
 1

Combining Data Integration and

Information Extraction

Dean Williams

A thesis submitted in fulfilment of the requirements for the degree of Doctor of

Philosophy in the University of London.

Submitted July 2008

2

To my parents

3

Combining Data Integration and

Information Extraction

Abstract

Abstract

Improving the ability of computer systems to process text is a significant research

challenge. Many applications are based on partially structured databases, where

structured data conforming to a schema is combined with free text.

Information is stored as text in these applications because the queries required

are not all known in advance – allowing for text is an attempt to capture information

that could be relevant in the future but cannot be anticipated when the database

schema is being designed. Text is also used due to the limitations of conventional

databases, where the schema cannot easily be extended as new entity types and

relationships arise in the future.

Information Extraction (IE) is the process of finding instances of pre-defined

entity types within text, while Data Integration systems build a virtual global schema

from available structured data sources. We argue that combining techniques from IE

and data integration is a promising approach for supporting applications that access

partially structured data: the virtual global schema and associated metadata can be

used to partially configure an IE process, and the information extracted by the IE

process can then be integrated into the virtual global database, supporting queries

which could not otherwise be answered.

In this thesis we describe the design and implementation of the Experimental

System To Extract Structure from Text (ESTEST) that investigates this approach. We

4

give examples of its use and experimental results from a number of application

domains.

5

Declaration

Declaration

This thesis is the result of my own work, except where explicitly acknowledged in the

text.

Dean Williams, July 2008

6

Contents

Contents

Abstract ... 3

Declaration .. 5

Contents... 6

List of Figures...10

List of Tables .. 11

Acknowledgments..12

1. Introduction ..13

1.1 Problem Domain ..13

1.1.1 Partially Structured Data ..14

1.2 Our Approach...14

1.3 Structure of the Thesis...19

2. Databases and Data Integration .. 20

2.1 Conventional Database Provision for Text..20

2.2 Semi-Structured Data and Data on the Web .. 22

2.3 Text Mining... 23

2.4 Graph Based Data Models ... 24

2.5 Data Integration ... 26

2.5.1 Schema Matching .. 27

2.6 Discussion ... 28

3. Information Extraction .. 30

3.1 Natural Language Processing...30

3.2 Information Extraction .. 33

3.3 The GATE Information Extraction System... 37

7

3.4 Recent Developments in Information Extraction .. 39

3.5 Discussion ..41

4. The AutoMed Data Integration System .. 43

4.1 Overview of AutoMed ... 44

4.2 Extending AutoMed: Ontologies ... 47

4.2.1 RDF... 48

4.2.2 RDF Schema .. 50

4.2.3 Other Ontology Languages ... 52

4.2.4 Representing RDF and RDFS in the HDM ... 53

4.2.5 Wrapping RDF Data Sources ... 56

4.3 Extending AutoMed: the HDM Data Store... 57

4.3.1 Implementation ... 59

4.3.2 HDM Data Store API & Wrapper..61

4.3.4 Command Parser... 63

4.4 Discussion ... 65

5. The Design of the ESTEST System .. 67

5.1 The ESTEST Approach ... 68

5.2 Integrate Data Sources... 70

5.2.1 Wrapping of Data Sources ...71

5.2.2 ESTEST Metadata Repository .. 74

5.2.3 Initial Global Schema Creation .. 76

5.3 Semi-Automatically Configure IE ... 78

5.4 Information Extraction Process ..80

5.5 Integrate Extracted Information ...80

5.6 Remaining ESTEST Phases ... 83

5.7 Discussion ... 84

6. Evaluation of the ESTEST System... 87

6.1 The Road Traffic Accident Domain ... 87

8

6.2 An Example of ESTEST in use... 89

6.2.1 Initial Configuration is Loaded..91

6.2.2 Integration of Data Sources...91

6.2.3 Querying the Global Schema...101

6.2.4 Configuration of Information Extraction Process 102

6.2.5 Parameters are Loaded ... 103

6.2.6 Information Extraction Configuration Generated.............................. 103

6.2.7 First Information Extraction Step...105

6.2.8 Second Query Step .. 108

6.2.9 Parameters Loaded to Expand Animal Word Forms 109

6.2.10 Configuration of Information Extraction Process 109

6.2.11 Second Information Extraction Step ..111

6.2.12 Final Query Step ..111

6.2.13 Limitations of the Example.. 112

6.3 Evaluation using Road Traffic Accident Data ... 112

6.3.1 Q1: Which accidents involved red traffic lights? 114

6.3.2 Q2: How many accidents took place 30-50m of a junction? 117

6.3.3 Q3: How many accidents involve drunken pedestrians? 119

6.3.4 Q4: Which accidents were caused by animals?................................... 120

6.3.5 Q5: How many accidents resulted in a collision with a lamppost?122

6.3.6 Summary of the Results...124

6.4 Discussion ..125

7. Extending the ESTEST System .. 128

7.1 Crime Example .. 128

7.2 Information Extraction for Schema Matching ... 130

7.2.1 ESTEST Extensions for IE in Schema Matching132

7.2.2 Schema Matching in the Crime Example ...133

7.2.3 Making Use of WordNet in Schema Matching.....................................136

9

7.3 Combining Duplicate Detection and Coreference Resolution....................139

7.3.1 Detecting Duplicates in Databases ..139

7.3.2 Coreference Annotation in NLP .. 141

7.3.3 Coreference Annotation in GATE..142

7.3.4 Combining the two approaches in ESTEST..143

7.3.4 Duplicate detection in the Crime Example...146

7.4 Text Matching Patterns in the EMR...153

7.5 Automatic Extraction of Values from Text ..156

7.6 Discussion ... 160

8. Conclusions and Future Work ..162

8.1 Summary and Principal Achievements ..162

8.2 General Applicability of our Approach ..167

8.2.1 Other Application domains..167

8.2.2 Using other Data Integration and Information Extraction Software.169

8.3 Future Work ..170

Bibliography ...174

A. ESTEST Implementation ... 189

A. ESTEST Output from the RTA Example ...193

B. ESTEST Output from the Crime Example.. 205

C.1 Input Provided to Configure ESTEST ...205

C.2 Automatically Created GATE Configuration Files..................................... 207

C.3 Output from ESTEST.. 211

 List of Acronyms ... 234

Glossary ... 236

10

List of Figures

List of Figures

Figure 4.1 AutoMed Architecture ... 47

Figure 4.2 RDF Triple and its Reified Equivalent ... 49

Figure 4.3 RDF Containers ... 50

Figure 4.4 The Components of RDF Schema... 52

Figure 4.5 Schema of the HDM Data Store.. 60

Figure 5.1 ESTEST Phases... 69

Figure 5.2 ESTEST Integration Component Architecture ...71

Figure 5.3 Schema Network Generated by ESTEST...77

Figure 6.1 AutoMed representation of the AccDB data source. 93

Figure 6.2 The EDM representation of the AccDB data source. 95

Figure 6.3 The AccOnt data source and its EDM representation................................. 97

Figure 6.4 Global Schema. ...101

 11

List of Tables

List of Tables

Table 4.1 RDFS Resources..51

Table 4.2 RDFS Properties..51

Table 4.3 RDF Constructs and their HDM Representation...................................54

Table 4.4 RDF Statements and Containers..55

Table 4.5 RDFS Constructs and their HDM Representation.................................56

Table 6.1 Results of RTA Query Experiments..124

12

Acknowledgments

Acknowledgments

I am especially grateful to my supervisors, Professor Alexandra Poulovassilis and

Professor Peter King for their support and guidance.

Thanks are also due to the AutoMed and GATE development teams for producing

such useful software, which assisted in my research.

Finally, I would like to thank the family and friends who have encouraged me

through this research especially Barbara, Dave, Julia, Tony, Che, Nancy, Sue, Jane,

Andrea, Sandra, Steve, my colleagues at work, the staff and students at the School of

Computer Science & Information Systems, and my colleagues on the AutoMed

development team especially Lucas, Edgar, Hao, Mike, Sasi, Nerissa, Nikos, and

Peter. Luckily, I have maintained my usual good humour and unrelenting optimism

throughout, so it won’t have been too dull for them hearing about the PhD over the

last seven years. Thanks also to Mat and Rachel, though really they should thank me,

as sharing a college office they were able to benefit not only from my motivating

insights into the PhD process, but also my robust views on whatever happened to be

the latest story on the BBC website.

13

Chapter 1

Introduction

1. Introduction

1.1 Problem Domain

The inability of current computer systems to adequately process text is a major

research challenge. Despite the phenomenal growth in the use of databases in the last

30 years , 80% of the information stored by companies is believed to be unstructured

text [Tan, A.H. 1999]1 and this includes documents such as contracts, research

reports, specifications and email.

Beyond the workplace, the explosion of predominantly textual information made

available on the web has led to the vision of a “machine tractable” Semantic Web,

with database-like functionality replacing today’s book-like web [Berners-Lee, T.

1999].

Research activity in the semantic web cuts across boundaries and includes

researchers from a wide range of disciplines, including natural language processing,

databases, data mining, AI and others. In industry, specialist vendors such as

Autonomy [Autonomy] provide document management systems which attempt to

make use of unstructured data. As well as these niche providers, general software

developers regard this as a major area for the future; for example, IBM has over 200

people working on unstructured information management research [Ferrucci, D. and

Lally, A. 2004].

1 The figure of 80% (or sometimes 80-85%) of corporate information being text is widely quoted. References,
where given, lead to [Tan 1999] or to a quote in a magazine article [Moore 2002]. While this statistic seems plausible,
despite entering into correspondence with the sources we are unable to verify how this figure was obtained or what it
means in detail.

14

In this chapter, we describe the characteristics of a class of application that rely

on text data; this application class forms the problem domain addressed by this

thesis. We discuss why combining two technologies, namely Data Integration and

Information Extraction, offers potential for addressing the information management

needs of these applications, and we outline the structure of the thesis.

1.1.1 Partially Structured Data

In this class of applications, the information to be stored consists partly of some

structured data conforming to a schema and partly of information left as free text.

This kind of data is termed partially structured data in [King, P. and Poulovassilis,

A. 2000]. Partially structured data is distinct from semi-structured data, which is

generally regarded as data that is self-describing: in semi-structured data there may

not be a schema defined but the data itself contains some structural information, for

example XML tags. In contrast, the text in partially structured data has no structure.

Examples of applications that generate and query partially structured data

include: UK Road Traffic Accident reports, where data conforming to a standard

format is combined with free text accounts written in a formalised subset of English;

crime investigation operational intelligence gathering, where textual observations are

associated with structured data about people and places; and Bioinformatics, where

databases such as SWISS-PROT [Bairoch, A., Boeckmann, B. et al. 2004] include

comment fields containing unstructured information related to the structured data.

1.2 Our Approach

Our methodology for undertaking the research reported in this thesis can be

summarised as follows:

1) Consideration of the characteristics of partially structured data: We considered

the characteristics of partially structured data and of current applications that are

based on such data. As a result, we have identified two reasons for application

15

designers being forced to resort to storing information as text in partially structured

data applications:

Firstly, it may not be possible in advance to know all of the queries that will be

required in the future, and the text captured represents an attempt to provide all

information that could possibly be relevant in the future. Road Traffic Accident

reports are an example of this: the schema of the structured part of the data covers

the currently known requirements while the text part is used when new reporting

requirements arise.

The second reason for partially structured data arising is that data needs to be

captured as text due to the limitations of supporting dynamically evolving schemas in

conventional databases — simply adding a column to an existing table can be a major

task in production systems. For example, in systems storing narrative police reports,

when entity types or relationships are encountered for the first time it is not possible

to dynamically expand the underlying database schema and the new information is

only stored in text form [Chau, M., Xu, J.J. et al. 2002].

2) Identification of candidate technologies: With these reasons in mind we

reviewed the literature for state-of-the-art technologies for dealing with both

structured and textual data, in particular to identify areas where techniques from

one area could benefit the other. Until recently, two main approaches existed that

aimed to exploit textual data: Information Retrieval, which examines text documents

and returns a set of potentially relevant documents with respect to a user query, and

Natural Language Processing (NLP), which applies knowledge of language to

construct a representation of what the text represents, for example as a syntax tree.

NLP techniques can be characterised according to how ambitious the linguistic

processing is: morphological and lexical processing are relatively straightforward

compared to syntax, semantics and pragmatics (see for example the discussion in

[Gazdar, G. and Mellish, C. 1989]).

16

 Despite early optimism for NLP e.g. [Winograd, T. 1972], NLP techniques which

aim to make use of semantics and pragmatics have shown disappointing results in

real-world applications to date, and applications typically fail to scale when real-

world knowledge bases are required. However, during the 1990’s impressive results

were obtained with Information Extraction (IE), a branch of NLP where pre-defined

entities are extracted from text, for example people and company names from

newswire reports.

Until now, IE systems have largely been developed as stand-alone components,

configured by grammar rules and lists of entities developed for the particular

application by a domain expert. The result of IE processing is either a set of

annotations over the text, or a set of filled templates representing the instances of the

target entitles found and possibly some pre-specified relations between them. In the

literature on IE this tends to be the endpoint, with the precision and recall of the

annotations found being the results measured in experiments. For practical

applications, however, these annotations have need to be further processed, and the

literature does not deal with this aspect often: there are some exceptions, for example

[Nahm, U.Y. and Mooney, R. 2000] create a structured dataset for use in a data

mining system.

Therefore, although IE is a promising technology for processing text, for the

applications that we have outlined above there are several limitations: IE systems to

date are configured from scratch and do not make use of any related structured data;

and the results output by IE systems are produced as an independent dataset, with

further processing being required in order to combine these results with any already

existing structured data.

In data integration systems, a unified view of data is provided over a number of

data sources each of which may be structured according to different data models. The

ability to make use of structured data in a variety of formats is particularly important

for partially structured data applications within large corporate environments. Data

17

integration systems are available which can combine data modelled in most of the

common structured and semi-structured data models e.g. relational, ER, XML, flat-

file, and object-oriented — but, to our knowledge, none has attempted so far to

provide support for unstructured text.

3) Research into combining techniques from data integration and IE: In this

thesis, we explore how the combination of techniques drawn from data integration

and IE can provide a basis for more effective support of partially structured data

applications than either data integration or IE systems alone. We have identified a

number of areas of synergy between these two types of system, which form the basis

of our approach:

• IE is based on filling pre-defined templates, and data integration can

provide a global schema to be used as such a template. This global schema

/ template can be created by combining the schema of the structured data

together with ontologies and other available metadata sources.

• Metadata from the data sources can be used to assist the IE process by

semi-automatically creating the required input to the IE process.

• As new entity types become known over time, data integration systems

that use a graph-based common data model are able to extend their global

schema without the limitations associated with conventional record-

based databases [Kent, W. 1979].

• The templates filled by the IE process can be stored as a new data source

that can be integrated into the global schema, supporting new queries

which could not previously have been answered.

4) Development of a prototype system: We identified an existing state-of-the-art

IE system (GATE) and a data integration system (AutoMed), and made use of their

facilities to perform routine IE and data integration functionality, allowing us to focus

our research into new techniques which exploit the synergies and mutual benefits of

the two approaches. In particular, we have designed and implemented an

18

Experimental System To Extract Structure from Text (ESTEST), which has a number

of novel features:

• This is the first time, to our knowledge, that a data integration system has

been extended to include support for free text.

• One recent approach to extracting information from text is to make use of

an ontology to assist in IE e.g. [Popov, B., Kiryakov, A. et al. 2003].

ESTEST uses data integration techniques to integrate available structured

data into a global schema which is then used as a lightweight ontology

(that is, an ontology with few axioms) for semantic annotation — this is a

realistic application-specific alternative to the time consuming task of

building ontologies from scratch.

• The global schema is used by ESTEST to semi-automatically configure the

IE process, thereby reducing the configuration overhead of the IE process.

• ESTEST provides a domain-independent method of automatically

extracting and integrating into pre-existing structured data the values

that are found within the annotations output from IE, whereas up to now

application-specific methods have been used for this purpose.

• We have developed a novel schema matching component which employs

an IE pre-processor to make use of textual information associated with

schema elements in order to generate mappings between schema

elements in different data source schemas.

• In NLP, a core task is co-reference detection, which finds when there are

multiple references to the same entity. For example, in the sentence “John

sat on the chair. He fell off it” there are two references to the same person

and two to the same chair. We have applied database identifier

disambiguation techniques to the NLP co-reference problem in order to

improve on the accuracy that can be obtained by using either approach in

isolation.

19

5) Evaluation: ESTEST has been successfully applied to the Road Traffic Accident

and Crime domains, and experimental results have been obtained which are

discussed in the thesis. As well as demonstrating the system in use, we have also

discussed with experts from a range of domains their use of partially structured data,

in order to confirm our understanding of the reasons for information being stored in

this way, and of the potential of our approach for improving upon the partly manual

methods that are employed at present.

1.3 Structure of the Thesis

The rest of the thesis is structured as follows. Chapter 2 describes related work in

managing structured data in databases, database systems and data integration, as it

applies to the problem domain that we are addressing. In Chapter 3 we discuss

Natural Language Processing and Information Extraction, and give an overview of

the GATE IE system. The AutoMed data integration system is reviewed in Chapter 4,

and we also give details of the extensions to AutoMed that we have made in order to

support the development of ESTEST. Chapter 5 describes the design of the ESTEST

system. In Chapter 6 we present an evaluation of ESTEST in the context of the Road

Traffic Accident domain and we use this domain in an example that illustrates the

system in use. A number of further innovations arose from this evaluation and these

are described in Chapter 7. Finally, in Chapter 8 we give our conclusions and

directions of possible future work.

20

Chapter 2

Databases and Data Integration

2. Databases and Data Integration

In this chapter we describe the limitations of current database management

systems with regard to exploiting text. We summarise recent advances in processing

textual data and we indicate why these approaches are more suited to text that has

some, albeit loose, structure and not the free text that occurs in the class of

application we outlined in Chapter 1.

We then describe work on graph-based data models and show how these are

well-suited to our problem domain as they allow more flexibility in evolving a schema

after its initial definition. Finally, we review data integration systems and indicate

why some of the new approaches in this field are applicable to the applications that

we are addressing.

2.1 Conventional Database Provision for Text

Database Management Systems (DBMS) organise data according to a schema in

order to allow retrieval of data via a structured query language. The schema is

defined in terms of the constructs of some data model, for example the tables and

columns of the relational model in a relational DBMS. The data is formatted

according to the schema prior to populating the database. A range of data types are

provided, including support for strings, for example the common data types char and

varchar. In some systems, strings can be constrained according to patterns e.g. for US

ZIP codes. These data types are intended to support string values occurring within

structured data rather than large quantities of free text.

21

DBMS providers argued throughout the 1980’s that databases were suitable only

for structured data and that file systems were the appropriate location for

unstructured documents. However, market pressure led to data types for larger

pieces of text e.g. the Postgres text data type. Limited facilities are available for

making use of this text e.g. pattern searching with wildcards or, at best, regular

expressions. Blobs2 are now provided in most relational DBMS to deal with large

unstructured objects. Blobs, in particular, were introduced against opposition from

DBMS developers, who argued that documents should be broken down and

normalised. However, new requirements to be able to store and retrieve images,

video and audio in databases have led to their current widespread availability.

The relational model [Codd, E.F. 1970] has dominated the commercial database

market since the late 1980’s [Sciences, N.A.o. 1999]. More recent developments in

data management have included Object-Oriented Databases and Object-Oriented

extensions to relational databases. However, all of these are essentially record-based

in that data is retrieved as a set of fields in a fixed order, for example the values of all

the fields of a row from a table. The limitations of record-based approaches are

summarised in [Kent, W. 1979] and include i) the assumption of problems of

homogeneity of record formats making it difficult to represent general concepts with

a varied collection of attributes over their populations, ii) difficulties in extending

record formats, and iii) handling missing data.

For the class of applications that we consider in this thesis, record-based DBMS

are too inflexible because as requirements for new types of entities and relationships

arise it is hard to extend the database schema. XML databases have provided some

more flexibility by allowing data to include tags which do not have to be predefined in

an associated schema. However, to support the flexibility of schema evolution as part

2 Blobs were first developed as part of the DEC Rdb database in the 1980’s. Although the marketing
departments of database vendors have attributed various acronyms to them e.g. Basic Large Object, Binary Large
Object, in fact they were named after the 1958 Steve McQueen film “The Blob” as it was feared that these large objects
would eat up storage [Harrison, A. 1997].

22

of normal use, we argue that graph-based data models (discussed further in Section

2.4) are more suitable for this class of application.

2.2 Semi-Structured Data and Data on the Web

The challenge of the huge amount of, mainly textual, data on the web has

resulted in a number of new research directions from the database community,

including the emergence of semi-structured data models such as XML [Beech, D.,

Malhotra, A. et al. 1999] and RDFS [McBride, B. and Hayes, P. 2002].

Database techniques applied directly to web data include web query languages,

information integration and website restructuring – these are discussed in [Florescu,

D., Levy, A. et al. 1998] for example. Systems aiming to make use of web data tend to

make use of either a graph-based or a semi-structured data model. Semi-structured

data is generally regarded as data that is “self-describing”, i.e. the schema may not be

known in advance but schema information may accompany the data e.g. in the form

of XML tags or RDFS statements.

In the graph-based approach, the web is regarded as a graph whose nodes are

web pages and edges are the hyperlinks between pages. Simple queries can be posed

on the contents and link structure connecting the pages, and return those pages that

contain text matching the search arguments. However, such a query mechanism

returning potentially useful web pages is not a great advance on a search engine.

Many web sites are front-ends for displaying structured data e.g. the online yellow

pages Yell.com provides the contact information for a list of companies matching

some query. Extracting information from such pages is often achieved by developing

site-specific wrappers – and the overhead of wrapper creation or induction [Freitag,

D. and Kushmerick, N. 2000] is the main disadvantage to this approach.

NoDose [Adelberg, B. 1998] is able to semi-automatically derive structure from

formatted text even where tags are not present, using methods such as detection of

repeating strings e.g. “from” and ”cc” in files containing emails. A GUI also allows the

23

user to highlight structural elements to be extracted from the rest of the file. The

structure that NoDose derives is used to extract information from further instances of

the text, which is assumed to be formatted in the same way. The tool is not, therefore,

intended to be applied to free text.

A number of researchers have developed techniques that deploy machine-

learning algorithms to handle information stored in web pages. For example,

Snowball [Agichtein, E., Gravano, L. et al. 2001] and DIPRE [Brin, S. 1999] extract

structured relations from the web. They do so by using a set of seed examples to find

a larger set of occurrences of a relation (e.g. author – book) on the web. From this

larger set of occurrences, they generate a pattern general enough to cover the results

but specific enough not to return false matches. Rapier [Califf, M.E. and Mooney, R.J.

1999] similarly uses a set of examples and correctly filled templates to generate

patterns for information extraction. These systems assume that relations described

within web pages will usually occur in similar contexts. For example, for statements

of the form “Dan Brown the author of the Da Vinci Code”, a rule “<author> the

author of <book>” would be generally useful.

2.3 Text Mining

Text Mining [Tan, A.H. 1999] is an extension of the area of data mining or

knowledge discovery from databases. In data mining, previously unknown patterns

are discovered within large datasets. In text mining, a technique such as information

retrieval or summarisation typically transforms the text corpus to create a structured

dataset for subsequent data mining.

[Mooney, R.J. and Nahm, U.Y. 2005] combine text mining with information

extraction in the DiscoTEX system. This uses two systems to learn information

extraction rules from a set of training data: Rapier [Califf, M.E. and Mooney, R.J.

1999] and Boosted Wrapper Induction [Freitag, D. and Kushmerick, N. 2000]. It

then applies these rules to the text corpus in order to produce a structured dataset on

24

which conventional data mining techniques are applied. IE rules can be produced

from mined associations and reapplied to new instances of similar text.

 For the partially structured data applications with which we are concerned, the

text mining approach is unlikely to be effective as there are not very large static

datasets to be mined (although there are some exceptions, for example the SWISS-

PROT database). Rather, over time, new query requirements arise and extensions to

the schema are required, that need to be populated by the structured data extracted

from the free text.

2.4 Graph Based Data Models

In Section 2.1 we argued that the dominance of relational database systems in

real-world applications has been achieved despite a number of limitations, especially

in terms of flexibility in enhancing the schema after the initial database set-up. For

example, in large-scale commercial environments with which we are familiar,

changes to the existing schema are avoided wherever possible, comprehensive

changes to the schema of core databases are very rare, and even small changes are

rare, with new linked tables often being created rather than existing tables being

modified.

The binary-relational data model [Frost, R.A. 1982] does not suffer from the

schema evolution problems of record-based structures. In this model every real-

world concept of interest is an entity type (c.f. a node in a graph) and associations

between entity types are modelled by binary relationships (c.f. directed edges in

graphs). A database is a set of these binary relationship “triples”, together with the

extents of the entity types. The disadvantage of this approach is one of efficiency, in

that retrieving related values will generally be slower than if they were stored

together within a single record.

The Tristarp project [King, P., Derakhshan, M. et al. 1990; Tristarp] has

developed a number of graph-based database prototypes, including triple stores for

25

storing information in binary-relational storage structures, functional database

languages such as FDL [Poulovassilis, A. 1992] which provides a functional approach

to manipulating Tristarp’s binary-relational data model, and an alternative, logic-

based manipulation language [King, P.J.H. and Small, C. 1991] . The hypergraph

data model (HDM) used in the AutoMed heterogeneous data integration system

(discussed further in Chapter 4) is also graph-based, and its associated query

language, IQL [Poulovassilis, A. 2001], is a functional language. Recent work in

Tristarp [Smith, M.N. and King, P.J.H. 2004] has seen the implementation of the

EDVC graphical interface for incrementally creating database views over complex

graphs. This has been applied to the crime domain, in particular providing a visual

query language for producing the link charts used in criminal intelligence analysis. A

commercial database system, Sentences [Williams, S. 2002], supporting a variant of

the binary relational model has also been developed and this is used as the triple

store underlying the EDVC tool.

The commercial crime analysis system Xanalys produces link charts and has a

related text extraction tool, the Xanalys Indexer [Xanalys]. This uses a preconfigured

information extraction system to extract data which can then appear in Xanalys link

charts3. However, the grammar rules used for extracting information are hard-coded

and are produced afresh for each application domain, such as crime or finance.

Changes to grammar rules must be made by developers and cannot be made by users.

Research on triple stores has also increased recently due to the development of

the Resource Description Framework (RDF) for the semantic web and the need for

repositories for RDF triples, for example [Broekstra, J., Kampman, A. et al. 2002;

Harris, S. and Gibbins, N. 2003].

3 Formerly Xanalys was known as Watson, and Xanalys Indexer known as both PowerIndexer and Quenza.

26

2.5 Data Integration

Data integration systems provide a unified view of data stored in a number of

different sources. The data sources, each with an associated schema, are integrated to

form a single virtual database, with an associated global schema. If the data sources

conform to different data models, then these need to be transformed into a common

data model as part of the integration process.

Two main approaches have been adopted to date [Lenzerini, M. 2002]: global-

as-view (GAV) where the global schema is defined as a set of views over the data

sources, and local-as-view (LAV) where the global schema is independently created

and each source is defined as a view over the global schema. A number of systems

have been developed which implement these approaches e.g. [Chawathe, S.S., Garcia-

Molina, H. et al. 1994; Roth, M.T. and Schwarz, P. 1997] implement GAV and [Levy,

A., Rajaraman, A. et al. 1996; Manolescu, I., Florescu, D. et al. 2001] implement LAV.

Some integration tasks require the expressive power of both GAV and LAV and a

variation on LAV has been proposed for this purpose — global-local-as-view (GLAV)

[Friedman, M., Levy, A.Y. et al. 1999].

Recently a new approach, both-as-view (BAV) data integration [McBrien, P.J.

and Poulovassilis, A. 2003] has been proposed, and the AutoMed data integration

system implements this approach. BAV is based on the use of reversible sequences of

primitive schema transformations, termed pathways. BAV combines the benefits of

GAV and LAV (and indeed GLAV) in that from these pathways it is possible to extract

both a definition of the global schema as a view over the local schemas (GAV) and

definitions of the local schemas as views over the global schema (LAV and GLAV).

One of the main advantages of using a BAV rather than a LAV, GAV or GLAV-

based data integration system in our context is that BAV readily supports the

evolution of both source and integrated schemas by allowing transformation

pathways to be extended: if a new data source is added, or if the schema of a source

27

or integrated schema evolves, the entire integration process does not have to be

repeated and instead the schemas and transformation pathways can be ‘repaired’

[Fan, H. and Poulovassilis., A. 2004; McBrien, P.J. and Poulovassilis, A. 2002]. As

these situations are all characteristic of the class of application with which we are

concerned in this thesis, this capability is beneficial for our approach and as a result

we have made use of facilities provided by the AutoMed system for our research and

for the implementation of the ETEST system.

2.5.1 Schema Matching

A central challenge in data integration is schema matching — that is, given a set

of data sources we need to identify correspondences between pairs of elements in

their schemas as a prerequisite to defining mappings. [Rahm, E. and Bernstein, P.A.

2001] gives a review of the state of the art in automatic or semi-automatic techniques

for schema matching, and classifies the approaches using the following criteria:

instance-based versus schema-based; element versus structure based; language

versus constraint-based; those based on cardinality matching; and those making use

of other auxiliary information, for example as provided by the user. The language-

based approaches include matching the names of schema elements, and making use

of synonyms. While the possibility of making use of textual metadata beyond element

names (for example, comments or descriptions) is considered in [Rahm, E. and

Bernstein, P.A. 2001], no systems are cited that use this approach and we are aware

of none other than our own ESTEST system that does this (as discussed in Section

7.2).

The LSD system [Doan, A., Domingos, P. et al. 2000] learns correspondences

between schema elements, deploying a number of machine learning approaches to

try to identify correspondences: these include a Naïve Bayesian learner [Domingos, P.

and Pazzani, M. 1997], some domain specific resources such as recognition of the

names of US counties, and WHIRL [Cohen, W.W. 1998] which assumes that the

28

names of schema elements will be given in natural language and therefore that the

textual similarity between these names can be used to find mappings. In particular,

WHIRL combines cosine similarity from information retrieval with the widely used

tf.idf weighting scheme [Salton, G. and McGill, M. 1983] – the two strings to

compared are split into words and compared, and a weighting system prefers

matches between words which occur infrequently across the whole corpus. For

example, “Mr George Bush” and “Bush, George” would have a high similarity using

this approach despite the different order of “George” and “Bush” and because “Mr”

will receive a lower weight due to its relative frequency in the corpus.

These systems are targeted at textual data in the form of web pages and, like the

semi-structured work discussed in Section 2.2, they assume the existence of some

structure within the text to be extracted. While a number of systems have used

textual information, especially element names, as part of schema matching, we are

aware of no previous system that makes use of the all available text metadata

(including schema element descriptions) as ESTEST does.

2.6 Discussion

We are seeking to improve support for applications that generate, query and

manipulate a combination of free text and structured data. In such applications,

unstructured text may have been used either because it is not fully known in advance

what queries will be required and therefore a complete schema cannot be

constructed, or because new entity types and relationships become apparent over

time and it is difficult to extend the schema of record-based DBMS.

Commercially available DBMS provide very few facilities for exploiting free text.

Recent advances in processing textual data on the web apply to semi-structured data

rather than to free text with related structured data. Text mining finds previously

unknown patterns within text and can usefully be combined with information

29

extraction; however, this approach is not generally applicable to our setting which is

characterised by new information requirements arising over time.

Graph-based data models do offer the flexibility that we require with respect to

schema evolution, while data integration systems allow available structured data to

be combined into an integrated schema. The BAV data integration approach supports

incremental evolution of the integrated schema, and the implementation of the BAV

approach within the AutoMed system uses a graph-based metamodel. Therefore, we

have made use of, and have extended, the facilities offered by AutoMed in order to

combine structured data sources in our ESTEST system.

Schema matching is a central problem in data integration, and recent work has

investigated integrating semi-structured text on the web, for example by making use

of textual similarities to identify correspondences. However, we are aware of no

previous system that has made use of the full range of available text metadata for

schema matching, which is a feature of our ESTEST system.

30

Chapter 3

Information Extraction

3. Information Extraction

In this chapter we discuss research in natural language processing (NLP)4, and

we argue that information extraction (IE) is the most suitable branch of NLP for use

in the class of applications that we have identified. We review both IE research and

the area of language engineering, which aims to develop NLP applications that reuse

common components. We discuss why the GATE system, which is designed for

language engineering, and focuses on information extraction, is suitable for use in

our ESTEST system. Finally, we outline recent related work that has taken place in

parallel with our research.

3.1 Natural Language Processing

NLP research began in the 1960’s amid much optimism, and was funded by US

military and government-sponsored programmes to develop machine translation

applications. These failed when it became clear that word-for-word substitution was

not capable of scaling up to the volumes required by real-world applications. A

common theme in NLP research since then has been optimism in demonstration

systems being followed by disappointing results when attempting to scale from

knowledge-bases capable of supporting the demonstration to those required for real-

world problems. NLP research is categorised in [Gazdar, G. 1996] into the following

areas: theory of linguistic computation, computational psycholinguistics, and

4 Both Natural Language Processing (NLP) and Computational Linguistics (CL) are terms used to describe the
processing of text by computers. There is considerable overlap between the terms but, in general, NLP is a computer
science term for processing text and CL is a linguistics term for using computers. Throughout we use NLP to refer to
the domain covered by both terms.

31

applied NLP. The first two are not concerned with developing solutions to real-world

problems but concentrate instead on using computer software to gain insights into

language and human psychology. Across the three areas there are also three kinds of

task: language understanding, language generation, and language acquisition.

According to this classification, making use of text in databases falls within applied

NLP and is to be achieved through the language understanding task. Therefore, this

is the area of NLP that we focus on in this chapter.

A milestone for language understanding was SHRDLU [Winograd, T. 1972], a

system that modelled a world of blocks and supported natural language queries such

as “is anything on top of the small red block?”. Instructions to move objects, such as

“put the blue triangle on the big box”, could be submitted to the system and the

results were displayed in a graphical representation of the world. However,

approaches such as SHRDLU, which were based on a complete representation of the

world to be modelled, proved difficult to scale up to real-world applications and

during the 1970s were increasingly replaced by knowledge-based approaches based

instead on heuristics for reasoning about the world.

Two main approaches to natural language understanding were pursued

throughout the 1980s: symbolic, where the focus was on parsing the text in order to

build a structure that can be transformed into a representation of the meaning of the

text; and probabilistic, where frequencies of words in the text are calculated and

these statistics are used to predict the occurrence of words based on the words that

precede or follow. This approach is more successful in narrow domains, or where

patterns occur in the way the text is used, for example the parliamentary language

used in Hansard [McEnery, T. and Wilson, A. 1996]. However, again, applications

developed from either approach have not proved scalable to real-world problems.

Whichever the approach adopted, eventually the problem becomes what is

described as AI-complete [Rich, E. and Knight, K. 1991] – that is, it depends on a

solution to the general AI problem of having wide-ranging knowledge about the

32

world and the ability to be able to reason on that knowledge. This is also loosely

described as “common sense” or “general knowledge”. Syntactic ambiguity (e.g. the

four possible interpretations of the well-known example “Flying planes made her

duck”) in natural language is an example of an AI-complete problem [Hobbs, J.R.,

Appelt, D. et al. 1996].

During the 1990’s, more focus in research was given to the evaluation of the

results of systems, due in part to the importance placed on empirical evaluation in

projects funded by the US government agency DARPA [DARPA].

Information Extraction (IE) [Appelt, D.E. 1999; Cowie, J. and Lehnert, W. 1996]

emerged as a technology for retrieving structured data from within text documents.

IE is often defined by contrasting it to information retrieval (IR) – IR returns a set of

relevant documents in a corpus, whereas IE returns facts from within the documents

about previously identified entities and relationships. In contrast to their

predecessors, IE systems are more pragmatic and use only more straightforward

techniques, which we describe below.

The description of the IE system FAUSTUS in [Hobbs, J.R., Appelt, D. et al.

1996] goes so far as to argue that IE is not text understanding at all in the established

sense, as in IE systems only a fraction of the text is of interest; information is mapped

onto a pre-defined target representation rather than parsing text and transforming

the parse tree into a representation of knowledge; and there is only a very limited

attempt to deal with complex features of language such as semantics.

The results of IE systems have been impressive: levels of accuracy achieved have

been close to those achieved by human experts manually marking-up newswire

reports [Marsh, E. 1998], while its limitations are not problematic for our problem

domain: as new entity types are required or new query requirements arise, only the

part of the text relating to these is of interest to us; the integrated schema built over

the data sources can be used to create templates for the IE extraction and the

33

extracted information can be integrated into this virtual global schema. It is for these

reasons that we selected IE for our ESTEST system.

3.2 Information Extraction

Current IE research has been influenced and developed by the Message

Understanding Conference (MUC) series [Grishman, R. and Sundheim, B.]. These

MUC conferences, which ran from 1987 to 1998, were part of the TIPSTER text

programme [TIPSTER] funded by DARPA. This programme had three threads:

document detection, information extraction, and summarisation. As well as MUC, the

Text Retrieval series of conferences were also run as part of TIPSTER.

At each MUC conference, an application was defined and researchers developed

systems which competed to achieve the highest levels of recall and precision for a

number of IE tasks performed on the same previously unseen dataset. Early

conferences focused on extracting information from military messages, and in later

conferences this theme was developed to cover newswire reports. The components

found in IE systems today largely reflect the tasks set in these conferences. The tasks

for the last conference, MUC-7, in 1998 (the most challenging in the series) were as

follows:

1) Named Entity Recognition: at its simplest this involves identifying proper

names in text by matching against lists of known entity values, although patterns can

also be defined to recognise entities. For the MUC tests, the entities to be identified

were known in advance and so targeted recognition rules could be developed

specifically to identify text patterns associated with these entities.

2) Coreference detection: resolution of multiple references to the same entity

within the text. This is a relatively hard NLP task and was introduced because of the

benefit even poor results in this task can bring to the other tasks, rather than just as

an objective in itself.

34

 3) Template Element: this is a task for identifying references to entities as well as

their names. It is harder to detect references e.g. ‘the manufacturer of the DB2

database’ as opposed to ‘IBM’, and results for this task are less accurate.

4) Template Relation: instances of a small number of pre-specified relations are

to be found e.g. people who are employees of companies.

5) Scenario Template: scenarios link template instances describing an event, for

example in a newswire corporate merger scenario, the companies, executives and

their positions would be extracted into a scenario template.

The Named Entity Recognition task has been the focus of much of the research to

date; it has achieved the best results, and is the least domain specific. The Template

Relation and Scenario Template define relations between annotations, but the

literature contains little about techniques for performing these tasks. For MUC-6 and

MUC-7 the specifications of these tasks were given out a month before the

competition — this timing was intended to show that the systems could be configured

for specific domains in reasonable time and is therefore also an indication that

generic systems did not yet exist for these tasks; this continues to be the case.

While IE systems have encouraged the reuse of generic components such as

sentence splitters, tokenisers and configurable Named Entity Recognition

components, this has not extended to techniques for creating structured data from

extracted annotations, and the processing of the annotation is implemented from

scratch for each system (whereas annotations are in fact processed further, for

researchers into IE producing the annotations is often the final goal).

 Most systems in MUC-7 achieved higher than 80% success for named entity

recognition, with around half achieving over 90%. Even for the Scenario Template

task results were credible, ranging from 40% to 70% [Marsh, E. 1998].

For a fair comparison of the systems participating in the conferences, they

needed to be compliant with the TIPSTER architecture [Grishman, R. 1998], which

describes the system components comprising IE systems and, more specifically, the

35

definition of the text annotation structure. Systems implemented in this way are

described as being TIPSTER compliant.

In the literature, the performance of IE systems is usually measured in terms of

recall (the number of correctly identified references of an entity type as a percentage

of the actual number occurring in the text) and precision (the number of correctly

identified instances as a percentage of all the identified instances). Depending on the

application, recall and precision can be of different value and are often combined in

an F-measure, a geometric mean where recall and precision are weighted to indicate

their relative importance [Appelt, D.E. 1999].

An alternative to basing IE systems on grammar rules is to use a machine

learning approach to induce rules by mining a training dataset [Basili, R., Pazienza,

M. et al. 2002; Califf, M.E. and Mooney, R.J. 1999; Nahm, U.Y. and Mooney, R.

2000]. For the class of applications that we are concerned with, new entity types and

query requirements arise over time. Thus, making use of IE based on grammar rules

is more readily applicable, although we do not discount the possibility of using

pattern rule mining in some applications where large static datasets exist, and is this

a possible area of future work.

Even though IE systems in the 1990’s were constructed independently and from

scratch, most of them share some common features. Generally they are constructed

as a number of components each performing a discrete task. These tasks run in a

sequence, commonly referred to as a pipeline [Graca, J., Mamede, N.J. et al. 2004].

Many of the individual components of an IE system are more generally applicable e.g.

any English IE system will need an English Tokeniser. IE systems also typically use

some kind of annotation graph as output, and components use this to pass

information between components in the pipeline.

A number of initiatives encourage reuse and standardisation of IE components

and language engineering [Boguraev, B., Garigliano, R. et al. 1995] is emerging as an

accepted term for attempts to apply a software engineering approach to NLP systems.

36

Many systems developed their own annotation format, because the TIPSTER model

used in MUC proved unable to meet their requirements. The ATLAS architecture and

API [Laprun, C., Fiscus, J. et al. 1999] provides a formal and extensible model for

annotations. ATLAS aims to become the standard model for annotation

representation and is supported by the US government National Institute of

Standards and Technology (NIST) agency [NIST]. IBM has developed its

Unstructured Information Management Architecture (UIMA) [Ferrucci, D. and Lally,

A. 2004], a framework for handling unstructured information in the workplace. This

is designed to be an industrial strength language engineering framework which will

allow analysis components, both commercially developed and those from

universities, to be combined and to process unstructured text, video and audio

information.

For our requirements, namely to utilise IE in our class of applications, the GATE

(General Architecture for Text Engineering) system [Cunningham, H., Maynard, D. et

al. 2002] was selected as the most suitable system for a number of reasons. GATE is

the most widely used open-source IE system and in its current version has been re-

implemented according to language engineering principles. It provides a complete,

general IE system and a wide range of third-party developed components are also

available. Its language engineering architecture allows the development of bespoke

applications and components. GATE conforms to the TIPSTER annotation model and

offers near compatibility with the ATLAS model. Work is under way to allow GATE

and IBM’s UIMA unstructured information initiative to be integrated. Finally, it is

unusual for UK academic software to be able to adequately support non-research

aspects of software such as ensuring stability, versioning, providing easy installers

and providing support to end users – and the GATE system is able to do so.

37

3.3 The GATE Information Extraction System

GATE was originally developed at the University of Sheffield as an

implementation of the TIPSTER architecture specification. A number of IE systems

have been built using GATE, including the LaSIE-II system which competed in MUC-

7 [Humphreys, K., Gaizauskas, R. et al. 1998].

GATE 2 was developed as an implementation of the software architecture for

language engineering (SALE) [Cunningham, H. 2000] which offers a framework for

developing IE and other more general text processing components; for example IR

and Google components have been implemented. Three types of component exist in

GATE 2: (i) language resources — such as documents or corpora, (ii) processing

resources — which apply an algorithm to some language resources, and (iii) visual

resources — used in the GUI to represent either language resources or to configure or

view the results of processing resources. While GATE 2 remains focused on IE tasks,

the importance placed on an extensible language engineering architecture means that

GATE 2 is now also suitable for more general NLP application development;

examples of non-IE components currently available include machine learning

components such as the WEKA wrapper [WEKA], and ontology resources such as the

Protégé editor [Noy, N.F., Sintek, M. et al. 2001].

According to the TIPSTER architecture, the result of running a processing

resource is a set of annotations over the text. Each annotation has an associated start

and end position within the text. The annotation has a type and may have features.

An annotation can be thought of as an arc in a directed acyclic graph whose nodes are

tokens within a string and whose edges indicate the type of annotation represented

by the tokens between the start and end of the edge. For example, for the string

“George is President!” some of the annotations that might be created are as follows:

38

Annotation Start Finish Features
FirstPerson 0 6 {gender=male, rule=FirstName}
Lookup 0 6 {majorType=person_first, minorType=male}

Person 0 6 {gender=male, rule=PersonFinal,
rule1=GazPersonFirst}

Sentence 0 20 {}
Token 0 6 {category=NNP, kind=word, length=6,

orth=upperInitial, string=George}
SpaceToken 6 7 {kind=space, length=1, string= }
Token 7 9 {category=VBZ, kind=word, length=2,

orth=lowercase, string=is}
SpaceToken 9 10 {kind=space, length=1, string= }
Lookup 10 19 {majorType=jobtitle}
Title 10 19 {rule=Title}
JobTitle 10 19 {rule=JobTitle1}
Token 10 19 {category=NNP, kind=word, length=9,

orth=upperInitial, string=President}

Lookup 10 19 {majorType=title, minorType=civilian}
Token 19 20 {category=., kind=punctuation, length=1, string=!}
Split 19 20 {kind=internal}

A graph-based representation of the key information, with tokens as nodes, is as

follows:

IE applications are built by constructing a chain of processing resources each

targeted at a collection of documents. The set of annotations produced by a

processing resource is accessible to those further down the chain.

GATE 2 is implemented in Java. The distribution includes a collection of

standard IE components, including the ones we have used in ESTEST: the document

reset component, which ensures the document is reset to its original state with any

annotations removed; the English tokeniser, which splits text into tokens, such as

strings or punctuation; and the sentence splitter, which divides text into sentences.

39

Gazetteers associate lists of values with entity types e.g. to recognise male first

names. A pattern matching language, JAPE [Cunningham, H., Maynard, D. et al.

2002], is supported which allows rules to be defined for matching patterns in text.

The Jape Transducer component takes text as its input and returns a set of

annotations over the text. When a Jape rule fires an annotation is created and,

optionally, bespoke Java code can be executed. Developers can develop new

components as Java Beans implementing the relevant component interface.

Using the GATE component architecture, it is possible to assemble IE

applications either using the GATE GUI or by using the GATE API to develop a stand-

alone Java program. Third parties have now developed a range of GATE processing

resources and these are included in the GATE distribution; many of these are not

strictly for IE applications, for example traditional NLP parsers, Information

Retrieval and Machine Learning components.

3.4 Recent Developments in Information

Extraction

We describe now the developments in IE that have taken place since 2000, in

parallel with the research in this thesis.

The emergence of the semantic web [Berners-Lee, T. 1999] as a research goal to

enable machine processing of the content of the web has been a major focus for IE

researchers e.g. [Amardeilh, F. and Francart, T. 2004; Bontcheva, K. and

Cunningham, H. 2003; Popov, B., Kiryakov, A. et al. 2003] and we first drew

attention to the potential application of our approach to this domain in [Williams, D.

and Poulovassilis, A. 2003].

Since the end of the MUC tests, the focus on template and scenario extraction has

diminished: for example, there are no template extraction components in GATE. The

development of technologies for implementing and using ontologies is leading to

ontologies replacing templates as the structure that IE systems use for describing

40

relationships between references to named entities. An ontology specifies a common

definition of concepts and the relationships between them for some domain [Gruber,

T. 1993]. The term is taken from philosophy where it means a set of categories to

describe a particular view of the world. There is now wide research interest in using

ontologies in information systems e.g. [Guarino, N. 1998], where ontologies are seen

as enabling knowledge sharing.

The limitations of the conventional named entity recognition approach of

applying to an annotation an entity type selected from a list of entity types has been

recognised as a weakness of IE systems in the context of the semantic web, and

researchers have recently sought to provide facilities for semantic annotation which

assigns to an annotation a reference to a concept within an ontology rather than an

entity type [Uren, V., Cimiano, P. et al. 2006]. This recent work is the closest to our

approach in ESTEST in which annotations reference elements in a global schema.

 The ACE programme [Doddington, G., Mitchell, A. et al. 2004] is, like MUC,

administered by US government agencies, in this case the National Security Agency

(NSA), National Institute of Standards and Technology (NIST) and the Central

Intelligence Agency (CIA). Although the tasks in ACE appear to mirror those in the

MUC programme (its entity detection and tracking is the equivalent of named entity

recognition, while its relation detection and characterisation is equivalent to the

template element task), this series of tests is more challenging than MUC because of

the focus on a deeper semantic analysis of the text. Another extension of this

programme is the requirement to be able to handle text from more varied domains

and of varying quality e.g. text obtained from speech recognition and optical

character recognition. A significant limitation of the ACE programme compared to its

predecessors is that the results of the regular evaluations are closed and may not be

published in the open literature. The MACE system was developed using GATE and

has participated in the ACE evaluations [Maynard, D., Bontcheva, K. et al. 2003].

41

In GATE, support for ontologies is being developed [Bontcheva, K., Tablan, V. et

al. 2004] and an ontology-aware gazetteer is now provided which is able to provide a

link to a concept in an ontology as a feature of an annotation. KIM [Popov, B.,

Kiryakov, A. et al. 2003; Popov, B., Kiryakov, A. et al. 2004] is a system for semantic

annotation which is built over GATE. Its main parts are the KIM Ontology (KIMO), a

knowledge base, and an API for accessing the KIM functionality. The KIMO is an

‘ontology of everything’, designed to be domain independent. Its top level divides

entity types into objects, events and abstract concepts. The KIM knowledge base

stores instances of the types in the KIMO, and similarly aims to cover instances of the

most important entity types in the real world. The current version of the KIM

knowledge base includes 80,000 entities. While aiming for domain independence,

the KIM researchers acknowledge the difficulties and concentrate on providing good

coverage of entities mentioned in the news, that is, those of the core IE newswire

mark-up task.

Semantic annotation has now replaced Template Relations and Scenario

Templates as the active area of research for creating structured data from the

annotations created by IE. However, it is less ambitious in the complexity of the

structured data produced, and is an extension of named entity recognition rather

than a replacement for the complex data structures envisaged during the MUC

conferences. The ontologies produced to date by systems such as KIM are essentially

taxonomies apart from the limited set of entity specific and hard-coded relationship

rules.

3.5 Discussion

IE is distinguished in NLP research for the success it has achieved in real-world

applications with respect to achieving near human success rates for tasks such as

marking up newswire reports. While there are restrictions to the NLP tasks to which

42

IE can be applied, these are not restrictive for the class of applications that we have

identified as the focus of this thesis.

By making use of data integration in our ESTEST system, it has been possible to

apply IE in a novel way: rather than depending on hand-coded templates and rules,

we can semi-automatically configure the IE process from a virtual global schema. The

information extracted can be stored and is available for use by the query processing

facilities of the data integration system. GATE is the most widely used system for IE

and has been designed according to language engineering principles, making it well-

suited to supporting the IE process integrated within our ESTEST system.

Recent research in the IE community, conducted in parallel with our own, has

resulted in the emergence of a number of related directions of research: semantic

annotation has similarities to the process that we have designed for ESTEST

(described in Section 5.4), while the use in KIM of an ontology-of-everything has

some parallels with our own use of a virtual global schema (described in Section 5.2).

When considering the limited progress on generically extracting structured data from

text both in the MUC Template Relation and the Scenario Template task, and also

more recently with semantic annotation, we believe that just as databases have so far

provided only limited support for free text, similarly IE has provided limited support

for the extraction of structured data. This thesis seeks to demonstrate an approach

which does provide the basis for a more generally applicable method of extracting

structured data from the annotations produced by IE.

43

Chapter 4

The AutoMed Data Integration

System

4. The AutoMed Data Integration System

In our discussion of data integration in Chapter 2, we described how the

AutoMed system is a suitable candidate for providing the data integration facilities to

be used by our ESTEST system, and this chapter begins with an overview of AutoMed

in Section 4.1. Two extensions were prerequisites for AutoMed’s use in ESTEST:

support for ontologies and a native HDM data repository. These features are required

by ESTEST, but are also more generally applicable and so we developed them as

extensions to the core AutoMed toolkit rather than as components of ESTEST – for

this reason, they are described in this chapter rather than in the description of

ESTEST itself in Chapter 5.

