
RMA (Robust Multi-array Average), for oligonucledéi data and found that the
RMA method performs well in cross-chip normalizatiavith the highest
heritability among the three methods. RMA createseapression matrix from
Affymetrix data. The raw intensity values are stadized, log2 transformed and
then quantile normalized. Next a linear modeltisdithe normalized data to obtain
an expression measure for each gene set. Pandey2207) recently presented an
evaluation over several normalization methods, sashZ score, quantile and
sigmoid normalization, and their results show tlifferent data sets and the type
of functional information being predicted can sfgmantly affect the performance

of different normalization methods.

6.2 Ly/L , consistent genes analysis

The experiments in Chapter 5 have shown thaand L, methods are different;
therefore, it would be reliable to utilize the difénce of these two methods in a
meaningful problem: given these gene expressioa, datd those genes that re
weak and those that are strong. The biologists tenceplicate the experiment
several times. The problem is extracting consigtatterns from the data. To do so,
we propose the following method:

1. Normalization on gene expression data

2. Clustering on one set of the normalized gene ezmeslata

3. Selecting the weak and active genes accordingeaentroids of

the genes consistent betweerahd L; methods
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4. Clustering on another set of the normalized gempeession data
5. Selecting the weak and active genes accordinget@éhtroid sets
of genes consistent over and L, methods

We apply this method to two gene sets: one is Déhddtic cells) and
another one is Mutz3 (cancerous dendritic cellachzof the DC and Mutz3 gene
sets is represented by data in three differentioress Experimental data (red vs.
green signal) is contained in each version andettsge 37358 genes in each
version.

The hypothesis of these gene sets is that thebilitsicbetween the versions
may be partly attributed to the physical conditiohshe experiments, and this can
be captured by analyzing differences in the grégmag which is supposed to be
independent of the substantive variability. Forsthelata sets, the high level of
correlation (on the average level of 0.95) betwgmen signals is observed both in
Mutz3 and DC, which ensures that there is a subatdmear component in the
relations between the signals. Because of thisifeatve would like to apply the
pivot-based linear regression normalization mettescribed in Section 6.1. We
consider one of the three green signajls,ag a pivot and express two others as
linear functions of g Specifically, if green signal g in one data sah de
expressed as g=gh, where a and b are constants, then it is rea®t@a assume
that these constants take into account the diféeran physical conditions that
produced the signals, @nd g. If the conditions would have been the saime,
signals should be the samgrg. Therefore, to take into account the differeimce
the physical conditions over replicasand g, and make g comparable o ane

should normalize g into g'=(g-b)/a. The same norzadlon should be applied to
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the red signal in g-version to make it comparabier physical conditions, over
the red in g-version. This pivot-based linear regression nomzaébn algorithm is
implemented as shown in the box below, along wiilme noise cleaning steps,
named as pivot-based with removals (PBR) normatimamethod, so that the
regressions found in the green signal can be apfai¢he red signal.

After normalization, we utilize the discrepanciéd.gand L, methods to find
out the cluster consistent genes, that is, thaasle®ntents in the clusters that are
present among the results of both methods. The al@amion and clustering
results are presented in Section 6.2.1. We therpaoemthe clustering results of
pivot-based linear regression normalization methitth the clustering results of

three pre-processing methods. This is carriedro8eiction 6.2.2.

Pivot-based regression normalization algorithm withremovals
A. Remove all the genes where the expression levehesal00000 or more at
least on one replicate
B. Check the correlations between the green replindssalect that one that
makes the highest summary correlation with therotisethe pivot, g and
make regressions of each of the othegspger the pivot, after cleaning the
2.5% of the high-value outliers in the distributioihmax(g/do, 9/9p)

C. The red signals are pivot-adjusted according to rdwessions: the ref

—

corresponding to the green pivot remains as is sabtracting the intercep

and dividing by the slope adjust two other rediogsl.
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6.2.1 Pivot-based with removal normalization resu$

For DC, we found that version 2 of green, g2, stidod the pivot, after the high
expression level is removed, and the correspondigigessions after a further 2.5%
removal are: g1.29*¢-2389.1 and g1.55*@-4228.8. For Mutz3, it is version 3
of green, g that should be the pivot, after removal of geméth the high
expression level, and the corresponding regressaites a further 2.5% removal,
are: g=1.28*3;-1838 and ¢g=1.21*¢:-1617.8.

After the double removals described above, themeaie 35452 genes in DC
and 35510 genes in Mutz3.

Our clustering methods iK-Means Least Squak¢ &hd Least Moduli (D) are
applied to cluster these data sets (over threeuresmtcorresponding to the
pivot-regression normalized red signals). For DEpiloduces only two clusters, of
35097 and 355 genes, respectively, andptoduces three clusters, containing
34865, 577 and 10 genes, respectively. For Muts8ndar story: three clusters for
L, algorithm (30862, 3638, and 1010 genes) and twstets for L. algorithm
(33069 and 2441 genes). This means that the distiis of the signals are so
much skewed to the left that even intelligent K-M&eaannot properly separate the
genes according to this data.

Therefore, we take logarithms of all the origingihsls, and carry on the same
procedure as described above, with thus transfodatd The only difference is in
the cleaning of noise: because of using the |dgaritransformation, one needs to

subtract rather than divide to perform the 2.5%aemhoperation. The correlations
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between green signals are very high (but not hjgiteit should be expected) again.
For DC, we take version 3 of green, g@s the pivot after removing the higher
expression level genes, and the corresponding seigres after further 2.5%
removals are: £0.93*g+0.73 and @g0.93*gs+1.12 (Note, these are for
logarithms!). For Mutz3, we take version 3 of gregnas the pivot after removing
the higher expression level genes, and the comelspg regressions after further
2.5% removals are:;g0.98*¢:+0.31 and g=1.02*¢;+0.11. There are 35539 genes
of DC and 35628 genes of Mutz3 left after the dlegin

In spite of the logarithm transformation, Mutz3 &ns tight against our
clustering methods and gives us again only twotetas Thus we concentrate on
clustering DC, which makes more clusters. Sincelguand L, methods tend to
produce rather different results, we consider thdasters valid that are present
among the results of both methods — we refer to tomtents as cluster consistent
genes.

