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Abstract

The vast amounts of detailed information, generated by Wi-Fi and other mobile com-

munication technologies, provide an invaluable opportunity to study different aspects of

presence and movement behaviours of people within a given environment; for example, a

university campus, an organisation office complex, or a city centre. Utilising such data,

this thesis studies three main aspects of the human presence and movement behaviours:

spatio-temporal movement (where and when do people move), user identification (how to

uniquely identify people from their presence and movement historical records), and social

grouping (how do people interact). Previous research works have predominantly studied

two out of these three aspects, at most. Conversely, we investigate all three aspects in

order to develop a coherent view of the human presence and movement behaviour within

selected environments. More specifically, we create stochastic models for movement pre-

diction and user identification. We also devise a set of clustering models for the detection

of the social groups within a given environment.

The thesis makes the following contributions:

1. Proposes a family of predictive models that allows for inference of locations though

a collaborative mechanism which does not require the profiling of individual users.

These prediction models utilise suffix trees as their core underlying data structure,

where predictions about a specific individual are computed over an aggregate model

incorporating the collective record of observed behaviours of multiple users.

2. Defines a mobility fingerprint as a profile constructed from the users historical mo-

bility traces. The proposed method for constructing such a profile is a principled

and scalable implementation of a variable length Markov model based on n-grams.

3. Proposes density-based clustering methods that discover social groups by analysing

activity traces of mobile users as they move around, from one location to another,

within an observed environment.
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We utilise two large collections of mobility traces: a GPS data set from Nokia and

an Eduroam network log from Birkbeck, University of London, for the evaluation of the

proposed models reported herein.
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Chapter 1

Introduction

1.1 A Historical Context

The research into human presence and movement behaviour gained attention after the

study by the geographer Finch in 1939 [41] in which he describes regions as knowledge

objects. In the study, he summarises the unity of a region as forces and activities that

link people to norms in the social world and objects in the real world - to learn the basis

of a region geographers study static objects in order to understand dynamic processes;

for instance, they study roads to learn about transportation within a given region. In

contrast to Finch study [41], the traditional geographic research may have diverted the

attention away from the dynamics aspects of the human presence and movement behaviour

because material objects and their spacial distribution seem to enjoy a superior importance

compared to the less favourable dynamics aspects [53]. As a result, the research into

the human presence and movement behaviour seemed to have been forgotten until Ives

and Messerli’s study in 1981 [62] in which the two geographers recognised that making

decisions in relation to hazardadjustment within an observed geographical area is critically

dependent on both natural and dynamics aspects which include, amongst other factors,

population movement. Although the aforementioned research may not have given the

spacial aspect enough consideration but nonetheless provides good insights about the

human presence and movement behaviour within a context of a unified geographical region.

21
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1.2 Analytics of Human Presence and Movement

Behaviour in The Age of Big Data

Nowadays, the precipitously increasing amounts of detailed information generated by wire-

less communication technologies such as GPS and Wi-Fi, provide an invaluable opportu-

nity to study different aspects of presence and movement behaviours of people within a

given environment such as an organisation office complex, a university campus or even a

city. Moreover, the pervasiveness of these technologies increases peoples ability to access

information, which undoubtedly influences the way the observed environment operates,

and it is therefore essential that we develop the theoretical frameworks and the real-time

monitoring systems in order to correctly understand how the presence and movement of

people and its dynamics reshape the structures of such environments.

1.2.1 Urban Human Mobility

A thorough correct understanding of movement behaviours of people in urban environ-

ments can play a critical role in addressing challenges such as urban planning [108, 116],

constructing smart systems for traffic forecasting [81], understanding crowd behaviour

and event participation in mass gatherings [45], and developing effective epidemic control

measures [2]. At an individual user level, a good knowledge of movement behaviours of

individuals plays a crucial part in building smart mobile recommendation and prediction

applications; namely, by capitalising on the pervasiveness of communication technologies

such as GPS and cellular network location tracking which provide rich and detailed infor-

mation about the locations that individual people visit. Employing such information, with

all the rich knowledge that it contains about visited locations, is the foundation for build-

ing smart applications that address various urban challenges ranging from air pollution

[115], traffic congestion [82] to finding a suitable restaurant [9, 79].

1.2.2 Human Presence Within a Specific Environment

The ubiquitous Wi-Fi infrastructure in many environments, such as universities and of-

fice buildings has made the Internet more accessible to a wide range of people in these

environments, which consequently has given rise to new opportunities and challenges. For

example, a university, which usually includes a variety of different spaces such as teaching

rooms, laboratories, offices, retail, and residential buildings, can utilise access information

to its Wi-fi network in order to learn about the realtime spatial occupancy of its facilities.
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Gaining insight about spatial occupancy can be useful to a number of application areas in-

cluding: resource allocation, surveillance, and the provision of basic facility services such

as heating [8]. While a university can exploit its Wi-Fi network access information to

learn about the usage of space within its campus [97], it can also capitalise on the such

information to learn about the social groups that exist within its community, and how

such groups interact with the available space [33].

1.3 Research Motivation

The proliferation of Wi-Fi and GPS enabled mobile devices and the vast amount of detailed

information that these devices generate when accessing the Internet present an unmissable

opportunity for studying the presence and movement of people within an observed envi-

ronment. Motivated by such an opportunity, this thesis studies three main aspects of the

human presence and movement behaviour: spatio-temporal movements, user identifica-

tion, and social grouping. Contrary to previous research papers [4, 27, 68], it investigates

all three aspects in order to develop a coherent view of the human presence and movement

behaviour, addressing a set of specific challenges, which we briefly outlined hereafter.

1. Prediction of Next Location of Visit: Predicting the future location that an

observed user will visit next is usually obtained by employing a one-per-user-model,

i.e. a single user model, which exclusively comprises the historical mobility record

of such a user [31]. Such a prediction approach has a number of limitations; for

example, a model constructed exclusively from past mobility behaviour of a specific

user would most likely perform poorly when utilised for predicting a future location

that the observed user has never previously visited. This thesis attempts to find an

alternative prediction approach that mitigates such a limitation.

2. Identification of Mobile Users: It has been established in a previous research

paper [27] that only a small number of spatio-temporal points are enough to uniquely

identify an individual user by utilising his/her mobility traces. This means, if a user

u visited the set of locations {a, b, . . . , z} then only a small number of these locations

would be enough to prove the uniqueness of the mobility traces of u. However, in

this thesis we argue that a profile constructed and constrained to such a small set of

spatio-temporal points - e.g. a profile that only includes information about ’home’

and ’work’ as two location points - would have limited benefit in the context of

predicting and recommending locations to mobile users. Indeed in such contexts,
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finding a distinct set of data that makes the individual unique is not the focal

point. It is much more useful to have a rich profile that, in addition to being unique

also reflects the individuals interests in terms of the places that s/he visits and the

activities that s/he undertakes. Such a profile clearly offers a distinct advantage

where it allows grouping together individuals with similar interests and tastes in

terms of the locations that they visit. The ability to create such a grouping is

the foundation upon which collaborative prediction and recommendation systems

are developed [113, 117]. This thesis investigates the possibility of constructing a

dynamic method of identification using mobility data which, for each individual user

possess measurable variations that make it suitable for “mobility fingerprinting” [32].

3. Detecting Class Attendance: The growing number of new students and the

courses offered at universities in recent years - due to competition between uni-

versities in attracting a larger share of new students [16, 56] - causes an increasing

difficulty for campuses estate managements to correctly allocate the limited resources

that are available to them. In order to mitigate such difficulties, universities are ac-

tively seeking new methods for estimating spatial occupancy. Consequently, there

has been a growing interest in exploiting existing technologies, such as Wi-Fi, in

order to track the human presence and movement behaviour on campus. Utilising

existing Wi-Fi network in tracking attendance has a direct benefit, in saving costs,

compared to other specialised tracking technologies which usually involve significant

installation and running costs. In this thesis we investigate the detection of social

groups that are formed as a result of attending learning activities at a university. We

discuss how such detected social groups give insight about student attendance which

can be utilised in estimating the real spatial occupancy in a learning environment.

4. Characterisation of Space based on Visiting Behaviour of Mobile Users:

The numerous activities that take place within an observed learning environment

such as a university campus determine, to a large extent, the kind of social inter-

actions exhibited by the users in such environments. In this thesis, we attempt to

understand the rules that govern these social interactions through analysing large

collections of Wi-Fi activity traces of mobile users. More specifically, we are in-

terested in whether we can characterise locations based on the visiting behaviours

exhibited by social groups within such an environment.
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1.4 Research Questions

This thesis considers two environments: a city environment represented by an average-

size city in Europe and a learning environment represented by a university campus. For

each of these environments we utilise a large collection of mobility traces: for the city

environment we utilise a GPS data set from Nokia, and for the learning environment an

Eduroam network log from Birkbeck, University of London, is utilised. We specifically fo-

cus on addressing three main research questions about the human presence and movement

behaviour:

Q1. Where and when do people move? Utilising the spatio-temporal records of past

movements, we are particularly interested in predicting the location that an observed

user will be visiting next.

Q2. How to uniquely identify people from their movement historical records? The fo-

cus in addressing this question is not on whether a unique set of movements that

characterise an observed user can be found. However, we are interested in building

a profile made from a user’s record of past movements that in addition to being

unique can also be useful for the identification of such user from a short trail of

recent movements.

Q3. How do people interact? We are specifically interested in social groups detection,

particularly those groups that are linked to attendance of leaning activities at an

observed learning environment; for example, a group of students that attend regular

class sessions. Furthermore, we are interested in detecting those groups that visit

locations such as a coffee-shop in order to socialise.

Q4. How visiting behaviour characterises space? We concentrate on the social groups’

visiting behaviour exhibited at different locations within a learning environment. We

particularly interested in those groups that are linked to the attendance of leaning

activities, where we investigate the hypothesis that the distribution of a social group

inter-visit duration, i.e. the waiting time between visits made by the same social

group, follows a uniform distribution for location where formal activities, such as

attending a meeting or a learning session, take place.
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1.5 Contributions

Previous research works [4, 27, 68] have predominantly addressed two out of these three

aforementioned questions, at most. Conversely, this thesis investigates all three questions

in order to develop a coherent view of the human presence and movement behaviour. More

specifically, we create stochastic models for movement prediction and user identification.

We also devise a set of clustering models for the detection of the social groups within a

given environment. Moreover, we propose a model for the characterisation of locations

based on the social behaviour exhibited by mobile users when visiting these locations. The

thesis makes the following contributions:

1. Proposes a family of predictive models that allows for inference of locations though

a collaborative mechanism which does not require the profiling of individual users.

These novel prediction models utilise suffix trees as their core underlying data struc-

ture, where predictions about a specific individual are computed over an aggregate

model incorporating the collective record of observed behaviours of multiple users.

2. Defines a mobility fingerprint as a profile constructed from the users historical mobil-

ity traces. The proposed method for constructing such a profile is a principled and

scalable implementation of a variable length Markov model based on n-grams. Fur-

thermore, it demonstrates how the proposed fingerprinting method can be utilised

in creating unique profiles for landmarks by successfully applying it to the Next

Location Prediction problem.

3. Proposes novel density-based clustering methods that discover social groups by

analysing activity traces of mobile users as they move around, from one location

to another, within an observed environment.

4. Presents a novel model, which classifies locations into formal and informal locations

on the basis of the visiting patterns exhibited by social groups detected at those

locations.

1.6 Data Processing

The aforementioned research about the human presence and movement behaviour [4, 9,

27, 68, 79], could not have had a considerable impact without the large data sets that

the researchers of these works had at their disposal. However, processing large volumes of

complex data poses a serious challenge in terms of storage and performance [54]. In order
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to overcome this challenge and exploit such kinds of complex data, numerous data mining

and machine learning methods have been proposed [39]. One of the research areas that had

a considerable share of these proposed methods is clustering, where several new algorithms

have been devised [17, 35, 39, 83]. In this thesis clustering has been a central technique

of some of our proposed methods, namely Social-DBSCAN and Temporally-Restricted-

Social-DBSCAN, which we discuss in Chapter 6, and SocialDBC, which we describe in

Chapter 7.

1.6.1 Data Utilised in This Thesis

We evaluate the proposed methods in this thesis on two data sets; namely, Nokia Mobile

Data Challenge (Nokia MDC) data set and Birkbeck’s Eduroam network log, which we

outline hereafter.

1.6.1.1 Nokia Mobile Data Challenge (Nokia MDC) Data Set

In early 2009 Nokia Research Centre in Lausanne and its Swiss academic partners, namely

Idiap1 and EPFL2, launched a campaign to create large-scale mobile data research re-

sources [71]. Shortly thereafter, Nokia and its partners started the Lausanne Data Col-

lection Campaign (LDCC3), an initiative to collect a longitudinal smart-phone data set

from about 200 participants for over a year in the region of Lake Geneva. Nokia had an

intention right from the start of the campaign to share the resources from this campaign

with the research community, and thus launched the Mobile Data Challenge (MDC4),

the challenge in which Nokia and its partners offered researchers an opportunity to study

a data set that includes rich mobility, communication, and interaction information. The

MDC had two research avenues: an Open Research Track and a Dedicated Research Track.

Researchers who took part in the Open Track had the chance to propose their own tasks

based on their research interests. On the other hand, researchers that took part in the

Dedicated Track had the option of undertaking up to three different tasks to solve: predic-

tion of mobility patterns, recognition of place categories, and estimation of demographic

attributes. Experimental protocols and evaluation measures for assessing and ranking all

contributions have been clearly defined for each of these tasks [71]. The LDCC data set

was divided into four data parts for the benefit of the different tasks of the MDC:

1Idiap Research Institute
2École Polytechnique Fédérale de Lausanne
3Lausanne Data Collection Campaign
4Mobile Data Challenge
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1. Set A: The shared training set for the Dedicated Trak tasks.

2. Set B: The test set for the demographic attribute and semantic place label prediction

tasks.

3. Set C: The test set for the location prediction task.

4. Open Set: The set for all Open Track participants.

Out of those different sets of the MDC, this thesis only utilises the Open Set which,

unlike the other MDC data sets, contains geo-location information (see sample data shown

in Table 1.1).

User ID Record Time Time from GPS Satellite Altitude Longitude Latitude Speed . . .

1234567 39363 53256 0.93599996567 6.63443099515 46.5128673917 63 . . .

Table 1.1: A sample Nokia MDC Open Set

1.6.1.2 Birkbeck’s Eduroam Network Log

Birkbeck, University of London is one of the participant of Eduroam network [42, 105],

a WLAN service developed for the international education and research community that

gives secure, world-wide roaming access to the Internet. Birkbeck IT Services (Birkbeck

ITS) provided us with a data set of Eduroam access information for the whole university

for the period, from the 1st of October 2013 to 10th of April 2015. This portion of the

data set used in this thesis comprises 223 locations and 204.6K users, who come from

2462 institutions and departments. The 223 locations given in this data set are divided

between 11 of the 17 sites of Birkbeck’s Bloomsbury campus in central London. User ID,

access point location, connect time, duration of session, MAC address of user’s device and

affiliation email address are the basic information for each processed record (see sample

data shown in Table 1.2).

User ID MAC Address Connect Time Disconnect Time Session Duration AP Location . . .

1234567 00:03:ff:60:fb:fn 12/06/2013 10:40 12/06/2013 11:20 40 min MaletSt-319 . . .

Table 1.2: A sample Eduroam network log

A comparison of the two types of data sets utilised in this thesis can be found in

Table 1.3.

A summary of a method used to process the data in this thesis is provided hereafter.
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Data set Eduroam log from Birkbeck Nokia MDC

Data type Wireless network traces GPS data

Spatial Resolution meters meters

Scale of Area Covered Campus or work location An area covering a city region

User’s speed No Yes

Path between two locations Approximate Exact

Number of users 204.6K 38

Table 1.3: A comparison between the basic features describing the users mobility in the
two data sets used in this thesis

1. Raw data collected from Wi-Fi access points which are positioned in widespread

locations across the university campus. Each user’s device generating the data is

identified by its MAC5 address and each data point also records a time-stamp (see

sample data shown in Table 1.2).

2. Each router provides meta-data that can be employed for identifying the semantics

of the location in which the router is situated; for example, a router may be located

inside a classroom or in an area in a coffee-shop, or a cinema.

3. The raw data is transformed, by applying clustering and other data analysis methods,

into trail data which is stored in suffix tree data structures or a DBMS6. A suffix tree

data structure captures the sequences of movements embedded in the trails which

the users followed based on the time-stamps provided in the raw data. It can also be

queried for a specific sequence of movements, hence it can be employed for individual

users’ tracking.

1.6.1.3 A Brief Note about Data Privacy

All sensitive data items, of the data sets utilised in this thesis, such as the user’s email/name

and their device’s MAC address, have been anonymised to allow the type of analytics pro-

vided in this thesis to be carried out without compromising the user’s privacy. Moreover,

we do not attempt to use location in a way that compromises privacy, e.g. by displaying

actual locations on maps. These data processing and related security and data man-

agement provisions have been approved by Birkbeck’s research ethics committee, which

ensures strict compliance with EU law on data protection and privacy (GDPR7).

5Media Access Control Address
6Database Management System
7General Data Protection Regulation
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1.7 Outline of the Thesis

With exception to this introductory chapter the thesis is briefly outlined hereafter.

Chapter 2. We provide a critical review of works carried out by other researchers.

This thesis then divides into two main parts. The first part investigates the spatio-

temporal movement where we predict the future locations of visit based on when and

where people had been in the past. We also investigate the identification of users from

their historical movements. We propose stochastic models for movement prediction and

user identification which we evaluated on the Nokia MDC data set (see § 1.6.1.1).

Chapter 3. We study the collective model and the one-model-per-user approaches in

the context of the next location prediction problem - the problem of predicting a user’s

subsequent location of visit, taking into consideration the time and location information

of where the user had been in the past. Furthermore, we study the effect of the length

of the user record of the most recent temporal locality used in the prediction of the next

location of visit, and assess the relative loss of accuracy when smaller data records are

provided so as to establish the exact trade-off involved. We evaluate our performance of

the proposed prediction models, i.e. the single user model and the collective multi-user

model, by using MAE and RMSE error metrics. We show how to use these two metrics to

determine the number of suggested (the top-k) locations which are most likely to include

the observed user’s correct next location of visit. Moreover, we study the merits of HM

Score in assessing the accuracy of the proposed models.

Chapter 4. We investigate whether the trails generated from users’ mobility traces have

sufficient measurable variations which allow for fingerprinting of movements of those users

to whom these traces belong, i.e. can we verify and measure the uniqueness of individual

users movements. Also assuming that the users have different mobility fingerprints, we

examines the identifiability of the correct user from an observed mobility trail, i.e. whether

a user can be identified from his or her trail of movements. The same chapter investigates

whether the size of the fingerprint can be reduced while retaining identifiability, and to

this end, it attempts to find a minimal fingerprint that can be employed to correctly iden-

tify an observed user from a short record of movements. It also investigates whether the

proposed fingerprinting method can be extended to create unique profiles for landmarks
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and whether such fingerprints can be used for location prediction.

The second part of the thesis considers the social grouping concept (how do people

interact). The clustering models proposed for the detection of social groups, and location

classification, within an observed learning environment, have been applied to the Eduroam

data obtained from Birkbeck, University of London (see Subsection 1.6.1.2).

Chapter 5. We present a comprehensive analysis about the human presence within a

university campus where it provides a thorough analysis with respect to the four types

of patterns contained in the data: the social, the spatial, the temporal and the semantic

patterns, giving an insight into how people presence shapes the dynamic structure of such

an environment. For each of these types of pattern: the social, the spatial, the temporal

and the semantic, the chapter defines a list of metrics, which we utilise to interpret the

observed behaviour captured in the data.

Chapter 6. We introduce social density-based clustering methods that use WLAN

traces in order to detect granular social groups of mobile users within a university cam-

pus. The proposed clustering methods rely on the underpinning semantic context for

parameterisation, i.e. utilising information from the semantic context to determine the

values of the clustering algorithm parameters. The same chapter also estimates the actual

level of attendance of learning activities - linking the discovered social group that regu-

larly visits an observed location and the learning activity that takes place within the same

context allows us to estimate the attendance level of a targeted learning activity.

Chapter 7. Herein we propose a density-based clustering method that discovers social

groups by utilising activity traces of mobile users. We detect the social groups on the

basis of the activities taking place at observed locations within a university campus. It

also proposes a framework for inferring the type of an observed location, by using the

patterns of visit extracted from Wi-Fi activity traces.

Chapter 8. We provide our concluding remarks and a summary of future work.



Chapter 2

Critical Review

2.1 Overview

This chapter provides a critical appraisal of the research papers concerning the analytics

of human presence and movement behaviour that are available in the technical literature.

Numerous research investigated the possibility of exploiting activity traces of wireless

communications in order to gain insight into the human presence and movement behaviours

within a given environment. We review some of these papers in relation to the four data

aspects: the social, the spatial, the temporal and the semantic aspects. We are particularly

interested in the prediction of the user’s next location of visit by using GPS1 data, the

identification of the user from his or her trails of visited locations, and the detection

of social groups that the user maybe associated with. The discussion in this chapter is

organised as follows: in Section 2.2, we review the research efforts in addressing the next

location prediction problem, and in Section 2.3 we discuss the methods utilised for the

identification of mobile users. In Section 2.4 we provide a critique of the papers relating

to the detection of social groups by employing Wi-Fi activity traces, and conclude with a

thorough discussion in Section 2.5.

2.2 Prediction of Next Location of Visit by using GPS Data

With the mobile phone becoming widespread human mobility data is now captured and

stored, as never before. This motivated the research into human mobility patterns which

in recent years started to receive a lot of attention as increasingly more volumes of detailed

1Global Positioning System

32
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mobility data become available. The advancement and pervasiveness of wireless commu-

nication technologies did not only cause an increase in the number of users taking part

in human mobility studies but also meant that the areas considered in such studies are

much larger in size than ever before. As a result, we have interesting findings from some

of the recent research about users’ mobility patterns. It has been established that there is

high regularity in mobility patterns exhibited by individuals despite the size differences of

the areas in which people move [49, 93]; for instance, users in a city environment oscillate

between home and work every weekday while students at a university campus regularly

visit a set of specific rooms to attend classes [33]. Setting aside any strange or unusual

visiting habits, the researchers in [92] were able to find universal laws that govern the

users mobility behaviour when visiting new places or revisiting locations that they have

already been to in the past. In [28] researchers found that members of the same social

group exhibit the same mobility behaviours. A similar finding was provided in [33], where

users from the same social group are likely to visit the same location when they are in the

company of one another. A key benefit that can be drawn from these findings is that a

reliable model can be developed for inferring users’ future movement. In the remainder of

this section, we provide a critical review of selected works, from the technical literature,

that address the problem of predicting the next Location of visit by using GPS Data.

2.2.1 Extracting Locations of Visit From Raw Data

An observed user’s location of visit can be a place that a user frequently visited in the

past or a place that s/he stayed at for some significant time. Such a location does not

have to be a place that the user visits in order to socialise with other people; for instance

a restaurant. It can be any frequently visited place such as a petrol station or a busy

junction in the user’s daily journey to work. Figure 2.1 highlights the set of locations

learned from one individuals GPS recordings obtained from the Nokia MDC data set [71].

Some of these locations shown in the figure, i.e. Figure 2.1, correspond to geographical

meaningful locations such as “home” or “work place” but equally there are other locations

that do not correspond to such meaningful geographic places; for instance a busy junction

on the road. Generally, a mobility trace in a GPS data set is a sequence of latitude and

longitude pairs where each pair is associated with a time-stamp. In order to extract the

locations of visit from such data a host of methods have been proposed over the past

few years [5, 18, 31, 84, 118]. For example, in [5] a dual step method was proposed

for extracting significant locations of visit which are later analysed to predict the next

location of visit using a Markov model [84]. In step one, the significant locations of visit
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are detected by using the points where the mobile device loses connection to the GPS

satellites. In step two, clusters of locations are formed by using a variant of the K-Means

algorithm. At the start of the clustering process, the locations clusters are centred at K

selected points with a given radius - a cluster with a large radius here may correspond to

a city while a cluster with a small one may correspond to a campus or an office building.

The drawback of this method comes from its dependence on the lose of signal in order

to detect locations of visit, i.e. the method would fail to detect locations that have

continuous reception of signal; for example, it would fail in detecting open locations such

as an open market with stalls for selling goods where the signal reception is likely to be

uninterrupted. On the other hand, the method would probably succeed in detecting office

buildings and other similar locations which are likely to have no GPS signal reception.

The authors of [118] proposed a clustering method called DJ-Cluster which uses density

and joining concepts in order to extract significant locations of visit. Similar to other

density-based methods, a dense point in this method is a point that has a total number

of neighbours greater than or equal to a user-defined minimum threshold required for all

dense points. Clusters are then created by joining density points together in the same

cluster if they have common neighbouring points between them. An improved method,

proposed by the same authors, removes a GPS reading if it has speed greater than zero

or if its distance from the previous reading is below a given threshold. The tests result of

their new method indicate an improvement over the K-Means in terms of precision and

recall, and DBSCAN [35] in terms of time and memory requirements. In [18] a semantics-

enhanced clustering algorithm, called SEM-CLS, was proposed for extracting semantically

meaningful locations. This method separates semantically different locations into different

clusters and merges those locations with similar semantics into the same clusters.

2.2.2 Next Place Prediction Models

To decipher the complexity of predicting human mobility, many approaches have been

proposed for building models that can accurately predict individuals’ future locations of

visit. Generally, these approaches can be divided into three major categories based on

the perspective from which the data is being considered: spatial, temporal, and joint

spatio-temporal approaches. Researchers have investigated the user’s spatial patterns on

mobile data and various prediction approaches have been proposed, such as [114]. Other

proposed methods that rely on the user’s temporal patterns in order to predict the next

place of visit, as shown in [3]. However, discovering the correct temporal patterns in

human mobility is challenging, since temporal behaviour includes much more uncertainty
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Figure 2.1: The locations visited by one of the users as detected by the DBSCAN algorithm
[36]. The grey colour shows clusters of GPS points identified as noise while the other
colours show the discovered locations of interest.

in comparison to the spatial behaviour [94].

In [87], Scellato et al. proposed a spatio-temporal framework, called NextPlace, which

used non-linear time series analysis of users’ arrival time and residence time to predict

temporal behaviour. Chon et al. [23], used fine-grained and continuous mobility data

to evaluate several mobility models. They argued that the granularity of mobility data

used in the literature is too coarse to precisely capture users’ daily movement patterns.

Although joint Wi-Fi/Bluetooth traces were used as opposed to GPS data, Vu et al. in

[103] introduced a framework for building predictive models of people movement. The

proposed framework used a type-of-day categorisation (such as weekday and weekend)

to filter redundant information from users’ historical data. Noulas et al. on the other

hand, studied the problem of predicting the next venue that a mobile user will visit, by

extracting features from check-ins data of Foursquare users. The extracted features exploit

information about transitions between types of places, movement between different venues,

and spatio-temporal patterns of user check-ins [79]. They proposed two learning models,

based on linear regression and M5 model trees, which combine all individual features.
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Using a list of thousands of candidate venues, the proposed supervised methodology which

combines multiple features offered high levels of prediction accuracy, where M5 model trees

was able to rank in the top fifty venues one in two user check-ins.

2.2.2.1 A Single-user Model Versus a Multi-user Model

Prediction models of future locations of visit have been predominantly implemented using

a one-model-per-user approach. For example, Krumm [68], used a Markov model for mak-

ing short-term route predictions for vehicle drivers. Ashbrook and Starner [4] suggested

a model in which locations are incorporated into a Markov model that can be consulted

for use with a variety of applications in both single-user and collaborative scenario where

multiple single-user models can be shared. Unfortunately, it is not clear how they eval-

uated their models apart from showing that the predictions for their single user model

were compared against “random chance”. Also they did not address the situations in

which the user has no mobility history to be exploited when predicting future location of

visit. Moreover, sharing multiple single-user models inevitably raises concerns relating to

the privacy of users’ information being compromised; for example, by a service provider

gaining access to a user’s mobility history embedded in a single-user model for such a user.

Contrary to the modelling style adopted in [4] and [68], Chapter 3 of this thesis presents

a collective (i.e. a multi-user) next location prediction model which does not specifically

store an identifiable individual user mobility records in order to predict future location of

visits for such a user. This collective model is a principled and scalable implementation of

a variable length Markov model. Furthermore, the same chapter, i.e. Chapter 3, presents

various models that address the situations in which the user has no mobility history to be

exploited for inferring future locations of visit.

2.3 Identification of Users Through Mobility Traces

2.3.1 Background

Technological device fingerprinting relies on measuring the small differences present in

each device which makes it distinguishable from the other devices of its type. It has been

long established that devices such as Cameras as described in [22, 73] and typewriters

as in [58] can be distinguished from other similar devices through fingerprinting. In [29],

Peter Eckersley investigated the degree to which modern web browsers are subject to such

fingerprinting by analysing the information sent to websites upon request. By introducing

the concept of fingerprinting to distinguish between web browsers Eckersley has thus set
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the scene for the identification of individual users through data extracted from their web

browsing activities. Indeed, an individual user is identified through their browser history,

i.e. the list of URLs they have been browsing which are surely unique to them, just as

much as their biological fingerprint is [55]. In the same article, i.e. [55], Brian Hayes

explains how we now also have what he refers to as “data identity”, defined by various

combinations of traits that distinguish us from anybody else on the planet. This idea

about data identity was well supported by the work carried out by Sweeney of Harvard

University [98] in which she showed how, by using only a small set of simple demographic

information such as the date of birth, the zip code, and the gender, we can identify an

individual from the rest of the population. Furthermore, the authors of [112] describe a

system called WiFi-ID which extracts unique features that capture the walking style of

a person, and thus allow for the unique identification of such an individual, by analysing

the channel state information.