Ontologies have been a source of much recent research activity in both the

database and the IE communities, mainly in relation to the semantic web. To build its

virtual global schema, ESTEST combines the available structured data sources, and

ontologies are likely to be amongst these. Therefore, we show in Section 4.2 how the

constructs of RDF and RDFS can be mapped onto AutoMed’s HDM data model. We

also describe our implementation of an AutoMed RDFS wrapper.

A repository was also required for the information extracted by the ESTEST IE

process, and a native HDM data store has been developed for this purpose. The HDM

is the data model of this data source, and an appropriate wrapper for HDM sources

has also been developed. The HDM data store and its wrapper are described in

Section 4.3.

44

4.1 Overview of AutoMed

Data integration systems provide a unified view of data stored in a number of

different sources. The data sources, each with an associated schema, are integrated to

form a single virtual database with an associated global schema. If the data sources

conform to different data models, then these need to be transformed into a common

data model as part of the integration process.

AutoMed is able to support a variety of common data models by providing a

graph-based metamodel, the Hypergraph Data Model (HDM) [Poulovassilis, A. and

McBrien, P.J. 1998]. AutoMed provides facilities for specifying higher-level modeling

languages in terms of this HDM e.g. the relational, entity-relational, XML models

have been defined [McBrien, P.J. and Poulovassilis, A. 1999; McBrien, P.J. and

Poulovassilis, A. 2001; McBrien, P.J. and Poulovassilis, A. 2002].

HDM schemas consist of nodes, edges and constraints, where a constraint is a

boolean-valued query over the nodes and edges of the schema.

In order for a modelling language to be supported by AutoMed, each of its

modelling constructs needs to be defined in terms of some combination of HDM

nodes, edges and constraints. In AutoMed, instances of modelling constructs are

uniquely identified by their scheme, enclosed within double chevrons, <<...>>.

Each construct of a modelling language may be of one of the following four types:

1. Nodal constructs may exist independently of any other constructs in the

model and are identified by their name. For example, an entity e1 in the ER

model is represented by a nodal construct with scheme <<e1>> and is defined in

the HDM as a node.

2. Link constructs associate other constructs and can only exist when these

other constructs exist. The extent of a link is a subset of the cartesian product of

the extents of the constructs it depends on. Link constructs are defined by an

45

HDM edge and their scheme includes the schemes of the constructs that the link

depends on. For example, a relationship r1 in the ER model between two entities

e1 and e2 is represented by a scheme <<r1,e1,e2>>.

3. Link-Nodal constructs are nodal constructs that can only exist when one or

more other constructs exist. They are represented by an HDM node and an HDM

edge and are identified by a scheme including the scheme of the node and edge.

For example, in the ER model, attributes are link-nodal and an ER attribute a of

an entity e is identified by a scheme <<e,a>>.

4. Constraint constructs, unlike the other construct types, have no extent but

instead define restrictions on the extents of other constructs. For example, in the

relational model, primary keys are represented by specifying a constraint that

states that for a particular column, or set of columns, duplicates are not allowed.

For any modelling language specified in this way (via the API of AutoMed’s

Model Definitions Repository [Boyd, M., McBrien, P.J. et al. 2002]), AutoMed

automatically provides a set of primitive schema transformations that can be applied

to schemas expressed in the modelling language. In particular, for every modelling

construct there is an add and a delete primitive transformation which respectively

add to, or delete from, a schema an instance of the construct. For those constructs

which have textual names, there is also a rename primitive transformation.

AutoMed schemas are incrementally transformed and integrated by sequences of

such transformations, termed pathways, each transformation affecting just one

schema construct. All source, intermediate, and integrated schemas, and the

pathways between them, are stored in AutoMed's Schemas & Transformations

Repository (STR).

add and delete transformations are accompanied by a query (expressed in a

functional query language, IQL [Poulovassilis, A. 2001]) which specifies the extent of

the added or deleted construct in terms of the rest of the constructs in the schema.

46

Thus, these transformations do not change the information capacity [Milo, T. and

Zohar, S. 1998] of the schema.

Also available are extend and contract primitive transformations which

behave in the same way as add and delete except that they state that the extent of

the new/removed construct cannot be precisely derived from the other constructs

present in the schema. More specifically, each extend and contract

transformation takes a pair of queries that specify a lower and an upper bound on the

extent of the construct. The lower bound may be Void and the upper bound may be

Any, which respectively indicate no known information about the lower or upper

bound of the extent of the new construct.

The queries accompanying transformations can be used to translate queries or

data along a transformation pathway. In particular, queries expressed in IQL can be

posed on a virtual integrated schema, are reformulated by AutoMed’s Query

Processor into relevant sub-queries for each data source, and are sent to the data

source Wrappers for evaluation. For each of the modelling languages defined in

AutoMed, a Wrapper is available to extract details of any data source schema

represented in that modelling language and for building a representation of this

schema in AutoMed’s Schemas and Transformations Repository. The Wrapper is also

used during query processing, interacting with its data source for the evaluation of

sub-queries, and with the Query Processor for returning sub-query results.

The queries supplied with transformations also provide the necessary

information for these transformations to be automatically reversible: an add /

extend transformation is reversed by a delete / contract transformation with

the same arguments, while a rename transformation is reversed by another rename

with the opposite ordering of arguments. This means that AutoMed is a both-as-view

(BAV) data integration system: the add / extend steps correspond to Global-As-

View (GAV) rules and the delete / contract steps correspond to Local-As-View

(LAV) rules.

47

A Graphical User Interface (GUI) is provided by AutoMed from which schemas

and transformation pathways can be displayed. Selecting a schema in the GUI gives

the user access to the Query Processor and the ability to pose queries. It is also

possible to wrap new data sources from the GUI by specifying the wrapper to be used

and the connection details.

The overall architecture of AutoMed is illustrated in Figure 4.1.

Figure 4.1 AutoMed Architecture

4.2 Extending AutoMed: Ontologies

In the semantic web, ontologies can describe the semantics of web data. In

particular, RDF [Lassila, O. and Swick, R.R. 1999; McBride, B. and Hayes, P. 2002]

has emerged as a standard for describing resources on the web, while RDF Schema

[Brickley, D. and Guha, R.V. 2004] defines a type system for RDF. In order to make

use of ontologies in ESTEST, we now describe how RDF and RDF Schema can be

modelled in AutoMed.

48

4.2.1 RDF

We first summarise the characteristics of RDF which are relevant to its use in the

ESTEST system. Resources on the web are identified by Uniform Resource

Identifiers (URI) [Berners-Lee, T., Fielding, R. et al. 1998]. Properties of these

resources are expressed as statements which take the form of (subject,

predicate, object) triples. For example, the statement “Tony Blair is the Prime

Minster of the United Kingdom” might be represented by the triple

(http://idcard.gov.uk/tblair346789,http://www.my-ont.com/

jobs/pm, http://www.my-ont.com/countries/uk).

Values in RDF can be URIs, literals or unlabelled nodes, known as “blank” nodes.

Blank nodes can be used to structure other values e.g. by linking each line of an

address. They can also represent concepts to which properties apply. Arbitrary

identifiers are assigned to these blank nodes, and so they are analogous to object

identifiers in object-oriented systems. There are also restrictions in the RDF data

model concerning the kind of value each part of the triple can have, namely that 1)

the subject can be a URI or a blank node, 2) the predicate must be a URI, and 3) the

object can be a URI, blank node or literal.

It is possible in RDF to assert statements about statements e.g. "Reuters says that

Tony Blair is Prime Minister of the UK". This is a fact about something that Reuters

has said, not about Tony Blair’s current job. In order to make a statement about this

statement, it is necessary to remodel. This process of remodelling is known as

reification. Reification in RDF happens in the following way. A blank node is created

which represents the statement. This node is the subject of a triple with predicate

rdf:type and object rdf:statement. The subject, property and object of the

statement are now each the object of a new triple that has the new blank node as the

subject and rdf:subject, rdf:property and rdf:object respectively as its

predicate.

49

It is possible to illustrate sets of RDF statements as graphs, where by convention

nodes are drawn as ovals and will be either labelled or blank, literals are drawn as

rectangles, and edges as single-headed arrows. Figure 4.2 shows graphically a) the

original RDF triple about Tony Blair’s job and b) the reified form of this information.

Figure 4.2 RDF Triple and its Reified Equivalent

RDF has provision for three types of container, which are implemented in a

similar way to reification. The container types are Bag — an unordered list with

duplicates allowed, Sequence — an ordered list with duplicates allowed, and

Alternative — a list of resources that represent alternatives for the single value of a

property. A blank node represents the container itself, with the container type being

indicated by a triple with the blank node as the subject, rdf:type as the predicate,

and one of rdf:Bag, rdf:Sequence or rdf:Alternative as the object . Figure

4.3 shows the Tony Blair RDF triple with three associated containers: alternative

telephone numbers, a bag with the names of his children, and a sequence showing his

previous job history.

50

Figure 4.3 RDF Containers

4.2.2 RDF Schema

RDF is a general language for describing resources on the web. In order to define

a domain in terms of a set of specific classes and properties, RDF Schema (RDFS)

[Brickley, D. and Guha, R.V. 2004] can be used. RDFS provides a type system for

RDF, comprising of classes and properties. These are similar to the classes and

properties of object-orientated languages, with one key difference: every object in

RDF is described as a resource and each resource has a type which defines it as being

either a class or a property. Properties in RDFS are therefore defined independently

51

of classes, unlike in object-oriented languages – that is, properties are not properties

of any single class.

RDFS provides the resources listed in table 4.1 and the properties listed in table

4.2:

RDFS Resource Description

rdfs:Resource This is the base class for RDFS. Every object described by
RDF is a resource and is an instance of the class
rdfs:Resource.

rdfs:Class This is used by the rdf:type property to specify that a

resource is a class.
rdfs:Property This is used by the rdf:type property to specify that a

resource is a property.

Table 4.1 RDFS Resources

RDFS Property Description

rdf:type A property of a resource. If it has value rdfs:Class the

resource denotes a class; if it has value rdfs:Property

the resource is a property.
rdfs:subClassOf Denotes that a class is a subclass of another. Each class

can have many parent classes.
rdfs:range Specifies a class whose instances contain the possible

values that a property may take.
rdfs:domain Specifies classes to which a property belongs. If no

rdfs:domain is given, the property is assumed to apply

to all classes.
rdfs:subPropertyOf Specifies that a property is a sub-property of another

property. Each property can have many parent properties.
rdfs:seeAlso Additional information about the resource, referring to

another resource.
rdfs:isDefinedBy Sub-property of rdfs:seeAlso and indicates the

resource defining the subject resource.

Table 4.2 RDFS Properties

The resources and properties of RDFS and the relationships between them are

illustrated in Figure 4.4.

52

Figure 4.4 The Components of RDF Schema

4.2.3 Other Ontology Languages

RDF / RDFS has a number of limitations, for example, inability to represent

disjoint classes or cardinality constraints. Proposals for more expressive formalisms

have emerged, including DAML-ONT [McGuinness, D.L., Fikes, R. et al. 2003] and

OIL [Fensel, D., Harmelen, F.v. et al. 2001], which were merged to produce

DAML+OIL [Horrocks, I., Patel-Schneider, P.F. et al. 2002]. DAML+OIL itself is the

basis for the subsequent OWL language [Horrocks, I. 2005]. OWL subsumes RDFS

and comes in three versions, each at a different point along the trade-off between

expressiveness and ease of use:

• OWL Full permits the use of all the RDF, RDFS and OWL primitives. The

syntactic freedom provided includes the ability to alter the basic RDF or

OWL primitives by applying them to each other. The power of the

language means that there are no computational guarantees on

processing an OWL Full document, and computations may fail to

terminate.

53

• OWL DL is decidable and guarantees conclusions will be computed in

finite time by placing restrictions on the use of some OWL language

constructs. However, the time taken may be worse than exponential in

relation to the number of triples.

• OWL Lite provides only a classification hierarchy and support for

cardinality constraints, and will process in exponential time in relation to

the number of triples.

OWL is emerging as a new standard for ontology development. Although in the

current version of ESTEST we have only provided support for RDF/RDFS ontologies,

it would be possible to extend ESTEST to support OWL as future work, and we have

developed the system with this extensibility in mind.

Natural Language ontologies aim to represent one or more human languages.

The most well known natural language ontology is WordNet [Fellbaum, C.E. 1998]

which comprises over 80,000 nouns organised into a semantic net with 60,000

concepts. Each concept has a list of word forms that represent it (synonyms).

Concepts are connected by hypernym (is-a), meronym (part-of) and antonym

(opposite-of) relationships. Modifiers and verbs are also captured with appropriate

relations.

4.2.4 Representing RDF and RDFS in the HDM

There was no requirement for ontology data sources in AutoMed before the

development of ESTEST, so it was necessary to define the RDF and RDFS modelling

languages in terms of AutoMed’s HDM metamodel.

Every object in RDF is a Resource and is represented in the HDM by a nodal

construct. Similarly, the RDF constructs URI, Literal and Blank are all nodal

constructs, each with an additional constraint that their members must also be

members of <<Resource>>. The RDF construct Triple is represented by a

combination of three HDM nodes, an edge, and three constraints. This specification

54

of RDF in the HDM is illustrated in table 4.3. For any given RDF description, the

HDM nodes <<URI>>, <<Literal>> and <<Blank>> have as their extents the set

of URIs, literals and blank nodes appearing in the description, respectively, while the

HDM node <<Triple>> has as its extent the set of triples.

RDF Construct HDM Representation
Construct: RDFResource

class: nodal

scheme: <<Resource>>

node: <<Resource>>

Construct: RDFNode

class: nodal, constraint

scheme: <<URI>>

node: <<URI>>

constraint: <<URI>> ! <<Resource>>

Construct: RDFNode

class: nodal, constraint

scheme: <<Literal>>

node: <<Literal>>

constraint: <<Literal>> ! <<Resource>>

Construct: RDFNode

class: nodal, constraint

scheme: <<Blank>>

node: <<Blank>>

constraint: <<Blank>> ! <<Resource>>

Construct: RDFEdge
class: nodal, linking and
constraint
scheme: <<Triple>>

node:
 <<subject>>, <<predicate>>,
<<object>>

edge:
<<Triple,subject,predicate,object>>

and three constraints:

<<subject>> ! (<<URI>> " <<Blank>>)
<<predicate>> ! <<URI>>
<<object>> !
 (<<URI>> " <<Blank>> "
<<Literal>>)

Table 4.3 RDF Constructs and their HDM Representation

To support reification, RDF Statements are also supported in our specification of

RDF. A blank node is used to represent the statement and this is linked to the

components of the statement by a (hyper)edge <<Statement,Blank,subject,

predicate,object>> .

Containers are also supported: there is one HDM edge

<<bag,Blank,Resource>> whose extent is all the container / member

55

associations for bag containers, one HDM edge <<sequence,Blank,Resource>>

whose extent is all the container/member associations for sequence containers and

one HDM edge <<alternative,Blank,Resource>> whose extent is all the

container/member associations for alternative containers.

Bag and sequence containers use an additional HDM node <<Number>> to

model members’ cardinality and ordering respectively. In particular, we use an

additional HDM edge from <<bag,Blank,Resource>> to <<Number>> and an

additional HDM edge from <<sequence,Blank,Resource>> to <<Number>>.

For all instances of the edge <<bag,Blank,Resource>> there is an edge to an

instance of <<Number>> indicating the cardinality of that member in that bag.

Similarly, for all instances of the edge <<sequence,Blank,Resource>> there are

one or more edges to an instance of <<Number>> indicating the positions of that

member within that sequence. The specification of RDF containers and statements in

terms of the HDM is shown in Table 4.4.

RDFS Construct HDM Representation

construct:
RDFStatement
class: nodal and edge
scheme:
<<Statement>>

edge:
<<Statement,Blank,subject,predicate,object>>

construct:
RDFContainer

class: nodal,
linking, edge

scheme: <<t>>

where t = bag,

sequence or
alternative

node: <<Number>>

edge: <<t,Blank,Resource>>

if t=bag or t=sequence then

 edge: <<_,<<t,Blank,Resource>>,<<Number>>>>

Table 4.4 RDF Statements and Containers

Table 4.5 below specifies RDFS in the HDM. We see that there are two different

modelling constructs: RDFSNode and RDFSEdge. Also given are the instances of

these constructs i.e. the RDFS schema. A parser can make use of the RDFS schema to

constrain the triples that can be stored.

56

RDFS Construct HDM

Representation

Construct: RDFSNode

class: nodal

scheme: <<s>>

where s is rdfs:Resource, rdfs:Property or
rdfs:Class

node: <<s>>

Construct: RDFSEdge

class: linking and constraint

scheme: <<e>>

where e is one of:
rdfs:domain,rdfs:Property,rdfs:Class
rdfs:range,rdfs:Property,rdfs:Class
rdfs:subClass,rdfs:Class,rdfs:Class
rdfs:subProperty,rdfs:Property,rdfs:Property
rdfs:seeAlso,rdfs:Resource,rdfs:Resource,
rdfs:isDefinedBy,rdfs:Resource, rdfs:Resource

edge:<<e>>

Table 4.5 RDFS Constructs and their HDM Representation

4.2.5 Wrapping RDF Data Sources

A wrapper for RDF data sources has been developed, conforming to the AutoMed

wrapper architecture. This RDF wrapper, and also the HDM wrapper described in

Section 4.3.2 below, were among the first to be developed for AutoMed and

contributed to the development of the generic AutoMed wrapper architecture.

In this architecture, for each data model represented in AutoMed, an

implementation of the AutoMedWrapperFactory class exists. This contains details

of how to represent the data model in terms of the HDM, and is able to construct

AutoMedWrapper objects supporting open connections to data sources.

The AutoMedWrapper provides methods for accessing the data source. The

Wrapper can be passed IQL queries either by programs using the Wrapper to access

the data source directly or by the AutoMed Query Processor, and will return query

results in the Abstract Syntax Graph (ASG) format of the Query Processor [Jasper, E.

2002].

57

The RDFWrapperFactory is therefore able to create a representation of the

RDF and RDFS modelling languages in the AutoMed Model Definition Repository

(MDR) the first time that an RDF / RDFS data source is accessed.

To identify an RDF / RDFS data source to AutoMed, the URLs for the location of

the RDF and RDFS specifications are passed to the RDFWrapperFactory, which

returns an RDFWrapper object for that data source. If no RDF / RDFS description

exists in the AutoMed Schema & Transformations Repository for that data source, the

RDFWrapper connects to and extracts the RDF / RDFS metadata in order to create

the representation in the MDR.

The JENA API [McBride, B. 2002] is used in the RDFWrapper to access RDFS

XML files. Using JENA in this way means that adding support for new ontology

languages such as OWL in the future should be straightforward.

Programs to demonstrate the RDF/ RDFS wrapper in use are now part of the

AutoMed standard distribution.

4.3 Extending AutoMed: the HDM Data Store

The ESTEST system requires a store for the data extracted by its Information

Extraction process. At the time that this requirement arose, development of the

AutoMed system was in its initial phases and the Wrappers and Query Processing

API had not yet been developed. A native HDM data store was therefore developed to

meet this requirement of storing instance data. The development of the HDM store

highlighted a number of issues relating to instance data in the HDM, such as the need

for a clear and concise notation for defining non-trivial schemas; this notation is used

in a command parser to allow HDM database definition scripts to be processed and

the corresponding schema to be built in the HDM data store. The wrapper developed

for this HDM data store was the first Wrapper implemented in AutoMed toolkit and I

was a member of the Wrapper Architecture design team.

58

The HDM data model has been outlined above in Section 4.1. We highlight the

following characteristics of the model which influenced the design of the HDM data

store.

• HDM schemas consist of nodes and edges e.g. <<person>> is a node

and <<worksIn,person,room>> is an edge.

• Edges can link any number of other nodes and edges e.g.

<<address,houseNumber,road,town,postCode>>

• Edges can be named or unnamed e.g. <<_,person,room>> or

<<worksIn,person,room>>.

• Each component of an edge can be either a node or another edge e.g.

<<livesAt,person,<<address,houseNumber,road,postCode>>>>

• Edge names are only unique for a given sequence of components e.g.

it is possible to have both <<worksIn,person,project>> and

<<worksIn,person,room>.

• Nodes have an associated data type e.g. integer, string.

To illustrate the use of instance data in the HDM, we consider a simple personnel

database with the following HDM schema:

Nodes:

<<person>>, <<project>>, <<room>>, <<houseNumber>>,
<<road>>, <<town>>, <<postCode>>

Edges :

<<worksIn,person,project>>, <<worksIn,person,room>>,
<<address,houseNumber,road,town,postCode>>
<<livesAt,person,

<<address,houseNumber,road,town,postCode>>>>

This database is required to store the following instance data:

• Dean, Mat, Hao and Edgar are people

• Hao, Edgar and Dean work on the AutoMed project

59

• Dean and Mat work on the Tristarp project

• Mat and Dean sit in room BE

• Edgar and Hao sit in room BG

• Dean lives at 64 Northdown Street, London N1 9BS

We note that there are two edges named worksIn and that the second component

in the edge livesAt is itself an edge. For the purposes of this example, it is assumed

that the data type of all nodes is string except for <<houseNumber>> which is an

integer. As double chevrons are used to indicate a node or edge, to distinguish an

instance data tuple we enclose it in square brackets.

This database is used in the following sections as an example to illustrate the

different methods available for interacting with the HDM store.

4.3.1 Implementation

The HDM data store is implemented in the same way as other AutoMed metadata

repositories, such as the Model Definitions Repository (MDR) and the Schema and

Transformations Repository (STR), that is, it is listed in AutoMed’s configuration file

as a DSR (Data Source Repository) implemented in Postgres. The schema of the

HDM DSR is shown in Figure 4.5.

60

Figure 4.5 Schema of the HDM Data Store.

The hdm_store table allows multiple HDM data stores to be created, each

linked to a schema in the STR. These data stores are identified by the

hdm_store_id. The other tables are identified by a composition of this attribute

and the logical identifiers of entities within the data store. This AutoMed schema is

the only schema for HDM data stores and it is used to validate HDM instance data5.

Instances of nodes are stored in the table node. The table node_datatype

records the types of nodes with a data type other than the default string. The edge

table stores instances of edges, each identified by a unique edge id. Edge instances

have an associated edge_type (e.g. <<worksIn,person,room>>). The

edge_component table stores each component of each edge. Each component can

be either a node or another edge, and the edge_or_node attribute indicates if the

id attribute references the edge or node table.

5 This is unlike the general situation in AutoMed where data sources, such as relational databases, have some
external schema and the corresponding AutoMed schema in the STR is a representation built for the purpose of
accessing a specific data source.

61

As components of edges can themselves be edges, in order to fully retrieve an

edge it may be necessary to recursively access the edge and node tables. Therefore,

to assist debugging and for processing efficiency, a redundant string representation

of an edge’s components and the name of the edge are also recorded in the edge

table, within the edge_value_as_string attribute.

4.3.2 HDM Data Store API & Wrapper

An API is available which allows HDM data stores to be created and updated

through the HdmStore class. This class can create new, empty, data stores via the

hdmStore.createHdmStore() method and make use of exsting data stores via the

hdmStore.use() method. Data types can be assigned to nodes using the

hdmStore.setDatatype() method. Nodes and edges can be added, retrieved and

deleted. Instance data can be created through this API and should the node or edge

not exist in the schema it will be added. As an illustration, the code for generating the

example database described above is as follows:

HdmStore hdmStore = new HdmStore();
hdmStore.createHdmStore(“personnel”,”bbkdata”);
hdmStore.use(“bbkdata”);
hdmStore.setDatatype(“HouseNumber”,”integer”);
hdmStore.addNode(“person”,”dean”);
hdmStore.addNode(“person”,”hao”);
hdmStore.addNode(“person”,”mat”);
hdmStore.addNode(“person”,”edgar”);
hdmStore.addNode(“room”,”N26”);
hdmStore.addNode(“room”,”B34E”);
hdmStore.addNode(“project”,”autoMed”);
hdmStore.addNode(“project”,”tristarp”);
hdmStore.addNode(“houseNumber”,”64”);
hdmStore.addNode(“road”,”Northdown Street”);
hdmStore.addNode(“town”,”London”);
hdmStore.addNode(“postcode”,”N1 9BS”);

Edge edge = new Edge(“<<worksin,person,project>>”, new String[]
 {“dean”,”tristarp”});
hdmStore.addEdge(edge);

edge = new Edge(“<<worksin,person,project>>”, new String[]
 {“mat”,”tristarp”});
hdmStore.addEdge(edge);

edge = new Edge(“<<worksin,person,project>>”, new String[]
 {“hao”,”automed”});
hdmStore.addEdge(edge);

62

edge = new Edge(“<<worksin,person,project>>”, new String[]
 {“edgar”,”automed”});
hdmStore.addEdge(edge);

edge = new Edge(“<<worksin,person,project>>”, new String[]
 {“dean”,”automed”});
hdmStore.addEdge(edge);

edge = new Edge(“<<worksin,person,room>>”, new String[]
 {“mat”,”B34E”});
hdmStore.addEdge(edge);

edge = new Edge(“<<worksin,person,room>>”, new String[]
 {“dean”,”B34E”});
hdmStore.addEdge(edge);

edge = new Edge(“<<worksin,person,room>>”, new String[]
 {“hao”,”NG26”});
hdmStore.addEdge(edge);

edge = new Edge(“<<worksin,person,room>>”, new String[]
 {“edgar”,”NG26”});
hdmStore.addEdge(edge);

edge = new Edge(
 “<<address,houseNumber,road,town,postcode>>”,
 new String[]{”64”,”Northdown Street”,”London”, “N1 9BS”});
hdmStore.addEdge(edge);

edge = new Edge(
 “<<livesAt,person,<<address,houseNumber,road,town,postcode>>>>”,
 new String[]{“dean”,”[64 Northdown Street, London, N1 9BS]”});
hdmStore.addEdge(edge);

This syntax is typical of AutoMed APIs, in that classes exist to represent the

constructs of the data model used e.g. node and edge schema elements are created by

passing a set of strings to a constructor. However, it differs from other AutoMed code

in that instance data, as well as metadata, is created. In practice, for other data

models the schemas will usually be imported automatically; while it is possible to

hand code the definition of the schema of a relational database, it is much more usual

to ask the wrapper to import the metadata via JDBC and create the AutoMed schema

in that way. As no such native schema exists for HDM data sources, a more

straightforward method of defining schemas and populating instance data is required

and for this reason we developed the command parser described in Section 4.3.4

below.

63

An HDM wrapper is available with the same functionality as for the other

AutoMed wrappers e.g. the RDF wrapper described above. This enables HDM data

stores to be treated in the same way as any other data source by AutoMed. In

particular, instance data can be created or amended by issuing an IQL statement

through the Wrapper.

4.3.4 Command Parser

As an alternative to the HDM data store API, a command parser has been

developed which takes a text file containing a sequence of commands and executes

each command in turn. This removes the necessity to write new code each time an

HDM data store is created or amended. If the text file of commands is being hand-

crafted, then the syntax as described above would lead to lengthy files, even for

reasonably small databases. For example, the commands for the personnel database

described earlier would be:

createdb;
newstore personnel birkbeck;
use birkbeck;
settype houseNumber integer;
add <<person>> [dean];
add <<person>> [hao];
add <<person>> [mat];
add <<person>> [edgar];
add <<room>> [NG26];
add <<room>> [B34E];
add <<project>> [automed];
add <<project>> [tristarp];
add <<houseNumber>> [64];
add <<road>> [Northdown Street];
add <<town>> [London];
add <<postCode>> [N1 9BS];
add <<worksIn,person,project>> [dean,tristarp];
add <<worksIn,person,project>> [mat,tristarp];
add <<worksIn,person,project>> [hao,automed];
add <<worksIn,person,project>> [edgar,automed];
add <<worksIn,person,project>> [dean,automed];
add <<worksIn,person,room>> [mat,B34E];
add <<worksIn,person,room>> [dean,B34E];
add <<worksIn,person,room>> [hao,NG26];
add <<worksIn,person,room>> [edgar,NG26];
add <<address,houseNumber,road,town,postCode>>
 [64,Northdown Street,London,N1 9BS];
add <<livesAt,person,
 <<address,houseNumber,road,town,postCode>>>>
 [dean,[64,Northdown Street,London,N1 9BS]];

64

Despite being a small database, this is quite unwieldy because the syntax is quite

verbose especially where edges contain components that are themselves edges,

although it is an improvement to writing code through the API. To make such

definitions more manageable, a number of syntax shortcuts are provided which the

parser converts into the full commands before execution:

1) Multiple instances of the same node can be specified in one command e.g. add

<<person>> [dean] [mat] [hao] [edgar].

2) An optional additional parser command addmissingnodes instructs the

parser to insert into the database any nodes mentioned in an edge definition which

do not themselves currently exist in the database e.g. add

<<worksIn,person,project>> [dean,tristarp] will add the <<person>>

node [dean] and the <<project>> node [tristarp] if they are not already in the

database.

3) As mentioned above, edge names do not have to be unique in a schema if the

edges link different sequences of components. However, in practice they often will be

and the parser allows for the edge name to be used and not the full type description in

cases where there is not more than one edge with the same name e.g add

<<livesAt>> [dean,[64,Northdown Street,London,N1 9BS]]instead of

add <<livesAt,person,

 <<address,houseNumber,road,town,postcode>>>>

 [dean,[64,Northdown Street,London,N1 9BS]].

4) Macros are available so that, once defined, later references to entries in the

database can be referenced by a shorthand tag e.g. &1.

Using the above syntax shortcuts, the schema and instance data for the personnel

database can be defined using just the following commands:

createdb;
newstore personnel birkbeck2;

65

use birkbeck2;
addmissingnodes;
settype houseNumber integer;
add <<worksIn,person,project>> [dean,tristarp] [mat,tristarp]
[hao,automed] [edgar,automed] [dean,automed];
add <<worksIn,person,room>>
[mat,B34E] [dean,B34E] [hao,NG26] [edgar,NG26];
add <<address>> [64,Northdown Street,London,N1 9BS] &1;
add <<address>> [12,Malet Street,London,WC1E 7HX] &2;
add <<livesAt>> [dean,&1];
add <<livesAt>> [edgar,&2];

4.4 Discussion

In this chapter we have summarised the facilities of the AutoMed data

integration toolkit. We have also described two enhancements made to AutoMed in

order to support the development of ESTEST, but which are more generally

applicable.

As RDF/RDFS sources provide structural information, it was required for

ESTEST to be able to accesses such data sources. More generally, RDF/RDFS is an

area of focus for semantic web research, and so adding RDF and RDFS to the models

supported by AutoMed is also a useful general extension to the toolkit. We have

described a method for representing RDF and RDFS in AutoMed’s HDM, including

statements and containers. This has been implemented in the AutoMed toolkit, so

that RDF and RDFS data sources can now be used in the same way as any other data

sources, using an RDF wrapper that allows querying of the RDF triples that conform

to the associated RDFS description.

For the purposes of ESTEST, such RDF triples describe an ontology and are of

use as schema information, not instance data. In our discussion of the ESTEST

integration step in Section 5.2 of Chapter 5, we will describe how the AutoMed-

oriented representation of RDF data sources is transformed into an ESTEST-oriented

schema.

ESTEST also requires a repository for the data extracted by its IE component,

and a native HDM data store was developed to meet this need. This development led

66

to the issues discussed in this chapter being considered, particularly the suitability of

the HDM syntax for describing real data. The development of the HDM data store

was driven by the fact that the ESTEST requirement for storing instance data arose

before the development of the Wrapper and Query Processing functionality which

now exists in AutoMed. However, even without this necessity, the development of a

native HDM data store provides insights into the HDM data model as well as

highlighting practical issues such as the verbose HDM syntax, especially for nested

edges. The HDM data store has been developed as a stand-alone component in order

for it to be reusable independently of ESTEST. As well as the code for the HDM data

store itself, the AutoMed distribution now includes a number of demonstration

programs for setting up HDM stores, and creating schemas and instance data,

making use of both the API and the command parser.

67

Chapter 5

The Design of the ESTEST System

5. The Design of the ESTEST System

We have discussed in Chapters 1, 2 and 3, why, for the class of application

addressed by this thesis, there are likely to be benefits in combining techniques from

data integration and information extraction (IE), relating to integrating the available

structured data and using it to partially configure and assist an IE process, and

subsequently integrating the data and metadata extracted from the text with the

existing structured data so as to support queries that would not be possible without

this extension.

There are a number of interesting areas for research to focus on in combining

these techniques, for example: automatic integration of extracted information into a

structured database; how far the configuration time for an IE system can be reduced

by the use of a schema to specify the entities to extract; and how such an approach

compares to the manual methods presently employed in a particular domain.

However, it would be difficult to investigate in depth any specific area without first

having available a prototype end-to-end implementation of the proposed approach,

and for this purpose we have designed and implemented an Experimental System To

Extract Structure from Text (ESTEST), the design of which is described in this

chapter.

In Chapter 6 we discuss the use of ESTEST in a specific application domain and

present the results of experiments carried out. As a result of our experience of using

this system in practice, a number of limitations were revealed in the area of

automatic result integration, and further innovations to overcome these limitations

are discussed in Chapter 7, along with a detailed investigation into two specific areas:

68

(i) the use of IE in schema matching, and (ii) the combination of NLP and database

de-duplication techniques in order to resolve references to the same entity within

both text and structured data.

5.1 The ESTEST Approach

In general, IE is used as a step in a sequence, normally to produce a structured

dataset for further analysis. Our goal, in contrast, is to make the information

extracted from text available to the query processing facility of a DBMS. As we have

also argued, over time requirements for new queries may arise and new structured

data resources may become available. Therefore, for this class of applications, a

system must be able to handle incremental growth of its integrated schema and

repeated application of its IE and integration functionality.

Our ESTEST system thus supports an evolutionary approach, allowing the user to

iterate through a series of steps as new information sources and new query

requirements arise. Each step may need to be repeated following amendment of the

system configuration by the user. The overall process may also need to be restarted

from any point. As a result, the components are built as independent modules which

can be chained together to achieve the desired result and each can be re-run.

ESTEST makes use of the facilities of AutoMed for data integration, and of GATE

for IE. Both of these systems are ongoing research projects, with research and

development occurring in parallel to our own work. Extensions were required to both

systems, and the design approach adopted has been to develop any enhancements

likely to be more generally useful as components for those systems while any

functionality specific to ESTEST has been implemented in separate ESTEST modules

so as not to add complexity to the AutoMed and GATE API’s. We discuss in Section

8.1 the challenges entailed in this choice of data integration and IE systems, and in

Section 8.2.2 the possibility of using other data integration and IE systems within

ESTEST.

69

We envisage that the ESTEST approach will ultimately be used by end-users

within an integration and extraction workbench, making use of a graphical user

interface (see Chapter 8). To facilitate this future work, we have designed ESTEST as

a set of components that can be controlled either by scripts or through the envisaged

GUI. The script functionality allows the specification of steps simulating user changes

to the configuration, for example to change the schema elements for which word

forms are automatically expanded. Scripts also make straightforward the re-running

of experiments many times.

A functional overview of the main phases of the overall ESTEST processes is

shown in Figure 5.1. In this chapter we describe each of these phases in detail,

including the architecture of the corresponding ESTEST components and their

interaction with AutoMed, GATE and other third-party software. The phases are Data

Source Integration (described in Section 5.2), Semi-Automatically Configure IE

(Section 5.3), IE Process (Section 5.4), Integrate Extracted Information (Section 5.6),

and Query Global Schema and Enhance Schema (Section 5.7).

Figure 5.1 ESTEST Phases

70

5.2 Integrate Data Sources

In this section, we first give an overview of the integration process and then

describe each of the steps in more detail. An integrated schema is first built from the

variety of data sources available to the user: these may include structured databases,

semi-structured XML data files, ontologies and sources of text for subsequent IE

processing. ESTEST achieves this by first creating an AutoMed representation of each

data source, via the appropriate AutoMed wrappers. Each of these schemas is then

transformed into a schema expressed in the ESTEST data model (EDM), which

preserves the structural information needed by ESTEST. Transforming the data

sources into a single data model makes it easier to reason about all data sources

during the integration and for the ESTEST phases that follow. Metadata about

schema constructs in each of the data sources is captured for use in merging schemas

and also later in the IE step, for example textual descriptions and type information.

Possible correspondences between constructs are suggested by a set of heuristics and

the correspondences are confirmed or amended by the user. ESTEST uses these

correspondences to merge the schemas and create a Global Schema. It is also one of

our goals to automate as far as possible each part of the system, including the

integrations, and we describe below steps where input is suggested for confirmation

by the user, such as possible matches between schema elements from different data

sources. ESTEST then makes use of the Global Schema to configure the IE process.

New data may be found during the IE phase and this will be stored in a native HDM

repository which has been integrated with the Global Schema.

Figure 5.2 shows the architecture of the ESTEST Integration Component and we

now describe each step performed by this component in greater detail.

71

Figure 5.2 ESTEST Integration Component Architecture

5.2.1 Wrapping of Data Sources

An ESTEST Wrapper exists for each data model that makes use of the

corresponding AutoMed wrapper where possible and implements ESTEST-specific

functionality where necessary e.g. collecting additional metadata such as textual

descriptions and type information.

The data sources for an application may include structured databases, semi-

structured data files, and domain ontologies. These can be organised according to any

data model supported by an ESTEST Wrapper. Currently, relational databases, XML

data files, ontologies (represented in RDF/RDFS) and HDM data stores are

supported by ESTEST. Each such data source is made known to ESTEST with a

name, the data model it conforms to and the relevant connection information e.g. the

details required by JDBC for a relational data source.

For each such data source, the ESTEST Wrapper first calls on the corresponding

AutoMed wrapper to create an initial representation of the schema in the AutoMed

STR.

72

Each schema is then converted into the ESTEST data model (EDM). The table

below shows the constructs of the EDM and their representation in the HDM. The

EDM provides concepts which are used to represent any construct that has an extent

i.e. instance data. Concepts are represented by HDM nodes e.g. <<fox>>,

<<animal>>, and are structured into an isA hierarchy e.g. <<isA,fox,animal>>.

Concepts can have attributes which are represented by an HDM node and an

unnamed edge in the HDM e.g. an attribute to represent the number of legs an

animal had, would be represented by a node <<num_legs>> and an edge

<<_,animal,num_legs>>.

ESTEST Construct HDM Representation

Construct: Concept

class: nodal

scheme: <<c>>

node: <<c>>

Construct: Attribute

class: nodal, linking

scheme: <<c,a>>

node: <<a>>

edge:<<_,c,a>>

Construct: isA

class: constraint

scheme: <<isA,c1,c2>>

constraint: <<c1>> ! <<c2>>

As the constraint functionality for AutoMed was not implemented at the time we

were developing ESTEST, we have implemented this functionality instead by

materialising the isA relationships using a sequence of add, contract and rename

AutoMed transformations (the method by which this is achieved is described in

Section 5.2.3).

 The ESTEST wrapper for any data model takes the schema created by the

AutoMed wrapper and transforms this, still within the AutoMed STR, into its

equivalent EDM representation. For example, the ESTEST Relational Wrapper

transforms an AutoMed relational schema into an EDM schema as shown below:

73

AutoMed Construct ESTEST Representation

Model: Relational

Construct: Table

class: nodal

scheme: <<t>>

concept: <<t>>

Model: Relational

Construct: Column

class: nodal, linking

scheme: <<t,a>>

concept: <<a>>

attribute: <<t,a>>

Model: Relational

Construct: Foreign Key

class: constraint

scheme: <<fky,a,t>>

isA: <<a,t>>

From the point of view of a conventional data integration system, an RDFS

schema and a set of RDF triples would be treated as a schema and its extent

respectively – and this is how the AutoMed RDF/RDFS wrapper we have developed

works. However, in the case of ESTEST this would mean that only the RDFS

constructs would exist in the global schema, with the RDF triples being the extent of

the corresponding RDFS constructs and accessible as data only via queries submitted

to the AutoMed Wrapper. Therefore, the ESTEST RDF/RDFS Wrapper takes the

representation created by the AutoMed RDF / RDFS Wrapper and converts the RDF

triples into EDM schema information so the whole ontology is used for schema

matching.

 The ETEST RDF/RDFS Wrapper uses queries on the AutoMed RDF Wrapper to

create representations of RDF/RDFS triples as EDM schema information:

• Each RDFS class is represented by an EDM concept e.g. <<c>>

• All RDFS sub-class relationships are represented by an isA edge

between the two classes e.g. <<isA,c1,c2>>

• Properties in RDFS exist independently of classes. Therefore the

following algorithm is used to represent RDFS properties as attributes in

the EDM.

74

for each property:
 find the class which is its range
 for each class which is a domain for this property:
 create an EDM edge:<<attribute,domain,range>>

 endfor
endfor

• RDF triples are represented as an instance of the EDM isA relationship.

5.2.2 ESTEST Metadata Repository

The ESTEST wrappers collect metadata for use in the later phases of ESTEST and

store this in the ESTEST Metadata Repository (EMR). The metadata collected

currently consists of word forms and type information. A word form is a word or

phrase representing a concept. Word forms associated with concepts are of

importance in ESTEST because of their use in the IE process where they will match

strings contained in the text. The ambiguity of natural language means that word

forms can be associated with many concepts.

ESTEST is able to collect word forms from a number of alternative sources: those

manually entered by the user, from schema element names, from related concepts in

the global schema’s isA hierarchy, or from the WordNet natural language ontology

[Fellbaum, C.E. 1998]. Each source has an associated confidence level so that, for

example, manually entered word forms are given greater weight than words extracted

from a schema element name.

Initially, word forms are collected from the data source metadata and any user

input. On subsequent iterations of ESTEST, the user can expand the number of word

forms associated with a concept should the IE process fail to find sufficient matches

in the text. Word forms from these less precise sources are likely to increase recall but

reduce precision.

The ESTEST WordNet component includes useful algorithms over the WordNet

data, making use of the third-party Java WordNet Library [JWNL] to interact with

the WordNet database. ESTEST uses WordNet to expand the available word forms by

75

linking an ESTEST schema concept to a WordNet concept (user confirmation for this

mapping may be required if there are multiple concepts matching the concept name)

and expanding the word forms available by traversing the WordNet concept network

and obtaining word forms from nearby concepts. As a default, the ESTEST WordNet

component will keep searching for word forms until either 200 have been returned or

20 levels of hyponym relationship have been traversed. These default values have

been arrived at during use of ESTEST in a number of domains; it is likely that the

optimum default values will vary across domains and these can therefore be set as a

parameter when ESTEST is loaded.

In naming database objects, abbreviations are important and they frequently

occur in database schemas. These may be explicitly defined in a standards document

or they may emerge through use e.g. “acc” is a frequently used abbreviation for

“account” in financial systems and for “accident” in the Road Traffic Accident

domain.

In addition to word forms, the ESTEST wrapper also gathers type information for

subsequent use in schema matching, to suggest sources of named entities for IE, and

to suggest sources of text to be processed by IE. The current AutoMed release

collects some type information (though this was not the case when ESTEST was

designed) but does not, on its own, meet the requirements of ESTEST. For example,

the AutoMed relational wrapper will assign the same type information to both a short

fixed-length character attribute and an unlimited length text attribute.

Textual descriptions from the source metadata (such as the metadata remarks

supported by the JDBC database API) are also collected by the ESTEST Wrappers. In

our experience, while it is rare for this feature of relational databases to be used in

academic applications, in industry these are sometimes mandated to be completed

and can also be populated by CASE tools and data dictionaries.

76

5.2.3 Initial Global Schema Creation

ESTEST uses the metadata in the EMR to suggest to the user correspondences

between elements in the EDM representations of the data source schemas. This is

achieved by comparing the word form and type information of each element in a

schema with each of the elements in every other schema. ESTEST assigns a

confidence measure to word forms depending on their source: word forms manually

entered by the user have a higher confidence score than those mined from data

source metadata, which in turn are preferred to word forms from WordNet. Using

these confidence levels, ESTEST suggests the best match, providing the evidence

crosses a threshold level. The user can accept or reject these suggestions as well as

adding their own correspondences.

Using these correspondences, each of the EDM schemas is incrementally

transformed into a union schema by means of a series of AutoMed primitive schema

transformations. All the union schemas are syntactically identical and this is asserted

by a series of id transformations between each pair of union schemas: id is a

primitive AutoMed transformation that asserts the semantic equivalence of two

syntactically identical constructs in two different schemas. The transformation

pathway containing these id transformations is automatically generated by the

AutoMed software. An arbitrary one of the union schemas is designated finally as the

global schema.

ESTEST requires the ability to store the results found from its IE process and an

additional data source is created for this purpose after the global schema has been

created. This data source is stored in the native HDM repository that we have

developed, and its schema is the HDM representation of the global schema. This new

data source is integrated into the global schema by the automatic generation of the

necessary AutoMed transformation pathways.

77

Figure 5.3 shows on overview of the network of schemas generated by ESTEST:

schemas representing the data sources are created by the ESTEST wrappers, each of

which itself wraps the equivalent standard AutoMed wrapper, and extends the

functionality provided by directly connecting to the data source to obtain additional

metadata. These schemas are converted by ESTEST into the EDM, and the schema

matching process then finds correspondences between schema elements from across

the different data sources. Once the corresponding schema elements have been

renamed to show they are in fact the same, each data source schema is extended to

contain the elements of all the schemas to be merged. These extended “union

schemas” are shown to be equivalent by the id transformations that are asserted

between them and any one can be chosen to be the global schema.

Figure 5.3 Schema Network Generated by ESTEST

Once the global schema is created, ESTEST now materialises the isA

relationships. As the ESTEST wrappers create the EDM representation of each data

source they maintain an array containing the isA edges created. This array is now

used to examine the edges and produce expanded queries used in AutoMed to

represent the extents associated with each schema element. For example if the

schema contained elements <<fox>> and <<animal>>, and there is also an edge

<<isA,fox,animal>>, then <<animal>> is replaced by a new schema element of

the same name whose extent is defined to be the union of schema element <<fox>>

and the original <<animal>> schema element. Our general method for undertaking

these expanded extents is as follows:

78

for each schema element e in the global schema:

if e is the 3rd component of an isA edge then:

create a new schema object temp using an add transformation,

passing as the query parameter the expanded extent query for e;

for each edge edge in the global schema which has

e as one of its components:

add a new edge with component temp replacing e;

apply a contract transformation to remove

orig_edge from the global schema;

 apply a contract transformation to remove e from

the global schema;

apply a rename transformation to rename temp to e;

Querying the global schema for any schema element in the isA hierarchy now

returns the expanded extent.

5.3 Semi-Automatically Configure IE

ESTEST’s IE Configuration Component can now use the global schema and the

additional metadata in the ESTEST metadata repository (EMR) to create

configuration data for the IE process. This includes using the extent of concepts in

the schema for named entity recognition, and using the schema and metadata in the

EMR to suggest basic information extraction rules to the user and to create templates

to be filled based on concepts in the schema which have missing attributes in the

data.

Named entity recognition is central to IE, and the ESTEST configuration

component suggests schema elements whose extents may be a set of entity names for

use in IE by the SchemaGazetteer component (described in Section 5.4 below). These

79

suggested schema elements can be amended by the user, who can also specify if the

word forms associated with the named entity sources should be found from the

schema metadata or if the word forms are defined by the extent of the schema

element.

In Chapter 3 we described the limited generic support given by IE systems, to

date, for producing structured data from the annotations resulting from the IE

process. In Section 3.2 we gave an overview of the IE systems influenced by MUC and

including Template Relation and Scenario Template tasks — however, these are hand

coded for each specific relationship and scenario. More recently, semantic annotation

has been used to populate ontologies [Popov, B., Kiryakov, A. et al. 2004] but other

than limited support for predefined relationships, this is merely extending named

entity recognition to move from a single annotation type to an annotation hierarchy.

To clarify the terminology in use, we observe that in GATE an annotation schema

defines the annotation features that are valid for a particular annotation, e.g. a

gender feature might be valid for a person annotation, but not for a location

annotation. Annotation schemas are solely used to validate the manual entry of

annotations through the GUI and not, for example, for validating annotations

generated by JAPE rules. GATE annotation schemas are distinct from schemas in the

database sense used by ESTEST.

In ESTEST, templates are automatically constructed from the global schema and

consist of concepts and their attributes. Of particular interest are annotations in the

text referring to an attribute in the template that have no value for a given instance of

the template. If there are multiple possible annotations for a fragment of text,

unfilled slots in a template that are known to be related to the text are preferred. For

each concept and attribute, a stub GATE Jape pattern matching rule (see section 3.3)

is defined. The user will expand these rule stubs to specify the text patterns that

identify instances of the entity in the text.

80

5.4 Information Extraction Process

For this, a GATE pipeline is constructed consisting of 1) a standard GATE English

tokeniser, 2) a GATE sentence splitter, 3) our SchemaGazetteer component

configured to perform named entity recognition using the identified concepts in the

schema, and 4) a GATE Jape transducer configured to use the Jape rules generated

by ESTEST and enhanced by the user.

Named entity recognition for a specific entity type involves looking up tokens in

the text being processed against lists of instances. In the standard IE approach, the

entity types are not part of any type hierarchy. In contrast, our SchemaGazetteer

component links the named entity annotations it generates over the text to elements

in the global schema. It obtains the set of known instances of the entity from either a

query to retrieve the extent of the global schema concept, or alternatively to obtain

from the EMR the list of word forms associated with the concept.

5.5 Integrate Extracted Information

The final set of annotations over the text, produced by GATE, is now examined by

ESTEST, and annotations that refer to new instances of schema concepts are

extracted. GATE annotations have an associated “map” of features, each being a pair

of the form <attribute-name,attribute-value> e.g. {kind=employee}.

The Jape rules and the SchemaGazetteer configuration file which ESTEST

generates make use of the standard GATE kind feature to identify annotations of

interest by setting as the attribute value of this feature, the name of the schema

element to which the annotation refers.

These annotations of interest are now stored automatically by ESTEST in the

HDM store. As these annotations refer to a concept in the EDM global schema, they

are represented by a node in the HDM. Therefore, for each such annotation, a

81

corresponding instance of a node will be stored in the HDM data store e.g.

<<student>> [Dean Williams].

In the EDM, the concept of the instance being added may participate in a chain of

isA relationships. These will result in a new node and a set of isA edges being

added, moving recursively up the isA hierarchy e.g. <<person>> [Dean

Williams] and associated edge <<isA,person,student>> [Dean

Williams, Dean Williams].

We have used the term template to refer to the situation where a concept has one

or more related attributes — this is borrowed from IE where the template extraction

task has the greatest similarity to ESTEST’s generic approach to storing the results of

IE; instances of attributes are said to be filling slots in an instance of a template.

A characteristic of partially structured data is that text from which the

information has been extracted is itself an instance of a concept in the global schema

which will itself be an attribute of some other concept e.g. if the document

representing the minutes of a meeting in a university departments is processed by IE,

these minutes may be represented in the global schema by an instance of the

<<minutes>> concept, and there may also be an instance of the edge

<<attribute,department,minutes>> representing the specific department in

which these meeting minutes were taken.

Therefore should there be, in addition to the <<attribute,department,

minutes>> edge, an edge <<attribute,department,student>>, then, when

through IE an instance of <<student>> is extracted, it is assumed by ESTEST that

this instance fills a slot in the same template as the earlier instance of <<minutes>>.

For example, if the document processed is: <<attribute,department,

minutes>> [Computer Science, Minutes of Computer Science staff

/ student meeting 1 April 2007 Dean Williams reported that……],

then ESTEST will decide that the extracted student is from the Computer Science

82

department and will store an edge <<attribute,department,student>>

[Computer Science, Dean Williams].

