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Abstract

The thesis describes two algorithms for locating all the zeros of arbitrary real

or complex polynomials. This approach consists of two distinct stages.

The first stage is called the search stage. Here, the complex plane is searched

systematically for regions containing zeros of the original polynomial.

This is essentially the “Divide and Conquer Approach” of the title. Regions

containing zeros are sub-divided into smaller regions which may contain zeros.

During this process, those regions that do not contain zeros are discarded.

This process is iteratively refined until the total number of zeros in the regions,

i.e. those containing zeros, equals the degree of the polynomial. The centres

of these regions are therefore approximations to the zeros themselves, some of

which may be multiple in number.

At this point, the algorithm switches to the second, or iterative, stage. Here,

Iteration Functions (IFs) are used to accelerate convergence to the values of the

zeros (to computational precision).

Whilst carrying out this research we discovered new families of IFs that do

not appear in the technical literature. The derivations of these IFs are in the

body of the thesis. These IFs are showcased by showing their outputs for each

of the polynomials tested. These outputs demonstrate the different orders of

covergence of the IFs and other interesting features, explanations of which are

included in Chapter 7, starting on page 87, of the thesis.

A database of over 200 poynomials was built up and its contents are listed in

Chapter 6, starting on page 66, and the results of applying our two-stage process

to these polynomials are summarised in the thesis. Some of these polynomials

are of high degree.
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he died before I could satisfy his hope of seeing better things.
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For giving us LATEX [Lam94], the vehicle for producing this thesis without

any hassle.
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Chapter 1

Introduction

The problem of locating the zeros of arbitrary polynomials has a history going

back to at least 2000BC when the Babylonians found a general solution for the

zeros of quadratic equations, see Agernon Berriman’s article [Ber56, pp. 185–

186] for details.

1.1 Brief History and Background

The next advance came in 1079 when Omar Khayyám (probably better known

for his collection of poems, the Rubáiyát) invented a method for solving cubic

equations using geometry.

Around 1400 one Al-Kashi could solve specific cubic equations using iteration,

and in 1484 Nicholas Chuqet invented a method for solving general polynomials

iteratively. Unfortunately, we have no further details.

In 1545 Girolamo Cardano presented the general solution for cubic equations in

his Ars Magna [Car45]. He was also the first author to use complex numbers,

although these were only used in his derivation of real solutions.

By the 17th century researchers were investigating various properties of polyno-

mials that could be used in understanding the properties of general polynomials.

By the end of the 18th century it was agreed that only general polynomial

equations of degree four or lower could be solved using explicit formulas.

In 1831, Augustin-Louis Cauchy determined how many roots of a polynomial

lie inside a given contour in the complex plane.
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Further references to the above brief history can be found in Victor Pan’s survey

article [Pan97].

This is the beginning of our work searching the complex plane for regions con-

taining zeros of a given polynomial, see §5.2, starting on page 43.

In the 1970s, when we started work in this area we concentrated on Iteration

Functions (IFs) because computers were slow and access was limited. Start-

ing with initial approximations to the zeros meant that the computers we had

at the time (expensive main frames) could produce results within a few days,

sometimes a week, or so.

By the 1980s it became apparent that careful cherry picking of initial approxi-

mations could make certain results better than others. Therefore, we decided to

include a search stage that identified potential initial approximations by search-

ing the complex plane automatically. This made the choice of initial approxi-

mations to our IFs programmable, rather than chosen by researchers. The dis-

advantage of this approach was that it took a long time and checkpoint/restart

facilities were needed through the slow search stage.

By the first decade of this century we had more raw computing power on the PCs

under our desks than we could have imagined less than a decade before. This

meant that computing time was no longer relevant. We could use multiple-

precision libraries, such as [Gra11], without worrying about computing time.

Results appear within seconds of inputing the original polynomial, although

higher-degree polynomials can take rather longer. In fact, the search stage for

our polynomial of degree 400 took 2 hours, 25 minutes, and 4.42 seconds! See

Table 7.3 on page 98 for more details about timimgs.

1.2 Motivation and Aims

Our motivation for writing this thesis is to put on record the work we have done

over the years developing a general algorithm for locating the zeros of arbitrary

real and complex polynomials.

Our aim is to provide both the algebraic background used in deriving the al-

gorithm and to deliver a realisation of this in the form of a set of computer

programs that other researchers can use to compare our approach with theirs.
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1.3 Structure of the Thesis

Chapter 2, starting on page 5, contains common definitions and describes the

notation we have used throughout this thesis.

Chapter 3, starting on page 13, covers the work performed by others in the past

and linking their work to ours where it is relevant.

Chapter 4, starting on page 27, describes the work currently being done by

researchers in the same field as us. Again, it links their work to ours where

appropriate.

Chapter 5, starting on page 42, describes our current research including a global

search algorithm, i.e. the search stage, for locating regions containing initial

approximations to the zeros of the polynomials under consideration. It then

presents a number of IFs (old and new), i.e. the iterative stage, that we have

derived which, using the initial approximations mentioned above, converge to

the values of the zeros (to computational precision).

Chapter 6, starting on page 66, describes our database of over 200 polynomials

that we have collected from numerous sources giving their actual zeros, where

known, and references to where they can be found.

Chapter 7, starting on page 87, describes the computational results when our

two-stage algorithm is applied to all of the polynomials in the database. It

then indicates whether the search stage was successful and, if so, the number of

iterations taken by each of the IFs to converge. If convergence is not successful

there is a brief description why we think this occurred.

Chapter 8, starting on page 101, gives our thoughts on what we have achieved

with the material described in this thesis and proposes some further interesting

research topics in this area.

Chapter 9, starting on page 104, decribes the new research we intend to carry

out in order to improve our algorithms and a number of different approaches we

intend to experiment with in order to make the overall algorithms more robust

in terms of their ability to converge. Some may ask what we mean by robust,

and the best definition we have found so far is that by Michael Jenkins and

Joseph Traub in [JT75, p. 28], namely

“By robustness we mean the ability of a program to degrade grace-

fully near the boundary of the problem space where the algorithm

applies.”

3



Appendix A, starting on page 107, is concerned with deriving the orders of

convergence of the different classes of IFs. Supporting equations are also derived.

Appendix B, starting on page 120, contains the rational forms of the IFs, ex-

pressed in polynomial form, contained in Appendix A, starting on page 107.

Appendix C, starting on page 125, contains the listings of all programs used to

implement our underlying algorithms.

Finally, starting on page 214, there is a Bibliography of all the resources we

have accessed (e.g. books, journals, papers, software packages, etc.) while

undertaking our basic research and preparing this thesis.
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Chapter 2

Preliminaries

2.1 Notation

Table 2.1 shows the notation used in this thesis.

Construct Meaning
(·)T The transpose of (·)
(·)H The Hermetian adjoint (i.e. conjugate transpose) of (·)
ai The coefficients of p(z), i = 0, 1, . . . , n
āi The complex conjugate of ai
αi The zeros of p(z), i = 1, 2, . . . , N, N ≤ n
C Asymptotic error constant
C(p) The companion matrix associated with p(z)
Ck(p) The kth order convolution matrix associated with p(z)
deg(p) The degree of p(z)
gcd(p, q) The Greatest Common Divisor of the polynomials p(z) and q(z)
i i2 = −1
IF Iteration Function
M The maximum multiplicity of the zeros of p(z)
mi The multiplicity of the zero αi

N The number of distinct zeros of p(z)
n The degree of p(z)
p(z) A polynomial of degree n
p′(z) The first derivative of p(z) of degree n− 1
p(k)(z) The kth derivative of p(z) of degree n− k
rad(c) The radius of the circle c
S(p, q) The Sylvester resultant matrix associated with p(z) and q(z)
Sk(p) The kth order Sylvester discriminant matrix associated with p(z)
zν The current approximation to αν

ẑν The next approximation to αν

Table 2.1: Our Notation
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The same letter in boldface, e.g. p, denotes the coefficient (column) vector of

p(z), namely

p = (an, an−1, . . . , a0)
T , (2.1)

unless defined otherwise. However, note the use of i as
√
−1 in Table 2.1 on

page 5.

2.2 Definitions

Throughout this thesis sums and products will be over the range 1, 2, . . . , N

unless stated otherwise, i.e.

∑

i<ν

ai =

ν−1∑

i=1

ai ,

∏

i6=ν

bi =
N∏

i=1
i6=ν

bi .

(2.2)

Let p(z) be a polynomial of degree n given by

p(z) = anz
n + an−1z

n−1 + · · ·+ a0, ana0 6= 0 , (2.3)

where the coefficients are complex numbers and the zeros {αi} have multiplici-

ties {mi}, respectively.

When p(z) is monic, an = 1 and

p(z) =
∏

i

(z − αi)
mi . (2.4)

Note that N is the number of distinct zeros of p(z). We next define

M = max
i

mi . (2.5)

Let p(z) be defined as in Equation (2.3) on page 6. The following definitions,

originally given by Joseph Traub [Tra64, pp. 5–6], will be used subsequently.

u(z) =
p(z)

p′(z)
, (2.6)

which he calls the normalised p(z), and

Ai(z) =
p(i)(z)

i!p′(z)
, i = 1, 2, . . . , N , (2.7)
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where p(i)(z) is the ith derivative of p(z) and he calls the normalised Taylor

series cofficient. Note that u(z) is often referred to as Newton’s correc-

tion [Pet89, p. 85]. For our later use it is worth noting that

A′
i(z) = (i+ 1)Ai+1(z)− 2A2(z)Ai(z) , i = 1, 2, . . . , (2.8)

which will be used in subsequent derivations.

Let zν be an approximation to the zero αν , and ẑν be the next approximation

to αν , using some iterative scheme; we now define

ǫν = zν − αν ,

ǫ̂ν = ẑν − αν ,
ν = 1, 2, . . . , N , (2.9)

with

ǫ = max
i

|ǫi| . (2.10)

The following definitions are useful when deriving the order of convergence of

our IFs.

Sk(zν) =
∑

i6=ν

mi

(zν − αi)k
, k = 1, 2, . . . . (2.11)

Note that this does not follow Alston Houeholder’s convention [Hou70, p. 177]

of retaining all terms in the summation. This avoids the possible problem when

zν takes the value αν . Again it is worth noting that

S′
k(zν) = −kSk+1(zν) , k = 1, 2, . . . , (2.12)

which will be used in subsequent derivations.

The following definition forms an integral part of our IFs for computing zeros

simultaneously.

Tk(zν) =
∑

i6=ν

mi

(zν − zi)k
, k = 1, 2, . . . , (2.13)

where, again, this summation avoids a possible term yielding division by zero.

Let p(z) be defined as in Equation (2.3) on page 6. The reciprocal polynomial

of p(z) [Hen74, p. 492] is defined by

p∗(z) = ā0z
n + ān−1

1 zn−1 + · · ·+ ān , (2.14)

where āi denotes the complex conjugate of ai. The zeros of p
∗(z) are, relative to

the unit circle |z| = 1, the complex conjugate inverses of the zeros of p(z) [Hen74,

7



pp. 492–493], i.e. 1
ᾱν

.

Let p(z) be defined as in Equation (2.3) on page 6 and let p∗(z) be defined as

in Equation (2.14). Define

T (p(z)) = ā0p(z)− anp
∗(z) , (2.15)

which has no term in zn, so the degree of T (p(z)) is lower than that of p(z).

This is known as the Schur transform of p(z) [Hen74, p. 493]. The constant

term of T (p(z)) is real, namely

T (p(0)) = ā0a0 − anān = |a0|2 − |an|2 . (2.16)

The transformation T can be applied to T (p(z)) to define the iterated Schur

transforms given by

T (p(z)), T 2(p(z)), . . . , Tn(p(z)) , (2.17)

where T i(p(z)) is regarded as a polynomial of degree n − i even if its leading

coefficient is zero [Hen74, p. 493]. We set

γi = T i(p(0)), i = 1, 2, . . . , n . (2.18)

2.2.1 Companion Matrix

Our monic polynomial p(z) has an associated companion matrix defined by

C(p) =












0 0 . . . 0 −a0

1 0 . . . 0 −a1

0 1 . . . 0 −a2
...

...
. . .

...
...

0 0 . . . 1 −an−1












, (2.19)

whose eigenvalues are the zeros of p(z), the characteristic polynomial of the

square matrix [Mar66, p. 140]. Occasionally this matrix is defined as CT (p).
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The characteristic equation is defined by

det(C(p)− Iα) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−α1 0 . . . 0 −a0

1 −α2 . . . 0 −a1

0 1 . . . 0 −a2
...

...
. . .

...
...

0 0 . . . 1 −αn − an−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (2.20)

where α is the vector of zeros of p(z) and I is the identity matrix.

Many researchers, from Dario Bini, §4.2 starting on page 27, through Joab

Winkler, §4.5 starting on page 34, to Zhonggang Zeng, §4.6 starting on page 37,

use algorithms for locating the eigenvalues of C(p) as a mechanism for locating

the zeros of p(z).

QR Algorithm

A popular approach taken by researchers for determining the eigenvalues

of C(p), and therefore the zeros of p(z), is known as the QR algorithm,

first described by John Francis in [Fra61] and [Fra62].

The matrix A is decomposed into a product of an orthogonal matrix and

an upper triangular matrix, the process continuing by iterating. Start with

A0 = A. Compute the QR decomposition Ak = QkRk, which leads to

Ak+1 = RkQk = QT
kQkRkQk = QT

kAkQk = Q−1
k AkQk , (2.21)

so the Ak are similar and therefore have the same eigenvalues. The al-

gorithm is numerically stable but can use a large number of expensive

calculations.

Under suitable conditions [Fra62], the matrices Ak converge to a triangular

matrix, called the Schur form of A [GL86, pp. 219–226].

Let p(z) be defined as in Equation (2.3) on page 6. For any finite integer k > 0,
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the matrix of size (n+ k)× k, given by

Ck(p(z)) =

k
︷ ︸︸ ︷


















an

an−1 an
... an−1

. . .

a0
...

. . . an

a0
. . . an−1

. . .
...

a0



















, (2.22)

is the kth order convolution matrix associated with p(z).

Let p(z) and q(z) be polynomials of degrees n and m respectively, with r(z) =

p(z)q(z). Then r(z) is the convolution of p(z) and q(z) defined by

r(z) = conv(p(z), q(z)) ,

= Cm(p(z))q(z) ,

= Cn(q)p(z) .

(2.23)

Let p(z) be defined as in Equation (2.3) on page 6 and let p′(z) be its derivative.

For k = 1, 2, . . . , n, the matrix of size (n+ k)× (2k + 1)

Sk(p(z)) = [ Ck+1(p
′(z)) | Ck(p(z)) ] , (2.24)

is the kth order Sylvester discriminant matrix associated with p(z). Let

p(z) =

n∑

i=0

aiz
i ,

q(z) =
m∑

i=0

biz
i ,

(2.25)
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then the matrix of size (m+ n)× (m+ n), given by

S(p, q) =

m
︷ ︸︸ ︷


















an

an−1 an
... an−1

. . .

a0
...

. . . an

a0
. . . an−1

. . .
...

a0

n
︷ ︸︸ ︷

bm

bm−1 bm
... bm−1

. . .

b0
...

. . . bm

b0
. . . bm−1

. . .
...

b0



















, (2.26)

is the Sylvester resultant matrix associated with p(z) and q(z) [vzGG99,

p. 144].

2.2.2 Circular Arithmetic

Many mathematicians from Irene Gargantini and Peter Henrici [GH72] through

Miodrag Petković [Pet89] to Monday Ikhile [Ikh02] use circular arithmetic when

computing approximations to the zeros of a polynomial.

In particular, a paper by Ljaljana Petković [Pet86, pp. 371–372] investigates the

order of evaluation of expressions in circular arithmetic in order to minimise the

radii of resultant circles, e.g. inversion should be applied before multiplication,

so, for circular disks A,B,C,D we have

radius

(
AB

CD

)

≥ radius

(
A

C
× B

D

)

. (2.27)

The centre of a circle is an approximation to a zero of a polynomial and the

radius is a measure of the error involved. Generally, circular regions are de-

noted by upper-case letters, A, B, . . . , Z, complex numbers by lower-case

letters, a, b, . . . , z, and non-negative real numbers by Greek lower-case letters,

α, β, . . . , ζ.

When our circular regions are circles then the region Z with centre c and radius

ρ,

Z = {z : |z − c| ≤ ρ} , (2.28)

is written

Z = [c; ρ] , (2.29)
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with c = mid Z and ρ = rad Z. Thus we have

a± Z = [a± c; ρ] , (2.30)

aZ = [ac; |a|ρ] , (2.31)

and the sum or difference of two circles is

Z1 ± Z2 = [c1 ± c2; ρ1 + ρ2] , (2.32)

while the product of two circles is

Z1Z2 = [c1c2; |c1|ρ2 + |c2|ρ1 + ρ1ρ2] , (2.33)

which is both commutative and associative [GH72, p.308]. The distributive law

is replaced by the relation

Z1(Z2 + Z3) ⊆ Z1Z2 + Z1Z3 . (2.34)

If 0 6∈ Z,
1

Z
=

[
c̄

cc̄− ρ2
;

ρ

cc̄− ρ2

]

. (2.35)

The square root of a circle has two cases. If 0 ∈ Z, then

Z
1

2 = [0; (|c|+ ρ)
1

2 ] , (2.36)

while if 0 6∈ Z, then Z
1

2 is the union of the two circles

[

±c
1

2 ;
1

|c| 12 + (|c| − ρ)
1

2

]

, (2.37)

where c
1

2 is one of the two numbers satisfying (c
1

2 )2 = c.
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Chapter 3

A Historic Perspective

This chapter introduces a brief history of the people whose early work led to our

methods for locating all the zeros of a polynomial and helped those currently

working in this area.

3.1 George Collins

In the early 1960s George Collins at IBM and the Computer Science Department

of the University of Wisconsin-Madison developed PM [Col66], a system for

polynomial manipulation, an early version of which was operational in 1961

with improvements added to the system through to 1966.

In the late 1960s George developed and used the SAC-1 system1 as the successor

of PM for the manipulation of polynomials and rational functions. We quote

from the abstract of Professor Collins’ paper [Col71, p. 144] describing SAC-1.

“SAC-1 is a program system for performing operations on multivari-

ate polynomials and rational functions with infinite-precision coeffi-

cients. It is programmed, with the exception of a few simple primi-

tives, in ASA Fortran. As a result the system is extremely accessible,

portable, easy to learn, and indeed has been implemented at more

than 20 institutions.

“The SAC-1 system’s range of programmed capabilities is excep-

tionally broad, including, besides the usual operations, polynomial

1Symbolic and Algebraic Computing.
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greatest common divisor and resultant calculation, polynomial fac-

torisation, exact polynomial real zero calculation, partial fraction

decomposition, rational function integration, and solution of sys-

tems of linear equations with polynomial coefficients.

