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Abstract

The Internet of Things (IoT) is widely expected to be the next stage of develop-

ment for the Internet and brings together material artefacts and their information

representations. One of its enabling infrastructures is low-power wireless networks

which due to their restricted capacities are especially sensitive to ambient noise

from co-located wireless devices utilising the same band. This thesis investigates

mechanisms for enhancing lower-power wireless network communications in the

presence of ambient noise. To this end, we extend the channel hopping technique

of IEEE 802.15.4.e, proposing the Adaptive Time-slotted Channel Hopping (A-

TSCH) framework. A core ingredient of A-TSCH is the use of blacklisting to elim-

inate noisy channels from the channel hopping sequence. This approach employs

knowledge derived from periodically probing the channel noise floor. Blacklists

are generated through a series of cooperative processes among multiple nodes to

account for spatial diversity of spectral condition. Cross-layer optimisations be-

tween A-TSCH and IPv6 Routing Protocol for Low-Power and Lossy Networks

(RPL) are also investigated. A new routing metric Spectral Link Cost (SLC) is

introduced to reflect A-TSCH channel information thus incorporating spectral

awareness to routing decisions. We evaluate the performance of A-TSCH and

SLC through simulations and realistic deployment using motes. We find that the

proposed framework and metric support improved communication performance

when compared against existing techniques.
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Chapter 1

Overview

Due to advances in technologies of miniaturisation, computing, networking and

the reduction in associated costs, the Internet of Things (IoT) has become the

next stage of development for the Internet [1, 2]. One of the foundations of the

IoT is the proliferation of wireless devices which facilitate the provision of per-

vasive experiences for users, which also leads to an increased demand for limited

spectrum resources and poses challenges for IoT devices especially those with

low-power wireless sensing requirements. In this thesis we focus on dynamic

adaptation of communication based on observed spectral condition in order to

mitigate this adverse effect. The context of the research is low-power wireless

networks which are susceptible to influences of other more powerful IoT devices.

This chapter provides an overview of the research conducted in this thesis. Sec-

tion 1.1 presents a high-level introduction to the concept and application domains

of the Internet of Things (IoT). Then in Section 1.2 we motivate our work by

identifying the characteristics and related challenges of the IoT. The research

questions addressed by this thesis are formally stated in Section 1.3 which al-

so defines the elements of the proposed solution, followed by the contributions

of this thesis in Section 1.4. Methods adopted in our research are described in

Section 1.5, and assumptions made for this study are summarised in Section 1.6.

Finally, an outline of the remainder of the thesis is provided in Section 1.7.

17



1. Overview 18

1.1 An Introduction to the Internet of Things

The Internet of Things (IoT) is the emerging paradigm for next generation net-

works. There have been multiple definitions of IoT due to differing points of view

and emphasis placed by different researchers [3, 1, 4, 2, 5, 6], but certain notions

are commonly recognised: Things refer to objects with virtual identity in the

digital domain, whilst the IoT as a whole refers to the worldwide interconnection

of those addressable objects based on standard communication protocols. This

vision for the future Internet is expected to provide “anytime, any place connec-

tivity for anything” [7] by seamlessly incorporating heterogeneous objects and

the existing Internet infrastructure into a cohesive network. Therefore, the con-

cept of IoT can be interpreted as an extension of the existing human-application

interaction incorporating the new dimension of things [1].

The potentiality of IoT has significant impact on several application domains

[1, 4, 8, 9, 10, 11]. In the personal and social sphere, IoT applications can play a

role in social media, entertainment and social networking. For example, real-time

information about events or places of interest can be collected by objects such

as RFID tags and smartphones, and then disseminated on social networks such

as Twitter and Facebook [4]. Local news or entertainment information can also

be automatically published in forms that fit the capability of specific devices by

detecting the presence of nearby smart objects [1].

Another important application domain for the IoT is intelligent environments.

In smart residences and office buildings, sensors can be deployed to monitor di-

verse environmental parameters and humans to support automation. For exam-

ple, lighting can be adjusted according to sunshine, state of window shutters and

user activities [4]. Similarly, the system can automatically tune air-conditioning

to ensure the comfort of residents [8]. This application can also be expanded

into smart communities such as intelligent college campuses, which may incor-

porate multi-hop networks between intelligent buildings [9, 10]. This approach
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may further improve safety, security and emergency response capabilities on the

metropolitan scale.

Healthcare is also a potential beneficiary of IoT technologies. In a hospital

environment, smart tags enable the tracking of equipment, specimens, private

and confidential materials, which could improve the efficiency of the day-to-day

operation and management. Moreover, wearable devices can greatly facilitate

healthcare in the community. Patients and particularly those who with limited

mobility can be monitored remotely, enabling medical advice to be regularly pro-

vided and alert paramedics in case of emergency [4, 8, 11].

IoT technologies are also valuable in industrial settings, for example, the ap-

plication of RFID and other types of identifiers has already revolutionised mod-

ern logistics and retail [4]. The link between product and information enables

the “cradle-to-grave” management of individual item lifecycles [1, 8]. In safety-

critical industries such as chemical manufacturing, the data made available by

things provide important information about the status of certain hazardous chem-

icals in storage, which are essential in safeguarding against potentially disastrous

incidents.

1.2 Research Motivation

This vision for the IoT exhibits several characteristics that set specific challenges

for its realisation, which establish the starting point of our research. First, the

proliferation of wireless devices ensures the ubiquity of intelligent things thus

paving the way for the emergence of the IoT but also create a critical challenge of

localised competition for the wireless medium. To seamlessly integrate with the

environment, a vital component of IoT is low-power networks such as Wireless

Sensor Networks (WSN) which act as the interface between the physical and dig-

ital domains. But the increased volume of objects sharing the limited spectrum

places growing pressure on these low-power networks and can result in reduced
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opportunities of communication and hence increased risk of performance degra-

dation [12]. The problem of spectral contest is made more notable by the fact

that the density of wireless communication in the IoT are not evenly spread but

typically concentrates at geographically proximal locations. For example, things

are present in higher densities at locations where end-users reside or work such

as houses and office environments.

Furthermore, implications of the intrinsic unreliability of the wireless medium

are not restricted to the access for radio channels at the Medium Access Control

(MAC) layer but rather extend to higher layers of the protocol stack. Protocols

above the MAC layer that fail to take into account spectrum-related condition

could result in inferior performance. For instance, ordinary routing algorithms

are typically unaware of the underlying spectrum conditions, a fact which can

lead to seemingly good paths whilst they are in fact exposed to undesirable in-

terference.

Finally, IoT systems are expected to operate in a manner which requires

minimal human attention. Key to this feature is the ability to autonomously react

to stimuli including environmental events or any automated instructions without

demanding explicit manual intervention to carry out functions. Consequently,

the IoT requires the development of self-adaptive communication technologies.

1.3 Research Questions

Motivated by the challenges identified in Section 1.2, this thesis addresses the

question of “what mechanisms can be employed by low-power wireless networks to

mitigate the effects of spectral contest on communication performance in typical

IoT scenarios?”. Specifically:

(R1) How are low-power wireless networks affected by co-located wireless

communication? Can this influence be characterised through measurable

performance metrics?
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(R2) What mechanisms can be employed by low-power wireless networks

to identify interfering nearby communication? How can this detected in-

formation be converted to knowledge regarding the desirability of wireless

channels?

(R3) Which strategies for adaptation can be adopted by low-power wireless

networks to mitigate the effects of interference using the spectral desirability

information?

(R4) Can the benefit of adaptation be extended beyond the locality of

individual nodes? Can the propagation of this information towards higher

layers of the protocol stack help achieve this goal?

In this thesis we introduce a framework for spectrum-aware adaptive com-

munication that can provide answers to the above questions. The following list

summarises the key elements of the proposed solution:

(i) The proposed framework should accommodate typical IoT use cases.

Specifically, it can support communication for low-power networks in situ-

ations of high density of co-located wireless activities.

(ii) The proposed framework should make conservative assumption regard-

ing the hardware capability of the target devices. In particular, single an-

tennas are typical, and processing power and memory are restricted.

(iii) The proposed framework should enable low-power networks to quantify

spectral condition in a manner that reflects the level of utilisation of the

wireless medium without incurring significant overhead.

(iv) The proposed framework should facilitate dynamic mechanisms of adap-

tation that allow low-power networks to autonomously adjust their opera-

tions on-the-fly.

(v) The proposed framework should support cross-layer utilisation of the

information within the framework exploitable by routing protocols.
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1.4 Contributions

This thesis proposes a set of adaptive communication techniques which dynami-

cally adjust the operation of low-power wireless devices so that adverse influence

of spectral factors can be mitigated. Specifically, the thesis makes the following

contributions:

(i) It introduces the Adaptive Time-slotted Channel Hopping (A-TSCH)

framework developed to enable low-power wireless networks to adaptively

adjust channel access. The design of the framework architecture employs a

modular approach. As discussed in Section 3.3, A-TSCH functionality is re-

alised through a series of components, including the detection of co-located

communication activities, the formulation of channel desirability using the

detection results and a cooperative mechanism to refine the channel hopping

sequence.

(ii) It proposes a cooperative blacklisting algorithm in Chapter 6 which is

one of the core components of A-TSCH. Blacklisting is a technique which

enables nodes to exclude undesirable frequencies from the default channel

hopping sequence according to spectral condition. In contrast to the exist-

ing global and link-wise strategies discussed in Section 6.2, blacklisting of

A-TSCH are conducted through cluster-wise cooperation among multiple

network peers as described in Section 6.3. This cooperative blacklisting

algorithm yields decisions in a manner which focuses on the performance of

overall network rather than individual nodes.

(iii) It presents an investigation into estimation techniques that can be in-

corporated as methods for learning spectral condition in Chapter 5, which

serve as another key component of A-TSCH. A variety of estimators based

on Exponential Smoothing and Kalman filter are reviewed and their param-

eters are tuned through simulation. Estimators in A-TSCH help convert

detected ambient interference level to estimated spectral condition upon

which blacklisting decisions are generated.
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(iv) It provides evidences for the enhancement in performance achieved us-

ing A-TSCH through experiments in Chapter 7. Different configurations are

considered in the experiments and A-TSCH is assessed in both the control

and data planes. Results show that algorithms and modules of A-TSCH

behave as expected and resulting transmission success rates exhibit notable

improvement compared with those achieved with standard protocols.

(v) It introduces a new metric to RPL routing protocol in Chapter 8 in

an exploration of extending spectrum awareness to the network layer. As

defined in Section 8.2, the Spectrum Link Cost (SLC) metric is calculated

based on blacklisting information within A-TSCH, reflecting the potential

risks for data routes from spectral influences and overhead associated with

the operation of A-TSCH. As a result, SLC enables more suitable routing

decisions to be made for low-power wireless networks.

(vi) It provides supporting evidences for the effectiveness of SLC in both

simulation (Section 8.3) and experiments (Section 8.6). Networks of differ-

ent sizes are modelled and simulations are repeated with random topolo-

gies. Experiments are conducted in real-life environment to strengthen our

findings in both normal condition and scenarios of sudden deterioration

mimicked by using an external jamming device. Results show that RPL us-

ing SLC delivers better transmission performance than the default routing

metric.

1.5 Research Methods

A review of literature on adaptive communication is carried out in Chapter 2.

Surveyed techniques are attributed to different layers of the network protocol s-

tack. Our algorithms and framework proposed in this work are built upon some

of these existing techniques, in particular the energy detection (Section 2.2.1.3),

clustered architecture (Section 2.3.1.2) and 6LoWPAN (Section 2.4.2).
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Measurements of spectral condition and corresponding transmission success

rates are taken to form a baseline of communication using standard protocols.

Observations are made regarding the influence and characteristics of ambient in-

terference for a selected range of locations.

An explorative approach is adopted in the design of algorithms and frame-

work in this thesis. In Section 5.1, different variants of the Exponential Smoothing

technique and Kalman filter are explored as tentative methods for the automatic

learning of spectral availability. Moreover, a new estimation algorithm combining

the existing methods are described as Algorithm 5.1. Exploration is also made

for cooperation strategies of blacklisting. Different from the existing global and

link-wise strategies, the four-phased blacklist election (Section 6.3) and selective

channel hopping (Section 6.4) are designed taking into account factors including

blacklisting accuracy, overhead, scalability and so forth. Furthermore, the intro-

duction of the new SLC routing metric in Section 8.2 represents the explorative

attempt of bridging spectral awareness to the network layer.

Simulations are conducted to corroborate the proposed algorithms and metric.

Specifically, estimation techniques are implemented in Matlab and their accura-

cy is compared based on measurements mentioned above (Section 5.3). This

approach is also used to examine the effect of blacklisting in Section 6.1. To eval-

uate the performance of the new routing metric, the Cooja simulator of Contiki

is used to model networks with different settings (Section 8.3).

To provide further evidence of the performance of proposed techniques, full

implementation of A-TSCH framework and RPL using the SLC metric are devel-

oped for a typical platform and experiments are conducted in realistic environ-

ments (Section 7.1 - 7.3 and Section 8.4 - 8.6). Evaluation is carried out both in

the control plane and related to data transmission performance in the data plane.
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1.6 Assumptions

This thesis makes the following assumptions:

• The platforms targeted by this work have restricted capability. For example,

in our experiments we use the Guidance and Inertial Navigation Assistant

(GINA) [13] and Tmote Sky [14] motes which have maximum transmission

power of 3 dBm and 0 dBm, respectively, whilst the typical output power of

WiFi devices can be up to 20 dBm [15]. Their memory capacities are limited

to 10 kB, and their processors operate at 16 MHz and 8 MHz, respectively.

• Because of their restricted capacity such devices are not expected to be

able to hold large numbers of spectral samples for the estimation of channel

desirability.

• Devices typically have a single antenna which can carry out signal detection

in the license-free Industrial Scientific and Medical (ISM) band or transmit

at a given moment.

• Targeted networks consist of statically positioned nodes that operate in

environments with significant ambient noise caused by co-located wireless

systems utilising ISM band with greater output power.

1.7 Thesis Outline

The remainder of the thesis has the following structure: Chapter 2 reviews related

work addressing challenges discussed in Section 1.2 of this chapter. This survey

of adaptive communication techniques is organised along the Physical, Medium

Access Control and the Network layer of the OSI protocol stack. In Chapter 3,

we introduce the Adaptive Time-slotted Channel Hopping (A-TSCH) framework,

which is an extension of standard IEEE 802.15.4e protocol and works with 6LoW-

PAN. The architecture of A-TSCH is described in terms of functional modules,
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with specific modules discussed in subsequent chapters. Chapter 4 investigates

the relationship between communication reliability and ambient noise using data

traces collected in experiments. The main findings from the statistical analysis

provide the rationale behind the core modules of A-TSCH framework. Chapter 5

investigates estimation techniques that can be employed for A-TSCH. Specifically,

estimators are tuned through simulation and a preliminary comparison between

their performance is also provided. In Chapter 6, the algorithm for blacklisting

in A-TSCH is presented, which enables the identification and exclusion of un-

desirable frequencies from channel hopping sequence. The algorithm features a

cooperation mechanism for nodes within same clusters, representing a range of

trade-offs concerning transmission performance, overhead and scalability. In or-

der to evaluate the performance of A-TSCH, the framework is implemented on a

selected hardware platform and tested in a physical environment. Experiments

are carried out in Chapter 7 and experimental results are discussed. Then in

Chapter 8, the cross-layer enhancement between A-TSCH and the routing proto-

col is explored by introducing an additional spectrum-related metric. The effect

of the proposed change is evaluated through simulation as well as experiments by

comparing results obtained with the default and the new routing metrics. Finally,

the thesis is concluded in Chapter 9 with a summary and discussions of direction

for future research.



Chapter 2

An Overview of Adaptive

Communication for the Internet

of Things

In this chapter, we survey a range of existing adaptation techniques that can

be incorporated into the design of IoT systems to address the requirements and

challenges discussed in Chapter 1. Our review follows the reference structure

provided in Section 2.1, and techniques discussed in Section 2.2, 2.3 and 2.4 are

attributed to the physical, medium access control and network layers of the OSI

model [16, 17], respectively. Finally the review is summarised in Section 2.5.

2.1 Adaptive Communication Model

A reference model of adaptive communication for wireless networks in IoT is

shown in Figure 2.1, which illustrates adaptation opportunities at different lay-

ers of the OSI model [16, 17] and the communication between adaptive wireless

networks and IPv6 Internet. It should be noted that the purpose of the model is

to highlight points of interest and facilitate the organisation of discussion in the

remaining part of this chapter. The model does not assert actual implementation

as adaptation can take place at single or multiple layers and techniques may or

27
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Figure 2.1: Adaptive communication model of IoT. Adaptation opportunities
at the PHY, MAC and the Network layer are depicted in the stack to the left.
The rest of the figure exemplifies a typical scenario of interactions between exist-
ing Internet and adaptive wireless networks through IP. Lightweight adaptation
between standard IPv6 and 6LoWPAN is deployed at the gateway.
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may not have intra-layer or inter-layer dependency. Furthermore, the terms End

Node, Router Node and Clusterhead in Figure 2.1 refer to different roles of nodes

and by no means imply disparity in hardware capacity. For example, a Router

Node is a device located on the route between an End Node and the destination,

and can in the meantime also act as an End Node itself.

As illustrated in Figure 2.1, opportunities and techniques for adaptive commu-

nication are mainly identified in physical (PHY), medium access control (MAC)

and the network layers. PHY provides the most fundamental infrastructure for

any spectrum-based adaptation because of its direct contact with the wireless

medium. The importance of PHY is twofold: first, it enables the acquisition

of spectral conditions via a group of techniques collectively known as spectrum

sensing which is essential for well-informed adaptation to be made. Second, the

reconfigurability of PHY parameters is indispensable for adapting to spectrum-

related events as a great part of adaptation is achieved by altering PHY operating

frequency.

The MAC layer controls the behaviours of PHY in adaptation. On the one

hand, it regulates and coordinates spectrum sensing activities to ensure spectral

information is efficiently collected whilst considering a number of trade-offs. On

the other, it generates certain adaptation decisions such as the switching of op-

erating frequency which are in turn put into practice by the reconfigurable PHY.

Two types of adaptation are identified at the network layer. The first one is

the incorporation of spectrum information in routing protocols. Routing deci-

sions for wireless networks are usually made based on metrics such as distance or

number of hops. Since the spectral condition also has major influences on trans-

mission especially for low-power IoT devices, spectrum-aware routing protocols

that take into account spectrum-related events can be adopted to avoid routing

decisions that are in conflict with the actual states of wireless medium. This

layer also concerns the formation of integrated networks of heterogeneous things.
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The singular predominance of Internet Protocol (IP) at this layer gives it the

potentiality to be established as the “universal language” supported by virtually

incalculable types of IoT products [18], eliminating the dependence on one-to-one

translation between individual pairs of incompatible technologies and standard-

s. This approach enables things to natively communicate with each other using

the comprehensively studied IP and greatly simplifies the integration with the

existing Internet via lightweight adaptation at gateways [19].

2.2 Physical Layer

The physical layer (PHY) represents the interface between the computational

domain and the physical medium. The role of PHY in adaptive communication

is twofold. First, it is responsible for capturing spectral information necessary

for adaptive processes. Second, it provides the infrastructure for putting adapta-

tion decisions into practise as the selection of operating frequency is realised by

configuring corresponding PHY parameters.

2.2.1 Spectrum Sensing Techniques

An important source of interference for wireless communication is caused by co-

located devices utilising the same band. Therefore techniques for detecting the

condition in certain spectral area, known as spectrum sensing, provide one of the

foundations of adaptive communication strategies. A number of spectrum sensing

techniques have been proposed to deliver such fundamental functionality [20, 21,

22, 23, 24, 25, 26]. Table 2.1 reviews some of the most common spectrum sensing

techniques and their characteristics, including prerequisites and limitations that

should be considered when choosing the most suitable methods for specific use

cases.
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2.2.1.1 Matched Filter

For the detection of known signals, the matched filter technique provides arguably

the most efficient and accurate option of spectrum sensing [27, 28, 29]. By iden-

tifying and demodulating the target signal, spectrum sensing based on matched

filter is able to deliver maximised received signal-to-noise ratio [20] whilst min-

imizing the effect of other noises. However, the matched filter entirely relies on

the availability of a priori knowledge of the target signal, which cannot always

be guaranteed. Moreover, the complexity of this approach can be considerable,

both logically and physically: on one hand, maintaining the coherency with the

target signal required for the demodulation introduces additional computation-

al overhead and equipment cost [20]; on the other hand, it also tends to rise if

multiple target signals are to be dealt with since individual signals have distinct

characteristics and therefore require dedicated receivers [21].

2.2.1.2 Cyclostationary Feature Detection

Another sensing method is cyclostationary feature detection [30]. Similar to the

matched filter, a priori information about the target signal is required. Since

modulated communication signals can be interpreted as multiplexed sinusoidal

waves with periodicity, they are classified as cyclostationary [20]. Features of dif-

ferent signals can therefore be identified via spectral correlation analysis [21, 23].

An important advantage of this approach over matched filter is that target waves

can be distinguished based on their spectral correlation functions, eliminating the

need for multiple antennas where more than one signal is to be monitored [20, 26].

Another favourable outcome of this feature is that regular data transmissions can

remain active as signal detections take place since they do not affect one anoth-

er [26]. However, this method has its limitations. Apart from the reliance on

prior signal knowledge, the computational complexity, for example, may be an

issue depending on the processing power of the device. Furthermore, identifying

signal features could take a relatively long time, consequently adding to the power

consumption.
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2.2.1.3 Energy Detection

Both of the matched filter and cyclostationary feature detection focus on the ac-

curate and efficient sensing of certain predetermined target signals, built upon

the assumption that related a priori knowledge is in place. In comparison, ener-

gy detection is an alternative spectrum sensing technique which does not require

such a precondition.

The concept of energy detection is straightforward: the receiver monitors

the signal strength in the operating frequency and the result is compared with

certain threshold to determine whether the channel is idle or busy [33]. Although

energy detection might not be able to match the performance of matched filter

or cyclostationary detection for detecting specific signals [38], it provides a cost-

effective option well suited to a wider range of IoT scenarios. In particular, license-

free bands are becoming increasingly crowded because of a growing number of

wireless applications using these bands such as WiFi and Bluetooth, which results

in greater risks of interference. In this case, the focus of spectrum sensing shifts

from identification of particular signal sources to channel quality detection for

determining the desirable frequencies to use. The study in [32] demonstrates that

energy detection is able to deliver satisfactory results with cooperative sensing and

sometimes even outperforms approaches based on feature detection. Accordingly,

energy detection can serve as an inexpensive yet effective technique and is the

most commonly adopted approach for spectrum sensing [39, 31, 32, 40, 26].

2.2.1.4 Eigenvalue-Based Detection

A relatively recent alternative spectrum sensing method is the eigenvalue-based

detection [34]. The algorithm first calculates the covariance matrix of the signal

samples. The ratio of the maximum to minimum eigenvalue (MME) or energy

with minimum eigenvalue (EME) is then computed as the main metrics and its

relationship with the detection threshold yields the sensing results [35, 41]. The
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detection threshold is key to the performance of this sensing method. The prob-

ability of false alarms were employed to deduce the appropriate threshold in a

way that its relationship with signal and noise property is eliminated [37].