There are 35539 genes of DC and 35628 genes of 3id#t after
double-removal of the log-transformed gene sets Eafnle 6.1 and 6.2 present
centroids (averages) of clusters of DC found wittahd Ly methods, respectfully.
According to Table 6.1 and the averagesclusters 2 and 5 contain active genes,
cluster 1 weak and cluster 3 medium expressiorl,lexd@ch are of interests to us.
Similarly, the Ly centroids in Table 6.2 give us clusters 2 and @ative genes,

cluster 1 weak, and 3 medium expression level.
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Cluster centroids of log-transformed DC data obtaied using the L, method

Cluster number R1 R2 R3
1 5.18 4.68 4.86
2 10.03 11.06 10.79
3 7.02 7.67 7.44
4 8.14 9.08 8.65
5 9.19 10.34 9.72
6 8.76 9.76 9.00
7 9.24 8.85 10.06
8 8.06 9.85 9.59
9 8.46 9.12 9.33
10 8.90 9.87 9.78
11 8.56 9.60 9.90
12 9.18 9.42 9.32
13 8.50 9.88 9.39
14 8.72 9.57 9.36
15 8.76 9.37 9.64
16 8.43 9.48 9.50
17 8.71 9.57 9.62

Table 6.1 The values are the averages of clusfeBCofound with L, method. Three columns represent three

versions.
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Cluster centroids of log-transformed DC data obtaied using the L4 method

Cluster number R1 R2 R3
1 5.03 4.69 4.84
2 9.99 11.15 10.73
3 6.70 7.63 7.41
4 8.14 9.05 8.66
5 8.78 9.16 9.31
6 9.20 10.30 9.74
7 8.17 9.70 9.27
8 9.50 9.66 9.18
9 8.78 9.75 9.02
10 9.10 9.65 9.81
11 8.61 10.07 9.78
12 8.34 9.54 9.72
13 8.57 9.40 9.27
14 8.74 9.87 9.42
15 8.65 9.37 9.73
16 8.87 9.68 9.67
17 8.48 9.72 9.58
18 8.61 9.62 9.83
19 8.26 9.39 9.54
20 8.74 9.61 9.39
21 8.64 9.69 9.52
22 8.73 9.54 9.59

Table 6.2 The values are the averages of clusfeBCofound with L method. Three columns represent three
versions

To compare these genes we derive the confusionxatithe overlaps between
them (Table 6.3). This table shows that the actiegk and medium genes ovar L
and L, are almost identical. In the follow steps of thk@eriment, we will use the
cluster intersection of cluster number 1 ofdnd cluster number 1 of;Lcluster
number 2 of L and cluster number 2 of;Lcluster number 5 of Land cluster

number 6 of L and cluster number 3 of,land cluster number 3 of; lfor the
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further analysis, that is, the cluster-consistemteas of DC data.

Confusion matrix between the results of kand L; methods of DC data

L1
1 3 2 6 others Total
1 20345 180 0 0 20525
3 39 9326 0 120 9485
L 2 0 0 1257 24 0 1281
5 0 0 12 750 109 871
Others 0 18 5 14 3340 3377
Total 20384 9524 1274 788 3564 35539

Table 6.3 The number of cluster-consistent gendd@fdata. The number of genes of cluster numbef L1, 0
method and cluster number 1 qfrbethod are 20345 (weak), cluster number 2,ahkthod and cluster number 2
of Ly method are 1257 (very active), cluster number B,ahethod and cluster number 6 of inethod are 750
(active) and cluster number 3 of inethod and cluster number 3 gfrhethod are 9326 (medium).

Now we are going to take a look at the distribugion Mutz3 expression levels
within each of these cluster-consistent genes.rtteroto find out which gene
differs between DC and Mutz3, we take the clusterststent genes in DC, which
are 20345 (weak), 1257 (very active) and 750 (eftisnd 9326 (medium) genes
and do clustering on the corresponding 35628 prased linear regression
normalized logarithmic Mutz3 data. The numberserigs for clustering are 18962,
1246, 748, and 9243 genes, accordingly (since soim#he genes have been
cleaned out before).

The following tables, Table 6.4 to 6.9, show thest#ring centroids (averages)
and partitions (number of genes) gfdnd Ly method in each cluster of the 18962,
1246, 748 corresponding Mutz3. Since the extrensexare of interests to us,
clustering results of 9243 medium genes are ntadibere. From the tables, these
two methods show very similar results, so we téleeduster intersections, that is,

the cluster-consistent genes.
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The 18962 genes are the cluster-consistent gen&h whown weak in DC
clusters, and the centroids (averages) in clu&tersd 5 shown in Table 6.4 and 6.5
are very high, which means the genes in clustexd?taare very weak in DC but
very active in Mutz3. The sizes of these genes2érand 10 genes respectively;
these 36 genes are listed in Appendix A as geragsath weak in DC and active in
Mutz3. A similar analysis is done with the very ieet1246 cluster-consistent
active genes in DC, where the clustering resuisshown in Table 6.6 and 6.7, and
found out that the centroids of clusters 2 andé& arite low and the number of
cluster-consistent genes in clusters 2 and 5 iandB@agenes respectively. These
genes are listed in Appendix A, as genes that arg active in DC and weak in
Mutz3. The same procedure is done with the act\& cluster consistent genes in
DC, where the clustering results are shown in T&8and 6.9, and found the
centroids in cluster 1 of both clustering methods ery low. This means the
cluster-consistent genes of cluster 1 are activ@Grand weak in Mutz3, which are
listed in Appendix A as active in DC and weak intkRiand the number of the

genes is 6.

