

AN ORGANIZATION MODEL TO SUPPORT

DYNAMIC COOPERATIVE WORK AND WORKFLOW

by

Edward C. Cheng

A Thesis Submitted in Fulfilment of the Requirements for the Degree of

Doctor of Philosophy

in the

University of London

March, 2004

Department of Computer Science

Birkbeck College

ABSTRACT

The rapid growth of computer networks, along with the wide acceptance of the Internet

and Intranet (Cole 2003; Whinston et al. 2001), has pushed distributed computing into a

new era. Software developers who used to focus solely on atomic and isolated

computational models are now expanding their scope to cover group-computing

solutions as well. Numerous research efforts in collaborative computing and process

management have resulted in workflow and other automation techniques. These

attempts emphasize mainly theories regarding process modelling and concurrent activity

coordination. However, applications of these technologies in a large production

environment have faced major setbacks due to the disconnection between the conceptual

process definition and the actual complex operations of the real operating environment.

The principal problem is that organizational information is rarely, if ever,

comprehensively modelled, let alone integrated, into the process management system.

Indeed, without a flexible and extensible organization model to describe the global

resource information, it is impossible for a rapidly changing company to apply an

enterprise-wide workflow system or groupware solution to handle global assignment,

authorization, authentication, notification, and role migration.

In this thesis, we define the issues in organization modelling and review the existing

systems that are used to address these issues. We then propose a formal organization

model, namely OMM (Organization Modelling and Management), which uses a hybrid

approach (a cross between ER and OO) to capture all organizational resources available

to the enterprise. With the OMM approach, thousands of dynamically changing complex

inter-relationships between resource objects are abstracted into a handful of business

rules. Under the proposed model, an enabling service is defined to support dynamic role

resolution, task assignment, process authorization and role-based access control. OMM

not only enables large enterprises to take command of their various resources, but also

allows employees, business partners, vendors and even customers to truly collaborate

and interact with one another over an expanding and self-maintained communication

network.

A prototype of OMM has been developed and tested against a real operating

environment, namely Hitachi America, which has a total of 6,000 employees distributed

in several cities of the United States. The flexibility of OMM is further demonstrated by

modifying the said prototype to obtain a new prototype, called OMM/PS (Publish-and-

Subscribe) to support PS in an e-commerce environment. This research prototype is

used to enable an Internet-based commercial insurance company, called InsurePoint, to

conduct interactive e-commerce on the Web.

 In Remembrance of My Parents Chung-Yin and Tak-Ying Ho Cheng

Acknowledgements

I am very thankful to my supervisor Professor George Loizou, who has encouraged me

from the first day we met to complete my study and research at Birkbeck College. His

consistent guidance and suggestions have been key to the success of this work. My

thanks to Mrs. Diane Loizou for using various means to facilitate the remote

communications between Professor Loizou and myself.

My thanks to Professor Dieter Gawlick and Professor Hector Garcia-Molina who have

encouraged me to go through the PhD programme at Birkbeck College. Their numerous

discussions with me on the topic of e-commerce, publish-and-subscribe and workflow

have given me tremendous insight. I am grateful to Drs. K. L. Mannock and J. Crampton

who tirelessly read part of this manuscript, especially Chapters 4, 5 and 6, and provided

me with invaluable and much-needed suggestions.

Thanks to my wife Gem, my daughter Faith and my sons Shem and Jeshua for their

patience, understanding and prayers. Without their support I would not be able to

complete this work.

I also wish to thank my colleagues at OCT Research Laboratory, for their contribution in

refining the ideas and application of this work. My thanks are due to Thomas To, Brutus

Lo, Eddie Lo and Johnny Lo.

I gratefully acknowledge the financial support from OCT Research Laboratory and

Eguanxi, Inc. Thanks be to God for giving me creativity.

 iv

TABLE OF CONTENTS

TABLE OF CONTENTS .. v

LIST OF FIGURES .. ix

LIST OF TABLES .. xii

LIST OF ABBREVIATIONS ... xiv

CHAPTER 1 INTRODUCTION ...15

1.1 A DYNAMIC AND COLLABORATIVE COMPUTING ENVIRONMENT...16
1.2 MOTIVATION AND AIMS...17
1.3 DEFINITION OF TERMS ...20
1.4 STRUCTURE OF THE THESIS ..22

CHAPTER 2 BACKGROUND..24

2.1 INTRODUCTION ..24
2.2 ORGANIZATION MODELLING AND REENGINEERING ...25

2.2.1 Organization Analysis ..26
2.2.2 Organization Conceptual Design..27
2.2.3 Organization Design Implementation...30

2.3 ORGANIZATION MODELLING PRINCIPLES...31
2.4 GOALS OF ORGANIZATION MODELLING...33
2.5 SCOPE OF ORGANIZATION MODELLING..35
2.6 SUCCESS CRITERIA IN ORGANIZATION REENGINEERING ..36
2.7 CONCLUSION..38

CHAPTER 3 A CRITICAL ASSESSMENT OF ORGANIZATION MODELLING

APPROACHES IN EXISTING WORKFLOW MANAGEMENT SYSTEMS40

3.1 INTRODUCTION ..40
3.2 WORKFLOW MANAGEMENT SYSTEMS ...41
3.3 RUNNING EXAMPLE: A SAMPLE WORKFLOW PROCESS ...43
3.4 PREVIOUS WORK IN WORKFLOW ORGANIZATION MODELLING ...45

3.4.1 ARIS...46
3.4.2 CIMOSA ..47
3.4.3 EMS..49
3.4.4 M*OBJECT..50
3.4.5 Objectflow..51
3.4.6 SAM* ...53

3.5 DIRECTORY SERVICE BASED ORGANIZATION MODEL..55
3.5.1 X.500 and LDAP..56
3.5.2 Novell NDS ..59

 v

3.5.3 Microsoft Active Directory ..60
3.6 STANDALONE ORGANIZATION MODELLING SYSTEMS..61

3.6.1 ORM...61
3.6.2 OVAL...61
3.6.3 Other Organizational and Office Systems ..63

3.7 WEAKNESSES OF EXISTING OM SYSTEMS ...63
3.8 CONCLUSION..65

CHAPTER 4 OMM: A HYBRID MODEL FOR ORGANIZATION MODELLING..................66

4.1 INTRODUCTION ..66
4.2 AN ENTERPRISE AND ITS RESOURCES ..67
4.3 ORGANIZATIONS ..70

4.3.1 OMM Organization Partitioning ..71
4.3.2 Relationships between Organizations...74

4.4 MEMBERS AND THE INFORMATION MODEL..75
4.4.1 Object-Orientation of OMM...75
4.4.2 State Transition of OMM Members ...80
4.4.3 Transfer of Member Objects between OMM Organizations..81

4.5 VIRTUAL LINKS AND THE RELATIONSHIP MODEL ..82
4.6 AN EXAMPLE ...84
4.7 SUMMARIZED FEATURES OF OMM AND OTHER OM SYSTEMS ...87
4.8 OMM VERSUS OTHER OM SYSTEMS ..90
4.9 CONCLUSION..92

CHAPTER 5 THE POLICY-BASED RELATIONSHIP MODEL IN OMM94

5.1 INTRODUCTION ..94
5.2 VIRTUAL LINK DEFINITION ..97
5.3 APPLYING VIRTUAL LINKS TO MODEL DYNAMIC ROLES ...98
5.4 APPLYING VIRTUAL LINKS TO MODEL DYNAMIC RELATIONSHIPS...101
5.5 BI-DIRECTIONAL RELATIONSHIPS...102
5.6 TRANSITIVITY OF VIRTUAL LINKS ...103
5.7 PUBLISH-AND-SUBSCRIBE..104
5.8 AN OMM/P&S PROTOTYPE ..104
5.9 CONCLUSION..107

CHAPTER 6 ROLE RESOLUTION IN WORKFLOW MANAGEMENT SYSTEMS AND

OTHER COOPERATIVE APPLICATIONS..109

6.1 INTRODUCTION ..109
6.2 ROLE RESOLUTION IN WORKFLOW MANAGEMENT SYSTEMS...110

6.2.1 Task Assignment ..111
6.2.2 Task Authorization ...112
6.2.3 Routing Decision..114

 vi

6.3 ROLE RESOLUTION WITH OMM...115
6.4 ROLE-BASED ACCESS CONTROL ..117
6.5 CONCLUSION..119
APPENDIX 6A. JAVA CODE SEGMENT FOR ROUTING CONTROL BY USING DYNAMIC ROLES................120

CHAPTER 7 ORGANIZATION MODELLING AND REENGINEERING BY USING OMM121

7.1 INTRODUCTION ..121
7.2 BUSINESS PROCESS REENGINEERING AND ORGANIZATION REENGINEERING122
7.3 ORGANIZATION MODELLING APPROACHES AND OMM ...123

7.3.1 Information System Approach ...123
7.3.2 Object-Oriented Approach ...124
7.3.3 Petri Nets Approach ...125

7.4 COMMON TECHNIQUES IN ORGANIZATION REENGINEERING ..126
7.4.1 OR Modularization...126
7.4.2 OR Decentralization ...128
7.4.3 Bottom-Up Analysis in Organization Reengineering...129
7.4.4 Top-Down Analysis in Organization Reengineering ...130

7.5 CONCLUSION..132

CHAPTER 8 CONCURRENCY CONTROL ..133

8.1 INTRODUCTION ..133
8.2 BACKGROUND..134

8.2.1 Database Systems ...134
8.2.2 Transactions..135
8.2.3 Commit and Abort..136

8.3 CONCURRENT ACCESS TO SHARED OMM OBJECTS...138
8.4 DEADLOCK DETECTION ...140
8.5 DEADLOCK AVOIDANCE AND RESOLUTION..142
8.6 CRASH AND RECOVERY ...143
8.7 CONCLUSION..145

CHAPTER 9 IMPLEMENTATION EXPERIMENTS AND APPLICATIONS OF THE OMM

PROTOTYPE SYSTEM..147

9.1 THE OMM PROTOTYPE SYSTEM ARCHITECTURE ..148
9.2 USER INTERFACE FOR DEFINING AND MANIPULATING ORGANIZATIONAL OBJECTS150

9.2.1 Application Programming Interface ...150
9.2.2 Graphical User Interface ..151

9.3 DOMAIN UUID AND NAMING CONVENTION ..153
9.4 INFORMATION EXCHANGE WITH EXISTING DATABASES...154

9.4.1 Generic Database Schema for Mapping Existing Databases to OMM.............................154
9.4.2 Mapping Agent Applications ...155

9.5 MAPPING THE OMM DATABASE SCHEMA TO OTHER RELATIONAL DATABASE SCHEMAS156

 vii

9.6 MAPPING OMM OBJECTS TO X.500 DIRECTORY OBJECTS..157
9.6.1 The X.500 Directory Model ...158
9.6.2 Using OMM Organizations to Model DIT...160
9.6.3 Using OMM Objects to Implement X.500 Objects ..161
9.6.4 Using X.500 to Implement OMM Conceptual Entities ..163
9.6.5 Other Considerations..165

9.7 APPLICATION OF THE OMM PROTOTYPE SYSTEM IN INDUSTRY ..166
9.7.1 An OMM Prototype System to Support Enterprise Modelling in Hitachi, America........166
9.7.2 OMM Organization Definitions ...167
9.7.3 Organizational Relationship Modelling..169
9.7.4 Using Virtual Links to Support Workflow...169

9.8 CONCLUSION..170

CHAPTER 10 CONCLUDING REMARKS AND FURTHER RESEARCH172

10.1 ORGANIZATION MODELLING PRINCIPLES...173
10.2 REVIEW OF AIMS AND ACCOMPLISHMENTS..175

10.2.1 Scalability...175
10.2.2 Extensibility..176
10.2.3 Flexibility ...176
10.2.4 Performance..176

10.3 FURTHER WORK ..177

APPENDIX A: JAVADOC LISTING OF THE OMM API ..180

A. 1 OMSOBJECT...180
A. 2 OMSORGANIZATION ..182
A. 3 OMSMEMBER...190
A. 4 OMSVIRTUALLINK...200

APPENDIX B: CLASS DIAGRAMS OF OMM CONCEPTUAL ENTITIES204

REFERENCES...211

 viii

LIST OF FIGURES

Figure 2-1 The Organization Reengineering Cycle..25

Figure 2-2 Implementation Design Phase Overall Architecture.......................................31

Figure 3-1 Different Components of a Workflow Management System..........................42

Figure 3-2 Electronic Parts Ordering Process...43

Figure 3-3 Company Resources Exist in a Hierarchy...44

Figure 3-4 ARIS Architecture...46

Figure 3-5 User's View of the X.500 Directory Service...57

Figure 3-6 Distributed Directory Service ...57

Figure 3-7 A Sample Directory Information Tree ..58

Figure 4-1 The ER Component of the OMM Model ..69

Figure 4-2 The OO Component of the OMM Model ...69

Figure 4-3 Diagram of the OMM Model ..70

Figure 4-4 Horizontal and Vertical Partitioning of Enterprise Resources in OMM.........72

Figure 4-5 Relationships between OMM Organizations ..74

Figure 4-6 OMM Conceptual Entities Correspond to OO Concepts................................76

Figure 4-7 Hierarchy of the OMM Member ..77

Figure 4-8 Supported Value Constraints in OMM ...80

Figure 4-9 State Diagram of OMM Members ..81

Figure 4-10 Digraph Showing Relationships Between Resources Using Virtual Links ..84

Figure 4-11 An Enterprise Composed of Three OMM Organizations85

 ix

Figure 4-12 Relationships Between OMM Organizations ...85

Figure 4-13 Three Members Exist in the EMPLOYEE OMM Organization...................85

Figure 4-14 OMM Separates the Role and Organization Models91

Figure 5-1 OMM Relationship Graph Showing Reverse Relationships.........................103

Figure 5-2 The Supervisor Relationship Showing the Transitivity Property103

Figure 5-3 OMM/P&S Organizations for InsurePoint ...105

Figure 6-1 Life Cycle States and State Transitions of Workflow Objects111

Figure 6-2 A Workflow Routing Decision Which Requires Role Resolution114

Figure 7-1 The Business Process Reengineering Cycle ...123

Figure 7-2 An Example of a Petri Net ..125

Figure 7-3 An Example of Merging Two OMM Organizations.....................................127

Figure 7-4 Different Ways to Logically Connect OMM Organizations.........................128

Figure 7-5 Bottom-Up Organization Reengineering Method...130

Figure 7-6 Top-Down Organization Reengineering Method ...131

Figure 8-1 A Database Program to Withdraw Money from a Bank Account137

Figure 8-2 An Example of Conflict on the Object Level but not on Data Level............139

Figure 8-3 An Example of Concurrent Accesses without Conflict on Object Level139

Figure 9-1 The OMM Run-time System Architecture..149

Figure 9-2 The OMM Prototype System Software Architecture....................................149

Figure 9-3 A Relationship Graph Displayed in Organization Chart Format..................152

Figure 9-4 Pop-up Window Showing Member Attributes with the Web Interface........152

Figure 9-5 An OMM Mapping Agent Application...156

 x

Figure 9-6 Mapping RDBMS Column Names to OMM Attributes157

Figure 9-7 A Sample DIT ...159

Figure 9-8 Sample Corporation Tree Modelled by OMM..161

Figure 9-9 Partitioned OMM Organizations...163

Figure 9-10 A Sample Corporation with Groups and Relationships Modelled by OMM

...164

Figure 9-11 OMM Organizations Defined for Hitachi America167

Figure 9-12 Vacation Request Process ..170

Figure B-1 Class Diagram of OMM Classes in the Client Package...............................206

Figure B-2 Class Diagram of OMM Classes in the Common Package..........................207

Figure B-3 Class Diagram of OMM Classes in the Db Package....................................208

Figure B-4 Class Diagram of OMM Classes in the DbRel Package209

Figure B-5 Class Diagram of OMM Classes in the Server Package210

 xi

LIST OF TABLES

Table 4-1 Sample Attributes for OMM Organizations...71

Table 4-2 Syntax of OMM Member Attribute...79

Table 4-3 Supported Data Types in OMM ...79

Table 4-4 Examples of Organizational Resources Going Through Life Cycle81

Table 4-5 Attribute Definition of the DIVISION OMM Organization86

Table 4-6 Attribute Definition of the DEPARTMENT OMM Organization86

Table 4-7 Attribute Definition of the EMPLOYEE OMM Organization.........................86

Table 4-8 Organization Modelling Features of OMM..87

Table 4-9 Organization Modelling Features of WFMS..89

Table 4-10 Organization Modelling Features of Directory Services Systems89

Table 4-11 Organization Modelling Features of Stand-alone OM Systems.....................90

Table 5-1 The Syntax of an OMM Virtual Link...97

Table 5-2 Attribute Definitions of InsurePoint Organizations106

Table 6-1 Operations Available on Workflow Objects ..113

Table 6-2 Pseudo-code Program Segment for Routing Decision of Process Order115

Table 6-3 Syntax of Control Statement in Workflow Step Definition116

Table 6-4 Expanding Roles to Cover Relationships...116

Table 9-1 OMM Application Programming Interface Categorized by Class.................151

Table 9-2 The Database Schema Used in OMM to Store an OMM Organization.........155

Table 9-3 The Rules for Mapping X.500 Objects to OMM Objects161

 xii

Table 9-4 Examples for Applying Rules to Map X.500 to OMM..................................162

Table 9-5 The Rules for Mapping OMM Conceptual Entities to X.500 Objects...........165

Table 9-6 Estimated Number of Resource Objects in Hitachi America........................167

Table 9-7 Attribute Definition of the COMPANY Organization168

Table 9-8 Attribute Definition of the REGION Organization..168

Table 9-9 Attribute Definition of the DIVISION Organization168

Table 9-10 Attribute Definition of the DEPARTMENT Organization168

Table 9-11 Attribute Definition of the EMPLOYEE Organization................................168

Table 9-12 OMM Virtual Links Representing Relationships in Hitachi America169

Table 10-1 Elapsed Time of the OMM API Categorized by Object and Operation Type

...177

 xiii

LIST OF ABBREVIATIONS

ACID Atomicity, Consistency,
Isolation, Durability

API Application Programming
Interface

BP Business Process

BPM Business Process
Management

BPR Business Process
Reengineering

CAD Computer Aided Design

CAM Computer Aided
Manufacturing

CIM Computer Integrated
Manufacturing

DAP Directory Access Protocol

DBMS Database Management
System(s)

DIB Directory Information Base

DIT Directory Information Tree

DS Directory Service

DSA Directory Service Agent

DSP Directory System Protocol

DUA Directory User Agent

ER Entity-Relationship

ERP Enterprise Resource Planning

GUI Graphical User Interface

HR Human Resources

ID Identifier

JDBC Java Database Connection

JSP Java Server Page

LDAP Light Weight Directory
Access Protocol

NDS Novell Directory Services

OLTP Online Transaction
Processing

OO Object-Oriented

OM Organization Modelling

OMM Organization Modelling and
Management

OMS OMM Services

OR Organization Reengineering

OSI Open System Interconnection

OU Organizational Unit

P&S Publish-and-Subscribe

R&D Research and Development

RBAC Role-based Access Control

RDBMS Relational Database
Management System(s)

RDN Relative Distinguishing
Name

RM Resource Manager

ROI Return On Investment

SADT Structured Analysis and
Design Technique

UML Unified Modelling Language

UUID Universal Unique Identifier

WFMS Workflow Management
System(s)

 xiv

CHAPTER 1 Introduction

About 619 million people now access the Internet worldwide and access is growing at

the rate of 50 per cent per year. The majority of United States households,

approximately 60%, had personal Internet access in 2002 (Cole 2003). The trend is the

same in Europe and other parts of the world. According to Global Reach’s Internet

usage research, in 2002, 224 million people used the Internet daily in European

languages excluding English, and 179 million people in Asian languages

(www.glreach.com/globstats/, 2003). The Internet/Web explosion has swept across our

world in the past few years and revolutionized our thinking and practice in business as

well as our life-style. Electronic commerce and Internet transactions have caught the

attention of most major international corporations. According to the global Internet

Economy Indicators (www.InternetIndicators.com, 2003), the revenue of the Internet

economy was more than $800 billion in 2001. Internet economy revenue is growing

faster than any other traditional economy. For example, Internet economy companies'

Internet-related revenue grew $68 billion from the first quarter of 1999 to the first

quarter of 2000 - an astounding 64 percent. That compares to a $23 billion growth in

non-Internet revenue during the same period ⎯ a growth rate of 3.6 percent. Even as the

overall economy experiences fluctuations, Internet economy forces continue to reshape

the economy in unprecedented ways, producing savings for businesses and consumers

alike. This revenue growth pattern would make it larger than the car ($728 billion) and

life insurance ($724 billion) industries. Internet-related revenue growth was 15 times the

growth rate of the US economy (Whinston et al. 2001). The Gartner Group estimated

that the growth of electronic commerce would reach $7.3 trillion by the year 2004. The

vast acceptance of and participation in the Internet create new opportunities in

collaborative computing. They also give rise to new challenges in information and

resource management. Companies have come to realize that they cannot afford not to

have an e-commerce strategy. Unfortunately, e-commerce strategy has been focusing

overwhelmingly on electronic catalog management and payment processing. There has

been relatively little effort in bringing the entire enterprise onto the Internet to perform

true e-business. This thesis is mainly concerned with modelling and organizing a large

amount of enterprise resources on the Internet, and the management of their rapidly

changing relationships in a dynamic environment. We will show that indeed it is

 15

http://www.glreach.com/globstats/
http://www.internetindicators.com/

necessary to have a connected enterprise resource environment, in order for collaborative

software to run over the entire enterprise. This chapter gives the motivation of this thesis

and an outline of the main goals achieved.

Hereafter the terms enterprise, corporation, company and firm will be used

interchangeably.

1.1 A Dynamic and Collaborative Computing Environment

Computer integrated manufacturing and office automation rely on process modelling and

the management of business processes over a distributed and collaborative computing

environment. Since business processes often involve different types of corporate

resources, the underlying information system must maintain knowledge of and support

access to the rapidly changing organizational structure and resource relationships to

ensure compliance with company business policies and overall system consistency and

efficiency.

The rapid growth of the Internet and e-commerce has pushed collaborative computing to

a new era. The walls of a corporation no longer bound access to business processes;

early adopters of technologies are looking into ways to run inter-enterprise business

processes. Resources from business partners, vendors and customers may all take part in

collaborative computing to complete a business goal. This is reflected by the growth of

the Extranet, which is a form of private Internet that is authorized to be used only by a

number of partner companies forming that private network.

Overall, an enterprise level collaborative computing environment is characterized by the

following properties:

� Having a large amount of enterprise resources. These are not just human resources;

an enterprise is dealing with many different types of resources, some tangible and

some intangible. Examples of enterprise resources include employees, products,

services, vendors, business partners, facilities, equipment, R&D projects, financial

plans, sales regions and offices.

� Complex and rapidly changing relationships between various enterprise resources.

Assuming every person in a corporation is dealing with 5 other resources (for

 16

example, reporting hierarchy, project responsibility, HR, administrative functions

and machine utilization), a 5,000 person company will have over 25,000

relationships between various resources. To record these relationships and keep

them up to date can be an overwhelming administrative task. Since knowledge of

these relationships is not centralized, it is almost impossible for a single

administrative function to maintain and manage this information.

� Automating the enterprise business processes requires knowledge of resources and

the inter-relationships between them. To streamline operations and to tune up

productivity, companies need to reengineer the business processes operating among

the various resources. To allow business processes to be automated in the enterprise

or across enterprises, the enterprise must be a well-organized entity, with its

resources and relationships properly defined.

These properties of enterprise-wide collaborative computing bring us to our motivation

and aims of this thesis.

1.2 Motivation and Aims

Why do we need to perform organization modelling? Is there a need for an enterprise to

engage in the cycle of organization analysis and organization reengineering? Can an

enterprise afford not to do it? In this section, we take a look at today’s business

challenges in the business world, and how organization modelling is critical to an

enterprise’s growth.

The business world is constantly changing. Today, our world is moving from an

economy of scope to an economy of scale under a global economy for mass

customization. For many companies around the world, staying in business means:

� meeting customer requirements,

� reducing the time-to-market of their products, and

� manufacturing products or providing services at a lower cost, in a shorter time, and

with increased quality.

 17

This is also commonly known as the “good, fast and cheap” principle. It is relatively

easy to produce low quality, high cost products with long delays. It is much more

difficult to produce high quality, low cost products in a short time because these are

conflicting requirements calling for a high degree of automation, sometimes high

precision, and in most cases excellence in management. The introduction of ERP

solutions brings the world’s attention to process automation and BPR. Many believe that

the answer behind an ideal corporation lies in a continuous enterprise-wide BPR

environment (Howard 1991). However, the experience of deploying a BPR solution

shows that, up until now, BPR has had its success mainly as a limited departmental

solution. When we attempt to automate business processes on an enterprise level, it

turns out to be virtually impossible because conventional BPR lacks a clear model to

describe the underlying enterprise, its resources and the inter-relationships between

them. As a result, true enterprise-level organization modelling and coordination of

workflow between and across the various resources within an enterprise is deemed

impossible.

The trend of Internet growth and global economy create new opportunities but at the

same time also create additional challenges for corporations. These challenges include:

� Globalization of Resources: within the global economy, resources such as people,

facilities, projects, service centres and manufacturing sites are distributed all over the

world. It is difficult to coordinate the activities involving all these distributed

resources. Sometimes one branch of the company may not even know that certain

valuable resources exist in another part of the company.

� Mobility of Resources: people within a global enterprise often travel from one site to

another. This creates problems especially for the management of personnel who

have multiple responsibilities covering a wide geographic region, such as the entire

Asia Pacific or a large country like China; it is often difficult to keep track of where

such persons are located at any moment. Moreover, for large enterprises, it is very

common for projects or departments to move from one location to another. This

creates a communication breakdown between different groups of people.

� Accessibility vs. Security: once information is available on the Internet, it is virtually

accessible by anyone, anywhere, anytime. Current security models used in Internet

applications are either password-based or key-based (Yialelis and Sloman 1996).

 18

These security methods, although relatively straightforward to implement, do not

have the flexibility to allow large numbers of selected users to access different types

and levels of information based on their roles (Cheng 1999a). As a result, it is

difficult to increase accessibility and at the same time enforce security.

� Information Overload and Information Undermine: the Internet is a wide-open

cyberspace which allows any user to post information and to search for information.

Between net casting and "spam" distribution of electronic mail, users on the Internet

either find themselves overloaded by a huge amount of information, or they are

desperate to find the information that they know is out there, but cannot find, buried

as it is in the gigantic network.

� Customer Satisfaction: As the market expands, requirements coming from different

customers (many times from different countries with a different background and

culture) for the same product can be slightly different. This requires that products be

customized to individual specifications and often requires that they must be delivered

according to multiple imposed due dates. To accomplish this, the whole company

must be well connected and coordinated to achieve common goals.

� Parallelization: Due to time-to-market competition, companies must coordinate the

simultaneous execution of cooperative tasks to reduce time of design, engineering,

manufacturing, and delivery. Coordination and collaboration between departments

are critical for a company’s overall success.

� Flexibility: Today's markets change rapidly and constantly. Companies must be

quick to adapt in reaction to their changing environment. More importantly, the

decision to change, which often comes down from upper management must be

filtered down to all levels of employees in a very short time.

� Virtual Enterprise: Outsourcing of non-core activities to business partners and third

party vendors is a common business practice today. As a result, an enterprise is more

than just the core company: the virtual enterprise truly includes its business partners

and vendors as well. The better this virtual enterprise communicates and

coordinates, the stronger it is in the competitive market.

� Total Quality Management: Product and service quality is everyone's business, from

product design to manufacturing, shipment, and customer services. To achieve total

 19

quality management, the company must be well connected, from requirement

gathering, product design, manufacturing, testing, packaging and shipping, to

customer services.

The work in this thesis solves these issues by having a flexible, generic, object-oriented

model to help organize different resource objects of the enterprise, bringing them

together through a rule-based relationship model, and finally allowing users to securely

access and maintain the information with a fine-grained security model. We have

implemented a run-time Prototype System according to this organization model.

Collaborative software such as workflow management systems can interact with this

Prototype System by calling its open API. As we apply this organization model to the

modelling of an enterprise, and to the support of the underlying collaborative software

with the associated organization modelling service, the enterprise can become more

connected, flexible and dynamic.

1.3 Definition of Terms

In this section, we will define some keywords and terms that are used throughout the

thesis.

� Organization model

A generic organization model is a reference model which can be applied to describe

the different aspects of an organization. A specific organization model is the output

of applying the generic model to a particular view of an organization.

� Organization modelling

Organization modelling is a practice companies adopt to refine their structure aiming

at improving productivity. In general, organization modelling has three phases; first

is the organization analysis phase, second is the conceptual design phase, and third is

the design implementation phase (Vernadat 1996). These three phases involve

applying some selected reference models (Bussler 1994; Berio et al. 1995; Di Leva et

al. 1997; Kosanke et al. 1997) to define the resources that make up the organization

and their inter-dependent relationships. Organization resources include various types

of entities such as human resources, products, services, machines, robots, projects,

 20

assets and facilities, business processes and others. In addition, the design

implementation phase concerns also the implementation of the organization design in

an information system, allowing definition and manipulation of organizational

resource information. Note that business process modelling which involves the

definition of workflow and data-flow for each business process is outside the scope

of organization modelling. However, organization modelling is a pre-requisite to

business process modelling.

� Organization reengineering

As business conditions change, a company has to adjust itself for survival and to gain

a competitive edge. This cycle of analysis and adjustment that organizations

periodically need to undertake is termed organization reengineering. Organization

reengineering is therefore a cycle of applying the practice of organization modelling.

� Process model

A process model, also known as a flow model, describes how a business process is

routed through different agents. Agents in this context are resources within the

company responsible for carrying out certain tasks which make up the business

processes. An agent can be a human being, a machine or a software program.

� Role model

A role model is a generic reference model used to describe how roles are defined and

how different resources are assigned to take on one or more roles within the

company. Traditionally, roles are defined simply as static labels; the actual semantic

meaning and business policies behind the roles are often hidden as unstructured

knowledge embedded in human minds.

� Role resolution

Role resolution refers to the mechanism of identifying the resources that are playing

a certain role at a certain time. Role resolution is critical to a workflow management

system in that the workflow engine needs to resolve the role in order to forward an

active work task to the right agent, i.e. a person.

 21

1.4 Structure of the Thesis

This chapter gives the motivation of our work. It also provides the context of our

research area by describing the kind of computing environment we face today. The

challenges and requirements of this distributed and collaborative world of computing are

also discussed.

Chapter 2 provides the background of the thesis. It begins by defining organization

reengineering and organization modelling, and the relationships between the two. It

describes the different phases of organization modelling and how they support a dynamic

enterprise able to adapt quickly to change. The principles, goals, and scopes of

organization modelling are discussed. It also provides a set of criteria to measure the

success of organization reengineering.

Chapter 3 presents a critical survey of existing organization modelling systems. It

describes some prior research and industry efforts in organization modelling in the

context of workflow and collaborative computing. It presents the tightly coupled

approach in which the workflow management system and the organization modelling

component are architected together; the loosely coupled approach of a directory-based

organizational system; and finally the stand-alone approach of some organizational

modelling components. The chapter concludes by pointing out the weaknesses in these

approaches.

Chapter 4 provides a detailed description of our organization model, called OMM. The

chapter starts with a detailed description and definition of an enterprise and its resources,

and then presents the information aspects and relationship aspects of OMM. A

comparison between OMM and existing organization modelling systems is included at

the end of this chapter. The comparison is based on four salient characteristics of such

systems.

Chapter 5 provides a formal definition of the relationship model in OMM. It also

includes a number of examples to exhibit the dynamic and flexible nature of our

approach to model both relationships and roles.

Chapter 6 discusses the role-resolution function of OMM as applied to workflow and

collaborative software. The concept of role resolution, task assignment and

 22

authorization, and workflow routing control will be visited. By using some examples

that are developed through the thesis, we will point out how our approach can solve

some of the difficult problems in enterprise-wide role resolution that do not yet have a

satisfactory solution. The concept and application of role-based access control using

OMM will also be discussed in this chapter.

Chapter 7 focuses on using OMM to perform organization modelling. We describe the

various techniques used in organization modelling and how OMM can be used

effectively to support each of these techniques.

The OMM model is not limited to performing analytical modelling ⎯ it also allows for

continuous user maintenance and updating of enterprise information. We therefore have

to concern ourselves with features of concurrent access and related issues in accessing

the OMM (organizational) objects. Chapter 8 discusses our approach to handling

concurrent access to enterprise resources. It also deals with the concept of deadlock and

our approach to preventing and resolving this issue.

Chapter 9 details our implementation experience in building the OMM Prototype

System. It lays out the software architecture of this Prototype System and describes the

interfaces to OMM. Software developers can interact with the OMM Prototype System

through an openly defined application programming interface. As a result, WFMS can

easily call upon OMM to perform role resolution. In addition, we have also built a

simple graphical administrative tool to allow manipulation of OMM objects easily over

the Internet. Finally, we provide a detailed discussion of the mapping of OMM to

RDBMS and X.500 directories.

We conclude in Chapter 10 by reviewing our work and evaluating how we have achieved

the goals we set out in Chapter 1. Finally, at the end of this chapter we provide some

future research directions stemming from our work.

 23

CHAPTER 2 Background

Organization modelling and reengineering have existed for decades, especially for the

support of CIM. The principles of organization modelling as well as the different

approaches to the modelling practice have been established over a long period of time.

In this chapter we describe the current methodological concepts and the different phases

involved in organization modelling. Section 2.2 describes the concepts and models

behind organization modelling and reengineering. In Section 2.3, we present the

principles of organization modelling. In Section 2.4, we define the goals of organization

modelling. As organization modelling can be an enormous project, it is necessary to

understand the scope of organization modelling. We describe the scope of organization

modelling in Section 2.5. Finally, in Section 2.6, we outline the criteria of success in the

effort of organization reengineering. This chapter mainly concerns the background and

principles behind organization modelling. The practice and the common techniques of

organization modelling will be discussed in Chapter 7 in the context of OMM.

2.1 Introduction

Organization modelling is not new. Throughout history people have been using various

means and tools to represent different organizational resources and structures. However,

up until now, organization modelling had always been considered an administrative

overhead in large corporations. Every year companies publish hard copies of employee

directories and organizational charts. This static information has several problems.

Firstly, companies are changing constantly; the information is often outdated even before

it gets propagated to the people for whom it is intended. Secondly, the picture of the

organizational structure that gets published is usually inflexible and represents only the

very highest level; these published structures do not represent the true operational

relationships of the enterprise at the level where most actions actually take place.

Indeed, this rigid and high-level structural picture of the company sometimes even

inhibits the creative thinking of the executives in their strategic planning. Moreover,

such published organizational information is often focused on a single dimension of the

enterprise, namely human resources. It only captures employee information or at most

some portion of the enterprise's functional groups. As a result, no one has a complete

 24

picture of all the resources within the enterprise and how these resources interact with

one another.

As people within a company are networked together, the need for a well-defined

reference model to capture the different resources and their inter-relationships becomes

more significant. Such an organization model will become the foundational architecture

for enterprise-wide cooperative software such as workflow applications and other

groupware.

2.2 Organization Modelling and Reengineering

Organization Reengineering (OR) is a continuous analysis and refinement cycle in an

enterprise. It is a cycle because business conditions are constantly changing; a company

needs to continually refine its resources and organizational structure to maintain a

competitive edge. The OR cycle has 3 stages; namely organization analysis,

organization conceptual design, and organization design implementation. These three

stages are also referred to as Organization Modelling (OM). OR is a cycle of performing

OM repeatedly throughout the life of the enterprise. Figure 2-1 shows the OR cycle.

Organization
Analysis

Design
Implementation

Conceptual
Design

Figure 2-1 The Organization Reengineering Cycle

The process of organization modelling is composed of three phases. The first phase

involves analysis of the current organization. The second phase involves applying

certain reference models or methodologies to conceptually design a desired organization.

The third phase is the implementation of that design by representing it in some

organizational information system. We now discuss these three stages in more detail.

 25

2.2.1 Organization Analysis

The organization analysis phase is aimed at supporting a fine structural analysis of the

enterprise in terms of the analysis of the current status (AS-IS Analysis) and the analysis

of the future potential status (TO-BE Analysis) (Vernadat 1996). The goal of the AS-IS

Analysis is to provide managers and workers with an accurate model of the enterprise

with which they can make a useful assessment of the current status of the enterprise.

The aim of the TO-BE Analysis is to allow managers and decision-makers to assess the

potential future status of the enterprise based on some assumptions. The analysis is

usually carried out through a number of interviews with the various department

managers. According to the survey of Vernadat (Vernadat 1996), most of the

organization analysis can be accomplished by 1-3 one-hour long interview meetings with

the department managers or decision-makers. The ultimate goal of organization analysis

is to get a clear understanding of the functions and operations of the enterprise expressed

in terms of a functional model and an information model.

2.2.1.1 Functional Model

The functional model is based on well-known software engineering practices using

functional specification, such as SADT (Ross and Schoman 1977) and Petri Nets (Di

Cesare et al. 1993; Murata 1989; Peterson 1993). The functional model provides a

description of the enterprise in terms of a hierarchy of functions. A function is a set of

activities which combine to accomplish a business goal in the global operation of an

enterprise. In order to precisely specify a function, the organization modeller is required

to identify what objects are input to or output from the function, what objects control or

influence the function, and what is necessary to carry out the function. The word

“object” here is used in its broad sense and may represent every different type of entity

(e.g. data, people, documents, and materials) in an organization as distinct from its

meaning in the object-oriented paradigm. The output objects of some functions may be

used as input objects of other functions.

Enterprise functions are also referred to as business processes. A business process

includes a number of tasks (activities), each of which is performed by one or more

persons in the company. However, there may also be automated tasks, which are

performed by software programs, robots, or electronic equipment. Workflow

 26

management systems that we discuss in Chapter 3 are mainly concerned with the

management and routing of a business process from task to task.

2.2.1.2 Information Model

The information model provides a description of the information circulating within the

enterprise. It deals only with the analysis of information objects, which appear in the

functional model and constitute the interfaces among the organization functions. The

purpose of this analysis is to identify and classify information objects into the following

classes:

1. Data: Data are information items relevant to the organization. These are pieces of

information used by the functions within the organization environment.

2. Messages: A message is a piece of information concerning the fact that something

has happened. According to this definition, a message is the organization concept

related to the fact that an event has happened in the real world (e.g. an order has

arrived or someone has requested product information by visiting a certain web

page).

3. Files: A data file is a structured set of records composed of data items. Records

represent real-world objects as manipulated by computers. A data file may or may

not be managed by a DBMS. In the case of database files, further analysis will be

performed to identify the database schema.

4. Forms: A form is a document that is used to collect, display, or communicate data

within the organization environment. Forms may be in paper or electronic format.

5. Agents: An agent consumes and produces data, messages, files, or forms. An agent

may be a human being, a software program, or a unit of workers.