2.3.2 Uniqueness of Mobility Traces

In [27], Yves-Alexandre et al. proposed a formula that determines the uniqueness of indi-

vidual mobility traces. A key result of their work is that they showed that the uniqueness

of human mobility traces is high and that individual users mobility data are likely to

be identified using information about only a few outside locations. In the same research

work, i.e. [27], Yves-Alexandre et al. further showed that only four spatio-temporal points

are enough to uniquely identify 95% of the users in the large data set that they used for

evaluation. This means, if a user u visited the set of locations {a,b,. . . ,z} then only four of

these locations would be enough to prove the uniqueness of the mobility traces of u. This

is very much consistent with our finding presented in [32] and in Chapter 4 which provides

a detailed discussion about the uniqueness of the individual users’ mobility fingerprints.

However, our work differs substantially, because in addition to creating a unique user pro-

file, we can also employ such a profile to identify the user from a short record of observed

movements; for example, if {e,f ,g,h} denotes some observed mobility trail, then we can

employ the fingerprint constructed from the user’s historical record of visit (e.g. to the

locations {a,b,. . . ,z}) to correctly predict that the observed trail was created by the user

u. A substantial part of Chapter 4 of this thesis is dedicated for the investigation of the

relationship between the user identifiability and the fingerprint uniqueness as well as the

implications when the fingerprint is compressed.
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2.4 Detection of Mobile Users Social Grouping by using Wi-

Fi Activity Traces

Studies involving Wi-Fi networks data analysis can be divided into two broad categories:

descriptive versus predictive analysis. While descriptive research on characterisation of

user mobility in Wi-Fi networks explore various features such as the time duration the

user spends connecting to an Access Point (AP2), and the amount of data a user sends

and receives over the network, predictive studies can be classified according to the mod-

elling approach adopted in such studies. Amongst the common modelling methods utilised

in previous studies are: clustering [65, 103], Support Vector Machines (SVM3s) [74] and

Markov models [69, 72, 107]. In this section we review both the predictive and the descrip-

tive research works that are available in the literature focusing specifically on the social

dimension of the human presence within an academic institution.

2.4.1 Social Groups of Mobile Users

Using data collected from a hundred mobile phones over a period of nine months, the

authors of [28], proposed a system for complex social systems’ sensing. They were able to

detect social patterns in daily user activity, infer user relationships, discover socially signif-

icant locations, and thus model the rhythms of observed organizations by using standard

bluetooth-enabled mobile phones. Static bluetooth device IDs were used as an additional

indicator of location, and this was shown to provide a significant improvement in user

localization, especially within indoor environments such as an office building. The authors

of [59] proposed a method for extracting interaction patterns and social behaviour of mo-

bile users by using passive WiFi monitoring of probe requests and null data frames that

are sent by smart-phones. They are able to discover proximity relationships, occupancy

patterns, and social interactions among users by analysing the temporal and spatial cor-

relations of the Receive Signal Strength Indicators (RSSI4) of packets from these low rate

transmissions. Although results of conducted tests, which used commodity off-the-shelf

smart-phones and WiFi Access Points, demonstrate that the proposed method is capa-

ble of detecting social relationships and interactions in a non-intrusive manner, the study

was conducted on a very limited scale. In [30] and in Chapter 6 of this thesis, namely

in Section 6.5, we discuss a method for detecting classroom friends by using a data set

representing a full snapshot of Wi-Fi usage of a whole university for a period covering a

2Access Point
3Support Vector Machine
4Receive Signal Strength Indicators
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full academic term.

2.4.1.1 Attendance of Learning Activities

In [97] an occupancy sensing system for a real university campus environment was pro-

posed. The researchers conducted a lab experiment in order to evaluate various commercial

sensors in terms of cost, ease of operation, and accuracy. Deploying beam-counter based

system in 9 real classrooms of varying sizes across their university campus, they collected

data over a period of 12 weeks covering more than 250 courses. Employing detected course

attendance patterns and classroom occupancy, they developed an off-line method that dy-

namically allocates courses to classrooms, and thus they managed to make gains of over

50% in room related costs. In [76] the authors explored the use of Wi-Fi for estimating

attendance in a dense university campus environment. They proposed new methods for

distinguishing and filtering out WiFi-connected users outside an observed lecture room,

and feed such data to a regression model in order to estimate room occupancy. The authors

of [85] analysed data from a Wi-Fi network at technical university using different granu-

larities (each individual access point, groups of access points, entire network) in order to

study the network usage. Their work investigated whether students attending a lecture use

the wireless network differently in comparison to the way students not attending a lecture

do. By employing a supervised learning approach based on Quadratic Discriminant Anal-

ysis (QDA5) they are able to classify rooms into empty and occupied spaces. Although

the proposed method can detect room occupancy, i.e. rooms being empty or occupied, it

falls short in detecting attendance of lectures as it has no means of tracking individual

student’s class attendance. In Chapter 6 of this thesis, namely in Section 6.4, we discuss a

method for estimating class attendance by tracking the attendance of individual students

over the course of a given academic term of 11 weeks. In [119] the researchers attempted

to measure students’ behaviour in classroom-based courses in a large-scale study. They

proposed a system, called EDUM (EDUcation Measurement) to characterise educational

behaviour at a large university campus. They investigated a number of behaviours includ-

ing class attendance, and late arrival to lectures as well as early departure. Their research

work had some interesting findings; for example, they detected class attendance and what

time of day it reaches its highest and lowest levels, the most hard-working day of the week

by using measures such as the attendance ratio and the late arrival ratio. While their

proposed method employs data from multiple sources including Wi-Fi data, in Chapter 6

of this thesis, we discuss how we detected class attendance by inferring session attendance

5Quadratic Discriminant Analysis
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utilising patterns extracted only from Wi-Fi activity traces. Moreover, the ability to filter

noise, i.e. bystanders (individuals who are not part of the intended class but nonetheless

appear to be part of it), is a key factor in developing a successful method that can detect

the attendance of an observed class. In the same chapter, namely in Section 6.4.3, we

discuss two methods for noise removal: Noise Reduction and Attendance Coherence. In

[119] which employs data from multiple sources, the removal of noise merely depends on

how far a connected mobile device is located from the Access Point.

2.4.2 Spatial Classification

Unfortunately, the research in space-based modelling (i.e. models that focus on space) of

the human presence and movement behaviour falls short in devising laws that describe

space patterns [109]; for example, how the interactions and occurrences of activities are

timed in spatial distribution. Modelling space from the perspective of time allows for the

spatial organizations and temporal ordering of spatial functions [109]. Due to the lack of

research contribution, we do not have a good theoretical understanding of this area [109].

However, in Chapter 7 and in [33], we investigate the hypothesis that the distribution

of a social group inter-visit duration, i.e. the waiting time between visits made by the

same social group, approximately follows a uniform distribution for locations where formal

activities, such as attending a meeting or a learning session, take place. We developed

a model that learns a spatial classification in which the type of an observed location is

predicted based on the patterns of inter-visits durations of detected social groups. The

details of this model is discussed in great detail in Chapter 7 of this thesis.

2.5 Discussion

In this chapter, an overview of the major techniques in: 1) the prediction of the user’s

next location of visit by using GPS data, 2) the identification of a user from short trail of

movement activity, and 3) the detection of social groups that the user may be associated

with, was presented. In this section, we discuss key aspects that have not been considered

in previous research in relation to these three areas.

2.5.1 A Collective Inference Approach

Many previously proposed location prediction approaches directly concentrate on inferring

the next location without investigating whether, or not, the data being used might have

latent clustering of mobility patterns such as “weekday” and “weekend”. Discovering such
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a clustering in the data from the outset may lead to a significant improvement in the

prediction accuracy. Our proposed collective model, which is based on a single aggregate

model incorporating the collective record of observed behaviours of multiple users, can

exploit such an underlying clustering of the users to improve prediction accuracy. An

exploratory investigation we carried out in this thesis revealed that there a significant

variance in the average number and the kind of places visited by the users during the

weekend period compared to that of the weekdays period. Capitalising on such a finding,

we build separate models for each class of data as discussed in Chapter 3 of this thesis.

2.5.2 Assessing the Accuracy of Next Place Predictions

The Hit and Miss Score (HM6) which, also known as the “Hit Ratio” or the “Success

Ratio”, has been widely used to measure the prediction accuracy in domains such as

Web usage mining [14] and in user mobility prediction [37]. It is normally computed

as the number of successes divided by the total number of attempts made. However, if

an observed model produces a set of predictions as opposed to a single one, the HM is

used to measure the proportion of times the correct item has been included in the set

of predicted items [14]. In the context of predicting users’ mobility, our opinion, which

is strongly supported by our tests’ results shown in Chapter 3, is that HM on its own

does not provide a sufficient assessment for the prediction accuracy, and thus employing

additional metrics using the mean error, i.e. the Mean Absolute Error (MAE7) and the

Root Mean Square Error (RMSE8), may be preferable.

2.5.3 Mobility Fingerprinting

Although there are various kind of reasons that motivate the correct identification of

individuals, our motivation, in this thesis, stems from the desire to have a unique profile

that encapsulates the individual’s interests in terms of the places that they visit and the

activities that they undertake. Therefore, we emphasise that the underlining purpose of

our proposed mobility fingerprinting method, which we discuss in Chapter 4 of this thesis,

is to provide a platform for constructing more robust context-aware mobile prediction

systems that can equally be employed for user identification.

6Hit and Miss Score
7Mean Absolute Error
8Root Mean Square Error
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2.5.4 Social Groups Detection

The ability to measure the proximity between co-located individuals, during a visit to

an observed location, is a key factor in accurately inferring whether the individuals are

socialising or visiting the target location for different reasons; for example, when two

students visit the Coffee-shop after the class, but sit at separate tables. Unfortunately,

the Wi-Fi data set we utilised for the evaluation of the social groups detection methods

proposed in this thesis does not contain any proximity information. In [102], a novel system

that enables a single Wi-Fi access point to localise devices within a distance of tens of

centimetres was proposed. With such a system in place it is feasible to have rich data sets

that contain information about the proximity between users visiting an observed location.

Evaluating our proposed methods using such a richer data set will most likely increase

the accuracy of the obtained results. Setting aside the lack of proximity information,

in Chapter 6 of this thesis, we proposed a method for detecting class-room friends by

detecting attendance of learning activities then detect social groups that visit locations

such as the coffee-shop during break-times.



Chapter 3

A Collective Prediction Model

3.1 Overview

Models designed for predicting the location that an observed user will visit at a future time,

are typically implemented using a one-model-per-user approach which cannot be employed

for inferring collective or social behaviours involving other individuals. In this chapter, we

propose an alternative that allows for inference through a collaborative mechanism which is

cheaper to maintain and does not require the profiling of individual users. Specifically, we

introduce a family of prediction models that utilise suffix trees as their core underlying data

structure, where predictions about a specific individual are computed over an aggregate

model incorporating the collective record of observed behaviours of multiple users. We

evaluate the performance of these models on the Nokia Mobile Data Collection Campaign

data set and find that the collective approach performs well in comparison to individual

user models. We also find that the commonly used Hit and Miss score (HM) on its own

does not provide sufficient indication of prediction accuracy, and that employing additional

metrics using the mean error, i.e. Mean Absolute Error (MAE) and Root Mean Squared

Error (RMSE), may be preferable.

3.2 Introduction

Predicting the behaviour of individual mobile users is a key factor for context-aware adap-

tation in mobile applications and systems, and moreover avails the foundation upon which

mobile recommendation systems are developed. One approach to build a mobile recom-

mendation system is to employ the one-model-per-user paradigm to predict subsequent

locations that the user will visit [38]. However, by setting the goal “to build a user-specific

43
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model that learns from his/her mobility history, and then apply the model to predict

where the user will go next”, one presents a tightly defined objective: this model must be

constructed solely from personal data recorded specifically as the result of the behaviour

of the particular observed user. Furthermore, the one-model-per-user approach has several

further potential limitations:

1. In practice, most such models typically involve machine-learning techniques which

can produce reliable inferences but only about behaviours that have been previ-

ously observed and incorporated into the model. However, they have relatively poor

performance in situations when novel behaviours occur for the first time.

2. Focusing on the individual, such models cannot be employed for predicting col-

lective/social dynamics, which are often the cause of interesting, and sometimes

surprising, individual behaviour such as those resulting from cascading behaviour

within social networks [6].

3. Individual user models are often sparse and do not contain enough information to

make reliable predictions.

An alternative approach to the one-model-per-user is to predict the behaviour of an

observed user by employing a single aggregate model incorporating the collective record

of observed behaviours of multiple users.

In the next section, i.e. Section 3.3, we define the research problem and in the following

section, we present our model starting with the description of mobility trails, which are

the building blocks of our proposed model, by showing how they are constructed from

users’ mobility traces. In the same section, we present the suffix tree data structure and

how it relates to the one-model-per-user and collective model approaches. We propose two

location-independent prediction models in the “Temporal Models” section. We describe

the data, experiments and the metrics used for assessing the prediction accuracy as well as

providing an extensive evaluation of the experimental results, in the “Evaluation” section,

i.e. Section 3.6. The concluding section in this chapter compares the one-model-per-user

and the collective model. It also debates the merits of using Mean Absolute Error (MAE)

and Root Mean Squared Error (RMSE) versus the Hit and Miss Score (HM).
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3.3 Problem Definition

Within the scope of this chapter, we:

1. Investigate the limitations of the collective model and the one-model-per-user ap-

proaches in the context of the next location prediction problem - the problem of

predicting a user’s subsequent location of visit, taking into consideration the time

and location information of where the user had been in the past.

2. We examine the effect of the length of the user record of the most recent temporal

locality used to make inferences, and the relative loss of accuracy when reduced data

samples are provided so as to establish the exact trade-off involved.

3. We evaluate our proposed approach using MAE and RMSE error metrics. We show

how to use these two metrics to determine the number of suggested (the top-k)

locations which are most likely to include the observed user’s correct next location

of visit. We also investigate the merits of HM in evaluating the accuracy of the

proposed location prediction algorithms.

3.3.1 Contributions

Supported by empirical evidence, this chapter makes the following two main contributions:

1. It presents a collective approach for predicting the mobility behaviours of users. This

approach is a principled and scalable implementation of a variable length Markov

model [12] which allows for collaborative inference while it does not require the

profiling of individual user behaviour.

2. It compares the prediction accuracy of the collective and the one-model-per-user

approaches. It also examines the strengths and limitations of each approach.

3. It describes a more comprehensive approach, than previously proposed, to evaluating

the mobility model’s prediction accuracy.

3.3.2 Methodology

We have followed a specific methodology to construct the collective model, the details of

which will be discussed later in the next Section 3.4. In brief, we construct a variable length

Markov chain model [12], which we store in a suffix tree data structure that allows for

flexible and high-performance querying. This representation is supplemented by specific
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weighted spatio-temporal metrics of significance to estimate and rank the probability of

computed inferences.

3.4 Modelling with Suffix Trees

3.4.1 Mobility Trails

The cornerstone of our approach is the use of trails as the principal data processing prim-

itive for analysis and prediction. Our choice of trails was not arbitrary. For centuries, and

in many ways, trails have been used as the basis for coordination between humans. For

example, navigation trails provide route information and record information about paths

to specific destinations. Aggregating multiple trails acquired over time across a particular

environment is the technique humans often use to develop complete maps of a particular

landscape, and subsequently assist navigation, especially in the context of exploration [48].

We consider a mobility trail of an observed user as the sequence of recordings, of the

temporal and spatial information, of all the visits that the user makes in a day. Trails

contain users’ mobility patterns and they can be used for the provision of different ser-

vices, spatial, temporal and social analysis [25]. However, a traditional drawback of trail

analysis is that it requires considerable storage and computational resources to discover

such patterns. To overcome this, we employ a trail-based analysis approach, which utilises

suffix trees as the data structure for efficient storage, filtering and retrieval [10].

We view a user’s mobility history as a directed graph, where vertices denote locations

which the user visited and edges denote paths between such locations. Two locations

are said to be connected if they have been visited in sequence by the observed user.

In such context, a trail can be defined as a sequence of connected locations, such that

the connections between locations are always directed. The connections in the trail are

weighted with different usage meta-data such as the time-stamp indicating the time of

visit of the destination location.

3.4.2 Detecting a User’s Mobility Patterns

In contrast to using known landmarks which describe the positions of significant entities

within the landscape that the users interact with, we concentrate on utilising the sequence

of geographic coordinates recordings of the user’s exact location. The basic assumption

here is that over a period of time and as the user, in their daily routine, moves from one
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location to another, some of the user’s mobility patterns would have been captured in the

aggregate of these coordinates recordings. To detect these patterns we apply the following

procedure:

1. For every user, apply the DBSCAN1 algorithm [36] to cluster the GPS data to

identify the set of locations which are likely to be part of a daily pattern as opposed

to just noise (Locations that have a number of visits below a certain threshold are

considered noise and hence ignored - see Figure 2.1).

2. Compute the centre of mass of the locations in each discovered cluster.

3. Using a latitude/longitude grid, for each cluster, identify the grid cell(s) containing

the centre of mass of the clusters.

4. Divide the day into equal time-units. (We choose 20 minutes as the basic time unit).

5. Compute the duration of visit for each cluster using the time of visit associated with

the GPS readings. Then identify the time-unit(s) corresponding to each visit.

6. Construct the daily trail using the grid cells and the time-units computed in step 5.

The result of the processing given above is to obtain sequences of tuples where each

tuple contains the following information:

〈user, time, day, location, meta-data〉

where

i) user : the ID of the particular person involved.

ii) time : the corresponding time-unit in which the GPS reading was recorded.

iii) day : the corresponding day of the week in which the GPS reading was recorded.

iv) location : the ID of a specific grid cell, which contains the centre of mass of the

cluster of the visited location.

v) meta-data : a list which may contain information such as the duration of

interaction, the exact time and date of visit of the destination location.

1Density-based Spatial Clustering of Applications with Noise
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3.4.3 Suffix Trees

Trail analysis has a major drawback due to the fact that it may require considerable stor-

age and computational resources to discover hidden patterns. To efficiently store the trails

and their related meta-data we use a probabilistic suffix tree data structure [10] enhanced

with meta-data needed to encapsulate different information and metrics. Our choice of

this data structure, i.e. suffix trees, was motivated by the fact that suffix trees can main-

tain all captured information in a compact format, while being able to respond to queries

in linear time in the size of the trail, and, in addition, being capable of responding to

requests about any number of possible times, space and semantics related criteria. Suffix

trees have been successfully employed in a number of domains such as anti-spam filtering

[80] and computational biology, where they were used to address problems such as string

matching applied to DNA2 sequences [10].

3.4.4 Tree Representation

For our suffix tree representation, we opted for a design in which the nodes are labelled as

opposed to the edges [80]. Also, due to the nature of the task undertaken in this work, our

suffix tree uses a terminal character to determine the depth of the tree which, depending

on the number of users in the data set, can grow very large in size. Furthermore, our

trees are not limited in size which is a key factor that gives the model the ability to learn

as more locations are being explored by the observed users. An example of this data

structure is shown in Figure 3.1. For a thorough description, along with algorithms to

efficient memory usage and improved processing speed, the reader is referred to [51].

3.4.5 The One-model-per-user

The one-per-user suffix tree model is based entirely on a single user’s past mobility data.

The history data is divided into trails representing the daily sequences of visits made by

the observed user. For each such sequence of daily visits, the time and location information

of each visit is encoded in a string object and the objects, in turn, are grouped together to

form a trail. In order to make a prediction, the tree is presented with a search-trail, which

is the trail representing the sequence of the most recent visits that the user made including

the current visit. If a matching sequence of visited locations is found, the tree responds

with a list of candidate locations. Each candidate location has been visited by the user, in

2Deoxyribonucleic Acid
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Figure 3.1: A suffix tree for the trails represented by the strings “ABBC”, “CBBA” and
“BBC”. The letters denote the individual visits made to the locations in each trail and
the numbers show the frequency of visit to each location.

the past, immediately after making the sequence of visits given in the search-trail. Those

top-k candidate locations with the highest frequency of visit are predicted as the next k

locations, i.e. each of these k locations is most likely to be visited by the user immediately

from his/her current location.

3.4.5.1 Predicting the Next Location with Suffix Trees

Suppose that we have a training set A and a test set B of mobility trails of an observed

user u. Let S be a suffix tree built from the trails in the set A. Suppose that we have a

trail, T = t1 , t2 , . . . , tn obtained from our test set B, where ti , 1 ≤ i ≤ n, represent

the ordered locations visited by the observed user u, and we wish to discover the location

tn+1 that the user u is likely to visit next. We can apply Algorithm 3.1, called Predict,

based on [63], to predict the next location:

3.4.6 The Collective Model

The collective suffix tree model is a joint model over the population of all users. It enables

prediction of the next location of visit based on the past mobility data of multiple users.

The training data for the model is made of the union of all the training sets used for

building the individual per-user suffix tree models. The data identifying specific users (i.e.

userID) is completely excluded before building the model. The location data is transformed
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1: Predict(T, S, k)

2: let s be the longest suffix of T in S

3: if s is empty then

4: return the top-k popular/time spent locations;

5: # these will be children of the root

6: else

7: return a ranked list of the k most popular

8: locations directly reachable from s;

9: # these will be children of the last location in

10: # s, where s is a path from the root

11: end if

Algorithm 3.1: Predict

into grid-cell-ID which captures most of the mobility information but excludes the actual

geographic coordinates.

3.5 Temporal Models

The motivation behind the simple models described in this section is to address the lack of

matching historical behaviour which the suffix tree requires when predicting the observed

user’s future behaviour. Both of the two models: Time-spent Predictor (TSP3) and the

Most Popular Location (MPL4), predict a user’s future behaviour using only the current

temporal context.

3.5.1 Most Popular Location (MPL)

The Most Popular Location (MPL) finds the location which the user visited most often.

Given a time interval t, the (MPL) method ranks each user’s visited locations based on

their historical popularity. By restricting the prediction to t, as in the TSP model, MPL

learns from the user temporal behaviour. For example, a user who frequently visits a

shopping mall at a particular time interval of the day is likely to visit the same shopping

mall during the same interval as opposed to visiting the most popular location visited in

their entire mobility history.

In order to predict the location that a user u will be visiting next during the time

interval t, we compute the location l, which has the highest probability of visit, amongst

3Time-spent Predictor
4Most Popular Location
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the locations that were previously visited by the user u during the interval t. If L =

{l1, l2, l3, . . . , ln} denotes the set of locations that u previously visited during the same

time interval t, and V = {vli,j | vli,j is the jth visit made to location li ∈ L} denotes

the set of all visits made to the locations given in L, then the probability of visit can be

described by the following equation.

Pr(Location = lk|t) =
|Vlk |
|V |

, (3.1)

where Vlk denotes the set of visits made to the location lk (Vlk = {vlk,1, . . . , vlk,m}), Vlk
⊂ V , lk ∈ L and k ∈ {1, 2, 3, . . . , n}.

The MPL model computes a probability of visit ranked list of all the locations visited

during t and returns the top-k locations.

3.5.2 Time-spent Predictor (TSP)

The Time-spent Predictor (TSP) finds the location, where the user spent most of his/her

time. It utilises the time-spent at each visited location as a basis for predicting the next

location. For example, a user who spends more time, on average, at a shopping mall at

a particular time interval of the day is likely to visit the same shopping mall during the

same interval as opposed to visiting other locations.

In order to predict the location that a user u will be visiting next during the time

interval t, we compute the location l, which has the highest average time-spent amongst

the locations that were previously visited by the user u during the interval t. If L =

{l1, l2, l3, . . . , ln} denotes the set of locations that u previously visited during the same

time interval t, and W = {wli,j | wli,j is the duration of the jth visit made to location

li ∈ L} denotes the set of durations of all visits made to the locations given in L, then

the average time-spent at an observed location l can be computed by using the following

equation.

TSP (lk, t) =

∑
x∈Wlk

x

∑
y∈W

y
, (3.2)

where Wlk denotes the set of durations of visits made to the location lk (Wlk = {wlk,1,
. . . , wlk,m}), Wlk ⊂ W , lk ∈ L and k ∈ {1, 2, 3, . . . , n}.
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Property Open challenge data set

Number of users 38

Number of user-days 8154

Average number of locations per user 89

Table 3.1: Properties of the Nokia MDC Open Challenge data set [71].

The TSP methods compute a time-spent ranked list of all the locations visited during

t and returns the top-k locations.

3.6 Evaluation

3.6.1 Data Set

For the evaluation of the proposed approach we utilised the data set which Nokia released

for its mobile data competition in 2012 [71]. To create the data set, Nokia launched the

Lausanne Data Collection Campaign [71] which had nearly 200 participants and lasted for

about two years. The collected data was divided into several parts where each challenge

in the competition was allocated a separate part of data (see § 1.6.1.1). The data part we

used (originally used for the Open Challenge) consisted of data collected from the mobile

phones of 38 users. It had the actual raw location data including GPS coordinate record-

ings and WLAN5 for all the users. It was rich and ideal for testing the models proposed

in this chapter particularly the comparison between the collective and the one-model-per-

user approaches. It is important to note herein that the proposed models in this chapter

can be directly employed with any similar data set. The Nokia data set used herein was the

only data set available to us at the time of conducting the experiments presented hereafter.

A summary of the properties of the Nokia data set can be seen in Table 3.1.

3.6.2 Experiments Design

To evaluate the proposed models, for each user, we organise the data into a sequence of

days based on the time in which the user visited each of the different locations. We then

carry out the following steps:

1. For each user, we divide the daily trails into two sets: a large set containing the first

α % of the total number of trails. This set is used for the model training and the

5Wireless Area Network
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remaining (100-α)% of the data set is used for testing. To evaluate our proposed

models, the alpha value used to divide the data was 80 which is a common value

chosen by other researchers [38]. If a user u had a hundred trails of movement in the

evaluation data set then 80 trails will be utilised for training the prediction model

and the remaining 20 trails will be used for testing the trained model.

2. For the one-per-user-model, we create a suffix tree for each user utilising the data

given in the training set. For the collective model, we use the data from the union of

the different users’ training sets to create a single suffix tree. The data identifying the

different users is modified so that there is only one single anonymous user associated

with all the locations data encoded in the tree. Assuming that the evaluation data

set contains the three users u1, u2 and u3, and α % is 80%, a one-per-user suffix tree

model for the user u would be built using only the 80 trails given in his/her training

data set. However, to construct a collective suffix tree model we need to employ the

trails given in the training data sets of two or more users such as the users u1, u2

and u3. In such a model all the trails utilised in the training are regarded as being

generated by a single anonymous user, and thus we can neither distinguish between

the actual users nor identify the trails belonging to any of them.

3. For each daily trail data from the test set, we compute search-trails, of a maximum

length n, using the following sliding window technique: Let T be the daily trail to be

tested and assume a window of size n, we extract the n first locations from the trail

T , match against the suffix tree and try to predict the (n + 1)th location in T. We

then slide the window to include the locations from the 2nd to (n+ 1)th and attempt

to predict the (n + 2)th location and so on. The locations contained in the sliding

window make, what we call, a search-trail. A search-trail of size n is identified as a

rank n search-trail. To test our approach, the maximum search-trail’s length used

was 5, which is a reasonable choice for the number of historical visits required for

querying the proposed models.

Example: Suppose that the tree, shown in Figure 3.1, represents the mobility

history of a user u and the trail “BB” gives the sequence of the most recent visits

that were made. To predict the location that u will visit next, we present the trail

“BB” to the tree which produces the candidate locations ‘A’ and ‘C’ - the location

‘C’ has a higher probability as opposed to location ‘A’, and thus most likely to be

the next location of visit.
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3.6.2.1 Error Measurement

To evaluate the accuracy of the proposed models, we use two well known metrics: the

Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) [13], which are

standard methods for measuring the average inaccuracy associated with a set of model-

produced predictions. They essentially measure the difference between the predictions

made by the observed model and the actual values being predicted. In the context of

next location prediction, we have slightly different interpretation to MAE and RMSE as

opposed to how they are normally interpreted in systems such as those which predict a

user’s likes or dislikes for items or products. MAE can be interpreted as the mean rank

of the correct predictions while RMSE provides a measure of spread of the ranks of the

correct predictions. MAE and RMSE can be utilised to determine the size of the list of

predicted locations that includes, on average, the correct next location. For example, if

the MAE value 1.5 and the RMSE value is 0.5 , one can suggest the top two predicted

locations which are most likely to include the correct next location. By suggesting the top

k locations on the basis of the MAE, we are actually saying that, on average, the top-k

are likely to include the correct next location if it was one of the locations which the user

had followed in the past.

In the proposed approach, the possible next locations are ranked 1 to r according

to their probability of visit. Assuming that the highest ranked location was the one

followed, then we compute the absolute error score for an individual prediction as (r-

1). For example, if the rank of the correct next location in the ordered list of candidate

locations was 5, then the error will have the value 4. For n predictions the MAE, as shown

in Equation 3.3, is the average of the n individual scores:

MAE = n−1
∑
i

(ri − 1). (3.3)

As a special case, if the location that was followed had probability zero in the suffix tree,

i.e. it does not appear as a next location, then we take it to be in the last position, r.

In such a situation, we assume that the list of suggested locations has the length equal

to the maximum branching factor of the suffix tree (i.e. the maximum number of leaves

per branch). Our choice to use the maximum branching factor as opposed to the average

was purely motivated by the fact that we wanted to increase our confidence that the list

of suggested locations will include the correct next location.
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To compute the RMSE, the errors are squared before they are averaged. Consequently,

if the squared error score for an individual prediction is (r-1)2 then for n predictions, the

RMSE, as shown in Equation 3.4, is the square root of the average of the n squared

error scores. Therefore, RMSE gives a relatively high weight to large errors, and is thus

most useful when large errors are particularly undesirable. This implies that, in general,

extending the list of suggested locations on the basis of the RMSE value, is likely to give

a better chance for the correct next location to be included in the list, as opposed to when

MAE is used.

