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Abstract

Access control has been an important issue in military systems for many years and is becoming in-

creasingly important in commercial systems. There are three important access control paradigms:

the Bell-LaPadula model, the protection matrix model and the role-based access control model.

Each of these models has its advantages and disadvantages. Partial orders play a significant

part in the role-based access control model and are also important in defining the security lattice

in the Bell-LaPadula model. The main goal of this thesis is to improve the understanding and

specification of access control models through a rigorous mathematical approach.

We examine the mathematical foundations of the role-based access control model and conclude

that antichains are a fundamental concept in the model. The analytical approach we adopt enables

us to identify where improvements in the administration of role-based access control could be

made. We then develop a new administrative model for role-based access control based on a

novel, mathematical interpretation of encapsulated ranges. We show that this model supports

discretionary access control features which have hitherto been difficult to incorporate into role-

based access control frameworks.

Separation of duty is an important feature of role-based access control models that has usually

been expressed in first-order logic. We present an alternative formalism for separation of duty

policies based on antichains in a powerset (Sperner families), and show that it is no less expressive

than existing approaches. The simplicity of the formalism enables us to analyze the complexity of

implementing separation of duty policies. In the course of this analysis we establish new results

about Sperner families.

We also define two orderings on the set of antichains in a partially ordered set and prove

that in both cases the resulting structure is a distributive lattice. This lattice provides the formal

framework for a family of secure access control models which incorporate the advantages of existing

paradigms without introducing many of their respective disadvantages. We present two members

of this family: a new model for role-based access control, for which we give an operational semantics

and prove a security theorem similar to the Basic Security Theorem for the Bell-LaPadula model;

and the secure hierarchical protection matrix model which combines the strong security properties

of the Bell-LaPadula model with the flexibility of the protection matrix model.
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To my mother
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I know no safe depository of the ultimate powers of the

society but the people themselves; and if we think them

not enlightened enough to exercise their control with a

wholesome discretion, the remedy is not to take it from

them, but to inform their discretion by education.

Thomas Jefferson
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Chapter 1

Introduction

The security of the information in multi-user computer systems has been an important considera-

tion for many years, and has become increasingly significant with the evolution of interconnected

and distributed systems. Anderson (1973) identified three categories of security violations: unau-

thorized information release, unauthorized information modification and unauthorized denial of

use. More recently, Stoneburger (2000) at the National Institute for Standards and Technology

(NIST) suggests that information system security goals include confidentiality, integrity, availabil-

ity, accountability and assurance, the first three of which clearly correspond to the prevention of

the security violations identified by Anderson nearly thirty years earlier.1

An information system security architecture contains three key components: authentication,

audit and access control (Joshi et al. 2001). In this thesis we focus on access control and how it

can be used to realize the goals outlined above. In particular, it can help enforce confidentiality

and data integrity, and can also facilitate assurance testing. Saltzer and Schroeder (1975) warn

that access control should not be considered in isolation nor can it prevent all unauthorized use

of information: rather, access control is but one aspect, albeit important, of a larger security

strategy. However, we are justified in studying access control because system security ultimately

depends on, and can be no stronger than, the underlying access control mechanisms (Stoneburger

2000).

It is necessary to make certain assumptions when considering access control. Firstly, to render

the problem non-trivial, we assume that it is not the case that every subject can access every

object (McLean 1990). Secondly, to ensure the problem is not meaningless we assume that autho-

rized users act in good faith.2 In short, we are concerned with ensuring that access to objects by

valid, authorized subjects does not compromise the access control policy of the enterprise.

The main goal of this thesis is to extend existing access control models in order to provide a

theoretical framework for access control mechanisms that can realize the goals of confidentiality and

integrity. We demonstrate that by emphasizing the mathematical characteristics of access control

we can elucidate the disadvantages of existing models, and provide the theoretical foundation for

improvements to existing models and the development of new models.

1A glossary of common terms that are used without definition in this introduction can be found on page 188.
2This is analogous to assuming in the context of authentication, that users keep their passwords secret.
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1.1 Access control

We now consider access control in the context of two paper-based systems. This enables us to

draw some analogies with fundamental concepts in access control in computer systems. We will

use this technique on several occasions in this thesis in order to introduce other aspects of access

control.

In the first case, we assume that files are stored in filing cabinets under lock and key. Any

user with an appropriate key can access the files. In this case, the access control mechanism is the

filing cabinets and associated keys.

This form of access control mechanism is based on capabilities. That is, the user presents

credentials (in our example, these credentials are represented by the keys to the filing cabinets) to

the system that enable the system to determine whether access should be permitted or denied. In

a computer system a capability list for a subject is generally considered to be a list of pairs (o, a)

representing an object identifier o and a means of access a, such as “read” for example.

In the second case, we assume that files are released to users by a security guard who maintains

lists of people who are authorized to read the files. If a user wishes to read a file, the security

guard checks whether that user’s name is in the list of people who are authorized to read that file.

If it is, then the file is released. In this case, the access control mechanism is the security guard

and the lists of authorized users.

This form of access control mechanism is based on access control lists. That is, each object

in the system is associated with a list of users who are entitled to access that object. A request

from a user to access a given object is only granted if the user is in the access control list. In a

computer system an access control list for an object is a list of pairs (s, a) where s is a subject

and a is a means of access.

These two examples also illustrate the common assumption that access control should be based

on permission not exclusion. Saltzer and Schroeder (1975) refer to this as fail-safe defaults. In

other words, the default situation is lack of access and the access control mechanism explicitly

identifies conditions under which access is permitted.

Controlling changes to the authorizations available in an access control mechanism is a funda-

mental problem in access control. We first consider how changes can be made to authorizations

in our paper-based system. We assume that each user owns (or is responsible for) a set of files. In

the first system, we imagine that each user keeps his files in a single filing cabinet, and to grant

access to those files, the owner gives another user a key for the cabinet. In the second system, the

owner amends the list of users who can access his files. This situation is known as discretionary

access control in which users are responsible for the propagation of access rights. Discretionary

access control is the most widely used form of access control. Operating systems such as UNIX

and Windows NT implement discretionary access control using access control lists. For example,

given the following output from the UNIX ls command,

-rwxr--r-- 1 jason research 1458 Sep 7 21:29 thesis.tex

the owner of the file (jason) would be granted read, write or execute access to the file thesis.tex,

while users in the group research would be granted read access but denied other forms of access
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(as would any other user of the system).3 Furthermore, jason, as the owner of the file, can grant

or revoke access rights using the chmod command.

There is substantial evidence that discretionary access control mechanisms are rarely configured

correctly and contain many potential security violations (O’Shea 1997). The most significant

causes of such situations are the huge complexity of maintaining hundreds of thousands of access

control lists with little assistance from software tools and the lack of a clearly articulated security

policy against which the performance of the access control mechanism can be measured.

“ . . . existing models, using capabilities or access control lists, leave the security ad-

ministrator with an impossibly large task.” Moffett and Sloman (1991)

“If privilege components . . . and protection components . . . are to be specified by enu-

merations, then both the assignment of privileges and the testing . . . will be too difficult

to be of practical use.” Rabin and Tygar (1987)

However, it may be the case that users are not the owners of information, and are thus not

entitled to make decisions about the propagation of access rights. A simple example concerns

medical records, where doctors and health workers are responsible for maintaining the information,

but are not entitled, in general, to release that information to third parties. This situation is known

as mandatory access control in which the propagation of access rights is determined by some higher

authority, which may be imposed by statutory or enterprise requirements.

The best known mandatory access control model is the Bell-LaPadula model. We explain the

implementation of the Bell-LaPadula model using an analogy with the paper-based filing cabinet

system. We imagine that the filing cabinets are distributed among several nested rooms each with

a lock on the door, and that each user is given a door key. The key to the innermost room can

open the door to every other room. The key to the outermost room can only open the door to the

outermost room, etc.

Hence, if a user is given access to a file (that is, given a key to the filing cabinet), that access

is only useful if the user is also able to open the door to the room containing the filing cabinet.

Similarly, if a user is given a key to a room, that key is only useful if the user also has a key for

a filing cabinet in that room. Computer systems which implement this kind of access control are

often called multi-level secure systems. This additional restriction on the use of access rights is

referred to as an information flow policy. Multi-level secure systems are commonly used in military

applications and commercially sensitive applications. For example, the rooms could correspond to

the US military security levels unclassified, classified, secret and top secret.

In short, although the propagation of access rights is not necessarily constrained in a multi-

level secure system, additional checks implemented by the reference monitor prevent the use of

authorizations that are not sanctioned by the information flow policy. Unfortunately, multi-level

secure systems have been found to be too restrictive for general purpose use.

Of course many commercial applications will have access control requirements or access control

policy. For example, it may be a requirement that personnel staff cannot view financial information

and that no finance staff (with the exception of payroll staff, say) can view personnel information.

3Strictly speaking, a subject is a program or process being run by a user. However, where convenient we adopt
the common practice of regarding a user as a subject.
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The inflexibility of multi-level secure systems has meant that access control policies are usually

implemented on discretionary access control mechanisms which, as we observed earlier, are known

to be difficult to configure correctly. The problem is compounded by the fact that there is rarely an

easy mapping between access control policy statements and access control mechanism primitives.

There have been several attempts to develop formal tools for specifying access control poli-

cies (Abadi et al. 1993; Heydon et al. 1989; Jajodia et al. 1997; Woo and Lam 1993). We do

not consider access control policies in general in this thesis, although in Chapter 7 we consider

separation of duty policies which have received considerable attention in the role-based access

control community (Ahn and Sandhu 2000; Gligor et al. 1998) and for certain military appli-

cations (McLean 1990). Important contributions to the understanding of separation of duty in

role-based access control have been made by Ahn and Sandhu (2000), Gavrila and Barkley (1998)

and Gligor et al. (1998). These contributions have used first-order logic to describe a variety of

separation of duty policies, but little work has been done on the difficulty of implementing and

combining such policies.

Role-based access control models (Ferraiolo et al. 1999; Nyanchama and Osborn 1999; Sandhu

et al. 1996) are a relatively new development. The motivation for such models is to ameliorate

the problems of administration and flexibility identified with discretionary and mandatory access

control, respectively. The fundamental concepts of role-based access control are now well estab-

lished and are detailed in the recent unified standard for role-based access control (Ferraiolo et al.

2001). The basic idea is to reduce the complexity of access control administration by associating

users and capabilities with roles. In our filing cabinet system this is analogous to reducing the

number of keys in the system by issuing users with skeleton keys that can open many different

filing cabinets.

However, there is less agreement on how role-based access control mechanisms should be ad-

ministered. The most significant attempt in this area is ARBAC97 (Sandhu et al. 1999) which

subsumes ideas developed by Nyanchama and Osborn (1999) and Gavrila and Barkley (1998). Al-

though ARBAC97 is an important contribution to understanding and modelling administration in

role-based access control, we believe that there are still substantial opportunities for research into

administration in role-based access control. In addition, we believe that certain assumptions that

have been made in the development of the RBAC96 and ARBAC97 models have compromised the

original motivation and benefits of role-based access control.

Informally, the safety problem (Budd 1983; Harrison et al. 1976; Harrison and Ruzzo 1978;

Lipton and Snyder 1977; Lipton and Snyder 1978; Sandhu 1992d; Sandhu 1992c) asks whether it

is possible for a subject to acquire a certain access right to an object (Harrison et al. 1976). The

safety problem in general is intractable for even relatively simple access control models; for more

complex models – the protection matrix model, for example – it is undecidable. A model that

has an undecidable safety problem is described as having weak security properties. The quest for

access control models that provide sufficient flexibility for real-world applications and have strong

security properties has occupied many researchers in the last 30 years (Bell and LaPadula 1973a;

Budd 1983; Harrison et al. 1976; Harrison and Ruzzo 1978; Lipton and Snyder 1977; Lipton and

Snyder 1978; Sandhu 1992c; Sandhu 1992d). However, we are unaware of any attempt to assess

the complexity of the safety problem in role-based access control.
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1.2 Partial orders

The second main strand in this thesis concerns the study of partial orders. Everyone has an intu-

itive idea about the properties of an ordering on a set. The most obvious thing about a statement

about order is that it requires a comparison of two members of the set under consideration. We

cannot say “bill is older than”, for example. In other words, we can view an ordering as a binary

relation on a set.

From the statements “bill is older than john” and “john is older than dave” we deduce that

bill is older than dave. That is, order is a transitive property. Similarly we would not deduce that

john is older than bill. That is, order is an anti-symmetric property.

The “is older than” relation is a total ordering on the set of people. That is, given two people

an ordering always exists between them with respect to their ages. However this is not always

the case. Consider the set of non-zero positive integers, and say “x is less than y” if x divides

y without remainder, which we will denote x | y. For example, 2 | 4 and 8 | 72. However, 3 - 7

and 7 - 3. We say that {3, 7} is an antichain, and that | is a partial ordering . In general, any

set whose elements are pairwise incomparable (with respect to the ordering) is an antichain. For

example, the set of primes is an infinite antichain in the set of non-zero natural numbers with the

| ordering. (Note that x | x for all positive integers and hence | is a reflexive binary relation.) We

define partially ordered sets and antichains formally in Chapter 2.

Davey and Priestley (1990) quote several interesting applications of partially ordered sets:

Boolean algebra and topology in mathematics; domain theory in computer science; and concept

theory and analysis in the social sciences. In the context of access control, partially ordered sets

are used to model information security policies (Denning 1976) and role hierarchies (Sandhu et al.

1996), and also arise in the typed access matrix model (Sandhu 1992c) and the schematic protection

model (Sandhu 1988). In addition, Harrison and Ruzzo (1978) define a partial order on protection

matrices in their analysis of the safety problem in mono-conditional monotonic protection systems.

In Chapters 3, 4 and 7 we will demonstrate that antichains are fundamental to the modelling of

role-based access control and separation of duty policies. In Chapter 5 we prove, by constructing

antichains in the role hierarchy, that the safety problem in role-based access control is undecidable.

Finally, in Chapter 8, we show that sets of antichains can be used to provide a theoretical basis

for a new framework for access control.

1.3 Outline of the thesis

In Chapter 2 we introduce some prerequisite concepts in mathematics and access control. In

Section 2.1 we formally define partially ordered sets and associated standard results and definitions.

Of particular importance in this section are the definitions of a lattice and of a completion of

a partially ordered set. In Section 2.2 we introduce the combinatorial concepts that will be

required in Chapter 7 when we consider the structural complexity of separation of duty policies.

In Sections 2.3.1 and 2.3.2 we describe the protection matrix model and the Bell-LaPadula model,

respectively. The protection matrix (Lampson 1971; Harrison et al. 1976) is a conceptual tool

for modelling discretionary access control mechanisms. Access control lists and capabilities can

be expressed in a natural way in this model. We conclude the chapter with a brief outline of
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complexity theory and deterministic Turing machines which we use when discussing the safety

problem in Chapter 5.

Chapter 3 is a comprehensive review of RBAC96 and ARBAC97. It introduces a mathematical

notation for role-based access control based on ideas introduced in Section 2.1, which we believe is

far easier to use than existing schemes. We also analyze the complexity of certain administrative

functions required by the ARBAC97 model. This leads naturally to the material in Chapter 4 in

which we discuss the shortcomings of existing role-based access control models.

The simplicity of our notation and its mathematical basis facilitates a rigorous analysis of the

RBAC96 and ARBAC97 models. This analysis suggests certain new approaches to administra-

tion in role-based access control. In Chapter 4, we introduce RHA, a new family of models for

administration of the role hierarchy and extend this to the SARBAC model, a complete model

for administration in role-based access control. The development of RHA is based on intuitive

assumptions about the way in which administration should be performed; as a result, we believe

that RHA achieves a more realistic and flexible solution to administration in a role-based ac-

cess control environment than ARBAC97. In addition, we show that discretionary access control

can be supported using SARBAC. Previous attempts to incorporate discretionary access control

into role-based access control have proved rather complicated and counter-intuitive (Osborn et al.

2000; Sandhu and Munawer 1998a). We conclude the chapter with a description of our generalized

role-based access control model which extends the concepts of group and ability as used in Sandhu

et al. (1999).

Chapter 5 is concerned with the safety problem. There have been many results published on

the safety problem in the protection matrix model and its variants in the last 25 years (Harrison

et al. 1976; Harrison and Ruzzo 1978; Lipton and Snyder 1978; Sandhu 1992c). We review these

results and sketch some of the methods that have been employed to analyze the safety problem.

The main contribution of Chapter 5 is to define the safety problem in role-based access control and

establish that in general it is undecidable in the RBAC96/ARBAC97 framework (Crampton and

Loizou 2001c). We also prove that the safety problem is undecidable in the context of RBAC96

using SARBAC as the administrative model.

In Chapter 6, we prove that the set of all antichains in a finite partially ordered set X forms a

lattice under two different orderings, and that this lattice is a completion of X. We also determine

the binary operations of the two lattices, prove analogues of Birkhoff’s Representation Theorem for

finite distributive lattices and exhibit a Dedekind-MacNeille-style completion of X. These results

appeared in Crampton and Loizou (2000) and Crampton and Loizou (2001b). One ordering on

the lattice of antichains is used in Chapter 7 to support binary operations on conflict of interest

policies. The second ordering provides the formal motivation for a family of secure access control

models which we develop in Chapter 8.

In Chapter 7, we formally define a very simple model for separation of duty policies based on

antichains in the powerset of a finite set and compare it to existing approaches. The inherent

simplicity of our representation of these policies and their formal equivalence to Sperner families

enables us to establish several important results on the structural complexity of a separation of

duty policy and on the number of separation of duty policies. We show that a binary operation can

be defined on separation of duty policies that captures the idea of composition of two policies in

a natural and intuitive way. In the course of this chapter we also identify some novel applications
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of separation of duty policies in role-based access control.

In Chapter 8 we introduce a framework for the development of secure access control models.

This framework is based on ideas in the Bell-LaPadula model, role-based access control and the

lattice of antichains defined in Chapter 6. The main contribution of this chapter is to develop a

new model for role-based access control from this framework which uses parts of the administrative

model developed in Chapter 4. A preliminary version of this model and the work on separation of

duty policies appeared in (Crampton and Loizou 2001a). The second contribution of this chapter

is to develop the secure hierarchical protection matrix model which reflects commercial enterprises

more accurately than the Bell-LaPadula model while preserving its strong security properties.

Finally, in Chapter 9, we review the contributions of the thesis and discuss the numerous

opportunities for future research.

The contributions of this thesis are summarized in Table 1.1. Figure 1.1 is a flow chart that

summarizes the contents of the thesis and the order in which the chapters can be read. Figures,

tables, commands and equations are numbered sequentially within each of the nine chapters.

Theorems, definitions and similar environments are numbered sequentially within each section.

Citations follow the recommendations of The Chicago Manual of Style using the name of the

author(s) and the year of publication. The full details of the references are given at the end of the

thesis in alphabetical order by author.

Section 3.2 Notation for role-based access control

Section 3.6 Complexity of administrative functions in ARBAC97

Section 4.2 New model for administration of role hierarchy

Section 4.3 New model for administration in role-based access control

Section 4.4 Model to support discretionary access control features

Section 4.5 The generalized role hierarchy

Section 5.2 Undecidability of the safety problem in role-based access control

Chapter 6 An analysis of the lattice of antichains in a partially ordered set

Section 7.1 A new approach to separation of duty policies

Section 7.2.2 Novel applications of separation of duty policies in role-based access control

Section 7.3 New bounds on the number of Sperner families

Chapter 8 A new framework for secure access control models

Section 8.1 A secure role-based access control model

Section 8.2 A secure protection matrix model

Table 1.1: Contributions of the thesis

Finally, we briefly describe the symbolic conventions employed in the thesis. In general we

will denote functions by lower case Greek letters; elements of a set in lower case letters (x, y ∈ X,

for example); subsets of a set in upper case letters (X1, X2 ⊆ X, for example); families of sets in

upper case script letters (F , for example). Clearly, there will be instances where these conventions

cannot be adhered to. For example, an element of F could be denoted as a lower case script letter

or as an upper case roman letter since it is a set. In general we will adopt the latter course.

We believe it is always desirable to choose notation and symbols that assist the reader. How-

ever, this means that certain symbols may be used more than once. The reader should bear in

mind therefore that the semantics of a symbol may change, although this occurs rarely and never
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within the scope of a section. We trust that the reader finds that this hint of ambiguity in the

notation is more than offset by the use of intuitive and semantically rich symbolism. A list of

notation used in the thesis can be found on page 185.



Chapter 2

Preliminaries

The purpose of this chapter is to acquaint the reader with the prerequisite mathematical material.

Section 2.1 introduces elementary definitions and results for partially ordered sets (posets).

In particular, we introduce the notions of an antichain and a completion which are fundamental

to the material in Chapter 6. Further details can be found in any book on order and lattice

theory, of which the following are recommended to the interested reader: Birkhoff (1948); Burris

and Sankappanavar (1981); Davey and Priestley (1990) and Grätzer (1978).

Section 2.2 introduces the combinatorial material that will be used extensively in Chapter 7.

Central to this section is the concept of a symmetric chain partition which provides a highly

structured method of partitioning the powerset of a finite set. An antichain in the powerset of a

finite set is often referred to as a Sperner family, and is formally equivalent to a canonical conflict

of interest policy which is defined in Chapter 7. Symmetric chain partitions can be used to prove

Sperner’s Theorem which imposes a maximal size on a Sperner family. We state and prove a result

due to Hansel which imposes upper and lower bounds on the number of Sperner families in a given

powerset (Hansel 1966). This prepares the reader for the proof of Theorem 7.3.2. An excellent

introduction to symmetric chain partitions and Sperner’s Theorem can be found in Brualdi (1999).

A detailed account of Sperner families and Hansel’s result can be found in Engel (1997).

In Section 2.3 we consider the two best known access control models, the protection matrix

model and the Bell-LaPadula model. This material serves as a useful introduction to access control

models and informs the material in Chapters 5 and 8.

We conclude the chapter with short, fairly informal introductions to complexity theory and

Turing machines. This material will be required in the discussion of the safety problem in Chap-

ter 5.

2.1 Partial orders

Definition 2.1.1 A pair 〈X,6〉 is a partially ordered set or poset if for all x, y, z ∈ X,

• x 6 x,

• x 6 y and y 6 x implies x = y,

• x 6 y and y 6 z implies x 6 z.

21
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In other words, 6 is a binary relation on X that is reflexive, anti-symmetric and transitive.

We refer to 6 as a partial order . Henceforth, when the ordering is clear from context, we will

write X to mean the poset 〈X,6〉. We will write: x < y if x 6 y and x 6= y; x > y and y 6 x

interchangeably; x ‖ y if x 66 y and y 6> y. A reflexive, transitive binary relation 6 on X is called

a pre-order .

Unless otherwise stated the set X is finite and has cardinality n. The powerset of X is the set

of subsets of X, and is denoted 2X . We will identify X = {x1, . . . , xn} with the set [n] = {1, . . . , n}

under the mapping xi 7→ i. It can be easily verified that the following are all examples of posets:

• 〈2X ,⊆〉;

• 〈N,6〉, where 6 is the standard ordering on the set of natural numbers N;

• 〈N+, |〉, where N+ is the set of non-zero natural numbers and m | n if m divides n without

remainder.

Definition 2.1.2 Let X be a poset and x, y ∈ X. We say y covers x, or x is covered by y,

denoted xl y, if x < y and for all z ∈ X, x 6 z < y implies x = z.

The poset 〈2[n],⊆〉 plays an important part in this thesis. Therefore, for notational convenience

we will freely interchange the order symbols ⊆ and 6. In particular, for Y,Z ⊆ X, Y l Z means

Y ⊂ Z and |Y | = |Z| − 1, where |Y | is the cardinality of Y . For example {1} l {1, 2}, but

{1} /l {1, 2, 3} and {1} /l {2, 3}. Hence the reader should be careful to distinguish between the

use of 6 (and <) for subsets and integers. This distinction will always be clear from context.

A poset 〈X,6〉 is often represented by a Hasse diagram, which is the graph of the covering

relation on X. That is, the nodes of the graph are members of X, and an edge exists between x

and y if x l y. In particular, an edge is not drawn from a node to itself, nor is an edge drawn

between x and y if there exists z such that x < z < y.

By convention, if xl y, the node labelled x will be lower than the node labelled y in the Hasse

diagram. We will also adopt the convention that nodes of interest will be represented by circles

(see Figure 2.1a, for example), and the remaining nodes will be represented by discs.1 Three

posets, represented by their Hasse diagrams, are shown in Figure 2.1.

Definition 2.1.3 Given x ∈ X, ∇x = {y ∈ X : xl y} is defined to be the upper shadow of x;

∆x = {y ∈ X : y l x} is the lower shadow of x.

Definition 2.1.4 If X is a poset, Y ⊆ X is a chain if, for all y1, y2 ∈ Y , either y1 6 y2 or

y2 6 y1. Y is an antichain if, for all y1, y2 ∈ Y , either y1 = y2 or y1 ‖ y2.

We denote the set of antichains in a poset X by A(X). The antichain {b, c, d} is highlighted

in Figure 2.1a. An antichain in 2[n] is also referred to as a Sperner family (Engel 1997). That is,

a Sperner family is a collection of subsets of [n] in which no member of the collection is a subset

of any other. For example, {{1} , {2, 3} , {2, 4, 5}} is a Sperner family in 2[n] for n > 5.

1In this context, a disc is a circle and its interior.
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Figure 2.1: Hasse diagrams

Definition 2.1.5 The width of a poset, X, denoted w(X), is the maximal cardinality of an

antichain in X.

Definition 2.1.6 Given a poset X and Y ⊆ X, we say y ∈ Y is a minimal element if for all

y′ ∈ Y , y′ 6 y implies y = y′. Similarly, y ∈ Y is a maximal element if for all y′ ∈ Y , y 6 y′

implies y = y′.

Definition 2.1.7 Let X be a poset, and let Y ⊆ X.

• An element x ∈ X is an upper bound for Y if, for all y ∈ Y , y 6 x. We denote the set of

upper bounds of Y by Y u.

• If Y u has a unique minimal element x, then we say x is the least upper bound or supremum

of Y . We denote the supremum of Y by supY .

• An element x ∈ X is a lower bound for Y if, for all y ∈ Y , x 6 y. We denote the set of

lower bounds of Y by Y l.

• If Y l has a unique maximal element x, then we say x is the greatest lower bound or infimum

of Y . We denote the infimum of Y by inf Y .

Definition 2.1.8 A poset X is a lattice if, and only if, for all x, y ∈ X both inf{x, y} and

sup{x, y} exist in X. If for all Y ⊆ X, supY and inf Y exist (in X), then X is called a complete

lattice.

It can be easily checked that Figure 2.1a represents a lattice. However, the poset represented

in Figure 2.1b is not a lattice since {b, c} does not have a least upper bound. (Similarly, {d, e} does

not have a greatest lower bound.) The poset in Figure 2.1c is not a lattice because, for example,

{b, f} does not have an upper bound.

Clearly all finite lattices are complete. (Let X be a lattice. Then by definition, for all Y ⊆ X

such that |Y | = 2, supY and inf Y exist. By induction, for all Y ⊆ X such that Y is finite,

supY and inf Y exist. Hence, if X is finite, every subset of X has a greatest lower bound and
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a least upper bound.) However, note that 〈N,6〉 is a lattice (since for all m,n ∈ N such that

m < n, inf {m,n} = m and sup {m,n} = n) but is not a complete lattice because, for example,

{x ∈ N : x > 2} does not have a least upper bound in N.

If L is a lattice inf {x, y} is usually written x ∧ y (the “meet” of x and y) and sup {x, y} is

usually written x ∨ y (the “join” of x and y). We will also write 〈L,∨,∧〉 to mean that the set

L is a lattice with the operations ∨ and ∧. For example, 〈2[n],∪,∩〉 is a lattice. Indeed a lattice

can be defined as a purely algebraic structure in terms of these operations.

Definition 2.1.9 Let 〈X1,61〉 and 〈X2,62〉 be two posets. Then φ : X1 → X2 is

• an order-preserving function if x 61 y implies φ(x) 62 φ(y),

• an order embedding if x 61 y if, and only if, φ(x) 62 φ(y).

If φ is an order embedding we will write φ : X1 ↪→ X2.

Definition 2.1.10 Let X be a poset. If φ : X ↪→ L, where L is a complete lattice, then we say

that L is a completion of X.

Definition 2.1.11 Two lattices, 〈L1,∨1,∧1〉, 〈L2,∨2,∧2〉, are isomorphic, denoted L1 ∼= L2, if

there is a bijection φ : L1 → L2 such that φ(a ∨1 b) = φ(a) ∨2 φ(b) and φ(a ∧1 b) = φ(a) ∧2 φ(b)

for all a, b ∈ L1.

Informally, two lattices are isomorphic if their Hasse diagrams have the same structure. For

example, the lattice in Figure 2.1a is isomorphic to 〈2[3],⊆〉.

The following result characterizes isomorphic lattices using the respective partial orderings on

the lattices. It will be used in the proofs of Theorem 6.1.1 and Theorem 6.2.1.

Theorem 2.1.1 Two lattices 〈L1,61〉 and 〈L2,62〉 are isomorphic if, and only if, there is a

bijection φ from L1 to L2 such that both φ and φ−1 are order-preserving.

Definition 2.1.12 If X is a poset then Y ⊆ X is an (order) ideal if for all y ∈ Y, x ∈ X,

x 6 y implies x ∈ Y . If X is a poset then Y ⊆ X is an (order) filter if for all y ∈ Y, x ∈ X,

x > y implies x ∈ Y . The set of order ideals of X is denoted I(X). The set of order filters of X

is denoted F(X).

Definition 2.1.13 If X is a poset and Y ⊆ X, we define ↓Y read “down Y ” as follows:

↓Y = {x ∈ X : there exists y ∈ Y such that x 6 y} .

Similarly we define ↑Y read “up Y ” as follows:

↑Y = {x ∈ X : there exists y ∈ Y such that x > y} .

We will denote ↓{x} by ↓x and ↑{x} by ↑x.

Proposition 2.1.1 For all Y ⊆ X, ↓Y ∈ I(X), Y ⊆ ↓Y , ↑Y ∈ F(X) and Y ⊆ ↑Y .
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Figure 2.2 shows an order ideal and an order filter in the poset depicted in Figure 2.1b. It can

be seen that the set of maximal elements in the ideal and the set of minimal elements in the filter

both equal the antichain {b, c}. Furthermore, the ideal is ↓ {b, c} and the filter is ↑ {b, c}. We will

use this correspondence between ideals, filters and antichains extensively in Chapter 6.
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Figure 2.2: Ideals and filters

Lemma 2.1.1 For any (possibly infinite) poset X, 〈I(X),⊆〉 and 〈F(X),⊇〉 are complete lattices.

Furthermore, 〈I(X),⊆〉 and 〈F(X),⊇〉 are completions of X via the mappings x 7→ ↓x and x 7→

↑x, respectively.

The proof of Lemma 2.1.1 follows immediately from Definition 2.1.13 (Davey and Priestley

1990). Lemma 2.1.1 is used in conjunction with Theorem 2.1.1 in Chapter 6 to prove that the set

of antichains is a complete lattice.

Definition 2.1.14 Given a poset X, a range is a subset of X defined by two end points, x, y ∈ X.

An open range, denoted (x, y), is defined to be {z ∈ X : x < z < y}. A closed range, denoted [x, y],

is defined to be {z ∈ X : x 6 z 6 y}.

Additionally, (x, y] = {z ∈ X : x < z 6 y}, and [x, y) = {z ∈ X : x 6 z < y}. Ranges are the

basic unit of administration in ARBAC97, which is discussed in detail in Section 3.4.

Definition 2.1.15 Let L be a lattice; x, y, z ∈ L obey the distributive law if

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

If the distributive law holds for all x, y, z ∈ L then L is a distributive lattice.

Definition 2.1.16 Let L be a lattice. An element x ∈ L is join-irreducible if ∆x = {y} for some

y ∈ L. We denote the set of join-irreducible elements in L by J (L).

This is not the standard definition of a join-irreducible element, which is normally stated in

terms of the join operation (Davey and Priestley 1990). However, it is a more intuitive definition

and has an obvious interpretation in the context of a Hasse diagram.
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Lemma 2.1.2 Let L be a distributive lattice and let x ∈ J (L), where x = a1 ∨ · · · ∨ ak for

a1, . . . , ak ∈ L. Then x 6 ai for some i, 1 6 i 6 k.

Definition 2.1.17 Given two posets 〈X,6〉 and 〈Y,6〉 we can form the following posets:

• The dual of X, denoted X∂ , is the poset 〈X,>〉.

• The linear sum of X and Y , denoted X ⊕ Y , is the poset 〈X
.
∪ Y,6〉, where X

.
∪ Y is the

disjoint union of X and Y and x 6 y in X ⊕ Y if, and only if,

x, y ∈ X and x 6 y in X,

or x, y ∈ Y and x 6 y in Y ,

or x ∈ X, y ∈ Y.

• The cartesian product of X and Y , denoted X × Y , where (x1, y1) 6 (x2, y2) in X × Y if,

and only if, x1 6 x2 and y1 6 y2.

The Hasse diagram of X∂ is obtained by inverting the Hasse diagram of X. For example, the

dual of 〈2[n],⊆〉 is 〈2[n],⊇〉. The Hasse diagram of X⊕Y is obtained by placing the Hasse diagram

of Y above that of X and inserting an edge between each maximal element of X and each minimal

element of Y . For example, the poset in Figure 2.1b is the linear sum of the posets {a, b, c} and

{d, e, f}. We will encounter the cartesian product of two posets in the Bell-LaPadula model in

Section 2.3.2.

2.2 Combinatorial considerations

The main purpose of this section is to introduce symmetric chain partitions and a result due

to Hansel (1966). These ideas yield several properties of antichains in a powerset that will be used

extensively in Chapter 7. The ideas in this section are rather technical and are not required until

Section 7.3. Therefore, the reader may prefer to omit this section now and return to it before

reading Chapter 7.

Definition 2.2.1 A partition of a set X is a collection of subsets of X, {X1, . . . , Xk}, such that

X =
⋃k
i=1Xi and Xi ∩Xj = ∅ for all 1 6 i < j 6 k.

Definition 2.2.2 A symmetric chain partition of 2[n] is a partition of 2[n] into chains such that

for each chain {C0, . . . , Ck}, C0 lC1 l . . .lCk and |C0|+ |Ck| = n. The length of such a chain

is defined to be k + 1.

Note that a symmetric chain partition is not unique for n > 2. Two symmetric chain partitions

of 2[3] are shown in Figure 2.3.

Theorem 2.2.1 For all n > 1, there exists a symmetric chain partition of 2[n].

We present a constructive proof by induction of Theorem 2.2.1 (Brualdi 1999) as it introduces

notation that will be used extensively in this section.
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Figure 2.3: Symmetric chain partitions of 2[3]

Proof of Theorem 2.2.1 We use the symmetric chain partition from Figure 2.3a as a base case

for the induction.

Suppose now that there is a symmetric chain partition of 2[n] for 3 6 n 6 N . For each chain

C = C0 l . . .l Ck, we construct the chains

C+ , C0 l . . .l Ck l Ck ∪ {N + 1} and (2.1)

C− , C0 ∪ {N + 1}l . . .l Ck−1 ∪ {N + 1}. (2.2)

(Note that |C+| = |C|+1 and |C−| = |C| − 1. Therefore, if |C| = 1 we only construct C+.) Clearly,

by construction, the resulting chains form a symmetric chain partition of 2[n+1].

Henceforth, for all n > 3, we will assume the existence of an inductively constructed symmetric

chain partition, denoted SCPn, using the symmetric chain partition in Figure 2.3a as the base

case. The construction of SCP4 from SCP3 is shown in Figure 2.4.

∅ ⊂ {1} ⊂ {1, 2} ⊂ {1, 2, 3} →







∅ ⊂ {1} ⊂ {1, 2} ⊂ {1, 2, 3} ⊂ {1, 2, 3, 4}

{4} ⊂ {1, 4} ⊂ {1, 2, 4}

{2} ⊂ {2, 3} →







{2} ⊂ {2, 3} ⊂ {2, 3, 4}

{2, 4}

{3} ⊂ {1, 3} →







{3} ⊂ {1, 3} ⊂ {1, 3, 4}

{3, 4}

Figure 2.4: An inductive construction of SCP 4

Lemma 2.2.1 SCPn has
(

n
bn/2c

)
chains.

For a proof of this elementary result see Brualdi (1999), for example.

Theorem 2.2.2 (Sperner 1928) For all S ∈ A(2[n]),

|S| 6

(
n

bn/2c

)

,
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with equality when

S =







{S ⊆ [n] : |S| = n
2 } n even,

{S ⊆ [n] : |S| = n−1
2 } or {S ⊆ [n] : |S| = n+1

2 } n odd.

Proof (Sketch) Sperner’s Theorem can be proved as a corollary of Lemma 2.2.1 by noting that

if S ∈ A(2[n]) then for all C ∈ SCPn, |S ∩ C| 6 1. SCPn is a partition of 2[n]; therefore,

|S| 6 |SCPn| =
(

n
bn/2c

)
.

In other words, Sperner’s Theorem states the width of 2[n]. For example, the largest antichains

in 2[3] are {{1} , {2} , {3}} and {{1, 2} , {1, 3} , {2, 3}}, both of which have size 3 =
(
3
1

)
, confirming

the result of Sperner’s Theorem. Demetrovics (1978) proved using Sperner’s Theorem that the

number of minimal keys in a database table with n attributes is not greater than
(
n
n/2

)
, and this

bound is the best possible.

Sperner’s Theorem and its original proof (Sperner 1928) provide the inspiration for

Lemma 7.3.1. The method of proof using symmetric chain partitions is also employed in Lem-

mas 7.3.2 and 7.3.3.

In fact, Sperner’s Theorem can also be derived from the LYM-inequality, due independently

to Lubell (1966), Yamamoto (1954) and Meshalkin (1963).

Lemma 2.2.2 (LYM-inequality) Given a Sperner family S,

∑

S∈S

1
(
n
|S|

) 6 1.

Remark 2.2.1 Let nk be the number of elements of cardinality k in S. Then we can re-write the

LYM-inequality as

∑

k

nk
(
n
k

) 6 1.

Theorem 2.2.3 (Hansel 1966) For all n > 1,

2ν 6 |A(2[n])| 6 3ν , where ν =

(
n

bn/2c

)

.

To clarify the presentation of the proof of Theorem 2.2.3, we first prove two preparatory results:

Proposition 2.2.1 and Theorem 2.2.4. We adopt the style of proof given in Engel (1997). We give

a proof of Hansel’s result because Theorem 7.3.2, in which we significantly improve on the upper

bound in Theorem 2.2.3, is proved using a similar method.

Proposition 2.2.1 Let C = C0lC1l· · ·lCr be a chain in SCPn. If |C0| = i then |C| = n−2i+1.

Proof If |C0| = i, then |Cr| = n − i, since |C0| + |Cr| = n. Furthermore, |C0|, . . . , |Cr| are

consecutive integers, since C0 l · · ·l Cr. There are |Cr| − |C0|+ 1 = (n− i)− i+ 1 = n− 2i+ 1

such integers.
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Theorem 2.2.4 For every chain C in SCPn, and for every set of three consecutive members

Ci−1lCilCi+1 of C, there is some C ′
i such that Ci−1lC ′

ilCi+1 and C
′
i is contained in a chain

D with |D| = |C| − 2.

Proof (By induction on n) Clearly the theorem is true for the case n = 3 by inspection of

Figure 2.3. Suppose the result is true for all n 6 N and consider SCPN+1. There are two cases

to examine.

• Ci−1, Ci, Ci+1 belong to a chain of the form C+ ∈ SCPN+1, defined in (2.1). There are two

possibilities.

– If N+1 6∈ Ci+1, then Ci−1, Ci, Ci+1 ∈ C, where C ∈ SCPN , and by inductive hypothesis

there exists a chain D ∈ SCPN such that C ′
i ∈ D, |D| = |C| − 2 and Ci−1 l C ′

i l Ci+1.

Furthermore, C ′
i ∈ D

+, D+ ∈ SCPN+1 and |D+| = |C+| − 2, since |D| = |C| − 2.

– If N + 1 ∈ Ci+1, then Ci is the maximal element in C (the chain from which C+ is

constructed). Hence we can take C ′
i to be Ci−1 ∪ {N + 1} which belongs to the chain

C− ∈ SCPN+1, defined in (2.2), and |C−| = |C+| − 2 by construction.

• Ci−1, Ci, Ci+1 belong to a chain of the form C− ∈ SCPN+1. Then there exists C ∈ SCPN

such that C = D0 l · · · l Dk and Cj = Dj ∪ {N + 1} for 0 6 j 6 k − 1. By inductive

hypothesis, there exists a chain D ∈ SCPN containing an element D′
i with Di−1lD′

ilDi+1

and |D| = |C| − 2. Note that Di+1 cannot be the maximal element, Dk, in C, since C
− =

D0 ∪ {N + 1} l · · · lDk−1 ∪ {N + 1}. Therefore D′
i is not the maximal element of D. (If

D′
i were maximal then |D| 6 |C| − 4, since D′

i lDi+1 l · · ·lDk and, by Proposition 2.2.1,

the length of a chain reduces by two when the size of the maximal element is reduced by

one.) Thus D′
i ∪ {N + 1} belongs to D− ∈ SCPN+1 and is the required element, since

|D−| = |D| − 1 = |C| − 3 = |C−| − 2.

Proof of Theorem 2.2.3 We wish to prove that for all n > 2,

2ν 6 |A(2[n])| 6 3ν , where ν =

(
n

bn/2c

)

.

In order to prove the left-hand side of the inequality, we note that S = {S ⊆ [n] : |S| = bn/2c}

belongs to A(2[n]), and every subset of S belongs to A(2[n]). There are 2|S| = 2ν subsets of S.

The proof of the right-hand side of the inequality proceeds by counting the number of ways in

which we can construct a filter F of 〈2[n],⊆〉. The fact that there is a bijection between the set of

filters and the set of antichains is proved in Corollary 6.1.1. We construct F by including zero or

more elements from each chain in SCPn taking the chains in order of increasing length.

For chains of length at most two, we have at most three choices of elements to include in F :

neither element, the maximal element or the minimal element (and hence the maximal element as

well).

Suppose that we now have to make a choice of elements from the chain C0lC1l · · ·lCk and

that we have already chosen the elements from all chains of shorter length, thus fixing some part

of F . By Theorem 2.2.4 there exist C ′
1, . . . , C

′
k−1 such that Ci−1lC ′

ilCi+1 for 1 6 i 6 k−1 and
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each C ′
i belongs to a shorter chain. By the construction of F , we already know whether C ′

i ∈ F

for 1 6 i 6 k − 1.

Define l to be the largest index such that C ′
l 6∈ F and u to be the smallest index such that

C ′
u ∈ F . (If C ′

i ∈ F for 1 6 i 6 k − 1 define l = 0 and if C ′
i 6∈ F for 1 6 i 6 k − 1 define u = k.)

We have two possibilities: either

C ′
1, . . . , C

′
l

︸ ︷︷ ︸

6∈F

, C ′
u, . . . , C

′
k−1

︸ ︷︷ ︸

∈F

and u− l = 1; or

C ′
1, . . . , C

′
u−1

︸ ︷︷ ︸

6∈F

, C ′
u

︸︷︷︸

∈F

, C ′
u+1, . . . , C

′
l−1

︸ ︷︷ ︸

?

, C ′
l

︸︷︷︸

6∈F

, C ′
l+1, . . . , C

′
k−1

︸ ︷︷ ︸

∈F

and u− l 6 −1.

Now C1, . . . , Cl−1 6∈ F since C1 l · · ·l Cl−1 l C ′
l ; and Cu+1, . . . , Ck ∈ F since C ′

u l Cu+1 l

· · ·l Ck. Hence F can only be extended by the inclusion of one or more of Cl and Cu.

If u− l = 1 then

C0 l · · ·l Cl−1
︸ ︷︷ ︸

6∈F

l Cl l Cu l Cu+1 l · · ·l Ck
︸ ︷︷ ︸

∈F

and hence we can make at most three choices to extend F : we can choose neither Cl nor Cu,

choose Cu, or choose Cl (which is equivalent to choosing both Cl and Cu).

However, if u− l 6 −1 we cannot extend F without either duplication (since Cu+1 6 Cl ∈ F)

or violation of the conditions outlined in the preceding paragraph (since Cu 6 Cl−1 6∈ F).

Hence for each of the ν chains we have at most three choices. The result follows.

Finally, we give two examples of the construction of a filter to illustrate the proof method in

general, and how the value of u− l affects the choice of elements from a chain. Tables 2.1 and 2.2

illustrate the construction used in the proof of Theorem 2.2.3. Column C contains the chains in

SCP4. Bold entries in this column indicate that an element has been selected from the chain

for inclusion in the filter F . Column C ′ contains the elements C ′
1, . . . , C

′
k−1. Bold entries in this

column indicate that an element has already been included in F by the construction to date. The

next two columns indicate the elements Cl and Cu, respectively, and the final column denotes the

set of minimal elements in F . We display only the minimal elements in F (denoted F) in order

to conserve space.

For example, in row 4 of Table 2.1 we choose to include {3}, and hence {1, 3}, in F . As a

result,

F = {{3} , {1, 3} , {2, 3} , {3, 4} , {1, 2, 3} , {1, 3, 4} , {2, 3, 4} , {1, 2, 3, 4}} and F = {3} .

In the final row of Table 2.1 we have u− l = −1. Notice that {1, 2, 3} ∈ F since {3} ∈ F , and

that {1, 2} cannot be added to F since it is known that {1, 2, 4} 6∈ F . In other words, as noted in

the proof of Theorem 2.2.3, if u− l 6 −1 for some chain, then we cannot make any choices from

that chain to extend F .

Proposition 2.2.2 (Hansel 1966) If n is even, the result in Theorem 2.2.3 can be extended as
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C C′ Cl Cu F

{2, 4} − − − ∅

{3,4} − − − {{3, 4}}

{2} ⊂{2, 3} ⊂{2, 3, 4} {2, 4} {2, 3} {2, 3, 4} {{3, 4}}

{3} ⊂{1, 3} ⊂{1, 3, 4} {3,4} {3} {1, 3} {{3}}

{4} ⊂{1, 4} ⊂{1, 2, 4} {2, 4} {1, 4} {1, 2, 4} {{3}}

∅ ⊂{1} ⊂{1, 2} ⊂{1, 2, 3} ⊂{1, 2, 3, 4} {2} , {1,3}, {1, 2, 4} {1, 2, 3} {1, 2} {{3}}

Table 2.1: A filter construction in which u− l 6 −1 for a chain in SCP 4

C C′ Cl Cu F

{2, 4} − − − ∅

{3,4} − − − {{3, 4}}

{2} ⊂{2, 3} ⊂{2, 3, 4} {2, 4} {2, 3} {2, 3, 4} {{3, 4}}

{3} ⊂{1, 3} ⊂{1, 3, 4} {3,4} {3} {1, 3} {{3}}

{4} ⊂{1, 4} ⊂{1,2,4} {2, 4} {1, 4} {1, 2, 4} {{3} , {1, 2, 4}}

∅ ⊂{1} ⊂{1,2} ⊂{1, 2, 3} ⊂{1, 2, 3, 4} {2} , {1,3}, {1,2,4} {1} {1, 2} {{3} , {1, 2}}

Table 2.2: A filter construction in which u− l = 1 for all chains in SCP 4

follows:

|A(2[n])| 6 2(ν−µ)3µ, where µ =

(
n

bn/2c − 1

)

.

Proof If n is even, there are ν − µ chains of length 1. Hence, from each of these chains, we can

only make two choices instead of three. The result follows immediately.

2.3 Access control models

An access control model is a theoretical framework for reasoning about access control. An instance

of an access control model has been referred to variously as a system (Bell and LaPadula 1973a;

Harrison et al. 1976) or a scheme (Sandhu 1988; Sandhu 1992c). We will always use the term

“system”. A feature of any system is the idea of state (Bell and LaPadula 1973a) or configura-

tion (Harrison et al. 1976) (of the system). We will use the term “state” throughout. The state

of a system changes by the application of a command (Harrison et al. 1976; Sandhu 1992c) or

request (Bell and LaPadula 1973a). We find both terms useful and will use them interchangeably.

(The informal usage is that a request represents an attempt by a subject to access an object; a

command attempts to change the authorizations of the system.) Systems have been treated as

finite state machines in which the set of commands is used to define a transition relation (Bell and

LaPadula 1973a) or have been analyzed by considering the effect of commands more directly (Har-

rison et al. 1976; Sandhu 1992c). We will adopt the latter approach in this thesis. In particular,

our presentation of the Bell-LaPadula model is less formal than the original and does not use a
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transition relation.

2.3.1 The protection matrix model

The most widely known and commonly implemented access control model in commercial computer

systems is the protection matrix model. It was introduced by Lampson (1971) and forms part of

the Bell-LaPadula model (Bell and LaPadula 1973a) which we discuss in Section 2.3.2. The

protection matrix model was further refined by Graham and Denning (1972). A simple form of

the protection matrix model was introduced by Harrison et al. (1976) and has been the basis

for subsequent research. We will use this form of the protection matrix model (or HRU model)

throughout this thesis.