The eigenvalue-based detection has several advantages over matched filter

and cyclostationary feature detection [36]. The eigenvalue-based measure does

not require prior signal knowledge or noise patterns, and it is not affected by

the noise uncertainty since the metrics and detection threshold is designed to be

irrelevant to noise circumstances [36]. The advantages are, however, gained at the

expense of large computational overhead [42]. According to [35], the complexity of

this method is M×L times that of energy detection, where M is the oversampling

factor or the number of receivers in an multi-antenna scenario and L denotes the

sample size.

2.2.2 Frequency Adaptation

Spectrum sensing data obtained at PHY are passed to upper layer processes

which formulate environmental awareness and make adaptation decisions [38].

Because adaptation must have a means to be physically realised in order to be

meaningful, the ability to adjust PHY parameters on the fly is one of the essential

infrastructures for adaptive communications [43, 44]. Because the main challenges

this work aims to address are spectrum scarcity and associated interference, the

most pertinent PHY parameters is the operating frequency and our work focuses

on radio hardware with tuneable operating frequencies.

2.2.3 Summary of Adaptive PHY

The discussion of adaptation at PHY is built on the notion that radio frequency

is essentially a scarce natural resource which has been regulated in a static and

inflexible manner. As a result, some parts of the spectrum are sparsely utilised

whilst others such as the Industrial, Scientific and Medical (ISM) bands are under

increasing pressure from more and more IoT devices and technologies operating
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in this relatively narrow space. This situation will only become more challenging

with the popularity of wireless communication and upcoming new technologies.

The knowledge of spectrum condition provides crucial information for any

potential measures aiming to mitigate problems described above. A number of

spectrum sensing techniques have accordingly been proposed. The matched filter

and cyclostationary feature detector can be used to capture the presence of target

signals whose characteristics such as waveform and cyclic patterns are known in

advance. Although both provide accurate detection results, the prior availability

of information may not be always guaranteed, which limits the scope of their ap-

plications. In contrast, spectrum sensing based on energy detection do not rely on

such assumptions [35]. Energy detection uses solely the received signal strength

to determine the spectral condition. Due to the simplicity, its detection accuracy

is subject to noise uncertainty as it is unable to distinguish between multiple

signals. Despite this limitation of energy detection, its remarkably low compu-

tational complexity and flexibility makes it one of the most popular measures,

especially in typical IoT scenarios where spectrum sensing is used for probing the

ambient noise level rather than identifying particular signal sources.

By exploiting spectral information obtained at PHY, processes at higher layers

of the protocol stack can generate educated decisions on the selection of operating

frequencies to minimise the effect of adverse factors and protect communication

performance. In summation, PHY techniques discussed in this section are cru-

cial for adaptive communication schemes in maintaining the performance amid

growing competition for spectral resources [43].

2.3 MAC Layer

Whilst adaptive PHY makes spectrum-related adaptation possible, it is the media

access control (MAC) layer which directly manages the PHY functionalities to



2. An Overview of Adaptive Communication for the Internet of Things 36

fulfil adaptive missions [16]. On the one hand, it regulates and coordinates spec-

trum sensing activities to ensure that spectral information is efficiently collected.

On the other, it generates adaptation decisions such as switching operating fre-

quency, which are in turn put into practice by the reconfigurable PHY.

Due to the nature of wireless transmissions, signals are subject to a variety of

influences such as fading and interference [45] and hence the results of spectrum

sensing may not accurately reflect the medium condition. Moreover, the spatial

variation of wireless interference could lead to biased channel estimation. Conse-

quently, individual nodes cannot make reliable judgments on spectral condition

solely depending on their own local sensing results [26].

The answer to the problem is to form MAC layer cooperation among IoT

devices by incorporating spatially distributed entities in spectrum sensing and

decision-making procedures [43, 26]. The diversity of their physical surroundings

and spectral conditions help reduce the risks of defective or compromised sensing

results, leading to improved reliability compared with non-cooperative schemes

[46, 47]. In the following, some chief aspects of cooperative spectrum sensing are

visited. First, the topological organisation of the cooperation is discussed. And

then mechanisms for temporal coordination of sensing activities are reviewed.

Subsequently, two types of adaptive decision formulation methods are described

and compared. Finally, a summary of cooperative sensing is provided.

2.3.1 Cooperation Architectures

The objective of cooperative spectrum sensing is to combat individual uncertain-

ty or inaccuracy with collective knowledge [48]. Therefore the organisation of

cooperation among individual devices has considerable implication on the per-

formance. The architecture for cooperation can be generally categorised as cen-

tralised or hierarchical [26] which are reviewed respectively.
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2.3.1.1 Centralised Cooperation

The centralised cooperation is the most basic cooperative model, which is built

around a singular authoritative entity called fusion centre (FC) [26]. As described

in [49, 50, 51, 52, 53, 54, 55, 56, 57], nodes participating in centralised cooper-

ation firstly carry out independent spectrum sensing operation to capture their

local spectral condition. Then these local sensing results are reported to the FC

through a common report channel. Based on the availability of extensive spec-

tral information from all nodes, the FC generates network-wide decisions which

are in turn transmitted to cooperating nodes. Nodes subsequently adjust their

communication activities based on instructions received from the FC.

The simplicity of the centralised cooperative model leads to several potential

shortcomings. When an increased number of cooperating nodes need to report

sensing results to FC, the overhead associated with channel bandwidth and re-

porting delay tend to grow notably. The computational burden at the FC also

surges the amount of reported sensing results increases. Therefore the centralised

model is not considered ideal for networks of large scales.

2.3.1.2 Hierarchical Cooperation

The hierarchical model provides an alternative option for cooperation that can

alleviate the inefficiency of the centralised model [58, 59, 60, 61, 26, 62, 63, 64, 65].

In the hierarchical cooperative model, nodes are grouped into clusters and one

of the nodes is elected the clusterhead. Depending on specific network structure

and setting, clusterheads can be further grouped into clusters of higher level.

This clustering process completes when a cluster with the gateway node as the

clusterhead is formed.

Cluster members carry out local spectrum sensing and report results to their

corresponding clusterhead. A clusterhead generates decisions in a similar manner

to the FC in centralised cooperation; but these decisions are only for the particular
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cluster it resides. Therefore the hierarchical cooperative model essentially consists

of autonomous cooperation within individual clusters. In the following discussion,

a number of common clustering strategies are reviewed.

ID-based Clustering Clustering based on node identifiers (ID) is arguably

the most straightforward approach for network partition. In this scheme, the role

of a node is determined based on its unique identifier [66] which is typically set by

administrators or can be extracted from its MAC address. Depending on specific

setting, the node with the highest or lowest ID within the communication range

is elected the clusterhead. This method has some notable drawbacks in that it

does not take into account the node state in clusterhead election. For example,

the elected clusterhead may reside at the edge of the cluster and does not have

very good connectivity with some nodes at the opposing end. In that case, the

ideal clusterhead would have been those in the centre of the cluster. Another

potential issue is that the scheme tends to overload a particular set of nodes

since the system is inclined to select those with IDs favoured by specific election

criteria. Although such a problem can be mitigated by ID rotation, the associated

overhead should not be overlooked [67].

Location-based Clustering The location-based clustering algorithms, in con-

trast, elect the nodes with the most neighbours to be clusterhead [68, 69]. Al-

though the selected clusterheads are arguably the best connected in the cluster,

this approach can still cause premature power drainage if some clusters have con-

siderably more members as an imbalanced network load could quickly exhaust

the power of busy clusterheads and affect the network lifetime. This approach is

also vulnerable to the possible scenario of highly mobile network devices, where

frequent updates on clusterhead election are necessary since distances between

devices are constantly changing.

Flexible Radius Clustering Clustering technique has been proposed to ad-

dress the power consumption problem. The approach in [70] constantly updates
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the optimal transmission radius of clusterheads using the Ad Hoc Network Design

Algorithm (ANDA). Cluster members then choose their preferred clusterheads

and the resulting cluster arrangement maximises the network uptime before the

power of the clusterheads is depleted. However, the study has several limitations,

including its dependence on prior knowledge about the locations and quantity of

nodes, and the assumption of adjustable transmission power. The most impor-

tant challenge is that all clusterheads are fixed in advance and the algorithm is

only able to update the allocation of cluster members.

Weighted Clustering Weighted clustering techniques elect clusterheads us-

ing weight values of individual nodes calculated based on certain criteria. The

Weighted Clustering Algorithm (WCA) is proposed in [67]. Weight in WCA

combine multiple metrics to improve the battery life of nodes. Specifically, the

sum of distances from all neighbours is calculated since distant communication

typically tend to be more energy-consuming. Clustering update is only triggered

when changes in distances are detected. The mobility of nodes is also considered

and less mobile nodes are more likely to be elected clusterheads. Furthermore,

to address the potential problem of unbalanced workload for clusterheads, the

cumulative duration for which nodes have been clusterheads is used to gauge the

extra power consumption.

In WCA, battery life is mainly estimated by the measurement of node uptime.

However, it does not consider the fact that nodes may have different startup ener-

gy levels and power consumption varies because of communication activities. In

comparison, the algorithm proposed in [62] determines clustering weights based

on the remaining power level of the node and the number of sent and received

packets. This weight represents the capability of acting as the clusterhead and

the node with the smallest weight is elected.

Another weighted clustering mechanism based on device energy is proposed as

the Energy Efficient Cluster Header Selection (ECS) algorithm in [59]. Clustering



2. An Overview of Adaptive Communication for the Internet of Things 40

is carried out periodically and the probability for a certain node should act as the

clusterhead is computed using its local information such as the initial and current

energy, elapsed clustering rounds and how many times it has been elected as the

clusterhead.

Spectrum-aware Clustering An adaptive cluster formation algorithm based

on spectral environment is devised in [71]. A given node starts listening to all

usable channels one by one and: (a) becomes a clusterhead if it hears nothing, or

(b) joins an existing cluster as a regular member if it receives a beacon from the

clusterhead of that cluster, or (c) goes on to listen in the next available channel

if it is more than one hop away from the existing clusterhead.

2.3.2 Spectrum Sensing Scheduling

MAC coordinates not only regular data transmission but also spectrum sensing

operation when cooperation is involved [72]. Akin to medium access which can

be either random or synchronous, the spectrum sensing can also be scheduled to

take place following either of the two approaches [73]. Because of the limitations

of the random access approach such as the requirement of dedicated antennae,

specific PHY techniques and size of cooperation, many adaptive networks adopt

synchronous spectrum sensing which is essential for systems employing energy

detection at PHY [26].

The synchronisation for cooperative sensing introduces additional complexi-

ties, and one of the common solutions is to adopt Time-Division Multiplexing

(TDMA), which divides time into indefinite number of timeslots. Inspired by the

TDMA-based technique described in [74, 75, 45], the work in [12, 76] are able

to conveniently coordinate the cooperative activities by assigning specific tasks

to timeslots. In particular, timeslots can be reserved for noise detection without

interference from communications between other nodes.
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2.3.3 Cooperative Decision-making

Since the concept of cooperative spectrum sensing is ultimately reflected by the

fact that decisions are made by considering information of all cooperative peers,

formulating final decisions upon the acquisition of collective knowledge is another

critical aspect of MAC in adaptive communication. Depending on the nature of

exchanged data, decision-making strategies can be broadly classified as soft fusion

and hard combination [26].

2.3.3.1 Soft Fusion

In networks using soft fusion, cooperative nodes report full spectrum sensing data

to the decision-making entities such as clusterheads or FC. The exchanged of

raw sensing information could incur drastic overhead because of the theoretically

indefinite size of raw data [77]. In order to mitigate this problem, raw spectral

data are typically processed before reported for fusion [26]. For example, local

spectrum observations can be summarised over a number of collected samples [78,

49] so that the overall amount of exchanged information is reduced. Alternatively,

the quantisation of local spectral results can be carried out at the expense of

potential loss of precision [77]. For instance, spectrum sensing data are reported

in the form of quantised probability density function (PDF) in [56]. Specifically,

the distribution of ambient noise strength is computed with respect to a vector of

quantisation intervals. The FC then calculate a number of metrics using the PDF

vector, which are in turn jointly considered for making adaptation decisions.

2.3.3.2 Hard Combination

With hard combination [79, 48, 80, 54, 81], nodes individually generate their lo-

cal decisions in the format of binary values which are subsequently reported to

decision-making entities [82]. As a result, hard combination scheme is sometimes

described as decision counting [83].

Two basic and commonly adopted counting strategies for hard combination
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are the OR-rule and AND-rule. The OR-rule [79, 84, 54] generates positive adap-

tation decision if any of the received local decisions is positive. In comparison, the

AND-rule produces positive only if all of local reports agree on a positive deci-

sion for adaptation [85]. It is argued in [86] that the choice between the two rules

depends on the threshold used by individual nodes. According to its findings, the

OR-rule provides good performance if the threshold is considerably high, whilst

the AND-rule tends to be optimal in case of a sufficiently low threshold. There is

also a number of alternative counting strategies. For instance, analysis presented

in [86, 83] suggests that for most of the cases, the optimal counting criterion for

yielding positive decisions is that at least half of the location decisions are positive.

Weights can also be applied to local decision counting in hard combination to

make refined decisions and several criteria for determining weights are reported

in [50]. Device locations [87] and signal-to-noise ratio (SNR) observed by the

users [88] are among the basic attributes that can be associated with the weights.

Additionally, more complex statistics such as the historical consistency between

local sensing results and final decisions [89, 55] can help determine the reliability

of certain nodes. Based on these records, local decisions from reputable users are

granted greater weight, whilst users that tend to produce inconsistent results are

assigned less significance.

2.3.3.3 Hybrid Schemes

Some mechanisms incorporate both the soft and hard mechanisms for optimisa-

tion. The scheme proposed in [90] demonstrates one of the examples which uses

dual-mode in order to improve signal detection. Hard combination is activated

by default with predefined upper and lower thresholds which are shared among

all users. The final decision is positive if the result is above the higher threshold

and negative if below the lower one. Decisions are then reported to clusterheads

or FC. If the detected energy level falls between the two thresholds, nodes do

not make local decisions; alternatively, they switch to soft fusion mode and send

full local sensing data to clusterheads or FC. Accordingly, the entity responsible
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for the fusion process would need to make higher level soft fusion on behalf of

indecisive nodes and then combine all decisions to generate the final verdict [90].

A two-stage hybrid data fusion is proposed in [91]. Nodes firstly make local de-

cisions and report them for fusion. If the result is positive, the system perform

corresponding adaptation; otherwise, the second stage is invoked where soft data

is requested from the adaptive nodes to make more careful decisions [91]. The

rationale behind this algorithm is to launch a double-check mechanism using soft

data if no consensus is reached using hard combination.

2.3.4 Summary of Cooperative Sensing at MAC Layer

Individual spectrum sensing results obtained at PHY are susceptible to location-

specific factors and may not correctly reflect the spectral condition in a network

scope. Cooperation in spectrum sensing is therefore considered a suitable solu-

tion. This section reviews a range of aspect of the cooperative spectrum sensing

at MAC layer.

Two main cooperative architecture are summarised in Table 2.2, revealing a

number of advantages of clustered architecture over the centralised version. The

most important benefits of clustering are that the decentralisation of decision-

making to smaller clusters improves the system scalability and reliability, and

that decisions made locally within individual clusters better reflect the specific

situations of their physical location. It is worth noting that, according to findings

in [95], the probability of path failure tends to increase significantly under poten-

tial influences of correlated shadowing which is the fading experienced in multiple

paths caused by the same large obstacle such as concrete pillars or trees [95, 96].

As a consequence, this problem can negatively affect cooperation among clusters

and hence their overall performance. Accordingly, careful thoughts on node place-

ment are recommended in environments that are prone to correlated shadowing

[96]. The clustered structure also reduces the communication overhead. Since re-

ports from cluster members are confined to their groups, the frequency of sending
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and forwarding operation is restricted. Distant transmissions are also minimised

as cluster members are usually only one or a reasonably small number of hops

away from their clusterhead. These factors together enhance the efficiency and

power consumptions, extending the network lifetime. Moreover, the necessity of

global communication and report channels is eliminated with clustered sensing

network [94]. Instead of using a single controlling frequency throughout the entire

network, each cluster is granted the autonomy to individually choose their own

channels for exchanging control information and reports [92, 71]. This distributed

decision-making mechanism can better accommodate the local spectral situation

and greatly improves the network scalability and robustness.

The pros and cons associated with random and synchronous sensing schedul-

ing are generalised in Table 2.3. The scheduling for cooperative sensing is not

entirely independent from techniques used at PHY. For example, energy detec-

tion is only capable of sampling the strength of signals without distinguishing

their characteristics or sources. As a result, network-wide “quiet” periods are

required for sensing results to be valid. Synchronous scheduling such as TDMA

greatly helps ensure the validity at the expense of synchronisation maintenance.

Randomly arranged sensing does not entail such overhead, but options at PHY

layer are limited to relatively more complicated techniques such as cyclostation-

ary feature detection. The choice of the scheduling mechanism also influences the

effectiveness of adaptation and ultimately depends on specific applications. For

example, low-power devices such as wireless sensors usually conduct synchronous

spectrum sensing because their limited computational capacity can only support

energy detection.

A comparison between soft fusion and hard combination are provided in Ta-

ble 2.4. Soft fusion centralises the power of decision-making to clusterheads by

requiring comprehensive spectral information which can be raw or processed co-

operative nodes. With soft fusion, the most comprehensive spectral information
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at each node is exposed to the fusion process. This inherent richness of infor-

mation associated with the raw data enables more sophisticated analysis to be

accomplished and thus may lead to a greater chance of more accurate detection

and advantageous performance over hard combination [85, 48]. But the overhead

in terms of transmission, storage and computation is inevitably high due to the

size of exchanged sensing data.

Hard combination distributes the workload of formulating spectrum decisions

to all cooperation participants. Nodes individually compute and report their

preliminary local yes-or-no binary decisions. Compared with soft fusion, the

exchange of binary information reduces pressure on the bandwidth and allows for

less complex decision-making algorithms. Although the loss of detail may result in

less accurate adaptation decisions [26], it is argued in [48] that hard combination

is able to perform nearly as well as soft fusion. Also simulations carried out in

[97] show that the performances of soft fusion and hard combination based on

energy detection are comparable given a sufficient number of cooperative peers.

2.4 Network Layer

Adaptation at the network layer in the context of IoT mainly concerns challenges

of forwarding packets over unreliable wireless links and communication among

heterogeneous nodes [98]. Two adaptation opportunities are accordingly identi-

fied. The first one is the incorporation of spectral information in routing process.

Routing protocols typically measure the desirability of paths based on distance or

node states. However, the spectral condition has a major influence on the qual-

ity of wireless transmission, especially for low-power IoT devices. Consequently,

spectrum-aware routing protocols that take into account spectrum-related events

can be adopted to reduce the risks of routing decisions that are in conflict with

the actual wireless medium condition. Furthermore, the network layer provides a

suitable platform for the integration of heterogeneous technologies and standards

operating in IoT due to the predominance of the Internet Protocol (IP).
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2.4.1 Spectrum Awareness and Routing

Since wireless links are intrinsically unreliable, routing is usually carried out in

an opportunistic way [99, 100, 101], i.e., decisions on next-hops are made at each

node by discovering forwarding opportunities [100]. Because the spectrum condi-

tion is one of the main defining factors of wireless transmission opportunities, the

availability of spectral knowledge provides the routing protocols with addition-

al information and opens up chances of adaptation and optimisation for IoT [102].

Talay and Altilar in [103] propose a link-state routing algorithm aided by spec-

trum awareness. Each node implementing the scheme maintains its own database

of the link cost as with regular link-state algorithms. However, the primary metric

for link cost evaluation is channel availability. The spectrum condition is updated

periodically and if a link is disconnected because the channel is unavailable, its

associated cost grows. In the case that the problem persists, its cost will become

so high that it is no longer chosen for packet forwarding. Spectrum Aware Mesh

Routing (SAMER) [104] adopts a similar strategy with the difference that the

metric used is not just the channel availability but also the quality in terms of

bandwidth and error rate. A spectrum utility function is formulated in [105],

based on the principle of dynamic back-pressure. Corresponding spectrum utili-

ties are calculated for the set of possible next-hops and the one with the maximum

result is chosen.

The preceding examples achieve the optimisation on a per-hop basis, that is,

the paths to the next-hop are determined solely based on information at the cur-

rent node. There has been a number of studies aiming at further enhancement

by making per-route rather than per-hop decisions. A relatively straightforward

example is presented in [106]. No common control channel is assumed and every

node from the source to the one before the destination has to broadcast discov-

ery messages on all channels to determine the next-hops. Nodes also insert local

channel availability information into discovery messages so that the destination

node learns which channels are usable at every hop and can decide the one to
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be used by this particular data flow throughout the route. Despite its simplicity,

this algorithm has two main drawbacks. First, the all-channel broadcasting in-

curs considerable overhead. Although the problem is argued to be alleviated by

limiting the number of available channels [106], this would, in turn, increase the

vulnerability of the network. Secondly, using a single channel for the entire route

means lack of flexibility since it is possible that “good” channels may end up

unused simply because they are unavailable between two hops of a lengthy route.

Such a problem would add to rather than mitigate inefficient spectrum utilisation-

s, which lead to the need for adaptive communication techniques in the first place.

The mechanism in [107] consists of two phases of operation. Nodes can have

more than one entry to the same next-hop on different channels and traffic is ran-

domly distributed among them at every hop. Once adverse spectral events are

detected in certain frequency, routing entries based on that channel are disabled.

Although this algorithm improves the forwarding reliability by incorporating the

spectral diversity and the usage of a common control channel mitigates the broad-

casting overhead as in [106], there are still efficiency concerns since the lack of

granularity could lead to wasted channel opportunity and overcrowded frequen-

cies in some parts of the network.

The SPEAR routing protocol developed by Sampath et al. [108] is based on

a similar discovery mechanism as [107] to build a database of channel availability

at every node. However, each node broadcasts its local information so eventually

the whole map of availability is synchronised within the network. More than one

path towards destination can be established by nodes sharing commonly available

channels and used for different data flows.

The notion of route robustness is introduced in the algorithm devised in [109].

Based on spectral data collected at lower layers, each link between two nodes has

a set of probabilities associated with all channels, thus indicating the likelihood
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of uninterrupted transmissions in corresponding frequencies. The degree of ro-

bustness of a route is then determined by the product of the maximum achievable

values of associated probabilities of each link along the way, which is essentially

controlled by the most robust available channel. Routes are extended from the

source towards the destination via nodes that could form links meeting a certain

threshold of robustness [109]. After the elimination of those resulting in loops or

leading to a dead-end, the destination node is eventually reached by a set of one

of more possible routes. Using an Integer Linear Programming (ILP) model, the

final route and channel used in each links are decided. The authors of [109] argue

that routes chosen with this method improve the throughput as it exhibits the

lowest probability of encountering spectral disruptive events. Simulation results

also demonstrate the advantage of adopting this criterion over transmission-rate

based route selection strategies [109].