The text is not a separate and independent information source, unrelated to the

schema of the structured data, but is itself an object in the global schema. This

characteristic can be used to deduce relationships for structured data extracted from

the text. The concept representing the overall text will appear in a template and will

be an attribute of some other concept (for example, the column of a relational table

which holds the text values being processed will be represented in the EDM as a

concept which is an attribute of the concept representing the table). If the structured

data extracted is for a concept that is an attribute in the same template as the whole

text (for example, the extracted data is an instance of a different column in the same

table), then the instance of the template which the extracted data refers to can be

assumed to be the same template instance as that of the overall text being processed.

For example, <<attribute,department, student>> [Computer Science,

Dean Williams].

 Where this is not the case, that is, the extracted concept is not an attribute of the

same concept as the overall text from which it was extracted, then ESTEST assumes

that the extracted instance is new and creates unique identifiers (e.g.

ESTESTINSTANCE1), as well as edges for attributes in templates.

This approach makes use of the global schema to automatically store the

extracted information found by the IE process. This contrasts previous work on

template extraction, reviewed in Section 3.2, and we are aware of no system which

provides a generic approach to storing extracted data (note that in the case of the

MUC and ACE competitions, details of the domain were released some time before

the event and systems were tailored using sample data that was also provided in

advance). Similarly, while IE researchers have made available a large number of IE

components both in their own right, and distributed as part of a framework such as

GATE and UIMA, we are not aware of any which provide a similar facility. The

83

system with the closest goal to ESTEST in this regard is the KIM system described in

Section 3.4 which assumes that all information extracted is an instance of a class in

its pre-defined “ontology of everything”.

While our approach described here is generic and original, when used in practice

as described in Chapter 6, certain limitations become apparent when the

relationships between the concepts extracted from the text are more complicated

than those described above. In Chapter 7 we describe an extension made which uses

database duplicate removal techniques to make use of the existing structured

instance data in addition to the global schema metadata in order to provide a more

flexible facility for dealing with integrating the extracted information.

5.6 Remaining ESTEST Phases

The user can now pose queries to the global schema the results of which will

include the new data extracted from the text.

The global schema may subsequently be extended if a new data source is added,

or if new schema constructs are identified and added to it, for example as new query

requirements arise with respect to the global schema. We will see examples of this in

the next chapter.

The user may also now choose to expand the number of word forms associated

with schema concepts in order to increase the recall of the IE process. This can be

done by entering word forms manually, or by obtaining more word forms from either

the schema or WordNet as described in Section 5.2.2.

Following any such changes, the process described in Sections 5.2 – 5.6 is then

repeated and new data is possibly extracted from the text. Because of this

incremental approach to schema evolution and data extraction, we expect that a

graphical workbench will ultimately be required for end-user use of ESTEST and the

requirements of such a workbench are considered in Chapter 8.

84

5.7 Discussion

In this chapter we have described the design of the first version of the ESTEST

system. This system demonstrates our approach end-to-end. Available structured

data is integrated into a virtual global schema which is then used to assist in

configuring an IE process. The extracted information is then automatically integrated

into the global schema and is available to queries posed against this schema. Our

approach and the ESTEST system have a number of novel features:

This is the first time, to our knowledge, that a heterogeneous data integration

system has been extended to include support for data extracted from unstructured

text.

IE systems require considerable effort to configure for each new domain. ESTEST

makes use of the metadata extracted from the available domain-specific structured

data sources, and from the WordNet natural language ontology, to semi-

automatically configure the IE process.

In classic IE systems, no general purpose facilities were provided for subsequent

processing of extracted annotations. Recent research has extended IE by using

ontologies to provide a hierarchy of annotation types that are used in named entity

recognition in the KIM system [Popov, B., Kiryakov, A. et al. 2004] discussed in

Section 3.4. This has similarities with our own approach of using a virtual global

schema and linking IE named entities to schema concepts. In both, named entity

recognition is extended to go beyond linking an instance to one of a set of entity

types, and instead to map the instance into a richer metadata structure: in our

approach, the mapping is to a concept in the global schema constructed by the

ESTEST system while in the KIM approach, it is to a entity in an ontology.

However, the KIM approach has as a prerequisite the existence of an ‘ontology of

everything’. In contrast, ESTEST adopts a pragmatic approach, developing the global

schema from the available structured data sources specific to the application and

85

seeking to expand the instance data and schema incrementally. ESTEST achieves this

by adding to the previously known data and schema over time, by using the system to

extract structured data from text and also by integrating new structured data sources

into the virtual global schema as they become available. This approach is more

readily applicable to the class of applications this thesis addresses and avoids the

time consuming task of manual ontology creation by experts.

The ESTEST method of using the characteristics of partially structured data to

automatically relate extracted instance data to the appropriate object in the global

schema is analogous to the template relation and scenario template MUC tasks.

However, whereas systems in the MUC competitions were hand-coded to fill

templates representing the entities of interest, ESTEST’s SchemaGazetteer

component and the JAPE grammars it creates ensure that the annotations created by

IE link back to concepts in the global schema and they are stored automatically.

In addition to describing partially structured data for the first time, [King, P. and

Poulovassilis, A. 2000] suggests an approach for progressing research into this area

consisting of i) developing graph-based representations capable of representing

semantic and grammatical information in text, ii) developing a functional database

programming language able to encode the data structures and extraction methods

which would integrate the information from the text with the structured data, and iii)

developing a workbench for processing textual fragments in order to generate

semantic and grammatical information for the user to integrate into the structured

data.

Our approach differs from this in focussing on combining existing structured and

unstructured information management techniques in order to make use of the

structured data to assist in the extraction of data from the text. In contrast, in [King,

P. and Poulovassilis, A. 2000] the emphasis is on using NLP techniques in order to

process the text and then integrating the extracted information with other previously

known information; such an approach of incrementally processing the text and

86

merging the results into the structured data has recently been demonstrated in [Chu,

E., Baid, A. et al. 2007].

Our approach is similar to both [King, P. and Poulovassilis, A. 2000] and [Chu,

E., Baid, A. et al. 2007] in that there is an emphasis on incrementally processing text.

Like [King, P. and Poulovassilis, A. 2000], we see graph-based data models as being

more suited to evolutionary expansion whereas [Chu, E., Baid, A. et al. 2007] argue

that relational data models are sufficient – wrongly, in our view, given the limitations

of dynamic schema evolution in relational databases. We differ from these two

approaches in that we make use of the previously known structured information to

assist in the extraction of new information from the text.

87

Chapter 6

Evaluation of the ESTEST System

6. Evaluation of the ESTEST System

Having described the design of the ESTEST system in Chapter 5, in this chapter

we demonstrate its use in a specific application domain – UK Road Traffic Accident

Reports. In Section 6.1 we outline the characteristics of this domain, focussing on the

data collected and current limitations on its use. In Section 6.2 we demonstrate the

use of ESTEST on this kind of data. In Section 6.3 we discuss experiments and

present results performed on a collection of real road traffic accident reports. We give

our concluding remarks in Section 6.4.

ESTEST is the first system that aims to support the requirements of partially

structured data, and there is no other competing system to use in a comparison (as

there would be if, for example, we were improving the recall and precision of named

entity recognition). Therefore, our evaluation approach has been i) to demonstrate

how the system would be of use in a real-world application domain that requires

partially structured data, which we describe in Section 6.2, and ii) to show that the

system is capable of producing similar results to a “vanilla” IE system while also

being able to support queries that could not be supported by such an alternative.

For a complete evaluation of our approach, the development of a full end-user

workbench would be required and we discuss such a possibility in Chapter 8.

6.1 The Road Traffic Accident Domain

In the UK, road traffic accidents (RTA) are reported using a format known as

STATS-19 which is defined in a specification called “STATS-20: Instructions for the

Completion of Road Accident Report Form STATS19” [STATS20]. STATS-19 is a flat

88

file format with multiple records per accident. In this file format, one header record

exists for each accident, followed by one or more records for each person and vehicle

involved in the accident. Such accident reports are collected by each of the UK’s local

police forces and are periodically sent to the UK Government Department of

Transport for producing national statistics.

The bulk of the RTA schema consists of over seventy coded attributes. For

example, the attribute ‘road surface condition’ has value 1 for ‘Dry’, 2 for ‘Wet or

Damp’, and so on. For each attribute, the STATS-19 specification gives detailed

guidance on the circumstances in which each of the codes should be used.

A textual description of the accident is also recorded in the accident report,

expressed in a stylised form of English. An example textual description might be

“FOX RAN INTO ROAD CAUSING V1 TO SWERVE VIOLENTLY AND LEAVE

ROAD”. Here, “V1'' stands for “vehicle 1'' which, by convention, is understood to be

the vehicle which is thought to have caused the accident; the other vehicles involved

are termed “V2”, “V3” etc.

The schema of the structured part of the STATS-19 data is very comprehensive

and there have been a number of revisions to it during its several decades of use.

There are currently quinquennial reviews of the format to include new requirements.

The format is also regularly the subject of questions and discussions by committees of

the UK parliaments: for example, recently road safety campaigners lobbied for the

inclusion of a code indicating when mobile phone use while driving may have been a

cause of the accident.

However, there are still queries that cannot be answered via this schema alone

and the textual descriptions need to be consulted in such cases. Also, anecdotal

evidence given by police officers to road safety researchers indicates that the

complexity of the forms to be filled in for each accident means that the quality of the

information recorded varies greatly [Heydecker, B. 2005]. Indeed, when there is a

discrepancy between the coded entries and the textual description, or the

89

circumstances of an individual accident need to be reviewed, then the textual

description is preferred to the coded entries.

6.2 An Example of ESTEST in use

We now show an example of the ESTEST system in use in a simple application

within the RTA domain. We describe each of the steps undertaken with ESTEST and

give the output from each step.

We assume three data sources are available:

1) AccOnt is a user-developed RDFS ontology concerning the type of

obstructions that cause accidents. Figure 6.2 shows the AccOnt RDFS schema and

some associated RDF triples.

2) AccDB is a relational database holding STATS-19 data from a police force.

AccDB consists of the following tables:

accident(acc_ref,road,road_type, hazard_id, acc_desc)
vehicle(acc_ref,veh_no,veh_type)
carriageway_hazards(hazard_id, hazard_desc)

In the accident table, the acc_ref attribute uniquely identifies each accident,

the road attribute identifies the road the accident occurred on, and road_type

indicates the type of road. The hazard_id contains the carriageway_hazards

code and this is a foreign key to the carriageway hazards table. We assume that the

multiple lines of the text description of the accident have been concatenated into the

acc_desc column. There may be zero, one or more vehicles associated with an

accident and information about each of them is held in a row of the vehicle table.

Here veh_reg uniquely identifies each vehicle involved in an accident and

acc_ref,veh_no is the key of this table.

Below, we list the textual descriptions of the three accidents from AccDB that our

example here refers to:

90

Accident Description
A001234 FOX RUNS INTO NORTH GATE STREET CAUSING V1 TO SWERVE

VIOLENTLY AND LEAVE ROAD OFFSIDE 50M AWAY

B231562 A50 WELFORD ROAD LEICESTER,BRIDGE 200 YDS S ALMOND
WAY. V1 TRAV MOTORWAY M6 FAILS TO STOP AT XRDS AND HITS
V2 TRAV UPPERTON RD V2 THEN HITS V3 PKD ON OS OF
UPPERTON RD

C051633 ESCAPED KANGAROO JUMPS IN FRONT OF V1

3) AccDBx is a relational database of towns and roads and consists of the

following tables:

towns(town)
roads(road,town)

The towns table contains a list of towns. In the roads table, the combination of

road and town uniquely identify a road, the town attribute being a foreign key to the

town table.

Our example is run from a script, with steps included which simulate user input.

The script is listed in Appendix B. The output produced by ESTEST while running

this script is also listed in Appendix B; relevant excerpts of output are included in our

description below. The script comprises the following steps and we explain each of

these in 6.2.1-6.2.12 below:

1) Initial configuration, relating to word abbreviations common to the domain, is

loaded.

2) The data sources AccDB, AccDBx and AccOnt are made known to ESTEST

and are integrated into a global schema.

3) The global schema is queried to determine what accidents were caused by

animals – none are found at this stage.

4) ESTEST generates suggested schema elements suitable to be used as sources

of named entities, and also suggests possible textual data sources for the IE process.

5) Changes to the IE configuration are loaded simulating user changes.

91

6) IE configuration rules and macros are generated.

7) IE is performed using these rules and macros.

8) The global schema is now queried again and now one accident (A001234)

caused by an animal is found.

9) Further configuration changes are loaded, simulating a user decision to

expand, from WordNet, the words associated with the schema concept animal.

10) IE configuration rules and macros are regenerated.

11) IE is performed.

12) The global schema is again queried to find accidents caused by animals and

two (A001234 & C051633) are now found.

6.2.1 Initial Configuration is Loaded

Three abbreviations common to the domain are loaded e.g. “acc” as an

abbreviation for “accident”:

Parameters to be loaded:
 Abbreviation of: accident, is: acc
 Abbreviation of: vehicle, is: veh
 Abbreviation of: description, is: desc

6.2.2 Integration of Data Sources

ESTEST now integrates the data sources using the approach described in Section

5.2. Firstly, the details of the data sources to be integrated are loaded. As mentioned

in Section 5.2.1, the AutoMed schema representing any RDF data source is the same

so this schema is created in the AutoMed STR to represent AccOnt by the AutoMed

RDF wrapper as soon the connection is made to the RDF data source:

Loading datasources from definition at:C:\estest\bin\config\dsdx.
 xml
Building RDF modelling language
RDF Wrapper Factory creating RDF Model Oriented Schema accOnt sch
 ema
Details of schema: accOnt
 RDF subject <<subject>>
 RDF predicate <<predicate>>
 RDF object <<object>>

92

 RDF triple <<triple,subject,predicate,object>>
 RDF uri <<uri>>
 RDF blank <<blank>>
 RDF literal <<literal>>

Data Sources To Be Integrated:
 DS 1 is accDB
 DS 2 is accDBx
 DS 3 is accOnt

The AutoMed relational wrapper is next used to create a schema for AccDB in the

AutoMed STR:

Creating the AutoMed Schemas.
 RelationalDataSource is building a wrapper for schema accDBauto
 Created AutoMed schema for accDB
 Details of schema: accDBauto
 sql_390 table <<vehicle>>
 sql_390 column <<vehicle,acc_ref>>
 sql_390 column <<vehicle,veh_no>>
 sql_390 column <<vehicle,veh_reg_no>>
 sql_390 column <<vehicle,veh_type>>
 sql_390 primary_key <pky_vehicle,vehicle,<<vehicle,acc_ref>>
 <<vehicle,veh_no>>>>
 sql_390 table <<carriageway_hazards>>
 sql_390 column <<carriageway_hazards,hazard_id>>
 sql_390 column <<carriageway_hazards,hazard_desc>>
 sql_390 primary_key <<pky_carr_hazard,carriageway_hazards,<<
 carriageway_hazards,hazard_id>>>>
 sql_390 table <<acc>>
 sql_390 column <<acc,acc_ref>>
 sql_390 column <<acc,year>>
 sql_390 column <<acc,road>>
 sql_390 column <<acc,road_type>>
 sql_390 column <<acc,hazard_id>>
 sql_390 column <<acc,acc_desc>>
 sql_390 primary_key <<pky_accident,acc,<<acc,acc_ref>>>>
 sql_390 foreign_key <fky_vehicle_accident,vehicle,<<vehicle,
 cc_ref>>,acc,<<acc,acc_ref>>>>
 sql_390 foreign_key <fky_accident_hazard,acc,<<acc,hazard_id
 ,carriageway_hazards,<<carriageway_hazar
 s,hazard_id>>>>

The AutoMed relational representation of AccDB can be viewed from the

AutoMed GUI as illustrated in Figure 6.1.

93

Figure 6.1 AutoMed representation of the AccDB data source.

Next, the AutoMed schema for AccDBx is created similarly:

RelationalDataSource is building a wrapper for schema accDBxauto
 Created AutoMed schema for accDBx
 Details of schema: accDBxauto
 sql_390 table <<towns>>
 sql_390 column <<towns,town>>
 sql_390 primary_key <<pky_town,towns,<<towns,town>>>>
 sql_390 table <<roads>>
 sql_390 column <<roads,road>>
 sql_390 column <<roads,town>>
 sql_390 primary_key <<pky_road,roads,<<roads,road>>,<<roads,
 town>>>>
 sql_390 foreign_key <fky_accident_hazard,roads,<<roads,town>
 ,towns,<<towns,town>>>>

Each of these three AutoMed schemas are now automatically transformed into

the ESTEST data model, and the ESTEST schema is mined for word forms. The

output from this process for AccDB is below. ESTEST first finds each foreign key,

and adds a corresponding isA EDM construct (there are none for AccDB). Then, for

each table and attribute, an EDM concept is created along with an attribute edge

between the table and attribute. The relational constructs are then removed from the

94

intermediate schema, leaving just the EDM representation. Finally, the word forms

are obtained from the ESTEST schema and stored in the EMR:

Creating the ESTEST Model Schemas.
 Finding foreign keys (for isA relationship).
 Finding tables and columns (for concepts).
 Now delete the relational constructs.....
 The Estest oriented schema for this relational data source is
 accDBautzzh
 Now find word forms for each schema element.
 Schema element 'vehicle', word forms are : 'vehicle', 'veh'
 Schema element 'veh_no', word forms are : 'veh', 'vehicle',
 'veh no', 'vehicle no', 'no'
 Schema element 'veh_reg_no', word forms are : 'veh',
 'vehicle', 'veh reg', 'vehicle reg', 'reg', 'veh no',
 'vehicle no', 'veh_reg no', 'vehicle reg no', 'reg no',
 'no'
 Schema element 'veh_type', word forms are : 'veh', 'vehicle',
 'veh type', 'vehicle type', 'type'
 Schema element 'carriageway_hazards', word forms are :
 'carriage way', 'carriageway hazards', 'hazards'
 Schema element 'hazard_id', word forms are : 'hazard',
'hazard
 id', 'id'
 Schema element 'hazard_desc', word forms are : 'hazard',
 'hazard desc', 'desc', 'hazard description', 'description'
 Schema element 'acc', word forms are : 'acc', 'accident'
 Schema element 'acc_ref', word forms are : 'acc', 'accident',
 'acc ref', 'accident ref', 'ref'
 Schema element 'year', word forms are : 'year'
 Schema element 'road', word forms are : 'road'
 Schema element 'road_type', word forms are : 'road', 'road
 type', 'type'
 Schema element 'acc_desc', word forms are : 'acc',
'accident',
 'acc desc', 'accident desc', 'desc', 'acc description',
 'accident description', 'description'
 Storing Data Source info and metadata in EMR.....
 Created ESTEST schema for accDB
 Details of schema: accDBautzzh
 Estest concept <<vehicle>>
 Estest concept <<vehicle_veh_no>>
 Estest attribute <<attribute,vehicle,vehicle_veh_no>>
 Estest concept <<vehicle_veh_reg_no>>
 Estest attribute <<attribute,vehicle,vehicle_veh_reg_no>>
 Estest concept <<vehicle_veh_type>>
 Estest attribute <<attribute,vehicle,vehicle_veh_type>>
 Estest concept <<carriageway_hazards>>
 Estest concept <<carriageway_hazards_hazard_id>>
 Estest attribute <<attribute,carriageway_hazards,carriage
 way_hazards_hazard_id>>
 Estest concept <<carriageway_hazards_hazard_desc>>
 Estest attribute <attribute,carriageway_hazards,carriagew
 ay_hazards_hazard_desc>>
 Estest concept <<acc>>
 Estest concept <<acc_acc_ref>>
 Estest attribute <<attribute,acc,acc_acc_ref>>
 Estest concept <<acc_year>>
 Estest attribute <<attribute,acc,acc_year>>
 Estest concept <<acc_road>>

95

 Estest attribute <<attribute,acc,acc_road>>
 Estest concept <<acc_road_type>>
 Estest attribute <<attribute,acc,acc_road_type>>
 Estest concept <<acc_acc_desc>>
 Estest attribute <<attribute,acc,acc_acc_desc>>
 Estest attribute <<attribute,vehicle,acc>>
 Estest attribute <<attribute,acc,carriageway_hazards>>

The EDM representation of the AccDB data source can be viewed from the

AutoMed GUI as illustrated in Figure 6.2.

Figure 6.2 The EDM representation of the AccDB data source.

Next, the EDM schema for AccDBx is created similarly:

Finding foreign keys (for isA relationship).

 Finding tables and columns (for concepts).
 Now delete the relational constructs.....
 The Estest oriented schema for this relational data source is
 accDBxautzd
 Now find word forms for each schema element.
 Schema element 'towns', word forms are : 'towns'
 Schema element 'town', word forms are : 'town'

96

 Schema element 'roads', word forms are : 'roads'
 Schema element 'road', word forms are : 'road'
 Storing Data Source info and metadata in EMR.....
 Created ESTEST schema for accDBx
 Details of schema: accDBxautzd
 Estest concept <<towns>>
 Estest concept <<towns_town>>
 Estest attribute <<attribute,towns,towns_town>>
 Estest concept <<roads>>
 Estest concept <<roads_road>>
 Estest attribute <<attribute,roads,roads_road>>
 Estest attribute <<attribute,roads,towns>>

Finally, the EDM schema for AccOnt is created:

OntologyDataSource is about to create ESTEST Schema.
 found class: http://www.dcs.bbk.ac.uk/~dean/kb/acc1#tree
 found class: http://www.dcs.bbk.ac.uk/~dean/kb/acc1#inanimate
 found class: http://www.dcs.bbk.ac.uk/~dean/kb/acc1#obstruction
 found class: http://www.dcs.bbk.ac.uk/~dean/kb/acc1#animal
 found class: http://www.dcs.bbk.ac.uk/~dean/kb/acc1#spillage
 found class: http://www.dcs.bbk.ac.uk/~dean/kb/acc1#accident
 About to check for word forms.
 Schema element 'tree', word forms are : 'tree'
 Schema element 'inanimate', word forms are : 'inanimate'
 Schema element 'obstruction', word forms are : 'obstruction'
 Schema element 'animal', word forms are : 'animal'
 Schema element 'spillage', word forms are : 'spillage'
 Schema element 'accident', word forms are : 'accident', 'acc'
 Schema element 'Resource', word forms are : 'Resource'
 Schema element 'bricks', word forms are : 'bricks'
 Schema element 'cat', word forms are : 'cat'
 Schema element 'fox', word forms are : 'fox'
 Schema element 'oak', word forms are : 'oak'
 Created ESTEST schema for accOnt
 Details of schema: accOntEstest
 Estest concept <<tree>>
 Estest concept <<inanimate>>
 Estest concept <<obstruction>>
 Estest concept <<animal>>
 Estest concept <<spillage>>
 Estest concept <<accident>>
 Estest concept <<Resource>>
 Estest isA <<isA,accident,Resource>>
 Estest isA <<isA,spillage,inanimate>>
 Estest isA <<isA,inanimate,obstruction>>
 Estest isA <<isA,animal,obstruction>>
 Estest isA <<isA,tree,inanimate>>
 Estest isA <<isA,obstruction,Resource>>
 Estest attribute <<attribute,accident,obstruction>>
 Estest concept <<bricks>>
 Estest isA <<isA,bricks,spillage>>
 Estest concept <<cat>>
 Estest isA <<isA,cat,animal>>
 Estest concept <<fox>>
 Estest isA <<isA,fox,animal>>
 Estest concept <<oak>>
 Estest isA <<isA,oak,tree>>

97

Figure 6.3 shows i) the RDFS schema for AccOnt, ii) the associated RDF

instance data and iii) the EDM representation of AccOnt:

Figure 6.3 The AccOnt data source and its EDM representation

All three data sources are now represented within the AutoMed STR, and have

also been transformed into their EDM representations. Now ESTEST attempts to find

matches between concepts in the different schemas. Each concept in each schema is

compared to each concept appearing in the other schemas. Where several possible

matches are found, ESTEST suggests to the user the match with the highest

confidence, provided this is over the predefined match threshold. In our example,

two matches are found with confidence 0.64, one between <<accident>> in

AccOnt and <<acc>> in AccDB, and another between <<acc_road>> in AccDB and

<<road>> in AccDBx:

Going to find matches between Schema elements.
The matches are:
 Match with 0.64% confidence on word form ACCIDENT
 Schema 1: accDBautzzh, Concept 1: acc
 Schema 2: accOntEstest, Concept 2: accident
 Match with 0.64% confidence on word form ROAD
 Schema 1: accDBautzzh, Concept 1: acc_road
 Schema 2: accDBxautzd, Concept 2: roads_road

ESTEST can suggest the matches to the user and wait for confirmation and

augmentation, but in this case the script dictates that matches should be used as

suggested by the system, without waiting for confirmation. The integration is now

98

done using the AutoMed extendToMatch method: given two schemas s1 and s2,

this outputs a new schema s3 which is s1 extended with any concepts from s2 that

do not appear in s1. We have implemented a generalised version of extendToMatch

which takes an array of schemas and extends them all to match against each other,

and which also overcomes some bugs in the AutoMed version. Although this

functionality currently resides in ESTEST, in the future we plan to move it into the

core AutoMed toolkit. The following output shows this matching process on the

example:

Going to rename matching elemets so they have the same name.
In Integrator getPositionOfSchema looking for sid 89
 checking 89, accDBautzzh
 and its a match
In Integrator getPositionOfSchema looking for sid 105
 checking 89, accDBautzzh
 checking 104, accDBxautzd
 checking 105, accOntEstest
 and its a match
 Renamed :accOntEstest, accident to acc
In Integrator getPositionOfSchema looking for sid 89
 checking 89, accDBautzzh
 and its a match
In Integrator getPositionOfSchema looking for sid 104
 checking 89, accDBautzzh
 checking 104, accDBxautzd
 and its a match
 Renamed :accDBxautzd, roads_road to acc_road
Extend to match schemas.
 accDBautzzh extending to match accDBxautze
 new extended schema is :accDBautzzn
 accDBautzzn extending to match accOntEstest1a
 new extended schema is :accDBautzzzi
 accDBxautze extending to match accDBautzzh
 new extended schema is :accDBxautzzc
 accDBxautzzc extending to match accOntEstest1a
 new extended schema is :accDBxautzzx
 accOntEstest1a extending to match accDBautzzh
 new extended schema is :accOntEstest1y
 accOntEstest1y extending to match accDBxautze
 new extended schema is :accOntEstest1ze
Assert Identity Transformations between the extended schemas.
 Asserting ID transformation between accDBautzzzi & accDBxautzzx
 Asserting ID transformation between accDBautzzzi & accOntEstest1
 ze

99

Each of the schemas has now been extended to include missing concepts from the

others. AutoMed id transformations are now automatically asserted between them

and an arbitrary one of them is chosen as the global schema.

The HDM data store that will be used to store the results that ESTEST finds

during the IE step is now created. In particular, an HDM schema containing each of

the concepts in the current global schema is created in the AutoMed STR, as well as a

transformation pathway from this HDM schema to its equivalent EDM schema. The

EDM schema is finally linked to the global schema by asserting a series of id

transformations, and the virtual integration is complete. The following output shows

the creation of the HDM data store schema:

About to create HDM store copy of global schema.
Building the AutoMed HDM model
Creating HDM Store estest_store
Creating transormation pathway from HDM model to ESTEST model glo
 bal schema
Materialising isA relationships.
 Contents of the IsaFunctionList are:
 <<bricks>> <<bricks>>
 <<spillage>> <<spillage>> ++ <<bricks>>
 <<cat>> <<cat>>
 <<animal>> <<animal>> ++ <<cat>> ++ <<fox>>
 <<fox>> <<fox>>
 <<oak>> <<oak>>
 <<tree>> <<tree>> ++ <<oak>>
 <<acc>> <<acc>>
 <<Resource>> <<Resource>> ++ <<acc>> ++ <<obstruction>>
 ++ <<animal>> ++ <<cat>> ++ <<fox>> ++
 <<inanimate>> ++ <<spillage>> ++ <<bricks>>
 ++ <<tree>> ++ <<oak>>
 <<inanimate>> <<inanimate>> ++ <<spillage>> ++ <<bricks>>
 + <<tree>> ++ <<oak>>
 <<obstruction>> <<obstruction>> ++ <<animal>> ++ <<cat>> ++
 <fox>> ++ <<inanimate>> ++ <<spillage>> ++
 <<bricks>> ++ <<tree>> ++ <<oak>>
 Integrator loadDef attempting ident with HDM Store

The global schema has now been created, and ESTEST outputs its EDM

representation:

Global Schema is complete, schema name is: accDBautzzzi
 Details of schema: accDBautzzzi
 Estest concept <<vehicle>>
 Estest concept <<vehicle_veh_no>>
 Estest attribute <<attribute,vehicle,vehicle_veh_no>>
 Estest concept <<vehicle_veh_reg_no>>
 Estest attribute <<attribute,vehicle,vehicle_veh_reg_no>>

100

 Estest concept <<vehicle_veh_type>>
 Estest attribute <<attribute,vehicle,vehicle_veh_type>>
 Estest concept <<carriageway_hazards>>
 Estest concept <<carriageway_hazards_hazard_id>>
 Estest attribute <<attribute,carriageway_hazards,carriage
 way_hazards_hazard_id>>
 Estest concept <<carriageway_hazards_hazard_desc>>
 Estest attribute <<attribute,carriageway_hazards,carriage
 way_hazards_hazard_desc>>
 Estest concept <<acc>>
 Estest concept <<acc_acc_ref>>
 Estest attribute <<attribute,acc,acc_acc_ref>>
 Estest concept <<acc_year>>
 Estest attribute <<attribute,acc,acc_year>>
 Estest concept <<acc_road>>
 Estest attribute <<attribute,acc,acc_road>>
 Estest concept <<acc_road_type>>
 Estest attribute <<attribute,acc,acc_road_type>>
 Estest concept <<acc_acc_desc>>
 Estest attribute <<attribute,acc,acc_acc_desc>>
 Estest attribute <<attribute,vehicle,acc>>
 Estest attribute <<attribute,acc,carriageway_hazards>>
 Estest concept <<towns>>
 Estest concept <<towns_town>>
 Estest attribute <<attribute,towns,towns_town>>
 Estest concept <<roads>>
 Estest attribute <<attribute,roads,towns>>
 Estest attribute <<attribute,roads,acc_road>>
 Estest concept <<tree>>
 Estest concept <<inanimate>>
 Estest concept <<obstruction>>
 Estest concept <<animal>>
 Estest concept <<spillage>>
 Estest concept <<Resource>>
 Estest isA <<isA,spillage,inanimate>>
 Estest isA <<isA,inanimate,obstruction>>
 Estest isA <<isA,animal,obstruction>>
 Estest isA <<isA,tree,inanimate>>
 Estest isA <<isA,obstruction,Resource>>
 Estest concept <<bricks>>
 Estest isA <<isA,bricks,spillage>>
 Estest concept <<cat>>
 Estest isA <<isA,cat,animal>>
 Estest concept <<fox>>
 Estest isA <<isA,fox,animal>>
 Estest concept <<oak>>
 Estest isA <<isA,oak,tree>>
 Estest isA <<isA,acc,Resource>>
 Estest attribute <<attribute,acc,obstruction>>

The integrated global schema can be viewed from the AutoMed GUI as illustrated

in Figure 6.4.

101

Figure 6.4 Global Schema.

6.2.3 Querying the Global Schema

The global schema can now be queried to see what obstructions caused accidents.

The query is <<attribute,acc,obstruction>>. The AutoMed Query Processor

translates this query into appropriate sub-queries for each data source and submits

these to the AutoMed wrappers. The sub-queries are evaluated by the data sources,

and the wrappers pass the results back to the Query Processor for merging and any

necessary post-processing. In this example, the query posed has no matches in any of

the data sources and so the empty list is returned:

About to run IQL query. Schema:accDBautzzzi, query:<<attribute,ac
 c,obstruction>>
Connecting to HdmStore for schema: estest_store
 The query was <<attribute,acc,obstruction>>
 Results: []

102

6.2.4 Configuration of Information Extraction Process

ESTEST next suggests configuration data for the Information Extraction process,

based on simple heuristics as discussed in Chapter 5. The concepts <<roads_road>>,

<<towns_town>>, <<acc_acc_ref>> and <<acc_road_type>> are suggested as

sources of named entity descriptions based on their type characteristics i.e.

reasonably small length character data. Templates to be filled are then identified,

corresponding to concepts with attributes:

===
 CONFIGIE STEP (4)
===

Generating Suggestions for Named Entity.
Suggested possible NE List is:
 Possible Extent NE object - Data Source: 1, Schema
 Object<<acc_acc_ref>>
 Possible Extent NE object - Data Source: 1, Schema
 Object<<acc_road_type>>
 Possible Extent NE object - Data Source: 2, Schema
 Object<<towns_town>>
 Possible Extent NE object - Data Source: 2, Schema
 Object<<roads_road>>
Identifing Text Sources.
Finding Templates.
 Template: <<roads>>
 Attribute: <<towns>>
 Attribute: <<acc_road>>
 Template: <<acc>>
 Attribute: <<acc_acc_ref>>
 Attribute: <<acc_year>>
 Attribute: <<acc_road>>
 Attribute: <<acc_road_type>>
 Attribute: <<acc_acc_desc>>
 Attribute: <<carriageway_hazards>>
 Attribute: <<obstruction>>
 Template: <<vehicle>>
 Attribute: <<vehicle_veh_no>>
 Attribute: <<vehicle_veh_reg_no>>
 Attribute: <<vehicle_veh_type>>
 Attribute: <<acc>>
 Template: <<carriageway_hazards>>
 Attribute: <<carriageway_hazards_hazard_id>>
 Attribute: <<carriageway_hazards_hazard_desc>>
 Template: <<towns>>
 Attribute: <<towns_town>>
ESTEST is set NOT to wait for user confirmation of results.

103

6.2.5 Parameters are Loaded

To simulate user action following these suggestions, additional configuration

specifications are now loaded via the example script. Three concepts are suggested as

sources for named entity descriptions. For <<acc_road>> the set of named entities is

based on its extent, while for <<animal>> and <<obstruction>> the set of named

entitles is based on related word forms in the EMR. For <<obstruction>> it is also

specified that the word forms should be expanded by making use of those associated

with nearby concepts in the global schema:

Parameters to be loaded:
 Named Entity Parameter: animal is wordform based and schema
 expansion is selected
 Named Entity Parameter: acc_road is extent based and no
 expansion is selected
 Named Entity Parameter: obstruction is wordform based and
 schema expansion is selected

6.2.6 Information Extraction Configuration Generated

Using the above configuration parameters, the configuration information for the

IE process is now generated. Additional word forms for the schema concepts are

found e.g. ‘BRICKS’, ‘TREE’ etc for <<obstruction>>. JAPE rules are generated;

for each named entity definition there is a macro and a lookup rule which can be

amended by the user:

Expanding the selected Named Entity schema elements.
Expanding word forms from schema for <<animal>>
Expanding word forms from schema for <<obstruction>>
 OBSTRUCTION, OBSTRUCTION, INANIMATE, INANIMATE, SPILLAGE
 SPILLAGE, BRICKS, BRICKS, TREE, TREE, OAK, OAK, ANIMAL
Generating the Information Extraction JAPE input file
 Macro: acc_acc_ref
 ({Lookup.minorType == acc_acc_ref})

 Rule: acc_acc_ref
 (
 (acc_acc_ref)
)
 :acc_acc_ref -->
 :acc_acc_ref.acc_acc_ref = {kind ="acc_acc_ref", rule = "acc_ac
 c_ref"}

104

 Macro: acc_road_type
 ({Lookup.minorType == acc_road_type})

 Rule: acc_road_type
 (
 (acc_road_type)
)
 :acc_road_type -->
 :acc_road_type.acc_road_type = {kind ="acc_road_type", rule = "
 acc_road_type"}

 Macro: towns_town
 ({Lookup.minorType == towns_town})

 Rule: towns_town
 (
 (towns_town)
)
 :towns_town -->
 :towns_town.towns_town = {kind ="towns_town", rule = "towns_tow
 n"}

 Macro: roads_road
 ({Lookup.minorType == roads_road})

 Rule: roads_road
 (
 (roads_road)
)
 :roads_road -->
 :roads_road.roads_road = {kind ="roads_road", rule = "roads_roa
 d"}

 Macro: animal
 ({Lookup.minorType == animal})

 Rule: animal
 (
 (animal)
)
 :animal -->
 :animal.animal = {kind ="animal", rule = "animal"}

 Macro: acc_road
 ({Lookup.minorType == acc_road})

 Rule: acc_road
 (
 (acc_road)
)
 :acc_road -->

105

 :acc_road.acc_road = {kind ="acc_road", rule = "acc_road"}

 Macro: obstruction
 ({Lookup.minorType == obstruction})

 Rule: obstruction
 (
 (obstruction)
)
 :obstruction -->
 :obstruction.obstruction = {kind ="obstruction", rule = "obstru
 ction"}

Created IE input file ie.jape

6.2.7 First Information Extraction Step

 Now the Information Extraction process is run against each of the three accident

reports in the database. Each of the GATE components is created and configured

using the specifications described in the previous steps.

For the SchemaGazeeter, the schema elements used as named entity sources

are listed, for example accDBautzzzi:obstruction (the global schema is

accDBautzzzi) was specified as a word form based source and 10 word forms are

loaded from the EMR to be used to find instances of obstructions in the text.

accDBautzzzi:acc_road is also specified as a named entity source, but in this

case the values used come from its extent rather than from the EMR and so the IQL

query distinct <<acc_road>> is posed against the global schema to retrieve 5

values.

Once the GATE components are all initialised, a pipeline is created and the

components added. Finally the text to be processed is loaded, the query

<<attribute,acc,acc_acc_desc>> is posed against the global schema, and for

each result returned a GATE document is created identified by the accident id.

Initialising Gate using Gate Home :C:\Program Files\GATE 3.0
Using C:\Program Files\GATE 3.0 as GATE home
Using C:\Program Files\GATE 3.0\plugins as installed plug-ins
directory.
Using C:\Program Files\GATE 3.0\gate.xml as site configuration
file.

106

Using C:\Documents and Settings\dean\gate.xml as user
configuration file
CREOLE plugin loaded: file:/C:/Program Files/GATE-
3.1b1/plugins/ANNIE/
Registering Creole directories:
 file:/C:/estest
CREOLE plugin loaded: file:/C:/estest/
Creating Default Tokeniser Gate Processing Resource.
Creating Sentence Splitter Gate Processing Resource.
Creating Database Gazetteer Gate Processing Resource.
 Configuring Database Gazetteer using file:/C:/estest/dbGaz.xml
 Named Entity source to be loaded is accDBautzzzi:obstruction
 Named Entity source to be loaded is accDBautzzzi:acc_road
 Loaded 10 values for word-form NE object <<obstruction>>
 About to run IQL query. Schema:accDBautzzzi, query:distinct
 <<acc_road>>
 Loaded 5 values for extent-based NE object <<acc_road>>
 Reading accDBautzzzi:obstruction
 Reading accDBautzzzi:acc_road
Creating Jape Transducer Gate Processing Resource.
JAPE URL: file:/C:/estest/ie.jape
Assembling Components Into Pipeline.
Gate is now initialised and the ESTEST application is built.
No JAPE URI specified - default will be used
Configuring Database Gazetteer using file:/C:/estest/dbGaz.xml
Named Entity source to be loaded is accDBautzzzi:obstruction
Named Entity source to be loaded is accDBautzzzi:acc_road
Loaded 10 values for word-form NE object <<obstruction>>
 About to run IQL query. Schema:accDBautzzzi, query:distinct
 <<acc_road>>
Loaded 5 values for extent-based NE object <<acc_road>>
Reading accDBautzzzi:obstruction
Reading accDBautzzzi:acc_road
About to run IQL query. Schema:accDBautzzzi, query:<<attribute,ac
 c,acc_acc_desc>>
Added doc FOX RUNS INTO ABBEY STREET CAUSING V1 TO SWERVE VIOLENT
 LY AND LEAVE ROAD OFFSIDE 50M AWAY
template instance is A001234
Added doc A50 WELFORD ROAD LEICESTER,BRIDGE 200 YDS S ROMAN WAY.
 V1 TRAV MOTORWAY M6 FAILS TO STOP AT XRDS AND HITS V2 TRAV UPPER
 TON RD V2 THEN HITS V3 PKD ON OS OF UPPERTON RD
template instance is B231562
Added doc ESCAPED KANGAROO JUMPS IN FRONT OF V1
template instance is C051633

Now that the IE pipeline has been built, and each component configured, each of

the GATE documents is processed in turn in order to extract and store annotations:

Document to be processed by IE : 'FOX RUNS INTO ABBEY STREET CAUS
 ING V1 TO SWERVE VIOLENTLY AND LEAVE ROAD OFFSIDE 50M AWAY'
Running processing resources over corpus...

 Annotations:
Annotation Set jape
Anotation type : obstruction rule/obstruction kind/obstruction
adding FOX/<<obstruction>>

107

Anotation type : acc_road rule/acc_road kind/acc_road
adding ABBEY STREET/<<acc_road>>
Annotation Details:
 Schema element = '<<obstruction>>', value = 'FOX' and the ID
 Will be generated.
 Schema element = '<<acc_road>>', value = 'ABBEY STREET' and the
 ID will be generated.
adding node to HDM Store with generated id <<fox>> [estestInstanc
 e1]
adding edge <<isA,fox,animal>>[A001234,estestInstance1]
adding edge <<isA,animal,obstruction>>[A001234,estestInstance1]
adding template attribute edge <<attribute,acc,obstruction>>[A001
 234,estestInstance1]
adding node to HDM Store with generated id <<acc_road>> [estestIn
 stance2]
adding template attribute edge <<attribute,acc,acc_road>>[A001234
 ,estestInstance2]

Document to be processed by IE : 'A50 WELFORD ROAD LEICESTER,BRID
 GE 200 YDS S ROMAN WAY. V1 TRAV MOTORWAY M6 FAILS TO STOP AT XRD
 S AND HITS V2 TRAV UPPERTON RD V2 THEN HITS V3 PKD ON OS OF UPPE
 RTON RD'
Running processing resources over corpus...

 Annotations:
Annotation Set jape
Annotation Details:

Document to be processed by IE : 'ESCAPED KANGAROO JUMPS IN FRONT
 OF V1'
Running processing resources over corpus...

 Annotations:
Annotation Set jape
Annotation Details:

We see that the first report above generates a match, as the report contains ‘FOX’

which is a word form related to <<obstruction>>, following the expansion of word

forms from the schema and traversing the <<isA,fox,animal>> and

<<isA,animal,obstruction>> relationships.

ESTEST creates a unique instance identifier for each newly extracted fact, one for

the fox and one for the road. It then creates the following nodes and edges to be

added to the HDM store:

<<fox>> [estestInstance1]
<<animal>> [estestInstance1]
<<obstruction>> [estestInstance1]
<<isA,fox,animal>> [estestInstance1, estestInstance1]

108

<<isA,animal,obstruction>> [estestInstance1, estestInstance1]
<<attribute,acc,obstruction>> [A001234, estestInstance1]
<<acc_road>> [estestInstance2]
<<attribute,acc,acc_road>> [A001234,estestInstance2]

In the case of the fox, creating a new unique instance estestInstance1 makes

sense: the extent of <<fox>> now includes [estestInstance1], indicating that

the animal that caused the accident A001234 was a fox. However, this is less clear for

the new unique instance of <<road>>, [estestInstance2]. Here, it may make

more sense to store the string found in the road annotation as the identifier, rather

than generate a new unique system identifier. A similar problem occurs when the

values that should be stored are substrings of the annotation. For example, when

looking for distances, the string that matches the distance annotation might be

“approx 30 meters” but the value that should be stored is 30. Extending ESTEST’s

automatic processing of annotations extracted from text is discussed in Section 6.4

and in Chapter 7.

The second report above contains no mention of animals and the third refers to

‘KANGAROO’ which is not in the list of word forms associated with animals.

6.2.8 Second Query Step

The global schema is now queried again. Now, the extent of <<attribute,acc,

obstruction>> is {[A001234, estestInstance1]}, showing that accident

A001234 was caused by an animal, and this is returned by the query:

About to run IQL query. Schema:accDBautzzzi, query:<<attribute,ac
 c,obstruction>>
 The query was <<attribute,acc,obstruction>>
 Results: [{A001234 ,estestInstance1 }]

109

6.2.9 Parameters Loaded to Expand Animal Word

Forms

Suppose now that the user suspects the results may not be complete and decides

to expand the list of word forms associated with animals. WordNet is organised as a

semantic net of synsets, that is a list of synonyms for each concept. The synset for the

animal WordNet concept is 1780968 and so this is linked to the <<animal>>

concept in ESTEST and the link used to find word forms from WordNet for

<<animal>> (in the end-user workbench, we envisage that an interface to traverse

through WordNet and select a synset would establish this link and could work in a

similar way to the GUI provided with WordNet). <<obstruction>> is also selected

for expansion from the meta-data, as <<isA,animal,obstruction>>, and then

the new word forms obtained from WordNet for <<animal>> will be found.

ParameterDefintionContentHandler & its the end of a end of a syn
 set
offSetString is :1780968
offSet is :1780968
Parameters to be loaded:
 Synset Parameter: animal points to synset 1780968
 Named Entity Parameter: animal is wordform based and word net e
 xpansion is selected
 Named Entity Parameter: obstruction is wordform based and schem
 a expansion is selected

6.2.10 Configuration of Information Extraction

Process

The configuration information for the IE process is now regenerated and

additional word forms collected for <<animal>> from WordNet. The additional

word forms for <<animal>> include possible candidates such as ‘COW’, ‘STAG’ but

also a number of less likely road perils, not only the plausible but rare ‘KANGAROO’,

but also ‘SEA COW’ and ‘WATER RAT’. The word forms for <<animal>> are also

associated with <<obstruction>> because of the isA relationship between the two

110

concepts. The output is similar to that in 6.2.6 except for the longer list of animal

word forms, which is now:

 FEMALE MAMMAL, TUSKER, PROTOTHERIAN, METATHERIAN, PLACENTAL
 PLACENTAL MAMMAL, EUTHERIAN, EUTHERIAN MAMMAL
 FOSSORIAL MAMMAL, MONOTREME, EGG-LAYING MAMMAL, MARSUPIAL
 POUCHED MAMMAL, LIVESTOCK, STOCK, FARM ANIMAL, BULL, COW
 YEARLING, BUCK, DOE, INSECTIVORE, AQUATIC MAMMAL, CARNIVORE
 FISSIPEDIA, AARDVARK, ANT BEAR, ANTEATER, ORYCTEROPUS AFER
 BAT, CHIROPTERAN, LAGOMORPH, GNAWING MAMMAL, RODENT, GNAWER
 GNAWING ANIMAL, UNGULATA, UNGULATE, HOOFED MAMMAL
 UNGUICULATA, UNGUICULATE, UNGUICULATE MAMMAL, HYRAX, CONEY
 CONY, DASSIE, DAS, PACHYDERM, EDENTATE, PANGOLIN
 SCALY ANTEATER, ANTEATER, PRIMATE, TREE SHREW, FLYING LEMUR
 FLYING CAT, COLUGO, PROBOSCIDEAN, PROBOSCIDIAN
 PLANTIGRADE MAMMAL, DIGITIGRADE MAMMAL, NAKED MOLE RAT
 DAMARALAND MOLE RAT, ECHIDNA, SPINY ANTEATER, ANTEATER
 ECHIDNA, SPINY ANTEATER, ANTEATER, PLATYPUS, DUCKBILL
 DUCKBILLED PLATYPUS, DUCK-BILLED PLATYPUS
 ORNITHORHYNCHUS ANATINUS, OPOSSUM, POSSUM, OPOSSUM RAT
 BANDICOOT, KANGAROO, PHALANGER, OPOSSUM, POSSUM, WOMBAT
 DASYURID MARSUPIAL, DASYURID, POUCHED MOLE, MARSUPIAL MOLE
 NOTORYCTUS TYPHLOPS, STAG, MOLE, SHREW, SHREWMOUSE, HEDGEHOG
 ERINACEUS EUROPAEUS, ERINACEUS EUROPEAEUS, TENREC, TENDRAC
 OTTER SHREW, POTAMOGALE, POTAMOGALE VELOX, CETACEAN
 CETACEAN MAMMAL, BLOWER, SEA COW, SIRENIAN MAMMAL, SIRENIAN
 PINNIPED MAMMAL, PINNIPED, PINNATIPED, FISSIPED MAMMAL
 FISSIPED, CANINE, CANID, FELINE, FELID, BEAR, VIVERRINE
 VIVERRINE MAMMAL, MUSTELINE MAMMAL, MUSTELID, MUSTELINE
 PROCYONID, FRUIT BAT, MEGABAT, CARNIVOROUS BAT, MICROBAT
 DUPLICIDENTATA, LEPORID, LEPORID MAMMAL, PIKA, MOUSE HARE
 ROCK RABBIT, CONEY, CONY, MOUSE, RAT, MURINE, WATER RAT
 NEW WORLD MOUSE, MUSKRAT, MUSQUASH, ONDATRA ZIBETHICA
 ROUND-TAILED MUSKRAT, FLORIDA WATER RAT, NEOFIBER ALLENI
 COTTON RAT, SIGMODON HISPIDUS, WOOD RAT, WOOD-RAT, HAMSTER
 GERBIL, GERBILLE, LEMMING, PORCUPINE, HEDGEHOG
 JUMPING MOUSE, JERBOA, DORMOUSE, SQUIRREL, PRAIRIE DOG
 PRAIRIE MARMOT, MARMOT, BEAVER, MOUNTAIN BEAVER, SEWELLEL
 APLODONTIA RUFA, CAVY, MARA, DOLICHOTIS PATAGONUM, CAPYBARA
 CAPIBARA, HYDROCHOERUS HYDROCHAERIS, AGOUTI
 DASYPROCTA AGUTI, PACA, CUNICULUS PACA, MOUNTAIN PACA, COYPU
 NUTRIA, MYOCASTOR COYPUS, CHINCHILLA, CHINCHILLA LANIGER
 MOUNTAIN CHINCHILLA, MOUNTAIN VISCACHA, VISCACHA
 CHINCHILLON, LAGOSTOMUS MAXIMUS, ABROCOME, CHINCHILLA RAT
 RAT CHINCHILLA, MOLE RAT, MOLE RAT, SAND RAT, DINOCERATE
 ODD-TOED UNGULATE, PERISSODACTYL, PERISSODACTYL MAMMAL
 EVEN-TOED UNGULATE, ARTIODACTYL, ARTIODACTYL MAMMAL
 ROCK HYRAX, ROCK RABBIT, PROCAVIA CAPENSIS, ARMADILLO, SLOTH
 TREE SLOTH, MEGATHERIAN, MEGATHERIID, MEGATHERIAN MAMMAL
 MYLODONTID, MYLODON, ANTEATER, NEW WORLD ANTEATER, SIMIAN
 APE, ANTHROPOID, HOMINOID, HOMINID, MONKEY, PROSIMIAN, LEMUR
 TARSIER, PENTAIL, PEN-TAIL, PEN-TAILED TREE SHREW
 CYNOCEPHALUS VARIEGATUS, ELEPHANT, MASTODON, MASTODONT

This expansion shows the benefits and difficulties of using WordNet to expand

the word forms available in ESTEST for a concept. It can be seen that this new list

111

contains some useful additions such as “BULL” and “COW’, as well as some which are

plausible but unlikely to have cause road traffic accidents such as “MOUSE”, as well

as a large number it is safe to assume have not ever featured on a STATS-19 report

such as “LAGOSTOMUS MAXIMUS”. Using WordNet expansion is therefore likely to

have the effect of increasing recall while lowering precision.