2.2.2 Organization Conceptual Design

Once the modeller has finished the organization analysis phase, s/he is ready to move

into the conceptual design phase. In the Conceptual Design phase, a set of local views

and a global view of the enterprise are constructed. A view, either local or global, is the

complete and formalized representation of the static (data) and dynamic (operational and

functional) environment requirements. A view is created based on the data collected

 27

from the previous analysis phase, and the projection, direction, and expectation

formulated by the various inputs received from management. The description of a view

contains: (a) a data schema, (b) a set of operational schemas, and (c) a functional net.

As a first step in the Conceptual Design phase, formatted and non-formatted

requirements collected in the previous phase are analyzed. Static and dynamic

requirements are expressed in terms of the functional model and information model

introduced at the previous analysis stage (refer to Section 2.2.1 and its subsections). All

relevant resources in the enterprise will be formally modelled in this phase. In addition,

relationships and functional interactions between the various resources are also captured.

At the conceptual level, a complete formal description of both static and dynamic aspects

of the organization must be produced. These descriptions are specified by means of two

models: a data model and a process model. Using the Entity-Relationship (ER) approach

(Levene and Loizou 1999) to capture the data model, we can also describe the

relationships between the enterprise objects.

1. Data Model: Entity-Relationship models can be used to describe the information of

the resource objects of interest for the organization. The ER data model provides the

designer with four abstraction mechanisms: entity types, relationships, attributes, and

abstraction hierarchies.

Definition 2.1 (Entity) An entity is a “thing” that exists in the real world and can be

uniquely identified.

Definition 2.2 (Entity type) An entity type is a set of entities, which share common

characteristics.

Definition 2.3 (Relationship type) A (binary) relationship type among entity types

is an association between two entity types.

Definition 2.4 (Relationship) A relationship r is an instance of a relationship type R

between entity types E1 and E2, where r is an association between two entities e1 ∈

E1 and e2 ∈ E2.

 28

Definition 2.5 (Recursive relationship) A relationship type between two

occurrences of the same entity type is called a recursive relationship type (or cyclic

relationship type).

Note that an entity in an entity type may or may not participate in a relationship. In

other words, the participation in a relationship of entities is optional (or partial).

Let r be a relationship over R and let e1 and e2 be entities belonging to instances of E1

and E2, respectively, such that e1 and e2 participate in r. Then we say that R is

� many-to-one if every entity e1 as defined above is associated in r with at most one

entity belonging to an instance of E2.

� one-to-many if every entity e2 as defined above is associated in r with at most one

entity belonging to an instance of E1.

� one-to-one if every entity e1 as defined above is associated in r with at most one

entity belonging to an instance of E2, and correspondingly every entity e2 as

defined above is associated in r with at most one entity belonging to an instance

of E1.

� many-to-many if every entity e1 as defined above is associated in r with zero or

more entities belonging to an instance of E2, and correspondingly every entity e2

as defined above is associated in r with zero or more entities belonging to an

instance of E1.

Definition 2.6 (Attribute) Attributes (or attribute names) are properties of entity

types.

Entities of the same entity type therefore share common attribute names although

they can carry the same or different attribute values.

2. Process Model: Process modelling is used to represent organizational behaviour, that

is, the possible sequences of operations of the organization functions within a given

environment, and the communications among them. With workflow technology,

organization behaviour is represented by means of business processes, which are in

turn described by Petri Nets (Di Cesare et al. 1993) or similar network diagrams,

such as Predicate Transition Net models (Belli and Dreyer 1994). With business

 29

processes, a set of operations (or tasks) are linked together by execution conditions to

form a network. The sequence of executions represents the progressive behaviour of

the business process. Execution conditions are usually related to messages coming

from the external world (e.g. a purchase order is submitted) and to the existence of

some objects in a particular state (e.g. an unpaid account has been overdue for more

than 90 days).

The data model and the process model are related in the sense that the objects consumed

and produced by the business processes are described in the data model. In addition, the

agents responsible for executing the tasks within a process are also captured in the data

model. The work in this thesis focuses on proposing a data model to support the

organization conceptual design phase. However, once a company starts to adopt our

modelling methodology, it can perform organization analysis and refinement using the

same approach.

Upon completion of the conceptual design of an organization, we are ready to implement

this conceptual design into the enterprise. This moves us into the third and final phase of

organization reengineering.

2.2.3 Organization Design Implementation

This phase in organization reengineering is concerned with implementing the design

output from the second phase into the enterprise. This includes two areas: firstly,

database implementation using a DBMS to reflect the design is necessary. Secondly,

depending on the current status of the organization and the new architecture as outlined

in the conceptual design, this phase may also require changing the actual organization.

This may mean adding or removing resources from the company, as well as changing the

way the resources relate to one another.

The actual work of database implementation to reflect the new enterprise is dependent on

the kind of DBMS used (object-oriented, object-relational, relational, hierarchical, or

network database system) and on the physical system itself. This is a typical problem for

database designers and administrators. Our proposal simplifies the work of

implementing the database representation of the enterprise; the conceptual model maps

directly into a database design. We will discuss our experience in implementing an

 30

organization design in Chapter 9. The organization design implementation phase is

composed of two major tasks: Logical Design and Physical Design.

In the Logical Design task, the global data schema is transformed into a relational

schema in which data structures are expressed according to the logical data model of the

DBMS. In the same way, the global operation schema is converted into program

fragments.

Global Data
Schema

Global Operation
Schema

LOGICA L DESIGN

PHYSICAL DESIGN

Relational
Schema

Program
Fragments

Physical
Schema

Figure 2-2 Implementation Design Phase Overall Architecture

The Physical Design task constructs a physical schema, which specifies the access paths.

Criteria are given in the program fragments for choosing an “efficient” logical-physical

representation among several alternatives that can be derived form the conceptual

schema. The overall architecture of the Implementation Design phase is shown in Figure

2-2.

2.3 Organization Modelling Principles

Before we survey the current organization modelling techniques in Chapter 3, and

propose our own approach to organization modelling in Chapter 4, let us review some

basic principles applicable to organization modelling. According to Ross and Schoman

(Ross and Schoman 1977), any modelling technique is characterized by the following

four principles:

 31

� The purpose of the model: Modelling must have a final goal in mind. This creates a

direction and a framework for the process of modelling. We will discuss further the

goals of organization modelling in Section 2.4.

� The scope of the model: This is also called the universe of discourse, defining the

range or domain covered by the model. We will further discuss the scope of

organization modelling in Section 2.5.

� The viewpoint of the model: We must define which aspects of the enterprise are

covered by the model and which are left out and the viewpoint from which the

modelling is drawn. With the organization model we propose in this thesis, we focus

on modelling the organizational resources and the relationships between them from

the perspective of management and decision-making. The functional, or business

process aspect is left out in our model. We rely on the workflow model to describe

the functional aspects of the enterprise.

� The detailing level of the model: This defines the level of precision or granularity of

the model regarding the reality being modelled. Obviously, the degree of detail that

is possible in a given context depends on the depth to which the analyst understands

the reality of the organization. However, the underlying modelling technique used

should be flexible enough to allow the analyst to model the organization to any

desired level of detail. In Chapter 4, where we present our proposed organization

model, it will be clear how our entity-relationship and object-oriented hybrid

approach allows an analyst to model an enterprise to any level of granularity.

These essential principles outlined by Ross and Schoman (Ross and Schoman 1977)

apply to organization modelling. Furthermore, Vernadat (Vernadat 1996) also suggests

additional principles to be considered particularly for organization modelling:

� Principle of modularity: To facilitate management of change, models must be

modular, i.e. be made up of an assembly of compatible building blocks so that the

model can be built on a ‘plug-and-play’ basis. This is a way of dealing with

enterprise model complexity, and it makes model maintenance much easier to realize

than do other types of modelling architectures.

� Principle of model genericity: Many activities or components of an enterprise exhibit

identical or similar properties even though they may support quite different

 32

functionalities. It is therefore important to define standard building blocks as generic

classes to factor common descriptive attributes and behaviours. These classes can

then be adapted or specialized in the modelling of peculiar components or

applications. Key concepts of the object-oriented paradigm such as classes, objects

and inheritance provide the necessary underlying principles and guidance in this

respect. This is another way of handling complexity in organization modelling.

� Principle of reusability: To reduce modelling efforts and increase model modularity,

predefined building blocks or partial models must be reused and customized to

specific needs as much as possible when modelling new parts of the system. This is

referred to as ease of customization.

� Principle of process and resource decoupling: In order to preserve operational

flexibility it is important to separately consider the actions that are being performed

(the business processes) and the agents performing them (the resources). The

mapping between the two is a scheduling problem particularly critical in

manufacturing systems and project management.

As we will see in Chapter 3, very few existing organization modelling systems satisfy all

these principles. However, to support flexible organization modelling in the OR cycle

and to continually streamline an enterprise, it is important to observe these principles. It

is our goal that our proposed methodology covers all these principles. In Chapter 10, we

will review how our work fulfils these principles.

2.4 Goals of Organization Modelling

Any modelling method must have an understanding of its finality, i.e. the goal of the

modeller. This finality usually has a direct influence on the modelling method

definition.

In this thesis, we have adopted the firm position that an enterprise is made up of a large

collection of resources that communicate, coordinate, and collaborate with one another

to accomplish a set of concurrent business processes. Through the execution of these

business processes, the functional resources contribute to the enterprise’s business

objectives. Organization modelling is essentially a matter of modelling and connecting

these resources.

 33

Business processes represent the flow of control of events happening in the enterprise.

They are the means to accomplish the objectives of the enterprise. They materialize in

management policies, flows of documents, operating procedures, manufacturing

processes, administrative procedures, regulations, rules and the like. They are highly

nested in order to represent the integrated activities of the company. Hence, organization

modelling is often driven by business process modelling and management.

The goal of an organization modelling effort is not to model the entire enterprise in all of

its details, although this might be theoretically possible at various levels of abstraction.

The term “organization” here means a part of a company, the entity that needs to be

represented; its size, scope and type are defined by the business users.

The primary goal of organization modelling is to support analysis and refinement of an

enterprise. Another goal is to support modelling business processes that need to be

automated through computer control. For instance, a person needs to be modelled if he

or she is involved in an automated business process.

Broadly speaking, organization modelling aims to provide:

� a better understanding and uniform representation of enterprise resources;

� support for expansion and reduction in the size and structure of the enterprise; and

� a model used to support the control and monitoring of enterprise operations.

The main motivations for performing organization modelling are:

� managing system complexity;

� better management of all types of resources;

� capitalizing on enterprise knowledge and resources;

� support for business process reengineering; and

� enterprise integration (such as in the event of mergers-and-acquisitions).

 34

2.5 Scope of Organization Modelling

Organization modelling is concerned with modelling the what, how, when, and who

aspects of an enterprise. The “what” essentially refers to operations performed and the

objects processed in the operations of the enterprise. The “how” defines the enterprise

behaviour, i.e. the way things are done. The “when” enforces the notion of time as being

an essential component of the model. It can be associated with events representing a

change in the state of the enterprise at a certain time. The “who” concerns the resources

or agents of the enterprise performing operations of the business processes. Of course,

the how much (economic aspects) and where (logistical aspects) are also important

aspects of an enterprise to be considered.

Based on these assumptions, Curtis et al. (Curtis et al. 1992) define four basic aspects to

be modelled in an enterprise:

� functional aspects describing what has to be done;

� behavioural aspects defining how and when something has to be done;

� informational aspects defining what data are used or produced and their

relationships; and

� organizational aspects indicating who has to do something and where.

An enterprise is by nature a complex, dynamic system. From the point of view of

integration, various essential aspects of an enterprise need to be modelled, either to

analyze or to control the enterprise. These include but are not limited to:

� organization functionality and behaviour in terms of processes, activities, basic

functional operations, and triggering events;

� decision-making processes, decision flows, and decision centres;

� products, their logistics, and their life cycles;

� physical components or resources, e.g. machines, tools, storage devices, or

transportation means, their logistics, capabilities, capacities, and layout;

� applications (i.e. software packages) in terms of their basic functional capabilities;

 35

� business data and information and their flow in the form of orders, documents, data

items, data files, or complex databases;

� enterprise knowledge and know-how, i.e. domain-specific knowledge, rules of

thumb, specific decision-making rules, internal management policies, internal

regulations, and so on;

� human individuals, especially their qualifications, skills, roles, and availability;

� organizational structure, i.e. organization units, decision levels, decision centres, and

their relationships;

� responsibility and authority distribution over each of the previous elements;

� exceptional events and reaction policies; and

� the time aspect of all of the above, because an enterprise is a dynamic system.

Since the description of all these enterprise elements cannot be fully represented in just

one model, it usually results in different, partially interconnected, overlapping models.

These may include: product model, process model, functional model, information model

and its databases, knowledge base, resource model, relationship model, configuration

model, decision model, economic model, organization model, and role model. However,

all these different aspects of the enterprise are based on the enterprise resources and the

relationships between them. Even the functional model, which defines the activities and

processes in the corporation, is defined on top of the various resources. In this thesis, we

consider mainly the resource model, the relationship model and the role model, but we

will also apply our work to business process modelling, represented by the functional

model.

2.6 Success Criteria in Organization Reengineering

Since organization reengineering (OR) is a continual process in the life of an enterprise,

it is important for the enterprise to evaluate and to refine the process. The tangible result

of the OR process is the major indicator reflecting how well the corresponding

organization model actually performs its task of modelling the enterprise. In this section,

we identify four criteria that are essential in measuring the success of an organization

 36

model. (In Chapter 10, we will assess how successfully our work has met the

requirements emanating from them.)

1. Scalability

It is important that the model is scalable from modelling hundreds of objects to

millions of objects, which may correspond to terabytes of data in the repository. The

implementation of the resulting design model should also support the capture of a

large number of objects in the enterprise. Consider a company of 100,000 people,

each of whom manages 20 resource objects (such as projects, machines, products,

customer accounts, and so on); the total number of objects will be 2 million. This is

even worse when we consider maintaining the relationships that exist amongst these

2 million objects.

2. Extensibility

It will be impossible to include in the conceptual design phase an exhaustive list of

all possible types of resources. Indeed, as a company grows, it will often accrue new

types of resources. Practically, an organization modeller begins with a few types of

objects, such as people, departments and machines, to be included in the design.

This way, both the design and the implementation phases are kept to a manageable

size. Once these types of objects are covered and the design is implemented, the

organization designer may then add other types of objects such as documents,

equipment, products, and many others. This means that an extensible model and

methodology are critical for successful organization modelling.

3. Flexibility

To allow the methodology to be applied to different types of organizations, the

reference model (Cheng 1998) must be flexible. A successful organization model

should be applicable to not only some types of commercial companies, such as hi-

tech firms or manufacturing enterprises, but also to other enterprises including non-

profit organizations, governmental structures or even an entire country.

4. Performance

Through the conceptual design and design implementation phases, a composite

organizational information system will be deployed in the enterprise. Workers,

managers, administrators and executives will rely on this system to access the most

 37

up-to-date organizational information in making decisions, performing analysis and

deriving future plans. They will also run collaborative applications on top of this

organizational architecture to enhance communication and coordination amongst

resources. Consequently, such an enterprise information system must have a quick

response time that scales favourably in the various application environments.

Unfortunately, as discussed earlier, today there is not enough research focus in this

area, let alone a benchmark standard to measure performance. In this thesis,

although we concentrate on the proposal of an organization model rather than on a

specific implementation, we have implemented a prototype of our model in order to

demonstrate aspects of our ideas. This prototype has been used to perform

organization modelling design for Hitachi America. We will review the performance

of our system in Chapter 10.

2.7 Conclusion

In this chapter, we have introduced the concepts of organization modelling and

reengineering. Organization modelling is composed of three phases; namely

organization analysis, organization conceptual design, and organization design

implementation. Organization reengineering concerns the analysis and refinement of an

enterprise by applying organization modelling repeatedly in a cycle.

We also discussed the principles behind organization modelling. A strong organization

model should observe these principles as much as possible. They therefore lay the

background of our proposed organization model; we elaborate in Chapter 10 how our

model addresses all of these principles.

The ultimate goal of organization modelling is to provide a uniform representation of the

enterprise, so that decision-makers not only understand how the enterprise operates, but

are able to make changes to it quickly. In addition, all employees can be part of a

common organizational architecture in order to automate their business processes.

Indeed, we show that organization modelling is mainly driven by business process

reengineering (Cheng 1995), which concerns the automation and streamlining of

business processes among company resources.

 38

We have also discussed the scope of organization modelling in this chapter. Although

there is a long list of models which might be included in organization modelling, we

highlight the importance of the resource model, the relationship model and the role

model. Our work is mainly concerned with the realization of these models.

Finally, we presented the criteria of a successful organization modelling effort. The four

criteria that are essential to the success of organization modelling are scalability,

extensibility, flexibility, and performance. We will measure our work vis-à-vis these

criteria in Chapter 10.

 39

CHAPTER 3 A Critical Assessment of Organization Modelling

Approaches in Existing Workflow Management Systems

In this chapter, we will review the existing efforts in organization modelling. We are

particularly interested in focusing on the organization modelling approaches that are

used to support workflow and cooperative works. A running example of a workflow

process will be described in Section 3.3. This example will be used throughout this

thesis to illustrate the novel approach we have taken with OMM and the contribution that

our proposal makes to the current state of organization modelling. In Section 3.4, we

will survey the organization modelling systems used by the current state-of-the-art

workflow management systems. These systems include ARIS, CIMOSA, EMS, M*-

OBJECT, Objectflow, and SAM*. We will also describe and compare a common

practice of using corporate directory services to support role resolution in some other

cooperative computing systems. Finally, in Section 3.6, some stand-alone organization

modelling and management systems will be surveyed and reviewed. Based on this

assessment of all current efforts, we will summarize the shortcomings of existing

systems in supporting a collaborative application environment.

3.1 Introduction

Corporations rely on business processes to allow various enterprise resources to work

together in order to carry out their business functions. To ensure market

competitiveness, corporations have to constantly evaluate and streamline their business

processes. Workflow technology emerged in the late eighties to enable automation and

coordination of business processes through computational models (Howard 1991).

Workflow concerns the routing of work amongst designated organizational resources.

Although it is possible to define and manage business processes on a smaller scale, such

as running a departmental workflow application, without a carefully designed

organization model it is impossible to run production-level and enterprise-wide

workflow. A survey on the workflow architectures in use today reveals that all

production-level workflow systems have an organization and role modelling component

embedded in WFMS.

 40

3.2 Workflow Management Systems

Workflow technology supports business process integration and automation (Medina-

Mora et al. 1992; Cheng 1995). It provides a framework on which multiple tasks and

applications are integrated to form a network of computational steps to accomplish a

business process (Vanderaalst and Vanhee 1996). A workflow process can be

formulated as a set of nodes, representing tasks or steps, connected by directed edges

which are condition arcs governing the route of the process (see Figure 3-2). To ensure

that a model has a consistent flow behaviour, a process always has a BEGIN and an END

step. The BEGIN step only has outgoing arcs and the END step only has incoming arcs.

The steps that exist between BEGIN and END have one or more incoming arcs and

outgoing arcs (Hsu and Kleissner 1996). We note that the outgoing arcs may represent a

split, in which case the process branches out and routes to more than one node. A split

can be an “AND” or an “OR” condition. The “AND” split results in parallel execution

of multiple steps. The “OR” split maintains a single thread of execution, but provides a

means to choose different routes depending on the condition of the flow. Parallel routes

will always merge back to a single node at some later point in the flow; this constitutes a

join in the workflow process. Thus the nodes define the atomic steps, or units of work,

of the business process, while the arcs define the flow logic of the process. Each step is

“atomic” because in order to ensure process consistency, the workflow system must

guarantee that the state transition before and after a step be completely done or have no

effect at all. The atomicity property is also referred to as the “all-or-nothing” behaviour

in transaction processing. The model used to represent a business process is termed the

flow model or process model. Petri Nets are one of the most common representations for

the flow model (Murata 1989; Vanderaalst 1996). Workflow systems usually include a

graphical editor to allow administrators to define business processes using a Petri-Net

approach.

As a process progresses in time, different tasks are created and assigned to various

agents in the company. An agent is a kind of organizational resource responsible for the

execution of different tasks. Sometimes an agent can be a person (an employee)

executing a software program to complete a task. Occasionally, a software program can

be triggered by the workflow system to run automatically without any human

participation. There are two possible ways an employee becomes involved in the

workflow. In some situations, a particular employee may be chosen to execute a step

 41

(the push model). In other situations, a group of employees may be identified as

potential candidates to perform a task; anyone of this group of employees will pick up

the task from a work list on their own initiative (the pull model). In both cases,

authorization checking must be performed when someone attempts to open and execute a

workflow step. To allow flexibility in workflow authorization, the workflow system

often adopts a certain role model. A role model describes how roles are defined and how

different resources may play one or more roles within the company in order to perform

certain tasks. With the abstraction of a role model, the workflow system simply

performs task assignment and task authorization over roles (Cheng 1995).

A WFMS is made up of a number of software components, each of which is

implemented based on a conceptual model. These conceptual models include the process

(or flow) model, the role model, the organization model, the application model and

finally the data model. The data model is concerned with how workflow specific data

flow from one step to another, and how it is shared and controlled by various users who

participate in the flow. The flow model defines the flow logic of the workflow process.

It is responsible for moving the process from beginning to completion through the

various state transitions of the workflow steps. The application model defines how a

software application program relates to a step. It also defines the data exchange, if any,

between the workflow system and the application software. Again, the role and

organization models together deal with task assignment and task authorization in the

workflow process. Figure 3-1 shows how these different components interface with one

another.

Interface

Role & Organization
Model

Application Model Process Model

Data Model

Figure 3-1 Different Components of a Workflow Management System

 42

3.3 Running Example: A Sample Workflow Process

Within the workflow approach, process routing control is abstracted out from the logic of

the application; it thus results in a flexible design and implementation of the flow logic

without interfering with the implementation of the associated applications. The flow

logic concerns mainly the routing decisions throughout the life of a process instance.

The Petri-Net like representation in Figure 3-2 illustrates a flow description of a

business-to-business electronic commerce application. This example captures a

workflow, which allows business partners to order electronic parts over the Internet.

submit_
order

process_
order

approval_1

decision

OR split
 join

reject

accept

noti fy and
billing

approval_2

shipping

approval_3

Figure 3-2 Electronic Parts Ordering Process

In this example, an electronic parts manufacturing company is offering its products

online to business customers. The company divides its product lines into divisions, and

different departments within a division manage the production and sales of individual

products. Employees of the company work in different departments; they are further

classified into permanent workers, temporary workers and contractors, for example.

Conceptually the company resources can be represented as in Figure 3-3. In Chapter 4,

we will use our model to represent the resources of such a company.

 43

Connects to

Customer Contractor Temporary
Worker

Permanent
Worker

Employee

Department

Division

Figure 3-3 Company Resources Exist in a Hierarchy

A sales representative (rep) works in a department and reports to his or her

corresponding manager. To complete an electronic ordering process, a number of

employees are involved. The business process is initiated by an employee (flow-

initiator) in the customer company, most likely over the Internet. This employee will

execute the submit_order step. The WFMS will then move the process forward, and the

sales representative who is serving the flow-initiator’s company must execute the

process_order step. If, for example, the dollar amount of the order is within the

customer’s credit limit, the flow will immediately move to the decision step. However,

if the dollar amount of the order exceeds the customer’s credit, the business process will

require managerial signature; this corresponds to the approval_1 step in Figure 3-2. In

general, only the manager of the sales rep of a process instance can grant such

authorization. Unfortunately, since the manager-to-sales-rep ratio is usually high (1:10)

and in some cases can grow to 1:20, this step often creates a performance bottleneck. To

reduce the occurrence of such a bottleneck, a policy is established such that the approval

signature can be sought from an alternative source under the following condition. If the

sales rep’s department currently has more than n managerial approval cases pending

(where n can be any positive number set by the administrator), then managers of any

other departments within the same division can authorize the process. This corresponds

to the approval_2 step in Figure 3-2. Once a managerial signature is obtained, the

process will move forward. If the difference between the customer’s credit and the

order’s value is over a certain amount $m (where m can be any dollar amount set by the

administrator), then an additional signature from the vice president of the division is

required. This corresponds to the step approval_3 in Figure 3-2. Note that only the vice

 44

president of the division to which the sales rep of this process instance belongs can

process step approval_3. The next three steps in this example, decision, accept, and

reject, can be automated steps, which are accomplished by software programs without

any human intervention. The shipping step can be accomplished by employees in the

shipping department. The final step, notify-and-billing, can again be an automated step.

A sophisticated workflow management system supports the definition of this process by

allowing an administrator to define this flow-map using a graphical or scripting

interface. The workflow data, which impacts the routing decision of the flow, is also

defined as part of the flow definition. Agent applications, the applications associated

with individual steps, are connected to the workflow management system through a

workflow programming interface. Finally, roles are defined to control task assignment

and task authorization as well as to control access to the underlying workflow data.

Since the organization model of the current WFMS does not support dynamic

relationships between corporate entities, it is not possible to adequately model task

assignment and task authorization of a practical flow such as the one shown in Figure 3-

2.

3.4 Previous Work in Workflow Organization Modelling

Resource Manager implementations have historically focused on technologies

surrounding access methods, concurrency control, and logging and recovery. The

security model and access control systems usually assume a simple and static model

which is based on user and group identifiers. In general, cooperative computing

software applications, such as workflow, group scheduling, and electronic commerce

applications, simply adopt the user and security model of RM’s, e.g. an RDBMS, as their

access control model. However, the user model in an RDBMS is designed primarily to

support access control in processing isolated transactional operations rather than

integrated process activities. It is thus not adequate to model the flexible resource

relationships that are required to support collaborative computing. Other researchers

have proposed specific role models and methodologies for concurrent engineering such

as ARIS (Scheer 1993), CIMOSA (Kosanke et al. 1997), EMS (Graefe and Chan 1993),

M*-OBJECT (Di Leva et al. 1997), Objectflow (Hsu and Kleissner 1996) and SAM* (Su

1986). These researchers all start from the process view and tightly couple the

 45

organization model with the role model and the process model. We next review these

systems briefly.

3.4.1 ARIS

ARIS (ARchitecture of Integrated information Systems) was designed to be used as a

foundation for the creation and evaluation of methods for information systems design to

support CIM environments (Scheer 1993). The ARIS architecture constitutes a

framework in which integrated applications systems can be developed, optimized and

converted into process-oriented implementations. At the same time, it demonstrates how

businesses can examine and analyze information systems in order to translate their

contents to support process-oriented applications. The ARIS architecture aims to define

four major components, namely organization, functions, data, and control. All the

components are broken down in terms of their proximity to the information technology

resources into three descriptive levels: business-level concept, electronic data processing

concept, and implementation. Figure 3-4 shows the ARIS architecture.

Process model, data f low
model, event control

Topology of distributed
systems, trigger

Database transactions,
network control

Organization chart

Netw ork topology

Physical network implementation

Semantic data model

Relational schema

Physical database schema

Functional model

Module design, mini-specs

Program flow

Organization

Data Control Functions

Interface

Figure 3-4 ARIS Architecture

In ARIS, support of business processes is an important goal for business information

systems. The components of an information system to be described from the business

economics standpoint are conditions, events, processes, human labour (employees),

equipment, production materials, and organizational units. Since each component can be

related to every other component, this situation generates a complex structure. Although

 46

ARIS explicitly describes inter-object relationships, it uses a hardwired model to capture

these relationships.

ARIS has an organization model which covers mainly human labour (employee

resources). Since ARIS focuses on the CIM environment, human labour in the model

refers to only those employees involved in the production process, and those users who

are directly involved with the information system. Users are assigned to organizational

units, which are constructed on the basis of criteria such as “same job function” or “same

work object”. This view is referred to as the organizational view. The central concept in

the model of the organizational view is the organization unit. This can be defined as a

department, position, or a larger unit such as an operational area within the enterprise.

Here the boundaries between the meta-levels and the description of an application are

not always clear. For example, the organizational view is on the one hand described as

part of the ARIS architecture in the meta-information model, and on the other hand

“organization” is a business application which can be represented in an application-

specific “organization” data model (Scheer 1993).

3.4.2 CIMOSA

The AMICE Consortium through a series of ESPRIT projects has developed CIMOSA,

the European Open Systems Architecture for CIM. It structures a CIM system as a set of

concurrent communicating processes executed by a finite set of functional entities

(Kosanke et al. 1997).

CIMOSA consists of:

1. A modelling framework based on a process model.

2. An integrated infrastructure consisting of information technology services to support

enterprise integration, application interoperability and model execution.

3. A methodology, called the CIMOSA modelling process, which follows the CIM

system life cycle.

In CIMOSA, an enterprise is considered to be a set of communicating concurrent

processes governing the execution of basic actions, called functional operations. An

enterprise is also a finite set of agents, called functional entities, executing the functional

 47

operations required by business processes and processing enterprise objects. Functional

entities are any resources capable of performing actions. They range from

programmable agents to intelligent autonomous agents, such as robots, computers,

software applications or human operators. The link between functional entities and

business processes is made by functional operations, which are atomic functional units in

the model. A functional operation is any message sent or received by an agent.

Enterprise objects are entities used, transformed, produced or consumed by functional

entities of the enterprise. They are characterized by a set of properties. They exist in the

real world under different appearances or states.

Like other WFMS, processes are used to define the control flow in CIMOSA. Processes

are triggered by events and can be structured into basic steps, called enterprise activities.

An enterprise activity is a task to be performed by one or more functional entities

allocated to the activity for the entire duration of the task. In other words, a task is a

sequence of functional operations. CIMOSA also has the concept of domains to group

different processes into logical units. This helps in managing different classes of

processes in an enterprise.

CIMOSA uses resources, organization units and organization cells to capture the

organization model. Resources can be of two types: passive resources (not able to

execute functional operations by themselves such as tools and carts) and active

resources, resources having a control device (able to execute functional operations).

Active resources are the functional entities introduced above. In other words,

organizational resources in CIMOSA are classified mainly from the viewpoint of

business processes.

An organization unit in CIMOSA is an enterprise object (usually a resource) assuming

responsibility and authority for one or more elements of the model. For instance, a

foreman can be the supervisor of an operation floor where some process-oriented

activities are performed to produce some product. Task assignment and task

authorization therefore can be applied not only to individuals but also to an entire

organization unit. There is a close connection between the definition of organization

unit and the definition of process authorization.

 48

In CIMOSA, organization cells are used to group organization units into larger entities

at different responsibility levels in order to model the organization structure of the

enterprise. Organization cells may also be mapped logically to the process domains.

The CIMOSA model is a powerful model for implementing an event-driven, process-

based approach using generic constructs. These constructs can be specialized or

customized to build partial or particular models. However, the organization model

assumes the constructs of the process model (actualized in such things as operations,

processes and domains), and as a result it will only work within the context of CIMOSA.

In other words, a corporation adopting the CIMOSA organization model must also

assume the CIMOSA process model and WFMS.

3.4.3 EMS

The Enterprise Modelling System (EMS) has been jointly developed by the Institute for

Advanced Manufacturing Technology and SIMCON, a consortium of companies

engaged in collaborative research with the National Research Council of Canada. The

main objective of EMS is to provide a comprehensive set of tools for the creation of

structural and process models of the business and production operations within an

enterprise, with capabilities specifically aimed at continuous process improvement and

evaluation of decision-making alternatives (Graefe and Chan 1993). EMS is developed

on the premise that business process reengineering involves the analysis and design of

workflow within and between organizations. As a result, its focus is specifically on

having an organization model to go hand-in-hand with its process model.

In EMS, the organizational structure of an enterprise is represented as a hierarchy of

generic business units. A business unit is any type of organizational or functional unit

consisting of a set of resources for performing either manufacturing or non-

manufacturing operations. These business units are described through a set of processes.

Resources in EMS can be human or process-related equipment categorized into different

types such as managers, IT workers, clerical personnel for human resources, material

handlers, manufacturing processors, and storage buffers for equipment. Examples of

business units are a production department and a work cell or work centre. The user

enters the hierarchical relationships of the business units in the form of a tree structure,

and specifies the resources, processes and activities for each business unit via a graphical

user interface.

 49

The organization model of EMS is developed solely for the support of BPR. It concerns

only resources that are related to the definition of processes in EMS. It lacks a generic

model to comprehensively represent all the other enterprise resources and their

interactions. As a result, it lacks flexibility in performing organization modelling.

Moreover, EMS does not have a flexible relationship model to define the dynamic

connections between the resources of an enterprise.

3.4.4 M*OBJECT

M*OBJECT, developed at the University of Turin, Italy, is a methodology for

information system analysis, design and implementation for CIM (Berio et al. 1995; Di

Leva et al. 1997). M*OBJECT covers all the three major phases in organization

modelling, namely organization analysis, conceptual design, and implementation design

(refer to Chapter 2 for a detailed discussion on organization modelling and its three

phases). It is an extension to its predecessor, M*, which is a simpler organization model

for CIM (Di Leva et al. 1987). M*OBJECT differentiates from M* by having a concept

of life cycle for enterprise objects and an object-oriented paradigm for describing static

and behavioural aspects.

Although M*OBJECT focuses on the information system aspect, its methodology

heavily emphasizes organization modelling. For this reason, it is more appropriate to

consider M*OBJECT to be a methodology for analysis, design and implementation of

organizational databases. For instance, the model is used to describe three different

analysis levels, namely: (1) the organization level or management level representing the

enterprise functionality and behaviour, (2) the conceptual level, which provides a

common view between managers, engineers, and other employees, and (3) the

application development level.

The organization analysis phase of M*OBJECT concerns global enterprise modelling in

general, and information system requirements definitions in particular. It uses a simple

3-level organizational architecture to describe an enterprise and its components. Firstly,

an object enterprise is a real-world system, such as a company, production system, or

cost centre, which is the focus of the analysis. Secondly, an enterprise environment is a

subset of the enterprise made up of users and functions sharing a common view of the

information system of the enterprise. Finally, an enterprise consists of organization

units, which in turn can be broken down into work centres. These hierarchical

 50

organizational elements are defined in terms of business objectives, business constraints,

and clusterings of system functionalities at different organization levels.

Besides their organizational architecture, enterprises are structured according to a

functional architecture, which must be analyzed and modelled. At the work centre level,

a user activity, or work step, can be defined as a homogeneous set of actions. Activities

are then clustered into processes, which can be defined as a coordinated and partially

ordered set of activities that fulfils an objective of an organization unit. This constitutes

the process model of M*OBJECT.

In M*OBJECT, the intrinsic behaviour of components can be expressed via the concept

of a life cycle, i.e. a state-transition diagram used to specify the possible sequences of

execution of basic activities for the given component.

Overall, M*OBJECT offers an organization model which describes functional,

information, organization, and even resource aspects in one model. Control flow,

information flow, and material flow can be defined collectively or separately with this

process model. At the conceptual level, M*OBJECT takes advantage of object

orientation to model complex enterprise objects. However, it does not push the object-

oriented approach to its full extent; it still has a specific view of enterprise architecture.

Companies using M*OBJECT must adopt this view in organization modelling. This can

sometimes become a limitation. Furthermore, the tightly coupled architecture between

the workflow component and the organization modelling component, and the fact that it

lacks an open interface, have blocked other WFMS from integrating with M*OBJECT.

It also lacks a relationship model to define dynamic interactions between resources.

3.4.5 Objectflow

Objectflow was developed by the Activity Management Group at Digital Equipment

Corporation based on the prior research work of Reliable Flow Manager (RFM) (Hsu et

al. 1991; Hsu and Kleissner 1996). Objectflow is a WFMS, which executes long-lived

and multi-user computations, called activities. An activity is composed of a set of

application routines, each necessary for accomplishing a business function, and is inter-

related by information flow and control flow. An activity may involve multiple

individuals or organizations. Its execution may last for hours, days, or months as

compared to microseconds, as is common for short-lived transactions in OLTP.

 51

Compared to other CIM modelling systems, Objectflow is a full-function,

comprehensive WFMS. By that we mean Objectflow consists of a set of tools for

defining business processes and the underlying organizational database, a workflow

engine to manage run-time execution, and an administrative tool to monitor and audit

process instances and process history. It provides various advanced services such as

reliable forward execution, exception handling (including step-retry and step-

compensation), system integration (i.e. invocation of services in distributed and

heterogeneous systems), user notification by an event-driven mechanism, scheduling and

load balancing among users, and administrative security. It also allows for tracking of

status of current activities, and inquiry on the history of activity execution to support

auditing functions. In addition to the workflow engine, which is the centrepiece of the

system for controlling and managing the flow of business processes, Objectflow also has

a set of tools to support development of workflow applications. This includes the

Workflow Designer (a GUI tool to construct a business process in a Petri-Net like

graph), the Organization Editor (to define organizational entities and populate the

organizational database), the Inspector (for inspecting status and history of activities),

and the Management Utility (to perform startup, shutdown, abort flow or step, and other

administrative functions).

In order to accomplish user notification, scheduling and load balancing, Objectflow uses

a Policy Resolution Model (PRM), which is built on top of its organization model

(Bussler and Jablonski 1995). PRM is implemented as a tightly coupled component in

Objectflow. It allows users to define organizational entities and relationships, which in

turn support the specification of business policies to control task assignment and

notification in the workflow system. In PRM, an administrative user defines an

organization by specifying object types and relationship types. Object types are

basically roles that exist in the company; examples include Manager, Secretary, and

Agent. Relationship types define organization structures over the roles, such as

Member_of, Manager_of, and Responsible_for. Both object types and relationship types

belong to a conceptual schema of an organization structure. They have to be

implemented and populated in a system implementing PRM to capture all instances of a

real organization in the system.

 52

3.4.6 SAM*

Researchers at the University of Florida, funded by the Department of Energy, have

investigated the requirements of a scientific database and integrated manufacturing

system. The result of this investigation was the creation of a semantic association model,

called SAM*. SAM* can be used to model semantic properties of data in integrated

manufacturing environments. It focuses mainly on the data model aspect; however, with

its object-oriented approach, the model can be applied to cover modelling of different

types of enterprise objects. Compared to other systems, SAM* is strong in being able to

model the various types of enterprise resources.

In the SAM* semantic association model, an integrated CAD/CAM database can be

modelled by a network of inter-related concepts. A concept can be a physical object,

abstract object, or event. A concept can be defined by a set of attributes or

characteristics. There are two types of concept: atomic and non-atomic. Atomic

concepts are those which cannot be decomposed; these are observable objects, that users

regard as fundamental information units. Examples are an employee, a workstation, and

a project. A non-atomic concept is an object that can be decomposed. Its meaning is

described in terms of other atomic or non-atomic concepts. For example, the concept of

"Project Team" can be described by the concepts Employee, Robot and Project.

The grouping of atomic or non-atomic concepts to describe another non-atomic concept

is called an association. Different types of association can be distinguished according to

the different structural properties, operational characteristics, and semantic constraints

that users or the database administrator associates with these concept groupings. The

seven association types in SAM* are listed hereafter:

1. Membership association: grouping of homogeneous atomic concepts to form a class.

This creates different categories of concepts or objects.

2. Aggregation association: grouping of a set of attributes or characteristics to define

another concept.