Cluster centroids obtained using the L method of the 18962 corresponding Mutz3

Cluster Number | R1 R2 R3 Number of genes
1 4.57 4.62 4.63 15624

2 10.33 9.64 9.70 27

3 6.67 6.44 6.43 3191

4 8.38 8.23 7.55 76

5 9.17 8.85 8.92 17

6 8.17 7.61 8.24 27

Table 6.4 R1, R2, and R3 represent three versibtiealata. The centroids are log transformed.
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Cluster centroids obtained using the kL. method of the 18962 corresponding Mutz3

Cluster Number | R1 R2 R3 Number of gen
1 4.56 4.61 4.52 15314

2 10.17 9.55 9.55 26

3 6.52 6.28 6.35 3462

4 8.14 7.93 7.58 120

5 9.23 9.11 8.61 15

6 8.93 8.56 8.73 10

7 8.40 7.88 8.44 15

Table 6.5 R1, R2, and R3 represent three versibtiealata. The centroids are log transformed.

Cluster centroids obtained using the L method of the 1246 corresponding Mutz3

Cluster Number| R1 R2 R3 Number of gen
1 10.72 10.23 10.73 1107

2 5.89 5.64 6.31 8

3 9.13 8.58 9.58 108

4 8.96 8.45 6.36

5 7.17 6.79 7.20

6 8.50 8.25 7.73

Table 6.6 R1, R2, and R3 represent three versibtiealata. The centroids are log transformed.

Cluster centroids obtained using the L method of the 1246 corresponding Mutz3

Cluster Number| R1 R2 R3 Number of gen
1 10.76 10.28 10.75 1084

2 6.42 6.04 6.69 9

3 9.35 8.83 9.71 130

4 8.93 8.46 6.27

5 7.19 6.88 7.13

6 8.21 8.02 7.57

Table 6.7 R1, R2, and R3 represent three versibtiealata. The centroids are log transformed.
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Cluster centroids obtained using the L method of the 748 corresponding Mutz3

esS

Cluster Number | R1 R2 R3 Number of gen
1 5.00 5.13 5.29 9

2 9.90 9.48 9.88 602

3 8.77 8.34 9.07 110

4 7.41 7.20 7.32 17

5 8.14 8.04 8.11 10

Table 6.8 R1, R2, and R3 represent three versibtiealata. The centroids are log transformed.

Cluster centroids obtained using the L method of the 748 corresponding Mutz3

Cluster Number | R1 R2 R3 Number of gen
1 4.27 4.50 4.77 6

2 9.88 9.46 9.89 557

3 6.76 6.60 6.50 9

4 7.81 7.44 8.32 15

5 8.91 8.58 9.20 148

6 7.60 7.57 7.37 6

7 8.31 8.15 8.14 7

Table 6.9 R1, R2, and R3 represent three versibtiealata. The centroids are log transformed.

6.2.2 Comparing
normalization method

clustering

results

with

es

LOESS

Since there are many methods for normalizing rgdads over green signals, we

would like to compare the clustering results afed#nt normalization methods.

Therefore, we applied LOESS normalization methotheosame DC and Mutz3:

pivot-based normalization without removals (PB),eonf the most popular

normalization methods: intensity dependent normtibn (LOESS) method (Yang

et al. 2001). The data for normalization is logngf@rmed because the cluster

analysis shown in the previous section suggestsitieadistribution of the signals
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is left skewed and in order to make these resutmparable, there will be no
removals on the pivot-based normalization wherkagést of the algorithm is the
same as described in Section 6.2.

The intensity dependent normalization (Yang et 2601) is done by the

following equation:
log RIG-> log R/G —c(A) (11

where R and G are considered as the red and gigread sespectively and c(A) is
the LOESS fit to the M=log(R/G) vs. Azlod(R*—G) plot. This normalization is
one of the most popular methods for gene expresdaia normalization; the
software is freely available in the Matarray softeva(Venet 2003). Many
publications and books have suggested that the Mifspould be used for solving
the dye bias which depends on the spot intensigyré 5.1 shows the MA plots
with LOESS fit of the three replicates of DC dataskeom the left to the right
respectively, and it clearly shows that a linearnmadization is required because
these curves are around a horizontal line nearh@chamatches the fact found in
the previous section that the data are highly ligecorrelated. The MA plots of
the Mutz3 data are quite similar to the MA plotsDsf data. In this case, for each
entity in the dataset we apply the linear LOESSeuo a subset of the data. This
parameter usually lies between 0.2 and 0.5 for ln@&ESS applications and is set

to be 0.5 as default in the Matarray software.
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08 MA Plot with Loess fit on the second DC replica

MA Plot with Loess fit on the first DC replica
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Figure 5.1 MA plots with loess fit on the threelregtes of DC datasets. The red line is the loesgecand the
plots show the first, second and third replicatéhefDC datasets from left to right, respectively.

In order to find the genes that are different betw&iutz3 and DC, we apply
the same procedure as described in the previotisrsec
1. Normalization of both log-transformed DC and Mutz3
2. Clustering on the normalized DC data
3. Selecting weak and active DC genes according tax¢né¢roids of
sets of genes consistent betwegmhd L, methods
4. Clustering on the normalized Mutz3 data of the egponding sets
of weak and active DC genes
5. Selecting the weak and active Mutz3 genes accortiinghe
centroids of sets of genes consistent oveanid L, methods
The following table presents the numbers of wealk &ry active DC genes

that have been selected based on the overlapsdaugoo the centroids of both, L
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and Ly methods because of the identical results founddiyg of both methods.
The other genes are not listed or shown becausarevenly interested in the

extreme cases.

The number of weak and active DC genes found at the normalization methods

Weak Very active
Pivot-based without removals (PB) 21648 1185
Pivot-based with removals (PBR) 20345 1257
Intensity dependent normalization (LOESS22161 1284

Table 6.10 The weak and active is based on théeclasntroids of Land Ly method.