6.2.11 Second Information Extraction Step

The IE process is run again. ESTEST now finds a match for the fox in A00123 as

before. In addition, as a larger list of animals is now recognised, it also finds a match

for the kangaroo mentioned in report C051633:

Document to be processed by IE : 'ESCAPED KANGAROO JUMPS IN FRONT
 OF V1'
Running processing resources over corpus...

 Annotations:
Annotation Set jape
Anotation type : obstruction rule/obstruction kind/obstruction
adding KANGAROO/<<obstruction>>
Annotation Details:
 Schema element = '<<obstruction>>', value = 'KANGAROO' and the
 ID will be generated.
adding node to HDM Store with generated id <<animal>> [estestInst
 ance5]
adding edge <<isA,animal,obstruction>>[C051633,estestInstance5]
adding template attribute edge <<attribute,acc,obstruction>>[C051
 633,estestInstance5]

6.2.12 Final Query Step

Querying the global schema now returns the complete set of results, since the

extent of <<attribute,acc,obstruction>> is now {[A001234,

estestInstance1], [C0051633, estestInstance2]} showing that both

accident A001234 and C0051633 were caused by animals in the road:

About to run IQL query. Schema:accDBautzzzi, query:<<attribute,ac
 c,obstruction>>
 The query was <<attribute,acc,obstruction>>
 Results: [{A001234 ,estestInstance3 },{C051633 ,estestInstance5
 }]
Closing debug log file.

112

6.2.13 Limitations of the Example

This example is intended to demonstrate ESTEST working in a straightforward

way rather than to be a real application or to make any claim about its performance.

The rules generated would in a real application require manual enhancement. For

example, if looking for animals responsible for accidents, reports such as “the fox ran

in front of the car” should match while “the car swerved, went through a hedge and

hit a cow” should not.

The next section gives details of an evaluation of ESTEST using real road traffic

accident data.

6.3 Evaluation using Road Traffic Accident Data

There are a number of variables which affect the performance of ESTEST,

including the availability of structured data sources relating to the text, the degree of

similarity between the text instances, the amount of effort spent by the user in

configuring the system to the specific application domain, and the domain expertise

of the user.

In order to provide some initial confirmation of the potential of our approach we

have experimented with six-months’ worth of Road Traffic Accident reports from one

of Britain's 50 police forces, consisting of 1658 reports.

We identified a number of inconsistencies while setting up this data. The bulk of

STATS-20 data is made up of one or two-digit numeric codes. The schema defines the

allowable range of values for each of these codes and the meaning of each value.

During set-up of the experiments, a number of places where codes were outside the

allowable range of values were discovered. To investigate these issues, a Java

program was written to check each code of each report against the allowable range of

values from the schema – in cases where more than 3% of the reports had values

outside this range, the code was assumed to be corrupt and was ignored. The 3% limit

was chosen to allow for occasional coding errors. A significant number of codes failed

113

this test, and we note that this test does not prove that the remaining codes actually

do represent what the schema dictates, but rather that they are within the correct

range of allowable values. A pattern emerged where blocks of seemingly correct

values were interspersed with some additional incorrect ones.

We referred these findings to the RTA experts at the Centre for Transport studies

at University College London who confirmed that the schema we used was the one

believed to be correct and that the issues of data quality that we identified were valid.

To overcome this uncertainty in the data, we restricted our experiments below to

codes that could reasonably be assumed to be correct by the fact that their value was

in the allowable range for at least 97% of reports and, in addition, that there was an

additional method of spot checking these numeric codes, for example checking for an

unusual value that will be likely to be mentioned in the corresponding textual

description, such as code 5 for road surface condition which represents a flood.

Within these limitations, we identified five queries of varying complexity that

cannot be answered fully by the STATS-20 structured data alone. These queries are

shown in the table below:

Query Num Query

Q1 Which accidents involved red traffic lights?
Q2 How many accidents took place within 30-50m of a

junction?
Q3 How many accidents involve drunk pedestrians

Q4 Which accidents were caused by animals?

Q5 How many resulted in a collision with a lamppost?

In order to provide a baseline we answered these queries in three ways i) using

just the structured data, ii) using just IE, and iii) using the full ESTEST global schema

and integrated data. To obtain the results from an IE-only process, only the data

extracted by IE is used to answer these queries — that is, only the data within the

HDM store, and not the relational RTA data. Similarly, to answer the queries using

just the structured data, only the relational RTA data is queried and not the data

114

extracted by IE and stored within the HDM. Finally, for iii), the full ESTEST global

schema, integrating both the RTA and HDM data is used. In the case of Q1 and Q2,

while the structured data is unable to directly support either query, an attribute does

exist in the STATS-20 schema supporting a more general version of each query – we

assume that in such cases the user would retrieve these more general results and then

would manually examine the reports returned to exclude false positives (the

alternative to this approach would have been to assume no results can be returned

from the structured data).

The system was first configured (by the author) using a randomly chosen set of

300 reports from the full set of 1658 available reports. Configuring the system took 5

hours to review the 300 reports and to develop a domain-ontology and JAPE macros

/ rules for the IE process in order to cover the matches for each query found in the

textual parts of the 300-report sample.

We then ran ESTEST over the remaining 1358 unseen reports, in each of the

configurations i)-iii) described above, and we compared the results obtained to a

subsequent manual examination of these reports. The results obtained for each query

are now discussed in turn. The tables of results below give the actual number of

relevant reports for each query (as determined by manual inspection), followed by

the performance achieved by configurations i)-iii). In each case, the performance is

shown by listing the number of reports identified, the number of these that were

correct, and then showing this as Recall (the number of correctly identified reports as

a percentage of all the correct reports) and Precision (the number of correctly

identified reports as a percentage of all the identified reports).

6.3.1 Q1: Which accidents involved red traffic lights?

Attribute 1-17 in the STATS-19 format indicates what, if any, junction control was

in place at the location of the accident. The possible values of this attribute are shown

below:

115

Value Meaning

1 Authorised person
2 Automatic traffic signal

3 Stop Sign

4 Give way sign or markings

5 Uncontrolled

Therefore, using the structured data alone under configuration i), accidents with

a value of 2 will include those accidents involving red traffic lights, but will also

include accidents where the traffic lights were green, or other automated traffic

signals such as pelican crossings.

Regarding the textual parts of the reports, from the instances found in the 300

sample reports, the following IE rules were created to detect all occurrences of red

traffic lights mentioned in these reports:

Macro: TRAFFIC
(
({Token.string == "TRAFFIC"} |
 {Token.string == "TRAFF"} |
 {Token.string == "SIGNAL"} |
 {Token.string == "TRAF"})
)

Macro: LIGHT
(
({Token.string == "LIGHT"} |
 {Token.string == "SIGNAL"} |
 {Token.string == "SIGNALS"} |
 {Token.string == "LIGHTS"})
)

Macro: SEP
(
 (SPACE) |
 {Token.string == "/"}
)

Macro: TL
(
 (
 ((TRAFFIC) (SEP)? (LIGHT)?) |
 (LIGHT) |
 ({Token.string == "R"} {Token.string == "/"}
 {Token.string == "FILTER"}) |
 ({Token.string == "T"} {Token.string == "/"}
 {Token.string == "LIGHT"}) |
 ({Token.string == "T"} {Token.string == "/"}
 {Token.string == "LIGHTS"}) |

116

 ({Token.string == "T"} {Token.string == "/"}
 {Token.string == "L"})
)
)

Rule: traffic
// e.g. RED T/LIGHT or LIGHTS AT RED
(
 (({Token.string == "RED"}) (SPACE) (TL)) |
 ((TL) (SPACE) ({Token.string == "AT"})? (SPACE)
 ({Token.string == "RED"}))
)
:traffic -->
 :traffic.traffic = {kind = "traffic", rule = "traffic"}

The results after running the system, with the three different configurations i)-

iii), on the 1358 remaining reports produced the following results:

Found by Manual Inspection 26

Reports Found 120

Number of correct reports found 22

Recall 85%

Structured Data Only

Precision 18%

Reports Found 21

Number of correct reports found 19

Recall 73%

IE Data Only

Precision 91%

Reports Found 19

Number of correct reports found 19

Recall 73%

Combined Structured and IE Data

Precision 100%

It can be seen that using the Structured Data only results in high recall but very

low precision, whereas using the IE Data only results in lower recall but very high

precision. Combing the two data sources in ESTEST meant looking only for those

reports with both a junction control value of 2 and a mention of red traffic lights

117

within the text. This removed the two false positives from the IE Data only results

(both of these mentioned red traffic lights which were not involved in the accident

but instead in the time preceding it i.e. the lights had changed from red, so while red

traffic lights were mentioned it was the fact that they had turned green which

contributed to the accident), giving the same recall as the IE results but with 100%

precision.

6.3.2 Q2: How many accidents took place 30-50m of a

junction?

Attribute 1-16 in the STATS-19 format gives details of the junction at which the

accident occurred. Its possible values are shown below:

Value Meaning

0 Not at or within 20 metres of a junction
1 Roundabout

2 Mini-roundabout

3 ‘T’ or staggered junction

4 ‘Y’ junction
5 Slip road
6 Crossroads

7 Multiple junction
8 Using private drive or entrance
9 Other junction

As no other attribute in the structured data gives the distance from a junction,

the best possible query without resorting to the text is to find those reports which

have the value 0.

Regarding the textual parts of the reports, the following rules were constructed to

match all relevant instances within the text of the 300 sample reports:

Macro: DISTANCE
// e.g "23 METERS" or "Approx 10M"

(
 (APPROX)?
 (SPACE)?
 (PAREN)?

118

 ({Token.kind == number,Token.length == "1"} |
 {Token.kind == number,Token.length == "2"} |
 {Token.kind == number,Token.length == "3"} |
 {Token.kind == number,Token.length == "4"})
 (SPACE)?
 ({Token.string == "M"} |
 {Token.string == "METERS"} |
 {Token.string == "MET"} |
 {Token.string == "MTS"} |
 {Token.string == "MS"})
 (PAREN)?
)

Rule: distance
 (
 (DISTANCE)
)
 :distance -->
 :distance.distance = {kind = "distance", rule = "distance" ,
 idAnnotationType="distanceVal"}

The following results were obtained after running the system with the three

configurations:

Found by Manual Inspection 79

Reports Found 575

Number of correct reports found 74

Recall 94%

Structured Data Only

Precision 13%

Reports Found 80

Number of correct reports found 79

Recall 100%

IE Data Only

Precision 99%

Reports Found 79

Number of correct reports found 79

Recall 100%

Combined Structured and IE Data

Precision 100%

Again the Structured Data Only results have high recall but with unacceptably

low precision, more pronounced than in the first query. The IE Data Only results

119

have just one false positive. In the distance macro shown above, the space before the

distance is defined as optional by the question mark in the definition ‘(SPACE)?’,

and as a result match was made with a report containing the name of a road ‘A40 M’.

This report has a junction detail value of 6, and so ESTEST discards it in the

Combined Data configuration, obtaining 100% for both recall and precision

(however, if the value had been 0, as it could have been, ESTEST would have had the

same results as for the IE Data Only).

 6.3.3 Q3: How many accidents involve drunken

pedestrians?

No part of the structured data gives any information on the state of pedestrians,

and so for this query only the textual description of the accidents is used. The

following Jape rules are used for the IE, matching all relevant instances within the

300 initial reports

Macro: DRUNK
(
 {Token.string == "DRUNK"} |
 {Token.string == "DRUNKEN"} |
 {Token.string == "DRINKER"}
)

Macro: PEDESTRIAN
(
 {Token.string == "PEDESTRIAN"} |
 {Token.string == "PED"} |
 {Token.string == "PERSON"}
)

Rule: drunkped
(
 ((DRUNK) (SPACE) (PEDESTRIAN)) |
 ((PEDESTRIAN) (SPACE) (DRUNK))
)
 :drunkped -->
 :drunkped.drunkped = {kind = "drunkped", rule = "drunkped"}

The following results were obtained running the system with the three

configurations:

120

Found by Manual Inspection 9

Reports Found 0

Number of correct reports found 0

Recall 0%

Structured Data Only

Precision —

Reports Found 7

Number of correct reports found 7

Recall 78%

IE Data Only

Precision 100%

Reports Found 7

Number of correct reports found 7

Recall 78%

Combined Structured and IE Data

Precision 100%

In this case, as there is no structured data available, the results for IE Data Only

and ESTEST’s Combined Data are the same. There were 2 reports missed by both

approaches; both of these referred to groups of drunken pedestrians and therefore

had the text ‘PEDESTRIANS’ in one case and ‘PEOPLE’ in the other, which failed to

match the above JAPE rules

6.3.4 Q4: Which accidents were caused by animals?

Attribute 1-25 in the STATS-19 lists any carriageway hazards involved in the

accident:

Value Meaning

0 None
1 Dislodged vehicle load in carriageway
2 Other object in carriageway

3 Involvement with previous accident

4 Dog in carriageway

121

5 Other animal in carriageway

Therefore, to answer this query from the structured data, reports with values 4 or

5 are selected.

For the IE only approach, the data sources integrated include an ontology with

just 10 likely animals, and this was used as a named entity source. The following

JAPE rules were created:

Macro: animal
 ({Lookup.minorType == animal})
Rule: animalOnLead
(
 (animal) {Token.string == "ON LEAD"}
)
:animalOnLead -->
 :animalOnLead.animalOnLead = {kind ="animalOnLead", rule =
"animalOnLead"}

Rule: animalRoad
(
 (animal) ({Token.string == "S"})?
)
:animalRoad -->
 :animalRoad.animalRoad = {kind ="animalRoad", rule =
"animalRoad", estestStore="no" }

The animalOnLead rule is there to fire in the place of animalRoad when the

text states the animal is on a lead — from the 300 sample reports, we observed that

when this is the case, the animal is not thought to constitute a carriageway hazard.

The following results were obtained running the system with the three

configurations:

Found by Manual Inspection 8

Reports Found 8

Number of correct reports found 8

Recall 100%

Structured Data Only

Precision 100%

IE Data Only Reports Found 8

122

Number of correct reports found 7

Recall 88%

Precision 87%

Reports Found 7

Number of correct reports found 7

Recall 88%

Combined Structured and IE Data

Precision 100%

For this query, the Structured Data returned the correct results with no false

positives. IE on its own found one incorrect report (which mentioned a “FOX CUB

BUS” which is presumably either a make of bus or bus operator) and missed one

report which mentioned “ANIMAL IN CARRIAGEWAY” rather than specifying the

kind of animal.

Combining the two, ESTEST’s Combined Data discards the false positive, but as

matches are only being accepted where positive results are found for both IE and the

structured data query, it fails to find the report missed by IE and therefore has a

lower recall than the structured data query. ESTEST however would be able to

answer the query “What kinds of animals cause accidents?”, whereas from the

structured data alone it is only possible to find the numbers of dogs versus all other

kinds of animals.

6.3.5 Q5: How many accidents resulted in a collision

with a lamppost?

No part of the structured data gives any information on the state of pedestrians,

and so for this query only the textual description of the accidents is used. The

following rule is created, as in the 300 sample reports lampposts are only mentioned

when they are hit:

Rule: LAMPPOST

123

(
 {Token.string == "LAMPPOST"} |
 ({Token.string == "LAMP"} (SPACE) {Token.string == "POST"})
)
:lamppost -->
 :lamppost.lamppost = {kind = "lamppost", rule = "lamppost"}

The following results were obtained running the system with the three

configurations:

Found by Manual Inspection 20

Reports Found 0

Number of correct reports found 0

Recall 0%

Structured Data Only

Precision —

Reports Found 21

Number of correct reports found 20

Recall 100%

IE Data Only

Precision 95%

Reports Found 21

Number of correct reports found 20

Recall 100%

Combined Structured and IE Data

Precision 95%

One false positive was found with configurations ii) and iii), and this was a report

where the location of the accident was described as being opposite a lamppost on a

particular street. As there is no relevant structured data, the results for ESTEST

Combined Data are the same as for IE Data Only.

124

6.3.6 Summary of the Results

To summarise, the recall and precision results from the five queries are as

follows:

Structured Data
Only

IE Data Only ESTEST
Combined Data

Query

Recall Precision Recall Precision Recall Precision
Q1 85% 18% 73% 91% 73% 100%
Q2 94% 13% 100% 99% 100% 100%
Q3 0% — 78% 100% 78% 100%
Q4 100% 100% 88% 87% 88% 100%

Q5 0% — 100% 95% 100% 95%

Table 6.1 Results of RTA Query Experiments

We see that the ESTEST Combined Data results are promising, even with the

short time spent configuring the system by a user who is not a domain expert. The

recall and precision are in line with state-of-the-art IE systems while the system is

also able to automatically combine the extracted information with related structured

data and to support queries which could not be answered by the structured or

unstructured data alone. ESTEST is at least as good as either alternative approach,

except for Q4, but even here it does have the advantage of being able to support finer

granularity queries on the same data than the structured data only approach.

While conducting these experiments and in analysing the results, the following

observations were made:

• The available sample size was relatively small, and only a few examples of each

query were present. With a larger sample size, and as the rules are iteratively

improved over time, we would expect the performance of the IE component to

similarly improve over time.

• The ESTEST system was used to gather the IE-only results and, while the results

produced are identical to those that would have been obtained by providing the

same input to GATE, ESTEST still offers the advantage of semi-automatically

creating the configuration and the query interface over the extracted data in the

125

HDM store, thus providing a generic and straightforward way of processing the

results of the IE process compared to the annotations produced by GATE.

• In retrospect, the queries Q1-Q5 chosen were too focused on retrieving numbers

of documents — essentially an IR task was performed which did not highlight the

finer querying granularity of IE and future evaluations should do so.

• While checking the ESTEST results against the list of reports found by manual

inspection, a surprisingly high number of errors were found in our manual

marking process. If a similar experiment is repeated, recording the number of

corrections made to this list would mean that the performance of a non-expert

human performing the same task could be measured in terms of recall and

precision and compared with the results achieved by ESTEST

6.4 Discussion

The road traffic accident domain fits the description of ‘partially structured data’

that we outlined earlier in this thesis, as it consists of a combination of structured

data and free text. The text is stored as such not because it has secondary importance

(in fact, when there is a disagreement between the text and the structured data the

text is preferred), but rather because of the unpredictability of the specific

circumstances of a road traffic accident and the difficulties of changing the schema

format to include new data items of relevance that evolve over time.

In the simple example of ESTEST in use given earlier in this chapter, we showed

how metadata from multiple heterogeneous data sources (two RTA relational

databases and an RDF / RDFS ontology) can be automatically extracted and used in

schema integration. This virtual global schema was then used to assist in the

configuration of an IE process for extracting details of animals that were the cause of

accidents. Such extracted data is automatically merged into the virtual global schema

and is available to support queries on the global schema. To simulate the

evolutionary way in which we envisage ESTEST being used, we then expanded the

126

word forms associated with the concept <<animal>> automatically from WordNet.

As a result, the IE process improved its recall, and querying the global schema

returned the complete set of reports in which animals had in fact caused accidents.

The experiments conducted on real RTA data demonstrate that, even with the

limitations on the data available and with a short set-up time, ESTEST is able to

extract useful information and structured queries can be answered where before they

could not.

Previous work on making use of the text in UK Road Traffic Accident reports has

relied on expert knowledge of the sub-language used in the reports in order to code

description logic-based grammar rules [Wu, J. and Heydecker, B. 1998]. In contrast,

ESTEST makes use of the structured data as well as the text to answer queries, and

our approach is more generally applicable to other application domains as it does not

depend on a specific restricted sub-language.

Using this initial version of ESTEST, two limitations were observed:

Firstly, as mentioned in Section 6.2.7, a more general way of processing

annotations for generating new instance data would be beneficial, both for storing a

string value as the new instance identifier and for extracting identifiers that are

substrings of the matching annotation. Because of the way that the JAPE rules work,

it is not straightforward to obtain values to store in annotations: typically, the rule

that fires against a concept will encompass more text than the value that should be

used as the instance identifier. For example, for a distance value the rule that fires

might encompass the text “about 25 meters” but the value that needs to be extracted

is “25”. For the initial version of ESTEST, an algorithm to look for numeric values in

annotation strings was used for the RTA experiments, but an extension to the JAPE

language syntax would be a more general and effective solution, as this is a frequent

requirement of ESTEST, namely the integration of extracted values into the virtual

global database.

127

A second limitation in the design of ESTEST results from the likelihood that the

user will iterate through the cycle several times. In general, it is desirable that, for

each iteration, ESTEST removes previous results and assumes that the new

configuration will extract all the results required. Without this assumption, it would

be hard to correct errors from previous iterations, resulting in false positives being

stored in the database. However, in this initial version of ESTEST, that meant that

the stub grammar rules generated on each run overwrote the, often time-consuming,

grammar rule changes made by the user. A better solution would be to associate

grammar rules with the concepts to which they are related, and allow these rules to

be amended or not, as the user chooses, on each iteration.

In the next chapter, we describe extensions to ESTEST made to overcome these

two limitations and also to extend the research contribution of ESTEST in two further

directions.

128

Chapter 7

Extending the ESTEST System

7. Extending the ESTEST System

The first version of ESTEST (described in Chapters 5 & 6) serves as a test bed for

demonstrating, end to end, our approach to better exploiting partially structured

data. It is also a platform from which to develop specific areas further.

In this chapter, we describe four extensions to the original ESTEST system. Two

of these are novel research contributions: firstly, making use of IE in order to provide

a new schema matching technique, and secondly combining NLP coreference

resolution techniques with database duplication detection techniques in order to

obtain better results than is possible using either alone; these contributions are

described in Sections 7.2 and 7.3, respectively.

The other two extensions described in this chapter are solutions to the two

limitations identified in Chapter 6: Section 7.4 describes an extension which stores IE

rule patterns as virtual global schema metadata in order to improve the usability of

ESTEST, and in Section 7.5 we describe extending JAPE rules to allow automatic

extraction of values relating to annotations for use in database applications.

Throughout this chapter we illustrate the extensions made though an example, based

on the crime domain, which is described in Section 7.1.

7.1 Crime Example

We have mentioned previously, in Chapter 2, that there are a range of

applications in the crime domain which are built on partially structured data, for

example systems built to support serious crime investigations, and systems for the

collection of operational intelligence gathering; developing software for this domain

129

is currently the subject of both research and industrial activity. We have collaborated

with researchers from the Birkbeck Centre for Crime Informatics and have analysed

several real crime databases which have been made available to them by police forces

in the UK. A common feature of this domain is its use of text: for example,

applications such as operational intelligence gathering make use of text reports

containing observations of police officers on patrol; scene of crime applications

include textual descriptions of the conditions found; serious crime investigations

make use of witness statements. In these applications, the queries required will only

become known over time, when looking for common patterns with earlier incidents

for example.

In our running example through this chapter, we assume three data sources are

available:

• OpIntel is a relational database containing textual reports of operation

intelligence gathered by police officers on patrol.

• CarsDB is a relational database holding information on cars known to the police,

with attributes such as the registration, colour, manufacturer and model.

• CrimeOnt is an RDF / RDFS ontology which states, amongst other things, that

vehicles and public houses are attributes of operational intelligence reports.

The example demonstrates the four enhancements made to the ESTEST system.

The data sources are integrated making use of correspondences identified by IE

processing of the schema element names and description metadata. As in the

previous version of ESTEST, the IE processing of the textual operational intelligence

information then takes place and details of cars mentioned in the reports are

extracted. However, in the extended version of the system, the extracted details of

these textual references of cars are now compared to those in the structured CarsDB,

and ESTEST is able to determine if the attributes extracted represent a new instance

of a car or should be merged with an existing instance. The JAPE rules are generated

from patterns stored in the EMR, rather than stubs which subsequently need to be

130

amended by the user, as was the case in the first version of ESTEST. To demonstrate

our approach for specifying the values to be used to identify the new entities stored,

the details of cars found are identified by the associated car registration attributes,

which are either found in the text or are matched with instances in the structured

data.

Appendix C contains the complete ESTEST output from running this example,

together with the data source definitions and ESTEST configuration scripts. In this

chapter we do not comment on the steps of the example that are similar to those

described in the earlier example in Chapter 6. Instead, only the relevant excerpts

required to highlight the enhancements are included in Sections 7.2 – 7.5, each of

which describes one enhancement in detail.

7.2 Information Extraction for Schema Matching

The first extension made to the ESTEST system is to make use of IE in schema

matching. Schema matching is a long-standing problem in data integration research.

The central issue is, given a number of schemas to be integrated, find semantic

relationships between the elements of these schemas [Kashyap, V. and Sheth, A.

1996]. A comprehensive survey of approaches to automatic schema matching is

[Rahm, E. and Bernstein, P.A. 2001] which gives a taxonomy based on the following

criteria:

• Instance vs schema based: does the approach make use of instance data

or only schema level information?

• Element vs structure: is the approach based on information from just

each schema element or does it take into account more complex

structures in the schema?

• Language vs constraint: is the approach based on a linguistic approach,

e.g. the name of each schema element, or is it constraint-based e.g. using

type information?

131

• Matching cardinality: are the mappings generated between elements in

the two schemas 1:1, 1:n, n:1 or n:m?

• Auxiliary information: matchers may rely on not only the two input

schemas but also on auxiliary information such as dictionaries, or on

results from previous iterations of the schema matching process.

The linguistic approaches in the survey of [Rahm, E. and Bernstein, P.A. 2001]

are divided into name-based and description matching. Name-based approaches are

based on equality of names after pre-processing to deal with abbreviations, prefixes,

and naming conventions. That survey also considers the use of synonyms, hyponyms,

user-provided name matches and other similarity measures such as soundex, and

edit distance where the number of delete, insert and replace operations required to

transform string A into string B is used as a measure of how alike the two are. The

possibility of using natural language understanding technology to exploit the schema

descriptions is mentioned in the survey, but this is the only category where no prior

work is explicitly cited and we are similarly unaware of any previous system which

makes use of description metadata for schema matching.

The schema matching in the initial version of ESTEST, described in Chapter 5,

collects word forms and associates them with concepts in the global schema. It also

collects type information to be used in its match function. Domain abbreviations are

used, and an extensible set of functions for pre-processing schema element names are

built into the relevant wrappers e.g. the relational wrapper will find the word form

“Account Name” from a schema element name “accName” given an abbreviation of

“acc” for “account”.

In terms of the schema matching taxonomy given above, which is also referred to

in [Elemagarmind, A., Ipeirotis, P. et al. 2007], ESTEST makes use of schema

information and not instance; element and not structure; both language and

constraint; 1:1 mappings; and makes use of auxiliary information. The closest similar

systems are LSD, TranScm and CUPID which we described in Chapter 2.

132

7.2.1 ESTEST Extensions for IE in Schema Matching

In the initial version of ESTEST described in Chapter 6, IE is configured with the

help of the virtual global schema integrating the available structured data sources,

and then ESTEST processes any associated free text data in order to extract new

structured data. In the extended ESTEST, we add a new IE process which processes

the available schema names and any textual metadata information, and uses the

extracted word forms to identify correspondences between schema elements across

different data sources.

A feature of the class of applications that ESTEST targets is that new structured

data sources may become available over time, and they can be integrated into the

virtual global schema and used to assist in IE. Therefore, the initial version of

ESTEST included a schema matching component, while in the extended version of

the system we make use of IE techniques to provide a novel approach to this task by

making use of schema element descriptions to assist the schema matching

component used to construct the global schema.

Each of the ESTEST wrappers (described in Section 5.2) are able to extract

metadata for data sources organised according to the model they represent. The

extended version of ESTEST extracts, in addition, relevant textual description

metadata. For example, the relational wrapper retrieves the JDBC remarks data,

which allows for a free text description of a column or a table, while the ontology

wrapper retrieves XML comments.

Development teams designing databases often make use of naming conventions

for schema elements, for example, specifying the case to be used and plurality of

nouns in names. In the extended version of ESTEST, we have developed an extensible

schemaNameTokeniser component which detects the use of common naming

conventions in schema element names and descriptions. This is able to transform

names into word forms, making use of abbreviations. For example, “AccountNum”,

”accNum” and ”ACCOUNT-NUMBER” can all be transformed into the word form

133

“account number”. The schema tokeniser is implemented as a GATE tokeniser

component so that it can be run in any pipeline as required. In the same way that the

GATE EnglishTokeniser splits text into annotations representing words and

punctuation, the tokens produced by our SchemaNameTokeniser produces

separated words from the schema names. Our component makes use of a set of

regular expressions to identify naming conventions; these cover the commonly used

conventions of which we are aware and can be easily expanded.

The steps taken in the extended version of ESTEST to make use of IE in schema

matching are as follows:

i) For all available data sources, the available schema metadata is extracted,

including the textual names and description metadata for all the elements of the

schema.

ii) The SchemaNameTokenser processes the schema names, and extracts word

forms to be stored in the EMR.

iii) A GATE pipeline is constructed in order to process the textual description

metadata. This pipeline performs named entity recognition on the schema element

descriptions, identifying references to schema elements by matching the word forms

extracted from the schema names. The pipeline is created automatically by

constructing an instance of our SchemaGazetteer component and a JAPE

processor configured with a grammar which treats each element in the schema as a

named entity source using the word forms extracted from schema element names.

iv) Where a match is found between a schema element acting as a named entity

source and a description of a schema element from a different data source, then a

possible correspondence between these schema elements is inferred.

7.2.2 Schema Matching in the Crime Example

We now show how this process takes place in the example from the crime

domain. No correspondences would be found if this example were to be run using the

134

original version of ESTEST of Chapter 5. The match that should be found is between

the car table in the CarsDB data source and the vehicle RDFS class in the

CrimeOnt data source, but there is no common word form between them. However,

the Postgres DDL for the CarsDB includes comments about the table and columns as

shown below. We see that the comment for car includes the word “VEHICLE” and so

will be found by our new IE processing of schema element descriptions:

comment on table car is 'VEHICLE SEEN DURING OPERATIONAL
INTELLIGENCE GATHERING';
comment on column car.reg is 'UK REG MARK IE TWO CHAR AREA CODE,
AGE, AND THREE RANDOM LETTERS';
comment on column car.manufacturer is 'NAME OF MANUFACTURER E.G.
FORD';
comment on column car.model is 'NAME OF THE MODEL OF THE CAR E.G.
FIESTA';
comment on column car.colour is 'COLOUR OF THE CAR E.G. BLUE';

The first step is for ESTEST to process the schema element names using the

SchemaNameTokeniser component. This happens and the word forms “car” and

“vehicle” are extracted from the respective schemas and are stored in the EMR:

Now find word forms for each schema element using the
SchemaNameTokeniser component.

Creating schema name tokeniser to process names of schema
elements.

Using C:\Program Files\GATE 3.0 as GATE home
Using C:\Program Files\GATE 3.0\plugins as installed plug-ins
directory.
Using C:\Program Files\GATE 3.0\gate.xml as site configuration
file.
Using C:\Documents and Settings\dean\gate.xml as user
configuration file
CREOLE plugin loaded: file:/C:/Program Files/GATE-
3.1b1/plugins/ANNIE/
CREOLE plugin loaded: file:/C:/estest/

Storing Data Source info and metadata in EMR.....

Next, the GATE pipeline for processing description metadata is created (the

JAPE rules to process the schema metadata contained in smie.jape are

automatically created and are shown in Appendix C.2):

135

===
 CREATING GATE PIPELINE FOR SCHEMA MATCHING.
===

Creating Default Tokeniser Gate processing resource.
Creating Sentence-Splitter Gate processing resource.
Creating Database-Gazetteer Gate processing resource with all sch
 ema objects as NE sources based on the word forms extracted from
 schema names.
 No data source URL provided so loading word form named entities
 for all schema elements.
 Loading definition of Named Entity

===

 PROCESSING TEXTUAL METADATA FOR SCHEMA MATCHING
===

Creating Jape rules for processing schema metadata: smie.jape pat
 h: C:\estest\smie.jape
Creating Jape Transducer Gate Processing Resource.
JAPE URL: file:/C:/estest/smie.jape
Assembling Components Into Pipeline.
Gate is now initialised and the ESTEST application is built.

Now each description is processed, and no matches are found from the other

descriptions. However, when the description of the car table is processed, a match is

found with the vehicle class, and the schema id and schema element id are

displayed to identify the elements involved in the match:

Document to be processed by IE : 'VEHICLE SEEN DURING OPERATIONAL
 INTELLIGENCE GATHERING'
Running processing resources over document...
Match between the textual metadata of schema element 84/62, and
th
 e schema element 85/104

Once processing is complete, this remains the only match identified and it is used

by ESTEST in creating the global schema:

Going to find matches between Schema elements.

The matches are:
 Match with 0.5% confidence on word form meta-match
 Schema 1: Carsautzv, Concept 1: car
 Schema 2: CrimeOntEstest, Concept 2: vehicle

136

7.2.3 Making Use of WordNet in Schema Matching

We have also experimented with an additional novel approach to suggesting

correspondences, using a measure of semantic distance between nouns in WordNet.

We described in Chapter 5 how the initial version of ESTEST made use of WordNet to

expand the number of word forms associated with concepts in the EMR in order to

increase the number of matches obtained by IE rules. WordNet is organised as a

semantic net with a set of synonyms, termed a synset, associated to each concept.

Concepts are linked by relationships, including hyponyms. This subset of the

structure of WordNet is structurally similar to our EMR, which is organised into

concepts with related sets of word forms.

In our WordNet-based schema matching approach, after the collection of word

forms from the IE processing of schema metadata, matches are suggested by

comparing the distance between concepts in WordNet. This estimate of semantic

distance is implemented as an extension to the ESTEST WordNet class that we

previously used for expanding the number of word forms associated with a concept.

Our straightforward, but extensible, measure finds the minimum distance between

concepts linked to the word forms. Each word form can be linked to a number of

concepts; for example, the word form ‘chair’ has four senses as a noun: a seat, a

professorship, an officer of an organisation, and an instrument of execution by

electrocution. The distance between ‘chair’ and ‘stool’ will be very different,

depending on which sense of each is chosen. In our simple measure, the distance

between each pair of senses is found and the minimum distance is used.

 Measures of semantic distance in WordNet are a research topic in its own right:

see [Budanitsky, A. and Hirst, G. 2001] for an evaluation of various approaches. An

assumption of any measure based on WordNet is that the distance between concepts

in the semantic net is in some way related to how far removed the concepts are in a

human conception of the real world. WordNet concepts are constructed from the

English language and therefore the density of words in an area will affect distance;

137

the number of edges will be an indication of the density of words in that area of the

net rather than how different the concepts are semantically. Despite the limitations

apparent in using WordNet as a measure of the semantic distance between two real-

world concepts, the alternatives such as measuring the edit distance, seem to us to be

no more likely to be useful in constructing effective applications.

We have not shown WordNet being used for schema matching in the crime

example. However, taking the noun word forms collected by the

SchemaNameTokeniser and finding the distance between them using our simple

measure yields the following results:

Word Form Word Form Distance

CAR COLOUR 12

CAR ID 16

CAR PC 11

CAR PUB 11

CAR VEHICLE 4

COLOUR ID 10

COLOUR PC 11

COLOUR PUB 9

COLOUR VEHICLE 8

ID PC 15

ID PUB 13

ID VEHICLE 12

PC PUB 10

PC VEHICLE 7

PUB VEHICLE 7

If this WordNet approach had been used in our running example, in place of the

IE processing of schema element textual metadata, then the same match would have

138

been found since the closest shortest distance is between “CAR” and “VEHICLE”,

with a distance of 4 synsets. However, the above results also illustrate that as

concepts become more removed from one another, the distance metric between them

does not scale in a linear fashion. For example, the distance between “PUB” and

“VEHICLE” is just 7. We have observed this as a common characteristic of distance in

WordNet and it seems to be related to the speed with which paths in WordNet lead to

very general, abstract concepts. For example, the path between “CAR” and

“VEHICLE” is:

car, auto, automobile, machine, motorcar
motor_vehicle, automotive_vehicle
self-propelled_vehicle
wheeled_vehicle
vehicle

However, between “PUB” and “VEHICLE” are the very general concepts

“artifact” (defined in WordNet as “a man-made object taken as a whole”) and

“instrumentation” (defined in WordNet as “an artifact (or system of artifacts) that is

instrumental in accomplishing some end”):

public_house, pub, saloon, pothouse, gin_mill, taphouse
tavern, tap_house
building, edifice
structure, construction
artifact, artefact
instrumentality, instrumentation
conveyance, transport
vehicle

The potential for using WordNet is therefore likely to be a decision on whether or

not concepts are close, rather than to compare their relative distances. This approach

can also be used in conjunction with our IE processing of schema element textual

metadata. We envisage both approaches being useful in providing intelligent ordering

and filtering of suggestions to the end-user in the ultimate workbench that we

envisage (discussed in Chapter 8).

139

7.3 Combining Duplicate Detection and

Coreference Resolution

In both database and natural language processing, there is often a requirement to

detect duplicate references to the same real-world entity. In databases, this may be

in order to detect and repair multiple representations of the same entity, while in

natural language, deciding when multiple fragments of text refer to the same entity

has proved hard to solve automatically. For example, in the text “The car was driving

too fast. It crashed.”, there are two references to the same vehicle, “The car” and “It”,

but the IE techniques we have made use of so far would not be able to handle this

level of complexity. Techniques that do address this using a greater level of linguistic

awareness are described in Section 3.1.

ESTEST provides the ability to make use of both structured data and free text by

combining database duplication detection and NLP coreference resolution

techniques. We have extended the ESTEST system to combine, as far as we are aware

for the first time, techniques from these two fields in order to achieve better results

than would be obtainable for each independently. In the rest of this Section 7.3, we

describe the state of the art in both database and NLP techniques, and then describe

how ESTEST is able to combine evidence from new extensible components that

implement approaches from each discipline.

7.3.1 Detecting Duplicates in Databases

Deciding if two instances in a database in fact refer to the same real-world entity

is a long-standing problem in database research e.g. [Newcombe, H.B., Kennedy,

J.M. et al. 1959; Winkler, W. 1994]. Attempting to solve the problem across a range of

application domains has led to a variety of terms being used in the literature for

different flavours of the same fundamental task.

140

The statistics community has undertaken over five decades of record-linkage

work, particularly in the context of census results. A central task in this domain is the

need to merge records from two files, and the standard approach is based on the

Fellegi-Sunter mathematical model [Fellegi, I.P. and Sunter, A.B. 1969] which

formalises the idea of using odds-ratios of frequencies originally introduced in

[Newcombe, H.B., Kennedy, J.M. et al. 1959]. In systems based on this approach, the

evidence is weighed using conditional probabilities and compared to a threshold, and

the records are either designated as matches, non-matches or where no conclusion

can be made are flagged for human review. This statistical, record-based approach is,

not surprisingly, an active research area at the US Census Bureau. [Winkler, W.E.

2006] gives an overview the current state of record linkage research and of related

topics such as error rate estimation and string comparison metrics.

In database integration, the term merge / purge [Hernandez, M.A. and Stolfo,

S.J. 1998] is used to describe approaches such as sorting the data and traversing it

considering a ‘window’ of records for possible merging. Data cleansing [Müller, H.

and Freytag, J.-C. 2003] concentrates on finding anomalies in large datasets and

cleansing the dataset by using these anomalies to decide on merging duplicates and

on deriving missing values. Duplicate elimination [Bitton, D. and DeWitt, D.J. 1983]

refers to variations on merge-sort algorithms and hash functions for detecting

duplicates. Other terms such as object identification and reference disambiguation

are also used in the literature. Throughout this thesis, we use the term detecting

duplicates to cover the general problem these different terms encompass.

We are not aware of any attempt to make use of NLP techniques in finding

duplicates in databases, beyond character-based similarity metrics such as edit

distance.

141

7.3.2 Coreference Annotation in NLP

In linguistics, anaphora resolution [Hirst, G. 1981] refers to the task of

identifying references in text to some previously mentioned item - the term anaphora

is derived from the Greek for “carrying back” [Mitkov, R. 1999]. In the sentence “Joe

spoke about his day”, the word “his” is the anaphor which refers back to the

antecedent “Joe”. A range of approaches have been developed for anaphora

resolution, including purely syntax-based techniques, e.g. [Hobbs, J.R. 1976], while

some depend on semantics, e.g. [Wilks, Y. 1975] and other alternatives are based on

statistical analysis, e.g. [Ge, N., Hale, J. et al. 1998].

As part of their description of the FASTUS IE system, [Kameyama, M. 1997]

describe why the task of finding references to the same entity in IE is more general

than anaphora resolution, being based on merging information without necessarily

being able to rely purely on linguistic anaphoric expressions. Subsequently in IE, the

term coreference annotation [Morton, T. 1997] has come to be used to describe the

task of identifying where two noun phrases refer to the same real-world entity, and

this is a generalisation of anaphora resolution. Coreference annotation involves

finding chains of references to the same entity throughout the processed text.

There are a number of types of coreference, including: pronominal coreference,

where the proper antecedents are found for pronouns such as “I”, “me”, “my” and

“yourself”; proper names coreference, which deals with variations of names e.g. “Big

Blue” and “IBM”; through to more complicated linguistic references such as

demonstrative coreference where phrases like “this” and “that” co-refer to objects in

the text. Despite the wide range of coreference types, [Bagga, A. 1998] shows that a

small number of types of coreference account for most of the occurrences in real text:

they find that proper names account for 28% of all instances, pronouns 21% but

demonstrative phrases only 2%. It is expected therefore that reasonable coreference

annotation results can be achieved by handling effectively these main categories of

coreference.

142

7.3.3 Coreference Annotation in GATE

The GATE system provides support for these two main categories of coreference,

by providing an OrthoMatcher component which performs proper names

coreference annotation, and a JAPE grammar which when executed performs

pronominal coreference annotation.

The OrthoMatcher is executed in a GATE pipeline following the named entity

recognition step. No new named entities will be found as a result of finding matches,

but types may be assigned to previously unclassified proper names if other

annotations in the chain were typed. The input to the OrthoMatcher component is

a list of sets of aliases for named entities. For example, one entry in the list might be

{“IBM”, “International Business Machines”}. Also input are a list of exceptions that

might otherwise be matched incorrectly, e.g. “Eastern Airways” is not the same

organisation as “Eastern Air”. As well as these string comparison rules that apply to

any annotation type, there are some specific rules for the core MUC IE types i.e.

person, organisation, location and date. For example, the various ways companies

can be named, e.g. with “Ltd” at the end of the name, is handled by one of these

specialist rules.

 GATE’s pronominal coreference module resolves pronominal coreference for

locations, people and organisations, including pleonastic it, e.g. “It is snowing”,

where it is important to detect that the pronoun does not refer to a particular

antecedent and so prevent the creation of a false positive.

The effect of adding these two coreference components to a GATE pipeline is to

create annotation chains linking multiple references to the same entity. These chains

are implemented by adding an attribute to each annotation in the chain containing

the matching attributes. For example, running the default GATE configuration over a

document containing the text “Tony Blair spoke next, he said that NASA was an

abbreviation for ‘National Aeronautics and Space Administration’, but who believes

143

him?” would produce annotations including the following person and

organisation annotations:

Type ID Text Attributes
Person 1 Tony Blair {gender=male, rule=PersonFinal,

rule1=PersonFull}
Organization 3 NASA {orgType=government,

rule1=GazOrganization,
rule2=OrgFinal}

Organization 4 National Aeronautics and
Space Administration

{orgType=government,
rule1=GazOrganization,
rule2=OrgFinal}

Running the same text through a pipeline with the two coreference steps added will

now result in the following annotations, which include two annotation chains, one for

the Prime Minister and one for NASA. The pronouns have been classified as being of

type person.

Type ID Text Attributes
Person 1 Tony Blair {gender=male, matches=[1,2,5],

rule=PersonFinal, rule1=PersonFull}
Person 2 he {ENTITY_MENTION_TYPE=PRONOUN,

antecedent_offset=0, matches=[1,2,5]}
Organization 3 NASA {matches=[3,4], orgType=government,

rule1=GazOrganization, rule2=OrgFinal}

Organization 4 National
Aeronautics and
Space
Administration

{matches=[3,4], orgType=government,
rule1=GazOrganization, rule2=OrgFinal}

Person 5 him {ENTITY_MENTION_TYPE=PRONOUN,
antecedent_offset=0, matches=[910, 936,
937]}

7.3.4 Combining the two approaches in ESTEST

We argue in this thesis that coreference annotation in NLP is essentially the same

task as duplicate detection in databases. The difference is not in the task to be

performed but rather in the structure of the data to be processed, free text in the case

of NLP and structured data for databases.

As ESTEST, unlike other systems, is able to combine structured data and free text

by applying both IE and data integration techniques, the system is well placed to

144

improve the performance of the duplicate detection task by combining evidence from

both approaches. To achieve this, a coreference component, a template constructor,

and a duplicate detection component are required for ESTEST. The coreference

component may find new structured data which in turn will be useful for the

duplicate detection component, and vice versa.

These new components of ESTEST use state-of-the-art techniques, but as there is

much active research in both areas they are designed to be extensible and modular.

Our research contribution here is not in coreference resolution research nor in

database duplication detection, but in combining the two approaches. As we will see

later in this section, combining these techniques can yield results that are better than

using either in isolation.

In particular, in order to enable coreference detection, the GATE IE pipeline

constructed by ETEST has been expanded to include the following:

1) The standard GATE OrthoMatcher component is added to the pipeline. The

configuration for this component is automatically created from data in the EMR

(ESTEST Metadata Repository). When building an IE application using GATE alone,

this component would have to be configured by hand for the domain of interest, and

the default configuration file provided contains only a handful of examples to show

the format of the entries. In contrast, in ESTEST we use the abbreviations and

alternative word forms collected within the EMR in order to automatically create the

configuration for the OrthoMatcher component.

2) The standard JAPE grammar for pronominal coreference is then executed over

the text.

3) Template instances are automatically constructed for the annotations that

match schema elements.

4) ESTEST then extracts the coreference chains from the annotations and uses

these to merge templates. Each co-reference chain is examined in turn and its

145

attributes examined and compared pair-wise to decide if the chains should be

merged. This process removes duplicates from within the free text.

5) The resulting set of templates are now compared to the instances already

known from the structured data. A decision is made whether to store each template

found in the free text as a new instance, or whether instead to merge it with an

existing instance.

6) Any annotations which refer to schema elements but which are not part of any

template are stored as before.

The same process is used for both the decision on whether to merge templates

found in the free text, and whether to store templates as a new instance or to merge

with an existing instance. The available evidence is compared, using the size of the

extent of each attribute as a straightforward method of weighting the evidence of

different attributes in a template. For example, in a template with attributes name

and gender, name would be weighted more highly as it is more discriminating as a

search argument. If the database contained the following two person concepts,

linked by a suggested coreference chain with no, or only limited, conflicting evidence:

Person-1
 Name: George Bush
 Gender: ?

Person-2
 Name: ?
 Gender: Male

then they would be merged into:

Person-1
 Name: George Bush
 Gender: Male

In contrast, if the amount of conflicting evidence exceeded a confidence

threshold, then the separate instances would be left unmerged and the coreference

chain ignored e.g.

Person-1
 Name: George Bush
 Gender: Male

Person-2
 Name: Jane Fonda
 Gender: Female

146

If there is some contradictory evidence, falling between these two confidence

thresholds, then the coreference chain is highlighted for the user to decide whether to

merge, together with the conflicting attributes and the confidence level based on the

weighting of these attributes.

To decide the confidence level, the attributes of each pair of possible matches in

the chain are compared. Where there is no value for an attribute for one or both of

the concepts then no positive or negative evidence is assumed. If both concepts have

the same value for the attribute then that is considered as positive evidence weighted

according to the selectivity of the attribute. If they have different values then similarly

weighted negative evidence is added to the confidence total.

For example, if two instances of person have the same name but different

genders, then according to the following evidence they are likely to be the same

person and should be merged:

Person-1 (84% match with Person-2)
 Name: George Bush (92%)
 Gender: Male (8%)

Person-2
 Name: George Bush
 Gender: Female

7.3.4 Duplicate detection in the Crime Example

We made use of the crime example to experiment with our approach. The first

step described above is to make use of GATE’s OrthoMatcher component by

automatically creating an input file based on the word forms associated with the

schema elements in the EMR. As mentioned, this component is used to provide

alternative names for the same instance of an entity, for example “IBM” and “Big

Blue”. In the crime example, the following matches are found:

1 OP, INTEL, OP INTEL

2 ID, REPORT, REPORT ID

3 CAR,VEHICLE

147

Using this component, it became clear that with such general matches the co-

reference chains were not producing any value, and in fact every annotation of the

same type matched, so the recall was high but the precision too low.

It may be that there are uses for this approach in particular domains, and for

annotations referring to people there is value in exploiting the extra evidence

available in natural language. However, for ESTEST we decided instead to look for

coreference matches by constructing templates and attempting to merge these in

cases where there are no conflicting attributes. It would also be possible to restrict

merges to templates found in close proximity in the text. While the GATE

coreference components remain in ESTEST, their results are not used and their

output has been suppressed in the listing given in Appendix C.

In our running example, three operational intelligence reports which are

processed by ESTEST contain references to cars:

Report

Num

Operational Intelligence

Report

Notes

1 GEORGE BUSH HAS A NEW
YELLOW CAR REGISTRATION
LO78 HYS. IT IS A FORD
MONDEO.

This is in CarsDB but without the fact

that the car is yellow. There are two

references to the same car in this text

“NEW YELLOW CAR

REGISTRATION LO78 HYS” and

“FORD MONDEO”

2 TONY BLAIR SEEN COMING
OUT OF THE PERSEVERANCE
PUBLIC HOUSE DRIVES OFF
IN A GREEN FORD PUMA
UY22 QWC.

This car is not in CarsDB

3 NICHOLAS SARKOZY NOW
DRIVING BLUE CITRON 2CV
CE21 FGH.

This car is in CarsDB but is recorded

there as a Red Citron 2CV

148

We now describe the steps ESTEST takes in processing each of these pieces of

text, and we highlight the relevant output from the system:

Report Number 1: “GEORGE BUSH HAS A NEW YELLOW CAR

REGISTRATION LO78 HYS. IT IS A FORD MONDEO”. 73 annotations are produced

from these two sentences. It is interesting to note the large number of annotations

produced, even from so short a piece of text and so few rules. An example of a car

annotation from the output is:

AnnotationImpl: id=62; type=car; features={kind=car, rule=
new_car0, idAnnotationType=car_reg, matches=[62, 63, 64, 60,
61]}; start=NodeImpl: id=15; offset=45; end=NodeImpl: id=20;
offset=54

ESTEST next finds the size of the extent of each schema element in order to use

these numbers to weigh the evidence found of matches in the text:

The total concept counts in the DB:

 Concept: car_reg, count: 142
 Concept: op_intel, count: 3
 Concept: manufacturer, count: 3
 Concept: colour_colour, count: 22
 Concept: colour, count: 22
 Concept: model_model, count: 11
 Concept: Resource, count: 0
 Concept: pub, count: 0
 Concept: op_intel_pc, count: 1
 Concept: op_intel_report_id, count: 3
 Concept: car, count: 142
 Concept: opIntel, count: 0
 Concept: op_intel_intel, count: 3
 Concept: model, count: 11
 Concept: manufacturer_manufacturer, count: 3

Next, ESTEST extracts the annotations of interest to be considered in creating

templates (more detail of how this is achieved is given in Section 7.5):

Annotations of interest

Annotation Details:

Schema element = '<<car>>', value = 'YELLOW CAR REGISTRATION LO78
HYS', Gate ID is 48 and the ID is the value of the related
car_reg

149

Schema element = '<<car>>', value = ' FORD MONDEO', Gate ID is 68
and the ID is the value of the related car_reg

Schema element = '<<colour>>', value = 'YELLOW', Gate ID is 47
and the ID is the value of the related colour

Schema element = '<<car_reg>>', value = 'LO78 HYS', Gate ID is 65
and the ID is the value of the related car_reg

Schema element = '<<model>>', value = 'MONDEO', Gate ID is 74 and
the ID is the value of the related model

Schema element = '<<manufacturer>>', value = 'FORD', Gate ID is
69 and the ID is the value of the related manufacturer

Two templates are found, one for each reference to a car in the text:

2 templates found

 Templates are:
 Template: 1 -- <<car>>, Instance ID: estestInstance1
 Attribute: <<car_reg>>, Instance ID: LO78 HYS
 Attribute: <<colour>>, Instance ID: YELLOW

 Template: 2 -- <<car>>, Instance ID: estestInstance2
 Attribute: <<manufacturer>>, Instance ID: FORD
 Attribute: <<model>>, Instance ID: MONDEO

These contain no conflicting attributes and so it is assumed that they refer to the

same entity (this assumption replaces the alternative co-reference chain approach):

merging template1 into3

 Set idAnnotationType to <<car_reg>>for template <<car>>

 Replacing templateInstanceId null with estestInstance1

 Comparing <<car_reg>> to <<car_reg>>

 Merging templates has found a new annotation of the template id
 type <<car_reg>>, using this as the id of the template, id is
 LO78 HYS

 Comparing <<colour>> to <<car_reg>>

 Changing template instance id from estestInstance1, to LO78 HYS

 merging template2 into3

 Comparing <<manufacturer>> to <<car_reg>>

 Comparing <<model>> to <<car_reg>>

 mergeTemplates() is returning 1 merged templates

150

 1 templates after merging

The resulting merged template contains all the available attributes of the car, and

uses the car registration number as the identifier for the car (this is discussed in more

detail in Section 7.5):

Template: 3 -- <<car>>, Instance ID: LO78 HYS
 Attribute: <<car_reg>>, Instance ID: LO78 HYS
 Attribute: <<colour>>, Instance ID: YELLOW
 Attribute: <<manufacturer>>, Instance ID: FORD
 Attribute: <<model>>, Instance ID: MONDEO

The merged template is now compared to the instances already contained in the

structured data and the size of the attributes’ extents is used to weight the attributes.