3. Interaction association: independent entity types defined by aggregation associations

can be grouped together to describe a set of events or facts that are the result of some

 53

interactions among the occurrences of these entity types. With interaction

association, one can define relationships between atomic and non-atomic concepts.

4. Generalization association: grouping of concept types according to their generic

nature to form a more general concept type. For example, two aggregation concepts,

foreign parts and domestic parts, define two sets of parts used in a factory. They can

be grouped together to form a more general concept type, called parts.

5. Composition association: grouping of similar or dissimilar concept types, each of

which is a part of the whole modelled by the composite concept. It has a single

occurrence that is a set of sets. Each member of the set is a set of occurrences

associated with one of its component concept types. A composite association can be

formed by any type of association, including the composite association itself.

6. Cross-product association: grouping of some concept types whose occurrences are

the result of taking the cross product of the occurrences of its component concept

types.

7. Summarization association: similar to cross-product association, summarization

association is a grouping of concept types whose occurrences are the results of taking

the sum of the occurrences of its component concept types.

We observe that association types 2, 3, 4 and 5 correspond closely to concepts

encountered in the OO paradigm, namely aggregation, coupling, inheritance and

composition.

Using the SAM* model, integrated CAD/CAM databases and applications, as well as

enterprise resources, can be abstracted and represented graphically as a network of

association nodes whose types are explicitly labelled. A given node can be easily traced

to all nodes that are semantically associated with it (that is, described by one of the seven

semantic associations). Each association type has its own structural properties,

constraints, and operations that are, in general, different from the other types.

SAM* has its strength in generic resource definition using an object-oriented approach.

Its association types also provide a rich semantics and well-classified types to define

groupings and relationships between the various objects. However, relationships in

SAM* are limited to simple association, summation, and cross product. For more

 54

complex relationships, which can only be expressed by a computable expression, SAM*

may have some difficulties in nesting the various associations to establish a relationship.

Similar to other systems, SAM* also lacks an open API.

3.5 Directory Service Based Organization Model

In contrast to the strategies used by the integrated BPM systems just reviewed, other

efforts to model an enterprise have attempted to address the role management issue

through directory services. Role management in corporations using DS is sometimes

referred to as position management. With the integration of Internet, Intranet and

corporate networks, a typical business network is becoming location-independent. The

directory service provides information, applications, and communications to people

wherever they might be, inside and outside the organization – often from physical

servers scattered around the globe. Directory services and other naming services, such

as DEC’s cell service, aim to support distributed object lookup with a naming convention

(CCITT 1988; Jia and Maekawa 1999).

A recent survey indicates that Fortune 500 US companies each have an average of 190

directories, and supporting them is becoming increasingly complex due to the number of

formats to be supported and the disparate systems available to collaborating users

(McFadden 1999). Such problems may be eased by the use of meta-directories, which

integrate directories by linking various different schemas and attributes into a universal,

logical view. Directories can be used as the basis for e-commerce and collaborative

software as well, such as in the case with the Automotive Network Exchange, which

provides an Extranet for e-commerce between suppliers and the automotive industry.

A directory service is a database of objects, which may include users, applications,

network devices, and other resources that users might find on a network. It helps to

manage relationships between people and networks, network devices, network

applications, and information on the network. Under this type of modelling scenario,

each object, including persons, in a company is assigned a static and universally unique

identifier. Roles can be created as objects in the DS and users are assigned to these

roles. This approach yields an efficient solution for simple point-to-point interactions in

collaborative software; it resolves static roles efficiently. Nevertheless, DS lacks a

generic organization model to support modelling the different enterprise resources. It

 55

also lacks a model to define dynamic relationships between resources. Consequently,

DS fails to support advanced applications such as those involved in publish-and-

subscribe scenarios where the publisher is not interested in a list of static roles but would

like to identify privileged subscribers based on some correlation between the publishing

context and the characteristics of target customers (Cheng 1999b).

Hereafter, we will survey the three most commonly deployed corporate directory

standards; these are the X.500 and LDAP, Novell’s NDS, and Microsoft’s Active

Directory.

3.5.1 X.500 and LDAP

The OSI standard architecture is composed of two portions, namely the application layer

and the communication layers; X.500 is an application-layer protocol in the OSI

architecture (CCITT 1988; Radicati 1994). The physical representation of the X.500

directory model consists of three functional components:

1. The Directory Information Base (DIB),

2. Directory System Agents (DSA), and

3. Directory User Agents (DUA).

The DIB contains a collection of information about users, resources, and the network

that is maintained by the directory. The DIB resides physically within and is managed

by network servers, known as Directory System Agents or DSAs. DSAs provide the

actual directory service and implement the service side of the directory operations.

DUAs represent the "client" side of the directory service. They represent the user in

activities involved with accessing the information stored in the directory. Figure 3-5

shows the functional picture of the X.500 model.

 56

DUA

DUA

DUA
Directory

Service (DIB)

Application
Program

Figure 3-5 User's View of the X.500 Directory Service

As the information contained in the directory grows, it is usually necessary to partition

the DIB among multiple DSAs, called cooperating DSAs. This increases the availability

of the information and improves overall system performance by ensuring that

information is maintained close to the network users who need to access it most often.

From the view of the DUA, however, such a collocation of DSAs must continue to

behave as a single unified database. To accomplish this, X.500 directories comprise two

distinct protocols:

1. A Directory Access Protocol (DAP), which is used by DUAs to access the

information stored in DSAs.

2. A Directory System Protocol (DSP), which is used between DSAs to service user

queries that require information, possibly distributed over multiple DSAs.

Figure 3-6 shows a set of DUAs that access the directory service as a whole by using the

DAP protocol, and a distributed directory service made up of multiple DSAs that interact

with one another using the DSP protocol.

 DUA

DSADSA

DUA

DUA

Directory Service

Figure 3-6 Distributed Directory Service

 57

The DIB is the physical representation of the X.500 directory. The logical representation

of the X.500 directory is referred to as the Directory Information Tree (DIT). Each DIB

entry corresponds to a vertex of the DIT. The information stored in a particular DSA is

referred to as its DIB. Figure 3-7 shows a sample DIT, made up of entries from three

countries: the United States, the United Kingdom, and Japan. Each country name space

is further subdivided into an organizational-level name space for company names (NC

Corp, Oracle and Enqueue). The company is further divided into organizational units.

Finally, people resources are listed under each organizational unit name.

Object Classes
C = Country Name
O = Organization Name
OU = Organization Unit Name
CN = Common Name

Root

CN=BHaba CN=JMcGeeCN=HGrantCN=ELenes CN=SNajai

OU=SalesOU=MarketingOU=R&D

O=Enqueue O=NC Corp O=Oracle

C=Japan C=US C=UK

Figure 3-7 A Sample Directory Information Tree

Since X.500 is intended to serve as a global directory service, this implementation of

X.500 is commonly used by many corporations in today's world (CCITT 1988). Section

9.1.6 provides a more detailed discussion on X.500 and how it is compared to our

proposed organization model.

LDAP, a lightweight implementation of the X.500 DAP protocol, was developed by the

University of Michigan (Howes 1995) as a simple protocol on X.500 directory systems.

It has recently proliferated with the growth of the Internet, and is being used in a wide

variety of network-based applications to store data such as personal profiles, address

books, and network and service policies. Such systems provide a means for managing

heterogeneity in a way far superior to what conventional relational or object-oriented

databases can offer (Cluet et al. 1999). As an X.500-based system, LDAP uses the same

directory and information model as X.500.

 58

3.5.2 Novell NDS

Novell’s NDS is a fully functional directory service that is based on the X.500

international standard (Andrew and Shropshire 1998). As an X.500-based system, NDS

organizes objects in a hierarchical tree structure, called the directory tree. A company or

organization can arrange objects in the directory tree according to its organizational

structure, which usually represents how people access and use company resources.

An NDS object is contained in an Organizational Unit (OU), which in turn can be

contained in another OU. Just as individuals have unique identities within an

organization based on their individual needs, departmental needs, and organizational

needs, identities are created in NDS to provide users with access to the resources they

need to fulfil their responsibilities. For example, all employees in an organization are

given an office, desk, and telephone just because they are employed; similarly, NDS

allows every individual in an organization to have access to specific resources, such as

employee benefits and telephone databases. Beyond this, individuals within a particular

division or group should automatically be given access to network resources associated

with their division or group. NDS uses the inheritance property in access rights

authorization to make this possible. Administrators may grant access rights to an

individual; alternatively, rights can be granted to an OU. Users may have requirements

that are specific to their individual responsibility as well as organizational needs. For

example, a user may be given access to specific network resources associated with the

user’s role in the Finance Department. Additional network access may be granted

because the user is a member of a task force that is working on a specific issue.

Similarly, privileges may be granted based upon location as well.

Overall NDS is strong in providing a comprehensive directory service environment to

enable network and application management. It supports distributed services,

replication, and has a fault-tolerant feature. It has an open API for any collaborative

software to interface with the directory. However, as a practical DS that focuses on

supporting network management, it lacks a generic organization model to include

resources and relationships outside of the computer network environment, such as

projects, assets, sales regions, etc. It also lacks a relationship model to define complex

relationships amongst resources.

 59

3.5.3 Microsoft Active Directory

Microsoft’s Active Directory is bundled with Windows 2000. Some industry analysts

believe that the Active Directory could be the most significant determining factor in

Microsoft's quest to make Windows 2000 a true enterprise server solution (Burns 1998).

With scalability and Internet-based standards, Active Directory provides much more than

Microsoft’s older Security Account Manager service directory. Active Directory is a

completely extensible and scalable directory service, with hierarchical and scalable name

space; directory partitioning for global enterprise scalability; multi-master replication of

data store; dynamically extensible schema; and LDAP support for interoperability. The

Active Directory software development kit also includes an API software library for

linking other directory services, including both NDS and LDAP, and to support

integration with collaborative software. Windows 4.0 has one master replication model,

the Primary Domain Controller, which has the only write-enabled copy of the directory

database. Windows NT 5.0 with Active Directory uses a multi-master replication model

that refers to servers as Domain Controllers. This increases the reliability and

availability of directory services in NT.

With Active Directory, a domain is a functional or administrative grouping of resources.

One domain tree is a full partition of the directory, and Active Directory can be separated

into organizational units for functional or administrative groupings. Although Active

Directory was not developed based on the X.500 model, with the domain tree, which is

very similar to the DIT in X.500, the information model of Active Directory is indeed

very similar to that of the X.500 directory.

Despite Microsoft’s intentions of making Active Directory the de facto industry

standard, analysts believe that it is unlikely that the wide and deep penetration of NDS in

the PC directory market will be replaced by Active Directory in the near future (Gaudin

1999). In fact, Microsoft, in the Windows 2000 release, provides a bi-directional

synchronization tool that links NDS with Active Directory. At some point in time, users

will want one directory infrastructure, but given the existing penetration of NDS, that

will take some time to become a reality. This is a significant feature for developers of

collaborative software; building applications on top of the Active Directory means they

can leverage the organizational databases that are managed by LDAP and NDS.

 60

Similar to NDS, Active Directory is strong in providing a complete set of network

directory services such as data replication, directory synchronization, and administrative

tools. Nevertheless, just like NDS, it is feeble in supporting enterprise-wide

collaborative software that must coordinate activities among various types of

dynamically related organizational resources.

3.6 Standalone Organization Modelling Systems

In addition to completely integrated BPM systems, and the DS-based approaches we

have just seen, there exist systems which are essentially standalone organization

modelling systems. Some implementations attempt to isolate an organization component

from the workflow engine. Some prominent works in this area include ORM and

OVAL. This category also includes organizational and office systems whose purpose is

to provide a graphical modelling capability for describing organizational structures. This

section will survey the said two systems by outlining their salient features, strengths, and

weaknesses.

3.6.1 ORM

WorkParty, a workflow system developed by SIEMENS, has an organization component

called ORM, which is a standalone client-server database application to support

organization modelling (Bussler 1994; Rupietta 1994). ORM has an application

programming interface and a graphical user interface to allow users to define and

populate the organizational database. Although ORM separates the organization model

from the process model, it does not separate the organization model from the role model;

roles are defined as a resource type in the organization. As a result, it falls short in

supporting resources playing different roles under different contexts, such as when they

are involved in different business processes. Limitingly, the organization definition and

the role definition of ORM are static, as is the case with many other systems, and it

suffers from the lack of a dynamic relationship model.

3.6.2 OVAL

OVAL is the acronym for Object, View, Agent, and Link. It is a “radically tailorable”

tool for constructing a cooperative work environment. The OVAL project was led by

 61

Malone at Sloan Business School of MIT; its purpose is to provide a handy GUI tool for

forming organizations within a corporation (Malone et al. 1993; Malone et al. 1995;

Oval 1992). OVAL has an object model for constructing organization information and

structure. Through user-specified rules, it can process message objects such as

notification or customized information flows according to a user’s needs. OVAL also

supports adding hard links between resource objects but not dynamic links. OVAL was

developed upon four key building blocks:

1. Semi-structured objects represent real-world entities such as people, tasks, messages,

and meetings. Each object includes a collection of attributes and attribute values and

a set of methods that can be performed upon it. The object types are arranged in a

hierarchy of increasingly specialized types with each object type inheriting attributes

and methods from its parents in the hierarchy. The objects are semi-structured in the

sense that users can fill in as much or as little information in different attributes as

they desire and the information in an attribute is not necessarily of any specific data

type (e.g. it may be text, integer, or a pointer to another object).

2. User customizable views summarize collections of objects and allow users to edit

individual objects. For instance, users can select the fields to be shown in a table

display of a collection of objects, or they can select the links to be used to create a

network display of the relationships between objects. A calendar display can be used

to summarize objects with dates in one of their attributes. Any appropriate display

format can be used to show any collection of objects and any attributes of those

objects. Currently OVAL implements the table, network, and calendar views.

3. Rule-based agents perform active tasks for users without requiring the direct

attention of those users. Agents can be triggered by events such as the arrival of new

mail, the appearance of a new object in a folder, or the arrival of a pre-specified time.

When an agent is triggered it applies a set of rules to a collection of objects. Rules

contain descriptions of the objects to which they apply and actions to be performed

on those objects. Actions include general actions such as moving, mailing, and

deleting objects or object-specific actions such as loading files or responding to

messages.

4. Links represent relationships between objects. For example, users can use links to

represent relationships between a message and its replies, between people and their

 62

supervisors, and between different parts of a complex product. The links are in

hypertext; users can follow these hypertext links by clicking on them, and the

knowledge represented by the links can be used by rules or in creating displays.

Using a GUI tool, OVAL users create and populate organizational objects, define

relationships between specific objects, customize views to manipulate organizational

data, and instantiate agents to watch over certain events. Although OVAL provides a

handy object tool to create and manage organizational objects, it does not have a formal

relationship model to construct roles and dynamic relationships; it therefore has

difficulty in managing a large number of linked objects in a shared, distributed network.

It also lacks an open interface for other cooperative software to take advantage of the

organizations created.

3.6.3 Other Organizational and Office Systems

Other researchers have proposed visual and programming languages for organizational

and office systems such as Officeaid-VPE (Di Felice and Clementini 1991), HI-VISUAL

(Hirakawa et al. 1990), and Regatta VPL (Swenson 1994). Officeaid-VPE and HI-

VISUAL were limited to the description of single office tasks. They are therefore not

adequate for describing the integration and collaboration across multiple offices in an

enterprise. Regatta VPL has a comprehensive process model and an abstract view of

organizations; however, the coupling of the process model with the organization model

limits its flexibility in organization and role design.

3.7 Weaknesses of Existing OM Systems

Overall, the existing approaches to the support of organization modelling and role

management suffer from the following weaknesses:

� Lack of a conceptual organization reference model. We need a generic solution so

that we can apply the model to the access control needs of different concurrent

engineering environments.

� Tight integration with the BPM’s process and application models. As a result of this

tight integration, current solutions are only adequate for the support of those BPM

systems that observe the specific models.

 63

� Support for only some predefined resource types. Network DS systems focus on

machine nodes, users and applications; messaging DS systems focus on user

addresses; and BPR organization sub-components focus on users, groups and roles.

To support integration and collaboration between different applications and users, the

role model must be extensible and flexible enough to be able to cover all different

resource types, including employees, departments, products, machines, projects,

business partners, customer accounts, and many others. A model with this type of

extensibility would allow us to model context-rich access control; for example, the

user who plays role X is allowed to access relevant data only if he is executing from

a machine node which is certified to be a secured node.

� Assumption of only static and hardwired relationships between resources. In reality,

relationships between resources are changing rapidly. Relationships exist not only

amongst resources of the same type, but also amongst different types of objects. For

instance, there is a many-to-many relationship between the projects and employees of

a company. Similarly, a three-way relationship can be defined between users,

machines, and projects.

� Lack of ability to integrate with other organizational management systems. In an

enterprise environment, it can be assumed that there will be existing directories and

organizational resource information systems. A comprehensive architecture must

take into consideration such directories and systems in order to exchange information

with them whenever it is appropriate to do so.

In view of the above identified deficiencies, herein we present a new organizational and

role model, called the OMM model, in order to overcome these deficiencies. The OMM

model supports the organization analysis, conceptual design and the design

implementation phases of the organization reengineering cycle (Berio et al. 1995). It has

a conceptual and reference model for organization and role modelling. It also includes a

relationship model to define the changing relationships between organizational

resources. OMM does not assume a particular process or application architecture. With

this generic approach, OMM is able to map its object types to other organizational data

schemas, and to present an integrated and multidimensional view of an enterprise to the

user. OMM consists of an open API to allow any external systems, such as WFMS and

other collaborative software, to leverage the organizational information managed by

OMM. A detailed description of the OMM model is presented in Chapter 4. Therein we

 64

will also show how OMM can support WFMS to model flexible business processes such

as the one shown in Figure 3-2. In Chapter 5, we will illustrate how the OMM model is

used to support flexible task assignment and authorization in a cooperative computing

environment.

3.8 Conclusion

In this chapter, we have surveyed the existing organization modelling (OM) systems that

are used to support WFMS and other groupware. These OM systems fall into three

categories. First is the OM component that is embedded in the WFMS. This includes

ARIES, CIMOSA, EMS, M*OBJECT, Objectflow, and SAM*. Second is the directory

service, which is used particularly by groupware such as communication software, e-

commerce applications and conferencing applications. We reviewed the model and

services of three most commonly deployed corporate directories: X.500 and LDAP,

Novell’s NDS, and Microsoft’s Active Directory. Third is the standalone office and

organization systems. They are mainly tools used to define organizational resources.

We discussed briefly ORM, OVAL, Officeaid-VPE, HI-VISUAL, and Regatta VPL.

The first two are tools that consist of a service to create and manage organizations, while

the last three are mainly GUI ideas to represent organizational resources and structure.

In Section 3.3, we provided a running example of a business process, which is an

electronic parts ordering process. Due to the requirement of relating the roles involved

in executing this process, existing organization models fail to model the roles and

therefore will not be able to support WFMS to model the task assignment and

authorization of this workflow. This example will be used throughout this thesis to point

out how OMM can satisfy such requirements and support the modelling of processes in

general.

The ensuing chapter is devoted to the presentation of OMM. Therein we present the

organization model and information model of OMM and compare OMM to its main

competitors.

 65

CHAPTER 4 OMM: A Hybrid Model for Organization Modelling

In this chapter, we will introduce our approach to organization modelling. Our model is

called OMM, which stands for Organization Modelling and Management. OMM is a

hybrid of the object-oriented model and the entity-relationship model. Through the

object-oriented model, OMM can be applied as a reference model to represent different

types of resources within an enterprise. The entity-relationship model allows OMM to

define the complex relationships between resource objects.

In Section 4.2, we will describe the OMM organization model by using a combined

entity-relationship and object-oriented diagram. In Sections 4.3 through 4.5 we will

define each of the fundamental concepts of OMM in detail. OMM uses an object-

oriented approach to describe the organizational information of the enterprise. With the

OO approach, we are able to flexibly apply OMM to capture the various types of

resources in different kinds of enterprises. Some of these resources are tangible in

nature; these may include people, robots, equipment, products, facilities, documents and

other types of resources. Other resources are intangible but of equal importance to the

success of the corporation; these include projects, tasks, business objectives, long range

plans, and many others.

4.1 Introduction

A business process may involve different corporate resources, which may in turn relate

to one another indirectly through other resources; therefore, being able to represent any

resources of an enterprise with a common organization model like OMM is a

fundamental requirement in facilitating a cooperative working environment. Using the

OMM model to manage the information pertaining to enterprise resources will serve as a

common ground of collaboration between all employees. Administrative and

management tools can be built based on the organization model and used to support

different types of enterprises. In this sense, the idea is similar to what Javasoft’s

JavaBeans™ industry standard is attempting to accomplish (Voss 2002). All Java

objects implemented based on the JavaBeans™ standard adopt a common calling

convention and implement a set of required APIs. As tools are created to observe the

JavaBeans™ standard, they can be used to handle all JavaBeans™ compliant objects.

 66

However, modelling and storing organizational resource information is only the first step

in organization modelling. Once we can describe different types of resources, we need

to also flexibly describe the relationships between the different resource objects. For

instance, in our case study, when modelling a company employing 25,000 people across

1,500 groups, over 82,500 relationships were estimated to exist between the people and

the departmental infrastructure of the company. To identify the tens of thousands of

relationships is a complex challenge, and is even more complex as we realize that these

relationships are rapidly and constantly changing in an enterprise; once we have defined

a relationship, there is a high chance that it could be outdated within days.

In OMM, we solve the issue of modelling numerous and dynamic relationships by using

a policy-based approach. Instead of describing a relationship in a “hardwired” fashion,

we abstract the relationship into a computable expression. We term such relationship

definitions virtual links or virtual relationships, in contrast to the static, hardwired

relationships defined in traditional organization modelling systems. In OMM, some of

these virtual links exist between objects of the same type, such as the reporting hierarchy

within a corporation which involves the relationships between all employees of the

corporation. Other virtual links exist amongst different types of resource objects. For

example, the relationships between people, departments, and facilities describe which

departments and who occupy what offices. In our case study of applying OMM to

Hitachi America, by abstracting relationships into computable expressions, we are able

to describe over 2,000 relationships of the company by using four business policies. The

results of this case study will be discussed fully in Chapter 9.

4.2 An Enterprise and Its Resources

An enterprise is composed of different types of resources. Resources include more than

people. Human resources form only one category of resource objects that an enterprise

depends on to accomplish its goals. Other types of resources include such things as

machines, products, business units, R&D projects, assets, facilities, software

applications, business processes and vendors. The list of resource types can be

significantly different from one business to another. It may also grow and change with

the growth of the company. The challenge in this area is that although it is possible to

list all resource types within an enterprise at any moment, we cannot employ a rigid

 67

approach to describe the resources of a changing enterprise, nor can we apply such a

restricted model to different types of enterprises.

OMM is a hybrid model comprising aspects of the object-oriented model and the entity-

relationship model. It is a generic reference model to define enterprise resources. As a

generic model, OMM can be applied flexibly to define different types of resources.

Furthermore, with a business rule-based relationship model, OMM can define flexibly

the roles the resources play, as well as the inter-relationships between the resources. As

discussed in Chapter 2, modelling of an enterprise involves defining its resource types

and the dynamic relationships between the resource objects. OMM, as it will be seen

subsequently, is able to cover both aspects.

Moreover, since business processes are executed by company resources that are related

to one another, once the resource relationships are formally modelled, we have the

opportunity to automate and improve the operational efficiency of the company by

focusing on reengineering its business processes. Workflow technology provides the

model, services, and tools to automate and refine business processes on top of a well-

defined enterprise. A workflow system assigns tasks and privileges to a subset of

corporate resources such as employees, robots or customers. It may also associate a

workflow step with a certain application, or identify a set of trusted machines on which a

workflow step should be running. OMM, as it will be seen subsequently, is able to

support the stringent requirements of task assignment and resource allocation in

workflow systems.

There are three fundamental conceptual entities that make up an enterprise in the OMM

model, namely

� organizations

� members and

� virtual links.

An enterprise is composed of a number of OMM organizations. Each organization

represents a type of corporate resources such as employees, departments, products or

projects. Each object instance within an organization is termed a member object, or

simply a member, in OMM. Each member within an organization maps to an actual

 68

resource of the corporation. Members of the same type share a common set of attributes

and methods that is extensible by the user. A member can relate or link to other

members through virtual links. Contrary to static connections, a virtual link only has a

relationship definition stored as a computable expression, which is evaluated and

resolved at runtime. We shall define each of these OMM conceptual entities and discuss

them in greater detail hereafter.

As stated earlier the OMM is a hybrid ER/OO model. In Figure 4.1 we can see the ER

aspects of the model. In Figure 4.2 we see the OO aspects of the OMM model where the

“isa” relationship should be interpreted as subtyping in accordance with the OO model

(Booch 1999).

Figure 4-1 The ER Component of the OMM Model

connects to
Enterprise

Organization Virtual Link
Many-to-many

(isa) isa comprises

Member

Organization

contains
compo

of
sed One-to-many

Figure 4-2 The OO Component of the OMM Model

From the diagram in Figure 4.2 we can see that it is possible to specialize the conceptual

entity of organization (should it be necessary) but extension can also be achieved

through the aggregation process of Figure 4.1. For example, a modeller may focus on a

specific resource type, such as EMPLOYEE, in a company and apply the OO component

of OMM to capture the properties of this resource type as the attributes of an OMM

organization. In addition, s/he may define another resource type, say DEPARTMENT,

and again represent its properties using the OO component of OMM. Finally, the

EMPLOYEE organization and the DEPARTMENT organization may be connected

using the ER component of the OMM model (through the connects to relationship). This

connects to relationship between the two organizations is used to represent the

overarching fact that all employees work in departments. These two organizations are

 69

further aggregated to be put under the same Enterprise (through the composed of

relationship).

Figure 4.3 combines the ER and OO components into a single diagram; the yellow box

contains the ER aspects of the model while the green box contains the OO aspects of the

model.

connects to

Enterprise

Organization Virtual Link

contains

comprises

contains contains

connects to

reference
to

composed
of

(isa)

Member

Methods Attributes Context

Many-to-many

isa

ER Component

OO Component

Connected
from

any One-to-m

Figure 4-3 Diagram of the OMM Model

4.3 Organizations

When a modeller performs organization modelling over an enterprise, three phases are

involved (Vernadat 1996). The first phase is to analyze the current state of the

enterprise, and to project the expected state based on the input from management. The

second phase deals with the conceptual design of various desired groups or units that

make up the corporation. Both the analysis phase and the conceptual design phase are

concerned with how a corporation is broken down logically into different components

based on resource types, functions, management responsibilities or geographic locations.

The third phase is known as design implementation. It takes the conceptual design from

the second phase and implements the design with the underlying information system

(Berio et al. 1995). We have discussed the concept of organization modelling and the

details of these three phases in Chapter 2. In the conceptual design phase, OMM

organizations give administrators flexibility in defining the various components of a

corporation.

The conceptual entity of OMM organization is next defined.

Definition 4.1 (Organization) An organization in OMM is a resource type that exists

in the enterprise. It represents a set of resources which share common characteristics.

 70

Each OMM organization has a unique name across the entire enterprise. This name

serves as an organization ID and is specified by the user at the time the organization is

created. Examples of organization names include EMPLOYEE, DEPARTMENT,

CONTRACT and MACHINE. The organization properties are described by attribute

definitions, which can be mapped to column names in relational database tables, for

example. The following table shows some sample attributes of these organizations.

OMM Organization Organizational Attributes
EMPLOYEE First_Name, Last_Name, Employee_Number, Department, Manager, Title
DEPARTMENT Manager, Parent_Department
CONTRACT Company, Type, Duration, Date_Signed, Value
MACHINE Serial_Number, Make, Model, Last_Service_Date, Next_Service_Date

Table 4-1 Sample Attributes for OMM Organizations

In this example, each of the attributes can be implemented as a column in a relational

database table. For example, in the case of the EMPLOYEE organization, First_Name,

Last_Name and Department can be represented by three table columns, respectively.

As database tables can easily represent OMM organizations, our approach also simplifies

the design implementation phase. Once we have applied OMM organizations to model

the different resource types of an enterprise, the organization analysis phase can be

performed easily by analyzing the OMM organization definitions and class hierarchy.

In our prototype, OMM organization is implemented in the OmsOrganization Java class

(see Appendix A). Its properties include the organization ID, organization name, a

vector that contains a list of other organization IDs that it relates to, and a vector that

points to its organizational attribute definitions.

The next two subsections describe how the conceptual entity of OMM organization is

applied to model various resource types of an enterprise.

4.3.1 OMM Organization Partitioning

In OMM, an enterprise is composed of a number of OMM organizations. These

organizations are created to map the different resource types and components of a

company. Each OMM organization has an identifier that is uniquely defined across the

global enterprise. Using the OMM organizations, a company is partitioned first

horizontally and then vertically. Horizontal partitioning divides the enterprise into

 71

different resource types, such as employee, division, department, product and customer.

Vertical partitioning is applied to break resources of the same type into smaller units,

such as breaking employees into permanent workers, temporary workers and outside

contractors. Figure 4-4 shows pictorially these two ways to partition an enterprise’s

resources using OMM organizations. For example, to support the workflow example

described in Section 3.2, we need to model the enterprise resources of customer,

employee, division and department.

Horizontal Partitioning
Contractor

Temporary
Worker

Permanent
Worker

Customer
Department

Division

Employee

Vertical Partitioning

Figure 4-4 Horizontal and Vertical Partitioning of Enterprise Resources in OMM

During the conceptual design phase of organization modelling, one will first apply

horizontal partitioning to define the different types of resources, followed by vertical

partitioning to further refine the organization model. Referring to the running example

in Chapter 3, we can define company resources using the OMM organization concept.

For example, an OMM organization may be defined to represent the employees of the

company, another to represent the divisions, and still another to represent the

departments within each division.

Thereafter, we further divide the organization representing a resource type vertically.

For example, employees who are permanent workers may be included in one

organization, while temporary workers are placed in another. In summary, horizontal

partitioning helps to define the different types of resources within the enterprise, while

vertical partitioning allows users to logically divide resources of the same type into

smaller sub-components.

To further illustrate how partitioning maps to the OMM model, we present another

example. Suppose a company wants to capture all its documents as a resource type. The

simplest way a modeller may adopt is to define an OMM organization, called documents,

with attributes such as create_date, owner, type and file (which is an attribute pointing to

 72

the path and filename of the actual document image for retrieval). However, since there

are different types of documents in the company, the modeller may also perform vertical

partitioning and define a number of OMM organizations such as financial documents,

performance review, business plans, customer contracts and legal documents. Each of

these organizations may share the common attributes as defined for documents, but they

also uniquely possess attributes that are meaningful to them. For instance, financial

documents has attributes like tax_code and fiscal_year; performance review has

review_date and employee_ID; business plans has project_ID and department_code;

customer contracts has company_name and contact_value; and legal documents has

security_level. (The same obtains for methods.)

Note that partitioning is a methodology used in the organization conceptual design phase

to model different components of the enterprise. Once partitioning is done, the result is a

number of distinctly defined OMM organizations, each of which represents a certain

component of the enterprise.

The idea of organization partitioning gives a high degree of flexibility to the modeller in

describing the logical structure of an enterprise. It also gives greater ownership and

autonomy to management. For instance, different divisions in a company may own their

individual organizational definition; as a result, a much greater level of autonomy in

defining and managing their own organizational information is granted to them. They

can update, delete, or extend their organizational definition without impacting others.

For major restructuring, administrators may alter the organization definition which

corresponds to their units only. In addition, the granularity of partitioning is controlled

entirely by the modeller; s/he has the flexibility to decide how fine s/he wants to divide

the organization. When the business conditions change, a company may choose to either

merge or further divide the organizations. OMM makes the merging and splitting of

organizations simple. Chapter 7 discusses modularization and decentralization, which

are common techniques used in organization reengineering. In that discussion, we will

present the details of how OMM supports merging and splitting of organizations and

provide some examples.

At the design-implementation phase, we will consider the underlying database schema

that will be used to physically represent the OMM organizations. An OMM organization

is described by defining a set of attribute names, which represent the common

 73

characteristics of the resources within the organization. It is common to use some

relational tables within a database environment to capture the definition of an OMM

organization. The OMM methodology does not dictate the physical layer of the

underlying data model, although our current prototype implementation uses an RDBMS

as its repository. When a relational database implementation is chosen, users define the

attribute names as column names in relational tables. If an object-oriented database is

used, the attribute definition maps directly to the attribute definition of a class. Indeed,

an ideal implementation is to use XML as the underlying data model to capture the

resource definition and information such that enterprises can achieve interoperability

along the value chain easily through Web Services (Kleijnin and Raju 2003; Stal 2002).

4.3.2 Relationships between Organizations

Resource types relate to one another within the business context of the enterprise. OMM

provides a many-to-many relationship to connect organizations. The technique of

connecting organizations is common in the business world to formulate how a resource

type relates to another resource type that may or may not inherit a common set of

attributes (refer to Figure 4-3). For example, for many companies, a department always

exists under a certain division and within one of many departmental trees of the company

hierarchy. To capture this knowledge in the organization model, we define a relationship

to connect the DEPARTMENT organization with the DIVISION organization, and

another to connect the DEPARTMENT organization with itself. Similarly, since each

employee must be working in a certain department, a relationship is defined to connect

the EMPLOYEE organization and the DEPARTMENT organization. Figure 4-5

illustrates the application of the notation in Figure 4-1 to represent these

relationships between the organizations.

Organization

connects to

Apply the notation
in Figure 4-1 to the
example:

DEPARTMENT

DEPARTMENT

EMPLOYEE

DIVISION
connects to

Figure 4-5 Relationships between OMM Organizations

Note that DIVISION only connects to one organization, namely DEPARTMENT, while

DEPARTMENT connects to multiple organizations, namely DIVISION, EMPLOYEE

 74

and itself. Finally, EMPLOYEE connects to DEPARTMENT. These connects to

relationships help the person who is navigating through the model to easily find relevant

and related resource types.

Unlike the virtual links between members that we will discuss in Section 4.5, the

relationships between OMM organizations are static relationships that exist on the

resource type level. They are represented simply by a relationship name and a pair of

organization IDs. Given that the number of type-level relationships are few (usually

O(N), where N is the number of resource types in the enterprise) and the changes to type-

level relationships are infrequent (once over several years or never after they are

defined), it is sufficient to model them with a pair of static IDs. However, the number of

instance-level relationships between members is larger than type-level relationships by

an order of magnitude (usually O(NM), where M is the number of instances within a

resource type) and, moreover, instance-level relationships tend to have very rapid

changes; it is therefore not practical to model them with a static approach. In Section

4.5, we discuss the challenge of modelling instance-level relationships and our dynamic

approach to solve this issue.

4.4 Members and the Information Model

From the OO viewpoint, an OMM organization is a class, and each entity within the

OMM organization is an object instance of that class. In OMM, we call this object

instance the OMM member. These constitute a class of members for each OMM

organization. In this section, we will discuss member objects, or simply members, in

OMM, in the context of the information model that was introduced in Section 4.2.

Definition 4.2 (Member) A member in OMM is a conceptual entity within an OMM

organization. It represents a resource instance within the enterprise and can be

uniquely identified.

4.4.1 Object-Orientation of OMM

OMM employs an object-oriented information model to define the OMM members. The

object-oriented approach assumes that the world is made of an organized collection of

objects (Larman 2001). The fundamental construct in the OO approach is the object,

which combines both data structure and functions in a single entity. Since we apply the

 75

OO model to OMM members, we sometimes refer to a member instance as a member

object, especially when discussing their OO nature.

Member objects in OMM are used to represent different enterprise object instances.

Like objects in the OO model, OMM member objects may interact with one another via

the exchange of messages. Messages are requests with or without data; messages

interact with the methods, which are executable programs, associated with the member

objects.

OMM uses the OO model to capture enterprise resource information. From the OO point

of view, OMM organizations are the different classes representing the various resource

types within the enterprise. Each OMM member, representing an instance of a resource

type within the enterprise, is an object of a class. Figure 4-6 shows these two

correspondences.

OMM organization maps to
the concept of Class in OO

comprises (isa)

Member

Organization

OMM member maps to the
concept of Object in OO

Figure 4-6 OMM Conceptual Entities Correspond to OO Concepts

OMM organizations and member objects observe the fundamental principles of OO,

such as object identification, encapsulation, inheritance, and message passing. The

concept of “class” in the OMM model is similar to the Object Class in the directory

model of X.500 (CCITT 1988). OMM member objects are different from the X.500

members in that OMM supports class inheritance, method extension, and object life

cycle.

All OMM member objects inherit a set of system attributes and methods from a system-

defined superclass called OmsMember (see Appendix A for the definition of the

OmsMember class). Figure 4-7 shows this simple hierarchy.

 76

User-defined OMM Member

Methods
 delete()
 setAttValue()
 copy()
 move()
 getState()
 setState()

Attributes
 identifier
 name
 state

OmsMember

User-defined attributes
 e.g. jobCode, titles, birthday

User-defined methods
 e.g. drawSelf(), getRaise()

Figure 4-7 Hierarchy of the OMM Member

Note that although the attribute definition is associated with the OmsOrganziation (see

Table 4-1) as discussed in Section 4.3, when a user invokes an API call to get a member

object from OMM, OMM will retrieve the attribute values from the database, attach

these values to the member object and return the member object to the user. The

following code segment shows how this is done in Java by calling the OMM API (see

Appendix A for the listing of OMM API):

OmsOrganization empOrg = new OmsOrganization(“EMPLOYEE”);

OmsMember memObj = new OmsMember(empOrg, “john_smith”);

OmsObList valueList = memObj.getValList();

When the above call sequence is executed, valueList (a Java Vector object) will

contain a list of attribute values for john_smith, who is a member object in the

EMPLOYEE organization. Put in a different way, if EMPLOYEE was defined to have

the attributes First_Name, Last_Name and Title, then valueList will have the values

corresponding to these attributes (e.g. John, Smith and Engineer, respectively). In

addition, the member object, memObj, will also contain an OMM system-generated object

identifier, an object name (“john_smith”), and a state (initially set by default to active —

the state transition of OMM members will be discussed in Section 4.4.2).

The attributes and methods listed under OmsMember in Figure 4-7 are extended from

OmsObject (see Appendix A). The identifier attribute serves as the object ID, and is

unique for each member object across the entire enterprise. This identifier is a 64-bit

numeric string generated by the OMM system at the time the member object is created.

In addition, each member object has an easily recognized name that is given by the user.

This object name must be unique within the OMM organization to which the member

 77

object belongs, but it does not need to be unique across multiple organizations. The state

attribute represents the state within a life cycle that the member object currently holds

(see Section 4.4.2).

Since our OMM Prototype System is implemented in Java and OMM organizations are

implemented by Java classes, users can easily define Java methods to associate with

OMM organizations. All user-defined organizations inherit from the system-defined

superclass, OmsOrganization (see Appendix A 1.2 for its definition), a set of attributes

and methods. We refer readers to Chapter 9 for the implementation details of the OMM

Prototype System.

The full class diagrams of the OMM conceptual entities can be seen in Appendix B. The

diagrams were constructed automatically from the Java code using BlueJ (BlueJ 2003).