RMSE =

[
n−1

∑
i

(ri − 1)2

]− 1
2

. (3.4)

3.6.2.2 Hit and Miss Score (HM)

To compute the Hit and Miss Score (HM), we count a correct prediction (a hit) as 1 and

an incorrect prediction (a miss) as 0. We then divide the number of hits by the total

number of predictions made, as shown in Equation 3.5. In the current context, HM can

be interpreted as the probability of guessing that the next location visited by the user was

the one with the maximum probability.

HM = n−1h. (3.5)

where h is the number of hits and n is the total number of predictions made.

3.6.3 Results

To develop our proposed approach, we benefited from an exploratory investigation about

the users’ activity during the different days of the week. We discovered a significant

variance in the average number and the places visited by the users during the weekend

period compared to that of the weekdays period, as shown in Figure 3.2. This was the

key motivation for building separate models for each class of data.

To benchmark the performances of the proposed models, we compare the results of the

proposed suffix tree models against the performance of MPL. The idea is that for a good

prediction performance, the values of the three metrics: MAE, RMSE and the HM score,

produced by the proposed suffix tree models, should be better than the ones produced

solely by MPL. In an ideal scenario, the values of the MAE and RMSE produced by the

suffix tree models should be significantly smaller than the ones produced by MPL whilst

their HM scores should be, by a large amount, greater than the HM scores obtained by
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Figure 3.2: The overall daily, weekdays and weekend average activity which is computed
as the ratio of total number of visits made to the number of visitors.
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testing MPL. Should the results produced by the proposed models be significantly worse

from this ideal scenario, the system should simply make the predictions on the basis of the

user’s most popular visited locations, and avoid using the more computationally expensive

collective or the one-per-user suffix tree models.

3.6.3.1 Target Locations with Visiting History:

Tables 3.2 and 3.3 show the prediction results for target locations that the observed user

had seen in the past; for the collective model, any previous visit to the target location

could have been made by any of the users and not necessarily the observed user. The

best overall HM score was produced by the collective suffix tree (CST6
seq) model in which

the sequential order of the visits was taken into consideration and the time of visit was

ignored. Removing the time of visit increases the number of overlaps between the locations

visited by the users and, as a result, there is a greater chance for the most frequently

visited locations to be correctly predicted. The same model, when tested on the weekend

data, reported similar HM scores as its sister model, CST which takes into account the

time of visit. The rival one-per-user suffix tree (ST7) model also had similar HM scores,

when tested on the weekend data. However, the two models had very different MAE

and RMSE values, with the one-per-user model reporting significantly superior results as

opposed to the ones reported for the CSTseq model. What is exciting about the results of

this experiment is the fact that those results achieved by the collective suffix tree (CST)

model, were comparable to those achieved by the one-per-user suffix tree (ST) model. The

two models had very similar HM scores; however, the collective model CST had a slightly

higher RMSE and MAE results as opposed to the one-per-user ST model, which had the

best overall MAE and RMSE results. The key contributing cause to this difference in

the MAE and RMSE results was the fact that the CST model utilises data from multiple

users, and hence, has a higher branching factor compared to that of the ST model.

3.6.3.2 Target Locations with no Visiting History:

The results for predicting target locations with no visiting history, shown in Tables 3.4

and 3.5, were the product of the MPL and the TSP temporal models which, unlike the

suffix tree models, do not require history data to make predictions - due to the lack of

history data, we cannot apply the suffix tree approach in this experiment (note here that

the target locations with no history data only account for 25.63% of the total number

6Collective Suffix Tree
7Suffix Tree
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Model MAE RMSE HM

Single user model

MPL 7.8425 13.4803 0.6189
TSP 10.0476 14.9909 0.5000
ST 1.1099 2.5131 0.7596

STseq 7.0333 16.3389 0.7077

Multi-user model

CMPL 231.6909 252.2456 0.1225
CTSP 247.9568 260.5844 0.0717
CST 1.6975 3.8453 0.7547

CSTseq 7.6994 19.2091 0.7733

Table 3.2: MAE, RMSE and HM (In this experiment, all target locations given in the
test set have visiting history in the training data set).

Weekdays Weekend
Model MAE RMSE HM MAE RMSE HM

Single user model

MPL 7.5174 13.1452 0.6313 9.3373 14.9244 0.5621
TSP 9.9434 14.8343 0.4961 10.5266 15.6904 0.5178
ST 1.1190 2.5174 0.7552 1.0639 2.4913 0.7820

STseq 6.8970 15.8087 0.7066 7.6598 18.5828 0.7130

Multi-user model

CMPL 234.9781 254.0477 0.1094 217.4076 244.2612 0.1793
CTSP 247.9875 260.8331 0.0713 247.8234 259.5012 0.0734
CST 1.7552 3.9282 0.7493 1.4060 3.3961 0.7820

CSTseq 7.6942 19.0707 0.7716 7.7256 19.8934 0.7820

Table 3.3: MAE, RMSE and HM for the weekdays and the weekend periods (In this
experiment, all target locations given in the test set have visiting history in the training
data set).

of queries generated from the test data). It is noticeable here that all collective models

scored very poorly, particularly the CMPL and the CTSP models which failed to make

correct predictions except for a few random target locations.

3.6.3.3 Collective MPL and TSP Models:

To understand why the collective version of the MPL model (CMPL8) had very poor per-

formance, we compared the variance between the numbers of users choosing a particular

landmark as their most popular location. The idea is that for a given time period of

the day, CMPL would have a good prediction performance, if a large number of users

shared a particular landmark or set of landmarks as their most popular location(s). Con-

sequently, across different landmarks, one would expect a high variance in the number of

users sharing a landmark as their popular location of visit. Our experimentation shown

8Collective Most Popular Location
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Model MAE RMSE HM

MPL 15.7422 18.3290 0.1523

TSP 15.1946 17.9626 0.1514

CMPL 232.0867 243.1919 0.0222

CTSP 234.0202 244.1505 0.0161

Table 3.4: Model performance when no visiting history is available. In this experiment,
all target locations given in the test set have no visiting history in the training data set.

Weekdays Weekend
Model MAE RMSE HM MAE RMSE HM

MPL 15.7051 18.7425 0.1763 15.8000 17.6646 0.1150

TSP 15.0665 18.2973 0.1705 15.4067 17.3943 0.1196

CMPL 229.1405 242.6729 0.0268 236.5584 243.9774 0.0152

CTSP 232.2308 244.2362 0.0167 236.7360 244.0203 0.0152

Table 3.5: Weekdays and the weekends model performance when no visiting history is
available. In this experiment, all target locations given in the test set have no visiting
history in the training data set.

that the highest variance, across the different time intervals, for MPL models was 1.16;

only three landmarks were shared as most popular locations and the maximum number

of users sharing a landmark was seven.

A similar idea can be applied to the collective version of the TSP model (CTSP9),

where the variance of the number of the users sharing a landmark as their most time-

spent location is examined. Based on the experiments we carried out the reported highest

variance, across the different time intervals, for the TSP models was 5.7431; only four

landmarks were shared as most time-spent locations and the maximum number of users

sharing a landmark was thirteen.

One approach to improve the performances of CMPL and CTSP, would be to cluster

users according to visited locations or area of visit and then individually predict the

mobility in each cluster using CMPL or CTSP. Implementation of such an approach would

require identifying the cluster that the user belongs to. This may lead to the compromise

of users’ privacy if, for example, some of the detected clusters individually contain a single

user. In such cases, the collective model effectively becomes a one-model-per-user.

9Collective Time-spent Predictor
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3.6.3.4 Query Length:

We also studied the effect of the length of the historical movement trail used for querying

the models to determine the relative loss of accuracy when such data is reduced. It is clear

from the results shown in Table 3.7 that, on average, the more history the search query

contained the better the prediction result is, except for the search queries with history data

length equal to 2 which have slightly worse results compared to those with length equal

to 1. This is true for both the ST and the CST models. It is also clear that for search

queries with history data length greater than 3, which account for more than 70.34% of the

total number of queries made in the test experiments, the ST achieved only a very small

improvement over the CST HM score. This a strong indication that the performance of

the two models are very similar.

Length of record number of trails %

0 555 25.63%

1 33 1.52%

2 29 1.34%

3 25 1.15%

> 3 1523 70.34%

Table 3.6: Details of historical records (search-trails) used for querying the models

3.7 Discussion

3.7.1 The Collective Model Versus the One-model-per-user

The collective model has a number of advantages over the one-model-per-user:

1. Social prediction: Like other data-mining methods, the one-per-user model can pro-

duce accurate predictions but only about mobility behaviours that have been pre-

viously observed. However, it has relatively poor performance in situations when

novel behaviours occur. The collective model, on the other hand, may have better

performance in such situations due to the fact that it is not only focused on the

observed user’s past behaviours but rather has a range of behaviours from multiple

users, which quite often include the behaviour we are attempting to predict.

2. Serendipity: As a recommendation method, the one-model-per-user would always

predict places that had been previously seen by the observed user. Whilst this leads

to making safe recommendations, it does not help the user to discover new places



3. A Collective Prediction Model 61

Length of historical record ST CST
used for querying the model MAE RMSE HM MAE RMSE HM

1 1.4242 2.8551 0.6364 1.7576 3.7172 0.6970

2 1.6552 3.0850 0.6207 2.7931 4.8672 0.5862

3 1.2800 2.6533 0.6800 1.9200 4.0987 0.7200

> 3 1.0900 2.4907 0.7663 1.6717 3.8217 0.7597

Table 3.7: MAE, RMSE and HM, for ST and CST models, computed for different visiting
history lengths (In this experiment, only target locations which have a visiting history in
the ST training data set were used).

that they had not seen before. Due to the ability of making prediction using places

seen by other users, the collective model can recommend new places that the user

has not experienced in the past. (Note that this highlights the difference between

prediction and recommendation.)

3. Less sensitivity to cold start situations: When users are newly added to the system,

they normally have no mobility history that can be employed to predict their next

behaviour, a condition which is known as cold-start [88]. Since the collective model

makes its prediction on the basis of behaviours of multiple users, it is less sensitive

to such situations compared to the one-model-per-user.

4. Cheaper to build: The collective model costs less to build and maintain compared to

multiple one-model-per-users.

Despite their appeal, both collective and one-per-user suffix tree models share a few

shortfalls which we summarise hereafter:

1. In the cases where there is no mobility history to consider for predicting the next

location of visit, the one-per-user model fails to make a prediction. The collective

model predicts the next location as the most likely location visited by the users incor-

porated in the model irrespective of whether it contains any record of the observed

user ever visiting such a location in the past.

2. When the user has very low predictability (i.e. the user very often visits new places

that he/she has never been to in the past), there is high probability that the model

would make an incorrect prediction.

3. For some users, matching the highest ranked trail does not necessarily lead to a

correct prediction.
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To address these problems we propose the following respective solutions:

1. The immediate solution, not necessarily the most effective, is to use TSP or MPL

when the observed user has no mobility history to consider. An alternative approach

to deal with this problem would be to cluster landmarks based on their location and

use the new data to build a collective suffix tree model for each cluster.

2. The collective model is based on historical mobility record of multiple users and as a

result has a wider coverage in comparison to the one-model-per-user, which depends

solely on a single user record of movement. Therefore, it make more sense to predict

the behaviour of users with low predictability using a collective model as opposed to

using a one-model-per-user, which is less likely to produce accurate predictions for

mobility behaviours of such users.

3. In many cases, using shorter trails may result in the model correctly predicting

the next location. Nonetheless, in our evaluation tests, we consider all candidate

locations computed by using the longest search-trail as well as all the shorter trails

from the same search-trail (i.e. we query the suffix tree using a search-trail of length

5, then length 4 and so on).

3.7.2 MAE and RMSE versus HM

To have a better perspective of the model accuracy, it is important to know, not only,

whether or not the system is making correct predictions but also “how close” the predic-

tion to matching the correct target location is when the system incorrectly predicts the

user’s next place of visit. Since the HM score is more focused on the hits as opposed to

the misses, using it on its own, gives an imbalanced assessment of the prediction accuracy.

Also, in many application areas, unless the HM score is very high, the predictions cannot

be reliable and most probably not very useful. In the context of the next place prediction

problem, achieving a high HM score is, generally, a very hard task. For example, in the

Nokia MDC competition in 2012, the highest HM score achieved was 0.56 [78]. One inter-

pretation of such a score is that, on average, the system will make approximately 4 errors,

in every 10 predictions it makes. This is a highly unreliable score for many sensitive ap-

plication areas, where there is little margin for making erroneous predictions. Measuring

the prediction performance on the basis of the HM score alone does not comprehensively

assess of the system’s prediction accuracy.
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A sensible alternative would be for the predictor to present a short list of landmarks

that are most likely to be of interest to the user. Showing, the user, a list of landmarks to

choose from would, in many cases, be preferable to acting on a single landmark prediction.

In the current context of next location prediction, MAE and RMSE could be employed

very effectively, to determine the length of the list of suggested landmarks which would,

most likely, include the correct next location to be visited by the observed user.

The main criticism of any of the three metrics is that, using one on its own may

not give sufficient assessment of the prediction accuracy. A thorough evaluation of the

proposed prediction algorithms suggests that algorithms optimised for maximising the

HM score do not necessarily perform similarly when measured with the MAE and RMSE.

The experimental results show that improvements in HM score often do not translate into

improvements in MAE and RMSE values. (See the experiment results in Tables 3.2 and

3.4.) With several factors to consider, using the three metrics: MAE, RMSE and HM

together for evaluation purposes, is more likely to give a clearer picture of the prediction

accuracy. Striking a balance between the values of the three metrics is a key element in

getting a good evaluation of the overall prediction accuracy.

3.8 Summary

In this chapter, we investigated the predictive power of the collective model and the

one-model-per-user approaches. We showed how the two approaches have very compa-

rable prediction performances particularly when previously seen behaviours are available

to make inferences from. We also showed that only a short record of mobility history is

required in order to make relatively accurate predictions about the future behaviours of

users. We examined the effect of the length of this record and the relative loss of accuracy

when reduced data samples are used. It was clear that as the length of the historical

record increases the the models prediction accuracy improves.

We presented an alternative approach that allows for collaborative prediction and has

the potential to overcome the one-model-per-user’s weaknesses such as the inability to

deal with novel behaviours.

We evaluated our proposed approach using the error metrics MAE and RMSE, and

showed that they can be utilised to determine the top-k landmarks which are most likely to
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include the correct location to be visited next by the observed user. We also investigated

the merits of HM, also know as the success ratio, in evaluating the models prediction

performance. On the basis of the experimental results we argued that using HM on its

own is insufficient to assess the prediction performance. We also demonstrated that using

the three metrics: MAE, RMSE and HM together for evaluation provides a better view

of the models’ prediction accuracy.



Chapter 4

Mobility Fingerprinting

4.1 Overview

We define a mobility fingerprint as a profile constructed from the user’s historical mobility

traces. We propose an algorithm for building such a profile, and collect a sample of

fingerprints from the publicly available Nokia Mobile Data Challenge data set [70]. We

find that users have unique mobility fingerprints, i.e. they can be distinguished from one

another. Furthermore, we find that an observed mobility trail can be associated with the

fingerprint of the user to whom the trail belongs, i.e. a user can be identified by his/her

movements. Here, we argue that in order to successfully identify individual users on the

basis of their recent mobility history, it is imperative that a rich historical record about

the movement of those users is maintained. Although it is possible to construct a minimal

fingerprint while preserving its uniqueness, in the interest of user Identifiability, the richer

the fingerprint the more accurate it is in identifying the correct user from a short record

of observed movements. We also propose a method for constructing location fingerprints

and we demonstrate how accurate such profiles can be in predicting users’ future places

of visit.

4.2 Introduction

Since the advent of the Internet, we have developed many forms of online identities. How-

ever, because of the continuing advancement in pervasive computing and data connectivity,

perceptions about an individual’s identity are changing rapidly. In user mobility, mobile

devices can often be uniquely identified by the MAC address, or the “phone number”.

65
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Although such identification methods are very successful in distinguishing between indi-

vidual devices, they usually pose considerable privacy challenges. For example, even when

anonymisation techniques are applied and private information is removed form a data set

of mobility traces, it may still be possible to associate the cleaned data with the correct

individual by using outside information. The study presented in [111], which demonstrates

how realistic such a compromise of privacy can be, the top locations of visit were used to

re-identify the data of mobile phone users. Setting aside the sensitive privacy issues, such

identification methods also cannot be employed for inferring and analysing the dynamics

of human mobility. Therefore, we have been investigating the possibility of constructing

a dynamic method of identification using mobility data which, for each individual user,

as shown later in this chapter, possess measurable variations that make it suitable for

’mobility fingerprinting’ [32].

As shown in [111] and [98], mobility data, which usually contains detailed space and

time information, can be exploited to predict accurate personal information about the

movements of those people whose mobile devices generated the data. Knowledge of such

information does not only give valuable insight into human mobility behaviour, but can

also be of interest to a wide range of systems that benefit from accurate identification of

individuals and their future locations of visit [89]. For example, this work is particularly

concerned with the Identification of mobile users within the context of location prediction

and recommendation. Indeed in such a context, finding a distinct set of data that makes

the individual unique is not the key point. It is much more useful to have a rich pro-

file that, in addition to being unique also reflects the individual’s interest in terms of the

places that they visit and the activities that s/he undertakes. Such a profile clearly offers a

distinct advantage where it allows grouping together individuals with similar interests and

tastes. The ability to create such groupings is the foundation upon which collaborative

prediction and recommendation systems are developed. Furthermore, in such a context,

using a mobility profile that is built from a small set of unique locations is most likely

to have poor accuracy when employed to identify the user from observed movements.

Restricting the profile to include only a set of unique locations would mean that any

observed movements, based on shared locations with other users, would have poor sim-

ilarity to such a profile; hence a successful identification of the correct user is less probable.

The rest of the chapter is organised as follows: In the next section, we present the

research questions addressed, the contributions made to the field and the methodology used
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for constructing the proposed fingerprinting method in this chapter. In Section 4.4, we

introduce our proposed method for constructing the mobility fingerprints. In Section 4.6

we propose the idea of location fingerprinting and how it can be applied to the next

location prediction problem. In Section 7.7, we describe the experimental setup and the

testing methodology for the proposed methods. We evaluate our approach by collecting

fingerprints from mobility traces of 38 individual users from the publicly available Nokia

Mobile Data Challenge data set [71], which we describe in Subsection 4.7.1. Finally, in

Section 5.7, we discuss the serendipity feature of the proposed location fingerprint model

as well as the problem posed by compressing fingerprints of adventurous users - those that

are not mainstream users.

4.3 Problem Definition

The underpinning motive behind the proposed mobility fingerprinting method, discussed

herein, is to provide a platform for the development of more effective context-aware mobile

prediction systems. Within the scope of this chapter:

1. We investigate whether the trails generated from users’ mobility traces have sufficient

measurable variations which allow for fingerprinting of movements of those users to

whom these traces belong, i.e. can we create a unique profile from the user’s record

of historical movement.

2. Assuming that the users have different mobility fingerprints, this chapter examines

the identifiability of the correct user from an observed mobility trail, i.e. having

built a unique profile for each user, we then examine whether we can associate a

short trail of observed movements with the unique profile of the correct user who

generated the short trail of movements.

3. We investigate the effect of the length of the user record of the temporal locality

used to correctly identify the user, and the relative loss of accuracy when reduced

data samples are provided so as to establish the exact trade-off involved.

4. Focusing on the individual user, the chapter examines whether the size of the fin-

gerprint can be reduced while retaining identifiability, and to this end it attempts to

find a minimal fingerprint that can be employed to correctly identify the user from

a short record of observed movements.
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5. It also investigates whether the proposed fingerprinting method can be extended

to create unique profiles for landmarks (the terms ‘location and ‘landmark are used

interchangeably in this chapter), user activities or even temporal units such as days of

the week. It examines whether such fingerprints can be used for location prediction,

and to this end we demonstrate how the location fingerprints can be successfully

employed in predicting the location that an observed user will be visiting in the

future. Herein we refer to the definition of the next place prediction problem, which

has been described in a range of other research works such as [31, 38].

4.3.1 Contributions

This chapter makes the following contributions, backed up by empirical evidence:

1. Although the term fingerprint has been around at least since 2013 [101], we present

the mobility fingerprint, which is a profile constructed from a user’s historical mo-

bility traces, for predicting the user’s future mobility behaviour. We propose an

algorithm (see § 5.3.2) for building such a profile.

2. We demonstrate that users have unique mobility fingerprints, i.e. they can be distin-

guished from one another. Furthermore, we demonstrate that an observed mobility

trail can be associated with the fingerprint of the user to whom the trail belongs, i.e.

a user can be identified by his/her movements. Herein, we demonstrate that in order

to successfully identify individual users on the basis of their recent mobility history,

it is imperative that a rich historical record about the movement of those users is

maintained. We also show that the richer the fingerprint is the more accurate the

identification of the user from observed movements.

3. We demonstrate that the proposed fingerprinting method can be used to create

unique profiles for landmarks and by successfully applying it to the Next Location

Prediction problem, we demonstrate that such profiles can be a very useful tool for

location prediction.

4.3.2 Methodology

We followed a specific algorithm to construct the the mobility fingerprint, the details of

which will be discussed in Section 4.4. In brief, this algorithm takes the following steps:

Step 1. We start by detecting the different locations (or landmarks) visited by the users.
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Step 2. Using the detected locations and their time of visit, we compute the mobility

trails of each of the users. Each trail is represented as a sequence of n-grams

(The definitions of trail and n-gram are given later in Subsection 4.4.2).

Step 3. We use the computed trails to create the fingerprints which we describe in detail

in the next section.

4.4 Identification of Mobile Users Through

Their Mobility Fingerprints

4.4.1 Detection of Visited Locations

We utilise the sequence of geographic coordinate recordings given in the raw data to

discover the locations visited by the users. We consider here an area of concentration of

GPS points as a single location (or landmark) of visit. The idea is that over time and as

the user travels about in his daily routines, some of the visiting patterns to these locations

would have been captured in the aggregate of these coordinate recordings. To detect these

patterns we apply the following algorithm:

Step 1. We apply the K-means algorithm [110] to the GPS data points in order to

create disjoint clusters.

Step 2. Compute the centroid of each discovered cluster and verify that its member

points are at-most ‘r’ meters away from its centroid.

Step 3. If one or more points are at distance greater than ‘r’ from the centroid of the

cluster, we apply (1) and (2) to the points in the current cluster for further

clustering. This process continues recursively for each sub-cluster until every

member point is at-most ‘r’ meters away from the centroid of the cluster it is

associated with.

Step 4. Each discovered cluster forms one of the locations visited by the users (Loca-

tions that have a number of visits below a certain threshold are considered noise

and are thus ignored).

Note that the distance between two GPS points is computed by using the Haversine

formula [90]. Also for our experimentation purposes, we restricted ‘r’ value to 100 meters,

i.e. all the visited locations are 100 meter radius. The times of visit to any of the

discovered locations are the same times of visit of the individual member points belonging

to the detected location/cluster.
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An alternative to the proposed clustering algorithm applied herein would be to use

divisive hierarchical clustering [106] which, in practice, may not work if the number of

data points to be clustered is very large - it is computationally prohibitive to explore all

clustering scenarios when the number of data points is very large; consequently, many

proposed hierarchical clustering methods employ heuristics in order to divide the points

into different clusters which can lead to unreliable results [106]. Also many proposed

hierarchical clustering methods seem to be narrowly focusing on dividing the points into

clusters without considering alternative partitioning possibilities - once a decision has

been made to divide a large cluster into smaller ones, there is normally no mechanism for

changing such a decision [106].

4.4.2 Computing n-grams to represent trails

The proposed model relies on the use of mobility trail, which we define as the sequence

of recordings, of the temporal and spatial information, of all the visits that a user makes

in a day. Let T = t1 , t2 , . . . , tn , be a mobility trail where ti , 1 ≤ i ≤ n, represents

the locations visited by the observed user. Let us also define an n-gram as a contiguous

sequence of n visits contained in T . Given the trail T we can produce a set of all the

n-grams contained in it as shown in the following example, in which n = 3.

Example: Given a trail T = (a, b, a, b, a, b, a), the Tri-grams (i.e. 3-grams)

associated with it are given in the set ϑT,3 = {(a, b, a), (b, a, b)}. Alternatively, we can

create a set of pairs where each pair record an n-gram together with its number of

occurrence. In our example, this produces the set βT,3 = {<(a, b, a),3>, <(b, a, b),2>}
which can be represented as the multiset (or bag) {(a, b, a), (a, b, a), (a, b, a), (b, a,

b), (b, a, b)}.

4.4.3 Mobility Fingerprinting

4.4.3.1 Definitions

Definition 1. Mobility Fingerprint:

A Mobility Fingerprint is a stochastic model developed from the mobility traces of an

observed user to capture his/her specific movement patterns and to allow for his/her

identification. The details of constructing such a model are thoroughly described in

Subsection 4.4.3.2.
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Definition 2. Mobility Fingerprinting:

Mobility Fingerprinting is the process of constructing a mobility fingerprint for an

observed user.

4.4.3.2 Computation of Fingerprint

In order to distinguish users based on the information given in their mobility trails and

also to be able to determine whether or not a particular trail belongs to a specific user, we

propose an algorithm that relies on fingerprinting the user’s movements. In theory, the

mobility fingerprints of any two users should be different and the corresponding users of

any two fingerprints must certainly be different as well. In practice, we shall see that there

is only a very small probability that two different users have the same mobility fingerprint.

In order to compute the mobility fingerprint of an observed user, we perform the

following procedure.

1. Select a suitable value for n (the size of the n-grams).

2. For each of the user’s mobility trails T , we compute the set βT,n which contains all

the possible n-grams (see the example given in Subsection 4.4.2).

3. We compute the super set Bu,n =
⋃k
i=1 βTi,n which contains all the n-grams from all

the mobility trails (T1 , T2 , . . . , Tk) of the observed user u.

When constructing the fingerprint, in addition to computing the n-grams, it is very

useful to compute the (n−1, n−2, . . . , 1)-grams for each trail. For example, if n = 3 then

for each user’s trail in the database we compute the Tri-grams, bi-grams and uni-grams.

Consequently, we define a user’s mobility fingerprint f as the set of all grams given in⋃n
i=1Bu,i . Note that the value of n cannot be larger than the size of the longest mobility

trail, and is in most cases much smaller.

4.4.3.3 Constructing a Unique Fingerprint

In sensitive domains such as crime-scene forensic investigations, employing techniques such

as biological fingerprints and DNA sequences have become the standard methods for iden-

tification despite the fact that mistakes resulting from such methods can have substantial

consequences. In human mobility, the uniqueness of the user’s mobility fingerprint is re-

lated directly to the original purpose for which the mobility fingerprint was proposed, i.e.
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to identify users and their mobility behaviours within the context of mobile prediction

systems. Contrary to other types of fingerprints such as our biological fingerprint and

DNA sequences, a user’s mobility fingerprint does not have to be unique to fulfil this pur-

pose. Nonetheless, to determine whether users have distinct fingerprints, we compare the

similarity between the fingerprint of an observed user and the fingerprints of all the other

users in the database. The importance of computing the similarity here lies in the funda-

mental role it plays in determining the separability of fingerprints. There may also be an

application in clustering users together based on their fingerprints, e.g. for collaborative

filtering like recommendation [44].

4.4.3.4 Fingerprint Uniqueness

Let F be the set of all fingerprints, in a database db, and let s denote a function for

computing the similarity between two fingerprints where s(fa, fb) of the two fingerprints,

fa and fb fall between 0 and 1. If the value of s(fa, fb) is close to 1, then fa and fb are

said to be inseparable (i.e roughly the same). Consequently, we define the two fingerprints

fa and fb to be separable if s(fa, fb) << 1.

Uniqueness

The uniqueness of a fingerprint is tightly related to its separability. If λ, which is a small

value between 0 and 1, denotes a separability threshold, then fa is said to be unique if ∀
fi ∈ F , s(fa, fi) ≤ λ, i.e. λ is the minimum similarity between any two fingerprints to be

considered identical.

4.4.3.5 Similarity Computation

Jensen-Shannon Divergence

Let p = {pi} and q = {qi} denote the n-grams’ probability distributions obtained from

the fingerprints of the users a and b, respectively. The divergence, d, between the two

users’ fingerprints can be obtained using the Jensen-Shannon Divergence (JSD1) which is

a nonparametric measure of the similarity between two distributions [34].

The intuition when comparing the fingerprints with one another is that we are compar-

ing like-for-like, i.e. the two fingerprints are, good representations for the two distributions

from which the n-grams originated, hence a suitable choice for computing the uniqueness

1Jensen-Shannon Divergence
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of fingerprints is the JSD, which is a symmetric version of the Kullback-Leibler Divergence

(KLD2) based on Shannon’s entropy [46].

Jaccard Similarity

As shared n-grams between two fingerprints are more of interest than the contrary, the

Jaccard coefficient, which is also known as the Jaccard measure [21, 91, 96] is our baseline

method for computing the similarity between two such sets, i.e. the fingerprint and the

observed trail which we view here as two sets of n-grams. We define the Jaccard measure

by

Jaccard(fa, fb) =
|fa ∩ fb|
|fa ∪ fb|

, (4.1)

where fa and fb are the fingerprints of user a and user b, respectively.

Example: When computing the Jaccard similarity between the multisets x = {a, b, b,

c} and y = {a, a, b, b, b}, the intersection counts a only once and counts b twice, so its

size is 3. The size of the union will be the total of the sizes of the two multisets which is

equal to 9. Hence, the Jaccard similarity between x and y is 1/3.

Weighted Jaccard Similarity

In addition to the Jaccard method, we also use the Weighted Jaccard (WJaccard) [95, 104],

which we compute as follows:

WJaccard(fa, fb) =

∑
wi∈fa,fbmin(γ(wi))∑
wi∈fa,fbmax(γ(wi))

, (4.2)

where γ(wi) denotes the number of occurrences of the n-gram wi.