We then do clustering on the corresponding norredliMutz3 data sets
according to each of the normalization methods®&aide 6.11 shows the numbers
of very active and weak Mutz3 genes based on th& afe consistent genes
according to the centroids of both clustering md&hd hese genes are of interest to
us because these are the genes that differ be@eand Mutz3, that is, take PB
method as an example, there are 28 genes thateade iw DC but very active in
Mutz3 and 5 genes that are very active in DC butkwie Mutz3, according to PB

normalized data.

The number of very active and weak Mutz3 genes fahree normalization methods

Very active weak
Pivot-based without removals (PB) 28 5
Pivot-based with removals (PBR) 26 8
Intensity dependent normalization (LOESS33 12

Table 6.11 The weak and active is based on théeclasntroids of f.and Ly method.

Among the genes that are weak in DC but very adtivilutz3, there are 22

genes in common among the three normalization rdsth®Ve compare the
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uncommon genes of each method with those at otfeintethods and can easily
see the reasons why these genes are selected mathed but not the other. All
the different reasons for a gene having not beletteel at a normalization method
categorized into four:

(1) medium expression level on DC or theesponding Mutz3;

(2) cluster-inconsistence of the gene onda@;

(3) cluster-inconsistence of the gene enctbrresponding Mutz3 data;

(4) removed as an outlier.

Table 6.12 shows the number of genes that areshatted for different reasons,
for example, there are 6 and 3 genes that areefetted in PB method but selected
in other methods because these genes are classsfieddium expression level on
DC or Mutz3 and cluster-inconsistent genes on MulaBa using PB method
respectively. Table 6.13 shows the gene numberthasfe genes categorized in
Table 6.12 and detailed lists can be found in AppeB.

Consider, for example, the differences between R& BBR methods: we
found that 3 genes, that have been removed agudi PBR method are selected
at the PB method. Of these, 2 genes are not sdlatthe PBR method because

these genes are cluster-inconsistent on Mutz3rdataalized by PB method.

The number of genes that are not selected for diffent reasons in weak DC and very active Mutz3 case

Medium | Cluster-inconsistent Cluster-inconsistent Removed as
DC or | genes on DC data | genes on Mutz3 outliers

Mutz3 data
PB 6 0 3
PBR 3 0 1
LOESS 2 1 0
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Table 6.12 There are total 11 genes that are teatted due to the medium expression level of D®otz3.
There is only 1 gene that is not selected duedalister inconsistency on DC data. There are égtirat are not
selected due to the cluster inconsistency on Md&a. 3 genes are removed as outliers.

The corresponding gene numbers according to Table B2

Medium Cluster-inconsistent Cluster-inconsistent Removed as
DCor genes on DC data | genes on Mutz3 outliers
Mutz3 data
PB 6121 N/A 262 N/A
17501 21187
19105 42205
25435
34293
42349
PBR 25435 N/A 262 16620
34293 21827
42349 44198
LOESS | 6121 42349 N/A N/A
19105

Table 6.13 The gene number lists that are not teeletue to four reasons.

A similar analysis can be done for the very acidd@ and weak Mutz3 genes:
there is just 1 gene common among all four norraibn methods. Table 6.14
shows the numbers of genes that have not beeneléor example, there are 2
and 4 genes that are not selected at PB methoddbeitted in other methods
because these genes are classified as clustersiant on DC and Mutz3 data
respectively. Table 6.15 shows the gene labelbasde genes in Table 6.14; their
detailed lists can be found in Appendix B. Compgrivetween PB and PBR
methods, one can see that there are 4 genes ¢hiacansistent because 3 of them
are cluster inconsistent genes on Mutz3 data aofdthem is cluster-inconsistent
on DC data for PB method.

The gene lists of weak DC/very active Mutz3 andy\amtive DC/weak Mutz3
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of the two normalization methods are in AppendixTBi0o comparison tables of
these genes with normalized expression levels mddai from different
normalization methods and log-transformed origivelles are available onlihe
The tables show the common part of all methodevad by the genes obtained

under different normalization methods.

The number of genes that are not selected for diffent reasons in active DC and weak Mutz3 case

Medium | Cluster-inconsistent Cluster-inconsistent Removed as
DC or genes on DC data | genes on Mutz3 outliers

Mutz3 data
PB 0 2 4 0
PBR 0 1 1 2
LOESS 0 0 0 0

Table 6.14 There are 3genes that is not selectedodtne cluster inconsistency on DC data. Thexéagenes that
are not selected due to the cluster inconsistendyatz3 data. 2 genes are removed as outliers.

The corresponding gene numbers according to Table 54

Medium | Cluster-inconsistent Cluster-inconsistent Removed as
DC or | genes on DC data | genes on Mutz3 outliers
Mutz3 data
PB N/A 28352 2344 N/A
41755 8538
16552
29926
PBR N/A 41755 16552 23361
33774
LOESS N/A N/A N/A N/A

Table 6.15 The gene number lists that are not teeletue to four reasons.

® http//www.dcs.bbk.ac.uk/~mingtsochiang/gene/
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6.3 Summary

In this chapter, the difference between two veisioinK-Means is utilized in order
to analyze real-world data sets. We proposed tloevisvsions of the pivot-based
normalization method due to the hypothesis andhibgk correlation of the gene
expression data. After normalization, two versioh$K-Means are applied to the
normalized data and an algorithm for finding sdtgemes differing in gene activity
over difference cells by using,/L, consistency is proposed in Section 6.2. We
would like to compare the differently expressed ageffound by using the two
versions of the pivot-based normalization methodhwiOESS normalization
method. We found that the genes found by the LOm®8®Bod cover other methods,
whereas the pivot-based methods only capturesxthenge cases, thus leading to a

rather conservative estimate
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Chapter 7

Conclusion and Future Work

Overall, the impact of this work to the body of kiledge can be summarised as
follows. A computational model for generation oftalavith a Gaussian cluster
structure controlled by just two “spread” parametes proposed. It is
experimentally shown that popular methods for chrgpghe number of clusters in
K-Means clustering, such as Gap statistic, arerimfeto intelligent K-Means
method on data of this structure, in either iK-M&agrsion considered, land L.
Based on the experimental results, a new versidK-Means, combining it with
the Hartigan’s rule, is proposed and verified. VW& ashow, additionally using
exponential cluster structures, that the two vesiof iK-Means, L and L, may
lead to rather differing results. This has beelisetil in application to a problem in
bioinformatics by using only Land L, consistent cluster parts. The problem
concerns analysis of differences in gene activitiedifferent types of condition
(cancer or not) over the gene expression data.ofimalise the data, a systematic
review of the methods has been conducted and al morenalisation method
suitable to the task was proposed and utilised.