The scheme proposed in [110] demonstrates a different approach by introduc-

ing bi-directional activity between the MAC and the network layers. No longer

passively accepting the channel assignments, the network layer actively casts ef-

fects on the spectrum decision-making in a way that optimises the performance

whilst still satisfying lower layer constraints. The work employs the concepts

of flow-segment (FS) and maximum flow-segment (MFS) to facilitate channel s-

election. An FS is defined as a route consisting of consecutive nodes that can

communicate using the same frequency. Sometimes there exist multiple FSes from

a node towards the destination and the one incorporating maximum number of

nodes is the MFS. Transmissions in [110] take place in an on-demand manner. A

source node with data to send initiates the dissemination of spectrum informa-

tion. Starting from the sender, every node captures the local channel availability

and forwards a summary of FSes leading to itself in all channels upstream to-

wards the destination node. If at some node X the channel used by MFS from

downstream is unavailable, for instance due to interference from other secondary

users, node X is then said to be a “decision node” which is responsible for choos-

ing the MFS and assigning the channel for its downstream route. The process
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is repeated until the destination is reached and the entire route is established,

consisting of the smallest possible number of MFSes, which reduces frequency-

switching and therefore achieves lower end-to-end delay and higher throughput.

The authors claim the algorithm minimises the amount of channel hopping. It

is noted, however, that minimum channel switching is, in fact, only guaranteed

for sub-routes between adjacent decision nodes. The resultant channel choice for

the entire path is therefore composed of best decisions of sub-routes. However,

this scheme does not necessarily yield the optimal overall performance in terms

of the amount of channel switching when taking into account the whole map. For

example, it is possible that a combination of second-best sub-route decisions may

together lead to a better overall frequency hopping reduction.

2.4.2 Network Integration

Another type of adaptation at the network layer is the integration of heteroge-

neous things of different hardware and standards [18] into a unified IoT. The prob-

lem of interoperability has been historically addressed by implementing transla-

tion mechanisms in the gateway node sitting on the border between the wireless

network and the Internet. Gateway nodes are usually connected to a workstation

or a wireless access point so as to communicate beyond their local network. By

equipping the gateway with translation capability, packets going through the bor-

der are examined and reconstructed according to the protocol used by its destined

network. A potential problem with this approach is that the wireless network is

essentially hidden behind a multi-protocol representative—the gateway, rather

than truly integrated into the entire Internet. As a result, it is difficult for a user

at the other side of the globe to, for example, access the data of a particular node

as if it were a computer, because the header of protocol used may have no field to

hold such information. The overlay architecture proposed for opportunistic net-

works partly mitigates the implementation overhead [98], but the introduction of

a new abstraction layer which incorporates various link-level technologies could

offset the benefit.
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IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) [111, 19]

have been developed as a more feasible solution to this problem at the network

layer. Unlike other layers in the OSI model such as PHY, MAC and transport

layer where a variety of standards and technologies operate, the network layer

is dominated by Internet Protocol (IP). This renders the network layer an ideal

platform for interfacing layers in the integration process [112, 18]. The ratio-

nale behind 6LoWPAN is to utilise the well-established and well-understood IP

as the universal language commonly used by different technologies, instead of

carrying out a time-consuming and error-prone process to conceive of different

schemes [111] and later being forced to deal with interoperability issues.

The most critical obstacle to the adoption of IPv6 in IoT is that the trans-

mission of IPv6 headers is too costly for numerous low power devices. 6LoWPAN

mitigates this problem by providing a series of header compression mechanisms.

For instance, the field of version number can be elided as IP version 6 is assumed

to be used. The packet length field can also be inferred from information carried

in lower and upper layer payload. The most significant compression is achieved

with IPv6 addresses. For both the source and destination address fields, the first

48 bit site prefix field and 16 bit subnet identifier can be elided within the scope

of local network and only appended for global use at the gateway. The lower 64

bits of IPv6 addresses can also be inferred from the MAC layer identifier in the

best case. Therefore the 40 bytes of fixed IPv6 header can be potentially reduced

to as small as two bytes.

Because 6LoWPAN is essentially a compact version of IPv6, only simple adap-

tation is required at the gateway point to switch between the standard IPv6 and

6LoWPAN packets. The IP nature of 6LoWPAN ensures the entire network is a

seamless integration of things and the Internet. 6LoWPAN has been employed

in a number of studies [113, 12] to form IP-based WSN and the technique is not

exclusive to specific applications and can be extended to any power-constrained
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IoT devices.

Furthermore, the integration via 6LoWPAN also paves the way for the in-

troduction of IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL)

[114] developed by the Internet Engineering Task Force (IETF). RPL is specifi-

cally designed for potentially large scale low-power networks of IoT objects with

low or moderate data rates, providing minimised computation complexity and

management overhead.

RPL is a distance-vector routing protocol that operate on the Destination Ori-

ented Directed Acyclic Graph (DODAG). A DODAG describe a tree-like network

structure where the root is at the gateway node [114, 115]. Consequently, the

root is the data sink in typical Multipoint-to-Point (MP2P) applications where

sensed data are aggregated at the gateway. Each node in the graph has a rank

value which indicates its distance to the gateway. The structure of DODAG is

accordingly established based on the rank values of individual nodes and data

packets follow the path of the lowest rank at each hop until they reach the root.

Information required for DODAG maintenance and rank calculation is contained

in DAG Information Object (DIO), which is exchanged via a dedicated ICMPv6

packet type called RPL Control Message. By using a trickle timer [116], the ex-

change of DIO becomes less frequent as the network stabilises, effectively curbing

signalling overhead [114].

Since applications in IoT may necessitate distinct routing criteria, RPL has

been designed to provide standard architecture that supports a range of differ-

ent requirements [117]. As detailed in [118], a number of metrics are currently

supported to capture the status of node and link. For example, the rank could

adopt metric that reflect the historical record of latency or transmission success

rates. Constraints can also be used to, for instance, avoid non-encrypted links or

neighbours powered by batteries [119].
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2.4.3 Summary of Network Layer Adaptation

Adaptation at the network layer extends the performance improvement from local

clusters to the scope of network. Spectrum-aware routing protocols can exploit

the availability of spectral information at lower layers to determine more ap-

propriate paths across the network to avoid packet loss or optimise frequency

utilisation. This layer is also notable for its opportunity for network integration.

The predominance of the Internet Protocol (IP) makes it a suitable universal lan-

guage for miscellaneous IoT product. Although IP is historically considered too

heavyweight for low-power devices, IPv6 over Low power Wireless Personal Area

Networks (6LoWPAN), a compact version of IPv6, provides a viable solution

which fosters rapid implementation. Since 6LoWPAN is intrinsically compatible

with IP, heterogeneous low-power IoT devices can communicate efficiently with-

out one-to-one translations and interconnect seamlessly with the vast existing

IP-based Internet. The RPL routing protocol also contributes to the prospect of

IP-operating wireless networks of low-power smart objects for the IoT.

2.5 Summary

In this chapter, adaptive communication techniques for IoT were surveyed with

respect to PHY, MAC and network layer of the OSI model. PHY layer inter-

faces with the physical environment and is able to capture spectral information

via different spectrum sensing techniques. The MAC layer manages the spec-

trum sensing and adaptation activities at PHY by considering trade-offs between

efficiency and adaptation accuracy. The availability of spectral knowledge can

also facilitate routing at the network layer and several existing approaches were

reviewed. The integration of heterogeneous standards and technologies for IoT

can also be addressed at this layer through the universal adoption of IPv6 and

its lightweight version 6LoWPAN.



Chapter 3

Adaptive Time-slotted Channel

Hopping (A-TSCH) Framework

The previous chapter surveys researches in adaptive communication techniques

and identifies a series of opportunities for adaptation in the context of the IoT. No-

tably, the awareness of wireless medium utilisation is found key to these adaptive

measures. This work accordingly focuses on enhancing the performance of low-

power wireless networks based on spectral knowledge about medium condition.

In this chapter, we propose Adaptive Time-slotted Channel Hopping (A-TSCH)

framework and present a high-level description of its features and operations.

By augmenting the existing channel hopping mechanism of IEEE 802.15.4e [120]

with the capacity for learning spectral condition and cooperative blacklisting, A-

TSCH provides spectrum-aware adaptive communication for low-power wireless

networks.

In Section 3.1, the existing channel hopping mechanism of IEEE 802.15.4e is

reviewed. Then the the design rationale and key features of A-TSCH are intro-

duced in Section 3.2. Section 3.3 provides a high-level framework architecture of

A-TSCH, where operational cycles are described and important components are

identified for detailed discussions in subsequent chapters. Finally, summarising

remarks are provided in Section 3.4.
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Figure 3.1: Slotframes of standard TSCH include ADV, Tx and Rx slot types.

3.1 Standard IEEE 802.15.4e TSCH

IEEE 802.15.4e is an amendment to IEEE 802.15.4 standard which aims to in-

creases robustness against external interference and multi-path fading [120]. It

addresses these problems through the inclusion of Time-slotted Channel Hopping

(TSCH) technique. TSCH divides time into a series of infinite successive times-

lots. Individual timeslots are assigned slot type values which define the operation

to take place within their durations. There are by default four slot types in s-

tandard TSCH: Advertisement (ADV ), Transmission (Tx ), Reception (Rx ) and

Idle. Behaviours of network nodes are governed by the operation scheduled for

the current timeslot at a given moment. A group of timeslots forming a pattern

of slot types repetitive along the time axis constitutes a slotframe, as illustrated

in Figure 3.1. Every network node can be seen as iterating operations shaped

by its slotframe, although the content of the slotframe itself may be adjusted.

As a consequence, content of slotframes of individual nodes need be scheduled in

a coordinated manner and nodes must by time-synchronised for the network to

function properly.

The count of total elapsed timeslots since the start of the network is recorded

as Absolute Slot Number (ASN) in TSCH to achieve a network-wide common

sense of time. ASN is disseminated through advertisement messages exchanged
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Figure 3.2: Example schedule with slotframe length of 3. Node A, B and C share
the same slotframe structure and perform in a coordinated manner.

in ADV slots. Nodes use ASN to deduce their temporal position within the slot-

frame which ensures that they simultaneously enter and exit the same timeslots

and operate according to timeslot types defined by their individual schedules. A

simplistic example of slotframe schedule with three slots for a network of three n-

odes running TSCH is illustrated in Figure 3.2. Node A is set to transmit to node

B in the first timeslot. Therefore this timeslot is assigned to the communication

between A and B from the perspective of the network. The other slots are also

scheduled the same way, and operations repeat every three timeslots. Scheduling

mechanism of TSCH is beyond the scope of this thesis and is unmodified in A-

TSCH.

Channel = (ASN + channelOffset)mod 16 + 11 (3.1)

In addition to the deduction of slot types and associated operation, ASN is

also used to determine the operating frequencies for channel hopping. Based on
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Equation (3.1), channel numbers between 11 and 26 are yielded for positive in-

teger ASN values, hence providing indiscriminate pseudo-random access to all

sixteen IEEE 802.15.4 channels in 2.4 GHz band. The additional factor of chan-

nelOffset can be optionally set to yield different channel hopping sequences.

In summary, the standard TSCH allows nodes to carry out their individually

scheduled communication in a coordinated manner using pseudo-randomly chosen

channels. This infrastructure is inherited in the design of A-TSCH in this thesis.

3.2 Overview of A-TSCH

3.2.1 Design Rationale

Although the standard IEEE 802.15.4e TSCH is able to enhance the communi-

cation reliability by evenly spreading negative effects of adverse factors over the

entire set of available IEEE 802.15.4 frequencies [45], its indiscriminate utilisa-

tion of channels poses an important limitation. As degrading factors such as

fading and interference are generally not uniform across the spectral space, some

frequencies are affected to greater extent than others and hence exhibit less de-

sirable quality for wireless transmission. Communication using standard TSCH

inevitably takes place in those less desirable frequencies at some point, which

potentially compromises the overall performance (experimental evidence of such

effect is provided in Chapter 4). A-TSCH is designed with the aim to mitigate

this problem.

3.2.2 Key Features

The Adaptive Time-slotted Channel Hopping (A-TSCH) is designed to improve

the performance of the standard TSCH whilst preserving its benefit. Recognising

the diversity of channel desirability, A-TSCH identifies and excludes channels of

undesirable quality from the channel hopping sequence. As a result, the network

constantly switch operating channels only within the subset of desirable ones.
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Figure 3.3: A-TSCH assumes tree-like topology with hierarchical cluster struc-
tures.

The collection of undesirable channels is known as blacklist and the process of

generating and applying a blacklist is referred to as blacklisting. Key features of

A-TSCH include:

• Detection of spectral condition through ambient noise floors.

• Learning of channel desirability based on spectral condition records.

• Cooperative blacklisting

– Generation of blacklists through cluster-wise cooperation.

– Selective channel hopping using blacklists.

The A-TSCH framework operates with tree-like network topology rooted at

the gateway node such as the one illustrated in Figure 3.3. A-TSCH also con-

siders such topology a hierarchical structure of clusters. A cluster is a subset of

nodes grouped based on certain criteria such as physical proximity [121]. Every

cluster has one appointed clusterhead which forwards data from and to other
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cluster members. Nodes that do not forward data from others are leaf nodes. For

example, nodes 1, 2 and 3 are first-tier clusterheads directly connected to the

gateway in Figure 3.3, whilst 1.1, 1.2 are second-tier clusterheads. In a typical

Multipoint-to-Point scenario where data travel from leaf nodes to the gateway

(data sink), clusterhead node 1.1 aggregates data from its cluster members n-

odes 1.1.1, 1.1.2 and 1.1.3, and then forwards them to the corresponding first

level clusterhead 1 before reaching the destination.

3.3 A-TSCH Operation

A high-level flowchart of A-TSCH operations is provided in Figure 3.4. Because

A-TSCH operates on the basis of slotframe, logical paths in the figure represent

procedures of the operational cycle in a given timeslot. Square boxes denote

important A-TSCH functional modules. Control flows are directed by arrowed

lines annotated with specific actions. Two separate logical branches are explicitly

marked by hollow and filled arrow shapes, respectively. In the remainder of this

section, we go through different stages of the A-TSCH operation to demonstrate

modules and their interactions. In particular, two most complex modules are

identified and detailed subsequently in Chapter 5 and 6.

3.3.1 Slotframe Scheduling

The schedule of slotframe is checked at the very first stage of every A-TSCH cycle

to determine the slot type and associated operation. To facilitate the detection of

spectral condition, A-TSCH introduces an additional Noise Floor NF slot type

to the slotframe. Nodes suspend data transmission and probe the strength of

ambient noise in NF slots. This arrangement is necessitated by the limitation

that energy detection technique is not capable of distinguishing own communica-

tion signals and ambient noise, as discussed in Chapter 2. An example A-TSCH

slotframe is illustrated in Figure 3.5 with two NF slots placed at the rear.
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Figure 3.4: Diagram of A-TSCH logical cycles. Arrowed lines are annotated with
actions and the two arrow types correspond to different control flow branches.

The slotframe schedule directs A-TSCH operation into corresponding logical

branches. In Figure 3.4, operation in NF slots is directed by filled arrows. The

other branch is directed by hollow arrows, representing transmission and reception

of data in Tx or Rx timeslots. Since this new slot type is unknown to existing

IEEE 802.15.4e, nodes running standard TSCH ignore NF slots and treat it as

Idle type.

3.3.2 NF Cycle

Upon entering an NF slot, the ASN number is input to Equation (3.1) to pseudo-

randomly yield the channel whose noise floor is to be sensed. The Noise Floor

Listening (NFL) module retrieves the energy level of channel noise from the Re-

ceived Signal Strength Indicator (RSSI) register of the radio chipset [12]. RSSI

is chosen as the primary indicator of spectral condition as it is found to ex-

hibit reasonable correlation with transmission success rates in several studies

[122, 123, 124], and a detailed investigation into the effectiveness of this measure

is presented in Chapter 4.
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Figure 3.5: A sample slotframe used in A-TSCH. Compared with standard TSCH,
an additional NF slot type is introduced.

Since sampled ambient noise levels are typically subject to momentary fluctu-

ations of ambient energy strength, individual noise floor readings may not be suf-

ficient to accurately capture the characteristics of certain frequencies over longer

periods. To mitigate this issue, the sampled noise floors are subsequently passed

to the Channel Quality Estimation (CQE) module. Employing certain estimation

technique, the raw noise readings are processed and transformed into estimates of

channel noise floors which indicate the quality of individual channels for wireless

communication. The CQE module provides an important component of A-TSCH

and is described in detail in Chapter 5.

In the next stage, the results of CQE are passed to the Cooperative Blacklist-

ing (CB) module which is detailed in Chapter 6. The CB module is responsible

for identifying subsets of undesirable channels known as blacklists. The mod-

ule firstly triggers nodes running an A-TSCH instance to independently identify

their own candidates of blacklist by drawing on their local channel quality esti-

mates. Then based on the hierarchical network model previously described, an

agreement on the blacklist to be imposed on communication within this cluster

is reached through cooperation among proximate cluster members. In addition

to the cooperative generation of blacklist which is a crucial function of A-TSCH,

the CB module is also responsible for the exertion of blacklists in transmission
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and reception, which is subsequently described in cycles for Tx and Rx slots.

3.3.3 Tx / Rx Cycle

Similar to the NF cycle, an operating frequency is pseudo-randomly generated us-

ing Equation (3.1) at the commencement of Tx or Rx timeslots. Then the module

of CB is invoked to find out whether this tentative operating channel is includ-

ed in the blacklist yielded in NF slots. If the channel is not blacklisted, nodes

carry on with transmission and reception as normal; otherwise, a new operating

frequency must be generated and again checked for validity. The process iterates

until a usable channel is yielded. This practice effectively makes the A-TSCH

hopping sequence selective about the channel quality detected in NF timeslots.

The selective channel hopping is another core function of the CB module.

Details are provided in Section 6.4, describing the adaptive process for deciding

pseudo-random channels which considers trade-offs between blacklisting accuracy

and overhead.

3.4 Summary

This Chapter provides a high level description of A-TSCH framework including

its core modules and their logical cycles. To enhance the indiscriminate usage

of frequencies of the standard IEEE 802.15.4e TSCH, A-TSCH makes channel

hopping selective about the quality of channels, measured in terms of ambient

noise floor levels. Additional NF slots are specifically introduced to facilitate

the detection of noise strength. The Received Signal Strength Indicator (RSSI)

is retrieved from the radio chipset when normal data transmission is suspended

in NF slots. Noise readings are processed by CQE module to form estimates

of channel quality. In the subsequent stage of Cooperating Blacklisting, nodes

individually propose candidate channels to be blacklisted, and then decisions

on blacklist for each cluster are made via cooperation among cluster members.
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Pseudo-randomly generated channels for communication in Tx / Rx slots must

be validated before transmission can take place. Channels found in the blacklist

must be replaced by an admissible alternative channel. In the following chapters,

properties of ambient noise as the primary spectral condition indicator is first

investigated in Chapter 4. And key modules of Channel Quality Estimation and

Cooperative Blacklisting are discussed in detail in Chapter 5 and 6, respectively.



Chapter 4

Ambient Noise Floor and

Channel Desirability

As described in Chapter 3, A-TSCH detects the desirability of specific IEEE

802.15.4 channels by probing their noise floors. In this chapter, the properties

and effectiveness of this spectral indicator are investigated. To facilitate our in-

vestigation, communication traces and ambient noise samples are collected using

different configurations at multiple locations. In Section 4.1, environments and

tools used for data collection are introduced. In Section 4.2, the relationship be-

tween ambient noise and communication performance is observed. In Section 4.3,

measurement of ambient noise is conducted over prolonged periods of time and

features of collected samples are analysed. Finally this chapter is summarised in

Section 4.4.

4.1 Experimental Setting

This section introduces the environments used for the collection of communication

traces and monitor of ambient noise. The specification of hardware and software

used for experiments is provided.

65



4. Ambient Noise Floor and Channel Desirability 66

4.1.1 Environment Information

Because spectral conditions usually vary among environments, experiments were

conducted at different locations to reflect diverse physical surroundings and radio

medium utilisation. Experiment locations are identified as A, B and C. Location

A is an open workspace with heavy presence of WiFi signals. Three wireless

routers are deployed on-site and more than 10 WLANs can be detected on normal

weekdays. Location B is a flat room in a residential building. Only one wireless

router is installed in the property and typically less than three other WLANs are

visible at weaker signal strengths. Location C is a departmental office in a college

building block. Only one WLAN connection is steadily detectable at Location C,

and Internet access in the block is predominantly via cable sockets. Key facts of

these locations are summarised in Table 4.1.

4.1.2 Device Specification

Guidance and Inertial Navigation Assistant (GINA) motes [13] are the prima-

ry hardware platform used in this chapter and the remaining part of the thesis.

GINA is designed by the Kris Pister group at the University of California at

Berkeley. GINA comes in different configurations and the type of motes used in

this work is shown in Figure 4.1 and specified in Table 4.2. Since the focus of this

work is on the communication in IoT, on-board sensing units have been greatly

reduced for our GINA motes. Instead, they are equipped with UART-to-USB

bridge chips and mini-B USB connectors to facilitate the retrieval of experimen-

tal data.

IAR Embedded Workbench [125] has been used for developing the implemen-

tation on GINA motes. IAR provides a tool chain for the compilation of code

and debugging motes through Joint Test Action Group (JTAG) adapters.
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Table 4.1: Profile summary of environments used for experiments. The environ-
ments are identified as Location A, B and C, and are hereafter correspondingly
referred to by their ID.

Location ID Profile

A

- Communal workspace

- Approximately 12m× 12m

- Three wireless access points placed in proximity

- Typically more than 10 WLANs visible

B

- Residential flat room

- Approximately 4m× 3m

- One wireless access point installed in the property

- Typically about 3 WLANs visible

C

- Departmental office room.

- Approximately 5m× 2m

- No wireless access point installed inside the room.

- Typically one WLAN connection steadily detectable
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Figure 4.1: Guidance and Inertial Navigation Assistant (GINA)

Table 4.2: Specification of Guidance and Inertial Navigation Assistant (GINA)
motes [13].

Type Manufacturer Part Details

Microcontroller Texas
Instruments

MSP430F2618 16-bit, 16MHz, 116kB
flash, 8kB RAM

Radio Atmel AT86RF231 IEEE802.15.4-compliant,
2Mbps-capable

Antenna Rainsun AN3216-245 2.4GHz

USB connector Hirose UX60A-MB-5ST
Type B, receptacle,

female contacts, surface
mount, right angle

UART-to-USB bridge Silicon Labs CP2102 28-pin, slave USB
interface, QFN-28

JTAG port N/A N/A connects to the
GINA-JTAG-adapter
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4.2 Communication under Ambient Noise

This section focuses on wireless communication under the influence of ambien-

t noise. First, the experimental configuration for data collection is provided.

Then a number of metrics are introduced to facilitate our analysis. Subsequent-

ly, observations are made on channel noise and its impact on low-power wireless

communication.