Example: To compute the Weighted Jaccard similarity between the multisets x and y

(see the previous example), we first compute the minimum number of occurrences of a, b

and c (1, 2 and 0) and their maximum number of occurrences (2, 3 and 1). Then the

Weighted Jaccard similarity is computed as 1+2+0
2+3+1 which is equal to 0.5, in this case.

4.5 Identifiability

A key question, which automatically arises when designing a mobility fingerprint, is how

effective such a method in identifying the correct user from an observed trail of movements.

2Kullback-Leibler Divergence
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To address this question, we compute the distance between the observed trail and the fin-

gerprints of all the users in the database. The fingerprint which produces the smallest

distance value is the one that, most likely, belongs to the user who generated the observed

mobility trail. However, in contrast to the like-for-like comparison performed when veri-

fying the uniqueness of fingerprints (i.e. computing the distance between fingerprints), an

observed trail is only a sparse representation of the distribution of the mobility trails from

which it was drawn, and consequently cannot be used for a like-for-like comparison with a

fingerprint which have enough information to form a good distribution about the mobility

behaviour of the observed user. In such a situation it would be more appropriate to use

the Kullback-Leibler Divergence (KLD), defined in equation 4.3, to measure the distance

between the observed trail and the fingerprint [11]. Note here that we also employ the

non-probabilistic symmetric measures, the Jaccard and the Weighted Jaccard, since they

both compute the similarity between two multisets regardless of whether, or not, the mul-

tisets are good representatives of the distributions from which the n-grams were drawn,

namely

KLD(τ, f) =
∑
x∈X

pτ (x)log2
pτ (x)

p
f
(x)

, (4.3)

where τ and f denote the observed trail and the user’s fingerprint respectively. pτ (x)

and p
f
(x) denote the observed trail and the fingerprint probabilities for an n-gram x ∈ X

and X is the set of n-grams obtained from the test-trail.

4.5.1 Finding the Correct User

In order to speed the search for the correct user, we employ a simple heuristic that relies

on the popularity of the locations amongst the different users who visited them. Before

we compute the similarity between the observed trail and a user’s fingerprint, for each

n-gram found in the observed trail, we estimate the popularity as the count of users with

occurrences of the same n-gram in their fingerprints. For example, if an n-gram occurs in

‘x’ different users’ fingerprints then the popularity of such an n-gram is equal to ‘x’. The

importance of computing the popularity here lies in the fundamental role it plays in reduc-

ing the number of fingerprints for which we compute the similarity to the observed trail.

The underpinning assumption here is that an observed trail is more likely to have been

created by a user, whose fingerprint has occurrences of the less popular n-grams of the

observed trail, as opposed to being created by any other user. Therefore, by focusing on

those users with occurrences of those less popular n-grams of the observed trail in their fin-

gerprints, we are more likely to predict the correct user to whom the observed trail belongs.
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Another key advantage is that, because it is likely that we would have a small set

of users, whose fingerprints have occurrences of the less popular n-grams of the observed

trail, we are likely to have a faster search in comparison to a full search through the entire

users’ database. In fact, based on our experimentation on the Nokia MDC data set (see

§ 4.7.1), our heuristic search method can be up to 80% times faster in comparison to a full

search. It is important to emphasise here that such a search procedure can be particularly

useful when there is a large database of users to search.

4.5.2 Fingerprint Compression

The key idea here is to examine whether the fingerprint maintains the same degree of

identifiability after compression. The importance of this investigation stems from the

desire to have fingerprints that are computationally less expensive, i.e. occupy less memory

space, while remaining unique amongst other fingerprints. Instinctively, compressing the

fingerprint by eliminating redundant information, is perhaps the ideal method to resolving

the problem (i.e. by reducing the amount of information in the fingerprint we reduce the

amount of computational resources required). However, removing too much information

from the fingerprint may result in poor identifiability. To resolve this conflict between

uniqueness and identifiability, we propose two compression methods which attempt to

reduce the size of the fingerprint while preserving its degree of identifiability, at the same

time.

4.5.2.1 Temporal Compression

In this mode of compression the fingerprint is reduced in size by considering only the

temporal aspect of the data. Each user’s fingerprint is built incrementally from the training

data as follows:

1. We start by using the entire training data from which we construct the user’s fin-

gerprint.

2. We decrease the data, used to construct the fingerprint, by omitting the oldest trail

from it.

3. We test to see if we could identify, from the test set, the correct trails belonging to

the observed user.

4. If we manage to correctly identify all the test trails, we go back to step 2.
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Figure 4.1: Training and testing data division (A and B show the parts of the training
data used to construct the fingerprints before and after the size was reduced from 80% to
60%).

5. If we fail to correctly identify all the trails, then we conclude that the previous

fingerprint had enough information to identify all possible trails belonging to the

user.

4.5.2.2 Spatial Compression

In contrast to the temporal compression, the spatial compression reduces the size of the

fingerprint by considering only the spacial aspect of the data. In this mode of compression,

a fingerprint is built incrementally from the training data by using an algorithm similar

to the one used for the temporal compression except that in point (2), we decrease the

data used to construct the fingerprint by removing the locations with the least number of

visits.

4.6 Location Fingerprint

Mobility fingerprinting can be very effective when accurate identification of users, loca-

tions, behaviours or activities is required. It naturally lends itself to tasks such as location

prediction. In location prediction, which is used here as an example, we model the mobility

behaviour involving a particular landmark as opposed to modelling the mobility behaviour

involving a specific user. Similar to how we build a user’s mobility fingerprint, a location

fingerprint is constructed using the past mobility trails in which the observed landmark

was involved. The following three steps demonstrate how such a fingerprint is built:

Step 1. Compute all the trails in which the observed landmark was visited.

Step 2. Let T
loc

= {ti} denote the set of all trails of the observed landmark loc. For each

trail in T
loc

, compute the n-grams in the direction of the observed landmark.

For example, if c denotes an observed landmark and ‘abcde’ denotes a trail of
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movements involving the location c, then the set of bi-grams computed in the

direction of c will be {ab, ed, bc, ec}. For our experimentation purposes we

ignore those bi-grams involving the observed landmark c, i.e. bc, ec.

Step 3. Compute the super set B
loc,n

=
⋃k
i=1 βti,n which contains all the n-grams from

all the mobility trails given in T
loc

.

4.6.1 Next Location Prediction

In order to demonstrate the accuracy of the location fingerprint, we consider the next

location prediction problem. Given the most recent sequence of visits of an observed user,

locations fingerprinting can be a powerful method for predicting where the user will go

next, i.e. to determine in advance which landmark the user will visit after leaving his/her

current location. A simplified version of a next location prediction algorithm that is based

on mobility fingerprinting can be described as follows:

Step 1. We observe a user for a period of time to have a trail (i.e. the recent sequence

of visits made by the observed user including his current location).

Step 2. Select an area from which a landmark will be predicted as the location that

the observed user will visit next. For example, select an area with a radius r

where the current location of the user is at the centre. We assume here that

there is an ontology for describing the type of places that the user is interested

in visiting and that the user has already selected the type of place to visit, at

this stage.

Step 3. Compute the fingerprints of all suitable landmarks in the selected area. A

landmark’s fingerprint is computed from all users’ trails involving the observed

landmark - only trails that contain the observed landmark as one of the visited

locations are considered in the construction of the fingerprint.

Step 4. Compute the similarity between each landmark’s fingerprint and the current

user’s trail.

Step 5. Using the computed similarity scores, create a ranked list of landmarks from

which we predict the top-k locations as potential places that the user is most

likely to visit next.

The assumption here is that the similarity between the fingerprint of the correct land-

mark and the trails involving the same landmark will be higher compared to the similarity

between the same trails and the fingerprints of other landmarks.
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4.7 Evaluation

4.7.1 Data Set

We evaluate our proposed fingerprinting algorithm using a portion of the data set which

Nokia released for the open challenge of the mobile data competition in 2012 [71]. The

characteristics of the entire data set of the competition, including the details of the differ-

ent portions allocated for the various challenge tracks have been previously described in

§ 1.6.1.1. A description of the portion of data used in this chapter is previously described

in Chapter 3, namely in Subsection 3.6.1. It is worth noting here that the Nokia MDC

data set is publicly available and well known for its good quality of the data. We acknowl-

edge that it is relatively small in comparison to other data sets but sufficient for proof of

concept.

4.7.2 Experiments

4.7.2.1 Testing for Uniqueness

To test for fingerprints’ uniqueness we perform the following procedure.

1. We choose an experimental similarity threshold value λ (We wish λ to be as small

as possible). For the uniqueness of the users in the Nokia data set, we find 8.6% an

experimentally best choice, i.e. by choosing 8.6% as the minimum similarity between

any two fingerprints to be considered identical, every fingerprint in the data set was

found to be unique.

2. We compute the similarity between each fingerprint and the other fingerprints in the

database.

3. If the maximum computed similarity value, over all the fingerprints in the database,

is less than λ, we can conclude that the fingerprints are unique.

4. If the maximum computed similarity value is greater than or equal to λ, we conclude

that fingerprints are not unique at the chosen threshold. In such case, we may need

to consider a different value for the threshold. The appropriate choice would be to

use the maximum computed similarity value as the new threshold.

4.7.2.2 Identifiability Tests

To identify the correct user from an observed mobility trail, it is natural that we model

this task into a multi-class classification problem [86]. We divide the data into training
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and test sets where either part A or part B, depending on the percentage used for training,

is used for training and the remaining data is used for testing (see Figure 4.1 for training

and testing data partitions). We use the training set to create the users’ fingerprints while

the test set is used to produce the trails which we will attempt to identify the correct

users that originally created them. If M denotes the list of fingerprints, i.e. classes (fk

∈ M where k ∈ {1, . . . ,m}), created from the training data partition and N denotes the

list of test trails (ti ∈ N where i ∈ {1, . . . , n}) where each trail belongs to one of different

classes fk. Given a test trail, we compute the similarity between the test trail and each

of the fingerprints in M and produce a ranked list of similarity values. To identify the

correct user to whom the trail of movements belongs, we simply select the fingerprint that

produces the largest similarity value.

Precision and Recall

Let tp denote the true positives, which represents the cases when the algorithm make the

correct classification, i.e. the trail is associated with the correct fingerprint. Also let fn

denote the false negatives, which represents the cases in which the algorithm does not

associate a trail with its correct fingerprint, i.e. the trail is rejected while it should have

been associated with the fingerprint. Also let fp denote the false positives, which repre-

sents the cases where the algorithm accepts a trail to be associated with the fingerprint,

to which the trail does not belong. Considering the aforementioned notation, we can use

the procedure hereafter to compute Precision and Recall:

1. We compute the similarity between each fingerprint in M and the test-trail t.

2. We create a ranked list of users on the basis of the computed similarity values. If r

denotes a ranking threshold, then a positive result occurs when the similarity value

of the correct fingerprint, to which the test-trail belongs, has a ranking less than or

equal to r. In this case, we have a hit and tp will be increased by 1 and fp will be

increased by r − 1.

3. If the similarity value of the correct fingerprint is ranked greater than r, we have a

miss and fn will be increased by 1.

For a given threshold value r and a set of test trails N , the computation of precision
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and recall proceeds as follows:

precision =

∑
tpij∑

tpij +
∑
fpij

(4.4)

recall =

∑
tpij∑

tpij +
∑
fnij

, (4.5)

where
∑

stands for
∑

(i∈M)(j∈N)
.

Identifiability Coefficient (IC)

In order to fine tune the fingerprint for best identifiability, we have to weigh between the

following competing factors: (i) the cost of incorrect classification of a trail, (ii) the cost

of not classifying one at all and (iii) the ranking threshold at which the classification is

made, (i.e. the maximum allowed ranking for the correct result in order to have a hit).

Our approach is to find the ranking threshold value θ that maximises, pointwise, the area

under the precision and recall curve [15]. This is the point at which we have the least

combined cost of miss-classifying a trail and not classifying one at all. We refer to the

ranking threshold value θ that produces the maximum area under the precision and recall

curve, as the Identifiability Coefficient (IC3). To compute the Identifiability Coefficient,

for every threshold value, we compute the Euclidean distance [19] between the curve and

the point (1,1). The Identifiability Coefficient takes the value of the threshold with the

smallest Euclidean distance.

4.7.2.3 Next Location Prediction Tests

To evaluate the accuracy of the location fingerprints when applied to the next location

prediction problem, we organise the data into a sequence of days based on the time in

which the user visited each location. We then implement the following procedure:

1. For each user, we divide the daily trails into two sets: a training set containing

the first α % of the total number of trails, and a test set containing the remaining

(100-α)% (e.g. alpha = 80%).

2. For each landmark, we create a fingerprint using the data given in the training set.

3Identification Coefficient
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3. For each daily trail data from the test set, we compute search-trails, of a maximum

length n, using the following sliding window technique as described in [31]:

Let T be the daily trail from the test set, and assume a window of size n, we extract

the n first locations from the trail T , match against the fingerprint and try to predict

the (n + 1) location in T . We then slide the window to include the locations from

2 to (n + 1) and attempt to predict the (n + 2) location and so on. The locations

contained in the sliding window make, what we call, a search-trail (the maximum

length we used was 4).

Success Ratio

We evaluate the prediction accuracy using the Success Ratio which is a popular measure of

prediction accuracy in domains such as Web usage mining [14] and user mobility prediction

[38]. It is usually defined as the ratio of number of successes to the total number of

attempts. However, when an observed system is generating a set of predictions, the

Success Ratio is used to measure the proportion of times that the target is among the

predicted set of items [14]. We find the latter definition more suitable for evaluating the

results discussed in this chapter.

4.7.3 Results

4.7.3.1 Do Users Have Unique Fingerprints

For the experiments designed to test the uniqueness of the users’ fingerprints, we compute

a similarity matrix for all the users in the database in order to determine whether, or not,

the fingerprints of different users are separable. One simple approach to find out would be

to verify whether the maximum similarity between an observed user and the other users

in the database is less than some agreed threshold. If that is the case, we conclude that

the observed user has a unique fingerprint. Consequently, if the the maximum similarity

computed across all users in the database was less than the agreed threshold we conclude

that all users have unique fingerprints. Note here that due to the similarity measures

used (JSD, Jaccard and Weighted Jaccard) the results may vary from one experiment to

the other and consequently careful consideration is required for choosing the similarity

threshold value. As shown in Table 4.1, when the similarity is computed using Quint-

grams, the maximum similarity reported between any pair of different fingerprints is less

than 8.6%, i.e. the fingerprints are completely separable (unique) at a similarity threshold

as small as 8.6%.
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Similarity
Method

Statistic

The size of gram used in
the similarity computation

Uni Bi Tri Quad Quint

Jaccard

Avg 0.0669 0.0168 0.0062 0.0027 0.0017
Min 0 0 0 0 0
Max 0.8768 0.4080 0.2519 0.1480 0.0856

StDev 0.0979 0.0336 0.0157 0.0084 0.0057

WJaccard

Avg 0.0635 0.0167 0.0061 0.0027 0.0013
Min 0 0 0 0 0
Max 0.8904 0.8900 0.2216 0.1375 0.0825

StDev 0.1021 0.0384 0.0150 0.0082 0.0049

JSD

Avg 0.0681 0.0171 0.0059 0.0026 0.0013
Min 0 0 0 0 0
Max 0.8973 0.8943 0.1842 0.1146 0.0711

StDev 0.1225 0.0476 0.0134 0.0073 0.0043

Table 4.1: A summary of the similarity between different users’ fingerprints. In this
experiment, the fingerprints have been constructed from 80% of the mobility traces using
the weekday data.

Similarity
Method

Statistic
The size of gram used in

the similarity computation
Uni Bi Tri Quad Quint

Jaccard

Avg 0.0964 0.0249 0.0094 0.0041 0.0019
Min 0 0 0 0 0
Max 0.8715 0.3673 0.1971 0.1149 0.0738

StDev 0.1259 0.0405 0.0183 0.0095 0.0055

WJaccard

Avg 0.0784 0.0237 0.0093 0.0040 0.0019
Min 0 0 0 0 0
Max 0.4725 0.3232 0.1846 0.1098 0.0719

StDev 0.0926 0.0375 0.0177 0.0093 0.0055

JSD

Avg 0.0728 0.0223 0.0091 0.0041 0.0020
Min 0 0 0 0 0
Max 0.4240 0.2579 0.1678 0.1081 0.0713

StDev 0.0835 0.0335 0.0161 0.0087 0.0051

Table 4.2: A summary of the similarity between different users’ fingerprints. In this
experiment, the fingerprints have been constructed from 60% of the data using temporal
compression.
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Similarity
Method

Classification
Measure

The size of gram used in
the similarity computation

Uni Bi Tri Quad Quint

Jaccard
Precision 0.7888 0.8101 0.8106 0.8189 0.8461

Recall 0.6988 0.7559 0.75 0.7480 0.6929
IC 2 2 2 2 2

WJaccard
Precision 0.7761 0.7820 0.7899 0.8154 0.8495

Recall 0.6141 0.7204 0.7401 0.7480 0.6889
IC 2 2 2 2 2

KLD
Precision 0.8067 0.8405 0.8363 0.8341 0.7012

Recall 0.6574 0.7677 0.7244 0.6732 0.6653
IC 2 2 2 2 3

Table 4.3: Identification of users from their movements: In this experiment, trails of
five spatio-temporal points were used to identify the users. The results reported in this
table are based on the same experiment shown in Figure 4.2 where only the data from
the weekdays was used, and the split for the training and testing was 80% and 20%
respectively.

4.7.3.2 Uniqueness of Compressed Fingerprints

When compressing the size of a fingerprint it is imperative to verify that the new com-

pressed fingerprint preserves its uniqueness. To ensure uniqueness between the different

fingerprints after compression, we must ensure that the similarity remains below the agreed

threshold value λ. Table 4.2 shows the average, minimum and maximum similarity values

for temporally compressed fingerprints where only 60% of the data was used (i.e. only the

training data part denoted by B was used in the construction of those fingerprints - see

Figure 4.1 for data division). It is evident from the results shown that the higher the gram

size the clearer the separability between the different users’ fingerprints is. It is also clear

that the maximum similarity (i.e. 7.4%) after the compression is less than the maximum

similarity (i.e. 8.6%) between the original fingerprints, i.e. the fingerprints made from

80% of the data. The reason for this difference is that the compression of the fingerprint

decreases the number of shared locations (a shared location is a location which has been

visited by two or more users) between the fingerprints of different users, more than it does

for the unique locations (a unique location is a location that is visited by one and only

one user). On average, the decrease in the number of shared locations was 64.41% more

than the decrease in the number of unique locations, across all users.
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(c) KLD

Figure 4.2: Identification of users from their movements: In this experiment, trails of five
spatio-temporal points were used to identify the users. The results reported in this figure
are based on the same experiment shown in Table 4.3
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Figure 4.3: Identification of users from their movements: In this experiment, trails of five
spatio-temporal points were used to identify the users. The graphs shown in this figure
are based on the experiment’s results reported in Table 4.4.
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Similarity
Method

Classification
Measure

The size of gram used in
the similarity computation

Uni Bi Tri Quad Quint

Jaccard
Precision 0.8172 0.8222 0.8236 0.8260 0.8135

Recall 0.6736 0.7259 0.7426 0.7552 0.7029
IC 2 2 2 2 2

WJaccard
Precision 0.7956 0.8076 0.8215 0.8219 0.8146

Recall 0.6192 0.7029 0.7322 0.7531 0.6987
IC 2 2 2 2 2

KLD
Precision 0.8078 0.8502 0.8776 0.8594 0.8313

Recall 0.6861 0.7364 0.6903 0.6652 0.5983
IC 2 2 2 2 2

Table 4.4: Identification of users from their movements: In this experiment, trails of
five spatio-temporal points were used to identify the users. The results reported in this
table are based on the same experiment shown in Figure 4.3 where only the data from the
weekdays was used and the fingerprint was temporally compressed where only 60% of the
data was used to build it. The test data was the same 20% of the data used to produce
the results shown in Table 4.3.

4.7.3.3 Identifying Users From Short Trails of Movements

The Figures 4.2 and 4.3 show the precision and recall graphs which summarise the results

of the experiments we carried out to identify a user from an observed mobility trail, i.e.

identify a user from his/her movements. In the said figures and the tables 4.3 and 4.4 (in

which IC denotes the Identifiability Coefficient), we find that the uncompressed Bi-grams

KLD model, which is the best performing model in this case, has 76.77% recall and 84.05%

precision. The small corresponding Identification Coefficient (IC) value 2, means that for

76.77% the observed test trails, one of the two top selected users is the correct user to

whom the observed trail belongs. When the fingerprints are compressed to include only

60% of data, the reported recall and precision are 73.64% and 85.02%, respectively, where

the corresponding IC value is 2. It is evident from the results of these experiments that

even when the fingerprint is compressed, we can still successfully identify the correct user

from a short trail of movements.

4.7.3.4 Minimum Fingerprint

A key aspect of compressing a fingerprint, ought to be about its minimum size where it can

still be uniquely identified from a correct user’s trail of movements. To quantify the size

of the fingerprint after the compression, one has to address the following two questions:
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Q 1. What is the probability of constructing a minimal unique fingerprint and what

level of identifiability such a fingerprint can offer?

To address the first question let’s assume that each observed user has at least

one single spatio-temporal point that is unique to them. In such a situation,

we can certainly build a fingerprint for each individual user utilising the single

point that is unique to them. Although every fingerprint will certainly be

unique amongst the other fingerprints, none will be useful in identifying the

observed user when he/she starts visiting different locations as opposed to the

one recorded in their fingerprint. Given the evaluation data utilised in the

research, building such fingerprints is certainly possible as the minimum number

of unique spatio-temporal points per user is greater than one, which is shown

in Table 4.5. This means that a single unique location is enough for a user to

be uniquely identified within the data set. This is, of course, consistent with

the finding of the research carried out in [27] where only a small number of

locations is required to uniquely identify a user. However, the problem does

not lie in constructing a minimum unique fingerprint but rather, the complexity

lies in maintaining an acceptable level of identifiability after the fingerprint

compression, i.e. (i) how to construct a fingerprint which has acceptable level

of user identifiability and (ii) how far can we compress this fingerprint size,

while maintaining the ability to correctly identify the user from a short record of

movements. We already dealt with part (i) when we proposed our fingerprinting

method, in Section 5.3.2. The latter part (ii) will be addressed next in this

section.

Q 2. How much compression a fingerprint withstands before an acceptable level of

identifiability is compromised?

As we already know the threshold value for the maximum similarity between

uncompressed fingerprints, we can only perform further compression if the max-

imum similarity across the newly compressed fingerprints remains less than the

known threshold value (λ as defined in Subsection 4.4.3.4). The other key

factor to take into consideration here is the Identifiability Coefficient and its

associated levels of precision and recall. It will only make sense to perform

further compression if the Identifiability Coefficient and its associated levels of

precision and recall remain at acceptable levels. To this end, we designed a

number of experiments in which the trails of each user were split into training

and test sets. Figure 4.3 shows the precision and recall for the different grams’
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Type of Location Average Min Max Standard Dev.

Unique 292 2 1544 346

Shared 587 1 4198 950

Table 4.5: The distribution of unique and shared locations. A shared location is one
which was visited by two or more users and a unique location was visited by only one
user.

sizes when the fingerprint was temporally compressed to include only 60% of

the data. The 20% of the data used for testing the uncompressed fingerprint

in the previous experiment remained unchanged in this experiment. By com-

paring the results shown in Tables 4.3 and 4.4 we find that when only the top

2 results are considered (i.e. the Identifiability Coefficient is 2), the winning

Bi-gram KLD model recorded a 3.13% reduction in recall. In fact, the average

of the reduction in recall across all the Bi-gram models was 2.63% and the

overall reduction across all models was 1.08%. Although further research may

be required here to find out the true implications on identifiability when the

fingerprint is compressed, it is nonetheless evident, from the results shown in

Tables 4.3 and 4.4, that the further the fingerprint is compressed the poorer

the identifiability will be.

4.7.3.5 Uniqueness versus Identifiability

The experiments conducted to identify the users from their movements, before and after

the fingerprints compression, show that the richer the fingerprint the more accurate in

identifying the correct user. Based on the results given in Table 4.3 and Table 4.4 when

the top 2 ranked locations are considered, there is an average decrease in recall of 0.63%

across the different fingerprint models after compression. Also by examining the similarity

measures defined in equations ( 4.1), ( 4.2) and ( 4.3), it is clear that the separability of

the fingerprint improves with the increase of the number of the unique locations (a unique

location is a location visited by one and only one user) that the user visits and the number

of visits they make to those locations. It also improves with the decrease of the number

of shared locations (a shared location is a location visited by at least two users) that the

user visits and the number of visits they make to those locations. As the majority of

the users visits a fair number of shared locations, as shown in Table 4.5, there is a desire

to shrink the size of the fingerprint in order to improve its separability. This raises a

question about the extent to which the fingerprint can be compressed before an adverse
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Rank of correct result
Fingerprint Model

Uni-gram Bi-gram Tri-gram Quad-gram

= 1 0.2857 0.5079 0.5135 0.6250

≤ 2 0.4603 0.6349 0.6216 0.7500

≤ 3 0.5555 0.7460 0.7027 0.7812

≤ 4 0.6031 0.7619 0.7027 0.7812

≤ 5 0.6349 0.7619 0.7567 0.7812

Table 4.6: Predicting the next location using the historical record of the most recent
visits. In this table, which shows the prediction Success Ratio, the maximum length of the
user’s trail used to make the prediction was four locations. The data split for the training
and testing was 80% and 20% respectively. The similarity computation was based on
KLD.

effect on its identifiability becomes significant. In our view, when compression is being

considered, striking a balance between the fingerprint’s uniqueness and its identifiability

may be required. The decision of where the balancing point lies ultimately depends on

the application in which the fingerprint is being used.

4.7.3.6 Next Place Prediction

The results given in Table 4.6 show the prediction of the next location using a historical

record of at most four locations. From these results one can immediately observe that the

longer the historical record the better the prediction is. To our knowledge, there is no

like-for-like comparable result in the literature but, with 78% of the correct predictions

ranked within the top 3 locations, the results seem promising nevertheless.

4.8 Discussion

4.8.1 Serendipity

A key feature of the proposed algorithm (see § 5.3.2) is that it is not restricted to predicting

the next location of visit from the set of locations that the observed user has seen before.

This is because the algorithm predicts the next location of visit from the nearby set of

locations around the observed user’s current location, which means it can potentially

predict a location that the user has never seen previously. In a recommendation context,

this means the algorithm has the capacity to suggest new locations that have never been

visited in the past.
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4.8.2 Adventurous Users

The two types of fingerprint compression, described in Section 4.5.2, are computationally

expensive to maintain over time. With an adventurous user, new data is added every

time the they visit new places that they have not seen before. Over time, the compressed

fingerprint will grow to a point where it may require to be further compressed to reduce

its size. This cycle will properly be repeated several times until the fingerprint is no longer

needed. Repeated compressions for a small number of fingerprints may not pose a problem

but for a large database it may introduce a real computational challenge, particularly

if there is a large number of users who frequently visit new locations. One approach

to decrease the number of fingerprints that require compression would be to limit the

increasing total number of locations in a fingerprint, which can be controlled by introducing

a decay factor for how recently a location is visited. The assumption made here is that

those locations that have not been actively visited by the user, for some long time, may

be removed from the fingerprint.

4.9 Summary

We proposed the mobility fingerprint which is a profile constructed from the user’s histor-

ical mobility traces. We proposed an algorithm for building such a profile. We evaluated

our proposed algorithm by collecting a sample of fingerprints from the publicly available

Nokia Mobile Data Challenge data set (see § 4.7.1). It is worth noting here that the Nokia

MDC data set is publicly available and well known for the good quality of the data in it.

We acknowledge that it is relatively small in comparison to other data sets but sufficient

for proof of concept.

We verified that users have unique mobility fingerprints, i.e. they can be distinguished

from one another. Furthermore, we verified that an observed mobility trail can be associ-

ated with the fingerprint of the user to whom the trail belongs, i.e. a user can be identified

by his/her movements. Herein we showed that in order to successfully identify individual

users on the basis of their recent mobility history, it is imperative that a rich historical

record about the movement of those users is maintained. We also showed that the richer

the fingerprint the more accurate the identification of the user from observed movements

is.

We demonstrated that the proposed fingerprinting method can be used to create unique

profiles for landmarks and by successfully applying it to the Next Location Prediction

problem. This shows that such profiles can be a very useful tool for location prediction.



Chapter 5

Presence Analytics

5.1 Overview

This chapter illustrates how aggregated Wi-Fi activity traces provide anonymous infor-

mation that reveals invaluable insight into human presence within a university campus.

It shows how technologies supporting pervasive services, such as Wi-Fi, which have the

potential to generate vast amounts of detailed information, provide an invaluable oppor-

tunity to understand the presence and movement of people within such an environment.

It demonstrates how these aggregated mobile network traces offer the opportunity for

human presence analytics in several dimensions: social, spatial, temporal and semantic

dimensions. These analytics have real potential to support human mobility studies such

as the optimisation of space use strategies. The analytics presented herein are based on

recent Wi-Fi traces collected at Birkbeck, University of London, one of the participants

in the Eduroam network [42, 105].

5.2 Introduction

The increasing advancement in wireless technologies together with the widespread use

of new generations of faster and more powerful mobile devices has greatly improved the

ability of people to access information while moving about in their daily lives. This in-

creasing accessibility to digital information has the potential to generate vast amounts

of detailed information, providing an invaluable opportunity to study different aspects of

presence and movement behaviours of people within a given work or study environment.