When users define an OMM organization, they specify the attribute definition that is

used to describe the member objects of that organization. Each user-defined attribute is

used to describe a certain aspect of the member objects within the organization. An

attribute has four properties: a name, a data type, a value constraint and a set of values.

Note that an attribute may have zero or more values. In the OMM Prototype System,

attributes are implemented as Java classes. The attribute definition associated with an

OMM organization is dynamic; it can be augmented in its lifetime. There now follows

the formal definition.

Definition 4.3 (Attribute) Attributes in OMM are properties of OMM organizations.

Member objects of the same OMM organization therefore share common attribute names

although they can carry the same or different attribute values. For example, the Title

attribute of a certain employee John_Smith may have the following properties:

 Name: Title

 Data type: Character string

 Value constraint: many-to-many

 Value: ‘Engineer’, ‘Architect, ‘Technical Staff’

An attribute name can begin with one or more alpha characters followed by any number

of alphanumeric characters:

Attribute Name ::= Alphabet+ Alphanumeric*
Alphabet ::= A-Z | a-z

 78

Alphanumeric ::= Alphabet | Numeric
Numeric ::= 0-9

Table 4-2 Syntax of OMM Member Attribute

Examples of attribute names include “Manager”, “Title”, “Price”, “Serial Number”, and

“Last Service Date”.

An attribute can have any one of five data types. The five supported data types in OMM

are listed in the following table, with an example to capture the employee information of

the running example in Chapter 3:

Data Type Description Example
Integer Any whole number numeric value Age in years
Float Decimal number Salary, Price, Cost
Character String Alphanumeric Title, Phone Number, Address
Date Year, month, date or time format Birthday, Deadline, Hiring date
Raw Bitmap or bit stream Picture, Document, Voice mail

Table 4-3 Supported Data Types in OMM

The attribute values of the OMM members are stored persistently either in the OMM

repository or in existing corporate DBMS. The methodology of mapping OMM

attributes to existing DBMS is discussed fully in Chapter 9.

 79

Finally, the value constraints of OMM attributes define the mapping between member

objects and their possible attribute values. Figure 4-8 depicts the possible mappings

along with a description and example of each constraint.

Member
object

Attribute
value

One-to-one Mapping

Member
object

Attribute
value

Many-to-one Mapping

Member
object

Attribute
value

Many-to-many Mapping

Many-to-one mapping corresponds
to single-valued attributes where
each member object has at most
one value on this attribute, and
multiple member objects may s
the same value. E.g. Office
number, Birthday, Department,
Manager.

hare

Many-to-many mapping
corresponds to multiple-valued
attributes where each member
object may have any number of
values on this attribute, and
multiple member objects may s
one or more of the values. E.g.
Title, Ice cream flavour, Proje

hare

cts.

One-to-one mapping corresponds
to unique attribute values where
each member object will have at
most one value on this attribute,
and the attribute value is unique
within the organization. E.g.
Employee ID, Email address.

Figure 4-8 Supported Value Constraints in OMM

4.4.2 State Transition of OMM Members

 80

Enterprise resources are going through a life cycle. They enter the company or get

created at some point in time, stay active and provide their services to other resources,

and eventually become consumed or are retired from the company. As OMM member

objects are used to represent the entities in an enterprise, they also go through a life

cycle, which is represented by the state transition diagram shown in Figure 4-9.

none created active

inactive

forgotten

removed

Figure 4-9 State Diagram of OMM Members

When an OMM member is created or instantiated, it immediately enters the active state.

Thereafter the state changes are triggered by users through a system-defined method,

setState(). An OMM member may cycle between the active and inactive states, thus

simulating in reality some resources being suspended, on-leave, off-line, or in

maintenance. Eventually an OMM member is removed. This means that although the

resource will not provide any more services, or produce or consume other resources, its

information is still retained in the system's repository and can be queried until it enters

the forgotten state, which corresponds to the situation where the resource information is

archived away or truly deleted.

The following table shows some examples of organizational resources going through

different stages, and how they map to the life cycle of OMM members.

Resources Created Active Inactive Removed Forgotten

Employee employed on duty on leave terminated archived

Equipment purchased in service maintenance replaced re-cycled

Support Centre established open closed shut down destroyed

Facility built occupied vacant shut down demolished

Table 4-4 Examples of Organizational Resources Going Through Life Cycle

4.4.3 Transfer of Member Objects between OMM Organizations

In OMM, member ownership can be transferred from one OMM organization to another.

When a member is moved to another OMM organization, some of the user-defined

attributes from the original OMM organization may be mapped to attributes of the new

OMM organization; user-defined attributes that are not mapped are deemed irrelevant

 81

information and are dropped. However, the system-defined attributes are always

retained. This maintains the unique identity of the member object even though it may be

moved between different OMM organizations in the enterprise. Since there is an orgId

(organization ID) attribute associated to the OmsMember object (see Appendix A), once

we changed the orgId value to represent the new ownership, the member object is

transferred. The move operation of OmsMember is implemented in the Java method

move() associated to OmsMember (see Appendix A).

Although membership transfer may happen between any two OMM organizations, it

usually only happens when the user has applied vertical partitioning to divide the same

type of resources into multiple OMM organizations; the transfer is usually between these

OMM organizations. For example, OMM membership transfer can occur when a

corporation has partitioned the employees into different business units. When an

employee moves from one business unit to another, the OMM member representing this

employee has to be transferred from the old OMM organization to the new.

Since member name is required to be unique only within an OMM organization, it is

possible that a transfer will result in name collision. The user can then resolve the

collision. Alternatively, an automatic process can be put in place so as to append a

monotonically increasing number behind the name whenever a collision is found. For

example, when employee John_Smith is transferred from the R&D Unit to the Support

and Services Unit, which already has an employee by the name of John_Smith, the new

member could be given the name John_Smith_1. If John_Smith_1 already exists, then

the name John_Smith_2 will be used. The OMM System continues to increment the

appended number until there is no name collision.

4.5 Virtual Links and the Relationship Model

In this section, we will discuss virtual links, the third conceptual entity in the OMM

model, in the context of the relationship model that was introduced in Section 2.2. As

collaborative efforts exist between company resources, it is necessary to model

relationships between them (Roos and Bruss 1994; Scott-Morton 1990; Willcocks and

Smith 1995). Many state-of-the-art collaborative groupware applications support the

definition of object relationship ⎯ such features can be found in OVAL and ORM for

example (refer to Section 3.6 for a discussion on OVAL and ORM). However, all of

 82

them handle a relationship as a static, hardwired connection between two objects. This

adds administrative overhead to information management ⎯ the user has to not only

update the underlying resource information and profile, but also the constantly changing

relationships between the resources.

OMM uses virtual links ⎯ a rule-based approach ⎯to define dynamic relationships

between member objects. The relationships are dynamic because they change when the

underlying information of the related objects changes. Virtual links are rules expressed

in computable expressions based on the member attributes and contextual variables.

Contextual variables are variables understood by the OMM Prototype System. Basically

these variables are similar to environment variables common to most operating systems.

They are defined and maintained by users or programs through the OMM API.

Examples of contextual variables include $day_of_week, $initiator_of_flow,

$system_load, $number_of_workers_on_duty. Users are responsible for defining these

variables and maintaining their up-to-date values by calling the OMM set() API. Once

the contextual variables are defined in OMM, users can reference them when defining

the virtual link rules. Virtual links are used to abstract roles and relationships among the

company’s resources. The OMM engine evaluates the virtual link rules at runtime to

find out who plays what roles. By the same token, relationships between different OMM

members are resolved at runtime by evaluating virtual links. Virtual links are

implemented in the Java class called OmsVirtualLink (see Appendix A for the

implementation details).

In OMM a relationship is established from one OMM member to another, and as such it

can be represented as a directed edge. The OMM member from which the directed edge

begins is termed the owner of the relationship edge. If a bi-directional relationship (such

as the supervisor-subordinate relationship pair) is desired, it can be modelled as two

relationships; one as a reverse relationship of the other (we will discuss bi-directional

reverse relationships in Chapter 5). In this respect, company resource objects, or

members, are like nodes in a digraph while virtual links are the arcs of the digraph.

Figure 4-10 shows a digraph of how employee and department objects are connected to

one another through virtual links.

 83

Employee A
Sales Rep

Employee B
Manager

report_to

Computer Products
Department

belong_to belong_tobelong_to

Employee C
VP

report_to

Employee object

Department object

Virtual link relationship

VP Vice President

Figure 4-10 Digraph Showing Relationships Between Resources Using Virtual Links

For instance, regarding the Employee A member object, if we want to find out who this

person reports to, we can simply call OMM to resolve the virtual link “report to” on

Employee A. OMM will then return the Employee B member object.

The connections between resources are dynamic and virtual because relationships are

defined via computable expressions over the attributes rather than via a pair of static

resource identifiers. When a workflow management system queries OMM to resolve a

relationship of a certain resource (e.g. the manager of John Smith), the relationship

expression is evaluated over the current member attribute values and the referenced

contextual variable values. Any number of resources may satisfy the said expression

indicating that a relationship exists between the owner and these resources.

We will provide the syntax rules for defining OMM virtual links in Chapter 5.

4.6 An Example

We will use the running example in Chapter 3 to illustrate the conceptual entities of

OMM in modelling a corporation. In this example, we model the departmental

infrastructure and the reporting hierarchy by describing three resource types. Let U =

{DIVISION, DEPARTMENT, EMPLOYEE} be the universal set of resource types in

the corporation. The semantics of U are as follows: the corporation is divided into a

number of DIVISIONs, under which there are a number of DEPARTMENTs. A

DEPARTMENT may contain other DEPARTMENTs. Finally, there are EMPLOYEEs

working in the various DEPARTMENTs. This enterprise can be represented by the

OMM model. First, this enterprise is composed of three OMM organizations.

 84

DIVISION DEPARTMENT EMPLOYEE

Enterprise composed of

Figure 4-11 An Enterprise Composed of Three OMM Organizations

Note that the three OMM organizations are related to one another. We represent the

connections between these three OMM organizations in Figure 4-12. (Please refer to

Section 4.3.2 for a discussion of type-level relationships between OMM organizations.)

Figure 4-12 Relationships Between OMM Organizations

According to the OMM Model, members are instances within each OMM organization.

For example, in the EMPLOYEE OMM organization, there may exist members such as

John_Smith, Mary_Ann and Tom_Hanks. Each of these members shares common

attributes such as Title, Job_Code, Email, Department, Home_Address and

Home_Phone. Figure 4-13 shows that there are three members in the EMPLOYEE

OMM organization.

DIVISION

DEPARTMENT EMPLOYEE

DEPARTMENT

connects to

EMPLOYEE

John_Smith Mary_Ann

isa

Tom_Hank

Figure 4-13 Three Members Exist in the EMPLOYEE OMM Organization

Note that EMPLOYEE is at the class or resource type level while John_Smith,

Mary_Ann and Tom_Hank are at the object level.

The ensuing three tables show the class and the user-defined member attribute names of

each of these OMM organizations. The “constraint” stands for the value constraints as

described in Section 4.4.1.

 85

Attribute Name Data Type Value Constraint
Manager Character string Many-to-one
Description Character string Many-to-one
Mission_Statement Character string Many-to-one
URL Character string Many-to-one

Table 4-5 Attribute Definition of the DIVISION OMM Organization

Attribute Name Data Type Value Constraint
Manager Character string Many-to-one
Description Character string Many-to-one
Parent_Division Character string Many-to-one
Parent_Department Character string Many-to-one

Table 4-6 Attribute Definition of the DEPARTMENT OMM Organization

Attribute Name Data Type Value Constraint
Employee_Number Character string Many-to-one
Manager Character string Many-to-one
Title Character string Many-to-many
Job_Code Integer Many-to-one
Email Character string Many-to-one
Department Character string Many-to-one
Location Character string Many-to-one
Office_Phone Character string Many-to-one
Fax Character string Many-to-one
Home_Address Character string Many-to-one
Home_Phone Character string Many-to-one

Table 4-7 Attribute Definition of the EMPLOYEE OMM Organization

Note that for each OMM organization, the Name, UID, and State are already included

implicitly as system-defined attributes.

Finally, OMM members relate to one another through virtual links. For example,

Mary_Ann may be acting for John_Smith during his absence. Acting_for therefore is a

relationship between Mary_Ann and John_Smith. In OMM, in order to signify that

Mary_Ann is acting_for John_Smith, we use the following virtual link:

 Owner: ‘mary_ann’

 Relationship Name: acting_for

 Expression: (name == ‘john_smith’)

 Organization Scope: employee

We next present another example to illustrate the usage of virtual link. For instance, a

company assigns different Job_Codes to employees to represent their responsibilities and

to define the reporting hierarchy. For example, Job_Code 15 represents the

 86

responsibilities of departmental staff, and Job_Code 120 represents the manager of a

department. All people with Job_Code less than 100 report to the person with Job_Code

120 of the same department. The relationship of departmental_manager_of is then

defined via the following virtual link:

 Owner: any employee

 Relationship Name: departmental_manager_of

 Expression: ((Job_Code != $owner.Job_Code) AND (Job_Code

== 120) AND (department == ‘$owner.department’))

 Organization Scope: employee

The concept of virtual link and its syntax are dealt with fully in Chapter 5; more

examples of virtual link relationships will be given there also.

4.7 Summarized Features of OMM and Other OM Systems

In Chapter 3 we discussed existing approaches to organization modelling and pointed out

their shortcomings with respect to satisfying the requirements of a dynamic collaborative

application environment. We surveyed the organization-modelling components of state-

of-the-art workflow management systems, directory services models and systems, stand-

alone organization modelling systems and other office systems.

In the following tables, we compare and contrast these systems with the OMM in the

areas of organization model, relationship model, process model and their ability to

integrate with external systems. We first begin with OMM.

OMM
Organization
model

Generic reference model based on the OO and ER paradigms. Uses
building block concepts which include organization, member and attributes
to construct various types of enterprise resources. There is no restriction in
modelling different types of enterprise and in describing different types of
resources.

Relationship
model

A rule-based model to abstract common relationships between resource
objects into virtual links. Supports both static and dynamic relationships.

Process model The process model is decoupled from the organization model. OMM does
not have its own process model; it uses an open architecture to connect to
other process management systems.

Integration with
other systems

OMM provides a Java package as an open API to support integration with
other OM systems and WFMS. Developers may also use this API to build
applications and tools on top of OMM to define and manipulate resource
objects.

Table 4-8 Organization Modelling Features of OMM

 87

ARIS
Organization
model

Organization model focuses mainly on human resources. Users in ARIS are
assigned to organization units which group together workers with similar job
functions. The process model assigns workflow tasks to the organization
units.

Relationship
model

Supports the definition of inter-object relationships using a hardwired
relationship model.

Process model The process model is the focus of the ARIS system. It uses the concepts of
data, function, and control to define a process-oriented information system.

Integration with
other systems

Integration with other systems can be done through the back-end database.
There is no open API to connect to external systems.

CIMOSA
Organization
model

Assumes the construct of the CIMOSA process model; uses fundamental
entities, including resources, organization units and organization cells, to
formulate the organization model.

Relationship
model

Active resources are connected as agents to perform various functional
operations (activities) within concurrent processes. There is no relationship
model to connect resources outside of the process model.

Process model Provides a strong framework to model business processes which focus on
modelling CIM system life cycles.

Integration with
other systems

Provides an integration infrastructure consisting of information services to
support enterprise integration, application interoperability and model
execution. However, this integration infrastructure aims to bring the various
enterprise functional units together only under the CIMOSA model; there is
no open interface mechanism to integrate with external systems.

EMS
Organization
model

Organizational structure is represented as a hierarchical tree of generic
business units, which can be any functional units consisting of a set of
resources performing business processes. The organization model is
developed solely for the support of EMS’s process model.

Relationship
model

Users enter hardwired hierarchical relationships as resources in the
business units. Users are associated to processes and activities for each
business unit. There is no generic relationship model apart from the
concept of the tree-structured business units.

Process model Focuses on continuous process improvement and supporting decision-
making alternatives. Emphasizes the needs of inter-departmental workflow.

Integration with
other systems

No open API to connect to external systems.

M*OBJECT
Organization
model

An object-oriented model to describe the organization architecture on three
levels: organization units, enterprise and enterprise environment. An
organization unit is composed of work centres which connect to one another
in a hierarchical structure.

Relationship
model

Through the organization model, resources such as engineers and
managers are defined. They are related to one another only through the
work centres. There is no generic relationship model apart from the implicit
relationships through association with work centres.

Process model The process model is established around the organization model. At the
work centre level, a user activity is defined as a work step within a business
process. A process can be defined as a coordinated and partially ordered
set of activities that fulfil an objective of an organization unit.

Integration with
other systems

No open API to connect to external systems.

 88

Objectflow
Organization
model

Able to define organization entities and relationships. Organization entities
are mainly human resources and tangible resources such as printers and
conference rooms that are consumed by human workers. A role model is
tightly coupled to the organization model to support role resolution in
workflow.

Relationship
model

Uses a policy resolution model to define relationships between human
resources. The policies specified in the relationships are computable
expressions defined over the attributes of the resources. It does not take
into account contextual information in resolving relationships.

Process model Focuses on supporting long-lived and multi-user computations. A process is
made up of concurrent steps, each of which is capable of associating with
an agent application to perform certain business functions.

Integration with
other systems

It has an open interface to allow external software applications to be
associated to the workflow step. There is no open interface to connect to
other organization or process modelling systems.

SAM*
Organization
model

An object-oriented model able to describe different types of enterprise
objects. Enterprise entities are modelled by a network of inter-related
concepts which can be physical objects, abstract objects, or events. A
concept is further defined by a set of attributes.

Relationship
model

Concepts (or objects) can be grouped together through different types of
association. There are seven types of association in SAM* to represent
different relationships between enterprise entities. Although set operations
can be used to define associations, it does not support building relationships
through flexible rule-based expressions.

Process model SAM* does not have a process model; it also lacks an open interface or
architecture to connect to other process modelling systems.

Integration with
other systems

No open API to connect to external systems.

Table 4-9 Organization Modelling Features of WFMS

X.500, LDAP, NDS, Active Directory
Organization
model

A flexible object-oriented model to define different classes of enterprise
objects which are in turn defined by attributes. A Directory Information Tree
is used to layout the hierarchy of the object classes within a global
enterprise.

Relationship
model

Uses aliases to define associations between enterprise objects. Aliases are
hardwired links represented as attributes of the objects.

Process model No process model and no effort to interface with process modelling systems.
Integration with
other systems

Open API is available for external systems to define and manipulate
organizational entities. Requires additional programming effort to develop
role resolution and other organization modelling-related interfaces on top of
the open API.

Table 4-10 Organization Modelling Features of Directory Services Systems

 89

ORM
Organization
model

Organization model decoupled from the process model allowing ORM to
support various collaborative software applications. However, roles are
defined simply as a type of resources within the enterprise; thus it fails to
support dynamic roles.

Relationship
model

Resource relationships are defined as hardwired connections using
resource attributes. There is no dynamic relationship model.

Process model The process model is decoupled from the organization model. ORM does
not have its own process model; it uses an open architecture to connect to
other process management systems.

Integration with
other systems

Open API available for external systems to define and manipulate
organizational entities, and to perform organization modelling functions.

OVAL
Organization
model

Semi-structured objects to define different classes of enterprise resources.
Attributes and methods can be associated to different classes.

Relationship
model

Uses hypertext links to define hardwired relationships between enterprise
resources. Does not support dynamic links.

Process model No process model and no facility to interface with process modelling
systems.

Integration with
other systems

Rule-based agents can be defined in OVAL to respond to certain events.
Agents can further trigger other events which result in updating the objects
in the database. This mechanism can be used indirectly to connect to other
systems. No open API to connect to other systems.

Other Organizational and Office Systems
Organization
model

Either a rigid organization model or no well-defined organization model.

Relationship
model

No well-defined relationship model other than some organization chart of
graphical connections.

Process model No process model and no effort to interface with process modelling systems.
Integration with
other systems

No open API to connect to other systems.

Table 4-11 Organization Modelling Features of Stand-alone OM Systems

4.8 OMM Versus Other OM Systems

In contrast to existing OM systems, OMM separates the organization model from the

role model of a BPM system (Bussler 1994; Cheng 1998; Mertins et al. 1997; Singh and

Rein 1992). Figure 4-14 shows how the different models and components interface with

one another. Interaction between each component in the OMM system is performed by

using a set of published application programming interfaces. With the OMM approach,

organizations are modelled separately from the business processes and applications.

Role definition and resolution are done through the organizational modelling and

management interface of OMM.

 90

Interface

Role & Organization
Model

Application Model Process Model

Data Model

Current state-of-
the-art workflow
system models

Interface

Organization Model

Role Model

Application Model Process Model

Data Model

OMM separates the
role and organization
models

Figure 4-14 OMM Separates the Role and Organization Models

The separation is significant for the following two reasons:

1. The separation forces an open API to be published for the interface between the role

model and the organization model. Any WFMS can be built on top of the

organization model of OMM using the interface. In OMM, roles are defined on top

of the generic organization model by using computable expressions. As a result,

OMM supports context sensitive roles, which cannot be supported by existing OM

systems, as evidenced by the exposition in the previous section.

2. The organization model of OMM is decoupled from the process model, which is used

to represent operational sequences within the organization (refer to Section 2.2.2 for

the definition of the process model). Thus the organization modeller can freely

 91

design his/her conceptual enterprise without the limitation of viewing the enterprise

solely from the process point of view. This gives flexibility in defining enterprise

resources and their interactions in all three phases of organization modelling and

reengineering. This contrasts sharply with the deficiencies, in this respect, of current

organization models in WFMS identified in the previous section.

In addition, since OMM supports object life cycle that captures the dynamic real-world

behaviour of a resource within a corporation, it allows the workflow system to properly

perform work-list management. A work-list in WFMS can be viewed as a container of

work tasks. WFMS uses a work-list to push tasks to different employees in the

company. With OMM, based on the state of a resource object at runtime, the WFMS

may choose to avoid pushing a task to an employee when s/he is not in the active state,

consequently it reduces the possibility of assigning work to an employee who is

currently unavailable.

4.9 Conclusion

In this chapter we have defined the conceptual model of OMM. OMM employs

organizations, members, and virtual links to represent all types of resources and

relationships in an enterprise. We have given definitions and provided examples to

illustrate these OMM conceptual entities and how they are used to represent an

enterprise.

Section 4.3 describes the conceptual entity of OMM organization and the partitioning

technique of modelling to break down an enterprise into smaller manageable

components. We discussed the horizontal and vertical partitioning approaches and

outlined their benefits of flexibility and autonomy in enterprise modelling.

In Section 4.4 the object-orientated properties of OMM member objects are introduced.

These include object identity, encapsulation, object class and inheritance properties.

OMM members go through a life cycle which reflects the reality of enterprise resources.

We also discuss the transfer of OMM members between two OMM organizations which

happens quite often during company restructuring.

Section 4.5 is devoted to discussing the virtual link conceptual entity of the OMM

model. Virtual links are used to represent dynamic roles and relationships in an

 92

enterprise. They are a key innovation in the OMM model. When compared to previous

efforts in organization modelling, the superiority of the OMM approach is clear; virtual

links allow OMM to abstract hundreds of thousands of ever-changing relationships into a

few dozens of rules. These are not the static relationship identifier pairs used by

previous systems ⎯ these are dynamic virtual relationships that will adjust themselves

as the underlying resource information changes. This reduces the overhead of

maintaining static relationships between resource objects. We will present the syntax

rules for defining virtual links and their applications in the next chapter.

Herein we have also concisely presented four salient features of organization modelling

in order to compare and contrast OMM with other research work in organization

modelling. These are organization model, relationship model, process model and the

ability of the system to integrate with other external systems. Through this comparison,

we demonstrated that OMM is more suited to support an open collaborative computing

environment.

In the next chapter we present the relationship model of OMM, and in Chapter 9 we will

present the OMM API, which allows applications and software tools to interact with the

OMM Prototype System.

 93

CHAPTER 5 The Policy-Based Relationship Model in OMM

The OMM organization model presented in Chapter 4 provides a flexible object-oriented

approach with which to describe the organizational entities of an enterprise. However,

even when we clearly lay out thousands, or hundreds of thousands, of resource objects,

and how they are categorized into different resource types, it is unclear how these

resource objects interact with one another. The connections between resource objects

are critical to an enterprise; knowledge of how they function indicates how resources

work together to accomplish a set of common goals. Connections can be used to

describe the data flow between different entities (such as document links between the

engineering department and the quality assurance department) and to give a functional

representation of a decision-making hierarchy (such as links between sales and service

regions, operating companies and headquarters). Modelling an enterprise without

capturing the dynamic inter-connections within it would be like architecting a complex

software system without specifying the interfaces between the different components.

In this chapter we describe the relationship model in OMM. In Section 5.2, we provide a

formal definition of OMM’s virtual links. In Sections 5.3 and 5.4, we show how to

apply virtual links to model dynamic roles and relationships. Sections 5.5 and 5.6

discuss the bi-directional and transitivity properties of virtual links, which are important

concepts for advanced applications. In Section 5.7, we briefly describe the Publish and

Subscribe paradigm, and in Section 5.8, in order to demonstrate the adaptability and

flexibility of the relationship model of OMM, we present very briefly a prototype, called

OMM/P&S, designed to support the e-business of an American insurance company,

called InsurePoint, in the context of Publish and Subscribe technology. We conclude our

discussion of enterprise relationships and roles in Section 5.9.

Herein (resource) objects and resources are used interchangeably.

5.1 Introduction

The OMM relationship model defines how OMM members relate to one another.

(Recall from Chapter 4 that members are used to represent resource objects in an

enterprise.) Existing organization models either do not support the notion of

 94

relationship, such as the X.500 directory information model, or simply store relationships

between objects as “hardwired” records, such as in OVAL (Cheng 1998). The fact that

such relationships are defined independently of the attributes of the resource objects

incurs additional administrative overheads in order to maintain these relationships. In a

hardwired relationship model, whenever the attributes of an object are changed in such a

way that its relationships with other objects are affected, in addition to having to update

the attribute information of the object, we have to update the relationship information as

well. Moreover, static connections fail to support collaborative computing across the

entire enterprise or in workflow management systems, because in business process

automation a work task often needs to be assigned to an agent who is related to another

agent that had executed a previous task in the business process. If the underlying

organization modelling system is not able to dynamically define up-to-date connections

between resources, once the relationships between steps in a business process change,

the task assignment will fail to route the work task to the right resource for execution.

In OMM, instead of creating static links between two resource objects, a relationship is

defined as a function of the attributes of resource objects. Computable expressions are

used to abstract and group together complex but similar relationships within a large

enterprise. Examples of relationships between resources include those of supervisor and

subordinate, project team members, products and support personnel, customer accounts

and sales representatives, and many others. Actual connections between any two

resource objects are resolved at runtime by evaluating the computable expression over

the object’s attribute values. Since the connections are not simply hardwired between

two object identifiers, but are defined by a computable expression and resolved at

runtime, we call such connections virtual links.

There are several advantages to modelling relationships with virtual links rather than

hardwired ones.

First, the connections between the resource objects are dynamically changed and self-

maintained. As the attributes of a resource object change, the relationships between this

object and other objects will also change. This correctly reflects the reality of the

enterprise: relationships between resource objects are changing because the conditions,

or the attributes, of the objects frequently change. For instance, when a person moves

from one department to another, once his department assignment (the attribute value

 95

reflecting his department name) is changed, his relationship with his old department (as a

departmental member) no longer exists.

Second, representing a relationship as a function of underlying attributes obviates the

need to maintain hardwired relationships. In X.500, relationships are defined as aliases,

which record in a resource object the UUID of another object that they relate to. With

this approach, when a person moves from one department to another, we not only have to

update his personnel record to reflect the department change, but also inspect all his

relationships and update those that are affected by his departmental transfer.

Third, the process of formally abstracting relationships into company policies provides a

methodology and a model for the enterprise to strategically organize its workforce.

Changes within the company can be more strategically designed, widely communicated

and filtered down. In the absence of a virtual-link based system, individual groups or

departments are called upon to define their own connections between resources. Indeed,

due to the overhead of maintaining such rapidly changing information, in most cases

companies do not even store formal records of relationships except through some

unstructured administrative means such as printing organization charts or drawing data

flow diagrams. With OMM, companies may define and enforce policies over the entire

enterprise to describe the different roles that resources play and how resources relate to

one another in different business contexts and operations. As a result, organization

analysis can be performed to review how people are fulfilling their roles and how

resources are related to one another. Analysts can also measure success and evaluate

failure based on the actual interactions within these relationships.

Finally, the concept of dynamic relationships can be used to model dynamic roles. Since

the abstraction model is a well-defined architecture with open interfaces, it allows other

collaborative software such as WFMS, document management systems and e-commerce

applications to run on top of it. Using OMM, groupware applications can flexibly

perform dynamic role-based document routing, dynamic task assignment, and role-based

access control (Cheng 1999a). A detailed discussion and examples of role-based routing,

task assignment, and access control can be found in Chapter 6.

 96

5.2 Virtual Link Definition

OMM uses virtual links to define dynamic relationships and dynamic roles.

Definition 5.1 (Virtual Link) A virtual link is a relationship type between a source

OMM organization O and N target OMM organizations O1, O2, …, ON, where N ≥ 1.

A virtual link has the following syntax (Cheng 1997):

 <Virtual Link> ::= [Owner], <Relationship Type> , <Expression>,

<Organization Scope>

 <Owner> ::= null | <Member ID>

 <Member ID> ::= <Character String Constant>

 <Relationship Type> ::= <Relationship Name> [REVERSE <Relationship

Name>] [TRANSITIVE]

 <Relationship Name> ::= <Character String Constant>

 <Expression> ::= (<Expression>) <Log Op> (<Expression>) |

<Attribute Name> <Comparison Op> <Value> |

<Contextual Variable Name> <Comparison Op>

<Value>

 <Attribute Name> ::= <Character String Constant>

 <Comparison Op> ::= == | != | >= | > | < | <=

 <Value> ::= <Constant> | <Attribute Name> | <Contextual

Variable Name> | $owner.<Attribute Name>

 <Contextual Variable Name> ::= $<Character String Constant>

 <Log Op> ::= AND | OR | NOT

 <Organization Scope> ::= <Organization Name>+

 <Organization Name> ::= <Character String Constant>

Table 5-1 The Syntax of an OMM Virtual Link

Note that the precedence of logical operators (AND, OR, NOT) is determined by

parentheses (“(” and “)”) from inside out. In other words, the Expression within the

innermost parentheses is resolved first, before resolving Expressions enclosed by outer

parentheses.

A virtual link is composed of an owner, a relationship type, a computable expression (or

simply expression), and an organization scope. The owner of a relationship type can be

 97

given as part of the definition. However, in most situations, the owner is selected at

runtime when the underlying WFMS resolves a relationship of a certain resource. A

relationship always has a name. It may also be a reverse or transitive relationship.

These two properties are dealt with in Sections 5.5 and 5.6. The computable expression

is the key element of a virtual link and specifies how the owner relates to other

resources. The organization scope is a list of OMM organizations to include the types of

resources that the owner is connected to through this relationship. For example, the

current_project relationship may relate an employee to the PROJECT organization;

similarly, a project_resource relationship may connect a project to the EMPLOYEE,

MACHINE and ROBOT organizations. Finally, the computable expression specifies the

conditions of the relationship. It is defined using OMM member attributes and

contextual variables.

A contextual variable has a context name, which is a user-defined name representing

some contextual information of the operating or application environment.

$day_of_week, $flow_initiator and $max_workload are some examples of context names.

Users define and set the value of context names through the OMM Application

Programming Interface (API).

In OMM, a virtual link is defined by a computable expression. When the virtual link

expression is instantiated by a certain OMM member of the source OMM organization

(we call this member owner), we can resolve that expression and obtain a set of OMM

members of the target OMM organizations.

Definition 5.2 (Link) A link l in OMM is an instance of a relationship type obtained

by resolving a virtual link between an OMM member (called owner) in the source

OMM organization O and one or more target OMM organizations O1, O2, …, ON,

where N ≥ 1.

5.3 Applying Virtual Links to Model Dynamic Roles

The organizational role has been created as a way to assign responsibility and capability

within organizational units. An organization provides the environment within which a

role is meaningful. Earlier research has treated roles as a label associated to human

resources (Sandhu and Munawer 1998), or has modelled roles as objects (Goh and

 98

Baldwin 1998). Moffett (1998) in his work on defining role hierarchies discusses the

need for having virtual roles in addition to ordinary roles. In Moffett’s conception,

virtual roles are defined to abstract the commonality of existing roles. For instance,

Project Member is a virtual role, constructed to capture the commonality between Test

Engineer and Programmer. A virtual role is a superclass over two or more underlying

roles, which are primarily role labels with a set of responsibilities. All of these

approaches assume the simplistic view that employees within the enterprise play a

relatively small number of static roles. However, in reality, resources, especially human

resources, usually play different roles within the enterprise, carrying out various

corporate functions at different times and under different contexts. In many

corporations, roles are defined as titles, each of which connotes certain privileges,

authorities, responsibilities and functions. For example, an employee might be playing

the roles of a project manager within a department and an architect on a corporate-wide

architectural review board. In his first role as a manager, he may perform project

reviews and sign off on project specifications as part of an ISO 9000 certification

process. In his second role as an architect, he may be allowed to access classified

documents only available to the architectural review board. The two roles carry very

different responsibilities and authorities, but are played by the same person under two

different contexts.

A static role is a label, which is usually implemented as an attribute of the resource

object playing the role, although it is possible to implement a static role as a separate

object rather than simply as an attribute. The latter approach allows the use of a set of

attributes to describe a role’s responsibilities and other properties, but does not change

the nature of the association of the role to the person playing the role. This association

will not change even when the person’s attributes have changed. It is thus still static in

nature.

Dynamic roles refer to role definitions that are linked or associated with organizational

entities through some dynamic conditions. With a dynamic role, a person’s role is not a

static label, but is determined by resolving the criteria associated with the role over the

current state of the person’s personal attributes and/or some contextual variables.

OMM virtual links can be used to model dynamic roles. Rather than relating two or

more OMM members through the relationship expression as we have discussed in

 99

Section 5.2, the expression for dynamic roles will be defined based on one’s attributes

and/or contextual variables. In addition, a dynamic relationship is a directed edge

connecting two nodes (Section 4.5) while a dynamic role only involves one node. As a

result, there is no need to specify the owner in the dynamic role definition.

Referring back to the electronic parts ordering process example in Section 3.3, the

shipping step can be processed by an employee in the shipping department. The step

definition of the workflow can be represented by the expression (Cheng 1995; Hsu et al.

1991):

 {… step definition …} Executed by shipping_clerk,

where shipping_clerk is a dynamic role which can be defined in OMM as a virtual link:

 Role Name: shipping_clerk

 Expression: (department == ‘Shipping’) AND (title == ‘Clerk’)

 Organization Scope: EMPLOYEE

With this role definition, whoever in the company whose department attribute equals

‘Shipping’ and title attribute equals ‘Clerk’ will be playing the role shipping_clerk. If

someone who is currently playing the shipping_clerk role is transferred to another

department, and thus changes the department attribute to a different value (such as

Accounting), he will cease to play his role as a shipping_clerk.

Through this ability to abstract role definitions into computable expressions, dynamic

roles give the company greater flexibility in managing role changes. For instance, to

allow access to valuable resources in the shipping department only when an employee is

on duty, shipping_clerk may be redefined as:

 Role Name: shipping_clerk

 Expression: (department == ‘Shipping’) AND (title == ‘Clerk’) AND

(onDutyDays == $today)

where onDutyDays is an employee attribute indicating the days of the week that an

employee is on duty. $today is a contextual variable defined and stored in OMM; its

value is set by a method that is provided by users.

 100

5.4 Applying Virtual Links to Model Dynamic Relationships

So far we have defined the syntax rules for defining virtual links. We have also shown

how virtual links are used to model dynamic roles. This section will show how virtual

links are used to model dynamic relationships.

Similar to dynamic roles, dynamic relationships are defined using a condition or

computable expression over some attributes and contextual variables. As the underlying

conditions change, the relationships between enterprise resources also change. An

example of a dynamic relationship defined by an OMM virtual link follows:

 Owner: null

 Relationship Name: manager_of

 Expression: (deptNo == $owner.deptNo) AND (jobCode < 101)

AND ($day_of_week != ‘Sunday’)

 Organization Scope: EMPLOYEE

Applying this dynamic relationship to find all employees that are managed by

john_smith, we can resolve this virtual link over the EMPLOYEE organization. In this

case, the owner is set to ‘john_smith’, its attribute values are retrieved and used to

substitute corresponding fields ($owner.deptNo) in the virtual link expression. Each

member within the EMPLOYEE organization is evaluated against the virtual link

expression; the attribute names (deptNo and jobCode) are replaced by the

corresponding attribute values of the OMM member object under consideration.

By means of virtual links a WFMS can flexibly assign and authorize steps in a business

process, using available resources. As an example, we will return to the e-commerce

ordering process introduced in Section 3.3. The roles in this example are:

� “sales rep for the company to which the flow initiator belongs”; and

� “vice president of the division to which the sales rep of the process instance

belongs”.

They can both be expressed as virtual links. The definition for the sales rep is:

 Owner: $flow_initiator

 Relationship Name: company_sales_rep

 Expression: (company == $owner.company) AND (title == ‘Sales’)

 101

 Organization Scope: EMPLOYEE

Analyzing this relationship for a given customer (the flow initiator) from the company

$owner.company, OMM will return the corresponding sales rep from the EMPLOYEE

organization when resolving the company_sales_rep virtual link for this customer.

The definition for the division vice president (VP) is:

 Owner: the sales rep who executes process_order

 Relationship Name: division_VP

 Expression: (division == $owner.division) AND (title == ‘VP’)

 Organization Scope: EMPLOYEE

The flow engine of the WFMS has to retrieve the information of "the sales rep who

executes process_order." This knowledge should be kept as part of the workflow system

data (Cheng 1995; Hsu et al. 1991). Section 6.2 provides a detailed discussion of role

resolution in workflow. Once the owner of this virtual link is identified, OMM can

evaluate the expression and return the VP of the division to which the sales rep belongs.

Despite the dynamic characteristics of relationships in OMM, hardwired relationships

between two specific entities can still be modelled with virtual links. For example, to

define that Mary Ann is acting_for John Smith, we can use the following virtual link:

 Owner: ‘mary_ann’

 Relationship Name: acting_for

 Expression: (name == ‘john_smith’)

 Organization Scope: EMPLOYEE

5.5 Bi-directional Relationships

When defining a relationship type, a reverse relationship can be specified (Cheng

1999a). For example, if relationship types R1 and R2
 (between entity types E1 and E2) are

defined as reverse of each other, and if OMM member object m1 ∈ E1 relates to another

OMM member object m2 ∈ E2, then m2 relates to m1. (See Definitions 2.3 and 2.4.)