“SAC-1 is also outstanding in its computing time efficiency, which

is achieved partially through the use of appropriate data struc-

tures, but primarily through the use of mathematically sophisticated

and analysed algorithms, which are briefly surveyed. The efficiency

gains, frequently orders of magnitude, are such that many new ap-

plications are rendered feasible.”

This must have been a remarkable system for its time. The University of Wis-

consin in the late 1960s was running a UNIVAC 1108 computer which came

originally with a massive (for its time) 65,536 (64Ki) words of memory.

In 1980 Professor Collins introduced SAC-2 as a replacement for SAC-1. It was

programmed in the ALDES language, designed by Rüdiger Loos and Professor

Collins [Col85].

3.2 Theodorus (Dirk) Dekker

Theodorus is a Dutch mathematician at the University of Amsterdam. At the

end of his most important paper, [Dek68, pp. 198–199], he derived the radius of

a circle centred at the origin containing all the zeros of p(z), namely

|z| = 2κ, κ =
n−1
max

0

∣
∣
∣
∣

ai
an

∣
∣
∣
∣

1
n−i

. (3.1)

This is one of many such bounds defining a region (usually a circle) containing

the zeros of a polynomial, e.g. [Hen74, pp. 457–458], but has proved satisfactory

for our use, i.e. there is no real gain in applying all of these, and taking the

minimum radius.

Our initial inclusion region is the smallest possible square containing the circle

given by Equation (3.1) on page 14. This is illustrated in Figure 3.1 on page 15.

The reason for the orientation of the circle is because, when we first started,

many of our test polynomials had real zeros. These would lie on a horizontal line

through the origin, which could cause problems with inclusion regions having

part of that horizontal line as one of its boundaries.
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Figure 3.1: First Inclusion Region

3.3 Irene Gargantini

Irene is currently Professor Emeritus, Department of Computer Science at the

University of Western Ontario, Canada. Her initial work in numerical analysis

included results in approximation theory, continued fractions, and polynomial

root-finding. Her paper with Peter Henrici, on circular arithmetic [GH72], is

regarded as a classic in the field.

REMARK 1. Paragraph removed. Winkler point 1.

In [HG69] the authors describe convergent algorithms for computing all the ze-

ros of a polynomial. However, before this was published Irene and Münzner had

published a Research Report [GM67] describing a Fortran program for deter-

mining all the zeros of a polynomial where the search stage involves squares2,

rather than circles.

In [GH72] the authors

“. . . construct (i) a version of Newton’s method with error bounds,

and (ii) a cubically convergent algorithm for the simultaneous ap-

proximations of all zeros of a polynomial.”

These error bounds are possible due to the use of circular arithmetic, see §2.2.2
starting on page 11.

3.4 Peter Henrici

Peter was Professor of Mathematics at the University of California in Los An-

geles and later at the Swiss Federal Institute of Technology in Zürich. He died

in 1987.

2This is our approach as well.
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He wrote eleven books and over 80 research papers, some with Irene Gargantini,

see §3.3. He was one of the first researchers to investigate circular arithmetic as

a tool for locating polynomial zeros [Hen71]. He collaborated in this work with

Irene Gargantini [GH72].

His high point was the three-volume work Applied and Computational Complex

Analysis, of which the first volume [Hen74] dealt with the zeros of polynomials

(amongst other things). Many of the theorems by various authors quoted in

this thesis are summarised in his book. The following two theorems from his

book are stated using our notation and definitions.

Theorem 3.1. Let p(z) be defined as in Equation (2.3). All zeros of p(z) lie

outside the closed unit circle |z| ≤ 1 if and only if

γi > 0, i = 1, 2, . . . , n . (3.2)

The calculation of the numbers γi by using Equation (2.18) is called the Schur-

Cohn algorithm [Hen74, p. 494]. Under the additional hypothesis that all

γi 6= 0, the algorithm can be used to determine the exact number of zeros in

the unit circle.

Theorem 3.2. Let p(z) be defined as in Equation (2.3). Let the numbers γi

defined by Equation (2.18) satisfy γi 6= 0, i = 1, 2, . . . , n. If those indices i for

which γi < 0 are denoted by ki, i = 1, 2, . . . , m, where k1 < k2 < · · · < km,

then the number h(p) of zeros inside the unit circle is given by

h(p) =

m∑

i=1

(−1)i−1(n+ 1− ki) . (3.3)

We note that Theorem 3.2 cannot be used to calculate the number of zeros

inside the unit circle if some of the γi are zero. For further details about this

topic see [Hen74, p. 496].

3.5 Alston Householder

Alston was born in 1904 and died in 1993. He was Head of the Mathematics

Panel of the Oak Ridge National Laboratory from 1948 to 1969 when he became

Professor of Mathematics at the University of Tennessee. He retired in 1973.

He derived a family of IFs based on the poles of a function known as House-

holder’s method. Note that in Equation (3.4) [f ](d) is the dth derivative of f

and not a power, so for simple zeros only and, using our notation, the family of
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IFs

ẑ = z + (ρ− 1)

[
1

p(z)

](ρ−2)

[
1

p(z)

](ρ−1)
, ρ = 2, 3, . . . , (3.4)

comprises those found in Table 3.1 on page 17.

Order Name Equation Page
2 Newton (5.13) 50
3 Halley (5.14) 50
4 Kiss (B.3) 121

Table 3.1: Family of Simple IFs

The original derivation of Equation (3.4) is found in Alston’s book [Hou70,

p. 169].

3.6 Misako Ishiguro

Misako was one of the first researchers to solve polynomials with multiple ze-

ros using the gcd(p(z), p′(z)) method of deflating p(z) into factors with simple

zeros [Ish72]. This technique has been refined by Joab Winkler, see §4.5 on

page 34.

3.7 Peter Jarratt

In 1975 Peter was appointed to the dual posts of Director of the Computer

Centre and Professor of Computing at the University of Birmingham. He retired

in September 2000.

His methods, such as [Jar66a] and [Jar69], are experiencing a revival with mod-

ern authors such as Ramandeep Behl et al. [BKS12], Jisheng Kon and Yitian

Li [KL07], J R Sharma [Sha07], and Miodrag Petković, see §4.4 on page 28.

3.8 Jean-Louis Lagouanelle

Jean-Louis is a researcher at the Institut de Recherche en Informatique de

Toulouse, France. In [Lag66, p. 627] he derived the following formula concerning
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the multiplicity mi of the zero αi of p(z)

mi = lim
zi→αi

∣
∣
∣
∣

1

u′(zi)

∣
∣
∣
∣
, i = 1, 2, . . . , N, (3.5)

where u(z) is defined as in Equation (2.6).

Our algorithm compares this value (computed at the centre of an inclusion

region) with Marden’s count (Theorem 3.6 on page 21) of the number of zeros

in the inclusion region. If these are identical for each inclusion region, then we

can complete the search stage and move on to the iterative stage.

3.9 Derrick (Dick) Lehmer

Dick was instrumental in applying the use of early computers to problems that

were virtually impossible to tackle by hand, especially sieve methods from num-

ber theory. He died in 1991.

He first described the Lehmer-Schur algorithm [Leh61] for finding numerical

approximations to the zeros of a polynomial.

The Lehmer-Schur algorithm is based on a theorem by Issai Schur [Mar66,

p. 198] for answering the basic question

“Does the polynomial p(z) have a zero inside the circle |z− c| = ρ?”

Algorithm 3.1. The algorithm consists of the following three steps.

1. Assuming that p(0) 6= 0, start with the unit circle3 asking the basic ques-

tion, doubling (or halving) the radius at each step, to find an annulus

R < |z| < 2R (3.6)

where R is a power of two containing at least one zero of p(z), while the in-

ner circle contains no zeros. This annulus can be covered by eight overlap-

ping circles of radius 5R
6 with centres at 5R

3 exp(πik4 ), for k = 0, 1, . . . , 7.

Use the basic question on each one of these circles in turn and find the first

circle containing at least one zero of p(z). Call the centre of this circle β1.

Continuing the process by halving the radius each time eventually yields

an annulus

R1 < |z − β1| < 2R1 (3.7)

3It would probably be better to start with Dirk Dekker’s circle, Equation (3.1) on page 14,
because this circle contains all the zeros.
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which completes Step 1.

2. Cover this annulus with another eight circles to find the first one contain-

ing at least one zero. Call the centre of this circle β2. Continuing the

process by halving the radius each time yields an annulus

R2 < |z − β2| < 2R2 (3.8)

which completes Step 2.

Figure 3.2 shows the result after Step 2. Dashed circles have no zeros in

them. Note that a zero in a given annulus may not be the final zero that is

α

α 2

1

Figure 3.2: Lehmer-Schur in Action

used. For example, in Figure 3.2, the original annulus contains the zero

marked α1. However, the algorithm is homing in on the zero marked α2

which was not in the original annulus.

3. Repeat Step 2 until the required accuracy is obtained.

3.9.1 The Basic Question

By a linear transformation the circle |z − c| = ρ can be replaced by the unit

circle. The polynomial

r(z) = p(ρz + c) (3.9)

has a zero

β = (α− c)/ρ (3.10)

for every zero α of p and |β| < 1 if and only if |α− c| < ρ. The question is now

“Does p(z) have a zero inside the unit circle?”
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This question is answered by using the iterated Schur transforms given by Equa-

tion (2.15) on page 8 as the basis of the following theorem, stated using our

notation and definitions.

Theorem 3.3. Let p(z), defined as in Equation (2.3) on page 6, have no zero

on the unit circle. Suppose p(0) 6= 0. Let γi be defined as in Equation (2.18) on

page 8. If, for some i > 0, γi < 0, then p has at least one zero inside the unit

circle. Alternatively, if γi > 0 for 1 ≤ i < k and T k−1(p(z)) is a constant, then

no zero of p(z) lies inside the unit circle.

The hypothesis that p(z) has no zero on the unit circle is dealt with by the

following theorem, again stated using our notation and definitions.

Theorem 3.4. Theorem 3.3 remains true if we weaken its hypothesis by deleting

the first sentence.

However, this still leaves the situation when T k−1(p(z)) is not a constant. Pro-

fessor Lehmer [Leh61, p. 158] suggests that the radius of the circle be increased,

a factor of 3
2 is mentioned, in this case.

3.10 Morris Marden

Morris is credited with founding the Department of Mathematics at the Univer-

sity of Wisconsin-Milwaukee as a research department. He retired in 1975 after

spending 45 years teaching in Milwaukee. He died in 1991.

His seminal work Geometry of Polynomials [Mar66] contains some intriguing

results.

Let p(z) be defined as in Equation (2.3) on page 6 and let p∗(z) be defined as

in Equation (2.14) on page 7. Let the sequence of polynomials pi(z) be defined

by the recursive formula

pi+1(z) = ā
(i)
0 pi(z)− a(i)n p∗i (z), i = 0, 1, . . . , n− 1 (3.11)

with p0(z) = p(z) [Mar66, p. 195]. Thus pi(z) is T i(p(z)) as defined in Equa-

tion (2.15) on page 8. Finally define

Pi = γ1γ2 . . . γi, i = 1, 2, . . . , n (3.12)

which leads into the following theorem stated using our notation and definitions.

Theorem 3.5. Let p(z) be defined as in Equation (2.3) on page 6, let p∗(z)

be defined as in Equation (2.14) on page 7, let T i(p(z)) be defined as in Equa-

tion (2.15) on page 8, and let γi be defined as in Equation (2.18) on page 8. If
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p of the products Pi defined by Equation (3.12) on page 20 are negative and the

remaining n − p are positive, then p(z) has p zeros in the unit circle, no zeros

on the unit circle, and n− p zeros outside the unit circle.

Under the hypothesis of Theorem 3.5 on page 20, no T i(p(z)), i ≤ n, may be

identically zero. The following theorem covers that case [Mar66, p. 203]. Again,

it is stated using our notation and definitions.

Theorem 3.6. If for some k < n, Pk 6= 0 in Equation (3.12) on page 20 but

T k+1(p(z)) ≡ 0, then p(z) has n− k zeros on or symmmetric in the unit circle

at the zeros of T k(p(z)). If p of the Pi, i = 1, 2, . . . , k, are negative, p(z)

has p additional zeros inside the unit circle and k − p additional zeros outside

the unit circle.

This theorem is the workhorse of our search stage. For each of our square

inclusion regions, we compute the number of zeros in the smallest enclosing

circle.

Some zeros might be counted twice, due to the overlap of enclosing circles. This

problem is dealt with in the consolidation phase of the search stage. See §5.2.2,
starting on page 47.

3.11 Alexander Ostrowski

Alexander was one of the first researchers to investigate solutions to the following

question [Ost66].

“Given two polynomials of equal degree and having coefficients that

are nearly equal, by how much can their zeros differ?”

Alston Householder covers this topic in his book [Hou70, pp.74–81]. Paraphras-

ing his account, using our notation, if p(z) is defined as in Equation (2.4) on

page 6, and

q(z) = zn + bn−1z
n−1 + . . .+ b0,=

∏

i

(z − βi)
mi , (3.13)

with

γ = 2max
i

(|ai|
1

i , |bi|
1

i ) , (3.14)

and

ǫn =
∑

i

|bi − ai|γn−i , (3.15)
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then the zeros αi and βi of p(z) and q(z), respectively, can be ordered so that

|αi − βi| < 2nǫ . (3.16)

This result is especially interesting because it is an early attempt to quantify

how perturbations in the coefficients of a polynomial affect the values of the

zeros of the perturbated polynomial.

Coming up-to-date, there are researchers such as Joab Winkler (see §4.5 starting

on page 34) and Zhonggang Zeng (see §4.6 starting on page 37) investigating the

behaviour of zeros of a polynomial on a pejorative manifold as the coefficients

of the polynomial are perturbed [Kah72].

This is just one aspect of the influence Alexander Ostrowski has had on many

branches of mathematics.

3.12 James Pinkert

James is Professor Emeritus in the Department of Computer Science at the

University of Wisconsin-Madison. He was a member of the team led by Professor

George Collins that developed and used the SAC-1 system, see §3.1.

In an early paper [Pin76] based on his PhD thesis, Professor Pinkert describes

an exact algorithm for locating the zeros of a polynomial using the SAC-1 sys-

tem. He stores the coefficients of p(z) as rational complex numbers, so that all

calculations are exact. His search stage is based on rectangles in the complex

plane.

If the multiplicities are not important, he applies the algorithm to
p

gcd(p, p′)
,

which has only simple zeros. If the multiplicities are needed, he factorises p(z)

as follows

p(z) = ω1(z)ω
2
2(z) · · ·ωM

M (z) (3.17)

where each ωi(z) has only simple zeros. This is Joab Winkler’s approach,

see §4.5, starting on page 34.

3.13 Marica Pres̆ić

Marica is a professor in the Mathematical Institution at the University of Bel-

grade, Serbia working in the fields of mathematical linguistics, universal algebra,

and mathematical logic. She is the widow of Slavĭsa (Bogomira) Pres̆ić, one of
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the founders of modern logic in Serbia (together with Alexander Kron). Slavĭsa

died in 2008.

REMARK 2. Paragraph removed. Winkler point 1.

One of her early papers [Pre71]4 was the defining moment that led to our re-

search into IFs and ultimately searching the complex plane for regions containing

zeros of a polynomial to complement that work.

Her IF is a modification of the rational form of the simple second-order one-

point IF given in Equation (B.5) on page 121 dealing with a subset of zeros

z1, z2, . . . , zk, namely (using our notation)

ẑν = zν − p(zν)
k∏

i6=ν

(zν − zi)pz(zν)

, ν = 1, 2, . . . , k , (3.18)

where

pz(zν) =
p(zν)

∏

i6=ν

(zν − zi)
. (3.19)

3.14 Ernst Schröder

According to Joseph Traub [Tra64, p. 127] Ernst originally derived what we

refer to as Rall’s modified Newton IF, given as Equation (5.36) on page 57, in

the 19th century [Sch70, p. 352].

Some of his earlier work on IFs is brought up to date using circular arithmetic,

see §2.2.2 on page 11, in a paper by Miodrag Petković [Pet90].

Just a short digression. Ernst is probably better known for two quantities that

bear his name.

Schröder’s Equation

Given the function f(x), find the function Ψ(x) that satisfies

Ψ(f(x)) = sΨ(x) , (3.20)

where

0 < s < 1 . (3.21)

See [Kuc64] for further details.

4The title, in English, is: An Iterative Process for Determining k Zeros of a Polynomial.
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Schröder’s Number

The number Sn describes the number of paths from the south-west corner

(0, 0) of an n×n grid to the north-east corner (n, n) using only single steps

north, north-east, or east, that do not rise above the SW-NE diagonal. The

Sn are generated by the recurrence relation

Sn = Sn−1 +

n−1∑

i=0

SiSn−1−i . (3.22)

3.15 Gilbert (Pete) Stewart

Pete is a Distinguished University Professor Emeritus in the Department of

Computer Science at the Institute for Advanced Computer Studies, University

of Maryland .

In [Ste69] he states that Lehmer’s method [Leh61] is numerically unstable within

the algorithm for determining if p(z) has a zero in a circle.

First note that p(z) has a zero in |z − c| ≤ ρ if and only if

r(z) = p(ρz + c) (3.23)

has a zero in the unit circle [Ste69, p. 831].

Algorithm 3.2. The algorithm consists of the following three steps.

1. Calculate the coefficients of

q(z) = bnz
n + bn−1z

n−1 + · · ·+ b0 = p(z + c) (3.24)

2. Calculate the coefficients of

r(z) = cnz
n + cn−1z

n−1 + · · ·+ c0 = q(ρz) (3.25)

3. Determine whether r(z) has a zero inside the unit circle.

The scaling step, Equation (3.25), may cause problems. The coefficients of r(z)

are given by

ci = ρibi , i = 0, 1, . . . , n . (3.26)

If n is large and ρ > 1, the absolute values of the coefficients may also overflow.

Similarly, if ρ < 1, the absolute values of the coefficients may underflow.
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Professor Stewart suggests a scaling algorithm for overcoming these problems,

which we now present.

Algorithm 3.3. Let Ω be the largest positive number that can be represented in

the computer. Then a set of coefficients, different from those in Equation (3.26),

are calculated as follows.

1. Determine the largest number σ satisfying

σ|bi| ≤ Ω, i = 0, 1, . . . , n . (3.27)

2. If ρ < 1, set

ci = (σρi)bi, i = 0, 1, . . . , n (3.28)

where ci = 0 if underflow occurs in the computation.

3. If ρ > 1, set

ci = (σρi−n)bi, i = n, n− 1, . . . , 0 (3.29)

where ci equals 0 if underflow occurs in the computation.