Furthermore, the increasing level of connectivity to information sources is affecting our en-

vironments and the way they operate and therefore, it is essential that we build real-time

91
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monitoring systems as well as theoretical frameworks to understand how people’s presence

and its dynamics reshape the structures of our environments. With such measurements

put in place, we can discover hidden patterns of behaviour at both the collective and at

the individual user levels, thus increase our understanding about people’s presence, and

in turn, improve our ability to make informed decisions when we plan for our environments.

In the context of this chapter, we analyse the mobility traces generated by users access-

ing the wireless network at Birkbeck, University of London. Birkbeck is a full participant

of Eduroam1 (Education roaming), a WLAN service developed for the international educa-

tion and research community, that gives secure, world-wide roaming access to the Internet

[42, 105]. The findings reported in this chapter are the result of the analysis carried out

on the Eduroam access traces, for the period from the 1st of October 2013 to the 10th of

April 2015. In comparison to most data sets used in previous Eduroam based studies, this

data set is larger in size with respect to its number of users as well as the number of days

it spans [1, 77].

Figure 5.1: The location of Birkbeck’s Bloomsbury Campus in central London.

1Education Roaming
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The rest of the chapter is organised as follows: In Section 5.3, we present the motivation

behind the research presented herein and the contributions made. In Section 5.4, we

describe the essence of presence analytics, giving the definitions of the concepts used in this

work as well as describing the metrics used for discovering the different patterns of human

presence contained in the data. The description of the data set used, the analysis carried

out and the evaluation of results are provided in Section 5.6. We give a comprehensive

discussion in Section 5.7 and conclude with a short summary of the findings of the work

presented herein.

5.3 Problem Definition

The prime motivation of the research presented in this chapter is to provide an insight

into the human presence in a learning environment such as a university campus. Within

the scope of this chapter, we examine the human presence patterns corresponding to the

four data aspects, namely the social, the temporal, the spatial and the semantic.

5.3.1 Contributions

This chapter makes the following two contributions:

1. It presents a comprehensive analysis of the human presence within a university cam-

pus. It provides a thorough analysis with respect to the different types of pattern

contained in the data, namely the social, the spatial and the temporal patterns, and

the semantic underpinning, giving an insight into how people presence shapes the dy-

namic structure of such an environment. For each of these pattern types: the social,

the spatial, and the temporal patterns, and the semantic underpinning, we define a

list of metrics, which we utilise to interpret the observed behaviour captured in the

data. Although there are numerous previous works investigating the network usage

of users in WLANs [7, 57, 66], there was no attempt to analyse the four aspects of

human presence in one study - a succinct summary of some of these research efforts,

which generally concentrate on characterising the network usage utilising one or two

of the data aspects at most, was provided in the Critical Review chapter, namely

Chapter 2.

2. To our knowledge the analysis provided in this chapter is based on the most current

data set - compared to data sets used in previous Eduroam research - and thus

reflects the behavioural trends in Wi-Fi usage in a university setting. With the
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exception of the data set used in [26], the data set used in the research herein is

much larger in size compared to data sets used in previous Eduroam based studies

[77]. A further distinguishing property of the evaluation data is the fact that a larger

proportion of users come from other universities in the vicinity as opposed to being

affiliated with Birkbeck, University of London.

5.3.2 Methodology

We investigate the four patterns of the human presence, namely the social, spatial, tem-

poral, and the semantic underpinning, contained in the mobility data of an observed

environment, giving an insight into how people presence shapes the dynamic structure of

such an environment. We utilise a combination of data analysis methods to extract these

patterns, where each group of methods target a specific pattern type. For example, for

the extraction of the temporal patterns of revisits, we deploy time series analysis.

5.4 The Essence of Presence Analytics

5.4.1 Definitions

Definition 1. Presence Analytics:

Presence Analytics is defined as the collection and the analysis of mobile data in order to

find meaningful patterns about people’s presence within a given environment.

Definition 2. Event:

An event is defined as a group of one or more users, i.e. devices, connecting to the

network from a particular location within a given time interval.

Definition 3. Revisit:

A revisit is defined as the appearance of a user at a previously visited location or site.

Definition 4. Duration of Stay:

Duration of Stay is the length of time that a user spends at a given location before

moving to another location.
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Definition 5. Pattern of Event:

A pattern of event is defined as a time series of occurrences of a given event, associated

with a given time, e.g. evening or weekend pattern.

Within the context of this chapter, we rely on wireless network traces to gain informa-

tion about human activity, in order to unravel the dynamic structure of the environment.

Based on WLAN traces, activity patterns can be compared through time and space to

reveal the dynamic structure of the observed environment. Presence analytics allows for

classifying the locations within a given WLAN environment, into functional clusters based

on the time-line of human activity, providing valuable insights into the actual space use

patterns within that environment. It provides new ways of looking at the structure of a

given environment from a real-time perspective based on dynamic up-to-date records of

human presence.

5.4.2 Data Sessionisation

Unless explicitly recorded, it is usual that WLAN access data do not include session du-

ration information, i.e. the length of time an individual was using the network service

to access information. Session duration information is essential for the type of analysis

presented in this chapter, where it plays a key role in computing space occupancy duration

at an observed environment. It is important to highlight here that in this thesis, we prefer

the term duration of stay over the term session, as it encompasses the social, the spatial

and the temporal information required for presence analytics.

The data set we use in this work does not include the duration of stay information.

Nonetheless, this data set has sufficient related information that can be utilised to com-

pute approximately the duration of stay.

When the user authenticates more than once within the same day, we compute their

approximate duration of stay at the observed location using the sequence of authentica-

tions made by the user on that day. Practically, we apply a threshold based method

utilising the length of the interval between the times of the user’s authentications. This

method is described as follows:
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Using the timeline of authentications, we compute an ordered list of all the authen-

tications made by the user. We also select a lower threshold value as well as an upper

value - e.g. 1 and 110 minutes - and then apply the following procedure to compute the

duration of stay:

1. We assume a duration of stay equals to the lower threshold value, i.e. one minute,

for those users with a single authentication record per day.

2. If the user authenticated from the same location several times, and the difference

between the times of two consecutive authentications is below the upper threshold

value, then we assume that the user was present for the entire interval between those

two consecutive authentications and thus the duration of stay is computed as the

difference between the times of the two authentications as shown the the following

example.

Example: Let the lower and the upper threshold values be 1 and 110 minutes,

respectively. If a user u has two consecutive authentications at 10:00 and at 10:30.

Since the difference between the two authentications of the user u is 30 minutes,

which is below the upper threshold value (i.e. 110 minutes), we compute the

duration of stay as the total time between the two authentications, and thus it is

equal 30 minutes.

3. If the user authenticated from the same location more than once and the difference

between two consecutive authentications is larger than the upper threshold value,

then we assume that the user’s presence at the observed location was interrupted and

consequently we compute two separate duration of stay: one duration that includes

all authentications made before the interruption, and another that includes all those

that took place after it.

4. If the user moved to a different location after a single authentication, we assume that

his duration of stay at the previous location is equal to the lower threshold value.

5. If the user has made a sequence of authentications from the same location, and the

difference between the times of two or more consecutive authentications is below

the upper threshold value, we compute the accumulated sum of duration of stay for

these consecutive authentications.

The lower and upper threshold values referred to above, i.e. 1 and 110 minutes, adhere to

the minimum and maximum session duration found in the literature [77].
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5.5 Discovering Meaningful Patterns about the Human Pres-

ence

We distinguish between four pattern types of the human presence in this work; each group

corresponds to one of the aspects of the data, namely social, spatial, temporal and semantic

aspects. These four pattern types are discussed hereafter.

5.5.1 Social Patterns

The patterns discussed in this category characterise the human presence from a social

perspective. To examine such patterns, we utilise a collection of metrics which measure

the influence of the social behaviour in the data. Some of these metrics capture where the

users come from. For example, in this work we utilise some of the metrics to investigate

the distributions of the users’ study or work affiliation to see what social characteristics

can be extracted. The metrics address the following questions:

1. What are the institutions that the users are affiliated with.

2. Which affiliations take the top ranks in terms of the number of users.

3. How does the number of Birkbeck users compare to the numbers of users from other

institutions particularly during the evening.

5.5.2 Spatial Patterns

The patterns discussed in this category capture the spatial view of the human presence.

The metrics used herein analyse the users’ behaviour from a spatial perspective. For

example, we study, through these metrics, how the space is used - how the different

locations are used by the users. We look at the impact of the division of the space into

multiple sites. We examine the patterns of revisits to individual sites as well as the

individual locations within the sites. Furthermore, we investigate a number of questions

relating to the use of space at Birkbeck. The metrics address the following questions:

1. Which locations tend to be used the most by the top ranked affiliations

2. What times these locations are being used.

3. What locations do Birkbeck users use the most.
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5.5.3 Temporal Patterns

In this category we view the data as time series and examine it for the existence of trends

and seasonal patterns. We also examine the time that the user spends at a given location.

5.5.4 Semantic Underpinning

We define the semantic underpinning as the reason for the occurrence of a human presence

at given spatial, temporal and social context. It is an integral part of the analytic frame-

work, presented in this chapter, for understanding the influence of the presence of humans

within a given environment. This framework is based on four main questions involving

the different pattern types of the human presence. We describe the social patterns as the

who patterns, the spatial patterns as the where patterns, the temporal patterns as the

when patterns, and the semantic underpinning can be described as the why aspect of the

human presence.

In order to decipher the why aspect, we investigate the use of external information in

giving meaning to the user’s presence - in other words, we are trying to answer the ques-

tion of why the user’s behaviour was seen within the given social, spatial and temporal

context. For example, why a student is seen in a specific lecture room at a given time

or why a group of students and staff were seen at the coffee-shop between 12:00 and 1:00pm.

Further discussion about the semantic underpinning is provided later in Sections 5.6.6

and 5.6.11.

5.6 Evaluation

5.6.1 Data Set

5.6.1.1 Birkbeck, University of London

Birkbeck is one of the member colleges of the University of London and a major provider

of evening higher education. Based on the most recent available statistics, there are ap-

proximately 12,054 students attending Birkbeck. Most of Birkbeck students are part-time,

with approximately 62% of them enrolled on part-time programmes [99].

Birkbeck’s Bloomsbury campus in central London is located very close to campuses of
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other colleges of the University of London, such as UCL2 and SOAS3. This proximity to

these other campuses was naturally translated in a large amount of collaboration between

these universities. As a result, Birkbeck’s Bloomsbury campus is shared by thousands of

academics, researchers and students from these universities on a daily basis.

Birkbeck is also one of the participants of Eduroam, a WLAN service developed for

the international education and research community that gives secure, world-wide roaming

access to the Internet [42, 105].

5.6.1.2 Eduroam Data

The analysis presented in this chapter is based on recent WLAN traces collected at Birk-

beck (see § 1.6.1.2). The data set we used here is a snapshot of the Birkbeck’s Eduroam

access data for the period, from the 1st of October 2013 to the 10th of April 2015. It

contains 223 locations and 167272 users, who come from 2462 institutions and depart-

ments. The 223 locations given in this data set are divided between 11 of the 17 sites of

the Bloomsbury campus (see Figure 5.1).

There are four types of data in this data set: authentication details, pre-proxy details,

post-proxy details and reply details. User-ID, access location, timestamp and affiliation

are the basic information for each processed record. Based on these records, we designed

new types of data representing the four aspects of the human presence: social, spatial,

temporal and semantic aspects. The analytics presented in this work are based on this

new data.

5.6.2 Experiments

We have four types of data experiments in this section. Each set of experiments is targeted

at detecting the statistical distributions of one of the observed aspect of the data: social,

spatial, temporal and semantic. These experiments are described as follows.

5.6.3 Detection of Social Patterns

Given that the users in the data set are socially grouped by affiliation, we wanted to find

out how they are distributed across these affiliations. The experiments here are aimed

2University College London
3School of Oriental and African Studies
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at detecting four different socially distributions of users: daytime, evening, weekdays and

weekend.

5.6.4 Detection of Spatial Patterns

The 223 locations given in the data set are divided between 11 sites within the Bloomsbury

campus. As we are interested in finding out how the space is used, many of our efforts

were focused on investigating the number of people visiting these sites and the locations

within them. Since we are interested in the regular patterns of space use, we considered

the revisits and excluded the single visits to the sites, i.e. all visits by individuals who

came to Birkbeck only once are considered an unnecessary noise.

5.6.5 Detection of Temporal Patterns

The main goal of the experiments conducted in this section is to analyse people’s pres-

ence from a temporal perspective. We are interested in discovering the trends of regular

presence as opposed to the occasional behaviours due to special events. Therefore, visits

by individuals who only came to Birkbeck once are seen as special events, and thus ex-

cluded from this analysis in order to avoid the introduction of undesired noise. We use

data decomposition to estimate the seasonal influence as well as any random noise. By

removing these estimated components from the data, we can reveal the temporal trend

in people’s behaviour. Since the seasonal variation in the number of revisits is relatively

constant over the period of time covered by the data, we consider an additive model for

the decomposition, namely

Presence Data = Trend + Seasonal + Noise. (5.1)

5.6.6 Detection of Semantic Underpinning

In Section 5.5, we focused our discussion on the core three dimensions of the human

presence; the social, the spatial and the temporal dimensions. This was followed by a brief

note about the semantic dimension and how it can potentially add meaning to the patterns

linked to those three core dimensions. In this section, we study the semantic influence by

using an example in which external data from the teaching timetable is utilised. In this

example, we use a two-step process, which can be described as follows:

Step 1. We obtain the information about the pattern we would like to discover, from

the external source.
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Step 2. We analyse the data for temporal patterns that possess distinguishing charac-

teristics and which match the information obtained from the external source.

Of course, this process can be completely reversed, where we begin with the extraction

of the patterns from the data and then map or link those discovered patterns to the

information obtained from the external source in order to justify the existence of these

patterns.

5.6.7 Results

5.6.8 Evaluation of Social Patterns

Figure 5.2 describes how users are distributed across affiliations. It provides four different

distributions: daytime, evening, weekdays and weekend. Each one of these four distribu-

tions is approximately a power law - the fitted distributions have been computed using

maximum likelihood estimation (MLE) as described in [24, 47]. In these four distributions

most users belong to a small number of affiliations while the many more affiliations have

a relatively small number of users. Each plot shows the Complementary Cumulative Dis-

tribution Function (CCDF), which is defined as Pr(X ≥ x) [24], plotted on logarithmic

scales.

5.6.9 Evaluation of Spatial Patterns

Each of the individual plots presented in Figure 5.3 shows the fitted distribution across all

locations visited during a chosen period, e.g. Daytime. Each of them plots the distribution

of number of users’ revisits, with associated power law, exponential and log normal fits -

plotting the data in this manner has the benefit of providing an easy comparison between

a number of fitted distributions. As can be seen in the figure, i.e. Figure 5.3, the number

of users’ revisits are approximately log normal distributions across locations. This means

that the further we move across the locations towards the tail of the distribution, the

quicker the decrease in the number of revisits made to the location. At the thin tail of the

distribution the locations are rarely visited. The fitted distributions, in Figure 5.3, have

been estimated by maximum likelihood estimation (MLE) as described in [24].

5.6.10 Evaluation of Temporal Patterns

The generally constant seasonal variation is clearly visible in the bottom plots of the

Figures 5.4 and 5.5 shown hereafter.
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Figure 5.2: Distributions of number of revisiting users grouped by affiliation. Shown
from left to right are the plots of number of revisiting users for: daytime and evening,
and weekdays and weekend. Each plot shows the Complementary Cumulative Distribution
Functions (CCDF) [24] and their maximum likelihood: power law (red), exponential (blue)
and log normal (green) fit. Revisiting users are those who made more than one visit to
Birkbeck, University of London.

5.6.10.1 Term-based Signature

We are interested in the trend, which illustrates the temporal variation in the number of

revisits across the different academic terms. To extract such a trend, we divided the data

into 13 weeks periods and applied an additive model to estimate the constituent behaviours

such as the seasonality. Here, regular holidays such as Christmas and Easter holidays are

considered seasonal events, which are captured well by the additive model (see the plots

given at the lower parts of the Figures 5.4 and 5.5 which show these extracted seasonal
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Figure 5.3: Distributions of number of revisits by location. Shown from left to right
are the plots of number of revisits by location, for: daytime and evening, and weekdays
and weekend. Each plot shows the Complementary Cumulative Distribution Functions
(CCDF) [24] and their maximum likelihood: power law (red), exponential (blue) and log
normal (green) fit. The number of revisits made to a given location is computed as the
number of visits decreased by one.

events). The dipping points in the seasonality graph shown in Figures 5.4 and 5.5 can be

linked to such events.

The extracted termly trends for both Malet Street and Gordon Square sites show very

similar patterns. In Figure 5.5, which shows the time series analysis for Gordon Square

site, we see that the estimated trend shows a decrease from about 3000 revisits in the

second period to about 500 revisits in the fourth period. This decrease preceded a steady
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Figure 5.4: Time series analysis of number of revisits to Malet Street site. In this figure,
the top plot shows the original time series in which the data is divided into 13 week
periods, the plot second from top shows the estimated trend, and the bottom plot shows
the estimated seasonal constituent
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Figure 5.5: Time series analysis of number of revisits to Gordon Square site. In this
figure, the top plot shows the original time series in which the data is divided into 13 week
periods, the plot second from top shows the estimated trend, and the bottom plot shows
the estimated seasonal constituent
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increase to about 4000 revisits in the sixth period. In Figure 5.4, which shows the time

series analysis for Malet Street site, we see almost an identical pattern to the trend shown

at Gordon Square site. We see that the computed trend shows a decrease from about

5500 revisits in the second period to about 1000 revisits in the fourth period, followed

by a steady climb to about 7500 revisits in the sixth period. The computation and the

time series analysis carried out to produce the plots shown in the Figures 5.4 and 5.5 was

performed in R [100].

In Figure 5.6, we see that the distribution of the time that a revisiting user spends,

on average, at a given location is approximately a log normal distribution across locations.

This means that the further we move across the users towards the tail of the distribution,

the faster the decrease in the time spent by the user, and at the thin tail of the distribution

the users spent very little time at their visited locations. The plot given in the figure, i.e.

Figure 5.6, shows the Complementary Cumulative Distribution Function (CCDF), which

we define as Pr(X ≥ x), plotted on logarithmic scales.
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Figure 5.6: Distribution of average duration of stay constructed on a logarithmic scales.
The fitted curve shown in this plot - the dash line - has been estimated by maximum
likelihood estimation (MLE) as described in [24].
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5.6.11 Evaluation of Semantic Underpinning

5.6.11.1 Linking Detected Learning Activities to the Teaching Timetable

By combining social, spatial and temporal information with external data, such as the

teaching timetable, we can identify groups of users whose presence at a given location is

primarily due to a specific semantic influence as opposed to any other reason. To demon-

strate this, we conducted an experiment in which we analysed the socio-spatio-temporal

patterns for one of the computer labs at Malet Street site. From the teaching timetable,

we selected the XML4 module, which had regular teaching sessions that ran from 18:00 to

21:00 every Monday in the period from the 12th of Jan to the 9th of March 2015. Socially,

there was a total number of 14 individuals who attended the college for this module and

had recorded traces within the data set. Note here that in order to map these patterns

onto the teaching timetable we only consider the extracted patterns for the period of time

that the teaching sessions cover. The result of this experiment is given in Figure 5.7,

which shows the attendance of individuals from the selected group. In this experiment,

the aggregate number of those who actually attended the sessions was 13. There was only

one individual, who had no traces within the extracted patterns for the observed spatio-

temporal context in which the sessions were taking place. Interestingly, this individual

had traces in other locations when these sessions were taking place. The failure to detect

the attendance of this individual can be attributed to the mobile device of this user being

switched off while the session was taking place.

The example given above is a proof of concept for the influence of the semantic under-

pinning and the value that it adds to the other three dimensions of the human presence

analytics. Of course this chapter is mainly about the core three dimensions but no doubt

the semantic dimension is an important feature that provides invaluable insight into the

presence of people within a given environment, and thus could not be excluded from the

discussion provided herein.

5.7 Discussion

5.7.1 Analysing Human Presence Aids Planning

Although this chapter does not include how the users utilise the wireless network, in

terms of the applications being used, the type of information being transferred and the

4eXtensible Markup Language
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Figure 5.7: Attendance of the XML Module sessions as seen through traces of WLAN
activity. The small attendance value recorded on 23/02/2015 was for the module reading
week, in which the regular class session did not run.

rate in which the transfer happens, the analysis it gives already provides excellent insights

about the way people interact with their environment. This suggests that reports showing

accurate information about the presence and movement of people within the environment

can be a very useful tool for planners when making decisions about the restructuring of

the environment and how it operates. As people’s connectivity to information sources

becomes more ubiquitous and widespread, utilising such tool will become more common,

perhaps as an additional tool to the more traditional ones such the expensive surveys and

the classical static maps and drawings.

5.7.2 Data Limitation

Eduroam has the advantage that it is pervasive throughout the university and requires a

single setup for authentication. Similar to most WLAN services, without registering the

mobile devices with the service it is not possible to obtain any activity traces that can be

linked to the users of those devices. In the experiment about the attendance of the XML

sessions (discussed in § 5.6.11), a larger proportion of those who attended the class did not

have traces in our data set. These individuals might have not registered with the Eduroam

service and thus we could not track their activity and determine their whereabouts when

the teaching sessions were taking place. This shows a limitation in utilising Eduroam for

mobile devices tracking within a given environment.
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5.7.3 Granular Social Groups

Social relationships is an integral part of every community and no doubt that numerous re-

lationships and social networks exist between members of the same university community.

The people at Birkbeck are no exception to this. Unfortunately, there is no explicit in-

formation, about social relationships other than the affiliation, directly available from the

data set. However, through the day-to-day social activities such as lectures, seminars and

regular meetings, we have strong evidence for the existence of finer-grain social grouping

as opposed to the grouping of people provided through the user affiliation; for instance, a

group of students who attend the same class is a finer-grain social group compared to the

group comprising the entire community of people affiliated with University. Extracting

such finer-grain grouping is a key investigation of the next chapter of this thesis.

5.8 Summary

We provide a comprehensive analysis, about the human presence within a university cam-

pus. We investigate the four types of patterns contained in the data: the social, the

spatial, and the temporal patterns, and the semantic underpinning, giving an insight into

how people presence shapes the dynamic structure of such an environment. Our analysis

is based on WLAN activity traces collected at Birkbeck, University of London. These

traces are the most recent Eduroam data in comparison to data used in other previous

Eduroam research [1, 77], and thus the provided analytics reflect the current behavioural

trends in WLAN usage in a university setting.

From a social perspective, our analysis reveals that the distribution of revisiting users

across the various affiliations is approximately a power-law. The various patterns investi-

gated: daytime, evening, weekdays and weekend, show that most users belong to a small

number of affiliations while the many more affiliations have a relatively small number of

users. However from a spatial perspective, we discovered that the users’ revisits aproxi-

mately follow a log normal distribution across locations. From a temporal perspective, the

extracted termly trends show very similar features of revisit. The trend generally seems

to gradually decrease reaching its lowest point in August, followed by a steady climb that

reaches a peak at the end of November or the beginning of December.

To demonstrate the influence of the semantic dimension we show how combining so-

cial, spatial and temporal information with external data can give meaning to a user’s
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behaviour. As a proof of concept, we give an example (see § 5.6.11.1) in which we utilise

the teaching timetable to interpret the presence of a group of students attending a three

hour regular session that took place on a weekly basis in one of the computer labs at Malet

Street site.



Chapter 6

Mobile Users’ Social Grouping

6.1 Overview

Utilising density-based clustering, we illustrate how granular social groups of mobile users

can be detected within a university campus, using Wi-Fi activity traces. The proposed

density-based clustering algorithms in this chapter, can automatically discover the learning

classes, attendance data, and social groups of students who attend the same classes. For

the evaluation of our proposed methods, we utilised a large Eduroam log from the case-

study university (see § 1.6.1.2). We successfully detected the regular learning activities,

and estimated the attendance levels over the academic term period.

6.2 Introduction

Eduroam [42, 105] and other pervasive wireless technologies, generate vast amounts of de-

tailed information, which provides an invaluable opportunity to study different aspects of

people’s presence and movement behaviours within work, study or leisure environments.

These pervasive technologies increase people’s ability to access information, which un-

doubtedly affects the way the target environment operates. It is therefore essential that

we build real-time monitoring systems as well as theoretical frameworks to understand

how people’s presence and its dynamics reshape the structures of such environments. With

these measurements put in place, we can potentially discover hidden patterns of behaviour

at both the collective and at the individual user levels, thus increase our understanding

about human presence, and in turn, enhance our ability to make informed decisions when

we plan for our environments.

111
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The remainder of the chapter is organised as follows. In Section 6.3, we describe the

goal and the contributions of the research work presented herein. Section 6.4 discusses

the detection of the attendance of learning activities. In Section 6.5, we describe the

social clustering of mobile users, where we investigate the socialising that occurs outside

the classroom. In the Evaluation section, we give a description of the data set used for

the evaluation of our proposed approaches, and present the results of the experiments we

conducted. We provide a comprehensive discussion about some of the key features of the

methods proposed herein. Finally, in Section 6.8, we give a summary of the chapter.

6.3 Problem Definition

The key research goal, in this chapter, is to detect granular social groups of mobile users,

within a university campus, that reflect the users groupings such as those formed on the

basis of attending lectures of individual modules, and those that underpin the socialising

that takes place during the break-times.

6.3.1 Contributions

This chapter makes the following contributions:

1. It presents social density-based clustering methods that uses WLAN traces in order

to detect granular social groups of mobile users within a university campus. The

proposed clustering methods rely on the underpinning semantic context for param-

eterisation, i.e. utilising information from the semantic context to determine the

values of the clustering algorithm parameters such as the minimum class size value,

which we use to ensure that the number of individual students in any discovered

social group remains within a certain range values.

2. Makes accurate estimates about the actual level of attendance of learning activities.

Linking the discovered social group that regularly visits an observed location and the

learning activity that takes place within the same context, will allow us to estimate

the attendance level of these learning activities.
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6.4 Attendance of Learning Activities

In this section, we place special emphasis on investigating the social dimension of the

human presence within an academic environment, with the objective of discovering mean-

ingful social clusters of users. In particular, we apply our proposed algorithms using the

Wi-Fi activity traces that visitors leave behind as they move about from one location to

another across the different sites of the chosen case-study institution - Birkbeck, Univer-

sity of London. Given that there is regular teaching that takes place at this university,

our intuition is that we would be able to discover clusters that match the users groups

formed on the basis of attending lectures of individual modules. Gaining knowledge about

the social group that regularly attends a target class - the group’s size and its coherence

- allows us to estimate the attendance level. Furthermore, by clustering learning activi-

ties (e.g. modules) together one may be able to discover a higher level of grouping that

matches the clustering formed with respect to the membership in the study programmes

that the students are enrolled in.

The raw WLAN traces used in this research were collected at Birkbeck, University of

London during the period from the 1st of October 2013 to the 10th of April 2015. In

comparison to most data sets used in previous Eduroam based studies [1, 77], the data set

containing these traces is larger in size with respect to its number of users as well as the

number of days it spans.

6.4.1 Motivation

In the previous chapter, namely Chapter 5, we investigated the human presence within an

academic environment and examined four types of behavioural patterns that correspond to

the four different aspects of the data: social, spatial, temporal and semantic. Motivated by

the findings, we set out to study more closely the social aspect of presence analytics, with

the aim of gaining a better understanding of the human presence within the case-study

academic site - the Bloomsbury campus of Birkbeck University of London. Based on the

analysis presented in Chapter 5 there is high temporal regularity in the human presence

(see the evident seasonality pattern in Figure 5.4), which can be interpreted as the visitors

having preferences with respect to the visited locations. Moreover, our analysis reveals

that the distribution of revisiting users across the various affiliations is approximately a

power-law [24]. The various patterns investigated, i.e. daytime, evening, weekdays and

weekend, show that most users belong to a small number of affiliations as can be implied
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from the analysis of the distribution, shown in Figure 6.1. It is not surprising that these

affiliations, which include Birkbeck College, are the ones that hold the most regular teach-

ing and research activities across Birkbeck’s sites. Furthermore, as shown in Figure 6.2,

we discovered that the number of users’ revisits across all locations follows a log normal

distribution. The combination of these findings gives very strong indications of an un-

derlying semantic users/visitors grouping on the basis of the learning activities that take

place at Birkbeck’s Bloomsbury campus in central London.
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Figure 6.1: Distribution of number of users and the number of revisits by affiliation,
using logarithmic scales. In this figure, the left plot shows the distribution of number
of revisiting users grouped by affiliation, and the right plot shows the distribution of
number of revisits made by those users. Each plot also shows the best fit line computed
by maximum likelihood estimation (MLE) as described in [24].

6.4.1.1 The Intuition of the Proposed Approach

Social relationships are an integral part of every community and there is no doubt that

numerous social communities exist between the people of the same university. The people

at Birkbeck are no exception to this. Based on the day-to-day social activities such as

lectures, seminars and other regular meetings, we have strong evidence about the existence

of finer-grained relationships as opposed to the high-level social grouping inferred by the

user’s academic affiliation (the academic affiliation was obtained from the domain name of

the user’s email address). In this chapter we propose density-based clustering approaches

to discover the social groups formed on the basis of these learning activities. Our choice
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Figure 6.2: Distribution of number of users and number of revisits by location, using
logarithmic scales. In this figure, the left plot shows the distribution of number of revisiting
users of each location, and the right plot shows the distribution of number of revisits made
by those users. Each plot also shows the best fit line computed by maximum likelihood
estimation (MLE) as described in [24].

of a density-based clustering over other types of clustering methods is motivated by the

semantic underpinning of the visits made to the various locations in the College. In most

cases, when a location is visited, the visit is normally motivated by the desire to attend

the learning activity taking place at the target location. For instance, when a student

makes a visit to one of the lecture-rooms he or she is most probably doing this because

they are attending a class taking place at that location.