4.2.1 Configuration for Data Collection

Two GINA motes configured as a pair of sender and receiver were deployed in

Location A, B and C, respectively. In each run of experiments, the sender was

programmed to transmit batches of 100 packets with inter-packet time of one

second using one of the IEEE 802.15.4 channels. The receiver was made to con-

stantly listen for packets in the same channel. Also operated in the receiver was

a sniffer program which kept probing the ambient noise floor of the operating

channel in the intervals between the arrival of packets. Here the noise floor sam-

ples specifically refer to energy level readings retrieved from the Received Signal

Strength Indicator (RSSI) register of the radio tranceiver, which reflect the am-

bient signal strength in the operating channel. These values were not affected

by the pair’s own signal because readings were obtained during intervals between

packet transmission and reception. Successfully received packets and noise read-

ings obtained in intervals were all forwarded to serial ports and recorded. Once

the transmission of a batch was finished, the sender and receiver synchronously

switched to a different IEEE 802.15.4 channel and repeated the process for the

next experiment run. Accordingly each run took approximately 100 seconds and

collecting experimental data of all IEEE 802.15.4 channels in a round-robin fash-

ion took 1600 seconds. Each mote pair continuously collected data for 24 hours,

therefore approximately 54 rounds were carried out at each location.
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4.2.2 Metrics for Analysis

Two categories of metric are devised to extract these information from the col-

lected traces for analysis in this section.

The first category is Expected Transmission Count (ETX) which quantifies

the transmission success rates. As defined in Equation (4.1), ETX is the recip-

rocal of Packet Delivery Ratio (PDR), the percentage of successful delivery in

all transmission. Accordingly ETX denotes the average number of transmission

attempts required for a packet to be successfully received [126, 45]. ETX takes

the range between [1,+∞) where ETX of 1 indicates perfect transmission with

no lost packet.

ETX =
1

PDR
=
Packetstransmitted

Packetsreceived
(4.1)

For analysis in this section, ETX is calculated for each packet batch, denoted

by ETXbatch. Because individual batches were transmitted using a single channel

in its entirety, each ETXbatch represents the transmission success rates of one of

the IEEE 802.15.4 channels. Consequently, the overall performance of individual

channels can be measured by grouping and averaging corresponding ETXbatch,

and this resulting metric is defined as ETXchannel.

The second metric category of is Noise Floor Strength (NFS), which we define

as the level of ambient noise that the transmission of individual packets is exposed

to. In terms of data collected for this section, NFS are calculated by the receiver as

the mean RSSI within the intervals between the reception of packets. Accordingly,

for each received packet there is a corresponding NFS that characterises the

operating channel used for its transmission. Similar to ETX metrics, NFSbatch

and NFSchannel are also introduced. NFSbatch is computed as the mean NFS
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of specific packet batches. NFSchannel is the average NFSbatch of each IEEE

802.15.4 channels.

4.2.3 The NFS-ETX Relationship

The general relationship between ambient noise and transmission can be ob-

served from (NFSbatch,ETXbatch) pairs plotted in Figure 4.2 for three locations,

respectively. In Figure 4.2a for Location A, it is observed that the ETX are pre-

dominantly lower than 1.1 when the noise floor is less than approximately -90

dBm. As the noise floor grows from -90 dBm, ETX grows towards 1.4. It is also

noticed that ETX tends to show increased variation ranging between 1.1 and 1.6.

Although the NFS-ETX correlation does not appear strictly linear, the negative

effect of ambient noise floor on ETX performance in terms of both magnitude

and uncertainty is apparent.

The NFS-ETX relationship at Location B illustrated in Figure 4.2b is in a-

greement of the observation about Location A. When NFSbatch is below approx-

imately -90.7 dBm, the vast majority of ETX have the value of 1, meaning all

100 packets were successfully received. Above this noise level the ETX tend to

dispersed away from 1 and fluctuate in greater scales. Compared with Location

A, the ETX distribution is more concentrated towards 1 and overall tendency

appears less regular.

For Location C, the (NFSbatch,ETXbatch) pairs in Figure 4.2c also exhibit the

trend of growing magnitude and instability of ETX as NFS increases. In par-

ticular, the value of ETX becomes notably higher and variable once the NFS is

higher than approximately -89 dBm. Although there is a lack of linearity com-

pared with features observed in Figure 4.2a, findings in data of Location C are

still in agreement of the general tendency.

Based on the above findings, the following observation is reported:
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(a) Location A

(b) Location B

(c) Location C

Figure 4.2: Relationship between noise floor and transmission success rates. Hor-
izontal axis represents NFSbatch and vertical axis denotes the corresponding ETX
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Observation 1 The performance of transmission is negatively affected by the

ambient noise floor of the utilised IEEE 802.15.4 channel. As the noise floor

increases, the reliability and stability of transmission tends to decrease.

4.2.4 Channel Diversity

The NFSchannel and ETXchannel of individual IEEE 802.15.4 channels are plotted

in Figure 4.3 for Location A, B and C, respectively. As shown in Figure 4.3a,

noise floors vary visibly between channels at Location A. In particular, channel

(15 - 20, 25 - 26) have very low NFSchannel and channel (12 - 13, 22 - 23) are

notably noisy. Meanwhile, variation among ETXchannel shown in Figure 4.3b ex-

hibit a pattern in accord with the difference in NFSchannel. Specifically, ETX are

over 1.12 for channels with NFSchannel at approximately -87 dBm, and mostly

below 1.04 for channels with NFSchannel less than -90 dBm.

Similar features are also shown in ETXchannel and NFSchannel for Location

B. In Figure 4.3c and 4.3d, the patterns of low NFS - low ETX and high NFS -

high ETX are present. Specifically, ETX reaches the highest level in channel 18

and 19 wher the average noise floors are found to be the strongest.

For Location C, results in Figure 4.3e and 4.3f again show the similar cor-

respondence of ETX with NFS. Channel (11, 16 - 17, 21 - 24) exhibit the most

notable noise floor strength and are associated with the highest ETX values.

Channel (13 - 14), in comparison, have the lowest NFS and the best ETX per-

formance.

Despite the different noise conditions at experimental locations, the ETX

achieved in individual channels are invariably found to be related to the cor-

responding noise floors. Furthermore, there is a variation in patterns of chan-

nel noise floors in the 2.4 GHz band shown Figure 4.3 which appears to be

environment-specific as no static pattern can be identified. Consequently we
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Noise floor and transmission success rates of individual channels at
different locations. The left column depicts NFSchannel and the right column
illustrates ETXchannel. (a) and (b), (c) and (d), (e) and (f) are for Location A,
B and C, respectively.
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report the following observation:

Observation 2 The difference of achievable transmission success rates in indi-

vidual IEEE 802.15.4 channels is in accord with the environment-specific diversity

of their ambient noise floors.

4.2.5 Noise Threshold for Transmission Success Rates

Observation 1 and 2 have demonstrated the negative effect of ambient noise on

transmission and its correlation with unequal performance of IEEE 802.15.4 chan-

nels. In the next step, we examine whether there exist certain noise floor levels

of special significance in defining the transmission performance.

It is noticeable in Figure 4.2 that the correlation between NFSbatch and

ETXbatch is much more deterministic at Location A and C than at Location B.

The clear rising trends in ETX with increasing NFS observed in both Figure 4.2a

and 4.2c is lacking in Figure 4.2b. A closer look shows that this difference does

not create contradiction but reveals some insights into the effect of ambient noise.

Taking into account the absolute scale of the ETXbatch axis, the entire plot area

of Figure 4.2b can only account for a confined part in Figure 4.2a or 4.2c where

the overall noise levels are very low. In other words, traces collect at Location

B only captures ETX under very weak ambient noise. The relative irregularity

present in Figure 4.2b indicates that the influence of ambient noise on wireless

transmission is not always significance but subject to specific strength, leading

to the following observation:

Observation 3 There is certain ambient noise floor threshold above which com-

munication is significantly affected.

To identify suitable noise threshold, (NFSbatch,ETXbatch) records are statisti-

cally investigated in Matlab using two different approaches. We first employ the

clustering technique which is used for dividing data into smaller groups based on

certain criteria so that data belonging to the same cluster exhibit homogeneous
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Figure 4.4: Clustered NFS-ETX records

characteristics whilst those in different clusters are as distinct as possible. In this

work, the mean-shift clustering technique is adopted. Mean-shift is essentially a

mode-finding technique: it treats the data space as empirical probability density

function and locates the value which maximises its probability mass function,

known as the mode. Therefore mean-shift clustering is able to recognise local

maxima of the density and clusters associated with them [127]. Because one

characteristic that distinguishes noise areas (clusters) separated by the threshold

is the noticeable variation in NFS-ETX correlation, we anticipated that two clus-

ters of distinct levels of density could be identified by the mean-shift technique

which correspond to regions where ambient noise has dominant or relatively less

significant influence on wireless transmission.

As depicted in Figure 4.4, two clusters are identified which is in agreement

with our earlier anticipation. The difference in distribution density of ETX with

respect to NFS represents the different extent of effect that ambient noise exerts.

The boundary between these two clusters lies between -90 and -89 dBm. Be-

cause low-power wireless devices focused in this work are relatively inefficient in
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Figure 4.5: Records of NFS-ETX with 95th percentile reference shown in the red
line. The 95th-percentile reference separates 5% of the population and the rest
95% based on ETX values. ETX levels corresponding to 95% and 95% PDR are
also shown in horizontal lines.

Figure 4.6: Divisions are formed at individual noise floor levels, and the corre-
sponding differences in mean ETX between the two parts are depicted.

handling floating-point computation and storage, we only consider integer thresh-

old values. Consequently -90 and -89 dBm are taken as potential noise thresholds.

To reinforce the findings obtained with automatic clustering, more inspection

were carried out where we look directly into (NFSbatch,ETXbatch) pairs. Firstly,

we examine the extent of the effect ambient noise through the distribution of

the (NFSbatch,ETXbatch) population. To this end, the 95% percentile of ETX is

plotted in red lines in Figure 4.5. The percentile line provides a reference to the
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majority of ETX which is signified by value below the red line. The ETX levels

corresponding to 95% and 95% PDR are also shown in horizontal lines in the

figure serving as baselines above which transmission performance is considered

significantly affected by ambient noise. According to Figure 4.5, the transmission

success rates are overwhelmingly greater than 90% for noise floor below -89 dB-

m, and greater than 95% for noise floor below -90 dBm. These observations are

consistent with previous findings obtained via clustering.

In an additional inspection, the ETX population is iteratively divided at indi-

vidual integral noise levels. The mean ETX of either divisions are calculated and

their differences are plotted in Figure 4.6. It is observed that the disparity be-

tween mean divisional ETX reaches peak level when division is made at -89 dBm,

and remains at relatively high level towards -90 dBm. This indicates that the

maximum distinction in average ETX performance lay between -90 to -89 dBm,

reconfirming previous findings. We accordingly report the following observation

on useful thresholds.

Observation 4 The integer noise thresholds that provide the most significant

separation between NFS-ETX relationship are -90 and -89 dBm, which are found

to result in transmission success rates of 90% and 95%, respectively.

4.2.6 Conclusion of observations

We believe that the transmission performance can be improved by recognising

and avoiding IEEE 802.15.4 frequencies with high noise floors, according to the

NFS-ETX relationship stated in Observation 1 and 2. The thresholds of ambient

noise expected in Observation 3 can be potential criteria for the identification,

and the useful thresholds found in Observation 4 are going to be used in different

schemes later described in Chapter 6.
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4.3 Noise Properties

Following observations regarding the significance of ambient noise on low-power

wireless communication, the properties of noise are investigated in this section.

First, the data collection configuration is specified. Then time series analysis is

conducted for noise samples. The ingredients of the noise series are identified fol-

lowing the principle of Classical Seasonal Decomposition (CSD) technique [128],

which views time series as combinations of seasonal, trend and noise factors [129].

Time-sequence plots are produced to provide a basic visual comprehension and

initial intuitions of the interference patterns for different environments. Examina-

tions on individual components are subsequently carried out to verify any prelim-

inary discoveries. Analysis are conducted for all sixteen IEEE 802.15.4 channels

and similar results have been obtained. The following discussions utilises findings

on channel 12 (2410 MHz) in the interest of the clarity of demonstration.

4.3.1 Configuration of Noise Sampling

GINA motes were deployed at Location A, B and C, respectively. Instead of

carrying out transmission as the experiment in Section 4.2, motes were configured

to constantly sense the energy level in different IEEE 802.15.4 channels. Each

sensing operation took 128µs of measurement and 12µs processing delay, totalling

140µs. Groups of 128 readings were averaged into individual samples that were

stored on desktops. The sampling duration for each location lasted more than a

month to capture temporal variance, which are detailed in Table 4.3. Samples

are attributed to the locations of their collection, and are referred to by the

corresponding location IDs hereafter.

4.3.2 Overview of Noise Sample Series

The time-sequence graphs of three noise sample sets are shown in Figure 4.7, 4.8

and 4.9. Alongside the plot for the entire sampling period, segments focusing on

specific weeks and days are also provided.



4. Ambient Noise Floor and Channel Desirability 80

Table 4.3: Details of experiments carried out to collect noise samples. Data were
respectively collected at Location A, B and C for prolonged periods of time.

Location ID Begin time End time Duration

A 00:00 26th July 2012 00:00 6th Sep 2012 Six weeks

B 09:00 27th July 2012 15:00 31st Aug 2012 Five weeks

C 16:30 15th Aug 2012 16:30 19th Sep 2012 Six weeks

(a) Entire duration (b) Week 3 (c) Thursday and Friday

Figure 4.7: Noise levels in channel 12 at Location A at different time

(a) Entire duration (b) Week 4 (c) Monday and Tuesday

Figure 4.8: Noise readings in channel 12 at Location B at different time

Sample A exhibits repetitive cycles over 24 hours in Figure 4.7b despite oc-

casional outliers, implying the existence of daily seasonality. Additionally, the
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(a) Entire duration (b) Week 2 (c) Thursday and Friday

Figure 4.9: Noise readings in channel 12 at Location C at different time

overall noise strength is found to be weaker in weekends compared with week-

days, which is expected as few people are present in the environment in Saturdays

and Sundays. Figure 4.7c focuses on Thursday and Friday of this particular week.

The daily pattern is evident in the plot as noise level is predominantly above -90

dBm during typical office hours (10:00 to 18:00) and relatively low (in the region

between -95 to -90 dBm) for the rest of the days.

The daily seasonality of Sample B in Figure 4.8b appears much less notable

than that of Sample A. In particular, noise levels in Monday to Wednesday have

notably different shapes from the other days. Such irregularity is more clearly

visible in the segment of Monday and Tuesday in Figure 4.8c. Noise floor pattern

between 6:00 and 8:00 on Monday is significantly more changeable than that of

Tuesday; the same can also be observed between 14:00 and 16:00.

Compared with Sample A and B, Sample C exhibits the weakest seasonality.

Although the sharp dips near the end of week 1 in Figure 4.9a could be attributed

to recorded failures of power system in the building, noise floors in the following

two weeks are still highly unpredictable. A considerable part of noise floor in

week 2 shown in Figure 4.9b is largely flat; however the fluctuations in other

parts appear irregular as highlighted in Figure 4.9c for Thursday and Friday of

the same week.
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In additional to seasonality, a further inference regarding the trend component

can also be drawn from the time-sequence plots. In this work trend specifically

refers to disposition of continual growth or recession over the sampling duration.

In spite of the fluctuations, there is a lack of palpable overall increasing or de-

creasing inclination in the curves of all three sequences. Thus the overall noise

levels tend to be constant, i.e. no significant trend component is identified in the

time series.

4.3.3 Seasonality

4.3.3.1 Time Domain Analysis

To investigate seasonality in the time domain, we examine the temporal autocor-

relation which probes the relationship between time-lagged versions of the original

series. The sample correlation function (ACF) autocorr of Matlab is used and

the graphical presentations of its results, known as correlograms, are provided in

Figure 4.10 for each sample, respectively. The extent of time-shifting is controlled

by lag values shown on the horizontal axis in the unit of hour. Correlation coeffi-

cients shown on vertical axis indicate how closely the noise sequences are related

to their time-lagged versions.

The curve in Figure 4.10a displays a resemblance to cosine function with wave-

length of 24. The peaks at lags of 0th, 24th and 48th hours expose conspicuous

positive autocorrelation when the series is time-shifted by integral multiple of 24

hours. The autocorrelation is 1 at lags 0 because the series is perfectly correlated

with itself. Correlations are also obvious at lags 1 and 2 because the noise tend

to be consistent in short-terms hence they do not reveal the repetitive pattern

we aim to discover. True seasonality is indicated at the lag of 24 hour because it

provides a high correlation (approximately 0.8) after a cycle of decreasing course

with a trough at the lag of 12 hours.
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(a)

(b)
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(c)

Figure 4.10: Autocorrelation function(ACF) plots. X axes denotes lags in unit
of hours and Y axes indicates correlation coefficients. (a), (b) and (c) correspond
to Sample A, B and C, respectively.

Samples B also shows peak of autocorrelation at the lag of 24 hours in Fig-

ure 4.10b but to a much weaker extent of less than 0.4. Also The symmetry of

positive and negative correlation seen in Figure 4.10a is not present. In particu-

lar, the coefficient is near zero at 12 hours, which means almost no relationship

exists at that specific lag. Such randomness weakens the seasonal factor and in

turn partly contributes to the low correlation at 24 hours.

The correlogram of Sample C appears to also have a sinusoidal feature, how-

ever a closer look reveals that it is in fact irregular cyclic behaviour. The first

significant correlation happens at the lag of 28 hours unlike the findings on Sam-

ple A and B. Moreover, peak would have occurred at the integral multiple of 28

hours such as 58 and 96 hours if there indeed existed 28-hour seasonality. How-

ever it is apparently not the case in Figure 4.9c where subsequent peaks occur

at lags of 60 and 88 hours. As a consequence, no seasonality of noise level is
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identified for Sample C.

4.3.3.2 Frequency Domain Analysis

Seasonality is also examined through spectral density analysis in the frequency

domain. Signals are interpreted as combinations of a series of sine waves of dif-

ferent amplitude, periods and phases. By examining the Power Spectral Density

(PSD) of the samples, the significance of individual sinusoidal ingredients can be

revealed which represents the power of seasonal factors with corresponding peri-

ods in the original sample. The resulting PSD plots in Figure 4.11, also known

as periodograms, of the observed noise level are produced in Matlab.

The periodograms for three sample sets are displayed in Figure 4.11. The hor-

izontal and vertical axis denote the periods and significance of individual spectral

components, respectively. An overwhelmingly high power at 24 hours is observed

in Figure 4.11a which discloses the fact that the predominant ingredient in Sam-

ple A has the period of 24 hours. This confirms our earlier findings that the noise

floor has a daily seasonality. The periodogram for Sample B displays the similar

attribute in Figure 4.11b but the absolute power of the peak at 24 hour is lower

by the factor of 10 compared with Sample A, which indicates a weaker periodicity.

In a notable comparison, the prominence of the 24-hours period is not present

in Figure 4.10c for Sample C. The highest power no longer appears at 24 hours

but rather 30 hours. However this is not sufficient to prove 30-hours seasonality

mainly because of two reasons. First, there exist multiple considerable peaks

between 24 and 36 hours which indicate the pattern tends to be irregular cyclic

behaviour rather than a seasonal repetition. Secondly, the absolute power at 30

hours is substantially lower than power of peaks found in Figure 4.11a and 4.11b.

The variation in the significance of seasonal factor among three noise sequences

is more clearly demonstrated Figure 4.12 where the periodograms of three samples

are depicted together in the same scale. The blue dot-dashed line corresponds

to Sample A and green dashed line with triangle is for Sample B; Sample C is
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(a)

(b)
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(c)

Figure 4.11: Periodogram of channel 12 at all locations. (a), (b) and (c) corre-
spond to Sample A, B and C, respectively.

represented with red line with cross marks. It is clear in the plot that the spectral

power peak is much more powerful in Sample A than in Sample B. And the fact

that Sample C is almost flat suggests that there is a significantly powerless, if

any, seasonal component. Accordingly only Location A out of three experimental

environments shows apparent seasonal factor. This finding also indicates that

seasonality of ambient noise is not a universal but environment-specific feature.

4.3.4 Trend

To have a better view of potential trend factor, the seasonal factor needs to

be removed. Classical decomposition uses weighted moving average technique

to cancel the effect of seasonality [130] and the results are seasonally-adjusted

version of the original series. Figure 4.13a and 4.13b illustrate the seasonally-

adjusted series of noise Samples A and B. Sample C is exempt from the process

since it does not have clearly identified seasonal factor.
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Figure 4.12: Periodograms for 3 sample sets using the same scale. Sample A, B
and C are represented with blue dot-dashed line, green dashed line with triangle
and red solid line with cross, respectively.

Linear regression is applied to the series to help identify trending effect. The

resulting fits are almost flat trendlines throughout the duration, confirming previ-

ous inference that the overall increasing or decreasing trend is absent. Additional

verification can be drawn from periodograms in Figure 4.11. In case of the pres-

ence of long term trend, there should be a significantly powerful peak associated

with certain period much longer than 24 hours; nevertheless, no such phenomenon
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(a)

(b)



4. Ambient Noise Floor and Channel Desirability 90

(c)

Figure 4.13: Trend component of three noise sample sets. (a), (b) and (c) corre-
spond to Sample A, B and C, respectively.

has been observed in Figure 4.11.

4.3.5 Remarks on Noise Attributes

Analysis in this section revealed some basic properties of ambient noise which

were found to be environment-specific. Relatively notable seasonal factor was

found in Sample A. This can be attributed to different natures of noise sources.

At Location A, the dominant noise sources were the proximately installed wire-

less routers around the workplace, as well as clearly visible WLAN signals from

adjacent office buildings. As these WLANs were primarily used by people work-

ing in these premises, the noise emission level showed a rough pattern of office

hours despite some inevitable irregularity due to unpredictable nature of human

activities. Location B, on the other hand, was a residential flat where noise main-

ly came from the wireless Internet access point shared by occupants. Since the

residents included office workers, housewives, students and job seekers, the util-

isation profile of WLAN was much less predictable compared with Location A,
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resulting in a weaker seasonal feature. In comparison, Sample C exhibited no ob-

vious seasonality. Several reasons could have contributed to this finding. Firstly,

most departmental computers connected to Internet via wall sockets which sig-

nificantly reduced the wireless interference. And the lack of a predominant noise

source gave rise to more randomness caused by ad hoc wireless communication

between mobile devices. Moreover, the sampling period coincided with vacation

time and the Olympics, as a result usual daily schedule might have been affected.

In addition, in none of the samples was any obvious trend identified, and indeed

there had not been any factors, to our best knowledge, that would have caused

long-term increasing or decreasing tendency such as regular addition or removal

of wireless devices.

4.4 Summary

This chapter in the first part provided supporting evidence for the decision of

using ambient noise as indicators of channel quality for A-TSCH. We investigat-

ed negative effect of ambient noise on transmission success rates and observed

that performance varies among IEEE 802.15.4 channels because of their different

noise floors. Then the existence of noise threshold of was anticipated and through

statistical analysis two integral candidates were identified. Recognising the sig-

nificance of ambient noise, the second part of this chapter subsequently examined

the properties of noise samples using time series analysis approaches. Seasonality

of different significance was found in Sample A and B, whilst no trend factor was

observed. Findings in this chapter will assist later chapters, especially Chapter 5

and 6.