Figure 5-1 shows a relationship graph within an OMM organization; note that here

relationships supervisor_of and subordinate_of are represented by reverse links of one

another:

 102

OMM member object

Figure 5-1 OMM Relationship Graph Showing Reverse Relationships

Although the example only covers relationships within a single OMM organization

(EMPLOYEE), virtual links can actually be defined across multiple OMM organizations.

In such a case, the organization scope will list all OMM organizations involved. For

instance, a relationship digraph may be used to represent the connections between a

project and its machine resources and the employees who are involved in the project. In

this case, the owner is a particular project while the organization scope will include both

MACHINE and EMPLOYEE.

5.6 Transitivity of Virtual Links

Note that a virtual link may be transitive in nature. An example of the transitive

property in virtual links is the supervisor relationship. Figure 5-2 shows a digraph

representing such a relationship:

A B C

OMM organization object

supervisor_of

subordinate_of

 OMM member object

supervisor_of

Figure 5-2 The Supervisor Relationship Showing the Transitivity Property

In this example, A is the supervisor of B, and B is the supervisor of C. If supervisor_of

satisfies the transitivity property, then it follows that A is also the supervisor of C.

Obviously, because of the recursive operations involved in resolving transitive

relationships, depending on the size of the digraph and the size of the organizational

database, there can be a high computational cost associated with resolving transitive

relationships; they should therefore be used with care.

 103

5.7 Publish-and-Subscribe

Publish-and-Subscribe (P&S) is a form of information push technology (Cheng and

Loizou 2000; Berghel 1998; Franklin and Zdonik 1998) that concerns mainly the flow of

information from a set of resource producers to a set of resource consumers. P&S allows

consumers to pre-declare their interests and situation. When some relevant information

is published, the P&S system automatically pushes the resource to the subscribed

members. In addition, a P&S system may also monitor the subscribers so that when their

subscriptions change, readily published information may be pushed to them. As such,

P&S is not only concerned with the push of large amounts of data over the network, but

also specifically deals with the issue of matching publisher or the published resources

with the subscriber.

OMM supports P&S by first allowing flexible modelling of both publishers and

subscribers with an object-oriented organization model. Note that in an e-commerce

environment, there could be many types of publishers and many types of subscribers, and

that OMM is capable of including them all. Furthermore, OMM uses a policy-based

relationship model to support the P&S system by enabling the definition of matching

criteria between publishers and subscribers. Every time a resource is published, the P&S

system will query OMM to identify the matching subscribers and push the resource to

them.

5.8 An OMM/P&S Prototype

As part of our research effort to support P&S in e-commerce, we have built a research

prototype P&S application using OMM to support an Internet-based commercial

insurance company, InsurePoint, which was sponsored by Atlantic Mutual Insurance Co.

with the aim of conducting e-commerce entirely on the Web. The purpose of the

OMM/P&S prototype is to verify our claims that OMM is able to automate P&S when a

variety of information is published and pushed over the network to selective customers.

We also would like to observe customer responses to the P&S solution as well as issues

that may arise in such an environment.

InsurePoint has about 150 customers all classified as hi-tech, start-up firms (nationwide,

under 25 employees). InsurePoint sells to clients various insurance policies including

 104

general liability and workers’ compensation. It has always maintained the most current

customer profiles. Indeed, customers can simply logon to their personal page on

InsurePoint’s Web site and update their own profile. In the past, account managers at

InsurePoint periodically queried the profiles database to identify further business

opportunities with existing clients. InsurePoint management would like to enhance

customer relations and to maximize new business opportunities using P&S technology.

Therefore, InsurePoint has two immediate objectives. First, they want to publish

periodic news briefs which would help their clients better manage their risks in doing

business; this would help build customer loyalty. Second, they would like to

automatically push relevant new product information to clients who have updated their

profiles. Notification should also be sent to the relevant account managers so that they

can follow up with the customers.

With OMM/P&S, we modelled 4 OMM organizations: CUSTOMER, PROSPECT

(people who asked for a quote over the Web), POLICY_DOC (documents describing

insurance policies), and NEWS (articles about events that impact risks the customers or

prospects are facing). Virtual links are defined to capture the relationships between

these OMM organizations (classes). Figure 5-3 shows these organizations and their

organizational relationships:

 CUSTOMER POLICY_DOC

NEWS PROSPECT

connects to

Figure 5-3 OMM/P&S Organizations for InsurePoint

About a dozen attributes are defined for each class. In the interests of brevity and

simplicity, we list below only those attributes that are used to define the virtual links:

 105

Organization Attribute Name Data Type Value Constraint
asset Integer Many-to-one
propertyCoverage Integer Many-to-one
projectedSales Integer Many-to-one
liabilityCoveredSales Integer Many-to-one
region Character string Many-to-many
regionCoverage Integer Many-to-one

CUSTOMER

businessType Character string Many-to-many
region Character string Many-to-many PROSPECT
businessType Character string Many-to-many
policyType Character string Many-to-one
liabilityCoveredSales Integer Many-to-one

POLICY_DOC

region Character string Many-to-many
region Character string Many-to-many NEWS
businessType Character string Many-to-many

Table 5-2 Attribute Definitions of InsurePoint Organizations

Subscribers in this case can either be customers or prospects. Customer profiles are

captured when the customer purchases a policy from InsurePoint. Prospect profiles are

obtained when potential clients ask for quotations of insurance policies by filling out a

form over the Web. Also customers using their user name and password can update their

profiles to provide their latest situation anytime on the Web.

Whenever a customer profile changes, the P&S system evaluates the following virtual

links over the policy document class to decide if certain documents should be pushed to

the client. InsurePoint has identified several conditions (or business rules) that should

trigger the push of information to customers. We list them below along with the policy

(virtual link) that helps to discover such conditions:

1. When a customer’s projected sales increase beyond the recommended liability

coverage.

Owner: a CUSTOMER member object

Relationship: new_liability

Expression: (liabilityCoveredSales >= $owner.projectedSales)

AND (policyType == ‘GENERAL LIABILITY’)

Organization Scope: POLICY_DOC

2. When a customer’s assets grow beyond the current assets coverage.

Owner: a CUSTOMER member object

Relationship: new_asset_policy

Expression: (propertyCoverage >= $owner.asset) AND

(policyType == ‘PROPERTY’)

 106

Organization Scope: POLICY_DOC

3. When a customer expands to a new region.

Owner: a CUSTOMER member object

Relationship: new_region

Expression: (region == $owner.region) AND

 (region != $owner.regionCoverage) AND

 (businessType == $owner.businessType)

Organization Scope: POLICY_DOC

In all three cases, the organization scope of the virtual link is the POLICY_DOC

organization while owner is an OMM member of the CUSTOMER organization. When

a customer profile is updated, each of these business rules will be evaluated by

OMM/P&S, and documents found to satisfy these business rules will be sent to that

customer electronically. Users can also add other business rules to include new

conditions for pushing information when a customer profile is updated.

In addition to triggering push by customer update, InsurePoint can also initiate pushing

of information by publishing a news item. When a news brief is published, the author

will profile the news item through a Web interface. The region attribute signifies

whether the item is location-sensitive; the businessType attribute indicates whether the

content concerns a specific industry such as Consulting, Electronics, Manufacturing,

Pharmaceuticals and others. Once the news item is published, OMM/P&S evaluates the

following business rule to decide who among the customers and prospects should receive

this news brief:

Owner: a NEWS member object

Relationship: matching_news

Expression: (region == $owner.region) OR (businessType ==

$owner.businessType)

Organization Scope: CUSTOMER; PROSPECT

5.9 Conclusion

In organization modelling, the modeller has to analyze the organizational resources and

how they interact with one another. In this process, it helps to understand the decision-

 107

making policies and processes at various levels of the enterprise. When the time arrives

to conceptually design the new organization and to improve the performance of the

organization’s operations, the modeller has to refine the roles that each resource plays,

and to enhance the communication, coordination and collaboration between the

resources. Finally, to physically implement the new organizational design, it is

important that the modeller be able to translate the conceptual roles and relationships of

the model into formal specifications. Ideally, these specifications will be able to adjust

themselves as the business conditions change. Otherwise the company will have to pay a

high cost to maintain and manage dynamic aspects of the implementation, such as roles

and relationships.

In this chapter, we have discussed how the dynamic relationship model of OMM can

define dynamic roles and relationships, which are necessary to support organization

modelling. This is realized using the OMM virtual link, which is the policy-based

relationship model of OMM. With the concept of dynamic roles and relationships, we

enable the organization modeller to formally abstract roles and relationships into

computable expressions, thus reducing the tremendous administrative overhead involved

with maintaining static links. The OMM approach also allows collaborative software to

route data and workflow across an enterprise much more flexibly and realistically than is

possible with static link approaches.

We have provided the syntax rules for defining OMM virtual links. We have also given

some examples to show how virtual links are used to model dynamic roles and

relationships. Finally, an OMM/P&S prototype with the InsurePoint Company is very

briefly described. This exhibits the adaptability and flexibility of our approach.

Overall, virtual links simplify the definition and maintenance of dynamic roles and

dynamic relationships in an enterprise.

 108

CHAPTER 6 Role Resolution in Workflow Management Systems and

Other Cooperative Applications

The OMM organization model was introduced in Chapters 4 and 5. We will now apply

this model to address role resolution in WFMS and other cooperative computing

systems.

In this chapter, we will describe the challenge of role resolution in an enterprise-wide,

production-level workflow environment. In Section 6.2, we define the concept of role

resolution, task assignment, task authorization, and routing control in the context of

workflow management. In Section 6.3, we describe how dynamic roles, as defined in

OMM, are applied to overcome the challenges of role resolution. In Section 6.4, we

discuss the application of dynamic roles to role-based access control and show how

OMM can more flexibly support RBAC than a hardwired role model.

6.1 Introduction

WFMS and other cooperative software, such as document management systems, voting

software, group discussion applications and conferencing software, are forms of group

computing that enable a number of parties to participate and interact with one another.

Contrary to traditional personal computing, which involves only the individual, group

computing involves multiple users who share a set of computing resources over a

network. In certain applications, such as workflow, and document routing and

management, an ordering is imposed on processing. Conversely, note-based discussion

software, for example, does not impose such an ordering; all authorized users can

participate at their convenience. When ordered processing is required, the group

computing system may assign a certain task to a role, allowing a subset of users who

play that role to perform the task. However, whether ordered processing needs to be

enforced or not, the concept of role is important in controlling access to the common

resources of group computing.

As discussed in Chapter 5, there are different approaches to defining roles for a group-

computing environment. The simplest way is to associate role labels with different

users. This static approach, although simple, lacks flexibility in allowing users to play

 109

different roles under different contexts. Dynamic roles, as defined in OMM, enable a

user to change roles when his/her situation, or the business context in which he/she is

operating, changes. The open interfaces in OMM means that role resolution can be

performed in WFMS and other groupware running on top of OMM. A detailed

discussion of dynamic role versus static role systems was presented in Chapter 5.

6.2 Role Resolution in Workflow Management Systems

Concurrent engineering technology supports business process integration and automation

(Cheng 1995; Medina-Mora et al. 1992), and provides a framework within which a

business process consisting of multiple tasks and applications can be accomplished by

integrating the various tasks in a network of steps (Vanderaalst and Vanhee 1996). A

workflow process can be modelled as a digraph, where each node is a task (which we

will also refer to as a workflow step or simply as a step) and the edges are condition arcs

governing the route of the process (refer to Figure 3.2 for a Petri Net representation of a

workflow process). We refer the reader to Section 3.3 for a detailed discussion of

modelling a workflow process.

During the execution of a workflow process, different work tasks are created and

assigned to various resources in the company. Sometimes a particular resource may be

chosen to execute a step (the push model). Conversely, a group of employees may be

identified as potential candidates to perform a task. In this case, one of the candidates

will (attempt) to execute the task on their own initiative (the pull model). In both cases,

authorization checking must be performed when someone attempts to open and work on

a workflow step. To allow flexibility in workflow authorization, the WFMS often adopts

a role model. A role model describes how roles are defined and how different resources

are associated with one or more roles within the company. With the abstraction of a role

model, the WFMS simply resolves roles in order to perform task assignments and task

authorization, and to make routing decisions.

Role resolution refers to the process of identifying the resources within a system that are

playing a certain role (Cheng 1998; Reim 1992; Roos and Bruss 1994; Singh and Rein

1992). Task assignment and task authorization, functions which are usually dependent

on role resolution, are among the biggest challenges of a successful workflow solution.

Because of the high mobility and turnover rate within an enterprise (see Chapter 1 for a

 110

discussion on today's challenges), it would be impractical to deploy an enterprise-wide

collaborative computing solution which performs task assignment and authorization

using a static role model.

6.2.1 Task Assignment

A workflow process (or simply process) is composed of a number of workflow steps (or

simply steps), where each step corresponds to a task to be completed by an agent. An

agent may be a human resource, a robot, a machine resource, or a software program.

Each workflow step has an associated state. When the agent completes a task, the state

of the corresponding step changes from Active to Committed. In this case, we will say

that the step is committed. This state transition of the step triggers the WFMS to create

the next step or steps according to the corresponding business process specification.

When the END step of the process is committed, the entire process is said to have

committed (Cheng 1995).

In an object-oriented system, representational objects are used to model steps in a

process and the process itself. Each of these objects has a life cycle corresponding to the

state transitions of the construct it represents. An object representing a step is called a

step object. An object representing the entire process is called a process object. Both

step and process objects are called workflow objects. Figure 6-1 shows the state

transition diagrams for these objects.

 Process Object: Created Active Finished Archived

Aborted

Inactive Committed ArchivedActive

Aborted

 Step object: Created

Figure 6-1 Life Cycle States and State Transitions of Workflow Objects

The WFMS is responsible for creating a step object, effecting the state transitions of that

object and for assigning the step to one or more agents for execution. (This assignment

is usually governed by the business policies of the organization that is being modelled.)

 111

In essence, the WFMS is matching a pool of tasks (step objects) to a pool of available

resources (agents).

With OMM, all enterprise resources can be modelled and accessed through the OMM

API. Moreover, dynamic roles can be defined using resource attributes and contextual

variables (Cheng 1998). As a result, task assignment specifications that are embedded

within the step definition can directly reference these roles. For example, the shipping

step in the electronic parts ordering process outlined in Chapter 3 may be assigned to any

clerk in the shipping department of the company:

 {… step definition …} execute by shipping_clerk;

In this example the execution of the shipping step is authorized to a role called

shipping_clerk, which is defined in OMM using a virtual link:

 (Department == ‘Shipping’) AND (Title == ‘Clerk’)

If we desire more specificity, we can define the shipping_clerk virtual link to include

only those clerks who are currently on duty:

 (Department == ‘Shipping’) AND (Title == ‘Clerk’) AND (Shift == $current_shift)

where $current_shift is a contextual variable that defines the shift based on the current

time clock. All the attributes used in this example, Department, Title and Shift are

associated with the EMPLOYEE organization.

In Section 6.3, we will provide the syntax of the step authorization statement along with

a detailed discussion and further examples of role resolution.

At runtime, the WFMS queries OMM through the open API to resolve roles and identify

the resources that are available to perform tasks. Since OMM is able to model different

resource types and the roles they play under different business contexts, we are able to

support dynamic task assignment to all available enterprise resources.

6.2.2 Task Authorization

In Section 6.2.1, we discussed the assignment of WFMS step objects to a pool of agents

based on dynamic roles (as defined by OMM). The assigned agent is free to open and

operate on a step object provided the agent has the appropriate authorization. Task

authorization in WFMS concerns the control of accesses to process and step objects. In

 112

this section, we will describe the various kinds of operations that an agent is allowed to

perform on process and step objects.

Although the data of the WFMS may be managed by a DBMS, with access to this data

protected by the authorization sub-component of the DBMS, WFMS task authorization is

concerned with protecting both process and step objects at a higher level. In addition to

the underlying DBMS protection, WFMS needs to protect shared workflow objects from

unauthorized access (see Section 6.2.1). In general, WFMS supports four types of

operation upon process and step objects, including Read, Write, Execute and Manage

(Cheng 1998; Hsu et al. 1991). Table 6-1 shows the operation types that are available on

workflow objects and the meaning of each operation:

Operation Process Object Step Object Meaning
Read No Yes Read data associated with the workflow object.
Write No Yes Update data associated with the workflow object.
Execute Yes Yes Open the workflow object for execution; includes

the right to run the associated application.
Manage Yes Yes Commit, abort, throw exception or retry of the

workflow object.

Table 6-1 Operations Available on Workflow Objects

Read and Write privileges are needed to read and update data associated with a step or a

process. Granting the Execute privilege implies at least the Read permission on the step

object and sometimes the Write permission as well. If the agent does not need to update

the workflow-related data but is simply making a decision that affects the routing of the

workflow process, it will not need to have the Write permission in order to accomplish

its work. Manage privilege is usually only given to administrators; this allows them to

invoke state transitions for workflow objects through an external event, such as calling

an API or throwing an exception.

OMM allows the WFMS to define task authorization on dynamic roles. Consider the

previous example of a workflow step that involves a shipping clerk in Section 6.2.1,

where a step is assigned to a role:

 {… step definition …} execute by shipping_clerk;

When a user of the WFMS attempts to open the step object for execution, the WFMS

calls the OMM system to resolve the role shipping_clerk, and identify whether or not the

user is playing that role. The user would only be allowed to execute this step if the role

 113

resolution result is positive, otherwise his request will be rejected. The mechanism of

role resolution within OMM is discussed in detail in Section 6.3.

6.2.3 Routing Decision

A WFMS makes a routing decision every time a process under its control undergoes a

transition from one step to another. Role resolution is an important factor in these

routing decisions: the WFMS has to decide to whom a step should be assigned and who

is authorized to open a step; it may also choose a route based upon the result of role

resolution. Referring back to the e-commerce example in Section 3.3, the electronic

parts ordering process will require managerial approval if the order amount is higher

than the customer account's current credit limit. This is represented by route A in Figure

6-2; approval_1 must be executed by the manager of the person who has executed

process_order. Continuing our example, in order to reduce a performance bottleneck

due to an overwhelming number of order processing requests within a department, a

policy is set up such that if the current department workload exceeds a certain threshold,

approval can be obtained from a different departmental manager within the same

division. This is represented by route B in Figure 6-2; approval_2 must be executed by a

departmental manager who is within the same division of the employee, who has

processed the process_order step, but who may belong to a different department. Figure

6-2 shows the partial flow diagram of this routing decision.

B

A approval_1 split

approval_2process_order

Figure 6-2 A Workflow Routing Decision Which Requires Role Resolution

The flow routes can be defined in the following manner:

 If (the current step executor's department has less than N approval cases)

 Go route A;

 Else

 Go route B;

Note that the routing condition here is not only referencing an attribute of the executor of

the step, it is also making an indirect reference to the department object associated with

 114

the executor of the current step. Modelling this workflow routing condition is a

challenge to current state-of-the-art WFMS. Firstly, no existing organization modelling

system supports the modelling of department objects with live links to employee objects.

This is an important issue in the above example, in which the If condition requires the

system to test the number of approval cases in the current step executor's department in

order to make a decision. Secondly, no current organization modelling system provides

an open interface to enable the WFMS to make calls upon the organization model to

make this kind of routing decision. Consequently, all existing WFMS fail to implement

the type of workflow routing decision that is required in this example. OMM is able to

model this routing problem since it can model not only the employees of the company,

but also the divisions and departments, as well as the dynamic connections between

them. With the OMM API, WFMS are able to support this type of workflow routing

specification.

Referring again to our example, the routing decision from step process_order to the next

step can be described by the following pseudo-code program segment:
1. get the current step’s (process_order) executor;
2. get the department object which is the department of the current executor;
3. lookup the number of approval cases pending (which is an attribute value) in this

department;
4. if the result of (3) is less than N (say, N = 10), pick route (A);
5. else pick route (B).

Table 6-2 Pseudo-code Program Segment for Routing Decision of Process Order

The actual code segment that calls the OMM API is written in Java and is listed in the

appendix section at the end of this chapter.

6.3 Role Resolution with OMM

Role resolution is the process of determining who plays a certain role in a given system.

Two types of question are asked in role resolution. One is definitive in nature, and the

other is relational. The following examples illustrate both types of question:

1. Is X an engineer? Or who are the engineers? (definitive)

2. Is Y the manager of X? Or who is X’s manager? (relational)

 115

OMM is adept at answering both of these types of question, and thus provides a strong

foundation on which to model task assignment and authorization in a workflow

management system (Cheng 1995; Vidgen et al. 1994).

Although the syntax of task assignment and task authorization specifications in

workflow is implementation-dependent, most workflow management systems support

the abstraction of roles to allow more flexibility than simply using user IDs (Gottlob et

al. 1996; Hsu and Kleissner 1996). A control statement is usually included in the step

definition for that purpose. The following syntax for a control statement illustrates the

idea behind such specifications:

 {… step definition …} <Control Statement>;

 <Control Statement> ::= <Operation> BY <Role>

 <Operation> ::= READ | WRITE | EXECUTE | MANAGE

 <Role> ::= <Role Label>

 <Role Label> ::= <Character String Constant>

Table 6-3 Syntax of Control Statement in Workflow Step Definition

The following is an example of a task authorization statement within the workflow

script:

 {… step definition …} READ BY Manager

In the current state-of-the-art, users are categorized by roles like Manager, which is a

simple label. The use of role labels, although providing more flexibility than simply

using a user name in the control statement, does not support resource relationships,

which are required in most realistic business processes such as the e-commerce process

discussed in Section 3.3. With OMM, role definition can be expanded to cover these

relationships:

 <Role> ::= <Role Label> | <Relationship Name> <Resource>

 <Relationship Name> ::= <Character String Constant>

 <Resource> ::= <Member ID> | $INITIATOR_OF_PROCESS

Table 6-4 Expanding Roles to Cover Relationships

where $INITIATOR_OF_PROCESS is a workflow system-defined data item which can

be retrieved through the workflow callable interface. The workflow script now reads:

 116

 {… step definition …} EXECUTE BY manager_of $INITIATOR_OF_PROCESS

At runtime, when a member object m attempts to open this step for execution, the

WFMS will query OMM to verify whether m is a manager_of the initiator of the

workflow process. Here manager_of is a virtual link. The initiator of the process

instance becomes the owner of the virtual link, and m is the member in question. The

task authorization checking logic is reduced to the following question:

 Is m the manager_of $INITIATOR_OF_PROCESS?

where manager_of is defined by a computable expression such as:

 (deptNo == $owner.deptNo) AND (jobCode == 101)

or

 (m.deptNo == $INITIATOR_OF_PROCESS.deptNo) AND

 (m.jobCode == 101)

Evaluation of this expression will return a Boolean value indicating whether m is

authorized to execute this step.

6.4 Role-based Access Control

The concept of dynamic roles can be applied to improve flexibility of role-based access

control. Various RBAC models have been developed to control accesses to common and

secured resources (Park et al. 2001; Sandhu et al. 1996). RBAC provides more flexible

security management than the traditional approach of assigning roles by using user and

group identifiers. In RBAC, access privileges are given to roles rather than to individual

users. Users acquire the corresponding permissions when playing different roles. Roles

can be defined simply as a label, but such an approach lacks the ability to allow users to

automatically change roles under different contexts. This static method also adds

administrative overhead in role assignment. In e-commerce and other cooperative

computing environments, access to shared resources has to be controlled in the context

of the entire business process. Therefore, it is necessary to model dynamic roles as a

function of resource attributes and contextual information, and to use these roles to

control access to common resources (Cheng 1999a; Cheng 2000a).

 117

Role-based security has been applied in various areas of computer systems security

(Youman et al. 1996). Researchers, such as Osborn (1997), Kuhn (1997) and Sandhu

(1996), have proposed formal models for RBAC. Access privileges are granted to

different roles. A user can play multiple roles by binding with a number of role names.

Although this approach gives more flexibility to access control than the simple granting-

to-user-identifier method (such as the scheme used in Microsoft Access), it is still a static

approach and ignores entirely the overall organization model.

OMM provides a strong basis to support RBAC. The ability to model different types of

enterprise resources facilitates the identification and categorization of the responsibilities

of different resources in respect of one another. With OMM, both active and inactive

resources can be modelled within the organization model. Active resources are agents

that take on responsibilities to execute work tasks within certain business processes.

Workers, managers and contractors are some examples of active resources. Inactive

resources are produced and consumed during the business process cycle. Examples of

inactive resources include products, materials and documents. Once the two types of

resource are captured in an organization model, we can analyze the different

responsibilities and roles the active resources adopt in executing various business

processes within the company. Access to shared inactive resources can be controlled by

assigning privileges to these roles.

Dynamic roles are modelled as a function of resource attributes and contextual variables

using the OMM virtual link (Sections 6.2 and 6.3). This allows (active) enterprise

resources to play various roles at different times and under different business contexts.

Although we focused on the use of dynamic roles in workflow applications in the

discussion of task authorization and role resolution in Section 6.3, the same idea will

apply to and benefit RBAC in general. Applying OMM to RBAC allows any RM to

have a higher degree of flexibility in controlling accesses to shared and privileged

resources. OMM roles are defined as computable expressions and are resolved at

runtime, rather than the traditional model of assigning access rights to a static role

(which in turn may be assigned to a number of active resources).

In Section 6.3 we discussed an example of task authorization in workflow. Following

the same methodology of granting permissions in executing workflow steps, one can

define RBAC with a similar syntax as outlined in Table 6-3.

 118

 GRANT <Privilege> TO <Role>

We note that privileges are system implementation-dependent; roles are role labels

which are in turn defined by using the virtual link syntax as described in Section 5.2.

6.5 Conclusion

In this chapter, we discussed the concept and challenges of role resolution in WFMS and

how OMM addresses these issues using dynamic roles. In collaborative computing

environments, role resolution is required when performing task assignment, task

authorization, and process routing decisions. OMM supports these functions by

providing a reference model to define various enterprise resources and their relationships

flexibly. It also has an open API that allows the WFMS to call upon the full resources of

the organization model when performing role resolution.

Role-based access control is discussed in the context of supporting e-commerce and

collaborative computing applications. Again, OMM creates the potential for RMs to

realize RBAC by using dynamic roles. It also provides a comprehensive model and an

open interface for these systems to practically design fine-grained access control over a

complex and rapidly changing enterprise.

In addition, the fact that OMM has separated the role and organization models from the

workflow engine allows multiple WFMS to run on top of the same organizational

conceptual design and design implementation. This creates integration opportunities

over multiple groupware applications. OMM makes possible the routing of one business

process to another by managing a common organizational information system.

 119

 120

Appendix 6A. Java Code Segment for Routing Control by Using Dynamic Roles

// Date: 02/07/03
// Author: ECC
// Method: chooseApprovalRoute()
// Parameter currentExecutor: the employee object who is the current
// step executor;
// Parameter threshold: the maximum number of pending approval cases
// for a department.
//
// Description:
// Apply OMM to workflow routing decision support. In this case, not
// only the employee object is involved, but also the department
// object.
//

public int chooseApprovalRoute(OmsMember currentExecutor, int
threshold)
{
 // get the department name by retrieving the Department attribute
 String curDepartment = currentExecutor.getStringValue(“Department”);

 // get the department object
 OmsMember deptObj = new OmsMember (“department”, curDepartment);

 // get the department’s current total number of approval cases
 // pending
 int totalCases = deptObj.getIntValue(“NumOfCases”);
 if (totalCases < threshold)
 return 1; // choose route A
 else
 return 2; // choose route B
}

 121

CHAPTER 7 Organization Modelling and Reengineering By Using

OMM

To maintain a competitive edge in today's marketplace, companies have to rapidly adjust

in order to adapt to the rapidly changing business environment. This requires improving

flexibility in resource allocation and organizational structure, as well as streamlining the

business processes. Organization reengineering has emerged as an important strategy in

this endeavour; the term refers to the multi-step cycle of organization modelling, which

involves careful organization analysis, strategic design and systematic changes in the

organizational structure, management hierarchy, reporting infrastructure, and employee

roles. The principles of organization modelling and reengineering were introduced in

Chapter 2. In this chapter, we will cover the practical aspects of organization modelling

and show how OMM can help to support the different approaches.

In Section 7.2 we discuss the integral relationship between Business Process

Reengineering (BPR) and Organization Reengineering (OR). As a consequence of the

close connection between BPR and OR, OMM’s support for organization modelling

contributes to improving both the structural aspect and the functional aspect of an

enterprise. Section 7.3 introduces the various industrial approaches to organization

modelling. We show how OMM is used to support the approaches relevant to the OMM

model. In Section 7.4 we present some common techniques used in organization

modelling. We then discuss how these techniques are enhanced by OMM.

7.1 Introduction

Business process reengineering is often a driving force and an integral part of

organization reengineering. Changing the organizational structure often involves

modifying the hierarchy of business units (or departments) within a company. These

changes trigger further changes to operations, management responsibilities and reporting

structure, which in turn trigger changes to the overall employee roles and functions.

Although arbitrary changes may happen anytime within a small area of an enterprise,

large scale organization reengineering has to be done systematically with significant

fore-planning. Though the practice of organization reengineering may vary from

 122

company to company, the different approaches usually fit into one of two categories,

namely top-down and bottom-up (Hammer 1996).

7.2 Business Process Reengineering and Organization Reengineering

BPR refers to the cycle of streamlining and fine-tuning business processes. Since

business processes are composed of steps executed by organizational resources, OM is a

prerequisite to BPR. With the OR cycle, a corporation continually restructures and

repositions its resources to accomplish its business objectives. The goal of OR is to

create an efficient interactive workforce with the most optimal performance at the lowest

cost. Unnecessary layers of management and overlapping resources are eliminated by

consolidation of job functions and functional groups. Additional resources are allocated

or acquired to take on new challenges and opportunities.

OR is only the first step in enhancing the performance and ROI of a corporation. A

corporation carries out its function through the use and cooperation of its resources,

which work in concert within various business processes to accomplish business goals.

As a result, it is critical to reengineer the business processes to receive ultimate

performance improvement. Once the OR cycle is in place, we are ready to focus on

improving the business processes. A corporation adopts various business processes to

accomplish its business objectives. Some business processes are mission critical ⎯

those involved in generating revenues ⎯ and impact directly and immediately the

condition of the company. Others are administrative and supportive business processes.

While these certainly impact the organization, their effect is usually indirect. The focus

of improving supportive business processes is to reduce cost rather than bringing in

higher revenue. Organization analysts may apply BPR techniques to streamline both

types of business processes. The BPR cycle generally involves 4 stages; these are

business process analysis, refinement, definition and management (Cheng 1995). Figure

7-1 shows the flow of the BPR cycle between the various stages.

 123

Stage transition

BP
Refinement

BP
Definition

BP
Analysis

BP
Management

Figure 7-1 The Business Process Reengineering Cycle

7.3 Organization Modelling Approaches and OMM

Different collaborative computing systems take different approaches to address the issue

of organization modelling. None of these approaches is more complete than any of the

others; they each have their own design points and complement one another. However,

all these approaches can be traced to three general and generic methodologies, which

include the information system approach, the object-oriented approach, and the Petri Net

approach. In this section, we discuss these organization modelling (OM) approaches and

indicate how OMM supports and complements them.

7.3.1 Information System Approach

Information system methodologies have seriously influenced almost all organization

modelling approaches and methodologies. There have been many attempts to use

software engineering methodologies designed for information system analysis and

design to model CIM systems. A typical example is SADT designed by Ross and

Schoman, Jr. (Ross and Schoman 1977). Unfortunately, this starting point has largely

contributed to the biases that limit organization modelling to data flows diagrams for

modelling processes and entity-relationship diagrams for modelling data. However, as

discussed in Chapter 2, true enterprise-level organization modelling deals with

dimensions other than just functions and data. Two areas, resource management and

organization structure especially, are poorly addressed by the co-opted methodologies of

data flow and ER.

 124

This is not to say that the diagrammatic techniques of data flow and ER have no place in

OM. Information system design and analysis has an important role to play in such areas

as:

1. support for modelling of data,

2. analyzing the information issues of the information view, and

3. assisting in the design of the database schemas for the databases that will be

implemented in the integrated enterprise environment.

M*OBJECT discussed in Chapter 3 is an example of an enterprise modelling system

taking the information system approach (Di Leva et al. 1997). OMM, using an object-

oriented approach, has simplified the modelling and analysis of information and

information views. With our implementation of mapping the OO layer to the underlying

database schema, we eliminate altogether the complexity of defining the database

schema for representing the enterprise model. We refer readers to Sections 4.4 and 9.4

to see how OMM can model the information system approach.

7.3.2 Object-Oriented Approach

The object-oriented approach is a generic and universal modelling tool, although based

on only one modelling construct: the object. The paradigm has been suggested for

enterprise modelling as well as for manufacturing system modelling by numerous works,

including X.500 and LDAP (Radicati 1994).

According to Vernadat (Vernadat 1996), although the object-oriented approach has six

fundamental principles (see Chapter 3 for a discussion of the fundamental principles of

the OO methodology), the main characteristic of the object-oriented modelling approach

in OM is the encapsulation property. This property has the effect of combining function

modelling and information modelling into one unified paradigm (Vernadat 1996). With

the OO approach, objects are uniquely identified, have a state, and possibly a set of

behaviours (i.e. a set of callable operations, called methods, that represent functionality).

They are able to depict both abstract and concrete aspects of the enterprise. With the OO

approach, the whole model is defined as a set of communicating objects.

 125

Two other OO properties, inheritance and reusability, also hold significant advantages

for the OO approach in organization modelling. These features are not present in the

other two generic modelling approaches mentioned earlier in this section, namely ER

and data flow. Inheritance refers to the feature of allowing classes of objects to share

common properties by inheriting from their common parent class, which is called the

superclass. These common properties can then be reused in other objects, and objects

can be reused from one model to another, thus saving development time. The OMM

model we propose adopts the OO approach to model the enterprise resources. (We note

that M*OBJECT also includes some OO features.)

Although the OO approach is widely used in systems modelling, an issue that has slowed

its application to enterprise modelling is that traditionally business users are more

process-oriented than object-oriented. It therefore seems unusual, on the face of it, to

represent business processes by using objects. However, OO is ideal for modelling

enterprise resources such as people, products, equipment and services. The Petri Nets

approach, on the other hand, is ideal for modelling processes.

7.3.3 Petri Nets Approach

Petri Nets are a graphical and mathematical modelling tool used to represent and analyze

the behaviour of concurrent and parallel systems (Peterson 1993). The approach is based

on a simple, abstract representation of a system in terms of a multi-partite directed graph

made of two types of node, respectively called places (represented by circle) and

transitions (represented by vertical bars) connected by directed arcs. The behaviour of

the system is modelled by tokens flowing from place to place via the firing of transitions.

Figure 7-2 shows an example of a Petri Net.

t2

t1

P3 t3

P2
P1 P4

Figure 7-2 An Example of a Petri Net

The Petri Net is very popular in modelling enterprise processes because of its ability to

describe the flow of a business process easily. It is also used widely for the analysis of

 126

both enterprise functionality and enterprise behaviour (Vernadat 1996). However, it falls

short of modelling enterprise resources. Objectflow is an example of a collaborative

system ⎯ one which uses Petri Nets to model processes (Hsu and Kleissner 1996).

Although OMM does not use the Petri Nets approach to model interactions within an

enterprise, with the OMM organization model and role model, we can support and

enhance any Petri Nets based modelling system.

7.4 Common Techniques in Organization Reengineering

An enterprise is a very complex entity composed of a large number of business objects

interacting and relating to one another to accomplish a set of goals. To analyze and

streamline an enterprise, it is necessary to break down this complex entity into smaller

logical pieces, identify all its resources, functions and goals, and eventually place and

connect them together in a logical way to represent the interactions and relationships

among them. We will introduce four common techniques that organization modellers and

analysts use to carry out this process of breaking down and building up enterprise

components. We will also use some examples to illustrate how OMM is used to support

these techniques.

7.4.1 OR Modularization

Modularization is a technique used in organization reengineering. Smaller sub-

components of a company are grouped together based on some common attributes to

create bigger units. Modularization can be applied recursively to create even larger units

until ultimately an enterprise is formed. It can be realized via the following two

fundamental concepts:

� Function: entities of similar function are put together for clarity and better

manageability. For example, in certain companies, all marketing offices belong to a

marketing organization.

� Location: units responsible for different aspects of the same location may be grouped

together to support one another. This may mean that the different components are

physically located in the same area and share a common set of opportunities and

Work Phone

issues. It may also mean that they are geographically distributed but responsible for

the same market segment.

In OMM, modularization can occur in two ways. Firstly, two OMM organizational

databases can be merged together to become one. OMM member attributes with the

same semantics and data types can be merged with one another and form a new OMM

member attribute of the consolidated organization. The name of the new attribute in the

newly merged OMM organization can be the same as one of the two names in the former

OMM organizations, or a new name given by the administrator. Attributes with different

semantic meanings or types can either be dropped or added to the resulting OMM

organization. In the latter case, member objects of the original OMM organization that

do not have these attributes will contain the NULL value for such attributes. As

discussed in Section 4.4, each member in the OMM organization has a unique identifier,

the member ID. Since the member ID is globally unique within the enterprise, there will

be no confusion in the identity of the members (even after merging two OMM

organizations). Please refer to Appendix A for the Java implementation of the

OmsOrganization and OmsMember classes.

As an example, assume that as a result of two companies going through merger or

acquisition, it is required that the OMM employee organizations of the two companies be

merged. Figure 7-3 shows the correspondence mapping of the attributes of the two

employee organizations.

EMPLOYEE1
Organization

Figure 7-3 An Example of Merging Two OMM Organizations EMPLOYEE2 EMPLOYEE Organization
Resulting From MergeOrganization

The second way that OMM supports modularization is that users may choose to connect

two organizations logically together without combining or altering the corresponding

Member ID
Last Name
First Name
Title

Salary
Manager

 127

Member ID
Last Name
First Name
Title
Address
Work Phone
Home Phone
Salary
Supervisor

Member ID
Surname
First Name
Job Code
Address
Office Phone
Mobile Phone
Compensation
Manager

Job Code
Address

Home Phone
Mobile Phone

 128

database schemes. To do this, one may simply define a link between the two objects.

This can be done using an OMM virtual link. Alternatively, a third organization can be

created to have a link connected to each of the two OMM organizations. Thus,

diagrammatically, a parent OMM organization is created on top of the original two

OMM organizations.

 Connecting two
OMM organizations
using a virtual link.

Northeast Sales Region West Coast Sales Region

Sales and Marketing
Adding an additional
(parent) OMM
organization to link two
OMM organizations.

West Coast Sales Region Northeast Sales Region

Figure 7-4 Different Ways to Logically Connect OMM Organizations

7.4.2 OR Decentralization

Decentralization is a technique used to logically divide an organization into smaller sub-

components. Together with modularization, decentralization creates a balanced force,

which allows a company structure to attain a state of equilibrium. This method is often

used in restructuring when the company is growing in size and wants to give autonomy

to certain organizations. Decentralization also comes naturally when a company wants

to venture into a new business sector or market region. It may also happen when a

certain organization has grown too big and has become difficult to manage and slow to

respond to changes.