It is important to note here that with exception to the minimum class size and the

minimum attendance threshold, which we discuss in Subsection 6.4.3.1, we do not make any

specific assumptions about the level of attendance of any given regular learning activity.

Moreover, we do not make assumptions about the density or the variance of attendance

or the shapes for the clusters that we would like to discover. The reason is that these

measurements about the attendance, i.e. the density and the shapes of the social clusters

of users, are partly the kind of information that we set out to discover in this research,

and consequently we take into consideration an unbiased prior view about them.
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6.4.2 Clustering of Users

The patterns discussed in this section are concerned with the social perspective of the

human presence, in particular, the human presence with the respect to learning activities

that occur across the different locations at a university campus. To examine such patterns,

we utilise a collection of methods to measure the influence of the social behaviour in the

data. Some of these methods capture the degree of similarity between users, while others

are designed to detect the social groups of these users.

6.4.2.1 Definitions

We would like to extend the set of definitions given in Chapter 5 (see Section 5.4) by

adding the following new definitions.

Definition 1. Break-time:

A break-time is defined as a time interval during the day in which the students are not

engaged in a regular learning session; the definition is general to include not only breaks

during a class but also before and after a class occurs.

Definition 2. Social Coherence:

Social Coherence is the similarity between presence and movement behaviours of two or

more students.

Definition 3. Classroom Social Group:

A classroom social group is defined as a group of students who attend the same class and

maintain a social connection or relationship outside the classroom. A member of such

group is referred to as a classroom friend or just a friend.

Definition 4. Noise:

Noise is defined as the presence of mobile users within a given spatio-temporal context

but this presence is not linked to the attendance of the regular weekly class session that

takes place within the same context. For example, the presence of an individual in a

classroom at the time when a regular weekly class session takes place, while s/he is not a

member of the group of students who usually attend the observed class session, can be

seen as noise.



6. Mobile Users’ Social Grouping 117

6.4.2.2 Problem Formulation

Suppose that we have the individual users’ records of revisits, of a group of users U , to a

target location L. Moreover, suppose that all these revisits were made within a fixed time

interval of a given weekday D for k consecutive weeks. We would like to automatically

discover whether this collection of revisits represent a pattern of events of a learning ac-

tivity that was taking place at the location L over the k consecutive weeks.

In the remainder of this chapter we use the terms learning activity, class and pattern

of events interchangeably to refer to the same concept. Similarly, we sometimes mention

users, people, students and visitors all to mean the same thing.

6.4.2.3 Distance Measure

An important question that automatically arises when we want to decide whether an

observed user can be associated with a particular group of users, is how to compute the

distance between the observed user and the members of a group. An equally important

question to address here is how much information is required to determine a realistic value

for such a distance. To answer these questions we utilise information extracted from the

semantic context to inform our model about the kind of distance measure to use and

the amount of information needed to compute the distance between two users’ records of

attendance.

6.4.2.4 Jaccard Distance

We choose Jaccard Distance [19], which we argue is a natural measure, based on the

application and the data. Intuitively, the Jaccard Distance, substantially captures the

difference between two records of attendance. It is defined as 1 minus the Jaccard similarity

[20, 21, 91, 96], which we compute as the ratio between the intersection and the union of

the two compared records of attendance [20]. The formal definition of this metric, as a

function d() that takes two arguments, can be given as follows:

d(pa , pb) = 1− |pa ∩ pb |
|pa ∪ pb |

. (6.1)

where pa and p
b

represent the records of revisits of user a and user b, respectively.
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Student
ID.

Attendance Record
Jacc Distance

s1 s2 s3
s1 {1,2,3,6,7,8,9,10,11} 0 0.11 0.73

s2 {1,2,3,6,7,8,9,10} 0.11 0 0.82

s3 {4,5,6,7,11} 0.73 0.82 0

Table 6.1: An example for the term-based distance computation. The numbers given in
the sets representing the attendance records, correspond to the IDs of the sessions attended
by the students. The sets do not feature the sessions that the student did not attend.

6.4.2.5 Distance Computation

One of the key challenges to address when computing the distance is how much information

is required to determine a realistic value. Within the context of the work presented in

this section, the presence and movement of people can be highly dictated by the learning

activities that takes place across Birkbeck, University of London. For example, the regular

presence of students and the teaching staff in lecture-rooms is highly dictated by the

learning activities that occurs in these rooms. Similar to other academic institutions, these

learning activities such as lectures and lab sessions are highly dictated by the timetable,

which gives the location and time allocation for the different learning activities across

the academic year. Here at Birkbeck, this allocation is usually different for the different

academic terms, with exception to a selection of core modules that continue to run for

more than one term. Nonetheless, within the term period many people are likely to be

present at the same location at the same time at least once a week. This observation was

confirmed by the regularity found in the temporal patterns as shown in Figure 5.4. Based

on this finding, we decided to compute the distance over the 11 week periods - each 11

week period corresponds to one of the academic terms contained in the data set described

in Subsection 6.6.1.

Example: Suppose that we have three students s1, s2 and s3, who attended a class c

that ran every Monday for 11 weeks. We can denote the attendance of each of these

students as a set representing the student’s individual session attendance. In Table 6.1,

which shows the Jaccard distance between the attendance of the three students, s1 and

s2 have similar attendance while the pair s1 and s3 and the pair s2 and s3 have

dissimilar attendance records. In this example, two records of attendance are considered

similar to one another if they have a Jaccard distance value which is lower than 0.5.
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6.4.3 Discovering Regular Classes

To explain how our proposed method successfully detects the occurrence of a class, we

rely on the intuition that the visitors to an observed location, where the regular sessions

of a module are delivered, naturally form a social group that meets on a regular basis over

the number of weeks that the class covers. The experiments we conducted, (see § 6.6.2.1),

were designed to discover such groups by performing a two-stage process, which addresses

the following challenges.

6.4.3.1 Noise Reduction

Since using MAC addresses and AP location to sense occupancy is inaccurate at room

granularity due to inconsistent wireless connectivity of devices and the overlap of AP cov-

erage [75, 85], it is not guaranteed that all detected individuals at a particular classroom

were there, merely to attend the learning activity taking place at that location. In order

to successfully detect a regular class that takes place at an observed location, we discard

from our processing the data of any individual whose total number of visits to the location

was less than a minimum attendance threshold.

Another key factor that is closely related to level of attendance is the minimum class

size, which is the smallest percentage of the total number of students registered for the

class that must be present for a learning session to hold. Note here that the minimum

attendance and the minimum class size vary between the different schools and departments

within the case study university. For the proposed method evaluation, we experiment

with a range of values, of those two parameters, and we discovered that by restricting

the minimum attendance to 40% we obtain the most realistic class sizes, i.e. within the

capacity of the obserevd rooms, (see § 6.6.3.1).

6.4.3.2 Attendance Coherence

Even with the noisy data being removed, we still cannot guarantee that those individuals

who visited a particular location were there merely to attend the learning activity that

was taking place there. It is, therefore, imperative to verify that those students taking

part in the potential class are coherent in attending its individual sessions, over the 11

week of the academic term. A coherent cluster here is defined as a group of individual

users that have similar attendance. For example, if two or more students consistently

attended the same sessions of a class then they are members of a coherent cluster/group.



6. Mobile Users’ Social Grouping 120

In the distance computation example given earlier (See Table 6.1), assigning the students

s1 and s2 to the same group is likely to result in a coherent cluster, whereas grouping the

students s1 and s3 or s2 and s3 together is likely to create an incoherent group.

In order to verify the coherence of attendance, we apply our proposed clustering method

to find out whether those individuals, whose attendance satisfy the minimum attendance

requirement, form a single coherent group - in terms of attending the individual sessions

across the different weeks of the academic term period.

We emphasise herein that due to the individual pair comparison of attendance records

utilised in the proposed clustering method, the students do not have to attend exactly the

same sessions in order to be clustered together in the same group.

6.4.3.3 Discovering Coherent Clusters

The clustering approach we are proposing herein is based on the DBSCAN algorithm,

the density-based spatial clustering of applications with noise [35], which scales well with

clustering large amount of data [67]. The original DBSCAN takes two parameters, namely

epsilon (a distance threshold) and minPts (a minimum number of points which is used

as a density threshold). Given some data points for clustering, DBSCAN relies on these

two parameters to identify density connected points in the data. It uses the concepts of

direct and density connectivity to group points together forming transitive hulls of density-

connected points, which yields density-based clusters of arbitrary shapes. In DBSCAN,

two points are said to be directly connected if they are at distance less than the threshold

epsilon and a point is said to be a core point if it has more directly connected neighbouring

points than the threshold minPts. Furthermore, two points are said to be density con-

nected if they are connected to core points that are themselves density connected to one

another [67].

In our proposed social variant of DBSCAN, which we refer to as Social-DBSCAN, we

use information from the semantic context of the human presence to inform the DBSCAN

algorithm about the distance and the density threshold values, which the algorithm utilises

to discover the social clusters present in the data. In particular, there are two main

differences between our version of DBSCAN and the original version published in [35]:

1. The distance measure we utilise is based on the Jaccard coefficient, which as dis-

cussed earlier in Sections 6.4.2.4 and 6.4.3.2, plays an important role in capturing
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the degree of coherence between the records of attendance of individuals in the same

social group, i.e. it compares the total of shared attended sessions to the sum of

sessions attended by either of two observed users.

2. A further important difference, which is closely related to the data set being clustered

and also related to how the clustering is performed, is that the points representing

the individuals who attended the learning activity, are ordered in descending order

based on the individual’s level of attendance, i.e. ordered by the individual’s total

number of attended sessions. The ordering of the points in descending order captures

the idea that the higher the level of attendance the more likely that the individual is

part of the social group that attended the learning activity. This is a key concept of

how the clustering is performed in our proposed version of the DBSCAN algorithm

[35].

To illustrate how the proposed algorithm works, let us consider the simple scenario

given in the example provided in Subsection 6.4.2.5, in which the session attendance in-

formation and the similarity between the different students are given in Table 6.1. The

result of applying the proposed algorithm on the scenario described in the example is that

the two students s1, s2 are clustered together in one cluster whereas s3 is considered to be

noise - the minimum size of a cluster in this case is equal to 2 and the maximum allowed

Jaccard distance, between any pair of students grouped together in the same cluster, is 0.5.

Building on the DBSCAN algorithm described in [35], the proposed clustering method,

which we call Social-DBSCAN, is described in Algorithm 6.1. The two parameters CohCoff

and MinClassSize represent the coherence coefficient and the minimum class size threshold

values, respectively. Note here that the value of the CohCoff is computed as a Jaccard

distance, i.e. 1− Jaccard, as defined in Section 6.4.2.4. From a practical perspective, the

values of these parameters are heavily influenced by the context in which Social-DBSCAN

is being applied. In Algorithm 6.2, we illustrate how a discovered social group is expanded.

Both Social-DBSCAN and DBSCAN have similar complexity due to the computa-

tion of the neighbourhood for every point in the data set being clustered and thus the

complexity for the two algorithms is O(n2) [110].
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1: Social −DBSCAN(Dataset, CohCoff, MinSGroupSize = 2, MinClassSize)
2: # The data set is ordered in descending order of attendance level.
3: # ‘MinSGroupSize’ represents DBSCAN’s ‘MinPts’ paramater.
4: set DiscoveredSGroups ← φ
5: set SGroup ← φ
6: set V isitedP ts ← φ
7: set NOISE ← φ # A variable holding all unclustered points.
8: for each (p ∈ Dataset) do
9: if p ∈ V isitedP ts then

10: continue
11: end if
12: V isitedP ts ← V isitedP ts ∪ {p}
13: # FindSimilarPts() returns all points similar to p, i.e. points
14: # with Jaccard distance < CohCoff. The returned set of points is
15: # presented in descending order according to attendance level.
16: set pSimilarP ts ← FindSimilarP ts(P,CohCoff)
17: if |pSimilarP ts| < MinSGroupSize then
18: NOISE ← NOISE ∪ {p}
19: else
20: set SGroup ← ExpandSocialGroup(p, SGroup, pSimilarP ts, CohCoff,
21: DiscoveredSGroups)
22: if |SGroup| ≥ MinClassSize then
23: DiscoveredSGroups ← DiscoveredSGroups ∪ {SGroup}
24: SGroup ← φ
25: end if
26: end if
27: end for
28: return DiscoveredSGroups

Algorithm 6.1: Social-DBSCAN

6.5 Socialising Outside the Classroom

In the previous Section 6.4, we discussed how social density-based clustering of WLAN

traces could be utilised to detect granular social groups of mobile users within a university

campus. In particular, we proposed Social-DBSCAN to automatically detect the regular

learning activities taking place at chosen locations, e.g. classrooms, and provide accurate

estimates about the attendance levels. In this section, we study the social aspect of human

presence outside the classroom, with the aim of gaining a better understanding of the

presence and movements of students within the case-study environment - the Bloomsbury

campus of Birkbeck, University of London. Motivated by the findings presented in the

previous section, i.e. Section 6.4, and based on the evident temporal regularity in pattern of

revisits seen in Figure 6.3, we can deduce that the visitors have preferences with respect to

the visited locations as well as the times they visit these locations. Although most of these

preferred locations are related to teaching, there are also those that are utilised for non-

teaching purposes such as the Coffee-shop at the Malet Street site. As shown in Figure 6.3,
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1: ExpandSocialGroup(p, SGroup, pSimilarP ts, CohCoff , DiscoveredSGroups)
2: SGroup ← SGroup ∪ {p}
3: for each (q ∈ pSimilarP ts) do
4: if q /∈ V isitedP ts then
5: V isitedP ts ← V isitedP ts ∪ {q}
6: set qSimilarP ts ← FindSimilarP ts(q, CohCoff)
7: if |qSimilarP ts| > 0 then
8: # add all points in qSimilarPts to pSimilarPts.
9: pSimilarP ts ← pSimilarP ts ∪ qSimilarP ts

10: SGroup ← SGroup ∪ {q}
11: end if
12: end if
13: end for

Algorithm 6.2: Social group expansion in Social-DBSCAN

there is high temporal regularity of revisit, which gives a strong indication of the existence

of an underlying semantic grouping of the visitors of these locations. The explanation of

this semantic grouping is related to the teaching timetable, which not only dictates the

time and location of the learning sessions but also dictates when the students can have

their break-times, and thus directly influences their presence and movement behaviour on

campus. As discussed later in this section, we find that a substantial number of students,

who attend the learning sessions, visit locations such as the Coffee-shop during break-

times. We conjecture that similar patterns are likely to occur in other environments, such

as the work place, where people visit similar kinds of locations during their lunch break.

6.5.1 Methodology

In this section, we are interested in identifying those groups of students that maintain a

social connection outside the classroom. The basic idea for detecting such social groups

can be summarised as follows:

Step 1. We utilise Social-DBSCAN to identify the group of students attending the same

regular class. The details of how this task is performed are presented in Sec-

tion 6.4.

Step 2. Parallel to Step 1 above, for every selected non-teaching location, e.g. the

Coffee-shop, we apply the temporally-restricted version of Social-DBSCAN to

cluster the students based on selected time intervals, comprising break-times.

These time intervals are carefully chosen so that the detected group of students

form a cohesive social group, i.e. a group of friends who are visiting the target

location to socialise as opposed to a random group of students who, by chance,



6. Mobile Users’ Social Grouping 124

50
0

10
00

15
00

ob
se

rv
ed

60
0

80
0

12
00

16
00

tr
en

d
0.

6
0.

8
1.

0
1.

2

1 2 3 4 5 6 7

se
as

on
al

Time (13 Weeks Periods)

Analysis of Revisits to Selected Teaching Locations at Malet St.

Figure 6.3: Time series analysis of number of revisits to selected teaching locations at
the Malet Street site (see Table 6.3 for more information about these locations). In this
figure, the top plot shows the original time series in which the data is divided into 13 week
periods (Each 13 week period covering an 11 weeks academic term plus an extra week on
either side of the term). The middle plot shows the estimated trend, and the bottom plot
shows the estimated seasonal constituent [52]

happen to be in the same location at the same time. For the details of how this

task is performed, the reader is referred to Section 6.5.4.

Step 3. We match the groups obtained in Step 1 to those obtained in Step 2, i.e. we

identify the subsets of students, which contain those who attended non-teaching

locations during the break times. The intuition here is that if a discovered

cluster contains a group of users who attended the same class, then such a

cluster consists of a group of friends. We provide a detailed description of how

this task is carried out in Section 6.5.5.
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6.5.2 Problem Formulation

Let S be a group of students, where each student is represented by his/her record of revisit

to a target location L. Furthermore, assume that all the students in S visited the location

L within a fixed time interval on a given weekday D for k consecutive weeks. We would

like to perform the following tasks.

1. Automatically detect whether the collection of revisits, given in S, represent the

attendance of a regular learning activity (i.e. class in this context) that was taking

place at location L over the k consecutive weeks.

2. Detect whether the group discovered in the previous step contains subgroups of

students that socialise at a target non-teaching location (e.g. the Coffee-shop).

In the remainder of this section we mention users, people, students and visitors inter-

changeably.

6.5.3 Detecting Regular Classes

In order to detect regular classes, we employ the Social-DBSCAN algorithm (see § 6.1)

to discover coherent groups of students that attended the weekly sessions. As discussed

in Section 6.4, the Social-DBSCAN is utilised in clustering the records of visits to the

locations, where the learning sessions were taking place. Based on information from the

semantic context, in which the algorithm is being applied, we determine the values of the

parameters such as the coherence of attendance and the minimum attendance threshold

values. Social-DBSCAN utilises the Jaccard coefficient to measure the distance between

data points. The Jaccard distance measure plays a key role in capturing the similarity

between the records of attendance of two students, i.e. it compares the total of shared

attended sessions with the total number of sessions attended by either of the two students.

Following the clustering, we verify whether the presence of a detected group of students

represents the attendance of a regular class that was taking place at the chosen location.

The intuition for the clustering performed in Social-DBSCAN is that the students who

regularly attended the location where the class sessions took place, should naturally form

a single coherent social group.

From a practical perspective, there are two conditions that the clustering result must

fulfil in order to verify the occurrence of a regular class at the chosen location.
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1. A dominant group, with a significantly large number of the students (e.g. 50% or

more) being members, must be one of the discovered groups.

2. The average number of students per session must be within the capacity of the chosen

location, where the detected class sessions took place.

For further details of how the detection of regular classes is performed and how the

values of the parameters of the Social-DBSCAN algorithm are determined, the reader is

referred to the Section 6.4.

6.5.4 Socialising During Break-times

Using information extracted from the underlying academic context, we inform our model

about the size of the time intervals that define the break-times. For example, we em-

ploy information extracted from the timetable and also the teaching practices followed

at Birkbeck, where a three-hour lecture normally has two sessions divided by a 15 to 30

minutes coffee break. However, the time the break takes place is not fixed, and thus to

detect the visit to locations such as the Coffee-shop, we undertake the following procedure.

Across the academic term, for each day of the week we make use of the records of

visits to a target location such as the Coffee-shop, to compute time slots, of a maximum

duration of n minutes, using the following sliding window technique.

Let W be the records of visits compiled for a given day of week over the 11 weeks

academic term. To partition the set of records W , we assume a window of size n minutes.

We extract from W the students records with visits that took place within the first n

minutes, immediately after the end of the first hour of the regular teaching session. We

then cluster these records to discover the social groups that met during these first n

minutes. Next we then slide the window to include the minutes from the (1 + k)th to

(n + k)th interval and attempt to to discover the social groups that met during this

period. Consequently, we slide the window to include the minutes from the (1 + 2k)th

to (n + 2k)th and so on until n + mk is larger than a threshold value σ. Here, k is the

number of minutes denoting the size of the window slide, i.e. number of minutes used

for advancing the window along the time-line for the next iteration. We refer to the time

interval of the sliding window, as the search window noting that the maximum threshold

we used was 30 minutes.
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6.5.4.1 Social Cohesion

While a coherent cluster of students attending the same class is defined as a group of

individual users that have similar attendance over an 11 week academic term, a cohesive

social group is a subset of a coherent cluster with socially connected members outside

the classroom. In order to identify such a cohesive social group we introduce two extra

constraints to the clustering process performed in Social-DBSCAN, which we described

in Section 6.4. Firstly, in order to mitigate the situations where a social group comprises

members representing a chain of friend-of-a-friend, which is a natural result of the pairwise

clustering performed in Social-DBSCAN, we ensure that all the members of a discovered

group are directly related to one another. Practically, a temporal constraint is imposed

to ensure that the clustered individuals actually attended the observed location within

a given time interval. More specifically, when we identify a social visit at an observed

location, we restrict the maximum difference between the times of visits made, by the

members of the group, to a fixed user-defined threshold value; for instance, the difference

between the times of visits made, by two distinct members, is less than or equal to 5

minutes. Secondly, to ensure that the members of a detected group belong to a genuine

social group we restrict the minimum number of meetings at the observed location to a

user-defined threshold value (e.g. three meetings). The intuition here is that the more the

members of the group meet the more likely that they belong to a genuine social group.

Similar to the Social-DBSCAN algorithm described in Section 6.4, the proposed clus-

tering algorithm, which we call Temporally-Restricted-Social-DBSCAN, can be described

in pseudo-code as shown in § 6.3.

The parameters CohCoff1 and MinSGroupSize2 (see code provided in § 6.3), represent

the Coherence Coefficient and the Minimum Size of a Social Group threshold values, re-

spectively. The parameter MinNumShrdVists represents the minimum number of shared

visits (or meetings) that were made, to the observed location, by the detected group. Note

here that the default value for MinSGroupSize is 2, as every member of a detected group

must have at least one friend. The parameter CohCoff denotes the maximum value for the

distance, i.e. 1−Jaccard, between the members of the same group. In order to identify a

meeting between two or more students, their times of visit to the target location must fall

within a given interval. The parameter meetingSrtTime and meetingEndTime denote the

beginning and the end of such time interval. From a practical point of view, the values of

all these parameters are highly dependent on the context in which the algorithm is being

1Coherence Coefficient
2Minimum Size of a Social Group
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1: Temporally-Restricted-Social-DBSCAN (Dataset, CohCoff, MinSGroupSize, Min-
NumShrdVists, n, k, sigma)

2: set DiscoveredSGroups ← φ
3: set SGroup ← φ
4: set V isitedP ts ← φ
5: set NOISE ← φ
6: for each (p ∈ Dataset) do
7: set i ← 0
8: while (n+ ik < sigma) do
9: set meetingSrtT ime ← 1 + ik

10: set meetingEndT ime ← n+ ik
11: if p ∈ V isitedP ts then
12: continue
13: end if
14: V isitedP ts ← V isitedP ts ∪ {p}
15: # findSimilarPts() returns all points similar to p that
16: # findSimilarPtshave a Jaccard distance ≤ CohCoff.
17: pSimilarP ts ← FindSimilarP ts(P, CohCoff, MinNumShrdV ists,
18: meetingSrtT ime, meetingEndT ime)
19: if |pSimilarP ts| < MinSGroupSize then
20: NOISE ← NOISE ∪ {P}
21: else
22: SGroup ← ExpandSocialGroup(p, SGroup, pSimilarP ts,
23: CohCoff, MinSGroupSize, MinNumShrdV ists,
24: meetingSrtT ime, meetingEndT ime)
25: if SGroup 6= φ then
26: DiscoveredSGroups ← DiscoveredSGroups ∪ {SGroup}
27: SGroup ← φ
28: end if
29: end if
30: i ← i+ 1
31: end while
32: end for
33: return DiscoveredSGroups

Algorithm 6.3: Temporally-Restricted-Social-DBSCAN

applied.

For the pseudo-code illustrating how a discovered group can be expanded, the reader

is referred to the pseudo-code provided in § 6.2.

6.5.4.2 Temporally-Restricted-Social-DBSCAN vs Social-DBSCAN

The key difference between these two algorithms, Temporally-Restricted-Social-DBSCAN

and Social-DBSCAN, lies in the way the distance between two users is computed. Al-

though both algorithms employ the Jaccard distance, nonetheless the distance is tightly

related to the underpinning semantic context in which the algorithm is being applied -
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Social-DBSCAN is utilised for learning activity detection whereas Temporally-Restricted-

Social-DBSCAN is employed for social groups detection at a non-teaching location such as

the Coffee-shop. While the duration of a targeted learning activity is fixed, e.g. between

18:00 to 21:00, hence all users being clustered are associated with a fixed time interval,

visiting a non-teaching location is not restricted to a given time. Furthermore, the dis-

tance computation performed in Social-DBSCAN is only concerned with what sessions

were attended by the two compared users and whether there were any matching sessions,

irrespective of the time an observed user visited the location during any of the class ses-

sions - effectively only a single dimension of the data is considered in the computation

of the distance between two observed users. In contrast, the distance computation in

Temporally-Restricted-Social-DBSCAN takes into consideration the time an observed lo-

cation was visited by each user - in order for two observed users to share the same cluster,

the difference between their times of visit must be within a chosen threshold.

A further distinction between the two algorithms is that Temporally-Restricted-Social-

DBSCAN does not require the users being clustered to be given in any particular order.

Social-DBSCAN however, utilises the level of attendance in detecting the group of students

that attend an observed learning activity - it relies on the ordering of the users based on

attendance level, where the higher the attendance the more likely that the user being

clustered is part of the group that attended the regular class.

Due to the computation of the neighbourhood for each point in the data set, the two

algorithms have similar complexity, where the worst-case complexity for both algorithms

is O(n2).

6.5.5 Discovering Classroom-based Social Groups

Following the detection of regular classes, we deploy the Temporally-Restricted-Social-

DBSCAN to discover the social groups, which regularly visited the Coffee-shop, from each

class. Using a given time window length, Temporally-Restricted-Social-DBSCAN compares

the records of visits of different individuals in order to detect shared visits, i.e. visits made

to the Coffee-shop at approximately the same time. Consequently, those individuals that

have shared visits to the Coffee-shop and attended the same classes are clustered into

classroom-based social groups.



6. Mobile Users’ Social Grouping 130

Property Eduroam data set

Number of users 167,272

Average number of user-days 15

Average number of locations per user 10

Table 6.2: Properties of the Eduroam data set (for more details see Subsection 1.6.1.2).

6.6 Evaluation

6.6.1 Data Set

The evaluation of the proposed Social-DBSCAN and Temporally-Restricted-Social-DBSCAN

is based on recent WLAN traces collected at Birkbeck - the case-study university in this

research work. A detailed description of the data set has been provided in the evaluation

section in the previous chapter (5.6.1). A summary of its properties is presented in Ta-

ble 6.2.

In order to detect the attendance of classes, we create spatio-temporal vectors, where

each vector denotes the visits made, by one of the users, at a given spatio-temporal context

(i.e. visits made to a specific target location, within a fixed time interval of day, on a

target weekday and over a period of 11 weeks). The data division into 11 weeks periods is

motivated by the temporal regularity found in the data as shown in Figure 6.3, where each

11 week period corresponds to a single academic term. Also, in this chapter, we utilise the

room capacity information, which is available independently through Birkbeck’s website.

All of the 15 locations we chose for the evaluation of the proposed clustering approach are

rooms with known student capacities.

6.6.2 Experiments

6.6.2.1 Detecting the Attendance of Learning Activities

Our evaluation methodology is designed to verify that the presence of a discovered group

of individuals represents a regular attendance of learning activity, which has been taking

place at the observed location. It compares the results obtained from the two stage process,

which addresses the noise reduction and the coherence of attendance, against the initial

intuition that the regular visitors of an observed location on a given day of the week is

mainly comprised of a single coherent social group (see the discussion in Section 6.4.3 for

more details). From a practical point of view, there are two criteria that the clustering

result must fulfil in order to justify the occurrence of a regular class at the target location:
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1. There must be a dominant coherent discovered group with the majority of the stu-

dents being members of such a group.

2. Following the reduction of noise, the average number of students per session must

be within the capacity of the target location, where the detected class was taking

place.

6.6.2.2 Detecting Classroom-based Social Groups

Our testing methodology herein is designed to verify the presence of groups that socialise

at a non-teaching location such as the Coffee-shop. The distinctive property of the target

social groups is that each comprises individuals who attended the same classes. The

experiment involves carrying out the following sequence of steps:

Step 1. Detect whether the set of revisits, recorded at a selected location, represent the

attendance of a regular learning activity (i.e. class in this context) that was

taking place at the chosen location over the observed consecutive weeks.

Step 2. Find out whether the set of individuals, who attended the class, detected in

Step 1, contains subgroups of students that socialise at one of the non-teaching

locations (e.g. the Coffee-shop).

6.6.3 Results

6.6.3.1 Attending Learning Activities

In our experiments, we examined the visiting patterns from 15 chosen locations with known

capacity. These chosen locations are usually used for learning activities such as lectures

and lab-based classes. As shown in Table 6.3, the number of unique visitors greatly varies

between these chosen locations. For a few of them, the number of visitors exceeds the

location capacity, which is a clear indication that those visitors were not all regular class

attendees at these locations. Therefore, it is important that we remove the noise from the

data and only preserve the records of those visitors who most likely visited those locations

in order to attend the learning activities that were taking place there. In order to ensure

that only individuals with consistent high attendance are being clustered, we decided to

filter out the records of those individuals with attendance less than 40%, i.e. students

with attendance of four sessions or more. The intuition here is that the group of those

individuals with regular attendance of 40% or more would include all those who attend

the actual class and most probably exclude all the noise, i.e. individuals who are not
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regular attendees of the class such as those who happened to be in the vicinity of the

target location when the class was taking place.

We restricted our investigation to the data covering the Spring of 2015 (i.e. the period

from 5th Jan - 20th March 2015). The results shown are for the time interval from 18:00

- 21:00 of every Monday of this period. The obtained results are shown in Table 6.4, and

are also summarised in the following two points.