The subject of interest is the intelligent K-Meamgthod, iK-Means, that
determines the number of clusters by sequentiatipeting “anomalous patterns”,
in two versions: least squares;(land least moduli (). We are interested to see
whether there are any differences between thesedvaions and if there are, then

what are the specific data structures in whichw@rsion is better than another.
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In designing the experiments, one needs not oglyoa data generation model
but also comprehensive evaluation criteria. Thresuation measures, including
the number of clusters, centroids recovery and tuster recovery coefficients,
are implemented. We found that the unweighted nicgtdbetween centroids much
better correlates with the cluster recovery thancluster-size-weighted version,
which leads us to rejection of the latter as aduatesn index.

Our experimental results indicate that:

(a) In general, all tested methods are not sensitithaagelative cluster sizes. Both
the cluster recovery and centroid recovery are ebetat the large
between-cluster spreads. The centroid recovery Ibfmeethods slightly
improves when moving from elongated clusters ofed#ént variances to
spherical clusters of a constant variance; thetelusecovery follows this
pattern too, but the effects are minor on this etspe

(b) L, and L, version of iK-Means method do lead to differensules, and in
general, L is favoured by Gaussian clusters whereasid favoured by
exponential clusters;

(c) Hartigan’s rule “of thumb” HT outperforms the oteein most tests, in terms
of the number of clusters, and it is good in teahsluster recovery at the large
between-cluster spreads; the other methods undesidsration form
consistent patterns of, typically, under-estimatimg number of clusters;

(d) iK-Means, in most cases, outperforms the othetsrms of both centroid and
cluster recovery, but it overestimates the numbberiusters, especially at the

small between-cluster spreads, which can be cureduding a specially
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designed, “HT-adjusted”, version by increasing sfme of anomalous patterns

being disregarded before running K-Means.

Since L and L iK-Means methods may lead to very different resws
follows from our experiments, we are interested uiilizing the differences
between the two methods for a biologically meanihgiroblem. Such is the
problem of finding genes that differently expressler different conditions. The
gene expression data are in two different typescef, dendritic (DC) and
cancerous dendritic cells (Mutz3). Before applyitng clustering method, one
needs to normalize the data. This issue has atraciot of different proposals —
we provide a systematic review of the normalizatinethods. Since jLand L,
versions tend to produce rather different resulis,consider those clusters valid
that are present among the results of both methasle refer to their contents as
cluster-consistent genes. Thell, cluster consistency can be used for analyzing
the difference in gene activity across gene exmesdata in different cells. We
utilized the property of our gene expression da# they contain highly correlated
signals to develop a special normalization methmdsgparation of the physical
condition of the gene expression experiment from Miological part, the
pivot-based normalization (PBR), which is compareith other normalization
methods. Our results indicate that:

(a) By using only L-L, consistent gene sets, two sets of genes havefbeea:
those consistently weak in DC and active in MutaBd those consistently
active in DC and weak in Mutz3;

(b) PBR normalization method finds most conservativeesaof the difference
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between DC and Mutz3 signals.

Among the issues left unexplored one should meritierfollowing. There are
many data structures, not covered in this projibett deserve consideration as a
medium for comparing clustering methods. Furtheseaech should deeper
investigate the entire issue of modelling variowdadstructures and see how
methods compare on different data structures. @emat in this direction, related
to the exponential distribution, indicates thatr¢éhean emerge different patterns in
choosing the right number of clusters. Other futamak should include the two
approaches to choosing that we reviewed but not covered in our experisient
those resampling based on and those utilizing fukieal clustering approaches.
Another direction should include more search-intensersions of K-Means, such
as for example, involving the genetic and other @i@nary minimization

algorithms.
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Appendix A Lists of genes in Tumour/Dendrite gene »@ression data
using Pivot-based with the removal normalization miod

A.1 Genes that are weak DC but very active in Mutz3

gene
number

3722
4082

4198
11366

15339
15533

16044

19594

20272
21187

22327

22943

25019

25133

27258

30434

31036

31165

32578

35681

35731

37900

39452

39676

42205

43512
1318

4029

6286

13186

17095

17501
24861

25435

34293

probename

A_23_P87879
A_23_P96158

A_23_P87879
A_32_P62963

A_24_P8371
A_24_P882732

A_23 P121596
A_24_P94222

A_23 P87879
A_24_P153035

A_24_P887857
A_23_P49136
A_23_P154849
A_32_P76627
A_23 P87879

A_24_P265346

A_23_P38537
A_23_P87879
A_23_P87879
A_23_P87879
A_23_P56050
A_23_P87879
A_32_P53524

A_23_P87879

A_24_P392991

A_24_P261734
A_24_P610945

A_23_P152047

A_23_P206280

A_23 P204751
A_23 P336198

A_23_P39647
A_24_P923676

A_23_P396765

A_23_P122863

gene name

CD69
KRT17

CD69
ENST00000332402

LOC124976
ENST00000311208

PPBP

FBLP-1

CD69
ENST00000311208

LOC440421

LOC161931

OLIG1

ENST00000322533

CD69

KRT14

KRT16

CD69

CD69

CD69

TNNT1

CD69

THC2132626

CD69

KRT16

SLC38A1
ENST00000311197

SCAMP5

GPR56

ACCN2

GLCCI1

SLC4A3
X15674

PGM2LM

GRB10

gene description
Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]