Interestingly, our implementation uses Algorithm 3.2 rather than Algorithm 3.3

in our search stage because the GNUMultiple Precision Arithmetic Library [Gra11]

has such a large Ω.

Professor Stewart also has a different version of the algorithm for determining

whether a polynomial has a zero in the unit circle.

Theorem 3.7. Let p(z) be defined as in Equation (2.3) on page 6 and let p∗(z)

be defined as in Equation (2.14) on page 7. Let m =
an
ā0

. Then, if m ≥ 1, p(z)

has a zero in the unit circle. However, if m < 1, the polynomial

p1(z) = p(z)−mp∗(z) (3.30)

is of degree less than n and has the same number of zeros inside the unit circle

as p(z). Moreover, p1(0) 6= 0.

3.16 Joseph Traub

Joseph was born in 1932. He is currently Edwin Howard Armstrong Professor

of Computer Science at Columbia University. He previously held positions at

Bell Laboratories, University of Washington, and Carnegie Mellon University.

While in the Research Division at Bell Laboratories he worked in the field of

computational complexity, applying his knowledge to the solutions of non-linear
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equations. This culminated in his book Iterative Methods for the Solution of

Equations [Tra64] which is still in print.

In 1966 he spent a sabbatical at Stanford University where he worked with

another computer scientist, Michael Jenkins, to formulate the Jenkins-Traub

Algorithm for Polynomial Zeros [JT70] which was first published in Michael

Jenkins’ PhD thesis [Jen69]. The algorithm itself, written in Fortran, was finally

published in 1972 [JT72].

During our research we have made extensive use of Traub’s seminal work [Tra64],

especially his derivations of the single-point IFs for simple zeros, [Tra64, pp. 78–

104], and his derivations of the single-point IFs for multiple zeros, [Tra64,

pp. 126–157].

His exhaustive collection of references was invaluable in enabling us to check

back on who first defined various IFs. Any errors in this respect are, of course,

entirely ours.
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Chapter 4

Others Working in the

Same Field

This chapter introduces a number of other people who are currently researching

in the area of the computation of polynomial zeros.

4.1 Ramandeep Behl et al.

Ramandeep and his co-researchers have published a paper describing improve-

ments to Jarratt’s method [BKS12] using multipoint IFs, which are not the

thrust of our approach.

However, his approach of parameterising the IFs and then choosing the appro-

priate parameter values in order to optimise the IFs in terms of simplicity or

order of convergence (or both) is of increasing interest to other researchers, e.g.

Young Kim [Kim12].

Obviously, a research topic to keep an eye on for the future.

4.2 Dario Bini and Giuseppe Florentino

Dario is currently a full professor of Numerical Analysis in the Departent of

Mathematics at the University of Pisa, Italy.

He and Giuseppe have investigated the connection between the zeros of p(z),

as defined in Equation (2.3) on page 6, and the eigenvalues of its associated
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companion matrix C(p), as defined in Equation (2.19) on page 8. This is also

the approach taken by Joab Winkler, §4.5 starting on page 34, and Zhonggang

Zeng, §4.6 starting on page 37.

One excellent result of Dario’s work is an algorithm for computing the ze-

ros of a polynomial [BF00a] using the GNU Multiple Precision Arithmetic

Library [Gra11] as we do. A detailed description of the algorithm is found

in [BF00b] together with an exhaustive set of test polynomials1.

One of his current research interests is using the QR eigenvalue algorithm for

companion matrices [BBE+10].

4.3 Stef Graillat et al.

Stef and his research group are working on improving the accuracy of the results

from applying Horner’s algorithm for computing the value of p(z), using fixed-

length arithmetic [GLL09].

Their paper has provided one polynomial with two zeros, of multiplicities five

and eleven respectively, which were easily solved by our algorithm with minimal

tweaking, see §6.12 starting on page 72.

4.4 Miodrag Petković et al.

Miodrag was born in 1948. He is currently a full professor in the Department of

Mathematics, Faculty of Electronic Engineering at the University of Nǐs in Nǐs,

Serbia. His research interests are the solutions of polynomial equations using

interval arithmetic or circular arithmetic. His PhD thesis [Pet80], awarded by

the University of Nǐs, was an analysis of iterative interval methods for solving

equations.

Interestingly, he is one of the few researchers who acknowledge the use of rectan-

gular regions (in the complex plane) as well as circles [Pet89, p. 18] for interval

arithmetic. Others include Krishnamurthy and Venkateswaren [KV81] and Her-

bert Wilf [Wil78]. In passing, he states that we (i.e. Mick Farmer and George

Loizou in [FL77]) used Marden’s inclusion test [Mar66, pp. 194–197], but fin-

ishes by estimating the multiplicities of the zeros by using Lagouanelle’s limiting

1Up to degree 6,400!

28



formula [Lag66, p. 627]2

mν = lim
zν→αν

p′(zν)2

p′(zν)2 − p(zν)p′′(zν)
, (4.1)

which can be written more succinctly using our definition given in Equation (2.6)

on page 6 as

mν = lim
zν→αν

1

u′(zν)
. (4.2)

In order to obtain a precise estimate of the multiplicities, Miodrag suggests using

an improved approximation to zν , obtained by applying Newton’s formula

ẑν = zν − p(zν)

p′(zν)
. (4.3)

He notes that this formula has only linear convergence if the multiplicity is

greater than one. To overcome this, he suggests applying a modified form of

Newton’s formula

ẑν = zν −

p(zν)

p′(zν)

1− p(zν)p
′′(zν)

p′(zν)2

, (4.4)

which has second-order convergence. Again, using the definition given in Equa-

tion (2.6) on page 6, this equation can be written more succinctly as

ẑν = zν − u(zν)

u′(zν)
. (4.5)

He suggests stopping the search stage either when Marden’s inclusion test yields

the correct number of zeros or when Lagouanelle’s limiting formula yields the

correct number of zeros. This differs from our approach, which is to apply both

tests until they agree with one another.

§2.2 of [Pet89] describes the complex interval (circular) arithmetic that he uses

for programming his iterative methods. In particular, this addresses the major

problem with circular arithmetic, namely that some operations result in a new

circular region with a larger radius than that of their arguments.

In Chapter 3 of [Pet89], Miodrag considers the second-order IF first presented

by Weierstrass [Wei03],

ẑν = zν − p(zν)
∏

i6=ν

(zν − zi)
, ν = 1, 2, . . . . n , (4.6)

2The value of the formula is rounded to the nearest integer.
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and subsequently derived by other researchers, including ourselves [FL75]. Un-

der certain conditions he shows that the IF converges in the sense that a zero

is contained in each circular region and that the radii of the circular regions

monotonically tend to zero. In the case of simple zeros only that

max
ν

ǫ̂ν = λ(n)max
ν

ǫ2ν , (4.7)

where λ(n) is dependent solely on the degree of the polynomial, n.

We refer to Equation (4.6) on page 29 as being performed in a parallel fashion.

Improved convergence can be obtained if the new approximations are computed

in a serial fashion3 in which the newly computed approximations are used as

soon as they become available. Miodrag refers to this as the single-step method

ẑν = zν − p(zν)
∏

i<ν

(zν − ẑi)
∏

i>ν

(zν − zi)
, ν = 1, 2, . . . . n , (4.8)

which has also been analysed by Alefeld and Hertzberger [AH74].

§3.2 of [Pet89] defines a third order IF based on the Lagrangian interpolation

of p(z) for the points z1, z2, . . . , zn, that is

p(z) =
∑

i

q(z)

q′(zi)(z − zi)
p(zi) + q(z) , (4.9)

where

q(z) = (z − z1)(z − z2) · · · (z − zn) . (4.10)

Using the abbreviation

Wi =
p(zi)

∏

j 6=i

(zi − zj)
, (4.11)

based on the Weierstrass correction given in Equation (4.6) on page 29, then

the IF

ẑν = zν − Wν

1−
∑

i6=ν

Wi

zi − zν

(4.12)

is of third order. Once again, for simple zeros only and sufficiently close starting

approximations to those zeros, this IF converges monotonically. This IF does

not appear in previous literature.

It is important to remember that we are extrapolating from Miodrag’s IFs ex-

3Often referred to as the Gauss-Seidel approach.
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pressed in terms of circular arithmetic into our terminology. The centre of one

of his circles might not be identical to one of our simple approximations.

In [Pet81] and [Pet89, pp. 83–88] Miodrag defines a family of IFs in complex

arithmetic of the form

ẑν = zν − 1


hk(zν)−
∑

j 6=ν

1

(zν − zj)k





1

k

, (4.13)

with order of convergence k + 2 where

hi(z) =
(−1)i−1

(i− 1)!

di

dzi
[log p(z)] , i = 1, 2, . . . . (4.14)

We note that this equation comes out of the blue in [Pet89, p. 70]. His notation

seems upside down. We are happier with

hi(z) =
∑

j

1

(z − αj)i
(4.15)

yielding by induction

hi+1(z) =
h′
i(z)

−i
, i = 1, 2, . . . (4.16)

The first two of these are

h1(z) =
1

u(z)
(4.17)

and

h2(z) =
u′(z)

u(z)2
. (4.18)

The order of convergence of these IFs is k + 2. For k = 1, we obtain the

third-order IF

ẑν = zν − 1

p′(zν)

p(zν)
−
∑

i6=ν

1

zν − zi

, ν = 1, 2, . . . , n (4.19)

first derived by Hans Maehly [Mae54]. Using the definition given in Equa-

tion (2.6) on page 6 we derived this IF [FL75, p. 252] as

ẑν = zν − u(zν)

1− u(zν)
∑

i6=ν

1

zν − zi

, ν = 1, 2, . . . , n , (4.20)
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which we stated had been discovered by Kiril Dochev and Byrnev [DB64].

In Equation (4.19) on page 31, Miodrag suggests using Newton’s approximation

zi − u(zi) instead of zi, to increase the rate of convergence [Pet89, pp. 83–84],

namely (using our notation and terminology)

ẑν = zν − u(zν)

1− u(zν)
∑

i6=ν

1

zν − zi + u(zi)

, ν = 1, 2, . . . , n . (4.21)

This is now an IF of fourth order as shown by Abdel Anourein [Ano77, pp. 244–

245].

The parallel method given in Equation (4.20) on page 31 can be accelerated by

applying the serial method

ẑν = zν − u(zν)

1− u(zν)








∑

i<ν

1

zν − ẑi

+
∑

i>ν

1

zν − zi








, ν = 1, 2, . . . , n . (4.22)

The same goes for Equation (4.21) on page 32 as

ẑν = zν − u(zν)

1− u(zν)








∑

i<ν

1

zν − ẑi + u(ẑi)

+
∑

i>ν

1

zν − zi + u(zi)








, ν = 1, 2, . . . , n , (4.23)

though this is computationally more intensive because of the need to compute

u(ẑi).

Götz Alefeld and Jürgen Herzberger proved [AH74] that the R-order conver-

gence of Equation (4.22) on page 32 is bounded below by the quantity 2 + σn,

where σn > 1 is the unique positive zero of the equation

pn(σ) = σn − σ − 2 . (4.24)

Gradimir Milovanović and Miodrag proved [MP83] that the R-order convergence

of Equation (4.23) on page 32 is bounded below by the quantity 2(1+σn), where

σn > 1 is the unique positive zero of the equation

pn(σ) = σn − σ − 1 . (4.25)
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It is worth re-iterating at this point that the stated order of convergence of the

above IFs is correct only for polynomials with simple zeros.

In §4.4 of [Pet89] Miodrag turns his attention to polynomials with multiple

zeros. Whilst most of the analysis is concerned with methods using circular

arithmetic, he does mention some single-point IFs. For example, the multiple

zero version of Equation (4.19) on page 31 is

ẑν = zν − mν

p′(zν)

p(zν)
−
∑

i6=ν

mi

zν − zi

, ν = 1, 2, . . . , N (4.26)

which we expressed as

ẑν = zν − mνu(zν)

1− u(zν)
∑

i6=ν

mi

zν − zi

, ν = 1, 2, . . . , N (4.27)

in [FL77] and which is the multiple zero version of Edmond Halley’s IF [Hal94].

This parallel method can be accelerated by applying the serial method

ẑν = zν − mνu(zν)

1− u(zν)







∑

i<ν

mi

zν − ẑi

+
∑

i>ν

mi

zν − zi







, ν = 1, 2, . . . , N , (4.28)

and, once again, Equations (4.27) and (4.28) can be accelerated further using

Newton’s approximation instead of zi yielding

ẑν = zν − mνu(zν)

1− u(zν)
∑

i6=ν

mi

zν − zi + u(zi)

, ν = 1, 2, . . . , N , (4.29)

and

ẑν = zν − mνu(zν)

1− u(zν)







∑

i<ν

mi

zν − ẑi + u(ẑi)

+
∑

i>ν

mi

zν − zi + u(zi)







, ν = 1, 2, . . . , N , (4.30)

for the serial method.

In one of his later papers [PMP10] Miodrag uses higher-order IFs to increase the

rate of convergence. He uses a multipoint IF described by Peter Jarratt [Jar66b]
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and reintroduced by Ramandeep Behl et al. [BKS12, p. 409], namely (using our

notation)

ẑ = z − 1

2
u(z)

[
3p′(y) + p′(z)

3p′(y)− p′(z)

]

, (4.31)

where

y = z − 2

3
u(z) , (4.32)

whose order of convergence is 4 for simple zeros. Substituting this ẑ for zi in

Equation (4.19) on page 31 or Equation (4.20) on page 31 yields a new IF whose

order of convergence is 6.

4.5 Joab Winkler et al.

Joab is a Reader in the Department of Computer Science at the University of

Sheffield.

Like Zhonggang Zeng his approach involves finding the GCD of p(z) and p′(z),

i.e. gcd(p, p′), many times over, as described in [Win07, pp. 34–40] and recently

in [Ver11]. Note that this is only required if p(z) has at least one multiple zero.

Let p(z) be a monic polynomial as defined in Equation (2.4) on page 6, and let

ωi(z) be the product of all factors of degree i in p(z). Then, using our notation

p(z) = ω1(z)ω
2
2(z) · · ·ωN

N (z) , (4.33)

and thus, with g0(z) = p(z), we define the sequence

g1(z) = gcd(g0(z), g′0(z)) = ω2(z)ω
2
3(z) · · ·ωN−1

N (z) ,

g2(z) = gcd(g1(z), g′1(z)) = ω3(z)ω
2
4(z) · · ·ωN−2

N (z) ,

g3(z) = gcd(g2(z), g′2(z)) = ω4(z)ω
2
5(z) · · ·ωN−3

N (z) ,

. . . ,

gN (z) = 1 .

(4.34)

A sequence of square-free polynomials fi(z), i = 1, 2, · · · , N , is defined such
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that

f1(z) =
g0(z)

g1(z)
= ω1(z)ω2(z) · · ·ωN (z) ,

f2(z) =
g1(z)

g2(z)
= ω2(z)ω3(z) · · ·ωN (z) ,

. . . ,

fN (z) =
gN−1(z)

gN (z)
= ωN (z)

(4.35)

and the products ωi(z) are determined from

ω1(z) =
f1(z)

f2(z)
,

ω2(z) =
f2(z)

f3(z)
,

. . . ,

ωN (z) = fN (z) .

(4.36)

The equations

ω1(z) = 0 ,

ω2(z) = 0 ,

. . . ,

ωN (z) = 0 ,

(4.37)

contain only simple zeros, and yield the simple, double, triple, etc. zeros of p(z).

Given that these equations have only simple zeros, they can be solved by some

other means, e.g. roots in Matlab [Mat12]. Note that this does not guarantee

easy sailing from this point. Joab and his researchers in [WLH12, pp. 3480–

3481] quote an example where one of these equations (with simple zeros) is

Wilkinson’s polynomial, see §6.29 on page 80, which is itself a difficult problem.

One of Joab’s recent papers [Win11] raises the interesting conjecture of inexact

coefficients, i.e. different from what they should be. Both he and Zhanggong

Zeng [Zen05] deploy the notion of a pejorative manifold [Kah72] whereby a

family of polynomials share a common characteristic, i.e. their multiplicities.

However, do different polynomial coefficients denote different polynomial zeros?

It is an interesting question which we return to in §7.2.1 on page 96.

Joab’s research covers a wide range of topics and he works with two other

researchers, Madina Hasan and Xin Lao. Their current research links four

recurring topics, shown below.
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GCD computation

The best place to start is probably [WLH12], which starts by explaining

how the zeros of a polynomial are obtained using the GCD algorithm de-

scribed at the beginning of this section (starting on page 34), but then

demonstates that the operations involved, GCD computations and poly-

nomial divisions, can be ill-posed.

A constrained, perturbed form of the original inexact polynomial has an

approximate GCD (AGCD). Section 8 of the paper [WLH12, pp. 3487–

3488] describes how the Sylvester resultant matrix, defined in Equation (2.26)

on page 11, is used in this AGCD computation. The perturbated poly-

nomial is constrained so that it is associated with a particular pejorative

manifold.

Inexact Polynomial

An inexact polynomial is one whose coefficients are, essentially, close ap-

proximations to the coefficients of an exact polynomial. These occur nat-

urally when a polynomial is derived from some other calculation which is

not exact. If the exact polynomial has multiple zeros, the effect is often

that these multiplicities are lost and we have the following [WH13, p. 253].

“These [inexact ] polynomials are, therefore, with high probabil-

ity, coprime, . . . ”

This results in the GCD computations being wrong because the multi-

plities have disappeared. In [WL11, pp. 1591–1593] Joab (and Xin Lao)

describe how polynomial scaling by the geometric mean before compu-

tations are carried out gives improved computed results. An analysis

of preprocessing with different norms is provided in depth in [WHL12,

pp. 246–254].

Pejorative Manifold

Jan Verschelde [Ver11, pp. 1–2] describes the pejorative manifold M in de-

tail. We will not go into those details here. Joab (and Madina Hasan)[WLH12,

p. 3483] re-state their zero finding two-step algorithm in terms of M.

1. Compute the multiplicities of the zeros, i.e. identify the pejorative

manifold M with which p(z) is associated.

2. Compute the values of the zeros, i.e. determine the point on M that

corresponds to p(z).

Step 1 involves the constrained AGCD computation mentioned above.
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Sylvester Resultant Matrix

This is defined in Equation (2.26) on page 11. Joab (and Madina Hasan) [WH10,

p. 3227] point out that the calculation of an approximation of S(p, q) is

closely related to the calculation of the AGCD of p(z) and q(z). A later

paper by Joab (and Madina) [WH13] describes an improved method for

computing the Sylvester resultant matrix.

4.6 Zhonggang Zeng

Zhonggang is a professor of Mathematics in the Department of Mathematics at

Northeastern Illinois University.