1. With the exception of location #1, for every location, the average number of students

per session was always smaller than the capacity of the target location. After the

verification against the timetable, it appears that location #1 hosted two classes on

Monday evening; one class running from 18:00 - 19:30 and the other from 19:30 -

21:00. The fact that the average number of students per session for the location was

only 11% less than twice the capacity, confirms that the clustering result is consistent

with the finding that the location hosted two sessions on Monday evening.

2. As shown in Table 6.4, the average number of students per session for some of the

locations was far too small in comparison to the capacity of the target location

(e.g. locations #14 and #15). Such situation can be attributed to the possibility

that a substantiated number of students in those classes might not have been active

Eduroam users.

6.6.3.2 Detecting Social Activities Outside the Classroom

Recorded Number of Visitors

By deploying the Temporally-Restricted-Social-DBSCAN using the records of visits

made to the Coffee-shop, we can detect the social groups of students who attend the same

classes. The result summarised in Table 6.5, shows the hourly social activity at the Coffee-

shop during the 11 weeks period of the Spring term in 2015. In this result a Coherence

Coefficient value of 0.7 was utilised and each pair of students in a social group, shared at

least two meetings at the Coffee-shop.

As shown in the Table 6.5, for some of the time intervals, the number of visitors are

significantly larger in comparison to others. This is most likely because the visitors to

the Coffee-shop at these times represent a number of individuals that we did not include

in our study, e.g. students attending classes that we did not include in our experiment.
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Location ID. Site
Location

Name

Number of
Unique
Visitors

Capacity

#1 MaletSt-402 Malet Steet 239 35

#2 MaletSt-G16 Malet Steet 194 60

#3 Clore-102 Clore Management Centre 135 33

#4 MaletSt-b35 Malet Steet 72 125

#5 MaletSt-153 Malet Steet 66 66

#6 MaletSt-b34 Malet Steet 43 222

#7 MaletSt-b29 Malet Steet 48 30

#8 MaletSt-417 Malet Steet 49 60

#9 MaletSt-423 Malet Steet 42 39

#10 Clore-204 Clore Management Centre 32 33

#11 MaletSt-352 Malet Steet 21 20

#12 43GordonSq-g02 43 Gordon Square 24 28

#13 MaletSt-314 Malet Steet 32 36

#14 MaletSt-b20 Malet Steet 16 99

#15 43GordonSq-b04 43 Gordon Square 17 127

Table 6.3: Location information.

Location ID.
Number of
Students

Number of
Discovered

Groups

Group
No.

Group
Size

Group
Standard
Deviation

Avg. Number of Students
Per Session

Attendance
Min Max Avg.

#1 118 1 1 116 5 10 5.94 1.08 62.64

#2 102 1 1 99 5 9 6.00 1.15 54.00

#3 62 3 1 47 5 10 6.28 1.22 31.91
62 3 2 8 5 6 5.13 0.33
62 3 3 3 5 5 5.00 0.00

#4 53 1 1 50 5 10 6.40 1.40 29.09

#5 34 1 1 28 5 10 6.07 1.46 15.45

#6 32 1 1 30 5 9 6.93 1.26 18.91

#7 27 3 1 13 5 9 7.62 1.21 12.18
27 3 2 4 6 7 6.25 0.43
27 3 3 2 5 5 5.00 0.00

#8 32 2 1 27 5 9 7.04 1.23 18.18
32 2 2 2 5 5 5.00 0.00

#9 26 3 1 15 5 8 6.87 1.02 11.18
26 3 2 2 5 5 5.00 0.00
26 3 3 2 5 5 5.00 0.00

#10 17 3 1 9 5 9 7.11 1.20 7.64
17 3 2 2 5 5 5.00 0.00
17 3 3 2 5 5 5.00 0.00

#11 17 2 1 8 5 10 6.75 1.71 6.27

17 2 2 3 5 5 5.00 0.00

#12 15 1 1 13 5 9 6.46 1.34 7.64

#13 16 2 1 9 5 9 6.67 1.33 6.55
16 2 2 2 6 6 6.00 0.00

#14 10 1 1 6 5 8 6.00 1.15 3.27

#15 11 2 1 2 9 10 9.50 0.50 5.45
11 2 2 7 5 7 5.86 0.99

Table 6.4: Social-DBSCAN clustering result for 15 unique locations. The student’s min-
imum attendance threshold was 40% and the Coherence Coefficient (CohCoff) was 0.6.
This result was computed for the time interval from 18:00 - 21:00 every Monday of the
Spring term of 2015 (11 weeks period).
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Time
Interval

Number of
Visitors

Number of
Classes

Number of
Visiting
Groups

Average
Group Size

Group Min
Attendance

Group Max
Attendance

Group Avg
Attendance

Standard
Deviation

0:00-1:00 86 1 1 1.0000 3 1 1.0000 0

7:00-8:00 139 1 1 1.0000 3 1 1.0000 0

8:00-9:00 1767 6 8 1.5000 3 5 2.3750 1.44

9:00-10:00 4327 6 10 1.6000 3 10 4.9000 3.91

10:00-11:00 6077 7 12 1.4167 3 11 5.0000 4.77

11:00-12:00 6508 7 15 1.4667 3 12 4.4000 5.21

12:00-13:00 7208 8 16 1.4375 3 11 4.3125 5.05

13:00-14:00 8541 6 16 1.6250 3 12 5.6875 6.33

14:00-15:00 6403 9 22 1.5455 3 12 4.4091 6.82

15:00-16:00 6868 8 22 1.6364 3 12 5.0000 6.97

16:00-17:00 6494 8 22 1.7273 3 12 5.0455 8.09

17:00-18:00 6546 9 30 2.2000 4 14 7.4000 11.50

18:00-19:00 4117 8 29 2.0690 3 11 5.7586 8.66

19:00-20:00 3689 9 29 2.1724 3 22 7.6207 11.49

20:00-21:00 3081 8 28 2.0714 4 13 6.3214 10.17

21:00-22:00 2124 8 26 1.8846 3 9 3.9231 6.46

22:00-23:00 1138 4 9 1.4444 3 7 2.8889 3.25

23:00-0:00 780 7 12 1.3333 3 8 2.5000 3.13

Table 6.5: Detected Social Activity at the Coffeeshop

Moreover, the Coffee-shop is frequently visited by large numbers of people, who are not

students of Birkbeck, but make a considerable proportion of the total number of visitors

of the Coffee-shop.

Detected Social Groups

As shown in Figure 6.4, the number of social groups, which consistently met at the

Coffee-shop is small in comparison to the total number of those who attended the classes

and relative to the number of social groups, given in Table 6.5. Nonetheless, as a proof of

concept, the results are promising and more experiments need to be carried out on another

more complete data set, as opposed to the one used in this analysis. A richer data set

in which the users authentication information is recorded more frequently would certainly

allow for more extensive analysis to be carried out.

It is interesting to discover that a significantly large social activity occurs at the break

halfway through the three hour evening lecture. As shown in Figure 6.5, a total of 94

groups met at the Coffee-shop during the time from 19:15 to 19:45. It is equally interesting

to find out that the largest social activity occurred during the time from 17:45 to 18:00,

just before the start of the class at 18:00.
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Figure 6.4: Distributions of the size of detected social groups. Each distribution is denoted
by a different colour and computed for a given Coherence Coefficient value. In the top
figure, each pair of students in a social group, shared at least three meetings at the Coffee-
shop. In the bottom figure, each group had at least four meetings.

6.7 Discussion

6.7.1 Demoting Users for Poor Attendance

When discovering a class, it is usual to have noise due to the Wi-Fi detecting all movement

within the vicinity of a target location. One way to ensure that such noise is filtered out

from the data is to approximate the time spent at the target location and discount those

individuals who spent a short time in the vicinity of the location. However, an individual

who is present in the vicinity with no intention to attend the class at the target location is
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Figure 6.5: Distribution of number of detected social groups and the number of classes,
to which the detected groups belong, by time of day. These distributions were computed
using a Coherence Coefficient value of 0.7, where the members of each detected social
group had at least two meetings at the Coffee-shop.

very unlikely to consistently appear at the same location at the same time of the day over

the 11 week period. Thus, the noise due to such inconsistent appearance at the target

location can be removed by raising the minimum attendance threshold, which ensures that

only individuals with consistent attendance remain in the data.

6.7.2 Robustness Against Incoherent Revisits

One of the very attractive features that our proposed Social-DBSCAN shares with DB-

SCAN is the robustness to outliers [67] and [35], which Social-DBSCAN capitalises on to

ensure that the discovered groups do not contain any incoherent member points. However,

even after filtering noise out and clustering the points by using the Jaccard-based distance,

we may still discover more than one coherent group. In the context of class detection, the

occurrence of such a scenario can be attributed to the possibility that there may be two

classes sharing the period from 18:00-21:00, e.g. one class running from 18:00 - 19:30 and

another running from 19:30 - 21:00.

Another explanation for discovering more than one group is based on the fact that

some students may have irregular attendance patterns. The dataset used for the eval-

uation contains records of attendance of many mature students, who have daytime jobs
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and may occasionally miss classes due to some special circumstances such as unexpected

additional work commitment. In such cases, the majority of the students are usually clus-

tered together in one single large group while those students with irregular attendance

form a small-sized group or groups (see the result for location #3 in Table 6.4). In any

case, Social-DBSCAN ensures that incoherent behaviour is separated from the dominant

coherent pattern extracted from the data.

6.7.3 Border Points

Similar to DBSCAN, Social-DBSCAN cannot determine the clusters of border points that

are reachable from more than one cluster. For example, a student that is equally part of

two different learning sessions where s/he some time arrives four times just before the end

of the first session and four other times after the session has ended. Such a student can

be considered a late attendee of the first session based on those occasions in which s/he

arrived before the end of the session. However, he can also be an early attendee of the

second session based on those occasions in which he arrived late for the first session and

early for the second. In the context of class detection, we overcome such a problem by

restricting the the detection of an observed class attendance to a given time interval, for

instance, 18:00 - 19:30, where any arrival after 19:30 would not be considered.

6.7.4 Estimating Class Attendance

By combining external data from the teaching timetable with the social, spatial and tem-

poral information extracted from the dataset, we can identify groups of users whose pres-

ence at a given spatio-temporal context can be linked with the learning activity taking

place within the same context. Moreover, the size of the discovered group of students can

potentially give an accurate estimate of the class attendance.

We acknowledge herein that a substantial proportion of the students who attend classes

are not active users of Eduroam. However, Eduroam is increasingly becoming more per-

vasive and more popular amongst the regular and non-regular visitors of Birkbeck. The

analysis of more recently recorded traces shows that there is a steady increase in the

number of Eduroam users across the university’s main site.

6.7.5 Sensitivity to Time of Visit

A key advantage of the proposed Temporally-Restricted-Social-DBSCAN, over the original

Social-DBSCAN is that the proposed algorithm is capable of clustering visitors in terms of
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time of visit to a target location, in order to discover social connections. Utilising a fixed

size time intervals, the algorithm can successfully identify the visits made to the Coffee-

shop at approximately the same time - it can successfully detect the meetings of different

individuals at an observed socialising location. This allows the algorithm to compare the

different records of visits, and in turn, to cluster visitors into social groups.

6.7.6 Lack of Proximity Data

The ability to measure the proximity between co-located individuals, during a visit to

an observed location, is a key factor in accurately inferring whether the individuals are

socialising or visiting the target location for different reasons - for example when two

students visit the Coffee-shop after the class, but sit at separate tables. Unfortunately,

the data set we utilised for the evaluation of the proposed methods does not contain any

between visitors’ proximity information. Evaluating the proposed methods using a richer

data set that provides information about the proximity between users visiting a target

location will most likely increase the accuracy of the obtained results.

6.8 Summary

1. We showed how by clustering WLAN activity traces we can detect granular social

groups of mobile users within a target academic environment. Moreover, we showed

how by being able to detect social groups at target locations, we provide an invaluable

opportunity to understand the presence and movement of people within such an

environment. Using the proposed Social-DBSCAN, we demonstrated how we can

automatically detect the regular classes taking place at target locations, and provide

accurate estimates about the levels of attendance.

2. We illustrated that by using the proposed methods, namely Temporally-Restricted-

Social-DBSCAN and Social-DBSCAN, we can automatically detect regular learning

activities, and discover social groups among the students, who attend these activities.



Chapter 7

Formal and Informal Social Spaces

7.1 Overview

The different kinds of activities that take place within an observed learning environment

such as a university campus determine to a large extent the kind of social interactions

exhibited by the users in such environments. Using a big data set of Wi-Fi activity traces,

we attempt, in this chapter, to understand how these social interactions characterise the

space within an observed university campus. We discovered that there are at least two

types of social interactions within a university campus: formal such as attending a class

and informal such as meeting friends at the cafeteria. Each of these two types of social

interactions is associated with a specific set of locations within the observed campus.

We also discovered that users tend to restrict their social interactions to a small set of

geographical locations, and often revisit the same location to socialise with the same social

group. Also, irrespective of the type of the social interactions, users tend to restrict their

revisits to geographically nearby locations and only revisit locations that are further afield

when they are in the company of their social group. These findings are based on the social

groups detected by a scalable density-based clustering method applied to a large data set

of mobile users Wi-Fi traces. The results of the experiments carried out in this research

demonstrate how the proposed algorithm (see Algorithm 7.1 in § 7.5.2) can non-invasively

detect social groups on the basis of the activity performed at the observed location.

7.2 Introduction

The detailed information produced by Wi-Fi provides an invaluable opportunity to learn

about the different aspects of presence and movement behaviours of people within a given

139
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environment such as an organisation office complex or a university campus. With the aid

of appropriate tools, for analysing such detailed information, we can potentially discover

hidden patterns of behaviour at both the collective and the individual user levels; thus we

increase our understanding about people’s presence, and, in turn, improve our ability to

make informed decisions when we plan for our environments.

This chapter is organised as follows. In Section 7.3, we describe the primary objective

and the contributions of the research work presented herein. Section 7.4 discusses the

characteristics of social activities within the case-study environment, particularly those

that occur at informal social locations such as the Coffee-shop. In Section 7.5, we in-

vestigate the different types of social presence across the university campus and present

the proposed algorithm (see Algorithm 7.1 in § 7.5.2) for detecting the social grouping

of users. Section 7.6, presents a model for formal and informal locations based on the

social interactions that take place across the case study environment. In the Evaluation

section, i.e. Section 7.7, we give a description of the data set used for the evaluation of

our proposed approaches, and provide a comprehensive discussion of the results of the

experiments. Finally, in Section 7.8, we provide a brief discussion about the lack of prox-

imity information in the evaluation data set, and we conclude the chapter with a summary

statement, which can be found in Section 7.9.

7.3 Problem Definition

The key research objective of this chapter is to characterise the space within an observed

university campus. More specifically, we would like to determine the type of an occupied

location based on the visiting behaviour exhibited by the social groups that visit such a

location. We first focus on the detection of granular social groups of mobile users, within

the university campus, on the basis of the social activities that take place at observed

locations. The intuition herein is that the social activities in which the detected groups

participate can be categorised into formal and informal activities where each category is

associated with a set of specific locations within the university campus.

7.3.1 Contributions

This chapter makes the following contributions:

1. It proposes a density-based clustering method that discovers social groups by utilis-

ing activity traces of mobile users. We detect the social groups on the basis of the
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activities taking place at observed locations within a university campus. We provide

a detailed description of this clustering method in Section 7.6.

2. It proposes a framework for inferring the type of an observed location, by using the

patterns of visit extracted from Wi-Fi activity traces. Here we have two main types

of social locations: formal and informal, which we define in the next section, namely

Subsection 7.5.1.

3. It investigates the similarities and differences between the formal and the informal

social locations.

7.4 Characteristics of Social Spaces

Understanding the social dynamics within an observed environment such as a university

campus can be useful for a range of applications. In this chapter, we study the social

aspect of human presence with the aim of gaining a better understanding of the presence

and movements of people within the case-study environment - the Bloomsbury campus

of Birkbeck, University of London. By knowing who and where and why people spend

their time, the university can plan for the most effective usage of space and allocation of

services in the manner that creates a more positive attitude toward learning, and provides

a richer and more rewarding experience.

7.4.1 Types of Social Behaviour

The numerous daily activities that take place at the case-study environment, which in-

clude “learning classes”, “meetings”, “seminars” and “having lunch at the cafeteria”, can

be broadly divided into two main categories: formal and informal activities. Generally, in

a formal activity, such as a learning class or a seminar, the social interaction is between a

large group of individuals taking part in the activity, whereas in an informal activity we

tend to find a close social interaction between a relatively smaller group of individuals.

Moreover, individuals usually spend roughly the same duration of time when they attend

a formal activity session whereas they tend to spend variable length of time when they

are involved in an informal activity. Also, formal activities are usually linked to specific

locations and appear to follow a regular pattern of occurrence whereas informal activities

tend to not adhere to a fixed pattern of occurrence.
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Generally, these two categories of activities underpin the different types of social be-

haviour that can be found at our chosen environment. In this chapter, we distinguish

between two kinds of social presence: formal and informal, which we interpret as follows:

Formal Social Presence

Formal Social Presence denotes the set of meetings that are attended by the same group

of individuals, take place at the same location and occur regularly in sessions of fixed

duration. We refer to the type of social relationship exhibited in such set of meetings

as formal social relationship and the social group of users, who participate in such a

relationship, as formal social group.

Example: The regular meetings of a group of the same students attending a three-hour

weekly lecture that takes place at a specific lecture-room at specific time, e.g. from 18:00

- 21:00 every Thursday of the Spring academic term.

Informal Social Presence

Informal social presence is defined as the set of meetings that are attended by the same

group of individuals and may take place at different locations. In contrast to the meetings

of the Formal Social Presence, these meetings do not necessarily follow regular patterns

of occurrence or have a fixed duration. We refer to the type of social relationship shown

in such meetings as informal social relationship and the social group of mobile users, who

take part in them, as informal social group.

Example: The meetings of the same group of friends at a cafeteria for coffee. More often

these meetings, attended by the same group of friends, take place at different locations,

e.g. a different cafeteria or at the cinema. Moreover, these meetings are usually irregular

in their occurrence, i.e. happen at different times or have different durations.

In this section, we use the term ‘visit’ to refer to an event when the time and the

location of a particular user is recorded. This means that a user was at a specific location

(i.e. a room) when s/he either initiated or received data using their mobile device over

Wi-Fi.

7.4.2 Types of Visited Locations

Unlike localisation techniques, which focus on discovering the exact location of the mobile

device, in this section we are only interested in determining whether two, or more, devices
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are within the same room. We selected two types of locations for the evaluation of our

proposed method: meeting rooms, where regular learning and administrative activities

take place and leisure locations with food and drinks facilities. The details of these loca-

tions are given in Table 7.1.

Number
Location Site Category of

Visitors

Bar Malet St. Ext. Leisure (informal) 4677

Cinema 43 Gordon Sq. Leisure (informal) 3035

CoffeeShop 43 Gordon Sq. Leisure (informal) 2967

CoffeeShop Malet St. Leisure (informal) 38520

Room 102 10 Gower St. Learning (formal) 9963

Room 301 Malet St. Learning (formal) 4249

Room 314 Malet St. Learning (formal) 7076

Room 413 Malet St. Learning (formal) 665

Room 417 Malet St. Learning (formal) 189

Room B29 Malet St. Learning (formal) 16081

Room 254 Malet St. Ext. Learning (formal) 19051

Room 456 Malet St. Ext. Learning (formal) 12031

Table 7.1: Selected Birkbeck Locations

7.4.2.1 Patterns of Visits

We studied the number of revisits made to locations across the campus and we observed

that the distributions follow a power law for most locations. Figure 7.1 plots the distri-

butions for the number of revisits made to locations where informal activities occur: the

Coffee Shop and the Cinema at 43 Gordon Square, the Bar and the Coffee Shop at Malet

Street. The log-log plots in this figure unanimously show that the distributions follow a

broken power law consisting of two power law regimes - the broken power law in this case is

a function comprising two power law distributions combined with some threshold [64]; for

example, with two power laws. Initially, for the first two revisits, the distributions climb to

their peak points at slopes 3.51, 2.76, 3.62 and 4.72, respectively. Then, for up to 25, 31,

25 and 63 visits, they descend gently at slopes -2.58, -2.26, -1.87 and -2.29, respectively.

The four distributions jitter sharply for values of revisits beyond these ranges, which is

a sign of an exponential cutoff [40]. Interestingly, those individuals who made their first

visit are more likely to revisit the observed location. This pattern suddenly reverses across



7. Formal and Informal Social Spaces 144

0.5 1.0 1.5 2.0

−
20

−
15

−
10

−
5

0

Log Number of Visits

Lo
g 

P
ro

ba
bi

lit
y

Y=−1.07+1.98X

Y=0.36−2.26X

0.0 0.5 1.0 1.5

−
15

−
10

−
5

0

Log Number of Visits

Lo
g 

P
ro

ba
bi

lit
y

Y=−1.32+3.05X

Y=0.63−2.58X

0.0 0.5 1.0 1.5 2.0

−
20

−
15

−
10

−
5

0

Log Number of Visits

Lo
g 

P
ro

ba
bi

lit
y

Y=−1.68+4.72X

Y=0.33−2.29X

0.5 1.0 1.5 2.0

−
15

−
10

−
5

0

Log Number of Visits

Lo
g 

P
ro

ba
bi

lit
y

Y=−1.31+2.86X

Y=0.15−1.87X

Figure 7.1: Distributions of number of revisits to the locations where informal activities
occur. A revisiting user is one who made two or more visits to an observed location.
Shown from left to right are the distributions for: the Coffee Shop, the Cinema at 43
Gordon Square, the Bar and the Coffee Shop at Malet Street. The two fitted straight lines
indicate the broken power law relationship in each plot.

the four locations, where for those individuals who made between 3 to 25, 3 to 31, 3 to

25 and 3 to 63 visits, respectively, the higher the number of their previous visits the less

likely that they will revisit the observed location.
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7.5 Detecting Different Types of Social Presence

Our intuition is that the activity taking place at an observed location determines, to

a large extent, the kind of social interaction that occurs during the activity. Methods

that only capitalise on temporal and spatial information to detect social groups of people

visiting an observed location, may not always produce the desired accurate results. For

example, during a formal meeting or a seminar, people may be seated far from one another

despite being closely related to each other. Equally, they may be seated adjacent to one

another despite the lack of a close relationship between them. A method that solely

depends on proximity information to detect the social group attending a meeting or a

seminar in which individual people are placed at distances greater than what is required

to link them to one another, will most probably fail to detect the correct social grouping.

Similarly, a clustering method that relies on a small distance between arrival times, will

fail to correctly cluster two individuals that attend a meeting but arrived at times far

apart from one another. Equally, a method that expects individuals’ arrival times to be

long apart from one another, will fail to detect a social event that occurs within shorter

time intervals. For example a method, designed to detect groups that attend social events

in which individuals arrive an hour apart from one another, will most likely fail to discover

short events such as a 15 minutes coffee-break gathering at the cafeteria. We argue here

that in order to detect the correct social behaviour at a given location, it is imperative

that, in addition to the temporal and spacial information, we take into consideration the

semantic underpinning of the social interaction at that location. For example, a clustering

method that adapts to different social activities will be able to adjust its temporal and

spacial criteria in order to correctly detect the social group attending such meetings. Our

proposed clustering method (see Algorithm 7.1 in § 7.5.2), which we discuss in the next

subsection, i.e. Subsection 7.5.1, is parameterised with information about the kind of

activity that takes place at an observed location.

7.5.1 Social Density-based Clustering

We adopt a density-based clustering style such as the one implemented in DBSCAN [35]

for our proposed clustering algorithm. Our motivation for such a style stems from the

fact that density-based algorithms are not restricted to discovering only clusters that are

spherical in shape. These clustering algorithms can discover any arbitrary-shaped clus-

ters which other alternatives such as the partitioning algorithms, e.g. K-means [110], and



7. Formal and Informal Social Spaces 146

hierarchical algorithms, e.g. divisive hierarchical clustering [106] would not be able to ac-

curately identify - such alternative algorithms inaccurately identify convex-shaped regions,

where outliers are usually present in the identified clusters.

Building on the previously mentioned intuition (see the start of Section 7.5), we pro-

pose a new scalable method that detects the social clustering of mobile users on the basis

of the type of activity performed at an observed location. Given a database of users and a

set of locations, we would like to discover the groups of users that visit these locations to

participate in a social activity. For example, we would like to discover groups of students

who attend lectures together as classes at different lecture-rooms, groups of researchers

who hold regular seminars at particular meeting rooms or groups of friends who socialise

at the Coffee Shop during break time.

In order to formulate how we would discover such social groups we would like to in-

troduce the notation provided in Table 7.2.

Symbol Meaning

U Database of users.
L The set of locations.
p, q, r An m-dimensional point representing a user’s set of visits to

the locations given in L.
v A user’s visit, to a given location, within a time interval t.
D The set of m-dimensional points representing the users in U .
θq,r The Jaccard distance between q and r, (see § 6.4.2.4)
RNε(p) The neighbourhood of p in which the maximum distance

between any pair of points is ε.
G A social group of users.
δ The minimum number of joint visits
minPts A density threshold.

Table 7.2: Notation

The core concept of the proposed SocialDBC algorithm (see Algorithm 7.1 in § 7.5.2)

for social clustering is that a data point is assigned to a cluster/group if it is socially-

connected to all the other member points of the cluster or the group. To explain this key

idea, we give the following definitions of concepts that are common to many density-based

clustering algorithms such as DBSCAN [35].
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Given a data set of points D, SocialDBC estimates the density around p using the

concept of ε-restricted-neighbourhood, which is defined as hereafter.

Definition 1. ε-neighbourhood

An ε-neighbourhood, Nε(p), is the spherical space with radius ε and p at its centre. This

is formally defined as follows:

Nε(p) = {r | θp,r ≤ ε}. (7.1)

Definition 2. ε-restricted-neighbourhood

An ε-restricted-neighbourhood, RNε(p), is the neighbourhood of p in which the

maximum distance between any pair of points is ε. This is formally defined as follows:

RNε(p) = {q | q, r ∈ Nε(p), θq,r ≤ ε}. (7.2)

Note that the point p is always a member of its own ε-restricted-neighbourhood, i.e.,

p ∈ RNε(p) always holds.

Given the above definition, one can see that the neighbourhood RNε(p) is a subset of

the ε-neighbourhood Nε(p), in which any pair of points are within a maximum distance ε,

thus

|RNε(p)| ≤ |Nε(p)| (7.3)

Definition 3. Core Point

A point p ∈ D is classified as:

1. a core point if its neighbourhood Nε(p) has high density, i.e., |Nε(p)| ≥ minPts,
where minPts is a user-specified finite positive integer,

2. a noise point, otherwise.
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Definition 4. Social Connectivity

Two points p and q ∈ D are socially connected if:

1. q ∈ RNε(p),

2. and the neighbourhood RNε(p) has high density, i.e., |RNε(p)| ≥ δ, where δ is a

user-specified finite positive integer denoting a minimum density threshold.

Definition 5. Social Group

A social group, G, is a socially connected set of points. An example of such a social

group can be found in a group of students that attend the same weekly class learning

sessions that are at least equal to δ sessions in total. Such a group is socially connected

because every member of the group attended at least δ sessions that the other members

attended irrespective of whether the sessions took place at one or several locations.

In order to make the above mentioned definitions clearer, we refer the reader to the ex-

ample given in Figure 7.2, in which we visualise the concepts of ε-restricted-neighbourhood,

core and noise points, and multi-cluster membership, respectively. In the subfigure (a),

the red small circle represents a point ‘p’. The unlabelled double-sided arrow represents a

distance that is less than or equal to ε, whereas the dotted circle denotes the area repre-

senting the neighbourhood of ‘p’. Within this neighbourhood, the two small circles filled

with blue colour denote two random neighbouring points of ‘p’. The distinctive feature

of all points in this neighbourhood of ‘p’, including ‘p’ itself, is that they are located at

a distance less than, or equal to, ε from each other. In the subfigure (b) the bold-dotted

circle denotes a neighbourhood in which the three red points are at distance less than or

equal to ε, and thus considered to be core points, whereas the point coloured in green is

considered to be noise despite being at a distance less than or equal ε. This is because the

green point is located in the ε-restricted-neighbourhood of only one of the red points and

not all three red points; and thus falls short, by two points, in satisfying the minimum

number of neighbouring points criterion for core points, i.e. the user-specified minimum

density threshold (minPts), which is equal to 3 in this example. The subfigure (c) visu-

alises the concept of multi-cluster (or multi-group) membership which is shown by two

clusters sharing a common point between them; the first of these two clusters is denoted

by the two red points and the second cluster is represented by the two black points. The

third point in each of the two clusters is denoted by the same point which is filled with

blue colour. Although the points in this subfigure fall inside the same bold-dotted circle,

which has a radius less than or equal to ε, and has the shared blue point being at the
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centre, they are not part of the same ε-restricted-neighbourhood. This is because neither

of the two red points fall within a distance less than, or equal to, ε from any of the two

black points - in this figure any distance between two points that is less than or equal to

ε is denoted by double-sided arrow.

(a) (b) (c)

Figure 7.2: (a) The ε-restricted-neighbourhood of p. (b) Core and noise points. (c) Multi-
cluster membership. The three red points in the sub-figure (b) are core points whereas
the ones coloured in green are classified as noise. In the sub-figure (c), the point coloured
in blue is a member of two clusters: the red and the black clusters of points.

7.5.2 Detection of Social Groups

SocialDBC uses the concept of ε-restricted-neighbourhood and the thresholds: δ, ε and

minPts to classify the points given in D into core and noise points. Consequently, it links

those core points that are socially connected into social groups. Figure 7.2 illustrates the

concepts of ε-restricted-neighbourhood, the two classes of points: core and noise, as well

as points for multi-cluster membership.