OMM supports decentralization by creating new OMM organizations within the

enterprise. Member objects representing company resources are flexibly migrated from

one OMM organization to another. Similar to the case of merging OMM organizations

discussed in Section 7.4.1, when moving member objects from one OMM organization

to another, OMM member attributes may be dropped from the old OMM organization, or

mapped to the new one. This operation is implemented in the Java method move() in

OmsMember. Please refer to Appendix A for the implementation of the move() method

and the OmsMember class.

 129

7.4.3 Bottom-Up Analysis in Organization Reengineering

One way to model an organization is by using a bottom-up technique, which starts the

analysis from the “hands-on” level of the company, i.e. the projects, tasks, and people

resources level. Bottom-up analysis is performed through interviews involving not only

department managers but also supervisors, foremen, and workers (Di Leva et al. 1987).

People are asked to describe the functions which they are involved in and the activities

they perform. This style of analysis requires at least three meetings per enterprise

function: one to do the interview and the function diagnosis with the director or

supervisor, one to model the function (i.e. identify inputs, outputs, constraints and

operations), and a last meeting to discuss the results obtained with function personnel.

Documents that are processed in the business flow are identified and the routing of

documents modelled. Verbal descriptions of the processing of documents and the

execution of function activities are recorded on tapes and reported in written notes.

Based on the result of these interviews and analysis, resources are grouped together

based on commonalties such as functions, responsibilities, production focus, and

geographic locations. Relationships such as reporting infrastructure and project teams

are also defined. At this level, entities, as defined by the OR architect, can be perceived

as the basic functional units for carrying out business objectives. The bottom layer

entities are the building blocks of an organization. Units of similar focus and

complementary functions can be categorized together logically on the next higher level

to form a smaller number of strategic units. Once the first level of organizations is

created, the modularization technique (described in Section 7.4.1) can be applied

recursively to establish an enterprise.

The goals of the bottom-up analysis are:

1. To validate the top-down analysis which is performed by interacting with the top

level of management in the enterprise. The top-down approach will be discussed in

the next subsection.

2. To finely model each function identified in the general functional diagram. This

includes identifying the resources involved in each function, their attributes and

responsibilities, and their relationship and interaction with one another.

3. To make a diagnosis of each function in order to evaluate its operations.

 130

Figure 7-5 shows how the bottom-up analysis is applied in organization reengineering to

produce a functional pyramid diagram of the enterprise.

Unit Unit

People Projects Machines

.

. Perform
analysis and
reengineering
from bottom
up.

.

Enterprise

Figure 7-5 Bottom-Up Organization Reengineering Method

Because OMM is sufficiently flexible to support resource definition and organization

modularization, users can use OMM to capture the lowest level resources. By logically

(through virtual links) or physically (through merging of organizations) pulling the

organizations together, a complete, well-partitioned organization structure will emerge.

7.4.4 Top-Down Analysis in Organization Reengineering

Another commonly used technique in OR is the Top-Down Analysis. This may start by

identifying a company-wide mission statement from the top level of management.

According to Di Leva et al., the top-down analysis usually requires two to three short

meetings with enterprise directors (Di Leva et al. 1987). The discussion concerns the

general organization of the enterprise, the size of the enterprise, the financial situation,

the operational problems faced by the company's decision-makers, or the long-term

vision of the enterprise. One meeting can be used to present to management the analysis

approach and the tools used in the process. By identifying top-level areas, objectives,

and goals which help to accomplish the company's mission, different divisions or

operations of the company are defined. Each of these divisions or operational units has

its own mission statement and a set of objectives. These mission statements and

objectives should all work together to achieve the company’s top-level mission.

The goal of top-down analysis is to understand the overall structure of the company.

Through this process we discover the pyramidal structure of the organization's decision

system as well as its business objective tree, identify the various levels of decision-

 131

making and objectives, and the decision-making centres. This step is crucial when the

OR analysts come from outside the enterprise to be analyzed.

With OMM, each business unit can be viewed as an organization. Descending the

structure, more refined definitions are given to objectives, and the means of reaching

specific goals are clarified. Ultimately, some organizations on the same level may be

merged (modularized) to simplify the structure, and units that are too big may be

decentralized by being split into multiple organizations to improve manageability. Such

fine-tuning can be done continually as part of the life cycle of OR.

Figure 7-6 shows the top-down analysis applied in organization reengineering.

Objectives

Operation

People

Operation

Projects Machines

.

.
Perform
analysis and
reengineering
from top down.

.

Mission

Figure 7-6 Top-Down Organization Reengineering Method

Starting from the existing structure, one plan of attack is to begin analysis with the less

productive organizations, identifying their missions and defining the associated subgoals.

Depending on other factors, such as the size of the organization, budget, type of business

and work, and other heuristic factors, new business units may emerge. With OMM,

people as well as other types of resources can be allocated to new units, and functional

teams can be established by connecting the resources from one OMM organization to

another via virtual links. For example, a functional team, say a production department,

consists of raw materials, machinery and personnel (such as direct labour, supervisor and

administration).

The actual sub-organization structure can become very complex depending on the

intersection of these various factors. However, with OMM, organization modellers have

a powerful and flexible model, capable of supporting top-down decentralization of even

the most complex corporations. This is achieved via horizontal and vertical partitioning.

 132

7.5 Conclusion

Organization modelling and reengineering methods and techniques have been developed

for decades. In this chapter we have discussed these practices and shown how an

organization modeller can apply the OMM organization model in combination with these

techniques.

We discussed the three different approaches people take in organization modelling. The

information system approach and the object-oriented approach aim to take care of the

information model aspect in organization modelling, while the Petri Nets approach

focuses on fulfilling the functional aspect. OMM takes the object-oriented approach in

creating an information model. OMM does not contain a separate business process

model to address the functional aspect of OR; it is assumed that this need can be fulfilled

by the process modelling components in most standard WFMS. However, OMM also

has a rule-based relationship model which enables the WFMS to model enterprise-level

business processes by providing dynamic role resolution. This was discussed in Chapter

6 of the thesis.

We reviewed four common techniques used in organization modelling: modularization,

decentralization, bottom-up analysis and top-down analysis. OMM supports all four of

these. Using an OO model, OMM allows the organization modeller to flexibly

modularize or decentralize company resources into various OMM organizations.

Different OMM organizations can be brought together using OMM virtual links. These

allow the organization modeller to perform organization re-design with great flexibility

and effectiveness, enabling both top-down and bottom-up analysis methods.

 133

CHAPTER 8 Concurrency Control

Concurrency control is the activity of coordinating the actions of processes that operate

in parallel over shared data, and therefore potentially interfere with each other.

Concurrency control problems arise in the design of hardware, operating systems, real

time systems, communications systems, and database systems, among others. As OMM

is not only a modelling tool but also a real-time system running on the Internet which

allows concurrent access to enterprise information, we have to deal with the concurrency

control problems that may arise.

This chapter discusses the problems of concurrency control and provides examples of

how the problems arise in the context of OMM. In Section 8.2, we present the concept

of transaction, which is fundamental to enable concurrency control. In Section 8.3, we

discuss our technique of allowing users to pre-claim resources in order to solve the

concurrency issue. Sections 8.4 and 8.5 are devoted to discussing deadlock issues and

how OMM deals with them.

8.1 Introduction

We have shown that an organization modeller can apply OMM to reengineer an

enterprise. However, some means of maintaining the organization database thus created

must be established; otherwise the information collected during the organization analysis

process will remain static and will quickly be outdated as the organization undergoes

constant changes. Hence it is important for the OMM system to be able to continually

receive input, and to have the ability to adjust itself automatically as the underlying

information of the organization changes. The object-oriented approach and the rule-

based relationship model in OMM provide the primary technology to make this

automatic adjustment possible. However, in order for the resulting enterprise model to

be fully functional and dynamic, we must also provide ways for employees on all levels

of the enterprise to continually and easily maintain up-to-date information for those

enterprise objects that they manage. The OMM system accomplishes this by providing

an open Java API to support the development of Internet and Intranet applications to

accomplish these tasks. Users cannot only access and review organizational resource

 134

information, organization structure and resource connections, but they can also update

this resource information anywhere, anytime through the World Wide Web. As the

underlying information is updated, the specific organization models created to capture

the network of enterprise resources and their corresponding inter-object relationships

will automatically adjust themselves to represent the most up-to-date picture of the

enterprise. These are all very possible outcomes of exposing the organizational

information to multi-user updating. However, once we allow multiple users to modify

the organizational information concurrently, it is possible for them to run into conflicts

that may lead to data inconsistency and deadlock.

Since we are primarily dealing with organizational information management, we will

discuss these problems and solutions from the view of a database system. Database

system concurrency control mechanisms apply to many types of data handling systems

(such as database management systems for data processing applications, transaction

processing systems for banking or airline reservations, and file systems for a general

purpose computing environment). These mechanisms will also apply to the OMM

system, which handles organizational information stored in a DBMS.

The main component of concurrency control in a database system is the transaction. A

transaction is an execution of a program that accesses a shared database. The goal of

concurrency control is to ensure the atomic properties of transactions during execution,

meaning that:

1. each transaction that accesses shared data is transparent to all other transactions, and

2. if a transaction terminates normally (commits), then all of its effects are made

permanently and reliably in the database; otherwise (if it aborts) it has no effect at

all.

8.2 Background

8.2.1 Database Systems

A database consists of a set of named data items. Each data item has a value. The

values of the data items at any one time constitute the state of the database. A data item

 135

could be a word in the computer memory, a page on a hard disk, or a record in a file.

The size of a data item is called the granularity of the data item.

A database system, also known as database management system, is a collection of

hardware and software elements that support access to the database. Access events are

called database operations. In general, operations can be categorized into either Read or

Write operations. Read operations will not alter the state of the database, while write

operations will. DBMS execute each operation atomically and consider each operation

to be a single undivided unit of work. This means the database system ensures that

either all or none of the effects of an operation remain in the database. As discussed

above, this is known as the atomic property of the DBMS, and it is essential for ensuring

data integrity. Note that read operations will not change the state of the database while

write operations will move the database from one state to another.

8.2.2 Transactions

The concept of a transaction has been used to ensure atomicity, consistency, isolation,

and durability of a unit of work in a computing environment. A transaction may be

composed of multiple database operations. The ACID properties are critical and

sufficient to maintain data integrity:

� Atomicity: a database system guarantees its operations possess atomicity if it ensures

that each operation must either be completed or not started at all; there is no partial

operation under any possible circumstances.

� Consistency: a database system is said to be consistent if it does what it claims it

does repeatedly.

� Isolation: the isolation property ensures that no two concurrent transactions will see

the effect of one another. A database system that possesses the isolation property

will give the appearance that all of its transactions are serialized.

� Durability: some database transactions bring about state transitions to the database.

A database system has the durability property if all the state transitions brought about

by its committed transactions are guaranteed to persist.

 136

A number of transaction models have been proposed and defined over the years in an

effort to achieve the ACID properties in the context of complex distributed

computations. A distributed complex computation usually involves a number of sub-

computations spread over a heterogeneous computer network. Each of these sub-

computations or computation components may employ the idea of a transaction to ensure

its own atomicity and consistency in a multi-user environment. In order to guarantee

transactional behaviour over the whole distributed computation, the transaction

components are linked together to form a global transaction or a transaction tree. A

defined set of behaviours is maintained between any two sub-transactions by a

transaction manager, which may be embedded in the DBMS. Each distinctive set of

transactional behaviours is termed a transaction model (Cheng et al. 1991). These

concepts can be depicted by the following:

 Transaction Component, ti = a unit of local computation or non-undoable

action.

 Transaction Model, Mij = {b1, b2, … bn}, where bk, k = 1, 2, …, n, is a

transactional behaviour between transaction

components ti and tj.

 Transaction, T = {ti, tj, tk, …, Mij, Mjk, … }.

Once a transaction is started, it will end at a later point in time, either by committing its

computations and the effect of its operations will be externalized to all other

transactions, or by aborting its computations such that all its modifications to the

database will be undone.

8.2.3 Commit and Abort

A DBMS supports transaction operations, which are Start, Commit, and Abort. These

operations are specified in the database programs, which constitute one or more

transactions. Start is simply to begin a transaction. Commit is to request that all the state

transitions of the current transaction be persistently reflected in the database. Abort on

the other hand requests that all the state transitions of the current transaction be cancelled

or rolled back. The syntax of a transactional database program looks like this:

boolean withdraw(String fromAccount; Float amount)
{
 Begin Transaction;
 float temp = readAccountBalance(fromAccount);

 137

 if (temp < amount)
 {
 output(“Withdrawal failed: insufficient funds.”);
 Abort;
 return false;
 }
 else
 {
 updateAccount(fromAccount, temp – amount);
 Commit;
 Output(“Withdrawal completed”);
 Return true;
 }
}

Figure 8-1 A Database Program to Withdraw Money from a Bank Account

After the DBMS executes a transaction’s Commit (or Abort) operation, the transaction is

said to be committed (or aborted). A transaction that has issued the Begin Transaction

but is not yet committed or aborted is said to be active.

A transaction issues Abort if it cannot complete correctly. The database program may

issue the Abort because it has detected an error situation, such as in the example outlined

in Figure 8-1 that the account has insufficient funds. Or the Abort may be incurred on a

transaction by circumstances beyond its control, such as in the case of power outage or

other types of system failures.

When a transaction aborts, the DBMS removes all of its effects. The fact that a

transaction may be aborted requires that the DBMS has to determine a point in time after

which the DBMS guarantees the users that the transaction will not be aborted and its

effects will be permanent (Bernstein et al. 1987). For example, in processing a

withdrawal from a bank account, the system cannot abort the effect once the cash is

dispensed to the customer.

The Commit operation accomplishes the guarantee of a point of no return. Its invocation

signifies that a transaction terminated “normally” and that its effects are made permanent

to the database. Executing a transaction’s Commit constitutes a certainty given by the

DBMS that it will not abort the transaction and that the transaction’s effects will survive

subsequent failure of the system.

In order to attain the ACID properties of transactions, a transaction manager works with

a lock manager to serialize accesses to shared resources. A lock manager grants

different types of lock to transactions. In general, lock types can be categorized into

 138

Read or Write locks. Read locks are also known as shared locks since multiple users can

be locking (read only) the same database resource without conflicts. Write locks are also

known as exclusive locks since once a user locks a resource with a Write lock, no other

transactions may acquire locks on that resource until the user releases the exclusive lock.

A transaction requests for locks when it attempts to access a database resource. It

releases all the locks it acquired throughout its life when it commits or aborts. When two

transactions attempt to issue a request for a lock type that conflicts on a common

resource, only one of them will get the lock and the other transaction will have to wait

until the first transaction releases the lock.

8.3 Concurrent Access to Shared OMM Objects

The transaction manager of the RDBMS controls and coordinates database accesses

through locks. Although this is sufficient to maintain the ACID properties of the data, it

could have poor usability when it comes to OMM, which is an interactive, object-based

system. For instance, when multiple users are accessing OMM resources (objects)

through the Web to maintain enterprise resource information, it is possible that two users

are updating different attributes of an object at the same time. These attributes might be

located in different tables. In the case of distributed OMM objects, they may even be

managed by different DBMS. Although we can hold locks on all attributes of the object

and serialize the concurrent operations, this will significantly reduce the parallelism and

performance of the system as we are dealing with human interactive accesses. If we lock

only those attributes that are interesting to the specific operation, then from the view of

the DBMS there is no conflict in locks between the two operations, but from the users’

point of view, the two transactions are conflicting on the object level. In this case, even

though data integrity is not sacrificed from the view of DBMS, on the object level of

OMM, the two transactions will appear to have lost the isolation property. Therefore, in

order to improve performance and retain integrity at the object level, it is necessary to

have the flexibility to support optional object-level locking in OMM. Note that locking

the entire object can be optional rather than mandatory because the described conflict

does not impact the data’s ACID properties, which is critical to data integrity. Strictly

speaking, the issue is only a usability issue. Indeed in some cases, such as when two

users are assigned to manage two unrelated aspects of the same enterprise resource, the

 139

above scenario might not have any conceptual conflict at all. The following example

illustrates the case in which object level locking is desirable:

T1 T0

User B assigns a new Inspector based on old location information.

User te.

T2 T3

Figure 8-2 An Example of Conflict on the Object Level but not o

Should object lock be applied when user A reads the machine objec

blocked or get an exception when attempting to access the same m

exception will arise either when user B reads the machine object or w

an update lock on the Inspector attribute, depending on whether t

held by user A on M is a read lock or a write lock. This seems to po

that object-level lock is always desirable; however, the following e

case in which object-level locking is unnecessary:

T1 T0

User

T2 T3

Figure 8-3 An Example of Concurrent Accesses without Conflict

Two observations are important here. Firstly, an object-level confli

there are two or more applications with write operations involved. It

with one write and many reads. In the case of read-only operations,

any object-level conflict. Secondly, an object-level conflict occurs
Time
User B reads machine object M and holds lock for update only on Inspector

 A reads machine object M and holds lock for update only on Location attribu
User A moves machine M to another country by updating the Location

n Data Level

t M, user B will be

achine object. The

hen he requests for

he object-level lock

int to the suggestion

xample illustrates a

ibute.

o

c

Time
User B reads machine object M and holds lock for update only on Inspector

 A reads machine object M and holds lock for update only on Reservation attr
User A reserves machine M for use by updating the Reservation
User B assigns a new Inspector based on location
n Object Level

t occurs only when

 will not occur even

 there should not be

 only when two or

 140

more operations are referencing, via either read or write, one or more common attributes.

In the example depicted in Figure 8-2, conflict exists because both user A and B are

referencing to the Location attribute.

As discussed, one way to solve this issue is to allow the application or the interactive

users to pre-claim object-level locks on update and delete operations. If the application

programmer does not foresee a potential conflict on the object level, then it is not

necessary to serialize accesses by pre-claiming locks.

An alternative to having object-level locks is to have attribute locks. Programmers still

have to declare pre-claim locks, but instead of requesting locks on an object level, pre-

claim locks are requested on the attribute level. Attribute locks have finer granularity

and therefore reduce lock collision and improve concurrency. However, it is more

complicated to program because application programmers will have to decide which

attributes to lock rather than simply locking the entire object. In the example shown in

Figure 8-2, user A may pre-claim an exclusive lock on the attribute Location of machine

object M, rather than locking the entire object. When user B tries to read Location by

requesting a read lock on Location, the request will be blocked. If user B gets in first

and obtains the read lock on Location, user A will have to wait when he attempts to pre-

claim an exclusive lock on Location. In either case, the operations will be serialized.

8.4 Deadlock Detection

Resource allocation and scheduling is a generic computer science topic. In resource

management and transaction processing systems, scheduling consists of controlling the

transactions to minimize response time or maximize throughput. Very primitive

scheduling techniques have sufficed in the past. One simple approach is to limit the

degree of multiprogramming, which in turn impacts the number of concurrent

transactions. Another common technique is time-slicing the execution of each

transaction, so that each makes forward advance one small portion at a time.

The lock manager is a scheduler. If many processes are waiting for a lock, a scheduling

decision is made when the lock becomes available; this decision determines which

transactions should continue to wait and which one should be granted access to the

 141

resource. Traditionally, simple first-come, first-served scheduling has been used in lock

managers.

Whenever the system allows multiple transactions to request for locks, there is a

possibility of waiting for locks, which may give rise to deadlock. Deadlocks will only

occur when someone is requesting for a lock and results in the wait queue. In a deadlock

situation, each member of the deadlock is waiting for another member of the set. In

other words, no one in the set is making any progress, and no one will until someone in

the set completes (or gives up). An easy solution is never to wait, but instead to cancel

any request that might wait, do a partial rollback, and then restart the program. In our

examples in Section 8.3, we have indicated that upon lock conflict, the latter transaction

may either be blocked (i.e. wait), or receive an exception (i.e. cancel its operations).

Cancelling a transaction is easier to implement than detecting and handling deadlocks.

Such an approach also definitely avoids deadlock, but it may create a livelock situation in

which each member of the livelock set may soon want to wait for another member of the

set, resulting in another rollback and restart. Livelock is actually worse than deadlock,

because it is harder to detect and because it wastes resources (Gray and Reuter 1993).

At any time, the transactions of the database system define a directed wait-for graph.

The transactions are the graph nodes, and there is an edge from transaction T to

transaction T ′ if:

T is waiting for a resource held by T ′ , or

T will eventually wait for a resource to be granted to T ′ . That is, they are

both waiting for the same resource, and T is behind T ′ in the waiting list,

and their requests are incompatible.

A cycle in the wait-for graph indicates a deadlock, and the transactions in the cycle are

said to be deadlocked. When resources are taken from the shared pool of resources, the

wait-for graph must be labelled with the kind of resource being demanded. The simplest

deadlock detection is to treat this as a standard transitive closure algorithm, which could

be inefficient especially when dealing with a large and distributed system.

An intermediate approach is to cancel only the lock request without rolling back the

entire transaction. With our proposal of pre-claim object-level locks, when the user (or

the program) attempts to acquire an object-level lock and runs into a conflict, OMM

 142

simply throws an exception and refuses the lock request; the user may then decide to try

again or to abort the whole update operation. This approach gives much more flexibility

to users and is particularly useful in an interactive environment, as is the case of OMM

in maintaining enterprise resources information.

8.5 Deadlock Avoidance and Resolution

It is possible to avoid or prevent deadlock entirely. The standard deadlock avoidance

technique is to linearly order the resources and acquire them only in that order. Such

technique is observed and implemented on the application level. A deadlock requires a

waits-for cycle, and the linear order avoids such cycles. However, in our case where

resource objects are distributed over the Internet and having accesses coming from

anywhere in the world, it is not practical to apply such simplistic solution to our

concurrency issue.

For situations of sharing pools of resources, such as a pool of tape drives, the system can

ask jobs to pre-declare their maximum needs and schedule the jobs accordingly. Such a

deadlock avoidance scheme is used at low levels within systems, but they break down as

the layers of abstraction build. Any static declaration is likely to be wildly pessimistic,

pre-claiming the maximum possible resources. Hence, there has been a strong trend

toward dynamic resource allocation on demand. In any case, according to Gray and

Reuter (Gray and Reuter 1993), deadlock is assumed to be a rare event that can be

resolved by the transaction rollback mechanism as discussed in Section 8.4.

In the case when a system that uses OMM happens to wait on an object-level lock, i.e. a

conflict has arisen, then the system has to resolve potential deadlocks. Given that

deadlocks are allowed to occur, one solution is timeout. Whenever a transaction waits

for more than a certain time, declare that something is wrong and rollback that

transaction. This is a technique used in many commercial transaction processing

systems such as IBM's CICS, Tandem's (now part of Compaq Computer) Encompass and

NonStop SQL Systems. According to Gray and Reuter (Gray and Reuter 1993), all

systems must ultimately depend on timeout to detect some deadlocks; for example, an

application waiting for terminal input or for a lost tape to be mounted may have to be

rolled back if it holds resources needed by other applications. They also observed that

lock waits are very rare events. Waits cause unacceptably high variance in service times.

 143

Systems are designed so that most locks are free most of the time; this is also true when a

system has a large pool of commonly shared resources such as in the case of an

organizational database. If lock waits are very rare, then deadlocks are even less likely

to occur. It is therefore an acceptable solution to deal with deadlocks by using the

simple timeout mechanism.

Timeout is a very pessimistic deadlock detector. Any long wait will be declared a

deadlock. It seems more elegant to detect deadlocks and distinguish between deadlocks

and long waits. A compromise solution is to run a deadlock detection algorithm after a

transaction timeout, just to see if there is a deadlock that can be resolved. If one is

found, then a victim can be picked, and the other transactions can continue to wait until

they are granted access. This complicates the deadlock resolution algorithm, but reduces

the possibility of killing non-deadlocked transactions.

8.6 Crash and Recovery

Through the use of transactions, resource managers are able to ensure the ACID

properties in a multi-user computing environment. Two distinguishing properties are

observed among the various transaction models: namely, concurrency and recovery.

Recovery is necessary whenever we have a failure. There are three types of failure that

are most important in database management systems. They are transaction failures,

system failures and media failures. A transaction failure occurs when a transaction

aborts. A system failure refers to the loss or corruption of the contents of volatile

storage. This can happen in a power failure or a fault in the operating system. A media

failure occurs when any part of the stable storage is destroyed, such as in a hard disk

crash. DBMS use the technique of journalling to ensure that upon recovery from a crash,

transactions are correctly undone or re-done such that the ACID properties of the

database are preserved (Cheng 1992; Bernstein et al. 1987).

In OMM, the backend failure and the corresponding recovery are taken care of by the

backend database management system. When the OMM system crashes, whether it is

due to software or hardware failures, the recovery logic of the DBMS will ensure that the

transactions be undone or re-done based on the database journal records. The pre-claim

lock information that is kept in OMM is on volatile storage; as a result, all locks will be

removed once the system is restarted. However, the use of pre-claim object level locks,

 144

as proposed in this thesis, requires that the OMM system be able to perform garbage

collection by removing all outstanding locks that belong to a certain session when the

system detects that the session has crashed.

When a client connects to OMM through the Internet, a session block is created to

represent the session between the client and the server. Garbage collection on locks can

be done by checking on the condition of sessions on a periodic basis. Once the OMM

system detects a broken session, it will release all the locks that are associated with the

session. Other transactions that are waiting for the locks will therefore be granted access

to move forward.

Another area closely related to recovery is transaction logging or journalling. The

logging mechanism records the database changes involved in transactions to ensure that

in the case when a transaction crashes, the database management system will be able to

recover the database state such that the ACID properties will be preserved. Since the

logging mechanism journals reliably the actions taken over the database, with slight

modifications, it can also be used for the support of auditing.

The challenge of applying audit logs to an e-commerce environment is on the high

expectation of having the audit logs to also serve as a History Manager. In an e-

commerce environment, sellers analyze the buying patterns of the buyers to make just-

in-time product manufacturing decisions or to adjust pricing strategy based on the

demand in the market as indicated by the activities recorded in the journal. The current

implementation of the database system does not support indexing on history tables or the

recovery logs. Standard disk-based index structures such as the B-tree will effectively

double the I/O cost of transactions to maintain indexes on history tables in real time,

increasing the total system cost by up to fifty percent. A technique known as the log-

structured merge-tree, or LSM-tree, has been developed to counter this problem (O’Neil

et al. 1996). An LSM-tree breaks the index on the history table into two portions. First

is the memory-based small B-tree (SB-tree) which allows insertion of index records into

the memory buffer in high speed and in real time. When the small B-tree has reached a

threshold size determined by the buffer size, the LSM-tree technique will flush this out

to disk storage section-by-section, and merge the memory SB-tree with the disk-based

large B-tree (LB-tree). The LB-tree can be further broken down into multiple segments,

thus reducing even further the amount of I/O required to merge the trees. Since the

 145

flushing of the SB-tree is done on a section-by-section basis, we are able to manage the

LSM-tree without impeding normal operations.

NOTE: The discussion of concurrency control in this chapter is significant to OMM

because the traditional approach of maintaining data integrity in databases is not

sufficient for the OMM applications to ensure object level data integrity; the information

of an enterprise resource may be located in different databases and be in different data

formats. This chapter provides the fundamental concepts and approaches to maintain a

multi-user organization management environment using OMM.

8.7 Conclusion

In this chapter, we have reviewed the basic theory behind concurrency control in

information management systems. The concept of transaction, along with its commit

and abort operations, is defined and discussed through some examples. Although the

OMM Prototype System is an information management system aimed at managing

specifically enterprise resource information, it employs the object-oriented approach in

order to achieve this. As a result, simply relying on the underlying DBMS to handle

concurrency issues will sacrifice usability by not being able to resolve conflicts at the

object level.

In OMM, we have provided an optional mechanism to allow programmers to pre-claim

object-level locks over OMM member objects. OMM only supports read and write

locks. Whenever a conflict arises in a lock request which specifies the no wait option,

OMM will throw an exception to the lock requester, which in turn may choose to

rollback the transaction, or to resubmit the lock request. This algorithm, although

simple, is sufficient to resolve all deadlock situations.

We also discuss the case in which the user would rather wait for a lock when a conflict

arises. In this case, we have to deal with potential deadlocks. Deadlock detection by

running a transitive closure algorithm can be very expensive especially if the enterprise

resources information is distributed over multiple domains or locations. We adopt a

simple timeout algorithm to resolve deadlocks. When a transaction waits for locks

beyond a timeout period, the transaction is assumed to be deadlocked with some other

transactions and is rolled back. In OMM, when a timeout event occurs to an object-level

 146

lock wait, OMM will simply throw a deadlock exception and the user program can be

restarted again.

We want to emphasize that our current OMM Prototype System is built on top of Oracle

9i, a reliable commercial RDBMS. As such, even if we turn off object-level locking,

there will not arise fundamental data integrity issues. However, the feature of object-

level locks in OMM improves user-friendliness by allowing users to explicitly lock an

entire OMM member object, thus ensuring a consistent view over enterprise resources

throughout a transaction.

 147

CHAPTER 9 Implementation Experiments and Applications of the

OMM Prototype System

We have implemented a prototype to demonstrate the OMM model and services thereof.

This chapter is devoted to describing the software architecture of the OMM Prototype

System. We will also discuss the detailed implementation and deployment experience of

our Prototype System. This includes the integration with existing databases, and the

population of the organization databases. Note that this prototype was implemented in

1998 in Java; since then a number of technological advances have taken place, most

notably in the area of object representation, transformation and storage, such as those

that involve XML, Enterprise Java Beans and Web Services.

Section 9.1 describes the OMM software prototype architecture, which includes the run-

time system architecture and the breakdown of software components in the OMM

Server. Section 9.2 discusses the callable user interface to allow other software

programs, such as WFMS, or end-user interactive applications to interact with OMM.

To enable collaborative software such as workflow and e-commerce applications to

coordinate computations over an entire enterprise on top of OMM, we need to define an

open and callable API for defining and manipulating the OMM conceptual entities. In

Section 9.2.1, the OMM API will be discussed; the definitions are given in Appendix A.

In Section 9.2.2, we will describe a simple graphical user interface that we used in the

OMM Prototype System to allow users to maintain the organizational information

anywhere in the world through the Internet. Section 9.3 covers the naming convention in

OMM. This is important especially when we have enterprise information distributed in

more than one OMM domain. In Section 9.4, the generic database schema of OMM is

presented. This database schema design allows us to easily map an existing database

schema to our implementation and thus simplifies the task of downloading existing data

into the OMM Prototype System. We will also describe the customizable agent

applications we built to automatically pull data from some existing data stores. Section

9.5 describes the practical steps to map an RDBMS database schema to the OMM

database schema. This mapping allows us to retrieve organizational data from existing

databases in order to populate the OMM data store. Section 9.6 provides a guided tour

for users to implement an X.500 directory with OMM. Conversely, it also shows how a

 148

user may employ the X.500 directory objects to implement the OMM conceptual entities.

Section 9.7 briefly refers to the application of the OMM Prototype System in industry.

In Section 9.8 we give some conclusions.

In the subsequent development of this chapter the terms database(s) and data store(s) are

used interchangeably.

9.1 The OMM Prototype System Architecture

The OMM Prototype System has a backend database to store the enterprise resource

information. In most cases, however, when integrating with an existing enterprise

WFMS, such information about the enterprise resources is already stored in various

existing databases. It is, therefore, important for OMM to be able to pull information

from existing data stores instead of requiring users to re-enter the information.

At the design implementation phase of the OR cycle, the existing databases of an

organization, such as the human-resource database and the corporate directory, are

analyzed and mapped to an OMM organization design. Based on this mapping, the

OMM agent programs, which make up a part of the OMM Server architecture, can

populate the backend data store of OMM by accessing the existing databases. In some

cases, due to the continuing usage of legacy ERP and HR applications over the existing

databases of an organization, it is necessary to periodically refresh some part of the

OMM data store by rerunning the OMM agent programs.

OMM is designed to work in a dynamic, real-time fashion with existing resource

management applications. This integration with existing systems can take place in both

moderated and direct fashion. For example, at runtime, the RM accesses the OMM

organizational information and performs role resolution by calling the OMM API. The

OMM Server evaluates the input from the RM, together with the rules representing the

role to be resolved, and returns the result to the RM. As an example of direct

manipulation, OMM provides a graphical administrative tool that users can use to call

the OMM API to manage the organizational objects through a GUI interface.

Figure 9-1 shows the OMM run-time system architecture encompassing the RMs and the

existing organizational databases.

 149

HR
Database

Employee
Profile

LDAP
Directory

OMM Server

JSP

OMM API

RM

OMM API

OMM
Data Store

Talk to other OMM
Servers over the Internet
via the OMM API Agent Program

GUI Application
interface

Figure 9-1 The OMM Run-time System Architecture

The OMM Server consists of three software components, which include the OMM

Object Manager, the Database Connection Module, and the Service Module. The OMM

Object Manager is responsible for the management of the OMM conceptual entities (or

simply OMM objects), which are organizations, members and virtual links. These

OMM objects are implemented in the Java classes, OmsOrganization, OmsMember and

OmsVirtualLink, respectively. Their definitions are shown in Appendix A. The

Database Connection Module connects external existing databases to the OMM data

store through the JDBC standard interface. The Service Module includes the Session

Manager, the Command Dispatcher and the Lock Manager.

Database Connection Module

Session
M

Command
Dispatcher

Lock
Manager

Service Module

OMM Object Manager

Figure 9-2 The OMM Prototype System Software Architecture

The Session Manager controls the connection between the client and the server. It

performs password authentication and employs a timeout mechanism to allow garbage

collection on broken connections. When a client submits a request to the server, the

Command Dispatcher identifies the type of the command and triggers the corresponding

modules in the OMM Object Manager. The only types of request that are not handled by

 150

the OMM Object Manager are the lock and unlock requests; the only commands not

handled by the OMM Object Manager are the connect and disconnect commands. In

the case of locking interfaces, the Command Dispatcher will forward the request to the

Lock Manager. The connect and disconnect commands are handled by the Session

Manager.

The OMM Lock Manager grants and revokes locks on the object level. It grants

available resource objects to requestors but rejects conflict lock requests. Our current

implementation does not support blocking and lock waits. When conflicts occur, the

Lock Manager simply throws an exception. Calling applications catching the lock

exception may choose to resubmit the request or abort the operation. With this simple

“no wait” mechanism, we do not have to be concerned about deadlock situations. The

Lock Manager also has a timeout mechanism to clean up locks in the case where the

application holding locks has crashed.

The OMM Object Manager receives requests for defining or manipulating the OMM

objects. It subsequently maps these requests to the underlying database access requests,

which are handled by the Database Connection Module. The Database Connection

Module connects to the backend database through the JDBC standard protocol.

The core service, or function, of the OMM Server is therefore to provide services for

enterprise object management. These services are categorized and described in the next

section, which describes the OMM API.

9.2 User Interface for Defining and Manipulating Organizational Objects

9.2.1 Application Programming Interface

The OMM API is implemented in the OMM Prototype System as Java classes and

methods to support organizational resource definition and manipulation. These classes

and methods are listed in Appendix A. They can be categorized according to the object

types with which they interact:

 151

Object Type Object Definition Object Manipulation

Organization create, delete get

Member create, delete, get, set, move, lock, unlock

Attribute create, delete,
associate,
disassociate

get

Attribute Value none get, set

Virtual Link create, delete resolve, isLink

Table 9-1 OMM Application Programming Interface Categorized by Class

The create and delete operations are responsible for creating and removing the

respective objects: organizations, members, attributes, and virtual links. The copy

command allows us to create a duplicate member object with a new identifier. The move

action puts the member object into another OMM organization. The get operation

allows retrieving the corresponding objects. OMM organization definitions are changed

through the associate and disassociate interfaces; these are used to add and drop

attributes from organizations. As a feature of this design, attribute definitions can be

defined once and reused by different OMM organizations. The attribute-value get and

set interfaces support manipulation of values of different data types. Attribute-value

set operations affect only values in memory; users use the member object set operation

to write the new attribute values back to the OMM data store. The lock and unlock

interfaces allow users to grant and revoke locks on member objects. Finally, users may

resolve a virtual link using the resolve interface, or query whether a connection exists

between two objects by calling the isLink method. Detailed syntax and semantic

definitions of these APIs can be found in Appendix A.

9.2.2 Graphical User Interface

The current OMM Prototype System also provides a tool with a simple charting interface

for displaying and manipulating OMM member objects. This tool is built on top of the

OMM API. Figure 9-3 shows a sample relationship graph as displayed in the OMM

front end tool.

 152

manager_of

sub_group

Figure 9-3 A Relationship Graph Displayed in Organization Chart Format

Two different relationships are shown here. The manager_of ‘603 - Media Server

Division’ is shown first on top. The sub_group relationship is shown at the bottom. By

double clicking on a box displayed in Figure 9-3, detailed information for the

corresponding resource will be displayed through a pop-up window (Figure 9-4). Users

can view and update the member information through this window.

Figure 9-4 Pop-up Window Showing Member Attributes with the Web Interface

 153

9.3 Domain UUID and Naming Convention

Each OMM Server attends clients within an OMM domain. An OMM domain

corresponds to a physical implementation of an OMM data store. OMM Servers can

exchange information across OMM domains through the OMM API; the current

implementation of the OMM Prototype System only focuses on a single domain.

Multiple OMM organizations may reside in a domain but an OMM organization does not

span domains. A domain has a globally unique identifier while OMM organization

names are unique only within a domain. However, the unique name of an OMM

organization within a domain, combined with the unique domain name, must be a

universally unique identifier. For instance, domain london and domain seattle may both

contain an OMM organization called EMPLOYEE. The corresponding unique OMM

organization names will look like this:

 EMPLOYEE.london

 EMPLOYEE.seattle

Similarly, although an OMM member name is only unique within an OMM organization,

by concatenating the member name with the UUID of the OMM organization, we can

obtain a UUID for the member as well. For instance, the OMM member names

 john_smith.EMPLOYEE.london

 john_smith.EMPLOYEE.seattle

are both globally unique.

In a distributed computing environment, multiple OMM Servers residing at different

locations need to exchange information with one another. For all users to be able to

access the same global organizational information, updates to domain information and

OMM organization definitions ought to be propagated to all OMM Servers on a regular

basis (such as once every hour). It is not necessary to replicate updates of OMM

members, virtual links, or attributes outside of a domain ⎯ the OMM organization

UUID will indicate which server manages the underlying information. Based on this

UUID, the local server may retrieve data from any remote OMM Server.

 154

9.4 Information Exchange with Existing Databases

Most companies have accumulated huge amounts of enterprise resource information over

the years, some in legacy databases, and others in ERP applications, data warehouses,

corporate infrastructure directories, and historical databases. In this section we describe

the generic database schema used in the OMM Prototype System. The OMM database

has been designed with the aim of facilitating the job of mapping OMM to each of the

above potentially existing databases. In Sections 9.5 and 9.6, we will discuss our

practical experience of mapping OMM to some existing data sources.

9.4.1 Generic Database Schema for Mapping Existing Databases to OMM

In our current OMM Prototype System implementation, Oracle 9i on Windows 2000 is

used to store the OMM data. In the database schema for this prototype, each OMM

organization is represented by 5 tables, each of which holds different data types. These

data types include character string, integer, float, date and raw (bitmaps and bit streams).