In [Zen05, pp. 872–873] Zonggang proves the following three lemmas.

Lemma 4.1. Let p(z) be defined as in Equation (2.3) on page 6, and let p′

be its derivative with g = gcd(p, p′). Let Si(p), the Sylvester discriminant

matrix, be defined as in Equation (2.24) on page 10. For i = 1, 2, . . . , n, let

ζi be the smallest singular value of Si(p). Then the following are equivalent.

(a) deg(g) = m;

(b) p has N = n−m distinct zeros;

(c) ζ1, ζ2, . . . , ζN−1 > 0, ζN = ζN+1 = · · · = ζn = 0;

Lemma 4.2. Let p(z) be defined as in Equation (2.3) on page 6, and let p′ be

its derivative with g = gcd(p, p′). Let f(z) and h(z) be polynomials satisfying

f(z)g(z) = p(z) ,

g(z)h(z) = p′(z) .
(4.38)

Then

(a) f and h are co-prime;

(b) the (column) rank of SN (p) is deficient by one;

(c) the normalised vector

[

f

−h

]

is the right singular vector of SN (p) asso-

ciated with the smallest (zero) singular value ζN ;

(d) if f is known, the coefficient vector g of g = gcd(p, p′) is the solution to

the linear system Cm(f)g = p.

Lemma 4.3. Let A be a matrix of size m× n with m ≥ n whose smallest two

distinct singular values are σ̂ > σ̃. Let Q

[

R

0

]

= A be the QR decomposition

37



of A, where Q of size m×m is unitary and R of size n×n is upper triangular.

From any vector x0 that is not orthogonal to the right singular subspace of A

associated with σ̃, generate the sequences {σi} and {xi} by the inverse iteration







Solve RHyi = xi−1 for yi

Solve Rzi = yi for zi

Calculate xi =
zi

‖zi‖2

σi = ‖Rxi‖2







i = 1, 2, . . . (4.39)

Then limi→∞ σi = limi→∞ ‖Axi‖2 = σ̃ and σi = ‖Axi‖2 = σ̃ + O(τ i) where

τ =
(
σ̃
σ̂

)2
.

If σ̃ is simple, then xi converges to the right singular vector x̃ of A associated

with σ̃.

The quadratic system for unknown vectors f, g and h is

Solve






g0

conv(f , g)

conv(g, h)




 =






1

p

p′




 , for






f

g

h




 (4.40)

where the convolution conv(·, ·) is defined by Equation (2.23) on page 10.

Let m = n − N be the degree of g = gcd(p, p′), then the Jacobian of the

quadratic system given by Equation (4.40) on page 38 is

J(f , g, h) =






eT1

CN (g) Cm(f)

Cm(h) CN−1(g)




 , (4.41)

where e1 = (1, 0, . . . , 0)T and J(f , g, h) is of full (column) rank.

Let g̃ = gcd(p, p′) with f̃ and h̃ satisfying Equation (4.40) on page 38, and let

W be a weight matrix. Then there exists ǫ > 0 such that for all f0, g0, and h0

satisfying ‖f0 − f̃‖2 < ǫ, ‖g0 − g̃‖2 < ǫ, and ‖h0 − h̃‖2 < ǫ, the Gauss-Newton

iteration, given below, converges quadratically.






fi+1

gi+1

hi+1




 =






fi

gi

hi






− J(fi, gi, hi)
+
W






eT1 − 1

conv(fi, gi) − p

conv(gi, hi) − p′






, i = 0, 1, . . . , (4.42)

where J(·)+W = [J(·)HW 2J(·)]−1J(·)HW 2 is the weighted pseudo-inverse of the
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Jacobian J(·) defined in Equation (4.41) on page 38.

Algorithm 4.1. The following six steps are used to compute gcd(p, p′).

1. Compute m = deg(p) by inverse iteration to find the smallest singular

value ζk of Sk(p) and the corresponding right singular vector.

2. Calculate the QR decomposition of the (n+ 1)× 3 matrix S1(p) = Q1R1.

3. For i = 1, 2, · · · , n− 1 do

(a) Use the inverse iteration, Equation (4.39) on page 38, to find the

smallest singular value ζi of Si(p) and the corresponding yi.

(b) If ζi ≤ θ‖p‖2, then N = i, m = n−N , extract f and h from yi, and

exit

Else update Si(p) to Si+1(p) = Qi+1Ri+1

End if

End do Note that Zhonggang Zeng states that θ is a zero singular value

threshold; consult [Zen05, p. 895] for further details.

4. Set up the quadratic GCD system, Equation (4.40) on page 38, in accor-

dance with the degree m.

5. In step 1, when the singular value ζi is calculated, the associated singular

vector yi consists of f0 and h0, which are approximations to f and h in

Equation (4.38) on page 37.

The linear system

Cmf0g0 = p (4.43)

is solved for a least squares solution g0 that minimises ‖conv(f0, g0)−p‖.

6. Use the Gauss-Newton iteration, Equation (4.42) on page 38, to refine the

GCD triplet (f, g, h). This iteration is expected to reduce the residual

∥
∥
∥
∥
∥

(

conv(fi, gi)

conv(gi, hi)

)

−
(

p

p′

)∥
∥
∥
∥
∥
W

=

∥
∥
∥
∥
∥
W

(

conv(fi, gi) − p

conv(gi, hi) − p′

)∥
∥
∥
∥
∥
2

(4.44)

at each step until it is numerically irreducible. The diagonal weight matrix

W is used to scale the GCD system, Equation (4.40) on page 38, so that

the entries of W

[

p

p′

]

are of similar magnitude. Each step of the Gauss-
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Newton iteration requires solving an over-determined linear system

[WJ(fi, gi, hi)] z = W






eT1 ui − 1

conv(fi, gi) − p

conv(gi, hi) − p′




 (4.45)

for its least squares solution z.

4.6.1 Factorisation

The following process can be used to factor the polynomial p(z).

Algorithm 4.2. This algorithm consists of a single loop containing three steps.

Once again, g0(z) = p(z).

For i = 1, 2, . . ., while deg(gi−1(z)) > 0 do

1. Calculate gi(z) = gcd(gi−1(z), g′i−1(z)).

2. Calculate fi(z) =
gi−1(z)

gi(z)
.

3. Calculate the (simple) zeros of fi(z).

End do

4.6.2 Computing the Multiplicities

The process above generates a sequence of square-free polynomials

f1(z), f2(z), . . . , fM (z) (4.46)

of degrees d1 ≥ d2 · · · ≥ dM , respectively. So N = d1 = deg(f1(z)). Then the

multiplicities {mi} are computed as follows.

mi = max {j | dj ≥ (d1 + 1)− i} , i = 1, 2, . . . , N . (4.47)

Formal justification for this approach can be found in [Zen05, p. 894]. Zhong-

gang’s latest work on inexact polynomials, which is very similar to the approach

taken by Joab Winkler, see §4.5 starting on page 34, is found in [Zen09].

He has also initiated a project with another mathematician, Tien-Yien Li from

Michigan State University, currently entitled NAClab 2.0 – a Numerical Alge-

braic Computing Toolbox for Matlab [Zen12] which is, to quote from their web

site.
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“A robust software package for accurate numerical solution of al-

gebraic problems assuming the data are perturbed, along with pro-

gramming tools for further research and development.”

It is interesting that we are seeing more research going into this area of perturbed

data values at this time, e.g. see towards the end of Joab Winkler’s entry, which

starts at §4.5 on page 34.
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Chapter 5

Our Research in This Area

This chapter presents the algorithms and results of our research into locating

the zeros of polynomials.

The research culminating in this thesis was originally carried out in collabora-

tion with Professor George Loizou. George is currently Professor Emeritus of

the Mathematics of Computation in the Department of Computer Science and

Information Systems, Birkbeck, University of London.

During the search stage we have not applied any scaling to the original format

of the polynomial. So far, we have not found it necessary to apply any scaling.

During the iterative stage the polynomial is scaled into monic form, i.e. an = 1

in Equation (2.3) on page 6. In adddition, we should emphasise that we use

single-point IFs, i.e. we evaluate the polynomial and its derivatives at just at

one point zν . This is in contrast to multipoint IFs which evaluate the polynomial

and its derivatives at intermediate points in order to derive higher-order IFs.

We present classes of IFs as part of the iterative stage. Each class contains

representatives from second-order through to fifth-order. Using Matlab, there

is very little difficulty in automatically generating IFs of higher-orders, but we

must ask what would be gained in doing so. The actual IFs are already complex,

in terms of their structure. Higher-order IFs mean evaluating more polynomial

derivatives and programming more complex code, but to what gain? Possibly

quicker convergence (in terms of iterations) at best? No, we believe that second-

order to fifth-order IFs are sufficient to illustrate each class.

We also do not present all of those IFs that make minor improvements to the

order of convergence (of other researchers’ IFs). For example, George Loizou’s

paper [Loi83], and Richard King’s paper [Kin83] (which improves Newton’s
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method to an order of convergence of (1 +
√
2)), which is similar to a paper by

Peter Kravanja and Ann Hergemans [KH99].

5.1 Computational Methodology

REMARK 3. Section added. Winkler point 2.

When we originally embarked on our research in this area (the late 1960s) the

only practical programming language to use was Fortran, for two reasons.

• It was the language of choice for numerical analysis.

• Multiple precision libraries were becoming available.

Both of us were fluent in Algol 60 [B+63], an obvious choice, but it was lacking

in support libraries, apart from the nascent NAG library [FB77], which was

being funded in the UK.

There was then a break in our work, . . . .

When we returned to this work (the early 2000s), our programming language

of choice was C, emanating from our use of the UNIX operating system for

teaching and research. By then, the GNU project was well under way, and

one of its most successful products was the GNU Multiple Precision Arithmetic

Library (GMP) [Gra11].

Combining the two, together with C’s powerful macro facilities, meant that our

algorithms could be expressed in a vector-oriented high-level notation that made

programming easier and natural.

Our decision to use multiple precision arithmetic to overcome any problems with

rounding errors in our computations meant that we did not consider alternatives,

such as Matlab [Mat13] and Mathematica [Ber56], which did not have multiple

precision libraries at that time, for our implementation. As will be seen in

subsequent sections, this decision was the correct one.

5.2 Search Stage

REMARK 4. Initial three paragraphs inserted. Lai point 1. Winkler point 4.

This stage is concerned with locating regions within the complex plane known

to contain zeros of a given polynomial. We start by locating a circular region

containing all the zeros. We then find the smallest square region containing this
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circular region. We then divide this square into four equal squares (our default),

test each square to determine whether it contains zeros or not, and retain only

those squares containing zeros.

This sub-division process continues until the squares are small enough for their

centres to be taken as approximations to the true zeros.

Squares are used because they completely cover the complex plane without over-

lap. Unfortunately, our test for zeros only works on circles; these can overlap and

cause zero(s) in one square to also be counted within an adjacent square. This

problem is alleviated by a correction mechanism, described in §5.2.2 starting on

page 47, that eradicates those zeros counted twice.

In our paper [FL75] we were concerned only with deriving some new families

of IFs. For our later paper [FL77, pp. 431–433] we wanted to automate the

complete algorithm by computing initial approximations to the zeros rather

than giving them as arguments to the various IFs. This old approach was

always doubtful as these approximations could be modified a priori in order to

get a favourable situation for the IFs to converge.

Our new approach was to first locate an inclusion region containing all the

zeros of the polynomial. We chose the circular region about the origin derived

by Dirk Dekker [Dek68] containing all the zeros. This is given by Equation (3.1)

on page 14.

This circle is covered by a number of smaller circles, each with the same area.

One possible covering is given in Figure 5.1. Another possible covering is given

Figure 5.1: Covering with Four Circles

in Figure 5.2 (there are, of course, others). The following algorithm is then

applied.
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Figure 5.2: Covering with Seven Circles

Algorithm 5.1. The algorithm consists of the following three steps.

1. Each circle is tested to see if it contains at least one zero of p(z). The test

used was that stated by Dick Lehmer, namely Theorem 3.3 on page 20.

The mapping of the circles to the unit circle was that given by Professor

Stewart, namely Algorithm 3.2 on page 24.

Retain only those circles that test positively.

2. Cover these circles using the same type of covering as before.

3. Re-apply the previous two steps until the circles containing the zeros have

separated.

As the radii of the circles are monotonically decreasing, their centres are suc-

cessively improving approximations to the zeros.

The multiplicities of these approximations can be estimated by using Jean-

Louis Lagouanelle’s bounding formula, given by Equation (3.5) on page 18.

Other limiting formulae could be used, for example those described by Dirk

Dekker [Dek68, pp. 193–194] and Joseph Traub [Tra64, pp. 154–157].

The search procedure is continued until

∑

i

mi = n , (5.1)

when approximations are known to all the factors of the polynomial p(z).
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5.2.1 Search Efficiency

A major problem with using circles as approximations to zeros is the amount

of overlap between adjacent circles. Any zero in this overlap will be counted as

being in both circles. This situation can continue until sufficient separation is

obtained.

Consider the scenario when using a covering of four circles as illustrated in

Figure 5.1 on page 44. Given an initial circle of radius R (solid line) there is a

total overlap (dashed lines) of

R2(π − 2) , (5.2)

which is approximately 36% of the initial circle’s area.

The situation is slightly better when using a covering of seven circles as illus-

trated in Figure 5.2 on page 45. Given an initial circle of radius R (solid line)

there is a total overlap (dashed lines) of

R2(π − 3
√
3

2
) , (5.3)

which is approximately 17% of the initial circle’s area.

For our paper [FL85b] we decided to use square regions instead of circles because

this decreases the amount of overlap.

Our first inclusion region is the square covering the circle given by Dirk Dekker’s

formula, as illustrated by Figure 3.1 on page 15.

Figure 5.3 illustrates such a square covered by four smaller squares and nine

smaller squares. A circular inclusion test is applied to each smaller square, so

overlap still occurs.

Given an initial square of radius (semi-diagonal) R there is a total overlap of

N − 1

N
R2(π − 2) (5.4)

when the initial square is covered by N2 smaller squares. This is approximately

29% of the initial square’s area when N = 2, rising asymptotically to 57% as N

increases towards infinity. From this, it is apparent a covering of four squares

is preferable, all other things being equal.

For our paper [FL85b] we also utilise Morris Marden’s Theorem 3.6 on page 21,

which returns the number of zeros in the unit circle. For us, this yields the

number of zeros in a collection of squares. This number could be larger than n,
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Figure 5.3: Covering with Squares

the degree of p(z), because of the overlaps introduced by the circular inclusion

test.

However, when used in conjunction with Jean-Louis Lagouanelle’s estimates of

the multiplicities, Equation (3.5) on page 18, we have better control over when

to terminate the search stage, i.e. only when the two counts agree for each

approximation, given by the centre of the square.

This is a useful safety net. Occasionally, the sum of Morris Marden’s esti-

mations equals the degree of the polynomial whereas Jean-Louis Lagouanelle’s

estimations are more conservative.

5.2.2 Search Consolidation

Although the overlap when using squares is less than with circles, it can still

occur. This is overcome using a consolidation stage after a certain number of

iterations. Consider Figure 5.4. Within a general covering of squares (dotted

lines) two adjacent squares (solid lines) test positive for containing a zero α1

because it lies within the overlap of the circular inclusion test.

We now cover our collection of small squares with a collection of larger ones

(dashed lines); these larger squares subsume all small squares, containing zeros,

that they contain. Note that in Figure 5.4 this includes a second square nearby

containing another zero α2.

The search stage then continues using the larger squares. This operation shifts

the centres of the squares tested, and therefore the overlaps, and has proved

very successful in practice, see Chapter 7 starting on page 87.
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α

α

1

2

Figure 5.4: Consolidating Squares

5.2.3 Search Convergence

REMARK 5. This new section added. George’s idea.

In theory it is possible to continue this search stage until the squares are so

small that their centres can be taken as accurate approximations to the true

zeros.

However, the computional workload is substantial and would result in obtaining

our desired results slower than necessary. For this reason we stop this search

stage when we consider the centres of our squares to be resonable approximations

to the true zeros and switch to the faster IFs, described in the next section, for

rapid convergence.

5.3 Simple Zeros

Our paper [FL75] presented a family of IFs for improving the approximations

to the zeros of a polynomial with only simple zeros.

This family, or class, of IFs is derived from the Taylor series expansion of p(αν)
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about zν , namely

p(αν) = 0 = p(zν) +

ρ−1
∑

i=1

(−1)i

i!
p(i)(zν)ǫ

i
ν +O(ǫρν) . (5.5)

Using the auxiliary definitions in Equation (2.6) on page 6 and Equation (2.7)

on page 6, we can re-write Equation (5.5) as

u(zν) =

ρ−1
∑

i=1

(−1)i−1Ai(zν)ǫ
i
ν +O(ǫρν) . (5.6)

Omitting the terms of O(ǫρν) in Equation (5.6) leaves a polynomial of degree

ρ − 1 in ǫν . Joseph Traub [Tra64, pp. 61–62] points out that this could be

used as a non-linear equation for low values of ρ. However, Equation (5.6) can

be rearranged to obtain our family of IFs. They can be generated using the

following equations. We start with ρ = 2, namely

λ2(zν) = u(zν) . (5.7)

Now, as ρ increases, we substitute ǫiν in Equation (5.6) with the appropriate

value for powers of λi(zν) as follows

λ2(zν) = u(zν) ,

λ3(zν) = u(zν) +A2(zν)λ
2
2(zν) ,

λ4(zν) = u(zν) +A2(zν)λ
2
3(zν)−A3(zν)λ

3
2(zν) ,

λ5(zν) = u(zν) +A2(zν)λ
2
4(zν)−A3(zν)λ

3
3(zν) +A4(zν)λ

4
2(zν) ,

λ6(zν) = u(zν) +A2(zν)λ
2
5(zν)−A3(zν)λ

3
4(zν) +A4(zν)λ

4
3(zν)

−A5(zν)λ
5
2(zν) ,

(5.8)

etc. Then the IF

Rρ(zν) = zν − λρ(zν) (5.9)

is of order ρ. Simplifying the equation for λρ(zν) into another equation in-

volving A2(zν), A3(zν) . . . Aρ−1(zν) and the powers of u(zν) is time-consuming

and error-prone. Fortunately, Joseph Traub provides a recurrence relation for

the IFs in [Tra64, p. 87] which simplifies the calculations, namely (using our

notation)

Rρ+1(zν) = Rρ(zν)−
u(zν)

ρ
R′

ρ(zν) . (5.10)

Alternatively, this relation can be expressed in terms of our λ2(zν), λ3(zν), . . .
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as follows

λρ+1(zν) = λρ(zν) +
u(zν)

ρ
[1− λ′

ρ(zν)] . (5.11)

Finally, we can now express the various λi(zν) as polynomials in u(zν). Com-

bining the entries in Equation (5.8) on page 49 yields the following

λ2(zν) = u(zν) ,

λ3(zν) = λ2(zν) +A2(zν)u
2(zν) ,

λ4(zν) = λ3(zν) + [2A2
2(zν)−A3(zν)]u

3(zν) ,

λ5(zν) = λ4(zν) + [5A3
2(zν)− 5A2(zν)A3(zν) +A4(zν)]u

4(zν) ,

λ6(zν) = λ5(zν) + [14A4
2(zν)− 21A3

2(zν)A3(zν) + 6A2(zν)A4(zν)

+ 3A2
3(zν)]u

5(zν) ,

(5.12)

etc. Higher-order powers of u(zν) than those required for the IFs have been

removed.