A protection matrix M has columns indexed by objects and rows indexed by subjects. It is

assumed that S ⊆ O. Each entry in M is a subset of A, the set of access modes; [s, o] denotes

the entry in M for subject s and object o. Extremely simple examples of protection matrices are

shown in Figure 2.5. We will also regard M as a function M : S ×O → 2A, and write M(s, o) to

denote [s, o].

Note that a column in the protection matrix represents an access control list for that object,

and that a row in the protection matrix represents a capability list for that subject. In Figure 2.5a,

for example, subject s1 has the capability to read object o1.

s1 s2 o1 o2

s1 {read, own}

s2 {write}

(a)

s1 s2 o1 o2

s1 {read, own}

s2 {read} {write}

(b)

Figure 2.5: Protection matrices

An operation changes M by the insertion or deletion of either an object, a subject or an entry

in the matrix. The six operations in the protection matrix model are enter, create subject,

create object, delete, destroy subject and destroy object.2 A command consists of an

optional conditional statement and a body. A command is conditional if it contains a conditional

statement, and is unconditional otherwise. The conditional statement tests one or more cells in

the matrix for the presence of access rights. This is an example of fail-safe defaults. A conditional

command may or may not changeM depending on the evaluation of the conditional statement. A

command is monotonic if the body of the command consists only of enter and create operations.

A command is mono-operational if the body of the command consists of a single operation. In

this case the command is synonymous with an operation and we may refer to a delete object

command, for example.

Command 2.1, for example, is a monotonic, conditional, mono-operational command. The

command would succeed if the formal parameters, so (owner), sf (friend) and o were replaced

2The operations enter and delete add or remove rights from an entry in the matrix.
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respectively by s1, s2 and o1 in Figure 2.5a (and would fail otherwise): the resulting matrix is

shown in Figure 2.5b.

Command 2.1

give-read(so, sf , o)
if

own ∈ [so, o] and

read ∈ [so, o]
then

enter read in [sf , o]

A protection system S(A,Γ,M0) is defined by a set of access rights A, a set of commands Γ

and an initial protection matrix M0 : S0×O0 → 2A. When the interpretation of A, Γ and M0 are

obvious from context we will simply write S to denote a protection system. A protection system

is monotonic if each command is monotonic. In such a system the size of M and the entries

therein can only increase. A protection system is mono-operational if each command is mono-

operational. A protection system is mono-conditional if each command is either unconditional or

mono-conditional.

A subject restricted protection system is one in which no command includes the create

subject operation (Lipton and Snyder 1978). A subject restricted protection system in which

|S0| = k is called a k-subject restricted protection system.

Harrison et al. (1976) defined the configuration (state) of a protection system to be the triple

(S,O,M). One of the reasons why we treat M : S ×O → 2A as a function is that M completely

defines the state of a protection system and is therefore more economical.

In summary, the HRU model imposes strict restrictions on the form of commands, but no

restrictions on the commands themselves. This flexibility in the definition of commands means

that the expressive power of the HRU model is unrivalled. Indeed, it has been shown that most

access control models can be simulated using the HRU model for suitable choices of access rights

and commands (Pittelli 1987; Sandhu 1992a; Sandhu 1992c; Snyder 1981). The price to be paid

for this flexibility is that the HRU model has sufficient expressive power to simulate the behaviour

of an arbitrary Turing machine (Harrison et al. 1976). This has significant implications for

establishing the assurance of a system based on the HRU model. We discuss these issues in more

detail in Chapter 5.

2.3.2 The Bell-LaPadula model

The act of accessing an object can be regarded as initiating a flow of information between subject

and object. For example, read access can be seen as a flow of information from object to subject,

while write access is a flow of information from subject to object. The Bell-LaPadula model

implements an information flow policy designed to preserve the confidentiality of information.

We assume that an information flow policy is a lattice 〈L,→〉, where L is a set of labels. (The

most general formalization of information flow policies (Denning 1976) does not assume that L

is a lattice. Sandhu (1992b) gives some examples of useful information flow policies that are not

lattices.)
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The ordering on the labels→ determines the labels between which information can flow. L is a

lattice which means that information flow is reflexive, transitive and anti-symmetric. Furthermore,

there exists a label that corresponds to public information (the bottom element of the lattice).

Additionally, if x → z (information can flow from x to z) and y → z (information can flow from

y to z), then x ∨ y exists and x ∨ y → z. Information flow policies (if correctly implemented)

protect against deliberate attempts to compromise confidentiality (Trojan horses, for example)

and accidental leakage of information (to insecure printing devices, for example).

The Bell-LaPadula model has been the subject of extensive research and rigorous analysis.

It was developed in two seminal papers – Bell and LaPadula (1973a) and Bell and LaPadula

(1973b). Every object and subject is associated with a label in the information flow policy. The

anti-symmetry property requires that information must not leak from an object to a less secure

subject, and information from a subject must not leak to a less secure object. The reference

monitor in the Multics system (Bell and LaPadula 1976) was based on the Bell-LaPadula model

as have been the reference monitors in many multi-level secure military systems.

Formally, the Bell-LaPadula model has the following characteristic features.

• A totally ordered set of security classifications or security labels C. That is, for all c1, c2 ∈ C

either c1 6 c2 or c1 > c2. The most common set of security labels, used in military systems,

is

unclassified < classified < secret < top secret. (2.3)

• A set K of (needs-to-know) categories. This set usually represents different projects or

domains: {navy, army, airforce}, for example.

• A security lattice L ⊆ C×2K , where (c1,K1) 6 (c2,K2) if, and only if, c1 6 c2 andK1 ⊆ K2.

The security lattice represents the information flow policy.

• A set of security clearance functions Λ, where for all λ ∈ Λ, λ : O∪S → L. The essential idea

of the Bell-LaPadula model is that every subject and object is assigned a security clearance

by λ.

• A set of |S| × |O| protection matrices M. (Unlike the protection matrix model, the set of

objects is assumed to be fixed. New subjects are not created, existing ones are “activated”.)

Figure 2.6 shows the security lattice, where K = {k1, k2} and C is given by (2.3). (In the figure

we have abbreviated the security labels to a single initial letter because of space limitations.)

A Bell-LaPadula system S(A,C,K,Γ,M0, λ0, V0) is determined by the set of access rights,

the set of security labels, the set of needs-to-know classifications, the set of commands, the initial

protection matrix, the initial security clearance function and the initial set of current authorizations

(which is taken to be ∅). “Bell-LaPadula system” is not standard terminology; we adopt it because

it is clear what we mean and it is consistent with the terminology in the thesis. Bell and LaPadula

(1973b) developed their model by treating the set of commands as a transition relation in a finite

state machine.

The initial state of a Bell-LaPadula system is the triple t0 = (V0,M0, λ0). A Bell-LaPadula

system evolves by the application of requests to the initial state. A state in general is a triple
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Figure 2.6: A Bell-LaPadula security lattice

t = (V,M, λ). V models the authorizations that have been granted and not yet revoked by the

system (V is taken from active). Note that V models the active authorizations in S, and is different

from M which models the potential authorizations in S. V is used when evaluating requests in

order to ensure that the simple security property and *-property3 are not violated, and is modelled

as a set of triples of the form (s, o, a), where s ∈ S, o ∈ O and a ∈ A. We represent a state that

results from the application of i requests by ti = (Vi,Mi, λi). An evolution of S is a sequence of

states t0t1 . . . tn, which we denote tn.

When particular access modes are introduced into the Bell-LaPadula model they are divided

into two generic groups: read-type access modes, denoted Ar, and write-type access modes, de-

noted Aw. We will denote the set of read triples by Vr, and the set of write triples by Vw. Formally,

Vr = {(s, o, a) ∈ V : a ∈ Ar} and Vw = {(s, o, a) ∈ V : a ∈ Aw}, where Vr ∪ Vw = V . It is not nec-

essarily the case that Vr ∩ Vw = ∅, since some access modes may be both read and write access

modes. For example, in the system developed by Bell and LaPadula (1973b), the write access

mode is interpreted as simultaneous read and write access, while the read and append access

modes are read-only and write-only access modes, respectively.

This complicates the enforcement of the information flow policy. Read-type access modes

present no problem on their own (see the simple security property below). However, indirect

breaches of confidentiality can arise if a copy of an object can be written to a less secure object

by a subject which has read access to the former and write access to the latter (see the *-property

below).

Simple security property

A state t = (V,M, λ) satisfies the simple security property if, and only if,

for all v = (s, o, a) ∈ Vr, λ(s) > λ(o). (2.4)

3The simple security property and *-property are defined below in (2.4) and (2.5), respectively.
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In particular, if a request get(s, o, a), where a ∈ Ar, is granted then λ(s) > λ(o). (Otherwise, the

resulting state will not satisfy the simple security property.)

The simple security property expresses the requirement that no user should be able to read an

object that has a higher security clearance than the user.

*-property

In order to more readily describe the *-property (read “star property”), we define

O(V, s) = {o ∈ O : (s, o, a) ∈ V for some a ∈ A} .

That is, O(V, s) is the set of objects in a state V to which a particular subject s currently has at

least one access mode.

A state t = (V,M, λ) satisfies the *-property if, and only if,

for all s ∈ S, o1 ∈ O(Vw, s), o2 ∈ O(Vr, s), λ(o1) > λ(o2). (2.5)

That is, a state satisfies the *-property if, and only if, for all subjects, the objects a subject can

write to are at least as secure as the objects that subject can read.

The *-property expresses the requirement that no subject should be able to write (or “leak”

information) to an object which is less secure than the subject. In particular, if the command

get(s, o, a), where a ∈ Aw, is granted then λ(s) 6 λ(o) (otherwise there may be objects which s can

read which are more senior than o). The examples usually quoted for this rather counter-intuitive

condition are

• to prevent Trojan horse software copying top secret material to an unclassified file, say;

• to prevent the writing of top secret material to an unclassified printer, for example.

Figure 2.7 shows a schematic representation of the evaluation of a get request for read access

in the Bell-LaPadula model. If get(s, o, read) succeeds, then (s, o, read) is entered into V . (In

practice, this evaluation process is more complicated (Bell and LaPadula 1973a), since the addition

of a read triple may conflict with the *-property because of triples in Vw.)

Secure systems

A state t = (V,M, λ) is secure if V satisfies the simple security property and the *-property. An

evolution tn = t0t1 . . . tn, where t0 is the initial state, is secure if ti is secure, 0 6 i 6 n. A system is

secure if every evolution is secure. For the set of access rights A = {read, append, write, execute}

it is possible to write a set of security preserving commands Γ (Bell and LaPadula 1973b).

Theorem 2.3.1 (Basic Security Theorem (Bell and LaPadula 1973a)) If t0 is a secure

state, then S(A,C,K,Γ, t0) is a secure system.

Remark 2.3.1 It is interesting to note that in the Bell-LaPadula paper the entries in the protec-

tion matrix are not required to satisfy the information flow policy. For example, it is possible that
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get(s, o, read) - policy
monitor

6

λ(s) < λ(o)

no

λ(s) > λ(o)
- reference

monitor

6

read 6∈ [s, o]

no

read ∈ [s, o]
- yes

security
lattice L

6

security
classification
function λ

6

protection
matrix M

6

Figure 2.7: Evaluating a read request in the Bell-LaPadula model

s ∈ S, o ∈ O, a ∈ Ar, where λ(s) < λ(o) and a ∈ [s, o]. (This does not represent a breach of policy

since the policy monitor will deny the request get(s, o, a).)

The Bell-LaPadula model implements an information flow policy designed to ensure the con-

fidentiality of information. The Biba integrity model implements an information flow policy de-

signed to ensure the integrity of information. We refer the interested reader to the literature for

further details (Biba 1977).

The Bell-LaPadula model provides a rigorous definition of system security and, furthermore,

demonstrates how to construct a secure system. In other words, the Bell-LaPadula model has

strong security properties. Our ultimate goal, and the subject of Chapter 8, is to define a model

that combines the strong security properties of the Bell-LaPadula model with the flexibility of the

HRU model.

Secure transitions

An alternative approach to secure systems was proposed by McLean (1990). The approach was

motivated by exhibiting a system Z which starts in a secure state and, by definition, is a se-

cure system, but which exhibits no desirable security properties. The reason for this is that the

state transitions of Z are not secure in an intuitively reasonable sense (although they satisfy the

requirements of the Bell-LaPadula model).

Secure state transition function Therefore, instead of defining what it means for a state to

be secure, a secure state transition function is defined which ensures that any new state is reached

in a secure manner. Specifically, it is not permitted for both V and the security clearance function
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to be changed as a result of the state transition. A command γ is simple secure if, and only if,

γ(V,M, λ) = (V ′,M ′, λ′) implies

• if (s, o, a) ∈ V ′ \ V and a ∈ Ar, then λ = λ′ and λ(s) > λ(o);4

• if λ(s) 6= λ′(s), for some s ∈ S, then

– λ(o) = λ′(o) for all o ∈ O,

– V = V ′,

– for all v ∈ V and for all a ∈ Ar, (s, o, a) ∈ V , λ′(s) > λ′(o) = λ(o);

• if λ(o) 6= λ′(o), for some o ∈ O, then

– λ(s) = λ′(s) for all s ∈ S,

– V = V ′,

– for all v ∈ V and for all a ∈ Ar, (s, o, a) ∈ V , λ′(s) = λ(s) > λ′(o).

A corresponding definition is given for γ to be *-secure. A system is simple secure and *-secure if

all commands in Γ are simple secure and *-secure.

Transition secure commands McLean also suggested another approach in which we define a

function ψ : S ∪O → 2S , where ψ(o) is the set of subjects that can change the security clearance

of o. A command γ is transition secure if, and only if,

γ(s, (V,M, λ)) = (V ′,M ′, λ′) implies for all o such that λ(o) 6= λ′(o), s ∈ ψ(o). (2.6)

In other words, the subject s must be authorized (by ψ) to change the security clearance of o. Two

special cases arise: for all o ∈ S∪O, ψ(o) = ∅; for all o ∈ S∪O, φ(o) = S. The first corresponds to

a system in which λ cannot be changed (such a system is said to have the property of tranquillity).

The second corresponds to a system in which any subject can change λ (and corresponds to the

original Bell-LaPadula model). The notions of a transition being secure and *-property preserving

are retained from the Bell-LaPadula model. A system is transition secure if every command in Γ

is transition secure.

2.4 Complexity theory

We first introduce the “big O” notation, which provides a convenient means of comparing the

significant factor(s) affecting the values taken by functions. A function φ : N→ R, where R is the

set of real numbers, is O(ψ(n)) if there exist constants c ∈ R and N ∈ N such that |φ(n)| 6 c|ψ(n)|

for all n > N .

A decision problem is one in which each instance of the problem has one of two answers. These

answers are usually thought of as either true and false, yes and no, or 0 and 1. The safety

problem, which we introduce in Chapter 5, is a decision problem.

4\ denotes set difference; that is, X \ Y = {x ∈ X : x 6∈ Y }.
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The time complexity (function) for an algorithm is a function τ : N → R that expresses the

longest time it would take for the algorithm to execute for an input of length n. (The space

complexity function of an algorithm is defined in an analogous way.) A polynomial time algorithm

is defined to be one whose time complexity function is O(p(n)) for some polynomial function p,

where n denotes the length of the input to the algorithm. An algorithm whose time complexity

function is not O(p(n)) is said to be an exponential time algorithm. An intractable problem is one

for which no polynomial time algorithm is known. A problem that can be solved in polynomial

time by a non-deterministic algorithm is said to be NP-hard.

In a rigorous analysis of algorithmic complexity, it is necessary to fix an encoding scheme that

will be used to determine the size of the input. In general, a more relaxed attitude is taken to the

way in which the size of the input is measured. In broad terms, this merely results in different or

less precise constant factors.

For example, the time complexity of an algorithm for sorting a list of integers into ascending

order is simply expressed in terms of the length of the list rather than in terms of the length of

the binary encoding of the list. (In this simple case, the length of the two different representations

differs by a multiplicative factor k, where k is the smallest number of bits required to represent

every item in the list.) In short, we assume the time complexity function of an algorithm is

independent of the encoding of the input. A more comprehensive treatment of complexity theory

in general can be found in Greenlaw and Hoover (1998). An excellent guide to NP-hard problems

can be found in Garey and Johnson (1979).

A problem for which no algorithm exists to solve all instances of the problem is called undecid-

able. The most well known undecidable problem is the Halting problem for Turing machines (Tur-

ing 1936) which is discussed in the following section.

Another important undecidable problem is the Post correspondence problem (Post 1946).

Namely, given a set of pairs {(s1, t1), . . . , (sk, tk)}, where si, ti are strings over some alphabet,

does there exist an integer n and a set of integers i1, . . . in, 1 6 ij 6 k, 1 6 j 6 n, such that

the concatenation of the strings si1 , . . . , sin equals the concatenation of the strings ti1 , . . . , tin?

Clearly there are instances of this problem which are decidable. For example consider the set

of pairs {(01, 010), (01, 1), (1, 1)}. It is easiest to visualize the Post correspondence problem by

treating each pair (si, ti) as a card with si written above ti (Martin 1990). The correspondence

problem then becomes: given an unlimited number of each of the k cards, can they be arranged so

that the top row matches the bottom row? Clearly for the set of pairs above we have the following

solution:

01 01 1

010 1 1
.

However, the set of pairs {(01, 1), (01, 1), (1, 010)} has no solution since the first symbol in each

pair of strings is different. There is no algorithm which can decide all instances of the Post

correspondence problem (Post 1946). The Post correspondence problem can be shown to be

equivalent to the safety problem for a particular class of protection systems (Harrison and Ruzzo

1978).
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2.5 Turing machines

A deterministic Turing machine (DTM) consists of a finite state control, a read-write head and a

tape consisting of slots which can be indexed by N+. (Many formal descriptions of DTMs assume

the tape is infinite in both directions; that is, the slots can be indexed by the set of integers

Z. It can shown that the computational power of either formulation is identical (Minsky 1967).)

A program for a DTM consists of a set of tape symbols Σ, a finite set of states Q, and a state

transition function δ. There is a distinguished symbol b called the blank symbol. Q contains two

distinguished states: the start state q0 and the halt state qh. The state transition function,

δ : (Q \ {qh})× Σ→ Q× Σ× {−1,+1} ,

takes as input a state and a symbol and returns a state, a symbol and a direction, where −1

denotes a move to the left and +1 a move to the right.

We illustrate the operation of a DTM through an example. If the machine is in state q scanning

the letter s and δ(q, s) = (q′, s′,−1), then the machine enters state q′, overwrites s with s′ and

the read-write head moves one square to the left.

Given a DTM and a program, the input to the DTM is a string of symbols from Σ. One symbol

from the input is entered (from left to right) in each square of the tape of the DTM starting at

position 1. All other squares on the tape contain b. The program starts in state q0 with the read-

write head scanning position 1 of the tape. Thereafter, the operation of the machine is dependent

on δ and the contents of the tape, and halts if the DTM enters state qh. The Halting problem is

undecidable (Turing 1936). That is, there is no algorithm to decide whether an arbitrary DTM

enters the halt state qh.

Finally we describe a convenient representation for a Turing machine at a particular instant.

A configuration of a DTM is a string x0 . . . xi−1qxi . . . xn, where x0 and xn are the leftmost and

rightmost non-blank symbols on the tape, respectively, q is the current state of the DTM, and

the read-write head is scanning the square indexed by i, 0 6 i 6 n. The initial configuration of a

DTM with input tape x0 . . . xn is q0x0 . . . xn.

For further details about DTMs see Hopcroft and Ullman (1969) and Minsky (1967), for

example. In Chapter 5 we will use the Halting problem to prove the undecidability of the safety

problem for role-based access control.



Chapter 3

Role-based Access Control

Role-based access control has received considerable attention in recent years as an alternative to

discretionary and mandatory access control models, particularly in open, distributed computing

environments. The following quote provides a context and environment for the use of role-based

access control.

“Role-based access control (RBAC) is a non-discretionary access control mechanism

that allows and promotes the central administration of an organizational security pol-

icy. In many organizations in industry and civilian government, the end users do not

‘own’ the information for which they are allowed access. For these organizations, the

corporation or agency is the actual ‘owner’ of system objects, and discretionary access

control may not be appropriate. With RBAC, access control decisions are based on the

roles individual users have as part of an organization.” Gligor (1995)

Gligor (1995) also identified the characteristics of an information system and organization that

would make the system suitable for a role-based access control model. Briefly these are:

• a large number of users with largely generic job descriptions;

• a high turnover of staff and a high degree of mobility between jobs amongst the staff;

• a large number of data objects in applications which are broadly stable in terms of relation-

ships between function and user and which are owned by the organization; and

• a requirement for organization-wide assessment of access control.

The main reason for the development of role-based access control was to address the perceived

deficiencies of existing access control models and the complexity and cost of administering systems

based on these models (Sandhu 1995). In particular, mandatory access control, based on the Bell-

LaPadula model, was felt to be too restrictive, while discretionary access control, based on the

protection matrix model, was not restrictive enough. In addition, in discretionary access control

systems it is difficult to establish correctness of implementation because administration of access

control is performed at the level of access control lists and/or capabilities, and does not provide

easy mechanisms for managing constraints (O’Shea 1997).

41
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Furthermore, discretionary access control mechanisms generally operate at the level of indi-

vidual objects (Gligor 1995). This makes per-object review of access control straightforward but

makes per-subject review difficult, if not impossible, to achieve in a large system.

Role-based access control models seek to improve and extend existing access control manage-

ment functions in general, and focus on the management of permissions and roles, and of users

and roles. It is claimed these functions are simpler in role-based access control than in traditional

access control administration, provided the set of roles is relatively stable. Role-based access con-

trol also offers the prospect of per-subject access review. In particular, Gligor (1995) suggests that

role-based access control has the potential to:

• reduce the effort and cost of security management;

• reduce the potential for error and confusion in security management;

• provide per-subject“before-the-act” audit functionality; and

• provide subject access profile update functionality.

In addition, it has been suggested that the administration of roles and permissions in role-based

access control is performed at a level of abstraction that corresponds more naturally with the way

in which an enterprise would deploy authorizations to employees (Ferraiolo et al. 1995).

A basic characterization of role-based access control was given in the call for papers of the

First ACM Workshop on Role-based Access Control:

“ . . . the essence of Role-Based Access Control (RBAC) is that rights and permissions

are assigned to roles rather than to individual users. Users acquire these rights by

virtue of being assigned membership in appropriate roles.”

The fundamental concepts of role-based access control are not new, using as they do many

ideas familiar since the inception of multi-user computer and information systems. Since the late

1980s a number of papers have appeared using the idea of roles in access control (Ferraiolo and

Kuhn 1992; Mohammed and Ditts 1994; Nyanchama and Osborn 1993; Nyanchama and Osborn

1994; Ting et al. 1992; von Solms and van der Merwe 1994).

Since the mid-1990s an attempt has been made to formalize these ideas in several different role-

based access control models. The most well-known model, RBAC96, was introduced by Sandhu

et al. (1996). It was followed by ARBAC97 (Sandhu et al. 1997), a model for role-based admin-

istration of roles. Further refinements to ARBAC97 were introduced by Sandhu and Munawer

(1998b), and a complete description of ARBAC97 was published in Sandhu et al. (1999). The

development and features of RBAC96 and ARBAC97 were influenced by a survey of user require-

ments regarding role-based access control conducted by the SETA corporation (Feinstein et al.

1995).

Since 1995 the formal development of role-based access control models has taken place in North

America, notably at George Mason University, NIST and the SETA Corporation, and in Canada

at the University of Western Ontario. While we will concentrate on role-based access control in

general, and the RBAC96 family of models in particular, we mention two other projects on access

control in distributed systems which incorporate roles and hence bear some similarity to role-based

access control:
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• Domain-based access control at Imperial College, London (Sloman 1994; Yialelis and Sloman

1996) uses object-oriented concepts for policy specification and deployment in distributed

systems. The Ponder specification language (Damianou et al. 2000) includes role as a

primitive data type. In this context, an instance of a role is a synonym for a set of Ponder

policies.

• The OASIS model developed at the University of Cambridge provides secure interoperability

of independent services in an open distributed architecture. Clients of a service are authen-

ticated and thereby enter a service-specific role which can in turn be used as credentials to

enter other roles provided by network services (Bacon et al. 2000; Hayton 1996; Hayton

et al. 1998; Yao et al. 2001). OASIS bears a closer resemblance to role-based access control

models than Ponder.

Three important role-based access control models have been developed: RBAC96/ARBAC97,

the role graph model, and the NIST model. Aspects of each of these models have appeared in

the course of the past ten years. However, no single description exists of the RBAC96/ARBAC97

model.1 This chapter has three objectives:

• To present a comprehensive and uniform review of RBAC96 and ARBAC97, bringing to-

gether for the first time material from several seminal papers (Ahn and Sandhu 1999; Ahn

and Sandhu 2000; Chen and Sandhu 1995; Sandhu et al. 1996; Sandhu et al. 1997; Sandhu

and Munawer 1998b; Sandhu et al. 1999), and to summarize recent developments in role-

based access control modelling in general. This review will motivate the improvements we

suggest to role-based access control models in Chapter 4.

We justify our decision to concentrate on RBAC96/ARBAC97 by showing that the role

graph model (Nyanchama and Osborn 1999) and the NIST model (Gavrila and Barkley

1998) are equivalent to fragments of the RBAC96/ARBAC97 model.

• To introduce an intuitive, consistent, extensible notation for role-based access control.

Each role-based access control model employs different terminology and notation. A signifi-

cant feature of role-based access control models is the use of a role hierarchy, which can be

modelled as a partially ordered set. Hence our notation is derived from the ideas introduced

in Section 2.1. This approach has helped us to identify certain inconsistencies in the models

we consider and to develop alternative suggestions.

• To consider the computational complexity of implementing RBAC96 and ARBAC97. Al-

though Nyanchama and Osborn (1999) mention the complexity of implementing the role

graph model, we are unaware of any similar work on the considerably more sophisticated

and complex RBAC96/ARBAC97 model.

RBAC96 is a hierarchy of role-based access control models as shown in Figure 3.1. The

interpretation of this hierarchy is that, for example, RBAC1 includes all the features of RBAC0.

The simplest model, RBAC0, defines the pre-requisite features of RBAC96 and role-based access

1We will refer to the RBAC96/ARBAC97 model, when we wish to emphasize that we are considering RBAC96
in conjunction with ARBAC97. We may also refer separately to the RBAC96 and ARBAC97 models.
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control in general. RBAC1 and RBAC2 are not directly comparable, the former introducing the

concept of role hierarchies, and the latter the concept of constraints on roles. RBAC3 includes all

the features of RBAC1 and RBAC2.
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Figure 3.1: RBAC96 models

In the next section we present an overview of RBAC0 and RBAC1 concepts. In Section 3.2

we introduce a novel, formal notation for role-based access control, which is more economical and

precise than is found in the literature. In Section 3.3 we consider RBAC2 and the role constraint

language RCL 2000. In Section 3.4 we describe the ARBAC97 model. In Section 3.5 the role

graph model of Nyanchama and Osborn and the model developed at NIST are briefly discussed

and compared to RBAC96. In Section 3.6 we briefly discuss the computational complexity of

the more common procedures that would be required in an operational role-based access control

system employing the RBAC96/ARBAC97 model.

The running example in this chapter and the remainder of the thesis was first used in Sandhu

et al. (1997) to illustrate ARBAC97. The example has been augmented by several additional

tables in order to improve the clarity of certain points. We have chosen to use this example rather

than one of our own because we believe it provides a form of scientific control against which our

contribution can be more accurately assessed.

3.1 RBAC1

We denote the set of roles by R, the set of administrative roles by AR, and the set of permissions

by P . Permissions are usually characterized by identifying an object and a set of access rights that

are permitted for that object. (There is also the concept of a negative permission or prohibition

which explicitly denies access to an object.) At this stage we will not further describe permissions,

noting the following quote from the most recent attempt to create a standard for role-based access

control.

“The nature of a permission depends greatly on the implementation details of a system

. . . A general model for access control must therefore treat permissions as uninterpreted

symbols . . . ” (Ferraiolo et al. 2001)
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Definition 3.1.1 Permission-role assignment is defined by the relation PA ⊆ P×R, the semantics

being that (p, r) ∈ PA if permission p is assigned to role r.

Definition 3.1.2 User-role assignment is defined by the relation UA ⊆ U × R, the semantics

being that (u, r) ∈ UA if user u is assigned to role r.

Groups vs. roles We briefly identify why roles differ from groups in traditional access control

paradigms. A group is a commonly used unit of access control consisting of a set of users. It

is recognized that it is generally difficult to determine the permissions of a group, and hence a

per-subject review of permissions is also difficult (O’Shea 1997). A role defines a group of users via

the user-role assignment, and a group of permissions via the permission-role assignment. Hence

a role is a unit of access control that establishes a connection between users and permissions,

thereby making per-subject review far easier in principle.

Definition 3.1.3 A role hierarchy, RH ⊆ R×R, is a reflexive, anti-symmetric, transitive binary

relation.

Remark 3.1.1 We note that we could regard 〈R,6〉 as a poset and interpret the role hierarchy

as the covering relation of R. That is, given r, r′ ∈ R, (r, r′) ∈ RH if, and only if, r l r′. This

interpretation certainly has the attraction of economy when considering implementations of role-

based access control. Indeed, the NIST model (Gavrila and Barkley 1998), which we discuss in

Section 3.5.2, employs this approach, and is the one which we shall employ henceforth.

A role hierarchy is represented by (the transitive reduction of) the graph of the relation RH .

(In other words, a role hierarchy is represented by the Hasse diagram of the poset 〈R,6〉.) An

example of a role graph (Sandhu et al. 1996) is shown in Figure 3.2a. This hierarchy will be used

as the basis of all further examples in the thesis.
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Figure 3.2: RBAC96 hierarchies

In common with most approaches to role-based access control, we may say “role r′ is junior

to role r” if (r′, r) ∈ RH . However, we will usually employ more formal, concise and precise
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mathematical terminology and concepts. For example, we will say “the upper shadow of r” and

write ∇r rather than “the set of all roles which are immediate seniors of role r”.

The role hierarchy has two interpretations: the first with respect to permission inheritance,

the second with respect to role activation.

Permission Inheritance It is assumed in RBAC1 that a role r is implicitly assigned all the

permissions assigned to roles which are junior to r. The set {p ∈ P : (p, r) ∈ PA} is the set of

explicit permission assignments to r.

It is also assumed that if we have “negative” permissions (or prohibitions) then these are

inherited downwards through the hierarchy. In other words, if r′ < r and p ∈ P (r), where P (r)

denotes the set of permissions explicitly assigned to r and p denotes the explicit prohibition of

permission p, then p ∈ P (r′).

Role Activation It is assumed in RBAC1 that if a user u is explicitly assigned to a role r (that

is (u, r) ∈ UA), then u can activate any role which is junior to r. All such roles are said to be

implicitly assigned to u.

The existing literature does not discuss the possibility of role exclusion – the analogue of

negative permissions, where, for example, (u, r) ∈ UA could be used to indicate that user u

cannot be assigned role r. We believe this would be a useful addition to the model. (In fact, it is

possible to specify role exclusion using RCL 2000 or our model for conflict of interest policies. We

discuss this further in Section 7.2.2.)

The RBAC1 model implies that implicit user-role assignments are not included in UA (Sandhu

et al. 1996), although this suggestion is contradicted by the concept of weak revocation in the

URA97 and PRA97 models (Sandhu et al. 1999). The implementation of the NIST model does

not include implicit assignments in UA. This is clearly a sensible approach as it avoids duplication

of information (since implicit assignments can be recovered from UA and RH ). However, we shall

see that this has certain implications. For now we make the following observation.

Remark 3.1.2 If (u, r1), . . . , (u, rn) ∈ UA then we assume that ri 6< rj , 1 6 i 6= j 6 n (otherwise

(u, ri) ∈ UA is implied by (u, rj) ∈ UA). More concisely, for all u ∈ U ,

R(u) ∈ A(R),

where R(u) is the set of roles explicitly assigned to u, and A(R) is the set of antichains in the

poset R.

Definition 3.1.4 An administrative role is a role that includes administrative permissions to

modify the sets of users, roles and permissions, and to modify the relations PA, UA and RH .

The RBAC96 model requires that the set of roles R and the set of administrative roles AR be

disjoint. Hence, there also exists an administrative role hierarchy , ARH ⊆ AR×AR. An example

is shown in Figure 3.2b.

The user-role assignment relation UA is extended to include the set of administrative roles.

That is, UA ⊆ U × (R ∪ AR). Similarly, we define the permission-administrative-role relation

APA ⊆ AP ×AR, where AP is the set of administrative permissions and AP is disjoint from P .
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Remark 3.1.3 We will take the view that the set of (all) roles should be regarded as a partially

ordered set. This set may be the disjoint union of two partial orders (that is, the set of normal

roles and the set of administrative roles) if required.

Sessions Users interact with a computer system (employing a role-based access control model)

by establishing a session for which the user activates some subset of the roles to which the user

is explicitly or implicitly assigned. We denote the set of sessions by S. The set of permissions

available to a session is the “union of permissions from all active roles and all resulting implicit

roles” (Sandhu et al. 1996).

A user may have more than one session running, where each session is a subset of roles to

which the user is assigned. These roles may become active either through dynamic binding (that

is, through the run-time environment) or through static binding (independent of the run-time

environment).

A session in RBAC96 is analogous to a subject in traditional models of access control. In other

words, access control decisions are made with reference to a particular session s and hence with

reference to the (permissions assigned to the) roles activated by s.

Sessions were introduced into RBAC96 partly to support the principle of least privilege (Saltzer

and Schroeder 1975). That is, a subject (session) should only have available the permissions

required to accomplish its task. Sessions enable a user to login and to invoke only those roles

required in a given session. This is in contrast to many systems which enable all permissions of a

user at login, irrespective of what the user is required to do in the course of that interaction with

the computer system.

3.2 Notation for role-based access control

It is assumed in RBAC1 that a role inherits permissions from the role-permission assignments

of junior roles. Notice that {r′ ∈ R : r′ 6 r} is ↓r by definition. This motivates the notation

in Table 3.1. This notation is not currently used in the role-based access control literature, but

we believe it provides a more convenient and intuitive description of role-based access control

properties and features. (Note that henceforth we will write “assigned” to mean “explicitly and

implicitly assigned”.)

Notation Mathematical Description Semantics

P (r) {p ∈ P : (p, r) ∈ PA} the set of permissions explicitly assigned to r

↓P (r) {p ∈ P : (p, r′) ∈ PA, r′ ∈ ↓r} the set of permissions assigned to r

R(p) {r ∈ R : (p, r) ∈ PA} the set of roles to which p is explicitly assigned

↑R(p) {r′ ∈ R : (p, r) ∈ PA, r′ ∈ ↑r} the set of roles to which p is assigned

R(u) {r ∈ R : (u, r) ∈ UA} the set of roles explicitly assigned to u

↓R(u) {r′ ∈ R : (u, r) ∈ UA, r′ ∈ ↓r} the set of roles assigned to u

U(r) {u ∈ U : (u, r) ∈ UA} the set of users explicitly assigned to r

↑U(r) {u ∈ U : (u, r′) ∈ UA, r′ ∈ ↑r} the set of users assigned to r

Table 3.1: A uniform, extensible notation for role-based access control
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This notation is extensible in a natural way, so that P (u), for example, would denote the

permissions assigned explicitly to user u. Note that ↓R(u) is an order ideal in R and R(u) is the

set of maximal elements in this ideal. Similarly ↑R(p) is an order filter.

We note that with the above definitions and notation, per-subject access review becomes a

simple exercise. For a given user u, we compute the roles that u can activate from UA and hence

the permissions u has from PA. In particular, the permissions available to u are given by

↓P (u) =
⋃

r∈R(u)

↓P (r) =
⋃

r∈↓R(u)

P (r). (3.1)

We can also analyze the use of sessions in RBAC96. We denote the user who established the

session s by U(s), and the set of roles explicitly activated in s by R(s) ⊆ ↓R(u), where u = U(s).

We refer to R(s) as an active set of roles. A user u can activate any role in ↓R(u). Then, by

definition in RBAC96,

R(s) ⊆ ↓R(u) and P (s) = {p ∈ P : (p, r) ∈ PA, r ∈ ↓R(s)}.

We will assume, by analogy to R(u), that R(s) ∈ A(R). Then we have

P (s) =
⋃

r∈R(s)

↓P (r) =
⋃

r∈↓R(s)

P (r),

which is analogous to (3.1).

We now extend our running example to include some examples of user-role and permission-role

assignments. Tables 3.2, 3.3 and 3.4 do not appear in the literature. We have included them in

order to make some of our points more explicit (particularly those related to Remark 3.1.2), and

to motivate a discussion of the shortcomings of RBAC96 and ARBAC97.

Table 3.2 shows some typical user-role assignments. For each user u, R(u) ∈ A(R), where R is

the union of the role hierarchies depicted in Figure 3.2. (Clearly we have made some assumptions

in this assignment of roles to users. For example, we have assumed that the Director would most

likely be assigned the SSO role, and that the PSO1 and PSO2 roles would be assigned to Project

Leaders. We note, however, that there is no constraint within the original example, that prevents

dave, for example, being assigned the SSO role.)

In Table 3.3 we show some typical permission-role assignments, and in Table 3.4 we show

possible choices for R(s) and the corresponding permissions for a session s, when U(s) = bill.

(In the interests of brevity we have assumed that roles ED and E have no permissions assigned to

them.)

u R(u) ↓R(u)

anne {QE1, QE2} {QE1, ENG1, ED, E, QE2, ENG2}

bill {PL1, PSO1} {PL1, PE1, QE1, ENG1, ED, E, PSO1}

claire {DIR, SSO} {DIR, PL1, . . . , ED, E, PL2, . . . , ENG2, SSO, DSO, PSO1, PSO2}

dave {ENG1} {ENG1, ED, E}

emma {PE1, QE2} {PE1, ENG1, ED, E, QE2, ENG2}

Table 3.2: User-role assignments in RBAC96
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r P (r) ↓P (r)

ENG1 {p1} {p1}

PE1 {p2} {p1, p2}

QE1 {p3} {p1, p3}

PL1 {p4} {p1, p2, p3, p4}

Table 3.3: Permission-role assignments in RBAC96

R(s) ↓R(s) P (s)

{ENG1} {ENG1} {p1}

{PE1} {PE1, ENG1} {p1, p2}

{QE1} {QE1, ENG1} {p1, p3}

{PE1, QE1} {PE1, QE1, ENG1} {p1, p2, p3}

{PL1} {PL1, PE1, QE1, ENG1} {p1, p2, p3, p4}

Table 3.4: Active roles and permissions in a session

3.3 RBAC2: Constraints in role-based access control

RBAC2 introduces the idea of constraints on roles enabling the articulation of separation of duty

policies which specify two or more roles that one user cannot have active in the same session,

for example; and cardinality policies which specify the maximum number of active instances of

a role, for example. Informally, a policy in role-based access control is a set of constraints or

requirements. We will use both terms interchangeably. Little work has been done on cardinality

policies since their introduction, although they are supported in the NIST model. Therefore, this

section concentrates on separation of duty policies.

3.3.1 Separation of duty policies

Separation of duty is the partitioning of a sensitive task into sub-tasks assigned to different users

so that the co-operation of two or more users is required to complete the task. The purpose

of separation of duty is to prevent a single user compromising the security requirements of an

organization. A typical example in commercial environments is to require that one user prepares

a cheque and a different user authorizes that cheque. In a military context, the launch of a missile,

for example, may require two authorizations, one each from a different user (McLean 1990).

In role-based access control a separation of duty requirement is often modelled as a pair of roles.

A distinction is made between static separation of duty, where the set of role assignments for each

user must not contain both roles in the separation of duty requirement, and dynamic separation

of duty, where the roles in each session must not contain both the roles in the separation of duty

requirement (Barkley et al. 1997). Clearly static separation of duty is a stronger constraint on

role assignment than dynamic separation of duty.

However, the structure of role-based access control admits several approaches to separation

of duty. For example, operational separation of duty is the separation of duty at the level of

permissions (Ferraiolo et al. 1995), where sensitive combinations of permissions are identified.
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Such a combination of permissions cannot be assigned to any single user, even if the set of roles

which have those permissions assigned to them do not conflict. Therefore, operational separation

of duty is claimed to provide a higher level of assurance of separation of duty requirements than

static separation of duty, and hence dynamic separation of duty (Ahn and Sandhu 1999). (Clearly

we can differentiate between static and dynamic operational separation of duty. Indeed, several

authors have gone to some trouble to identify different “flavours” of separation of duty (Gligor

et al. 1998; Simon and Zurko 1997). However, although the level of granularity and implementation

mechanism may be different, the underlying motivation and concept is the same in all cases.)

Separation of duty constraints may apply to a sequence of tasks t1, . . . , tk, say, which are not

performed in parallel. For example, if t1 is the task “prepare cheque” and t2 is “authorize cheque”,

most organizations would require that two different people perform these tasks. The considera-

tion of separation of duty in workflow management systems (Bertino et al. 1999), although an

important area for research, is not considered in RBAC2 and is beyond the scope of this thesis.

3.3.2 RCL 2000

The language RSL99 was developed by Ahn and Sandhu (1999) to provide a framework for spec-

ifying role-based separation of duty and conflict of interest policies in role-based access control.

RSL99 was subsequently revised, resulting in the role authorization constraint language RCL

2000 (Ahn and Sandhu 2000). In this section we describe the essential features of RCL 2000,

discuss some of its drawbacks and suggest that first order predicate logic is equally suitable for

expressing constraints, giving some examples to support this claim. An alternative approach based

on Sperner families is presented in Chapter 7.

An important feature of RCL 2000 is the idea of a conflicting set .2 In particular, we have the

following components defined in RCL 2000.

• R ⊆ 2R – a set of conflicting role sets. An element, r ⊆ R, of this set defines a set of mutually

exclusive roles which are used to articulate static separation of duty or dynamic separation

of duty constraints.

• P ⊆ 2P – a set of conflicting permission sets. An element of this set, p ⊆ P , defines a set of

mutually exclusive permissions which are used to articulate operational separation of duty

constraints.

• U ⊆ 2U – a set of conflicting user sets. An element of this set, u ⊆ U , defines a set of

conflicting users, which may be used to specify, for example, that two members of the same

family cannot be assigned one each of two mutually exclusive roles.

R, P and U are used to define separation of duty requirements in the RBAC96 model. We will

refer to an element in R as a separation of duty constraint . We will usually use the set R in our

discussion of RCL 2000 and note that analogous observations can be made about P and U.

RCL 2000 expressions are formed using the standard sets from the RBAC96 model, the

sets R,P and U, set operations and predicates (intersection, member of, etc) and two “non-

deterministic functions” – oneelement (OE) and allother (AO). The purpose of these functions is

2A conflicting set is synonymous with a separation of duty requirement (Gavrila and Barkley 1998) or conflict
of interest constraint (Nyanchama and Osborn 1999).
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to eliminate logic quantifiers and thereby enable the intuitive articulation of constraints in RCL

2000. The semantics of an RCL 2000 expression are deduced by translating the expression into a

restricted subset of first order predicate logic (RFOPL). A complete BNF specification for RCL

2000 and RFOPL can be found in Ahn and Sandhu (2000).

The algorithm Reduction translates an RCL 2000 expression into an RFOPL expression.

The algorithm Construction translates an RFOPL expression into an RCL 2000 expression.

Given an RCL 2000 expression e, Construction(Reduction(e)) = e′, where e′ is an RCL

2000 expression identical to e up to naming of variables. An analogous result holds for

Reduction(Construction(e)), where e is an RFOPL expression.

The RFOPL expression3

∀ cr ∈ CR,∀ r ∈ cr,∀ u ∈ U,∀ s ∈ sessions(u) : r ∈ roles(s)⇒

(cr \ {r}) ∩ roles(s) = ∅,
(3.2)

expresses a dynamic separation of duty policy (Ahn and Sandhu 1999), and can be translated into

the RCL 2000 expression

OE(OE(CR)) ∈ roles(OE(sessions(OE(U))))⇒

(OE(CR) \ {OE(OE(CR))}) ∩ roles(OE(sessions(OE(U)))) = ∅.
(3.3)

3.3.3 Comments on RCL 2000

RCL 2000 imposes no restrictions on the structure of R. However, we note that given R ∈ 22
R

, the

cardinality of R is potentially very large. In Crampton et al. (1999) we observed that sets similar

in structure to R arise naturally in access control and can be reduced to an antichain in 〈2R,⊆〉.

The results of our research in this area are presented in Chapter 7. We know by Hansel’s result

(Theorem 2.2.3) that |A(2R)|≪ |22
R

|, where ≪ denotes significantly less than. For example,

when |R| = 4, |A(2R)| = 168, whereas |22
R

| = 65536.

The specification of RCL 2000 merely states that U is a collection of sets of users, but also

implies that such sets of conflicting users are defined with respect to particular conflicting roles.

Therefore, it seems to make more sense to define U ⊆ 2U × 2R, where (u, r) ∈ U may be used to

specify, for example, that two members of the same family cannot be assigned one each of two

conflicting roles. This definition of U differs from that in RCL 2000, as we have associated each

set of conflicting users with a set of conflicting roles (which are not necessarily elements of R).

Furthermore, using this formulation we can use constraints to specify role exclusion. For example,

(u, {r}) ∈ U specifies that the users in u cannot be assigned to role r.

There seems little justification for the additional layer of abstraction introduced by RCL 2000,

particularly as the meaning of an RCL 2000 expression is given by its reduction to RFOPL. We

can only speculate that oneelement and allother were introduced to provide a blueprint for a

non-deterministic algorithm for checking that constraints are satisfied.

3This expression uses the notation of RBAC96: CR ≡ R, roles(s) ≡ R(s), and sessions(u) ≡ S(u). The
formulation of the same expression in our notation is shown in (3.4).
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We believe that the first order expression (using our notation)

∀ s ∈ S,∀ r ∈ R : |r ∩R(s)| 6 1 (3.4)

is a perfectly readable and far more succinct formulation of (3.3).

We also note that an implicit assumption of RCL 2000, given the examples in Ahn and Sandhu

(1999), is that no user can occupy more than one role in r ∈ R, as can be seen in expressions (3.2)

and (3.3). We are, therefore, unsure as to why elements of R in RCL 2000 can have an arbi-

trary number of elements rather than being mutually exclusive pairs, as in Barkley et al. (1997)

and Gavrila and Barkley (1998), for example. In particular, it is far more efficient to check mem-

bership of conflicting role sets if they are doubleton sets rather than sets of arbitrary size (see

Section 7.5).

If we grant that it may be desirable to have conflicting role sets of arbitrary size, then a user

u can be assigned to two or more roles in a conflicting role set r provided u is not assigned to all

the roles in r. This formulation is shown in the expression

∀ s ∈ S,∀ r ∈ R : r 6⊆ R(s).

Nevertheless, this point of view does not preclude the pairwise mutual exclusion implied in Ahn

and Sandhu (1999), since we could replace R by

R′ =
⋃

r∈R

⋃

r,r′∈r

r 6=r′

{r, r′} ,

and use the first order expression

∀ s ∈ S,∀ r ∈ R′ : |r ∩R(s)| 6 1.

In other words, we remain unconvinced that RCL 2000 is any improvement on first order

logic formulations of constraints, and that our formulation, particularly for U, is more expressive

and no harder to understand. For example, we can easily formulate role exclusion constraints.

(Cardinality constraints are not mentioned in either Ahn and Sandhu (1999) or Ahn and Sandhu

(2000). Indeed, since the concept was introduced in Sandhu et al. (1996), there seems to have

been little theoretical or practical interest in the concept except in Gavrila and Barkley (1998).)

3.4 ARBAC97

ARBAC97 is an administrative model that employs role-based access control concepts. The au-

thors of ARBAC97 believe that the ability of role-based access control to reduce the administrative

burden of access control in a large decentralized organization can usefully be employed in the ad-

ministration of role-based access control itself. The model identifies three aspects of role-based

administration that need consideration: administration of user-role assignment; administration of

permission-role assignment; and administration of role-role assignment – that is, administration

of the role hierarchy. These are addressed in three sub-models of ARBAC97: URA97 (Sandhu
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et al. 1997), PRA97 (Sandhu et al. 1997) and RRA97 (Sandhu et al. 1997; Sandhu and Munawer

1998b), respectively. Each of these models makes use of the administrative role hierarchy defined

in RBAC96. With reference to the RBAC96 hierarchy of models (on page 44), we believe that

URA97, PRA97 and RRA97 form ARBAC1. Administration of constraints, the defining feature

of RBAC2, is not mentioned in ARBAC97. A complete description of ARBAC97 can be found

in Sandhu et al. (1999).

3.4.1 URA97

URA97 is concerned with the management of the UA relation by administrative roles. Admin-

istrative roles are able to assign users to roles and revoke assignments of users to roles provided

certain conditions are satisfied.