For example, having the same registration mark is more credible evidence that the

car in the text is a reference to one already known than would be the fact that they

were both the same colour:

Evidence of a match with <<car>>,<<car_reg>>
 --> LO78 HYS,LO78 HYS, weight is 79.78%

Evidence of a match with <<car>>,<<manufacturer>>
 --> BD51 ABC,FORD, weight is 1.69%

Evidence of a match with<<car>>,<<manufacturer>>
 --> IK83 OKE, FORD, weight is 1.69%

Evidence of a match with<<car>>,<<manufacturer>>
 --> LO78 HYS, FORD, weight is 1.69%

Evidence of a match with<<car>>,<<model>>
 --> LO78 HYS,MONDEO, weight is 6.18%

Match with BD51 ABC, evidence is 1.69%
Match with LO78 HYS, evidence is 87.64%
Match with IK83 OKE, evidence is 1.69%

Best match was LO78 HYS at 87.64%

Found match with more than 50% likelihood LO78 HYS, evidence:
 87.64%

We see that the correct match is found with ‘LO78 HYS’. The details from the

template are then stored in the HDM store, including the new fact that this car is

151

yellow. This is the only fact that actually needs to be stored in the HDM store as the

others already exist in the CarsDB data source. However, there is no disadvantage in

duplicating known facts within the HDM since distinct result sets are returned from

queries and in this way there is a useful record of the totality of facts found in the

text.

Storing Templates.

Storing template: <<car>> / LO78 HYS
 Storing template attribute edge
 <<attribute,car,car_reg>> [1,LO78 HYS]

 Storing template attribute edge
 <<attribute,car,colour>> [1,YELLOW]

 Storing template attribute edge
 <<attribute,car,manufacturer>> [1,FORD]

 Storing template attribute edge
 <<attribute,car,model>>[1,MONDEO]

Report Number 2: “'TONY BLAIR SEEN COMING OUT OF THE

PERSEVERANCE PUBLIC HOUSE DRIVES OFF IN A GREEN FORD PUMA

UY22 QWC”. The template extracted from the text is:

Template: 5 -- <<car>>, Instance ID: UY22 QWC

 Attribute: <<car_reg>>, Instance ID: UY22 QWC
 Attribute: <<colour>>, Instance ID: GREEN
 Attribute: <<manufacturer>>, Instance ID: FORD
 Attribute: <<model>>, Instance ID: PUMA

Comparing the template to the known structured data produces some evidence of

a match, for example with cars of the same make or model, but the total weight is less

than 50% so no match is assumed and the template is stored as a new instance in the

HDM store:

Evidence of a match with <<car>>,<<colour>>
 --> IK83 OKE,GREEN,

weight is 12.36%

Evidence of a match with <<car>>,<<manufacturer>>
 --> LO78 HYS,FORD, weight is 1.69%

152

Evidence of a match with <<car>>,<<manufacturer>>
 --> BD51 ABC,FORD, weight is 1.69%

Evidence of a match with <<car>>,<<manufacturer>>
 --> IK83 OKE,FORD, weight is 1.69%

Evidence of a match with<<car>>,<<manufacturer>>
 --> LO78 HYS,FORD, weight is 1.69%

Evidence of a match with<<car>>,<<model>>
 --> BD51 ABC,PUMA, weight is 6.18%

Match with BD51 ABC, evidence is 7.87%
Match with LO78 HYS, evidence is 3.37%
Match with IK83 OKE, evidence is 14.0%

Best match was IK83 OKE at 14.04%

Report Number 3: “ NICHOLAS SARKOZY NOW DRIVING BLUE CITRON

2CV CE21 FGH”. We assume in this example the French President’s car has been re-

sprayed, as the colour in the text (blue) does not match the colour in CarsDB (red).

The template extracted from the text is:

Template: 6 -- <<car>>, Instance ID: estestInstance15

 Attribute: <<car_reg>>, Instance ID: CE21 FGH
 Attribute: <<colour>>, Instance ID: BLUE
 Attribute: <<manufacturer>>, Instance ID: CITRON
 Attribute: <<model>>, Instance ID: 2CV

Comparing the template to the known instances in the structured data provides a

match with the correct car even after discounting the colours not matching. It may

make sense to be able to make contradictions weigh more heavily than matches, and

this could be supported in the end-user workbench that we describe as possible

future work in Chapter 8.

Evidence of a match with <<car>>,<<car_reg>>
 --> CE21 FGH,CE21 FGH, weight is 79.89%

Contradiction with existing edge: <<car>>,<<colour>>
 --> CE21 FGH, the annotation attribute is BLUE while the db
 attribute is RED evidence is-12.29%

Evidence of a match with <<car>>,<<colour>>
 --> BD51 ABC,BLUE, weight is 12.29%

153

Evidence of a match with <<car>>,<<manufacturer>>
 --> CE21 FGH, CITRON, weight is 1.68%

Evidence of a match with <<car>>,<<model>>
 --> CE21 FGH,2CV, weight is 6.15%

Match with BD51 ABC, evidence is 12.29%
Match with CE21 FGH, evidence is 75.42%

Best match was CE21 FGH at 75.42%

Found match with more than 50% likelihood CE21 FGH, evidence:
75.42%

7.4 Text Matching Patterns in the EMR

We now turn to the third extension made to the initial version of ESTEST, in

order to overcome the need for the user to reconfigure the JAPE6 rules from scratch

on each cycle.

In the initial version of ESTEST, the annotations found on the previous IE

process run are reset when the IE process is re-run. If this were not done, it would

not be possible to take into account any change in configuration that would result in

amending or removing annotations found on the previous run. However, as described

in Chapter 6, the need for the user to amend, on each iteration of ESTEST, the stub

JAPE rules which include text matching patterns is a limitation that would be a

barrier to its practical use by end users. We have therefore extended the EMR to

associate patterns with concepts. These patterns are used to generate, automatically,

the IE rules to be applied on each ESTEST iteration. There are three kinds of pattern

which can be specified stored in the EMR:

6 GATE’s Java Annotation Patterns Engine (JAPE) provides finite state transduction over annotations based

on regular expressions. The left-hand-side of JAPE rules consist of an annotation pattern that may contain regular

expression operators. The right-hand-side consists of annotation manipulation statements, typically by creating an

annotation over the matched text which describes its type. JAPE rules are grouped into a grammar for processing as

a discrete step in an IE pipeline, and for each grammar one of a number of alternative control styles is specified to

determine the order rules should fire, and from where in the text processing should resume.

154

• A macro is a pattern used as a shortcut for specifying textual alternatives. It is

not linked to any specific concept in the global schema and there are no

annotations associated with it. Macros are defined by a name and a value, which

specifies the alternative text strings (which can themselves contain macros) that

will match this macro.

• A schemaElementMatch is a pattern linked to a schema element, and

annotations found in the text are treated as discovered instances of the schema

element in the text. Like macros, these have a name and a list of text strings,

which match an instance of this schema element. Patterns additionally require

the name of the related schema element in the global schema to be specified.

• To identify schema elements to act as sources of named entities, a special case is

allowed where a macro is defined with no value — in this case the name is

assumed to be a schema element name and the extent of that object is used as the

source of named entity instances (in retrospect, it would have been clearer to

have supported an alternative kind of pattern other than macro, as in this special

case annotations in the text are found and a JAPE rule is created as well as a

JAPE macro).

For example, to define a number of alternative words used for street lighting,

given the following macro:

<macro>
<name>model</name>
<value>lamppost-OR-streetlight </value>

</macro>

ESTEST will include the following JAPE macro in the configuration file used for its

IE processing:

Macro: lamppost
(
 {Token.string == "lamppost"} |
 {Token.string == "streetlight"}
)

155

Other patterns can now refer to this macro by referring to (LAMPPOST) in their

specification. An example of the special case of a named entity macro, used to define

the schema element model from the crime example as a named entity source, is:

<macro>
<name>model</name>

</macro>

This will generate the following JAPE macro and rule:

Macro: MODEL
({Lookup.minorType == model})

Rule: model
(
(MODEL)
)
:model -->
 :model.model = {kind ="model", rule = "model",
 idAnnotationType="model"}

Additionally, an entry will be created in the configuration for the ESTEST

SchemaGazetteer component to link these annotations to the schema element in

the global schema:

<ne_source>
<schema>OpIntelautzx</schema>

 <object>model</object>
 <type>extent</type>
</ne_source>

Finally, the schemaElementMatch below:

<schemaElementMatch>
 <name>car</name>
 <schema_object_name>car</schema_object_name>
 <value>(COLOUR)?--(MANUFACTURER)?--(MODEL)--(CAR_REG)</value>
</schemaElementMatch>

will generate the following JAPE rule:

Rule: car
(
(COLOUR)? (SPACE)? (MANUFACTURER)? (SPACE)? (MODEL) (SPACE)?
(CAR_REG)
):car -->
 :car.car = {kind = "car", rule = "known_car0"}

156

In Section 7.5 below, we describe use of EMR patterns in the crime example,

together with the use of automatic extraction of values from the text.

7.5 Automatic Extraction of Values from Text

A central task in IE is named entity recognition, which at its simplest involves

identifying proper names in text by matching against lists of known entity values,

although patterns can also be defined to recognise entities. In GATE, list-matching

named entity recognition is performed by gazetteer components, while pattern

matching named entity recognition is performed by JAPE. However, as we noted in

Section 6.2.7, the facilities offered by IE systems, such as GATE, are restrictive when

it comes to automatic further processing of extracted annotations in order to store

them. The string the annotation covers will usually not be the string that should be

used as the entity identifier. In many cases, the annotation will contain that value as a

substring, and the substring may also be associated with another annotation type. For

example, if a car annotation covers the string “dark blue Mondeo registration SGR

4RT”, then just the registration mark “SGR 4RT” should be used as the identifier for

the car instance. This restriction arises from IE systems typically being used in

isolation, without consideration for how their results can be automatically processed

beyond displaying the annotated text, other than by code specifically written for each

application.

As the right hand side of a JAPE rule can invoke Java code, it would be possible

to write code to extract the value from the text and assert an annotation to be stored.

However, writing Java for each rule is not suitable either for the interactive and

iterative approach of ESTEST, or for its intended eventual use by end-users.

Therefore, we have developed an annotation post-processor that automatically

identifies annotations of interest from either lookup or pattern-matching named

entity recognition, and stores these results automatically in the ESTEST repository,

extending the extents of the corresponding elements of the virtual global schema.

157

These new facilities have been provided as follows:

1) It has been necessary to develop a new control style to automatically process

annotations. As mentioned above, JAPE grammars can have one of four control

styles: i) brill means that should more than one rule match from the current

position in the text, then each rule will only fire once over the text covered by the

longest match; therefore a second match for a rule covering a smaller portion of the

text will be missed; ii) first means the first match found fires, allowing the rules’

ordering to be used to decide their priority; iii) appelt provides a set of criteria to

use in deciding which rule to fire, such as giving preference to the match which covers

the most text; finally iv) all fires all matching rules so that rules that match

substrings will fire as many times as they match.

Our pattern processor needs to be able to find all matching annotation types in

order to find values to use as identifiers, but use of the brill style proved too

restrictive as the matching recommences after the longest match and may miss

matches in the later part of the text. The all style does find the complete set of

matches but when there are rules with optional parts, then these result in the rule

firing twice; for example, given the pattern “(COLOUR)? CAR” and the text “red car”,

two matches for the car annotation would be found: “red car” and “car”. To overcome

this limitation, we have developed a new style: the JAPE grammars use the all style,

however our pattern processor removes annotations covering substrings of the text

covered by other annotations of the same type; thus, in the example above, “car”

would be deleted leaving the longest match “red car”. As future work, it would be

useful to implement this as a new style within the GATE Jape processor as it seems to

be of general use.

2) A schemaElementMatch can optionally specify the name of another

schemaElementMatch to use as its identifier; for example, taking the example from

Section 7.5, it would be possible now to store the car registration number as the

identifier of a car by specifying such an id_name in the pattern definition:

158

<schemaElementMatch>
 <name>car</name>
 <schema_object_name>car</schema_object_name>
 <value>(COLOUR)?--(MANUFACTURER)?--(MODEL)--(CAR_REG)</value>
 <id_name>car_reg</id_name>
</schemaElementMatch>

The JAPE rule associated with this pattern would now include the

idAnnotationType feature which would tell ESTEST to find the value of the

car_reg annotation within the string covered by the car annotation:

Rule: car
(
(COLOUR)? (SPACE)? (MANUFACTURER)? (SPACE)? (MODEL) (SPACE)?
(CAR_REG)
):car -->
 :car.car = {kind = "car", rule = "known_car0",
 idAnnotationType=”car_reg”}

3) The idAnnotationType feature above enables schema elements that are

sources for named entity recognition to be used as identifiers; for example, if a car

with a registration mark that is already known was mentioned in the text, the rule

would fire. But in order to be able to identify cars not already known, it is necessary

to be able to specify a text pattern to match and associate this pattern with a schema

element.

For this purpose, a new pattern type, value_def, allows a sequence of

characters, numerals and punctuation to be specified, e.g. for registration marks:

<value_def>
 <name>REGISTRATION_MARK</name>
 <schema_object_name>car_reg</schema_object_name>
 <value_def_part>
 <type>String</type>
 <length>2</length>
 </value_def_part>
 <value_def_part>
 <type>Integer</type>
 <length>2</length>
 </value_def_part>
 <value_def_part>
 <type>Space</type>
 <length>1</length>
 </value_def_part>
 <value_def_part>
 <type>String</type>
 <length>3</length>

159

 </value_def_part>
 </value_def>

This results in the following JAPE macro and rule being created:

Macro: REGISTRATION_MARK
(
 ({Token.kind == word, Token.length == "2"})
 ({Token.kind == number, Token.length == "2"})
 ((SPACE))
 ({Token.kind == word, Token.length == "3"})
)

Rule: REGISTRATION_MARK
(
 (REGISTRATION_MARK)
)
 :REGISTRATION_MARK -->
 :REGISTRATION_MARK.car_reg = {kind = "car_reg", rule =
 "REGISTRATION_MARK", estestStore="yes",
 idAnnotationType="car_reg"}

Now when a pattern such as “AA11 AAA” is found in the text, this will create an

annotation linked to the car_reg schema element. Combining this with the car rule

will result in new cars being identified, and stored identified by their registration. In

the crime example, this can be seen in the first operation intelligence string processed

which contains a reference to a car that is present in CarsDB:

'GEORGE BUSH HAS A NEW YELLOW CAR REGISTRATION LO78 HYS. IT IS A
FORD MONDEO.'

This instance of car is identified and stored, including the previously unknown fact

that it is yellow:

Storing template: <<car>>/LO78 HYS

 Storing template attribute edge
 <<attribute,car,car_reg>> [1,LO78 HYS]
 Storing template attribute edge
 <<attribute,car,colour>>[1,YELLOW]
 Storing template attribute edge
 <<attribute,car,manufacturer>>[1,FORD]
 Storing template attribute edge
 <<attribute,car,model>>[1,MONDEO]

160

Similarly, in the second text processed there is a car mentioned, the registration mark

of which was not previously in CarsDB:

'TONY BLAIR SEEN COMING OUT OF THE PERSEVERANCE PUBLIC HOUSE
DRIVES OFF IN A GREEN FORD PUMA UY22 QWC.'

This is stored in the same way, in this case though the HDM edge <<attribute

,car,car_reg>> [2,UY22 QWC] will be new:

Storing template: <<car>>/UY22 QWC
 Storing template attribute edge
 <<attribute,car,car_reg>> [2,UY22 QWC]
 Storing template attribute edge
 <<attribute,car,colour>>[2,GREEN]
 Storing template attribute edge
 <<attribute,car,manufacturer>>[2,FORD]
 Storing template attribute edge <<attribute,car,model>>[2,PUMA]

7.6 Discussion

In this chapter we have described several extensions made to the initial ESTEST

system which demonstrate the potential for extending its functionality in a number of

research directions:

1) As well as making use of schema element names in schema matching, ESTEST

also makes use of textual metadata, such as JDBC remarks and comments in XML, to

suggest correspondences. We are aware of no other data integration system that is

able to exploit such textual metadata.

2) ESTEST is able to perform coreference resolution by merging templates

matching the text. It is then able to compare these with the known structured data

and decide if they are new instances or if they represent new attributes about existing

instances. We are aware of no other system that combines approaches for resolving

duplicate references in both text and structured data. While our attempt at making

use of GATE’s OrthoMatcher component proved ineffective, we believe that there is

potential for making use of pronominal coreference resolution for annotation types

that refer to people.

161

3) A further extension has been provided that extracts values from the text

strings covered by annotations, for example storing car registration marks to

represent instances of cars. When combined with the template merging extension of

2), this provides a method of automatically storing the results of the IE process.

Other than the KIM system which relies on an ontology of everything, we are aware of

no other IE system which provides general facilities for further processing of the

annotations produced. As future work it would be possible to enhance the ESTEST

data model to include identifiers for record-based source data models e.g. the

primary keys defined in relational tables. In this way, annotations found for the

primary key attributes could be automatically used as the id_name for the pattern

related to the schema element representing the table.

4) Finally, in order to overcome the limitation of requiring the user to recode

JAPE rules from stubs on each ESTEST iteration, which was the case in the first

version of ESTEST, patterns associated with schema elements can now be stored in

the EMR. These patterns have been designed in such a way that they could be created

by the end user from the workbench that we describe as possible future work in

Chapter 8.

162

Chapter 8

Conclusions and Future Work

8. Conclusions and Future Work

8.1 Summary and Principal Achievements

We now give a brief summary of the thesis and then list the main research

contributions made. In Chapter 1 we described the application class we seek to

address, namely that of partially structured data. In these applications data is often

stored as a combination of structured data and free text. We assert that this reliance

on text is for two main reasons: 1) the queries required become known over time, and

often after the data is captured, and 2) there are limitations in the support of

dynamically evolving schemas in conventional DBMSs. We outlined our approach,

which is based on combining data integration and IE techniques, making use of the

virtual global schema constructed by data integration to assist in the configuration of

an IE process, and then using IE to semi-automatically extract new structured data

from text which is automatically integrated within the global schema. Our ESTEST

prototype has been developed to demonstrate this approach and to provide a test-bed

for further research.

Chapter 2 gives an overview of: the facilities provided by DBMSs for exploiting

text; semi-structured data; data on the web; and data integration systems, in

particular focusing on schema matching approaches based on textual schema

element names. We also describe how conventional record-based database systems

have limited support for the dynamic evolution of schemas, and we suggest that

graph-based data models are a more appropriate foundation for ESTEST.

163

An overview of IE is given in Chapter 3, including its place in the wider field of

Natural Language Processing, and a description of the tasks undertaken by classic IE

systems, such as those which were built for the MUC competitions. A description of

the facilities offered by the GATE IE system is given, including its language

engineering design, with its goal of reuse and extensibility of common IE components

making it a good choice for constructing the IE process in our prototype system.

Recent developments in IE which are related to, and have happened in parallel to,

our research, are then described, especially semantic annotation which, rather than

assigning entity types to annotations, links them to a concept in an ontology.

Chapter 4 reviews the AutoMed data integration system, in particular its BAV

approach to data integration, which is well-suited to the dynamic schema extension

capabilities required by the ESTEST system. We describe the extensions we made to

AutoMed in order to support the development of ESTEST, in particular:

• In the class of applications that ESTEST targets, ontologies are an increasingly

common data source. Therefore, we added RDF/ RDFS as a data model

supported by AutoMed.

• ESTEST requires a repository for the data extracted by its IE process. At the time

of ESTEST’s development, the AutoMed query processing facilities were still to

be developed, therefore we developed a store for native HDM data to meet this

need and also to investigate the practicalities of HDM as a data model.

• In order to be able to access heterogeneous data sources, we contributed to the

development of the AutoMed wrapper architecture in general, and specifically

built wrappers for RDF / RDFS and our native HDM store.

In Chapter 5 we describe the design of ESTEST, which iterates through a number

of steps: integrating available data sources to construct a global schema and metadata

repository; using these to semi-automatically configure an IE process; executing the

IE process over the textual part of the data; automatically integrating the extracted

information into the global schema; supporting queries encompassing the new data;

164

and then including new structured data sources. ESTEST currently runs from scripts,

but has been designed with the intention that the input it requires and commands to

its components could equally be supplied by the front-end that we discuss in Section

8.3.

Chapter 6 shows the system in use in the Road Traffic Accident domain and

begins with an overview of the characteristics of the data and query requirements of

such applications. We give an example of ESTEST in use, combining an RDF / RDFS

ontology of the causes of accidents with a relational database of accident reports (the

complete output from ESTEST is listed in Appendix B). In Section 6.3 we present an

evaluation of ESTEST processing real RTA reports and show that the results,

measured in terms of recall and precision, are in line with a vanilla IE system, while

ESTEST is also able to combine additional evidence from the structured data with

that from the extracted data.

Several extensions made to the initial version of ESTEST are described in

Chapter 7 and are illustrated by reference to an example from the crime application

domain. In this example, a structured database of cars known to the police is

integrated with operational intelligence gathered by police officers on patrol (the

complete output from ESTEST running this example is given in Appendix C). The

first of the extensions to ESTEST enables textual descriptions of schema elements,

automatically obtained from the metadata of the data sources and subsequently

processed by an IE process, to be used to provide evidence for candidate

correspondences between schema elements. We also explore the potential for making

use of WordNet semantic distance metrics for this purpose. Our second extension

exploits the similarity between the task of detecting duplicates in databases with that

of coreference resolution in IE. Our attempt to reuse standard nominal coreference

components was not successful, and instead we have developed an alternative

method of detecting coreference in text based on the creation of templates. The

resulting templates are then compared to the already known structured data, and the

165

extracted information is either merged with that or added as new data. Our third

extension enables patterns representing occurrences of schema elements found in

text to be stored in the ESTEST metadata repository, and these are used to

automatically generate the necessary input to the GATE process, in particular the

JAPE rules. Our fourth extension makes use of schema information to decide which

value to extract from text in order to represent an annotation, for example to

represent a car by its registration mark. When these last three extensions are taken

together, they provide a generally applicable method of automatically processing

annotations extracted from text.

The extended version of ESTEST makes the following principal research

contributions:

• Data Integration systems have not previously been able to integrate information

that is stored as unstructured text with other structured and semi-structured data

sources.

• IE is the task of finding pre-defined entities in text. For the first time, ESTEST

provides IE with a general application-independent way of defining those entities

by building a virtual global schema which combines available data sources,

regardless of their data model. This global schema, and the associated metadata

repository, is used to assist in the semi-automatic configuration of the IE process.

• The schema-matching component of ESTEST is novel in that it is the first, to our

knowledge, to make use of not only schema element names and abbreviations,

but also the textual descriptions found in the metadata of many commonly used

data models.

• We have combined, for the first time, approaches to deal with the detection of

duplicate entity references in both free text and structured data, including a novel

approach to co-reference detection in text, based on creating templates from

annotations found in text.

166

• ESTEST has demonstrated a new method of automatically processing the

annotations found as a result of IE processing. A mechanism for specifying the

correct identifiers for annotations can be combined with the templates created

and compared to the structured data. Together, these provide a general-purpose

method for processing annotations.

A number of challenges were encountered during the work described in this thesis:

• As it was our intention to contribute to new techniques combining IE and data

integration for the first time, we made use where possible of existing research

software, namely AutoMed and GATE. While both of these are good examples of

research groups producing useful open-source software, in using both there were

bugs to find and overcome, and backwards-compatibility issues with the frequent

new versions required significant effort, which became a distraction from our

research effort, detracting from the time available for our research effort.

• It was necessary to develop a prototype system supporting our whole end-to-end

approach before being able to focus our investigations on further particular

research areas. After the development of a first version of ESTEST, and its

validation in the RTA domain, we used this version as a testbed to concentrate on

further research issues arising from limitations in specific phases of the

approach.

• The lack of any other competing system for partially structured data created

difficulties in evaluating our approach. Therefore, we have demonstrated that

ESTEST can operate as effectively as a “vanilla” IE system but also that it can

support queries that an IE system would not. In Section 8.3 below we discuss the

steps required for a complete evaluation of our approach.

An outline of our approach was published in [Williams, D. and Poulovassilis, A.

2003], the design of ESTEST from Chapter 5 was published in [Williams, D. 2005;

Williams, D. and Poulovassilis, A. 2004], the RTA example and experimental results

from Chapter 6 were published in [Williams, D. and Poulovassilis, A. 2006], and the

167

extensions from Chapter 7 were published in [Williams, D. and Poulovassilis, A.

2008].

8.2 General Applicability of our Approach

In this thesis we have described a specific prototype system demonstrating our

approach, developed using facilities provided by an existing data integration system

(AutoMed) and IE system (GATE). We demonstrated the potential of using our

ESTEST prototype via examples from the road traffic accident and crime domains —

although to prove the value to end-users of the system an evaluation is required

following development of an end-user workbench as described in Section 8.3.

However, our approach is not dependent on these specific AutoMed and GATE

systems, nor do we believe its potential is restricted to the road traffic accident and

crime domains as we now discuss:

8.2.1 Other Application domains

While conducting the research for this thesis, we interviewed domain experts

from a varied range of applications that use a combination of structured data and

text. A common theme of these applications is that they have experts whose main role

is to meet information needs on behalf of a wider user-base, and it is such

information-providers who we envisage as the eventual end-users of ESTEST. Our

discussions with such domain experts were used to provide anecdotal evidence to

support of our assumptions about the reasons for data being stored as text, and how

such data is used:

1) In the Road Traffic Accident domain, described more fully in Section 6.1, the

schema has evolved through its use over decades, yet new queries still arise and have

to be answered, often by reference to the text. Information experts at the UK

Department of Transport specialise in answering such queries, in response to

questions raised by government department or elected representatives. Changes to

168

the structured part of the data are the subject of Government review and so happen

infrequently. In addition to discussions with experts at the UCL Centre for Transport

Studies, we also discussed the commercially available software available in this

domain with developers at the UK’s leading vendor.

2) The Resource Information Service [RIS] is a charity providing the LINK

database about services for homeless people used by over 2000 staff at 75

homelessness organisations. Managing and using textual data about these services

provided by these organisations to RIS is problematic, and the ability to progressively

merge this data into the structured database over time is seen as an important feature

that cannot be provided by the technology currently being used. The RIS LINK

project manager provided us with the details of the IT director at one of their client

organisations, and we held discussions with them on the use of the data provided.

3) The British Sub Aqua Club collates information on all scuba-diving accidents

within and off the coast of the UK. A standard form combines structured information

such as the depths and length of decompressions stops, contributing factors such as

low visibility, and the diving equipment involved. A textual description of the

accident is also captured. Statistics of these accidents are used to inform training and

safe diving procedures. Discussions held with the BSAC staff member responsible for

collecting and using these statistics revealed that although the text is captured on the

form as given by the person involved in the accident, when entered into the system a

set of rules is used in order to make scanning for keywords more successful. For

example, the various terms for the buoyancy control device, such as “BCD”, “Stab

Jacket”, “Stability Jacket”, are all translated into a single term. When new questions

arise, the text is scanned for keywords to answer these queries. For example, a recent

rise in the number of people who drown when they could have reached the surface

had they jettisoned their weight belt was identified, and it is believed to be an

overreaction to the recent emphasis on the dangers of decompression due to rapid

assents. The BSAC staff member responsible for the system used suggested that

169

standardising the text from the accident reports was only possible because one

person was, just, able to manage the number of reports involved and could ensure the

text was coded in a sufficiently consistent way to be of later use.

4) In Bioinformatics, the Swiss-Prot database [Bairoch, A., Boeckmann, B. et al.

2004] has a predefined flat-file format which includes a field for comments. As new

requirements arise, this field is used rather than undertaking the large amount of

effort that would be required to change the schema, and over time this text becomes

increasingly important.

We are also aware of a number of similar applications in the finance sector, for

example the production and analysis of investment banking research materials, the

documentation associated with setting up new clients, and the monitoring of news

feeds such as that from Reuters.

Therefore, we believe that the range of applications that our approach could be

evaluated against are both varied and numerous. The applications we have examined

have confirmed our assertion that the reason for the dependence on the use of text is

due to the need to capture information for as yet unknown queries and the difficulty

of dynamically evolving the schemas of conventional databases.

8.2.2 Using other Data Integration and Information

Extraction Software

ESTEST was developed using facilities provided for data integration by AutoMed,

and for IE by GATE. However, while the characteristics of these systems make them

particularly suitable for use in ESTEST, our approach would be able to be supported

by other data integration and IE systems as well.

The main benefit of systems based on LAV data integration, for example IM

[Levy, A., Rajaraman, A. et al. 1996] and Agora [Manolescu, I., Florescu, D. et al.

2001], is that it is straightforward to add a new data source — provided the virtual

global schema does not need to change as a result. However, it is a characteristic of

170

the application classes that we have targeted that the global schema does change, as a

result of new data sources being added to support new query requirements. Although

AutoMed is a BAV system, ESTEST only makes use of its GAV features, in particular

the add, extend and rename steps, in building pathways from source schemas to

the global schema. Therefore, other GAV systems such as TSIMMIS [Chawathe, S.S.,

Garcia-Molina, H. et al. 1994], InterViso [Templeton, M., Henley, H. et al. 1995] and

GARLIC [Roth, M.T. and Schwarz, P. 1997] and IBM’s Websphere [Websphere], are

more readily applicable to the needs of ESTEST then LAV systems. As GLAV

subsumes GAV, GLAV systems such as coDB [Franconi, E., Kuper, G.M. et al. 2004]

would also be applicable.

 With regards to IE, GATE is the leading academic language-engineering

platform available and currently includes over 150 components developed both by the

GATE team at Sheffield University and contributed by collaborators around the

world. However, there are other systems which could also be used to provide the IE

processing requirements of ESTEST, principally IBM’S open-source UIMA project

[Ferrucci, D. and Lally, A. 2004] for developing unstructured information processing

software.

8.3 Future Work

ESTEST is the first implementation of our approach to more effective support of

partially structured data applications, and it has potential impact in a variety of active

research areas including heterogeneous data integration and the semantic web. It can

also serve as a test-bed for further investigation in a range of specific research

directions that have been mentioned throughout the thesis, for example the use of

semantic-distance metrics in natural language ontologies for schema matching, and

enhancing our template-based coreference detection method. However, for the

immediate future, we see the most benefit from the following next steps:

171

1) Developing an end-user workbench for ESTEST, which will require the design

of a novel user interface.

2) Undertaking a full evaluation of our approach, for which the end-user

workbench would be a necessary prerequisite.

3) Refactoring the ESTEST code in order to allow for its more straightforward

future extensibility.

ESTEST Workbench. Throughout the development of ESTEST, we have aimed

to develop the code with the future development of a user interface in mind. This

includes features such as the steps in the current script-based system which allow for

changes to settings that simulate user input. The heuristics used throughout, for

example type information to suggest possible text sources and sources of named

entities, would be of use in such a workbench. The EMR patterns associated with

schema elements used to create JAPE rules were designed in such a way as to be able

to be specified through a GUI interface by the end user. While WordNet semantic

distance is not likely to be able to be fine-grained enough on its own to provide

mappings between concepts, it could be used to intelligently order suggestions

presented to the user through the front-end.

The development of such a workbench would not merely involve implementation

but will require original research effort, since providing such functionality to the end-

user would be novel. While both AutoMed and GATE have GUI front-ends, neither is

aimed at application end-users, the GATE GUI being intended for linguists who are at

least IT literate, and the AutoMed GUI for application developers. The workbench we

envisage would be aimed at the end-user of the data and would enable them to make

use of the textual data to answer new queries and to evolve the schema of the

structured part of the data as their requirements evolve, for example by selecting text

which represents an instance of a new entity and then creating a new schema element

and linking it into the global schema.

172

Graphical user interfaces for the crime domain are an active area of both research

and commercial activity. The graphical query language developed in [Smith, M.N.

and King, P.J.H. 2004] offers pointers for providing a visual representation and

querying of graph-based data models, while the commercial product for extracting

information from text [Xanalys] does offer the crime investigator an interface for

interrogating textual data, but without the capability of extending the schema or the

grammar used in the underlying IE process.

Evaluating ESTEST. As ESTEST provides facilities which are not currently

provided in any other system, an appropriate evaluation would require a comparison

by an end-user over time between ESTEST and whichever workaround is currently

used when new query or data requirements arise. With our envisaged end-user

workbench, it would be possible to support an application, targeted at a domain such

as those we discuss in Section 8.2.1 above, with the aim of supporting the end-user in

their comparison of using ESTEST to meet their information needs with the

combination of whichever methods they use at present.

Refactoring ESTEST. Finally, there would be benefits to refactoring the

current prototype ESTEST code. Appendix A gives an overview of the technical

aspects of the ESTEST software. There are a number of areas in the current code and

data model which could be simplified and consolidated, particularly in the data

structures used at various stages to represent and make use of annotations. Also,

neither the latest version of AutoMed nor GATE are being used at present, and there

are benefits to each, particularly concerning performance and scalability in the latest

AutoMed query processor. Therefore, an upgrade to these latest versions should be

included in the refactoring.

As a final observation, we expect that further possibilities of synergies between

data integration and IE techniques are likely to arise as a result of a full evaluation of

the current ESTEST system, and that the system will be able to provide a sound

foundation for the further investigation of these. In particular, our approach to

173

combining text and structured duplicate detection techniques can be further

developed by experimenting with the effectiveness of using proximity and more

elaborate merging algorithms. Also, our end-to-end method of associating patterns

with schema elements, using these to automatically perform the later steps of

configuring and processing text by IE, with the results being stored automatically,

provides new opportunities for end-user IE tools that do not require programmers or

linguists to configure them. Finally, as more comprehensive models for specifying

annotations are emerging, for example [Laprun, C., Fiscus, J. et al. 1999], it should be

possible to produce representations that are capable of describing entities both as

elements in a virtual global schema and as they appear within free text.

174

Bibliography

Bibliography

Adelberg, Brad (1998). NoDoSE: a tool for semi-automatically extracting structured

and semistructured data from text documents. Proceedings of the 1998 ACM

SIGMOD international conference on Management of data. Seattle,

Washington, United States. ACM Press. pp 283-294. ISBN:0-89791-995-5.

Agichtein, E., Gravano, L., Pavel, J., Sokolova, V. and Voskoboynik, A. (2001).

"Snowball: A Prototype System for Extracting Relations from Large Text

Collections." SIGMOD RECORD, vol 30, p 612. Association for Computing

Machinery.

Amardeilh, F. and Francart, T. (2004). A Semantic Web Portal with HLT Capabilities.

Actes du colloque, Veille Stratgique Scientifique et Technologique

(VSST2004). Toulouse, France. Vol 2. pp 481-492.

Appelt, Douglas E. (1999). "Introduction to Information Extraction." AI

Communications, vol 12 (3), pp 161-172. IOS Press. ISSN:0921-7126.

Autonomy (Website). Autonomy Corporation. http://www.autonomy.com/

Bagga, Amit (1998). Evaluation of Coreferences and Coreference Resolution Systems.

First Language Resource and Evaluation Conference (LREC'98). pp 563-566.

http://citeseer.ist.psu.edu/306857.html

Bairoch, A, Boeckmann, B, Ferro, S and Gasteiger, E (2004). "Swiss-Prot: Juggling

between evolution and stability." Briefings in Bioinformatics, vol 5 (1), pp 39-

55. Oxford University Press. ISSN:1467-5463.

Basili, R., Pazienza, M. and Zanzotto, F. (2002). Learning IE patterns: a terminology

extraction perspective. Workshop of Event Modelling for Multilingual

175

Document Linking at LREC 2002.

http://citeseer.ist.psu.edu/basili02learning.html

Beech, D., Malhotra, A. and Rys, M. (1999). A formal data model and algebra for

XML, Communication to the W3C.

http://citeseer.ist.psu.edu/beech99formal.html

Berners-Lee, T., Fielding, R. and Masinter, L. (1998). Uniform Resource Identifiers

(URI): Generic Syntax, The Internet Engineering Task Force.

http://www.ietf.org/rfc/rfc2396.txt

Berners-Lee, Tim (1999). Weaving the Web: The Original Design and Ultimate

Destiny of the World Wide Web by Its Inventor, Harper San Francisco.

ISBN:1402842937

Bitton, Dina and DeWitt, David J. (1983). "Duplicate Record Elimination in Large

Data Files." ACM Transactions on Database Systems, vol 8 (2), pp 255-265.

ISSN:0362-5915.

Boguraev, B., Garigliano, R. and Tait, J (1995). "Editorial." Natural Language

Engineering, vol 1 (1), pp 1-7. Cambridge University Press. ISSN:1351-3249.

Bontcheva, K, Tablan, V., Maynard, D and Cunningham, H (2004). "Evolving GATE

to Meet New Challenges in Language Engineering." Natural Language

Engineering, vol 10 (3/4), pp 349-373. Great Britain. ISSN:1351-3249.

Bontcheva, K. and Cunningham, H. (2003). The Semantic Web: A New Opportunity

and Challenge for Human Language Technology. Workshop on Human

Language Technology for the Semantic Web and Web Services at ISWC 2003.

Florida, USA. http://www.citeseer.ist.psu.edu/642640.html

Boyd, M., McBrien, P.J. and Tong, N. (2002). "The AutoMed schema integration

repository." LECTURE NOTES IN COMPUTER SCIENCE, vol 2405 - BNCOD

2002, pp 42-45. Springer-Verlag. ISSN:0302-9743.

Brickley, D and Guha, R.V (2004). RDF Vocabulary Description Language 1.0: RDF

Schema. W3C Recommendation, W3C. http://www.w3.org/TR/rdf-schema/

176

Brin, S. (1999). Extracting Patterns and Relations from the World Wide Web. WebDB

'98: Selected papers from the International Workshop on The World Wide

Web and Databases. Lecture Notes In Computer Science. A. O. Mendelzon P.

Atzeni, and G. Mecca (Eds). Springer Verlag. Vol 1590. pp 172-183. ISBN:3-

540-65890-4.

Broekstra, J., Kampman, A. and Harmelen, F. van (2002). Sesame: An Architecture

for Storing and Querying RDF Data and Schema Information. ISWC 2002:

First International Semantic Web Conference, Sardinia, Italy, June 9-12,

2002. Proceedings. Lecture Notes in Computer Science. Springer Berlin /

Heidelberg. Vol 2342. p 54.

Budanitsky, Alexander and Hirst, Graeme (2001). Semantic distance in WordNet: An

experimental, application-oriented evaluation of five measures. Workshop on

WordNet and Other Lexical Resources, Second meeting of the North

American Chapter of the Association for Computational Linguistics (NAACL-

2001). Pittsburgh, USA.

http://www.citeseer.ist.psu.edu/budanitsky01semantic.html

Califf, M. E. and Mooney, R. J. (1999). Relational Learning of Pattern-Match Rules

for Information Extraction. Proceedings of the Sixteenth National Conference

on Artificial Intelligence (AAAI-99). Orlando, Florida, USA. pp 328-334.

Chau, Michael, Xu, Jennifer J. and Chen, Hsinchun (2002). Extracting Meaningful

Entities from Police Narrative Reports. National Conference for Digital

Government Research. Los Angeles, CA, USA. Digital Government Research

Center. pp 1-5.

Chawathe, Sudarshan S., Garcia-Molina, Hector, Hammer, Joachim, Ireland, Kelly,

Papakonstantinou, Yannis, Ullman, Jeffrey D. and Widom, Jennifer (1994).

The TSIMMIS Project: Integration of Heterogeneous Information Sources.

Proceedings of the 10th Meeting of the Information Processing Society of

Japan.

177

Chu, Eric, Baid, Akanksha, Chen, Ting, Doan, AnHai and Naughton, Jeffrey (2007). A

relational approach to incrementally extracting and querying structure in

unstructured data. VLDB '07: Proceedings of the 33rd international

conference on very large data bases. Vienna, Austria. VLDB Endowment. pp

1045-1056. ISBN:978-1-59593-649-3.

Codd, E. F. (1970). "A relational model of data for large shared data banks."

Communications of the ACM, vol 13 (6), pp 377-387.

http://doi.acm.org/10.1145/362384.362685 ISSN:0001-0782.

Cohen, W. W. (1998). "Integration of Heterogeneous Databases Without Common

Domains Using Queries Based on Textual Similarity." SIGMOD RECORD, vol

27 (2), pp 201-212. ACM.

Cowie, Jim and Lehnert, Wendy (1996). "Information Extraction." Communications

of the ACM, vol 39 (1), pp 80-91. ACM Press. ISSN:0001-0782.

Cunningham, H. (2000). Software Architecture for Language Engineering, University

of Sheffield. PhD. http://gate.ac.uk/sale/thesis/

Cunningham, H., Maynard, D., Bontcheva, K. and Tablan, V. (2002). GATE: A

framework and graphical development environment for robust NLP tools and

applications. 40th Anniversary Meeting of the Association for Computational

Linguistics.

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V. and Ursu, C. (2002). The

GATE User Guide, University of Sheffield.

http://www.gate.ac.uk/sale/tao/index.html

DARPA (Website). Defence Advanced Research Projects Agency.

http://www.darpa.mil/

DfT (1999). Instructions for the Completion of Road Accident Report Form STATS19.

UK Government Department for Transport.

www.collisionreporting.gov.uk/Stats/stats20.pdf

178

Doan, AnHai, Domingos, Pedro and Levy, Alon Y. (2000). Learning Source

Description for Data Integration. WebDB. pp 81-86.

http://citeseer.ist.psu.edu/doan00learning.html

Doddington, George, Mitchell, Alexis, Przybocki, Mark, Ramshaw, Lance, Strassel,

Stephanie and Weischedel, Ralph (2004). Automatic Content Extraction

(ACE) program - task definition and performance measures. Fourth

International Conference on Language Resources and Evaluation (LREC).

Lisbon, Portugal.

Domingos, P. and Pazzani, M. (1997). "On the optimality of the simple Bayesian

classifier under zero-one loss." Machine Learning, vol 29 (2-3), pp 103-130.

Kluwer Academic Publishers.Hingham, MA, USA. ISSN:0885-6125.

Elemagarmind, A, Ipeirotis, P and Varykios, V (2007). "Duplicate Record Detection:

A Survey." IEEE transactions on knowledge and data engineering, vol 19 (1),

IEEE Computer Society.

Fan, H. and Poulovassilis., A. (2004). Schema evolution in data warehousing

environments - a schema transformation-based approach. Proceedings of

ER'04. Lecture Notes in Computer Science. Vol 3288. pp 639-653. ISBN:978-

3-540-23723-5. www.dcs.bbk.ac.uk/~ap/pubs/er04.pdf

Fellbaum, C (Ed.) (1998). WordNet An Electronic Lexical Database, MIT Press.

ISBN:0-262-06197-X

Fellegi, I.P. and Sunter, A. B. (1969). "A Theory for Record Linkage." Journal of the

American Statistical Association, vol 64 (328), pp 1183-1210. ISSN:0162-

1459. http://www.jstor.org/view/01621459/di985900/98p0492d/0

Fensel, Dieter, Harmelen, Frank van, Horrocks, Ian, McGuinness, Deborah L. and

Patel-Schneider, Peter F. (2001). "OIL: An Ontology Infrastructure for the

Semantic Web." IEEE Intelligent Systems, vol 16 (2), pp 38-45.

Ferrucci, David and Lally, Adam (2004). "UIMA: an architecectural approach to

unstructured information processing in the corporate research environment."

179

Natural Language Engineering, vol 10, pp 327-348. Cambridge University

Press.Cambridge.

Florescu, Daniela, Levy, Alon and Mendelzon, Alberto (1998). "Database techniques

for the World-Wide Web: a survey." SIGMOD RECORD, vol 27, pp 59-74.

ACM Press. ISSN:0163-5808.

Franconi, Enrico, Kuper, Gabriel M., Lopatenko, Andrei and Zaihrayeu, Ilya (2004).

Queries and Updates in the coDB Peer to Peer Database System. Proceedings

of the Thirtieth International Conference on Very Large Data Bases. Toronto,

Canada. Morgan Kaufmann. pp 1277-1280. ISBN:0-12-088469-0.

http://www.vldb.org/conf/2004/DEMP7.PDF

Freitag, D. and Kushmerick, N. (2000). Boosted wrapper induction. National

Conference on Artificial Intelligence (AAAI). Vol 17. pp 577-583.

http://citeseer.ist.psu.edu/article/freitag00boosted.html

Friedman, Marc, Levy, Alon Y. and Millstein, Todd D. (1999). Navigational Plans for

Data Integration. IJCAI-99 Workshop on Intelligent Information Integration.

Stockholm, Sweden.

Frost, R.A. (1982). "Binary-Relational Storage Structures." The Computer Journal,

vol 25 (3), pp 358-367. Heyden & Son Ltd. ISSN:0010-4620.

Gazdar, Gerald (1996). Paradigm merger in natural language processing. Computing

Tomorrow: Future Research Directions in Computer Science. Robin Milner

and Ian Wand, Cambridge University Press: 88-109.

Gazdar, Gerald and Mellish, Chris (1989). Natural Language Processing in LISP,

Addison Wesley. ISBN:0-201-17825-7

Ge, Niyu, Hale, John and Charniak, Eugene (1998). A statistical approach to

anaphora resolution. Sixth Workshop on Very Large Corpra. Quebec, Canada.

Graca, Joao, Mamede, Nuno J. and Pereira, Joao D. (2004). A Run-Time Shared

Repository for NLP Tools, Spoken Language Systems Lab, INESC-ID,

Portugal.

180

Grishman, Ralph (1998). TIPSTER Text Architecture Design, New York University.

www-nlpir.nist.gov/related_projects/tipster/docs/arch31.doc

Grishman, Ralph and Sundheim, Beth (1996). Message Understanding Conference-6:

a brief history. 16th Conference on Computational Linguistics. ACM. pp 466-

471.

Gruber, Tom (1993). "A translation approach to portable ontologies." Knowledge

Acquisition, vol 5 (2), pp 199-220.

Guarino, Nicola (1998). Formal Ontology and Information Systems. FOIS'98. Trento,

Italy. IOS Press. pp 3-15. ISBN:9051993994.

http://osm.cs.byu.edu/CS652s04/Gua98Formal.pdf

Harris, S. and Gibbins, N. (2003). 3store: Efficient bulk RDF storage. 1st

International Workshop on Practical and Scalable Semantic Systems

(PSSS'03). http://citeseer.ist.psu.edu/harris03store.html

Harrison, Ann (1997). The Story of the Blob (email thread).

http://www.ibphoenix.com/main.nfs?a=ibphoenix&page=ibp_blob_history

Hernandez, M. A. and Stolfo, S. J. (1998). "Real-world Data is Dirty: Data Cleansing

and The Merge/Purge Problem." Data Mining and Knowledge Discovery, vol 2

(1), pp 9-37.

Heydecker, Ben (2005). Personal Communication to Dean Williams.

Hirst, Graeme (1981). Anaphora in natural language understanding. Berlin, Springer

Berlin / Heidelberg. ISBN:0387108580

Hobbs, Jerry R. (1976). "Pronoun Resolution." SIGART Bull., vol 61, p 28. ACM

Press.New York, NY, USA. ISSN:0163-5719.

http://portal.acm.org/citation.cfm?id=1045283.1045292

Hobbs, Jerry R., Appelt, Douglas, Bear, John, Israel, David, Kameyama, Megumi,

Stickel, Mark and Tyson, Mabry (1996). FASTUS: Extracting Information

from Natural-Language Texts. Finite State Devices for Natural Language

Processing. E. Roche and Y. Schabes.

181

Horrocks, Ian (2005). OWL: A Description Logic Based Ontology Language.

Principles and Practice of Constraint Programming - CP 2005. Lecture Notes

in Computer Science. Sitges, Spain. Springer. Vol 3709. pp 5-8.

Horrocks, Ian, Patel-Schneider, Peter F. and Harmelen, Frank van (2002). Reviewing

the Design of DAML+OIL: An Ontology Language for the Semantic Web.

AAAI/IAA. Edmonton, Alberta, Canada. AAAI Press.

Humphreys, K., Gaizauskas, R., Azzam, S., Huyck, C., Mitchell, B., Cunningham, H.

and Wilks, Y. (1998). Description of the LaSIE-II system as used for MUC-7.

Proceedings MUC-7. University of Sheffield.

http://citeseer.ist.psu.edu/article/humphreys98university.html

Jasper, Edgar (2002). Global Query Processing in the AutoMed Heterogeneous

Database Environment. Advances in Databases: 19th British National

Conference on Databases, BNCOD 19. Lecture Notes in Computer Science.

Sheffield, UK. Springer Berlin / Heidelberg. Vol 2405. pp 46-49.

http://citeseer.ist.psu.edu/jasper02global.html

JWNL (Website). Java WordNet Library.

http://www.sourceforge.net/projects/jwordnet

Kameyama, Megumi (1997). Recognizing Referential Links: An Information

Extraction Perspective, Technical Report, AI Center, SRI International.

http://citeseer.ist.psu.edu/ameyama97recognizing.html

Kashyap, V and Sheth, A (1996). "Semantic and schematic similarities between

database objects: a context-based approach." VLDB Journal, vol 5 (4), pp 276-

304.

Kent, William (1979). "Limitations of Record-Based Information Models."

Transactions on Database Systems (TODS), vol 4 (1), pp 107-131. ACM.

ISSN:0362-5915. http://doi.acm.org/10.1145/320064.320070

King, P.J.H. and Small, C. (1991). "Default Databases and Incomplete Information."

The Computer Journal: Special issue on Information Systems, vol 34 (3), pp

182

239-244. ISSN:0010-4620.

http://comjnl.oxfordjournals.org/cgi/reprint/34/3/239

King, Peter, Derakhshan, Mir, Poulovassilis, Alexandra and Small, Carol (1990).

TriStarp - An Investigation into the Implementation and Exploitation of

Binary Relational Storage Structures pp 64-84.