These equations have all been verified using the symbolic manipulation module

of Matlab [Mat12].

Note that the IFs presented hereafter are in their polynomial form rather than

the possibly more familiar rational form. This polynomial form makes it easier

to see how the IFs grow in complexity as the order of convergence increases.

It also facilitates our work in computing the asymptotic error constants in Ap-

pendix A.

For completeness, the rational forms of these IFs can be found in Appendix B

starting on page 120.

5.3.1 A Class of One-point IFs for Simple Zeros

The first five IFs, Rρ(zν), are given below.

Isaac Newton’s second-order IF [New36]

ẑν = zν − u(zν) . (5.13)

The rational form of this IF is Equation (B.1) on page 120.

Edmond Halley’s third-order IF [Hal94]

ẑν = zν − u(zν)−A2(zν)u
2(zν) . (5.14)

The rational form of this IF is Equation (B.2) on page 121.
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I Kiss’ fourth-order IF [Kis54, p. 68]

ẑν = zν − u(zν)−A2(zν)u
2(zν)− [2A2

2(zν)−A3(zν)]u
3(zν) . (5.15)

The rational form of this IF is Equation (B.3) on page 121.

I Kiss’ fifth-order [Kis54, p. 68]

ẑν = zν − u(zν)−A2(zν)u
2(zν)

− [2A2
2(zν)−A3(zν)]u

3(zν)

− [5A3
2(zν)− 5A2(zν)A3(zν) +A4(zν)]u

4(zν)

. (5.16)

Joseph Traub [Tra64, p. 84] states the polynomial form in Equation (5.16)

above, while Kiss derived the original rational form in Equation (B.4) on

page 121.

Mick Farmer and George Loizou’s sixth-order IF

ẑν = zν − u(zν)−A2(zν)u
2(zν)

− [2A2
2(zν)−A3(zν)]u

3(zν)

− [5A3
2(zν)− 5A2(zν)A3(zν) +A4(zν)]u

4(zν)

− [14A4
2(zν)− 21A2

2(zν)A3(zν) + 6A2(zν)A4(zν)

+ 3A2
3(zν)−A5(zν)]u

5(zν)

. (5.17)

We have found no previous derivation of this IF, although Joseph Traub [Tra64,

p. 84] does provide the coefficient of the last term in one of his tables.

The IFs defined by Equation (5.13) through Equation (5.16) have been verified

using a Matlab program, see §C.6.2 on page 200.

5.3.2 A Class of Simultaneous IFs for Simple Zeros

This class of IFs is generated by replacing the derivative of highest order,

Aρ−1(zν) in Rρ, in one of our earlier one-point IFs (see §5.3.1 starting on

page 50) with a first-order approximation involving Tρ−2(zν), as defined in

Equation (2.13) on page 7.

Using p(z), as defined in Equation (2.4) on page 6, and Sk(z), as defined in
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Equation (2.11) on page 7, we have

p′(zν)

p(zν)
=

∑

i

∏

j 6=i

(zν − αj)

∏

j

(zν − αj)
,

=
∑

i

1

zν − αi

,

=
1

ǫν
+ S1(zν) .

(5.18)

Following the same approach as with Equation (5.18), we have

p′′(zν)

p(zν)
=

∑

i

∑

j 6=i

∏

k 6=i,j

(zν − αk)

∏

k

(zν − αk)
,

=
∑

i

∑

j 6=i

1

(zν − αi)(zν − αj)
,

=
∑

i

1

zν − αi

∑

j 6=i

1

zν − αj

,

=
∑

i

1

zν − αi

[
1

ǫν
+ S1(zν)−

1

zν − αi

]

,

=

[
1

ǫν
+ S1(zν)

]
∑

i

1

zν − αi

−
∑

i

1

(zν − αi)2
,

=

[
1

ǫν
+ S1(zν)

]2

− 1

ǫ2ν
− S2(zν) ,

= S2
1(zν)− S2(zν) +

2

ǫν
S1(zν) .

(5.19)

Finally, dividing Equation (5.19) by Equation (5.18) yields

A2(zν) =
p′′(zν)

2!p′(zν)
,

=
2S1(zν) + [S2

1(zν)− S2(zν)]ǫν
2[1 + S1(zν)ǫν ]

,

= S1(zν) +O(ǫν) .

(5.20)

Successively differentiating the middle line of Equation (5.20) yields the set of
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equations

A2(zν) = S1(zν) +O(ǫν) ,

2A3(zν) = A2
2(zν)− S2(zν) +O(ǫν) ,

3A4(zν) = −A3
2(zν) + 3A2(zν)A3(zν) + S3(zν) +O(ǫν) .

(5.21)

Given that

Sk(zν) = Tk(zν) +O(ǫν) , (5.22)

we finally arrive at the following set of equations used in deriving this class of

IFs.

A2(zν) = T1(zν) +O(ǫν) ,

2A3(zν) = A2
2(zν)− T2(zν) +O(ǫν) ,

3A4(zν) = −A3
2(zν) + 3A2(zν)A3(zν) + T3(zν) +O(ǫν) .

(5.23)

Replacing the derivative of highest order, i.e. Aρ−1(zν), in Rρ by a suitable

approximation from the above equations retains the order of convergence while

one less derivative needs computing at every step. The first few such IFs are

given below.

Second-order IF

There is no polynomial form for this second-order IF. However, its well-

known rational form, derived by Kiril Dochev and P Byrnev, is Equa-

tion (B.5) on page 121.

Mick Farmer and George Loizou’s third-order IF

Substituting for A2(zν) in Equation (5.14) on page 50 yields the following

third-order IF.

ẑν = zν − u(zν)− T1(zν)u
2(zν) . (5.24)

The rational form of this IF, derived by Louis Ehrlich, is Equation (B.6)

on page 121.

Mick Farmer and George Loizou’s fourth-order IF

Substituting for A3(zν) in Equation (5.15) on page 51 yields the following

fourth-order IF.

ẑν = zν − u(zν)−A2(zν)u
2(zν)−

1

2
[3A2

2(zν) + T2(zν)]u
3(zν) . (5.25)

We previously derived this IF in its rational form. This is Equation (B.7)

on page 122.

Mick Farmer and George Loizou’s fifth-order IF
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Substituting for A4(zν) in Equation (5.16) on page 51 yields the following

fifth-order IF.

ẑν = zν − u(zν)−A2(zν)u
2(zν)

− [2A2
2(zν)−A3(zν)]u

3(zν)

− 1

3
[14A3

2(zν) + 12A2(zν)A3(zν) + T3(zν)]u
4(zν)

. (5.26)

We previously derived this IF in its rational form. This is Equation (B.8)

on page 122.

The IFs defined by Equation (5.24) through Equation (5.26) have been verified

using a Matlab program, see §C.6.2 on page 200.

In addition, these IFs generate approximations to the zeros αν in parallel, i.e.

Jacobi-like. Once better approximations have been computed, it is advantageous

to compute the remaining approximations in serial, i.e Gauss-Seidel-like, using

the newer approximations as soon as they become available. For example, the

third-order IF given in Equation (5.24) on page 53 becomes

ẑν = zν − u(zν)−
[
∑

i<ν

(zν − ẑi) +
∑

i>ν

(zν − zi)

]

u2(zν) . (5.27)

This is a classic example of what is known as in the literature as series ac-

celeration, i.e. the new sequence converges faster than the original sequence

at no extra cost. The formal term for the study of this technique is called

R-order convergence. This has already been mentioned in the work of Mio-

drag Petković, starting with Equation (4.23) on page 32, and will be alluded

to again in a section of our chapter on further work, namely §9.4 starting on

page 105.

5.3.3 A Class of Variable-order IFs for Simple Zeros

The idea behind this class is very simple. Instead of using the factor zν − zi

in the IFs derived above, we use zν − ẑi where ẑi is an improved and updated

approximation to zi using an application of Newton’s second-order IF given by

Equation (5.13) on page 50.

Other authors, principally Abdel Anourein [Ano77, pp. 244–245] and Miodrag

Petković [Pet89, pp.83–84], have also used a Newton correction to improve con-

vergence, but both do not update the value of zi at the same time. This is

obviously extremely wasteful, as we shall show.
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So, for an IF with order of convergence ρ, while computing ẑν each of the other

approximations is improved with an order of convergence of two. Therefore, the

overall order of convergence increases with the degree of the polynomial. The

cost is computing the value of u(zi) multiple times.

Looked at in simple terms, assuming we start with initial approximations of

O(ǫ), the new order of convergence is roughly 2(n−1)ρ where n is the degree of

the polynomial.

Based on Kiril Dochev and P Byrnev’s second-order IF, Equation (B.5)

We have not exploited this IF as one of the reasons for using Equa-

tion (B.5) on page 121 is not having to compute p′(z).

Mick Farmer and George Loizou’s variable-order IF

This is based on Ehrlich’s third-order IF, Equation (5.24) on page 53.

Instead of T1(zν) we use the formula
∑

i6=ν

1

zν − [ẑi = zi − u(zi)]
to yield

the IF given by

ẑν = zν − u(zν)−




∑

i6=ν

1

zν − [ẑi = zi − u(zi)]



u2(zν) . (5.28)

We accept that purists would argue that this is not strictly a simple one-

point IF. Given that the polynomial is evaluated at different, and updated,

values of zi at a lower level means it is strictly an example of a Multipoint

IF, see §5.6.2 starting on page 64.

This replacement can obviously be taken to higher levels, but we have not done

so in this thesis. However, see §9.2, starting on page 104, for details of our

plans.

5.4 Multiple Zeros

In [FL75] we derived a class of IFs for improving the zeros of a polynomial with

only simple zeros. In a later paper [FL77] we extended those results to multiple

zeros in the context of a globally convergent algorithm.

Algorithm 5.2. This algorithm consists of the following three steps.

1. Find an inclusion region of the complex plane containing all the zeros of

the polynomial. This is Equation (3.1) on page 14.
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2. Apply a slowly convergent search algorithm to obtain initial approxima-

tions to the zeros and to compute their multiplicities. This is described in

Section §5.2 starting on page 43.

3. Improve these approximations with a rapidly convergent IF to any required

accuracy. This is described below.

Let p(z) be defined as in Equation (2.3) on page 6. Then the function P (zν)

defined by

P (zν) = p
1

mν (zν) (5.29)

has a simple zero corresponding to an mν-tuple zero of p(z). The following

definitions will be used subsequently.

U(zν) =
P (zν)

P ′(zν)
= mνu(zν) , (5.30)

Bi(zν) =
P (i)(zν)

i!P ′(zν)
. (5.31)

Once again, following our approach in [FL75], we can use the Taylor series

expansion of P (αν) about zν , since P (zν) has a simple zero αν , to obtain, after

dividing both sides of the series by P ′(zν),

U(zν) =

ρ−1
∑

i=1

(−1)i−1Bi(zν)ǫ
i
ν +O(ǫρν) . (5.32)

Following the same logic as applied in §5.3, starting on page 48 for simple zeros,

Equation (5.30) on page 56 can be rearranged to obtain a different family of

IFs.

Now, as ρ increases, substitute ǫiν in Equation (5.30) on page 56 with the ap-

propriate value for powers of Λi(zν) as follows

Λ2(zν) = U(zν) ,

Λ3(zν) = U(zν) +B2(zν)Λ
2
2(zν) ,

Λ4(zν) = U(zν) +B2(zν)Λ
2
3(zν)−B3(zν)Λ

3
2(zν) ,

Λ5(zν) = U(zν) +B2(zν)Λ
2
4(zν)−B3(zν)Λ

3
3(zν) +B4(zν)Λ

4
2(zν) ,

Λ6(zν) = U(zν) +B2(zν)Λ
2
5(zν)−B3(zν)Λ

3
4(zν) +B4(zν)Λ

4
3(zν)

−B5(zν)Λ
5
2(zν) ,

(5.33)

etc. Once again, higher-order powers of U(z) than those required for the IFs

are removed. Then the IF

Rρ = zν − Λρ(zν) (5.34)
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is of order ρ. As mentioned in [FL77, pp. 428–429], some members of this class

of IFs are well known when only simple zeros are present, see §5.3, starting on

page 48, for these.

Equation (5.13) on page 50 through Equation (5.16) on page 51 are identi-

cal except that U(zν) replaces u(z) and Bi(zν) replaces Ai(z). In order to

express these IFs in terms of u(zν) and Ai(zν), we successively differentiate

Equation (5.29) on page 56 to obtain the following set of equations.

B2(zν) = − mν − 1

2!mνu(zν)
+A2(zν) ,

B3(zν) =
(mν − 1)(2mν − 1)

3!m2
νu

2(zν)
− mν − 1

mνu(zν)
A2(zν) +A3(zν) ,

B4(zν) = − (mν − 1)(2mν − 1)(3mν − 1)

4!m3
νu

3(zν)

+
(mν − 1)(2mν − 1)

2!m2
νu

2(zν)
A2(zν)

− (mν − 1)

mνu(zν)

[
A2

2(zν)

2!
+A3(zν)

]

+A4(zν) ,

B5(zν) =
(mν − 1)(2mν − 1)(3mν − 1)(4mν − 1)

5!m4
νu

4(zν)

− (mν − 1)(2mν − 1)(3mν − 1)

3!m3
νu

3(zν)
A2(zν)

+
(mν − 1)(2mν − 1)

2!m2
νu

2(zν)

[
A2

2(zν) +A3(zν)
]

− (mν − 1)

mνu(zν)
[A2(zν)A3(zν) +A4(zν)] +A5(zν) ,

(5.35)

etc. which gives us another class of IFs dependent explicitly on mν , the mul-

tiplicity of the zero αν . Note that these equations have been verified using a

Matlab program, see §C.6.1 on page 190.

5.4.1 A Class of One-point IFs for Multiple Zeros

The first four members of this class are given below. Again, they are displayed

in polynomial format.

Louis Rall’s second-order modified Newton IF [Ral66]

ẑν = zν −mνu(zν) (5.36)

Joseph Traub’s third-order IF [Tra64, p. 139]
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ẑν = zν +mν

(
mν − 3

2

)

u(zν)−m2
νA2(zν)u

2(zν) , (5.37)

which might be better known in its rational format as Ljiljana Petković,

Miodrag Petković, and Dragan Živković have demonstrated that this fam-

ily is actually a form of Laguerre’s method [PPŽ03, pp. 111–112]. For

further information about Laguerre’s method, especially in the case of

real zeros, we recommend Alston Householder’s description in [Hou70,

pp.176–179].

Joseph Traub’s fourth-order IF [Tra64, p. 139]

ẑν = zν −mν

(
m2

ν − 6mν + 11

6

)

u(zν)

+m2
ν(mν − 2)A2(zν)u

2(zν)

−m3
ν [2A

2
2(zν)−A3(zν)]u

3(zν)

, (5.38)

which he originally defined in a variation of the polynomial form and we

refer to as the Horner form after the well-known Horner’s rule for efficient

evaluation of a polynomial [Hou70, pp. 3–4].

Joseph Traub’s fifth-order IF [Tra64, p. 139]

ẑν = zν +mν

(
m3

ν − 10m2
ν + 35mν − 50

24

)

u(zν)

−m2
ν

(
7m2

ν − 30mν + 35

12

)

A2(zν)u
2(zν)

+m3
ν

(
3mν − 5

2

)

[2A2
2(zν)−A3(zν)]u

3(zν)

−m4
ν [5A

3
2(zν)− 5A2(zν)A3(zν) +A4(zν)]u

4(zν)

, (5.39)

which he originally defined in Horner form.

5.4.2 A Class of Simultaneous IFs for Multiple Zeros

From Equation (5.30) on page 56 and Equation (2.11) on page 7 we have

U(zν) = ǫν [1−B2(zν)ǫν +B3(zν)ǫ
2
ν − . . . ] , (5.40)
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and since
U(zν) =

mν
∑

i

mi

zν − αi

,

=
ǫν

1 +
ǫν
mν

S1(zν)
,

(5.41)

we obtain

1 +
ǫν
mν

S1(zν) = [1−B2(zν)ǫν +B3(zν)ǫ
2
ν − . . . ]−1 , (5.42)

yielding the first-order approximation

1

mν

S1(zν) = B2(zν) +O(ǫν) . (5.43)

Noting that

S′
k(zν) = −kSk+1(zν) , (5.44)

we can successively differentiate Equation (5.42) on page 59, using the following

B′
i(zν) = (i+ 1)Bi+1(zν)− 2B2(zν)Bi(zν) , (5.45)

to obtain the following sequence of first-order approximations to Sk(zν).

1

mν

S1(zν) = B2(zν) +O(ǫν) ,

1

mν

S2(zν) = B2
2(zν)− 2B3(zν) +O(ǫν) ,

1

mν

S3(zν) = B3
2(zν)− 3B2(zν)B3(zν) + 3B4(zν) +O(ǫν) ,

1

mν

S4(zν) = B4
2(zν)− 4B3

2(zν)B3(zν) + 2B2
3(zν) + 4B2(zν)B4(zν)

− 4B5(zν) +O(ǫν) ,

(5.46)

etc. From Equation (2.11) and Equation (2.13) on page 7 we have

Sk(zν) = Tk(zν) +O(ǫν) , (5.47)
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to yield the following sequence of first-order approximations to Tk(zν) which are

used subsequently,

1

mν

T1(zν) = B2(zν) +O(ǫν) ,

1

mν

T2(zν) = B2
2(zν)− 2B3(zν) +O(ǫν) ,

1

mν

T3(zν) = B3
2(zν)− 3B2(zν)B3(zν) + 3B4(zν) +O(ǫν) ,

1

mν

T4(zν) = B4
2(zν)− 4B3

2(zν)B3(zν) + 2B2
3(zν) + 4B2(zν)B4(zν)

− 4B5(zν) +O(ǫν) .

(5.48)

ReplacingBρ−1(z) inRρ by the order-preserving approximation involving Tρ−2(z)

we generate a class of IFs using simultaneous approximations to all the zeros.

Using Equation (5.35) we obtain a class of IFs, dependent explicitly on mν ,

ν = 1, 2, . . . , N . The first three members are given below.