A URA97 constraint is defined recursively as follows:

• r and r are constraints, where r ∈ R;

• c1 ∧ c2 and c1 ∨ c2 are constraints, where c1 and c2 are constraints.

A constraint is evaluated with respect to a user u.4 In particular,

• r is satisfied if r ∈ ↓R(u);

• r is satisfied if r 6∈ ↓R(u);

• c1 ∧ c2 is satisfied if c1 and c2 are satisfied;

• c1 ∨ c2 is satisfied if c1 or c2 is satisfied.

Intuitively, the constraint r is satisfied by user u if r is assigned (either explicitly or implicitly)

to u, and the constraint r is satisfied if r is not assigned to u. Note that r ∨ r is a valid URA97

constraint which is satisfied by all users.

URA97 defines two relations, can-assign ⊆ AR × C ×R and can-revoke ⊆ AR ×R, where

C is the set of constraints and R is the set of ranges in R. If (a, c, R′) ∈ can-assign, then (u, r)

can be added to UA by the administrative role a provided r ∈ R′ and u satisfies constraint c.

Similarly, if (a,R′) ∈ can-revoke, then (u, r) can be removed from UA by a provided r ∈ R′.

Table 3.5 (Sandhu et al. 1997) shows examples of the can-assign and can-revoke relations

with reference to Figure 3.2. For example, if we consider the can-assign relation, we see that

PSO1 can assign a user u to roles ENG1, PE1 and QE1 (but not PL1 because the upper end point is

not included in the range) provided u satisfies the constraint ED; that is, provided u is assigned a

role at least as senior as ED. Similarly, DSO can assign any user u who satisfies the constraint ED

to role PL2 provided u is not already assigned to any roles at least as senior as PL1.

Table 3.6 shows examples of users and whether each user satisfies the constraints of Table 3.5.

(We use T to denote that a constraint is satisfied, and F otherwise.)

Table 3.7 shows some examples of user-role assignment in URA97: r denotes a role which can

be assigned to a user u; A denotes the set of administrative roles that can assign r to u (given the

4In order to indicate the utility and economy of our notation we note that the original formulation in Sandhu
et al. (1997) is as follows: r is satisfied if there exists r′ > r such that (u, r′) ∈ UA; and r is true if for all
r′ > r, (u, r′) 6∈ UA.
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can-assign relation in Table 3.5); and R′(u) denotes the resulting explicit role assignments to u.

Note that bill cannot be assigned to PL2 because only row 3 of the can-assign relation admits

assignment of users to PL2, and from Table 3.6 we see that bill does not satisfy the constraint

ED ∧ PL1. However, he can be assigned to roles less senior than PL2. Note also that the new user,

fred, cannot be assigned to any roles because he does not satisfy any constraints. Furthermore,

dave can be assigned to roles considerably more senior than the one he is currently assigned.

can-assign

Administrative Role Constraint Role Range

PSO1 ED [ENG1, PL1)

PSO2 ED [ENG2, PL2)

DSO ED ∧ PL1 [PL2, PL2]

DSO ED ∧ PL2 [PL1, PL1]

can-revoke

Administrative Role Role Range

PSO1 [ENG1, PL1)

PSO2 [ENG2, PL2)

DSO [ED, DIR]

Table 3.5: URA97 relations

u R(u) Constraint

ED PL1 PL2 ED ∧ PL1 ED ∧ PL2

anne {QE1, QE2} T T T T T

bill {PL1} T F T F T

dave {ENG1} T T T T T

fred ∅ F T T F F

Table 3.6: Users and constraints in URA97

u R(u) r A R′(u)

anne {QE1, QE2} PE1 {PSO1, DSO} {QE1, QE2, PE1}

anne {QE1, QE2} PL1 {DSO} {PL1, QE2}

bill {PL1} PE2 {PSO2, DSO} {PL1, PE2}

dave {ENG1} PL1 {DSO} {PL1}

Table 3.7: User-role assignments in URA97

User-role revocation

Revocation of a user-role assignment in URA97 is defined to be weak by default, meaning that if

user-role assignment (u, r) ∈ UA is revoked but (u, r′) ∈ UA, where r < r′, then u can still exercise

the permissions of r through ↓P (r′). Strong revocation is accomplished by performing successive

weak revocations provided such revocations are allowed by the can-revoke relation (Sandhu et al.

1999). Weak revocation, therefore, rests on the assumption that the set of roles assigned to a user

is not an antichain. That is, RBAC96 allows a user to be both explicitly and implicitly assigned to

a role. In short, insisting that R(u) ∈ A(R) is incompatible with weak revocation in the URA97

model.

We believe the motivation for weak revocation is not sufficiently convincing to warrant the

introduction of such an overhead into the model. It is hard to envisage situations in which weak
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revocation would be useful. Indeed, a characteristic feature of the RBAC96 model is the use of a

role hierarchy to define implicit user- and permission-role assignments.

We believe a more realistic situation to model would be the transfer of a user u from a role r

to a more senior one r′, in the case of promotion, for example. A transfer would be modelled as

the revocation of (u, r) and the assignment of (u, r′).

Updates to the UA relation

Suppose that u is assigned to r by administrative role a. Suppose further that there exists r′ ∈ R

such that (u, r′) ∈ UA and r′ < r. Then for R(u) to be an antichain there must be a revoke

operation as well as the assign operation. Specifically, (u, r′) should be removed from UA. It is

not clear from the definition of URA97 whether it is required that (a,R′′) ∈ can-revoke as well

as (a, c, R′) ∈ can-assign, where r′ ∈ R′′, r ∈ R′ and u satisfies c.

3.4.2 PRA97

PRA97 is concerned with the management of the PA relation. Administrative roles are able

to assign permissions to roles and revoke assignments of permissions to roles subject to certain

conditions being satisfied. A PRA97 constraint has the same structure as a URA97 constraint

but is evaluated with respect to a permission, p. Specifically we have

• r is satisfied if r ∈ ↑R(p) (note that this is an inversion of the condition for the satisfaction

of r in URA97);

• r is satisfied if r 6∈ ↑R(p);

• c1 ∧ c2, where c1 and c2 are constraints, is satisfied if c1 and c2 are satisfied;

• c1 ∨ c2, where c1 and c2 are constraints, is satisfied if c1 or c2 is satisfied.

Intuitively, the constraint r is satisfied by a permission p if p is assigned (either explicitly or

implicitly) to r, and the constraint r is satisfied if p is not assigned to r.

PRA97 defines two relations can-assignp ⊆ AR× C ×R and can-revokep ⊆ AR×R which

are analogous to the URA97 relations can-assign and can-revoke, respectively. Specifically, if

(a, c, R′) ∈ can-assignp, then (p, r) can be added to PA by the administrative role a provided

r ∈ R′ and p satisfies constraint c; and if (a,R′) ∈ can-revokep, then the administrative role a

can remove (p, r) from PA, provided r ∈ R′.

The relations in Table 3.8 are taken from Sandhu et al. (1997). PSO1, for example, can

assign permissions that are assigned to PL1 (and not to QE1) to PE1. Similarly, PSO1 can assign

permissions already assigned to PL1 (and not to PE1) to QE1. In particular, PSO1 cannot assign

the same permission to both PE1 and QE1.

Permission-role revocation

Revocation of a permission-role assignment in PRA97 is defined to be weak by default, meaning

that if permission-role assignment (p, r) ∈ PA is revoked but (p, r′) ∈ PA, where r′ < r, then

r can still exercise the permission p through ↑P (r′). Strong revocation is accomplished by per-

forming successive weak revocations provided such revocations are allowed by the can-revokep
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can-assignp

Administrative Role Constraint Role Range

DSO DIR [PL1, PL1]

DSO DIR [PL2, PL2]

PSO1 PL1 ∧ QE1 [PE1, PE1]

PSO1 PL1 ∧ PE1 [QE1, QE1]

PSO2 PL2 ∧ QE2 [PE2, PE2]

PSO2 PL2 ∧ PE2 [QE2, QE2]

can-revokep

Administrative Role Role Range

DSO [ED, DIR]

PSO1 [QE1, QE1]

PSO1 [PE1, PE1]

PSO2 [PE2, PE2]

PSO2 [QE2, QE2]

Table 3.8: PRA97 relations

relation (Sandhu et al. 1997). In short, insisting that R(p) ∈ A(R) is incompatible with the

PRA97 revoke model.

Updates to the PA relation

Note that if (p, PL1) ∈ PA and p is assigned to PE1, then by virtue of inheritance and the fact that

only explicit assignments are held in the PA relation, assigning (p, PE1) to PA should also revoke

(p, PL1).

In general, suppose that p is assigned to r by role a. Suppose further that there exists r′ ∈ R

such that (p, r′) ∈ PA and r < r′. Then for P (r) to be an antichain (p, r′) ∈ PA must be revoked.

It is not clear from the definition of PRA97 whether it is required that (a,R′′) ∈ can-revokep as

well as (a, c, R′) ∈ can-assignp, where r′ ∈ R′′, r ∈ R′ and p satisfies c.

3.4.3 RRA97

RRA97 was introduced in the same paper as URA97 and PRA97 and then significantly ex-

tended. RRA97 considers the administration of the role hierarchy. We first present the example

from Sandhu et al. (1997) which provides the motivation for many of the refinements in the mature

RRA97 model (Sandhu and Munawer 1998b).

Example 3.4.1 Suppose DSO inserts roles X and Y into the hierarchy, creating the edges (X, DIR),

(QE1, X) and (Y, PE1). Suppose in addition that PSO1 subsequently inserts the edge (PE1, QE1). The

resulting hierarchy is shown in Figure 3.3a, in which new edges are indicated by dotted lines. The

transitive reduction of this hierarchy is shown in Figure 3.3b.

Sandhu et al. (1997) observe that by transitivity we now have X > Y, when, in fact, X and Y were

incomparable roles on their creation, and that this is an “undesirable side effect” of unrestricted

changes to the role hierarchy.5 They go on to suggest: either DSO should not be able to create roles

X and Y, as they conflict with the existing authority range of PSO1; or that PSO1 should not be able

to make PE1 less than QE1; or that such a possibility should be regarded as acceptable. RRA97 is

developed with the first of these options in mind, thereby seeking to maximize the potential for

decentralization of administration and autonomy of administrative roles (Sandhu et al. 1997).

5An “undesirable side effect” is never formally defined in RRA97. We also note that since PE1 and QE1 are also
incomparable to start with and that subsequently PE1 < QE1, we are unsure why the fact that Y < X should be
considered undesirable.
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Figure 3.3: Side effects resulting from changes to the role hierarchy in Figure 3.2: The roles X
and Y and the edges (Y, PE1), (PE1, QE1), (QE1, X) and (X, DIR) have been added to the hierarchy

RRA97 addresses the following considerations, which we will refer to as role hierarchy opera-

tions or simply hierarchy operations: role insertion, role deletion, edge insertion and edge deletion.

The model also addresses the following problems which could arise as a result of the four hierarchy

operations.

• No cycles should be introduced into the hierarchy. (That is, R should remain a partial

order.)

• Successive changes to the role hierarchy “should not lead to undesirable side effects”. An

example of this is Y becoming less than X as a result of the insertion of an edge in the role

hierarchy.

• What is the effect of role hierarchy operations on the other relations in ARBAC97? (This

includes, in particular, role deletion and its effect on ranges in tuples in the can- relations

in URA97 and PRA97.)

• How should permissions and users that are assigned to a deleted role be dealt with?

The central idea in RRA97 is the relation can-modify ⊆ AR × R. If (a,R′) ∈ can-modify,

then the administrative role a can make changes to the hierarchy within the range R′. R′ is

referred to as an authority range. An example of the can-modify relation (Sandhu et al. 1997) is

shown in Table 3.9.

can-modify

Administrative Role Authority Range

PSO1 (ENG1, PL1)

DSO (ED, DIR)

Table 3.9: The can-modify relation
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Authority ranges must satisfy three properties. Firstly, an authority range must be an open

range. Secondly, given two authority ranges R′, R′′ ⊆ R, either R′ ∩ R′′ = ∅ or R′ ⊆ R′′ or

R′′ ⊆ R′. For example, in Table 3.9 (ENG1, PL1) ⊂ (ED, DIR). Thirdly, an authority range must be

encapsulated. The intuition behind the notion of an encapsulated range is that “all the roles in such

a range have an identical relation to roles outside the range”. Furthermore, an encapsulated range

“is the correct unit for autonomous management of role-role relationships with the range” (Sandhu

and Munawer 1998b). This statement is justified by the observation that decentralization of

authority and autonomy requires that all inward and outward edges (in a role hierarchy) from an

authority range should be directed to and from the end points of the authority range. In short, an

encapsulated range can be considered to be an autonomous sub-hierarchy within which hierarchy

operations may be performed.

Definition 3.4.1 (Sandhu and Munawer 1998b) A range (x, y) is said to be encapsulated if

for all w ∈ (x, y), and for all z 6∈ (x, y),

z > w if, and only if, z > y, and (3.5)

z < w if, and only if, z < x. (3.6)

Remark 3.4.1 We note that with this definition no range can be encapsulated since x, y 6∈ (x, y),

y > w for all w ∈ (x, y) and x < w for all w ∈ (x, y). Hence conditions (3.5) and (3.6) should be

replaced by

z > w if, and only if, z > y and (3.7)

z < w if, and only if, z 6 x, (3.8)

respectively.

However, we prefer the following succinct characterization of an encapsulated range using our

notation. In fact, Proposition 3.4.1 provides the motivation for our model of administration in

Chapter 4.

Proposition 3.4.1 A range (x, y) is encapsulated if, and only if,

↑(x, y) \ ↑y = (x, y) and (3.9)

↓(x, y) \ ↓x = (x, y). (3.10)

Proof

⇒ Suppose for all z 6∈ (x, y) and for all w ∈ (x, y) we have z > w if, and only if, z > y. We now

prove that ↑(x, y) \ ↑y ⊆ (x, y). Let a ∈ ↑(x, y) \ ↑y. Then y 66 a and there exists b ∈ (x, y)

such that b 6 a. Since (x, y) is encapsulated, a ∈ (x, y) (otherwise we have a 6∈ (x, y)

such that a > b for some b ∈ (x, y) and a 6> y). That is ↑(x, y) \ ↑y ⊆ (x, y). Clearly,

(x, y) ⊆ ↑(x, y) \ ↑y and hence we have ↑(x, y) \ ↑y = (x, y).

The corresponding proof for ↓(x, y) \ ↓y is similar; we omit the details.
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⇐ Suppose ↑(x, y) \ ↑y = (x, y). Let w ∈ (x, y) and z 6∈ (x, y) with z > w. Hence z ∈ ↑(x, y).

Since z 6∈ (x, y), z ∈ ↑y and hence z > y.

The corresponding proof for ↓(x, y) \ ↓y is similar; we omit the details.

Table 3.10 shows the possible ranges for the left-hand side of the role hierarchy in Figure 3.2a.

The table entry in row x and column y is the set of elements in the (open) range (x, y). The

encapsulated ranges are starred.

End points ENG1 PE1 QE1 PL1 DIR

ED {ENG1} {ENG1} {ENG1, PE1, QE1}∗ {ENG1, PE1, QE1, PL1}∗

ENG1 {PE1, QE1}∗ {PE1, QE1, PL1}∗

PE1 {PL1}

QE1 {PL1}

PL1

Table 3.10: Open ranges and encapsulated ranges

We now define two further types of range which are central to edge and role insertion in

RRA97. The immediate authority range of a role r, denoted (r), is the smallest authority range

that contains r. Formally, (r) is the authority range (x, y) such that r ∈ (x, y) and for all authority

ranges (x′, y′) ⊂ (x, y), r 6∈ (x′, y′). Note that the set of immediate authority ranges is a subset of

the set of authority ranges which is a subset of the set of encapsulated ranges. Suppose now that

(ENG1, PL1) and (ED, DIR) are authority ranges as shown in Table 3.9. Then Table 3.11 shows the

corresponding immediate authority ranges for each role. (A question mark indicates the immediate

authority range is not defined.)

r (r)

ED ?

ENG1 (ED, DIR)

PE1 (ENG1, PL1)

QE1 (ENG1, PL1)

PL1 (ED, DIR)

DIR ?

Table 3.11: Immediate authority ranges

Note that if authority ranges are permitted to overlap, then immediate authority ranges are

not unique. For example, suppose that can-modify only includes the authority ranges (ED, PL1)

and (ENG1, DIR). Then both (ED, PL1) and (ENG1, DIR) are immediate authority ranges for PE1 and

QE1.

A range (x, y) is a create range if one of the following three conditions is satisfied.

• x and y have the same immediate authority ranges (that is, (x) = (y)).
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• y is the (upper) end point of the immediate authority range of x (that is, (x) = (a, y) for

some a ∈ R).

• x is the (lower) end point of the immediate authority range of y (that is, (y) = (x, b) for

some b ∈ R).

The notion of a create range is perhaps easier to see pictorially, as shown in Figure 3.4. The

motivation behind create ranges is that it should be possible to create roles where the parent and

child roles are not the end points of an authority range, but fall within the same authority range.

Note that a create range is not required to be an immediate authority range, and therefore is not

necessarily an authority range.

t

a

tx

ty

t
b

(a) (x) = (y) = (a, b)

t

a

tx

ty

t
b

(b) (x) = (a, y)

t

a

tx

ty

t
b

(c) (y) = (x, b)

Figure 3.4: Valid conditions for a create range (x, y) in RRA97: (x) is indicated by the left
square bracket; (y) is indicated by the right square bracket

Table 3.12 shows create ranges given the authority ranges defined in Table 3.9. A tick indicates

that the range is a create range. A question mark indicates the immediate authority range of at

least one of the end points is not defined (see Table 3.11).

End points ENG1 PE1 QE1 PL1 DIR

ED ? ? ? ? ?

ENG1 3 3 3 ?

PE1 3 3 ?

QE1 3 3 ?

PL1 ?

Table 3.12: Create ranges

Finally, we can state the conditions that must be satisfied for role and edge insertions in

RBAC96 according to the RRA97 model.

Role insertion

The immediate parent and child of a new role must be the end points of a create range in the role

hierarchy prior to insertion of the new role. For example, a role can be inserted between QE1 and
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PE1, but not between QE1 and DIR. Note that the definition of role insertion implies that no role

can be created which has multiple parents or children.

Edge insertion

An edge (x, y) can be inserted into the role hierarchy provided one of the following two conditions

holds:

• (x) = (y);

• there exists an authority range (a, b) such that, either x = a and y < b or x > a and y = b,

and the insertion of the edge does not violate the encapsulation of (a, b).

Role deletion

RRA97 supports two alternatives for role “deletion”. The first option is role deletion, in which r,

the role to be deleted, is actually removed from R. In this case, any permission-role assignments

are re-assigned to the upper shadow of r, and user-role assignments are re-assigned to the lower

shadow of r. Formally,

R := R \ r,

RH := RH \ {(r, r′) : r l r′} \ {(r′, r) : r′ l r} ∪ {(r′, r′′) : r′ l r l r′′} ,

PA := PA \ {(p, r) : p ∈ P (r)} ∪ {(p, r′) : p ∈ P (r), r l r′} ,

UA := UA \ {(u, r) : u ∈ U(r)} ∪ {(u, r′) : u ∈ U(r), r′ l r} .

In this context RRA97 invokes operations from URA97 and PRA97, namely user-role assign-

ment and revocation and permission-role assignment and revocation. It is not made clear in

RRA97 whether an administrative role which can delete r in the RRA97 framework necessarily

has the right to perform the URA97 and RRA97 operations, or whether such operations have to

be independently authorized (by the URA97 and PRA97 relations).

Role deletion is not permitted if r is the end point of any range in any ARBAC97 rela-

tion. Hence, the second option is role de-activation in which case r remains in the hierarchy and

permission-role assignments remain valid. We have

R := R,

RH := RH ,

PA := PA,

UA := UA \ {(u, r) : u ∈ U(r)} .

However, a user u cannot activate r in a session, even if r ∈ ↓R(u).

Role de-activation would usually be employed if r was the end point of some range in an

ARBAC97 relation, and therefore could not be deleted. We note that the effect of role de-activation

can be achieved through role exclusion which was introduced in our discussion of separation of

duty constraints.
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Edge deletion

In RRA97 an edge between two roles r and r′ can be deleted only if either rl r′ or r′l r. (Recall

that we believe RH should be the covering relation of the partial order on R, and hence only

edges of the form (r, r′) would belong to RH . This is in common with the NIST model but not

RBAC96.) The role-based access control implementation in Oracle permits the arbitrary insertion

and deletion of (transitive) edges in the hierarchy (Koch and Loney 1997). This implies that the

role hierarchy in Oracle is not necessarily a partial order (although the graph of the role hierarchy

relation cannot contain cycles).

3.5 Other role-based access control models

We now briefly discuss the role graph model, the NIST model, the unified NIST RBAC model and

OASIS. Our objective in this section is to outline these models and indicate their similarities to

RBAC96. Indeed, we will indicate how the role graph model and the NIST model can be mapped

into a subset of the RBAC96 family of models.

3.5.1 The role graph model

The role graph model (Nyanchama and Osborn 1994; Nyanchama and Osborn 1999) focuses on

the role hierarchy and its representation as a role graph. Formally, the nodes of the role graph are

ordered pairs, (r, P (r)), where r is a role and P (r) is the set of permissions explicitly assigned to

r. The role graph has the following properties (Nyanchama and Osborn 1999):

• For any two roles r and r′ such that P (r) ⊂ P (r′), there is a path from r to r′.

• There is a single MaxRole and a path from every role to MaxRole. (In practice, MaxRole is

unlikely to have any users assigned to it.)

• There is a single MinRole and a path from MinRole to every role. (In practice, P (MinRole),

the set of permissions assigned to MinRole, may be the empty set.)

• The role graph is acylic. (If a cycle

(r1, r2), (r2, r3), . . . , (ri−1, ri), (ri, ri+1), . . . , (rn−1, rn), (rn, r1)

existed in the role hierarchy, then the permissions of each of r1, . . . , rn would all be identical

by the first property listed above.)

In other words, the role graph is equivalent to the role hierarchy and the permission-role

assignment relation of RBAC96, with the additional requirement that R has a top and a bottom

element (MaxRole and MinRole, respectively). The difference between the two models lies in

the interpretation of the role hierarchy and the role graph. Specifically, RBAC96 assumes a

role hierarchy is defined, and states the semantics of permission inheritance in terms of the role

hierarchy. In contrast, the role graph model assumes the roles and their respective permission

assignments are defined. Subset inclusion on permission assignments then induces a role graph.
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Unlike RBAC96, the role graph model does not explicitly define how users are assigned to roles,

and therefore how such assignments are to be administered.

Research on the role graph model has focused on graph modification algorithms. Such al-

gorithms permit the modification of the role graph by inserting and deleting roles, edges and

permissions. (The presence of MaxRole and MinRole simply make the role graph algorithms easier

to implement.) Clearly, operations on roles and edges are equivalent to the administration of the

role hierarchy as defined in RRA97, while operations on privileges correspond to administration

of the permission-role assignment relation as defined in PRA97. We briefly discuss the two algo-

rithms which add a role to the role graph. We refer the reader to the literature for details of the

remaining algorithms (Nyanchama and Osborn 1999). All the role graph algorithms have time

complexity polynomial in the number of nodes and edges in the role graph.

The role addition algorithm takes as parameters: the existing role graph G; a new role name

r, a set of explicit permissions assigned to r, P (r); a set of roles which are to cover r, ∇r; and a

set of roles which are to be covered by r, ∆r. The algorithm adds the node (r, P (r)) to the role

graph, and edges from that node to each element of ∇r and ∆r. The algorithm also checks that

the properties of the role graph are preserved. In particular, the algorithm checks that a path

exists between two roles r and r′ if, and only if, P (r) ⊂ P (r′). In other words, the algorithm will

also update the permission-role assignments on each node where appropriate.

The role insertion algorithm takes as parameters G, r and P (r). This algorithm then deduces

the appropriate place to insert the role by comparing P (r) with the labelling (with respect to

permissions) of the nodes in G.

The administration of the role graph is a centralized function, and therefore offers less flex-

ibility than the ARBAC97 model. Furthermore, there is no explicit statement of how user-role

assignments are to be managed.

Conflict of interest (or separation of duty) constraints are modelled by partitioning the role

graph into sub-graphs which are mutually exclusive with respect to user-role assignment (Nyan-

chama and Osborn 1999). In particular, no user can be assigned to a role from each of two or

more of these conflicting sub-graphs. This is equivalent to asserting that if two roles, r and r′,

form a conflict of interest, then no user can be assigned to any role in ↑r ∩ ↑r′. (If such an assign-

ment existed, then the user would be assigned to both r and r′ either directly or indirectly. An

immediate corollary of this is that no user can be assigned to MaxRole if there are any conflict

of interest constraints. This is really stating the obvious, and is not mentioned in RBAC2. The

NIST model also mentions this kind of constraint on a role-based access control system (Gavrila

and Barkley 1998).)

In short, the role graph model provides an alternative approach to the RBAC96 family of

models, but offers little or no additional insight into role-based access control. Furthermore, there

are some notable omissions: users are scarcely mentioned in the role graph model, nor is the

administration of user-role assignments.

3.5.2 The NIST model

The outline of the NIST model was introduced in 1995 (Ferraiolo et al. 1995) and was extended

to a formal description of the properties a role-based reference monitor should satisfy using first
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order predicate logic (Gavrila and Barkley 1998). It is essentially equivalent to RBAC3 and

lays particular emphasis on separation of duty constraints and sessions (referred to as subjects).

Table 3.13 gives a summary of the consistency properties both in natural language and in (most

cases) first order logic.6 Where appropriate the terminology and notation have been changed from

the original to maintain consistency with our presentation.

The role-based access control reference monitor that has been implemented at NIST (Gavrila

and Barkley 1998) contains operations like rmRole (remove role) and addAssignment (add user-

role assignment). The implementation consists of an RBAC database and an Admin Tool. The role

hierarchy, user-role and permission-role assignments are stored in the RBAC database. The RBAC

database also holds two binary, symmetric, irreflexive relations, ssd and dsd, which define static

and dynamic separation of duty requirements.7 In the NIST model, every role has a cardinality ,

which is defined to be the maximum number of users that may be assigned to the role. The

Admin Tool verifies that an operation will preserve the consistency of the RBAC database before

committing any updates.

It is shown (by modelling the database as a deterministic finite state machine) that the opera-

tions performed by the Admin Tool preserve the consistency of the RBAC database (Gavrila and

Barkley 1998).

The administrative functionality of the model is centralized and less sophisticated than that

of ARBAC97. Indeed, it is hard to see how some of the administrative functions can be used.

For example, the rmRole operation requires that the role to be removed is not part of the role

hierarchy, that no users are assigned to it and that it is not in a separation of duty relationship

with any other role.

NIST has also implemented a role-based access control mechanism for the Web (Ferraiolo

and Barkley 1997; Ferraiolo et al. 1999), called RBAC/Web, which has been developed for use

with UNIX and Windows NT based servers. In its original form RBAC/Web supported a single

administrative role, admin, but was subsequently extended using the URA97 model (Sandhu and

Park 1998).

3.5.3 A unified role-based access control model

The NIST RBAC model is a recent attempt to develop a unified framework for role-based access

control (Ferraiolo et al. 2001). Co-written by Sandhu, Ferraiolo and Kuhn, it is a synthesis

of ideas in RBAC96 (Sandhu) and the work at NIST (Ferraiolo and Kuhn). The framework

is arranged in four levels of increasing complexity: flat RBAC, hierarchical RBAC, constrained

RBAC and symmetric RBAC. The first three of these correspond to RBAC0, RBAC1 and RBAC3,

respectively. There is an explicit requirement in flat RBAC (and hence in the higher levels) that

user-role review should be supported. The fourth level introduces the requirement for permission-

role review. Constrained RBAC introduces separation of duty constraints (but not cardinality

constraints). There is currently no administrative component in the NIST RBAC model.

6Some properties have been omitted from the table, but are discussed below.
7In the NIST model, the symmetric and irreflexive properties of ssd and dsd are four of the consistency properties.
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The number of users assigned to a role
does not exceed the cardinality of the
role

The role hierarchy contains no cycles

No two roles assigned to a user form a
chain

∀u ∈ U : R(u) ∈ A(R)

No two roles assigned to a user form a
static separation of duty requirement

∀u ∈ U : r1, r2 ∈ R(u)⇒ (r1, r2) 6∈ ssd

No two roles in a user’s set of sessions
form a dynamic separation of duty re-
quirement

∀u ∈ U : r1, r2 ∈
⋃

s∈S(u)R(s)⇒ (r1, r2) 6∈ dsd

No two roles which form a static sepa-
ration of duty requirement form a chain

∀(r1, r2) ∈ ssd : {r1, r2} ∈ A(R)

No two roles which form a dynamic
separation of duty requirement form a
chain

∀(r1, r2) ∈ dsd : {r1, r2} ∈ A(R)

No two roles which form a static sepa-
ration of duty requirement have a com-
mon senior role

∀(r1, r2) ∈ ssd : ↑r1 ∩ ↑r2 = ∅

No two roles which form a dynamic
separation of duty requirement have a
common senior role

∀(r1, r2) ∈ dsd : ↑r1 ∩ ↑r2 = ∅

Given two roles which form a static sep-
aration of duty requirement, any role
senior to one of these roles is also in
a static separation of duty requirement
with the other role

∀(r1, r2) ∈ ssd,∀r > r1 : (r, r2) ∈ ssd

Given two roles which form a dynamic
separation of duty requirement, any
role senior to one of these roles is also in
a dynamic separation of duty require-
ment with the other role

∀(r1, r2) ∈ dsd,∀r > r1 : (r, r2) ∈ dsd

Table 3.13: NIST consistency properties

3.5.4 OASIS

An interesting alternative to the role-based access control models developed in America is the

OASIS (Open Architecture for Secure Interworking Services) model (Hayton 1996; Hayton et al.

1998; Hine et al. 2000; Yao et al. 2001). Unlike RBAC96, OASIS does not use a role hierarchy

or a user-role assignment relation. That is, a role is essentially a collection of permissions (or

capability list). Unlike RBAC96, role activation is based on the credentials in the form of roles

that a user currently has active. Specifically, a user u can activate a role r if u satisfies a role

activation rule for r. A role activation rule is a Horn clause in first-order logic. That is, a role

activation rule is a conjunction of constraints forming the body of the clause, which if satisfied

allow the user to be assigned to the role in the head of the clause. A constraint may require that

a user be currently assigned to another role or that certain temporal or environmental conditions

be satisfied.
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Role activation rules are similar to constraints in the URA97 and PRA97 relations in that they

define certain prerequisites that a user must satisfy before he can be assigned to a role. There is

less flexibility in OASIS because of the restriction that role activation rules be Horn clauses. In

particular, constraints of the form r are not permitted and hence conflict of interest constraints

cannot be expressed using role activation rules.

However, OASIS offers some significant advantages over the RBAC96/ARBAC97 model.

Firstly, a role activation rule can insist that certain constraints be satisfied while that role is

assigned to a user. This means that fine-grained event-based dynamic revocation of roles is pos-

sible in a distributed OASIS system. Secondly, de-centralized autonomous administration of role

assignment can be performed by services in a distributed system using role activation rules. An

overview of OASIS and its integration into a distributed system can be found in Bacon et al.

(2000).

3.6 Computational complexity of role-based access control

We first briefly outline the depth-first search algorithm dfs for directed graphs (Aho and Ullman

1992). Given a directed graph G = (V,E), the recursive algorithm dfs takes a vertex, v, as a

parameter and traverses the graph beginning at v. Informally, dfs(v) works by travelling as far

as possible from v, marking vertices which it visits and recursively calling dfs for vertices which

have not been visited. For example, using the role hierarchy in Figure 3.2a, the call dfs(ENG1)

would encounter PE1, PL1, DIR and QE1 (in that order). (This assumes that the data structure

storing the role graph holds roles in ascending alphabetical order.) In short, dfs(r) is equivalent

to the computation of ↑r. Given a directed graph G = (V,E), the running time for dfs(v) is

O(|E|) (Aho and Ullman 1992).

We now consider the computational complexity of several decision problems in the

RBAC96/ARBAC97 model. We denote a particular user by u, a particular permission by p,

a particular role (unless otherwise stated) by r, and a particular administrative role by a. We will

denote the width of R by w and assume that R(u) ∈ A(R). For simplicity, we will assume that we

store the role graph in the adjacency lists representation (Aho and Ullman 1992), and that we can

compute ↓r as efficiently as ↑r. (The latter assumption may mean in practice that the transitive

reduction of both 〈R,6〉 and 〈R,>〉 will need to be stored.)

DP1 Should a request by u to exercise p be granted?

In other words, is R(p)∩ ↓R(u) non-empty? As observed above, the time taken to compute

the down set for a particular role is linear in the number of edges in the role graph. Since

R(u) ∈ A(R), u can be assigned at most w roles and we can compute ↓R(u) in O(w|E|).

Similarly p can be assigned to at most w roles. Hence DP1 is O(w2|E|).8

DP2 Does u (or p) satisfy a given constraint?

We define a primitive constraint to be r or r. For a primitive constraint, DP2 is O(w|E|),

since it amounts to computing for each r′ ∈ R(u) either ↓r′ or ↑r′ and checking whether

8In this context, note that E = RH .
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that set contains r. A constraint is an arbitrary conjunction of primitive constraints.9 Any

constraint can be expressed as the conjunction of no more than 2w primitive constraints.10

Hence, in general, DP2 is O(w2|E|).

DP3 Does any user (or permission) satisfy a given constraint?

The time complexity of DP3 is equivalent to computing DP2 for all users and hence is

O(w2|E||U |).

DP4 Can u (or p) be assigned to r by a (at this moment in time)?

In other words, does there exist a tuple (a, c, R′) ∈ can-assign such that u satisfies c and

r ∈ R′? (We assume that the time taken to find a tuple of the form (a, c, R′) ∈ can-assign

is constant.) Checking whether r ∈ R′ = (x, y) is O(|E|) since it is equivalent to computing

↑x and ↓y and checking that r occurs in both. Hence, using the result for DP2 and assuming

the number of tuples in can-assign is bounded by a constant independent of the sets under

consideration, DP4 is O(|E|2w2).

DP5 Can any user (or permission) be assigned to a given role by a at this moment in time?

Clearly, this is similar to the previous problem and has complexity O(|E|2w2|U |).

DP6 Is the range (x, y) encapsulated?

If only the end points of the range are given, to compute the elements of (x, y) we need to

compute the intersection of ↑x and ↓y which is O(2|E|+ |R|2). Using Proposition 3.4.1 we

can see that it is necessary to compute ↑(x, y), ↓(x, y), ↑y and ↓x. Note that ↑(x, y) = ↑x\{x}

and ↓(x, y) = ↓y \ {y}. Hence DP6 is O(max
{
4|E|, |R|2

}
).

DP7 Is it possible for u to be assigned to p (at some time in the future)?

By this we mean “at some point in the future will there be a role to which both u and p are

assigned?”. This question can be regarded as the safety problem for the role-based access

control model. The safety problem has been studied in the context of several different access

control models – notably the protection matrix model (Harrison and Ruzzo 1978; Harrison

et al. 1976), the take-grant model (Lipton and Snyder 1977), the schematic protection

model (Sandhu 1992d) and the typed access matrix model (Sandhu 1992c). We do not

know of any attempts to analyze the safety problem in role-based access control. There are

two similar decision problems:

• Is it possible for a given permission to be assigned to a given role?

• Is it possible for a given user to be assigned to a given role?

In Chapter 5 we show that DP7 and its two associated problems are undecidable.

9Note that we have only considered constraints that are a conjunction of primitive constraints. However, any
URA97 constraint can be written in disjunctive normal form. Hence, a tuple in can-assign that contains a
constraint in disjunctive normal form can be replaced by several tuples in which the constraint is a conjunction of
primitive constraints.

10Let A ∈ A(R) such that |A| = w. The most complicated condition that a constraint can specify is that
R(u) = A. In our running example this would be expressed as PE1∧QE1∧PE2∧QE2∧PL1∧PL2. Clearly the number
of primitive constraints is no more than 2w.
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DP8 Is the set of constraints in can-assign consistent?

In other words, is it possible that one entry in the can-assign relation allows the assign-

ment of a user to a role whilst another entry prohibits the same assignment? (A similar

question can be posed for can-assignp.) For example, consider the following two rows in

the can-assign relation.

DSO ED ∧ PL1 [PL2, PL2]

PSO2 ED (ED, PL2]

It is clear that the first tuple prohibits the assignment of u to PL2 if PL1 ∈ R(u), while the

second permits it.

An algorithm for deciding DP8 is shown in Figure 3.5. (a1, c1, R1) is the first tuple in the

can-assign relation and satisfies(c, u) is a function that returns true if u satisfies c and

false otherwise. From Figure 3.5 we can deduce that the time complexity of DP8 is

O(|U ||R|(w2|E|+ |R||can-assign||R|w2|E|)) = O(|U ||R|3w2|E||can-assign|).

boolean consistent()

{
boolean can;

for each (u, r) ∈ U × R /* O(|U ||R|) */

{
can = satisfies(c1, u); /* O(w2|E|) by DP2 */

for each r ∈ R1 /* O(|R|) */

{
for each tuple (a, c, R′) ∈ can-assign /* O(|can-assign|) */

{
if r ∈ R′ and can 6= satisfies(c, u) /* O(|R|w2|E|) */

return false;

}
}

return true;

}
}

Figure 3.5: An algorithm for deciding whether the set of constraints in can-assign is consistent

3.7 Conclusion

In this chapter we have outlined the current state of research in role-based access control models,

and presented a detailed account of the RBAC96 and ARBAC97 models. We have shown that the

RBAC3 model is as expressive as the role graph model and the NIST model. In the remainder

of this thesis we will therefore focus on the RBAC96 and ARBAC97 models. We have briefly

discussed a number of problems with these models. In the next chapter we will consider several

of these issues in more detail and present some solutions. The main contributions are a family
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of models for administration of the role hierarchy and a complete model for administration of

role-based access control. In Chapter 5 we consider the safety problem in RBAC96/ARBAC97

and show that it is undecidable in general. Chapter 7 presents a very simple framework for

separation of duty policies, enabling us to consider in some detail the complexity of implementing

such policies. Finally, in Chapter 8 we present a new model for role-based access control which

provides, amongst other things, an alternative and more secure way to assign users and permissions

to roles.



Chapter 4

Extensions to Role-based Access

Control

Role-based access control in general, and the RBAC96/ARBAC97 model in particular, provide an

access control paradigm that offers a useful alternative to existing models. However, we believe

there are some improvements that could be made. In Chapter 3 we have already noted certain

inconsistencies, omissions and inaccuracies in RBAC96/ARBAC97. In this chapter we present a

more detailed analysis of some of these issues and introduce some alternative approaches.

In the next section we consider some of the disadvantages of the RBAC96/ARBAC97 model

which provide the motivation for the material in the remainder of the chapter. In Sections 4.2

and 4.3 we present the main contribution of this chapter – a new administrative model for role-

based access control. In Section 4.2 we define the administrative scope of a role and show that this

provides a natural framework for the administration of the role hierarchy. In the remainder of this

section we introduce a family of increasingly sophisticated models for controlling role hierarchy

operations based on the notion of administrative scope. RHA4, the most complex of these models,

is then compared with RRA97. In Section 4.3 we extend RHA4 to SARBAC, a complete model for

administration in role-based access control, and in the following section we show how SARBAC

can be used to support discretionary access control in a role-based framework. In Section 4.5 we

develop the notions of ability and group in role-based access control. These ideas were mentioned

in passing by Sandhu and Munawer (1998b). We then propose a more general role-based access

control model based on these ideas.

4.1 Motivation

In Section 4.1.1 we consider the overloading of the role hierarchy and two attempts at addressing

the issue. In the following section we consider some of the consequences of the ARBAC97 model. In

particular, we comment on the restrictions that are imposed on the structure of the role hierarchy

by RRA97 and the limitations this model imposes on updates to the hierarchy.

70
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4.1.1 The role hierarchy

We noted in Section 3.1 that the role hierarchy serves two purposes. Firstly, it defines the (implicit)

permissions available to a role. This is referred to in Sandhu (1998) as the (permission) usage or

(permission) inheritance hierarchy. The usage hierarchy determines the permissions available to

a session s by considering the implicit permissions of the roles in R(s).

Secondly, assignment to a role r enables a user to activate any role in ↓r. This is referred to

as the (role) activation hierarchy. The activation hierarchy determines which roles are available

to a user when initiating a session.

For example, we can see the equivalence of these two interpretations in the set of permissions

assigned to a user, noted in Section 3.1, namely

↓P (u) =
⋃

r∈R(u)

↓P (r)

︸ ︷︷ ︸

usage

=
⋃

r∈↓R(u)

P (r)

︸ ︷︷ ︸

activation

.

Goh and Baldwin (1998) and Lupu et al. (1995) observed that there may be situations where

this duality of function is not appropriate. We now briefly discuss two important issues which are

relevant to this problem.

Firstly, RBAC96 is an access control model, but we believe this aspect of the model does

not accurately reflect the access control requirements of most enterprises. In Figure 3.2, is it

appropriate, for example, that DIR has the permissions of PE1? Any user assigned to the role DIR

presumably has little or no day-to-day responsibility for, or competency to perform, the activities

expected of a production engineer. These issues are considered in some detail by Goh and Baldwin

(1998) in their discussion of subsidiarity .

Secondly, the inheritance of permissions through a role hierarchy may well conflict with sep-

aration of duty constraints present in the organization. In particular, if two roles, r1, r2, form

a static separation of duty requirement, then no user can be assigned to any role in ↑r1 ∩ ↑r2;

and if r1, r2 form a dynamic separation of duty requirement, then no user can activate any role

in ↑r1 ∩ ↑r2. The RBAC2 model provides for the introduction of constraints, but it seems an

unnecessary overhead to introduce constraints because of a feature of the model, rather than a

feature of the enterprise that is the subject of the model.

A solution was proposed by Sandhu et al. (1996) that involves partial inheritance from junior

roles by splitting the junior role into a “private” role (from which permissions could not be in-

herited) and a “normal” role. This solution, however, only addresses the issue of inheritance and

not separation of duty. Furthermore, a side effect of private roles is that any range containing a

private role cannot be encapsulated, preventing the use of RRA97.

A second solution was presented by Sandhu (1998) which makes a distinction between the

usage and activation hierarchies. It was noted that two applications of making such a distinction

are the possibility of simulating mandatory access control systems using role-based access control,

and facilitating the implementation of dynamic separation of duty constraints.

The resulting model is called ERBAC (Extended RBAC) which includes a set of roles R and

two partial orders 6 and 6u, where r 6u r
′ implies r 6 r′. The activation hierarchy AH is the

covering relation of 〈R,6〉. The usage hierarchy UH is the covering relation of 〈R,6u〉. In other
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words, although a role r has a set of roles {r1, . . . , rk} which can be activated by a user assigned

to r, the set of permissions inherited by r is a subset of the union of the explicit permissions of

r1, . . . , rk. Formally, in the context of a session s, we have

P (s) =
⋃

r∈R(s)

↓P (r)

=
⋃

r∈R(s)

{p ∈ P : (p, r′) ∈ PA, r′ 6u r}

and since r′ 6u r implies r′ 6 r

⊆
⋃

r∈R(s)

{p ∈ P : (p, r′) ∈ PA, r′ 6 r}

=
⋃

r∈↓R(s)

{p ∈ P : (p, r) ∈ PA}

=
⋃

r∈↓R(s)

P (r).

For a full account of these developments the reader is referred to Sandhu (1998).

We conclude with a brief example of the use of ERBAC hierarchies. Let us suppose that no user

should have the permissions of both a Production Engineer and a Quality Engineer available in

the course of any session. (That is, the roles PE1 and QE1, for example, are in dynamic separation

of duty.) In order to achieve this we could define the ERBAC hierarchies as depicted by the Hasse

diagrams in Figure 4.1.

We observe that a user assigned to the role PL1, say, can activate either the role QE1 or the

role PE1 but does not inherit the permissions of either. That is, the set of (implicit) permissions

of PL1 is not equal to the union of the explicit permissions of roles junior to it.
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Figure 4.1: ERBAC hierarchies: Note that PL1 does not inherit permissions of PE1, for example,
but any user assigned to PL1 can activate PE1
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ERBAC certainly has merit and deals satisfactorily with both selective inheritance and dy-

namic separation of duty. However, no work has been done to estimate the additional cost of

administering two hierarchies and keeping the usage hierarchy consistent with (changes to) the

activation hierarchy. In particular, is a can-modify relation required for each hierarchy? It is

also fair to say that some of the clarity and intuitive appeal of RBAC96 has been sacrificed. In

Section 4.2.6 and Chapter 8 we suggest some alternatives to ERBAC.

Two recent papers have attempted to identify and categorize the applicability of several dif-

ferent hierarchies in the wider context of access control and especially in role-based access con-

trol (Moffett 1998; Moffett and Lupu 1999). We will consider one such hierarchy in Chapter 8

when motivating the secure hierarchical authorization framework.

4.1.2 Administration

We believe that it is appropriate that the administrative role hierarchy should have the properties

ascribed to the role hierarchy. That is, if a junior administrative role has particular administrative

permissions, then any senior administrative role would naturally have such permissions.

However, we also believe that the sub-models of ARBAC97 are unnecessarily complicated,

particularly RRA97. Furthermore, RRA97 severely restricts the structure of role hierarchies, the

form of authority ranges, and the types of role insertion and deletion which can be performed. In

the case of role hierarchies, range encapsulation requires that authority ranges satisfy particular

conditions which in turn limit the nature of the hierarchy. In particular, for RRA97 to be able

to administer the whole of the role hierarchy, the role hierarchy must have a top and a bottom

element, which we will denote > and ⊥, respectively (these are equivalent to MaxRole and MinRole

in the role graph model). Formally, for all r ∈ R, r 6 > and r > ⊥. (However, we note that no

administrative role can add a role with edges to and from either > or ⊥ because the immediate

authority range of these roles is not defined.)

Furthermore, the fact that the basic unit of administration is an encapsulated range severely

limits the class of role hierarchies to which ARBAC97 is applicable. Figure 4.2a shows a role

hierarchy that contains the single encapsulated range (E, ED); hence the can-modify relation will

be of little use. The addition of a bottom element (⊥) to the hierarchy, shown in Figure 4.2b,

guarantees that the whole hierarchy forms an encapsulated range but does not form any other

encapsulated ranges. In short, it is easy to find hierarchies that contain no encapsulated or few

encapsulated ranges. Hence, the associated can-modify relation will be extremely limited in the

administrative powers it can define.

We now consider several questions about the application of the RRA97 model: the first three

are related to Example 3.4.1; the remaining questions are related to a further example in Sandhu

and Munawer (1998b) which makes use of the usual hierarchy in Figure 3.2a. We use the authority

ranges defined in the can-modify relation in Table 3.9.

Q1 Can administrative role DSO create role X with parent DIR and child QE1?

From Table 3.12 we see that (QE1, DIR) is not a valid create range. Furthermore, the creation

of role X would violate the encapsulation of (ENG1, PL1). Therefore RRA97 would not permit

the creation of role X.
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Figure 4.2: A problematic hierarchy for the RRA97 model

Q2 Can administrative role PSO1 create role Y with parent PE1?

RRA97 does not permit the creation of a role with no child. Hence the role Y cannot be added

to the role hierarchy by any administrative role.

Q3 Can an edge be added between PE1 and QE1?

From Table 3.11 we see that (PE1) = (QE1) = (ENG1, PL1), and hence the edge can be added.

However, it is not clear from the exposition of RRA97 which of PSO1 and DSO is authorized

to make such an insertion. Clearly both end points belong to the authority range defined for

PSO1 and DSO. Does the addition of this edge by DSO compromise the goals of autonomy for

PSO1 and decentralization of administration? The answer is not clear.

Q4 Can administrative role DSO add an edge between PE2 and PL1?

From Table 3.11 we have (PL1) = (PE2) = (ED, DIR), and hence the edge can be inserted. Note

that if the can-modify relation is assumed to be symmetric with respect to the role hierarchy

(that is, (PSO2, (ENG2, PL2)) ∈ can-modify), then the edge between PL1 and PE2 cannot be

inserted because neither of the two alternative criteria for edge insertion are satisfied.

Q5 Given that an edge has been added between PE2 and PL1 can administrative role DSO add an

edge between ENG1 and PE2?

If this edge were added, then (ENG1, PL1) = {PE1, QE1, PE2}, and is therefore no longer an

encapsulated range (since, for example, PE2 ∈ (ENG1, PL1), PL2 6∈ (ENG1, PL1), PL2 > PE2 but

PL2 6> PL1, violating (3.7)). Therefore the insertion of such an edge is not permitted.

Hence, when RRA97 is applied to our example, we have a situation where the most senior

administrative role in the administrative hierarchy is unable to make certain changes to the role

hierarchy because of the potential for a junior administrative role to subsequently make an unde-

sirable role-role assignment. In short, RRA97 is rather restrictive.
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We conclude this section with the following summary and miscellaneous observations about

the ARBAC97 family of models.

• Further work is required on the URA97 and PRA97 models. The following comments,

directed at the URA97 model, are broadly applicable to both models.