Chapter 5

Channel Quality Estimation

This chapter discusses the Channel Quality Estimation (CQE) module of A-

TSCH which is responsible for forming suitable knowledge about the desirabil-

ity of specific channels for wireless communication. In Section 5.1, different

techniques are considered for a simple lightweight quality estimator module for

A-TSCH. Subsequently the choice of estimator parameters is discussed in Sec-

tion 5.2. Then the performances of estimators are investigated through simulation

in Section 5.3. Finally this chapter is summarised in Section 5.4.

5.1 Noise Estimators

Motivated by findings in Chapter 4, A-TSCH uses ambient noise floor as the

main indicator of channel quality. However, some practical limitations should be

considered. On the one hand, noise readings are subject to sudden momentary

fluctuation in noise energy strength and may not accurately reflect channel quality

over longer periods. On the other hand, noise samples in A-TSCH are periodically

collected in dedicated NF timeslots. These temporal gaps between readings can

further affect their accuracy. To mitigate this problem, the CQE module employs

estimation techniques and the Exponential Smoothing (ES), Kalman filter (KF)

and Exponential Smoothing aided by Kalman filter (KFES) are discussed in this

section.

92
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5.1.1 Exponential Smoothing

Noise floor measurements are time series from a statistical perspective since they

are data points at uniform intervals [130]. Exponential Smoothing (ES) is a pop-

ular estimation technique for time series, known for its effectiveness and relative

simplicity [131, 132]. There are different variants of ES for different character-

istics of time series. In this work, we consider the Single ES which is the most

basic form, and the Seasonal ES due to the seasonal factor has been observed in

Section 4.3.

5.1.1.1 Single Exponential Smoothing

Single ES, also known as Simple ES, is the most basic form of ES which does not

assume the presence of trend or seasonal ingredients of time series. This method

is characterised by its low computational overhead which makes it suitable for

low-power wireless devices.

Ŷt+1|t = αOt + (1− α)Yt|t−1 (5.1)

The operation of Single ES is generalised in Equation (5.1). Ot denotes the

observation at time t and Yt|t−1 is the estimate for time t previously generated

at time t-1. The estimate for time t+1 at t, denoted by Ŷt+1|t, is the weighted

average of Ot and Yt|t−1, subject to smoothing coefficient α ∈ (0, 1). Estimates

in Single ES are calculated entirely on the most recent estimate and the current

observation, ensuring both modest computation and storage overhead for low-

power devices.

5.1.1.2 Seasonal Exponential Smoothing

Because the noise series exhibit certain level of seasonality in Section 4.3, we also

consider Seasonal ES which takes into account the seasonal factor. Estimation

procedures using Seasonal ES is provided in Equation set (5.2), which represents
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a special case of Holt-Winters method [133] with the trend term removed accord-

ing to the taxonomy in [134].

Ŷt+1|t = Lt + St−p+1 (5.2a)

Lt = α(Ot − St−p) + (1− α)Lt−1 (5.2b)

St = γ(Ot − Lt) + (1− γ)St−p (5.2c)

As shown in Equation (5.2a), the estimate for time t+1 yielded at t, Ŷt+1|t, is

the combination of non-seasonal factor Lt and seasonal component St−p+1, where

p is the length of season. The non-seasonal factor Lt and seasonal component

St−p are computed based on Equation (5.2b) and (5.2c), respectively. Lt, is the

weighted average of seasonally-adjusted observation (Ot−St−p) and the previous

estimate Lt−1 at time t-1, depending on coefficient α. The seasonal factor is

computed as the weighted averaged of seasonal components at the current time

(Ot − Lt), and an entire season ago (St−p), depending on an additional seasonal

coefficient γ.

5.1.2 Kalman Filter

Kalman filter (KF) [135] is an alternative method considered for the CQE mod-

ule. Compared with ES estimators which use static coefficients, the weighing

factors in KF are continuously adjusted [136] to achieve gradual convergence to

the true system state.

The KF process is illustrated in Figure 5.1. Functions in the figure are simpli-

fied based on the standard form defined in [137] to suit our specific case: firstly,

the monitored noise floor is one-dimensional information therefore reducing ma-

trix factors to scalar coefficients; secondly, since no definitive model is available

for channel noise floor, the overall noise level is assumed to be largely constant
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Figure 5.1: Operation of Kalman filter

and hence the system model factor is omitted.

The process of KF is often interpreted as an iterative cycle of Prediction

and Correction phases, as illustrated in Figure 5.1. Starting with the Prediction

phase, KF firstly generates a projection of the system state which in our case is

the channel noise floor. After a new observation of noise floor is obtained, the

control is passed to the Correction phase. Then the projected state is updated

according to observation to form an estimate. The updated state is used in the

Prediction phase of the next cycle as KF cycles proceed recursively.
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5.1.3 Exponential Smoothing aided by Kalman Filter (K-

FES)

An additional type of estimator, Exponential Smoothing aided by Kalman Filter

(KFES), is devised in this work aiming to combine the benefit of ES and KF. As

an extension to Single ES, coefficient α of KFES is dynamically adjusted using

KF based on the assumption that the most suitable smoothing coefficient tends

to be stable in a long term.

Algorithm 5.1 The algorithm of KFES estimator

Data :
Nk : Noise observation at time k
αk−1 : Coefficient used at k -1 (to generate ESTk)
ESTk−1 : Estimated noise level for time k -1

Result :
ESTk+1 : Noise level estimate for time k+1

1: function main
2: while (slotType == NF) AND (Nk available) do
3: Retrieve Nk

4: bestAlpha = bestCoefficient(Nk, ESTk−1)
. Retrospectively get the best α for last step

5: αk = KF(bestAlpha) . Get estimate of optimal α
6: ESTk+1 = ES(Nk, αk) . Get forecast of noise level
7: end while
8: end function

9: function BESTCOEFFICIENT(noise, est)
10: Find β̌ that minimizes |Nk −BESTCOEFFICIENT(ESTk−1, β)|
11: Return β̌
12: end function

This KFES estimator is described in Algorithm 5.1. Note that details of func-

tion ES and KF are omitted from the algorithm listing since their operations have

been discussed previously. For KFES, it is assumed that noise samples truthfully

reflect the momentary states of noise floor. Thus it is possible to determine the α
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which could have led to optimal estimates in the previous step. This retrospective

information is denoted by bestAlpha and used as the correction value for KF. The

estimate generated by KF is taken as the ideal α and subsequently used to yield

noise estimates.

5.2 Tuning Channel Quality Estimators

Both ES and kF are controlled by a number of parameters that are typically

associated with specific systems that the estimators are applied to. In this section

we examine the tuning of parameter values for CQE estimators. Investigations

are carried out through simulation. Specifically, estimators are implemented in

Matlab and Sample A, B and C introduced in Section 4.3 are used. To facilitate

the estimator tuning and the performance investigation afterwards, the out-of-

sample test approach is employed. Out-of-sample tests divide certain sample

into two halves [138]: the first portion is used for parameter selection in this

section and the second is utilised to test estimator performance in Section 5.3.

Estimators are tuned based on the accuracy of estimation in terms of Root Mean

Square Error (RMSE) between the original noise floors and resulting estimates.

Then the set of parameters that delivers the most accurate estimates is identified

and selected for further comparison and deployment.

5.2.1 Exponential Smoothing Coefficients

For tuning the basic smoothing coefficient α and the seasonal coefficient γ, nine

candidate values are evenly extracted between 0.1 to 0.9 at a step of 0.1. The

estimation accuracy of Simple ES is measured and illustrated in Figure 5.2. The

basic coefficient α yielding best estimates are found to 0.1, 0.4 and 0.3 for Sample

A, B and C, respectively. Adopting these corresponding α values, the accuracy

of Seasonal ES estimator using different γ is also tested. As the results in Fig-

ure 5.3 shows, the best-performing seasonal smoothing coefficients are 0.2, 0.3,

and 0.1 for Sample A, B and C, respectively, due to specific characteristics of the
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(a)

(b)

(c)

Figure 5.2: Estimation accuracy of different basic smoothing coefficients α for
Samples (a) A, (b) B and (c) C.
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(a)

(b)

(c)

Figure 5.3: Estimation accuracy of different seasonal smoothing coefficients γ for
Samples (a) A, (b) B and (c) C.



5. Channel Quality Estimation 100

environments present at the time of sample collection.

5.2.2 Kalman Filter Error Variance

Kalman filter requires that the observation error variance R and process measure-

ment error variance Q are determined in advance. Observation error variance R

is typically related to intrinsic characteristics of equipments. In this work we

assume R corresponds to the variance of RSSI readings captured by the mote.

According to the specification of the Atmel tranceiver used in GINA motes, the

maximum difference between detected and true energy strength is ±6 dB [139].

Based on the Empirical Rule [140] for normal distribution, the boundaries of

µ− 6σ and µ+ 6σ, that is, 6 standard deviations σ from the mean µ, allows for

an outlier probability of less than 2 ∗ 10−9. Therefore it is sufficient to assume 6σ

is equivalent to the measurement error of 6 dB. Another reason for this choice is

that R = 1 can be deduced from the fact that V ar = σ2 by letting 6σ = 6, which

greatly reduces the computational complexity for low-power wireless motes which

are not efficient in floating-point calculations [141].

Process error variance, on the other hand, denotes our confidence in the un-

derstanding of the system model. Q in most practical cases is unknown [142]

and typically cannot be directly observed [137]. This is particularly pertinent to

the case in this work because a general assumption of constant system has been

made, in which the confidence is fairly uncertain. The method previously used

to determine exponential smoothing coefficient is again adopted. Unlike the α, Q

does not have a fixed range. Consequently the function minimisation of Matlab

is employed to discover Q value that yields the smallest root-mean-square error

(RMSE) in 16 channels respectively. The results are summarized in Table 5.1.
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5.3 Estimator Performance

In the continuing stage of out-of-sample test, the performance of the estimators

are examined through simulation using parameters determined above. The sec-

ond portion of noise samples are used for simulation and estimator accuracy is

measured in terms of Root Mean Square Error (RMSE) and Mean Average Per-

centage Error (MAPE) between the captured and estimated noise floors.

Table 5.2: Estimator accuracy observed in simulations. The accuracy for three
sample sets is assessed in terms of Root Mean Square Error (RMSE) and Mean
Average Percentage Error (MAPE), respectively. The results achieved without
using any estimator are also provided as reference.

Error

Sample

Estimator
None

ES
KF KFES

Type Single Seasonal

RMSE

A 1.002 0.788 0.943 0.786 0.788

B 0.334 0.304 0.380 0.305 0.305

C 0.075 0.067 0.084 0.067 0.070

MAPE

A 1.1% 0.86% 1.03% 0.86% 0.86%

B 0.36% 0.33% 0.4% 0.33% 0.33%

C 0.08% 0.07% 0.09% 0.07% 0.08%

Results presented in Table 5.2 are average errors over all 16 channels. Data

in first column of the table are calculated without using any estimators, which

provide a baseline to highlight the improving effect of using estimators than di-

rectly using the raw noise readings.

For two ES variants, the Simple ES outperforms Seasonal ES with a notable

margin. This result is expected for Sample B and C because of their relatively
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weak seasonality. However, the inferior outcome of Seasonal ES for sample A is

possibly the result of the fact that the initial seasonal factor is derived from the

suggestion in [130] which as the author states is a simplistic form and may not

perform well. Another possible reason is that seasonality observed in Sample A is

an overall regularity that is only significant over longer durations. Therefore the

seasonal factor might be useful for estimating, for example, hourly average noise

floors, but may not be effective in improving accuracy of more frequent estima-

tion. The Kalman filter, despite largely simplified according to our specific case,

provides similar accuracy as the Simple ES. Comparable results are obtained with

KFES as well.

Overall, all estimators provide better accuracy in determining the future noise

floor than using unprocessed raw noise readings. However, seasonal ES produces

the least improvement whilst incurring increased computational overhead. There-

fore it will not be considered further for our implementation of A-TSCH. The

performance of the remaining three are comparable.

5.4 Summary

In this chapter, we discussed the Channel Quality Estimation (CQE) module

which transforms ambient noise readings containing momentary fluctuations into

channel desirability knowledge more suitable for A-TSCH. Different estimation

techniques were considered, and out-of-sample tests were carried out for parame-

ter tuning as well as performance comparison. In particular, Simple ES, KF and

KFES were found to provide comparable estimation accuracy and will be further

investigated through hardware implementation in subsequent chapters.



Chapter 6

Cooperative Blacklisting

In this chapter, we discuss in detail the Cooperative Blacklisting (CB) module

which is at the core of A-TSCH framework. Section 6.1 statistically demon-

strates that blacklisting can notably mitigate the adverse effects of noise and

improve successful delivery rates. Different cooperation strategies for blacklist-

ing are reviewed before the approach adopted by CB is described in Section 6.2.

Subsequently, Section 6.3 details the process for generating blacklists, followed

by the algorithm of applying blacklists to channel hopping in Section 6.4. Finally

a summary of this module is provided in Section 6.5.

6.1 Potential Benefit of Blacklisting

Motivated by observations in Section 4.2, A-TSCH employs blacklisting in the

anticipation of improved transmission success rates. In this section, we conduct

a statistical investigation into the potential benefit of blacklisting by simulating

its operation using existing data traces with different configurations.

6.1.1 Test Settings

The NFSbatch and ETXbatch values of communication traces introduced in Sec-

tion 4.2 are used for this section. Because packets were transmitted in batches

104
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using different frequencies in a round-robin fashion, every group of 16 consecu-

tive (NFSbatch,ETXbatch) pairs corresponds to a round of all 16 IEEE 802.15.4

channels. Accordingly the records can be transformed into a series of such groups

which form the basic units for our test steps.

Blacklist used in step i + 1 is derived from NFS of the ith step. The size of

blacklist is denoted by K, meaning the ETXbatch of these K channels are elimi-

nated from the calculation for this specific step. Consequently, the resulting ETX

of each test step is calculated on the ETXbatch of the remaining 16−K channels

in each groups of 16 (NFSbatch,ETXbatch) records.

Recalling Observation 3 in Section 4.2 which states ambient noise level only

significantly affect ETX if greater than certain threshold, an alternative black-

listing method is to dynamically identify and exclude channels with noise floors

exceeding the thresholds, instead of imposing fixed blacklist sizes regardless of

their conditions. Observation 4 suggests that -89 or -90 dBm are potential can-

didates for the integral noise threshold. Accordingly tests are also conducted

using blacklisting based on both thresholds, respectively. In any given test step,

channels whose NFSbatch are greater than the threshold are excluded in the next

step.

6.1.2 Test Results

Test results obtained using three data traces are illustrated in Figure 6.1a, 6.1b

and 6.1c, respectively. Triangles on blue solid lines correspond to results obtained

with different blacklist sizes K ∈ [0, 15] where top K channels in the noise floors

ranking get blacklisted. In particular, blacklist size 0 denotes unaltered standard

channel hopping without blacklisting, whilst size 15 blocks access to all but one

channel and hence is equivalent to single-channel communication.



6. Cooperative Blacklisting 106

(a)

(b)
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(c)

Figure 6.1: The potential effect of blacklisting. Horizontal axis denotes number
of excluded channels; vertical axis is average ETX. Triangles on the blue solid line
represent ETX achieved with corresponding blacklist sizes. Results of blacklisting
using noise thresholds of -89 and -90 dBm are shown in solid red and dashed black
horizontal lines, respectively. (a), (b) and (c) correspond to Sample A, B and C.

It can be observed that ETX achieved with blacklist sizes greater than zero

are uniformly lower than that of standard channel hopping. Specifically, signif-

icant reduction of ETX is obtained as the blacklist size grows from 0 to 8 as

shown in Figure 6.1a. This can be attributed to the fact that there existed eight

overwhelmingly noisy channels at Location A, according to Figure 4.3a in Sec-

tion 4.2. Therefore transmission was unreliable in these channels and the overall

ETX drops notably as they are excluded from the hopping sequence. Similar

observations can be made for traces of Location B and C as well. It is also found

that ETX does not monotonically decrease as the blacklist size increases. This

is because noise information in ith step does not necessarily remain accurate in

step i+ 1, underlining the dynamic nature of ambient noise.

There are also variations among test results for three experimental locations.

In Figure 6.1a, blacklist size 15 provides the best ETX which indicates that there

exists a channel at Location A which constantly provided the best transmission
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condition. Consequently using this channel exclusively would in theory yields the

optimal performance. In practice however, it is not suitable to use blacklist size

15: first, it effectively disables channel hopping and the system become vulnera-

ble to single point of failure if the channel suddenly deteriorates. Furthermore,

the existence of an overwhelmingly desirable channel is specific to the particular

environment at the particular time of experiment, which is expected to represent

a special case rather than normal scenarios.

Table 6.1: Performance of blacklisting using noise thresholds. Results are mea-
sured in ETX and the reduction in ETX compared with non-blacklisting channel
hopping.

Location A B C

Threshold
(dBm)

-89 -90 -89 -90 -89 -90

ETX 1.0182 1.008 1.0005 1.0005 1.0032 1.0032

Reduction 6% 7% 0.04% 0.04% 11.61% 11.61%

Results of blacklisting using noise thresholds are provided in Table 6.1, and

also illustrated using the solid red and dashed black horizontal lines in Figure 6.1.

At Location A, thresholds -89 dBm and -90 dBm deliver an reduction in ETX by

6% and 7%, respectively. As reflected in Figure 6.1a, the performance of the -89

dBm threshold is better than half of the fixed blacklist sizes whilst the -90 dBm

threshold reduces ETX to an extent comparable with best that fixed blacklist

sizes can achieve.

Reduction of ETX at Location B is not as significant. This is due to the fact

that the majority of channels in that environment have noise floors below either

of the thresholds as revealed in Figure 4.3c in Section 4.2, hence limited room for

blacklisting to make significant difference. This does not affect the effectiveness

of using noise threshold for blacklisting since ETX in this case are generally low
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in all channels and the difference in the order of 0.0001 only has minimal effect

on the overall transmission reliability. In comparison, most notable enhancement

in ETX is observed in results for Location C because many channels have noise

floors exceeding the thresholds during the experiments.

The above results provide supporting evidence that blacklisting can improve

transmission performance of standard channel hopping. Furthermore, it is found

that blacklisting using noise thresholds can deliver performance better than or at

least comparable to that achieved with fixed blacklist sizes. Since the ambient

noise is essentially environment-specific and time-varying, we believe it is a more

appropriate approach for blacklisting. Noise thresholds identified in Observation 4

are expected to be suitable criteria for blacklisting. In Chapter 7, the benefit of

blacklisting will be tested through implementation.

6.2 Blacklisting Strategies

In this section, we overview some strategies for blacklisting and describe the

method used for CB module in A-TSCH. A technique analogous to blacklisting

is called whitelisting [143, 45] which produces a whitelist containing admissible

channels. Although blacklisting and whitelisting are essentially the same in a

sense that they both separate one group of channels from the rest, they imply

different strategies for communication adaptation. Whitelisting only allows using

channels that are recognised as admissible; in comparison, all channels are by

default admissible with blacklisting until they are explicitly disabled. In other

words, blacklisting aims to make adaptation in a more conservative manner that

gives priority to the stability and robustness of channel hopping.

Blacklists generated by individual nodes are typically subject to spectral pe-

culiarity of their specific locations, and this spatial diversity should be taken into

account. A-TSCH addresses this problem by employing cooperative blacklisting

which enables blacklists to be decided based on information from more than one
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node. Similar to the cooperative spectrum sensing discussed in Chapter 2, there

are different cooperation strategies. In this section, we consider the global, link-

wise, and cluster-wise approaches.

The global strategy employs the philosophy of centralised spectrum sensing

cooperation model discussed in Section 2.3.1.1. With this approach, a universal

blacklist for the entire network is produced at the gateway node which receives

local channel quality reports from other nodes. The most notable advantages of

this strategy are the concentration of computational complexity and the reduced

synchronisation overhead for using a uniform blacklist. Because the gateway node

is typically powered by stable source, the overhead incurred by the computation

of blacklists tend not to pose energy drainage problem. The global cooperation

also minimises the potential risk of misaligned selective channel hopping sequence

caused by desynchronised blacklists.

However, the global strategy is subject to several potential problems. First,

global cooperation in a network scale may incur excessive communication over-

head. Local reports from nodes at the edge of the network need to be forwarded

many times before reaching the gateway, which intensifies the power consumption

of nodes en route and leads to delays in gathering information for cooperation.

Second, the relative simplicity of global cooperation tends to result in a lack of ac-

curacy and granularity to accommodate communication at specific locations. The

purpose of cooperation is to produce blacklists that capture channel desirability

of more than a single node; however the spatial diversity of wireless medium con-

dition makes it unrealistic for a single global blacklist to be sufficient, particularly

when the network covers an extensive area.

Alternatively, the link-wise strategy can address the accuracy issue of the

global cooperation. In this model, cooperation is carried out on the basis of

communication links. Both sender and receiver exchange their independently

proposed blacklist candidates and jointly decide upon the blacklist to use on
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the link. Compared with global cooperation, the link-wise strategy ensures the

blacklists in place reflect the channel desirability for communication at the specific

location. This improvement, however, comes at the expense of increased overhead

for storage and computation. Nodes need to maintain as many blacklists as the

number of neighbours they communicate with, and cooperative operations are

required for each link separately.

A trade-off between the global and link-wise strategies is provided by the

hierarchical cooperative model which groups nodes into clusters as discussed in

Section 2.3.1.2. One node in every cluster is appointed the clusterhead which

acts as the controlling entity over the its cluster members. Instead of sending

blacklist candidates to the gateway or exchange them with communicating peers,

nodes report to the head of their clusters which formulate the blacklist for the

entire cluster. Hence, in this cluster-wise cooperation, each cluster is effectively

a subnet using global cooperation within its own boundary.

The CB module of A-TSCH adopts this cluster-wise strategy since it exhibits

a range of favourable characteristics compared with the global and link-wise ap-

proaches. First, exchange of candidate reports confined within individual clusters

is more manageable in terms of the transmission delay and power consumption.

Second, cluster blacklists provide better accuracy in representing local spectral

condition than a global blacklist. Although cluster blacklists are potentially less

accurate as link blacklists, the chances of apparent intra-cluster spectral variation

can be minimised if proper clustering criteria are used. The potential issue can be

further mitigated with suitable decision-making algorithms. Third, cluster-wise

cooperation distributes computational cost in a more balanced manner among

clusterheads. In addition to reducing the dependence on a single entity of the

global strategy, it also alleviates overhead imposed on almost every node by the

link-wise approach.

The operation of CB module is depicted in Figure 6.2. The CB module consists
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Figure 6.2: Operation of Cooperative Blacklisting. This module consists of Co-
operative Election in NF slots and Selective Channel Hopping in Tx and Rx slots.
Processes of these two logical components are denoted by solid and hollow ar-
rows, respectively. Square boxes represent important function blocks; cylinders
represent persistent information entities, whilst temporary data are shown in par-
allelograms. Clusterhead and members are represented in different colour blocks.
The blue area to the left represents functions common to both node types.
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of Cooperative Blacklist Election in NF slots and Selective Channel Hopping in

Tx and Rx slots, which are denoted by solid and hollow arrows, respectively. The

process differs between clusterhead and other members, which are in different

colour blocks. Functions common to both node types are represented in the blue

area in the left part of the figure. In the subsequent sections of this chapter, detail

discussion of both Cooperative Blacklist Election and Selective Channel Hopping

are provided.