Second-order IF

Once again, we know of no polynomial form for the second-order IF. The

rational form, derived by Louis Rall, is Equation (B.9) on page 122.

Mick Farmer and George Loizou’s third-order IF

ẑν = zν −mνu(zν)−mνT1(zν)u
2(zν) . (5.49)

The rational form, derived by Louis Ehrlich, is Equation (B.15) on page 123.

Mick Farmer and George Loizou’s fourth-order IF

ẑν = zν − mν

8
[3m2

ν − 10mν + 15]u(zν)

+
m2

ν

2
[3mν − 5]A2(zν)u

2(zν)

− m2
ν

2
[3mνA

2
2(zν) + T2(zν)]u

3(zν)

. (5.50)

The rational form is Equation (B.16) on page 124.

Mick Farmer and George Loizou’s fifth-order IF
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ẑν = zν − mν

12
[m3

ν + 3m2
ν − 17mν + 25]u(zν)

− m2
ν

6
[m2

ν − 12mν + 17]A2(zν)u
2(zν)

+m3
ν{mν [3A

2
2(zν)− 2A3(zν)]− 5A2

2(zν) + 3A3(zν)}u3(zν)

+
3m3

ν

4
{4mν [−4A3

2(zν) + 3A2(zν)A3(zν)]− T3(zν)}u4(zν)

.

(5.51)

The rational form is Equation (B.17) on page 124.

Following the same reasoning applied to our simultaneous IFs for simple zeros

at the end of section §5.3.2, starting on page 51, the above class of IFs are

computed in parallel. Convergence can be improved by computing the zeros

in a serial way, i.e. using the new approximations immediately they become

available. As an example, the third-order IF given in Equation (5.49) on page 60

is re-written as

ẑν = zν −mνu(zν)−mν

[
∑

i<ν

mi

zν − ẑi
+
∑

i>ν

mi

zν − zi

]

u2(zν) . (5.52)

The formal term for the study of this technique is calledR-order convergence.

This has already been mentioned in the work of Miodrag Petković, starting with

Equation (4.23) on page 32, and will be alluded to again in a section of our

chapter on further work, namely §9.4 starting on page 105.

5.4.3 A Class of Variable-order IFs for Multiple Zeros

This is the multiple version of our variable-order IF presented in Equation (5.28)

on page 55.

ẑν = zν −mνu(zν)−mν




∑

i6=ν

mi

zν − [ẑi = zi −miu(zi)]



u2(zν) . (5.53)

See §5.3.3 starting on page 54 and §5.6.2 starting on page 64 for arguments that

this is a Multipoint IF.

5.5 The Algorithms

Figure 5.5 shows the control and data flows between the different components

of our algorithms. A solid arrow indictates control flow and a dashed arrow
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indicates data flow. Further details concerning the individual algorithms follow.

Data

Data

Data

Search

Iterate

Polynomial coefficients

Polynomial coefficients

Zeros!

Approximations

and approximations

Figure 5.5: Flow Diagram

The algorithms generate standard output so their progress can be monitored on

the computer terminal.

5.5.1 Stage 1 – Search

This search stage locates initial approximations to the zeros of p(z) together

with their multiplicities. To help the reader relate this to the C code, actual

variable and constant names are emboldened.

Algorithm 5.3. This algoritm consists of five steps.

1. Use Dirk Dekker’s Equation (3.1) in §3.2 on page 14 to locate a circle

containing all the zeros of myp(z).

2. Locate the smallest square containing the above circle as illustrated in Fig-

ure 3.1 in §3.2 on page 14. This is our initial inclusion region.

3. For iter1 = 1, 2, . . . , max1

(a) For iter2 = 1, 2, . . . , max2
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i. Cover each inclusion region (square) with sides× sides smaller

squares.

ii. Use Morris Marden’s Theorem 3.6 in §3.10 on page 20 to de-

termine the number of zeros in the circle enclosing each smaller

square. Retain only those squares containing zeros, each of ra-

dius oldrad.

(b) For each retained square, cover with a larger square of radius newrad.

Drop adjacent smaller squares or nearby smaller squares covered within

this new radius.

(c) For each of these larger squares, compare the Morris Marden zero

count, Theorem 3.6 in §3.10 on page 20 with Jean-Louis Lagouanelle’s

Equation (3.5) in §3.8 on page 17 for the limit of the multiplicity, and

note if they agree.

4. When we complete the above loop we check that our two tests agreed on

the multiplicities. If we could not agree on the multiplicities of the approx-

imations then the search stage has failed.

5. Otherwise, the approximations to the zeros and their multiplicities agree,

so move on to the iterative stage.

5.5.2 Stage 2 – Iterate

This iterative stage uses our IFs to improve the approximations to the zeros of

p(z). Each of the IFs described in §5.4, starting on page 55, is a parameter to

the following algorithm. Once again, C program variable and constant names

are emboldened.

Algorithm 5.4. This algorithm consists of a single loop containing two steps.

The first step contains a further two steps.

For iter = 1 , 2, . . . , MAX ITER do

1. For each approximation zν

(a) Compute a better new approximation ẑν from the old approximations

zi, i = 1, 2, . . . , ZEROS(z).

(b) Compute whether the new approximation is within the required toler-

ance.

2. Exit the above loop if all new approximations are within the required tol-

erance.
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End do

5.6 Alternative Approaches

This section introduces some alternative methods for generating classes of IFs,

often with specific properties.

5.6.1 Derivative-free IFs

It is worth noting here that there is a growing interest in obtaining IFs that

are derivative-free. A good example is Kiril Dochev’s and Byrnev’s rational

second-order IF in Equation (B.5) on page 121. Other examples are found

in the paper by Sanjay Khattri and Torgrim Log [KL11] that uses a finite

difference approximation of the first derivative and a tangential approximation

of the second derivative to obtain derivative-free versions of Halley’s third-order

IF, Equation (5.14) on page 50.

A paper by Changbum Chun [Chu07] also obtains some versions of Halley’s

third-order IF, Equation (5.14) on page 50, that is free from the second deriva-

tive. It also contains references to other work in this area.

Obviously this thesis concentrates on our current research concerning only one-

point IF. However, this approach is flagged up as something worth investigating

in the future, see §9.3, starting on page 105.

5.6.2 Multipoint IFs

According to Joseph Traub [Tra64, pp. 11–13] the informational efficiency, EFF

of an IF, is the order of the IF, i.e. ρ in our notation, divided by the informa-

tional usage of the IF, i.e. d in our case, namely the number of new polynomial

and derivative evaluations required per iteration. Thus

EFF =
ρ

d
. (5.54)

In addition, he also proves that EFF ≤ 1 for one-point IFs. This leads him to

define a one-point IF as optimal if its EFF = 1.

Multipoint IFs, as the name implies, are IFs that evaluate polynomials and their

derivatives at more than one point. This can produce an IF with an EFF ≥ 1.
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Joseph Traub [Tra64, pp.158–208] devotes two whole chapters to a thorough

discussion of multipoint IFs.

Our own variable-order IFs, described in §5.3.3 starting on page 54 (simple) and

§5.4.3 starting on page 61 (multiple), are complex examples of multipoint IFs.

5.7 Computational Complexity

REMARK 6. Lai point 3. Winkler point 7.

It is possible at this point to ask which of the various IFs is the most efficient

in computational terms. This is often measured as the number of floating point

operations, aka FLOPS, required.

Since all the IFs presented here have been written in C using the GMP pack-

age [Gra11], it is easier to count the number of calls to the real arithmetic

functions provided by GMP, i.e. addition, subtraction, multiplication, division

and square root. Table 5.1 provides the results for our third-order IFs together

with our new variable-order IF.

IF GMP Real Operations
ehrlich3 34n+ 22
farmer3 34n+ 29
hansen3 32n+ 31
traub3 32n+ 25
farmerv N(16n+ 35) + 16n+ 29

Table 5.1: Computational Complexity

In Table 5.1, N is the number of distinct zeros of the polynomial and n is the

degree of the polynomial. The expressions in the right-hand column are the

number of operations required per approximation per iteration. Thus hansen3

and traub3 are slightly more efficient than ehrlich3 and farmer3. In addition

traub3 is slighlty less complex than hansen3.

In contrast, our variable-order IF farmerv requires more operations per iter-

ation as it computes N applications of newton2 for each approximation, but

obviously converges faster as the number of approximations increases.
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Chapter 6

Database of Test

Polynomials

This chapter lists the polynomials we have used to test our algorithms. Where

the original (or other given) source is known, then this is acknowledged. If the

zeros are known, then each polynomial is expressed as a product of factors.

The degrees of the polynomials vary from two (some simple tests) to 400 in

order to provide a wide range of test material. Additionally, the multiplicites

of the zeros vary from one (simple zeros) to 40 (see polynomial 164a in §6.3,
starting on page 68) for further details.

Unfortunately, we have gleaned many polynomials over the years from other

works where we have not recorded the reference. These polynomials are in the

unattributed section, §6.28, starting on page 78.

Each polynomial has a unique identifier consisting of a three-digit number

(the degree of the polynomial) followed by a single disambiguating letter. In

this chapter the polynomials are grouped by original author(s) (where known).

Where appropriate, a second identifier in parentheses is an identifier taken from

the original paper. For example, see Dario Bini’s polynomials [BF00b, pp. 11–

15], Zhonggang Zeng’s polynomials [Zen04, pp. 232–235], etc., from which some

of this list has been compiled. Some form of further reference may follow which

specifies the original source where known, e.g. an explicit reference.

Table 6.1 on page 82 can be consulted to locate individual polynomials by degree.

Many researchers have described, what we would call derived, versions of James

Wilkinson’s famous polynomial, see §6.29 on page 80, but they all describe poly-
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nomials with positive real zeros, whereas James Wilkinson’s example actually

has negative real zeros [Wil59a, p. 152]. However, we do not consider that this

makes any difference to any analysis of the above-mentioned polynomial.

6.1 Oliver Aberth

This polynomial can be found in [Abe73, p. 342].

005a

(z − 1± 2i)(z − 2)(z − 3± i)

6.2 Milton Abramowitz and Irene Stegun

These are the Laguerre polynomials. They can be found in many publications,

including [AS70, pp. 799–780]. The coefficients of these polynomials were gen-

erated using the recurrence relation given in [AS70, p. 783].

005g Degree 5

z5 − 25z4 + 200z3 − 600z2 + 600z − 120

010j Degree 10

z10 − 100z9 + 4050z8 − 86400z7 + 1058400z6 − 7620480z5 + 3175200z4 −
72576000z3 + 81648000z2 − 36288000z + 3628800

The following polynomials are long and have large magnitude coefficients. They

are not listed explicitly to prevent padding this thesis with rows of random

integers. They were generated using the above-mentioned recurrence relation

in order to retain the full accuracy of the integer coefficients. This program is

listed in §C.4.4 on page 180.

020k Degree 20

030e Degree 30

050c Degree 50

100c Degree 100
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150b Degree 150

Note that, in the past, we used to compute the zeros of low-degree Laguerre

polynomials (up to degree 20) by providing lower and upper bounds to their

zeros as described in [FL73] and [FL85a].

6.3 Dario Bini and Giuseppe Fiorentino

These polynomials can be found in [BF00b, pp. 11–15].

003r (what would be spiral3)

(z + 1)(z + 1 + a)(z + 1 + a+ a2), a = i/1000

See Table 2.1 on page 5 for the semantics of i.

007k (kam1 1)

(z − 3 · 10−12)2 + 10−6iz7

007l (what would be mandel7)

(z+1.9408)(z+1.3107)(z+1)(z+0.15652±1.0322i)(z−0.28227±0.53006)

009h (kam2 1)

(c2z2 − 3)2 + ic2z9, c = 106

010l (geom1 10)

(z + 1)(z + a)(z + a2) . . . (z + a9), a = 100i

010m (spiral10)

(z+1)(z+1+a)(z+1+a+a2) . . . (z+1+a+a2+ . . .+a9), a = i/1000

014c (kam4)

z14 + 2 · 1024z11 + 1048z8 + 4z7 − 4 · 1024z4 + 4

020o (lar1)

z20 + 10300z14 + z5 + 1

031a (mandel31)

This polynomial was constructed using the recurrence relation found in [BF00b,

p. 5]. For instance, the Mandelbrot polynomial pk(z) of degree n = 2k − 1

is defined as

p0(z) = 1

pi(z) = z[p2i−1(z)] + 1 , i = 1, 2, . . . , k ,
(6.1)

68



where the program to generate these polynomials is listed in §C.4.5 on

page 182.

040b (wilk40)

(z − 1)(z − 2) . . . (z − 40)

044b (kir1 10)

(z4 − 1
16 )

n[z4 − ( 12 + ǫ)4], n = 10, ǫ = 1
4096

050e (nroots50)

z50 − 1

052a (lsr4 1)

(z50 + 1)(z2 + az +
1

a
), a = 1010

100e (easy100)
100∑

j=0

(1 + j)zj

164a (kir1 40)

(z4 − 1
16 )

n[z4 − ( 12 + ǫ)4], n = 40, ǫ = 1
4096

200a (easy200)
200∑

j=0

(1 + j)zj

400a (easy400)
400∑

j=0

(1 + j)zj

6.4 Luigi Brugnano and Donato Trigiante

These polynomials can be found in [BT95, pp. 218–219].

014b (bt02)

(z − 1)10(z − 2)2(z ± i)

015f (bt01)

(z − 1)6(z + 1)2(z ± i)3(z − 2)

017b (bt04)

(z − 1)3(z + 1)4(z − 0.5± i)3(z − 0.5± 0.5i)2

020i (bt03)

(z2 + 1)5(z ± 0.5i)4(z ± 0.75i)
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6.5 Donna Dunaway

These polynomials can be found in [Dun74, pp. 1100–1102].

005t

(z + 1)(z − 1.50016± 3.57064)2

012b

(z6 − 26)(z + 2)(z2 + 32)(z − 1)3

012c

(z − 0.39)4(z − 0.4)4(z + 0.2)4

015h

(z − 1)3(z2 − 2)5(z − 3)2

016d

(z ± 1.7)4(z ± 1.3)4

020e Scaled version of Wilkinson’s polynomial, §6.29 on page 80. To quote

from Donna’s paper, concerning this scaling.

“This in effect squeezes together the extreme coefficients of p(z),

but ignores the behaviour of the rest.”

0.1e1z20 − 0.2528791827178865e2z19 + 0.2989309677751350e3z18

− 0.2194647643162539e4z17 + 0.1121321100419947e5z16

− 0.4234265940941486e5z15 + 0.1224852215667365e6z14

− 0.2776145050337197e6z13 + 0.5000616127424668e6z12

− 0.7218655094001482e6z11 + 0.8382839890616433e6z10

− 0.7830113839688772e6z9 + 0.5859739597035374e6z8

− 0.3485340815756295e6z7 + 0.1626647723686615e6z6

− 0.5843954115543346e5z5 + 0.1571225021217127e5z4

− 0.3029732648207197e4z3 + 0.3912780748756267e3z2

− 0.2987694968616923e2z + 0.1000000706626232e1

So this scaling reduces the maximum magnitude of the coefficients from

1020, see those coefficients in Equation (7.1) on page 96, to 106.

6.6 Josef Dvorc̆uk

These polynomials can be found in [Dvo69, pp. 78–79].

010a Table 2

(z − 1)4(z − 2)3(z − 3)2(z − 4)
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020b Table 1. This polynomial is also discussed in depth by Joseph Traub [Tra64,

pp. 272–275].

z20 − 1

6.7 Eulerian Polynomials

These were originally proposed by Leonhard Euler. Their properties are dis-

cussed in many publications, including [MW08, p. 1]. The program to generate

the coefficients of these polynomial is listed in §C.4.1 starting on page 176.

005u

z5 + 26z4 + 66z3 + 26z2 + z + 0

010k

z10+1010z9+47840z8+455192z7+1310354z6+1310354z5+455192z4+

47840z3 + 1010z2 + z + 0

020l

Degree is 20.

050d

Degree is 50.

100d

Degree is 100.

6.8 Mick Farmer and George Loizou

These polynomials are modifications of some of our original test polynomi-

als [FL75, p. 254].

020g (fl02), k = 2

(z − 1)4k(z − 2)3k(z − 3)2k(z − 4)k

030b (fl03), k = 3

(z − 1)4k(z − 2)3k(z − 3)2k(z − 4)k

6.9 Irene Gargantini and Peter Henrici

This polynomial is Equation (4.13) in [GH72, p. 314].
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008a

z8 + 2.9742z7 − 6.7676z6 + 6.2608z5 − 54.215z4 − 97.167z3 + 7.008z2 +

7.713z − 15.806

6.10 Gerald Garside et al.

This polynomial can be found in [GJM68, p. 90].

016a

(z + 1
2 ±

√
7
2 )4(z + 1

2 ±
√
11
2 )4

6.11 Stefan Goedecker

These are the so-called Fibonacci polynomials, zn − zn−1 − · · · − 1, found

in [Goe94, p. 1061].

005q (fib05) n = 5

z5 − z4 − z3 − z2 − z − 1

010i (fib10) n = 10

020j (fib20) n = 20

030d (fib30) n = 30

050b (fib50) n = 50

100b (fib100) n = 100

150a (fib150) n = 150

6.12 Stef Graillat et al.

This polynomial can be found in [GLL09, p. 193].
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016f

(0.75− z)5(1− z)11

6.13 Eldon Hansen and Merrell Patrick

This polynomial can be found in [HP77, p. 266].

006e

(z + 6)(z − 2)(z − 1± i)(z − 3± 4i)

6.14 M Igarashi and T Ypma

These polynomials can be found in [IY95, p. 104].

003n (igyp00)

(z − 2.35)(z − 2.37)(z − 2.39)

004r (igyp01)

(z − 2.35)3(z − 2.56)

This polynomial can be found in [IY95, p. 106].

010h (igyp02a) m = 8

(z − 10− 10i)m(z + 1)10−m

6.15 Anton Iliev

These polynomials can be found in [Ili00].

006o (iliev00)

(z − 1)(z + 2)2(z − 3)3

012d (iliev01)

(z − 1)2(z − 2)4(z − 3)6

024b (iliev02)

(z − 1)4(z − 2)8(z − 3)12

048a (iliev03)

(z − 1)8(z − 2)16(z − 3)24
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6.16 Misako Ishiguro

These polynomials can be found in [Ish72, p. 49].