– Revocation requires more careful consideration. As already observed, if only explicit

assignments are included in the UA relation, then only strong revocation makes sense.

A more fine-grained approach to entitlement to activate roles might be achieved through

role exclusion – the analogue of prohibited permissions.

– As we noted in our discussion of URA97, the effect of a new user-role assignment on

the set of roles already assigned to a user needs further consideration.

– It is not clear whether a user-role assignment can only succeed if a tuple in the

can-assign relation is satisfied. In other words, is the default behaviour in ARBAC97

that a user-role assignment fails if there is no appropriate tuple in the can-assign

relation?

– The definition of URA97 constraints does not need to include the disjunctive connective.

For example, the tuple (a, c1 ∨ c2, R
′) ∈ can-assign can be replaced by the tuples

(a, c1, R
′) and (a, c2, R

′).

– URA97 does not consider whether users (acting in administrative roles) can assign roles

to themselves.

– Does URA97 apply to the assignment of administrative roles to users?

– When determining whether to permit a user-role assignment, URA97 considers existing

role assignments rather than the relevance of user characteristics. In particular, it is

possible to assign a user to a role (if they satisfy an appropriate URA97 constraint)

which may be far more powerful than is appropriate for the competency of the user

(dave in Table 3.7, for example, can be assigned to the role PL1 merely on the basis

of being assigned to the role ENG1). In Section 7.2.2 we show how conflict of interest

policies supply one solution to this problem.

– Strictly speaking in URA97, it may not be possible to assign any role to a user u if

R(u) = ∅ (fred in Table 3.6, for example). Specifically, if there are no constraints

of the form r in the can-assign relation, no constraint will be satisfied by u, and

hence u cannot be assigned any role by any administrative role. (The same is true of

permission-role assignment.)

• RRA97 supports changes to the role hierarchy but does not permit the deletion of a role if it

is the end point of a range in some ARBAC97 relation. However, the effect of other changes

to the role hierarchy on URA97 and PRA97 relations is not addressed. For example, if the

edge (PE1, QE1) is added to the role hierarchy, then the tuple (PSO1, [PL1, QE1], [PE1, PE1]) ∈

can-assignp can be replaced by the tuple (PSO1, PL1, [PE1, PE1]). (Note that the original

intended semantics – that permissions held by PE1 could not be assigned to QE1 – have also

changed, since any permission assignments will now be inherited by QE1.)
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• In RRA97 role deletion is not permitted for roles which appear in any of the ranges of the

can- predicates. Instead, roles are made inactive by removing all user-role and permission-

role assignments. When “the references preventing deletion are suitably adjusted” the role

can be deleted from the role hierarchy (Sandhu and Munawer 1998b). No mention is made

of the way in which the URA97 and PRA97 relations can be modified. Presumably, certain

senior administrative roles are assigned administrative permissions to update these relations,

but no model is provided to constrain such updates.

• Administration of separation of duty constraints is not considered, nor is the effect of changes

to the role hierarchy on role constraints. In this sense ARBAC97 should properly be called

ARBAC1 – the administrative model corresponding to RBAC1.

• What is the relationship between administrative permissions and the ARBAC97 relations?

We illustrate what we mean through the following example. Suppose (a, c, R′) ∈ can-assign

and that a tries to assign a user u to a role r. The reference monitor must check that u

satisfies c and that r ∈ R′. Assuming these pre-conditions are true, is it now required that

a has been assigned some appropriate (administrative) permission? If the answer is no,

then administrative permission-role assignments are not required. If the answer is yes, then

the whole administrative structure is unnecessarily complicated, because the assignment of

administrative permissions can be used to dictate which RBAC96 relations an administrative

role is permitted to change.

4.2 The RHA family of administrative models

In this section we describe a model for administration of the role hierarchy that is considerably

simpler to implement and provides greater flexibility than RRA97. This is extended in Section 4.3

to a complete model for administration of role-based access control. We shall also see that our

model obviates or solves several problems identified in the preceding section.

Our model is motivated by the following two intuitively reasonable suggestions for resolving

the problem introduced in Example 3.4.1. Namely, once role X has been created:

• Remove QE1 from PSO1’s administrative range as QE1 is now less than X, a role which is not in

PSO1’s administrative range. That is, only DSO and above should now be able to administer

QE1. In particular, PSO1 would not be able to make PE1 less than QE1.

• A role r such that |∇r| > 1 (such as QE1 once X has been inserted into the hierarchy) must

be administered by a role which has administrative control over every role in ∇r. In our

example, only DSO would be able to make PE1 less than QE1.

These solutions have a similar approach and could be implemented by imposing upper limits on

the authority of each administrative role. Therefore, we introduce the notion of administrative

scope which is motivated by Proposition 3.4.1.

Definition 4.2.1 The administrative scope of r ∈ R, denoted σ(r), is defined to be the set

{s ∈ R : s 6 r, ↑s \ ↑r ⊆ ↓r}.



CHAPTER 4. EXTENSIONS TO ROLE-BASED ACCESS CONTROL 77

In our usual hierarchy, ENG1 ∈ σ(PL1) because ↑ENG1 = {ENG1, PE1, QE1, PL1, DIR} and ↑PL1 =

{PL1, DIR}; hence ↑ENG1 \ ↑PL1 = {ENG1, PE1, QE1} ⊂ ↓PL1. In fact, it can easily be verified

that σ(PL1) = {ENG1, PE1, QE1, PL1}. However, ENG1 6∈ σ(PE1), for example, because QE1 6∈ ↓PE1.

Table 4.1 shows the “non-trivial” administrative scope of roles in Figure 3.2a. (That is, Table 4.1

only includes r if σ(r) 6= {r}.)

Role Administrative scope

DIR R

PL1 {ENG1, PE1, QE1, PL1}

PL2 {ENG2, PE2, QE2, PL2}

ED {E, ED}

Table 4.1: Administrative scope in RHA1

Informally, administrative scope has characteristics similar to those exhibited at the upper end

point of an encapsulated range. That is, there is only one way into the administrative scope of r

from above and that is through r itself. More formally, we have the following proposition which

shows that administrative scope is a less restrictive notion than that of range encapsulation.

Proposition 4.2.1 If (x, y) is an authority range, then (x, y) ⊆ σ(y).

Proof Suppose z ∈ (x, y). Then x < z < y and hence ↑x ⊃ ↑z ⊃ ↑y. Therefore,

↑z \ ↑y ⊂ ↑(x, y) \ ↑y

= (x, y) by (3.9)

⊂ ↓y.

That is, z ∈ σ(y).

The administrative scope of a role is determined by the role hierarchy and changes dynamically

as the hierarchy changes. (This is in contrast to RRA97, where administration is determined by

the can-modify relation, which in turn imposes restrictions on changes that can be made to the

hierarchy.) For example, if X is added to the hierarchy, where QE1lXlDIR, then QE1 is no longer

in σ(PL1). Figure 4.3 shows how the administrative scope of PL1 changes as edges and roles are

added to the hierarchy.

By definition, we have that r ∈ σ(r) for all r ∈ R. We therefore introduce the notion of proper

administrative scope which is defined to be σ(r) \ {r} and is denoted σ+(r). If r′ ∈ σ+(r), we say

r is an administrator of r′.

Proposition 4.2.2 If r l r′ and r ∈ σ+(a) for some a ∈ R, then r′ ∈ σ(a).

Proof Suppose r′ 6∈ σ(a). Then there exists r′′ ∈ ↑r′ \ ↑a such that r′′ 6∈ ↓a. That is, r < r′ 6 r′′

and r′′ 6∈ ↓a. Hence, r 6∈ σ(a), which is a contradiction.

Proposition 4.2.3 If Ad(r) 6= ∅, then Ad(r) has a unique minimal element which we call the

line manager of r.
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Figure 4.3: The dynamic nature of administrative scope: The roles inside the closed curve denote
the administrative scope of PL1

Proof If |Ad(r)| = 1, then the result follows immediately. Therefore, suppose that x 6= y are

both minimal elements in Ad(r). Then y ∈ ↑r because r ∈ σ+(y) and y 6∈ ↑x (since x and y are

minimal elements and hence x ≮ y). Furthermore, by definition, ↑r \ ↑x ⊆ ↓x and hence y ∈ ↓x.

Hence, y < x and x is not a minimal element in Ad(r).

Note that the case Ad(r) = ∅ occurs when r is not contained in the proper administrative

scope of any other role. (An obvious example is the DIR role.)

We believe the concept of line manager can be used to support decentralization and autonomy

in the administration of role-based access control. The development of this topic is beyond the

scope of the thesis, although we briefly discuss the matter further in Chapter 9.

We now consider the ways in which administrative scope can be used as a foundation for

administration of the role hierarchy. This gives rise to several alternative models which we present

in order of increasing complexity. For convenience we will label these models RHAi, where RHA

is an abbreviation for role hierarchy administration. In Section 4.3 we extend RHA4 to SARBAC,

a complete model for administration in role-based access control.
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The development of our model is based on the assumption that changes to the hierarchy can

only be made by a role whose administrative scope includes all roles affected by the changes. For

example, once X has been added only DIR would be permitted to make changes to the hierarchy

that affect QE1. In particular, DIR can add the edge between PE1 and QE1, but PL1 cannot.

Hierarchy operations may cause additional edge insertions and deletions. In particular, inser-

tion operations may introduce transitive edges that need to be deleted and deletion operations may

require the insertion of edges that would otherwise be lost. Simple examples of this behaviour can

be found in Figures 8.1 and 8.2. In order to focus on the development of our model, we postpone a

detailed discussion of these issues until Chapter 8 in which we present a new model for role-based

access control.

We also assume that edge and role insertions are not permitted to introduce cycles into

the hierarchy. For convenience we introduce the following notation for hierarchy operations:

AddRole(a, r,∆r,∇r) means role a inserts role r into the hierarchy with immediate children

∆r ⊆ R and immediate parents ∇r ⊆ R; DeleteRole(a, r) means role a deletes role r from

R; AddEdge(a, r, r′) means role a adds (r, r′) to RH ; DeleteEdge(a, r, r′) means role a deletes

(r, r′) from RH . Then

AddRole(a, r,∆r,∇r) succeeds provided ∆r ⊆ σ+(a) and ∇r ⊆ σ(a); (4.1)

DeleteRole(a, r) succeeds provided r ∈ σ+(a); (4.2)

AddEdge(a, r, r′) succeeds provided r, r′ ∈ σ(a); (4.3)

DeleteEdge(a, r, r′) succeeds provided r ∈ σ+(a). (4.4)

Clearly these are far simpler requirements (both to state and implement) than those imposed on

hierarchy operations in RRA97. Note that we do not require that a new role has a single parent

and child, unlike in RRA97. Nor do we require that at least one of ∆r and ∇r be non-empty.

Notice that by Proposition 4.2.2 we do not need to check that ∇r ⊆ σ(a) when deleting role r,

nor that r′ ∈ σ(a) when deleting the edge (r, r′).

4.2.1 RHA1 – The base model

In this model we make no distinction between roles and administrative roles. In RHA1 a hierarchy

operation succeeds provided one of the conditions (4.1) – (4.4) is satisfied. We note that such

an approach is unlikely to meet the security requirements of an organization. In particular, it

is probably not desirable for roles near the bottom of the hierarchy to have any administrative

power. For example, in Table 4.1, E is in the administrative scope of ED, but it is unlikely that ED

should have any control over the hierarchy.

However, RHA1 does have the advantage of great simplicity. Furthermore, RHA1 can be

implemented without introducing any additional relations, unlike ARBAC97.

4.2.2 RHA2 – Administrative permissions

In this model, like in RHA1, we make no distinction between roles and administrative roles. We

do however introduce administrative permissions. In RHA2 a can perform a hierarchy operation
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provided one of the conditions (4.1) – (4.4) is satisfied and a has the appropriate administra-

tive permissions. (Clearly RHA1 is a special case of RHA2 in which the set of administrative

permissions is empty.)

RHA2 can be implemented without introducing additional relations and offers finer granularity

than RHA1 without incurring any significant overheads. We can envisage, for example, DIR having

(administrative) permissions which enable the role to make changes to the hierarchy and to the

assignment relations, while PL1 and PL2 only have permissions to change assignment relations,

and ED has no administrative permissions.

4.2.3 RHA3 – The admin-authority relation

In this model we introduce a binary relation admin-authority ⊆ R × R. If (a, r) ∈

admin-authority we say a is an administrative role and also that a controls r. We denote

the set of roles that a controls by C(a).

We first make the observation that the admin-authority induces an extended hierarchy on

the set of roles which includes the original hierarchy. For example, the admin-authority re-

lation defined in Figure 4.4a results in the extended hierarchy in Figure 4.4b. The elements

of admin-authority are represented by broken lines. (In the remainder of the thesis we will

sometimes visualize examples using an extended hierarchy rather than explicitly defining the

admin-authority relation.)

admin-authority

Administrative Role Role

PSO1 PL1

DSO DIR

DSO PSO1

(a) The admin-authority relation
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(b) The extended hierarchy

Figure 4.4: An extended hierarchy

We extend the definition of administrative scope in a natural way: namely,

σ(a) = {r ∈ R : ↑r \ ↑C(a) ⊆ ↓C(a)} and σ+(a) = σ(a) \ C(a),

where the evaluation of ↑r, ↑C(a) and ↓C(a) takes place in the extended hierarchy. For example,
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in Figure 4.4, σ(PSO1) = {ENG1, PE1, QE1, PL1} and σ(DSO) = {E, . . . , DIR, PSO1}.

An administrative role can perform a hierarchy operation provided one of the conditions (4.1) –

(4.4) is satisfied. There are two self-evident consistency requirements that admin-authority must

satisfy:

for all (a, r) ∈ admin-authority, a ≮ r; (4.5)

(a, r) ∈ admin-authority implies (r, a) 6∈ admin-authority. (4.6)

RHA3 provides a level of indirection not available in RHA1 and RHA2, and therefore can be

used to implement a far more flexible security policy stating which (administrative) roles have

responsibility for which parts of the role hierarchy. In this sense the admin-authority relation is

similar to the can-modify relation in RRA97. For example, the can-modify relation in Table 3.9

can be replaced by the admin-authority relation in Figure 4.4a. (The tuple (DSO, PSO1) is included

for the development and discussion of the model in Section 4.2.4.)

Clearly, RHA3 offers greater flexibility than RHA1 and RHA2. The overheads incurred as a

result of this flexibility are not significant and are considerably less than those incurred by the use

of the can-modify relation in RRA97. We also note that RHA1 is a special case of RHA3, where

for all r ∈ R, (r, r) ∈ admin-authority.

4.2.4 RHA4 – Administering the admin-authority relation

In this section we consider how RHA3 can be extended to administer the admin-authority re-

lation. We need to consider when and how the admin-authority relation can be updated by

hierarchy operations and by the actions of administrative roles.

Updates by administrative roles

Removing an element from admin-authority corresponds to removing an edge from the extended

hierarchy. Therefore, (a, r) can be removed from admin-authority by role a′ provided r ∈ σ+(a′)

and a ∈ σ(a′). If r is removed from σ(a′) as a result of deleting (a, r), then it is necessary to add

(a′, r) to admin-authority in order to preserve the administrative scope of a′. For example, given

the admin-authority relation in Figure 4.4a, DSO can remove (PSO1, PL1) from the relation. In this

case it is not necessary to add (DSO, PL1) to admin-authority since (DSO, DIR) ∈ admin-authority

and hence PL1 ∈ σ(DIR). However, if DSO removes (PSO1, ENG1) from the extended hierarchy

depicted in Figure 4.5d, then (DSO, ENG1) must be added to the admin-authority relation.

Similarly, (a, r) can be added to admin-authority by role a′ provided r ∈ σ+(a′) and a ∈

σ(a′). This may require the deletion of “transitive edges” from admin-authority. For example,

if we perform the operation AddRole(DSO, PL1′, {PE1, QE1} , ∅) on the hierarchy in Figure 4.5b

followed by the addition of (PSO1, PL1′) to admin-authority then we must remove (PSO1, PE1)

and (PSO1, QE1) from admin-authority.
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Updates by hierarchy operations

We need to define the behaviour of our model for the following extended hierarchy operations:

AddRole(a, r,∆r, ∅), DeleteRole(a, r), AddEdge(a, r, r′) and DeleteEdge(a, r, r′).

Figure 4.5, based on the hierarchy and admin-authority relation in Figure 4.4, shows an

example of each of the above situations and provides a schematic motivation for the behaviour

of the model. We assume that edges implied by transitivity, which would be lost as a result of a

hierarchy operation, are made explicit following the operation. An example of this is the addition

of the edge (ED, PE1) in Figure 4.5d following the deletion of the edge (ENG1, PE1).

AddRole(a, r,∆r, ∅) In Figure 4.5a we see that it is necessary to connect the new role X to the ex-

tended hierarchy. The obvious way to do this is to add (PSO1, X) to the admin-authority relation.

Hence, the operation AddRole(a, r,∆r, ∅) requires that (a, r) be added to the admin-authority

relation.

DeleteRole(a, r) In Figure 4.5b we see that if (a′, r) ∈ admin-authority, then we must

re-connect a′ to the extended hierarchy. The obvious way to do this is to add (a′, r′) to

admin-authority for all r′ ∈ ∆r ∩ σ(a′). In Figure 4.5b, we add (PSO1, PE1) and (PSO1, QE1)

to admin-authority.

AddEdge(a, r, r′) In Figure 4.5c we see that if (a, r) and (a, r′) belong to admin-authority then

we can remove (a, r) from admin-authority because (a, r) has become a transitive edge in the

extended hierarchy. In Figure 4.5c we remove (PSO1, PE1) from admin-authority.

DeleteEdge(a, r, r′) Finally, in Figure 4.5d we see that we may have to re-connect r to the

extended hierarchy by inserting pairs into admin-authority that correspond to transitive edges

in the extended hierarchy. In Figure 4.5d we insert (PSO1, ENG1) into admin-authority.

Antichains in RHA4

Superficially it would seem attractive (and highly appropriate in the context of the thesis) to

require that C(a) be an antichain. However, Figure 4.5b provides an example of why such a

requirement is unsuitable. Namely, when PL1 is deleted, both X and PE1 should belong to C(PSO1)

despite the fact that PE1l X.

4.2.5 A comparison of RHA4 and RRA97

We now examine the relative merits of RHA4 and RRA97 by reconsidering the questions we posed

earlier in this section. We base our comparison on the can-modify and admin-authority relations

given in Table 3.9 and Figure 4.4a, respectively.

Q1 Can administrative role DSO create role X with parent DIR and child QE1?

Since QE1, DIR ∈ σ(DSO), the answer to Q1 is “yes”, unlike in RRA97, in which the addition

of such an edge violates range encapsulation. Note that QE1 is no longer in the administrative

scope of PSO1 (see Figure 4.3b). In other words, role additions are more likely to be permitted,

although the administrative scope of roles may change.
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(b) DeleteRole(DSO, PL1)
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(c) AddEdge(PSO1, PE1, QE1)
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(d) DeleteEdge(PSO1, ENG1, PE1)

Figure 4.5: Updates to the extended hierarchy

Q2 Can administrative role PSO1 create role Y with parent PE1?

Since PE1 ∈ σ(PSO1), the answer to this question is “yes”, unlike in RRA97, which does not

permit the creation of a role with no child role in the hierarchy. (Even if RRA97 did permit

the creation of a role with no child, the creation of Y would violate the encapsulation of

[ENG1, PL1].)

Q3 Can an edge be added between PE1 and QE1?

PE1, QE1 ∈ σ(PSO1), so both DSO and PSO1 can add this edge.

Q4 Can administrative role DSO add an edge between PL1 and PE2?
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As in RRA97, the answer to this question is “yes”. Note that it would make no difference if

(PSO2, PL2) ∈ admin-authority in Figure 4.4a, unlike in RRA97. However, the administrative

scope of PSO2 is reduced to {QE2, PL2}. PE1 and QE1 remain in the administrative scope of

PSO1.

Q5 Given that an edge has been added between PL1 and PE2, can administrative role DSO add an

edge between PE2 and ENG1?

Unlike in RRA97, the addition of this edge is permitted since PE2, ENG1 ∈ σ(DSO).

These examples show that RHA4 is less restrictive than RRA97 since the preservation of

encapsulated ranges significantly limits the changes that can be made to the role hierarchy. For

example, in RRA97, the addition of X is prohibited because it violates range encapsulation. Using

RHA4, the addition of X to the hierarchy merely changes the administrative scope of PSO1.

RHA4 is also more widely applicable than RRA97; there is nothing to prevent RHA4 being

applied to the hierarchy in Figure 4.2, for example.

It is clear that the admin-authority relation is far simpler to implement and maintain than

can-modify. For example, the can-modify relation can only contain encapsulated ranges whereas

admin-authority contains single roles. (We note that worst case upper bounds for the number

of tuples in admin-authority and can-modify are |R|2 and |AR| · 2|R| respectively.) The condi-

tions imposed on tuples (a, r) ∈ admin-authority given in (4.5) and (4.6) are relatively simple

compared to the requirements of an encapsulated range.

We also note that the admin-authority relation and the associated extended hierarchy pro-

vides a clearer and intuitive representation of the administrative capabilities of each administrative

role. In short, the admin-authority relation provides a more widely applicable and intellectually

appealing basis for administration of the role hierarchy than the can-modify relation.

4.2.6 RHA4 and the role hierarchy

The use of indirection in the admin-authority relation means we can address some of the prob-

lems identified with permission inheritance in the role hierarchy. Figure 4.6b shows an extended

hierarchy based on the admin-authority relation in Figure 4.6a which provides an alternative to

the hierarchy depicted in Figure 3.2a. Such a hierarchy cannot be administered using RRA97.

Note that the definition of RHA4 does not prohibit a tuple such as (PL1, PE1) appearing in the

admin-authority relation. If we wish to distinguish between roles (R) and administrative roles

(AR) as in RBAC96 and insist that admin-authority ⊆ AR×R, then we can replace (PL1, PE1)

with (PSO1, PE1). (This flexibility in the admin-authority relation will be exploited further when

we consider supporting discretionary access control using roles in Section 4.4.) Note that the

inheritance between the senior roles and the more functional roles has been removed.

Figure 4.6c shows revised user-role assignments based on those in Table 3.2. We see that we

can now restrict the permissions of claire, who is assigned to the DIR role, to those of the senior

roles. This corresponds more accurately with the deployment of responsibilities in a real-world

enterprise than in the original example. Furthermore, claire is assigned to the DSO role which

means that she can administer junior roles in the hierarchy although she is not actually assigned

to those roles. It has been argued (Sadighi Firozabadi and Sergot 1999; Sadighi Firozabadi et al.
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u R(u) ↓R(u)

anne {QE1, QE2} {QE1, ENG1, ED, E, QE2, ENG2}

bill {PE1, QE1, PL1} {PL1, PE1, QE1, ENG1, ED, E}

claire {ED, DIR, DSO} {DSO, DIR, PL1, PL2, ED, E}

dave {ENG1} {ENG1, ED, E}

emma {PE1, QE2} {PE1, ENG1, ED, E, QE2, ENG2}

(c)

Figure 4.6: Using RHA4 to reduce inheritance in the role hierarchy

2001) that this distinction between having the authority to assign a permission (or role) and being

assigned a permission (or role) is an important and largely ignored area in access control. Note

also that it is necessary for bill to be assigned explicitly to PE1 and QE1 in order for him to

make use of the permissions available to roles in the project for which he is responsible. This

corresponds more accurately with the spirit of least privilege.

In other words, the use of RHA4 means that the role hierarchy can have a variety of forms.

Specifically, unlike in RRA97, we do not require ranges for administrative purposes, nor do we

impose conditions on any ranges in the hierarchy. Another beneficial side effect is that there

are fewer edges in the role hierarchy, thereby reducing the running time of the dfs algorithm

(see Section 3.6). The only overhead that has been introduced is the admin-authority relation.

However, the tuples in this relation and the conditions they are required to satisfy are clearly less

complex than those in the can-modify relation.
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4.3 SARBAC: An administrative model for role-based ac-

cess control

We now describe how RHA4 can be extended in a very simple way to provide a complete adminis-

trative model for role-based access control. We call this model SARBAC – scoped administration

of role-based access control.

Our intention is that SARBAC can be used as an alternative model to ARBAC97 for adminis-

tration in conjunction with RBAC96. However, we will assume that, as in the NIST model, for all

u ∈ U and all p ∈ P , R(u), R(p) ∈ A(R). We will also assume that there is no distinguished set

of administrative roles or administrative permissions. In particular, an administrative role and its

administrative powers (scope) are determined solely by the admin-authority relation.

4.3.1 Administration of user-role and permission-role assignment

In order to exercise more control over the assignment of roles to users and permissions, we first

define a SARBAC constraint.

Definition 4.3.1 Let R′ = {r1, . . . , rk} be a subset of R and let
∧
R′ denote r1 ∧ · · · ∧ rk. Then

a SARBAC constraint has the form
∧
R′ for some R′ ∈ 2R.

A constraint
∧
R′ is satisfied by u ∈ U if for all r ∈ R′, r ∈ ↓R(u). A constraint

∧
R′ is

satisfied by p ∈ P if for all r ∈ R′, r ∈ ↑R(p).

Note that
∧
∅ is trivially satisfied by all users and permissions (and corresponds to the URA97

constraint r ∨ r). We also note that it is sufficient to define a constraint to be
∧
A, for some

antichain A, rather than
∧
R′. In particular, we have the following result.

Proposition 4.3.1 Let R′ ⊆ R. Then
∧
R′ is satisfied by a user u if, and only if,

∧
R′ is satisfied

by u, where R′ is the set of maximal elements in R′. Similarly,
∧
R′ is satisfied by a permission

p if, and only if,
∧
R′ is satisfied by p, where R′ is the set of minimal elements in R′.

Proof

⇒ The result follows immediately since R′ ⊇ R′.

⇐ Suppose u satisfies
∧
R′. We can assume R′ ⊂ R′ (otherwise we are done). Hence let

r ∈ R′ \ R′. Then there exists r′ ∈ R′ such that r < r′. Now r′ ∈ ↓R(u), since u satisfies
∧
R′ by assumption, and hence r ∈ ↓R(u).

The proof for permissions is similar and is omitted.

We define two relations ua-constraints ⊆ R × A(R) and pa-constraints ⊆ R × A(R).

The purpose of these relations is similar to can-assign and can-assignp in ARBAC97, in that

they control whether a given user or permission can be assigned to a particular role. Specifically,

an administrative role a can assign a user u to a role r provided there exists a tuple (r,A) ∈

ua-constraints such that u satisfies
∧
A and r is in the administrative scope of a. In this

case, R(u) := R(u) ∪ {r}, since R(u) is required to be an antichain. Hence, if r 6 r′ for some

r′ ∈ R(u), then the user-role assignment has no effect. (To simplify the presentation we assume
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that for all r ∈ R there exists (r,A) ∈ ua-constraints and (r,A′) ∈ pa-constraints. We

note that in practice, it will be simpler to omit tuples of the form (r, ∅) from ua-constraints;

the assignment of a user u to such a role r succeeds provided r is in the administrative scope of

a.) The administrative role a can assign a permission p to a role r provided there exists a tuple

(r,A) ∈ pa-constraints such that p satisfies
∧
A and r is in the administrative scope of a. In

this case, R(p) := R(p) ∪ {r}.

The administrative role a can revoke (u, r) ∈ UA provided r is in the administrative scope of

a. Similarly, a can revoke (p, r) ∈ PA provided r is in the administrative scope of a. We do not

support weak revocation.

Unlike in URA97 and PRA97, we do not include constraints of the form r in the

ua-constraints and pa-constraints relations. There are several reasons for this. Firstly, every

entry in ua-constraints and pa-constraints has the form (r,A), where A is an antichain. In

other words, the representation has the virtue of simplicity. Secondly, we are effectively using Horn

clause logic, and hence it is simple and efficient to implement. Furthermore, an inconsistent speci-

fication of constraints on user- and permission-role assignment cannot arise (unlike in ARBAC97).

Thirdly, updates to the ua-constraints and pa-constraints relations will be much easier in the

event of deletions and additions to the role hierarchy. (We consider this in more detail below.) Fi-

nally, we believe that separation of duty constraints are a more suitable instrument for preventing

assignments of certain users to certain roles. For example, (DSO, ED∧PL1, [PL2, PL2]) ∈ can-assign

in Table 3.5 means that PL1 and PL2 cannot be assigned to the same user. This is merely a static

separation of duty constraint. (We are assuming of course that any user-role assignment will check

that no separation of duty constraints will be violated by the assignment. Note that the following

situation could arise in SARBAC: (r, {r1, r2}) ∈ ua-constraints with r1 and r2 also forming a

static separation of duty constraint. In this case, no user can be assigned to r. Of course this

situation can also arise in ARBAC97.)

We do not include disjunctions in ua-constraints unlike can-assign. We note, however,

that we can express disjunctions in a similar way to alternative clauses in a Prolog program. That

is, (r, (r1 ∧ r2) ∨ r3) would be expressed as two tuples in ua-constraints: namely, (r, {r1, r2})

and (r, {r3}). Note that a tuple in the ua-constraints relation is very similar to a role activation

rule in OASIS.

Updates to the ua-constraints relation

A role a can add a tuple (r,A) to (or delete a tuple from) ua-constraints or pa-constraints

provided r ∈ σ(a) and A ⊆ σ(a). We now consider the effect of hierarchy operations on

ua-constraints.

AddEdge(a, r, r′) We replace every instance of r ∧ r′ in a constraint by r′.

DeleteEdge(a, r, r′) We do nothing since every constraint is a conjunction of elements in an

antichain in R.

AddRole(a, r,∆r,∇r) We may need to update some constraints because the addition of

r will result in the insertion of (transitive) edges between elements in ∆r and ∇r;
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AddRole(PSO1, X, {PE1} , {QE1}), for example, creates an edge between PE1 and QE1. Therefore, the

procedure outlined above for AddEdge may need to be employed. (AddRole(a, r,∆r,∇r) may also

result in some newly transitive edges being deleted; AddRole(PSO1, X, {ENG1} , {QE1}), for example,

requires the deletion of the transitive edge (ENG1, QE1).)

DeleteRole(a, r) We replace every constraint of the form A∪{r} in ua-constraints by A ∪∆r.

An example of this procedure is shown in Figure 4.7.
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Figure 4.7: Role deletion and SARBAC constraints: If r3 is deleted then the constraint r1∧r2∧r3
is replaced by

∧
{r1, r2, r4, r5, r6} = r1 ∧ r2 ∧ r5 ∧ r6

Updates to the pa-constraints relation

Clearly, similar procedures can be applied to the pa-constraints relation: if an edge (r, r ′) is

inserted then every instance of r ∧ r′ should be replaced by r; if r is deleted from the hierarchy

then we replace A ∪ {r} with A ∪∇r.

Stronger constraints on user- and permission-role assignment

We briefly consider extending the notion of administrator of a role to an administrator of a user

or of a permission. In this case, a role a can add (u, r) to UA if r ∈ σ(a) and R(u) ⊆ σ(a).

The intuition here is that a is an administrator of r and of the user to which r is to be assigned.

Similarly, a can remove (u, r) from UA if R(u) ⊆ σ(a). We can define analogous conditions on p

and R(p) for permission-role assignment and revocation.

For example, given the user-role assignments and admin-authority relation in Figure 4.6, only

the DSO role would be able to change anne’s assignments. It is questionable whether such a scheme

is compatible with the requirements of de-centralization and autonomy. For example, assuming

the admin-authority relation in Table 4.4, PSO1 would not be able to revoke the assignment of

anne to QE1.

Furthermore, introducing these requirements clearly imposes additional overheads on user- and

permission-role assignment and revocation. If we also insist that all users and permissions affected

by changes to the role hierarchy made by an administrative role a should be in the administrative

scope of a, then the overheads increase significantly. In short, although this scheme may be a
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suitable administrative framework for certain high-assurance applications, it seems unlikely that

it would be widely deployed.

4.3.2 A comparison of ARBAC97 and SARBAC

In this section we examine the relative merits of ARBAC97 and SARBAC. Table 4.2 summarizes

the differences between the two models. The main differences are that only three relations are

required in SARBAC rather than the five used in ARBAC97. Furthermore, each of the SARBAC

relations is simpler than its ARBAC97 counterpart.

ARBAC97 SARBAC

can-assign ua-constraints

can-revoke –

can-assignp pa-constraints

can-revokep –

can-modify admin-authority

Table 4.2: A comparison of ARBAC97 and SARBAC features

We now recall some of the observations we made about ARBAC97 in the introductory discus-

sion in Section 4.2 and examine whether SARBAC has any impact on them. Unlike ARBAC97,

SARBAC controls the assignment of administrative roles to users. For example, suppose that

(PSO1, PL1) ∈ ua-constraints, and we have the admin-authority relation and user-role assign-

ments defined in Figure 4.6. Then claire acting in the role DSO can assign bill to PSO1.

SARBAC, like ARBAC97 and OASIS, permits a user-role assignment on the basis of the

user’s current role assignments. However, we believe it is important to impose an upper bound or

ceiling on the roles to which a user can be assigned. (Recall that dave could be assigned to PL1

merely on the basis of his assignment to ENG1.) In Chapter 7, we show how such a ceiling can be

specified using conflict of interest policies. We consider a different approach to controlling user-

role assignment in Chapter 8. (Note we could also consider imposing a “floor” on permission-role

assignment in order to prevent sensitive permissions “drifting” too far down the hierarchy.)

SARBAC permits role deletions that may affect SARBAC relations. In fact, SARBAC relations

are robust with respect to all role hierarchy operations. SARBAC also permits administration of

the SARBAC relations. ARBAC97 makes some limited contribution to considering the effect of

hierarchy operations on ARBAC97 relations, but this is neither as comprehensive nor elegant

as in SARBAC. In short, we believe SARBAC offers a more complete, self-contained model for

administration.

Intuitive appeal and simplicity

Obviously the intuitive appeal of a model is a somewhat subjective quality, but we believe that

the relationship between SARBAC relations and the role hierarchy is more intuitive in SARBAC

than in ARBAC97. In particular, the admin-authority relation defines the parts of the hierarchy

over which each role has administrative control in a clear and rather natural way. The extended

hierarchy makes the division of responsibility for the hierarchy between administrative roles more

self-evident than in ARBAC97. SARBAC also benefits from a uniform approach to administrative
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tasks: they are all performed with reference to the administrative scope of a role. This suggests

that an implementation of SARBAC could re-use considerable amounts of code, in contrast to

ARBAC97. Furthermore, because SARBAC does not use administrative permissions, no confusion

can arise over the purpose of administrative permissions and relations in the administrative model.

In short, SARBAC has a more natural, simpler and more streamlined approach to administration

than ARBAC97.

Table 4.3 is an informal comparison of the conditions imposed on administrative functions

supported by the two models which we described in detail in Sections 3.4, 4.2.4 and 4.3.1 The

purpose of the table is to illustrate the greater coherency of the SARBAC model compared to the

ARBAC97 model.

Function ARBAC97 SARBAC

AddRole(a, r,∆r,∇r) ∆r = {r′}, ∇r = {r′′}; ∇r ⊆ σ(a);

(a,R′) ∈ can-modify; ∆r ⊆ σ+(a)

r′, r′′ ∈ R′;

(r′, r′′) is a create range

DeleteRole(a, r) (a,R′) ∈ can-modify; r ∈ σ+(a)

r ∈ R′;

r is not the end point of any range in

any ARBAC97 relation

AddEdge(a, r, r′) (a,R′) ∈ can-modify; r, r′ ∈ σ(a)

r, r′ ∈ R′;

(r) = (r′)

DeleteEdge(a, r, r′) (a,R′) ∈ can-modify; r ∈ σ+(a)

r, r′ ∈ R′

AssignUser(a, u, r) (a, c, R′) ∈ can-assign; r ∈ σ(a);

r ∈ R′; (r, c) ∈ ua-constraints;

u satisfies c u satisfies c

RevokeUser(a, u, r) (a,R′) ∈ can-revoke; r ∈ σ(a)

r ∈ R′

Table 4.3: A comparison of ARBAC97 and SARBAC functionality

Computational complexity of SARBAC

An algorithm to test whether r ∈ σ(a) would first construct ↑r, ↑a and ↓a (O(3|E|)) and then

test whether each element of ↑r belongs to ↑a ∪ ↓a (O(|R|2)). Hence such an algorithm would

run in O(max
{
3|E|, |R|2

}
) time. Recall that the time complexity of determining whether a

role belongs to a range is O(2|E|) and of determining whether a given range is encapsulated is

O(max
{
4|E|, |R|2

}
).

A detailed comparison of the complexity of implementing ARBAC97 and SARBAC is beyond

the scope of this thesis. We have not, for example, considered the complexity of the following:

1We have simplified the conditions imposed by ARBAC97 for edge insertion to succeed because of space
restrictions.



CHAPTER 4. EXTENSIONS TO ROLE-BASED ACCESS CONTROL 91

testing whether a given range is a create range, finding the immediate authority range of a given

role and testing whether the insertion of an edge violates the encapsulation of any authority range.

However, we can see that the time complexity of the decision problems for ARBAC97 discussed

in Section 3.6 will have a similar order in SARBAC. The assignment of users (and permissions)

to roles is slower by a multiplicative factor of 1.5 in SARBAC, while hierarchy operations are at

least as fast as in ARBAC97. Note that DP8 is not relevant in SARBAC because there is no

possibility that the ua-constraints relation can both permit and prohibit the assignment of a

user to a role. We consider DP7 and SARBAC in Chapter 5.

Expressive power

A rigorous analysis of expressive power is beyond the scope of this thesis. Furthermore, we do not

agree with some of the assumptions that informed the development of ARBAC97. In other words,

we do not necessarily think it is worthwhile attempting to exhibit a simulation of ARBAC97 using

SARBAC techniques. However, we will sketch the differences between ARBAC97 and SARBAC

in order to convince the reader that little has been sacrificed to gain the simplicity and versatility

of SARBAC. There are two main differences to consider.

Firstly, it is not possible in general to define administration over a range in SARBAC because

the administrative scope of a given role will not necessarily be a range. However, it is not obvious

to us that the correct unit of administration is a range. In particular, we are unaware of a practical

justification for this approach, beyond the requirement that undesirable side effects be avoided.

Obviously, a range may be appropriate in certain cases: for example, the range [ENG1, PL1] is a

natural unit of administration for an administrative role with limited powers, but this range is also

identified by SARBAC as the correct unit of administration. In short, we believe that SARBAC

is a more natural approach to administration and will provide at least as good a solution as

ARBAC97 to administration in any given role hierarchy.

Secondly, and perhaps more importantly, it is not possible to define arbitrary constraints on

user-role and permission-role assignments. In particular, it is impossible in SARBAC to prohibit

the assignment of a user u to a role if u is currently assigned some other specified role. Clearly,

such constraints could be used to implement static separation of duty. Moreover, given that such

URA97 constraints apply to all users, it would seem that their sole purpose is to implement static

separation of duty. It seems to us, therefore, that constraints of the form r can be specified using

RCL 2000. (Constraints of the form r in can-assignp can be used to implement operational

separation of duty constraints, which can also be specified using RCL 2000.) In short, although

constraints of the form r provide more options in controlling user-role and permission-role assign-

ments, we would argue that RCL 2000 is a more appropriate way of specifying such behaviour.

(It should not be forgotten that constraints of the form r give rise to the possibility that the

can-assign and can-assignp relations are not consistent, and also increase the complexity of

administration.)

To conclude this section, we note that SARBAC supports administrative functions that are

not provided in ARBAC97. In particular, we can update SARBAC relations and constraints and

assign administrative roles to users.
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4.4 Using SARBAC for discretionary access control

Discretionary access control is essentially characterized by ownership of objects by users, and by

users having permissions to grant and revoke access to objects they own. It is well known that,

in general, the security properties of a discretionary access control system cannot necessarily be

established (Harrison et al. 1976).

There have been several attempts to establish a correspondence between features of discre-

tionary access control and role-based access control (Barkley 1997; Friberg and Held 1997; Hua

and Osborn 1998; Sandhu and Munawer 1998a). The most ambitious of these attempts, by Osborn

et al. (2000), tries to address the problem of ownership in role-based access control. Unfortunately,

the construction presented therein involves the creation of at least three administrative roles and

one normal role as well as eight permissions for each object in the system. The authors do ac-

knowledge that discretionary access control appears to be more complex to simulate in role-based

access control than mandatory access control.

In conclusion, we believe that there is little point in pursuing the simulation of discretionary

access control in role-based access control using the methods outlined by Osborn et al. (2000). In-

deed, Ferraiolo and Barkley (1997) noted that a discretionary access control system can be viewed

as one in which users have administrative (or control) permissions. Taking this point of view,

a role-based access control system can be discretionary simply by assigning control permissions

to users (via appropriate user-role and permission-role assignments), rather than by assigning

distinguished users to administrative roles.

Auto-administrative roles

We believe a more sensible approach to supporting discretionary access control-style features within

a role-based framework would be to have the notion of a “self” role which is “auto-administrative”

– that is, a self role can administer itself. We envisage such a role having the following features:

(1) For each user u, create a role ru (possibly with administrative permissions assigned to it)

to which only that user is assigned. The only role which can assign users to ru is ru itself.

(Alternatively, we may wish to make use of cardinality constraints here, and insist that for all

u ∈ U , |U(ru)| = 1.)

(2) A user should be able to create roles junior to ru and to assign users to those roles in order

to make permissions available to other users.

(3) Every session a user runs automatically includes that user’s self role.

DRBAC

An obvious solution is to define a set of self roles RU , say, such that RU ⊆ R ⊆ R, where R is

the set of maximal roles in R. A role ru ∈ RU could be connected to other roles in the hierarchy

and act as a private role (see page 71) so that u also inherits some of the roles to which u is

assigned. Alternatively, ru could be disconnected from the hierarchy and form the root of a

“private” hierarchy. For convenience, we refer to these alternatives as DRBAC1 and DRBAC2,
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Figure 4.8: A DRBAC1 hierarchy: u’s private hierarchy is enclosed in the box; note that PE1 is
not ru-encapsulated

respectively. Figure 4.8 illustrates DRBAC1 in the context of the usual hierarchy. (Clearly, an

illustration of DRBAC2 would be similar but would not include the edge (PE1, ru).)

RHA4 provides a natural way of administering self roles and realizing features (1) and (2).

Specifically, for every ru ∈ RU , (ru, ru) ∈ admin-authority. Hence u will be able to create role

r′u with ru as a parent and assign permissions and users to r′u. The administrative scope of ru will

be a private hierarchy within which u can exercise discretionary powers. (Clearly (3) is merely an

implementation decision.)

There are two issues that may require attention if we choose to implement DRBAC1. Firstly, if

a user u changes job and hence requires different role assignments, it may be necessary to change

the way in which ru is connected to the hierarchy. This is not possible unless there exists a ∈ R

such that ru ∈ σ(a). Since ru is a maximal element, this implies that (a, ru) ∈ admin-authority

(although this does not imply that a inherits the permissions of ru). Secondly, because (ru, ru) ∈

admin-authority, there may be r ∈ R such that r ∈ σ(ru). Hence ru may be able to administer

parts of the main role hierarchy. In practice, this seems unlikely to happen (see PE1 in Figure 4.8,

for example, which does not belong to σ(ru)).

Note that ru in Figure 4.8 is identical to the concept of a private role as suggested by Sandhu

et al. (1996), which was introduced to address the overloading of the hierarchy. However, RRA97

is inapplicable to the role hierarchy depicted in Figure 4.8 because of the requirement for encapsu-

lated ranges. Furthermore, RRA97 does not permit the creation of a role that has no immediate

child, like r′u, for example.

Concluding remarks

We suggested earlier that the self role could always be activated at login. If such an approach

is taken, DRBAC1 suggests an alternative approach to user-role assignment in role-based access

control. We could use a dynamic approach to user-role assignment that captures the principle of

least privilege by dispensing with the UA relation and forcing a user to activate roles. A request

to activate a role will be granted if an appropriate constraint in the ua-constraints relation is

satisfied. This approach to user-role assignment is clearly very similar to that adopted in OASIS.

However, unlike in OASIS, we retain the possibility of using the role hierarchy to determine
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permission inheritance. The details of such an approach are beyond the scope of this thesis.

4.5 The generalized role-based access control model

Sandhu and Munawer (1998b) noted in their discussion of RRA97 that a role r could be regarded as

an ability if no users were assigned to r, and a role r′ could be regarded as a group if no permissions

were assigned to r′. In fact, RRA97 consists of three sub-models, GRA97, ARA97 and UP-RRA97,

which model group-role assignment, ability-role assignment and role-role assignment, respectively.

GRA97 and ARA97 are essentially generalizations of URA97 and PRA97, respectively. What we

described as RRA97 is actually UP-RRA97, which models the administration of roles which have

both users and permissions assigned to them.

An important topic for research is the ability hierarchy. Although it seems attractive to order

the set of abilities, it is not immediately obvious what this hierarchy should be. The most obvious

approach is to treat abilities in the same way as roles, which is the approach advocated in Sandhu

and Munawer (1998b). An example of such an ability hierarchy is shown in Figure 4.9a. A

primitive permission is denoted by a subscripted p; an ability is denoted by a subscripted π.
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Figure 4.9: Ability hierarchies

Consider the following question: if a role r is assigned the ability π1 = {p1, p2}, should a

request by (a user assigned to) r to use permission p1 be granted? Clearly the answer to this

question is “yes” given the underlying assumption of the hierarchy in Figure 4.9a. However, it

is less obvious that the answer should be “yes”. There may well be applications in which an

ability should be a “black box”, in order to implement a particular feature of the application, and

that individual permissions in that ability should not be available. For example, suppose that

the permissions p1 and p2 should not be assigned implicitly as atomic permissions to π1. This

results in a different hierarchy, shown in Figure 4.9b. (Note that we have assigned π1 to π2 as in

Figure 4.9a.) Unfortunately, it now becomes more difficult to define a natural partial ordering on

the set of abilities.

Another important issue is the interaction between the ability hierarchy and the ability-

assignment relation. In common with RBAC96, most role-based access control models assume

that complex permissions can be formed from other permissions.

However, suppose we have the ability hierarchy shown in Figure 4.9a, and that PA =

{(π1, PE1), (π2, ENG1)}. Clearly PA contains redundancy: the permissions explicitly assigned to

PE1 are already implicitly assigned through (π2, ENG1). In a large system, redundancy in an access
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control system imposes a significant overhead and should be avoided where possible (O’Shea 1995).

Therefore, it may be desirable to impose an additional constraint on ability-role assignment.

Specifically, for all p, p′ ∈ P , if p 6 p′, then for all r ∈ R(p), r′ ∈ R(p′), r ≯ r′. In other words,

no element in the set of roles to which p is assigned can be senior to a role in the set of roles to

which p′ is assigned.

4.5.1 The generalized role hierarchy

We believe that the incorporation of groups and abilities into role-based access control models

could be explored more fully. We now present a preliminary discussion of how these concepts may

be brought together in a “generalized role-based access control model”.

We define a group to be a non-empty set of users. The set of groups, G, is a partial order

under superset inclusion, which we denote 〈G,6g〉. (A user is modelled as a group with a single

element.)

Permissions are considered to be “uninterpreted symbols” as usual, although we assume the

existence of primitive or atomic permissions. We define an ability to be a non-empty set of

permissions. We will assume the natural interpretation of the ability hierarchy, as shown in

Figure 4.9a, for example. That is, the set of abilities, P , is a partial order under subset inclusion,

which we denote 〈P,6p〉.

We now describe a generalized role hierarchy which we believe to be a simple, intuitive gener-

alization of existing approaches to the role hierarchy. Given a role hierarchy, 〈R,6r〉, a group-role

assignment relation, UA, and an ability-role assignment relation, PA, we construct a partially

ordered set, 〈H,6〉, where H = G ∪R ∪ P .

In order to simplify our presentation we introduce the notion of type before we define 6. We

denote the type of h ∈ H by τ(h), where

τ(h) =







g if h ∈ G,

r if h ∈ R,

p if h ∈ P .

In addition, the set of types is a total order, where p < r < g.

We define 6 to be the reflexive, transitive closure of the following covering relation. For

h, k ∈ H, hl k if one of the following conditions holds:

τ(h) = τ(k) and h <τ(h) k;

τ(h) = p, τ(k) = r and (h, k) ∈ PA;

τ(h) = r, τ(k) = g and (k, h) ∈ UA.

The generalized role hierarchy is the graph 〈H,l〉. For all h ∈ H, there exists a set of abilities,

↓P (h), which denotes the abilities (implicitly) assigned to h. Furthermore, for all h, k ∈ H, we

have h < k implies either ↓P (h) ⊂ ↓P (k) or ↓P (h) ⊆ ↓P (k) and τ(h) < τ(k).