King, Peter and Poulovassilis, Alexandra (2000). Enhancing database technology to

better manage and exploit Partially Structured Data, Technical Report

BBKCS-00-14, Birkbeck College, University of London.

http://www.dcs.bbk.ac.uk/research/techreps/2000/bbkcs-00-14.pdf

Laprun, Cristophe, Fiscus, Jonathan, Garofolo, Jonh and Pajot, Sylvain (1999).

Recent improvements to the Atlas architecture. National Intitute of Standards

and Technology, US Government National Institute of Standards and

Technology. http://www.itl.nist.gov/iaui/894.01/atlas/download/hlt2002-

atlas.pdf

Lassila, O and Swick, R.R. (1999). Resource Description Framework (RDF) Model

and Syntax Specification. W3C Recommendation, W3C. 1999.

http://www.w3.org/TR/REC-rdf-syntax/

Lenzerini, Maurizio (2002). Data Integration: A Theorectical Perspective. PODS '02:

Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium

on Principles of database systems. ACM Press. pp 247-258. ISBN:1-58113-

507-6. http://www.csd.uoc.gr/~hy562/Papers/lenzerini02.pdf

Levy, Alon, Rajaraman, Anand and Ordille, Joann (1996). Querying Heterogeneous

Information Sources Using Source Descriptions. VLDB '96: Proceedings of

the 22th International Conference on Very Large Data Bases. Morgan

Kaufmann Publishers Inc. pp 251-262. ISBN:1-55860-382-4.

Manolescu, Ioana, Florescu, Daniela and Kossmann, Donald (2001). Answering XML

Queries on Heterogeneous Data Sources. VLDB '01: Proceedings of the 27th

International Conference on Very Large Data Bases. Morgan Kaufmann

183

Publishers Inc. pp 241--250. ISBN:1-55860-804-4.

http://citeseer.ist.psu.edu/manolescu01answering.html

Marsh, Elaine (1998). TIPSTER Information Extraction Evaluation: The MUC-7

Workshop. Navy Center for Applied Research in Artificial Intelligence.

Maynard, D., Bontcheva, K. and Cunningham, H. (2003). Towards a semantic

extraction of named entities. Recent Advances in Natural Language

Processing. Bulgaria.

McBride, Brian (2002). "Jena: A Semantic Web Toolkit." IEEE Internet Computing,

vol 6 (6), pp 55-59. IEEE Educational Activities Department.Piscataway, NJ,

USA. ISSN:1089-7801.

McBride, Brian and Hayes, Patrick (2002). RDF Semantics, W3C Working Draft.

http://www.w3.org/TR/2002/WD-rdf-mt-20021112

McBrien, P.J. and Poulovassilis, A. (1999). A Uniform Approach to Inter-Model

Transformations. CAiSE'99. Lecture Notes in Computer Science. Springer. Vol

1626. pp 333-348.

McBrien, P.J. and Poulovassilis, A. (2001). A Semantic Approach to Integrating XML

and Structured Data Sources. CAiSE'01. Lecture Notes in Computer Science.

Springer. Vol 2068. pp 330-345.

McBrien, P.J. and Poulovassilis, A. (2002). Schema Evolution in Heterogeneous

Database Architectures, A Schema Transformation Approach. CAiSE'02.

Lecture Notes in Computer Science. Vol 2348. pp 484-499.

McBrien, P.J. and Poulovassilis, A. (2003). "Data integration by bi-directional schema

transformation rules." Proceedings 19th International Conference on Data

Engineering,ICDE'03, pp 227-238. IEEE Computer Society.Los Alamitos, CA,

USA. ISSN:1063-6382. http://citeseer.ist.psu.edu/mcbrien03data.html

McEnery, Tony and Wilson, Andrew (1996). Corpus Lingusitics, Edingburgh

University Press. ISBN:0748608087

184

McGuinness, Deborah L., Fikes, Richard, Stein, Lynn Andrea and Hendler, James A.

(2003). DAML-ONT: An Ontology Language for the Semantic Web. Spinning

the Semantic Web. Dieter Fensel, James A. Hendler, Henry Lieberman and

Wolfgang Wahlster, MIT Press.

Milo, T. and Zohar, S. (1998). Using schema matching to simplify heterogeneous data

translation. Proc. 24th Int. Conf. Very Large Data Bases, (VLDB). Morgan

Kaufmann Publishers Inc. pp 122-133. ISBN:1-55860-566-5.

http://citeseer.ist.psu.edu/milo98using.html

Mitkov, Ruslan (1999). Anaphora Resolution: The State of the Art, Wolverhampton:

School of Languages and European Studies, University of Wolverhampton.

ISBN:1897618034

Mooney, Raymond J. and Nahm, Un Yong (2005). Text Mining with Information

Extraction. 4th International MIDP Colloquium. Bloemfontein, South Africa.

Van Schaik Pub. South Africa. pp 141-160.

Morton, Thomas (1997). Coreference for NLP Applications. In Proceedings ACL.

http://citeseer.ist.psu.edu/morton97coreference.html

Müller, Heiko and Freytag, Johann-Christoph (2003). Problems, Methods, and

Challenges in Comprehensive Data Cleansing, Humboldt University Berlin.

Nahm, U.Y. and Mooney, R (2000). Using Information Extraction to Aid the

Discovery of Prediction Rules from Text. KDD-2000 Workshop on Text

Mining. pp 51-58.

Newcombe, H.B., Kennedy, J.M., Axford, S.J. and James, A.P. (1959). "Automatic

Linkage of Vital Records." Science, vol 130, pp 954-959. ISSN:0036-8075.

NIST (Website). National Institute of Standards and Technology.

http://www.nist.gov/

Noy, N. F., Sintek, M., Decker, S., Crubezy, M., and, R. W. Fergerson and Musen, M.

A. (2001). "Creating Semantic Web Content with Protege-2000." IEEE

Intelligent Systems, vol 2 (16), pp 60-71.

185

Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., Kirilov, A. and Goranov, M.

(2003). Towards semantic web information extraction. ISWC.

Popov, Borislav, Kiryakov, Atanas, Kirilov, Angel, Manov, Dimitar, Ognyanoff,

Damyan and Goranov, Miroslav (2003). KIM - Semantic Annotation

Platform. Proceedings 2nd International Semantic Web Conference

(ISWC2003). Lecture Notes in Artificial Intelligence. Florida, USA. Springer-

Verlag. Vol 2870. pp 834-849.

Popov, Borislav, Kiryakov, Atanas, Ognyanoff, Damyan, Manov, Dimitar and Kirilov,

Angel (2004). "KIM - a semantic platform for information extraction and

retrieval." Natural Language Engineering, vol 10 (3-4), pp 375-392.

Cambridge University Press.New York, NY, USA. ISSN:1351-3249.

Poulovassilis, A (1992). "The Implementation of FDL, a Functional Database

Language." Computer Journal, vol 35 (2), pp 119-128. Oxford University

Press.Oxford, UK. ISSN:0010-4620.

Poulovassilis, A (2001). The AutoMed Intermediate Query Language, AutoMed

Project Technical Report.

http://www.doc.ic.ac.uk/automed/techreports/query_language.ps

Poulovassilis, A. and McBrien, P.J. (1998). "A general formal framework for schema

transformation." Data and Knowledge Engineering, vol 28 (1), pp 47-71.

Rahm, Erhard and Bernstein, Philip A. (2001). "A Survey of Approaches to Automatic

Schema Matching." VLDB Journal, vol 10, pp 334-350.

Rich, Elaine and Knight, Kebin (1991). Artificial Intelligence, McGraw-Hill, Inc.

ISBN:0-07-100894-2

RIS (Website). Resource Information Service. http://www.ris.org.uk/

Roth, M. Tork and Schwarz, P. (1997). Don't scrap it, wrap it! a wrapper architecture

for legacy sources. VLDB '97: Proceedings of the 23rd International

Conference on Very Large Data Bases. Athens, Greece. Morgan Kaufmann

Publishers Inc. ISBN:1-55860-470-7.

186

Salton, Gerard and McGill, Michael (1983). Introduction to Modern Information

Retrieval. New York, NY, USA, McGraw-Hill. ISBN:0070544840

Sciences, National Academy of (1999). The Rise of Relational Databases. Funding a

Revolution: Government Support for Computing Research, National Academy

Press.

Smith, M. N. and King, P. J. H. (2004). "A Database Interface for Link Analysis."

Journal of Database Management, vol 16 (1), pp 60-74. Hershey, PA; Idea

Group Publishing. ISSN:1063-8016.

STATS20 (Website). Instructions for the Completion of Road Accident Report Form

STATS19. http://www.dft.gov.uk/stellent/groups/dft

_transstats/documents/page/dft_transstats_505596.pdf

Tan, A.H. (1999). Text mining: The state of the art and the challenges. PAKDD 1999

Workshop on Knowledge Discovery from Advanced Databases. pp 65-70.

Templeton, Marjorie, Henley, Herbert, Maros, Edward and Buer, Darrel J. Van

(1995). "InterViso: dealing with the complexity of federated database access."

The VLDB Journal, vol 4 (2), pp 287-318. Springer-Verlag New York, Inc.

http://dx.doi.org/10.1007/BF01237922

TIPSTER (Website). The TIPSTER text programme. http://www-

nlpir.nist.gov/related_projects/tipster/overv.htm

Tristarp (Website). Tristarp Project Homepage. www.dcs.bbk.ac.uk/TriStarp

Uren, Victoria, Cimiano, Philipp, Iria, José, Handschuh, Siegfried, Vargas-Vera,

Maria, Motta, Enrico and Ciravegna, Fabio (2006). "Semantic annotation for

knowledge management: Requirements and a survey of the state of the art."

Web Semantics: Science, Services and Agents on the World Wide Web, pp 14-

28.

Websphere (Website). IBM Websphere. http://www-

306.ibm.com/software/websphere/

WEKA (Website). Weka ML Wrapper. http://www.cs.waikato.ac.nz/ml/weka/

187

Wilks, Yorick (1975). "An intelligent analyzer and understander of English."

Communications of the ACM, vol 18 (5), pp 264-274. ACM Press.New York,

NY, USA. ISSN:0001-0782. http://doi.acm.org/10.1145/360762.360770

Williams, Dean (2005). Combining Data Integration and Information Extraction

Techniques. BNCOD'05: Workshop on Data Mining and Knowledge

Discovery. Sunderland, UK. University of Sunderland. pp 96-101.

Williams, Dean and Poulovassilis, Alexandra (2003). Combining Data Integration

with Natural Language Technology for the Semantic Web. Workshop on

Human Language Technology for the Semantic Web and Web Services, at

ISWC'03. Sanibel Island, Florida, USA. pp 113-117.

http://www.dcs.bbk.ac.uk/~dean/ISWCPoster.pdf

Williams, Dean and Poulovassilis, Alexandra (2004). An Example of the ESTEST

Approach to Combining Unstructured Text and Structured Data. DEXA '04:

Proc. of the Database and Expert Systems Applications, 15th International

Workshop on (DEXA'04). Zaragoza, Spain. IEEE Computer Society. pp 191-

195. ISBN:0-7695-2195-9.

Williams, Dean and Poulovassilis, Alexandra (2006). Combining Information

Extraction and Data Integration in the ESTEST system. ICSOFT 2006.

Setubal, Portugal. CCIS 10, Springer-Verlag. pp 279-292.

http://www.dcs.bbk.ac.uk/~dean/22945.pdf

Williams, Dean and Poulovassilis, Alexandra (2008). Combining Data Integration

and IE Techniques to support Partially Structured Data. 13th International

Conference on Applications of Natural Language to Information Systems,

NLDB 2008. London, UK. LNCS 5039, Springer-Verlag. ISBN:978-3-540-

69857-9.

Williams, Simon (2002). The Associative Model of Data, Lazysoft Limited.

ISBN:1903453011

188

Winkler, W. (1994). Advanced Methods for Record Linkage. Statistical Research

Division, US Bureau of the Census.

citeseer.ist.psu.edu/winkler94advanced.html

Winkler, William E. (2006). Overview of Record Linkage and Current Research

Directions, Research Report 2006-2, Statistical Research Division, US Census

Bureau. http://www.census.gov/srd/papers/pdf/rrs2006-02.pdf

Winograd, Terry (1972). Understanding Natural Language. New York, NY, USA,

Academic Press. ISBN:0127597506

Wu, J. and Heydecker, B. (1998). "Natural language understanding in road accident

data analysis." Advances in Engineering Software, vol 29 (7-9), pp 599-610.

Elsevier Science Ltd.Oxford, UK. ISSN:0965-9978.

http://dx.doi.org/10.1016/S0965-9978(98)00025-8

Xanalys (Website). Xanalys Indexer.

http://www.xanalys.com/pdf/solutions/xanalysindexer.asp

189

Appendix A

ESTEST Implementation

A. ESTEST Implementation

The ETSEST system is written in Java using Eclipse as the IDE, Ant for building

and deployment and CVS for source control. There are 17,000 lines of ESTEST code,

organised into 130 classes within 4 packages. Postgres is used to persist the results in

the ESTEST Metadata Repository (EMR), and the relevant DDL is included in the

AutoMed distribution and the database created as part of the AutoMed repository.

Below we give some notes on the main classes of the ESTEST code as pointers to

navigate through the code. We then describe the tables in the EMR data source.

Package Description

uk.ac.bbk.dcs.automed.hdmstore

(12 classes)
The HDM store and its Wrapper are
implemented in this package, which is the
only one yet to be integrated into the
AutoMed distribution.

uk.ac.bbk.estest

(63 classes)
Main package for ESTEST code

uk.ac.bbk.estest.ie

(28 classes)
ESTEST code for performing IE, including
new components for GATE

uk.ac.bbk.estest.test

(27 classes)
Test classes not used in the normal
running of the system.

For each package, the main classes are as follows:

uk.ac.bbk.dcs.automed.hdmstore

Class Description

HdmStore Main class which allows for the HDM tables to be created,
provides the API for populating and querying the HDM
Store.

HdmWrapperFactory Creates and returns an HdmWrapper. Also passed a

wrapper will create an AutoMed schema.
HdmWrapper Passed IQL queries in AutoMed’s ASG representation, will

perform retrieve, insert & delete queries.
LowLevelWrapperHdm Initial version of the HDM wrapper implemented while

190

working on the combined Wrapper / Wrapper Factory
architecture. The HdmWrapper class converts results

from this class into the standard ASG format.

uk.ac.bbk.estest

Class Description

Estest Called passing the name of a script to run,
loads that and executes each step in turn.

EstestConstants Interface used to define constants used
throughout the system e.g. default file
names.

EstestMetaDataRepository All database access is done through this
class.

Script Defines the steps ESTEST will execute as a
collection of ScriptStep

Integrator Controls the integration of data sources,
creates the HDM store, finds
correspondences and creates the virtual
global schema.

ConfigIE Generates configuration files for GATE
components.

ParameterDefintionReader Reads an XML file containing settings and
configration details for ESTEST phases.

ResultIntegrator Processes IE annotations to automatically
store the results in the HDM store.

Parameter Definition of a setting e.g. named entity
defintion.

EstestOntologyWrapperFactory Factory to create an ontology wrapper and to
add EDM modelling for ontologies.

EstestOntologyWrapper ESTEST Wrapper over an AutoMed wrapper
such as the RdfWrapper

RdfWrapper AutoMed wrapper for RDF / RDFS data
sources.

RdfWapperfactory Factory to create an RDF wrapper.
DataSource Abstract class defining data sources to be

integrated.
OntologyDataSource Implementation of DataSource for

Ontologies.
RelationalDataSource Implementation of DataSource for

relational RDMBs.
WordNet Wrapper over the Java WordNet library.

Also implements distance metric and and
ESTEST WordNet API

Abbreviation An abbreviation for a word form in the
domain

CoRefs Collection of coreference matches found in a
document.

Match Match between two concepts in the global
schema

191

Templates Processes templates found in the text
including building, merging and persisting
them.

uk.ac.bbk.estest.ie

Class Description

InformationExtractor Builds a GATE pipeline according to
configuration files produced by ConfigIE.
Runs pipeline of documents and extracts
annotations of interest.

SchemaGazetter Gazetteer component configured from the
virtual global schema. Able to obtain named
entity lists from the extent of a schema
element or from the associated word forms
in the EMR.

SchemaNameTokeniser Tokeniser for schema element names.
Recognises common naming conventions
e.g. accNumber, account-number

SchemaObjectTextIEProcessor IE processor for schema element metadata

NamedEntityDefintion Schema element with an associated list of
word forms to match in the text.

AnnotationDetail Details of a GATE annotation
Pattern Implementation of an EMR pattern which is

used to find references to a specific schema
element in text.

Macro Alternative word sequences for use in other
patterns

ValueDef Pattern specifying a value to be used as an
identifier e.g. a car registration mark.

192

The tables comprising the ETEST Metadata Repository (EMR) are as follows:

 193

Appendix B

ESTEST Output from the

RTA Example

A. ESTEST Output from the RTA Example

Loading class uk.ac.ic.doc.automed.wrappers.TransactSQLWrapper
Loading class uk.ac.ic.doc.automed.wrappers.PostgresWrapper
Loading class uk.ac.ic.doc.automed.wrappers.OracleWrapper
Loading class uk.ac.ic.doc.automed.wrappers.YattaWrapper
Loading class uk.ac.bbk.dcs.automed.xml.wrappers.DOMWrapper
Loading class uk.ac.bbk.dcs.automed.xml.wrappers.SAXWrapper
Loading class uk.ac.bbk.dcs.automed.hdmstore.HdmWrapper
Loading class uk.ac.bbk.estest.RdfWrapper
Loading class uk.ac.bbk.estest.EstestOntologyWrapper
Verbose debugging switched on

---—-

ESTEST running from a script.
Using:C:\estest\bin\config\demoScri
 pt.xml
Building Estest modelling language

==

 DETAILS OF LOADED ESTEST SCRIPT
==

ScriptStep 1: type=Parameters uri C:\estest\bin\config\parmsAnim
 alsAbbrevs.xml

ScriptStep 2: type=Integrate uri =C:\estest\bin\config\dsdx.xml

ScriptStep 3: type=Query

ScriptStep 4: type=Config

ScriptStep 5: type=Parameters uri C:\estest\bin\config\parmsAnim
 alInRoad1.xml

ScriptStep 6: type=ConfigOutput

ScriptStep 7: type=IE

ScriptStep 8: type=Query

ScriptStep 9: type=Parameters uri C:\estest\bin\config\parmsAnim
 alsConfig2.xml

ScriptStep 10: type=ConfigOutput

ScriptStep 11: type=IE

ScriptStep 12: type=Query

==
 PARAMETERS STEP (1)
==

Parameters to be loaded:
 Abbreviation of: accident, is: acc
 Abbreviation of: vehicle, is: veh
 Abbreviation of: description, is: desc

==
 INTEGRATE STEP (2)
==

Loading datasourced from definition
at:C:\estest\bin\config\dsdx. xml

194

Building RDF modelling language
RDF Wrapper Factory creating RDF Model Oriented Schema accOnt
schema
Details of schema: accOnt
 RDF subject <<subject>>
 RDF predicate <<predicate>>
 RDF object <<object>>
 RDF triple <<triple,subject,predicate,object>>
 RDF uri <<uri>>
 RDF blank <<blank>>
 RDF literal <<literal>>

Data Sources To Be Integrated:
 DS 1 is accDB
 DS 2 is accDBx
 DS 3 is accOnt

Creating the AutoMed Schemas.
 RelationalDataSource is building a wrapper for schema
accDBauto

Created AutoMed schema for accDB
 Details of schema: accDBauto
 sql_390 table <<vehicle>>
 sql_390 column <<vehicle,acc_ref>>
 sql_390 column <<vehicle,veh_no>>
 sql_390 column <<vehicle,veh_reg_no>>
 sql_390 column <<vehicle,veh_type>>
 sql_390 primary_key <pky_vehicle,vehicle,
 <<vehicle,acc_ref>>
 <<vehicle,veh_no>>>>
 sql_390 table <<carriageway_hazards>>
 sql_390 column <<carriageway_hazards,hazard_id>>
 sql_390 column <<carriageway_hazards,hazard_desc>>
 sql_390 primary_key <<pky_carr_hazard,
 carriageway_hazards,<<
 carriageway_hazards,hazard_id>>>>
 sql_390 table <<acc>>
 sql_390 column <<acc,acc_ref>>
 sql_390 column <<acc,year>>
 sql_390 column <<acc,road>>
 sql_390 column <<acc,road_type>>
 sql_390 column <<acc,hazard_id>>
 sql_390 column <<acc,acc_desc>>

 sql_390 primary_key <<pky_accident,acc,<<acc,acc_ref>>>>
 sql_390 foreign_key <fky_vehicle_accident,vehicle,
 <<vehicle,acc_ref>>,acc,
 <<acc,acc_ref>>>>
 sql_390 foreign_key fky_accident_hazard,acc,<<acc,hazard_id
 ,carriageway_hazards,<<carriageway_hazar
 s,hazard_id>>>>

RelationalDataSource is building a wrapper for schema accDBxauto
 Created AutoMed schema for accDBx
 Details of schema: accDBxauto
 sql_390 table <<towns>>
 sql_390 column <<towns,town>>
 sql_390 primary_key <<pky_town,towns,<<towns,town>>>>
 sql_390 table <<roads>>
 sql_390 column <<roads,road>>
 sql_390 column <<roads,town>>
 sql_390 primary_key <<pky_road,roads,<<roads,road>>,
 <<roads,town>>>>
 sql_390 foreign_key <fky_accident_hazard,roads,
 <<roads,town>>,towns,
 <<towns,town>>>>

Creating the ESTEST Model Schemas.
 Finding foreign keys (for isA relationship).
 Finding tables and columns (for concepts).
 Now delete the relational constructs.....
 The Estest oriented schema for this relational data source
is accDBautzzh
 Now find word forms for each schema element.
 Schema element 'vehicle', word forms are : 'vehicle', 'veh'
 Schema element 'veh_no', word forms are : 'veh', 'vehicle',
 'veh no', 'vehicle no', 'no'
 Schema element 'veh_reg_no', word forms are : 'veh',
 'vehicle', 'veh reg', 'vehicle reg', 'reg', 'veh no',
 'vehicle no', 'veh_reg no', 'vehicle reg no', 'reg no',
 'no'
 Schema element 'veh_type', word forms are : 'veh','vehicle',
 'veh type', 'vehicle type', 'type'
 Schema element 'carriageway_hazards', word forms are :
 'carriage way', 'carriageway hazards', 'hazards'
 Schema element 'hazard_id', word forms are : 'hazard',
 'hazard id', 'id'
 Schema element 'hazard_desc', word forms are : 'hazard',
 'hazard desc', 'desc', 'hazard description', 'description'

195

 Schema element 'acc', word forms are : 'acc', 'accident'
 Schema element 'acc_ref', word forms are : 'acc',
 'accident', 'acc ref', 'accident ref', 'ref'
 Schema element 'year', word forms are : 'year'
 Schema element 'road', word forms are : 'road'
 Schema element 'road_type', word forms are : 'road', 'road
 type', 'type'
 Schema element 'acc_desc', word forms are : 'acc',
 'accident','acc desc', 'accident desc', 'desc', 'acc
 description', 'accident description', 'description'
 Storing Data Source info and metadata in EMR.....
 Created ESTEST schema for accDB
 Details of schema: accDBautzzh
 Estest concept <<vehicle>>
 Estest concept <<vehicle_veh_no>>
 Estest attribute <<attribute,vehicle,vehicle_veh_no>>
 Estest concept <<vehicle_veh_reg_no>>
 Estest attribute <<attribute,vehicle,
 vehicle_veh_reg_no>>
 Estest concept <<vehicle_veh_type>>
 Estest attribute <<attribute,vehicle,vehicle_veh_type>>
 Estest concept <<carriageway_hazards>>
 Estest concept <<carriageway_hazards_hazard_id>>
 Estest attribute <<attribute,carriageway_hazards,
 carriageway_hazards_hazard_id>>
 Estest concept <<carriageway_hazards_hazard_desc>>
 Estest attribute <attribute,carriageway_hazards,
 carriageway_hazards_hazard_desc>>
 Estest concept <<acc>>
 Estest concept <<acc_acc_ref>>
 Estest attribute <<attribute,acc,acc_acc_ref>>
 Estest concept <<acc_year>>
 Estest attribute <<attribute,acc,acc_year>>
 Estest concept <<acc_road>>
 Estest attribute <<attribute,acc,acc_road>>
 Estest concept <<acc_road_type>>
 Estest attribute <<attribute,acc,acc_road_type>>
 Estest concept <<acc_acc_desc>>
 Estest attribute <<attribute,acc,acc_acc_desc>>
 Estest attribute <<attribute,vehicle,acc>>
 Estest attribute <<attribute,acc,carriageway_hazards>>

 Finding foreign keys (for isA relationship).
 Finding tables and columns (for concepts).
 Now delete the relational constructs.....

 The Estest oriented schema for this relational data source
is accDBxautzd
 Now find word forms for each schema element.
 Schema element 'towns', word forms are : 'towns'
 Schema element 'town', word forms are : 'town'
 Schema element 'roads', word forms are : 'roads'
 Schema element 'road', word forms are : 'road'
 Storing Data Source info and metadata in EMR.....

 Created ESTEST schema for accDBx
 Details of schema: accDBxautzd
 Estest concept <<towns>>
 Estest concept <<towns_town>>
 Estest attribute <<attribute,towns,towns_town>>
 Estest concept <<roads>>
 Estest concept <<roads_road>>
 Estest attribute <<attribute,roads,roads_road>>
 Estest attribute <<attribute,roads,towns>>

 OntologyDataSource is about to create ESTEST Schema.
 found class: http://www.dcs.bbk.ac.uk/~dean/kb/acc1#tree
 found class: http://www.dcs.bbk.ac.uk/~dean/kb/acc1#inanimate
 found class:
http://www.dcs.bbk.ac.uk/~dean/kb/acc1#obstruction
 found class: http://www.dcs.bbk.ac.uk/~dean/kb/acc1#animal
 found class: http://www.dcs.bbk.ac.uk/~dean/kb/acc1#spillage
 found class: http://www.dcs.bbk.ac.uk/~dean/kb/acc1#accident
 About to check for word forms.
 Schema element 'tree', word forms are : 'tree'
 Schema element 'inanimate', word forms are : 'inanimate'
 Schema element 'obstruction', word forms are : 'obstruction'
 Schema element 'animal', word forms are : 'animal'
 Schema element 'spillage', word forms are : 'spillage'
 Schema element 'accident', word forms are : 'accident', 'acc'
 Schema element 'Resource', word forms are : 'Resource'
 Schema element 'bricks', word forms are : 'bricks'
 Schema element 'cat', word forms are : 'cat'
 Schema element 'fox', word forms are : 'fox'
 Schema element 'oak', word forms are : 'oak'
 Created ESTEST schema for accOnt
 Details of schema: accOntEstest
 Estest concept <<tree>>
 Estest concept <<inanimate>>
 Estest concept <<obstruction>>
 Estest concept <<animal>>

196

 Estest concept <<spillage>>
 Estest concept <<accident>>
 Estest concept <<Resource>>
 Estest isA <<isA,accident,Resource>>
 Estest isA <<isA,spillage,inanimate>>
 Estest isA <<isA,inanimate,obstruction>>
 Estest isA <<isA,animal,obstruction>>
 Estest isA <<isA,tree,inanimate>>
 Estest isA <<isA,obstruction,Resource>>
 Estest attribute <<attribute,accident,obstruction>>
 Estest concept <<bricks>>
 Estest isA <<isA,bricks,spillage>>
 Estest concept <<cat>>
 Estest isA <<isA,cat,animal>>
 Estest concept <<fox>>
 Estest isA <<isA,fox,animal>>
 Estest concept <<oak>>
 Estest isA <<isA,oak,tree>>

Going to find matches between Schema elements.
The matches are:
 Match with 0.64% confidence on word form ACCIDENT
 Schema 1: accDBautzzh, Concept 1: acc
 Schema 2: accOntEstest, Concept 2: accident
 Match with 0.64% confidence on word form ROAD
 Schema 1: accDBautzzh, Concept 1: acc_road
 Schema 2: accDBxautzd, Concept 2: roads_road
Going to rename matching elemets so they have the same name.
In Integrator getPositionOfSchema looking for sid 89
 checking 89, accDBautzzh
 and its a match
In Integrator getPositionOfSchema looking for sid 105
 checking 89, accDBautzzh
 checking 104, accDBxautzd
 checking 105, accOntEstest
 and its a match
 Renamed :accOntEstest, accident to acc
In Integrator getPositionOfSchema looking for sid 89
 checking 89, accDBautzzh
 and its a match
In Integrator getPositionOfSchema looking for sid 104
 checking 89, accDBautzzh
 checking 104, accDBxautzd
 and its a match
 Renamed :accDBxautzd, roads_road to acc_road

Extend to match schemas.
 accDBautzzh extending to match accDBxautze
 new extended schema is :accDBautzzn
 accDBautzzn extending to match accOntEstest1a
 new extended schema is :accDBautzzzi
 accDBxautze extending to match accDBautzzh
 new extended schema is :accDBxautzzc
 accDBxautzzc extending to match accOntEstest1a
 new extended schema is :accDBxautzzx
 accOntEstest1a extending to match accDBautzzh
 new extended schema is :accOntEstest1y
 accOntEstest1y extending to match accDBxautze
 new extended schema is :accOntEstest1ze
Assert Identity Transformations between the extended schemas.
 Asserting ID transformation between accDBautzzzi & accDBxautzzx
 Asserting ID transformation between accDBautzzzi &
accOntEstest1ze

About to create HDM store copy of global schema.
Building the AutoMed HDM model
Creating HDM Store estest_store
Creating transormation pathway from HDM model to ESTEST model
global schema
Materialising isA relationships.
 Contents of the IsaFunctionList are:
 <<bricks>> <<bricks>>
 <<spillage>> <<spillage>> ++ <<bricks>>
 <<cat>> <<cat>>
 <<animal>> <<animal>> ++ <<cat>> ++ <<fox>>
 <<fox>> <<fox>>
 <<oak>> <<oak>>
 <<tree>> <<tree>> ++ <<oak>>
 <<acc>> <<acc>>
 <<Resource>> <<Resource>> ++ <<acc>> ++ <<obstruction>>
 ++ <<animal>> ++ <<cat>> ++ <<fox>> ++
 <<inanimate>> ++ <<spillage>> ++
 <<bricks>> ++ <<tree>> ++ <<oak>>
 <<inanimate>> <<inanimate>> ++ <<spillage>> ++
 <<bricks>> ++ <<tree>> ++ <<oak>>
 <<obstruction>> <<obstruction>> ++ <<animal>> ++ <<cat>>
 ++ <fox>> ++ <<inanimate>> ++
 <<spillage>> ++ <<bricks>> ++ <<tree>> ++
 <<oak>>
 Integrator loadDef attempting ident with HDM Store
Global Schema is complete, schema name is: accDBautzzzi

197

 Details of schema: accDBautzzzi
 Estest concept <<vehicle>>
 Estest concept <<vehicle_veh_no>>
 Estest attribute <<attribute,vehicle,vehicle_veh_no>>
 Estest concept <<vehicle_veh_reg_no>>
 Estest attribute
<<attribute,vehicle,vehicle_veh_reg_no>>
 Estest concept <<vehicle_veh_type>>
 Estest attribute <<attribute,vehicle,vehicle_veh_type>>
 Estest concept <<carriageway_hazards>>
 Estest concept <<carriageway_hazards_hazard_id>>
 Estest attribute
<<attribute,carriageway_hazards,carriage
 way_hazards_hazard_id>>
 Estest concept <<carriageway_hazards_hazard_desc>>
 Estest attribute
<<attribute,carriageway_hazards,carriage
 way_hazards_hazard_desc>>
 Estest concept <<acc>>
 Estest concept <<acc_acc_ref>>
 Estest attribute <<attribute,acc,acc_acc_ref>>
 Estest concept <<acc_year>>
 Estest attribute <<attribute,acc,acc_year>>
 Estest concept <<acc_road>>
 Estest attribute <<attribute,acc,acc_road>>
 Estest concept <<acc_road_type>>
 Estest attribute <<attribute,acc,acc_road_type>>
 Estest concept <<acc_acc_desc>>
 Estest attribute <<attribute,acc,acc_acc_desc>>
 Estest attribute <<attribute,vehicle,acc>>
 Estest attribute <<attribute,acc,carriageway_hazards>>
 Estest concept <<towns>>
 Estest concept <<towns_town>>
 Estest attribute <<attribute,towns,towns_town>>
 Estest concept <<roads>>
 Estest attribute <<attribute,roads,towns>>
 Estest attribute <<attribute,roads,acc_road>>
 Estest concept <<tree>>
 Estest concept <<inanimate>>
 Estest concept <<obstruction>>
 Estest concept <<animal>>
 Estest concept <<spillage>>
 Estest concept <<Resource>>
 Estest isA <<isA,spillage,inanimate>>
 Estest isA <<isA,inanimate,obstruction>>

 Estest isA <<isA,animal,obstruction>>
 Estest isA <<isA,tree,inanimate>>
 Estest isA <<isA,obstruction,Resource>>
 Estest concept <<bricks>>
 Estest isA <<isA,bricks,spillage>>
 Estest concept <<cat>>
 Estest isA <<isA,cat,animal>>
 Estest concept <<fox>>
 Estest isA <<isA,fox,animal>>
 Estest concept <<oak>>
 Estest isA <<isA,oak,tree>>
 Estest isA <<isA,acc,Resource>>
 Estest attribute <<attribute,acc,obstruction>>

==
 QUERY STEP (3)
==

About to run IQL query. Schema:accDBautzzzi,
query:<<attribute,ac
 c,obstruction>>
Connecting to HdmStore for schema: estest_store
 The query was <<attribute,acc,obstruction>>
 Results: []

==
 CONFIGIE STEP (4)
==

Generating Suggestions for Named Entity.
Suggested possible NE List is:
 Possible Extent NE object - Data Source: 1, Schema
 Object<<acc_acc_ref>>
 Possible Extent NE object - Data Source: 1, Schema
 Object<<acc_road_type>>
 Possible Extent NE object - Data Source: 2, Schema
 Object<<towns_town>>
 Possible Extent NE object - Data Source: 2, Schema
 Object<<roads_road>>
Identifing Text Sources.
Finding Templates.
 Template: <<roads>>
 Attribute: <<towns>>
 Attribute: <<acc_road>>
 Template: <<acc>>

198

 Attribute: <<acc_acc_ref>>
 Attribute: <<acc_year>>
 Attribute: <<acc_road>>
 Attribute: <<acc_road_type>>
 Attribute: <<acc_acc_desc>>
 Attribute: <<carriageway_hazards>>
 Attribute: <<obstruction>>
 Template: <<vehicle>>
 Attribute: <<vehicle_veh_no>>
 Attribute: <<vehicle_veh_reg_no>>
 Attribute: <<vehicle_veh_type>>
 Attribute: <<acc>>
 Template: <<carriageway_hazards>>
 Attribute: <<carriageway_hazards_hazard_id>>
 Attribute: <<carriageway_hazards_hazard_desc>>
 Template: <<towns>>
 Attribute: <<towns_town>>
ESTEST is set NOT to wait for user confirmation of results.

==

 PARAMETERS STEP (5)
==

Parameters to be loaded:
 Named Entity Parameter: animal is wordform based and schema
 expansion is selected
 Named Entity Parameter: acc_road is extent based and no
 expansion is selected
 Named Entity Parameter: obstruction is wordform based and
 schema expansion is selected

==
 CONFIG OUTPUT GENERATION STEP (6)
==

Expanding the selected Named Entity schema elements.
Expanding word forms from schema for <<animal>>
Expanding word forms from schema for <<obstruction>>
 OBSTRUCTION, OBSTRUCTION, INANIMATE, INANIMATE, SPILLAGE
 SPILLAGE, BRICKS, BRICKS, TREE, TREE, OAK, OAK, ANIMAL
Generating the Information Extraction JAPE input file
 Macro: acc_acc_ref
 ({Lookup.minorType == acc_acc_ref})

 Rule: acc_acc_ref
 (
 (acc_acc_ref)
)
 :acc_acc_ref -->
 :acc_acc_ref.acc_acc_ref = {kind ="acc_acc_ref", rule =
 "acc_acc_ref"}

 Macro: acc_road_type
 ({Lookup.minorType == acc_road_type})

 Rule: acc_road_type
 (
 (acc_road_type)
)
 :acc_road_type -->
 :acc_road_type.acc_road_type = {kind ="acc_road_type", rule =
 "acc_road_type"}

 Macro: towns_town
 ({Lookup.minorType == towns_town})

 Rule: towns_town
 (
 (towns_town)
)
 :towns_town -->
 :towns_town.towns_town = {kind ="towns_town", rule =
 "towns_town"}

 Macro: roads_road
 ({Lookup.minorType == roads_road})

 Rule: roads_road
 (
 (roads_road)
)
 :roads_road -->

199

 :roads_road.roads_road = {kind ="roads_road", rule =
 "roads_road"}

 Macro: animal
 ({Lookup.minorType == animal})

 Rule: animal
 (
 (animal)
)
 :animal -->
 :animal.animal = {kind ="animal", rule = "animal"}

 Macro: acc_road
 ({Lookup.minorType == acc_road})

 Rule: acc_road
 (
 (acc_road)
)
 :acc_road -->
 :acc_road.acc_road = {kind ="acc_road", rule = "acc_road"}

 Macro: obstruction
 ({Lookup.minorType == obstruction})

 Rule: obstruction
 (
 (obstruction)
)
 :obstruction -->
 :obstruction.obstruction = {kind ="obstruction", rule =
 "obstruction"}

Created IE input file ie.jape

==
 INFORMATION EXTRACTION STEP (7)

==

Initialising Gate using Gate Home :C:\Program Files\GATE 3.0
Using C:\Program Files\GATE 3.0 as GATE home
Using C:\Program Files\GATE 3.0\plugins as installed plug-ins
directory.
Using C:\Program Files\GATE 3.0\gate.xml as site configuration
file.
Using C:\Documents and Settings\dean\gate.xml as user
configuration file
CREOLE plugin loaded: file:/C:/Program Files/GATE-
3.1b1/plugins/ANNIE/
Registering Creole directories:
 file:/C:/estest
CREOLE plugin loaded: file:/C:/estest/
Creating Default Tokeniser Gate Processing Resource.
Creating Sentence Splitter Gate Processing Resource.
Creating Database Gazetteer Gate Processing Resource.
 Configuring Database Gazetteer using file:/C:/estest/dbGaz.xml
 Named Entity source to be loaded is accDBautzzzi:obstruction
 Named Entity source to be loaded is accDBautzzzi:acc_road
 Loaded 10 values for word-form NE object <<obstruction>>
 About to run IQL query. Schema:accDBautzzzi, query:distinct
 <<acc_road>>
 Loaded 5 values for extent-based NE object <<acc_road>>
 Reading accDBautzzzi:obstruction
 Reading accDBautzzzi:acc_road
Creating Jape Transducer Gate Processing Resource.
JAPE URL: file:/C:/estest/ie.jape
Assembling Components Into Pipeline.
Gate is now initialised and the ESTEST application is built.
No JAPE URI specified - default will be used
Configuring Database Gazetteer using file:/C:/estest/dbGaz.xml
Named Entity source to be loaded is accDBautzzzi:obstruction
Named Entity source to be loaded is accDBautzzzi:acc_road
Loaded 10 values for word-form NE object <<obstruction>>
 About to run IQL query. Schema:accDBautzzzi, query:distinct
 <<acc_road>>
Loaded 5 values for extent-based NE object <<acc_road>>
Reading accDBautzzzi:obstruction
Reading accDBautzzzi:acc_road
About to run IQL query. Schema:accDBautzzzi,
query:<<attribute,ac
 c,acc_acc_desc>>

200

Added doc FOX RUNS INTO ABBEY STREET CAUSING V1 TO SWERVE
VIOLENTLY AND LEAVE ROAD OFFSIDE 50M AWAY
template instance is A001234
Added doc A50 WELFORD ROAD LEICESTER,BRIDGE 200 YDS S ROMAN WAY.
 V1 TRAV MOTORWAY M6 FAILS TO STOP AT XRDS AND HITS V2 TRAV
UPPERTON RD V2 THEN HITS V3 PKD ON OS OF UPPERTON RD
template instance is B231562
Added doc ESCAPED KANGAROO JUMPS IN FRONT OF V1
template instance is C051633

--

Document to be processed by IE : 'FOX RUNS INTO ABBEY STREET
CAUS
 ING V1 TO SWERVE VIOLENTLY AND LEAVE ROAD OFFSIDE 50M AWAY'
Running processing resources over corpus...

 Annotations:
Annotation Set jape
Anotation type : obstruction rule/obstruction kind/obstruction
adding FOX/<<obstruction>>
Anotation type : acc_road rule/acc_road kind/acc_road
adding ABBEY STREET/<<acc_road>>
Annotation Details:
 Schema element = '<<obstruction>>', value = 'FOX' and the ID
 Will be generated.
 Schema element = '<<acc_road>>', value = 'ABBEY STREET' and
the
 ID will be generated.
adding node to HDM Store with generated id <<fox>>
[estestInstanc
 e1]
adding edge <<isA,fox,animal>>[A001234,estestInstance1]
adding edge <<isA,animal,obstruction>>[A001234,estestInstance1]
adding template attribute edge
<<attribute,acc,obstruction>>[A001
 234,estestInstance1]
adding node to HDM Store with generated id <<acc_road>>
[estestIn
 stance2]
adding template attribute edge
<<attribute,acc,acc_road>>[A001234
 ,estestInstance2]

--

Document to be processed by IE : 'A50 WELFORD ROAD
LEICESTER,BRIDGE 200 YDS S ROMAN WAY. V1 TRAV MOTORWAY M6 FAILS
TO STOP AT XRD S AND HITS V2 TRAV UPPERTON RD V2 THEN HITS V3
PKD ON OS OF UPPERTON RD'
Running processing resources over corpus...

 Annotations:
Annotation Set jape
Annotation Details:

--

Document to be processed by IE : 'ESCAPED KANGAROO JUMPS IN
FRONT OF V1'
Running processing resources over corpus...

 Annotations:
Annotation Set jape
Annotation Details:

==
 QUERY STEP (8)
==

About to run IQL query. Schema:accDBautzzzi,
query:<<attribute,ac
 c,obstruction>>
 The query was <<attribute,acc,obstruction>>
 Results: [{A001234 ,estestInstance1 }]

==
 PARAMETERS STEP (9)
==

ParameterDefintionContentHandler & its the end of a end of a syn
 set
offSetString is :1780968
offSet is :1780968
Parameters to be loaded:
 Synset Parameter: animal points to synset 1780968
 Named Entity Parameter: animal is wordform based and word net
e
 xpansion is selected

201

 Named Entity Parameter: obstruction is wordform based and
schem
 a expansion is selected

==
 CONFIG OUTPUT GENERATION STEP (10)
==

Expanding the selected Named Entity schema elements.
Initialising Word Net with init file: file_properties.xml
 INFO [main] (MessageLog.java:62) - Installing dictionary
net.didion.jwnl.dictionary.FileBackedDictionary@54f169
Expanding word forms from WordNet for <<animal>>, found:
 FEMALE MAMMAL, TUSKER, PROTOTHERIAN, METATHERIAN, PLACENTAL
 PLACENTAL MAMMAL, EUTHERIAN, EUTHERIAN MAMMAL
 FOSSORIAL MAMMAL, MONOTREME, EGG-LAYING MAMMAL, MARSUPIAL
 POUCHED MAMMAL, LIVESTOCK, STOCK, FARM ANIMAL, BULL, COW
 YEARLING, BUCK, DOE, INSECTIVORE, AQUATIC MAMMAL, CARNIVORE
 FISSIPEDIA, AARDVARK, ANT BEAR, ANTEATER, ORYCTEROPUS AFER
 BAT, CHIROPTERAN, LAGOMORPH, GNAWING MAMMAL, RODENT, GNAWER
 GNAWING ANIMAL, UNGULATA, UNGULATE, HOOFED MAMMAL
 UNGUICULATA, UNGUICULATE, UNGUICULATE MAMMAL, HYRAX, CONEY
 CONY, DASSIE, DAS, PACHYDERM, EDENTATE, PANGOLIN
 SCALY ANTEATER, ANTEATER, PRIMATE, TREE SHREW, FLYING LEMUR
 FLYING CAT, COLUGO, PROBOSCIDEAN, PROBOSCIDIAN
 PLANTIGRADE MAMMAL, DIGITIGRADE MAMMAL, NAKED MOLE RAT
 DAMARALAND MOLE RAT, ECHIDNA, SPINY ANTEATER, ANTEATER
 ECHIDNA, SPINY ANTEATER, ANTEATER, PLATYPUS, DUCKBILL
 DUCKBILLED PLATYPUS, DUCK-BILLED PLATYPUS
 ORNITHORHYNCHUS ANATINUS, OPOSSUM, POSSUM, OPOSSUM RAT
 BANDICOOT, KANGAROO, PHALANGER, OPOSSUM, POSSUM, WOMBAT
 DASYURID MARSUPIAL, DASYURID, POUCHED MOLE, MARSUPIAL MOLE
 NOTORYCTUS TYPHLOPS, STAG, MOLE, SHREW, SHREWMOUSE, HEDGEHOG
 ERINACEUS EUROPAEUS, ERINACEUS EUROPEAEUS, TENREC, TENDRAC
 OTTER SHREW, POTAMOGALE, POTAMOGALE VELOX, CETACEAN
 CETACEAN MAMMAL, BLOWER, SEA COW, SIRENIAN MAMMAL, SIRENIAN
 PINNIPED MAMMAL, PINNIPED, PINNATIPED, FISSIPED MAMMAL
 FISSIPED, CANINE, CANID, FELINE, FELID, BEAR, VIVERRINE
 VIVERRINE MAMMAL, MUSTELINE MAMMAL, MUSTELID, MUSTELINE
 PROCYONID, FRUIT BAT, MEGABAT, CARNIVOROUS BAT, MICROBAT
 DUPLICIDENTATA, LEPORID, LEPORID MAMMAL, PIKA, MOUSE HARE
 ROCK RABBIT, CONEY, CONY, MOUSE, RAT, MURINE, WATER RAT
 NEW WORLD MOUSE, MUSKRAT, MUSQUASH, ONDATRA ZIBETHICA
 ROUND-TAILED MUSKRAT, FLORIDA WATER RAT, NEOFIBER ALLENI
 COTTON RAT, SIGMODON HISPIDUS, WOOD RAT, WOOD-RAT, HAMSTER

 GERBIL, GERBILLE, LEMMING, PORCUPINE, HEDGEHOG
 JUMPING MOUSE, JERBOA, DORMOUSE, SQUIRREL, PRAIRIE DOG
 PRAIRIE MARMOT, MARMOT, BEAVER, MOUNTAIN BEAVER, SEWELLEL
 APLODONTIA RUFA, CAVY, MARA, DOLICHOTIS PATAGONUM, CAPYBARA
 CAPIBARA, HYDROCHOERUS HYDROCHAERIS, AGOUTI
 DASYPROCTA AGUTI, PACA, CUNICULUS PACA, MOUNTAIN PACA, COYPU
 NUTRIA, MYOCASTOR COYPUS, CHINCHILLA, CHINCHILLA LANIGER
 MOUNTAIN CHINCHILLA, MOUNTAIN VISCACHA, VISCACHA
 CHINCHILLON, LAGOSTOMUS MAXIMUS, ABROCOME, CHINCHILLA RAT
 RAT CHINCHILLA, MOLE RAT, MOLE RAT, SAND RAT, DINOCERATE
 ODD-TOED UNGULATE, PERISSODACTYL, PERISSODACTYL MAMMAL
 EVEN-TOED UNGULATE, ARTIODACTYL, ARTIODACTYL MAMMAL
 ROCK HYRAX, ROCK RABBIT, PROCAVIA CAPENSIS, ARMADILLO, SLOTH
 TREE SLOTH, MEGATHERIAN, MEGATHERIID, MEGATHERIAN MAMMAL
 MYLODONTID, MYLODON, ANTEATER, NEW WORLD ANTEATER, SIMIAN
 APE, ANTHROPOID, HOMINOID, HOMINID, MONKEY, PROSIMIAN, LEMUR
 TARSIER, PENTAIL, PEN-TAIL, PEN-TAILED TREE SHREW
 CYNOCEPHALUS VARIEGATUS, ELEPHANT, MASTODON, MASTODONT
Expanding word forms from schema for <<obstruction>>
 OBSTRUCTION, OBSTRUCTION, INANIMATE, SPILLAGE, BRICKS, TREE
 OAK, ANIMAL, CAT, FOX, INANIMATE, INANIMATE, SPILLAGE
 BRICKS, TREE, OAK, SPILLAGE, SPILLAGE, BRICKS, BRICKS
 BRICKS, TREE, TREE, OAK, OAK, OAK, ANIMAL, ANIMAL, CAT, FOX
 FEMALE MAMMAL, TUSKER, PROTOTHERIAN, METATHERIAN, PLACENTAL
 PLACENTAL MAMMAL, EUTHERIAN, EUTHERIAN MAMMAL
 FOSSORIAL MAMMAL, MONOTREME, EGG-LAYING MAMMAL, MARSUPIAL
 POUCHED MAMMAL, LIVESTOCK, STOCK, FARM ANIMAL, BULL, COW
 YEARLING, BUCK, DOE, INSECTIVORE, AQUATIC MAMMAL, CARNIVORE
 FISSIPEDIA, AARDVARK, ANT BEAR, ANTEATER, ORYCTEROPUS AFER
 BAT, CHIROPTERAN, LAGOMORPH, GNAWING MAMMAL, RODENT, GNAWER
 GNAWING ANIMAL, UNGULATA, UNGULATE, HOOFED MAMMAL
 UNGUICULATA, UNGUICULATE, UNGUICULATE MAMMAL, HYRAX, CONEY
 CONY, DASSIE, DAS, PACHYDERM, EDENTATE, PANGOLIN
 SCALY ANTEATER, PRIMATE, TREE SHREW, FLYING LEMUR
 FLYING CAT, COLUGO, PROBOSCIDEAN, PROBOSCIDIAN
 PLANTIGRADE MAMMAL, DIGITIGRADE MAMMAL, NAKED MOLE RAT
 DAMARALAND MOLE RAT, ECHIDNA, SPINY ANTEATER, PLATYPUS
 DUCKBILL, DUCKBILLED PLATYPUS, DUCK-BILLED PLATYPUS
 ORNITHORHYNCHUS ANATINUS, OPOSSUM, POSSUM, OPOSSUM RAT
 BANDICOOT, KANGAROO, PHALANGER, WOMBAT, DASYURID MARSUPIAL
 DASYURID, POUCHED MOLE, MARSUPIAL MOLE, NOTORYCTUS TYPHLOPS
 STAG, MOLE, SHREW, SHREWMOUSE, HEDGEHOG, ERINACEUS EUROPAEUS
 ERINACEUS EUROPEAEUS, TENREC, TENDRAC, OTTER SHREW
 POTAMOGALE, POTAMOGALE VELOX, CETACEAN, CETACEAN MAMMAL
 BLOWER, SEA COW, SIRENIAN MAMMAL, SIRENIAN, PINNIPED MAMMAL

202

 PINNIPED, PINNATIPED, FISSIPED MAMMAL, FISSIPED, CANINE
 CANID, FELINE, FELID, BEAR, VIVERRINE, VIVERRINE MAMMAL
 MUSTELINE MAMMAL, MUSTELID, MUSTELINE, PROCYONID, FRUIT BAT
 MEGABAT, CARNIVOROUS BAT, MICROBAT, DUPLICIDENTATA, LEPORID
 LEPORID MAMMAL, PIKA, MOUSE HARE, ROCK RABBIT, MOUSE, RAT
 MURINE, WATER RAT, NEW WORLD MOUSE, MUSKRAT, MUSQUASH
 ONDATRA ZIBETHICA, ROUND-TAILED MUSKRAT, FLORIDA WATER RAT
 NEOFIBER ALLENI, COTTON RAT, SIGMODON HISPIDUS, WOOD RAT
 WOOD-RAT, HAMSTER, GERBIL, GERBILLE, LEMMING, PORCUPINE
 JUMPING MOUSE, JERBOA, DORMOUSE, SQUIRREL, PRAIRIE DOG
 PRAIRIE MARMOT, MARMOT, BEAVER, MOUNTAIN BEAVER, SEWELLEL
 APLODONTIA RUFA, CAVY, MARA, DOLICHOTIS PATAGONUM, CAPYBARA
 CAPIBARA, HYDROCHOERUS HYDROCHAERIS, AGOUTI
 DASYPROCTA AGUTI, PACA, CUNICULUS PACA, MOUNTAIN PACA, COYPU
 NUTRIA, MYOCASTOR COYPUS, CHINCHILLA, CHINCHILLA LANIGER
 MOUNTAIN CHINCHILLA, MOUNTAIN VISCACHA, VISCACHA
 CHINCHILLON, LAGOSTOMUS MAXIMUS, ABROCOME, CHINCHILLA RAT
 RAT CHINCHILLA, MOLE RAT, SAND RAT, DINOCERATE
 ODD-TOED UNGULATE, PERISSODACTYL, PERISSODACTYL MAMMAL
 EVEN-TOED UNGULATE, ARTIODACTYL, ARTIODACTYL MAMMAL
 ROCK HYRAX, PROCAVIA CAPENSIS, ARMADILLO, SLOTH, TREE SLOTH
 MEGATHERIAN, MEGATHERIID, MEGATHERIAN MAMMAL, MYLODONTID
 MYLODON, NEW WORLD ANTEATER, SIMIAN, APE, ANTHROPOID
 HOMINOID, HOMINID, MONKEY, PROSIMIAN, LEMUR, TARSIER
 PENTAIL, PEN-TAIL, PEN-TAILED TREE SHREW
 CYNOCEPHALUS VARIEGATUS, ELEPHANT, MASTODON, MASTODONT
Generating the Information Extraction JAPE input file
 Macro: acc_acc_ref
 ({Lookup.minorType == acc_acc_ref})

 Rule: acc_acc_ref
 (
 (acc_acc_ref)
)
 :acc_acc_ref -->
 :acc_acc_ref.acc_acc_ref = {kind ="acc_acc_ref", rule =
 "acc_acc_ref"}

 Macro: acc_road_type
 ({Lookup.minorType == acc_road_type})

 Rule: acc_road_type

 (
 (acc_road_type)
)
 :acc_road_type -->
 :acc_road_type.acc_road_type = {kind ="acc_road_type", rule =
 "acc_road_type"}

 Macro: towns_town
 ({Lookup.minorType == towns_town})

 Rule: towns_town
 (
 (towns_town)
)
 :towns_town -->
 :towns_town.towns_town = {kind ="towns_town", rule =
 "towns_town"}

 Macro: roads_road
 ({Lookup.minorType == roads_road})

 Rule: roads_road
 (
 (roads_road)
)
 :roads_road -->
 :roads_road.roads_road = {kind ="roads_road", rule =
 "roads_road"}

 Macro: acc_road
 ({Lookup.minorType == acc_road})

 Rule: acc_road
 (
 (acc_road)
)
 :acc_road -->
 :acc_road.acc_road = {kind ="acc_road", rule = "acc_road"}

203

 Macro: animal
 ({Lookup.minorType == animal})

 Rule: animal
 (
 (animal)
)
 :animal -->
 :animal.animal = {kind ="animal", rule = "animal"}

 Macro: obstruction
 ({Lookup.minorType == obstruction})

 Rule: obstruction
 (
 (obstruction)
)
 :obstruction -->
 :obstruction.obstruction = {kind ="obstruction", rule =
 "obstruction"}

Created IE input file ie.jape

==
 INFORMATION EXTRACTION STEP (11)
==

No JAPE URI specified - default will be used
Configuring Database Gazetteer using file:/C:/estest/dbGaz.xml
Named Entity source to be loaded is accDBautzzzi:obstruction
Named Entity source to be loaded is accDBautzzzi:acc_road
Loaded 227 values for word-form NE object <<obstruction>>
 About to run IQL query. Schema:accDBautzzzi, query:distinct
 <<acc_road>>
Loaded 5 values for extent-based NE object <<acc_road>>
Reading accDBautzzzi:obstruction
Reading accDBautzzzi:acc_road
About to run IQL query. Schema:accDBautzzzi,
query:<<attribute,acc,acc_acc_desc>>

Added doc FOX RUNS INTO ABBEY STREET CAUSING V1 TO SWERVE
VIOLENTLY AND LEAVE ROAD OFFSIDE 50M AWAY
template instance is A001234
Added doc A50 WELFORD ROAD LEICESTER,BRIDGE 200 YDS S ROMAN WAY.
 V1 TRAV MOTORWAY M6 FAILS TO STOP AT XRDS AND HITS V2 TRAV
UPPERTON RD V2 THEN HITS V3 PKD ON OS OF UPPERTON RD
template instance is B231562
Added doc ESCAPED KANGAROO JUMPS IN FRONT OF V1
template instance is C051633
--
-

Document to be processed by IE : 'FOX RUNS INTO ABBEY STREET
CAUSING V1 TO SWERVE VIOLENTLY AND LEAVE ROAD OFFSIDE 50M AWAY'
Running processing resources over corpus...