Algorithm 7.1 (see § 7.5.2) gives the pseudo code for SocialDBC, which starts by declar-

ing an empty set of core points (line 2). It then performs three tasks for each point given

in D: it computes the neighbourhood Nε(p), if p satisfies the requirement for core points,

it adds p to the set of core points, and then it declares that p is assigned to none of the

social groups by setting the set of ids, belonging to p, as being empty (lines 3-9).

In the next step, for each core point with no cluster assignment, SocialDBC finds the

set of socially connected points for the given core point (line 12). If the detected set size is

greater than or equal to the threshold delta, the set is identified as a social group and as a
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1: SocialDBC(D, ε, δ, minPts = 2)
2: Core ← φ
3: for each p ∈ D do
4: Compute Nε(p)
5: if RNε(p) ≥ minPts then
6: Core ← Core ∪ {p}
7: end if
8: idp ← φ
9: end for

10: k ← 0
11: for each p ∈ Core do
12: G ← FindSocialGroup(p, ε, δ)
13: if |G| ≥ δ then
14: k ← k + 1
15: for each p ∈ G do
16: idp ← idp ∪ {k}
17: end for
18: end if
19: end for
20: Groups ← {Gi | Gi = {p | p ∈ D, i ∈ idp}}
21: Noise ← {p ∈ D | idp = φ}
22: return Groups, Noise
23:
24: FindSocialGroup(p, ε)
25: ψ ← p
26: for each q ∈ Nε(p) do
27: set ConnectedP t ← True
28: for each r ∈ ψ do
29: if |θq,r| > ε then
30: ConnectedP t ← False
31: break
32: end if
33: end for
34: if ConnectedP t = True then
35: ψ ← ψ ∪ {q}
36: end if
37: end for
38: return ψ

Algorithm 7.1: Social Density-based Clustering (SocialDBC)

result the set of ids associated with each point in the social group is amended to indicate

that the point is a member of the newly detected social group.

A point may be connected to multiple social groups. Such a point is added to all of

those social groups that the point is connected to. Any point that has not been assigned

to a social group is considered to be noise.

7.5.3 SocialDBC vs DBSCAN

A major distinction between the proposed SocialDBC algorithm and the many DBSCAN

versions that exist in the literature is that the former discovers only convex clusters [35]
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of points. A fundamental concept of the social grouping discussed in this section is that

detected social groups must not include a-friend-of-a-friend relationships, which DBSCAN

inherently allows through the creation of elongated non-convex clusters [35].

Another subtle difference between the two methods manifests in how multi-cluster

participation is perceived. Overlapping of clusters conforms with how social grouping is

defined in this research, where an individual can be a member of multiple social groups

irrespective of the type of social interaction. While the social groups discovered by So-

cialDBC are not exclusive, i.e. SocialDBC permits the participation of points in multiple

clusters, DBSCAN and its two variations, i.e. Social-DBSCAN and Temporally-Restricted-

Social-DBSCAN (see § 6.4 and § 6.5), produce exclusive clusters where overlapping is not

permitted.

One important feature of the SocialDBC method is the two level computation of the

distance between two points. In addition to using Jaccard distance [19] to find the neigh-

bourhood of a given point, we apply a minimum number of visits threshold to filter out

those neighbouring points that do not belong to the social group. For example, to detect

the group of students that attend the same class, we first find all the students that are

part of the neighbourhood of an observed student. To do this we compute the Jaccard

distance between the set of locations that the observed student visited and the set of vis-

ited locations of each of the students recorded in the database [20]. From the obtained

neighbourhood we further filter the group of students that made joint visits greater than

or equal to a minimum threshold of joint visits. This group of students that meets the

joint visit criterion is considered to be a social group.

The key limitation, which both methods share, is the sensitivity of the result of clus-

tering to the value of ε, especially when the underlying clustering that we seek to discover

has a wide range of density values.

The two methods have similar complexity due to the computation of the neighbourhood

for each point in the data set. Thus, the worst-case complexity for SocialDBC is O(n2)

[110].
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7.6 Modelling Social Presence

7.6.1 The Social Presence Model (SPM)

We propose the SPM model, which classifies locations into formal and informal locations

on the basis of the visiting patterns detected at those locations. We have learnt so far

how social groups can be detected using spacial and temporal information extracted from

Wi-Fi activity traces and we would like to formulate a model that exploits these visiting

patterns to predict the type of location where people socialise.

Based on our definition of formal social presence in § 7.4.1, the visits made to an ob-

served location by the same social group represent a set of uniformly distributed points

in the visit space. Consequently, for each social group we can test for a discrete uniform

distribution applied to the group’s set of visits, recorded at the observed location. To

illustrate the idea, we proceed as follows.

Given a location l, for each detected social group, we compute the length of the time

period between each visit and the next. The data set made of these period lengths can be

regarded as a sample s, which we hypothesise to be uniformly distributed. Formally, for

each social group that visited the location l we find the set of visits v1, . . . , vn, arranged in

chronological order. We compute the number of days between each two consecutive visits

to create the set s. We denote the set comprising all the sets of in-between visits gaps for

the current location as S, thus |S| denotes the number of social groups that visited the

observed location. Assigning l to the class of formal locations can be estimated by counting

how many sets s ∈ S are approximately uniformly distributed. Therefore, the probability

of the observed location l being classified as a formal location can be computed as the

proportion of the number of uniformly distributed sets s ∈ S, compared to the number of

social groups that visited the observed location, namely

Pr
(
Y = formal

)
=

∑
s∈S I(s ∼ U(a, b))

|S|
, (7.4)

where I is an indicator function that has value 1 only when its argument is true, and 0

otherwise; a and b are the minimum and maximum number of days between two

consecutive visits.

Since we only have two types of location: formal and informal, classifying a location

as formal corresponds to predicting that its type is formal if Pr
(
Y = formal

)
> η, and
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informal otherwise.

NB The minimum probability threshold η is a user-specified value from the interval

[1,0) - the value 0.5 has worked very well in all experimentations.

To verify the uniformity of s ∈ S, we use the following hypotheses:

H0: The periods lengths in s are uniformly distributed.

H1: The periods lengths in s are not uniformly distributed.

In order to test these hypotheses, we compute the chi-square goodness of fit statistic

as shown below [50, 61].

T =

∑d
i=1(Oi − Ei)2

Ei
≈ χ2

d−1 (7.5)

where Oi is the observed count of the period length i, Ei denotes the expected count,

Ei = 1
|s|
∑d

j=1Oj , and d is the number of count values Oi based on the observed s.

7.6.2 Baseline Model

We use a multiple logistic regression model as a baseline model for comparison. The

model infers the type of an observed location based on a set of features, which describe

each social group that attended the location: the size of the group, number of visits made

by the group, minimum and maximum number of days between two consecutive visits. It

is a global model in the sense that the model is fitted using information from all formal

and informal locations in our data. We estimate the probability of whether an observed

location can be classified as formal or informal using the following equation.

Pr
(
Y = formal

)
=

eβ0+β1x1+β2x2+β3x3+β4x4

1 + eβ0+β1x1+β2x2+β3x3+β4x4
, (7.6)

The maximum likelihood method [43] is used to estimate the parameters β0, β1, . . . , β4.

x1, x2, x3 x4 denote the size of the group, number of visits made by the group, and the

minimum and maximum number of days between two consecutive visits, respectively.

An observed location is classified as formal if Pr
(
Y = formal

)
> 0.5, and informal

otherwise, namely (≤ 0.5).
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7.7 Evaluation

7.7.1 Data Set

The evaluation of the proposed clustering method, Social-DBSCAN, is based on recent

WLAN traces collected at Birkbeck - the case-study university in this research work. A

detailed description of the evaluation data has been provided in § 5.6.1.

7.7.2 Experiments

We evaluate the proposed SPM1 and baseline models on the eduroam data set, which we

describe in section 5.6.1 of the previous chapter. We are particularly interested in the

predictive performance of the models, i.e., given the information about the visits made

by different social groups, our goal is to accurately predict the type of each location visited.

In order to detect students social groups, which we subsequently used in the evaluation

of our proposed prediction models, the raw eduroam data was processed to create m-

dimensional points. Each point denotes the visits made, by one of the users, to different

locations across the university campus.

7.7.2.1 Evaluation Metrics

In order to measure the performance, we consider the mean prediction accuracy as an

evaluation metric, i.e. an accuracy of 0.1 means that only 10% of the time the proposed

model, namely the SPM model and the baseline model, successfully predicts the correct

type of the observed location. Also for each model, we provide a table of confusion (a

confusion matrix) to report the number of false positives, false negatives, true positives,

and true negatives. The significance levels of 0.01 and 0.05 were used for performing the

statistical hypothesis testing.

7.7.2.2 Experimental Setup

Our experiments were based only on detected social groups which visited the set of loca-

tions given in Table 7.1. These social groups were detected using our proposed clustering

method SocialDBC. Each social group had a least two visits to the same observed loca-

tion. To evaluate the accuracy of the SPM model, we used all the data without division

into training and testing data sets. However, for the evaluation of the baseline model (see

1The Social Presence Model
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§ 7.6.2) we divided the data into training and testing sets, where from each location we

used 80% of data for training and the remaining 20% for testing.

7.7.3 Results

7.7.4 Uniformity of Social Presence Across Formal Locations

Our initial intuition is that the locations associated with formal activities are visited in a

regular manner by social groups with uniform periods between visits. In contrast, those

locations that are linked to informal activities have irregular patterns of visits. To verify

this intuition, we evaluated the proposed models, described in § 7.6, on the visit data of

each of the locations given in Table 7.1.

Actual Location Type
Predicted
Location Formal Informal
Type

SPM1 Formal 8 1
Informal 0 3

SPM2 Formal 8 1
Informal 0 3

Baseline Formal 8 4
Informal 0 0

Table 7.3: Table of Confusion. SPM1 and SPM2 represent the SPM model using the
significance levels of 0.01 and 0.05, respectively.

Table. 7.3 reports the number of false positives, false negatives, true positives, and true

negatives from the evaluation of these two models. The reported results show how the

SPM model (i.e. the SPM1 and SPM2 which represent the SPM model using the signifi-

cance levels of 0.01 and 0.05, respectively) offers a significantly improved performance over

the baseline model, which they outperform by a factor of 1.38 in terms of accuracy: 0.92

for the SPM1, and the SPM2 models, and 0.67 for the baseline model. Both SPM mod-

els,i.e. SPM1 and SPM2, correctly classified three informal locations out of four whereas

the baseline model failed to correctly classify any of them. Interestingly, the two SPM

models and baseline model correctly classified all eight formal locations. Figure 7.3, plots

the classification of locations into formal and informal locations based on the predictions

made by the two SPM models and the baseline model, as shown in the sub-figures (a), (b)

and (c) respectively.
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7.7.5 The Geographical Spread of Social Meetings Across Campus

We studied the number of locations visited by social groups across campus and we dis-

covered that around 83% of the detected groups visited only one location to socialise.

Figure 7.4, shows the distribution of the number of locations visited by social groups

across locations where informal activities occur. We also examined the number of loca-

tions visited by social groups that attended the Coffee-shop and the Bar at Malet Street

and for each group we counted the number of visited locations from other sites of the

campus, i.e. places located off-site Malet Street. As shown in Figure 7.5, 91% and 99%

of social groups that visited the informal locations at Malet Street and Gordon Square,

restricted their visits to nearby locations, i.e. locations within the same site, as opposed

to locations that are further afield. One interpretation of such result is that many social

groups visit informal locations at lunchtime and in coffee breaks during lectures and other

learning sessions. These breaks usually last for short periods, and consequently do not

provide enough time for groups to socialise off-site far from their prime location of work

or study.

7.7.6 Visiting Behaviour Across Locations

Intuitively, formal locations, where activities such as learning classes and lab sessions take

place, are usually attended by groups as opposed to individual users. To find out whether

users visit a given location as a group or individually, we calculate the social weight, which

compares the number of shared visits made by the social group to the total number of

visits made by the individual user, including the visits they made with their social group:

SocialWeight =
Number of group visits

Number of individual user visits
(7.7)

In ideal settings, a social weight value that is equal/close to 1 demonstrates the supe-

riority of group visits over the individual user visits. In contrast, a significantly smaller

value is a clear indication that the user prefers to visit the observed location as an indi-

vidual as opposed to visiting it with a group. Figure 7.6 illustrates such scenarios where

the skewness of the distribution indicates the dominance of one type of visiting behaviour

over the other.

As shown in Figures 7.7 and 7.8, the social weight value varies from one observed
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Figure 7.3: Classification of locations into formal and informal locations based on the
predictions made by (a) the SPM model using a significance level of 0.01, (b) the SPM
model using a significance level of 0.05 and (c) the baseline model. The colours of plotted
location names reflect the two types of location given in Table 7.1.
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Figure 7.4: Distribution of number of locations visited by social groups detected across all
locations.
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Figure 7.5: Number of distant locations visited by social groups that visited Malet Street
and Gordon Square informal locations. In this experiment, a distant location is any
Birkbeck location excluding the ones situated at Malet Street and Gordon Square.
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Figure 7.6: Types of visiting behaviour as seen through the distribution of ratio of number
of group visits compared to the number of individual member visits.

location to another but generally those locations which are linked with formal activities

seem to be favoured by social groups as opposed to individual users. With exception of

the distribution for Room B11 at 43 Gordon Square site, it is clearly evident from the

negative skewness of the peaked distributions shown in Figure 7.7 that more visits were

made, to these locations, by social groups as opposed to individual users. Although the

distribution for Room B11 has a positive skewness but the social weight values shown

range between 0.6 and 1.0, which clearly indicates that the location was visited by groups

of users more than it was visited by individual users.

Similar to formal activity locations, most of the observed locations associated with

informal activities seem to have the group behaviour of visit as the favoured mode of visit.

As shown in Figure 7.8, the negatively skewed and highly peaked distributions for loca-

tions such as the Coffee Shops suggest that they are preferred locations for social groups.

Despite the positive skewness of distribution for the Bar at Malet Street Extension, the

social weight values shown are greater than 0.5, which strongly indicates that the location

was visited by groups of users more than it was visited by individual users. The Cinema

at 43 Gordon Square seems to have a large proportion of its visits made by individual

users but it nonetheless remains a favoured destination for social groups.
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Figure 7.7: Distributions of social weight for formal activity locations. Shown from left to
right and from top to bottom are the distributions for: (a) Room 102 at 10 Gower Street,
(b) Room B11 at 43 Gordon Square, (c) Room 314 at Malet Street and (d) Room 254 at
Malet Street Extension.
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Figure 7.8: Distributions of social weight for informal activity locations. Shown from left
to right and from top to bottom are the distributions for: the Cinema, the CoffeeShop at
43 Gordon Square, the Coffee Shop and the Bar at Malet Street.

7.8.1 Chi-square Test

An important aspect of the SPM performance to report herein is when all Ei ≥ 1, and at

least 80% of them ≥ 5. This is a sound application of the Chi-square test which we would

like to perform in this analysis. As shown in Figure 7.9, the reported results under such

a condition, namely all Ei ≥ 1, and at least 80% of them ≥ 5, still show the improved

performance of the SPM model (i.e. the SPM3 and SPM4 which represent the SPM model

using the significance levels of 0.01 and 0.05, respectively) over the baseline model, where

the two SPM models maintained the same performance in terms of accuracy: 0.92 for the
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SPM3, and the SPM4 models.
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Figure 7.9: Classification of locations into formal and informal locations based on the
predictions made by (a) the SPM model using a significance level of 0.01, and (b) the
SPM model using a significance level of 0.05. In this experiment all Ei ≥ 1, and at least
80% of them ≥ 5. The colours of plotted location names reflect the two types of location
given in Table 7.1.

7.8.2 Lack of Proximity Data

Similar to the discussion provided in Section 6.7.6 in the previous chapter, the evaluation

data we utilised in this research does not comprise proximity information between two

(or more) co-located individuals visiting an observed location - for example the distance

between two individuals visiting the Coffee-shop but sitting at separate tables. Although

the proposed clustering method does not employ such granular proximity information

in deciding the membership of a social group, it is most likely that by utilising such

information, achieving a higher accuracy in discovering social groups is feasible.

7.9 Summary

The key contributions of this chapter can be summarised as follows:
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1. We demonstrated how by clustering WLAN activity traces we can detect social

groups of mobile users within an academic environment. Moreover, we showed how

by being able to detect social groups at target locations, we provide an invaluable

opportunity to understand the presence and movement of people within such an

environment.

2. We developed a clustering method, which we call SocialDBC, that leverages on the

type of activity performed at an observed location in order to detect visiting social

groups. We discovered that people generally socialise at a very small set of nearby

locations within campus - within the same building or site. Generally, people visited

a distant location, i.e. another Birkbeck site, when they were in the company of

their social group.

3. Given the categorisation of occupied spaces into two main types: formal and informal

locations, our proposed model of human social presence (SPM) can infer the type of

any observed location based on the visiting behaviours exhibited at that location.

This seemingly simple model reliably predicts the correct visited location type and

offers significantly improved performance over the nontrivial baseline model which

failed to make a correct prediction when the location type is informal.



Chapter 8

Conclusions

In this thesis, we studied three main aspects of the human presence and movement be-

haviour within specific environments: spatio-temporal movement (where and when do

people move), user identification (how to uniquely identify people from their presence and

movement historical records), and social grouping (how do people interact). We consid-

ered two environments: a learning environment represented by a university campus and

a city environment represented by an average-size city in Europe. The two large data

sets that we utilised in the evaluation of the models described herein capture the presence

and movement behaviour in these two environments. Employing these two data sets, we

investigated the three aspects of the human presence and movement behaviour which are

summarised hereafter.

8.1 Summary of the Thesis

The contributions of this thesis are divided into two parts: the first part, investigates

the spatio-temporal movement where we predict the future locations of visit based on

when and where users had been in the past. We also investigate the possibility of using

recorded movements for user identification. The stochastic models proposed for movement

prediction and user identification were evaluated on the data set obtained from Nokia (see

Subsection 1.6.1.1).

Chapter 3. Considering the next location prediction problem, the one-model-per-user

and the collective model approaches were investigated. The two approaches were found

to have very comparable prediction performances, particularly when previously seen be-

haviours are available to make inferences from. Furthermore, the effect of the length of

164
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the user record of the most recent temporal locality used in predicting the next location of

visit was examined. It was shown that only a short record of mobility history is required

in order to make relatively accurate predictions about future locations of visit. Moreover,

the effect of the length of this record and the relative loss of accuracy when reduced data

samples are used was investigated. It was clear from the results of the experiments we

carried out that as the length of the historical record increases the models’ prediction

accuracy improves.

The proposed collective approach has the potential to overcome the one-model-per-

user’s weaknesses such as the inability to deal with novel behaviours.

The performance of the proposed prediction models, i.e. the single user models and

the collective multi-user models, were evaluated by using MAE and RMSE error metrics

[13]. It was shown that these two metrics can be utilised in computing the suggested (the

top-k) locations which are most likely to include the observed user’s correct next location

of visit. The merits of HM Score in assessing the accuracy of the proposed models were

examined and employing HM score and the two mean error metrics, i.e. the Mean Absolute

Error and the Root Mean Square Error, seem to provide a broader view of the prediction

accuracy as opposed to applying a single metric.

Chapter 4. The mobility fingerprint [32], which is a profile constructed from the user’s

historical mobility traces was proposed. An algorithm for building such a profile, which we

evaluated by collecting a sample of fingerprints from the publicly available Nokia Mobile

Data Challenge data set (see § 1.6.1.1) was introduced. Furthermore, it was shown that

users have unique mobility fingerprints, i.e. they can be distinguished from one another

based on their mobility fingerprints. Moreover, an observed mobility trail can be associ-

ated with the fingerprint of the user to whom the trail belongs, i.e. a user can be identified

by his/her movements. We showed that in order to successfully identify individual users

on the basis of their recent mobility history, it is imperative that a rich historical record

about the movement of those users is maintained. It was shown herein that the richer

the fingerprint the more accurate the identification of the user from observed movements

is. Also the idea of whether the proposed fingerprinting method [32] can be extended to

create unique profiles for landmarks and whether such fingerprints can be used for loca-

tion prediction was explored. To this end, it was shown that the proposed fingerprinting

method can be used to create unique profiles for landmarks and successfully be employed



8. Conclusions 166

in the context of the Next Location Prediction problem.

In the second part of the thesis we considered the concept of social grouping (how do

people interact). The clustering models proposed for the detection of social groups, and

location classification, within an observed learning environment, were successfully applied

to the Eduroam data (see § 1.6.1.2) obtained from Birkbeck, University of London.

Chapter 5. A comprehensive analysis about the human presence within a university

campus was carried out where a thorough analysis about the four types of patterns con-

tained in the data: the social, the spatial, the temporal and the semantic patterns, was

provided. For each of these types of pattern: the social, the spatial, the temporal and the

semantic, we defined a list of metrics in order to interpret the observed behaviour cap-

tured in the data, and thus giving an insight into how people presence shapes the dynamic

structure of such an environment.

Chapter 6. Two social density-based clustering methods that utilise WLAN traces in

order to detect granular social groups of mobile users within a university campus were

proposed. These clustering methods rely on the underpinning semantic context for pa-

rameterisation, i.e. utilise information from the semantic context to determine the values

of the parameters of the proposed clustering algorithms. The actual level of attendance of

learning activities was estimated by linking the discovered social group that regularly vis-

its an observed location and the learning activity that takes place within the same context.

Chapter 7. A density-based clustering method [33] that discovers social groups by

utilising activity traces of mobile users was introduced. The proposed algorithm was

successfully applied in detecting the social groups on the basis of the activities taking

place at observed locations within a university campus. Furthermore, a framework for

inferring the type of an observed location, by using the patterns of visit extracted from

Wi-Fi activity traces was proposed, and implemented [33].

8.2 Summary of Contributions

Overall, the thesis makes the following contributions:

� A novel family of predictive models that allows for inference of locations though

a collaborative mechanism which does not require the profiling of individual users.
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These prediction models utilise suffix trees as their core underlying data structure,

where predictions about a specific individual are computed over an aggregate model

incorporating the collective record of observed behaviours of multiple users.

� A novel approach for user identification which we call mobility fingerprint. This

user identification method is a profile constructed from the users historical mobility

traces. The proposed method for constructing such a profile is a principled and

scalable implementation of a variable length Markov model based on n-grams.

� Novel density-based clustering methods that discover social groups by analysing

activity traces of mobile users as they move around, from one location to another,

within an observed environment.

� A novel framework for inferring the type of an observed location within a university

environment, by using the patterns of visit extracted from Wi-Fi activity traces.

8.3 Constraints and Limitations

The key constraints and limitations of this thesis are briefly highlighted hereafter.

8.3.1 Lack of Proximity Information

Measuring the proximity between two co-located individuals visiting an observed loca-

tion, is essential to accurately predict whether or not those two individuals are there to

socialise. For example, if two students are visiting the Coffee-shop and we do not have in-

formation about the distance between their two seats, it would be hard to decide whether

they are sitting at the same table or at separate tables. Unfortunately, the Wi-Fi data

set we utilised for the evaluation of the social groups detection methods proposed in this

thesis does not contain such proximity information; consequently it is hard to accurately

determine if two people are engaged in a one-to-one or any other form of social interaction

that requires participating individuals to be within close distance from one another.

A novel system which enables a single Wi-Fi access point to localise devices within

a proximity of tens of centimetres range was proposed in [102]. With the aid of such a

system it is possible to obtain a rich data set that includes information about the proximity

between users visiting an observed location. Since we are constrained by the quality of

the data set utilised herein, the proposed social group detection models in this thesis do
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not take the proximity between users into consideration when detecting social groups at

an observed location.

8.3.2 Lack of Ground Truths

Lack of rich record of ground truths of courses taught across the university including at-

tendance records of individual learning sessions and social meetings outside the classroom

is a limitation in this work. Evaluating our proposed methods using a data set that include

such ground truths provides an invaluable opportunity to carry out a robust assessment

of our proposed methods in this thesis. Such an assessment will provide new insight about

the accuracy of the social groups detection models proposed herein.

8.4 Future Research Directions

Our future research is threefold. Although this future research is indicated in terms

of a learning environment, the ideas can be applied to other environments such as an

organisation office complex.

8.4.1 The Influence of Presence and Mobility Behaviour on Academic

Performance

We are increasingly adopting a life style in which intensive interactions and communication

using different devices over the Internet is part of our daily routine. The ability to link data

of different types from across the information ecosystem including social media, location-

based networks, telephone service providers, smart cities and wearable devices, provides

an opportunity to capture and to study the human presence and mobility behaviour in

much more depth as never before. With such data arrangement in place, we can study the

influence of various factors of the human presence and mobility behaviour within a given

environment. For example, one of our research interests is to study the influence of the

different aspects of the human presence and movement behaviour, namely the spatial, the

social, and the temporal aspects, on the academic performance of students within a given

learning environment.

8.4.2 Estimating Spatial Occupancy

There has been a growing interest in exploiting existing technologies, such as Wi-Fi, in

order to track the human presence and movement behaviour at an observed university
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campus. Utilising an existing Wi-Fi network in tracking attendance has a direct benefit

in cutting costs, particularly when other specialised tracking technologies are considered.

For example, using video camera based techniques for counting occupants [60] where

usually there are significant installation and running costs involved in using such specialised

technologies. Developing a model that utilises an existing Wi-Fi network, for estimating

the actual space usage linked to formal and to informal activities that take place at a

target university environment [33], is a key topic of our current research interests.

8.4.3 Reducing the Size of a Mobility Fingerprint

We would like also to undertake further investigation in order to discover the true impli-

cations on the user identifiability when the mobility fingerprint is compressed. We would

like to carry out this investigation using, at least, one additional large data set. We would

also like to investigate whether the location fingerprints can be used for location recom-

mendation. A key part of our future research will be dedicated to the idea of enriching the

fingerprints with additional information so as to gain better understanding of the user’s

interests and personal tastes.
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[73] Jan Lukáš, Jessica Fridrich, and Miroslav Goljan. Digital camera identification from

sensor pattern noise. IEEE Transactions on Information Forensics and Security,

1(2):205–214, 2006.



BIBLIOGRAPHY 177

[74] Justin Manweiler, Naveen Santhapuri, Romit Roy Choudhury, and Srihari Nelaku-

diti. Predicting length of stay at wifi hotspots. In 2013 Proceedings IEEE INFO-

COM, pages 3102–3110. IEEE, 2013.

[75] Ryan Melfi, Ben Rosenblum, Bruce Nordman, and Ken Christensen. Measuring

building occupancy using existing network infrastructure. In 2011 International

Green Computing Conference and Workshops, pages 1–8. IEEE, 2011.

[76] Iresha Pasquel Mohottige and Tim Moors. Estimating room occupancy in a smart

campus using wifi soft sensors. In 2018 IEEE 43rd Conference on Local Computer

Networks (LCN), pages 191–199. IEEE, 2018.

[77] Marangaze Munhepe Mulhanga, Solange Rito Lima, and Paulo Carvalho. Character-

ising university wlans within eduroam context. In Smart Spaces and Next Generation

Wired/Wireless Networking, pages 382–394. Springer, 2011.

[78] MDC Nokia. MDC 2012 - best challenge entries | nokia research center.

http://research.nokia.com/page/12362, June 2012.

[79] Anastasios Noulas, Salvatore Scellato, Neal Lathia, and Cecilia Mascolo. Mining

user mobility features for next place prediction in location-based services. In 2012

IEEE 12th International Conference on Data Mining, pages 1038–1043. IEEE, 2012.

[80] Rajesh Pampapathi, Boris Mirkin, and Mark Levene. A suffix tree approach to

anti-spam email filtering. Machine Learning, 65(1):309338, 2006.

[81] Bei Pan, Yu Zheng, David Wilkie, and Cyrus Shahabi. Crowd sensing of traffic

anomalies based on human mobility and social media. In Proceedings of the 21st

ACM SIGSPATIAL International Conference on Advances in Geographic Informa-

tion Systems, pages 344–353. ACM, 2013.

[82] Bart lomiej P laczek. Selective data collection in vehicular networks for traffic control

applications. Transportation Research Part C: Emerging Technologies, 23:14–28,

2012.

[83] Sayed W Qaiyumi and Daniel Stamate. Reduction in dimensions and clustering using

risk and return model. In 21st International Conference on Advanced Information

Networking and Applications Workshops (AINAW’07), volume 1, pages 373–378.

IEEE, 2007.



BIBLIOGRAPHY 178

[84] Lawrence R Rabiner. A tutorial on hidden markov models and selected applications

in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[85] Alessandro E Redondi, Matteo Cesana, Daniel M Weibel, and Emma Fitzgerald.

Understanding the wifi usage of university students. In 2016 International Wireless

Communications and Mobile Computing Conference (IWCMC), pages 44–49. IEEE,

2016.

[86] Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. The

Journal of Machine Learning Research, 5:101–141, 2004.

[87] Salvatore Scellato, Mirco Musolesi, Cecilia Mascolo, Vito Latora, and Andrew T

Campbell. Nextplace: A spatio-temporal prediction framework for pervasive sys-

tems. In International Conference on Pervasive Computing, pages 152–169. Springer,

2011.

[88] Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and David M. Pennock.

Methods and metrics for cold-start recommendations. In Proceedings of the 25th

Annual International ACM SIGIR Conference on Research and Development in In-

formation Retrieval, page 253260, 2002.

[89] James Scott, AJ Bernheim Brush, John Krumm, Brian Meyers, Michael Hazas,

Stephen Hodges, and Nicolas Villar. PreHeat: controlling home heating using occu-

pancy prediction. In Proceedings of the 13th International Conference on Ubiquitous

Computing, page 281290, 2011.

[90] Roger W Sinnott. Virtues of the haversine. Sky and Telescope, 68:158, 1984.

[91] Peter HA Sneath. The application of computers to taxonomy. Microbiology,

17(1):201–226, 1957.

[92] Chaoming Song, Tal Koren, Pu Wang, and Albert-László Barabási. Modelling the
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