We now consider an example based on fragments of the role hierarchy and assignment relations

of Section 3.1. The resulting generalized role hierarchy is shown in Figure 4.10. All abilities in
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this example are primitive permissions. The element QEs represents the group of (users that are)

quality engineers.
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Figure 4.10: A generalized role hierarchy

We note that per-subject, per-permission and per-ability reviews effectively become reachability

problems in a directed graph. For example, the set of permissions assigned to a group g (recall

that the set of groups includes all single users), is simply the union of the abilities in ↓g. Similarly,

to establish the set of groups which can exercise a given permission p, we compute the set of

groups in ↑p. (In other words, the generalized role hierarchy model conforms to the requirements

of symmetrical RBAC – the top level in the NIST RBAC model.) Another attractive feature of

this hierarchy is that no confusion can arise in the assignment of permissions to roles. Recalling the

ability hierarchy of Figure 4.9a, assuming the access control system stores the transitive reduction

of the generalized hierarchy, then it will contain edge (π2, ENG1) but not (π1, PE1).

We note that the generalized role-based access control model bears some similarity to the

directed graph model of protection systems (Snyder 1981). In this model, there are two types

of vertices representing subjects and objects, depicted by solid and hollow circles, respectively.

An edge is drawn between two vertices v1 and v2 and labelled α if subject v1 has access rights
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α to object v2. Existing results (Lipton and Snyder 1977) may simplify the task of establishing

properties of the generalized role-based access control model.

4.5.2 Administration and the generalized role hierarchy

One beneficial side-effect of the generalized role hierarchy is that user- and permission-role assign-

ment are hierarchy operations. In particular, user- and permission-role assignment corresponds

to inserting an edge in the generalized role hierarchy; user- and permission-role revocation cor-

responds to deleting an edge from the generalized role hierarchy. User- and permission-role as-

signment are controlled by the RHA4 model and the SARBAC relations ua-constraints and

pa-constraints. For example, given p ∈ P and r ∈ R, by (4.3), p can be assigned to r by a

provided p, r ∈ σ(a) (and p satisfies an appropriate SARBAC constraint).

Two interesting points arise when applying SARBAC to the generalized role hierarchy. Firstly,

we can have tuples of the form (u, u′) in the admin-authority relation, where u, u′ ∈ U . Hence u

can manage the assignments of roles and permissions to u′. Secondly, we can have constraints in

the ua-constraints relation of the form G1 ∧ · · · ∧Gk, where Gi, 1 6 i 6 k, is a group. A more

detailed examination of these topics is beyond the scope of the thesis.

4.6 Summary and discussion

We believe that the ARBAC97 model has certain shortcomings: it suffers from a lack of ap-

plicability, flexibility, coherence and robustness; the interaction between its sub-models is not

completely determined; it is rather complex and lacks intuitive appeal. We believe that many

of these problems arise because of two particular features in the development of the ARBAC97

model.

Firstly, we believe that a sensible approach to the problem of administration in role-based

access control is to first determine how hierarchy operations are to be performed. However, in

ARBAC97, the “easy” models, URA97 and PRA97, were developed first; as a result of this, the

integration of these models with RRA97 has not been easy to achieve.

Secondly, the development of RRA97 was based on encapsulated ranges. The reason for this

decision was that the model should support decentralization, autonomy and should not allow

undesirable changes to the hierarchy. It is clear that the decision to develop an administrative

model that requires the existence and preservation of encapsulated ranges in a role hierarchy

has had a detrimental effect on the applicability of the resulting model. In other words, the

development of ARBAC97 has been driven by the concept of an encapsulated range not by the

needs of RBAC96; surely this is the wrong way round. Furthermore, although RRA97 guarantees

that changes are local and cannot propagate undesirable changes through the hierarchy, it is not

obvious that the changes which are deemed to be undesirable have any formal or intuitive basis.

We believe that the list of requirements for ARBAC97 was missing several important items. For

example, surely ARBAC97 should be applicable to as many role hierarchies as possible. We believe

it is more appropriate to develop a more permissive model that does not preclude administrative

changes because they conflict with the assumptions of the administrative model. Rather, the model

should permit changes if they are reasonable in some intuitive sense. (This requirement is no more
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vague than the requirement that RRA97 should not permit undesirable changes.) Clearly, such a

model should provide support for accountability and should be easily integrated with RBAC96.

The RHA family of models is a set of four increasingly complex administrative models for

hierarchy operations. Each of these models is based on the idea of administrative scope, which

bears some formal similarity to an encapsulated range.

We have concentrated on applications of the RHA4 model as it provides a realistic compromise

between utility and complexity. It is also the model that can be most easily compared with RRA97.

We have shown that RHA4 addresses the shortcomings of RRA97, although it is considerably more

permissive that RRA97. (However, the concept of a line manager role provides direct support for

accountability, a feature that is not made explicit in RRA97. Unfortunately, the introduction of

the admin-authority relation to RHA4 means that the definition of line manager needs to be

modified for RHA4. We discuss this issue further in Chapter 9.) The fact that RHA4 is applicable

to many different types of role hierarchy means that it can also be used to reduce the amount of

inheritance in the role hierarchy, thereby addressing certain reservations (reviewed in Section 4.1.1)

that have been expressed about the suitability of the role hierarchy for modelling access control

requirements in an enterprise.

The benefit of defining the RHA family of models is that each of them can be extended to a

complete model for administration. In this chapter we extended RHA4 to the SARBAC model

by introducing the ua-constraints and pa-constraints relations which control the assignment

of roles to users and permissions, respectively. These relations are analogous to can-assign and

can-assignp, and make use of SARBAC constraints. These constraints are defined in terms of

antichains and are satisfied according to the same criteria as URA97 and PRA97 constraints. How-

ever, SARBAC constraints are considerably simpler, allowing neither disjunctions nor constraints

of the form r, thereby making the management of the SARBAC relations easier. In particular, a

simple algorithm can update the SARBAC relations in the event of changes to the role hierarchy,

a feature which has not been considered in ARBAC97.

A useful side effect of SARBAC is the support it provides for private user hierarchies, thereby

providing support for discretionary access control features within a role-based environment. The

resulting DRBAC (discretionary RBAC) model is far simpler than any previous attempts to sim-

ulate or support discretionary access control in a role-based access control model.

We have also presented a generalized role-based access control model in which all entities are

treated as nodes in a hierarchy. The set of entities may include groups (a set of users) and abilities

(a set of permissions). Edges in the hierarchy indicate assignment of a group to a role, or of a role

to a role, or of a role to an ability. The SARBAC model can be employed with the generalized

role-based access control model.

There are many opportunities for further work in the area of administration in role-based access

control, which we will discuss in Chapter 9. Probably the most interesting practical development

would be to implement a role-based reference monitor that could use one of several different

administrative models (including ARBAC97 and SARBAC) and to assess the relative performance

of these models.



Chapter 5

The Safety Problem

Informally, the safety problem is the determination of whether or not a given subject can acquire

a particular access mode to a given object. In a practical sense, the safety problem is “given a

specification of security (an access control policy) does the implementation coincide with policy?”.

Informally, given an access control model, the harder the safety problem is for that model, the

weaker the safety properties of the model. For example, the safety problem in the protection

matrix model is undecidable in general. Therefore, we say that the protection matrix model has

weak security properties, and that the Bell-LaPadula model, for example, has strong security

properties.

The main contribution of this chapter is to prove that the safety problem in the

RBAC96/ARBAC97 model is undecidable. In the next section we review the safety problem

in the HRU model in order to introduce some of the techniques that have been brought to bear

on the topic. In Section 5.2 we consider the safety problem in role-based access control. We

prove that the safety problem in RBAC96 and in RBAC96/ARBAC97 is undecidable.1 Finally,

in Section 5.2.3 we consider the safety problem for RBAC96/SARBAC. Unfortunately, it is still

undecidable, although the analysis is considerably simpler than that for RBAC96/ARBAC97.

5.1 The protection matrix model

We first state the safety problem and seminal results for the protection matrix model (Harrison

et al. 1976; Harrison and Ruzzo 1978). Given a protection system S, the question of whether

an access right a ∈ A can be entered into a cell of the matrix (which did not previously contain

it) through some sequence of commands in Γ is called the safety problem. Formally, does there

exists a sequence of commands, γ1, . . . , γn, where γi ∈ Γ, 1 6 i 6 n, giving rise to a sequence

of matrices M0, . . . ,Mn, where Mi : Si × Oi → 2A, such that there is a command γ whose

conditional part is satisfied by Mn and whose body contains the operation enter a in [s,o]

for some s ∈ Sn, o ∈ On. The action of entering a into a cell of the matrix is called a leakage.

Although “leakage” seems to be a somewhat pejorative term, it should be noted that any access

1It is relatively easy to prove that the safety problem for RBAC96 is undecidable because RBAC96 can be simu-
lated using a variant of the protection matrix model that is known to have an undecidable safety problem (Munawer
and Sandhu 1999).
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control mechanism of interest must permit certain leakages otherwise no changes can be made to

the authorizations in the system. We now state the seminal results on the safety problem for the

protection matrix model, which we will denote SP:HRU.

Theorem 5.1.1 (Harrison et al. 1976, Theorem 2) SP:HRU is undecidable.

Proof (Sketch) The proof proceeds by showing that the behaviour of an arbitrary DTM with

alphabet Σ and set of states Q can be simulated by a protection system S(Σ∪Q,Γ,M0), and that

the leakage of a right corresponds to the DTM entering the halt state, qh. By construction, the

protection matrixM : S×S → 2Σ∪Q is square. For a DTM in configuration a1a2 . . . ak−1qak . . . am,

the entries in the matrix are defined as follows:

[si, sj ] =







{ai, q} if i = j = k 6= m,

{ai} if i = j 6= k,

{ai, end} if i = j = m,

{own} if j = i+ 1,

∅ otherwise.

The matrix in Figure 5.1a simulates a DTM in configuration a1qa2a3a4. The generic right own is

used to order the subjects so that the ith subject is identified with the contents of the ith square

of the tape. The generic right end is used to identify the end of the tape.

s1 s2 s3 s4

s1 {a1} {own}

s2 {a2, q} {own}

s3 {a3} {own}

s4 {a4, end}

(a) Configuration a1qa2a3a4

s1 s2 s3 s4

s1 {a1} {own}

s2 {a′2} {own}

s3 {a3, q
′} {own}

s4 {a4, end}

(b) Configuration a1a
′
2q
′a3a4

Figure 5.1: Simulating a Turing machine using a protection matrix

For each state transition of the DTM, δ(q, a), we define a command in S, caq, that simulates the

behaviour of the state transition. Command 5.1 simulates the state transition δ(q, a2) = (q′, a′2, 1).

The comments show the actual parameters that satisfy the conditional part of the command and

how the command identifies the state transition δ(q, a2).

By construction, for a given configuration of the protection matrix, there is only one command

whose conditional expression is satisfied, and one combination of subjects that satisfies the condi-

tional part of that command (which will be a pair of the form (si, si+1), for some i, 1 6 i < |S|).

In Figure 5.1a that command is ca2q and the pair of subjects is (s2, s3). The resulting protec-

tion matrix is shown in Figure 5.1b. Clearly, if the DTM enters qh, then qh is entered into the

protection matrix.
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Command 5.1

ca2q(s, s
′) /* (s2, s3) */

if

q ∈ [s, s] and /* identifies s2 */

own ∈ [s, s′] and /* identifies s3 */

a2 ∈ [s, s] /* identifies state transition δ(q, a) */

then

delete q from [s, s]
delete a2 from [s, s]
enter q′ in [s′, s′]
enter a′2 in [s, s]

Theorem 5.1.2 (Harrison et al. 1976, Theorem 1) SP:HRU for mono-operational protec-

tion systems is NP-complete.

Proof (Sketch) The proof establishes that it is sufficient to consider enter commands in a mono-

operational protection system, and that the maximum length of a sequence of commands leading to

a leakage is proportional to the size of the initial matrix. The decision procedure merely examines

all possible sequences of commands in order to decide the safety problem.

Unfortunately, a mono-operational protection system is of very limited practical use since it

is impossible to both create a subject (or object) and to enter any access rights in that subject’s

row of the matrix (or that object’s column). Since conditional commands test for the presence of

access rights, no newly-created subject can ever satisfy the conditions of a conditional command,

and is therefore effectively powerless.

Theorem 5.1.3 (Harrison and Ruzzo 1978, Theorems 5–8) SP:HRU for monotonic pro-

tection systems is decidable if the protection system is mono-conditional and undecidable otherwise.

Proof (Sketch) The proof proceeds by demonstrating that the safety problem for monotonic

protection systems is equivalent to the Post correspondence problem, which is undecidable in

general (Post 1946). It can be shown there is a set of commands, several of which use more than

one conditional statement, which encode the Post correspondence problem in a protection matrix.

The leakage of a generic access right is equivalent to finding a solution to the Post correspondence

problem.

The proof that a mono-conditional protection system is decidable proceeds by showing that

there is a chain of minimal length which leaks a generic right. A chain is a sequence of commands,

γ1, . . . , γk, in which the conditional statement in γi is satisfied by an access right which is inserted

into the matrix by γi−1, 1 6 i 6 k. Moreover, the length of the chain is O(|A|). The proof also

introduces the notion of an ordering on protection matrices. This ordering is referred to as a

covering in a general protection system, and as a weak covering in a monotonic protection system.

It is an open problem whether the safety problem in (non-monotonic) mono-conditional pro-

tection systems is decidable in general. To conclude this section, we summarize the known results

for SP:HRU in Table 5.1.
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Operations Mono-
conditional

Mono-
operational

Status Construction Reference

{op1, op2, op3, op4, op5, op6} 7 7 undecidable Halting problem Harrison et al. 1976,
Theorem 2

{op1, op2, op3, op4, op5, op6} 7 3 NP-hard Length of shortest “leaky” computation is
bounded by size of M0

Harrison et al. 1976,
Theorem 1

{op1, op4, op5, op6} 7 7 PSPACE-
complete

Any polynomial space bounded Turing ma-
chine is equivalent to some set of commands
and M0 whose size is polynomial in the size
of the Turing machine input

Harrison et al. 1976,
Theorem 3

{op1, op3, op4, op6} 7 7 decidable Covering problem in vector addition systems Lipton and Snyder
1978

{op1, op2, op3} 7 7 undecidable Post correspondence problem Harrison and Ruzzo
1978, Theorem 5

{op1, op2, op3} 3 7 NP-hard Length of shortest “leaky” computation is
O(|A|)

Harrison and Ruzzo
1978, Theorem 8

{op1, op2, op3, op4} 3 7 decidable Generalization of result for {op1, op2, op3} Harrison and Ruzzo
1978, Theorem 9

Table 5.1: The safety problem in the protection matrix model: To simplify the presentation, we denote the primitive operations enter, create
subject, create object, delete, destroy subject and destroy object by op1, . . . , op6, respectively. For example, a protection system whose
commands only use the operations op1, op2 and op3 is monotonic.
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5.2 Role-based access control

We will write SP:RBAC to denote the safety problem in role-based access control. SP:HRU

decides whether it is possible for an access right to be added to an element of the protection matrix

which does not currently contain that access right. We adopt the following definition of the safety

problem in the context of role-based access control. SP:RBAC decides whether it is possible for

a permission to be assigned to a role which does not currently have that permission assigned to

it. There are two related problems:

• Is it possible for a user u to be assigned a role that u is not currently assigned to?

• For a given permission p and a given user u, is it possible that some sequence of permission-

role assignments and user-role assignments results in (u, r) ∈ UA and (p, r) ∈ PA for some

r ∈ R? (In other words, at some point in the future, is it possible that u can exercise

permission p?)

We first prove that the safety problem using the RBAC96 model is undecidable, and use this

result to prove that the safety problem using the RBAC96/ARBAC97 model is also undecidable.

To conclude this section we prove that the safety problem using the RBAC96/SARBAC model is

also undecidable.

We base our analysis on RBAC96 and ARBAC97 because they form the most sophisticated

and comprehensive role-based access control models. Therefore, we do not have to make many

assumptions about how the model should work. (Harrison et al. (1976) took several pages to

establish the framework within which their analysis of the safety problem would take place.)

Nevertheless we will have to give some operational semantics to the RBAC96/ARBAC97 model.

Specifically we will need to introduce the idea of commands which can change the components of

the models.

5.2.1 RBAC96

A role-based protection system S(P,Γ, R0,UA0,PA0, RH0) is defined by a set of permissions P ,

a set of commands Γ, an initial role hierarchy R0 and initial RBAC96 relations UA0, PA0 and

RH0. A command consists of a conditional statement comprising a conjunction of zero or more

logical expressions, and a body consisting of a sequence of one or more primitive operations. We

postulate the following primitive operations:

• add-user-assignment adds a single tuple to the UA relation;

• remove-user-assignment removes a single tuple from the UA relation;

• add-permission-assignment adds a single tuple to the PA relation;

• remove-permission-assignment removes a single tuple from the PA relation;

• add-role adds a role to R;

• add-edge adds an edge to RH.
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The body of a command is executed only if the conditional statement evaluates to true. A

logical expression may test whether a particular permission-role assignment is in PA (analogous

to testing the presence of an access right in a cell of the protection matrix). However, it may

be a more complicated test, checking whether two roles are the end points of a create range, for

example.

Theorem 5.2.1 The safety problem for RBAC96 is undecidable.

Proof We now outline the transformation of the halting problem to SP:RBAC, demonstrating

the construction through examples of role hierarchies and commands. We split the proof into

sections describing how each of the basic concepts in RBAC96 is used in the transformation.

Permissions and the permission-role assignment relation We identify tape symbols and

states of the DTM with permissions and use permission-role assignments to keep track of the

read-write head.

We use the permission e to mark the rightmost non-blank cell of the tape. The permission-role

assignments (ri, ai), i ∈ N+, allow the administrative role ai to assign and revoke permissions to

ri. The permission-role assignments (ri+1, ai), i ∈ N+, allow the administrative role ai to assign

permissions to ri+1. (The permission-role assignments (ri, ai) and (ri+1, ai) perform a similar

function to the generic right own ∈ [si, si+1] in the proof of SP:HRU.) We also assume that a>

has the permissions to change the permission assignments of subordinate administrative roles.

For example, suppose that the initial configuration of the DTM is q1p1p2p3p4. Then we define

PA = {(q1, r1), (p1, r1), (p2, r2), (p3, r3), (p4, r4), (e, r4)} ∪APA, where

APA =
{
(r1, a1), (r2, a1), (r2, a2), (r3, a2), (r3, a3), (r4, a3), (r4, a4)

}
∪
{
(ai, a>) : i ∈ N

+
}
.

Roles and the role hierarchy The role hierarchy is used to organize the roles and adminis-

trative roles in a way that corresponds to the contents of the Turing machine tape. Figure 5.2a

shows the role hierarchy corresponding to the configuration q1p1p2p3p4.
2

In order to clarify our construction we have labelled the nodes with both the role name and

the permissions assigned to that role. Note that the ranges [r⊥, r>] and [a⊥, a>] are isomorphic

under the mapping rx 7→ ax, x ∈ N∗, where N∗ = {⊥,>}∪N+. Therefore, we may refer informally

to a role corresponding to an administrative role.

Commands and operations Finally, we illustrate how the state transition function δ is sim-

ulated using commands. For each possible state transition δ(p, q), a command Cpq is defined

satisfying the following properties:

• its conditional statement is satisfied by a unique tuple of parameters;

• its body consists of operations which preserve the correspondence between the DTM and

the role hierarchy.

2Note that this hierarchy is more complicated than is actually required in order to prove the result in the
context of RBAC96. However, the RRA97 component of ARBAC97 imposes restrictions on the structure of the
role hierarchy. Therefore, we have chosen to use the same role hierarchy for the proof of the undecidability of
SP:RBAC in the context of both RBAC96 and RBAC96/ARBAC97.
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Figure 5.2: Role hierarchies in RBAC96/ARBAC97 for SP:RBAC
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Therefore, since δ is a function, the above conditions ensure that the role hierarchy and permission-

role assignment relation will mimic the behaviour of the DTM.

We consider the case δ(q, p) = (q′, p′, 1) in which a state transition causes the read-write head

to move right. There are two cases to consider.

• The new cell does not contain b (the blank symbol)

We define the generic command Cpq in Command 5.2. The comments show the actual

parameters that satisfy the conditional part of the command Cp1q1 , given δ(p1, q1) = (q, p, 1).

With reference to Figure 5.2a, and assuming there is a state transition δ(q1, p1) = (q, p, 1), the

logical tests of the corresponding command Cp1q1 are only satisfied by the parameters in the

ordered triple (a1, r1, r2). Lines 03 and 04 fix the unique role which satisfies the conditional

part of the command and the unique state transition that the command simulates. Lines 05

and 06 fix the unique administrative role which satisfies the conditional part of the command

and also establish the role to which the new state will be assigned. The resulting hierarchy

is shown in Figure 5.2b.

Command 5.2

01 Cpq(a role, r role, r′ role) /* (a1, r1, r2) */

02 if

03 (q,r) ∈ PA and /* identifies r1 and . . . */

04 (p,r) ∈ PA and /* . . . identifies state transition δ(q, p) */

05 (r,a) ∈ APA and /* identifies a1 */

06 (r′,a) ∈ APA /* identifies r2 */

07 then

08 remove-permission-assignment (p,r)
09 remove-permission-assignment (q,r)
10 add-permission-assignment (p′, r)
11 add-permission-assignment (q′, r′)

It would seem that our definition of Cpq is against the spirit of role-based access control which

assumes inheritance of permissions by roles. Specifically, if (p, r) ∈ PA and r < r′, then p

is implicitly assigned to r′. For example, we could have written line 05 as (q, r) ∈ ↓P (r).

We have chosen not to do this in order to keep the presentation as simple as possible and

because the result is unaffected. Note that the ordered triple (a>, r>, r>), for example,

does not satisfy the conditional part of Cp1q1 because, although r> is implicitly assigned

permissions p1 and q1 by inheritance, a> is not assigned permission r> (and hence line 03

evaluates to false). In other words, had we chosen to have conditional commands of the

form if assigned(p,r) rather than if (p, r) in PA, where assigned(p, r) returns true

if p ∈ ↓P (r), there would still be a unique triple that satisfies the conditional part of Cp1q1 .

• The new cell contains b

We define the generic commandDpq in Command 5.3. A new role, r′, is created by a> and the

permission q′ (corresponding to the new state of the DTM) is assigned to r′. Furthermore, a

corresponding administrative role, a′, is created to manage r′ and the appropriate tuples are

added to the can-assignp, can-revokep relations. In addition, a removes (e, r) from PA and
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adds (e, r′) to PA. A further administrative role a′′ is required to amend the permissions of a.

With reference to Figure 5.3a, and assuming there is a state transition δ(q, p4) = (q′, p′, 1),

the logical tests of the corresponding command, Dp4q, are only satisfied by the parameters

in the ordered tuple (a4, r4, , , a>). (The underscore denotes any valid role identifier, since

these parameters refer to the new roles. In Figure 5.3b these are r5 and a5, respectively.

Note also that (a>, r4, , , a>) does not satisfy line 07 of the command.) Lines 03 and 04

fix the identity of the ordinary role that satisfies the conditional part of the command. Line

05 establishes that the read-write head is at the rightmost non-blank symbol. Line 06 fixes

the administrative role that satisfies the conditional statement since only one administrative

role has the permission r. Line 07 ensures that a> is the only role that can be the parameter

a′′.

Command 5.3

01 Dpq(a role, r role, r′ role, a′ role, a′′ role) /* (a4, r4, r5, a5, a>) */

02 if

03 (q,r) ∈ PA and /* identifies r4 and . . . */

04 (p,r) ∈ PA and /* . . . identifies state transition δ(q, p) */

05 (e,r) ∈ PA and

06 (r,a) ∈ APA and /* identifies a4 */

07 (a, a′′) ∈ APA /* identifies a> */

08 then

09 remove-permission-assignment (p,r)
10 remove-permission-assignment (q,r)
11 remove-permission-assignment (e,r)
12 add-role r′ /* r5 */

13 add-edge (r′, r>) /* edge (r5, r>) */

14 add-edge (r⊥, r
′) /* edge (r⊥, r5) */

15 add-role a′ /* a5 */

16 add-edge (a′, a>) /* edge (a5, a>) */

17 add-edge (a⊥, a
′) /* edge (a⊥, a5) */

18 add-permission-assignment (p′, r)
19 add-permission-assignment (q′, r′)
20 add-permission-assignment (e, r′)
21 add-permission-assignment (b, r′)

22 add-permission-assignment (r′, a) /* (r5, a4) */

23 add-permission-assignment (r′, a′) /* (r5, a5) */

24 add-permission-assignment (a′, a′′) /* (a5, a>) */

As in the proof of SP:HRU, the logical tests ensure there is a single command which is appli-

cable to the current role hierarchy, while the body of the command preserves the correspondence

between the role hierarchy and the DTM.

The case when the state transition function causes the read-write head to move left is simulated

in an analogous way. We omit the details.
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Figure 5.3: Simulating the read-write head moving right over a blank symbol
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5.2.2 RBAC96/ARBAC97

In this context, a role-based protection system is parameterized by the set of permissions, the set

of commands, the set of RBAC96 relations and the set of ARBAC97 relations. Role insertion in

RRA97 requires that the new role has a single parent role and a single child role. Therefore, the

operation add-role now takes three parameters. Note that (a⊥, a>) and (r⊥, r>) in Figure 5.2

are encapsulated ranges. We also assume the existence of additional primitive operations which

add and remove tuples from each of the relations in ARBAC97.

Theorem 5.2.2 The safety problem for RBAC96/ARBAC97 is undecidable.

Proof We use the same constructions as in Theorem 5.2.1 and define the following tuples:

(ai, true, [ri, ri]) ∈ can-assignp, 1 6 i 6 4;

(ai, [ri, ri]) ∈ can-revokep, 1 6 i 6 4;

(ai, true, [ri+1, ri+1]) ∈ can-assignp, 1 6 i 6 3;

(a>, true, [a⊥, a>)) ∈ can-assignp;

(a>, [a⊥, a>)) ∈ can-revokep;

(a>, (a⊥, a>)) ∈ can-modify; and

(a>, (r⊥, r>)) ∈ can-modify.

Hence (a⊥, a>) and (r⊥, r>) are authority ranges. It can easily be verified that (a⊥, a>)

and (r⊥, r>) are create ranges. In particular, new roles can be inserted in the hierarchy with

a⊥ and a> (r⊥ and r>) as child and parent nodes, respectively. Each administrative role, ax,

can assign and revoke permissions to the role, rx, and the most senior administrative role can

assign and revoke permissions to all other administrative roles. Furthermore, the can-modify

relation contains the tuples (a>, (a⊥, a>)) and (a>, (r⊥, r>)). In particular, the administrative

role a> can create administrative roles in the range (a⊥, a>) and ordinary roles in the range

(r⊥, r>). In short, by construction, we guarantee that the commands defined in the proof of

Theorem 5.2.1 satisfy the requirements of ARBAC97, and that appropriate conditional statements,

such as is-create-range(a⊥, a>) can be added to Command 5.3 and will be satisfied by the

system.3

We also assume that an additional permission p>, say, is assigned to a>, enabling a> to add

and remove tuples from the can-assignp, can-revokep and can-modify relations. Commands

of the form Dpq need to be modified so that new tuples are added to the ARBAC97 relations.

Specifically, we include the additional lines

add-can-assignp(a′,true, [r, r])

add-can-revokep(a, [r, r])

in the pseudo-code given in Command 5.3, where add-can-assignp and add-can-revokep are

additional primitive operations. Note that lines 12 – 14 in Command 5.3 are replaced by the single

line add-role(a′, a⊥, a>). Lines 15 – 17 are replaced by the single line add-role(r′, r⊥, r>).

3We will not formally define Boolean functions such as is-create-range and rely on the reader’s intuition to
interpret the obvious intended semantics.
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It is not obvious whether the safety problem is undecidable if we omit administrative roles and

administrative permissions. Clearly we can use the PRA97 relations to control the assignment and

revocation of permissions to roles, but we need a mechanism within ARBAC97 for controlling the

addition of tuples to ARBAC97 relations. A cursory analysis suggests that RBAC96 (which in-

cludes administrative roles and permissions) is more expressive than RBAC96/ARBAC97 without

administrative roles and permissions. This is a matter for further research.

We note in passing that the relationship between the ARBAC97 relations and administra-

tive permissions seems to be analogous to the relationship between the security properties and

the protection matrix in the Bell-LaPadula model (Bell and LaPadula 1973a). In particular,

the administrative permissions refine the pre-conditions imposed by the ARBAC97 relations on

permission- and user-role assignment in a similar way to that of the protection matrix refining

authorized access by subjects to objects given the pre-conditions of the simple security property

and *-property.

5.2.3 RBAC96/SARBAC

An obvious question to ask is whether SARBAC has any impact on SP:RBAC. We prove that

the question is still undecidable, although the relative simplicity of the analysis leads to some

preliminary suggestions for limiting role-based commands so that the safety problem becomes

decidable.

Theorem 5.2.3 SP:RBAC is undecidable in the RBAC96/SARBAC model.

Proof (Sketch) We indicate how the role hierarchy simulates a DTM and how the

admin-authority relation is used. We no longer require a separate administrative role hierar-

chy so the analysis is simpler than in RBAC96/ARBAC97. Figure 5.4a shows the extended role

hierarchy simulating the configuration q1p1p2p3p4 and corresponds to the hierarchy in Figure 5.2a.

Figure 5.4b shows the extended role hierarchy simulating the configuration p1p2p3p
′q′b and corre-

sponds to the hierarchy in Figure 5.3b.
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Figure 5.4: Extended role hierarchies in RBAC96/SARBAC for SP:RBAC

Table 5.2 shows the admin-authority relation that gives rise to the the extended hierarchy
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shown in Figure 5.4a. Rather than show all the tuples in the relation explicitly, we have given the

general form for the tuples. Note that the admin-authority relation provides a natural way of

ordering the roles in the hierarchy so that they correspond with the DTM tape. Note also that >

can add triples to the admin-authority relation.

admin-authority

Administrative Role Role

ri ri+1
> r>

Table 5.2: The admin-authority relation

Commands 5.4 and 5.5 are analogous to Commands 5.2 and 5.3, respectively. In Command 5.4

line 03 identifies the role corresponding to the square that the read-write head is scanning and

line 05 identifies the role to which the new state of the DTM should be assigned. Note that if

the read-write head is not over the first square of the tape a command of the form Cpq is satisfied

by two distinct tuples, (ri, ri+1,>) and (ri, ri+1, ri−1). However, the effect of the command is

identical in both instances because assignments and revocations in lines 08 – 11 only affect the

first two parameters of the command. In short, the construction will still faithfully mimic the

behaviour of the DTM. (Similar comments are applicable to Command 5.5.)

Command 5.4

01 Cpq(r role, r′ role, a role) /* (r1, r2,>) */

02 if

03 (q,r) ∈ PA and /* identifies r1 */

04 (p,r) ∈ PA and

05 (r, r′) ∈ admin-authority and /* identifies r2 */

06 r ∈ σ(a)
07 then

08 remove-permission-assignment (p,r)
09 remove-permission-assignment (q,r)
10 add-permission-assignment (p′, r)
11 add-permission-assignment (q′, r′)

5.2.4 Discussion

We have shown that if we define arbitrary role-based access control commands, then the safety

problem in a role-based access control protection system is undecidable. Clearly, the next stage

is to consider restrictions on role-based access control commands that result in decidable and

tractable instances of the safety problem. In particular, it would be interesting to find results

that correspond to those in Table 5.1, although the complexity of commands in role-based access

control means that various additional restrictions are possible.

It is also clear that the operational behaviour of role-based access control can be rather more

complicated than that of the protection matrix model. In particular, the conditional statements in
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Command 5.5

01 Dpq(r role, r′ role, r′′ role, a role) /* (r4, r5, r>,>) */

02 if

03 (q,r) ∈ PA and /* identifies r4 */

04 (p,r) ∈ PA and

05 (e,r) ∈ PA and

06 (r, r′′) ∈ RH and /* identifies r> */

07 r′′ ∈ σ(a) /* identifies > */

08 then

09 remove-permission-assignment(p,r)
10 remove-permission-assignment(q,r)
11 remove-permission-assignment(e,r)
12 add-role(r′, ∅, {r′′}) /* role r5; edge (r5, r>) */

13 add-permission-assignment(p′, r)
14 add-permission-assignment(q′, r′)
15 add-permission-assignment(e, r′)
16 add-permission-assignment(b, r′)
17 add-admin-authority(r, r′) /* (r4, r5) */

commands are more complicated because of the requirements imposed by ARBAC97. Conditional

statements also lack the uniformity of those in the protection matrix model.

The interpretation of operational semantics in RBAC96 is complicated by the existence of

administrative permissions and an administrative model to control the assignment of users and

permissions to roles. It would seem that either mechanism could be used to implement secu-

rity requirements with regard to assignment of users and permissions to roles. Administrative

permissions obviously enable individual administrative roles to assign permissions and users to

given roles, and therefore support a fine-grained approach to role assignments. Alternatively, the

can-assign and can-assignp relations offer a more coarse-grained approach to assignment. It is

not clear whether or how these two features of RBAC96/ARBAC97 are intended to interact.

It is encouraging that the analysis of the safety problem in Theorem 5.2.3 provides further

evidence for the administrative simplicity and clarity of SARBAC. It is clear that the commands

will be easier to implement in RBAC96/SARBAC. In particular, the conditional statements need

only consider administrative scope, constraint satisfaction and permission assignment. In AR-

BAC97, there are several different tests that need to be employed: create ranges, encapsulated

ranges, authority ranges, immediate authority ranges, membership of ranges, as well as constraint

satisfaction and permission assignment.

The proof of the undecidability of SP:RBAC suggests that if the width of R can be bounded in

some way, then the safety problem will be decidable. This is analogous to restricting the behaviour

of the leading diagonal in the protection matrix. This in turn suggests that a role-based protection

system can be constructed in which an antichain “computes” solutions to the Post correspondence

problem. That is, we conjecture that SP:RBAC in a monotonic role-based protection system is

also undecidable.



Chapter 6

Antichain Completions of a Poset

The material in this chapter is mainly derived from Crampton and Loizou (2000) and Crampton

and Loizou (2001b). It provides a rigorous framework for the material on conflict of interest

policies in Chapter 7 and a motivation for the secure hierarchical authorization framework in

Chapter 8. In fact, it was the development of conflict of interest policies, which are considered

to be antichains in a powerset, that led us to consider antichains in the more general setting of

arbitrary partial orders and gave rise to the material in this chapter.

As we observed in Lemma 2.1.1, the lattices I(X) and F(X) are completions of the poset X

under the mappings x 7→ ↓x and x 7→ ↑x, respectively. The purpose of this chapter is to prove

that if X is finite, then a completion of X using antichains exists. We prove the existence of such

a completion by defining two partial orderings, 4 and 4′, on the set of antichains and showing

that the resulting posets, 〈A(X),4〉 and 〈A(X),4′〉, are isomorphic to the lattice of order ideals.

This chapter is arranged as follows. In Section 6.1 we define an ordering 4 on A(X) and prove

that the resulting poset is isomorphic to I(X). We then describe the join and meet operations on

A(X), and present two simple examples. In Section 6.2 we define a second ordering 4′ on A(X)

and establish that 〈A(X),4′〉 is also a completion of 〈X,6〉. We also summarize the isomorphisms

between the alternative completions of 〈X,6〉. In Section 6.3 we present some results analogous

to well known results for I(X).

6.1 The lattice 〈A(X), 4〉

In this section we prove that a completion of X exists in a lattice of antichains. We first define a

binary relation 4 on A(X) and prove in Lemma 6.1.1 that it is a partial order. We prove some

further elementary preparatory results and then state and prove that 〈A(X),4〉 is isomorphic to

〈I(X),⊆〉. Examples of 〈A(X),4〉 are shown in Figure 6.3 and Figure 6.5e.

Definition 6.1.1 Let 〈X,6〉 be a poset. For all A,B ∈ A(X), define

A 4 B if, and only if, for all a ∈ A, there exists b ∈ B such that a 6 b.

Lemma 6.1.1 Let 〈X,6〉 be a poset. Then 〈A(X),4〉 is a poset.

113
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Proof Clearly 4 is reflexive and transitive. We prove 4 is anti-symmetric by contradiction.

Suppose that A 4 B and B 4 A, but A 6= B. Without loss of generality we can choose a ∈ A

such that a 6∈ B. Since A 4 B, there exists b ∈ B such that a < b. Furthermore, b 6∈ A since

A ∈ A(X) and hence contains no chain. Therefore, there exists a′ ∈ A such that b < a′ since

B 4 A. Therefore, we have a < b < a′ with a, a′ ∈ A, contradicting the fact that A is an antichain.

Remark 6.1.1 〈2X ,4〉 is a pre-order, not a partial order, as 4 is not anti-symmetric. For

example, using the poset of Figure 6.1a, {b, e} 4 {e} and {e} 4 {b, e}, but {b, e} 6= {e}.

Lemma 6.1.2 Let α : 2X → A(X) and α : 2X → A(X), where

α(Y ) = {y ∈ Y : y is a maximal element in Y } ,

α(Y ) = {y ∈ Y : y is a minimal element in Y } .

Then

α(Y ) ⊆ Y, (6.1)

for all y ∈ Y , there exists y′ ∈ α(Y ) such that y 6 y′, (6.2)

α(Y ) ∈ A(X), (6.3)

α is well defined; (6.4)

and

α(Y ) ⊆ Y, (6.5)

for all y ∈ Y , there exists y′ ∈ α(Y ) such that y′ 6 y, (6.6)

α(Y ) ∈ A(X), (6.7)

α is well defined. (6.8)

Proof

Proof of (6.1) Suppose y ∈ α(Y ). Then, by definition, y ∈ Y . The result follows. ¤

Proof of (6.2) Recall that X is finite, by assumption. Let y ∈ Y . If y ∈ α(Y ), then y 6 y

and the result follows. Otherwise, there exists y1 ∈ Y such that y < y1. If y1 ∈ α(Y ), then

y 6 y1 and the result follows. Applying the above argument repeatedly we can construct a chain

y < y1 < · · · < yn in Y . This process necessarily terminates, since Y ⊆ X is finite. The result

follows. ¤

Proof of (6.3) By (6.2), if Y 6= ∅, then α(Y ) 6= ∅. Let x, y ∈ α(Y ) such that y 6 x. Since y is a

maximal element x = y. That is, for all x, y ∈ α(Y ), either x = y or x ‖ y. The result follows. ¤

Proof of (6.4) Suppose α(Y ) = A1 and α(Y ) = A2 with A1 6= A2. Then without loss of

generality there exists x ∈ A1 \ A2. Furthermore, since A1 ⊆ Y there exists x′ ∈ A2 such that
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x 6 x′ by (6.2). Since A1 is an antichain x′ 6∈ A1. Similarly, A2 ⊆ Y ; hence there exists x′′ ∈ A1

such that x′ 6 x′′. By transitivity we have x 6 x′ 6 x′′ with x, x′′ ∈ A1, which is a contradiction

as A1 is an antichain. ¤

The results in (6.5) – (6.8) can be proved in an analogous way to (6.1) – (6.4) and are omitted.

To simplify the notation in the remainder of this chapter we will write Y to denote α(Y ) and

Y to denote α(Y ).

Lemma 6.1.3 Let φ : I(X)→ A(X) and ψ : A(X)→ I(X) such that

φ(I) = I and ψ(A) = ↓A.

Then φ and ψ are bijections. Moreover φ = ψ−1.

Proof Since X is assumed to be finite, I(X) is finite, and hence for φ to be a bijection it suffices

to show that φ is one-to-one. Suppose then that φ(I) = φ(J) = A, where I, J ∈ I(X) and

A ∈ A(X). For all i ∈ I, there exists a ∈ A such that a > i by Lemma 6.1.2. Furthermore, a ∈ J ,

since A ⊆ J . J is an ideal, i ∈ X, a ∈ J and a > i. Therefore, by definition, i ∈ J . That is,

I ⊆ J . Similarly J ⊆ I and hence I = J . That is, φ is one-to-one.

We first prove by contradiction that ψ is well defined. Suppose that ψ(A) = I1, ψ(A) = I2 and

I1 6= I2. Then without loss of generality there exists i ∈ I1 such that i 6∈ I2. Hence i 6∈ A (since

A ⊆ I2). Therefore, by definition of ψ, there exists a ∈ A such that i < a. Hence we have a ∈ I2,

i 6∈ I2 with i < a. That is, I2 is not an ideal.

Finally, we show that ↓A = A. That is, φ(ψ(A)) = A. Suppose that a ∈ A. Then a ∈ ↓A.

Now a ∈ ↓A (otherwise there exists b ∈ ↓A such that b > a, which implies there exists a′ ∈ A such

that a′ > b > a and hence that A is not antichain). That is, A ⊆ ↓A. Suppose that a ∈ ↓A. Then

a ∈ ↓A and hence there exists a′ ∈ A such that a 6 a′. Now a′ ∈ ↓A, hence a = a′, otherwise

a 6∈ ↓A. That is, ↓A ⊆ A; hence ↓A = A and therefore φ and ψ are mutually inverse bijections.

Corollary 6.1.1 |I(X)| = |A(X)| = |F(X)|.

Proof The fact that |I(X)| = |A(X)| follows immediately from Lemma 6.1.3. Clearly ζ : I(X)→

F(X), where ζ(I) = X \ I is a bijection. Hence |I(X)| = |F(X)|.

Figure 6.1 illustrates the one-to-one correspondence between antichains, order ideals and order

filters. Figure 6.1a shows an antichain in the lattice in Figure 2.1a. Figures 6.1b and 6.1c show

the corresponding order filter and ideal, respectively. In particular, the antichain {d, e} is the set

of minimal elements in the order filter and the set of maximal elements in the order ideal.

Theorem 6.1.1 〈A(X),4〉 is isomorphic to the lattice 〈I(X),⊆〉. Furthermore, A(X) is a com-

pletion of X.

Proof We prove that the functions φ : I(X) → A(X) and ψ : A(X) → I(X), where φ(I) = I

and ψ(A) = ↓A, are order-preserving.
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Figure 6.1: The correspondence between antichains, order filters and order ideals

• φ is order-preserving – that is, for all I, J ∈ I(X),

I ⊆ J implies I 4 J. (6.9)

Proof of (6.9) Suppose I ⊆ J . Then I ⊆ I ⊆ J . Hence, if i ∈ I then i ∈ J . Therefore,

by (6.2), there exists j ∈ J such that i 6 j. That is, I 4 J . ¤

• ψ is order-preserving – that is, for all A,B ∈ A(X),

A 4 B implies ↓A ⊆ ↓B. (6.10)

Proof of (6.10) Suppose A 4 B and a ∈ ↓A. Then there exists a′ ∈ A such that a 6 a′.

Since A 4 B there exists b ∈ B such that a 6 a′ 6 b. Hence a ∈ ↓B. That is, ↓A ⊆ ↓B. ¤

Since φ and ψ are mutually inverse order-preserving bijections, the first part of the result

now follows by Theorem 2.1.1, while the second part follows immediately from Lemma 2.1.1 and

Definition 6.1.1, where x 7→ {x} is the required order-embedding.

We now consider the binary operations on the lattice 〈A(X),4〉 which are explicitly described

by the following lemma.

Lemma 6.1.4 For all A,B ∈ A(X), A ∧B = ↓A ∩ ↓B and A ∨B = A ∪B.

Proof We first make the observation that, by construction, ↓A ∩ ↓B, A ∪B ∈ A(X).

• ↓A ∩ ↓B is a lower bound of A and B.

Proof Suppose x ∈ ↓A ∩ ↓B. Then by (6.1) x ∈ ↓A∩↓B, and therefore x ∈ ↓A and x ∈ ↓B.

Hence there exists a ∈ A such that x 6 a and there exists b ∈ B such that x 6 b. Therefore,

↓A ∩ ↓B 4 A and ↓A ∩ ↓B 4 B. ¤

• A ∪B is an upper bound of A and B.
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Proof Suppose a ∈ A. Then a ∈ A∪B and hence there exists a′ ∈ A ∪B such that a 6 a′.

Therefore, A 4 A ∪B. Similarly B 4 A ∪B. ¤

• ↓A ∩ ↓B is the greatest lower bound of A and B.

Proof Suppose C ∈ A(X) such that C 4 A and C 4 B. Then, by Proposition 2.1.1

and (6.10), C ⊆ ↓C ⊆ ↓A, C ⊆ ↓C ⊆ ↓B, and therefore C ⊆ ↓A ∩ ↓B. Hence, by (6.9), and

since C ∈ A(X), C = C 4 ↓A ∩ ↓B. ¤

• A ∪B is the least upper bound of A and B.

Proof Suppose C ∈ A(X) such that A 4 C and B 4 C. Then A ⊆ ↓A ⊆ ↓C and

B ⊆ ↓B ⊆ ↓C. Therefore A ∪B ⊆ ↓C and, by (6.9), A ∪B 4 ↓C = C. ¤

6.2 The lattice 〈A(X), 4′〉

We first state two results analogous to Lemma 6.1.1 and Lemma 6.1.3.

Lemma 6.2.1 Let 〈X,6〉 be a poset. For all A,B ∈ A(X), define

A 4′ B if, and only if, for all b ∈ B there exists a ∈ A such that a 6 b.

Then 〈A(X),4′〉 is a poset.

Proof Clearly 4′ is reflexive and transitive. We prove 4′ is anti-symmetric by contradiction.

Suppose A,B ∈ A(X) and A 4′ B, B 4′ A, but A 6= B. Without loss of generality we can choose

a ∈ A such that a 6∈ B. Since B 4′ A, there exists b ∈ B such that b < a. Furthermore, b 6∈ A

since A ∈ A(X) and hence contains no chain. Therefore, there exists a′ ∈ A such that a′ < b

since A 4′ B. Therefore, we have a′ < b < a with a, a′ ∈ A, but, since A ∈ A(X) we have a

contradiction.

Lemma 6.2.2 Let φ′ : F(X)→ A(X) and ψ′ : A(X)→ F(X) such that

φ′(F ) = F and ψ′(A) = ↑A.

Then φ′ and ψ′ are mutually inverse bijections.

Proof The result is proved in an analogous way to Lemma 6.1.3 and is omitted.

Theorem 6.2.1 〈A(X),4′〉 is isomorphic to 〈I(X),⊆〉.

Proof We prove the functions φ′ : F(X) → A(X) and ψ′ : A(X) → F(X), where φ′(F ) = F

and ψ′(A) = ↑A are order-preserving.
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• φ′ is order-preserving – that is, for F,G ∈ F(X),

F ⊇ G implies F 4′ G (6.11)

Proof Suppose F ⊇ G. Then F ⊇ G ⊇ G. Hence, if g ∈ G then g ∈ F . Therefore, there

exists f ∈ F such that f 6 g. That is, F 4′ G. ¤

• ψ′ is order-preserving – that is, for A,B ∈ A(X),

A 4′ B implies ↑A ⊇ ↑B (6.12)

Proof Suppose A 4′ B and b ∈ ↑B. Then there exists b′ ∈ B such that b′ 6 b. Since A 4′ B

there exists a ∈ A such that a 6 b′. Therefore, a 6 b. Hence b ∈ ↑A. That is ↑A ⊇ ↑B. ¤

Since φ′ and ψ′ are mutually inverse order-preserving bijections, we have, by Theorem 2.1.1,

that 〈A(X),4′〉 ∼= 〈F(X),⊇〉. Hence, since 〈I(X),⊆〉 ∼= 〈F(X),⊇〉 via the mapping I 7→ X \ I,

we have 〈A(X),4′〉 ∼= 〈I(X),⊆〉 via the mapping A 7→ X \ ↑A.

In Figure 6.2 we summarize the relationships between the lattices 〈I(X),⊆〉, 〈F(X),⊇〉,

〈A(X),4〉 and 〈A(X),4′〉. Figure 6.3 shows the lattices 〈A(2[3]),4〉 and 〈A(2[3]),4′〉.

〈I(X),⊆〉 〈F(X),⊇〉

〈A(X),4′〉〈A(X),4〉

-

??
¾

I 7→ X \ I

F 7→ F

A 7→ X \ ↑A

I 7→ I

Figure 6.2: The isomorphisms between 〈I(X),⊆〉, 〈F(X),⊇〉, 〈A(X),4〉 and 〈A(X),4′〉

Lemma 6.2.3 For all A,B ∈ A(X), A ∧′ B = A ∪B and A ∨′ B = ↑A ∩ ↑B.

Proof

• A ∪B is a lower bound of A and B.

Proof Suppose a ∈ A. Then a ∈ A ∪B, and hence there exists x ∈ A ∪B such that x 6 a.

Therefore, A ∪B 4′ A. Similarly A ∪B 4′ B. ¤

• ↑A ∪ ↑B is an upper bound of A and B.

Proof Suppose x ∈ ↑A ∩ ↑B. Then x ∈ ↑A ∩ ↑B and hence x ∈ ↑A and x ∈ ↑B. Therefore,

there exists a ∈ A and b ∈ B such that a 6 x and b 6 x. Therefore, A 4′ ↑A ∩ ↑B and

B 4′ ↑A ∩ ↑B. ¤
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• A ∪B is the greatest lower bound of A and B.