003g

(z + 1)3

004l

(z2 − z + 1)2

004m

(z2 + z + 1)2

004o

(z2 + 2)2

005f

(z − 1)2(z + 1)(z2 + 2)

006g

(z2 + 1)2(z2 + 2)

006h

(z − 2)(z + 2)(z2 + 2)2

007e

z2(z − 1)(z2 + z + 1)2

008d

(z2 + z + 1)2(z2 − z + 1)2

008e

(z2 + 2)2(z2 − z + 1)(z2 + 1)

008f

(z2 + 2)3(z2 − z + 1)

6.17 Michael Jenkins and Joseph Traub

These polynomials can be found in [JT75].

003l (jt01a), a = 1010

(z ± a)(z − 1)

003m (jt01b), a = 10−10

(z ± a)(z − 1)
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003o (jt10a), a = 103

(z − a)2(z − 1
a
)

003 (jt10b), a = 106

(z − a)2(z − 1
a
)

003q (jt10c), a = 109

(z − a)2(z − 1
a
)

005m (jt03)

(z − 0.1)(z − 0.001)(z − 0.00001)(z − 0.0000001)(z − 0.000000001)

005n (jt06)

(z − 0.1)(z − 1.001)(z − 0.998)(z − 1.00002)(z − 0.99999)

005r (jt08)

(z + 1)5

006n (jt04)

(z − 0.1)3(z − 0.5)(z − 0.6)(z − 0.7)

007h (jt07a), a = 10−10

(z − 0.001)(z − 0.01)(z − 0.1)(z − 0.1± ai)(z − 1)(z − 10)

007i (jt07b), a = 10−9

(z − 0.001)(z − 0.01)(z − 0.1)(z − 0.1± ai)(z − 1)(z − 10)

007j (jt07d), a = 10−7

(z − 0.001)(z − 0.01)(z − 0.1)(z − 0.1± ai)(z − 1)(z − 10)

010f (jt05)

(z − 0.1)4(z − 0.2)3(z − 0.3)2(z − 0.4)

017a (jt02)

(z − 1)(z − 2) . . . (z − 17)

6.18 Bin Li et al.

These polynomials can be found in [LNZ08, p. 203].

004s

(z − 0.3)(z + 4.6)(z − 1.45)(z + 10)

006q

(z − 0.301)(z + 4.592)(z − 1.458)(z − 0.6)(z − 15)(z + 2)
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6.19 Shi-Mei Ma and Yi Wang

These are the Eulerian polynomials introduced in [MW08, pp. 1–2]. They have

only real zeros.

6.20 Fadi Malek and Rémi Vaillancourt

This polynomial can be found in [MV95, p. 9]. It is also presented in [JT75,

p. 30].

020n

(z10 − 10−20)(z10 − 1020)

6.21 Taketomo Mitsui

This polynomial can be found in [Mit83, p. 252].

005h

(z − 1)(z + 1±
√
7i)2

6.22 Tsuyako Miyakoda

This polynomial can be found in [Miy93, p. 363].

016e

(z2 + z + 1)4(z2 + z + 3)4

6.23 Miodrag Petković et al.

The following polynomials can be found in [PM06, p. 314].

009d Example 2.

(z + 3)(z ± 1)(z ± 2i)(z ± 2± i)

The following polynomial is also found in the earlier [SP82, p. 11].

010e Example 1

(z ± 1± 2i)(z ± 2)(z ± i)(z − 3± 2i)

The following polynomials can be found in [Pet89, pp. 93–123].
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008h (henrici), Example 6, p. 123

(z+4.1)(z+3.8)(z+2.05)(z+1.85)(z− 1.95)(z− 2.15)(z− 3.9)(z− 4.05)

009f (petk02), Example 3, p. 215

(z ± 5i)2(z − 1)2(z + i)3

013c (petk01), Example 4, p. 109

(z + 1)2(z − 3)3(z2 − 2z + 5)2(z + i)4

The following polynomial can be found in [PM12, p. 78]

013d

(z + 1)2(z − 1± i)2(z ± i)2(z − 2)3

The following polynomial can be found in [Pet82, p. 629].

015d

(z − 3)((z + 1)3(z2 + 4z + 5)2(z2 − 4z + 5)2

The following polynomial can be found in [PRM12, p. 508].

018c

(z ± 1± 2i)(z ± 2)(z ± i)(z ± 3± 2i)(z ± 2± 3i)(z ± 3i)

The following polynomial can be found in [PM12, p. 79]

018d

(z + 1)2(z + 2)3(z − 1± i)2(z ± i)2(z − 2)3(z + 2− i)2

The following polynomials can be found in [PRM12, p. 509].

019b

(z ± 1± 2i)(z ± 2)(z ± i)(z ± 3± 2i)(z ± 2± 3i)(z ± 3i)(z − 3)

020m

(z − 4)(z + 1)(z ± 2)(z ± 2i)(z ± 3i)(z + 1± 2i)(z ± 1± i)

(z − 2± i)(z − 1± 3i)(z ± 4i)

6.24 Tomaso Pomentale

This polynomial can be found in [Pom71, p. 201].

005b

(z + 2.09868 + 0.455i)(z − 2)2(z − 1)(z − 0.09868− 0.455i)
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6.25 Marica Pres̆ić

This polynomial can be found in [Pre73, p. 303].

007d

(z + 3)(z + 1)(z − 2)(z − 7
3 )(z − 3)(z − 7)(z − 7.5)

6.26 Li Shengguo et al.

This polynomial can be found in [SXL09, p. 1291].

009g

(z3 + 4z2 − 10)3

6.27 Frank Uhlig

These polynomials can be found in [Uhl99].

005o (uhlig01), a = 0.01

(z − a4)(z − a)4

005 (uhlig02), a = 0.001

(z − a4)(z − a)4

008i (uhlig05)

(z + 1)6(z + 2)2

6.28 Unattributed

These polynomials from our database either have no known origin or (more

likely) that origin has been lost in the mists of time. Note that there is little

point in listing a polynomial of high degree, i.e. just the coefficients, where the

zeros are unknown. Therefore, a great many entries have not been included.

This is indicated by ellipses (. . . ).

002a

(z − 1)(z + 1)

002b

(z − 2)(z − 3)
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002c

(z − 2i)(z − 3i)

002d

iz2 − 5iz + 6i

003a

(z − 1)(z + 1
2 ±

√
3
2 i)

003b

z3 + 3z + 1

003c

(z − 1.0001)(z + 1)(z + 1.0005)

003d

(z − 1.00006)(z − 1)2

003e

z3 − 3z + 1

003f

(z + 2)(z + 3)2

003h

(z − 1)(z − 2)2

003i

(z + 1)(z ± a), a = 1.0001

003j

z3 − z2 + 2z + 5

003k

(z − 1)(z + 1)2

004a

(z ± 1)(z ± i)

004b

(z − 1± i)(z − 3± 4i)

004c

(z − 1)(z + 2)(z + 3)2

004d

(z − 3)(z − 2)2(z + 1)

79



004e

(z − 2)3(z + 1)

004f

(z − 2)4

REMARK 7. Polynomials removed. Winkler point 9.

. . .

008g

The eight zeros of unity.

(z ± 1)(z ± i)(z ± 0.707107± 0.707107i)

REMARK 8. Polynomials removed. Winkler point 9.

. . .

030a

Almost a Fibonacci polynomial, except for the −2z term, but we have no

further information.

z30 − z29 − z28 − · · · − z2 − 2z − 1

REMARK 9. Polynomials removed. Winkler point 9.

. . .

6.29 James Wilkinson

016g (Equation (59))

2.03253121z16+3.4356048z15+25.1783048z14+37.651096z13+128.218748z12

+166.44768z11+345.07256z10+378.908z9+524.327z8+468.88z7+443.576z6

+ 304.08z5 + 190.68z4 + 89.6z3 + 32.8z2 + 8z + 1

This polynomial is described in [Wil59b, p. 169], but was originally de-

scribed by Frank Olver in [Olv52].

020d (Equation (10))

(z + 1)(z + 2) . . . (z + 20)

This famous polynomial was first described in [Wil59a, p. 152].

6.30 Joab Winkler et al.

This polynomial can be found in [Win11, p. 9].
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008j

(z − 1)5(z − 0.6)3

These polynomials can be found in [WLH12, pp. 3491–3495].

028a (Example 11.2)

(z + 0.5926)11(z − 2.676)8(z − 0.629)5(z + 9.7181)4

028b (Example 11.4)

(z − 1.7054)6(z + 3.1923)5(z + 6.7478)5(z − 9.1949)4

(z + 0.032719)4(z − 3.102)2(z + 7.62)2

029a (Example 11.1)

(z + 7.5947)6(z − 0.63371)5(z − 1.4923)5(z − 5.4862)4

(z + 3.3076)3(z + 3.067)2(z − 0.42244)2(z − 2.509)2

035a (Example 11.3)

(z + 9.6084)13(z − 3.6683)7(z + 2.1059)6

(z − 4.0809)5(z + 1.1539)4

038a

(z + 0.67547)4(z − 5.7335)6(z − 2.1747)7

(z + 9.5568)10(z + 6.5553)11

6.31 Zhonggang Zeng

This polynomial can be found in [Zen04, p. 219].

010g

(z − 1)5(z − 2)3(z − 3)2

These polynomials can be found in [Zen04, pp. 224–227].

012c (twin01), k = 4

(z − 0.39)k(z − 0.4)k(z + 0.2)k

This polynomial was originally given by Donna Dunaway, see §6.5 on page 70.

015e (triple01), (m, n, k) = (5, 5, 5)

(z − 0.9)m(z − 1)n(z − 1.1)k

015g (fib15)

The Fibonacci polynomial of degree 15, see §6.11 on page 72 for details.

020h (large01)

(z − 1)(z − 1.2)(z + 1± 0.3i)(z ± 0.9± 0.4i)(z + 0.7± 0.7i)

(z ± 0.4± 0.9i)(z ± 1.1i)(z − 0.6± 0.6i)(z ± 0.8i)
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024a (twin02), k = 8

(z − 0.39)k(z − 0.4)k(z + 0.2)k

030c (triple02), (m, n, k) = (10, 10, 10)

(z − 0.9)m(z − 1)n(z − 1.1)k

036b (twin03), k = 12

(z − 0.39)k(z − 0.4)k(z + 0.2)k

040a (large02)

The square of 020h.

050a (fl05)

(z − 1)20(z − 2)15(z − 3)10(z − 45)

060a (near01), ǫ = 0.1

(z − 1− ǫ)20(z − 1)20(z + 0.5)20

060b

The sixth power of 010g

(z − 1)30(z − 2)18(z − 3)12

080a (large03)

The square of 040a.

The following Table 6.1 provides a quick cross-reference to our polynomials and

the sections in which they are described.

6.32 Table of Polynomials by Degree

Polynomial Section

002a §6.28
002b §6.28
002c §6.28
002d §6.28
003a §6.28
003b §6.28
003c §6.28
003d §6.28
003e §6.28
003f §6.28
003g §6.16

Continued on next page
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Polynomial Section

003h §6.28
003i §6.28
003j §6.28
003k §6.28
003l §6.17
003m §6.17
003n §6.14
003o §6.17
003 §6.17
003q §6.17
003r §6.3
004a §6.28
004b §6.28
004c §6.28
004d §6.28
004e §6.28
004f §6.28
004l §6.16
004m §6.16
004o §6.16
004r §6.14
004s §6.18
005a §6.1
005b §6.24
005f §6.16
005g §6.2
005h §6.21
005m §6.17
005n §6.17
005o §6.27
005 §6.27
005q §6.11
005r §6.17
005t §6.5
005u §6.7
006e §6.13
006g §6.16
006h §6.16

Continued on next page
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Polynomial Section

006n §6.17
006o §6.15
006q §6.18
007d §6.25
007e §6.16
007h §6.17
007i §6.17
007j §6.17
007k §6.3
007l §6.3
008a §6.9
008d §6.16
008e §6.16
008f §6.16
008g §6.28
008h §6.23
008i §6.27
008j §6.30
009d §6.23
009f §6.23
009g §6.26
009h §6.3
010a §6.6
010e §6.23
010f §6.17
010g §6.31
010h §6.14
010i §6.11
010j §6.2
010k §6.7
010l §6.3
010m §6.3
012b §6.5
012c §6.5
012d §6.15
013c §6.23
013d §6.23
014b §6.4

Continued on next page
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Polynomial Section

014c §6.3
015d §6.23
015e §6.31
015f §6.4
015g §6.31
015h §6.5
016a §6.10
016d §6.5
016e §6.22
016f §6.12
017a §6.28
017b §6.17
018c §6.23
018d §6.23
019b §6.23
020b §6.6
020d §6.29
020e §6.5
020g §6.8
020h §6.31
020i §6.4
020j §6.11
020k §6.2
020l §6.7
020m §6.23
020n §6.20
020o §6.3
024a §6.31
024b §6.15
028a §6.30
028b §6.30
029a §6.30
030a §6.28
030b §6.8
030c §6.31
030d §6.11
030e §6.2
031a §6.3

Continued on next page

85



Polynomial Section

035a §6.30
036b §6.31
038a §6.30
040a §6.31
040b §6.3
044b §6.3
048a §6.15
050a §6.31
050b §6.11
050c §6.2
050d §6.7
050e §6.3
052a §6.3
060a §6.31
060b §6.31
080a §6.31
100b §6.11
100c §6.2
100d §6.7
100e §6.3
150a §6.11
150b §6.2
164a §6.3
200a §6.3
400a §6.3

Table 6.1: Cross-reference of Polynomials

REMARK 10. Unattributed polynomials about which we no information have

been removed from the above. Winkler point 9.
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Chapter 7

Test Results

This chapter gives a summary of our computational results when applying the

search stage together with the IF stage. All the IFs presented in this thesis,

found in §5.4, starting on page 55, are applied to all the polynomials described

in Chapter 6, starting on page 66.

7.1 Summary of Results

REMARK 11. Split summary into explicit search and iterate stages. Winkler

point 5.

7.1.1 Search Summary

Table 7.1 on page 88 summarises those polynomials that did not complete the

search stage with the default number (8 in our case) of outer iterations.

Those polynomials taking less than the default are probably the result of earlier

tinkering with script parameters or our attempts to improve the speed of the

search stage.

Those polynomials taking more than the default are because additional itera-

tions were required to resolve clusters of zeros or close multiple zeros.

7.1.2 Iterate Summary

REMARK 12. Initial paragraph added. Winkler point 6.
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Iterations Polynomials
3 010h
4 004i 004r 006i
5 003n 005o 006j 007i 015e 048a 400a
6 009a 012a 016f 030c 036b 060a 080a
7 010c 060b
9 100c

11 005m 013a
12 007j 028b 035a 038a 150b
15 020l
16 003m 003r 005t 007h 008j 016d
32 010l
40 050d
48 009h 010m
64 007k 014c
68 100d

Table 7.1: Search Stage Iterations

This section illustrates how our IFs compare with many, comparable, IFs pre-

viously discovered. Our third-order IF takes the same number of iterations to

converge as the other third-order IFs. Furthermore, our variable-order IF is

shown to be superior, i.e. faster, to those others showcased.

Table 7.2, starting on page 89, is a summary of our IF computational results.

Each IF is identified by the person we consider was the first to derive that

IF. Rall2 is given in Equation (5.36) on page 57, Ehrlich3 is given in Equa-

tion (B.15) on page 123, Farmer3 is given by Equation (5.49) given on page 60,

Hansen3 is given in Equation (B.10) on page 122, and Farmerv is given in

Equation (5.53) on page 61. The name is followed by the notional order of

convergence.1 The IFs were run in parallel mode unless followed by (s), which

indicates the serial mode of the IF.

The search stage either succeeds (S) or fails (F) to locate suitable initial ap-

proximations to the zeros. For the different IFs the table shows the number of

iterations taken to converge or F if they failed to converge. As expected, the

number of iterations is less for IFs with a higher-order of convergence.

1Farmerv indicates our new IF where the order of convergence depends on the degree of
the polynomial.
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002a S 3 3 3 3 3 3 3 3

002b S 4 3 3 3 3 3 3 3

002c S 4 3 3 3 3 3 3 3

002d S 4 3 3 3 3 3 3 3

003a S 4 4 4 3 3 3 3 3

003b S 4 4 4 3 3 3 3 3

003c S 4 3 3 3 3 3 3 3

003d S 6 4 4 4 4 4 4 5

003e S 4 3 3 3 3 3 3 3

003f S 4 3 3 3 3 3 3 4

003g S 2 2 2 2 2 2 2 2

003h S 4 3 3 3 3 3 3 4

003i S 4 4 4 3 3 3 3 3

003j S 4 4 4 3 3 3 3 3

003k S 3 3 3 3 3 3 3 3

003l S 3 3 3 3 3 3 3 2

003m S 5 4 3 4 4 4 4 4

003n S 6 4 4 4 4 4 4 4

003o S 4 3 3 3 3 3 3 4

003p S 4 3 3 3 3 3 3 4

003q S 4 3 3 3 3 3 3 4

003r S 3 3 3 3 3 3 3 2

004a S 3 3 3 3 3 3 3 2

004b S 4 4 4 3 3 3 3 2

004c S 4 3 3 3 3 3 3 3

004d S 4 3 3 3 3 3 3 3

004e S 3 3 3 3 3 3 3 3

004f S 2 2 2 2 2 2 2 2

004g S 4 4 4 3 3 3 3 3

004h S 4 3 3 3 3 3 3 3

004i S 6 5 5 4 4 4 4 4

004j S 4 3 3 3 3 3 3 3

004k S 4 4 4 3 3 3 3 2

004l S 4 4 4 3 3 3 3 4

Continued on next page
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004m S 4 4 4 3 3 3 3 4

004n S 4 3 3 3 3 3 3 4

004o S 4 3 3 3 3 3 3 4

004p S 4 3 3 3 3 3 3 2

004q S 2 2 2 2 2 2 2 2

004r S 5 4 4 4 4 4 4 5

004s S 4 3 3 3 3 3 3 3

005a S 4 4 4 3 3 3 3 2

005b S 4 4 4 3 3 3 3 2

005c S 4 4 4 3 3 3 3 2

005d S 4 4 4 3 3 3 3 2

005e S 4 3 3 3 3 3 3 3

005f S 4 3 3 3 3 3 3 2

005g S 4 3 3 3 3 3 3 2

005h S 3 3 3 3 3 3 3 2

005i S 4 4 4 3 3 3 3 2

005j S 4 3 3 3 3 3 3 3

005k S 2 2 2 2 2 2 2 2

005l S 4 4 4 3 3 3 3 2

005m S 6 4 4 4 4 4 4 2

005n S 6 4 4 4 4 4 4 2

005o S 6 4 3 4 4 4 4 4

005p S 4 3 3 3 3 3 3 3

005q S 4 4 4 3 3 3 3 2

005r S 2 2 2 2 2 2 2 2

005s S 4 4 4 3 3 3 3 2

005t S 6 6 6 4 4 4 5 2

005u S 4 3 3 3 3 3 3 2

006a S 4 4 4 3 3 3 3 2

006b S 4 4 4 3 3 3 3 2

006c S 4 4 4 3 3 3 3 2

006d S 4 4 4 3 3 3 3 2

006e S 4 4 4 3 3 3 3 2

006f S 4 4 4 3 3 3 3 2

Continued on next page
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006g S 4 3 3 3 3 3 3 2