Homo sapiens keratin 17 (KRT17), mRNA [NM_000422]
Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]

Unknown
Homo sapiens, Similar to spinster-like protein, clone
IMAGE:4814561, mRNA, partial cds. [BC041772]

Unknown

Homo sapiens pro-platelet basic protein (chemokine
(C-X-C motif) ligand 7) (PPBP), mRNA [NM_002704]
Homo sapiens filamin-binding LIM protein-1 (FBLP-1),
mRNA [NM_017556]

Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]

Unknown

PREDICTED: Homo sapiens similar to keratin 17
(LOC440421), mRNA [XM_496202]

Homo sapiens testis nuclear RNA-binding protein-like
(LOC161931), mRNA [NM_139174]

Homo sapiens oligodendrocyte transcription factor 1
(OLIG1), mRNA [NM_138983]

full-length cDNA clone CSO0DI013YNO6 of Placenta Cot
25-normalized of Homo sapiens (human). [CR597597]
Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]

Homo sapiens keratin 14 (epidermolysis bullosa simplex,
Dowling-Meara, Koebner) (KRT14), mRNA [NM_000526]
Homo sapiens keratin 16 (focal non-epidermolytic
palmoplantar keratoderma) (KRT16), mMRNA
[NM_005557]

Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]

Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]

Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]

Homo sapiens troponin T1, skeletal, slow, mRNA (cDNA
clone IMAGE:3531880), partial cds. [BC022086]

Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]

Q6IGP7 (Q6IGP7) HDC05721, partial (12%)
[THC2132626]

Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]

Homo sapiens keratin 16 (focal non-epidermolytic
palmoplantar keratoderma) (KRT16), mMRNA
[NM_005557]

Homo sapiens cDNA FLJ14201 fis, clone
NT2RP3002955. [AK024263]

Unknown

Homo sapiens secretory carrier membrane protein 5
(SCAMP5), mRNA [NM_138967]

Homo sapiens G protein-coupled receptor 56 (GPR56),
transcript variant 1, mRNA [NM_005682]

Homo sapiens amiloride-sensitive cation channel 2,
neuronal (ACCN2), transcript variant 1, mMRNA
[NM_020039]

Homo sapiens cDNA FLJ36336 fis, clone
THYMU2006303. [AK093655]

Homo sapiens solute carrier family 4, anion exchanger,
member 3 (SLC4A3), mRNA [NM_005070]

Human pTR5 mRNA for repetitive sequence. [X15674]
Homo sapiens phosphoglucomutase 2-like 1 (PGM2LM),
MRNA [NM_173582]

Homo sapiens growth factor receptor-bound protein 10
(GRB10), transcript variant 4, MRNA [NM_001001555]
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35417

A_23 P390504

FOXC1

Homo sapiens forkhead box C1 (FOXC1), mRNA
[NM_001453]

A.2 Genes that arevery active in DC but weak in Mutz3

gene
number

2344

8538

10465

15420

17957

28352

29926

40888

2927

13355

19729

27927

40263

42282

probename

A_24_P12573

A_23_P109143
A_23_P209625

A_23_P134347

A_23 P36745
A_23 P7827
A_23 P16915

A_24_P319088

A_24_P380734
A_24_P673063
A_24_P71468
A_23_P116898
A_23_P39265

A_23_P94533

gene name

CCLS6

PRNP
CYP1B1

CPVL

ALDH2
AF086130
QPCT

CCLS3

sSDC2
FABP5
QPCT
A2M
C4.4A

CTSL

gene description

Homo sapiens chemokine (C-C motif) ligand 26 (CCLS6),
mRNA [NM_006072]

Homo sapiens prion protein (p27-30) (Creutzfeld-Jakob
disease, Gerstmann-Strausler-Scheinker syndrome, fatal
familial insomnia) (PRNP), transcript variant 1, mRNA
[NM_000311]

Homo sapiens cytochrome P450, family 1, subfamily B,
polypeptide 1 (CYP1B1), mMRNA [NM_000104]

Homo sapiens carboxypeptidase, vitellogenic-like
(CPVL), transcript variant 1, mRNA [NM_031311]

Homo sapiens aldehyde dehydrogenase 2 family
(mitochondrial) (ALDH2), nuclear gene encoding
mitochondrial protein, mMRNA [NM_000690]

Homo sapiens full length insert cDNA clone ZA84A12.
[AF086130]

Homo sapiens glutaminyl-peptide cyclotransferase
(glutaminyl cyclase) (QPCT), mRNA [NM_012413]
Homo sapiens chemokine (C-C motif) ligand 23 (CCLS3),
transcript variant CKbeta8-1, mRNA [NM_005064]

Homo sapiens syndecan 2 (heparan sulfate proteoglycan
1, cell surface-associated, fibroglycan) (SDC2), mRNA
[NM_002998]

Homo sapiens fatty acid binding protein 5
(psoriasis-associated) (FABP5), mRNA [NM_001444]
Homo sapiens glutaminyl-peptide cyclotransferase
(glutaminyl cyclase) (QPCT), mRNA [NM_012413]
Homo sapiens alpha-2-macroglobulin (A2M), mRNA
[NM_000014]

Homo sapiens GPl-anchored metastasis-associated
protein homolog (C4.4A), mRNA [NM_014400]

Homo sapiens cathepsin L (CTSL), transcript variant 1,
mMRNA [NM_001912]

A.3 Genes that areactive in DC but weak in Mutz3

gene
number

9104

19209

21084

28028

31460

probename

A 23 P31755
A 23 P87709
A 23 P147025

A_23_P63209

A_23 P89799

gene name

CRH

FLJ22662

RAB33A

HSD11B1

ACAA2

gene description

Homo sapiens corticotropin releasing hormone (CRH),
mMRNA [NM_000756]