Proof Suppose C ∈ A(X) such that C 4′ A and C 4′ B. Then, by (6.12), ↑C ⊇ A and

↑C ⊇ B. Therefore, A ∪B ⊆ ↑C and, by (6.11), C = ↑C 4′ A ∪B. ¤

• ↑A ∩ ↑B is the least upper bound of A and B.

Proof Suppose C ∈ A(X) such that A 4′ C and B 4′ C. Then, by (6.12), ↑A ⊇ C and

↑B ⊇ C. Hence C ⊆ ↑A ∩ ↑B and, by (6.11), ↑A ∩ ↑B 4′ C = C. ¤
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ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ßÐÑ ÑÉØ�ÓËÓ

à à à à à à à à à à à à àÐÑ ÑÉÙ�ÓËÓ

Ô Ô Ô Ô Ô Ô Ô Ð Ñ Ñ ÕËÖÛØ�Ó Ö×Ñ ÕËÖÝÙ�Ó Ö×ÑÅØ�ÖÛÙ�Ó Ó

ÐÑ Ñ ÕËÖÛØ�Ó Ö×Ñ ÕËÖÝÙ�Ó Ó Ú Ú Ú
Ú Ú Ú

Ú

ÐÑ Ñ ÕËÖÛØ�Ó Ö×ÑÅØ�ÖÝÙ�Ó Ó
Ô Ô Ô Ô Ô Ô ÔÇÚ Ú Ú

Ú Ú Ú
Ú

Ð Ñ Ñ ÕËÖÛÙ�Ó Ö×ÑÅØ�ÖÝÙ�Ó Ó

Ô Ô Ô Ô Ô Ô Ô

ÐÑ Ñ ÕËÖÝØ�Ó Ó Ú Ú Ú
Ú Ú Ú

Ú

ÐÑ ÑËÕ ÖÛÙ�Ó Ó
Ô Ô Ô Ô Ô Ô Ô Ð Ñ ÑÅØ�ÖÛÙ�Ó Ó

Ð Ñ Ñ ÕËÖÛØ�ÖÝÙ�Ó Ó

ÐÒ

(b) 〈A(2[3]),4′〉

Figure 6.3: The lattices 〈A(2[3]),4〉 and 〈A(2[3]),4′〉

6.3 Further results

This section presents further results for 〈A(X),4〉 which are analogous to standard results for

〈I(X),⊆〉. Results corresponding to Propositions 6.3.1, 6.3.2 and 6.3.3 can be found in Davey

and Priestley (1990), labelled therein as Theorems 8.17, 2.31 and 8.22, respectively.

Proposition 6.3.1 Let L be a finite distributive lattice. Then L is isomorphic to A(J (L)), where

J (L) is the set of join-irreducible elements in L.



CHAPTER 6. ANTICHAIN COMPLETIONS OF A POSET 120

Proof Consider the function φ : L→ A(J (L)), where

φ(x) = J (L) ∩ ↓x.

We first prove that φ is an order-embedding.

x 6 y ⇒ ↓x ⊆ ↓y

⇒ J (L) ∩ ↓x ⊆ J (L) ∩ ↓y

⇒ J (L) ∩ ↓x 4 J (L) ∩ ↓y by (6.9)

⇒ φ(x) 4 φ(y)

φ(x) 4 φ(y)⇒ J (L) ∩ ↓x 4 J (L) ∩ ↓y

⇒ ↓J (L) ∩ ↓x ⊆ ↓J (L) ∩ ↓y by (6.10)

⇒ J (L) ∩ ↓x ⊆ J (L) ∩ ↓y by Lemma 6.1.3

⇒ ↓x ⊆ ↓y

⇒ x 6 y

It remains to prove that φ is a bijection. Suppose that φ(x) = φ(y). Then we have

J (L) ∩ ↓x = J (L) ∩ ↓y ⇒ ↓x = ↓y

⇒ ↓x ⊆ ↓y and ↓y ⊆ ↓x

⇒ x 6 y and y 6 x

⇒ x = y.

Hence φ is one-to-one.

We now prove that φ is onto. Let A ∈ A(J (L)), where A = {a1, . . . , ak}. Define a =

a1 ∨ · · · ∨ ak. We claim that A = φ(a). Let x ∈ A. Then x = ai for some i. Hence x ∈ J (L)

is join-irreducible and x 6 a. Hence x ∈ φ(a). That is, A ⊆ φ(a). Let x ∈ φ(a). Then

x 6 a = a1 ∨ · · · ∨ ak. Since L is distributive, x 6 ai for some i, by Lemma 2.1.2, and since A is

an antichain, x = ai. That is, x ∈ A and hence φ(a) ⊆ A. The result now follows.

Figure 6.4 illustrates Proposition 6.3.1, and compares A(J (L)) and I(J (L)). The join-

irreducible elements are highlighted in Figure 6.4a. It can be seen that x ∈ J (L) is mapped

to the set {x} by φ, which means the construction of A(J (L)) is more straightforward than that

of I(J (L)).

Of course, Proposition 6.3.1 is merely a re-statement of Birkhoff’s Representation Theorem for

finite distributive lattices (Birkhoff 1933), and as such can be proved as a corollary of that result

and Theorem 6.1.1.

We now state without proof two further propositions: the first states the existence of a

Dedekind-MacNeille-style completion (MacNeille 1937) using antichains and follows from the fact

that any element of the Dedekind-MacNeille completion is an ideal; the second states several

results regarding standard constructions on posets and is a direct translation of the associated

results for ideals.
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Figure 6.4: L, A(J (L)) and I(J (L)): J (L) = {b, c, e, f}

Proposition 6.3.2 The lattice 〈DMA(X),4〉, where DMA(X) = {Y : Y ⊆ X, Y ul = Y }, is a

completion of X via the order-embedding φ : X ↪→ DMA(X) such that φ(x) = {x}. Furthermore,

DMA(X) is isomorphic to the Dedekind-MacNeille completion of X, DM (X).

Proposition 6.3.3 Let X be a finite poset. Then

• A(X)∂ ∼= A(X∂), where X∂ is the dual of X;

• A(⊥ ⊕X) ∼= ∅ ⊕ ({⊥} ⊕ A(X)), where ⊕ is the linear sum of two posets and ⊥ denotes a

bottom element;

• A(X ⊕>) ∼= A(X)⊕ {>}, where > denotes a top element;

• A(X1
.
∪ X2) ∼= A(X1) × A(X2), where

.
∪ denotes disjoint union and × denotes cartesian

product.

Figure 6.5 shows several different completions of a given poset. Notice that X = {a, b}
.
∪

{c, d, e, f}. The completion in Figure 6.5e can be seen to be the direct product of the lattices

of antichains for each of these two sets. In particular, the long diagonals represent A({a, b}) =

{∅, {a} , {b}}, where ∅ 4 {a} 4 {b}.

6.4 Summary and discussion

We have shown that given a finite poset X, it is possible to define two different orderings on the

set of antichains in X and that the resulting posets are isomorphic to 〈I(X),⊆〉. Hence the set of

antichains in a poset forms a lattice which, in addition, is a completion of the poset. Furthermore,

many known results for 〈I(X),⊆〉 can be adapted to produce corresponding results for 〈A(X),4〉.

In particular, there exists a Dedekind-MacNeille-style completion 〈DMA(X),4〉 with DMA(X) ⊆

A(X), and an analogue of Birkhoff’s Representation Theorem for finite distributive lattices.

We believe that, in general, it is easier to determine the elements of A(X) than those of I(X),

and hence to determine the structure of I(X) via the isomorphism. In particular, every singleton

subset of X is an antichain, and no element of A(X) has more elements than the width of X.
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We hope to investigate whether an algorithm to compute A(X) exists which necessarily has lower

time and space complexity than one to compute I(X). (It is easy to see that a description of

A(X) requires less space than I(X).)

One difficulty with the Dedekind-MacNeille completion is that the characterization of the el-

ements in the lattice is difficult to visualize and awkward to compute. We believe that a simpler

characterization of the elements of DMA(X) may be possible and hence that a simple characteri-

zation of the elements in the Dedekind-MacNeille completion may be found.

In the next two chapters we explore two applications of A(X). The first application, described

in the following chapter, is a simple model for access control policies which include separation of

duty policies as a special case. We model such policies as antichains in a suitable powerset and

show that the join operation associated with the 4′ ordering can be used to combine two policies

to create a policy that implements the requirements of both policies.

The second application, described in Chapter 8, is to provide the theoretical justification

for the secure hierarchical authorization framework. This model in fact is more of a template

that can be used to define access control models which support features analogous to the simple

security and *-properties of the Bell-LaPadula model. The development of the secure hierarchical

authorization framework was inspired by the observation that the security lattice in the Bell-

LaPadula model can be regarded as a lattice of antichains in a particular poset. In the secure

hierarchical authorization framework we associate each entity with an antichain in a hierarchy of

positions. The lattice 〈A(X),4〉 guarantees that for any set of antichains we can always find a

more senior antichain.
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Figure 6.5: Completions of the poset in Figure 2.1c



Chapter 7

Conflict of Interest Policies

In this chapter we present a set-based approach to separation of duty which has the benefit of

great simplicity. A consequence of this simplicity is that we are able to consider the complexity of

several aspects of separation of duty policies. The material in this chapter arose from our work on

the specification of access control policies (Crampton et al. 1999) and because we felt that existing

approaches suffered from a lack of generality and were over-elaborate. The main contribution of

this chapter is to demonstrate that our model is sufficiently expressive to model separation of

duty policies, while being sufficiently simple to permit a detailed analysis of separation of duty in

general.

O’Shea (1997) developed a logic of access control and a Prolog implementation that could rea-

son about the consequences of a particular configuration of file permissions in a UNIX system. The

motivation for this was to provide a logical framework for software tools that could assist a system

administrator to configure access control lists. We extended this work by conducting experiments

in which we specified simple access control policies and testing whether a given implementation

of security on UNIX and Windows NT platforms met the specification (Crampton et al. 1999;

Crampton et al. 2001).

In this work we modelled access control policies as subsets or elements of a set X. For example,

an authorization-based policy , P+ ⊆ X, specifies which elements of X are authorized. Intuitively,

P+ is violated if there exists x such that the access control mechanism permits x and x 6∈ P+.

Similarly, a prohibition-based policy , P− ⊆ X, specifies which elements of X are prohibited.

Intuitively, P− is violated if there exists x such that the access control mechanism permits x and

x ∈ P−. (It is obvious that for every policy P+ there is an equivalent policy P− = X \P+.) Such

policies can be used to articulate confidentiality requirements (a user must not read a certain file,

say) and integrity requirements (a user must not write to a certain file, say).

However, when one considers separation of duty policies, it becomes clear that each component

of the policy (which we refer to as a constraint) must be a subset of X. Specifically, a constraint

states those elements of X which form a sensitive combination. Hence a separation of duty policy,

P, can be represented as a set of subsets of X. The material in this chapter is derived from this

simple observation.

We will demonstrate that for suitable choices of X and constraints, several interesting policies

arise which define situations that conflict with the interests of the enterprise but are not separation

124
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of duty policies in the usual sense. Hence we will use the term conflict of interest policy throughout

this chapter.

In the next section we introduce our formal model of conflict of interest policies, and the

circumstances under which such policies are violated. We define a conflict of interest policy

and the canonical representation of a conflict of interest policy. We show that the canonical

representation is formally equivalent to a Sperner family. A preliminary version of this section

appeared in Crampton and Loizou (2001a). In Section 7.2 we illustrate the application of the

formal model to the protection matrix model and a role-based access control model. In the latter

context, we show how conflict of interest policies can be used to impose a ceiling on the roles to

which a user can be assigned. In Section 7.3 we discuss the structural complexity of the formal

model. In particular, we derive an upper bound for the length of a canonical conflict of interest

policy. We also derive upper and lower bounds for the number of canonical conflict of interest

policies (and hence the number of Sperner families). In order to establish our upper bound we

define the novel concept of a bi-symmetric chain partition. Finally, in Section 7.5 we consider a

simplification to the formal model and summarize the work of the chapter.

7.1 Formal model

Let X be a set defined in an access control model. We will refer to X as an access control context

(or simply context). For example, X may be the set of all possible triples in the HRU model.

An access control environment (or simply environment) E is a subset of X. For example, in

the HRU model, E is the set of triples encoded by the access control matrix.

Definition 7.1.1 A conflict of interest constraint (or simply constraint) is a subset of X. A

conflict of interest policy (or simply policy) is a set of conflict of interest constraints.

An environment E satisfies a conflict of interest policy P if, and only if, for all P ∈ P,

P ∩E 6= P (that is, P 6⊆ E), and violates it otherwise. We denote the set of environments which

satisfy P by E(P).

In other words, a conflict of interest policy states which subsets of X cannot be present si-

multaneously in the environment, and is satisfied provided the environment does not include any

conflict of interest constraint in the policy. Table 7.1 shows three conflict of interest policies

P1 = {{1, 2} , {2, 3}} , P2 = {{1} , {2, 3}} , P3 = {{1} , {1, 2} , {2, 3}} ,

and the environments which satisfy (ticked) and violate (crossed) each policy (when n = 3). We

make the following observations about Definition 7.1.1.

• A singleton set {x} ∈ P, implies that x ∈ X is prohibited from entering the environment E.

Specifically, the policy

P− = {x1, . . . , xn}
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can be expressed as the conflict of interest policy

P = {{x1} , . . . , {xn}} .

Hence our framework can accommodate prohibition policies which articulate confidentiality

and integrity constraints, as well as separation of duty constraints.

• If P = {∅} then no environment satisfies P (since ∅ ⊆ E for all E ⊆ X).

• If P = ∅ then every environment satisfies P (since P contains no constraints).

Henceforth we assume that the access control context X is a finite set and hence can be

identified with [n], where n = |X|. (We are justified in doing this, because any finite set, X =

{x1, . . . , xn}, can be identified with the set [n] via the bijective mapping xi 7→ i, 1 6 i 6 n.) We

will denote A(2[n]) by An.

Environment Policy

P1 = {{1, 2} , {2, 3}} P2 = {{1} , {2, 3}} P3 = {{1} , {1, 2} , {2, 3}}

∅ 3 3 3

{1} 3 7 7

{2} 3 3 3

{3} 3 3 3

{1, 2} 7 7 7

{1, 3} 3 7 7

{2, 3} 7 7 7

{1, 2, 3} 7 7 7

Table 7.1: A comparison of conflict of interest policies and environments

Definition 7.1.2 Given two conflict of interest policies, P,Q, we say P is weaker than (or less

restrictive than or is enforced by) Q if E(P) ⊃ E(Q); we will also say Q is stronger (or more

restrictive than or enforces) P. P and Q are equivalent if E(P) = E(Q).

In Table 7.1, P1 is weaker than P2, for example. From Table 7.1 we also see that P2 and P3

are equivalent. In fact we have the following result.

Proposition 7.1.1 Suppose P ∈ 22
[n]

, P1 ⊂ P2 for some P1, P2 ∈ P and P ′ = P \ {P2}. Then

E(P) = E(P ′). In other words, P and P ′ are equivalent.

Proof We prove the equivalent statement that an environment E satisfies P if, and only if, E

satisfies P ′.

⇒ It follows immediately from the fact that P ′ ⊂ P.

⇐ The proof proceeds by contradiction. Suppose, then, that E satisfies P ′ but does not satisfy

P. Clearly P2 ⊆ E is the only possible way in which E does not satisfy P. However, by

construction, P1 ⊂ P2 ⊆ E, and hence E does not satisfy P ′.
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Given that 〈22
[n]

,⊆〉 is a poset, and using the result of Proposition 7.1.1, we propose the

following definition of a canonical representation of a conflict of interest policy.

Definition 7.1.3 Given a conflict of interest policy P ∈ 22
[n]

, we define the canonical represen-

tation of P to be P ∈ An, where P is the set of minimal elements in P. A policy Q ∈ An is called

a canonical conflict of interest policy.

In other words, given a conflict of interest policy, its canonical representation is obtained by

removing all conflict of interest constraints which are a superset of another constraint in the policy.

By Proposition 7.1.1, the canonical representation of a policy is equivalent to the original policy

(and by (6.8), it is unique). For example P2 is the canonical representation of P3 in Table 7.1.

Henceforth, therefore, we assume that all policies are in their canonical form. In other words,

given an access control context X, the set of canonical conflict of interest policies is An, where

n = |X|, and every canonical conflict of interest policy is a Sperner family. Given that 〈2[n],⊆〉 is

a partial order, we have the following corollary of Theorem 6.2.1.

Proposition 7.1.2 For all P,Q ∈ An, define

P 4′ Q if, and only if, for all Q ∈ Q there exists P ∈ P such that P ⊆ Q.

Then 〈An,4
′〉 is a complete lattice.

The following proposition demonstrates that the formal definition of 4′ corresponds exactly

to the intuitive definition of strength given in Definition 7.1.2.

Proposition 7.1.3 For all P,Q ∈ An, P 4
′ Q if, and only if, P is stronger than Q.

Proof The proof in both directions proceeds by contradiction.

⇒ Given P 4′ Q, suppose E(P) 6⊆ E(Q). Then there exists E ∈ E(P) such that E 6∈ E(Q).

Hence there exists Q ∈ Q such that Q ⊆ E. Since, by assumption, P 4′ Q, for all Q ∈ Q,

there exists P ∈ P such that P ⊆ Q, and hence we have P ⊆ Q ⊆ E. That is, E 6∈ E(P),

which is a contradiction.

⇐ Given P is stronger than Q, suppose P 64′ Q. Then, by definition, for some Q ∈ Q and for

all P ∈ P, P 6⊆ Q. In other words, for all P ∈ P, P ∩ Q ⊂ P . Therefore, by definition,

Q ∈ E(P), and, since P is stronger than Q, E(P) ⊆ E(Q). That is, Q satisfies the policy Q.

This is a contradiction since Q ∈ Q.

Since 〈An,4
′〉 is a complete lattice, the meet and join of any set of policies exists. In particular

for any pair of policies, P and Q, we can find a third policy, P ∧ Q, the weakest policy which is

at least as strong as both P and Q. In other words, we have a natural definition of composition

of policies. Recalling Lemma 6.2.3 we have the following definition.
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Definition 7.1.4 For all P,Q ∈ An, define

P ∧Q = P ∪Q, and P ∨Q = ↑P ∩ ↑Q.

Example 7.1.1 Consider Figure 6.3b. We have, for example,

{{1} , {2, 3}} < {{1, 2} , {2, 3}} < {{1, 2, 3}} ,

and by Lemma 6.2.1, or by inspection of Figure 6.3b, it is easily verified that

{{1} , {2, 3}} ∧ {{2} , {1, 3}} = {{1} , {2}} ,

{{1} , {2, 3}} ∨ {{2} , {1, 3}} = {{1, 2} , {1, 3} , {2, 3}} .

7.2 Examples and applications

In this section we demonstrate the generic nature of our approach by applying it to two different

access control models. In the first set of examples we use the protection matrix model, and in the

second a role-based access control model. In both examples we indicate the sets which correspond

to X and E. We conclude the section with a brief comparison of our approach and existing

approaches to separation of duty in role-based access control.

7.2.1 The protection matrix model

Let M denote the protection matrix, O the set of objects, S the set of subjects and A the set of

access modes. In this case X = O× S ×A and (for static conflict of interest policies) E is the set

of triples encoded by M . (The environment in the dynamic case is the set of active triples which

have been invoked by subjects and granted by the access control mechanism.)

Let o1, o2 ∈ O, S = {s1, . . . , sn} and x ∈ A, where x denotes “execute” access. We now give

some simple examples of conflict of interest policies.

• Subject s1 is prohibited from executing o1.

P1 = {{(o1, s1, x)}}

P1 is satisfied provided x 6∈ [s1, o1]. This is a trivial example of a negative authorization

policy.

• No subject can execute both o1 and o2.

P2 = {{(o1, s, x), (o2, s, x)} : s ∈ S}

P2 is satisfied provided x 6∈ ([s, o1] ∩ [s, o2]) for all s ∈ S. This is a trivial example of a

separation of duty policy.
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• There is no “super-user”.

P3 =
n⋃

i=1

{O × {si} ×A}

P3 is satisfied provided no subject has every access mode to every object.

• No subject is permitted to execute any file.

P4 = {{(o, s, x)} : o ∈ O, s ∈ S}

P4 is satisfied if for all o ∈ O and for all s ∈ S, x 6∈ [s, o].

• If we combine the features of P1 and P2 we see that

P1 ∧ P2 = P1 ∪ P2 \ {(o1, s1, x), (o2, s1, x)}

since {(o1, s1, x)} ⊆ {(o1, s1, x), (o2, s1, x)} (see Proposition 7.1.1).

7.2.2 The role-based access control model

We assume the existence of a set of roles R, a set of users U , and a user-role assignment relation

UA. We first consider the situation when X = R. A static conflict of interest policy gives rise to

an environment for each user, namely ↓R(u). (A dynamic conflict of interest policy gives rise to

an environment for each session, namely ↓R(s).)

We now give some typical examples of simple policies. We base these policies on examples and

material in Chapter 3.

• No user can be assigned to MaxRole. This is a simple role exclusion policy. (Recall that in

the role graph model it is unlikely that any user should be assigned to MaxRole.)

Q1 = {{MaxRole}}

In fact, this policy can be implemented in URA97 by ensuring that MaxRole does not appear

in any range in the can-assign relation, although we would argue that Q1 is a more natural

means of specifying this requirement.

This type of policy could also be used when a role has been “de-commissioned” and should

no longer be used (as in role de-activation in RRA97, for example).

• No user can be assigned to both PE1 and QE1. This is an example of a typical separation of

duty constraint in role-based access control.

Q2 = {{PE1, QE1}}

We now briefly consider the case when X = U ×R which significantly expands the expressive

power of conflict of interest policies. In this case, the environment for static conflict of interest

policies is E = {(u, r) : (u, r′) ∈ UA, r 6 r′}.
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• dave cannot be assigned to role PL1. This type of policy imposes a ceiling on the roles to

which dave can be assigned. To our knowledge, such requirements, rather surprisingly in

our view, have not received any attention in the literature.

Q3 = {{(dave, PL1)}}

We observed in Chapter 4 that the approach adopted in ARBAC97, OASIS and SARBAC

does not permit the specification of such policies because user-role assignments are controlled

by some restriction on assignment (URA97 constraints, role activation rules and SARBAC

constraints, respectively) which applies to all users. Hence (DSO, ED ∧ PL1, [PL2, PL2]) ∈

can-assign, for example, can be used to implement separation of duty, because it applies to

all users. However, it is not obvious how the can-assign relation could be used to implement

Q3.)

We note the following useful application of such a policy. We recall that the role-based access

control model is policy neutral (Sandhu et al. 1996), and that it is of considerable value to

demonstrate that such a model can be used to simulate mandatory and discretionary access

control models (Nyanchama and Osborn 1995; Osborn et al. 2000; Sandhu and Munawer

1998a). It has been convincingly shown that role-based access control can indeed simulate

mandatory access control (Osborn et al. 2000) by modelling the security lattice L as two

distinct read and write role hierarchies LR and LW , respectively, where LR is isomorphic to

L and LW is the dual of LR.

However, we believe the constraints introduced in Osborn et al. (2000) to enforce the

information flow policy that is an integral part of the mandatory access control model are

rather complicated. We suggest that to achieve this we can simply define a role exclusion

policy of a similar form to Q3 for each user u. Figure 7.1 shows a security lattice for the

security labels

unclassified < classified < secret < top secret

which we will abbreviate to u, c, s, and t, respectively, and two security categories, k1 and

k2. If a user u has security clearance (c, {k1}), the conflict of interest policy

Q4 = {{(u, (s, {k1}))} , {(u, (c, {k2}))}}

preserves the information flow policy defined by the lattice by preventing u being assigned

to, and hence activating, any roles other than (u, ∅) and (c, {k1}). (Of course, in a role-based

access control implementation there would actually be a read and a write lattice, but the

example policy can be extended in the obvious way to accommodate this.)

• dave cannot be assigned to both PE1 and QE1. This is a separation of duty policy at the

user level. It also implies that dave cannot be assigned to any role in ↑PE1 ∩ ↑QE1.

Q5 = {{(dave, PE1), (dave, QE1)}}
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• Users u1 and u2 cannot occupy both or one of each of the two roles r1 and r2. This kind of

policy was identified in Ahn and Sandhu (2000) and aims to prevent collusion between two

(or more) individuals to compromise system security.

Q6 = {{(u1, r1), (u1, r2)} , {(u2, r1), (u2, r2)} , {(u1, r1), (u2, r2)} , {(u1, r2), (u2, r1)}}

The first two constraints are simple separation of duty constraints for each of the users, while

the other two constraints prevent collusion by the two users.

s

(u, ∅)
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s(c, {k1}) c(c, {k2})

c(s, {k1}) s(s, {k2})

s
(t, {k1, k2})

Figure 7.1: A security lattice

Remark 7.2.1 Note that in Definition 7.1.1 we assumed nothing about the set X. However, if

X is a partially ordered set, then, in general, a conflict of interest constraint should be defined to

be an antichain in X rather than a subset of X.

For example, consider the role hierarchy in Figure 7.2 and the policy P = {{r1, r3} , {r2, r3}}.

In our framework, the policy P is reduced to the policy P ′ = {{r1} , {r2, r3}}.

In general, therefore, a conflict of interest policy in a role-based access control model is a

member of A(A(R)). In other words, the constraints of a conflict of interest policy are antichains

in 〈A(R),⊆〉 rather than in 〈2R,⊆〉; see Figure 7.2, for example. (In the case of an unordered set

X – that is, the order relation is the empty set – the set of antichains is simply 2X .)

7.2.3 Comparison with existing models

We now consider the two most significant existing approaches to separation of duty in role-based

access control, the NIST model and RCL 2000, and briefly compare them to our approach.

The NIST model

The most detailed discussion of separation of duty constraints and their implementation in a role-

based access control system is found in Gavrila and Barkley (1998) (which refines and outlines

an implementation of the NIST model described in Ferraiolo et al. (1995)). The RBAC database

includes two binary, irreflexive, symmetric relations ssd and dsd modelling static and dynamic
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Figure 7.2: The role hierarchy and conflict of interest policies

separation of duty, respectively. A pair (r1, r2) ∈ ssd is, in our terminology, a conflict of interest

constraint. A conflict of interest policy corresponds to the set ssd and is violated if {r1, r2} ⊆ R(u)

for some u ∈ U . In short, the NIST model only considers constraints containing precisely two

roles.

We now discuss the additional requirements, identified in Gavrila and Barkley (1998), which

ssd (and dsd) must satisfy in a role-based context.

• The ssd relation must be irreflexive.

The irreflexivity condition is introduced to prevent a mutually exclusive pair (r, r) from

being entered into the ssd relation, the assumption being that such a pair would only have

the meaning that no user could be assigned to the role r. We would argue that there is a

useful place for such constraints, particularly when one includes a user component (as in the

policy {{(dave, PL1)}}, for example).

• The ssd relation must be symmetric.

The symmetric condition is introduced in order to establish certain logical equivalences

between constraints in the NIST model in the presence of a role hierarchy, and to thereby

reduce the number of logical tests in the implementation of the database update operations.

• If (r1, r2) ∈ ssd then {r1, r2} ∈ A(R).

This requirement is a natural counterpart to the irreflexive condition since, if r1 6 r2 and

(r1, r2) ∈ ssd, then no user can be assigned to r2 or any role senior to it. We would have

no objection to a policy that did not permit any user to be assigned to r2, although, as we

observed in Remark 7.2.1 we do require that a conflict of interest constraint be an antichain.

• If (r1, r2) ∈ ssd then ↑r1 ∩ ↑r2 = ∅.

The justification for this condition is that if r ∈ ↑r1 ∩↑r2 then no user can be assigned to the

role r. We do not, in general, wish to impose such a condition on conflict of interest policies,

particularly when users are included in the policies (as in {{(dave, PE1), (dave, QE1)}}, for

example).

In short, we believe the NIST approach (and the broadly similar approach adopted in the role

graph model) to separation of duty policies is rather limited.
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RCL 2000

The role constraint authorization language RCL 2000 supports a flexible and expressive treatment

of separation of duty policies. It is described in detail in Ahn and Sandhu (2000); we described its

basic features in Chapter 3. We will not attempt a formal comparison of the expressive power of

RCL 2000 and our approach. Instead we will demonstrate that examples of RCL 2000 expressions

taken from the literature can be easily expressed using Sperner families.

The RCL 2000 expression

|roles(OE(U) ∩ OE(CR))| 6 1, (7.1)

is interpreted in the following way: for the collection of sets of roles, CR, no user (that is an

element of the set U) can be assigned more than one role in any of the sets contained in CR. In

our terminology, (7.1) states the conditions for satisfaction of the static conflict of interest policy

CR. Therefore, we would argue that we could simply express CR as a conflict of interest policy

P in which each constraint is a pair (by (7.1) a user cannot be assigned more than one role in any

conflicting set). Similarly (3.3) states the conditions for the satisfaction of the dynamic conflict of

interest policy CR.

In short, we believe that there is little difference in expressive power between RCL 2000 and our

approach. However, we believe that the conversion of RCL 2000 expressions to RFOPL expressions

is unnecessarily complicated and obscures the fact that separation of duty is essentially a simple

concept. In the remainder of this chapter we exploit the simplicity of our approach to establish

results on the structural complexity of separation of duty policies.

7.3 Structural complexity

The theoretical results of the chapter are contained in this section. The main contributions of

this section are to establish an upper bound for the length of a description of a conflict of interest

policy, and to improve on the upper and lower bounds for |An| due to Hansel (page 28).

Definition 7.3.1 The function Σ : An → N is defined as follows:

Σ(P) =







0 P = ∅,
∑

P∈P

|P | otherwise.

In other words, Σ(P) is a measure of the complexity of describing P (as a string, for example).

The following lemma establishes an upper bound for Σ(P) and when the upper bound is attained.

It is similar in both statement and proof to Sperner’s Theorem (page 27).

Lemma 7.3.1 For all P ∈ An,

Σ(P) 6 dn/2e

(
n

dn/2e

)

,
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with equality when

P =







{P ⊆ [n] : |P | = n
2 } or {P ⊆ [n] : |P | = n+2

2 } n even,

{P ⊆ [n] : |P | = n+1
2 } n odd.

(7.2)

Proof We first note that P as defined in (7.2)

• belongs to An by construction; and

• Σ(P) = dn/2e
(

n
dn/2e

)
.

This is obvious when n is odd. Note that for 0 6 r < n,

(n− r)

(
n

r

)

= (r + 1)

(
n

r + 1

)

, (7.3)

and that when n is even dn/2e= n/2. Hence, if n is even, on substituting r = n/2 into (7.3)

we obtain

n

2

(
n

n/2

)

= (n/2 + 1)

(
n

n/2 + 1

)

=
(n+ 2

2

)( n

(n+ 2)/2

)

.

We now follow the approach of the original proof of Sperner’s Theorem. Suppose Q ∈ An and

Σ(Q) is maximal. We will prove that Q must be equal to P as given by (7.2). In order to do this,

we show that unless Q satisfies certain conditions, we can construct two policies, Q′ and Q′′, such

that Σ(Q′) > Σ(Q) and Σ(Q′′) > Σ(Q). Let u = maxQ∈Q |Q|, and define

Qu = {Q ∈ Q : |Q| = u} ,

Qu−1 = {Q ⊆ [n] : there exists Q′ ∈ Qu such that QlQ′} ,

Q′ = (Q \ Qu) ∪Qu−1.

In other words, Q′ is formed from Q by removing the set of elements of maximal cardinality,

namely Qu, and replacing it with Qu−1 – the set of elements which are covered by an element of

Qu. Then, for all Q ∈ An,
n+2
2 6 u 6 n,

Q′ ∈ An, (7.4)

Σ(Q′) > Σ(Q). (7.5)

Proof of (7.4) (By contradiction) Suppose Q′ 6∈ An. Then there exists Q ∈ Qu−1 such that

Q′ ⊆ Q for some Q′ ∈ Q\Qu. However, this implies that there exists Q′′ ∈ Qu such that Q ⊂ Q′′

by construction of Qu−1, and hence that Q′ ⊂ Q′′ and Q 6∈ An. ¤

Proof of (7.5) We count N , the number of pairs (Q,Q′) such that Q ∈ Qu, Q
′ ∈ Qu−1 and

Q′ lQ, in two different ways.

• For a particular Q ∈ Qu there are exactly u such subsets Q′ (obtained by omitting one of

the u elements of Q).



CHAPTER 7. CONFLICT OF INTEREST POLICIES 135

• For a particular Q′ ∈ Qu−1 there are n− (u− 1) = n− u+1 possible subsets Q which cover

Q′, since |Q′| = u− 1. However, not all of these are necessarily in Qu.

Therefore, we have

u|Qu| = N 6 (n− u+ 1)|Qu−1|. (7.6)

Hence

|Qu−1|

|Qu|
>

u

n− u+ 1
>

u

u− 1
since u >

n+ 2

2
implies n− u+ 1 6 u− 1,

and therefore

(u− 1)|Qu−1| > u|Qu|. (7.7)

Now, by definition,

Σ(Q′) = Σ(Q)− u|Qu|+ (u− 1)|Qu−1|,

and hence, using (7.6) and (7.7), we have

Σ(Q′) > Σ(Q) with equality when u =
n+ 2

2
and u|Qu| = (n− u+ 1)|Qu−1|. (7.8)

¤

Similarly, let l = minQ∈Q |Q|, and define

Ql = {Q ∈ Q : |Q| = l} ,

Ql+1 = {Q ⊆ [n] : there exists Q′ ∈ Ql such that Q′ lQ} ,

Q′′ = (Q \ Ql) ∪Ql+1.

Then, for all Q ∈ An, 0 6 l 6 n
2 ,

Q′′ ∈ An, (7.9)

Σ(Q′′) > Σ(Q). (7.10)

Proof of (7.9) (By contradiction) Suppose Q′′ 6∈ An. Then there exists Q ∈ Ql+1 such that

Q ⊆ Q′ for some Q′ ∈ Q \ Ql. However, this implies that there exists Q′′ ∈ Ql such that Q′′ ⊂ Q

by construction of Ql+1, and that Q′′ ⊂ Q′ and Q 6∈ An. ¤

Proof of (7.10) We count N , the number of pairs (Q,Q′) such that Q ∈ Ql, Q
′ ∈ Ql+1 and

QlQ′, in two different ways.

• For a particular Q ∈ Ql there are exactly n− l such subsets Q′ (obtained by adding one of

the elements in [n] not in Q).



CHAPTER 7. CONFLICT OF INTEREST POLICIES 136

• For a particular Q′ ∈ Ql+1 there are l+1 possible subsets Q which are covered by Q′, since

|Q′| = l + 1. However, not all these are necessarily in Ql.

Therefore, we have

(n− l)|Ql| = N 6 (l + 1)|Ql+1| (7.11)

Hence

|Ql+1|

|Ql|
>
n− l

l + 1
>

l

l + 1
since l 6

n

2
implies n− l > l,

and therefore

(l + 1)|Ql+1| > l|Ql|. (7.12)

By definition,

Σ(Q′′) = Σ(Q)− l|Ql|+ (l + 1)|Ql+1|,

and hence by (7.12) we have

Σ(Q′′) > Σ(Q) with equality when l =
n

2
and (n− l)|Ql| = (l + 1)|Ql+1|. (7.13)

¤

Since, by assumption, Σ(Q) is maximal, we have, by (7.8) and (7.13), u 6 n+2
2 and l > n

2 . We

now have three cases to consider, noting that, by definition, l 6 u.

• n odd:

then u = l = n+1
2 and Q = P.

• n even, l = u:

then either u = l = n
2 or u = l = n+2

2 and Q = P.

• n even, l < u (that is l = n
2 , u = n+2

2 and hence l = u− 1):

then we derive a contradiction as follows. Since Σ(Q) is assumed to be maximal we must

have equality in (7.8). Therefore, u|Qu| = (n − u + 1)|Qu−1|. In other words, for each

Q ∈ Qu−1, every (covering) superset of Q must be in Qu.

Now choose some Q′ ∈ Q \ Qu and Q ∈ Qu−1 such that |Q′ ∩ Q| is maximal. We have

l = |Q′| = |Q| = u− 1 and Q′ 6= Q. Hence there exists some q′ ∈ Q′ \Q and some q ∈ Q \Q′

and, because u|Qu| = (n − u + 1)|Qu−1|, Q ∪ {q
′} ∈ Qu, Q

′′ = Q ∪ {q′} \ {q} ∈ Qu−1.

Therefore, |Q′ ∩Q′′| = |Q′ ∩Q|+ 1 contradicting the maximality of |Q′ ∩Q|.

The following alternative proof of Lemma 7.3.1 is based on a suggestion by Michael Saks and

makes use of the LYM-inequality (page 28).



CHAPTER 7. CONFLICT OF INTEREST POLICIES 137

Alternative Proof of Lemma 7.3.1 (Sketch) By Remark 2.2.1, we have, for any Sperner

family P containing nk sets of cardinality k,

∑

k

nk
(
n
k

) 6 1.

Hence, we have

∑

k

knk

k
(
n
k

) 6 1.

Now

k

(
n

k

)

= (n− k + 1)

(
n

k − 1

)

6 dn/2e

(
n

dn/2e

)

,

with equality when

k =







dn/2e if k is odd,

n/2 or (n+ 2)/2 if n is even.

Hence

∑

k

knk

dn/2e
(
n
n/2

) 6
∑

k

knk

k
(
n
k

) 6 1,

which implies that

∑

k

knk = Σ(P) 6 dn/2e

(
n

dn/2e

)

.

The remainder of the section is divided into two subsections. The first of these establishes a

lower bound for |An|, while the second establishes an upper bound for |An|.

7.3.1 Lower bound for |An|

In this section we prove several preparatory results which lead to Theorem 7.3.1. This theorem

states the maximal cardinality of a conflict of interest policy containing a constraint of cardinality

r. A corollary of this result supplies an improved lower bound for |An|.

This section makes extensive use of the following propositions, which can be easily understood

by considering Pascal’s triangle (shown in Figure 7.3).
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Proposition 7.3.1 For 1 6 r 6 n,

(
n

r

)

=

(
n− 1

r − 1

)

+

(
n− 1

r

)

, (7.14)

(
n

r

)

=

(
n

n− r

)

, (7.15)

(
n

0

)

6

(
n

1

)

6 · · · 6

(
n

bn/2c

)

=

(
n

dn/2e

)

> · · · >

(
n

n− 1

)

>

(
n

n

)

. (7.16)

Proof By definition,

(
n

r

)

=
n!

r!(n− r)!
, (7.17)

from which (7.14) and (7.15) follow immediately. Let r 6 bn/2c. Then

(
n

r

)

−

(
n

r − 1

)

=
n!

r!(n− r)!
−

n!

(r − 1)!(n− r + 1)!

=
n!

r!(n− r + 1)!
(n− 2r + 1)

> 0.

The left hand side of (7.16) now follows; the right hand side follows from (7.15).

1
1 1

21 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1

Figure 7.3: Pascal’s triangle:
(
n
r

)
, 0 6 r 6 n 6 12

Lemma 7.3.2 For n > 1, 0 6 r 6 n, let P ∈ An have a smallest constraint of size r. Then

|P| 6







(
n

bn/2c

)

−

(
n− r

bn/2c − r

)

+ 1 if 0 6 r 6 bn/2c,
(
n

r

)

if bn/2c 6 r 6 n,
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with equality when

P =







{P ′} ∪ {P ⊆ [n] : |P | = bn/2c, P ′ 6⊆ P} if 0 6 r 6 bn/2c,

{P ⊆ [n] : |P | = r} if bn/2c 6 r 6 n,
(7.18)

where P ′ ⊆ [n] and |P ′| = r.

Proof Let P = {P1, . . . , Pk}, where r = |P1| 6 |P2| 6 · · · 6 |Pk| = s. The proof is very similar

to the original proof of Sperner’s Theorem. That is, we assume that P has maximal cardinality

and show that this assumption imposes certain restrictions on the structure of P.

We first consider the case r > bn/2c. Define

P(s) = {P ∈ P : |P | = s} ,

P(s−1) =
{

P ′ ⊆ [n] : |P ′| = s− 1, P ′ l P for some P ∈ P(s)
}

,

P ′ =
(

P \ P(s)
)

∪ P(s−1).

Then P ′ ∈ An.

Proof Suppose that P ′ 6∈ An. Then there exist P ′ ∈ P(s−1) and P ∈ P \ P(s) such that P ⊆ P ′.

However, by construction, there exists P ′′ ∈ P(s) such that P ′lP ′′. That is, P ⊆ P ′′ contradicting

the fact that P ∈ An. ¤

Furthermore, if s > dn/2e, then |P ′| > |P|.

Proof Let N denote the number of pairs (P, P ′), where P ∈ P(s) and P ′ ∈ P(s−1). Then for each

P ∈ P(s) there are precisely s such P ′, and for each P ′ ∈ P(s−1) there are n− (s− 1) possible P

(some of which may not be included in P (s)). Hence

N = s
∣
∣
∣P(s)

∣
∣
∣ 6 (n− s+ 1)

∣
∣
∣P(s−1)

∣
∣
∣ .

Therefore, if s > dn/2e,

∣
∣P(s−1)

∣
∣

∣
∣P(s)

∣
∣
>

s

n− s+ 1
> 1,

with equality if, and only if, s is odd, s = dn/2e and every set obtained by adding an element to

a member of P(s−1) is in P(s). ¤

Hence, |P| is maximal when all subsets have size r.

We next consider the case r < bn/2c. Let q be the minimal cardinality of an element of

P \ {P1}. Define

P(q) = {P ∈ P : |P | = q} (7.19)

P(q+1) =
{

P ′ ⊆ [n] : |P ′| = q + 1, P l P ′, for some P ∈ P(q), P1 6⊆ P ′
}

(7.20)

P ′ =
(

P \ P(q)
)

∪ P(q+1). (7.21)
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Then, as before, P ′ ∈ An.

We now consider N , the number of pairs (P, P ′), where P ∈ P(q) and P ′ ∈ P(q+1). Let

j be the number of sets in P (q) that intersect maximally with P1. (That is, for each such P ,

|P1 ∩ P | = r− 1.) Then, given such a set P , there are n− q − 1 possible choices for P ′; otherwise

there are n − q choices for P ′. Conversely, for each P ′, there are q + 1 possible choices for P ,

although P is not necessarily in P (q). Hence

(n− q − 1)j + (n− q)
(∣
∣
∣P(q)

∣
∣
∣− j

)

= N 6 (q + 1)
∣
∣
∣P(q+1)

∣
∣
∣ .

That is,

−j + (n− q)
∣
∣
∣P(q)

∣
∣
∣ 6 (q + 1)

∣
∣
∣P(q+1)

∣
∣
∣ .

Hence

∣
∣P(q+1)

∣
∣

∣
∣P(q)

∣
∣
>
n− q

q + 1
−

j
∣
∣P(q)

∣
∣ (q + 1)

> 1, (7.22)

provided
∣
∣P(q)

∣
∣ (n− 2q − 1) > j, which holds when q < bn/2c since

∣
∣P(q)

∣
∣ > j. We have equality

in (7.22) if, and only if, n is even, q = bn/2c − 1 and
∣
∣P(q)

∣
∣ = j. (Note that

∣
∣P(r+1)

∣
∣ >

∣
∣P(r)

∣
∣

unless n is even and r = bn/2c − 1.) Hence, excluding the exceptional case, we have |P ′| > |P|.

Since P is assumed to have maximal cardinality and discounting the exceptional case, we deduce

that q > bn/2c.

We know from the argument for the case r > bn/2c that P is maximal implies that s 6 dn/2e.

If n is odd, either q = s = bn/2c or q = s = dn/2e or q = s − 1 = bn/2c. In the second case,

there are more sets of cardinality dn/2e that contain P1 than there are of cardinality bn/2c. (In

particular, there are
(

n−r
dn/2e−r

)
and

(
n−r

bn/2c−r

)
sets of cardinality dn/2e and bn/2c, respectively. It

can be shown that the former is greater than the latter provided r > 0.) In the third case, a

similar argument to that employed at the end of Lemma 7.3.1 leads to a contradiction. Hence

q = s = bn/2c.

If n is even, either q = s = n/2 or r = q = s− 1 = n/2− 1 or r = q = s = n/2− 1 and every

subset of cardinality q intersects maximally with P1. In the second case, a similar argument to that

employed at the end of Lemma 7.3.1 leads to a contradiction. In the third case, which corresponds

to the exceptional case identified above, there are
(

n
n/2−1

)
members in P. However, a policy P ′,

in which there is a single member of cardinality n/2 − 1, the remainder having cardinality n/2,

has cardinality

(
n

n/2

)

− (n/2 + 1) + 1 =

(
n

n/2

)

− n/2.

It can be shown that
(
n
n/2

)
− n/2 >

(
n

n/2−1

)
for n > 4. Hence, the exceptional cases occur when

n = 2, r = 0 and n = 4, r = 1.1

1For example, maximal policies when n = 4 and r = 1 are {{1} , {2} , {3} , {4}} and {{1} , {2, 3} , {2, 4} , {3, 4}}.
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Lemma 7.3.3 For n > 1, 0 6 r 6 n, let P ∈ An have a largest constraint of size r. Then,

|P| 6







(
n

r

)

if 0 6 r 6 dn/2e,
(

n

dn/2e

)

−

(
r

dn/2e

)

+ 1 if dn/2e 6 r 6 n,

with equality when

P =







{P ⊆ [n] : |P | = r} if 0 6 r 6 dn/2e,

{P ′} ∪ {P ⊆ [n] : |P | = dn/2e, P * P ′} if dn/2e 6 r 6 n,
(7.23)

where P ′ ⊆ [n] and |P ′| = r.

Proof (Sketch) We note that the mapping ψ : 2[n] → 2[n], where ψ(X) = [n] \X extends in the

natural way to a mapping Ψ : An → An. Furthermore, if P has a largest constraint P ′ of size r,

then Ψ(P) has a smallest constraint ψ(P ′) = [n] \P ′ of cardinality n− r. Hence, by Lemma 7.3.2,

Ψ(P) is maximal if every element (other than P ′) has cardinality bn/2c. That is, P is maximal if

every element (other than P ′) has cardinality dn/2e. Finally, we note that there are
(

r
dn/2e

)
subsets

of cardinality dn/2e that are contained in a subset of cardinality r. The result now follows.

Definition 7.3.2 Let |P ′| = r and

P =







{P ′} ∪ {P ⊆ [n] : |P | = bn/2c, P ′ 6⊆ P} if 0 6 r 6 bn/2c,

{P ′} ∪ {P ⊆ [n] : |P | = dn/2e, P * P ′} otherwise.

(7.24)

Then we say P is a default maximal r-policy. The cardinality of P is denoted by
[
n
r

]
. For

0 6 r 6 n, we denote the set of default maximal r-policies by An,r.

Figure 7.4 shows the values of
[
n
r

]
, 0 6 r 6 n 6 12.

1
1 1

21 1
1 3 3 1

1 4 6 4 1
1 7 10 10 7 1

1 11 17 20 17 11 1
1 21 31 35 35 31 21 1

1 36 56 66 70 66 56 36 1
1 71 106 121 126 126 121 106 71 1

1 127 197 232 247 252 247 232 197 127 1
1 253 379 435 456 462 462 456 435 379 253 1

1 463 715 841 897 918 924 918 897 841 715 463 1

Figure 7.4:
[
n
r

]
for 0 6 r 6 n 6 12
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Lemma 7.3.4 Let n > 1, 0 6 r 6 q 6 n, P ∈ An,r, Q ∈ An,q and P ′ ⊆ P, where r 6= bn/2c or

dn/2e. Then, if P ′ contains the set of cardinality r in P, P ′ 6⊆ Q.

Despite its apparent complexity, this is not a profound result. Informally the lemma states

that, for a fixed r, if a subset P ′ of a default maximal conflict of interest policy P contains the

constraint of size r in P, then P ′ cannot be a subset of any other default maximal policy. For

example, A4,1 = {{{1} , {2, 3} , {2, 4} , {3, 4}} , . . . , {{4} , {1, 2} , {1, 3} , {2, 3}}}. Furthermore, if

we choose a subset P ′ of {{1} , {2, 3} , {2, 4} , {3, 4}} such that {1} ∈ P ′, then P ′ cannot be a

subset of another element of A4,1 (since such a policy does not contain {1}), nor can it be a subset

of any member of A4,k for k 6= 1 (since such a policy does not contain a set of cardinality 1). Note

also that |A4,1| =
(
4
1

)
.

Proof of Lemma 7.3.4 Let P ′ ∈ P, where |P | = r. There are two cases to consider.

• If r = q then for all Q 6= P ∈ An,r, P
′ 6∈ Q, and hence P ′ 6⊆ Q.

• If r 6= q then for all Q ∈ An,q, Q contains no subset of size r and hence P ′ 6⊆ Q.

We finally obtain a lower bound for |An| by counting all subsets of An,r, where r ranges from

0 to n.

Corollary 7.3.1 For n > 3, 0 6 r 6 n, define

∣
∣
∣
∣

n

r

∣
∣
∣
∣
=







2 if r = bn/2c or dn/2e,
(
n
r

)
otherwise.