 Annotations:
Annotation Set jape
Anotation type : obstruction rule/obstruction kind/obstruction
adding FOX/<<obstruction>>
Anotation type : acc_road rule/acc_road kind/acc_road
adding ABBEY STREET/<<acc_road>>
Annotation Details:
 Schema element = '<<obstruction>>', value = 'FOX' and the ID
 Will be generated.
 Schema element = '<<acc_road>>', value = 'ABBEY STREET' and
the ID will be generated.
adding node to HDM Store with generated id <<fox>>
[estestInstance3]
adding edge <<isA,fox,animal>>[A001234,estestInstance3]
adding edge <<isA,animal,obstruction>>[A001234,estestInstance3]
adding template attribute edge
<<attribute,acc,obstruction>>[A001234,estestInstance3]
adding node to HDM Store with generated id <<acc_road>>
[estestInstance4]
adding template attribute edge
<<attribute,acc,acc_road>>[A001234,estestInstance4]

--

Document to be processed by IE : 'A50 WELFORD ROAD
LEICESTER,BRIDGE 200 YDS S ROMAN WAY. V1 TRAV MOTORWAY M6 FAILS
TO STOP AT XRDS AND HITS V2 TRAV UPPERTON RD V2 THEN HITS V3 PKD
ON OS OF UPPERTON RD'
Running processing resources over corpus...

204

 Annotations:
Annotation Set jape
Annotation Details:

--

Document to be processed by IE : 'ESCAPED KANGAROO JUMPS IN
FRONT OF V1'
Running processing resources over corpus...

 Annotations:
Annotation Set jape
Anotation type : obstruction rule/obstruction kind/obstruction
adding KANGAROO/<<obstruction>>
Annotation Details:
 Schema element = '<<obstruction>>', value = 'KANGAROO' and the
 ID will be generated.
adding node to HDM Store with generated id <<animal>>
[estestInstance5]

adding edge <<isA,animal,obstruction>>[C051633,estestInstance5]
adding template attribute edge
<<attribute,acc,obstruction>>[C051633,estestInstance5]

==

 QUERY STEP (12)
==

About to run IQL query. Schema:accDBautzzzi,
query:<<attribute,ac
 c,obstruction>>
 The query was <<attribute,acc,obstruction>>
 Results: [{A001234 ,estestInstance3 },{C051633
,estestInstance5}]
Closing debug log file.

205

Appendix C

ESTEST Output from the

Crime Example

B. ESTEST Output from the Crime Example

This appendix includes the input files used to configure

ESTEST, the automatically produced input used to configure GATE,

and the resulting output from ESTEST.

C.1 Input Provided to Configure

ESTEST

Three input files are provided to configure ESTEST. While these

files are currently created by hand, they have been designed with a

GUI in mind, as described in Chapter 8. The first input file is a

script which i) integrates the datasources, ii) loads the patterns used

to generate JAPE rules, iii) creates the GATE configuration files, iv)

generates those files, and v) runs the IE process.

<?xml version="1.0"?>

<!DOCTYPE script SYSTEM "script.dtd">
<!-- script for ESTEST to perform -->
<script>
 <step>
 <name>Integrate</name>
 <uri>C:\estest\bin\config\dsdCrime.xml</uri>
 </step>
 <step>
 <name>Parameters</name>

 <uri>C:\estest\bin\config\parmsCrimePatterns.xml</uri>
 </step>
 <step>
 <name>Config</name>
 </step>

206

 <step>
 <name>ConfigOutput</name>
 </step>
 <step>
 <name>IE</name>
 </step>
</script>

The second input file is a data source definition file, which in

our example defines the two relational datasources OpIntel and

CarsDB, and the RDF/S datasource CrimeOnt:

<?xml version="1.0"?>

<!DOCTYPE dsd SYSTEM "dsd.dtd">
<!-- datasource defintions for the data source definitions -->
<dsd>
 <relational_ds>
 <name>OpIntel</name>
 <driver>org.postgresql.Driver</driver>
 <url>jdbc:postgresql://193.61.29.5/OpIntel</url>
 <username>dean</username>
 <password>dean</password>
 </relational_ds>
 <relational_ds>
 <name>Cars</name>
 <driver>org.postgresql.Driver</driver>
 <url>jdbc:postgresql://193.61.29.5/CarsDB</url>
 <username>dean</username>
 <password>dean</password>
 </relational_ds>
 <ontology_ds>
 <name>CrimeOnt</name>
 <rdf_url>

file:C:/estest/bin/config/CrimeOntRdfEmpty.xml</rdf_url>
 <rdfs_url>
 file:C:/estest/bin/config/CrimeOntRdfs.xml</rdfs_url>
 </ontology_ds>

</dsd>

The third input file contains the patterns which are stored in the

EMR and are used to generate JAPE rules for processing the

unstructured textual data:

<?xml version="1.0"?>

<!DOCTYPE parameters SYSTEM "parms.dtd">
<!-- configuration file to be run before IE in crime example -->
<parameters>
 <macro>
 <name>model</name>
 </macro>
 <macro>
 <name>colour</name>
 </macro>
 <macro>
 <name>manufacturer</name>
 </macro>
 <macro>
 <name>car_reg</name>
 </macro>
 <value_def>
 <name>REGISTRATION_MARK</name>
 <schema_object_name>car_reg</schema_object_name>
 <value_def_part>
 <type>String</type>
 <length>2</length>
 </value_def_part>
 <value_def_part>
 <type>Integer</type>
 <length>2</length>
 </value_def_part>
 <value_def_part>
 <type>Space</type>
 <length>1</length>
 </value_def_part>
 <value_def_part>
 <type>String</type>

207

 <length>3</length>
 </value_def_part>
 </value_def>
 <pattern>
 <name>known_car</name>
 <schema_object_name>car</schema_object_name>
 <value>(COLOUR)?--(MANUFACTURER)?--(MODEL)—
 (CAR_REG)</value>
 <id_name>car_reg</id_name>
 </pattern>
 <pattern>
 <name>new_car</name>
 <schema_object_name>car</schema_object_name>
 <value>(COLOUR)?--(MANUFACTURER)?--(MODEL)?--
CAR?—
 REGISTRATION?--(REGISTRATION_MARK)</value>
 <id_name>car_reg</id_name>
 </pattern>
 <pattern>
 <name>car_no_reg</name>
 <schema_object_name>car</schema_object_name>
 <value>(COLOUR)?--(MANUFACTURER)?--
(MODEL)</value>
 <id_name>car_reg</id_name>
 </pattern>
</parameters>

C.2 Automatically Created GATE

Configuration Files

The rules used by ESTEST in schema matching, as described in

Section 7.2, are automatically created from the global schema:

Phase: EstestJape
Options: control = brill

Macro: op_intel
({Lookup.minorType == op_intel})

Rule: op_intel
(
(op_intel)
)
:op_intel -->
 :op_intel.op_intel = {kind ="op_intel", rule = "op_intel"}

Macro: op_intel_intel
({Lookup.minorType == op_intel_intel})

Rule: op_intel_intel
(
(op_intel_intel)
)
:op_intel_intel -->
 :op_intel_intel.op_intel_intel = {kind ="op_intel_intel",
rule = "op_intel_intel"}

Macro: op_intel_pc
({Lookup.minorType == op_intel_pc})

Rule: op_intel_pc
(
(op_intel_pc)
)
:op_intel_pc -->
 :op_intel_pc.op_intel_pc = {kind ="op_intel_pc", rule =
"op_intel_pc"}

Macro: op_intel_report_id
({Lookup.minorType == op_intel_report_id})

Rule: op_intel_report_id
(
(op_intel_report_id)
)
:op_intel_report_id -->
 :op_intel_report_id.op_intel_report_id = {kind
="op_intel_report_id", rule = "op_intel_report_id"}

Macro: car

208

({Lookup.minorType == car})

Rule: car
(
(car)
)
:car -->
 :car.car = {kind ="car", rule = "car"}

Macro: car_reg
({Lookup.minorType == car_reg})

Rule: car_reg
(
(car_reg)
)
:car_reg -->
 :car_reg.car_reg = {kind ="car_reg", rule = "car_reg"}

Macro: colour
({Lookup.minorType == colour})

Rule: colour
(
(colour)
)
:colour -->
 :colour.colour = {kind ="colour", rule = "colour"}

Macro: colour_colour
({Lookup.minorType == colour_colour})

Rule: colour_colour
(
(colour_colour)
)
:colour_colour -->
 :colour_colour.colour_colour = {kind ="colour_colour", rule =
"colour_colour"}

Macro: manufacturer
({Lookup.minorType == manufacturer})

Rule: manufacturer
(

(manufacturer)
)
:manufacturer -->
 :manufacturer.manufacturer = {kind ="manufacturer", rule =
"manufacturer"}

Macro: manufacturer_manufacturer
({Lookup.minorType == manufacturer_manufacturer})

Rule: manufacturer_manufacturer
(
(manufacturer_manufacturer)
)
:manufacturer_manufacturer -->
 :manufacturer_manufacturer.manufacturer_manufacturer = {kind
="manufacturer_manufacturer", rule =
"manufacturer_manufacturer"}

Macro: model
({Lookup.minorType == model})

Rule: model
(
(model)
)
:model -->
 :model.model = {kind ="model", rule = "model"}

Macro: model_model
({Lookup.minorType == model_model})

Rule: model_model
(
(model_model)
)
:model_model -->
 :model_model.model_model = {kind ="model_model", rule =
"model_model"}

Macro: Resource
({Lookup.minorType == Resource})

Rule: Resource
(
(Resource)

209

)
:Resource -->
 :Resource.Resource = {kind ="Resource", rule = "Resource"}

Macro: opIntel
({Lookup.minorType == opIntel})

Rule: opIntel
(
(opIntel)
)
:opIntel -->
 :opIntel.opIntel = {kind ="opIntel", rule = "opIntel"}

Macro: pub
({Lookup.minorType == pub})

Rule: pub
(
(pub)
)
:pub -->
 :pub.pub = {kind ="pub", rule = "pub"}

Macro: vehicle
({Lookup.minorType == vehicle})

Rule: vehicle
(
(vehicle)
)
:vehicle -->
 :vehicle.vehicle = {kind ="vehicle", rule = "vehicle"}

The text matching patterns stored in the EMR are used by

ESTEST to automatically produce the configuration for the IE

process; firstly, the configuration file for the SchemaGazetteer

component:

<?xml version="1.0"?>
<!DOCTYPE SchemaGazetteer SYSTEM "dbGaz.dtd">
<!-- named entity source defs for the SchemaGazetteer -->
<SchemaGazetteer >
 <ne_source>
 <schema>OpIntelautzx</schema>
 <object>model</object>
 <type>extent</type>
 </ne_source>
 <ne_source>
 <schema>OpIntelautzx</schema>
 <object>colour</object>
 <type>extent</type>
 </ne_source>
 <ne_source>
 <schema>OpIntelautzx</schema>
 <object>manufacturer</object>
 <type>extent</type>
 </ne_source>
 <ne_source>
 <schema>OpIntelautzx</schema>
 <object>car_reg</object>
 <type>extent</type>
 </ne_source>
 <ne_source>
 <schema>OpIntelautzx</schema>
 <object>car</object>
 <type>extent</type>
 </ne_source>
 <ne_source>
 <schema>OpIntelautzx</schema>
 <object>model</object>
 <type>extent</type>
 </ne_source>
 <ne_source>
 <schema>OpIntelautzx</schema>
 <object>colour</object>
 <type>extent</type>
 </ne_source>
 <ne_source>
 <schema>OpIntelautzx</schema>
 <object>manufacturer</object>
 <type>extent</type>
 </ne_source>
 <ne_source>

210

 <schema>OpIntelautzx</schema>
 <object>car_reg</object>
 <type>extent</type>
 </ne_source>
</SchemaGazetteer >

Secondly, the automatically produced JAPE rules for processing

the text:

Phase: EstestJape
Options: control = all

Macro: SP
 (
 ({SpaceToken.kind == space, SpaceToken.length == "1"}
 ({SpaceToken.kind == control, SpaceToken.length == "1"})?) |
 ({SpaceToken.kind == control, SpaceToken.length == "1"}
 ({SpaceToken.kind == space, SpaceToken.length == "1"})?)
)

Macro: SPACE
(
 ({Token.string == ","})?
 (SP)+
)

Macro: MODEL
({Lookup.minorType == model})

Rule: model
(
(MODEL)
)
:model -->
 :model.model = {kind ="model", rule = "model",
 idAnnotationType="model"}

Macro: COLOUR

({Lookup.minorType == colour})

Rule: colour
(
(COLOUR)
)
:colour -->
 :colour.colour = {kind ="colour", rule = "colour",
 idAnnotationType="colour"}

Macro: MANUFACTURER
({Lookup.minorType == manufacturer})

Rule: manufacturer
(
(MANUFACTURER)
)
:manufacturer -->
 :manufacturer.manufacturer = {kind ="manufacturer", rule =
 "manufacturer", idAnnotationType="manufacturer"}

Macro: CAR_REG
({Lookup.minorType == car_reg})

Rule: car_reg
(
(CAR_REG)
)
:car_reg -->
 :car_reg.car_reg = {kind ="car_reg", rule = "car_reg",
 idAnnotationType="car_reg"}

Macro: lamppost
(
 {Token.string == "lamppost"} |
 {Token.string == "streetlight"}
)

Macro: APPROX

211

(
 {Token.string == "APPROX"} |
 {Token.string == "APPROXIMATELY"} |
 {Token.string == "ABOUT"}
)

Macro: REGISTRATION_MARK
(
 ({Token.kind == word, Token.length == "2"})
 ({Token.kind == number, Token.length == "2"})
 ((SPACE))
 ({Token.kind == word, Token.length == "3"})
)

Rule: REGISTRATION_MARK
(
 (REGISTRATION_MARK)
)
 :REGISTRATION_MARK -->
 :REGISTRATION_MARK.car_reg = {kind = "car_reg", rule =
 "REGISTRATION_MARK", estestStore="yes",
 idAnnotationType="car_reg"}

Rule: car
(
(COLOUR)? (SPACE)? (MANUFACTURER)? (SPACE)? (MODEL) (SPACE)?
(CAR_REG)
):car -->
 :car.car = {kind = "car", rule = "known_car0",
 idAnnotationType="car_reg"}

Rule: car
(
(COLOUR)? (SPACE)? (MANUFACTURER)? (SPACE)? (MODEL)? (SPACE)?
({Token.string == "CAR"})? (SPACE)? ({Token.string ==
"REGISTRATION"})? (SPACE)? (REGISTRATION_MARK)
):car -->
 :car.car = {kind = "car", rule = "new_car0",
 idAnnotationType="car_reg"}

Rule: car
(
(COLOUR)? (SPACE)? (MANUFACTURER)? (SPACE)? (MODEL)
):car -->

 :car.car = {kind = "car", rule = "car_no_reg0",
 idAnnotationType="car_reg"}

C.3 Output from ESTEST

Loading class uk.ac.ic.doc.automed.wrappers.TransactSQLWrapper
Loading class uk.ac.ic.doc.automed.wrappers.PostgresWrapper
Loading class uk.ac.ic.doc.automed.wrappers.OracleWrapper
Loading class uk.ac.ic.doc.automed.wrappers.YattaWrapper
Loading class uk.ac.bbk.dcs.automed.xml.wrappers.DOMWrapper
Loading class uk.ac.bbk.dcs.automed.xml.wrappers.SAXWrapper
Loading class uk.ac.bbk.dcs.automed.hdmstore.HdmWrapper
Loading class uk.ac.bbk.estest.RdfWrapper
Loading class uk.ac.bbk.estest.EstestOntologyWrapper

--

ESTEST running from a script.
Using:C:\estest\bin\config\crimeScript.xml
Building Estest modelling language
==
 DETAILS OF LOADED ESTEST SCRIPT
==

ScriptStep 1: type=Integrate uri
=C:\estest\bin\config\dsdCrime.xml

ScriptStep 2: type=Parameters uri=C:\estest\bin\config\parmsCrim
 ePatterns.xml

ScriptStep 3: type=Config

ScriptStep 4: type=ConfigOutput

ScriptStep 5: type=IE

==
 INTEGRATE STEP (1)

212

==

Loading datasourced from definition
at:C:\estest\bin\config\dsdCrime.xml
Building RDF modelling language
RDF Wrapper Factory creating RDF Model Oriented Schema CrimeOnt
schema
Details of schema: CrimeOnt
 RDF subject <<subject>>
 RDF predicate <<predicate>>
 RDF object <<object>>
 RDF triple <<triple,subject,predicate,object>>
 RDF uri <<uri>>
 RDF blank <<blank>>
 RDF literal <<literal>>

Data Sources To Be Integrated:
 DS 1 is OpIntel
 DS 2 is Cars
 DS 3 is CrimeOnt
Creating the AutoMed Schemas.
 RelationalDataSource is building a wrapper for schema
OpIntelauto
 Created AutoMed schema for OpIntel
 Details of schema: OpIntelauto
 sql_390 table <<op_intel>>
 sql_390 column <<op_intel,report_id>>
 sql_390 column <<op_intel,pc>>
 sql_390 column <<op_intel,intel>>
 sql_390 primary_key
 <<pky_op_intel,op_intel,
 <<op_intel,reportid>>>
 RelationalDataSource is building a wrapper for schema Carsauto
 Created AutoMed schema for Cars
 Details of schema: Carsauto
 sql_390 table <<colour>>
 sql_390 column <<colour,colour>>
 sql_390 primary_key <<pky_colour,colour,<<colour,colour>>>>
 sql_390 table <<car>>
 sql_390 column <<car,reg>>
 sql_390 column <<car,manufacturer>>
 sql_390 column <<car,model>>
 sql_390 column <<car,colour>>
 sql_390 primary_key <<pky_car,car,<<car,reg>>>>

 sql_390 table <<model>>
 sql_390 column <<model,model>>
 sql_390 primary_key <<pky_model,model,<<model,model>>>>
 sql_390 table <<manufacturer>>
 sql_390 column <<manufacturer,manufacturer>>
 sql_390 primary_key <<pky_manufacturer,manufacturer,
 <<manufacturer,manufacturer>>>>
 sql_390 foreign_key <<fky_car_colour,car,
 <<car,colour>>,
 colour,<<colour,colour>>>>
 sql_390 foreign_key <<fky_car_manufacturer,car,
 <<car,manufacturer>>,manufacturer,
 <<manufacturer,manufacturer>>>>
 sql_390 foreign_key <<fky_car_model,car,<<car,model>>
 ,model,<<model,model>>>>

Creating the ESTEST Model Schemas.
 Finding foreign keys (for isA relationship).
 Finding tables and columns (for concepts).
 Now delete the relational constructs.....
 The Estest oriented schema for this relational data source
is OpIntelautza
 Now find word forms for each schema element by processing
using SchemaNameTokeniser component.
 Creating schema name tokeniser to process names of schema
objects.
Using C:\Program Files\GATE 3.0 as GATE home
Using C:\Program Files\GATE 3.0\plugins as installed plug-ins
directory.
Using C:\Program Files\GATE 3.0\gate.xml as site configuration
file.
Using C:\Documents and Settings\dean\gate.xml as user
configuration file
CREOLE plugin loaded: file:/C:/Program Files/GATE-
3.1b1/plugins/ANNIE/
CREOLE plugin loaded: file:/C:/estest/
 Storing Data Source info and metadata in EMR.....
 Created ESTEST schema for OpIntel
 Details of schema: OpIntelautza
 Estest concept <<op_intel>>
 Estest concept <<op_intel_report_id>>
 Estest attribute <<attribute,op_intel,
 op_intel_report_id>>
 Estest concept <<op_intel_pc>>
 Estest attribute <<attribute,op_intel,op_intel_pc>>

213

 Estest concept <<op_intel_intel>>
 Estest attribute <<attribute,op_intel,op_intel_intel>>

 Finding foreign keys (for isA relationship).
 Finding tables and columns (for concepts).
 Now delete the relational constructs.....
 The Estest oriented schema for this relational data source
is Carsautzv
 Now find word forms for each schema element by processing
using SchemaNameTokeniser component.
 Storing Data Source info and metadata in EMR.....
 Created ESTEST schema for Cars
 Details of schema: Carsautzv
 Estest concept <<colour>>
 Estest concept <<colour_colour>>
 Estest attribute <<attribute,colour,colour_colour>>
 Estest concept <<car>>
 Estest concept <<car_reg>>
 Estest attribute <<attribute,car,car_reg>>
 Estest concept <<model>>
 Estest concept <<model_model>>
 Estest attribute <<attribute,model,model_model>>
 Estest concept <<manufacturer>>
 Estest concept <<manufacturer_manufacturer>>
 Estest attribute <<attribute,manufacturer,
 manufacturer_manfacturer>>
 Estest attribute <<attribute,car,colour>>
 Estest attribute <<attribute,car,manufacturer>>
 Estest attribute <<attribute,car,model>>

 OntologyDataSource is about to create ESTEST Schema.
 found class: http://www.dcs.bbk.ac.uk/~dean/kb/acc1#pub
 found class: http://www.dcs.bbk.ac.uk/~dean/kb/acc1#opIntel
 found class: http://www.dcs.bbk.ac.uk/~dean/kb/acc1#vehicle
 About to check for word forms.
 Created ESTEST schema for CrimeOnt
 Details of schema: CrimeOntEstest
 Estest concept <<pub>>
 Estest concept <<opIntel>>
 Estest concept <<vehicle>>
 Estest concept <<Resource>>
 Estest isA <<isA,opIntel,Resource>>
 Estest isA <<isA,vehicle,Resource>>

 Estest isA <<isA,pub,Resource>>
 Estest attribute <<attribute,opIntel,pub>>
 Estest attribute <<attribute,opIntel,vehicle>>

Going to process text metadata for additional schema element
matching evidence.

==
 CREATING GATE PIPELINE FOR SCHEMA MATCHING.
==

Creating Default Tokeniser Gate processing resource.
Creating Sentence-Splitter Gate processing resource.
Creating Database-Gazetteer Gate processing resource with all
schema objects as NE sources based on the word forms extracted
from schema names.
 No data source URL provided so loading word form named
entities for all schema elements.
 Loading definition of Named Entity

==
 PROCESSING TEXTUAL METADATA FOR SCHEMA MATCHING
==

Creating Jape rules for processing schema metadata: smie.jape
path: C:\estest\smie.jape
Creating Jape Transducer Gate Processing Resource.
JAPE URL: file:/C:/estest/smie.jape
Assembling Components Into Pipeline.
Gate is now initialised and the ESTEST application is built.

--

Document to be processed by IE : 'OPERATIONAL INTELLIGENCE
GATHERED BY POLICE OFFICERS ON THEIR PATROLS'
Running processing resources over document...

--

Document to be processed by IE : 'GENERATED ID FOR A REPORT'
Running processing resources over document...

--

214

Document to be processed by IE : 'POLICE CONSTABLE WHO MADE THE
REPORT'
Running processing resources over document...

--

Document to be processed by IE : 'INTELLIGENCE GATHERED'
Running processing resources over document...

--

Document to be processed by IE : 'VEHICLE SEEN DURING
OPERATIONAL INTELLIGENCE GATHERING'
Running processing resources over document...
Match between the textual metadata of schema element 84/62, and
the schema element 85/104

--

Document to be processed by IE : 'UK REG MARK IE TWO CHAR AREA
CODE, AGE, AND THREE RANDOM LETTERS'
Running processing resources over document...

--

Going to find matches between Schema elements.
The matches are:
 Match with 0.5% confidence on word form meta-match
 Schema 1: Carsautzv, Concept 1: car
 Schema 2: CrimeOntEstest, Concept 2: vehicle

Going to rename matching elements so they have the same name.
In Integrator getPositionOfSchema looking for sid 84
 checking 51, OpIntelautza
 checking 84, Carsautzv
 and its a match
In Integrator getPositionOfSchema looking for sid 85
 checking 51, OpIntelautza
 checking 84, Carsautzv
 checking 85, CrimeOntEstest
 and its a match
 Renamed :CrimeOntEstest, vehicle to car

Extend to match schemas.
 OpIntelautza extending to match Carsautzv
 new extended schema is :OpIntelautzp
 OpIntelautzp extending to match CrimeOntEstest1a
 new extended schema is :OpIntelautzx
 Carsautzv extending to match OpIntelautza
 new extended schema is :Carsautzzc
 Carsautzzc extending to match CrimeOntEstest1a
 new extended schema is :Carsautzzk
 CrimeOntEstest1a extending to match OpIntelautza
 new extended schema is :CrimeOntEstest1h
 CrimeOntEstest1h extending to match Carsautzv
 new extended schema is :CrimeOntEstest1v
Assert Identity Transformations between the extended schemas.
 Asserting ID transformation between OpIntelautzx & Carsautzzk
 Asserting ID transformation between OpIntelautzx &
CrimeOntEstest1v
About to create HDM store copy of global schema.
Building the AutoMed HDM model
Creating HDM Store estest_store
Creating transormation pathway from HDM model to ESTEST model
global schema
Materialising isA relationships.
 Contents of the IsaFunctionList are:
 <<opIntel>> <<opIntel>>
 <<Resource>> <<Resource>> ++ <<opIntel>> ++ <<pub>> ++
 <<car>>
 <<pub>> <<pub>>
 <<car>> <<car>>
 Integrator loadDef attempting ident with HDM Store

 Global Schema is complete, schema name is: OpIntelautzx
 Details of schema: OpIntelautzx
 Estest concept <<op_intel>>
 Estest concept <<op_intel_report_id>>
 Estest attribute <<attribute,op_intel,
 op_intel_report_id>>
 Estest concept <<op_intel_pc>>
 Estest attribute <<attribute,op_intel,op_intel_pc>>
 Estest concept <<op_intel_intel>>
 Estest attribute <<attribute,op_intel,op_intel_intel>>
 Estest concept <<colour>>
 Estest concept <<colour_colour>>
 Estest attribute <<attribute,colour,colour_colour>>

215

 Estest concept <<car>>
 Estest concept <<car_reg>>
 Estest attribute <<attribute,car,car_reg>>
 Estest concept <<model>>
 Estest concept <<model_model>>
 Estest attribute <<attribute,model,model_model>>
 Estest concept <<manufacturer>>
 Estest concept <<manufacturer_manufacturer>>
 Estest attribute <<attribute,manufacturer,
 manufacturer_manfacturer>>
 Estest attribute <<attribute,car,colour>>
 Estest attribute <<attribute,car,manufacturer>>
 Estest attribute <<attribute,car,model>>
 Estest concept <<pub>>
 Estest concept <<opIntel>>
 Estest concept <<Resource>>
 Estest isA <<isA,opIntel,Resource>>
 Estest isA <<isA,pub,Resource>>
 Estest attribute <<attribute,opIntel,pub>>
 Estest isA <<isA,car,Resource>>
 Estest attribute <<attribute,opIntel,car>>

==
 PARAMETERS STEP (2)
==

Parameters to be loaded:
 Macro Parameter: model, and this is a stub to be generated as
a NE source.

 Macro Parameter: colour, and this is a stub to be generated as
a NE source.
 Macro Parameter: manufacturer, and this is a stub to be
generated as a NE source.
 Macro Parameter: car_reg, and this is a stub to be generated
as a NE source.
 ValueDefParameter, Name: REGISTRATION_MARK
 Pattern Parameter: car Pattern: (COLOUR)?--(MANUFACTURER)?--
(MODEL)--(CAR_REG), id:car_reg
 Pattern Parameter: car Pattern: (COLOUR)?--(MANUFACTURER)?--
(MODEL)?--CAR?--REGISTRATION?--(REGISTRATION_MARK), id:car_reg
 Pattern Parameter: car Pattern: (COLOUR)?--(MANUFACTURER)?--
(MODEL), id:car_reg

==
 CONFIGIE STEP (3)
==

Generating Suggestions for Named Entity.
Suggested possible NE List is:
 Possible Extent NE object - Data Source: 1, Schema
element<<op_intel_pc>>
 Possible Extent NE object - Data Source: 2, Schema
element<<colour_colour>>
 Possible Extent NE object - Data Source: 2, Schema
element<<car_reg>>
 Possible Extent NE object - Data Source: 2, Schema
element<<model_model>>
 Possible Extent NE object - Data Source: 2, Schema
element<<manufacturer_manufacturer>>
Identifing Text Sources.
Finding Templates.
Removing templates with only one attribute...

Templates Are:
 Template: <<opIntel>>
 Attribute: <<pub>>
 Attribute: <<car>>
 Template: <<op_intel>>
 Attribute: <<op_intel_report_id>>
 Attribute: <<op_intel_pc>>
 Attribute: <<op_intel_intel>>
 Template: <<car>>
 Attribute: <<car_reg>>
 Attribute: <<colour>>
 Attribute: <<manufacturer>>
 Attribute: <<model>>
Generating aliases for Orthomatcher.
Generating the alias file for named co-ref detection
 file :alias.lst path: orthomatcher\alias.lst
about to delete alias.lst path: orthomatcher\alias.lst
about to create alias.lst path: C:\estest\orthomatcher\alias.lst
Created IE input file alias.lst
ESTEST is set NOT to wait for user confirmation of results.

==
 CONFIG OUTPUT GENERATION STEP (4)
==

216

Expanding the selected Named Entity schema elements.
Jape rules are being generated from EMR patterns.
Jape Generator - getting the macros definitions.
Jape Generator - getting the value pattern definitions.
Jape Generator - getting the regular patterns definitions.
Generating the Information Extraction JAPE input file from EMR
patterns.
Created IE input file ie.jape
Generating the DBGaz.xml configuration file for the DB Gazeteer
Component
 file :dbGaz.xml path: dbGaz.xml
about to delete dbGaz.xml path: dbGaz.xml
 Created DB Gaz Config file dbGaz.xml

==
 INFORMATION EXTRACTION STEP (5)
==

Initialising Gate using Gate Home :C:\Program Files\GATE-3.1
Using C:\Program Files\GATE 3.0 as GATE home
Using C:\Program Files\GATE 3.0\plugins as installed plug-ins
directory.
Using C:\Program Files\GATE 3.0\gate.xml as site configuration
file.
Registering Creole directories:
Creating Default Tokeniser Gate Processing Resource.
Creating POS Tagger Gate Processing Resource.
Creating Sentence Splitter Gate Processing Resource.
Creating ANNIE Transducer Gate Processing Resource.
Creating Default Gazetteer Gate Processing Resource.
Creating Database Gazetteer Gate Processing Resource.
Creating Jape Transducer Gate Processing Resource.
JAPE URL: file:/C:/estest/ie.jape
Creating Orthomatcher Gate Processing Resource, configuring
using ESTEST generated aliases.
Creating Pronominal Co-referencer Gate Processing Resource.
Assembling Components Into Pipeline.
Gate is now initialised and the ESTEST application is built.
No JAPE URI specified - default will be used
Configuring Database Gazetteer using file:/C:/estest/dbGaz.xml
Loading definition of Named Entity
 Connecting to HdmStore for schema: estest_store
Loaded 11 values for extent-based NE object <<model>>
Loaded 22 values for extent-based NE object <<colour>>

Loaded 3 values for extent-based NE object <<manufacturer>>
Loaded 142 values for extent-based NE object <<car_reg>>
Loaded 142 values for extent-based NE object <<car>>
Loaded 11 values for extent-based NE object <<model>>
Loaded 22 values for extent-based NE object <<colour>>
Loaded 3 values for extent-based NE object <<manufacturer>>
Loaded 142 values for extent-based NE object <<car_reg>>

--

Document to be processed by IE : 'GEORGE BUSH HAS A NEW YELLOW
CAR REGISTRATION LO78 HYS. IT IS A FORD MONDEO.'
Attempting pronominal coreference detection.

AnnotationImpl: id=62; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[62, 63, 64,
60, 61]}; start=NodeImpl: id=15; offset=45; end=NodeImpl: id=20;
offset=54

AnnotationImpl: id=15; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=15; offset=45;
end=NodeImpl: id=16; offset=46

AnnotationImpl: id=30; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=6, string=MONDEO};
start=NodeImpl: id= 30; offset=69; end=NodeImpl: id=31;
offset=75

AnnotationImpl: id=43; type=Unknown; features={kind=PN,
rule=Unknown}; start=NodeImpl: id=2; offset=7; end=NodeImpl:
id=3; offset=11

AnnotationImpl: id=16; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=2, string=LO}; start=NodeImpl:
id=16; offset=46; end=NodeImpl: id=17; offset=48

AnnotationImpl: id=31; type=Token; features={string=., length=1,
 kind=punctuation, category=.}; start=NodeImpl: id=31;
offset=75; end=NodeImpl: id=32; offset=76

AnnotationImpl: id=48; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[50, 48, 49]};
start=NodeImpl: id=10; offset=22; end=NodeImpl: id=20; offset=54

217

AnnotationImpl: id=59; type=car; features
={idAnnotationType=car_reg, rule=new_car0, kind=car};
start=NodeImpl: id=14; offset=33;end=NodeImpl: id=20; offset=54

AnnotationImpl: id=32; type=Lookup; features
={majorType=OpIntelautzx, minorType=colour}; start=NodeImpl:
id=10; offset=22; end=NodeImpl: id=11; offset=28

AnnotationImpl: id=34; type=Lookup; features
={majorType=OpIntelautzx, minorType=car}; start=NodeImpl: id=16;
offset=46; end=NodeImpl: id=20; offset=54

AnnotationImpl: id=73; type=car; features
={idAnnotationType=car_reg, rule=car_no_reg0, kind=car};
start=NodeImpl: id=30; offset=69; end=NodeImpl: id=31; offset=75

AnnotationImpl: id=41; type=Identifier; features=
{rule1=Identifier1, rule2=IdentifierFinal}; start=NodeImpl:
id=16; offset=46; end=NodeImpl: id=18; offset=50

AnnotationImpl: id=70; type=car; features
={idAnnotationType=car_reg, rule=car_no_reg0, kind=car};
start=NodeImpl: id=28; offset=64; end=NodeImpl: id=31; offset=75

AnnotationImpl: id=60; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[62, 63, 64,
60, 61]}; start=NodeImpl: id=15; offset=45; end=NodeImpl: id=20;
offset=54

AnnotationImpl: id=61; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[62, 63, 64,
60, 61]}; start=NodeImpl: id=15; offset=45; end=NodeImpl: id=20;
offset=54

AnnotationImpl: id=1; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=1; offset=6;
end=NodeImpl: id=2; offset=7

AnnotationImpl: id=29; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=29; offset=68;
end=NodeImpl: id=30; offset=69

AnnotationImpl: id=14; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=12, string=REGISTRATION};
start=NodeImpl: id=14; offset=33; end=NodeImpl: id=15; offset=45

AnnotationImpl: id=68; type=car; features
={idAnnotationType=car_reg, rule=car_no_reg0, kind=car};
start=NodeImpl: id=27; offset=63; end=NodeImpl: id=31; offset=75

AnnotationImpl: id=47; type=colour; features
={idAnnotationType=colour, rule=colour, kind=colour};
start=NodeImpl: id=10; offset=22; end=NodeImpl: id=11; offset=28

AnnotationImpl: id=58; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[58, 55, 57,
56]}; start=NodeImpl: id=13; offset=32; end=NodeImpl: id=20;
offset=54

AnnotationImpl: id=63; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[62, 63, 64,
60, 61]}; start=NodeImpl: id=15; offset=45; end=NodeImpl: id=20;
offset=54

AnnotationImpl: id=18; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=18; offset=50;
end=NodeImpl: id=19; offset=51

AnnotationImpl: id=3; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=3; offset=11;
end=NodeImpl: id=4; offset=12

AnnotationImpl: id=66; type=car; features
={idAnnotationType=car_reg, rule=new_car0, kind=car};
start=NodeImpl: id=16; offset=46; end=NodeImpl: id=20; offset=54

AnnotationImpl: id=12; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=3, string=CAR}; start=NodeImpl:
id=12; offset=29; end=NodeImpl: id=13; offset=32

AnnotationImpl: id=27; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=27; offset=63;
end=NodeImpl : id=28; offset=64

AnnotationImpl: id=44; type=Unknown; features={kind=PN,
rule=Unknown}; start=NodeImpl: id=8; offset=18; end=NodeImpl:
id=9; offset=21

AnnotationImpl: id=64; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[62, 63, 64,

218

60, 61]}; start=NodeImpl: id=15; offset=45; end=NodeImpl: id=20;
offset=54

AnnotationImpl: id=17; type=Token; features={string=78,
length=2, kind=number, category=CD}; start=NodeImpl: id=17;
offset=48; end=NodeImpl: id=18; offset=50

AnnotationImpl: id=2; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=4, string=BUSH}; start=NodeImpl:
id=2; offset=7; end=NodeImpl: id=3; offset=11

AnnotationImpl: id=13; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=13; offset=32;
end=NodeImpl: id=14; offset=33

AnnotationImpl: id=28; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=4, string=FORD}; start=NodeImpl:
id=28; offset=64; end=NodeImpl: id=29; offset=68

AnnotationImpl: id=38; type=Sentence; features={};
start=NodeImpl: id=0; offset=0; end=NodeImpl: id=21; offset=55

AnnotationImpl: id=57; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[58, 55, 57,
56]}; start=NodeImpl: id=13; offset=32; end=NodeImpl: id=20;
offset=54

AnnotationImpl: id=37; type=Split; features={kind=internal};
start=NodeImpl: id=20; offset=54; end=NodeImpl: id=21; offset=55

AnnotationImpl: id=51; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[51, 53, 52]};
start=NodeImpl: id=11; offset=28; end=NodeImpl: id=20; offset=54

AnnotationImpl: id=8; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=3, string=NEW}; start=NodeImpl:
id=8; offset=18; end=NodeImpl: id=9; offset=21

AnnotationImpl: id=23; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=23; offset=58;
end=NodeImpl: id=24; offset=59

AnnotationImpl: id=72; type=car; features={kind=car,
rule=car_no_reg0, idAnnotationType=car_reg, matches=[72, 71]};
start=NodeImpl: id=29; offset=68; end=NodeImpl: id=31; offset=75

AnnotationImpl: id=35; type=Lookup; features
={majorType=OpIntelautzx, minorType=manufacturer};
start=NodeImpl: id=28; offset=64; end=NodeImpl: id=29; offset=68

AnnotationImpl: id=7; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=7; offset=17;
end=NodeImpl: id=8; offset=18

AnnotationImpl: id=71; type=car; features={kind=car,
rule=car_no_reg0, idAnnotationType=car_reg, matches=[72, 71]};
start=NodeImpl: id=29; offset=68; end=NodeImpl: id=31; offset=75

AnnotationImpl: id=54; type=car; features
={idAnnotationType=car_reg, rule=new_car0, kind=car};
start=NodeImpl: id=12; offset=29; end=NodeImpl: id=20; offset=54

AnnotationImpl: id=49; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[50, 48, 49]};
start=NodeImpl: id=10; offset=22; end=NodeImpl: id=20; offset=54

AnnotationImpl: id=22; type=Token; features={category=PRP,
kind=word, orth=allCaps, length=2, string=IT}; start=NodeImpl:
id=22; offset=56; end=NodeImpl: id=23; offset=58

AnnotationImpl: id=53; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[51, 53, 52]};
start=NodeImpl: id=11; offset=28; end=NodeImpl: id=20; offset=54

AnnotationImpl: id=9; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=9; offset=21;
end=NodeImpl: id=10; offset=22

AnnotationImpl: id=65; type=car_reg; features
={idAnnotationType=car_reg, rule=car_reg, kind=car_reg};
start=NodeImpl: id=16; offset=46; end=NodeImpl: id=20; offset=54

AnnotationImpl: id=21; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=21; offset=55;
end=NodeImpl: id=22; offset=56

AnnotationImpl: id=33; type=Lookup; features
={majorType=OpIntelautzx, minorType=car_reg}; start=NodeImpl:
id=16; offset=46; end=NodeImpl: id=20; offset=54

219

AnnotationImpl: id=6; type=Token; features={category=DT,
kind=word, orth=upperInitial, length=1, string=A};
start=NodeImpl: id=6; offset=16; end=NodeImpl: id=7; offset=17

AnnotationImpl: id=52; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[51, 53, 52]};
start=NodeImpl: id=11; offset=28; end=NodeImpl: id=20; offset=54

AnnotationImpl: id=24; type=Token; features={category=VBZ,
kind=word, orth=allCaps, length=2, string=IS}; start=NodeImpl:
id=24; offset=59; end=NodeImpl: id=25; offset=61

AnnotationImpl: id=42; type=Unknown; features={kind=PN,
rule=Unknown}; start=NodeImpl: id=0; offset=0; end=NodeImpl:
id=1; offset=6

AnnotationImpl: id=4; type=Token; features={category=VBZ,
kind=word, orth=allCaps, length=3, string=HAS}; start=NodeImpl:
id=4; offset=12; end=NodeImpl: id=5; offset=15

AnnotationImpl: id=19; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=3, string=HYS}; start=NodeImpl:
id=19; offset=51; end=NodeImpl: id=20; offset=54

AnnotationImpl: id=36; type=Lookup; features
={majorType=OpIntelautzx, minorType=model}; start=NodeImpl:
id=30; offset=69; end=NodeImpl: id=31; offset=75

AnnotationImpl: id=55; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[58, 55, 57,
56]}; start=NodeImpl: id=13; offset=32; end=NodeImpl: id=20;
offset=54

AnnotationImpl: id=26; type=Token; features={category=DT,
kind=word, orth=upperInitial, length=1, string=A};
start=NodeImpl: id=26; offset=62; end=NodeImpl: id=27; offset=63

AnnotationImpl: id=11; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=11; offset=28;
end=NodeImpl: id=12; offset=29

AnnotationImpl: id=67; type=car_reg; features={kind=car_reg,
rule=REGISTRATION_MARK, estestStore=yes,
IdAnnotationType=car_reg}; start=NodeImpl: id=16; offset=46;
end=NodeImpl: id=20; offset=54

AnnotationImpl: id=50; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[50, 48, 49]};
start=NodeImpl: id=10; offset=22; end=NodeImpl: id=20; offset=54

AnnotationImpl: id=39; type=Sentence; features={};
start=NodeImpl: id=22; offset=56; end=NodeImpl: id=32; offset=76

AnnotationImpl: id=45; type=Unknown; features={kind=PN,
rule=Unknown}; start=NodeImpl: id=12; offset=29; end=NodeImpl:
id=13; offset=32

AnnotationImpl: id=74; type=model; features
={idAnnotationType=model, rule=model, kind=model};
start=NodeImpl: id=30; offset=69; end=NodeImpl: id=31; offset=75

AnnotationImpl: id=20; type=Token; features={string=., length=1,
 kind=punctuation, category=.}; start=NodeImpl: id=20;
offset=54; end=NodeImpl: id=21; offset=55

AnnotationImpl: id=46; type=Unknown; features={kind=PN,
rule=Unknown}; start=NodeImpl: id=14; offset=33; end=NodeImpl:
id=15; offset=45

AnnotationImpl: id=25; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=25; offset=61;
end=NodeImpl: id=26; offset=62

AnnotationImpl: id=56; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[58, 55, 57,
56]}; start=NodeImpl: id=13; offset=32; end=NodeImpl: id=20;
offset=54

AnnotationImpl: id=10; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=6, string=YELLOW};
start=NodeImpl: id=10; offset=22; end=NodeImpl: id=11; offset=28

AnnotationImpl: id=5; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=5; offset=15;
end=NodeImpl: id=6; offset=16

AnnotationImpl: id=69; type=manufacturer; features
={idAnnotationType=manufacturer, rule=manufacturer,
kind=manufacturer}; start=NodeImpl: id=28; offset=64;
end=NodeImpl: id=29; offset=68

220

AnnotationImpl: id=0; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=6, string=GEORGE};
start=NodeImpl: id=0; offset=0; end=NodeImpl: id=1; offset=6

The total concept counts in the DB:
 Concept: car_reg, count: 142
 Concept: op_intel, count: 3
 Concept: manufacturer, count: 3
 Concept: colour_colour, count: 22
 Concept: colour, count: 22
 Concept: model_model, count: 11
 Concept: Resource, count: 0
 Concept: pub, count: 0
 Concept: op_intel_pc, count: 1
 Concept: op_intel_report_id, count: 3
 Concept: car, count: 142
 Concept: opIntel, count: 0
 Concept: op_intel_intel, count: 3
 Concept: model, count: 11
 Concept: manufacturer_manufacturer, count: 3

Checking for annotations that are subsumed by another of the
same type.
 Replacing subsumed annotation 62 with 48
 Replacing subsumed annotation 62 with 59
 Replacing subsumed annotation 62 with 58
 Replacing subsumed annotation 66 with 62
 Replacing subsumed annotation 62 with 51
 Replacing subsumed annotation 62 with 54
 Replacing subsumed annotation 59 with 48
 Replacing subsumed annotation 58 with 48
 Replacing subsumed annotation 66 with 48
 Replacing subsumed annotation 51 with 48
 Replacing subsumed annotation 54 with 48
 Replacing subsumed annotation 59 with 58
 Replacing subsumed annotation 66 with 59
 Replacing subsumed annotation 59 with 51
 Replacing subsumed annotation 59 with 54
 Replacing subsumed annotation 73 with 70
 Replacing subsumed annotation 73 with 68
 Replacing subsumed annotation 73 with 72
 Replacing subsumed annotation 70 with 68

 Replacing subsumed annotation 72 with 70
 Replacing subsumed annotation 72 with 68
 Replacing subsumed annotation 66 with 58
 Replacing subsumed annotation 58 with 51
 Replacing subsumed annotation 58 with 54
 Replacing subsumed annotation 66 with 51
 Replacing subsumed annotation 66 with 54
 Replacing subsumed annotation 54 with 51

 Annotations of interest
 Annotation Details:
 Schema element = '<<car>>', value = 'YELLOW CAR
REGISTRATION LO78 HYS', Gate ID is 48 and the ID is the value of
the related car_reg
 Schema element = '<<car>>', value = ' FORD MONDEO', Gate
ID is 68 and the ID is the value of the related car_reg
 Schema element = '<<colour>>', value = 'YELLOW', Gate ID
is 47 and the ID is the value of the related colour
 Schema element = '<<car_reg>>', value = 'LO78 HYS', Gate
ID is 65 and the ID is the value of the related car_reg
 Schema element = '<<model>>', value = 'MONDEO', Gate ID is
74 and the ID is the value of the related model
 Schema element = '<<manufacturer>>', value = 'FORD', Gate
ID is 69 and the ID is the value of the related manufacturer
 Adding annotation <<car>> [LO78 HYS]
 Could not find an id annotation so generating one, id:
<<car>> [estestInstance2]
 Adding annotation <<car>> [estestInstance2]
 Adding annotation <<colour>> [YELLOW]
 Adding annotation <<car_reg>> [LO78 HYS]
 Adding annotation <<model>> [MONDEO]
 Adding annotation <<manufacturer>> [FORD]
 Removing templates with only one attribute...
 Template Instances Are:
 <<car>>,estestInstance1
 <<car>>,estestInstance2
 In buildTemplateInstances <<car>>,estestInstance1, colour
 In buildTemplateInstances <<car>>,estestInstance2, model
 2 templates found
 Templates are:
 Template: 1 -- <<car>>, Instance ID: estestInstance1
 Attribute: <<car_reg>>, Instance ID: LO78 HYS
 Attribute: <<colour>>, Instance ID: YELLOW

221

 Template: 2 -- <<car>>, Instance ID: estestInstance2
 Attribute: <<manufacturer>>, Instance ID: FORD
 Attribute: <<model>>, Instance ID: MONDEO

 merging template1 into3
 Set idAnnotationType to <<car_reg>>for template <<car>>
 Replacing templateInstanceId null with estestInstance1
 Comparing <<car_reg>> to <<car_reg>>
 Merging templates has found a new annotation of the template
id type <<car_reg>>, using this as the id of the template, id is
LO78 HYS
 Comparing <<colour>> to <<car_reg>>
 Changing template instance id from estestInstance1, to LO78
HYS
 merging template2 into3
 Comparing <<manufacturer>> to <<car_reg>>
 Comparing <<model>> to <<car_reg>>
 mergeTemplates() is returning 1 merged templates
 1 templates after merging
 Templates are:
 Template: 3 -- <<car>>, Instance ID: LO78 HYS
 Attribute: <<car_reg>>, Instance ID: LO78 HYS
 Attribute: <<colour>>, Instance ID: YELLOW
 Attribute: <<manufacturer>>, Instance ID: FORD
 Attribute: <<model>>, Instance ID: MONDEO

 Checking templates for matches
 Checking template to see if it should be added or
merged....
 Template: 3 -- <<car>>, Instance ID: LO78 HYS
 Attribute: <<car_reg>>, Instance ID: LO78 HYS
 Attribute: <<colour>>, Instance ID: YELLOW
 Attribute: <<manufacturer>>, Instance ID: FORD
 Attribute: <<model>>, Instance ID: MONDEO

 Evidence of a match with<<car>>,<<car_reg>> --> LO78
HYS,LO78 HYS, weight is 79.78%

 Evidence of a match with<<car>>,<<manufacturer>> --> BD51
ABC, FORD, weight is 1.69%
 Evidence of a match with<<car>>,<<manufacturer>> --> IK83
OKE, FORD, weight is 1.69%
 Evidence of a match with<<car>>,<<manufacturer>> --> LO78
HYS,FORD, weight is 1.69%
 Evidence of a match with<<car>>,<<model>> --> LO78
HYS,MONDEO, weight is 6.18%
 Match with BD51 ABC, evidence is 1.69%
 Match with LO78 HYS, evidence is 87.64%
 Match with IK83 OKE, evidence is 1.69%
 Best match was LO78 HYS at 87.64%
 Found match with more than 50% likelyhood LO78 HYS,
evidence: 87.64%

 Storing Templates.
 Storing template: <<car>>/LO78 HYS
 Storing template attribute edge
<<attribute,car,car_reg>>[1,LO78 HYS]
 Storing template attribute edge
<<attribute,car,colour>>[1,YELLOW]
 Storing template attribute edge
<<attribute,car,manufacturer>>[1,FORD]
 Storing template attribute edge
<<attribute,car,model>>[1,MONDEO]
 and there were none.