Homo sapiens hypothetical protein FLJ22662 (FLJ22662),
MRNA [NM_024829]

Homo sapiens RAB33A, member RAS oncogene family
(RAB33A), MRNA [NM_004794]

Homo sapiens hydroxysteroid (11-beta) dehydrogenase 1
(HSD11B1), transcript variant 2, mMRNA [NM_181755]
Homo sapiens acetyl-Coenzyme A acyltransferase 2
(mitochondrial 3-oxoacyl-Coenzyme A thiolase) (ACAA2),
nuclear gene encoding mitochondrial protein, mRNA
[NM_006111]
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Appendix B Lists of genes in Tumour/Dendrite genexg@ression data at
two normalization methods

A. Pivot-based without removals normalization methd
A.1 Genes that are weak DC but active in Mutz3

gene
number

262

3722
4082

4198
11366

15339
15533

16044

16620

19594

20272

21827

22327

22943

25019

25133

27258

30434

31036

31165

32578

35681

35731

37900
39452

39676

43512

44198

probename
A 23 P87879

A_23_P87879
A_23_P96158

A_23_P87879
A_32_P62963

A_24_P8371
A_24_P882732

A_23_P121596
A_23_P314101
A_24_P94222

A_23 P87879

A_23 P360754
A_24_P887857
A_23 P49136
A_23 P154849
A_32_P76627
A_23_P87879
A_24_P265346
A_23_P38537
A_23_P87879
A_23_P87879
A_23_P87879
A_23_P56050

A_23_P87879
A_32_P53524

A_23_P87879
A_24_P261734

A_23_P79769

gene name
CD69

CD69
KRT17

CD69
ENSTO00000332402

LOC124976
ENSTO00000311208

PPBP

SUSD2

FBLP-1

CD69

ADAMTS4

LOC440421

LOC161931

OLIG1

ENSTO00000322533

CD69

KRT14

KRT16

CD69

CD69

CD69

TNNT1

CD69
THC2132626

CD69

SLC38A1

BIRC7

gene description

Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]

Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]

Homo sapiens keratin 17 (KRT17), mRNA [NM_000422]
Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]

Unknown
Homo sapiens, Similar to spinster-like protein, clone
IMAGE:4814561, mRNA, partial cds. [BC041772]

Unknown
Homo sapiens pro-platelet basic protein (chemokine (C-X-C
motif) ligand 7) (PPBP), mMRNA [NM_002704]
Homo sapiens sushi domain containing 2 (SUSD2), mRNA
[NM_019601]
Homo sapiens filamin-binding LIM protein-1 (FBLP-1),
mRNA [NM_017556]
Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]
Homo sapiens a disintegrin-like and metalloprotease
(reprolysin type) with thrombospondin type 1 motif, 4
(ADAMTS4), mRNA [NM_005099]
PREDICTED: Homo sapiens similar to keratin 17
(LOC440421), mRNA [XM_496202]
Homo sapiens testis nuclear RNA-binding protein-like
(LOC161931), MRNA [NM_139174]
Homo sapiens oligodendrocyte transcription factor 1
(OLIG1), mRNA [NM_138983]
full-length cDNA clone CSO0DIO13YNO6 of Placenta Cot
25-normalized of Homo sapiens (human). [CR597597]
Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]
Homo sapiens keratin 14 (epidermolysis bullosa simplex,
Dowling-Meara, Koebner) (KRT14), mRNA [NM_000526]
Homo sapiens keratin 16 (focal non-epidermolytic
palmoplantar keratoderma) (KRT16), mMRNA [NM_005557]
Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]
Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]
Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]
Homo sapiens troponin T1, skeletal, slow, mMRNA (cDNA
clone IMAGE:3531880), partial cds. [BC022086]
Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]

Q6IGP7 (Q6IGP7) HDC05721, partial (12%) [THC2132626]
Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mMRNA [NM_001781]

Homo sapiens cDNA FLJ14201 fis, clone NT2RP3002955.
[AK024263]

Homo sapiens baculoviral IAP repeat-containing 7 (livin)
(BIRCY7), transcript variant 2, mRNA [NM_022161]

A.2 Genes that areactive in DC but weak in Mutz3

gene gene
number  probename name gene description
Homo sapiens cytochrome P450, family 1, subfamily B, polypeptide 1
10465 A_23 P209625 CYP1B1 (CYP1B1), mRNA[NM_000104]
Homo sapiens carboxypeptidase, vitellogenic-like (CPVL), transcript
15420 A_23 P134347 CPVL variant 1, mRNA [NM_031311]
Homo sapiens aldehyde dehydrogenase 2 family (mitochondrial)
(ALDHZ2), nuclear gene encoding mitochondrial protein, mMRNA
17957 A_23_P36745 ALDH2 [NM_000690]
Homo sapiens chemokine (C-C moitif) ligand 23 (CCLS3), transcript
33774 A_24_P133905 CCLS3 variant CKbeta8-1, mRNA [NM_005064]
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40888

A_24_P319088

Homo sapiens chemokine (C-C motif) ligand 23 (CCLS3), transcript

CCLS3

variant CKbeta8-1, mRNA [NM_005064]

B. Intensity dependent normalization
B.1 Genes that are weak DC but active in Mutz3

gene
number

262

3722
4082

4198
11366

15339
15533

16044

16620

17501

19594

20272
21187

21827

22327

22943

25019

25133

25435

27258

30434

31036

31165

32578

34293

35681

35731

37900
39452

39676

42205

43512

44198

probename
A_23_P87879

A_23 P87879
A_23 P96158

A_23 P87879
A_32_P62963

A_24 P8371
A_24_P882732

A_23_P121596
A_23_P314101
A_23_P39647
A_24_P94222

A_23_P87879
A_24_P153035

A_23_P360754
A_24_P887857
A_23_P49136
A_23_P154849
A_32_P76627
A_23 P396765
A_23 P87879
A_24_P265346
A_23 P38537
A_23 P87879
A_23 P87879
A_23_P122863
A_23_P87879
A_23_P56050