Table 9-2 describes the definitions for all of these tables. Note that the id value at the

end of the table name is the ID of the corresponding OMM organization:
OMM_Char_id

Column Name Data Type Column Description
Member ID Integer The unique member identifier.
Attribute ID Integer The attribute identifier.
Attribute Value Varchar2 The attribute value as character string.

OMM_Int_id

Column Name Data Type Column Description
Member ID Integer The unique member identifier.
Attribute ID Integer The attribute identifier.
Attribute Value Integer The attribute value as an integer.

OMM_Float_id

Column Name Data Type Column Description
Member ID Integer The unique member identifier.
Attribute ID Integer The attribute identifier.
Attribute Value Decimal(2) The attribute value as a decimal.

OMM_Date_id

Column Name Data Type Column Description
Member ID Integer The unique member identifier.
Attribute ID Integer The attribute identifier.
Attribute Value Date The attribute value as an Oracle date data type.

 155

OMM_Raw_id

Column Name Data Type Column Description
Member ID Integer The unique member identifier.
Attribute ID Integer The attribute identifier.
Attribute Value Long Raw The attribute value in long raw type (support up to

2GB of data). This is used to store images,
documents and other bit streams.

Table 9-2 The Database Schema Used in OMM to Store an OMM Organization

We note that Varchar2, Decimal(2) and Long Raw are data types encountered in Oracle

9i. With this approach, all attribute values that are of the same data type will be stored in

the same table. For instance, the Title and Home_Address attributes (see Table 4-7 in

Chapter 4) of an employee are both of type character, and they are both stored in the

same OMM_Char_id table.

This database design is adopted because it simplifies the task of mapping the above

schema to any existing relational database schema. The primary job of the database

designer is reduced simply to identifying the mapping between the OMM organizational

attributes and the legacy database table column names. Once this mapping has been

completed, the mapping agent applications are run to pull legacy data from existing

databases into sets of 5 tables that form the OMM database. These mapping agent

applications split up the incoming data according to the data types of the attributes.

They are described in the next section.

9.4.2 Mapping Agent Applications

The mapping agent applications are Java programs written to pull legacy data from some

existing data stores into the OMM repository. Our current Prototype System uses Oracle

DBMS as the OMM repository, but the implementation can indeed support any JDBC-

compliant RDBMS. On the other hand, existing enterprise data may be stored in any

RDBMS, such as Oracle, Sybase, Informix or SQL Server. The existing enterprise data

may also be corporate infrastructure data stored in other types of data management

systems such as the LDAP Server. Furthermore, there might be enterprise resource

information that exists as unstructured data, such as spreadsheets, Web pages, PDF files,

and other types of non-RDBMS data. In our OMM implementation experiments, we

have written template applications to pull data from RDBMS through a JDBC interface,

as well as from an LDAP directory server through the LDAP API. In the case of LDAP

 156

directories, the mapping agent application is written in Java and calls the Java LDAP

API to accomplish the job.

Figure 9-5 shows a mapping agent application and its input and output:

Mapping Agent ApplicationExisting
Database

� Map existing enterprise
data to OMM
organizations. Original
data may be scattered in
different tables.

� Using JDBC or
LDAP standard, a
mapping agent
application retrieves
information from the
existing database.

�
sta
ag
do
int
ac

Figure 9-5 An OMM Mapping Agent Appli

Note that when using the mapping agent application program

legacy database to the OMM data store, we do not have a s

also the legacy database applications to some OMM met

methods will have to be developed to assume the function

applications perform on the legacy database.

9.5 Mapping the OMM Database Schema to Oth

Schemas

The OMM information model encompasses aspects of the ob

discussed in Chapter 4. Enterprise resources in OMM are

which maps into 5 tables in the backend database (see

organization designer has identified and modelled a type of

employee, department, project, or product, s/he must determi

resource type is currently held in existing data stores. If so,

such data into OMM, rather than requiring users to re-enter su

regardless of how disconnected the enterprise resources may

resource information will exist in one form or another. In fa

will probably exist in one or more RDBMS. For this reaso
.

.

.

U

e
w
o
c .

c

h

e

n

c

n

sing JDBC
ndard, a mapping
nt application
nloads information
 OMM tables
ording to data types
ation

s to download data from a

imple approach to migrate

ods. Rather, new OMM

s that the legacy database

er Relational Database

ject-oriented data model as

stored as objects, each of

Section 9-4). Once the

nterprise resource, such as

e whether the data for that

it is desirable to download

ch data. As a general rule,

be, most of the underlying

t, most of the desired data

, it is important to have a

 157

methodology to map an existing RDBMS schema to the OMM generic database schema

(as presented in Section 9.4.1).

An example will help in describing the methodology we use in performing this mapping.

Assume the data of a resource type, say R, is stored in N relational tables, T1, T2, …, TN,

each of which contains some or all of the column names, Ci1, Ci2, …, Cik, that are of

interest to OMM in terms of constructing the attributes of R, namely A1, A2, …, Ak.

Each table column name, Cij, corresponds to one and only one attribute definition, Ai, in

the context of OMM. In other words, there is a one-to-one mapping between certain

columns in Ti, i = 1, 2, …, N, and the defined attributes of R. Finally, as each of the

attributes of R is stored in one of the 5 OMM tables based on data type, the mapping of

Cij to Ai results in downloading the data of Cij into the OMM table that stores the values

of attribute Ai.

Figure 9-6 shows the mapping of RDBMS table columns into OMM attributes:

 Table Ti OMM Resource Type R OMM Tables

Ci1,
Ci2,
…,
Cij,
…,
Cik

A1,
A2,
A3,
…,
Ak

Step 3

Step 2Step 1

Step 1: Identify column
names in RDBMS tables,
each of which corresponds
to one attribute in R.

Step 2: Identify the OMM
table which stores the
values of attribute Ak.

Step 3: Map the column, Cij,
corresponding to Ak into the
OMM table. Run the
mapping agent program to
download data.

Figure 9-6 Mapping RDBMS Column Names to OMM Attributes

9.6 Mapping OMM Objects to X.500 Directory Objects

The directory service is one of the most fundamental components in a distributed

networking environment. Directories are specialized databases designed to hold network

and organization information for quick lookups. Through such services, human users

and applications are able to efficiently locate desired information.

 158

X.500, as defined by the ISO and the CCITT in the 1988 document (CCITT 1988) and

the 1993 extensions (Radicati 1994), specifies a directory service on the logical and

physical levels. The specification includes the Directory Information Tree (DIT)

hierarchy, the directory access and service protocols, and the requirements for

distribution and replication of the directory information and services. Although the

deployment of X.500 is still in progress, many companies have accepted it as a standard

and the preferred model for naming services.

OMM is a generic and abstract model to describe organization resources and their

hierarchical or other arbitrary relationships. It also specifies a protocol for manipulating

and exchanging directory information between services and user agents. OMM is

extensible and dynamic in nature. It is particularly strong in defining flexible

relationships to support collaborative computing environments such as workflow,

publish-and-subscribe, and Internet-type applications.

Although OMM is richer in functional features than X.500 and is designed to support

today’s dynamic business environment, for practical reasons, we cannot ignore the

existing X.500 directories. Rather, we need to consider how to integrate OMM with the

existing installed base of X.500 data stores and leverage the large number of corporate

directories that have been implemented using it as a standard.

This section deals with the mapping between the X.500 directory objects in the DIT and

the conceptual entities in OMM. In Section 9.6.1, we will present the information model

of X.500. In Sections 9.6.2, 9.6.3, and 9.6.4, we will describe the mapping

methodologies from OMM to X.500 and vice versa.

9.6.1 The X.500 Directory Model

The DIT is the logical representation of the information database in X.500. A list of

classes corresponding to different levels of resources in a company hierarchy is defined

in the DIT. (The later X.521 recommendation adds more object classes and attributes for

naming purposes (CCITT 1998).) In this section, we will use an example which deals

with some very basic X.500 objects to illustrate how they are mapped to OMM objects.

The algorithm given, however, is applicable to more complex tree structures. Refer to

Section 9.6.5 for a discussion of the reverse mapping, which goes from OMM objects to

X.500 directory objects. Figure 9-7 shows a sample DIT.

 159

Object Classes
C = Country Name
O = Organization Name
OU = Organization Unit Name
CN = Common Name

Root

CN=BHaba CN=JMcGeeCN=HGrantCN=ELenes CN=SNajai

OU=SalesOU=R&D OU=Marketing

O=Enqueue O=NC Corp O=Oracle

C=HK C=US C=UK

Figure 9-7 A Sample DIT

The sample DIT has 4 levels under the root, namely countries (C), organizations (O),

organization units (OU), and common names (CN). Each of these is an object class in

X.500.

9.6.1.1 Object Classes

In DIT a hierarchy of object classes is defined. In the example shown in Figure 9-7, the

hierarchy is simply: C ⎯ O ⎯ OU ⎯ CN. Expressed in another way, each level

represents an object class. In X.500, each directory entry (a node in the tree) must

belong to an object class. An object class has a name (e.g. Country) and a set of attribute

definitions. A class can be a subclass of another class, in which case it will inherit the

attributes of its superclass.

9.6.1.2 Directory Entries

Each node in the DIT is a directory entry, typically representing a country, a company, a

department, a user, a machine, a network resource, or a group of users. The lower the

tree, the finer the granularity of the entity. Each entry in the DIT has a Relative

Distinguishing Name (RDN). The sequence of RDNs from the root to the directory entry

 160

under consideration represents the object’s unique name within the directory. For

example, US.Oracle.Marketing.HGrant is the unique name for a person.

X.500 incorporates the concept of aliases. Using an alias, which is a directory entry

itself, users can define a short cut to a directory object. A one-way logical pointer is

stored in the alias to quickly find another directory entry. This shortens the potentially

long name given by the complete sequence of RDNs. We note that in X.500 an alias is

only a static link and is in one direction; there is no back pointer from the entry to the

alias. Furthermore, the alias has to be updated manually every time the location of the

entity that it references changes.

9.6.1.3 Directory Entry Attributes

Each directory entry has a number of attributes. These attributes are defined in the

object class to which the directory entry belongs. For example, the object class

organization unit may have 5 attributes: manager, address, phone, fax, and URL. An

attribute has a type and a set of values. The attribute type is used as an identifier of that

attribute within the global name service. X.500 supports attributes with single or

multiple values.

9.6.2 Using OMM Organizations to Model DIT

As described in Chapter 4, OMM has three basic conceptual entities to represent a

corporation; they are the organizations, members, and virtual links. The OMM members

are related to one another through virtual links. OMM members are contained in OMM

organizations and are used to store attribute values.

Using the OMM conceptual entities, we can model a DIT by simply defining an OMM

organization for each level of the DIT except the root. Figure 9-8 shows a DIT modelled

by OMM organizations.

 161

Mx = Member of Organization X Root

MCN=JMcGeeMCN=BHaba MCN=HGrantMCN=SNajaiMCN=ELenes

MOU=SalesMOU=MarketingMOU=R&D

MO=Enqueue MO=NC Corp MO=Oracle

MC=HK MC=UKMC=US

Figure 9-8 Sample Corporation Tree Modelled by OMM

9.6.3 Using OMM Objects to Implement X.500 Objects

Once the OMM organizations are created to represent the DIT, we can start converting

each of the X.500 objects into an OMM object. To map X.500 objects into OMM

objects, we have to take care of the object classes, the attribute definitions, the directory

entries, and the naming hierarchy. The following rules describe the mapping procedure:

 Rule 1: Replace each object class in the X.500 DIT by an OMM organization as

described in Section 9.6.2.

 Rule 2: For each attribute defined in the attribute set of the X.500 object class, add a

corresponding attribute definition to the OMM member class.

 Rule 3: Replace each directory entry (node) in the X.500 DIT with a member object in

OMM. Note that the directory entries must belong to an object class in X.500;

similarly, the corresponding OMM member object must also belong to an OMM

organization that is created according to rule 1.

 Rule 4: For every connection between two levels in the DIT hierarchy, define a virtual

link between the parent and child objects in the corresponding OMM structure.

This may require adding attributes to the OMM organization in order to construct

the virtual link expression.

 Rule 5: For every OMM member object except the root, add a parent attribute to store

the name of the parent of the directory entry that this member object represents.

Table 9-3 The Rules for Mapping X.500 Objects to OMM Objects

 162

Using the example in Figure 9-8, let us examine how to apply these rules:

Rule Apply the Rules to the Scenario in Figure 9-8

Rule 1 Create 4 OMM organizations to represent each of the 4 levels in the DIT: Country,
Organization, Organization Unit, and Common Name, respectively.

Rule 2 Add attributes to each of the 4 OMM organizations based on the class definition of
each level in DIT. For instance, the OU class contains attributes: manager, address,
phone, fax, and URL. Define these same attributes in “Organization Unit” in OMM.

Rule 3 Now, for each X.500 object in the DIT, replace it by defining an OMM member object.
Since the attributes representing the X.500 object are the same as those for the
OMM member object, there is a one-to-one mapping of the attribute values.

Rule 4 Define virtual links to connect member objects in each OMM organization to the
member objects in the next OMM organization in order to reproduce the hierarchy
defined by the DIT. For example, between the Organization and Organization Unit, a
virtual link is defined to represent how member objects at the Organization Unit level
are connected to member objects in the Organization superclass. To define this
virtual link, we may need to define a new attribute in one or more OMM
organizations. For instance, we will need to add an attribute “organization_name” in
the Organization Unit class such that a rule can be defined for the virtual link
between this class and its superclass.

Rule 5 To each OMM organization, add an attribute called “parent”. The value of this
attribute in each of the OMM member objects will record the name of its immediate
parent in the DIT. Note that in the simplest scenarios, Rule 4 can be satisfied by
defining a virtual link using the attribute “parent”.

Table 9-4 Examples for Applying Rules to Map X.500 to OMM

Applying these five rules to an X.500 DIT and directory information database will result

in a corresponding OMM organizational database. These rules represent a simple

mapping design. Users can apply a more complex mapping design whereby a single

X.500 object class may be mapped to multiple OMM organizations. This adds flexibility

for directory migration and increases autonomy in cases where a branch of a company

has decided to change its own information structure.

Since different subtrees within a DIT can be partitioned into different Directory Service

Agents (DSAs) located in different physical locations, when mapping an X.500 object to

a corresponding OMM object, one may want to take this physical partitioning into

consideration. In such cases, even if directory entries belong to the same object class, if

they are partitioned into separate DSAs, we can create separate OMM organizations to

hold the directory entries. This provides a flexible way to not only map the X.500

objects on a logical level, but it also enables mapping based on physical partitioning.

Figure 9-9 shows an example of DSA partitioning and the corresponding OMM

organizations mapping.

 163

Root

MC
1=US MC

2=UK MC
3=HK

MO
1=OracleMO

1=NC MO
2=Enqueue

MOU
1=R&D MOU

1=Marketing MOU
2=Sales

MCN
1=ELenes MCN

1=SNaja MCN
1=HGrant MCN

2=BHaba MCN
2=JMcGee

Mx
n = Member of Organization Xn

Figure 9-9 Partitioned OMM Organizations

Aliases in X.500 can be represented by virtual links in OMM. Depending on the design

of the X.500 DIT structure rules, an alias may point to the same object class to which it

belongs, or it may point to another object class. In either case we can map the object

class to an OMM organization by following the method indicated in Section 9.6.3. After

that, an alias entry is replaced by an OMM member object. A virtual link is then defined

between this OMM member object and the directory entry that it is referencing. Since

X.500 aliases are static, this virtual link will also be static and has to be cleaned up

manually when the referenced entry is deleted or moved, just as it is in the case of X.500.

9.6.4 Using X.500 to Implement OMM Conceptual Entities

The alias is the only method that X.500 uses to create relationships. As such, X.500 is

quite weak in describing relationships between resource objects. Dynamic relationships

implemented by virtual links in OMM cannot be represented by using X.500 objects. As

a result, virtual links will not be considered when mapping from OMM to X.500.

Although virtual links in OMM cannot be mapped to X.500, OMM organizations and

OMM member objects, as well as the attributes thereof, can be mapped simply and

efficiently. Since OMM organizations and OMM members are able to represent all

resource types, we can define OMM organizations to represent groups within a

company. In the following example, a group is a virtual entity which holds together

 164

multiple employees from across the company. Although the group concept is very

commonly used for constructing project teams in many companies, X.500 does not have

a way to implement groups. In OMM, a group is represented handily by an OMM

organization, with virtual links connecting the group to all its members. However,

because it is unable to represent virtual links, as discussed above, X.500 is not able to

deal with OMM member objects that are used to represent groups.

Figure 9-10 shows how groups and relationships are used in OMM to model the previous

example.

MOU=R&D MOU=Marketing MOU=Sales

MCN=ELenes MCN=SNajai MCN=HGrant MCN=BHaba

G=DS Task Force

MCN=JMcGee

MO=Enqueue MO=NC Corp MO=Oracle

MC=HK

Root

MC=US MC=UK

Mx = Member of Organization X
G = Group

Relationship
Virtual link for

Figure 9-10 A Sample Corporation with Groups and Relationships Modelled by OMM

The mapping methodology to bring an OMM system into X.500 format can be defined

almost as a reverse of the rules outlined in Section 9.6.3.

 165

 Rule 1: Replace each OMM organization and its OMM member class with an object

class in X.500.

 Rule 2: For each attribute defined in an OMM member class, add a corresponding

attribute definition to the X.500 object class.

 Rule 3: Replace each OMM member object with a directory entry in X.500.

 Rule 4: For each virtual link defined in OMM, construct multiple static hierarchical

relationships in X.500, or simply drop it.

Table 9-5 The Rules for Mapping OMM Conceptual Entities to X.500 Objects

As discussed earlier, when organizational information changes, relationships between

organization objects may change also. OMM, with its dynamic virtual links, is designed

to reflect such a changing environment. Under the X.500 implementation, on the other

hand, information managers must manually update the system with these changes so as

to reflect the current state of the organization.

Although groups cannot be easily modelled by X.500, one can always create an X.500

directory entry with a fixed number of positions (attributes) in it. When an organization

object (e.g. a person) is assigned to take a position, we simply fill the corresponding

attribute with the distinguishing name. Furthermore, since the attribute definition cannot

be changed dynamically in X.500, once the group is created, users can no longer add or

delete positions.

9.6.5 Other Considerations

The X.521 extension recommends the locality object class be added to the DIT. It also

adds a number of common names to capture devices, residential persons, organization

persons, and roles. All of these are represented as directory entries in the DIT. As a

result of this, the mapping rules described in Section 9.6.3 will still apply when mapping

an X.521 DIT to an OMM structure.

As shown in Sections 9.6.3 and 9.6.4, the mapping from X.500 to OMM can go both

ways. However, from a functional point of view, OMM is a superset of X.500. Mapping

from OMM to X.500 will mean losing some of the OMM functional features,

particularly in the areas of capturing dynamic relationships and link management. One

 166

example of the type of functionality that will be lost is the seemingly simple task of

determining how many groups a member is associated with. In an OMM system, this is a

simple task. Under X.500, finding the answer to this question is very difficult, or even at

times impossible.

Another important difference between the two systems lies in the area of role resolution.

Roles in X.500 are simply represented by attribute values, while OMM supports dynamic

role definition and resolution, which is required in workflow and other groupware.

It should be noted that both OMM and X.500 support single and multiple value

attributes. This is an important feature that allows organizational resources to have a

number of titles or to allow the capture of any information that may consist of multiple

values.

The mapping methodology described in this section has no performance degradation

implications. Performance of the directory services is implementation-dependent. From

the architecture point of view, there is no clear difference in performance between X.500

and OMM.

9.7 Application of the OMM Prototype System in Industry

We have applied OMM to support two separate corporations in their businesses. In

Chapter 5, we described the OMM/P&S prototype, which is being used by InsurePoint to

support their e-commerce applications. In addition, we have applied OMM to perform

enterprise modelling for Hitachi America. In this section, we will discuss details of

applying OMM to Hitachi America, in order to model its organizations and the

relationships between its employees and the various business units.

9.7.1 An OMM Prototype System to Support Enterprise Modelling in Hitachi,

America

This prototype application focuses on modelling and capturing information regarding the

divisions, departments and employees of the company. By defining some business

policies over these classes, hundreds of graphical models are generated dynamically,

representing the connections between divisions, departments and employees. Here is the

breakdown of the estimated number of objects in the pilot database.

 167

 COMPANY REGION DIVISION DEPARTMENT EMPLOYEE
Total No. of
objects 3 5 10 250 6000

Table 9-6 Estimated Number of Resource Objects in Hitachi America

This modelling effort may eventually expand to cover other types of objects such as

services, machines, products, subsidiaries, applications, projects, and many others.

9.7.2 OMM Organization Definitions

We define five OMM organizations to represent the five resource types shown in Table

9-6. Based on the OMM model, a type-level relationship can be defined between OMM

organizations. Applying the notation of Chapter 4, the relationships between the OMM

organizations are shown in Figure 9-11 (cf. Figures 4-1 and 4-5).

 COMPANY

REGION DIVISION

DEPARTMENT

connects to

EMPLOYEE

Figure 9-11 OMM Organizations Defined for Hitachi America

OMM organizations are defined to map to the various resource types. The

organizational relationships provide users with the context of how a resource type is

related to other resource types in the enterprise. Please refer to Section 4.3.2 for a

detailed discussion of type-level relationships between OMM organizations.

Tables 9-7 to 9-10 show all the OMM organizations and the associated attribute

definitions. Note that all organizations implicitly contain the name and the identifier

attributes, which are OMM system-defined attributes (see Figure 4-7). The asterisk (*)

indicates that the attribute is a required field. Again, “constraint” stands for the

attribute’s value constraint as discussed in Section 4.4.1.

 168

Attribute Name Data Type Constraint Description
Region String many-to-one The region name.
Manager String many-to-one The manager of this company.
Address String many-to-one Street address.
City String many-to-one City.
State String many-to-one State.
Zip String many-to-one Postal zip code.
Country String many-to-one Country.

Table 9-7 Attribute Definition of the COMPANY Organization

Attribute Name Data Type Constraint Description
Manager String many-to-one Manager of the region.

Table 9-8 Attribute Definition of the REGION Organization

Attribute Name Data Type Constraint Description
Company* String many-to-one Company name that this division belongs

to.
Manager* String many-to-one The manager of this division.
URL String many-to-one The URL of the division.

Table 9-9 Attribute Definition of the DIVISION Organization

Attribute Name Data Type Constraint Description
DivisionName* String many-to-one Representing the division this department

belongs to.
ParentDepartment String many-to-one Support for nested departmental structure.
Manager String many-to-one The manager of this department.

Table 9-10 Attribute Definition of the DEPARTMENT Organization

Attribute Name Data Type Constraint Description
EmpolyeeNo* String one-to-one Employee number.
LastName* String many-to-one Last name.
FirstName* String many-to-one First name.
MiddleInitial String many-to-one Middle initial.
EmpType String many-to-one Employee type.
Title String many-to-many Title.
DivisionName String many-to-one The division this person belongs to.
DepartmentName String many-to-one The department this person belongs to.
OtherDepts String many-to-many Matrix reporting.
HireDate Date many-to-one The date this person is hired.
Type String many-to-one Representing the employment type.
WorkPhone String many-to-one Office telephone number.
HomePhone String many-to-one Home telephone number.
Fax String many-to-one Fax number.
Email* String one-to-one The electronic mail address.
Address String many-to-one Home street address.
City String many-to-one Home city.
State String many-to-one Home state.
Zip String many-to-one Home zip.
Picture Bitmap one-to-one The picture of this person.
Manager String many-to-one The immediate manager of this person.
Supervisor String many-to-many Matrix reporting.
Skill String many-to-many Job-related skills.

Table 9-11 Attribute Definition of the EMPLOYEE Organization

 169

9.7.3 Organizational Relationship Modelling

Organizational rules are defined to relate the different resources together. Consequently,

dynamic graphical models can be created on top of these organizational rules.

Six organizational rules are defined in this project, representing the relationships

between the different types of resources.

Virtual Link
Name

Virtual Link Expression
 (Organization Scope)

Description

com_reg Region == $owner.om_name
 (COMPANY)

Relationship between the region
and the companies.

com_div Company == $owner.om_name
 (DIVISION)

Relationship between the company
and the divisions.

div_subdept DivisionName == $owner.om_name
 (DEPARTMENT)

Relationship between the division
and the departments.

dept_mem DepartmentName == $owner.om_name
 (EMPLOYEE)

Define who (people) are working in
a department.

dept_subdept ParentDepartment == $owner.om_name
 (DEPARTMENT)

Define the nested departmental
structure.

emp_mgr Manager == $owner.om_name
 (EMPLOYEE)

Define the supervisor-subordinate
relationship between employees.

Table 9-12 OMM Virtual Links Representing Relationships in Hitachi America

We refer readers to Chapter 5 for a detailed discussion of the Virtual Link syntax. These

six organizational rules represent thousands of relationship instances which exist

between the companies, regions, divisions, departments and employees within Hitachi

America. Using our graphical tool, we are able to generate thousands of organizational

charts to represent the relationships between the various resources. These charts change

dynamically when the underlying organizational information changes.

In this case study, OMM is applied to model five resource types in the enterprise. Using

the OMM organizations, we define attributes to characterize each of these resource

types, and the relationships that exist between them. OMM members are used to

represent instances of resources in each type. Finally, virtual links are used to define the

instance-level relationships between the resources.

9.7.4 Using Virtual Links to Support Workflow

A simple workflow application is developed in this OM environment to allow employees

to request for vacations and seek approval from their corresponding managers. Using

 170

Petri-Net like notation as in Figure 3-2, this simple workflow is represented in the

following figure.

reject

process_
request

notify

approve

manager_
approval

submit_
vacation_
request

OR split

join

Figure 9-12 Vacation Request Process

In this workflow, the process_request, approve, reject and notify steps are automated

steps that can be executed by software programs without any human intervention. The

initial step, submit_vacation_request, can be executed by any resource in the

EMPLOYEE organization. Once an employee initiated a particular vacation request

process instance, only his or her manager is authorized to execute the manager_approval

step. This task authorization is accomplished by resolving the virtual link emp_mgr,

which is defined in Table 9-12.

9.8 Conclusion

In this chapter, we discussed our design and implementation experience gained while

implementing the OMM Prototype System. This prototype is a Java software

application, which incorporates all the salient design features of the OMM model. It

allows users to define and manipulate organizational resources representing the real

entities of their enterprise. We discussed the software architecture of the OMM

Prototype System. Applications, such as WFMS, can be layered on top of OMM to

perform workflow-related functions amongst the enterprise resources. These

applications interact with OMM by calling the OMM API, a collection of more than 50

Java methods; these are listed in Appendix A.

We also implemented a simple graphical tool to allow us to view and manipulate the

resource object information. This tool provides users with a graphical means to review

the dynamic relationships between objects.

We also discussed the methodology of integrating existing data stores into the OMM

data store.

 171

In Section 9.5, we presented the steps for mapping RDBMS records into OMM. OMM

has a database design that is particularly easy to map into from any relational database

design. Each OMM organization is represented by 5 database tables, each of which

holds one of the different data types that OMM currently supports. These data types are

character string, integer, float, date and bit streams (for holding such things as voice and

images). Column names in the relational tables of existing databases can be mapped

directly into the OMM tables based on their data types.

We discussed the mappings between X.500 and OMM in Section 9.6. From the

functional point of view, OMM is a superset of X.500. OMM can be used to represent

all information contained in an X.500 system. However, when we try to do the reverse,

that is when we implement the OMM conceptual entities with X.500, the dynamic

relationships in the OMM environment are lost. In addition, the dynamic groups or

project teams concept, which can be implemented easily in OMM, are difficult or even

impossible to replicate in X.500.

In the course of our research, we have used the OMM Prototype System to perform

organization modelling for Hitachi America. Hitachi America is an engineering

company with 5 regions, 10 divisions containing about 6,000 employees and over 250

departments. We defined 6 organizational rules, or virtual links, to represent the

instance-level dynamic relationships between the operating companies, regions,

divisions, departments and employees. This attests to the versatility and flexibility of

OMM.

 172

CHAPTER 10 Concluding Remarks and Further Research

The work in this thesis has been motivated by the need for a formal model to describe

enterprise resources and the way that they are shared and used across the enterprise.

This need has become more apparent as system integrators have attempted to provide

computing solutions that allow users to work collaboratively over the Internet. This

thesis has proposed a modelling methodology and an organization reference model,

OMM, to be used for modelling different types of enterprise resources. It also provides a

rule-based relationship model to define the interactions and relationships between these

resources.

We have discussed the application of our work to role resolution problems in WFMS.

The dynamic role resolution features of OMM allow a WFMS to flexibly assign work

tasks to authorized users based on the roles they play under different business contexts,

even in the case where the company’s personnel hierarchy and business conditions are

constantly changing.

The thesis has described the OMM organization modelling methodology and shown how

to apply it to support the various approaches and techniques used in the different phases

of organization reengineering.

One feature of OMM is that it allows employees of all levels to maintain the

organizational resource information for which they are responsible (such as their

corporate directory information). This feature allows OMM-based data to be used in the

continuous cycle of organization reengineering. OMM accomplishes this by providing

an API and a GUI application that allows users to view and to update the information in

OMM over the Web.

Since OMM supports multi-user access, it must address concerns of concurrency control.

The thesis discusses the issues of concurrency and deadlock in the context of OMM, and

details our solutions to these problems.

We have discussed our implementation experience with the OMM Prototype System.

This prototype allows us to create and manage the various objects in the OMM

environment, including organizations, members, attributes, roles and virtual links. Using

 173

the OMM software, we have modelled Hitachi America. In addition, we have developed

a prototype, OMM/P&S, a publish-and-subscribe software based on the OMM model.

This prototype is used by InsurePoint Company to model and facilitate marketing

interactions between the company and its customers.

A practical challenge that must be addressed when deploying OMM is the downloading

of existing organizational information into the OMM data store. To meet this challenge,

we have defined a relational database schema to store the OMM objects representing the

various enterprise resources. In the thesis, we have shown how our methodology maps

an RDBMS schema and X.500 directory into an OMM schema. This allows us to

quickly migrate existing databases into the OMM data store.

10.1 Organization Modelling Principles

In Chapter 2, we discussed four general modelling principles suggested by Ross and

Schoman (Ross and Schoman 1977), and four additional principles suggested by

Vernadat (Vernadat 1996) that are particular to organization modelling. In this section,

we review the OMM model with respect to these principles.

According to Ross and Schoman (Ross and Schoman 1977), any modelling technique is

characterized by four principles:

� The purpose of the model: The OMM model has a clear purpose in mind, and that is

to support organization modellers in the performance of organization modelling,

focusing specifically in the areas of defining enterprise resources and their

relationships.

� The scope of the model: In Chapter 2, we point out that the scope of organization

modelling covers the what, how, when, and who. The OMM model concerns mainly

the what and who. OMM has a generic reference model that allows the inclusion of

all enterprise resources into its organization model. The OMM model includes strong

role resolution capabilities, applicable mainly to human resources, that allow the

system to dynamically define the roles that resources play in different business

contexts. With our approach, we decouple the process model, which focuses on the

how and when aspects of the enterprise, from the organization model, which focuses

 174

on the what and who. We assume that the process model, which is concerned with

the functional details of the various business processes, as well as the business

policies governing the conditions under which process steps are initiated, is

adequately handled by any of a number of existing WFMS.

� The viewpoint of the model: OMM focuses on modelling organizations from the

perspective of management and decision-makers. The hands-on aspect of the

organization, which relates to the operational details of the organization, is left out in

our model. We rely on other workflow models to describe the execution details of

the enterprise. As a result of this, OMM has an open architecture which allows it to

integrate with other workflow system models. Once the organization model is

completed, workflow designers can define business processes on top of OMM.

� The detailing level of the model: This defines the level of precision or granularity of

the model regarding the reality being modelled. With the object-oriented approach

and the horizontal and vertical partitioning techniques, OMM allows the organization

modeller to define the different aspects of the enterprise to any desired granularity.

Furthermore, Vernadat suggests four additional principles to be considered particularly

for organization modelling (Vernadat 1996):

� Principle of modularity: OMM is modular in nature. It is made up of some basic

building block entities, namely organizations, members, and virtual links. An

organization is a container which holds enterprise resources of the same type. Each

resource object in an organization is termed a member. Members are related to one

another through virtual links. With this generic model, OMM can be applied to the

modelling of complex enterprise structures.

� Principle of model genericity: With the object-oriented approach of OMM, it is

relatively easy to use the model to represent different aspects of the enterprise. We

can define superclasses to group together similar resource types, and use subclasses

to define particular classes of resources.

� Principle of reusability: Because it is an object-oriented system, OMM member

classes can be reused and easily modified for different types of resources. Our

approach of abstracting individual relationships into relationship types allows us to

 175

define similar relationships across the enterprise without hardwiring them one by

one. Reusability in OMM actually extends down to the member attribute level ⎯

member attribute definitions can be copied from one organization and associated

with another, thus eliminating the need to define every attribute for every

organization.

� Principle of process and resource decoupling: In order to preserve operational

flexibility it is important to separately consider the actions that are being performed

(the business processes) and the agents performing them (the resources). OMM

accomplishes this by decoupling the organization model from the process model.

In this thesis, we have shown that all these principles, which are critical for supporting a

flexible and robust OR cycle, are fulfilled in OMM.

10.2 Review of Aims and Accomplishments

The thesis has presented a conceptual model and a methodology for organization

modelling. From the standpoint of organization reengineering, our goal is that the

proposed model will aid designers to achieve successful organization modelling. The

creation of the organization model is, of course, a critical step that must be completed

before it can be used as the foundation on which the WFMS is built. In Chapter 2, we

present the four attributes, which constitute the criteria of success in OR, namely

scalability, extensibility, flexibility, and performance.

10.2.1 Scalability

In the thesis, we discussed how we designed OMM on top of an RDBMS. Current

relational database technology can easily manage up to multi-tera bytes of data.

Assuming, for the purposes of discussion, that we are managing 2 million objects, each

of which has 200 KB of associated data, we will then be dealing with 2 GB of data.

With today’s storage and database technology, this is not a challenge at all. Therefore,

scalability in this dimension is very manageable. In addition, our database schema is

unique in that if an object does not have a value in a certain attribute, it will not take up

any space in the database file. This approach has significant space saving advantages as

 176

compared to the standard relational database approach of defining tables with NULL

values for empty fields.

More importantly, OMM is able to abstract relationships between millions of objects into

a handful of rules. In OMM, each object may have more than one relationship with

another object. However, if we assume only one relationship between any two objects,

there can be up to O(N2) relationships for N objects. Instead of recording the huge

number of static relationships required by other competitor systems, OMM only records

the rules representing the different types of relationships. By defining one relationship

type, such as the supervisor-and-subordinate relationship type, OMM is able to represent

thousands of relationship instances of this type between resources.

10.2.2 Extensibility

The object-oriented approach of OMM makes it a very extensible system. To add a new

type of enterprise resource to the organization model, we simply create a new OMM

organization and define the corresponding attributes to reflect the resource type.

Moreover, the rule-based relationship model also contributes to OMM’s extensibility.

To model a new type of relationship within the enterprise, we do not have to hardwire

every link between all the resources; rather, we simply define an OMM virtual link

which is a computable expression over the OMM member attributes.

10.2.3 Flexibility

With OMM, the organization modeller can partition the enterprise horizontally and

vertically. This partitioning gives rise to a number of OMM organizations representing

different resource types. Partitioning also allows users to group similar resources based

on their functions, locations, or other management purposes. OMM organizations can

also be merged together easily. This allows the organization modeller to easily bring

multiple business units together, which is a common activity in company restructuring

and in mergers-and-acquisitions.

10.2.4 Performance

Once we have used OMM to create a specific organization model for an enterprise,

employees may frequently access the model and the resource information that is stored

 177

in OMM. The performance of the OMM API is critical if we expect users and the

WFMS to be relying on it. The Read and Write interfaces are particularly important

since they will be accessed most frequently. Table 10-1 shows the performance of

various operations in milliseconds:

Object Type Operation Type Elapse Time (ms)
connect 853.09 Session
disconnect 2.98
create 3700.00
delete 2086.88

Organization

read 23.76
create 85.09
delete 34.50
read 62.00

Member

write 149.53
resolve role 40.95 Virtual Link
resolve relationship 41.56

Table 10-1 Elapsed Time of the OMM API Categorized by Object and Operation Type

The performance test from which these figures were obtained was run on an Intel PC

with two Pentium III 400 MHz processors and 256 MB RAM, running Windows NT 4.0.

A “proof of concept” of OMM is provided by the Prototype System which was applied in

the real environments of Hitachi America and Insure Point. Further testing as to how

OMM scales up would be desirable before its overall potential is critically assessed and

fully ascertained.

10.3 Further Work

There are several future areas of research that stem from this thesis. In defining our

conceptual model and software architecture, we did not apply any modelling tools, such

as the UML, to model our objects and components. UML is a standardized language for

specifying, visualizing, constructing, and documenting the artifacts of software systems,

as well as for modelling business processes and other non-software systems. The UML

represents a collection of some of the best engineering practices in the modelling of large

and complex systems (Booch 1999). UML could potentially be used to model the

conceptional entities and software components of OMM.

In the Prototype System created for this thesis, we assumed an enterprise with only one

domain, and with all the enterprise resources managed by one OMM server. In reality, a

 178

large enterprise would have its organizational database distributed in different regions.

Each region would have the autonomy to define and manage its own resources. It is

therefore important for us to develop a distributed architecture to allow multiple OMM

servers to exchange information with one another. The fact that this extended

organization model and the underlying information are distributed should be transparent

to users accessing information in the OMM environment.

The concept of distribution can be further expanded to support distributed OMM

organizations. The goal here is to create an OMM organization that can be distributed

over two or more domains and managed by multiple OMM servers. This would give

users even more flexibility in global management. It would allow, for instance, all the

machines of a company to be captured in one single distributed OMM organization, even

though they were indeed located in different regions of the world and managed by

different branches of the company. Likewise, an OMM member object can also be

distributed, meaning that its attributes can be resident in different OMM domains.

Several directions for further work stem from the discussion of concurrency control in

Chapter 8. The first area relates to garbage collection in pre-claimed locks. The use of a

timeout algorithm on pre-claimed locks is necessary to ensure garbage collection in the

case of application crashes. Timeout mechanisms also reduce performance bottlenecks

due to convoys. However, since we are dealing with interactive users accessing OMM,

once we start using timeouts on locks, there is the possibility that an active user’s work

will be timed out and rolled back. This may give rise to usability issues. Another future

area of research also concerns pre-claimed locks: our current implementation only

performs authorization checking when users attempt to read or update data. However,

authorization checks should also be performed when users explicitly request locks.

Thus far in our modelling of dynamic relationships, we have defined relationships

between OMM member objects. The model would be more powerful if we were to

expand virtual links to cover relationships between a member and an organization, or

even between two OMM organizations. When an OMM organization is part of a

relationship, all member objects within that organization are involved in the relationship.

For instance, if Tom Moore is a supervisor of an OMM organization, then it is assumed

that he supervises all resources within that organization.