6.3 Cooperative Blacklist Election

The cooperative election of blacklists is conducted in Candidate Identification,

Candidate Aggregation, Blacklist Decision-making and Synchronisation phases.

This section provides details of these phases shown in Figure 6.2, followed by

discussions of invocation mechanisms for Cooperative Blacklist Election.

6.3.1 Candidate Identification

At the first stage of Cooperative Blacklist Election, nodes independently iden-

tify sets of undesirable frequencies by consulting their channel quality records

produced by the Channel Quality Estimates (CQE) module. Based on findings

in Section 6.1, undesirable channels are identified using certain noise threshold.

These resulting channel collections represent tentative blacklists that individual

nodes propose to use, which are hereafter referred to as blacklist candidates or

simply candidates. No channels are actually excluded from the hopping sequence

at this point since blacklist candidates are primarily intended to capture channel

condition of different locations, which provides the basis for cooperation.

6.3.2 Candidate Aggregation

Blacklist candidates are reported to corresponding clusterheads in the Candidate

Aggregation phase. To minimise extra energy consumption this may incur, can-

didate reports from member nodes are transmitted via piggyback on ordinary
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Figure 6.3: Format of A-TSCH DATA frames in comparison with that of IEEE
802.15.4e TSCH DATA frames.

data traffics. The format of data frame carrying candidate report is illustrated

in Figure 6.3. An additional 2-bytes is reserved in the frame payload before the

actual application data as highlighted in the figure. Each bit of this field corre-

sponds to the local tentative decision for a specific channel.

Because A-TSCH operates in networks with tree-like topologies as described

in Figure 3.3 of Section 3.2.2, all data traffics are forwarded by clusterheads ex-

cept for those directly connected to the gateway node. Consequently piggybacked

candidate reports are bound to reach their clusterheads. Two exceptional con-

ditions may occur when certain node has no data to send or data are lost in

transmission. In the former case, nodes with no data to transmit are not affected

by risk caused by ambient noise hence the absence of their reports has minimal

effect on overall performance. In the latter case, reports will eventually reach the

clusterhead in re-transmission or subsequent data traffics.
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6.3.3 Blacklist Decision-making

In the following Blacklist Decision-making phase, a clusterhead generates the

decision on the blacklist for the cluster. The decision-making mechanism imple-

mented in clusterheads is described in Algorithm 6.1. According to discussion

in Section 2.3.3, the hard combination technique is adopted in this process s-

ince reported blacklist candidates contain binary ON / OFF decisions for specific

channels, as opposed to the complete raw sensing data used in soft fusion [26].

Specifically, the algorithm employs a combination of AND-rule and OR-rule which

are both common hard combination techniques [144, 26].

The algorithm can be invoked by the reception of candidate reports from

member nodes. As show between line 3 and 8 in Algorithm 6.1, the clusterhead

compares received candidate report with its existing record for this member node.

If there is a mismatch, the election process is initiated by invoking the AND-rule

which produces a list of channels unanimously identified as undesirable by all

cluster members, as defined between line 15 and 27. Subsequently the OR-rule is

applied to the clusterhead’s own blacklist candidates and the list generated by the

AND-rule (line 28 - 34). Consequently, any channel marked in either of the list is

included in the blacklist for the entire cluster. The election can be alternatively

triggered by an update of the clusterhead’s own local candidates. In that case,

only the OR-rule is invoked as the product of last AND-rule remains valid.

The algorithm is designed to provide suitable blacklisting accuracy without

incurring excessive overhead. First, it recognises the fact that the clusterhead

is at the centre of all communication within its cluster. Accordingly any can-

didate identified by the clusterhead is elected in the final cluster blacklist to

ensure that the spectral condition of the clusterhead is reflected. Second, it in-

corporates information from cluster members to capture noisy channels that may

negatively affect the members’ side but undetected at the clusterhead’s location.

Third, it keeps the cooperation to a moderate level. Since spatially distributed

members may experience different spectral condition, it is unrealistic to reflect
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Algorithm 6.1 Cooperative Blacklist Decision-making

Data :
CSIZE : Number of cluster members
newCand[m] : Blacklist candidate reported by cluster member m
headCand : Local blacklist candidate generated by the clusterhead
memberCand[CSIZE] : Record array of blacklist candidates of cluster mem-
bers
memberBlacklist : List of channels included in all memberCand entries

Result :
clusterBlacklist : The blacklist decided for the entire cluster

1: function main
2: while Device up and running do
3: if newCand[m] received then
4: if memberCand[m] 6= newCand[m] then
5: memberCand[m] = newCand[m]
6: andRule( )
7: orRule( )
8: end if
9: end if

10: if headCand updated then
11: orRule( )
12: end if
13: end while
14: end function

Continued on the next page
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Cooperative Blacklist Decision-making (continued)

15: procedure andRule
. Only mark channels identified by all cluster members as undesirable

16: for i← 11, 26 do
17: for j ← 1, CSIZE do
18: if channel i not marked in memberCand[i] then
19: found = false
20: break
21: end if
22: end for
23: if found 6= false then
24: Mark channel i in memberBlacklist
25: end if
26: end for
27: end procedure

28: procedure orRule
. Mark the channel if identified by the clusterhead or all members

29: for i← 11, 26 do
30: if channel i marked in memberBlacklist OR in headCand then
31: Mark channel i in clusterBlacklist
32: end if
33: end for
34: end procedure

all member candidates in the cluster blacklist. Consequently only channels that

are commonly marked by all cluster members are included in the cluster blacklist.

There are limitations of using a uniform blacklist inside each cluster, since it

is possible that the undesirability of certain channel is not universally associat-

ed with all member locations and thus omitted from the final elected blacklist.

However, taking into account of the potential issues of link-wise blacklisting,

this algorithm ultimately represents a choice made in favour of reliability over

improvement. Additionally, this issue can be mitigated with adaptive channel

access mechanism such as Algorithm 6.2 which will be described in Section 6.4.



6. Cooperative Blacklisting 118

Figure 6.4: Format of A-TSCH advertisement (ADV) frames in comparison with
that of IEEE 802.15.4e TSCH ADV frames.

6.3.4 Synchronisation

After the cluster blacklist has been decided by the clusterhead, the decisions

need to be synchronised among cluster members in the last phase of Cooperative

Blacklist Generation.

Similar to the measure adopted in Section 6.3.2, the dissemination of the

cluster blacklist is integrated with the existing time synchronisation infrastruc-

ture using advertisement (ADV) messages. A 2-byte field is appended to the

ASN information of the ADV frame as illustrated in Figure 6.4. ADV messages

carrying both timing and blacklist information are placed into the outgoing buffer

and are transmitted in the next ADV timeslot.

This arrangement provides a robust mechanism whilst minimises the commu-

nication cost and modification on existing architecture. Loss of ADV messages

may only cause short delay in blacklist synchronisation as ADV messages are

frequently exchanged to maintain the network timing. Additionally, blacklisting
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is not activated in ADV timeslots which means problems in blacklist synchroni-

sation does not affect the ability of the network to remain functional.

6.3.5 Invocation Mechanism

After the preceding discussions of cooperative blacklisting procedures, this sec-

tion looks into the invocation mechanism of the module. The default duration

of a timeslot implemented in OpenWSN is approximately 15 ms; accordingly a

slotframe with ten slots accounts for less than 0.2 second. This is much shorter

than the typical intervals between the data transmission of low-power wireless

networks in IoT therefore it is neither suitable or necessary to invoke blacklist

election in every NF slot.

The blacklist election can be invoked in periodic or reactive mode [33, 26, 121].

In the periodic mode, the election is regularly activated to maintain an up-to-date

reflection of actual spectral condition. But choosing a suitable update period is

often not straightforward. On the one hand, short update periods can result

in excessively frequent changes of blacklist which can be counter-effective. The

election ultimately relies on channel quality estimates to make sensible judgment,

and suitable estimates can only be obtained with a reasonable amount of ambi-

ent noise readings. Overly brief invocation periods also incur more computation

and transmission overhead, undermining network stability and increasing the risk

of misaligned blacklist between communicating peers. On the other hand, long

invocation periods, though preferable in terms of cost and stability, may cause

blacklists to lag behind current spectral condition and result in inaccurate ex-

clusion of channels. Since the spectral condition is environment and application

specific, a feasible practice is to deduce proper invocation period based on trials

conducted with real deployment. The performance of this periodic scheme will

be tested in Chapter 7 with a number of different parameters.

In the reactive mode, blacklist elections are invoked as a reaction to certain
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spectral event without definitive time constraints. There are a range of triggers

that could be used for this approach. Nodes could actively monitor the success

rate of transmission, and invoke a re-election of blacklist once the performance

deteriorates to a certain level. Transmission success rates can be monitored in

terms of either overall ETX or that of each channel individually [143]. The former

comes with lower complexity but may be less sensitive if only a small number of

channels are affected by noise, whilst the latter could be more responsive at the

expense of increased computational overhead. A limitation of using transmission

success rates as the trigger of blacklist election is that the notable rise of ETX is

a type of a posteriori information, meaning the actual loss of packets must take

place before remedial measures can be taken.

For the CB module of A-TSCH, an alternative dual-threshold criteria is de-

vised for event-triggered invocation mechanism using noise thresholds identified

in Section 4.2.5. Noise levels of -89 dBm and -90 dBm are defined as the upper

and lower thresholds, respectively. Channels with noise floors excessive of the

upper threshold are immediately selected for blacklist candidates and those be-

low the lower threshold are considered desirable for transmission. Between these

two thresholds is a buffer zone. Channels with noise floors falling into this region

are thought to be in a transitional and unstable state and their status regarding

blacklist candidate election are not changed. For example, if a channel’s noise

floor drops from -88.5 dBm to -89.5 dBm, it is unclear whether the decline is

temporary or persistent. Therefore it is assumed to still possess the previous-

ly recognised quality. This arrangement of dual-threshold is designed to avoid

excessively frequent candidate elections which lead to surge of communication

and computational overhead. This event-triggered reactive invocation scheme is

tested in experimental work presented in Chapter 7.
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6.4 Selective Channel Hopping

The Selective Channel Hopping of CB module, active in Transmission (Tx) and

Reception (Rx) timeslots, controls the channel hopping behaviour using blacklists

generated by Cooperative Blacklist Election.

The operation of Selective Channel Hopping is described in Algorithm 6.2.

After entering a Tx or Rx slot, an operating channel number is generated based

on Equation (3.1). Instead of immediately communicating in this channel as with

standard IEEE 802.15.4e, the cluster blacklist is queried to ascertain the valid-

ity of this channel. If the channel is not in the blacklist, the node proceeds to

transmit or receive; otherwise a new channel that is admissible must be gener-

ated. To ensure the randomness of this new channel, a pseudo-random number

generator unrelated to Equation (3.1) is adopted using ASN as the seed value.

Since numbers produced by the generator are controlled by the seed and ASN is

uniform within a network running A-TSCH, the new channel is generated in the

pseudo-random yet coordinated way for communicating nodes.

In Rx slots, nodes proceed to data reception after a permissible channel for

cluster blacklist is obtained. On the other hand, if the node is not the clusterhead

and the slot type is Tx, the algorithm continues to check the channel against its

own blacklist candidate. This is because a receiver in the topology of A-TSCH is

the clusterhead for the nodes from which it receives data and the decision-making

mechanism in Section ensures the channel desirability of the clusterhead is fully

represented in the cluster blacklist. But channels undesirable for certain sender

might not be included in the cluster blacklist and consequently additional mea-

sures are needed to avoid using these channels in transmission.

If a sender finds that the channel is included in its local blacklist candidate,

the node gives up the chance to send in this Tx slot and wait for the next turn.

This allows noisy channels at both ends of a wireless link to be excluded from
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Algorithm 6.2 Selective Channel Hopping

Data :
clusterBlacklist : Cluster blacklist
localCand : Local blacklist candidate of non-clusterhead node
outQueue : Buffer for outgoing packets
ASN : ASN number

Result :
opChan : The operating channel to use for transmission or reception in this
timeslot

1: function main
2: while (slotType == Tx) OR (slotType == Rx) do
3: opChan = chanNumGen(ASN)
4: . Get channel number using ASN
5: while opChan is marked in clusterBlacklist do
6: opChan = chanNumGen(null)
7: . Get a new channel number
8: end while
9: if nodeType 6= clusterhead then

10: if opChan is marked in localCand AND outQueue is not full then
11: Give up transmission and leave the packet in outQueue
12: end if
13: end if
14: end while
15: end function

16: function chanNumGen( param )
. Mark the channel if identified by the clusterhead or all members

17: if param 6= null then
18: Return (parammod16) + 11
19: . Get channel number based on ASN
20: else
21: Return rand(11, 26)
22: . Get channel number with standard pseudo-random generator
23: end if
24: end function
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hopping sequence without necessitating pair-wise negotiation. Considering the

fact that typical duration of a timeslot is about 150 ms, it should not notably

affect the data. As an additional safeguard, this postponing measure is only taken

when the outgoing queue has enough space for future packets. If the packet buffer

is about to be overflown, data can be transmitted without checking the sender’s

blacklist candidate.

6.5 Summary

This chapter discusses the Cooperative Blacklisting module which is central to

the A-TSCH framework. CB functionality mainly consists of Cooperative Black-

list Election and Selective Channel Hopping. Cooperative Blacklist Election is in

charge of the production and synchronisation of cluster blacklists, which can be

either activated periodically or triggered by certain events. The election of black-

lists is achieved via cluster-wise blacklisting, which represents a trade-off between

the global and link-wise strategies. With a modification of the DATA and ADV

frame structures, cooperation is mainly performed with in parallel with the exist-

ing data transmission and timing synchronisation, incurring minimal operational

overhead. Selective Channel Hopping regulates the utilisation of blacklist to ex-

clude blacklisted channels from hopping sequence. A standard pseudo-random

generator that is widely available in common programming libraries is employed

to propose alternative channels once the default channel is found to have been

blacklisted. Transmitting nodes additionally check their own candidates to decide

whether to postpone the transmission in order to avoid using undesirable chan-

nels that are only known to the sending side. Consequently, wireless medium is

only accessed in permissible channels.



Chapter 7

A-TSCH Performance Evaluation

This chapter presents an investigation into the performance of A-TSCH through

experiments. Firstly, Section 7.1 specifies the settings of experiments. Then

the criteria for performance assessment are introduced in Section 7.2, followed

by analysis of experimental results in Section 7.3. A summary of experimental

findings is provided in Section 7.4.

7.1 Experiment Settings

This section describes experiments conducted to evaluate the performance of

A-TSCH. The experimental environments and the deployment of devices are in-

troduced at first, and then different configurations for A-TSCH implementation

are specified.

7.1.1 Environment and Deployment

Experiments were conducted at Location A introduced in Section 4.1 because this

workplace environment provides the most dynamic noise profile out of the three

available options. First, the overall detectable noise strength at Location A is

more suitable for assessing the effectiveness of A-TSCH, compared with Location

124
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B and C where ambient noise is too weak to exert significant influence on com-

munication as discussed in Chapter 4. Second, the temporal variation of noise

floor in terms of the magnitude and distribution across the 2.4 GHz band is able

to provide a wide scope of different spectral condition, therefore more interesting

measurements of performance can be obtained at this location. Third, the rela-

tive spaciousness of this workplace makes it possible to capture certain level of

spatial diversity with increased size of deployment.

A total of 18 GINA motes [13] were used for the experiments. Note that the

hardware was chosen in the interest of convenience and A-TSCH is also compat-

ible with other platforms such as TMote Sky [14]. The placement of nodes is

illustrated in Figure 7.1. Node 1, shown in the brown circle, was attached to a

desktop and appointed as the gateway. Positions of remaining motes are shown

as blue circles with corresponding ID.

7.1.2 Configuration

The implementation of A-TSCH is developed on top of UC Berkeley’s OpenWS-

N stack [145]. Because 6LoWPAN is an integral part of the OpenWSN stack,

JANET IPv6 tunnelling service is installed and activated in the desktop to which

the gateway node is attached. Accordingly sensing data generated inside the low-

power network can be accessed over the Internet.

All motes are programmed to run A-TSCH and the structure of the slotframe

used in our implementation is depicted in Figure 7.2. The length of slotframe

is set to nine. The first timeslot is ADV for network synchronisation, followed

by five TX/RX slots for the exchange of data packets. The two subsequent NF

timeslots are reserved for noise floor detection. Within each NF slot, 128 noise

samples are collected and averaged to produce the noise floor reading for the

specific slot. The last slot which is not assigned to any task.
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Figure 7.1: The deployment of GINA motes at Location A. Circles denote mote
positions with corresponding ID. The brown circle represents the gateway node
and the remaining motes are denoted by blue circles.

This arrangement is a practical choice taking into account the balance be-

tween transmission efficiency and detection accuracy. Because blacklists are not

applied in NF slots, channels selected for noise detection follow the pattern high-

lighted in the NF columns of Table 7.1 which shows the default channel hopping

sequence without blacklisting. The red cells collectively constitute the entirety of

IEEE 802.15.4 frequencies, therefore it takes eight slotframes to sample the noise

floors of all channels. The slot time in our implementation is 15 milliseconds

hence eight slotframes take 1080 milliseconds, that is, slightly over one second.

Experimental configurations shown in Table 7.2 are used to investigate A-

TSCH performance in distinct scenarios.
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Figure 7.2: A-TSCH slotframe used in experiments.

Table 7.1: Default Channel Hopping Pattern for Slotframe of nine timeslots.
Values in the table are IEEE 802.15.4 channel numbers. A complete spectrum
sensing cycle of 16 channels in the NF slots is highlighted in red.

Slotframe

Slot Type

ADV
Tx
Rx

Tx
Rx

Tx
Rx

Tx
Rx

Tx
Rx

NF NF IDLE

1 26 11 12 13 14 15 16 17 18

2 19 20 21 22 23 24 25 26 11

3 12 13 14 15 16 17 18 19 20

4 21 22 23 24 25 26 11 12 13

5 14 15 16 17 18 19 20 21 22

6 23 24 25 26 11 12 13 14 15

7 16 17 18 19 20 21 22 23 24

8 25 26 11 12 13 14 15 16 17

9 18 19 20 21 22 23 24 25 26
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Experiment I has blacklisting disabled to represent standard IEEE 802.15.4e

TSCH. In Experiment II to V, the performance of A-TSCH is tested using in-

vocation mechanisms discussed in Section 6.3.5. Specifically, periodic invocation

is used in Experiment II to IV with using the noise threshold of -89 dBm and

periods of one, two and five minutes, respectively. In Experiment V, the event-

triggered mechanism is deployed with the dual-threshold criteria introduced in

Section 6.3.5.

The ES, KF and KFES estimators discussed in Chapter 5 are also tested.

In Experiment II to IV, every possible combination of invocation period and

estimator is tested, resulting in nine iterations each. Because invocation periods

do not apply in Experiment V, nine iterations using a specific estimator are

carried out. Accordingly, a total of 63 rounds of test took place. In each test,

motes are configured to send 600 packets to the gateway at 0.5 Hz.

7.2 Evaluation Criteria

The performance of A-TSCH is evaluated in both control plane and data plane.

On the one hand, the control plane investigation ascertains whether the blacklist-

ing operation of A-TSCH behaves correctly with respect to the spectral condition.

On the other, the data plane evaluation demonstrates the effect of A-TSCH on

data transmission.

7.2.1 Control Plane Metrics

The correctness of blacklisting operation is an important evaluation criterion

since the performance of A-TSCH is closely related to its hopping sequence. For

this purpose, the metric of Blacklisting Rate (BR) is introduced. As defined

in Equation (7.1), BR[c] reflects the probability for channel c to be blacklisted

during the experiments. Accordingly it quantifies how frequently certain channel

was recognized as noisy and excluded by the blacklisting process.
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BR[c] =
Number of blacklisting decisions that include channel c

Total number of blacklist decisions made

c ∈ [11, 26]

(7.1)

7.2.2 Data Plane Metric

The most significant indicator of performance is the improvement of transmission

success rates, as it is the very motivation for A-TSCH to be devised. According to

the definition introduced in Section 4.2.2, Expected Transmission Count (ETX)

is calculated based on numbers of transmitted and received packets to indicate

the reliability of packet delivery.

7.3 Results

7.3.1 Control Plane

Since the performance of A-TSCH is largely attributed to its blacklisting oper-

ations, the blacklist updates during the experiments are examined to ascertain

whether A-TSCH is able to correctly exclude channels in accord with noise floor

conditions. For this purpose, the channel condition was obtained using Wi-Spy,

a commercial spectrum analyser [146] to provide trusted knowledge of noise floor

and the resulting traces of noise density are presented in Figure 7.3a.

Curves in Figure 7.3b represent average channel BR using different invoca-

tion modes which are found to be in agreement with the actual noise condition.

Figure 7.3a, 11 to 13 and 21 to 23 are the most frequently blacklisted channels,

whilst the relatively quiet channel 25 and 26 are the least blacklisted ones. This

demonstrates that A-TSCH is able to correctly identify and blacklist the most

noisy channels, leading to enhanced transmission reliability. It is also observed

that the BR of the triggered mode are slightly greater than that of the periodic

version. This is because blacklist elections are only activated when there is some
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(a)

(b)

(c)

Figure 7.3: The noise floor density is obtained with WiSpy and presented in (a).
The average blacklisting rates (BRs) are plotted in (b) for different invocation
modes and in (c) for different A-TSCH estimators.
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channels to be excluded in event-triggered mode, whilst it is not necessarily the

case for scheduled elections in periodic mode.

In order to look at the behaviours of different channel quality estimators, the

average BRs of ES, KF and KFES estimators are plotted in Figure 7.3c. It is

observed that the BR in general is higher with ES than the other two. This

again demonstrates that ES is more apt to react to short-term changes in noise

condition, which may be an advantage in terms of the capture of blacklisting

opportunities and a disadvantage if the the estimate it generates vary too wild-

ly. This also partly explains ES’s good performance in event-triggered mode as

illustrated in Figure 7.4b and Table 7.4. Furthermore, KFES appears to yield

BR that are at a level between ES and KF, which is consistent with the earlier

observations on ETX performance.

In both Figure 7.3b and 7.3c, there is a high BR for channel 11. Although

this does not contradict Figure 7.3a, the magnitude at this channel is slightly

disproportionate compared with the level of BR for almost equally noisy chan-

nels such as 21 and 22. This observation may be due to the fact that there is

only one WiSpy channel analyser and it has to be attached to a fixed desktop.

Therefore its readings are most accurate at that position. The motes, on the

other hand, are spread over the environment and may be exposed to noise events

that are either not detected by Wispy or insufficient to be reflected in the graph.