A_23 P87879
A_32_P53524

A_23 P87879
A_24_P392991
A_24_P261734

A_23_P79769

gene name
CD69

CD69
KRT17

CD69
ENST00000332402

LOC124976
ENST00000311208

PPBP

SuUsD2

SLC4A3

FBLP-1

CD69
ENSTO00000311208

ADAMTS4

LOC440421

LOC161931

OLIG1

ENST00000322533

PGM2LM

CD69

KRT14

KRT16

CD69

CD69

GRB10

CD69

TNNT1

CD69
THC2132626

CD69

KRT16

SLC38A1

BIRC7

gene description

Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]

Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]

Homo sapiens keratin 17 (KRT17), mRNA [NM_000422]
Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]

Unknown
Homo sapiens, Similar to spinster-like protein, clone
IMAGE:4814561, mRNA, partial cds. [BC041772]

Unknown

Homo sapiens pro-platelet basic protein (chemokine (C-X-C
motif) ligand 7) (PPBP), mMRNA [NM_002704]

Homo sapiens sushi domain containing 2 (SUSD2), mRNA
[NM_019601]

Homo sapiens solute carrier family 4, anion exchanger,
member 3 (SLC4A3), mRNA [NM_005070]

Homo sapiens filamin-binding LIM protein-1 (FBLP-1), mRNA
[NM_017556]

Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mMRNA [NM_001781]

Unknown

Homo sapiens a disintegrin-like and metalloprotease
(reprolysin type) with thrombospondin type 1 motif, 4
(ADAMTS4), mRNA [NM_005099]

PREDICTED: Homo sapiens similar to keratin 17
(LOC440421), mRNA [XM_496202]

Homo sapiens testis nuclear RNA-binding protein-like
(LOC161931), mRNA [NM_139174]

Homo sapiens oligodendrocyte transcription factor 1 (OLIG1),
mRNA [NM_138983]

full-length cDNA clone CS0DI013YNO6 of Placenta Cot
25-normalized of Homo sapiens (human). [CR597597]
Homo sapiens phosphoglucomutase 2-like 1 (PGM2LM),
MRNA [NM_173582]

Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mMRNA [NM_001781]

Homo sapiens keratin 14 (epidermolysis bullosa simplex,
Dowling-Meara, Koebner) (KRT14), mMRNA [NM_000526]
Homo sapiens keratin 16 (focal non-epidermolytic
palmoplantar keratoderma) (KRT16), mMRNA [NM_005557]
Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mMRNA [NM_001781]

Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mMRNA [NM_001781]

Homo sapiens growth factor receptor-bound protein 10
(GRB10), transcript variant 4, mMRNA [NM_001001555]
Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]

Homo sapiens troponin T1, skeletal, slow, mMRNA (cDNA clone
IMAGE:3531880), partial cds. [BC022086]

Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]

Q6IGP7 (Q6IGP7) HDCO05721, partial (12%) [THC2132626]
Homo sapiens CD69 antigen (p60, early T-cell activation
antigen) (CD69), mRNA [NM_001781]

Homo sapiens keratin 16 (focal non-epidermolytic
palmoplantar keratoderma) (KRT16), mMRNA [NM_005557]
Homo sapiens cDNA FLJ14201 fis, clone NT2RP3002955.
[AK024263]

Homo sapiens baculoviral IAP repeat-containing 7 (livin)
(BIRCY7), transcript variant 2, mRNA [NM_022161]
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B.2 Genes that areactive in DC but weak in Mutz3

gene
number

2344

8538

10465

15420

16552

17957

23361
28352

29926

33774

40888

41755

probename

A_24 _P12573

A_23 P109143
A_23 P209625
A_23 P134347

A_23 P214222

A_23_P36745

A_23_P215484
A_23_P7827

A_23 P16915
A_24_P133905
A_24_P319088

A_23 P29773

gene
name

CCLS6

PRNP
CYP1B1
CPVL

MARCKS

ALDH2

CCLS6
AF086130

QPCT
CCLS3
CCLS3

LAMP3

gene description

Homo sapiens chemokine (C-C motif) ligand 26 (CCLS6), mRNA
[NM_006072]

Homo sapiens prion protein (p27-30) (Creutzfeld-Jakob disease,
Gerstmann-Strausler-Scheinker syndrome, fatal familial insomnia)
(PRNP), transcript variant 1, mMRNA [NM_000311]

Homo sapiens cytochrome P450, family 1, subfamily B, polypeptide 1
(CYP1B1), mRNA [NM_000104]

Homo sapiens carboxypeptidase, vitellogenic-like (CPVL), transcript
variant 1, mMRNA [NM_031311]

Homo sapiens myristoylated alanine-rich protein kinase C substrate
(MARCKS), mRNA [NM_002356]

Homo sapiens aldehyde dehydrogenase 2 family (mitochondrial)
(ALDHZ2), nuclear gene encoding mitochondrial protein, mMRNA
[NM_000690]

Homo sapiens chemokine (C-C moitif) ligand 26 (CCLS6), mRNA
[NM_006072]

Homo sapiens full length insert cDNA clone ZA84A12. [AF086130]
Homo sapiens glutaminyl-peptide cyclotransferase (glutaminyl cyclase)
(QPCT), MRNA [NM_012413]

Homo sapiens chemokine (C-C moitif) ligand 23 (CCLS3), transcript
variant CKbeta8-1, mRNA [NM_005064]

Homo sapiens chemokine (C-C motif) ligand 23 (CCLS3), transcript
variant CKbeta8-1, mRNA [NM_005064]

Homo sapiens lysosomal-associated membrane protein 3 (LAMP3),
mRNA [NM_014398]
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