Then

|An| >
n∑

r=0

∣
∣
∣
∣

n

r

∣
∣
∣
∣
2[

n
r]−1 > 2ν , (7.25)

where ν =
(

n
bn/2c

)
.

Proof The result is proved by counting subsets of members of An,r. We make the following

observations.

• For n > 1,

|An,r| =







1 if r = bn/2c or r = dn/2e,
(
n
r

)
otherwise.

• All 2(
n

bn/2c) subsets of An,bn/2c and An,dn/2e can be included (there is no distinguished

constraint in terms of size). (Hence
∣
∣ n
bn/2c

∣
∣ =

∣
∣ n
dn/2e

∣
∣ = 2 in order to compensate for the −1

in the exponent in (7.25). Technically the empty set is counted twice when n is odd, but for

n > 3 this has no effect on the inequalities.)
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• For all other values of r and all P ∈ An,r, every subset of P that contains the constraint of

size r belongs to An and each is counted only once, by Lemma 7.3.4. There are
(
n
r

)
such P,

and for each P ∈ An,r there are 2|P|−1 subsets which include the constraint of size r.

• We have 2ν =
∣
∣ n
bn/2c

∣
∣2[

n
bn/2c]−1 which establishes the right-hand inequality.

The result now follows.

We can summarize the results of this section in the following theorem which we state without

proof.

Theorem 7.3.1 For all policies P ∈ An containing a constraint P ′ of cardinality r, |P| 6
[
n
r

]
,

with equality when

P =







{P ′} ∪ {P ⊆ [n] : |P | = bn/2c, P 6⊆ P ′} 0 6 r 6 bn/2c,

{P ′} ∪ {P ⊆ [n] : |P | = dn/2e, P ′ 6⊆ P} dn/2e 6 r 6 n.

We conclude this section with an identity involving the coefficients
[
n
r

]
; it has a similar flavour

to (7.14).

Proposition 7.3.2 For n odd, n > 1, 0 6 r 6 bn/2c,

[
n+ 1

r + 1

]

=

(
n

bn/2c

)

+

[
n

r

]

.

Proof We have

[
n+ 1

r + 1

]

=

(
n+ 1

d(n+ 1)/2e

)

−

(
n− r

d(n+ 1)/2e

)

+ 1

=

(
n

bn/2c

)

+

(
n

dn/2e

)

−

(
n− r

dn/2e

)

+ 1 (since n is odd)

=

(
n

bn/2c

)

+

[
n

r

]

.

Particular cases of Proposition 7.3.2 can be seen by considering the appropriate rows of Fig-

ure 7.4. Note that it is far harder to establish a corresponding relation for n even because, in this

case, b(n+ 1)/2c = bn/2c and d(n+ 1)/2e 6= dn/2e.

7.3.2 Upper bound for |An|

We first define the novel concept of a bi-symmetric chain partition. The proof method of Theo-

rem 2.2.3 and bi-symmetric chain partitions are used in the proof of Theorem 7.3.2, one of the

main results in this chapter. An example of a bi-symmetric chain partition is shown in Table 7.5.
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Definition 7.3.3 Let {C1, . . . , Ck} be some symmetric chain partition of 2[n]. Then a bi-

symmetric chain partition of 2[n+1] is defined to be

{C1, . . . , Ck} ∪ {C1 ∪ {n+ 1} , . . . , Ck ∪ {n+ 1}} ,

where C ∪{n+ 1} is the chain formed by taking the union of each element in C with {n+ 1}. The

bi-symmetric chain partition of 2[n+1] derived from SCPn is denoted by BCPn.

C1 ∅ ⊂ {1} ⊂{1, 2} ⊂ {1, 2, 3} ⊂ {1, 2, 3, 4}
C2 {2} ⊂{2, 3} ⊂ {2, 3, 4}
C3 {3} ⊂{1, 3} ⊂ {1, 3, 4}
C4 {4} ⊂{1, 4} ⊂ {1, 2, 4}
C5 {2, 4}
C6 {3, 4}

D1 {5} ⊂ {1, 5} ⊂{1, 2, 5} ⊂ {1, 2, 3, 5} ⊂ {1, 2, 3, 4, 5}
D2 {2, 5} ⊂{2, 3, 5} ⊂ {2, 3, 4, 5}
D3 {3, 5} ⊂{1, 3, 5} ⊂ {1, 3, 4, 5}
D4 {4, 5} ⊂{1, 4, 5} ⊂ {1, 2, 4, 5}
D5 {2, 4, 5}
D6 {3, 4, 5}

Figure 7.5: BCP5

Theorem 7.3.2 For all n > 3,

|An+1| < 6(
n

bn/2c) < 3(
n+1

b(n+1)/2c).

Moreover,

lim
n→∞

6(
n

bn/2c)

3(
n+1

b(n+1)/2c)
= 0.

Proof To prove the right-hand inequality we make some preliminary observations.

• Using (7.14), we have for all n > 1,

(
n+ 1

b(n+ 1)/2c

)

=

(
n

dn/2e

)

+

(
n

dn/2e − 1

)

, (7.26)

and hence

1 <

(
n

bn/2c

)

<

(
n+ 1

b(n+ 1)/2c

)

. (7.27)

• If n is odd, then

(
n

dn/2e

)

=

(
n

bn/2c

)

=

(
n

dn/2e − 1

)

. (7.28)

• For all n > 1,

(
2n

n− 1

)

=
(2n)!

(n− 1)!(n+ 1)!
=

(2n)!n

(n!)(n!)(n+ 1)
=

n

n+ 1

(
2n

n

)

. (7.29)



CHAPTER 7. CONFLICT OF INTEREST POLICIES 145

• Finally, for all n > 1,

2

3(
n

n+1 )
< 1. (7.30)

Hence, if n is odd we have

6(
n

bn/2c)

3(
n+1

b(n+1)/2c)
=

2(
n

bn/2c)3(
n

bn/2c)

3

(

( n
dn/2e)+(

n
dn/2e−1)

) by (7.26)

=
2(

n
bn/2c)3(

n
bn/2c)

3

(

( n
bn/2c)+(

n
bn/2c)

) by (7.28)

=
2(

n
bn/2c)3(

n
bn/2c)

3(
n

bn/2c)3(
n

bn/2c)

=

(
2

3

)( n
bn/2c)

→ 0 as n→∞ by (7.27)

Now suppose n is even and let n = 2m, m > 1. Consider

6(
n

bn/2c)

3(
n+1

b(n+1)/2c)
=

6(
n

bn/2c)

3(
n

dn/2e)3(
n

dn/2e−1)
by (7.26)

=
3(

2m
m )2(

2m
m )

3(
2m
m )3(

2m
m−1)

=
2(

2m
m )

3(
2m

m−1)

=
2(

2m
m )

(3(
m

m+1 ))(
2m
m )

by (7.29)

=

(
2

3(
m

m+1 )

)(2m
m )

→ 0 as m→∞ by (7.27) and (7.30)

The result follows.

We now prove the left-hand inequality using a similar line of argument to that of Theorem 2.2.3.

However, we consider a bi-symmetric chain partition BCPn rather than SCPn. We will identify

all chains in BCPn which are a copy of a chain in SCPn−1 by C, and all chains in BCPn which

are of the form C ∪{n} by D (see Figure 7.5). If C ∈ C we denote the corresponding element in D,

C ∪ {n}, by D. We will construct a filter F by choosing elements from each pair of corresponding

chains C and D.

Consider first a pair of chains of length at most two C0lC1 and D0lD1, say. By making our
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choices from C first, we can see there are at most 6 choices of elements from these two chains. In

Table 7.2 we enumerate the choices available. A tick indicates the choice to include the element

in F , a cross indicates the choice to exclude the element from F , and a hyphen indicates there is

no choice involved because of the (subset inclusion) dependencies within the pairs of chains.

C0 C1 D0 D1

3 - - -

7 3 3 -

7 3 7 -

7 7 3 -

7 7 7 3

7 7 7 7

Table 7.2: The possible choices that can be made from a pair of chains, C0 lC1 and D0 lD1, in
a bi-symmetric chain partition

Suppose now that we have to make a choice of elements from the chains

C : C0 l · · ·l Ck and D : D0 l · · ·lDk

having already chosen the elements from the chains of shorter length, thus fixing some part of F .

By Theorem 2.2.4 we can find C ′
1, . . . , C

′
k−1 and D′

1, . . . , D
′
k−1 belonging to shorter chains (than

C and D) such that

Ci−1 l C
′
i l Ci+1 and Di−1 lD

′
i lDi+1 for 1 6 i 6 k − 1.

Define lc, uc, ld, ud in an analogous way to l and u in Theorem 2.2.3. That is,

• lc is the largest integer such that C ′
lc
6∈ F ,

• ld is the largest integer such that D′
ld
6∈ F ,

• uc is the smallest integer such that C ′
uc
∈ F ,

• ud is the smallest integer such that D′
ud
∈ F .

We first note that, as in Theorem 2.2.3, when lc > uc or ld > ud, we will not be able to make

any choices from C or D, respectively.

Hence we can assume that uc − lc = 1 and ud − ld = 1 (that is, Clc l Cuc
and Dld l Dud

).

(We would like to remind the reader at this point that < will also be used to denote ⊂. In this

context, it is worth bearing in mind that Ci and Di are sets and lc, ld, uc and ud are integers.)

There are the same 6 choices to extend F as given in Table 7.2 provided we can prove that,

when we extend F by including zero or more of Clc , Cuc
, Dld , Dud

, we do not contradict any

decisions that have already been made with respect to the construction of F . We consider the

following two cases.

• Include Dld ∈ D in F . We need to prove that Dld ≮ C ′
i, 1 6 i 6 lc. (In other words, none of

the elements C ′
1, . . . , C

′
lc

already excluded from F will be included in F if Dld is chosen to

be included in F . Clearly, if this holds then the inclusion of Dud
in F is legitimate since we
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can only include Dud
when ld < ud and hence Dld < Dud

≮ C ′
i. Analogous remarks apply

to the second case below.) As n ∈ D for all D ∈ D and n 6∈ C for all C ∈ C, it is clearly the

case that Dld ≮ C ′
i, 1 6 i 6 lc.

• Include Clc ∈ C in F . We need to prove that Clc ≮ D′
i, 1 6 i 6 ld (for the same reasons

cited in the case above). The proof proceeds as follows. We prove that

ld 6 lc and (7.31)

Clc ≮ D′
lc . (7.32)

Then, by (7.31), D′
ld
6 D′

lc
, and hence, by (7.32), Clc ≮ D′

ld
.

Proof of (7.31) (By contradiction) Suppose that lc < ld. Then Clc < Cld and C ′
ld
∈ F by

definition of lc. Therefore D
′
ld
∈ F since C ′

ld
lD′

ld
, but, by definition, D′

ld
6∈ F . ¤

Proof of (7.32) (By contradiction) Suppose that Clc < D′
lc
. By construction, |Clc | =

|D′
lc
| − 1, and n 6∈ Clc . Therefore, |Clc | = |(D′

lc
\ {n})| and Clc 6 (D′

lc
\ {n}). Hence

Clc = (D′
lc
\ {n}) = C ′

lc
, which is a contradiction. ¤

We conclude by noting that no conflict can occur by including either Cuc
or Dud

in F .

As with Hansel’s result, we can improve the upper bound for half the cases. Specifically, if we

define

ν(n) =

(
n

bn/2c

)

and µ(n) =

(
n

bn/2c − 1

)

,

we have the following result.

Proposition 7.3.3 For all n > 3,

|An| < 6ν(n−1) < 3ν(n),

and for n odd,

|An| < 3ν(n−1)−µ(n−1)6µ(n−1) = 2µ(n−1)3ν(n−1).

Proof BCPn is constructed using SCPn−1 which necessarily contains ν(n− 1)−µ(n− 1) chains

of length 1. (This can be seen in Table 7.5, for example, in which there are
(
4
2

)
−
(
4
1

)
= 2 chains

of length 1.)

For such pairs of chains, C0 and D0, we only have 3 choices of sets to include in F . Namely,

we can choose D0 or C0 (which necessarily includes D0) or neither.

7.4 Postscript

The problem of determining |An| was first posed by Dedekind (1897) and is known to be very

difficult. In particular, the value of |An| for n > 9 is not known. Table 7.3 shows the bounds for
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|An| derived by Hansel and compares them with the corresponding values of |An| and 22
n

. The

values of |An| are reproduced from Davey and Priestley (1990). Table 7.4 compares the values of

|An| and the upper and lower bounds derived in this chapter with Hansel’s bounds.

n 2ν(n) |An| 3ν(n) 22
n

1 2 3 3 4

2 4 6 9 16

3 8 20 27 256

4 64 168 729 65536

5 1024 7581 59049 4294967296

6 1.048576× 106 7.828354× 106 3.486784× 1012 1.844674× 1018

7 3.435974× 1010 2.414682× 1012 5.003155× 1016 3.402824× 1038

8 1.180592× 1021 5.613044× 1022 2.503156× 1033 1.157921× 1077

9 8.507059× 1037 ? 1.310021× 1060 1.340781× 10154

10 7.237001× 1075 ? 1.716154× 10120 1.797693× 10308

Table 7.3: The upper and lower bounds of |An| due to Hansel

n 2ν(n)
∑∣

∣n
r

∣
∣2[

n
r]−1 |An| 6ν(n−1) 3ν(n)

1 2 4 3 1 3

2 4 6 6 6 9

3 8 18 20 36 27

4 64 130 168 216 729

5 1024 2690 7581 46656 59049

6 1.048576× 106 3.026946× 106 7.828354× 106 6.046618× 107 3.486784× 1012

7 3.435974× 1010 1.138313× 1011 2.414682× 1012 3.656158× 1015 5.003155× 1016

8 1.180592× 1021 5.314680× 1021 5.613044× 1022 1.719071× 1027 2.503156× 1033

9 8.507059× 1037 3.934544× 1038 ? 2.955204× 1054 1.310021× 1060

10 7.237001× 1075 5.473068× 1076 ? 1.114442× 1098 1.716154× 10120

Table 7.4: A comparison of upper and lower bounds of |An|

7.4.1 Asymptotic limits for |An|

We now briefly describe work on the asymptotic behaviour of |An|. It follows from Hansel’s

theorem that

(
n

bn/2c

)

log 2 6 log |An| 6

(
n

bn/2c

)

log 3.

Kleitman and Makowsky (1975) established that

lim
n→∞

log |An| =

(
n

bn/2c

)

log 2
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by applying probabilistic methods and Hansel’s approach to the set of all symmetric chain parti-

tions. An asymptotic formula for |An| was found by Korshunov using an extremely complicated

argument, as can be seen in the following result.

Theorem 7.4.1 (Korshunov 1980)

lim
n→∞

|An| =







2(
n

n/2)e(
n

(n−2)/2)
(

1

2n/2
+ n2

2n+5 −
n

2n+4

)

if n is even,

2(
n

(n−1)/2)+1e(
n

(n−3)/2)
(

1

2(n+3)/2
− n2

2n+6 −
n

2n+3

)

+( n
(n−1)/2)

(
1

2(n+1)/2
+ n2

2n+4

)

if n is odd.

This asymptotic limit provides a good approximation of |An| even for small values of n. We

are currently investigating a generalization of the bi-symmetric chain partition that enables us to

improve our upper bound. A preliminary discussion of our ideas in this area appears in Chapter 9.

7.5 Discussion

We have presented a general framework for the articulation of conflict of interest policies which

includes negative authorization policies and separation of duty policies as special cases. We believe

our approach offers a simple and complete characterization of such policies, and significantly

extends the class of policies for role-based access control.

We have not restricted our attention to conflict of interest policies in which the constraints are

(mutually exclusive) pairs, but noted in Section 7.2 that separation of duty policies are usually

modelled in this way. The only exception we have found is RCL 2000, but the fragments of the

language the authors offer as examples suggest that although the constraints in a policy may have

cardinality greater than two, the policy is violated if any pair of elements from a constraint enters

the environment.

With this in mind, we can rewrite an arbitrary conflict of interest policy P ∈ An as a policy

P ′ ∈ A2n, where A
2
n = {P ∈ An : for all P ∈ P, |P | 6 2}. Specifically, let

P = {Pi : 1 6 i 6 n},

then

P ′ =
{{
aij , aik

}
: 1 6 j < k 6 |Pi|, |Pi| > 1, 1 6 i 6 n

}
∪ {Pi : |Pi| = 1, 1 6 i 6 n} .

In other words, for all Pi ∈ P, if |Pi| = 1 then include Pi in P
′; otherwise replace Pi by all pairs

of elements in Pi. Clearly P ′ 6 P with equality when |Pi| 6 2, for all 1 6 i 6 n, so P ′ is, in

general, more restrictive than P. Therefore, an arbitrary conflict of interest policy, P ∈ An, can

be expressed as a conflict of interest policy, P ′ ∈ A2n, which is at least as strong as P. It can easily

be seen that

2(
n
2) < |A2n| < 3(

n
2),

since there are
(
n
2

)
distinct pairs, and any subset of the set of pairs is a valid policy. Furthermore,
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for all P ∈ A2n,

Σ(P) 6 2

(
n

2

)

= n(n− 1).

Therefore, assuming that it takes constant time to determine whether x ∈ E for any element

x ∈ X, the complexity of checking whether adding x to E will violate a policy in A2n is O(n2).

Lemma 7.3.1 shows that at worst we will require

dn/2e

(
n

dn/2e

)

tests to determine whether adding x ∈ X to E will violate a policy P ∈ An. It is clear, therefore,

that implementing conflict of interest policies using elements of A2n will in general be far more

efficient than using unrestricted elements of An.

Hence, if the usual assumptions are made about the definition of conflict of interest policies, the

complexity of such policies can be readily described. However, we feel that the effort involved in

investigating the general case has been worthwhile. In particular, it has led to the generalization of

a lattice of antichains in Chapter 6, which in turn provides a rigorous foundation for the material

in Chapter 8.

The most interesting contribution to access control policies is the identification of several novel

applications of conflict of interest policies (and RCL 2000). In particular, the ability to impose

a ceiling on user-role assignments provides a useful adjunct to the administration of user-role

assignment and a simpler approach to modelling mandatory access control in role-based access

control.



Chapter 8

The Secure Hierarchical

Authorization Framework

In this chapter we present the secure hierarchical authorization (SHA) framework which is a

template for the design of access control models that address some of the shortcomings of existing

models. Specifically, models based on the SHA framework combine stronger security properties

than those associated with the protection matrix model and the role-based access control model

with a more flexible approach to security requirements than the Bell-LaPadula model.

The development of the model is motivated by two observations. Firstly, the security lattice

C × 2K in the Bell-LaPadula model is a sublattice of the antichains in the partial order C ∪K.

(This simple result is proved as part of Proposition 8.2.1.) Secondly, most organizations have a

supervision hierarchy based on superiority of position within the organization.

“ . . . a hierarchy of named positions . . . each position has one or more

roles . . . these roles can be supervisory (administrative), or functional or both.”

Moffett and Lupu (1999)

It seems reasonable, therefore, to assume that access to objects can be identified with positions

in a supervision hierarchy. This is essentially a combination of the ideas of a user-role assignment

relation in the role-based access control model and the security clearance function of the Bell-

LaPadula model. Using the obvious parallel with security labels in the Bell-LaPadula model, we

informally have the idea of a security policy in which access to an object is granted to a subject

only if the position of the subject is greater than that of the object.

We assume that objects and subjects can be associated with a set of positions, thus giving our

model greater flexibility than the Bell-LaPadula model. By regarding the supervision hierarchy

as a partial order on a set of positions and using the results of Chapter 6, we show how to extend

the ordering of the supervision hierarchy to an ordering on sets of positions in a completion of the

supervision hierarchy.

We also take the view that any non-policy-specific access control model can be used as the

reference monitor in the Bell-LaPadula model. Specifically, we could use either a protection matrix

or the “machinery” of the role-based access control model. The choice would be determined by

the application domain.

151
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In the remainder of this section we describe the components of the SHA framework. We assume

the existence of the following:

• A partially ordered set of positions 〈E,6〉; the Hasse diagram of E defines the position hier-

archy and corresponds to the supervision hierarchy mentioned above. (E denotes enterprise

and is used because P will be used for the set of permissions.)

By Theorem 6.1.1, there exist two completions of E using antichains (that is, two complete

lattices, which preserve the ordering of E), namely 〈A(E),4〉 and 〈DMA(E),4〉.

• A reference monitor which may be based on the protection matrix model, the role-based

access control model, or any other policy-neutral access control model. The interpretation

of subjects will be determined by the reference monitor chosen. For example, in the case of

a role-based access control reference monitor, subjects will be interpreted as sessions.

• A seniority function φ which associates every entity in the system with a level of seniority

within the organizational framework. This is clearly analogous to the security clearance

function λ in the Bell-LaPadula model.

The domain of φ will depend on the reference monitor. For example, using a role-based

access control reference monitor, we would define φ for all objects, roles and users.

If the domain of φ is a partially ordered set, then we require that φ be monotonic. That is,

for all x, y ∈ dom(φ), x 6 y implies φ(x) 4 φ(y).

The range of φ is A(E). In other words, the seniority of an entity is a set of positions which

are pairwise incomparable (with respect to the position hierarchy). Typically, this set will be

a singleton and hence will coincide with the usage of λ in the Bell-LaPadula model. However,

the fact that A(E) is a complete lattice means that a more senior antichain of positions can

be found for any antichain of positions, and hence that this definition of φ is both legitimate

and provides more flexibility than the definition of λ. We note the following possibilities.

– φ(o) = ∅: that is, o is not protected, as every subject will be senior to o. This corre-

sponds intuitively to public documents, for example.

– φ(s) = ∅: that is, s has no access privileges except to public documents. This could

model, for example, a guest user.

• An order-based policy (or seniority policy or simply policy) Π which is a set of (policy)

statements (or security properties), {π1, . . . , πn}, where each πi is an inequality relating the

seniority of entities within the system. Informally, an order-based policy is one in which the

specification of the policy can be stated in terms of the ordering on the position hierarchy.

We now give some examples of policy statements:

– πssp , φ(s) < φ(o) is analogous to the simple security property;

– π∗ , φ(s) 4 φ(o) is analogous to the *-property.

The policy ΠBLP = {πssp, π∗} is analogous to the information flow policy of the Bell-

LaPadula model.
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• A policy monitor which is used to enforce an order-based policy.

Our model, therefore, like the Bell-LaPadula model, has a two-stage protocol for determining

the system response to a request. That is, the request must satisfy the seniority policy and

it must be granted by the reference monitor.

For example, if we assume the existence of a role-based access control reference monitor, a

request get(s, p), where s is a session and p is a permission, is granted if there exists r ∈ R(s)

such that φ(r) < φ(p) and (p, r) ∈ PA. We note that we can assign different positions to the

permissions pr = (o, read) and pw = (o, write), for example, which provides more flexibility

than the Bell-LaPadula model.

The SHA framework itself is too general to have any specific application. It is therefore

necessary to consider particular cases in which security properties are defined and a reference

monitor chosen. A secure hierarchical authorization model is an instance of the SHA framework

in which the seniority policy and the reference monitor have been chosen. A secure hierarchical

system S is an instance of some secure hierarchical authorization model. A state t is a description

of S at a particular instant. The (possibly non-deterministic) behaviour of S is defined by the

initial state of the system, a set of requests Γ, and other features which are determined by the

reference monitor. An evolution tn of S is a sequence of states t0 . . . tn, where t0 is the initial state

of the system and ti is obtained from ti−1 by the execution of a request in Γ.

For a given policy statement π, we must define what is meant for a state to satisfy π. This

definition will depend on π, just as the conditions for a state (in the Bell-LaPadula model) to

satisfy the simple security property and the *-property are different.

To summarize, the SHA framework has the following characteristic features:

(1) The secure hierarchical authorization framework is an extension of the Bell-LaPadula model.

(2) The strict order of security labels and the set of categories are replaced by a more general

hierarchy reflecting organizational characteristics.

(3) The security clearance function is replaced by a more general seniority function.

(4) Policies may be any combination of order-based statements.

(5) Two stage checking of access requests.

These features suggest the following advantages over existing models.

• (2), (3) and (4) will provide greater flexibility than the Bell-LaPadula model.

• (1) and (5) will ensure stronger security properties than existing discretionary access control

models.

In the remainder of this chapter we consider particular SHA models. In Section 8.1 we describe

the SHRBAC model which is a role-based access control model. We define the security properties

of the model and the notion of a secure state and secure system. We then define a set of commands

and prove that a SHRBAC system which implements these commands and whose initial state is

secure will only enter secure states. (This result is analogous to the Basic Security Theorem of Bell

and LaPadula (1973b). Indeed, the structure of this chapter as a whole is strongly influenced by
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the work of Bell and LaPadula.) In Section 8.2, we use a protection matrix as the reference monitor

and show that the Bell-LaPadula model and the typed access matrix model (Sandhu 1992c) are

both SHA models. We also briefly describe how a SHA model could be used to implement a

transition secure system (McLean 1994).

8.1 SHRBAC

Several papers have appeared in recent years that demonstrate how role-based access control

can be used to simulate mandatory access control. The most comprehensive treatment (Osborn

et al. 2000) requires the use of a “read” hierarchy and a “write” hierarchy. Both hierarchies are

lattices, the latter being the dual of the former. Two distinct hierarchies are required because

permissions are inherited upwards in a role hierarchy. Informally, the *-property implies that

“write” permissions are inherited downwards. In the next chapter, we discuss some preliminary

ideas for an alternative approach to this topic.

SHRBAC does not attempt to simulate the Bell-LaPadula model. SHRBAC is instead an

attempt to broaden the applicability of multi-level secure systems using role-based concepts. At

this stage, we do not distinguish between different modes of access. That is, we focus on providing

a security property analogous to the simple security property.

The SHRBAC model necessarily has two components which we shall call mandatory and dis-

cretionary. The mandatory part defines the security properties (defined in terms of the position

hierarchy), while the discretionary part defines those aspects of the model that would be config-

ured by the end-users. They correspond to the security properties and protection matrix parts of

the Bell-LaPadula model, respectively. In Section 8.1.1 we describe the discretionary components

of SHRBAC: the role hierarchy RH and the relations UA and PA. In Section 8.1.2 we define the

security properties associated with the SHRBAC model: πra, πpu, πrh, πua, π
′
ua, πpa and π′pa.

We will assume the use of the SARBAC administrative model described in Chapter 4. However,

in this chapter we will use RHA1 rather than RHA4 as the basis for SARBAC. In particular,

administrative scope is defined by the role hierarchy, not the admin-authority relation. We choose

this approach in order to simplify the exposition of SHRBAC and the description of requests. A

preliminary analysis suggests that the use of an extended hierarchy and the admin-authority

relation will be straightforward. We discuss the issues involved at the end of this section.

8.1.1 Discretionary components of SHRBAC

Role hierarchy The role hierarchy is defined by the covering relation of the partial order on R.

In other words, we include a relation RH ⊆ R × R such that (r, r′) ∈ RH if, and only if, r l r′

in R. Therefore, our approach to the role hierarchy is the same as that employed in the NIST

role-based access control model, but differs from RBAC96.

User- and permission-role assignment The assignment relations UA and PA refine the

requirements imposed by πua and πpa (defined below). This is analogous to the function of the

protection matrix in the Bell-LaPadula model, which refines the simple security property and the
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*-property. We will illustrate this with an example in Section 8.1.3. We assume that for all u ∈ U ,

R(u) ∈ A(R), and, for all p ∈ P , R(p) ∈ A(R).

Sessions We assume a user u initiates a session s by activating a set of roles R(s) ∈ A(R),

where R(s) ⊆ ↓R(u). We represent a session as a triple (i, u, ↓R(s)), where i is a (unique) session

identifier. If s requests permission p, the reference monitor finds each r ∈ R(p) and tests whether

r ∈ ↓R(s). If there exists r ∈ R(p) ∩ ↓R(s) and mandatory requirements are also satisfied, then

access to p is granted. (The assumption here is that a session will typically make many access

requests and hence it will be more efficient to compute ↓R(s) once, rather than computing ↑R(p)

for each request to use permission p.)

8.1.2 Security properties

Given an administrative role a, a role r, a user u, and a permission p, we define seven security

properties for SHRBAC.

Role activation: πra , φ(u) < φ(r). The role activation property imposes a restriction on the

roles a user can activate. Namely, the user must be at least as senior as the role.

UA satisfies πra if for all (u, r) ∈ UA, φ(u) < φ(r). We say a session s satisfies πra if for all

r ∈ R(s), φ(u) < φ(r), where u is the user running the session s.

Permission usage: πpu , φ(r) < φ(p). The permission usage property imposes a restriction

on the permissions a role can use. Namely, the role must be at least as senior as the permission.

PA satisfies πpu if for all (p, r) ∈ PA, φ(r) < φ(p).

Hierarchy consistency: πrh , r 6 r′ implies φ(r) 4 φ(r′). The hierarchy consistency property

requires that φ be monotonic.

RH satisfies πrh if for all (r, r′) ∈ RH, φ(r) 4 φ(r′).

User assignment: πua , φ(a) Â φ(u) < φ(r). The user assignment property imposes restric-

tions on user-role assignment. Namely, the user must be at least as senior as the role to which the

user is to be assigned, and the role performing the assignment must be more senior than the user.

Weak user assignment: π′ua , φ(a) Â φ(u), φ(a) Â φ(r). The weak user assignment property

requires that both the user and the role be less senior than the role performing the assignment.

Note that if we assume that RH satisfies πrh, then we can omit the condition φ(a) Â φ(r) from

π′ua. A similar remark applies to weak permission assignment below. Note also that the property

πua is interchangeable with the pair of properties {πra, π
′
ua}, since if we restrict user assignments

to only those roles which are no more senior than the user, then the role activation property is

redundant.

Permission assignment: πpa , φ(a) Â φ(r) < φ(p). The permission assignment property

requires that the role must be at least as senior as the permission, and the role performing the

assignment must be more senior than the role.
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Weak permission assignment: π′pa , φ(a) Â φ(r), φ(a) Â φ(p). The weak permission

assignment property requires that both the permission and the role be less senior than the role

performing the assignment. (The property πpa is interchangeable with the pair of properties
{
πpu, π

′
pa

}
.)

Remark 8.1.1 Note that the “weak” properties can be checked more efficiently than their coun-

terparts. For example, to check weak user assignment we only need to test whether φ(u) and φ(r)

are in ↓φ(a). However, to check the user assignment property requires testing whether φ(u) is in

↓φ(a) and whether φ(r) is in ↓φ(u).

Definition 8.1.1 A state t = 〈RH ,UA,PA, S, V〉 is determined by the role hierarchy, the user-

permission assignment relation, the permission role-assignment relation, the set of sessions and

V , which models the permissions currently granted by the system to sessions.

A state ti denotes the tuple 〈RH i,UAi,PAi, Si, Vi〉. An evolution tn is defined to be a sequence

of states t0 . . . tn, where ti is the result of executing some request in state ti−1.

Definition 8.1.2 A SHRBAC system S(P,Γ, U,E, φ, t0) is determined by the set of permissions,

the set of requests, the set of users, the position hierarchy, the seniority function and the initial

state of the system.

Remark 8.1.2 A request in SHRBAC causes a change in the state of the system. Therefore,

Definition 8.1.2 implies that U , O and φ are fixed. In the Bell-LaPadula model U and O are also

fixed; “dormant” subjects and objects are activated and assigned a security level. In other words,

tranquillity is a feature of the current version of SHRBAC. Modelling changes to the seniority

function is beyond the scope of this thesis.

Definition 8.1.3 A state, 〈RH ,UA,PA, S, V〉, is secure if for all (u, p) ∈ V , φ(u) < φ(p). A

state is consistent if RH satisfies πrh. A state satisfies πra if UA satisfies πra and for all s ∈ S,

s satisfies πra. A state satisfies πpu if PA satisfies πpu.

A state evolution, tn = t0t1 . . . tn, is secure if ti is secure, 0 6 i 6 n. A SHRBAC system is

secure if all state evolutions are secure. A state evolution is consistent if ti is consistent, 0 6 i 6 n.

A SHRBAC system is consistent if all state evolutions are consistent. A state evolution satisfies

πra and πpu if ti satisfies πra and πpu, 0 6 i 6 n. A SHRBAC system satisfies πra and πpu if all

state evolutions satisfy πra and πpu.

Clearly the definition of a secure state is analogous to a state satisfying the simple security

property in the Bell-LaPadula model. However, in Definition 8.1.3, there is no condition analogous

to a state satisfying the *-property in the Bell-LaPadula model.

8.1.3 Hierarchy operations in SHRBAC

In this section we consider the effect of hierarchy operations on both the role hierarchy and sessions.

The impact of hierarchy operations in an operational role-based system is not widely discussed in

the literature. Therefore, we feel that these operations should be fully understood before defining

requests.
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The roles in a session are assumed to be static and calculated when the session is initiated.

We assume that the addition of edges and roles to the role hierarchy (which can only increase the

permissions available to roles) can proceed without interrupting sessions. However, the deletion

of edges and roles from the hierarchy may reduce the permissions available. In order to maintain

the security properties of the system, it is therefore necessary to suspend or stop any sessions

which include the roles affected by such a hierarchy operation and to re-calculate the set of roles

available to the session before resuming it.

Edge insertion

The insertion of an edge must preserve the partial order and must not introduce transitive edges

in RH. Therefore, to insert an edge (rc, rp), we must have rc ‖ rp. (If rc < rp, then either rc l rp
and (rc, rp) ∈ RH or (rc, rp) is a transitive edge and should not be added to RH ; if rp > rc, then

adding (rc, rp) to RH would introduce a cycle into the role hierarchy.)

We wish to maintain RH as the covering relation of the partial order on R. This means that

certain edge insertions will require the deletion of transitive edges formed by the insertion. (By

transitive edge, we mean (r, r′) ∈ RH such that there exists r′′ ∈ R with (r, r′′) ∈ RH and

(r′′, r′) ∈ RH.) Figure 8.1 illustrates this point: the transitive edges (r, r′′) and (r′, r′′′), which

arise as a result of inserting the edge (r′, r′′), are deleted.
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(b) Hierarchy following insertion of (r′, r′′)

Figure 8.1: Edge insertion

Edge deletion

The mechanics of edge deletion require more care. Edge deletion may reduce the permissions

available to roles (through inheritance) and the permissions available to users and sessions. Hence,

in an operational system, it seems reasonable to require that if an edge (r, r′) is to be deleted,

then all sessions that contain r′ should be suspended or stopped.

Paradoxically, the deletion of an edge may also require the addition of new edges. For example,

suppose rl r′l r′′l r′′′ and we delete the edge (r′, r′′). The following question arises: Should we

now add the edges (r, r′′) and (r′, r′′′) to RH? We choose to support both possible answers, with

“no” corresponding to inheritance destruction or strong edge deletion, and “yes” corresponding

to inheritance preservation or (weak) edge deletion. In other words, weak edge deletion makes

explicit any implied transitive edges that would be lost following an edge deletion, while strong
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edge deletion does not. (Note that we do not support a mixture of weak and strong edge deletion

in which, say, (r, r′′) is added, but (r′, r′′′) is not.) Figure 8.2 illustrates the effect of weak and

strong edge deletion of the edge (r′, r′′). We anticipate that weak edge deletion would be far more

common as it will preserve the inheritance of user- and permission-role assignments. Note that

weak edge deletion is the inverse operation of edge insertion.
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Figure 8.2: Edge deletion

Role insertion

Role insertion can only increase the permissions available. We assume, therefore, that role insertion

can be performed at any point, but current sessions will not reflect the addition of roles to the

hierarchy. Role insertion generally requires the insertion of one or more edges, and therefore we

may need to delete one or more transitive edges. For example, adding the role r1 to the hierarchy

in Figure 8.2a with parent r′ and child r requires the deletion of the resulting transitive edge

(r, r′).

Role deletion

The deletion of a role, r, involves the deletion of all edges of the form (r, r′) and (r′′, r) in RH.

Therefore, we support two strategies: weak role deletion and strong role deletion. Weak role

deletion inserts transitive edges that are implied by RH but would be lost by deleting r, while

strong role deletion does not. Figure 8.3 illustrates the effect of deleting role r′ in Figure 8.2a.

We need to consider the effect of role deletion on the user- and permission-role assignments.

We adopt a similar strategy to that used in ARBAC97. Namely, if we delete the role r we re-assign

all users from r to each role in ∆r, and all permissions from r to each role in ∇r. We do not

consider the effect of role deletion on ua-constraints and pa-constraints.

Summary and example

Role-based administration in SHRBAC is very simple and is determined by the role hierarchy

and the implied administrative scope in the hierarchy. In Table 8.1 we summarize the important

features of the SHRBAC model and their counterparts in the RBAC96/ARBAC97 models.

Figure 8.4 shows the components of a SHRBAC system based on the RBAC96/ARBAC97

example in Figure 3.2. Note the use of UA to refine the roles that bill can activate. By virtue
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Figure 8.3: Role deletion

RBAC96/ SHRBAC

ARBAC97 Mandatory Discretionary

UA πua UA

PA πpa PA

can-assign πua RH , ua-constraints

can-revoke πua RH

can-assignp πpa RH , pa-constraints

can-revokep πpa RH

can-modify πrh RH

Table 8.1: A comparison of RBAC96 and SHRBAC features

of his position, bill would be able to activate PL1 and PL2 (and any roles junior to them).

However, UA prevents bill from activating PL2. Similarly, the concept of administrative scope

limits and distinguishes the administrative powers of roles with the same position. For example,

φ(PL1) Â φ(QE2); however, the administrative scope of PL1 is [ENG1, PL1], which prevents PL1

making changes to the assignments of QE2 or changing the hierarchy in the neighbourhood of QE2.

8.1.4 Requests

Requests consist of zero or more logical tests which we call the conditional part of the request and

one or more operations. Operations update S, RH , UA, PA or V . Recall that we denote the admin-

istrative scope of a role a by σ(a). For convenience we omit the current state 〈RH ,UA,PA, S, V〉

from the parameter list in the definition of requests. We assume the existence of the data types

role, user, session, permission and antichain. The set of commands Γ that will be used in

SHRBAC are given in Commands 8.1 – 8.14. We have commented the first command in some

detail in order to make the intended semantics of the pseudo-code more explicit. Thereafter, we

only comment where appropriate.
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(a) Role hierarchy

rDirector

rProject leader

rEngineer

(b) Position hierarchy

u φ(u)

anne {Engineer}

bill {Project leader}

claire {Director}

dave {Engineer}

emma {Engineer}

fred {Engineer}

(c) User-position associations

r φ(r)

DIR {Director}

PL1, PL2 {Project leader}

PE1, PE2 {Engineer}

QE1, QE2 {Engineer}

ENG1, ENG2 {Engineer}

ED {Engineer}

E ∅

(d) Role-position associations

u R(u) ↓R(u)

claire {DIR} {E, ED, . . . , DIR}

bill {PL1} {E, ED, ENG1, PE1, QE1, PL1}

(e) User-role assignments

Figure 8.4: An example of a SHRBAC system

Command 8.1

boolean assign-user(a role, r role, u user)

if

φ(a) Â φ(u) and /* a is more senior than u */

φ(u) < φ(r) and /* u is at least as senior as r */

r ∈ σ(a) /* r is in the administrative scope of a */

then

UA = UA ∪ {(u, r)} /* update UA */

assign-user = true /* request succeeds */

else

assign-user = false /* request fails */
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Command 8.2

boolean revoke-user(a role, r role, u user)

if

φ(a) Â φ(u) and

r ∈ σ(a)
then

UA = UA \ {(u, r)}
revoke-user = true

else

revoke-user = false

Command 8.3

boolean assign-permission(a role, r role, p permission)

if

φ(a) Â φ(r) and

φ(r) < φ(p) and

r ∈ σ(a)
then

PA = PA ∪ {(p, r)}
assign-permission = true

else

assign-permission = false

Command 8.4

boolean revoke-permission(a role, r role, p permission)

if

φ(a) Â φ(r) and

r ∈ σ(a)
then

PA = PA \ {(p, r)}
revoke-permission = true

else

revoke-permission = false

Command 8.5

boolean start-session(u user, i string, R(s) antichain)

if

R(s) ⊆ ↓R(u) /* ↓R(u) is the set of roles assigned to u */

then

R(s) = ↓R(s) /* form the down set of active roles */

S = S ∪ {(i, u,R(s))}
start-session = true

else

start-session = false
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Command 8.6

boolean stop-session(i string)

S = S \ {(i, u,R(s))}
stop-session = true

Command 8.7

boolean get-permission((i, u,R(s)) session, p permission)

if

R(p) ∩ R(s) 6= ∅
/* R(s) is the set of roles implicitly assigned to s */

/* R(p) is the set of roles to which p is explicitly assigned */

then

V = V ∪ {(i, u, p)}
get-permission = true

else

get-permission = false

Command 8.8

boolean release-permission(i string, u user, p permission)

V = V \ {(i, u, p)}
release-permission = true

Command 8.9

boolean add-edge(a role, rp role, rc role) /* rp is parent; rc is child */

if

φ(rc) 4 φ(rp) and

rc ∈ σ(a) and

rp ∈ σ(a) and

rc ‖ rp /* ensure no path or transitive edge is introduced */

then

RH = RH ∪ {(rc, rp)}
for all r ∈ ∆rc /* all children of rc */

if (r, rp) ∈ RH
RH = RH \ {(r, rp)} /* delete transitive edges */

for all r ∈ ∇rp /* all parents of rp */

if (rc, r) ∈ RH
RH = RH \ {(rc, r)} /* delete transitive edges */

add-edge = true

else

add-edge = false
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Command 8.10

boolean delete-edge(a role, rp role, rc role) /* weak edge deletion */

/* we assume that rp, rc 6∈ R(s) for any session s */

if

(rc, rp) ∈ RH and

rc ∈ σ(a) and

rp ∈ σ(a)
then

for all r ∈ ∇rp /* insert transitive edges that would be lost */

RH = RH ∪ {(rc, r)}
for all r ∈ ∆rc /* insert transitive edges that would be lost */

RH = RH ∪ {(r, rp)}
RH = RH \ {(rc, rp)} /* delete edge */

delete-edge = true

else

delete-edge = false

Command 8.11

boolean delete-edge-strong(a role, rp role, rc role)

/* we assume that rp, rc 6∈ R(s) for any session s */

if

(rc, rp) ∈ RH and

rc ∈ σ(a) and

rp ∈ σ(a)
then

RH = RH \ {(rc, rp)}
delete-edge-strong = true

else

delete-edge-strong = false
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Command 8.12

boolean add-role(a role, r role, ∇r antichain, ∆r antichain, p antichain)

/* r is the new role and will be assigned to the antichain of positions p */

/* we assume that ∇r 6= ∅ */

if

∇r ⊆ σ(a) and

∆r ⊆ σ(a) and

for all r ∈ ∇r /* preserve . . . */

p 4 φ(r)
and

for all r ∈ ∆r
p < φ(r) /* . . . hierarchy consistency */

and

for all r′ ∈ ∇r /* ensure no path or . . . */

for all r′′ ∈ ∆r
r′ ‖ r′′ /* . . . transitive edge will be introduced */

then

for all r′ ∈ ∇r
RH = RH ∪ {(r, r′)} /* connect r to its parents */

for all r′ ∈ ∆r
RH = RH ∪ {(r′, r)} /* connect r to its children */

for all r′ ∈ ∇r
for all r′′ ∈ ∆r

if (r′′, r′) ∈ RH
RH = RH \ {(r′′, r′)} /* delete transitive edges */

φ(r) = p /* update φ */

add-role = true

else

add-role = false

Command 8.13

boolean delete-role(a role, r role) /* weak role deletion */

if

∇r ⊆ σ(a) and

∆r ⊆ σ(a)
then

for all r′ ∈ ∇r
for all p ∈ P (r)

PA = PA \ {(p, r)} ∪ {(p, r′)} /* re-assign permissions */

RH = RH \ {(r, r′)}
for all r′ ∈ ∆r

for all u ∈ U(r)
UA = UA \ {(u, r)} ∪ {(u, r′)} /* re-assign users */

RH = RH \ {(r′, r)}
for all r′ ∈ ∇r

for all r′′ ∈ ∆r
RH = RH ∪ {(r′′, r′)} /* insert transitive edges */

delete-role = true

else

delete-role = false
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Command 8.14

boolean delete-role-strong(a role, r role)

if

∇r ⊆ σ(a) and

∆r ⊆ σ(a)
then

for all r′ ∈ ∇r
for all p ∈ P (r)

PA = PA \ {(p, r)} ∪ {(p, r′)} /* re-assign permissions */

RH = RH \ {(r, r′)}
for all r′ ∈ ∆r

for all u ∈ U(r)
UA = UA \ {(u, r)} ∪ {(u, r′)} /* re-assign users */

RH = RH \ {(r′, r)}
delete-role-strong = true

else

delete-role-strong = false
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8.1.5 The basic security theorem for SHRBAC

Theorem 8.1.1 If the initial state, t0 = 〈RH 0,UA0,PA0, S0, V0〉 of a SHRBAC system

S(P,Γ, U,E, φ, t0) is secure and satisfies {πra, πpu, πrh}, then all possible evolutions of the sys-

tem are secure and satisfy {πra, πpu, πrh}.

Proof The proof proceeds by induction on the length of the evolution. In all cases, the base case

is trivially satisfied by the assumption that t0 satisfies {πra, πpu, πrh}.

We consider each of the security properties separately by examining the effect of each of the

requests that can affect those properties. We assume that the evolution tN is secure and satisfies

{πra, πpu, πrh} (inductive hypothesis). (That is, all states tn, where n 6 N , are secure and satisfy

{πra, πpu, πrh}.)

The state tN+1 is secure

Proof The only requests that change VN are get-permission and release-permission.

If get-permission((i, u,R(s)), p) returns true, then VN+1 = VN ∪ {(i, u, p)} and R(s)∩R(p)

is non-empty. That is, there exists r′ ∈ R(s) such that (p, r) ∈ PA and since PAN satisfies πpu,

φ(p) 4 φ(r′). Now for all s = (i, u,R(s)) ∈ S, R(s) ⊆ ↓R(u). Therefore, for all r′ ∈ R(s),

there exists r ∈ R(u) such that r′ 6 r. Given that tN satisfies πrh, we have r′ 6 r implies

φ(r′) 4 φ(r). Furthermore, since tN satisfies πra, φ(r) 4 φ(u). Therefore, if VN is secure and

VN+1 = VN ∪ {(i, u, p)}, then φ(p) 4 φ(r′) 4 φ(r) 4 φ(u) for some r′ ∈ R(s) and hence VN+1 is

secure.

If release-permission returns true, then VN+1 = VN \ {(i, u, p)}. Clearly, by inductive

hypothesis, VN+1 is secure. ¤

The state tN+1 satisfies πra

Proof The only requests that change UAN are assign-user, revoke-user, delete-role and

delete-role-strong.

If assign-user returns true, then UAN+1 = UAN ∪{(u, r)}, where φ(u) < φ(r) (by construc-

tion of assign-user). Hence, by inductive hypothesis, UAN+1 satisfies πra.

If revoke-user returns true, then UAN+1 = UAN \ {(u, r)}. Clearly if UAN satisfies πra,

then so does UAN+1.

If delete-role returns true, then UAN+1 = UAN \ {(u, r) : u ∈ U(r)} ∪

{(u, r′) : u ∈ U(r), r′ ∈ ∆r}. By inductive hypothesis, φ(u) < φ(r) < φ(r′) for all r′ ∈ ∆r.

Hence UAN+1 satisfies πra. (A similar argument applies to delete-role-strong.)

The only requests that change SN are start-session and stop-session.

If start-session returns true, then SN+1 = SN ∪ {(i, u,R
′)}, where R′ ⊆ ↓R(u). By

inductive hypothesis, φ(u) < φ(r) for all r ∈ R′. Hence SN+1 satisfies πra.

If stop-session returns true, then SN+1 = SN \ {(i, u,R
′)}. By inductive hypothesis, SN+1

satisfies πra. ¤

The state tN+1 satisfies πpu
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Proof The only requests that change PAN are assign-permission, revoke-permission,

delete-role and delete-role-strong.

If assign-permission returns true, then PAN+1 = PAN ∪ {(p, r)}, where φ(r) < φ(p) (by

construction of assign-permission). Hence, by inductive hypothesis, PAN+1 satisfies πpu.

If revoke-permission returns true, then PAN+1 = PAN \ {(p, r)}. Clearly if PAN satisfies

πpu, then so does PAN+1.

If delete-role returns true, then PAN+1 = PAN \ {(p, r) : p ∈ P (r)} ∪

{(p, r′) : p ∈ P (r), r′ ∈ ∇r}. By inductive hypothesis, φ(r′) < φ(r) < φ(p) for all r′ ∈ ∇r.

(A similar argument applies to delete-role-strong.) ¤

The state tN+1 satisfies πrh

Proof The only requests that change RH are add-edge, delete-edge, delete-edge-strong,

add-role, delete-role and delete-role-strong.

If add-edge returns true, then RHN+1 = RHN ∪ {(rc, rp)} \ {(rc, r) : r ∈ ∇rp} \

{(r, rp) : r ∈ ∆r}, where φ(rc) 4 φ(rp). By inductive hypothesis RHN+1 satisfies πrh.