This once again indicates that noise profiles are closely associated with specific

environments and further investigation into estimation techniques should be con-

ducted in future work. In spite of the diversity discussed above, the shapes of

BR lines in Figure 7.3b and 7.3c are all in agreement with the profile of noise

floor densities in Figure 7.3a, demonstrating the overall correctness of A-TSCH

estimator and the blacklisting operation.
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7.3.2 Data Plane

To facilitate the analysis, we in this section focus on data transmitted from Node

2, 4, 5, 9, 11, and 13, since they cover the key positions of the hexagonal area

in the environment. The average ETX achieved with different estimators are

computed and reported in Figure 7.4, where the results of standard TSCH are

computed and provided as a dotted baseline.

The performance of A-TSCH with periodic invocation scheme are illustrated

in Figure 7.4a. The resulting reduction in ETX is also listed in Table 7.3. Three

individual segments of the figure denote results achieved with different estimators

respectively indicated on the horizontal axis, and inside each segment the ETX of

different invocation periods are represented by three columns. It is observed that

ETX is visibly higher with the period of 1 minute than the other two, at least

0.8% less in average ETX reduction according to Table 7.3. This reflects the

potential counter-effectiveness of unnecessarily frequent blacklist election. The

shorter intervals between each election, the greater chance the resulting cluster

blacklist and candidates are affected by short-term fluctuation of noise floors,

which increase the probability of suboptimal blacklisting. Moreover, exceeding-

ly frequent election also increase the risk of desychronised cluster blacklists. If

member nodes do not learn the updated cluster blacklist in time, their may end

up transmitting in channels already excluded by their clusterhead. The periods

of two and five minutes yield comparable ETX, and no definitive findings can be

drawn based on existing evidence.

Variation in ETX reduction is also existent between A-TSCH estimators,

which is visualised in a comparison across all segments in Figure 7.4a and can

be found in Table 7.3. Based on data in the rightmost column of Table 7.3, KF

and KFES are the best-performing estimators, indicating their ability to yield

accurate estimation of the desirability of frequencies. Also it is observed that

the level of ETX reduction using ES estimator varies more notably with different

periods, reflecting its relatively less stable feature.
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(a)

(b)

Figure 7.4: The Expected Transmission Count (ETX) observed with distinct ex-
periment settings. The horizontal axis is the type of estimator and the vertical
axis denotes the average ETX. The results of Experiment II, III and IV for A-
TSCH using periodic invocation mechanism are illustrated in (a). Inside each
segment of corresponding estimator type, 3 bars denote different choices of invo-
cation period. In (b) the results of Experiment V for event-triggered invocation
scheme are depicted. In both (a) and (b) the ETX achieved in Experiment I with
standard TSCH is provided as a baseline.
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Table 7.3: The ETX reduction over standard TSCH achieved with A-TSCH using
periodic invocation. Configurations correspond to Experiment II, III and IV.
Percentages are calculated with respect to different experiment settings. Averages
for individual estimators and periods are provided in the rightmost column and
last row, respectively.

Estimator

Invocation

Period 1 min 2 min 5 min Average

ES 2.917% 4.194% 3.910% 3.674%

KF 3.721% 4.935% 4.636% 4.431%

KFES 4.084% 4.636% 4.652% 4.457%

Average 3.574% 4.588% 4.399%

Table 7.4: The ETX reduction over standard TSCH achieved with A-TSCH using
event-triggered invocation. Configurations correspond to Experiment IV. Per-
centages are calculated with respect to different experiment settings. Averages
for individual estimators are provided in the rightmost column.

Estimator ES KF KFES Average

ETX Reduction 4.793% 2.901% 4.115% 3.937%

The results of event-triggered invocation scheme as described in Section 6.3.5

are illustrated in Figure 7.4b and Table 7.4. Unlike previous experiments, ES

estimator in this mode outperforms the other two. A possible explanation is that

the simplicity of ES enables it to capture changes in noise floor more quickly

therefore more suitable for detecting short-lived events. As a result it is desirable

for effectively exploiting blacklisting opportunities. Kalman filter, in comparison,

tend to evolve gradually to optimal estimates hence its effect is less notable. K-

FES, combining the straightforwardness of ES and stability of KF, provides the



7. A-TSCH Performance Evaluation 136

moderate ETX reduction.

It should be noted in Figure 7.4 and quantification in Table 7.3 and 7.4 that

A-TSCH uniformly deliver lower ETX than standard TSCH regardless of specific

settings. This proves the enhancing effect of A-TSCH on transmission success

rates. Furthermore, A-TSCH based on ES and KFES were observed to pro-

vide comparable performance with either periodic and event-triggered invoca-

tion schemes. But event-triggered blacklist is considered superior to the periodic

scheme as its flexibility facilitates adaptation to changing environment and noise

profiles which are essentially unpredictable. Accordingly we prefer the event-

triggered approach and use this invocation scheme for experiment in the next

chapter.

7.4 Summary

In this chapter we evaluated A-TSCH framework in terms of its ability to cor-

rectly identify suitable blacklist and enhancing effect on transmission success

rates. Experiments were conducted in the open workplace environment known

as Location A throughout this work. The blacklisting decisions were examined

utilising a WiSpy channel analyser. We found that A-TSCH was able to cor-

rectly make blacklisting decisions in accord with the spectral condition. ETX

were also computed with respect to different configurations including invocation

mode and estimator types. The most significant overall ETX reductions have

been observed with KF and KFES in the periodic mode and ES and KFES in the

event-triggered mode. Despite the fact no deterministic verdict has been worked

out on different configurations, A-TSCH uniformly delivered better transmission

success rates than standard TSCH.



Chapter 8

Cross-layer Enhancement

As pointed out in Chapter 1, an important ingredient of adaptive communica-

tion for IoT is the cross-layer optimisation [121]. This chapter investigates the

synergy between MAC layer A-TSCH and an IP-based routing protocol at the

network layer. In Section 8.1, the routing protocol for low power wireless net-

works is reviewed. Then the spectrum-related routing metric for augmented RPL

is introduced in Section 8.2. The effectiveness of the new metric is first examined

through simulations presented in Section 8.3. Subsequently experiments are con-

ducted to test its performance in real deployment. The settings of experimental

work are specified in Section 8.4, and evaluation criteria are described in Sec-

tion 8.5. Collected experimental results are discussed in Section 8.6. And at last

our findings are summarised in Section 8.7.

8.1 Routing in Low-Power Wireless Networks

This chapter specifically focuses on the IPv6 Routing Protocol for Low-Power

and Lossy Networks (RPL) developed by IETF Routing Over Low power and

Lossy networks (ROLL) working group. Low-power wireless networks are there-

fore required to implement IPv6 over Low power Wireless Personal Area Networks

(6LoWPAN) above the MAC layer. As discussed in Chapter 2, 6LoWPAN re-

duces the transmission overhead of standard IPv6 through header compression,

137
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providing a lightweight solution to the issue of interoperability and integration

for existing IP-based Internet [111, 113, 121]. In this section we present a brief

review of some key facts of RPL.

RPL is an IP routing protocol designed to accommodate the requirements of

low-power wireless networks. Typical characteristics of such networks include:

support for only low data rate, unstable transmission reliability, restrained pro-

cessing power, memory and energy of router nodes, and so forth. Additionally,

low-power wireless networks consist of potentially large number of nodes and

the traffics are often Multipoint-to-Point (MP2P) or Point-to-Pultipoint (P2MP)

rather than Point-to-Point.

In order to address the issue that low-power wireless networks typically do

not have predefined or static topologies, RPL perceives a network topology as a

Destination Oriented Directed Acyclic Graph (DODAG), which has a cycle-free

structure where graph edges lead to common data sink, also referred to as the

DODAG root and is in many cases the gateway node [114, 115]. As a distance-

vector protocol, each node in RPL DODAG is assigned a Rank value which in-

dicates its position in the topology relative to the root: the higher a Rank, the

more distant the node from the gateway. Consequently, the routing of packets is

essentially the process of choosing the neighbour with the lowest Rank at each

hop in typical scenarios where data are aggregated at the gateway.

The DODAG is constructed and maintained in RPL based on Object Func-

tion (OF) and periodic exchange of DODAG Information Object (DIO) messages

[119]. An OF defines the rule of Rank calculation and also the selection of the

next-hop (also referred to as parent). The construction of a DODAG starts when

the root advertise its presence using DIO messages. Nodes that receive the DIO

make decision on whether or not to join the DODAG grounded at this specific

root based on their OF settings. Once they agree to join, they will recognise

the root as their routing parent. Accordingly these nodes now form the second
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tier of the graph and their own Ranks are calculated as additive to the original

Rank of their parent. Nodes that are configured to act as router will repeat the

above process by broadcasting their Ranks to their neighbours so that subsequent

tiers are also established. Nodes that are not configured to act as router or not

selected by any of its neighbours as their parent are leaf nodes. The construction

of DODAG is completed once all nodes at the lowest tier are leaf nodes.

A multitude of metrics can be defined in OF for the computation of Rank

values. As suggested in [118], metrics are in the broad categories of node and

link status. Node status may be workload, residual energy level, hop count; and

link status may refer to throughput, latency or reliability. The version of RPL

implemented in the OpenWSN protocol stack [145] uses ETX records of com-

munication with individual neighbours as the default routing metric for selecting

next-hops.

8.2 Spectral Routing Metric for RPL

In this section, we propose a new routing metric for RPL which enables underlying

spectral condition to be taken into account in choosing data paths. The aim and

objectives of the proposal are described, followed by formal definitions of the

metric and its components.

8.2.1 Aim and Objectives

Due to the intrinsic unreliability of wireless medium, the spectral condition bears

significant effect on the quality and cost of certain links. Existing versions of RPL

monitor changes in links quality primarily using ETX records. However, ETX

only indirectly reflet the effect of spectral condition and may be slow in capturing

updated situations as notable changes in ETX values often occurs after a series

of packets have been already lost. Our new spectral routing metric is proposed

in order to enable more suitable and timely routing decisions to be made for low
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power wireless networks in the presence of ambient noise.

To this end, the metric needs to be able to capture the spectral conditions of

the current node and potential next-hops. The candidate blacklists in A-TSCH

framework are generated based on ambient noises of IEEE 802.15.4 channels in

the 2.4 GHz band observed at individual nodes, and are therefore used as the

source of spectral information.

In the context of low-power wireless networks using A-TSCH, the spectrum-

related costs associated with certain links mainly come from the difference be-

tween blacklist candidates independently yielded by communicating nodes. Ac-

cording to the description of the cooperative blacklisting decision-making in Sec-

tion 6.4, only channels universally identified by all cluster members are included

in the cluster blacklist. If a channel generated in pseudo-random channel hopping

is only included in the local blacklist candidates, the sending node postpones the

transmission and wait for the next turn. As the difference between the blacklist

candidates grows, the chance for this delay in transmission increases which would

lead to the point where sender has not choice but to carry out transmission in

locally undesirable channels because the outgoing queue is being overflown. Con-

sequently, the disparity between blacklist candidates should be captured in our

spectral routing metric.

Blacklist candidates also provide other important information of link costs in

addition to their disparity. As previously discussed, the communication should

ideally take place in channels that are not present in blacklist candidates of either

ends of the link. Therefore the number of commonly desirable IEEE 802.15.4

channels is another indication of the costs of links to potential next-hops. As

a simplistic example which shows the importance of this indicator, consider the

difference between the two links that have identical blacklist candidates with size

of 1 and 15. Whilst these two links apparently have the same level of blacklist

disparity, the former has a total of 15 usable channels in hopping sequence whereas
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the latter leaves only one channel available.

8.2.2 Metric Definitions

We term the new routing metric as Spectral Link Cost (SLC), which is a compos-

ite scalar value jointly determined by the Disparity (DI) and Exhaustion (EH)

factors that capture the two types of blacklist-related information discussed pre-

viously. In the following paragraphs, the definitions of DI and EH are provided

first, and then the metric of SLC is formally introduced. To facilitate our dis-

cussion, equations in subsequent discussions are presented with respect to the

hypothetical link connecting Node P and Node Q. The blacklist candidates of

these two nodes are denoted by BCP and BCQ, respectively. Additionally, the

16 IEEE 802.15.4 frequencies in 2.4 GHz band are collectively represented as U,

thus its set cardinality |U| equals 16.

8.2.2.1 Disparity (DI) Factor

The DI factor measures the level of difference between the blacklist candidates of

two ends of certain link. As defined in Equation (8.1), DIP Q takes the value of

zero when the union of both BCP and BCQ is empty, since no spectrum-related

cost exist when none of the channels are actually blacklisted. Otherwise, DI is

calculated based on the ratio between the number of IEEE 802.15.4 channels

commonly identified in BCP and BCQ, and those collectively included in the

union of both candidates.

DIP Q =


0, if BCP ∪BCQ = ∅.

2 · |BCP ∪BCQ| − |BCP ∩BCQ|
|BCP ∪BCQ|

= 2− |BCP ∩BCQ|
|BCP ∪BCQ|

, otherwise

(8.1)
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From probability theories we know that (BCP ∩ BCQ) ⊆ (BCP ∪ BCQ),

therefore 0 ≤ |BCP∩BCQ|
|BCP∪BCQ|

≤ 1 is within the range between [0,1] provided that

BCP ∪ BCQ 6= ∅. The ratio takes the maximum value of 1 when Node P and

Q have identical blacklist candidates, that is |BCP ∪ BCQ| = |BCP ∩ BCQ|. As

the difference between BCP and BCQ begins to arise and increase,
|BCP∩BCQ|
|BCP∪BCQ|

decreases and reaches the minimum value of 0 when BCP and BCQ become so

different that they contain no IEEE 802.15.4 channels in common. During this

process, the value of DIP Q changes from 1 to 2 according to Equation (8.1).

Therefore the spectral cost caused the disparity between blacklist candidates of

certain link represented by the DI is within the ranges [1, 2], except the case of

both empty blacklist candidates where DI equals 0.

8.2.2.2 Exhaustion (EH) Factor

The EH factor measures the potential overhead incurred by the exhaustion of

mutually desirable channels for both sending and receiving sides of the link, that

is, the total of channels collectively included in both blacklist candidates.

EHA B =


255, if BCP ∪BCQ = U.

EHA B =
|U|

|U| − |BCA ∪BCB|
, otherwise

(8.2)

The definition of DHP Q is provided in Equation (8.2). When |BCP ∪ BCQ|
equals U which is the complete set of IEEE 802.15.4 channels, no mutually desir-

able channels exist on the link, therefore the cost represented by EH is assigned

to the maximum value of 255, which is the largest possible for 8-bit field used

in this work. Otherwise, EH ranges in [1, 16] corresponding to the number of

channels included in either of the blacklist candidates.
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8.2.2.3 SLC

The definition of the metric of SLC is provided in Equation (8.3) combining the

DI and EH factors. Two special cases are considered: according to the previous

definitions of DI, no disparity cost is incurred when BCP ∪BCQ = ∅. In fact, this

applies not only to DI but also to the entire SLC because spectral cost is irrelevant

to A-TSCH when no channels are blacklisted, therefore SLC equals 0 in this case.

Additionally, the EH factor takes the maximum value when BCP ∪BCQ = U for

that no mutually desirable channels are existent. Similarly, this also applies to

the overall spectral link cost and therefore SLC equals 255 under this condition.

Apart from these two special situations, SLCP Q is calculated as the product of

DIP Q and EHP Q, which is in the range of [1, 32]. Links with lower SLC are

preferred over those of higher SLC as it implies smaller overhead associated with

A-TSCH and less likely disruption at MAC layer.

SLCP Q =


0, if BCP ∪BCQ = ∅.

255, else if BCP ∪BCQ = U

DIP Q · EHP Q, otherwise

(8.3)

In our version of RPL, SLC is used as the main routing metric and the default

ETX-based metric implemented in OpenWSN is employed as the tie-breaker ac-

cording to the recommendation in [118]. This arrangement is also motivated by

the concern that ETX can provide useful information when factors other than

ambient noise such as multipath fading have dominant effect. Note the funda-

mental operation of RPL remains intact and the modification is only made to the

specific criteria used when making routing decisions.
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8.3 Simulation

The effect of our new routing metric was investigated in software simulation before

hardware implementation. In this section we first provide a brief introduction to

the simulator and related tools. Subsequently the configuration of simulation is

specified. And finally the results is presented to provide preliminary evidence of

the performance of SLC.

8.3.1 Contiki and Cooja Simulator

The Contiki operating system and the Cooja simulator are used for the work.

Contiki is an open source operating system for devices with low-power microcon-

trollers in the Internet of Things [147]. Based on the concept of protothreads

which are stackless threads library built on C macros, Contiki provides a highly

portable, low RAM overhead, event-driven protocol stack for small embedded

systems. In particular interests of this work, Contiki comes with fully certified

IPv6 stack (contributed by Cisco), 6LoWPAN adaptation layer, and an imple-

mentation of RPL called ContikiRPL. Contiki also supports a range of hardware

platforms such as Tmote Sky, MicaZ, Wismote and so forth.

Cooja is a Java-based simulator for Contiki. Systems are still developed and

compiled in Contiki; but instead of being downloaded to actual hardware, they

are executed in Cooja which simulates the behaviour of supported mote types

and environmental events.

8.3.2 Configuration

Different configurations were used for simulation and combinations of parameter

settings were as summarised in Table 8.1. Networks were modelled with different

number of motes in areas of different sizes. The transmission range of motes

also differ accordingly. Motes were configured to transmit to the sink node at

random intervals between 1 and 60 seconds. Every simulation run lasted for five
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simulation-hours at the speed rates lower than 500%.

Table 8.1: Different combinations of parameter settings used in Cooja simulation.

Parameter Settings

Network size 100m * 100m

Number of motes 100 200 300 500

Transmission range 10m 5m, 10m

Transmission interval Random between 1 and 60 seconds

Duration 5 simulation hours

Figure 8.1: An example of simulated network in Cooja. 200 motes were randomly
placed in an area of 100m * 100m. Motes were made to send packets to the sink
located at the centre at random intervals between 1 to 60 seconds. The green
circle depicts the 10-meters mote transmission range used in this example.
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Because we intended to focus on the effect of routing metrics, low level en-

vironmental events such as channel noise levels were modelled directly through

the probability of packet loss at the MAC layer. And changes in ambient noise

were mimicked by making random association between channels and packet loss

factors. Simulation using certain parameter setting was assigned with a unique

random seed and carried out twice using SLC and ETX as the main RPL metric,

respectively. Consequently factors such the shifting of ambient noise profile and

transmission interval were identical for this pair of simulations.

An example of a simulated low-power network is shown in Figure 8.1. Each

grid in the figure accounts for a 10m * 10m area and motes were randomly

distributed within 100m * 100m. In this simulation we modelled the MP2P

scenario where these 200 motes send data to the data sink (Node 1 ) located at

the centre. The transmission range was set to 10 meters and the green circle

depicts the transmission radius covered by the sink.

8.3.3 Results

The simulation results for individual configurations are presented in Table 8.2.

The first two columns specify the number of motes and transmission ranges, re-

spectively. Transmission performance for ETX-based and SLC-based RPL met-

rics is averaged and provided in the last two columns. The results are also visu-

alised in Figure 8.2.

It can be found that in all configurations RPL using SLC as the main rout-

ing metric uniformly delivers superior transmission performance than RPL using

ETX-based metric. The resulting overall distinction of all simulation configura-

tions is shown in the last row. These differences translated into Packet Delivery

Ratio (PDR) amount to more than 3% improvement in the transmission success

rates as a result of using SLC for RPL. It is observed that the curves of SLC

sometimes take a dip with larger network density. A possible explanation is the
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Table 8.2: Simulation results for different routing metrics using different config-
urations

Mote Number
Transmission Performance (ETX)

Range
SLC-based

RPL
ETX-based

RPL

100 10m 1.087 1.105

200
5m 1.089 1.116

10m 1.103 1.124

300
5m 1.076 1.122

10m 1.087 1.136

500
5m 1.106 1.146

10m 1.086 1.178

Average 1.090 1.132

Figure 8.2: Transmission performance for ETX-based and SLC-based RPL metric
in Cooja simulation. The horizontal axis represent different number of motes and
the vertical axis is transmission success rates measured in ETX.
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availability and granularity of spectral information improves as the number of

cooperating node grows, leading to more accurate route selections.

8.4 Experiment Settings

Experiments through hardware implementation were conducted in order to pro-

vide more concrete investigation in real physical surroundings. This section pro-

vides specifications of the experimental work. The deployment of devices in the

experimental environment is firstly introduced. Then different configurations for

the experiments are described.

8.4.1 Deployment

Experiments were again conducted at Location A as in Chapter 7. The placement

of devices was as shown in Figure 8.3. A total of nine GINA motes [13] were

used and numbered accordingly at small circles in the figure. The brown circle

indicates the position of Node 1 which combined with the attached desktop acted

as the gateway point, whilst the remaining motes were placed at the blue circles.

In order to facilitate the examination of the behaviours of RPL, an external

jamming device was also utilised. Red triangles J1 through J3 in Figure 8.3

mark the spots where the jammer was deployed. Details about the jammer are

later provided as part of the configuration.

8.4.2 Configuration

In this subsection we report a range of experimental configurations for evaluat-

ing the performance of routing metrics. Our system was implemented on top

of UC Berkeley’s OpenWSN [145] with A-TSCH deployed at the MAC layer as

described in Chapter 7. The implementation used KFES estimator and event-

triggered blacklisting. JANET IPv6 tunnelling service was installed and activated

because RPL is IP-based and that 6LoWPAN is an integral part of the OpenWSN

stack. Due to the limited size of the environment (approximately 12m × 12m),
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Figure 8.3: The deployment of GINA motes for the experiments of RPL. Circles
denote positions of GINA motes with corresponding IDs. The gateway point was
at the brown circle and the remaining motes resided at blue ones. Red triangles
indicate the range of locations where wireless traffic jammer was able to be placed.
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the multi-hop network structure required for evaluating routing protocols may

not always be guaranteed without explicit control. To mitigate this practical is-

sue, we explicitly configured that packets for the gateway must be forwarded by

either Node 2, 3 or 4, forcing a multi-hop routing hierarchy.

Table 8.3: Configuration of experiments on performance of different routing met-
rics. Experiments were conducted using four different combinations of settings,
and are hereby identified as Experiment I through IV.

Experiment ID I II III IV

Main RPL Metric ETX SLC ETX SLC

Number of Jammer Spots 3

Jamming Duration per Spot N/A 25 minutes

Inter-spot Interval 5 minutes

Packet Size 128 bytes

Transmission Rate 1 packet per second

Duration per Experiment 4 hours

Iterations 5

Total Running Time 80 hours

Configurations used for experiments in this chapter are summarised in Ta-

ble 8.3. Aiming to evaluate the performance of routing metrics in distinct s-

cenarios, Experiment I and II, Experiment III and IV were configured in pairs.

Specifically, Experiment I and II were conducted to compare ETX and SLC under

normal spectral condition, whilst Experiment III and IV, on the other hand, were

respectively carried out using ETX and SLC under the influence of an external

jamming device in order to evaluate the performance in the scenarios of manual

intervention in the spectral condition. The jammer was activated for 25 minutes

at J1, J2 and J3 in a round robin fashion with a five minutes interval between
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Figure 8.4: Wireless jamme built with four combined Tmote Sky motes.

successive spots.