 179

In the thesis we have compared OMM with the X.500 directory. One noticeable

weakness of X.500 is in its inability to deal with dynamic relationships. In principle, it is

possible to implement the virtual link concept of OMM as an extension to the X.500

directory. This would greatly enhance the X.500 directory service and would

immediately benefit the large X.500 installed base in today’s world.

 180

Appendix A: JavaDoc Listing of the OMM API

The OMM API is categorized by the OMM object classes, namely the organization,

member and virtual link. The corresponding code name for these classes are

OmsOrganization, OmsMember and OmsVirtualLink. OmsObject is the superclass of

these three classes. The prefix “Oms” in the class name stands for OMM Services.

A. 1 OmsObject

The OmsObject class is the superclass of the three basic entities in OMM, namely

OmsOrganziation, OmsMember and OmsVirtualLink.

 OmsObject
public OmsObject()

Construct an empty OmsObject object

 OmsObject
public OmsObject(int id, String name) throws OmsException

Construct an OmsObject with the given id and name

Parameters:

id - identification number of the object

name - name of the object

Throws: OmsException

thrown if any error is encountered

 181

 getId

public int getId()

Return the id of the object

Returns:

identification number of the object

 setId

public int setId(int id)

Set the id of the object

Parameters:

id - identification number of the object to be set

 getName

public String getName()

Return the name of the object

Returns:

String - name of the object

 setName

public void setName(String name)

Set the name of the object

Parameters:

name - name of the object to be set

 getOrgId

public int getOrgId()

Return the organization id of the object

Returns:

organization Id of the object

 setOrgId

public void setOrgId(int id)

 182

Set the organization id of the object

Parameters:

id - identification number of the organization to be set

 getState

public int getState()

Return the life cycle state of the object

Returns:

Life cycle state of the object

 setState

public void setState(int state)

Set the life cycle state of the object

Parameters:

state – life cycle state of the object to be set

 copy

public void copy(OmsObject toObject) throws OmsException

Copy the member attributes of this OmsObject to the target OmsObject

Parameters:

toObject - the target OmsObject

Throws: OmsException

thrown if any error is encountered

A. 2 OmsOrganization

The OmsOrganization class implements the Organization conceptual entity of OMM. It

allows the user to define and manipulate an organization in OMM

 OmsOrganization
public OmsOrganization()

 183

Construct an empty OmsOrganization object

 OmsOrganization
public OmsOrganization(int orgId) throws OmsNotFoundException,
OmsException

Retrieve an existing OmsOrganization object by the object ID

Parameters:

orgId - the id of the organization to be opened

Throws: OmsNotFoundException

thrown if the organization does not exist

Throws: OmsException

thrown if other types of error are encountered

 OmsOrganization
public OmsOrganization(String orgName) throws OmsNotFoundException,
OmsException

Retrieve an existing OmsOrganization object by name

Parameters:

orgName - the name of the organization to be opened

thrown if other types of error are encountered

Throws: OmsNotFoundException

thrown if the organization does not exist

Throws: OmsException

 getType

public int getType()

 184

Get the organization type. The type can be one of the following values:
OmsObject.OMS_NATIVE_USER_ORG

OmsObject.OMS_NATIVE_NONUSER_ORG

OmsObject.OMS_NON_NATIVE_USER_ORG

Returns:

organization identification number

 setType
public void setType(int orgType)

Set the type attribute of the OmsOrganization object

Parameters:

 orgType - the type of the organization

 getAttribDefList
public OmsObList getAttribDefList()

Get the attribute definition list of the organization

Returns:

list of attribute definitions that is associated to this organization

 create
public int create(String orgName,
 int orgType) throws OmsDupException,
OmsParamException, OmsException

Create a new organization in the domain

Parameters:

orgName - the name of the organization

orgType - the type of the organization

Returns:

organization identification number

 185

Throws: OmsDupException

thrown if the organization name already exists

Throws: OmsParamException

thrown if invalid parameters are found

Throws: OmsException

thrown if other types of error are encountered

 delete
public void delete() throws OmsNotFoundException, OmsException

Delete an existing organization

thrown if the organization object to be deleted is NULL

Throws: OmsNotFoundException

thrown if the organization does not exist

Throws: OmsException

 addAttribute
public void addAttribute(OmsAttribDef attrib,
 int extern,
 String extnName,
 boolean bRequire) throws
OmsNotFoundException, OmsDupException, OmsParamException, OmsException

Add an attribute definition to the organization

Parameters:

attrib - the object containing the definition of the attribute

extern - 0 = default, 1 = support LDAP

extnName – the name of the LDAP attribute name if extern = 1; else = 0

bRequire – true if this is a required attribute, otherwise false

Throws: OmsNotFoundException

 186

thrown if the attribute does not exist

Throws: OmsDupException

thrown if the attribute was already associated with this organization

Throws: OmsParamException

thrown if the attribute parameter is NULL

Throws: OmsException

thrown if other types of error are encountered

 dropAttribute
public void dropAttribute(OmsAttribDef attrib) throws
OmsNotFoundException, OmsParamException, OmsException

Drop an attribute definition from the organization

Parameters:

attrib - the object containing the definition of the attribute

Throws: OmsNotFoundException

thrown if the attribute is not associated with this organization

Throws: OmsParamException

thrown if the attribute parameter is NULL

Throws: OmsException

thrown if other types of error are encountered

 getAttributeList
public OmsObList getAttributeList() throws OmsNotFoundException,
OmsException

Retrieve a list of attribute definitions associated with this organization

Returns:

 187

a list of attribute definition objects

Throws: OmsNotFoundException

thrown if the attribute does not exist

Throws: OmsException

thrown if other types of error are encountered

 getMembers
public OmsObList getMembers(OmsObject memObj,
 int numOfMem,
 boolean inclusive,
 boolean forward) throws OmsParamException,
OmsException

Retrieve the list of member objects of the organization.

Parameters:

memObj - the object containing the member ID. If the object is NULL, the

method will return the name list starting with the smallest member id

numOfMem - the total number of members to get. Note that only name and ID

are returned

inclusive – true if it includes the specified member in the return list; else false

forward - retrieve a list of members with greater or smaller id

Returns:

a list of member objects

Throws: OmsParamException

thrown if invalid parameters are found

Throws: OmsException

thrown if other types of error are encountered

 getMembersByAttrib

 188

public OmsObList getMembersByAttrib(String attName,
 String relOp,
 int attValue) throws
OmsParamException, OmsException

Retrieve the list of member names and id’s of the organization by the integer

attribute name and value

Parameters:

attName - the name of the attribute

relOp - the relational operator: ==, <>, >=, <=, >, <

attValue - the value of the attribute

Returns:

a vector of OmsObject containing the member names and ID’s

Throws: OmsParamException

thrown if invalid parameters are found

Throws: OmsException

thrown if other types of error are encountered

 getMembersByAttrib
public OmsObList getMembersByAttrib(String attName,
 String relOp,
 float attValue) throws
OmsParamException, OmsException

Retrieve the list of member names and id’s of the organization by the float

attribute name and value

Parameters:

attName - the name of the attribute

relOp - the relational operator: ==, <>, >=, <=, >, <

attValue - the value of the attribute

 189

Returns:

a vector of OmsObject containing the member names and ID’s

Throws: OmsParamException

thrown if invalid parameters are found

Throws: OmsException

thrown if other types of error are encountered

 getMembersByDateAttrib
public OmsObList getMembersByDateAttrib(String attName,
 String attValue,
 String relOp) throws
OmsParamException, OmsException

Retrieve the list of member names and ID’s by specifying the date value

Parameters:

attName - the name of the attribute

attValue - the value of the attribute

relOp - the relational operator: ==, <>, >=, <=, >, <

Returns:

a vector of OmsObject containing the member names and ID’s

Throws: OmsParamException

thrown if invalid parameters are found

Throws: OmsException

thrown if other types of error are encountered

 resolveExpression
public OmsObList resolveExpression(String expr) throws OmsException

 190

Resolve all the members who are playing the role that is expressed by the

expression

Parameters:

expr - the computable expression, e.g. CountryOfOrigin == ‘Belgium’

Returns:

the OmsObList list of OmsMember objects that satisfy the expression

Throws: OmsException

thrown if other types of error are encountered

A. 3 OmsMember

The OmsMember class implements the Member conceptual entity of OMM. It provides

methods for users to define and manipulate the member objects in OMM

 OmsMember
public OmsMember()

Construct an empty member object

 OmsMember
public OmsMember(OmsOrganization org,
 String memName) throws OmsParamException,
OmsException

Given an organization object and member name, this constructor retrieves

member information from the database

Parameters:

org - organization object that the member belongs to

memName - the name of the member to be retrieved

Throws: OmsParamException

 191

if the given member name contains illegal characters or name exceeds the

maximum length. The maximum name length is 50. The following characters

are considered illegal characters in name: ~`!@ # $%^&*()+=[] { } |?><, .”

Throws: OmsException

if there is problem retrieving member

 OmsMember
public OmsMember(OmsOrganization org,
 String memName,
 String passwd) throws OmsParamException,
OmsAuthException, OmsException

This constructor checks to see if the name and password match within a

particular organization. If so, it retrieves that member’s information from the

database

Parameters:

org - organization object that the member belongs to

memName - the name of the member to be retrieved

passwd - the password of the member

Throws: OmsParamException

if the given member name contains illegal characters or name exceeds the

maximum length. The maximum name length is 50. The following characters

are considered illegal characters in name: ~`!@ # $%^&*()+=[] { } |?><, .”

Throws: OmsAuthException

if the password does not match

Throws: OmsException

if there is problem retrieving the member

 192

 create
public int create(OmsOrganization org,
 String memName,
 String passwd) throws OmsParamException,
OmsDupException, OmsException

Create a new member in the given organization

Parameters:

org - organization object that the member will belong to

memName - the name of the member to be created

passwd - password of the new member

Returns:

the unique member identification number

Throws: OmsParamException

if the given member name contains illegal characters or name exceeds the

maximum length. The maximum name length is 50. The following characters

are considered illegal characters in name: ~`!@ # $%^&*()+=[] { } |?><, .”

Throws: OmsDupException

if a member with the same name already exists in the organization

Throws: OmsException

if there is a problem creating the member

 delete
public void delete() throws OmsException

Delete the member from the organization

Parameters:

 193

Throws: OmsException

if there is a problem deleting the member

 setPassword
public void setPassword(String oldPass,
 String newPass) throws OmsAuthException,
OmsException

Set new password for the member

Parameters:

oldPass - the old password

newPass - the new password

Throws: OmsAuthException

if the old password does not match

Throws: OmsException

if there is a problem in setting the new password

 setNewName
public void setNewName(String newName) throws OmsAuthException,
OmsException

Set new name for the member

Parameters:

newName - the new member name

Throws: OmsAuthException

if the user does not have authority to update his or her name

Throws: OmsException

if there is a problem in setting the new name

 setAttValue

 194

public void setAttValue() throws OmsAttribValException,
OmsDupException, OmsException

Save the member attribute values to the database. The attribute value list of this

member should now contain the values to be saved. Each element in the list

represents one value (for multiple-valued attributes, multiple elements represent

all the values to be saved). Note that the old values will be deleted from the

database and be replaced by the new values in the list. Each value element must

have the attribute id and value set

Throws: OmsAttribValException

if there is incorrect attribute value such as mismatch of attribute data type

Throws: OmsDupException

if the value of a particular attribute already exists and the particular attribute is

not multi-valued

Throws: OmsException

if there is a problem saving the member attribute values

 getOrgId
public int getOrgId()

Return the organization identification number of the organization that this

member belongs to

Returns:

organization identification number

Overrides:

getOrgId in class OmsObject

 getValList
public OmsObList getValList()

Return a list of attribute values of this member object

 195

Returns:

an instance of OmsObList that contains the attribute values

 getValListByAttrib
public OmsObList getValListByAttrib(String name) throws
OmsNotFoundException

Return a list containing the attribute values of the given attribute name

Parameters:

name – the name of the attribute

Returns:

an instance of OmsObList that contains the attribute values

Throws: OmsNotFoundException

if the given attribute name is not found in the member

 setValListByAttrib
public void setValListByAttrib(String attName,
 OmsObList valList,
 boolean bSave) throws
OmsNotFoundException, OmsException

Replace the member value of a specific attribute

Parameters:

attName - attribute name

valList - value list

bSave – true to save the attribute values to the OMM data store; or false to

only keep the change in memory

Throws: OmsNotFoundException

if the given attribute name is not found in the member

Throws: OmsException

 196

OMS error. The detail error will be returned in the message string

 getOrg
public OmsOrganization getOrg()

Return the OmsOrganization that this member belongs to

Returns:

OmsOrganization object

 getStringValue
public String getStringValue(String attName) throws
OmsNotFoundException, OmsException

Get one attribute value. The attribute must be of type String

Parameters:

attName - attribute name

Returns:

string value

Throws: OmsNotFoundException

if the given attribute name is not found in the member

Throws: OmsException

if the given attribute name is not found in the member

 getIntValue
public int getIntValue(String attName) throws OmsNotFoundException,
OmsException

Get one attribute value. The attribute must be of type integer

Parameters:

attName - attribute name

Returns:

 197

int value

Throws: OmsNotFoundException

if the given attribute name is not found in the member

Throws: OmsException

if the given attribute name is not found in the member

 getDateValue
public Date getDateValue(String attName) throws OmsNotFoundException,
OmsException

Get one attribute value. The attribute must be of type Date

Parameters:

attName - attribute name

Returns:

int value

Throws: OmsNotFoundException

if the given attribute name is not found in the member

Throws: OmsException

if the given attribute name is not found in the member

 setRaw
public void setRaw(String attName,
 byte array[]) throws OmsAttribValException,
OmsException

Set a raw attribute with a byte stream of data

Parameters:

attName - attribute name

byte - a byte array

 198

Throws: OmsAttribValException

if member does not have this attribute

Throws: OmsException

if an OMS internal error is encountered

 getRaw
public byte[] getRaw(String attName) throws OmsException

Return a raw attribute as a byte stream of the file

Parameters:

attName - attribute name

Returns:

a byte array

Throws: OmsException

if an OMS internal error is encountered

 copy

public void copy(OmsObject toObject) throws OmsException

Copy the member attributes of this OmsMember to the target OmsMember

Parameters:

toObject - the target OmsMember object

Throws: OmsException

thrown if any error is encountered

Overrides:

copy in class OmsObject

 move

public void move(int orgId) throws OmsNotFoundException, OmsException

 199

Move this OmsMember from the current organization to another organization.

Those attributes that are associated to both organizations will be retained.

Attributes that are in the source organization but not in the target organization

will be dropped. Attributes that are in the target organization but not in the

source organization will be set to NULL.

Parameters:

orgId – the organization Id of the target organization value

Throws: OmsNotFoundException

if the given organization Id is not found in the system

Throws: OmsException

thrown if any error is encountered

 lock
public int lock(int mode) throws OmsException

Claim Read or Write lock on the member

Parameters:

mode – this can either be OMS_READ or OMS_WRITE lock. OMS_READ

lock can be shared among multiple readers while OMS_WRITE lock is

exclusive.

Returns:

the identification number

Throws: OmsLockConflictException

if there is already a lock on the member that is conflicting with the requesting

lock mode. For instance, requesting an OMS_READ lock on a member that is

currently locked by an OMS_WRITE lock.

Throws: OmsException

 200

if there is a problem in claiming the requested lock on the member

 unlock

public void unlock(int lockId) throws OmsNotFoundException,
OmsException

Release the lock with lock identification equal to lockId.

Parameters:

lockId – the Id of the previously claimed lock

Throws: OmsNotFoundException

if the given lock Id is not found in the system

Throws: OmsException

thrown if any error is encountered in releasing the lock

A. 4 OmsVirtualLink

The OmsVirtualLink class implements the Virtual Link concept in OMM. It provides

methods for users to define and manipulate the Virtual Links in OMM

 OmsVirtualLink
public OmsVirtualLink()

Constructs an empty link object

 OmsVirtualLink
public OmsVirtualLink(String vlinkName) throws OmsParamException,
OmsException

Get an existing OmsVirtualLink object by name

Parameters:

vlinkName - the name of the virtual link

Throws: OmsParamException

 201

if invalid parameters are found

Throws: OmsException

if other types of error are encountered

 isLink
public boolean isLink(OmsMember owner,
 OmsMember member) throws OmsNotFoundException,
OmsException

Query if a virtual link exists from an owner to a member

Parameters:

owner - the instance of OmsMember that is the owner

member - the instance of OmsMember that is the member

Returns:

true or false for the link query

Throws: OmsNotFoundException

if the owner or member is not found

Throws: OmsException

if other types of error are encountered

 resolveLink
public OmsObList resolveLink(OmsMember owner) throws
OmsParamException, OmsException

Resolve the virtual link connections from an owner to the member objects within

the scope list

Parameters:

owner - the OmsMember object of the owner

 202

Returns:

OmsObList list of members that satisfy the link

Throws: OmsParamException

if invalid parameters are found

Throws: OmsException

if other types of error are encountered

 resolveLink
public OmsObList resolveLink(OmsMember owner,
 String attributeName) throws
OmsParamException, OmsException

Resolve the virtual link connections from an owner to the member objects within

the scope list, and retrieve the values of the given attribute for each of these

members

Parameters:

owner - the member object of the owner

attributeName - name of the attribute whose values should be retrieved

Returns:

an instance of OmsObList, a list of OmsMember objects that satisfy link

Throws: OmsParamException

if invalid parameters are found

Throws: OmsException

if other types of error are encountered

 resolveLinkAll
public static OmsObList resolveLinkAll(OmsMember root,
 OmsObList linkList) throws
OmsParamException, OmsException

 203

Resolve all virtual link connections from a root to all the member objects beneath

the root that are within the scope list

Parameters:

root - the member object sitting at the root of a tree

linkList – a list of virtual links with the first element as the virtual link between

level 0 and level 1 of the tree, the second element as the virtual link between

level 1 and level 2, and so on

Returns:

an instance of OmsObList, a list of OmsMember objects that satisfy virtual link and

the parent ID

Throws: OmsParamException

if invalid parameters are found

Throws: OmsException

if other types of error are encountered

 204

Appendix B: Class Diagrams of OMM Conceptual Entities

The OMM Prototype System is implemented in Java. The Java files are organized into

five packages arranged in a directory tree.

� Client: class implementation of the OMM API.

� Common: type and utility classes that are shared by the other OMM classes.

� Db: database classes that call JDBC and LDAP to access the OMM data store.

o DbRel: classes that parse and translate the OmsVirtualLink expressions into

JDBC queries.

� Server: top level class implementation of the OMM Prototype System.

The class diagrams of the OMM classes in each of these packages are shown in Figure B-

1 through Figure B-5. These class diagrams were generated by using the BlueJ

interactive Java environment tool, version 1.3.5 (BlueJ 2003).

Uses
relationship

Inheritance
relationship

Figure B-1 Class Diagram of OMM Classes in the Client Package

 205

 207

Uses
relationship

Inheritance
relationship

Figure B-2 Class Diagram of OMM Classes in the Common Package

 208

Uses
relationship

Figure B-3 Class Diagram of OMM Classes in the Db Package

Uses
relationship

Figure B-4 Class Diagram of OMM Classes in the DbRel Package

 209

Uses
relationship

Figure B-5 Class Diagram of OMM Classes in the Server Package

 210

 211

References

Anderl, R., Wasmer, A. (1997) Integration of product life cycle views on the basis of a

shared conceptual information model. IFIP/JSPE Transactions. Information

Infrastructure Systems for Manufacturing, 47-58. Chapman & Hall, London UK.

Andrew, C., Shropshire, E. (1998) Novell’s NDS Developer’s Guide. Novell Press,

Hartford, CT.

Belli, F., Dreyer, J. (1994) Systems modelling and simulation by means of

predicate/transition nets and logic programming. Proceedings of the 7th International

Conference on Industrial and Engineering Applications of Artificial Intelligence and

Expert Systems, Austin, TX, 465-474.

Berghel, H. (1998) The new push for push technology. NetWorkers, 2(3):28-36.

Berio, G., Di Leva, A., Giolito, P., Vernadat, F. (1995) The M*-OBJECT methodology

for information system design in CIM environments. IEEE Transactions on Systems,

Man, and Cybernetics, 25(1):68-85.

Bernstein, P.A., Hadzilacos, V., Goodman, N. (1987) Concurrency Control and

Recovery in Database Systems. Addison-Wesley, Reading, MA.

BlueJ – The Interactive Java Environment. (2003) http://www.BlueJ.org/

Blum, D., Litwack, D. (1994) The E-Mail Frontier: Emerging Markets and Evolving

Technologies. Addison-Wesley, Menlo Park, CA.

Booch, G. (1999) UML in action. Communications of the ACM, 42(10):26-28.

Burns, M. (1998) Active Directory: A Scalable Directory for the Enterprise? Network

Solutions, February. http://www.nwsolutions.com

Bussler, C. (1994) Enterprise process modeling and enactment in GERAM. Proceedings

of the 3rd International Conference on Automation, Robotics and Computer Vision

(ICARCV ’94), Singapore, 1-8.

http://www.nwsolutions.com/

 212

Bussler, C., Jablonski, S. (1995) Policy resolution for workflow management systems.

Proceedings of the Hawaii International Conference on System Sciences (HICSS-28),

Maui, Hawaii, 45-54.

Bussler, C. (1996) Analysis of the organization modeling capability of workflow

management systems. Proceedings of the PRIISM ’96 Conference, Maui, Hawaii.

CCITT Recommendation X.500 to X.521. (1988) Data Communication Networks,

Directory. Blue Book of ISO/IEC Standards ISO 9594-1 to ISO 9594-7.

Chen, P.P. (1976) The entity-relationship model – towards a unified view of data. ACM

Transactions on Database Systems, 1(1):9-36.

Cheng, E. (2000a) An object-oriented organizational model to support dynamic role-

based access control in electronic commerce. The International Journal of Decision

Support Systems, 29:357-369.

Cheng, E., Loizou, G. (2000b) A publish/subscribe framework: push technology in e-

commerce. Proceedings of the 17th British National Conference on Databases,

Exeter, U.K., 153-170.

Cheng, E. (1999a) An object-oriented organizational model to support dynamic role-

based access control in electronic commerce applications. Proceedings of the 32nd

Hawaii International Conference on System Sciences, Maui, Hawaii.

Cheng, E. (1999b) Publish-and-Subscribe: a framework of push technology for

electronic commerce. Proceedings of the International Computer Science

Conference, Hong Kong, 33-40.

Cheng, E. (1998) A rule-based organization modeling system to support dynamic role

resolution in workflow. Proceedings of the ISCA 11th International Conference,

Chicago, IL, 67-74.

Cheng, E. (1997) The OMM Model. Technical Report of OCT Research Laboratory and

The College of Notre Dame. Belmont, CA.

 213

Cheng, E. (1995) Re-engineering and automating enterprise-wide business processes.

Proceedings of International Working Conference on Information Industry, Bangkok,

Thailand, 98-106.

Cheng, E. (1992) A high-speed open journal system in a distributed computing

environment. Proceedings of the International Computer Science Conference, Hong

Kong, 141-147.

Cheng, E., Chang, E., Klein, J., Lu, E., Lutgardo, A., Obermarck, R. (1991) An open and

extensible event-based transaction manager. Proceedings of USENIX Conference,

Nashville, TN, 49-58.

Cluet, S., Kapitskaia, O., Srivastava, D. (1999) Using LDAP directory caches.

Proceedings of the 18th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of

Database Systems, Philadelphia, PA, 273-284.

Cole, J. (2003) The UCLA Internet report: surveying the digital future, year three.

UCLA Center for Communication Policy. Los Angeles, CA.

Curtis, B., Kellner, M., Over, J. (1992) Process modeling. Communications of the ACM,

35(9): 75-90.

Di Cesare, F., Harhalakis, G., Proth, J.M., Silva, M., Vernadat, F.B. (1993) Practice of

Petri Nets in Manufacturing. Chapman & Hall, London, UK.

Di Felice, P., Clementini, E. (1991) Officeaid VPE: a visual programming with examples

system for specifying routine office tasks. Journal of Visual Languages and

Computing, 2(3):275-296.

Di Leva, A., Giolito, P., Vernadat, F. (1997) The M*-OBJECT organisation model for

enterprise modelling of integrated engineering environments. Concurrent Engineering

- Research and Applications, 5(2):183-194.

Di Leva, A., Vernadat, F., Bizier, D. (1987) Information system analysis and conceptual

database design in production environments with M*. Computers in Industry, 9:183-

217.

 214

Doumeingts, G., Chen, D., Vallespir, P. (1993) GIM (GRAI Integrated Methodology)

and its evolutions. A methodology to design and specify advanced manufacturing

systems. IFIP/JSPE Transactions. Information Infrastructure Systems for

Manufacturing, 101-117. Elsevier Science B.V., North-Holland.

Franklin, M., Zdonik, S. (1998) Data in your face: push technology in perspective.

Proceedings of SIGMOD ’98, Seattle, WA, 516-519.

Frenkel, K. A. (1991) The human genome project and informatics. Communications of

the ACM, 34(11):40-51.

Gaudin, S. (1999) Battle of the directories. Computer World magazine, April 19.

http://www.computerworld.com

Global Internet Statistics by Language. (2003) http://www.glreach.com/globstats/

Goh, C., Baldwin, A. (1998) Towards a more complete model of role. Proceedings of

the 3rd ACM Workshop on Role-Based Access Control, Fairfax, VA, 55-62.

Gottlob, G., Schrefl, M., Röck, B. (1996) Extending object-oriented systems with roles.

ACM Transactions on Information Systems, 14(3):268-296

Graefe, U., Chan, A.W. (1993) An enterprise model as a design tool for information

infrastructure. IFIP/JSPE Transactions. Information Infrastructure Systems for

Manufacturing, 65-79. Elsevier Science B.V., North-Holland.

Gray, J., Reuter, A. (1993) Transaction Processing: Concepts and Techniques. Morgan

Kaufmann Publishers Inc., San Mateo, CA.

Hammer, M. (1993) Reengineering the Corporation. Harper Business, New York, NY.

Hirakawa, M., Tanaka, M., Ichikawa, T. (1990) An iconic programming system, HI-

VISUAL. IEEE Transactions on Software Engineering, 16(10):1178-1184.

Ho, A., Cheng, E. (2000) Transforming a legacy relational database system to an object-

oriented e-commerce environment. Proceedings of World Multiconference on

Systemics, Cybernetics and Informatics, Orlando, FL, Vol. 9:623-628.

 215

Howard, M. (1991) Work Flow: the coordination of business processes. Gartner Group

Presentation Highlights, August.

Howes, T. (1995) The Lightweight Directory Access Protocol: X.500 lite. CITI

Technical Report 95-8, Center for Information Technology Integration, University of

Michigan. Ann Arbor, MI.

Hsu, C., Rattner, L. (1990) Information modeling for computerized manufacturing. IEEE

Transactions on Systems, Man, and Cybernetics, 20(4):758-776.

Hsu, M., Ghoneimy, A., Kleissner, C. (1991) An execution model for an activity

management system. Digital Technical Report, Digital Equipment Press, Boston,

MA.

Hsu, M., Kleissner, C. (1996) Objectflow - towards a process management

infrastructure. Distributed and Parallel Databases, 4(2):169-194.

Internet economy indicators. (2003) http://www.InternetIndicators.com/

Internet Trak, 2nd Quarter. (1998) Ziff-Davis Publishing Company.

http://www.zd.com/marketresearch/IT2Q.htm.

ISO 9000 Survey -- Comprehensive Data and Analysis of U.S. Registered Companies.

(1996). Irwin Professional Publishing, Burr Ridge, USA.

Jia, X., Maekawa, M. (1999) Naming and directory services. Encyclopedia of

Distributed Computing, Urban, J. and Dasgupta, P. (eds), Kluwer Academic

Publisher.

Kleijnin, S., Raju, S. (2003) An open Web services architecture. Queue, 1(1):38-46.

Kosanke, K., Vernadat, F., Zelm, M. (1997) CIMOSA process model for enterprise

modelling. IFIP/JSPE Transactions. Information Infrastructure Systems for

Manufacturing, 59-67. Chapman & Hall, London UK.

Krovi, R. (1997) Organizational intelligence: AI in organizational design, modeling, and

control. Interfaces, 27(3)114-115.

 216

Kuhn, D.R. (1997) Mutual exclusion of roles as a means of implementing separation of

duty in role-based access control systems. Proceedings of the 2nd ACM Workshop on

Role-Based Access Control, Fairfax, VA, 23-30.

Larman, C. (2001) Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and the Unified Process. Prentice Hall, NJ.

Levene, M., Loizou, G. (1999) A Guided Tour of Relational Databases and Beyond.

Springer-Verlag, London, UK.

Malone, T.W., Crowston, K., Lee, J., Pentland, B. (1993) Tools for inventing

organizations: Toward a handbook of organizational processes. Proceedings of the

2nd IEEE Workshop on Enabling Technologies Infrastructure for Collaborative

Enterprises, Morgantown, WV, 1-20.

Malone, T.W., Lai, K., Fry, C. (1995) Experiments with Oval: A radically tailorable tool

for cooperative work. ACM Transactions on Information Systems, 13(2):177-205.

McFadden, M. (1999) Directory Services. Enterprise Magazine, March.

http://www.entmag.com

Medina-Mora, P., Winograd, T., Flores, R., Flores F. (1992) The action workflow

approach to workflow management technology. Proceedings of the Communications

of the ACM CSCW, Toronto, Canada, 281-288.

Mehandjiev, N., Bottaci, L. (1996) User-enhanceability for organizational information

systems through visual programming. Lecture Notes in Computer Science, 1080:432-

456.

Mertins, K., Heisig, P., Krause, O. (1997) Integrating business-process re-engineering

with human-resource development for continuous improvement. International Journal

of Technology Management, 14(1):39-49.

Moffett, J. (1998) Control principles and access right inheritance through role

hierarchies. Proceedings of the 3rd ACM Workshop on Role-Based Access Control,

Fairfax, VA, 63-69.

http://www.entmag.com/

 217

Murata, T. (1989) Petri Nets: properties, analysis and applications. Proceedings of the

IEEE, 77(4):541-580.

OMM Application Programming Interface (1997) The OCT Research Laboratory.

O’Neil, P., Cheng, E., Gawlick, D., O’Neil, E. (1996) The log-structured merge-tree

(LSM-tree). Acta Informatica, 33:351-385.

Osborn, S. (1997) Mandatory access control and role-based access control revisited.

Proceedings of 2nd ACM Workshop on Role-Based Access Control, Fairfax, VA, 31-

40.

Oval Version 1.1 User’s Guide. (1992) Center for Coordination Science, MIT,

Cambridge, Massachusetts.

Park, J., Sandhu, R., Ahn, G. (2001) Role-based access control on the Web. ACM

Transactions on Information and System Security, 4(1):37-71.

Pallot, M., Sandoval, V. (1998) Concurrent Enterprising: Toward the Concurrent

Enterprise in the Era of the Internet and Electronic Commerce. Kluwer Academic

Publishing, Norwell, MA.

Peterson, G.E. (1987) Tutorial: Object-oriented Computing. IEEE Computing Society

Press, Washington, DC.

Peterson, J.L. (1993) Petri Net Theory and the Modeling of Systems. Prentice-Hall, Inc.

NJ.

Radicati, S. (1994) X.500 Directory Services, Technology and Deployment. Van

Nostrand Reinhold, New York, NY.

Reim, F. (1992) Organizational integration of the information-system design process.

Lecture Notes in Computer Science, 693:410-424.

Roos, H., Bruss, L. (1994) Human and organization issues. The Workflow Paradigm, pp.

35-49, Future Strategies Publishing, Ann Arbor, MI.

Ross, D., Schoman, K. Jr. (1977) Structured analysis for requirements definition. IEEE

Transactions on Software Engineering, 3(1): 6-15.

 218

Rupietta, W. (1994) Organization models for cooperative office applications.

Proceedings of the 5th International Conference, DEXA ’94, Athens, Greece, 114-124.

Sandhu, R., Coyne, E., Feinstein, H. (1996) Role-based access control models. IEEE

Computer, 29(2):38 – 47.

Sandhu, R., Munawer, Q. (1998) How to do discretionary access control using roles.

Proceedings of the 3rd ACM Workshop on Role-Based Access Control, Fairfax, VA,

47-54.

Scheer, A.W. (1993) Architecture of integrated information systems (ARIS). IFIP/JSPE

Transactions. Information Infrastructure Systems for Manufacturing, 85-99. Elsevier

Science B.V., North-Holland.

Scott-Morton, M. (1990) The Corporations of the 1990s: Information Technology and

Transformation of Organizations. Oxford University Press, NY.

Singh, B., Rein, G. L. (1992) Role Interaction Nets (RIN): A process description

formalism. Technical Report No. CT-083-92, Austin, TX: MCC.

Stal, M. (2002) Web services: beyond component-based computing. Communications of

the ACM, special issue: Developing and integrating enterprise components and

services, 45(10):71-76.

Su, S., Lo D. H. (1980) A semantic association model for conceptual database design.

Proceedings of International Conference on Entity-Relationship Approach to System

Analysis and Design, Los Angeles, CA, 169-192.

Su, S. (1986) Modeling integrated manufacturing data with SAM-*. IEEE Computer,

19(1):34-49.

Swenson, K. (1994) A business process environment supporting collaborative planning.

Journal of Collaborative Computing, 1(1):15-34.

Vanderaalst, W., Vanhee, K. (1996) Business process redesign - a Petri-net based

approach. Computers in Industry, 29(1-2):15-26.

 219

Vernadat, F. (1996) Enterprise Modeling and Integration: Principles and Applications.

Chapman and Hall, London, UK.

Vernadat, F. (1993) CIMOSA: Enterprise modelling and enterprise integration using a

process-based approach. IFIP/JSPE Transactions. Information Infrastructure

Systems for Manufacturing, 65-79. Elsevier Science B.V., North-Holland.

Vidgen, R., Rose, J., Woodharper, T. (1994) BPR - the need for a methodology to

revision the organization. IFIP Transactions A - Computer Science and Technology,

54:603-612.

Voss, G. (2002) Java Beans, Part 1 – Basic Beans Concepts. Javasoft, Sun

Microsystems, Santa Clara, CA.

http://developer.java.sun.com/developer/onlineTraining/Beans/Beans1/bean-

definition.html

Whinston, A., Barua, A., Shutter, J., Wilson, B., Pinnell, J. (2001) Measuring the

Internet Economy. Center for Research in Electronic Commerce, University of Texas,

Austin, TX. http://www.InternetIndicators.com/jan_2001.pdf

Willcocks, L., Smith, G. (1995) IT-enabled BPR - organizational and human-resource

dimensions. Journal of Strategic Information Systems, 4(3):279-301.

Yialelis, N., Sloman, M. (1996) A security framework supporting domain-based access

control in distributed systems. Proceedings of the ISOC Symposium on Network and

Distributed Systems Security, San Diego, CA, 26-39.

Youman, C.E., Sandhu, R., Coyne, E.J., Editors (1996) Proceedings of the 1st ACM

Workshop on Role Based-Access Control, Gaithersburg, MD.

http://developer.java.sun.com/developer/onlineTraining/Beans/Beans1/bean-definition.html
http://developer.java.sun.com/developer/onlineTraining/Beans/Beans1/bean-definition.html
http://www.internetindicators.com/jan_2001.pdf

	Introduction
	A Dynamic and Collaborative Computing Environment
	Motivation and Aims
	Definition of Terms
	Structure of the Thesis

	Background
	Introduction
	Organization Modelling and Reengineering
	Organization Analysis
	Functional Model
	Information Model

	Organization Conceptual Design
	Organization Design Implementation

	Organization Modelling Principles
	Goals of Organization Modelling
	Scope of Organization Modelling
	Success Criteria in Organization Reengineering
	Conclusion

	A Critical Assessment of Organization Modelling Approaches i
	Introduction
	Workflow Management Systems
	Running Example: A Sample Workflow Process
	Previous Work in Workflow Organization Modelling
	ARIS
	CIMOSA
	EMS
	M*OBJECT
	Objectflow
	SAM*

	Directory Service Based Organization Model
	X.500 and LDAP
	Novell NDS
	Microsoft Active Directory

	Standalone Organization Modelling Systems
	ORM
	OVAL
	Other Organizational and Office Systems

	Weaknesses of Existing OM Systems
	Conclusion

	OMM: A Hybrid Model for Organization Modelling
	Introduction
	An Enterprise and Its Resources
	Organizations
	OMM Organization Partitioning
	Relationships between Organizations

	Members and the Information Model
	Object-Orientation of OMM
	State Transition of OMM Members
	Transfer of Member Objects between OMM Organizations

	Virtual Links and the Relationship Model
	An Example
	Summarized Features of OMM and Other OM Systems
	OMM Versus Other OM Systems
	Conclusion

	The Policy-Based Relationship Model in OMM
	Introduction
	Virtual Link Definition
	Applying Virtual Links to Model Dynamic Roles
	Applying Virtual Links to Model Dynamic Relationships
	Bi-directional Relationships
	Transitivity of Virtual Links
	Publish-and-Subscribe
	An OMM/P&S Prototype
	Conclusion

	Role Resolution in Workflow Management Systems and Other Coo
	Introduction
	Role Resolution in Workflow Management Systems
	Task Assignment
	Task Authorization
	Routing Decision

	Role Resolution with OMM
	Role-based Access Control
	Conclusion

	Organization Modelling and Reengineering By Using OMM
	Introduction
	Business Process Reengineering and Organization Reengineerin
	Organization Modelling Approaches and OMM
	Information System Approach
	Object-Oriented Approach
	Petri Nets Approach

	Common Techniques in Organization Reengineering
	OR Modularization
	OR Decentralization
	Bottom-Up Analysis in Organization Reengineering
	Top-Down Analysis in Organization Reengineering

	Conclusion

	Concurrency Control
	Introduction
	Background
	Database Systems
	Transactions
	Commit and Abort

	Concurrent Access to Shared OMM Objects
	Deadlock Detection
	Deadlock Avoidance and Resolution
	Crash and Recovery
	Conclusion

	Implementation Experiments and Applications of the OMM Proto
	The OMM Prototype System Architecture
	User Interface for Defining and Manipulating Organizational
	Application Programming Interface
	Graphical User Interface

	Domain UUID and Naming Convention
	Information Exchange with Existing Databases
	Generic Database Schema for Mapping Existing Databases to OM
	Mapping Agent Applications

	Mapping the OMM Database Schema to Other Relational Database
	Mapping OMM Objects to X.500 Directory Objects
	The X.500 Directory Model
	Object Classes
	Directory Entries
	Directory Entry Attributes

	Using OMM Organizations to Model DIT
	Using OMM Objects to Implement X.500 Objects
	Using X.500 to Implement OMM Conceptual Entities
	Other Considerations

	Application of the OMM Prototype System in Industry
	An OMM Prototype System to Support Enterprise Modelling in H
	OMM Organization Definitions
	Organizational Relationship Modelling
	Using Virtual Links to Support Workflow

	Conclusion

	Concluding Remarks and Further Research
	Organization Modelling Principles
	Review of Aims and Accomplishments
	Scalability
	Extensibility
	Flexibility
	Performance

	Further Work