If delete-edge returns true, then RHN+1 = RHN \ {(rc, rp)} ∪ {(rc, r) : r ∈ ∇rp} ∪

{(r, rp) : r ∈ ∆r}. By inductive hypothesis, φ(rc) 4 φ(rp) 4 φ(r) for all r ∈ ∇r, and

φ(r) 4 φ(rc) 4 φ(rp), for all r ∈ ∆r. Hence RHN+1 satisfies πrh.

If delete-edge-strong returns true, then RHN+1 = RHN \ {(rc, rp)}. By inductive hypoth-

esis RHN+1 satisfies πrh.

If add-role returns true, then RHN+1 = RHN ∪ {(r, r
′) : r′ ∈ ∇r} ∪ {(r′, r) : r′ ∈ ∆r} \

{(r′, r′′) : r′ ∈ ∆r, r′′ ∈ ∇r}, where φ(r) 4 φ(r′) for all r′ ∈ ∇r and φ(r) < φ(r′) for all r′ ∈ ∆r.

Hence, by inductive hypothesis RHN+1 satisfies πrh.

If delete-role returns true, then RHN+1 = RHN \ {(r, r
′) : r′ ∈ ∇r} \ {(r′, r) : r′ ∈ ∆r} ∪

{(r′, r′′) : r′ ∈ ∆r, r′′ ∈ ∇r}. By inductive hypothesis, φ(r′) 4 φ(r′′) for all r′ ∈ ∆r and r′′ ∈ ∇r.

Hence RHN+1 satisfies πrh. (A similar argument applies to delete-role-strong.) ¤

We conclude this section by noting that we could have defined our requests differently. In

particular, there is no reason why part of the conditional statement of assign-user should be

that the parameters satisfy πra. (In fact, this would be analogous to the Bell-LaPadula model in

which an access right can be added to the ijth element of the protection matrix even if si and

oj violate one or more of the security properties.) In this case, the definition of get-permission

would need to be amended so that the conditional part confirms that φ(u) < φ(p). Our approach

makes the assumption that the request assign-user would be executed far less frequently than

get-permission, and that it therefore makes sense to incorporate the logical test in assign-user.

8.2 The secure hierarchical protection matrix model

In this section we examine the behaviour of models based on the SHA framework which employ a

protection matrix reference monitor. A secure hierarchical protection system S(A,Γ,M0, E, φ,Π)
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is defined by the set of access rights, the set of requests, the initial protection matrix, the set of

positions, the seniority function and the seniority policy. We will not present a single detailed

model like SHRBAC. Instead, we will investigate how different choices of policy give rise to well

known existing access control models. For example, it is clear that the protection matrix model is

a special case of the secure hierarchical authorization framework in which there is no policy and

no position hierarchy.

Proposition 8.2.1 The Bell-LaPadula model is a special case of the secure hierarchical autho-

rization framework in which E = C ∪K and the policy is {πssp, π∗}.

Proof C and K are disjoint posets. A(C) is a chain, C ′ say, since C is a chain. In fact

C ′ = {∅, {u} , {c} , {s} , {t}}, and for all c1, c2 ∈ C, c1 < c2 implies {c1} 4 {c2}. Furthermore,

〈A(K),4〉 = 〈2K ,⊆〉 since K is an antichain. By Proposition 6.3.3,

A(C ∪K) = A(C)×A(K) = C ′ × 2K . (8.1)

The security lattice in the Bell-LaPadula model (shown in Figure 2.6) is a sublattice of the one

defined in (8.1). Furthermore, λ(o) 6 λ(o′) implies that φ(o) 4 φ(o′).

The policy statements πssp and π∗ are equivalent to the simple security property and the *-

property, respectively. Hence we have a model that incorporates the ideas of the Bell-LaPadula

model but permits a more flexible security lattice and information flow policy.

We now consider the simple example from Chapter 1 in which there are two departments, Pay-

roll and Personnel to illustrate the use of the secure hierarchical protection matrix model. In each

department there are Clerks and Administrators. We require that no Personnel staff can access

Payroll information and that no Payroll staff can access Personnel information, with the exception

of Payroll administrators who must be able to read (but not write) basic Personnel information

such as national insurance numbers. The position hierarchy is shown in Figure 8.5. For all subjects

s associated with Payroll administrators, we define φ(u) = {Payroll Admin, Personnel Clerk}.

For all objects o maintained by the Personnel department, we define φ(o) = {Personnel Clerk}.

(We can of course refine Personnel staff and Payroll administrator access to those objects using

the protection matrix.) The seniority of all other subjects is an appropriate singleton position.

tPayroll Clerk

tPayroll Admin

tPersonnel Clerk

tPersonnel Admin

Figure 8.5: A simple position hierarchy

We note that the position hierarchy in this example can easily be represented as a sublattice

of the usual Bell-LaPadula security lattice. Our intention is merely to demonstrate the use of our

ideas not the extent to which they can be exploited.

In the remainder of this section we explore the models that arise as a result of defining different

policy statements. For certain choices of policy we have a natural generalization of the typed access

matrix model and also a means of defining transition secure commands (McLean 1994).
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8.2.1 The typed access matrix model

The typed access matrix model (Sandhu 1992c) introduces the notion of type for subjects and

objects in the protection matrix model. It extends the concept of entity types in the schematic

protection model (Sandhu 1988) to the protection matrix model.

A typed access matrix (TAM) system S(A,Γ,M0, T, τ) consists of a finite set of commands

Γ, a finite set of access rights A, a non-empty finite set of types T , an initial access matrix M0,

and a function τ : O0 → T .1 The body of each command contains primitive operations from

the protection matrix model. A create command contains either a create subject or create

object operation. We denote the set of create commands by ΓC ⊆ Γ. Given a create command

γ, t ∈ T is a child type in γ if there exists a formal parameter s in γ such that τ(s) = t and an

operation of the form create subject s or create object s; t is a parent type in γ, otherwise.

In Command 8.15, type b is a child type, while type a is both a parent and child type.2

Command 8.15

create-ab(a1:a,a2:a,b:b) /* a1, a2 are of type a; b is of type b */

create subject a2 /* a is a child type */

create subject b /* b is a child type */

. . . /* additional operations */

The creation graph of a monotonic TAM (MTAM) system is a directed graph with vertex set

T and an edge from t1 to t2 if there is a create command in which t1 is a parent type and t2 is

a child type. A MTAM system is acyclic if the creation graph is acyclic. (A MTAM system that

included Command 8.15 would not be acyclic.) We define a binary relation < on the set of create

commands in the following way: γ1 < γ2 if a child type in γ1 is a parent type in γ2 or there is a

directed path in the creation graph from a child type in γ1 to a parent type in γ2. Clearly < is

transitive, and if the creation graph is acyclic then < is irreflexive and anti-symmetric.

A canonical TAM system is one in which all create commands are unconditional. Sandhu

(1992c) showed that every TAM system is equivalent to a canonical TAM system. A MTAM

system is ternary if no command has more than three parameters.

Theorem 8.2.1 (Sandhu 1992c, Theorem 3) The safety problem for acyclic MTAM systems

is NP-hard.

Proof (Sketch) The proof of this theorem (and Theorem 8.2.2 below) requires that the TAM

system be in canonical form. We topologically sort (Knuth 1973) the set of create commands

(using the partial order induced by the parent and child types) to create a total order. We then

proceed down the ordered list of commands and apply each command once to each possible tuple of

parent entities. Sandhu (1992c) showed that this construction, the unfolding algorithm, terminates

for acyclic authorization schemes. (This follows immediately from the fact that the initial set of

entities and the set of commands are finite, and that the application of a create command cannot

1We use the term TAM system rather than the original authorization scheme (Sandhu 1992c) in order to keep
our terminology consistent.

2The notation s : t in the parameter list is used to denote that s is of type t.
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result in the creation of a type which could be used as a parent type in a command that has

already been considered.)

Theorem 8.2.2 (Sandhu 1992c, Theorem 5) The safety problem for ternary, acyclic MTAM

systems is decidable in polynomial time in the size of the initial matrix.

This result follows from the fact that there is an upper bound on the number of parameters in

any command. Sandhu (1992c) also showed that ternary TAM systems have similar expressive

power to the protection matrix model. Furthermore, binary TAM systems have less expressive

power than ternary TAM systems. In short, ternary TAM systems provide the optimum combi-

nation of expressive power and low complexity.

The development of the TAM model was motivated in part by the ORGCON (originator con-

trolled) policy, a US military policy that had been found to be difficult to implement within the

Bell-LaPadula model (Abrams et al. 1991). The ORGCON policy requires that the creator (orig-

inator) of a document retains sole control over the propagation of access rights to that document.

Sandhu (1992c) demonstrates that the ORGCON policy can be implemented in the TAM

model by ensuring that any subject that can access an ORGCON document is typed at the lowest

level possible and therefore cannot copy the document or grant access (wittingly or unwittingly) to

another subject. The ORGCON policy would normally be part of a wider (military) security policy

and hence the typed access matrix would replace the usual protection matrix in the Bell-LaPadula

model.

We claim the TAM model is an instance of the SHA framework; as such, it is easy to integrate

it into the Bell-LaPadula model. We first define the subject creation property πsc , φ(sp) Â φ(sc).

A system that implements πsc must ensure that for each create command, every child subject in

that command has a more senior parent subject. Given an acyclic TAM system S(A,Γ,M0, T, τ)

we can construct the (acyclic) creation graph of that system. The transitive reduction of the

creation graph is the position hierarchy E. The seniority function φ is identically equal to τ . The

parameter typing in commands in Γ can be removed; create commands must now test the position

of each parameter and ensure that the subject creation property is satisfied before creating any

new subjects. (If we include the security labels and needs-to-know categories of the Bell-LaPadula

model, the position hierarchy becomes C ∪K ∪ E. In this case, φ(s) = {λ(s), τ(s)}, where λ is

the security function, and Π = {πssp, π∗, πsc}.)

The advantage of the secure hierarchical protection matrix model is that given a position

hierarchy, provided the commands implement the subject creation property correctly, the creation

graph is necessarily acyclic. In the TAM model, there is no guarantee that the creation graph

derived from a set of commands will be acyclic.

In the TAM model, a create command in which t ∈ T is both a child and parent type is

attenuating if any new subject of type t has fewer capabilities than one of its parents of type t. An

attenuating, acyclic TAM system is one in which the creation graph may contain loops (cycles of

length 1), but is otherwise acyclic, provided each command that gives rise to a loop is attenuating.

The safety problem for attenuating, acyclic MTAM systems remains decidable (Sandhu 1992c).

Attenuating, acyclic systems are simple to write in the secure hierarchical protection matrix

model. We replace the subject creation property with the weak subject creation property π ′sc ,
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φ(sp) < φ(sc) and ensure that the entry of access right a into [sc, o] can only occur if a ∈ [sp, o].

Figure 8.16 shows an attenuating command.

Command 8.16

create-subject(s, s′, o, p) /* s is a parent subject; s′ is a child subject */

/* p is the position of s′ */

if

φ(s) < p and /* πtc′ is satisfied */

a in [s, o] /* check attenuating property */

then

create subject s′

φ(s′) = p /* assign position to s′ */

enter a in [s′, o]
. . . /* additional operations */

In addition, the deletion of matrix entries and the destruction of objects can be controlled

using the respective positions of the relevant parameters. In particular, we can extend the notion

of child and parent to passive and active objects in a command, where an object is passive if it is

created, deleted, or changed by the command and active otherwise. The definition of the subject

creation property can be extended so that for every passive object in a command there must be

an active object that is more senior. In this way, we may be able to exercise more control over the

behaviour of a non-monotonic secure hierarchical protection matrix system. An analysis of the

safety problem for such systems is beyond the scope of this thesis.

The typed access matrix model: An alternative formulation

We conclude our discussion of the TAM model with a simpler characterization of an acyclic TAM

system. Given a TAM system S(A,Γ,M0, T, τ) we define the binary relation ∼ on ΓC , where

γ1 ∼ γ2 if, and only if, a child type in γ1 is a parent type in γ2.

Proposition 8.2.2 The graph 〈ΓC ,∼〉 is acyclic if, and only if, the creation graph of S is acyclic.

Furthermore, γ1 < γ2 if, and only if, γ1 ∼
+ γ2, where ∼

+ denotes the transitive closure of ∼.

Proof For each edge (ti, ti+1) in a path (t1, t2), (t2, t3), . . . , (tn−1, tn) in the creation graph, there

exists a create command γi in which ti is a parent type and ti+1 is a child type. We can view such

a path in the following way:

(t1, [t2)
︸ ︷︷ ︸

γ1

, (t2], [t3)
︸ ︷︷ ︸

γ2

, . . . , (ti−1, [ti)
︸ ︷︷ ︸

γi−1

, (ti], ti+1)
︸ ︷︷ ︸

γi

, . . . , (tn−2, [tn−1)
︸ ︷︷ ︸

γn−2

, (tn−1], tn)
︸ ︷︷ ︸

γn−1

,

where the square brackets indicate that commands γi−1 and γi exist in which ti is a child and

a parent type, respectively. Hence, for every such path in the creation graph, there exists an

equivalent path (γ1, γ2), . . . , (γn−2, γn−1) in 〈ΓC ,∼〉. In particular, the creation graph is acyclic

if, and only if, the graph 〈ΓC ,∼〉 is acyclic.

If γ1 < γ2, then, by definition, either γ1 ∼ γ2 or there is a directed path in the creation graph

from a child type in γ1 to a parent type in γ2. In the latter case, there also exists a directed path
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in 〈ΓC ,∼〉, by the first part of this proposition. That is, γ1 ∼
+ γ2.

By Proposition 8.2.2, S is acyclic if 〈ΓC ,∼〉 is acyclic. The unfolding algorithm can be ap-

plied directly to a topological ordering of 〈ΓC ,∼〉. Hence this formulation does not require the

construction of the creation graph or the ordering on ΓC .

8.2.2 Transition secure systems

In Chapter 2 we briefly discussed the idea due to McLean of a function ψ : S ∪ O → 2S , where

ψ(o) is the set of subjects that can change λ(o). We now demonstrate how we can indirectly

define ψ using a policy statement. Recall that a command γ is transition secure (McLean 1994)

if, and only if, γ(s, (V,M, λ)) = (V ′,M ′, λ′) implies that for all o such that λ(o) 6= λ(o′), s ∈ ψ(o).

Informally, the parameter list of a transition secure command is extended to include an “active”

subject s which can change the security clearance of an object subject to the conditions imposed

by ψ. A simple way of implementing this requirement is to require that φ(s) Â φ(o). That is,

ψ(o) = ↑φ(o) \ {o}. In other words, the secure hierarchical protection matrix model provides a

simple and natural definition for the function ψ.

McLean does not constrain the values of λ(s) and λ′(o). It seems reasonable to assume that

s should be at least as senior as the new seniority level of o. Therefore, we extend the scheme

by defining the transition secure property πts , (φ(s) Â φ(o)) ∧ (φ(s) < φ′(o)). In other words,

a command that implements πts correctly ensures that the subject must be more senior than the

object and at least as senior as the new seniority level of the object. Command 8.17 shows a

command that implements πts.

Command 8.17

change-phi(s, s′, p) /* s changes position of s′ to p */

if

φ(s) Â φ(s′) and

φ(s) < p
then

φ(s′) = p /* change position of s′ */

. . . /* additional operations */

8.3 Discussion

We have presented a general framework for constructing access control models. Although the

SHA framework has little practical use because of the generality of its features, it provides a

starting point for developing access control models with well-defined security properties. In order

to achieve this, a particular reference monitor and a specific policy will need to be chosen.

The SHRBAC model is one such instance of the SHA framework which employs role-based

concepts. In particular, it uses the RH , UA and PA relations from RBAC96 and the SARBAC

model for administrative purposes.
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The most significant difference between SHRBAC and RBAC96/ARBAC97 is that all changes

to the state of the system must satisfy requirements based on relative seniority in the position

hierarchy. In particular, this prevents a user from being assigned a role that is too senior for that

user’s capabilities or responsibilities within the organization. This distinguishes SHRBAC from

both RBAC96 and OASIS in which the legitimacy of a new user-role assignment is determined by

existing user-role assignments. Furthermore, the availability of a permission to a user is controlled

by the relative positions of the permission and the user as well as the usual permission-role as-

signment relation. In short, SHRBAC provides a model for systems with greater assurance than

those based on the RBAC96 model. In particular, we note that the safety problem for role-based

access control as defined in Chapter 5 is rendered trivial in SHRBAC. However, once we introduce

requests that can change the position hierarchy and the position of entities in the system, greater

care will need to be taken in order to ensure that this property is not compromised. (In this

context, we are mindful of the work by McLean (1990) on the Bell-LaPadula model. However, we

believe that the concept of administrative scope may well provide a natural way of controlling the

behaviour of these requests.)

Unfortunately, the current version of SHRBAC incurs substantial administrative overheads.

In particular, it is necessary to assign a position to every user and permission. One of the great

advantages of RBAC96 is that it reduces the amount of access control management required.

Furthermore, it is not immediately apparent whether all the security properties are required. The

model is “defensive”, in the sense that it requires that πra, πpu and πrh be satisfied. The requests

would be less complex if we only require that a state is secure. In addition, we would not need to

assign positions to roles. However, this results in a model in which every user and every permission

could be assigned to DIR, for example. In mitigation, we observe that a similar situation arises in

the Bell-LaPadula model when every entry in the protection matrix contains every access right.

There are more general difficulties with the SHA framework: it may be difficult to decide what

the correct policy statements should be and to reason about the implications of the statements

chosen; some applications may not be suitable or may require a more fine-grained specification

of policy. With reference to the latter point, there has been considerable research into policy

specification which supports more flexible access control policies (Damianou et al. 2000; Woo and

Lam 1993). However, this research assumes that such policies will be written correctly. We believe

that, in practice, it may be as difficult to write such policies, to reason about their correctness

and to establish the subsequent behaviour of systems (the safety problem) as it is to describe the

behaviour of protection systems. The great benefit of the SHA framework in this context is that,

provided the position hierarchy is correctly specified, it is relatively easy to implement a set of

requests that guarantee that the resulting system satisfies the order-based policy chosen. This

discussion merely highlights one of the recurring themes in computer science: what is the best

compromise between expressive power and complexity?



Chapter 9

Conclusions and Future Work

The broadest interpretation of the contributions of this thesis is that the application of simple

mathematical models to role-based access control can make a significant contribution to the un-

derstanding of the way in which current role-based access control models operate. Furthermore,

the use of existing and new mathematical results suggest extensions to existing role-based access

control models that can improve their performance and utility.

More specifically, in Chapter 4, we introduced the RHA4 and SARBAC models which provide

a formal framework for role-based administration. These models are derived from a simple set of

requirements and the notion of administrative scope of a role. A mathematical description of an

encapsulated range, the basic unit of administration in the RRA97 model, provided the inspiration

for the definition of administrative scope.

RHA4 controls changes to the role hierarchy by assuming that such changes are made by an

administrative role and are constrained by the administrative scope of that role. We believe that

RHA4 is a more comprehensive and comprehensible approach than that adopted in RRA97 and

other models for administration of the role hierarchy.

SARBAC is a complete model for administration which extends the use of administrative scope

to user- and permission-role assignments. We believe SARBAC is simpler, more intuitive and more

coherent than ARBAC97. An interesting application of the SARBAC model is the development of

an alternative approach to discretionary access control within a role-based framework. A further

useful consequence of the SARBAC model is that the analysis of the behaviour of a role-based

access control system, which is managed using SARBAC, is considerably simplified. An applica-

tion of this is the analysis in Chapter 5 of the safety problem in RBAC96 using the SARBAC

administrative model.

In Chapter 7 we applied the novel construction of a lattice of antichains to a simple model

of conflict of interest policies, the lattice operations providing a natural way of composing two

different policies. The simplicity of our approach enables us to investigate the intrinsic complexity

of conflict of interest policies.

In Chapter 8 we described the secure hierarchical authorization framework, a second application

of the lattice of antichains, which provides a template for the development of new access control

models which incorporate an order-based security policy. These models constrain the propagation

of access rights in accordance with the security policy and are intended to provide a basis for the

174



CHAPTER 9. CONCLUSIONS AND FUTURE WORK 175

design of systems in which greater assurances can be given about the security of the system. The

models exhibit similar characteristics to the Bell-LaPadula model for multi-level secure systems.

However, the secure hierarchical authorization framework assumes the existence of a supervision

hierarchy which is intended to model the relative seniority of positions in an enterprise. The

order-based security policy is framed in the context of this hierarchy, rather than the more rigid

security lattice of the Bell-LaPadula model. The motivation for this additional flexibility is to

provide models that have a wider applicability than the Bell-LaPadula model.

The SHRBAC model is a role-based access control model derived from the secure hierarchical

authorization framework. Users, roles and permissions are assigned a level of seniority and user-

and permission-role assignments are required to satisfy constraints (policy statements) expressed

in terms of seniority. One useful feature of the model, which is absent from existing models, is

that user-role assignments are limited by the seniority of the user. The most significant drawback

of the model is its greater administrative and conceptual complexity compared to other role-based

models. The current version of SHRBAC does not implement the complete SARBAC model and

should therefore be regarded as work in progress. We discuss the development of the SHRBAC

model and suggest a simpler approach to secure role-based models in Section 9.1.4.

In this thesis we have considered several issues in access control by examining their underlying

mathematical structure: most importantly, administration in role-based access control models,

secure access control models and conflict of interest policies. The results have been encouraging.

We believe that the concept of administrative scope, which has a purely mathematical charac-

terization, could prove to be a valuable concept in role-based administration. We also believe that

the RHA family of models and SARBAC model are a significant improvement on existing models

for role-based administration.

The mathematical model for conflict of interest policies is extremely simple but retains the

characteristic behaviour exhibited by more complex formulations such as RCL 2000. The focus

on underlying structure rather than a specific application domain in our model suggests ways in

which the specification of RCL 2000 can be strengthened. For example, conflicting sets should be

antichains rather than arbitrary subsets. We have also identified simple yet practical applications

of conflict of interest policies that have not previously been identified. We believe that the use of

SARBAC together with the idea of a ceiling on the set of roles to which a user can be assigned

provides considerable flexibility and control over the assignment of users to roles.

The mathematical analysis of the complexity of conflict of interest policies is of limited interest

to computer scientists: the complexity of policies that contain constraints with no more than two

elements is already unattractive enough computationally, without considering constraints with an

arbitrary number of elements. The analysis is of limited interest to the mathematical community

because Korshunov’s theorem provides a good approximation for the number of Sperner families.

Furthermore, we believe that Lemmas 7.3.2 and 7.3.3 may be special cases or corollaries of existing,

albeit rather complex, results (Engel 1997, Section 2.3). It would seem that the more general

analysis of lattices of antichains in Chapter 6, while not mathematically profound, is more original.

It is more difficult to assess the merit of the secure hierarchical authorization framework because

a considerable number of issues require further work. Nevertheless, it is gratifying that several

different existing access control models are instances of the framework.
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9.1 Future work

A general criticism that could be levelled at the work in this thesis is the absence of any imple-

mentation of the theoretical material. Clearly, the most compelling argument for accepting a new

model is that it works. Therefore, one priority of future work is the development of software that

implements some of the ideas in this thesis. In addition, Chapters 4 – 8 provide many opportunities

for future research, both in partial orders and access control.

9.1.1 Extensions to role-based access control

Chapter 4 provides a theoretical foundation for administration in role-based access control. It

would be valuable to develop a prototype role-based access control mechanism based on the

RBAC96 model. This prototype could be extended to incorporate two different sets of admin-

istrative functionality based on the ARBAC97 and SARBAC models, respectively, and could be

used to assess their relative merits.

One issue that SARBAC does not address is the administration of separation of duty. The

work in Chapter 7 suggests that a conflicting set in RCL 2000 can be regarded as an antichain in

the role hierarchy. Hence, a conflicting set is identical in structure to a SARBAC constraint. This

suggests that we can change conflicting sets in the same way as constraints in the ua-constraints

and pa-constraints relations.

An implicit assumption in the RHA and SARBAC models is that a role hierarchy resembles a

rooted tree or a forest of rooted trees (with the root at the top of the hierarchy). Little research

has been conducted into the use and administration of role hierarchies that resemble rooted trees

in which the root is at the bottom of the hierarchy.

An instance of such a hierarchy occurs when roles are used to assign permissions to a directory

structure in which the number of users authorized to access a given directory is approximately

inversely proportional to the depth of the directory in the directory tree. An example of such a

situation is shown in Figure 9.1.1 We can imagine that /a/a, for example, is a directory which can

be accessed by a subset of the users who can access the (parent) directory /a. This corresponds

naturally to making raa a more senior role than ra and assigning the appropriate users to raa.

However, under the assumption that there is no “super user”, the role hierarchy in Figure 9.1b

bears little resemblance to the role hierarchies examined in the literature (and this thesis). I was

recently made aware of this problem by Dave Cohen of Royal Holloway.

It is encouraging to note that SARBAC can administer this hierarchy if we define an adminis-

trative role a and define the extended hierarchy shown in Figure 9.1b. Then a has no permissions

to access the directories, but can assign users and permissions to these roles. (We can create

encapsulated ranges in the role hierarchy of Figure 9.1b by adding a top and bottom element to

the hierarchy. However, the addition of practically any role or edge – the creation of the role rabc

as a parent of rab, for example – is not possible in ARBAC97.) We hope to undertake a more

systematic study of these types of hierarchy and the suitability of ARBAC97 and SARBAC as

administrative tools in these cases.

1Assignment to role rx implies access to directory x.
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Figure 9.1: Assigning permissions to a directory structure using a role hierarchy

We must also examine the properties of a line manager and whether the line manager of a role

is a useful concept in role-based administration. In particular, role hierarchy operations generally

involve more than one role. Therefore, we need to establish a definition of line manager for a set

of roles before the concept is of real value. (The set of administrators of a single role is known to

be a set with a unique minimal element by Proposition 4.2.3.) There are two plausible definitions

of a line manager of a set of roles R′ ⊆ R. Firstly, we view it as an extension of the concept of

line manager for a single role and define the line manager of R′ to be the least upper bound of the

set of line managers of the roles in R′. Unfortunately, in an arbitrary poset, this is not necessarily

uniquely defined. Therefore, we may need to impose certain restrictions on role hierarchies. The

most obvious such restriction is to insist that the (finite) extended role hierarchy is a (complete)

lattice.

Secondly, we define the set of administrators of R′ to be the intersection of the administrators

of each role. It is not immediately obvious what conditions the role hierarchy must satisfy to

guarantee that the resulting set has a unique minimal element.

There may well be standard results in partial order theory which supply an answer to the above

questions. (Indeed, it may be that existing results show that the two definitions of line manager

given above are equivalent.)

Unlike RHA1 and RHA2, the concept of line manager does not arise naturally in RHA3 be-

cause of the admin-authority relation. An obvious line of research is to investigate what con-

straint(s) must be applied to the admin-authority relation in order to recover this useful intu-

itive concept. Our intuition is that a suitable constraint would be that the role field is unique

in admin-authority, the interpretation being that a role cannot be controlled by more than one

administrative role. (In short, if the admin-authority relation is a function, then we claim that

every role has a line manager.)

An increasingly important subject in access control is delegation (Barka and Sandhu 2000;

Bandmann et al. 2001; Moffett and Sloman 1991). The concept of line manager may well prove

useful here. For example, all functions could be delegated to the appropriate line manager; these

functions could not then be performed by a more senior entity. Our limited understanding of cur-

rent research in this area prevents a more thorough discussion of how this topic can be developed.

The use of DRBAC1, role activation rules and a permission usage role hierarchy was briefly
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discussed in Chapter 4. The synthesis of ideas from this thesis, OASIS and ERBAC, respectively,

may produce a role-based model that exhibits some useful behaviour and features. We are partic-

ularly interested in incorporating environmental and temporal constraints (which may be used in

OASIS role activation rules) into ua-constraints and pa-constraints.

9.1.2 The safety problem in role-based access control

Chapter 5 represents the first steps in the analysis of the safety problem in role-based access

control. The natural extension of this work is to attempt to characterize role-based access control

systems in which the safety problem is decidable and, ideally, tractable. (Henceforth, we will call

these decidable systems or tractable systems, as appropriate.) Clearly, the commands used in

Sections 5.2.2 and 5.2.3 are not sufficiently restrictive to guarantee the decidability of the safety

problem. It is also apparent that these commands are artificial; we would not expect to find such

commands in an implementation of a role-based access control model. Nevertheless, the analysis

in Chapter 5, like the earlier work of Harrison et al. (1976), suggests that we should not take the

controlled propagation of access rights for granted.

We believe that describing useful, decidable role-based systems should be easier than for protec-

tion systems, because in the former we have the concept of administrative scope which necessarily

limits the behaviour of commands. In a protection system, the administration of the protection

matrix is governed by entries in the matrix itself. Administrative scope, however, is defined by

the extended role hierarchy. Hence, if we can identify a class of extended hierarchies that do not

permit the creation of arbitrarily long antichains in the hierarchy, then this may represent a class

of decidable role-based systems (subject to appropriate constraints on the structure of commands).

Taking the obvious parallel from the study of the safety problem in the protection matrix

model, we can also consider what it means for a set of commands to be monotonic and what

impact this has on the safety problem. A monotonic role-based command would not permit the

revocation and assignment of a permission (or user) in the same command. A study of the safety

problem in the protection matrix model suggests that such a condition will not be sufficient to

guarantee that the safety problem is decidable.

The use of the line manager concept may also have an impact on the safety problem. In

particular, it has the effect of localizing the changes made to the role hierarchy. This bears a

similarity to the behaviour of mono-conditional protection systems (Harrison and Ruzzo 1978),

for which the safety problem is decidable. Hence, an interesting line of research will be to establish

whether the safety problem is indeed decidable for RBAC96/SARBAC with this simple constraint

on role hierarchy operations. If the answer is affirmative, it will be somewhat counter-intuitive

because many different attempts have been made to find decidable cases of SP:HRU. Such an

answer would also provide a significant reason for deploying role-based access control more widely.

9.1.3 Partial orders and symmetric chain partitions

The first problem we will consider is the (limiting) behaviour of a “2m-symmetric chain partition”

of 2[n]. For example, we can represent SCPn in terms of 22 symmetric chain partitions that are

copies of SCPn−2. A 4-symmetric chain partition of 2[5] is shown in Figure 9.2.
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Figure 9.2: A 4-symmetric chain partition of 2[5] induced by the set [3]

In fact, we can show that X ⊆ [n], where |X| = m 6 n, “induces” a 2n−m-symmetric chain

partition of 2[n]. We denote [n] \X by XC . Consider the relation ∼ defined on 2[n], where Y ∼ Z

if, and only if, Y ∩ XC = Z ∩ XC = χ, for some χ ⊆ XC . It is easy to verify that ∼ is an

equivalence relation and that there exists a bijection from 2X to each equivalence class of the form

Y 7→ Y ∪χ, where χ ⊆ XC ; χ is called the characteristic set of the equivalence class. Let 2[n]/2X

denote the set of equivalence classes and let 2X+χ ∈ 2[n]/2X denote the equivalence class with

characteristic set χ ⊆ XC . For 2X+χ1 , 2X+χ2 ∈ 2[n]/2X , 2X+χ1 6 2X+χ2 if, and only if, χ1 ⊆ χ2.

In Figure 9.2a, X = [3] and the characteristic sets of the four equivalence classes are

∅, {4} , {4, 5} , {5} (reading clockwise from the top left class). Figure 9.2b shows the poset

〈2[n]/2X ,6〉.

Proposition 9.1.1 For all n > 0, X ⊆ [n], 〈2[n]/2X ,6〉 ∼= 〈2[k],⊆〉, where k = n− |X|.

Proof (Sketch) It can easily be verified that the function ζ : 2[k] → 2[n]/2X , where ζ(Y ) = 2X+Y ,

is the required order isomorphism.

We can represent 2X as a symmetric chain partition, and extend the symmetric chain partition

to each element of 2[n]/2X in an obvious way (as shown in Figure 9.2a). We will denote a symmetric



CHAPTER 9. CONCLUSIONS AND FUTURE WORK 180

chain partition of X by SCPX and call a chain in SCPX a base chain. Then for every base chain

C ∈ SCPX , there exists a corresponding chain in SCPX+χ.

Proposition 9.1.2 Given a 2k-symmetric chain partition of 2[n], the number of choices from

a set of corresponding chains each of length 2 is |Ak+1|; the number of choices from a set of

corresponding chains each of length 1 is |Ak|.

Proof (Sketch) Consideration of Figure 9.2a shows that the elements of a set of corresponding

chains of length 2 can be arranged as a lattice isomorphic to 2[k+1]. Similarly, the elements of a

set of corresponding chains of length 1 can be arranged as a lattice isomorphic to 2[k]. The result

follows.

If we consider the 2k-symmetric chain partition induced by a set X of size m = n− k, we see

that each component of the partition is itself a symmetric chain partition of m elements and hence

contains
(

m
bm/2c

)
chains. Hence we have the following conjecture.

Conjecture 9.1.1 For all k < n,

|An| 6 |Ak+1|
( n−k
b(n−k)/2c).

In particular, the case k = 0 corresponds to a symmetric chain partition; by Conjecture 9.1.1

we have

|An| 6 |A1|
( n
bn/2c) = 3(

n
bn/2c),

confirming Hansel’s result (Theorem 2.2.3). The case k = 1 corresponds to a bi-symmetric chain

partition; by Conjecture 9.1.1,

|An| 6 |A2|
( n−1
b(n−1)/2c) = 6(

n−1
b(n−1)/2c),

which corresponds to Theorem 7.3.2. (The case k = n− 1 yields |An| 6 |An|(
1
0) = |An|.) We note

that in order to prove the conjecture, it will be necessary to prove that every filter is counted at

least once and that choices made from longer chains do not contradict choices made earlier in the

construction (as we did in the proof of Theorem 7.3.2).

The second problem concerns finding upper and lower bounds for the number of conflict of

interest policies in an arbitrary partial order X, which we will denote |AX |. This question is of

interest in view of the comments made in Remark 7.2.1 about conflict of interest policies in a

role-based access control environment, where the access control context (in this case, the set of

roles) is a partially ordered set. For example, given the role hierarchy in Figure 7.2, |R| = 3

and |AR| = 10, whereas |A3| = 19. One way of tackling this problem may be to generalize the

definition of symmetric chain partition to an arbitrary poset X and thereby produce an upper

bound for |AX |. It is immediately obvious that |AX | > 2|X| since for all Y ⊆ X,
⋃

y∈Y {y} is a

conflict of interest policy in X.

A further potential area of research is the use of the lattice operations in 〈An,4〉 to define

crossover operations in grouping genetic algorithms (Falkenauer 1998). A grouping genetic al-

gorithm can be used to find a partition of a set of variables. This partition must also satisfy
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certain requirements which are expressed as a fitness function. A potential solution (partition)

is represented as a sequence of genes or chromosome. A chromosome with a high level of fitness

represents a good approximate solution to the grouping problem.

A crossover operation takes two chromosomes with high fitness and combines them to create

two children, the intention being to create offspring that inherit the characteristics of the parents

that led to their fitness. (Chromosomes are also subject to random mutation in order to extend

the search space.) It is difficult to find crossover operations for genetic grouping algorithms that

create two children that exhibit the characteristics of their parents (Tucker 2001).

Trivially, a partition is a Sperner family in the powerset of the variable set. Hence, the binary

operations of 〈An,4〉 and 〈An,4
′〉 can be used to create two new Sperner families. The resulting

Sperner families are not necessarily partitions. However, removing duplicates in one of two ways

chosen at random leads to two child partitions that retain features of their parents.

For example, given a set of 10 variables and the parent chromosomes

2 9 7 5 4 3 6 8 1 10

8 4 1 6 2 7 5 3 10 9 ,

we can use the binary operation ∧′ to create a child chromosome.2 That is, we form the union of

the parents to obtain

2 8 4 1 6 2 7 9 7 5 4 3 6 8 1 10 5 3 10 9 ,

and then delete all supersets to obtain

2 8 4 1 6 9 7 5 3 10 9 .

Finally we delete all repeated elements (working from left to right, for example) to obtain

2 8 4 1 6 9 7 5 3 10 .

“Sperner crossover” operations appear to produce children that more accurately reflect their

ancestry than existing crossover operations. This should accelerate the convergence of the grouping

genetic algorithm to good solutions. However, the representation of the chromosome used to

implement Sperner crossover operations efficiently is more complicated and increases the overheads

of the mutation process. Hence, we intend to conduct experiments to see whether these operations

accelerate the convergence of a grouping genetic algorithm sufficiently to offset the increased

computational overheads.

9.1.4 Secure access control models

The work of McLean showed that a secure system as defined by Bell-LaPadula does not necessarily

imply that the system exhibits secure behaviour in any practical sense. This arises if commands

2The subsets comprising the partition are delimited by bold vertical lines and are assumed to be in order of
increasing cardinality.
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can update both the seniority function and the contents of the protection matrix. (Tranquillity

means that the seniority function cannot be changed and the problems identified by McLean do

not arise.) There is an analogy to be drawn here between monotonic and non-monotonic protection

systems. In the absence of tranquillity, if the level of a subject is increased, say, then the potential

authorizations of that subject change. In particular, the subject will (subject to suitable entries in

the protection matrix) acquire read access to objects at the new security level but will lose write

access to objects at the old security level.

A natural extension to the work of Chapter 8 is to construct a set of commands for a secure

hierarchical protection matrix model which includes the simple security property, the *-property

and the transition secure property πts and either state and prove a suitable security theorem or

examine the complexity of the safety problem.

The SHRBAC model requires additional work in terms of administration. We need to incor-

porate the admin-authority, ua-constraints and pa-constraints as (discretionary) features

of the model and also consider how separation of duty constraints can be included and adminis-

tered. An alternative to ua-constraints and pa-constraints would be to use the ordering 4′

on the lattice of antichains. This ordering can be used to define minimal rather than maximal

requirements for access to an object. For example, we could say that a user u can be assigned to

a role r provided φ(R(u)) <′ φ(r).

We do not currently consider modelling changes to the position hierarchy. Our experience with

SARBAC suggests that administering the position hierarchy should not be too problematic. We

must also provide requests that can create new users and objects and that can change the seniority

function. We believe that the administrative scope function and a suitable security property would

be sufficient to realize the latter feature.

We discussed some drawbacks to SHRBAC in Chapter 8. We note that a much simpler model

can be developed directly from RBAC96, which, for convenience, we will refer to as MLSRBAC.

Let us assume that all permissions are “charged” and can be either up, down or neutral . The (set

of) effective roles with respect to a permission p, denoted RE(p), is defined as follows:

RE(p) =







↑R(p) if p is an up permission,

↓R(p) if p is a down permission,

R(p) if p is a neutral permission.

We also assume that a session is modelled as an antichain of roles A and is a subset of the roles

implicitly assigned to the user running the session. However, the permissions of the roles in

↓A are not available to the user. Instead, a request by a session for permission p is granted if

A∩RE(p) 6= ∅. Additionally, administrative role a can assign p to r if either p is an up permission

and r ∈ σ(a) or p is a down permission and ↓r ⊆ σ(a) or p is a neutral permission and r ∈ σ(a).

The intuition here is that the UA relation acts as a security function, where up permissions

correspond to read-type access rights in the Bell-LaPadula model and down permissions correspond

to write-type access rights. (Neutral permissions can be regarded as read-write-type access rights.)

Figure 9.3 shows two MLSRBAC hierarchies. Figure 9.3a illustrates the close correspondence

between MLSRBAC and the Bell-LaPadula model. For example, assume that the down permission
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p− = (o, append) is assigned to the “role” c, the neutral permission p0 = (o, write) is assigned to

s, and that bill is assigned to ts.3 Then bill can append to o only if he activates a session using

either the u or c role, and can write to o only if he activates a session using s. A user assigned

to c would not be able to write to o.

Let us suppose now that p− is assigned to r2 and r3 in the hierarchy in Figure 9.3b, and that

p0 is assigned to r5. In addition, suppose that bill is assigned to r6 and r7. Then bill can

append to o only if he activates a session using at least one of the roles r1, r2 and r3.
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(a) A Bell-LaPadula “role hierarchy”
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(b) A general role hierarchy

Figure 9.3: MLSRBAC hierarchies

MLSRBAC has a number of potential advantages. Firstly, the intended semantics of inher-

itance in the role hierarchy becomes explicit: the use of roles in a session is determined solely

by the activation hierarchy; the availability of permissions to a session is determined solely by

the usage hierarchy. Secondly, it provides a natural way of simulating multi-level secure systems

with a single hierarchy, hence making it simpler than existing approaches to this topic. Thirdly,

it extends the class of hierarchies that can be used to implement multi-level secure properties.

This, in turn, means it is possible to define “multi-level secure” hierarchies that correspond more

closely to enterprise characteristics. Finally, it would seem from the examples based on the hi-

erarchies in Figure 9.3 that the principle of least privilege is accurately modelled in MLSRBAC.

(The overloading of inheritance in an RBAC96 hierarchy and the uni-directional flow of permission

inheritance in the hierarchy means that the principle of least privilege is not necessarily adhered

to in RBAC96.) Clearly, a more formal approach is required to confirm that MLSRBAC exhibits

such advantages and to estimate the complexity of the model.

However, there are two questions that also require further research. Firstly, the example in

Figure 9.3b raises an awkward question: Is it correct to insist that the set of active roles in a

MLSRBAC session is an antichain? We can see that if bill wants p0 and p− available in a session

he must activate r1 (or r2) and r5, which do not form an antichain. Therefore, we should consider

whether this has a detrimental effect on the implementation and computational complexity of

MLSRBAC. (Recall that we could assume in other role-based access control models that the set of

3Recall that write is a read and write access mode in the Bell-LaPadula model. We also note that there is no
requirement for o itself to have a particular security level.
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roles in a session is an antichain, although it should be noted that RBAC96 does not insist on this

condition.) Secondly, the analogy between MLSRBAC and the Bell-LaPadula model breaks down

if we assume that the permission-assignment relation defines the “security level” of a permission.

For example, p− is assigned to r2 and r3 and is available to a session that includes at least one of

these roles. In the Bell-LaPadula model, it would be required that the session include both these

roles. Therefore, we must consider whether these features of MLSRBAC compromise our ability

to reason about the security properties of the MLSRBAC model.

Finally, we note that a natural area for further work is to investigate the interaction of ML-

SRBAC and SARBAC. Given that MLSRBAC is essentially a constrained version of RBAC96 in

which permissions can behave in more complex ways, we expect that much of this work will be

straightforward and hope to report substantial progress in the near future.



Notation

The symbols , and := denote “is defined to be” and “is assigned the value”, respectively. The
end of a proof is marked by ; the end of a proof of a claim within a longer proof is marked by ¤.

Sets

[n] the first n non-zero natural numbers 22

N the set of natural numbers 22

N+ the set of non-zero natural numbers 22

2X the powerset of X 22

|X| cardinality of set X 22

X
.
∪ Y disjoint union of X and Y 26

X × Y cartesian product of X and Y 26

\ set difference 38

R the set of real numbers 38

Z the set of integers 40

XC set complement of X 179

Posets

〈X,6〉 partially ordered set X 21

x < y x is strictly less than y 22

x > y x is greater than y 22

x ‖ y x is incomparable to y ({x, y} is an antichain) 22

xl y x is covered by y 22

∆ lower shadow 22

∇ upper shadow 22

A(X) lattice of antichains in X 22

w(X) width of X 23

Y u set of upper bounds of Y 23

Y l set of lower bounds of Y 23

inf greatest lower bound 23

sup least upper bound 23

x ∨ y least upper bound of x and y (join operation) 24

x ∧ y greatest lower bound of x and y (meet operation) 24

↪→ order-embedding 24

L1 ∼= L2 L1 is isomorphic to L2 24

↓Y “down” Y 24
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↓y “down” {y} 24

↑Y “up” Y 24

↑y “up” {y} 24

F(X) lattice of filters in X 24

I(X) lattice of ideals in X 24

(x, y) open range 25

[x, y] closed range 25

J (L) set of join-irreducible elements in L 25

X∂ dual of X 26

X ⊕ Y linear sum of X and Y 26

〈A(X),4〉 lattice of antichains in X 113

Y set of minimal elements in Y 115

Y set of maximal elements in Y 115

〈A(X),4′〉 lattice of antichains in X 117

DM (X) Dedekind-MacNeille completion of X 120

Role-based access control

PA permission-role assignment relation 45

UA user-role assignment relation 45

RH role hierarchy 45

ARH administrative role hierarchy 46

P (r) permissions assigned explicitly to r 47

↓P (r) permissions assigned implicitly and explicitly to r 47

R(p) roles to which permission p is assigned explicitly 47

↑R(p) roles to which permission p is assigned implicitly and explicitly 47

R(u) roles to which user u is assigned explicitly 47

↓R(u) roles to which user u is assigned implicitly and explicitly 47

U(r) users assigned explicitly to r 47

↑U(r) users assigned implicitly and explicitly to r 47

AO allother function 50

OE oneelement function 50

(r) immediate authority range of r 59

σ(r) administrative scope of r 76

σ+(r) proper administrative scope of r 77

C(a) set of roles controlled by a 80
∧
R conjunction of roles in R 86

R maximal elements in R 86

R minimal elements in R 86

πra role activation property 155

πpu permission usage property 155

πrh hierarchy consistency property 155

πua user assignment property 155

π′ua weak user assignment property 155

πpa permission assignment property 155

π′pa weak permission assignment property 156
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RE(p) set of effective roles with respect to p 182

Conflict of interest policies

SCPn symmetric chain partition of 2[n] 26
(
n
r

)
binomial coefficient 27

An set of conflict of interest policies 126

E(P) set of environments satsifying P 125

Σ(P) length of conflict of interest policy P 133

An,r set of default maximal r-policies 141
[
n
r

]
maximal size of member of An,r 141

∣
∣n
r

∣
∣ 142

BCPn bi-symmetric chain partition of [n] 143

ν(n) 147

µ(n) 147

A2n 149

2[n]/2X 179

2X+χ 179

Miscellaneous

bxc greatest integer less than or equal to x (floor of x) 27

O(φ(n)) Ooh (“big O”) of φ(n) 38

∀ universal quantifier 51

dxe smallest integer greater than or equal to x (ceiling of x) 133
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Glossary of Security Terms

The terms in this glossary are widely used in the access control community and were introduced
without definition in Chapter 1. We felt that “in-line” definitions would have been unnecessarily
formal and would have made the chapter more cumbersome to read. The purpose of this glossary
is to make explicit what we mean by those terms so that no ambiguity can arise in the mind of
the reader. It is not a comprehensive list of terminology in the thesis. The definitions are mainly
taken from Stoneburger (2000); two other useful sources are Saltzer and Schroeder (1975) and US
Department of Defense (1988).

access control
Enabling authorized use of a resource while preventing unauthorized use or use in an unau-
thorized manner.

access control mechanism
The security engineering term for information system functionality that (1) controls all
access, (2) cannot be by-passed, (3) is tamper-resistant, and (4) provides confidence that the
preceding three items are true (also referred to as reference monitor).

access control policy
The statement of authorization for information objects.

accountability
The security goal requiring that the actions of an entity may be traced uniquely to that
entity. This supports non-repudiation, deterrence, fault isolation, intrusion detection and
prevention, and after-action recovery and legal action.

assurance
Grounds for confidence that the other four security goals (integrity, availability, confidential-
ity, and accountability) have been adequately met by a specific implementation. “Adequately
met” includes (1) functionality that performs correctly, (2) sufficient protection against unin-
tentional errors (by users or software), and (3) sufficient resistance to malicious penetration
or by-pass.

authentication
Verifying the identity of a user, process, or device, often as a prerequisite to allowing access
to resources in a system.

authorization
The granting or denying of access rights to a user, program, or process.

availability
The security goal requiring that intentional or accidental attempts to (1) perform unautho-
rized deletion of data or (2) otherwise cause a denial of service or data are prevented.
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confidentiality
The security goal requiring that intentional or accidental attempts to perform unautho-
rized data reads are prevented. Like integrity, confidentiality covers data in storage, during
processing, and while in transit.

data integrity
The property that data has not been altered in an unauthorized manner. Data integrity
covers data in storage, during processing, and while in transit.

denial of service
The prevention of authorized access to resources or the delaying of time-critical operations.

entity
Either a subject or an object.

group
A set of users.

information flow policy
A rule-based security policy in which the rules relate the sensitivity of the objects and the
subjects requesting access to those objects.

integrity
The security goal requiring that intentional or accidental attempts to violate data integrity
or system integrity are prevented.

information system security architecture
A description of security principles and an overall approach for complying with the principles
that drive the system design; that is, guidelines on the placement and implementation of
specific security services within various distributed computing environments.

object
A passive entity that contains or receives information.

rule-based security policy
A security policy based on global rules imposed for all subjects.

subject
An active entity, generally in the form of a person, process, or device, that causes information
to flow among objects or changes the system state.

system integrity
The property that a system has when it performs its intended function in the intended
manner, free from unauthorized manipulation.
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simulating discretionary access control,

92
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