The jammer was built with four Tmote Sky board [14], as pictured in Fig-

ure 8.4. Each Tmote board was configured with a traffic generator program using

the TinyOS operating system [148]. Specifically, the jammers continuously send

100 packets at -1 dBm with inter-transmission time of 1 millisecond in four of

the 16 IEEE 802.15.4 channels. Once finished, the jammer move to the next four

channels and repeat the process. Note the decision of using Tmote board is not

significant but purely for practical reasons such as availability and battery types.

In every session of Experiment I through IV experiments, nodes were config-

ured to send one 128-byte packets every second to the gateway for four hours.

Each experiment were repeated for five sessions, resulting in a total of 20 hours

running time for each experiment.
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8.5 Evaluation Criteria

The performance of default and spectral RPL metrics are evaluated in both the

control plane and data plane. The control plane behaviours are examined to

verify that the protocol is able to behave correctly depending on the routing

metric used. The data plane is also investigated to demonstrate the effect of

RPL on the network communication.

8.5.1 Control Plane Metrics

In order to examine the behaviours of the routing protocol, records of routing

decisions made at individual nodes are quantified through the metric of Path

Probability (PP), which as the name suggests is the percentage of certain neigh-

bour being chosen as the next-hop out of all decisions made. For example PPA B

is the ratio of routing decisions made by A that prefer B as the next-hop.

8.5.2 Data Plane Metric

The spectrum awareness is introduced to RPL in order to improve the perfor-

mance of data transmission. Accordingly the transmission success rates are exam-

ined to investigate and compare the effect of different RPL metrics. Transmission

performance is evaluated in terms of Expected Transmission Count (ETX). ETX

for individual links are calculated and denoted by ETXP Q where P and Q stand

for the sending and receiving ends of the link, respectively.

8.6 Experimental Results

In this section, the performance of RPL using different routing metrics are evalu-

ated based on experimental evidence. For Experiment I and II which were carried

out in normal spectral condition, we first examine the resulting PP of individual

nodes achieved with both metrics to show that RPL can more efficiently choose

the suitable next-hops with SLC. Then the ETX achieved at individual nodes as
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well as entire network are calculated and compared to demonstrate the enhanced

transmission success rates by using SLC in routing. For scenarios with jammer

activated, the PP observed in Experiment IV are illustrated and compared with

those observed in Experiment II to verify that SLC is able to make suitable reac-

tion to modified spectral condition. And then ETX of Experiment III and IV are

again compared to show that the adoption of SLC leads to enhanced transmission

success rates.

8.6.1 Normal Spectral Condition Scenario

The results of Experiment I and II are shown in Table 8.4 and 8.5, respective-

ly, which provide a comparison between the performance of ETX and SLC as

routing metrics under normal spectral condition. Resulting transmission perfor-

mances are provided for individual links of (sender,next-hop) that occurred in the

experiments and the corresponding PP are shown in brackets. Performances of

Node 2, 3 and 4 were not affected by the routing process as they were directly

connected to the gateway and their PP were always 100% to Node 1. Accordingly

information about these nodes are omitted in the tables and discussions hereafter

focus on Node 5 to 9.

8.6.1.1 Control Plane

It is observed in Table 8.5 that in Experiment II higher PP are uniformly associ-

ated with next-hops which deliver good transmission success rates. For instance,

Node 6 has a probability of 59.40% to choose Node 4 as the next-hop which

deliver the ETX of 1.013, whilst the link to Node 3 delivers a higher ETX of

1.048 and is therefore only chosen at 40.60% of the time. The similar findings

can be observed for Node 7, 8 and 9, too.

For Experiment I where ETX was used as the routing metric, the choice of

next-hops are not consistently in accord with actual link quality as observed in

Table 8.4. Specifically, nodes fail to select the next-hops with lower ETX except
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for Node 7, which exhibits a notable contrast to the behaviour of the SLC metric

in Table 8.5. This observation appears to contradict the nature of the default

routing metric as it is directly related to ETX. A possible explanation for this is

that the metric can only capture deterioration in link quality after packets have

already been lost, and this delay means that routing decisions may lag behind

the actually situation and leads to suboptimal next-hop selection.

8.6.1.2 Data Plane

Data in Table 8.4 and Table 8.5 also provide information for illustrating the effect

of the spectral routing metric on transmission performance. The mean ETX of

each sender is provided in the rightmost columns of every row, which is calculated

as the weighted mean of ETX with respect to corresponding PP.

It can be observed that the majority of individual node ETX are lower in

Table 8.5, with the only exception of Node 6 where the ETX are same in both

tables. This shows that the transmission performance is enhanced at almost

all nodes with routing using SLC. Furthermore, the overall ETX of the entire

network displayed in the last rows of Table 8.4 and Table 8.5 also lead to the

same observation.

8.6.2 Jamming Scenarios

8.6.2.1 Control Plane

Next we examine the behaviour of RPL using SLC when the jammer was deployed

in the environment. Results of Experiment IV are illustrated and compared with

Experiment II in Figure 8.5a, 8.5b and 8.5c for spot J1, J2 and J3, respectively.

In these figures, the PP of links established in the experiment IV are specified in

grey boxes. Green boxes with upward arrows denote the percentage of growth in

the corresponding PP observed in Experiment II where no jammer was utilised,

whilst yellow boxes with downward arrows indicate the percentage of reduction.
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(a)

(b)
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(c)

Figure 8.5: Changes in PP under the influence jammer placed at spot J1, J2 and
J3, respectively. Link PP are provided in grey boxes, and changes relative to the
scenario without jammer are specified in green and yellow boxes, respectively.

The jammer placed at J1 is expected to affect Node 3 most significantly due

to the close proximity. In Figure 8.5a, RPL is found to have correctly reacted to

this situation. Specifically, the PP for links to Node 3 are reduced by 11.8% and

9.8% at Node 6 and 8, respectively. The increased PP to Node 8 from Node 7

and 9 may not be accurately explained in this figure. It is possible that this is

a reduction in the accumulative link cost of the entire path from Node 8 to the

gateway. The fact that both Node 7 and 9 are found to agree with this change

to some extent shows that this change is not random fluctuation at isolated nodes.

When the jammer is activated at J2, Node 5 should be the most affected.

In Figure 8.5b, however, Node 5 has never been chosen as the next-hop by any

nodes, and the effect of jamming signals cannot be reflected by looking at this

node. However, nearby Node 6 shows a PP decreased by 18% from to Node 7,

which correspond to the anticipated effect of the jammer. Similarly, Node 6 and
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8 are also observed to tend to avoid Node 4 with PP reduction of 29.8% and

13.5%, respectively.

Finally, as shown in Figure 8.5c, Node 6 and 7 are most proximate to jammer

at at J3. In accord with the scenario, the PP to Node 6 has decreased by 19.1%

and that PP to Node 7 has reduced by 11.9%. This observation is consistent

with previous findings for J1 and J2, and these show that RPL using SLC metric

is able to bahave according to spectral condition as expected.

8.6.2.2 Data Plane

Table 8.6: A comparison of transmission performance achieved using ETX-based
and SLC-based routing metrics in jamming scenarios where jammer was placed
at J1, J2 and J3, respectively.

RPL metric

Jammer Spot
J1 J2 J3

ETX-based 1.023 1.024 1.018

SLC-based 1.020 1.018 1.013

The overall network ETX of Experiment III and IV are shown in Table 8.6

with respective to jammer spots, providing a comparison of data plane perfor-

mance for the ETX and SLC routing metrics in the jamming scenario. It can be

observed that SLC-based RPL provides lower ETX than default RPL in all three

jammer scenarios, which confirms that RPL employing SLC is able to improved

transmission success rates.

8.7 Summary

This chapter provides an exploration of incorporating spectral knowledge of MAC

layer into routing process at the network layer. First, the RPL routing protocol
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for low-power wireless networks was reviewed. Then Spectral Link Cost (SLC)

was introduced as a new routing metric that can be employed by RPL to take into

account potential communication costs associated with ambient noise when de-

termining the next-hops. The factors of Disparity (DI) and Exhaustion (EH) are

formally defined along with their composition into SLC. Then we described and

conducted experiments to evaluate the effectiveness of the proposed cross-layer

synergy between blacklisting and routing in two different scenarios. Experimen-

tal results confirm that RPL employing SLC behaves as expected and provide an

enhanced reliability in network communication. Although the extent of improve-

ment is not as significant as those delivered by A-TSCH, the work on SLC is still

at an early stage and points out an interesting direction.



Chapter 9

Conclusions and Future Work

In this thesis, we have presented the Adaptive Time-slotted Channel Hopping

(A-TSCH) framework which protects the transmission performance of low-power

wireless networks from the influence of ambient noise which is one of the main

challenges as a result of the proliferation of wireless communication in the vision

of IoT. The thesis also explored the synergy between A-TSCH and RPL routing

protocols which further mitigates risks and overheads caused by interference. In

this chapter, we first summarise key aspects of the thesis in Section 9.1. Then

contributions of the thesis are revisited in Section 9.2. Limitations of work pre-

sented in this thesis are identified in Section 9.3. Finally, we conclude this chapter

and the thesis with a dicussion of directions for further researches in Section 9.4.

9.1 Thesis Summary

Target Area and Motivation In Chapter 1, the notion of IoT was introduced

along with its characteristics and associated challenges. Taking into account of

the increasingly acute contest for limited spectrum resource, especially in the

license-free Industrial, Scientific and Medical (ISM) band where many IoT de-

vices operate, it was argued that the ability to make dynamic adaptation to com-

munication behaviours was vital for the prospect of IoT. Accordingly, a variety

of techniques for adaptive communication were surveyed in Chapter 2, revealing

160
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adaptation opportunities at the PHY, MAC and the network layer of the network

model. As a consequence, this thesis has been motivated by the need to address

challenges facing IoT and the opportunities for adaptive solutions that can be

devised at these layers.

Design Rationale The framework of A-TSCH as described in Chapter 3 was

designed based on the rationale that the network performance can be protected

by avoiding the parts of spectral band with high ambient noise. In Chapter 4,

this rationale was investigated through statistical analysis of experimental results.

Specifically, communication traces were collected at different locations whilst the

transmitted packets and noise levels were being monitored. Then the relation-

ship between communication performance and corresponding ambient noise were

examined, demonstrating that the achieved transmission success rates were nega-

tively related to the ambient noise levels. It was also noticed that the influence of

noise on transmission was only notable when it is above certain level. Accordingly,

through statistical analysis, potential thresholds of ambient noise were suggested,

above which transmission was found to display significant deterioration.

Channel Desirability Key to the proposed framework is the ability to formu-

late knowledge about channel desirability based on their noise profiles. Recognis-

ing that periodically sampled ambient noise may not be sufficient to reflect the

spectral condition, estimation techniques were discussed in Chapter 5 to mitigate

the limitation. Specifically, Exponential Smoothing (ES), Kalman filter (KF) and

an additional KF-aided ES (KFES) scheme have been investigated. By carrying

simulations in Matlab, the operating parameters of the estimators were tuned

and a preliminary comparison of their performance was presented.

Blacklisting Using desirability information formulated through estimators, the

subset of undesirable channels can be identified and their IDs are stored in a data

structure called blacklist. Then the network abandons the use of channels includ-

ed in the blacklist. The generation of blacklists and the corresponding adaptation
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to communication behaviours are collectively referred to as blacklisting.

Blacklisting operation in A-TSCH was detailed in Chapter 6. The election of

channels to blacklist in our framework is carried out in a four-phase cooperation.

The cooperative blacklisting is organised in a cluster-based network architecture

as reviewed in Chapter 2. Participating node first independently come up with

their blacklist candidates in the Candidate Identification stage. During the subse-

quent Candidate Aggregation phase, these candidates converge at corresponding

clusterheads, where the blacklist to be formally used for the cluster is yielded in

the Blacklist Decision-making phase. Finally the decision is broadcast to cluster

members in the Synchronisation stage.

When communicating, nodes first checks the operating frequency against the

blacklist and replaces it with an pseudo-randomly generated alternative if it is

found blacklisted, therefore avoiding negative effect of undesirable frequencies.

However, channels exhibiting undesirable features at one end of the link may

appear harmless at the other, due to the spatial diversity of spectral condition. As

a result, the cluster-wide blacklist yielded by the clusterhead cannot cater every

particular condition experienced by each node. To alleviate this problem, cluster

members postpone scheduled transmission if the operating channel is legitimate

according to the cluster blacklist but locally undesirable, as long as the outgoing

buffer is not getting overflown.

Spectral Awareness in Routing The synergy between A-TSCH and RPL

was explored in Chapter 8 in order to make routing process aware of the spectral

condition. Each node’s blacklist is now considered a manifestation of its spectral

characteristics, and the metric of Spectral Link Cost (SLC) is calculated based

on the blacklists at both ends of a link. By incorporating the Disparity (DI)

and Exhaustion (EH) factors, the SLC takes into account both the similarity

and combined size of the blacklists at neighbouring nodes. As a result, the more

similar and smaller the blacklists are, the more preference is given to the route.
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Compared with default ETX-based metric of RPL, SLC was found to be

more efficient in preventing performance deterioration caused by ambient noise.

Changing spectral conditions can be effectively reflected through SLC allowing

RPL to update routing decisions accordingly, whereas the ETX-based metric is

only capable of reflecting this fact after packets had already been lost.

9.2 Summary of Contributions

The following contributions are made in this thesis:

(i) The Adaptive Time-slotted Channel Hopping (A-TSCH) framework was

developed to facilitate adaptive communication at the MAC layer. Ex-

tending the existing TSCH of IEEE 802.15.4e standard, A-TSCH enables

low-power wireless networks greater control over their channel hopping be-

haviour. Through learning the ambient noise floors of specific channels

(Chapter 5) and blacklisting technique (Chapter 6), A-TSCH restricts chan-

nel hopping sequence to the subset of channels exhibiting desirable noise

characteristics. As a result, risks of potential packet loss caused by interfer-

ences are reduced, whilst TSCH’s benefit of improved robustness remains

preserved.

(ii) An algorithm for Cooperative Blacklisting (CB) is developed in Chap-

ter 6. Because of the inherent spatial diversity of spectral condition, black-

listing decisions independently made by individual nodes are not expected

to be accurate for other parts of the network. As communications inevitably

involve multiple entities, a suitable solution is to make blacklisting decision-

s through cooperation. The CB module employs cluster-wise cooperation

strategy, which is carried out in phases detailed in Section 6.3. Compared

with the global and link-wise strategies discussed in Section 6.2, the cluster-

wise cooperation represents a balance between blacklisting accuracy and

overhead incurred by blacklisting.
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(iii) An investigation of estimation techniques was conducted in Chapter 5

for the Channel Quality Estimation (CQE) module which is responsible for

learning spectral condition of individual channels. Specifically, Exponen-

tial Smoothing (ES) and Kalman filter (KF) were considered as possible

estimators for transforming ambient noise readings containing momentary

fluctuation into stable channel quality estimates. Different variants of ES

and KF were adjusted for our application and tuned through simulation

using communication traces introduced in Chapter 4. Estimates produced

by CQE provide the core information that the functions of the CB module

depends upon.

(iv) Evidences for the performance of A-TSCH was provided through exper-

iments in Chapter 7. The framework was implemented atop UC Berkerley’s

OpenWSN protocol stack and installed in Guidance and Inertial Naviga-

tion Assistant (GINA) motes. Experiments were carried out in a typical

workplace environment with a notable presence of wireless interference. D-

ifferent configurations including blacklist size, invocation mechanism and

the estimator were considered and the performance of A-TSCH was as-

sessed in both the control and data planes. Results show that A-TSCH

operated correctly and a notable improvement in transmission success rates

is observed.

(v) A routing metric Spectral Link Cost (SLC) was devised in Chapter 8

to exploit the synergy between A-TSCH and the RPL routing protocol.

RPL provides the architecture of routing functionality without imposing

rigid restriction on specific metric. Taking advantage of the flexibility of

RPL, SLC is to incorporate spectral awareness in routing. As defined in

Section 8.2, SLC is calculated on the diversity of spectral condition and

the overall desirable channels considering both ends of any potential route.

Accordingly, risks and overhead for networks using A-TSCH in the presence

of ambient noise are taken into account in routing.

(vi) The performance of SLC was evaluated in both simulation (Section 8.3)
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and experiments (Section 8.6). The Cooja simulator of Contiki was used to

model networks using RPL, which allowed testing with a range of different

mote numbers and density. RPL was also implemented in GINA motes and

experimented in typical workplace environment to strengthen our findings.

An external jamming device was also used to inspect the behaviour of RPL

under drastic deterioration of certain channels. Evaluation of simulation

and experimental data were conducted by comparing the performance of

RPL using both SLC and the default ETX-based metrics. It was observed

that transmission success rates were improved when SLC was used by RPL,

indicating the effectiveness of this cross-layer enhancement approach.

9.3 Limitations

A number of limitations of this work are identified:

• Due to the constraints of the hardware platform, the spectral condition is

observed periodically during a fixed time-window and therefore the spec-

trum is not continuously monitored. As a consequence, very high frequency

changes in the wireless medium may remain undetected.

• We only consider the paradigm of Multipoint-to-Point (MP2P) upstream

data transmission, which represents typical cases of low-power wireless net-

works. In this scenario data generated at individual nodes travel towards

the gateway (sink). Although alternative paradigms of Point-To-Multipoint

(P2MP) and Point-To-Point (P2P) would not affect the effectiveness of the

proposed framework, they may create problems for the routing mechanism

of Chapter 8 which is beyond the scope of this work.

• The decision-making entities of the cooperative blacklisting algorithm de-

scribed in Chapter 6 are the clusterheads to which cluster members send

data. In other words, the clustered hierarchy of blacklisting in the control

plane is identical with that of data transmission in the data plane, which
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may not be the optimal arrangement in reality. Alternatively, more so-

phisticated mechanisms could be adopted such that clusters are composed

differently for data communication and blacklisting cooperation, and nodes

that receives data from cluster members are not necessarily those responsi-

ble for making blacklisting decisions.

• Discussion on the impact of A-TSCH and SLC on IoT networks are mainly

based on ETX metric. It would be useful to take into account other metrics

in terms of network performance such as throughput or delay.

9.4 Directions for Future Work

Noise Floor Listening One of the most acute challenges for low-power net-

works is the restricted life-time of these devices that are typically powered by

batteries. It is known that the most costly operation in terms of energy con-

sumption is radio communication, and the life-time of the networks can be no-

tably prolonged by minimising radio operations [149, 150, 151]. In A-TSCH, the

most frequently conducted radio operation is the Noise Floor Listening which car-

ries out spectrum sensing in two NF timeslots of every slotframe. Although no

data are sent in the NF slots, switching on the radio is still a relatively expensive

operation compared with computation instructions in the microprocessor. In or-

der to reduce the number of spectrum sensing operation, the following directions

can be investigated:

(i) Balancing the workload of spectrum sensing among all cluster member-

s. Instead of having to sense each of the 16 IEEE 802.15.4 channels, the

clusterhead can allocate certain parts of the 2.4 GHz band for individual

members to detect. As a result nodes in some of the NF slots can remain

idle, reducing energy consumption. This approach needs to take into ac-

count the behaviour of individual cluster members. For example, if the

candidate blacklists reported by certain node are notably changeable, then

it is not suitable to reduce its range of detection channels.
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(ii) Reducing the frequency of noise floor listening for stable nodes. If the

candidate blacklists from certain nodes are found to be largely stable, then

the rate of spectrum sensing can be reduced besides the number of channels

to detect. For instance, the rate of spectrum sensing can be halved by

skipping every other 16 NF slots.

Channel Desirability Estimation In order to ensure the effectiveness of any

spectrum-related adaptation, the channel desirability knowledge yielded through

Channel Quality Estimation should be able to accurately reflect the spectral

condition. We propose the following aspects which can be explored to improve

the quality of channel desirability estimates on the basis of this work:

(iii) Further investigation into estimators. Although experiments have pro-

vided evidence that A-TSCH can correctly identify noisy channels and en-

hance transmission performance, no deterministic findings have been drawn

about the effectiveness of three estimators discussed in this work. Accord-

ingly, existing estimators particularly the KFES should be examined for fur-

ther adjustment. Moreover, more estimation methods should be explored

to help improve or replace currently used methods.

(iv) Incorporating additional type of information in representing desirability

of channels. For example, packet delivery ratio (PDR) records can be kept

for individual channels. Although PDR only captures changes in channel

quality after deterioration has already taken place, it can provide important

complementary indication of channel desirability, especially for non-spectral

factors such as packet loss caused by physical obstacles.

Blacklisting Algorithm Mechanisms for identifying channels to blacklist are

another focal point for future work. Currently in A-TSCH, channels are solely

selected based on noise thresholds derived from statistical studies of the relation-

ship between noise strength and transmission success rates. In the following, we

suggests a number of complementary blacklisting criteria for future investigations:
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(v) Flexible threshold relative to overall noise levels. Currently, the noise

thresholds are used in A-TSCH without considering the noise profile spe-

cific to the particular environment. This leaves a potentially problematic

scenario where the blacklisting criteria become ineffective when the overall

ambient noise level of the 2.4 GHz band are uniformly higher or lower than

the thresholds. A possible approach to address this issues is to adapt the

noise threshold with respect to the overall noise strength. Accordingly, a

direction for future work is to design a suitable scheme which dynamically

adjusts the threshold to maintain the benefit of A-TSCH.

(vi) Integrating channel reputation into decision-making. Using threshold-

based blacklisting criteria, the decisions may still be unstable if the noise

levels of certain channels tend to fluctuate around the threshold. Although

this may not necessarily affect the accuracy of the decisions, rapidly chang-

ing blacklists can incur a series of overhead and increase the risk of desyn-

chronisation. Accordingly, a balance between blacklisting accuracy and sys-

tem stability should be considered. A possible solution is to introduce an

additional channel reputation metric, which reflects the history of blacklist-

ing about certain frequencies. This new metric is anticipated to create an

inertial factor in decision-making, thus improving the stability of blacklist.

Additional Opportunities for Adaptive Communication Apart from as-

pects already involved in this work, some additional opportunities of adaptations

in communication behaviours for low-power wireless networks are identified:

(vii) Adaptive transmission power. As discussed earlier, the power budget

is an important issue for low-power networks and the main consumer of

device energy is radio transmission. Because the strength of transmission

power is related to the ability of the signal to resist the effect of ambient

noise [152], we anticipate that the knowledge of spectral condition can be

utilised to adapt the power consumed by the radio. Specifically, after the

antenna is tuned in for the selected operating channels, the transmission
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power is dynamically adjusted according to the corresponding estimated

ambient noise level. The transmission power is decrease to reduce power

consumption when the channel is observed to be quiet, and increased to

maintain delivery rate when the noise level is high.

(viii) Responsive data rates. The rate at which outgoing traffics are gener-

ated can also be related to the underlying factors in PHY and MAC layers.

By devising an indicator that takes into account the information such as

the size of blacklist, transmission power, length of outgoing queue, and so

forth, the data rate can be adapted accordingly to best suit the capability

of the network to communicate.
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