--

 Document to be processed by IE : 'TONY BLAIR SEEN COMING OUT
OF THE PERSEVERANCE PUBLIC HOUSE DRIVES OFF IN A GREEN FORD PUMA
UY22 QWC.'
 Attempting pronominal coreference detection.
 Pronominal Corefs is empty.

AnnotationImpl: id=62; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[62, 60, 61]};
start=NodeImpl: id=28; offset=76; end=NodeImpl: id=38;
offset=100

 AnnotationImpl: id=30; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=4, string=FORD}; start=NodeImpl:
id=30; offset=82; end=NodeImpl: id=31; offset=86

222

 AnnotationImpl: id=31; type=SpaceToken;
features={kind=space, length=1, string= }; start=NodeImpl:
id=31; offset=86; end=NodeImpl: id=32; offset=87

 AnnotationImpl: id=86; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[87, 86, 85,
88, 89]}; start=NodeImpl: id=33; offset=91; end=NodeImpl: id=38;
offset=100

 AnnotationImpl: id=59; type=car; features
={idAnnotationType=car_reg, rule=car_no_reg0, kind=car};
start=NodeImpl: id=28; offset=76; end=NodeImpl: id=33; offset=91

 AnnotationImpl: id=34; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=2, string=UY}; start=NodeImpl:
id=34; offset=92; end=NodeImpl: id=35; offset=94

 AnnotationImpl: id=32; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=4, string=PUMA}; start=NodeImpl:
id=32; offset=87; end=NodeImpl: id=33; offset=91

 AnnotationImpl: id=60; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[62, 60, 61]};
start=NodeImpl: id=28; offset=76; end=NodeImpl: id=38;
offset=100

 AnnotationImpl: id=85; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[87, 86, 85,
88, 89]}; start=NodeImpl: id=33; offset=91; end=NodeImpl: id=38;
offset=100

 AnnotationImpl: id=1; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=1; offset=4;
end=NodeImpl: id=2; offset=5

 AnnotationImpl: id=61; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[62, 60, 61]};
start=NodeImpl: id=28; offset=76; end=NodeImpl: id=38;
offset=100

 AnnotationImpl: id=29; type=SpaceToken; features
={kind=space, length=1, string= }; start=NodeImpl: id=29;
offset=81; end=NodeImpl: id=30; offset=82

 AnnotationImpl: id=68; type=car; features
={idAnnotationType=car_reg, rule=car_no_reg0, kind=car};
start=NodeImpl: id=30; offset=82; end=NodeImpl: id=33; offset=91

 AnnotationImpl: id=58; type=colour;
features={idAnnotationType=colour, rule=colour, kind=colour};
start=NodeImpl: id=28; offset=76; end=NodeImpl: id=29; offset=81

 AnnotationImpl: id=82; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[83, 82, 84]};
start=NodeImpl: id=32; offset=87; end=NodeImpl: id=38;
offset=100

 AnnotationImpl: id=63; type=car; features
={idAnnotationType=car_reg, rule=car_no_reg0, kind=car};
start=NodeImpl: id=29; offset=81; end=NodeImpl: id=33; offset=91

 AnnotationImpl: id=3; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=3; offset=10;
end=NodeImpl: id=4; offset=11

 AnnotationImpl: id=81; type=model; features
={idAnnotationType=model, rule=model, kind=model};
start=NodeImpl: id=32; offset=87; end=NodeImpl: id=33; offset=91

 AnnotationImpl: id=27; type=SpaceToken; features
={kind=space, length=1, string= }; start=NodeImpl: id=27;
offset=75; end=NodeImpl: id=28; offset=76

 AnnotationImpl: id=64; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[65, 66, 64]};
start=NodeImpl: id=29; offset=81; end=NodeImpl: id=38;
offset=100

 AnnotationImpl: id=2; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=5, string=BLAIR};
start=NodeImpl: id=2; offset=5; end=NodeImpl: id=3; offset=10

 AnnotationImpl: id=38; type=Token; features={string=.,
length=1, kind=punctuation, category=.}; start=NodeImpl: id=38;
offset=100; end=NodeImpl: id=39; offset=101

 AnnotationImpl: id=28; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=5, string=GREEN};
start=NodeImpl:id=28; offset=76; end=NodeImpl: id=29; offset=81

223

 AnnotationImpl: id=57; type=Unknown; features={kind=PN,
rule=Unknown}; start=NodeImpl: id=37; offset=97; end=NodeImpl:
id=38; offset=100

 AnnotationImpl: id=23; type=SpaceToken;
features={kind=space, length=1, string= }; start=NodeImpl:
id=23; offset=70; end=NodeImpl: id=24; offset=71

 AnnotationImpl: id=87; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[87, 86, 85,
88, 89]}; start=NodeImpl: id=33; offset=91; end=NodeImpl: id=38;
offset=100

 AnnotationImpl: id=35; type=Token; features={string=22,
length=2, kind=number, category=CD}; start=NodeImpl: id=35;
offset=94; end=NodeImpl: id=36; offset=96

 AnnotationImpl: id=7; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=7; offset=22;
end=NodeImpl: id=8; offset=23

 AnnotationImpl: id=54; type=Unknown; features={kind=PN,
rule=Unknown}; start=NodeImpl: id=20; offset=60; end=NodeImpl:
id=21; offset=66

 AnnotationImpl: id=53; type=Unknown; features={kind=PN,
rule=Unknown}; start=NodeImpl: id=18; offset=54; end=NodeImpl:
id=19; offset=59

 AnnotationImpl: id=65; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[65, 66, 64]};
start=NodeImpl: id=29; offset=81; end=NodeImpl: id=38;
offset=100

 AnnotationImpl: id=33; type=SpaceToken; features
={kind=space, length=1, string= }; start=NodeImpl: id=33;
offset=91; end=NodeImpl: id=34; offset=92

 AnnotationImpl: id=6; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=6, string=COMING};
start=NodeImpl: id=6; offset=16; end=NodeImpl: id=7; offset=22

 AnnotationImpl: id=24; type=Token; features={category=IN,
kind=word, orth=allCaps, length=2, string=IN}; start=NodeImpl:
id=24; offset=71; end=NodeImpl: id=25; offset=73

 AnnotationImpl: id=88; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[87, 86, 85,
88, 89]}; start=NodeImpl: id=33; offset=91; end=NodeImpl: id=38;
offset=100

 AnnotationImpl: id=4; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=4, string=SEEN}; start=NodeImpl:
id=4; offset=11; end=NodeImpl: id=5; offset=15

 AnnotationImpl: id=36; type=SpaceToken;
features={kind=space, length=1, string= }; start=NodeImpl:
id=36; offset=96; end=NodeImpl: id=37; offset=97

 AnnotationImpl: id=26; type=Token; features={category=DT,
kind=word, orth=upperInitial, length=1, string=A};
start=NodeImpl:id=26; offset=74; end=NodeImpl: id=27; offset=75

 AnnotationImpl: id=55; type=Unknown; features={kind=PN,
rule=Unknown}; start=NodeImpl: id=22; offset=67; end=NodeImpl:
id=23; offset=70

 AnnotationImpl: id=67; type=manufacturer;
features={idAnnotationType=manufacturer, rule=manufacturer,
kind=manufacturer}; start=NodeImpl: id=30; offset=82;
end=NodeImpl: id=31; offset=86

 AnnotationImpl: id=76; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[79, 78, 75,
76, 77, 74]}; start=NodeImpl: id=31; offset=86; end=NodeImpl:
id=38; offset=100

 AnnotationImpl: id=45; type=Identifier; features =
{rule1=Identifier1, rule2=IdentifierFinal}; start=NodeImpl:
id=34; offset=92; end=NodeImpl: id=36; offset=96

 AnnotationImpl: id=74; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[79, 78, 75,
76, 77, 74]}; start=NodeImpl: id=31; offset=86; end=NodeImpl:
id=38; offset=100

224

 AnnotationImpl: id=46; type=Unknown; features={kind=PN,
rule=Unknown}; start=NodeImpl: id=0; offset=0; end=NodeImpl:
id=1; offset=4

 AnnotationImpl: id=25; type=SpaceToken; features
={kind=space, length=1, string= }; start=NodeImpl: id=25;
offset=73; end=NodeImpl: id=26; offset=74

 AnnotationImpl: id=56; type=Unknown; features={kind=PN,
rule=Unknown}; start=NodeImpl: id=34; offset=92; end=NodeImpl:
id=35; offset=94

 AnnotationImpl: id=5; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=5; offset=15; end=NodeIm
pl: id=6; offset=16

 AnnotationImpl: id=15; type=SpaceToken; features
={kind=space, length=1, string= }; start=NodeImpl: id=15;
offset=46; end=NodeImpl: id=16; offset=47

 AnnotationImpl: id=79; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[79, 78, 75,
76, 77, 74]}; start=NodeImpl: id=31; offset=86; end=NodeImpl:
id=38; offset=100

 AnnotationImpl: id=43; type=Sentence; features={};
start=NodeImpl: id=0; offset=0; end=NodeImpl: id=39; offset=101

 AnnotationImpl: id=16; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=6, string=PUBLIC};
start=NodeImpl:id=16; offset=47; end=NodeImpl: id=17; offset=53

 AnnotationImpl: id=48; type=Unknown; features={kind=PN,
rule=Unknown}; start=NodeImpl: id=4; offset=11; end=NodeImpl:
id=5; offset=15

 AnnotationImpl: id=80; type=car; features
={idAnnotationType=car_reg, rule=car_no_reg0, kind=car};
start=NodeImpl: id=32; offset=87; end=NodeImpl: id=33; offset=91

 AnnotationImpl: id=73; type=car; features={kind=car,
rule=car_no_reg0, idAnnotationType=car_reg, matches=[72, 73]};
start=NodeImpl: id=31; offset=86; end=NodeImpl: id=33; offset=91

 AnnotationImpl: id=41; type=Lookup; features
={majorType=OpIntelautzx, minorType=model}; start=NodeImpl:
id=32; offset=87; end=NodeImpl: id=33; offset=91

 AnnotationImpl: id=70; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[71, 70, 69]};
start=NodeImpl: id=30; offset=82; end=NodeImpl: id=38;
offset=100

 AnnotationImpl: id=14; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=12, string=PERSEVERANCE};
start=NodeImpl: id=14; offset=34; end=NodeImpl: id=15; offset=46

 AnnotationImpl: id=83; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[83, 82, 84]};
start=NodeImpl: id=32; offset=87; end=NodeImpl: id=38;
offset=100

 AnnotationImpl: id=47; type=Unknown; features={kind=PN,
rule=Unknown}; start=NodeImpl: id=2; offset=5; end=NodeImpl:
id=3; offset=10

 AnnotationImpl: id=75; type=car; features={kind=car, rule
=new_car0, idAnnotationType=car_reg, matches=[79, 78, 75, 76,
77, 74]}; start=NodeImpl: id=31; offset=86; end=NodeImpl:
id=38; offset=100

 AnnotationImpl: id=18; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=5, string=HOUSE};
start=NodeImpl:id=18; offset=54; end=NodeImpl: id=19; offset=59

 AnnotationImpl: id=66; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[65, 66, 64]};
start=NodeImpl: id=29; offset=81; end=NodeImpl: id=38;
offset=100

 AnnotationImpl: id=12; type=Token; features={category=DT,
kind=word, orth=allCaps, length=3, string=THE}; start=NodeImpl:
id=12; offset=30; end=NodeImpl: id=13; offset=33

 AnnotationImpl: id=17; type=SpaceToken;
features={kind=space, length=1, string= }; start=NodeImpl:
id=17; offset=53; end=NodeImpl: id=18; offset=54

225

 AnnotationImpl: id=13; type=SpaceToken; features
={kind=space, length=1, string= }; start=NodeImpl: id=13;
offset=33; end=NodeImpl: id=14; offset=34

 AnnotationImpl: id=77; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[79, 78, 75,
76, 77, 74]}; start=NodeImpl: id=31; offset=86; end=NodeImpl:
id=38; offset=100

 AnnotationImpl: id=84; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[83, 82, 84]};
start=NodeImpl: id=32; offset=87; end=NodeImpl: id=38;
offset=100

 AnnotationImpl: id=37; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=3, string=QWC}; start=NodeImpl:
id=37; offset=97; end=NodeImpl: id=38; offset=100

 AnnotationImpl: id=51; type=Unknown; features={kind=PN,
rule=Unknown}; start=NodeImpl: id=14; offset=34; end=NodeImpl:
id=15; offset=46

 AnnotationImpl: id=8; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=3, string=OUT}; start=NodeImpl:
id=8; offset=23; end=NodeImpl: id=9; offset=26

 AnnotationImpl: id=40; type=Lookup; features
={majorType=OpIntelautzx, minorType=manufacturer};
start=NodeImpl: id=30; offset=82; end=NodeImpl: id=31; offset=86

 AnnotationImpl: id=72; type=car; features={kind=car,
rule=car_no_reg0, idAnnotationType=car_reg, matches=[72, 73]};
start=NodeImpl: id=31; offset=86; end=NodeImpl: id=33; offset=91

 AnnotationImpl: id=49; type=Unknown; features={kind=PN,
rule=Unknown}; start=NodeImpl: id=6; offset=16; end=NodeImpl:
id=7; offset=22

 AnnotationImpl: id=71; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[71, 70, 69]};
start=NodeImpl: id=30; offset=82; end=NodeImpl: id=38;
offset=100

 AnnotationImpl: id=22; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=3, string=OFF}; start=NodeImpl:
id=22; offset=67; end=NodeImpl: id=23; offset=70

 AnnotationImpl: id=9; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=9; offset=26;
end=NodeImpl: id=10; offset=27

 AnnotationImpl: id=21; type=SpaceToken;
features={kind=space, length=1, string= }; start=NodeImpl:
id=21; offset=66; end=NodeImpl: id=22; offset=67

 AnnotationImpl: id=78; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[79, 78, 75,
76, 77, 74]}; start=NodeImpl: id=31; offset=86; end=NodeImpl:
id=38; offset=100

 AnnotationImpl: id=52; type=Unknown; features={kind=PN,
rule=Unknown}; start=NodeImpl: id=16; offset=47; end=NodeImpl:
id=17; offset=53

 AnnotationImpl: id=42; type=Split; features={kind=internal};
start=NodeImpl: id=38; offset=100; end=NodeImpl: id=39; offset=1
01

 AnnotationImpl: id=90; type=car; features
={idAnnotationType=car_reg, rule=new_car0, kind=car};
start=NodeImpl: id=34; offset=92; end=NodeImpl: id=38;
offset=100

 AnnotationImpl: id=19; type=SpaceToken; features
={kind=space, length=1, string= }; start=NodeImpl: id=19;
offset=59; end=NodeImpl: id=20; offset=60

 AnnotationImpl: id=11; type=SpaceToken;
features={kind=space, length=1, string= }; start=NodeImpl:
id=11; offset=29; end=NodeImpl: id=12; offset=30

 AnnotationImpl: id=50; type=Unknown; features={kind=PN,
rule=Unknown}; start=NodeImpl: id=8; offset=23; end=NodeImpl:
id=9; offset=26

 AnnotationImpl: id=91; type=car_reg; features={kind=car_reg,
rue=REGISTRATION_MARK, estestStore=yes,

226

idAnnotationType=car_reg}; start=NodeImpl: id=34; offset=92;
end=NodeImpl: id=38; offset=100

 AnnotationImpl: id=39; type=Lookup; features
={majorType=OpIntelautzx, minorType=colour}; start=NodeImpl:
id=28; offset=76; end=NodeImpl: id=29; offset=81

 AnnotationImpl: id=89; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[87, 86, 85,
88, 89]}; start=NodeImpl: id=33; offset=91; end=NodeImpl: id=38;
offset=100

 AnnotationImpl: id=20; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=6, string=DRIVES};
start=NodeImpl:id=20; offset=60; end=NodeImpl: id=21; offset=66

 AnnotationImpl: id=10; type=Token; features={category=IN,
kind=word, orth=allCaps, length=2, string=OF}; start=NodeImpl:
id=10; offset=27; end=NodeImpl: id=11; offset=29

 AnnotationImpl: id=0; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=4, string=TONY}; start=NodeImpl:
id=0; offset=0; end=NodeImpl: id=1; offset=4

 AnnotationImpl: id=69; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[71, 70, 69]};
start=NodeImpl: id=30; offset=82; end=NodeImpl: id=38;
offset=100

 The total concept counts in the DB:
 Concept: car_reg, count: 142
 Concept: op_intel, count: 3
 Concept: manufacturer, count: 3
 Concept: colour_colour, count: 22
 Concept: colour, count: 22
 Concept: model_model, count: 11
 Concept: Resource, count: 0
 Concept: pub, count: 0
 Concept: op_intel_pc, count: 1
 Concept: op_intel_report_id, count: 3
 Concept: car, count: 142
 Concept: opIntel, count: 0
 Concept: op_intel_intel, count: 3
 Concept: model, count: 11
 Concept: manufacturer_manufacturer, count: 3

 Checking for annotations that are subsumed by another of the
same type.
 Replacing subsumed annotation 86 with 62
 Replacing subsumed annotation 59 with 62
 Replacing subsumed annotation 68 with 62
 Replacing subsumed annotation 82 with 62
 Replacing subsumed annotation 63 with 62
 Replacing subsumed annotation 64 with 62
 Replacing subsumed annotation 76 with 62
 Replacing subsumed annotation 80 with 62
 Replacing subsumed annotation 73 with 62
 Replacing subsumed annotation 70 with 62
 Replacing subsumed annotation 90 with 62
 Replacing subsumed annotation 86 with 82
 Replacing subsumed annotation 86 with 64
 Replacing subsumed annotation 86 with 76
 Replacing subsumed annotation 86 with 70
 Replacing subsumed annotation 90 with 86
 Replacing subsumed annotation 68 with 59
 Replacing subsumed annotation 63 with 59
 Replacing subsumed annotation 80 with 59
 Replacing subsumed annotation 73 with 59
 Replacing subsumed annotation 68 with 63
 Replacing subsumed annotation 68 with 64
 Replacing subsumed annotation 80 with 68
 Replacing subsumed annotation 73 with 68
 Replacing subsumed annotation 68 with 70
 Replacing subsumed annotation 82 with 64
 Replacing subsumed annotation 82 with 76
 Replacing subsumed annotation 80 with 82
 Replacing subsumed annotation 82 with 70
 Replacing subsumed annotation 90 with 82
 Replacing subsumed annotation 63 with 64
 Replacing subsumed annotation 80 with 63
 Replacing subsumed annotation 73 with 63
 Replacing subsumed annotation 76 with 64
 Replacing subsumed annotation 80 with 64
 Replacing subsumed annotation 73 with 64
 Replacing subsumed annotation 70 with 64
 Replacing subsumed annotation 90 with 64
 Replacing subsumed annotation 80 with 76
 Replacing subsumed annotation 73 with 76
 Replacing subsumed annotation 76 with 70

227

 Replacing subsumed annotation 90 with 76
 Replacing subsumed annotation 80 with 73
 Replacing subsumed annotation 80 with 70
 Replacing subsumed annotation 73 with 70
 Replacing subsumed annotation 90 with 70

 Annotations of interest
 Annotation Details:
 Schema element = '<<car>>', value = 'GREEN FORD PUMA
UY22 QWC’, Gate ID is 62 and the ID is the value of the related
car_reg
 Schema element = '<<colour>>', value = 'GREEN', Gate ID
is 58 and the ID is the value of the related colour
 Schema element = '<<model>>', value = 'PUMA', Gate ID is
81 and the ID is the value of the related model
 Schema element = '<<manufacturer>>', value = 'FORD',
Gate ID is 67 and the ID is the value of the related
manufacturer
 Schema element = '<<car_reg>>', value = 'UY22 QWC', Gate
ID is 91 and the ID is the value of the related car_reg
 Adding annotation <<car>> [UY22 QWC]
 Adding annotation <<colour>> [GREEN]
 Adding annotation <<model>> [PUMA]
 Adding annotation <<manufacturer>> [FORD]
 Adding annotation <<car_reg>> [UY22 QWC]
 Removing templates with only one attribute...
 Template Instances Are:
 <<car>>,estestInstance8
 In buildTemplateInstances <<car>>,estestInstance8, colour
 1 templates found
 Templates are:
 Template: 4 -- <<car>>, Instance ID: estestInstance8
 Attribute: <<car_reg>>, Instance ID: UY22 QWC
 Attribute: <<colour>>, Instance ID: GREEN
 Attribute: <<manufacturer>>, Instance ID: FORD
 Attribute: <<model>>, Instance ID: PUMA

 merging template4 into5
 Set idAnnotationType to <<car_reg>>for template <<car>>
 Replacing templateInstanceId null with estestInstance8
 Comparing <<car_reg>> to <<car_reg>>

 Merging templates has found a new annotation of the template
id type <<car_reg>>, using this as the id of the template, id is
UY22 QWC
 Comparing <<colour>> to <<car_reg>>
 Comparing <<manufacturer>> to <<car_reg>>
 Comparing <<model>> to <<car_reg>>
 Changing template instance id from estestInstance8, to UY22
QWC
 mergeTemplates() is returning 1 merged templates
 1 templates after merging
 Templates are:
 Template: 5 -- <<car>>, Instance ID: UY22 QWC
 Attribute: <<car_reg>>, Instance ID: UY22 QWC
 Attribute: <<colour>>, Instance ID: GREEN
 Attribute: <<manufacturer>>, Instance ID: FORD
 Attribute: <<model>>, Instance ID: PUMA

 Checking templates for matches
 Checking template to see if it should be added or
merged....
 Template: 5 -- <<car>>, Instance ID: UY22 QWC
 Attribute: <<car_reg>>, Instance ID: UY22 QWC
 Attribute: <<colour>>, Instance ID: GREEN
 Attribute: <<manufacturer>>, Instance ID: FORD
 Attribute: <<model>>, Instance ID: PUMA

 Evidence of a match with<<car>>,<<colour>> --> IK83
OKE,GREEN, weight is 12.36%
 Evidence of a match with<<car>>,<<manufacturer>> --> LO78
HYS,FORD, weight is 1.69%
 Evidence of a match with<<car>>,<<manufacturer>> --> BD51
ABC,FORD, weight is 1.69%
 Evidence of a match with<<car>>,<<manufacturer>> --> IK83
OKE,FORD, weight is 1.69%
 Evidence of a match with<<car>>,<<manufacturer>> --> LO78
HYS,FORD, weight is 1.69%
 Evidence of a match with<<car>>,<<model>> --> BD51
ABC,PUMA, weight is 6.18%
 Match with BD51 ABC, evidence is 7.87%

228

 Match with LO78 HYS, evidence is 3.37%
 Match with IK83 OKE, evidence is 14.04%
 Best match was IK83 OKE at 14.04%

 Storing Templates.
 Storing template: <<car>>/UY22 QWC
 Storing template attribute edge
<<attribute,car,car_reg>>[2,UY22 QWC]
 Storing template attribute edge
<<attribute,car,colour>>[2,GREEN]
 Storing template attribute edge
<<attribute,car,manufacturer>>[2,FORD]
 Storing template attribute edge
<<attribute,car,model>>[2,PUMA]
 and there were none.

--

 Document to be processed by IE : 'NICHOLAS SARKOZY NOW
DRIVING BLUE CITRON 2CV CE21 FGH.'
 Attempting pronominal coreference detection.
 Pronominal Corefs is empty.

 AnnotationImpl: id=62; type=model;
features={idAnnotationType=model, rule=model, kind=model;
start=NodeImpl: id=12; offset=41; end=NodeImpl: id=14; offset=44

 AnnotationImpl: id=15; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=2, string=CE}; start=NodeImpl:
id=15; offset=45; end=NodeImpl: id=16; offset=47

 AnnotationImpl: id=30; type=Identifier; features
={rule1=Identifier1, rule2=IdentifierFinal}; start=NodeImpl:
id=15; offset=45; end=NodeImpl: id=17; offset=49

 AnnotationImpl: id=43; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[43, 41, 42,
44]}; start=NodeImpl: id=9; offset=33; end=NodeImpl: id=19;
offset=53

 AnnotationImpl: id=16; type=Token; features={string=21,
length=2, kind=number, category=CD}; start=NodeImpl: id=16;
offset=47; end=NodeImpl: id=17; offset=49

 AnnotationImpl: id=31; type=Unknown; features={kind=PN,
rule=Unknown}; start=NodeImpl: id=0; offset=0; end=NodeImpl:
id=1; offset=8

 AnnotationImpl: id=48; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[48, 49, 47,
50]}; start=NodeImpl: id=10; offset=34; end=NodeImpl: id=19;
offset=53

 AnnotationImpl: id=59; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[54, 59, 53,
60, 58, 55, 57, 56]}; start=NodeImpl: id=11; offset=40;
end=NodeImpl: id=19; offset=53

 AnnotationImpl: id=32; type=Unknown; features={kind=PN,
rule=Unknown}; start=NodeImpl: id=2; offset=9; end=NodeImpl:
id=3; offset=16

 AnnotationImpl: id=34; type=colour; features
={idAnnotationType=colour, rule=colour, kind=colour};
start=NodeImpl: id=8; offset=29; end=NodeImpl: id=9; offset=33

 AnnotationImpl: id=73; type=car; features
={idAnnotationType=car_reg, rule=new_car0, kind=car};
start=NodeImpl: id=15; offset=45; end=NodeImpl: id=19; offset=53

 AnnotationImpl: id=41; type=car; features={kind=car,
rule=known_car0, idAnnotationType=car_reg, matches=[43, 41, 42,
44]}; start=NodeImpl: id=9; offset=33; end=NodeImpl: id=19;
offset=53

 AnnotationImpl: id=70; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[71, 70, 68,
67, 69]}; start=NodeImpl: id=14; offset=44; end=NodeImpl: id=19;
offset=53

 AnnotationImpl: id=60; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[54, 59, 53,
60, 58, 55, 57, 56]}; start=NodeImpl: id=11; offset=40;
end=NodeImpl: id=19; offset=53

 AnnotationImpl: id=61; type=car; features
={idAnnotationType=car_reg, rule=car_no_reg0, kind=car};
start=NodeImpl: id=12; offset=41; end=NodeImpl: id=14; offset=44

229

 AnnotationImpl: id=1; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=1; offset=8; end=NodeImp
l: id=2; offset=9

 AnnotationImpl: id=29; type=Identifier; features
={rule1=Identifier1, rule2=IdentifierFinal}; start=NodeImpl:
id=12; offset=41; end=NodeImpl: id=14; offset=44

 AnnotationImpl: id=14; type=SpaceToken; features
={kind=space, length=1, string= }; start=NodeImpl: id=14;
offset=44; end=NodeImpl: id=15; offset=45

 AnnotationImpl: id=68; type=car; features={kind=car, rule
=new_car0, idAnnotationType=car_reg, matches=[71, 70, 68, 67,
69]}; start=NodeImpl: id=14; offset=44; end=NodeImpl: id=19;
offset=53

 AnnotationImpl: id=47; type=car; features={kind=car, rule
=known_car0, idAnnotationType=car_reg, matches=[48, 49, 47,
50]}; start=NodeImpl: id=10; offset=34; end=NodeImpl: id=19;
offset=53

 AnnotationImpl: id=58; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[54, 59, 53,
60, 58, 55, 57, 56]}; start=NodeImpl: id=11; offset=40;
end=NodeImpl: id=19; offset=53

 AnnotationImpl: id=63; type=car; features={kind=car,
rule=known_car0, idAnnotationType=car_reg, matches=[65, 63, 66,
64]}; start=NodeImpl: id=12; offset=41; end=NodeImpl: id=19;
offset=53

 AnnotationImpl: id=18; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=3, string=FGH}; start=NodeImpl:
id=18; offset=50; end=NodeImpl: id=19; offset=53

 AnnotationImpl: id=3; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=3; offset=16; end=NodeIm
pl: id=4; offset=17

 AnnotationImpl: id=66; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[65, 63, 66,
64]}; start=NodeImpl: id=12; offset=41; end=NodeImpl: id=19;
offset=53

 AnnotationImpl: id=12; type=Token; features={string=2,
length=1, kind=number, category=CD}; start=NodeImpl: id=12;
offset=41; end=NodeImpl: id=13; offset=42

 AnnotationImpl: id=44; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[43, 41, 42,
44]}; start=NodeImpl: id=9; offset=33; end=NodeImpl: id=19;
offset=53

 AnnotationImpl: id=64; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[65, 63, 66,
64]}; start=NodeImpl: id=12; offset=41; end=NodeImpl: id=19;
offset=53

 AnnotationImpl: id=17; type=SpaceToken; features
={kind=space, length=1, string= }; start=NodeImpl: id=17;
offset=49; end=NodeImpl: id=18; offset=50

 AnnotationImpl: id=2; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=7, string=SARKOZY};
start=NodeImpl: id=2; offset=9; end=NodeImpl: id=3; offset=16

 AnnotationImpl: id=13; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=2, string=CV}; start=NodeImpl:
id=13; offset=42; end=NodeImpl: id=14; offset=44

 AnnotationImpl: id=38; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[36, 39, 38,
37]}; start=NodeImpl: id=8; offset=29; end=NodeImpl: id=19;
offset=53

 AnnotationImpl: id=57; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[54, 59, 53,
60, 58, 55, 57, 56]}; start=NodeImpl: id=11; offset=40;
end=NodeImpl: id=19; offset=53

 AnnotationImpl: id=37; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[36, 39, 38,
37]}; start=NodeImpl: id=8; offset=29; end=NodeImpl: id=19;
offset=53

 AnnotationImpl: id=51; type=car; features={kind=car,
rule=car_no_reg0, idAnnotationType=car_reg, matches=[51, 52]};
start=NodeImpl: id=11; offset=40; end=NodeImpl: id=14; offset=44

230

 AnnotationImpl: id=8; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=4, string=BLUE}; start=NodeImpl:
id=8; offset=29; end=NodeImpl: id=9; offset=33

 AnnotationImpl: id=23; type=Lookup; features
={majorType=OpIntelautzx, minorType=car_reg}; start=NodeImpl:
id=15; offset=45; end=NodeImpl: id=19; offset=53

 AnnotationImpl: id=40; type=car; features
={idAnnotationType=car_reg, rule=car_no_reg0, kind=car};
start=NodeImpl: id=9; offset=33; end=NodeImpl: id=14; offset=44

 AnnotationImpl: id=72; type=car_reg; features
={idAnnotationType=car_reg, rule=car_reg, kind=car_reg};
start=NodeImpl: id=15; offset=45; end=NodeImpl: id=19; offset=53

 AnnotationImpl: id=35; type=car; features
={idAnnotationType=car_reg, rule=car_no_reg0, kind=car};
start=NodeImpl: id=8; offset=29; end=NodeImpl: id=14; offset=44

 AnnotationImpl: id=7; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=7; offset=28; end=NodeIm
pl: id=8; offset=29

 AnnotationImpl: id=71; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[71, 70, 68,
67, 69]}; start=NodeImpl: id=14; offset=44; end=NodeImpl: id=19;
offset=53

 AnnotationImpl: id=54; type=car; features={kind=car,
rule=known_car0, idAnnotationType=car_reg, matches=[54, 59, 53,
60, 58, 55, 57, 56]}; start=NodeImpl: id=11; offset=40;
end=NodeImpl:id=19; offset=53

 AnnotationImpl: id=49; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[48, 49, 47,
50]}; start=NodeImpl: id=10; offset=34; end=NodeImpl: id=19;
offset=53

 AnnotationImpl: id=22; type=Lookup; features
={majorType=OpIntelautzx, minorType=model}; start=NodeImpl:
id=12; offset=41; end=NodeImpl: id=14; offset=44

 AnnotationImpl: id=53; type=car; features={kind=car,
rule=known_car0, idAnnotationType=car_reg, matches=[54, 59, 53,
60, 58, 55, 57, 56]}; start=NodeImpl: id=11; offset=40;
end=NodeImpl: id=19; offset=53

 AnnotationImpl: id=9; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=9; offset=33; end=NodeIm
pl: id=10; offset=34

 AnnotationImpl: id=65; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[65, 63, 66,
64]}; start=NodeImpl: id=12; offset=41; end=NodeImpl: id=19;
offset=53

 AnnotationImpl: id=21; type=Lookup; features
={majorType=OpIntelautzx, minorType=manufacturer};
start=NodeImpl: id=10; offset=34; end=NodeImpl: id=11; offset=40

 AnnotationImpl: id=33; type=Unknown; features={kind=PN,
rule=Unknown}; start=NodeImpl: id=6; offset=21; end=NodeImpl:
id=7; offset=28

 AnnotationImpl: id=6; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=7, string=DRIVING};
start=NodeImpl:id=6; offset=21; end=NodeImpl: id=7; offset=28

 AnnotationImpl: id=52; type=car; features={kind=car,
rule=car_no_reg0, idAnnotationType=car_reg, matches=[51, 52]};
start=NodeImpl: id=11; offset=40; end=NodeImpl: id=14; offset=44

 AnnotationImpl: id=24; type=Lookup; features=
{majorType=OpIntelautzx, minorType=car}; start=NodeImpl: id=15;
offset=45; end=NodeImpl: id=19; offset=53

 AnnotationImpl: id=42; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[43, 41, 42,
44]}; start=NodeImpl: id=9; offset=33; end=NodeImpl: id=19;
offset=53

 AnnotationImpl: id=4; type=Token; features={category=RB,
kind=word, orth=allCaps, length=3, string=NOW}; start=NodeImpl:
id=4; offset=17; end=NodeImpl: id=5; offset=20

231

 AnnotationImpl: id=19; type=Token; features={string=.,
length=1, kind=punctuation, category=.}; start=NodeImpl: id=19;
offset=53; end=NodeImpl: id=20; offset=54

 AnnotationImpl: id=36; type=car; features={kind=car,
rule=known_car0, idAnnotationType=car_reg, matches=[36, 39, 38,
37]}; start=NodeImpl: id=8; offset=29; end=NodeImpl: id=19;
offset=53

 AnnotationImpl: id=55; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[54, 59, 53,
60, 58, 55, 57, 56]}; start=NodeImpl: id=11; offset=40;
end=NodeImpl: id=19; offset=53

 AnnotationImpl: id=26; type=Sentence; features={};
start=NodeImpl: id=0; offset=0; end=NodeImpl: id=20; offset=54

 AnnotationImpl: id=11; type=SpaceToken; features
={kind=space, length=1, string= }; start=NodeImpl: id=11;
offset=40; end=NodeImpl: id=12; offset=41

 AnnotationImpl: id=67; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[71, 70, 68,
67, 69]}; start=NodeImpl: id=14; offset=44; end=NodeImpl: id=19;
offset=53

 AnnotationImpl: id=50; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[48, 49, 47,
50]}; start=NodeImpl: id=10; offset=34; end=NodeImpl: id=19;
offset=53

 AnnotationImpl: id=39; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[36, 39, 38,
37]}; start=NodeImpl: id=8; offset=29; end=NodeImpl: id=19;
offset=53

 AnnotationImpl: id=45; type=manufacturer; features
={idAnnotationType=manufacturer, rule=manufacturer,
kind=manufacturer}; start=NodeImpl: id=10; offset=34;
end=NodeImpl: id=11; offset=40

 AnnotationImpl: id=74; type=car_reg; features={kind=car_reg,
rule=REGISTRATION_MARK, estestStore=yes, idAnnotationType=car_re
g}; start=NodeImpl: id=15; offset=45; end=NodeImpl: id=19;
offset=53

AnnotationImpl: id=20; type=Lookup; features

={majorType=OpIntelautzx, minorType=colour}; start=NodeImpl:
id=8; offset=29; end=NodeImpl: id=9; offset=33

 AnnotationImpl: id=46; type=car; features
={idAnnotationType=car_reg, rule=car_no_reg0, kind=car};
start=NodeImpl: id=10; offset=34; end=NodeImpl: id=14; offset=44

 AnnotationImpl: id=25; type=Split; features={kind=internal};
start=NodeImpl: id=19; offset=53; end=NodeImpl: id=20; offset=54

 AnnotationImpl: id=56; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[54, 59, 53,
60, 58, 55, 57, 56]}; start=NodeImpl: id=11; offset=40;
end=NodeImpl: id=19; offset=53

 AnnotationImpl: id=10; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=6, string=CITRON};
start=NodeImpl:id=10; offset=34; end=NodeImpl: id=11; offset=40

 AnnotationImpl: id=5; type=SpaceToken; features={kind=space,
length=1, string= }; start=NodeImpl: id=5; offset=20; end=NodeIm
pl: id=6; offset=21

 AnnotationImpl: id=69; type=car; features={kind=car,
rule=new_car0, idAnnotationType=car_reg, matches=[71, 70, 68,
67, 69]}; start=NodeImpl: id=14; offset=44; end=NodeImpl: id=19;
offset=53

 AnnotationImpl: id=0; type=Token; features={category=NNP,
kind=word, orth=allCaps, length=8, string=NICHOLAS};
start=NodeImpl: id=0; offset=0; end=NodeImpl: id=1; offset=8

 The total concept counts in the DB:
 Concept: car_reg, count: 143
 Concept: op_intel, count: 3
 Concept: manufacturer, count: 3
 Concept: colour_colour, count: 22
 Concept: colour, count: 22
 Concept: model_model, count: 11
 Concept: Resource, count: 0
 Concept: pub, count: 0

232

 Concept: op_intel_pc, count: 1
 Concept: op_intel_report_id, count: 3
 Concept: car, count: 143
 Concept: opIntel, count: 0
 Concept: op_intel_intel, count: 3
 Concept: model, count: 11
 Concept: manufacturer_manufacturer, count: 3

 Checking for annotations that are subsumed by another of the
same type.
 Replacing subsumed annotation 48 with 43
 Replacing subsumed annotation 59 with 43
 Replacing subsumed annotation 73 with 43
 Replacing subsumed annotation 70 with 43
 Replacing subsumed annotation 61 with 43
 Replacing subsumed annotation 63 with 43
 Replacing subsumed annotation 43 with 38
 Replacing subsumed annotation 51 with 43
 Replacing subsumed annotation 40 with 43
 Replacing subsumed annotation 46 with 43
 Replacing subsumed annotation 59 with 48
 Replacing subsumed annotation 73 with 48
 Replacing subsumed annotation 70 with 48
 Replacing subsumed annotation 61 with 48
 Replacing subsumed annotation 63 with 48
 Replacing subsumed annotation 48 with 38
 Replacing subsumed annotation 51 with 48
 Replacing subsumed annotation 46 with 48
 Replacing subsumed annotation 73 with 59
 Replacing subsumed annotation 70 with 59
 Replacing subsumed annotation 61 with 59
 Replacing subsumed annotation 63 with 59
 Replacing subsumed annotation 59 with 38
 Replacing subsumed annotation 51 with 59
 Replacing subsumed annotation 73 with 70
 Replacing subsumed annotation 73 with 63
 Replacing subsumed annotation 73 with 38
 Replacing subsumed annotation 70 with 63
 Replacing subsumed annotation 70 with 38
 Replacing subsumed annotation 61 with 63
 Replacing subsumed annotation 61 with 38
 Replacing subsumed annotation 61 with 51
 Replacing subsumed annotation 61 with 40
 Replacing subsumed annotation 61 with 35

 Replacing subsumed annotation 61 with 46
 Replacing subsumed annotation 63 with 38
 Replacing subsumed annotation 51 with 38
 Replacing subsumed annotation 40 with 38
 Replacing subsumed annotation 35 with 38
 Replacing subsumed annotation 46 with 38
 Replacing subsumed annotation 51 with 40
 Replacing subsumed annotation 51 with 35
 Replacing subsumed annotation 51 with 46
 Replacing subsumed annotation 40 with 35
 Replacing subsumed annotation 46 with 40
 Replacing subsumed annotation 46 with 35

 Annotations of interest
 Annotation Details:
 Schema element = '<<model>>', value = '2CV', Gate ID is
62 and the ID is the value of the related model
 Schema element = '<<colour>>', value = 'BLUE', Gate ID
is 34 and the ID is the value of the related colour
 Schema element = '<<car>>', value = 'BLUE CITRON 2CV
CE21 FGH', Gate ID is 38 and the ID is the value of the related
car_reg
 Schema element = '<<car_reg>>', value = 'CE21 FGH', Gate
ID is 72 and the ID is the value of the related car_reg
 Schema element = '<<manufacturer>>', value = 'CITRON',
Gate ID is 45 and the ID is the value of the related
manufacturer
 Adding annotation <<model>> [2CV]
 Adding annotation <<colour>> [BLUE]
 Adding annotation <<car>> [CE21 FGH]
 Adding annotation <<car_reg>> [CE21 FGH]
 Adding annotation <<manufacturer>> [CITRON]
 Removing templates with only one attribute...
 Template Instances Are:
 <<car>>,estestInstance15
 In buildTemplateInstances <<car>>,estestInstance15, model
 1 templates found
 Templates are:
 Template: 6 -- <<car>>, Instance ID: estestInstance15

 Attribute: <<car_reg>>, Instance ID: CE21 FGH
 Attribute: <<colour>>, Instance ID: BLUE
 Attribute: <<manufacturer>>, Instance ID: CITRON
 Attribute: <<model>>, Instance ID: 2CV

233

 merging template6 into7
 Set idAnnotationType to <<car_reg>>for template <<car>>
 Replacing templateInstanceId null with estestInstance15
 Comparing <<car_reg>> to <<car_reg>>
 Merging templates has found a new annotation of the template
id type <<car_reg>>, using this as the id of the template, id is
CE21 FGH
 Comparing <<colour>> to <<car_reg>>
 Comparing <<manufacturer>> to <<car_reg>>
 Comparing <<model>> to <<car_reg>>
 Changing template instance id from estestInstance15, to CE21
FGH
 mergeTemplates() is returning 1 merged templates
 1 templates after merging
 Templates are:
 Template: 7 -- <<car>>, Instance ID: CE21 FGH
 Attribute: <<car_reg>>, Instance ID: CE21 FGH
 Attribute: <<colour>>, Instance ID: BLUE
 Attribute: <<manufacturer>>, Instance ID: CITRON
 Attribute: <<model>>, Instance ID: 2CV

 Checking templates for matches
 Checking template to see if it should be added or
merged....
 Template: 7 -- <<car>>, Instance ID: CE21 FGH
 Attribute: <<car_reg>>, Instance ID: CE21 FGH
 Attribute: <<colour>>, Instance ID: BLUE
 Attribute: <<manufacturer>>, Instance ID: CITRON
 Attribute: <<model>>, Instance ID: 2CV

 Evidence of a match with<<car>>,<<car_reg>> --> CE21
FGH,CE21 FGH, weight is 79.89%
 Contradiction with existing edge: <<car>>,<<colour>> -->
CE21 FGH, the annotation attribute is BLUE while the db
attribute is RED evidence is-12.29%
 Evidence of a match with<<car>>,<<colour>> --> BD51
ABC,BLUE, weight is 12.29%
 Evidence of a match with<<car>>,<<manufacturer>> --> CE21
FGH, CITRON, weight is 1.68%
 Evidence of a match with<<car>>,<<model>> --> CE21
FGH,2CV, weight is 6.15%
 Match with BD51 ABC, evidence is 12.29%

 Match with CE21 FGH, evidence is 75.42%
 Best match was CE21 FGH at 75.42%
 Found match with more than 50% likelyhood CE21 FGH,
evidence: 75.42%

 Storing Templates.
 Storing template: <<car>>/CE21 FGH
 Storing template attribute edge
<<attribute,car,car_reg>>[3,CE21 FGH]
 Storing template attribute edge
<<attribute,car,colour>>[3,BLUE]
 Storing template attribute edge
<<attribute,car,manufacturer>>[3,CITRON]
 Storing template attribute edge
<<attribute,car,model>>[3,2CV]
 and there were none.
 Closing debug log file.

 234

List of Acronyms List of Acronyms

Abstract Syntax Graph (ASG), 56

Both-As-View (BAV), 26

Central Intelligence Agency (CIA), 40

Database Management Systems (DBMS), 20

Data Source Repository (DSR), 59

ESTEST Data Model (EDM), 70

ESTEST Metadata Repository (EMR), 74

Experimental System To Extract Structure from Text (ESTEST), 18

General Architecture for Text Engineering (GATE), 36

Global-As-View (GAV), 26

Global-Local-As-View (GLAV), 26

Graphical User Interface (GUI), 47

Hypergraph Data Model (HDM), 25

Information Extraction (IE), 16

Information Retrieval (IR), 15

Intermediate Query Language (IQL), 45

Java Annotation Patterns Engine (JAPE), 153

Java WordNet Library (JWNL), 74

Local-As-View (LAV), 26

Model Definition Repository (MDR), 59

Message Understanding Conference series (MUC), 33

National Institute of Standards and Technology (NIST), 40

Natural Language Processing (NLP), 15

Resource Description Framework (RDF), 25

Resource Description Framework Schema (RDFS), 47

235

Road Traffic Accidents (RTA), 87

Schemas & Transformations Repository (STR), 45

Uniform Resource Identifier (URI), 48

Unstructured Information Management Architecture (UIMA), 36

236

Glossary Glossary

anaphora resolution

Linguistics task consisting of identifying references in text to some previously

mentioned item.

annotation

In IE, the result of running a processing resource is a set of annotations over

the text. Each annotation has a start and an end position in the text, it has a

type, and may have features.

annotation chains

Where coreference detection has found annotations referring to the same

entity, these are linked into annotation chains.

binary-relational data model

In this data model, every real-world concept of interest is an entity type and

associations between entity types are modelled by binary relationships

both-as-view (BAV)

Data integration approach based on the use of reversible sequences of

primitive schema transformations, termed pathways.

coreference detection (or coreference annotation)

NLP task which determines when some text contains multiple references to

the same entity.

data integration

A unified view of data is provided over a number of data sources each of which

may be structured according to different data models.

ESTEST data model (EDM)

Data model used by ESTEST which defines other data models in terms of

concepts, attributes and an isA hierarchy.

ESTEST metadata repository (EMR)

237

AutoMed repository for the schema element metadata extracted from data

sources by ESTEST, such as word forms and type information.

global-as-view (GAV)

Data integration approach where the global schema is defined as a set of views

over the data sources.

global-local-as-view (GLAV)

Variation of LAV which combines the expressive power of GAV and LAV.

hypergraph data model (HDM)

Graph-based data model used in the AutoMed system.

information extraction (IE)

A branch of NLP where pre-defined entitles are extracted from text.

information retrieval (IR)

A collection of documents is examined and, with respect to a user query, an

ordered list of potentially relevant documents is found.

java annotation patterns engine (JAPE)

GATE component which provides finite state transduction over annotations

based on regular expressions.

language engineering

Application of a software engineering approach to the development of NLP

applications e.g. to promote reuse of components.

local-as-view (LAV)

Data integration approach where the global schema is independently created

and each source is defined as a set of views over the global schema.

model definition repository (MDR)

AutoMed repository for holding the HDM specifications of the constructs of

each high-level modelling language.

named entity recognition

IE task to identify proper names in text and to annotate the matching text.

238

natural language processing (NLP)

Field of computer science where knowledge of language is used to

automatically process text.

partially structured data

Information consisting partly of some structured data conforming to a

schema and partly of information left as free text.

pronominal coreference

Coreference detection for pronouns such as “I”, “me”, “my” and “yourself”.

proper names coreference

Coreference detection for proper names such as “IBM” or “Big Blue” (also

known as orthographic coreference).

resource description framework (RDF)

World Wide Web Consortium specification for a metadata model, and

component of the Semantic Web.

resource description framework schema (RDFS)

Type system for RDF which can be used to define a domain in terms of a set of

specific classes and properties.

sentence splitter

IE component which divides text into sentences.

schema matching

Data integration task — given a set of data sources, identify correspondences

between pairs of elements in their schemas, as a prerequisite to defining

mappings.

schemas & transformations repository (STR)

Repository in AutoMed storing the definitions of source, intermediate and

integrated schemas, and the pathways between them.

semantic web

239

Tim Berners-Lee’s vision of extending the world wide web content to be able

to be processed by computers as well as humans.

template

Concepts in ESTEST’s global schema which have attributes are used to create

templates to be filled in by the IE process.

text mining

Uses information retrieval or summarisation to transform a text corpus into a

structured dataset for further data mining.

tokeniser

IE component which splits text into tokens, such as strings or punctuation. A

specific tokeniser is required for a language such as English, for example.