006h S 4 3 3 3 3 3 3 2

006i S 6 6 6 4 4 4 4 2

006j S 6 7 7 5 5 4 5 2

006k S 4 4 4 3 3 3 3 2

006l S 4 3 3 3 3 3 3 2

006m S 4 3 3 3 3 3 3 2

006n S 4 3 3 3 3 3 3 2

006o S 4 3 3 3 3 3 3 2

006p S 4 3 3 3 3 3 3 2

006q S 4 3 3 3 3 3 3 2

007a S 4 4 4 3 3 3 3 2

007b S 4 5 5 3 3 3 3 2

007c S 4 4 4 3 3 3 3 2

007d S 4 3 3 3 3 3 3 2

007e S 4 4 4 3 3 3 3 2

007f S 4 4 4 3 3 3 3 2

007g S 4 3 3 3 3 3 3 2

007h S 7 7 7 5 5 5 5 2

007i S 4 4 4 3 3 3 3 2

007j S 7 7 7 5 5 5 5 2

007k S 1 1 1 1 1 1 1 1

007l S 4 4 4 3 3 3 3 2

008a S 4 4 4 3 3 3 3 2

008b S 4 4 4 3 3 3 3 2

008c S 5 5 5 4 4 4 4 2

008d S 4 4 4 3 3 3 3 2

008e S 4 4 4 3 3 3 3 2

008f S 4 4 4 3 3 3 3 2

008g S 4 4 4 3 3 3 3 2

008h S 4 3 3 3 3 3 3 2

008i S 4 3 3 3 3 3 3 3

008j S 5 5 5 3 3 3 3 2

009a S 6 7 7 5 5 4 5 2

Continued on next page
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009b S 4 4 4 3 3 3 3 2

009c S 4 4 4 3 3 3 3 2

009d S 4 4 4 3 3 3 3 2

009e S 4 3 3 3 3 3 3 2

009f S 4 4 4 3 3 3 3 2

009g S 4 4 4 3 3 3 3 2

009h S 1 1 1 1 1 1 1 1

010a S 4 3 3 3 3 3 3 2

010b S 4 4 4 3 3 3 3 2

010c S 7 6 6 5 5 5 5 2

010d S 4 4 4 3 3 3 3 2

010e S 4 4 4 3 3 3 3 2

010f S 4 3 3 3 3 3 3 2

010g S 4 3 3 3 3 3 3 2

010h S 7 6 6 5 5 5 5 7

010i S 4 4 4 3 3 3 3 2

010j S 4 3 3 3 3 3 3 2

010k S 5 4 4 4 4 4 4 2

010l S 3 3 3 3 3 3 3 2

010m S 1 1 1 1 1 1 1 1

012a S 6 6 6 4 4 4 4 2

012b S 4 4 4 3 3 3 3 2

012c S 4 3 3 3 3 3 3 2

012d S 4 3 3 3 3 3 3 2

013a S 6 6 6 4 4 4 4 2

013b S 4 4 4 3 3 3 3 2

013c S 4 4 4 3 3 3 3 2

013d S 4 4 4 3 3 3 3 2

014a S 4 4 4 3 3 3 3 2

014b S 4 4 4 3 3 3 3 2

014c S 1 1 1 1 1 1 1 1

015a S 4 4 4 3 3 3 3 2

015b S 4 4 4 3 3 3 3 2

015c S 4 3 3 3 3 3 3 2

Continued on next page
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015d S 4 4 4 3 3 3 3 2

015e S 5 4 4 3 3 4 4 3

015f S 4 4 4 3 3 3 3 2

015g S 4 4 4 3 3 3 3 2

015h S 4 3 3 3 3 3 3 2

016a S 4 4 4 3 3 3 3 2

016b S 4 4 4 3 3 3 3 2

016c S 4 4 4 3 3 3 3 2

016d S 4 4 4 3 3 3 3 2

016e S 4 4 4 3 3 3 3 2

016f S 5 3 3 3 3 4 4 3

016g S 4 4 4 3 3 3 3 2

017a S 4 3 3 3 3 3 3 2

017b S 4 4 4 3 3 3 3 2

018a S 4 4 4 3 3 3 3 2

018b S 4 4 4 3 3 3 3 2

018c S 4 4 4 3 3 3 3 2

018d S 4 4 4 3 3 3 3 2

019a S 4 4 4 3 3 3 3 2

019b S 4 4 4 3 3 3 3 2

020a S 4 4 4 3 3 3 3 2

020b S 4 4 4 3 3 3 3 2

020c S 4 4 4 3 3 3 3 2

020d S 4 3 3 3 3 3 3 2

020e S 4 3 3 3 3 3 3 2

020f S 4 4 4 3 3 3 3 2

020g S 4 3 3 3 3 3 3 2

020h S 4 4 4 3 3 3 3 2

020i S 4 3 3 3 3 3 3 2

020j S 4 4 4 3 3 3 3 2

020k S 5 3 3 4 4 4 4 2

020l S 6 6 6 4 4 4 4 2

020m S 4 4 4 3 3 3 3 2

020n S 6 6 6 4 4 4 4 2

Continued on next page
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020o S F F F F F F F F

024a S 3 2 2 2 2 2 2 2

024b S 4 3 3 3 3 3 3 2

028a S 4 3 3 3 3 3 3 2

028b S 3 3 3 3 3 3 3 9

029a S 4 3 3 3 3 3 3 2

030a S 4 4 4 3 3 3 3 2

030b S 4 3 3 3 3 3 3 2

030c S 3 2 2 3 3 3 3 2

030d S 4 4 4 3 3 3 3 2

030e S 5 5 5 4 4 4 4 2

031a S 4 4 4 3 3 3 3 2

035a S 3 3 3 3 3 3 3 2

036a S 4 4 4 3 3 3 3 2

036b S 3 2 2 2 2 2 2 2

038a S 6 6 6 4 4 4 4 2

040a S 6 6 6 4 4 4 F 2

040b S 5 5 5 4 4 4 4 2

044a S 5 5 5 3 3 3 3 2

044b S 5 4 4 4 4 4 4 2

048a S 5 3 3 3 3 3 4 3

050a S 4 3 3 3 3 3 3 3

050b S 4 4 4 3 3 3 3 2

050c S 6 6 6 4 4 4 4 2

050d S 4 4 4 3 3 3 3 2

050e S 4 4 4 3 3 3 3 2

052a S 5 5 5 4 4 4 4 2

055a S 5 5 5 3 3 3 3 2

055b S 5 5 5 3 3 3 3 2

056a S 5 5 5 4 4 4 4 2

057a S 5 5 5 4 4 4 4 2

060a S 2 2 2 2 2 2 2 2

060b S 3 2 2 2 2 2 2 2

080a S 4 4 4 3 3 3 3 2

Continued on next page
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100a S 5 5 5 4 4 4 4 2

100b S 4 4 4 3 3 3 3 2

100c S 5 5 5 4 4 4 4 2

100d S 6 5 5 4 4 4 4 3

100e S 4 4 4 3 3 3 3 2

101a S 5 5 5 4 4 4 4 2

150a S 4 4 4 3 3 3 3 2

150b S 4 4 4 3 3 3 3 2

164a S 1 1 1 1 1 1 1 1

200a S 4 4 4 3 3 3 3 2

400a S 6 6 6 4 4 4 4 2

Table 7.2: Number of Iterations for Convergence

The above results illustrate the values that one expects. Higher-order IFs con-

verge in fewer iterations than lower-order IFs. Once the degree of the polynomial

increases, our variable order IF, Equation (5.53) on page 61, is always faster, in

terms of the number of iterations.

7.2 Successful Results

Our database of polynomials given in Chapter 6, starting on page 66, contains

over two hundred distinct polynomials2. Section 7.1, starting on page 87, shows

the results when these polynomials were tested on our system.

All the polynomials passed through the search stage successfully, providing good

initial approximations for the IFs used in the iterative stage.

Only two polynomials failed to produce the correct result during the iterative

stage, and this is discussed in §7.3, starting on page 97. This means that only

0.93% failed.

We consider that this demonstrates the success of our approach to locating the

zeros of arbitrary real or complex polynomials.

2215 at the last count.
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As we pointed out in Chapter 1, starting on page 1, we derived a search stage

to prefix our IF algorithms in order to generate computationally our initial

approximations, rather than choosing convenient initial approximations.

This search stage raised a number of mini-problems which have not been ad-

dressed so far. We now redress this anomaly.

7.2.1 Coefficients of Test Polynomials

We are interested in the approach taken by both Joab Winkler and Zhonggang

Zeng (and possibly others) in terms of the inexact coefficients of polynomi-

als. The implication is that their IFs will still converge to the “correct” zeros.

However, this raises the issue of what is the “correct” polynomial. How far re-

moved do the coefficients have to be before we are considering another, distinct,

polynomial?

Our approach is to take each polynomial on its merits, i.e. the coefficients are

the polynomial. Just that.

Therefore, when we investigate polynomials where the exact values of the co-

efficients are important (for example, see the Laguerre polynomials in §6.2 on

page 67, the Eulerian polynomials in §6.7 on page 71, or James Wilkinson’s

polynomial in §6.29 on page 80) we compute those coefficients to whatever ac-

curacy is required. Just to emphasise this, Equation (7.1) illustrates the exact

coefficients of James Wilkinson’s polynomial.3

z20 + 210z19 + 20, 615z18 + 1, 256, 850z17 + 53, 327, 946z16

+ 1, 672, 280, 820z15 + 40, 171, 771, 630z14 + 756, 111, 184, 500z13

+ 11, 310, 276, 995, 381z12 + 135, 585, 182, 899, 530z11

+ 1, 307, 535, 010, 540, 395z10 + 10, 142, 299, 865, 511, 450z9

+ 63, 030, 812, 099, 294, 896z8 + 311, 333, 643, 161, 390, 640z7

+ 1, 206, 647, 803, 780, 373, 360z6 + 3, 599, 979, 517, 947, 607, 200z5

+ 8, 037, 811, 822, 645, 051, 776z4 + 12, 870, 931, 245, 150, 988, 800z3

+ 13, 803, 759, 753, 640, 704, 000z2 + 8, 752, 948, 036, 761, 600, 000z

+ 2, 432, 902, 008, 176, 640, 000

(7.1)

Note that, just this once, the comma separator has been included in order to

emphasis the magnitudes of these coefficients. Also note that James Wilkinson’s

original polynomial has negative real zeros.

3This is explicitly included on George’s request.
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The programs that generate polynomial coefficients from other data are listed

in §C.4 starting on page 176.

7.2.2 Multiplicities of Zeros

As described in the text (see §5.5.1 on page 62), the search stage does finish

when our two tests agree on the multiplicities of the approximations.

However, this is not always the case. Some polynomials can have clusters of

multiple zeros, and this has to be resolved before the search stage can terminate.

Therefore, the program for the search stage can be made to continue until the

correct multiplicities have been determined.

7.2.3 Clusters of Zeros

As pointed out in the previous section, some polynomials have clusters of zeros,

often appearing as one or more multiple zeros.

Once again, the program for the search stage can be made to continue until the

clusters resolve themselves. Quite often, this requires increasing the number of

binary digits used in the precision of the representations of the approximations.

This is where the flexibility of the GNU Multiple Precision Arithmetic Li-

brary [Gra11] comes into its own. It only takes a moment to change the precision

used before re-running the program.

7.3 Failed Results

This section presents and discusses those polynomials that we have been unable

to solve using our existing algorithms. In addition, we investigate why they

failed, which may help identify what improvements might be introduced. Also

see Chapter 9 for more possible improvements.

020o

This polynomial was described by Dario Bini, see §6.3 on page 68 for its

definition.

In an exchange of e-mail with Dario he stated that the polynomial had ten

complex conjugate pairs as zeros. We replied that our algorithm yielded

three complex conjugate pairs and a single real zero of multiplicity 14.
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040a

This polynomial was described by Zhonggang Zeng, see §6.31 on page 81

for its definition.

This polynomial is the square of the polynomial 020h, which has only

simple zeros. Three of the tested IFs, Farmer3, Farmer3s, and Traub3

fail to converge for one approximate zero only. The other IFs all converge.

The problem occurs with one approximate zero only. Its relative error is

consistently of value 4.03 × 10−24 which is slightly larger than our fixed

value of ǫ, used to decide on convergence, which is 1× 10−24.

Interestingly the square of this polynomial, 080a, is solved by all the

tested IFs.

7.4 Summary of Timings

Table 7.3 on page 98 is a summary of our computational timings. The table

headings are the same for those described before Table 7.2 on page 89.

The clock timer on our computer is not fine-grained and can only resolve CPU

clock times to hundredths of a second. For details of our hardware, see Ta-

ble C.1 on page 126. All the timings for polynomials of degree 50 or lower were

recorded as 0.00 seconds. The timings shown are the total CPU time to achieve

convergence for each of the IFs.
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052a 0.04 0.09 0.09 0.07 0.07 0.05 0.05 0.04
100d 0.05 0.14 0.14 0.14 0.13 0.10 0.10 0.06
150b 0.23 0.62 0.62 0.46 0.46 0.35 0.35 0.23
164a 0.02 0.02 0.02 0.02 0.02 0.04 0.03 0.02
200a 0.41 1.10 1.10 0.82 0.82 0.61 0.61 0.42
400a 2.03 5.60 5.60 4.30 4.28 3.17 3.22 2.02

Table 7.3: Timing Comparisons

As expected, the timings increase with the order of convergence of the IFs,

because more function evaluations are required. It is interesting that the timings

for the third-order IFs show considerable differences. This may be down to C

coding inefficiences on our part that have crept in unnoticed.
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However, what is most interesting is the timings of our Farmerv IF, which

is on a par with the second-order IF Rall2. This is probably because our

variable-order IF given in Equation(5.53) on page 61 uses a great many Newton

corrections, see [Pet89, p. 85] for details, per iteration.

7.5 Other Zero Finders

REMARK 13. Winkler points 3 and 10.

Obviously, we are not alone in developing algorithms for finding the zeros of

arbitrary polynomials. Our successful results are compared to three other, well

known, zero finders, whose details are given below.

For comparison purposes, we take three polynomials originally from Zhong-

gang Zeng’s database, see §6.31 starting on page 81, one from Joab Winkler’s

database, see §6.30 starting on page 80, and one from Dario Bini’s database,

see §6.3 starting on page 68. These are

020h (Zeng)

A polynomial of degree twenty consisting of simple zeros, mainly as com-

plex conjugate pairs.

035a (Winkler)

A polynomial with high multiplicity zeros (13, 7, 6, 5, and 4).

040a (Zeng)

The square of 020h, providing double zeros.

080a (Zeng)

The square of 040a, providing quadruple zeros and a reasonably high

degree polynomial.

164a (Bini)

A polynomial of high degree with four zeros of multiplicity 40 (±0.5

and ±0.5i) and a cluster of four simple zeros nearby (±0.500244141 and

±0.500244141i).

The results are summarised below.

7.5.1 Matlab’s built-in function roots

Documentation about this function can be found in [Mat12]. It found the sim-

ple zeros of 020h only. For the other polynomials, the incorrect zeros were
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presented as complex conjugate pairs. We consider that this behaviour is bad,

as Matlab users using roots as a black box might accept the results as correct.

7.5.2 Dario Bini’s MPSolve Package

This package is described in [BF00a]. It found the correct multiple zeros for four

of the five polynomials. It failed with 164a, one of Dario’s own examples, when

the coefficients were translated from our format (floating point coefficients) to

mpsolve’s similar format. However, it computed the correct zeros when run

with its own chosen format (scaled integer coefficients).

This package’s biggest drawback is that it prints the zeros individually, rather

than grouping them by multiplicity. This means that it is necessary to inspect

the results visually (or via an additional program) in order to derive the multi-

plicities. In addition, clusters may be hidden if the computed zeros are printed

using a truncated format.

7.5.3 Zhonggang Zeng’s MULTROOT Package

This package is described in [Zen04]. It found the correct multiple zeros for

four of the five polynomials. It failed with 164a — no computational results

printed, just nothing except the polynomial’s coefficients.

In addition, there were problems with polynomials having coefficients with non-

zero imaginary parts, such as 010l. We have not had time to investigate further.

Finally, there were rounding errors due to the fact that Matlab only uses double

precision arithmetic.

7.5.4 Overall Summary

As demonstrated above, our package computed correctly the zeros of all the

polynomials in our database. All of the other, well-known, packages failed in

some way on one or more of the polynomials in our database.
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Chapter 8

Conclusions

This chapter brings together our thoughts on how successful our approach has

been and why we think our work is important. Lastly, we summarise what other

researchers are doing in this field and compare their results with ours, which we

think will stand the test of time.

8.1 Successful Implementation

Firstly, our seach algorithm has shown that it is robust when handling both

polynomials of high degree (up to degree 400) and polynomials with zeros of

high multiplicity (up to order 40).

Using circular tests (see §3.10 starting on page 20 for details) when we divide

the complex plane into squares has caused minor problems with overlap (see

Figure 3.2 on page 19 for details), but our search algorithm has been modified

to cope extremely well with this problem.

The fact that our search algorithm never failed to locate appropriate squares

containing approximations to the zeros substantiates this fact.

Secondly, our IFs have been run in parallel with those found in the classical lit-

erature and demonstrated that they hold their own, especially the simultaneous

IFs (see §5.4.2 starting on page 58 for details) and our new variable-order IF

(see §5.4.3 starting on page 61 for details).
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8.1.1 Fine Tuning

It is not possible to write computer programs that do exectly what we want

every time for arbitrary databases without intervention. One obvious example

is polynomials that have zeros of high multiplicity need more accuracy (i.e.

precision) in their representation of values, especially the zeros themselves. Also,

computations need to be carried out with this greater precision.

Another example is the number of iterations taken during the search stage. Some

polynomials can isolate the approximations quite quickly, while others need more

time (i.e. iterations) to resolve the correct distribution of the approximations.

Other, less obvious, values can also be modified at run time. Where the effect

is minimal we have left parameters at their default values (see Table C.3 on

page 127 for these options). However, in extremes it is necessary to change

these options. As an example, our polynomial of degree 400 took four hours

for the search stage to complete using the default number of outer iterations

(e.g. 8), but reducing this value to 5 brought the time taken during the search

stage to two hours, a much more respectable value.

8.1.2 Computer Power

We think this is an important factor in the way we tackle the problem of locating

the zeros of polynomials. The sheer power of our current computers means that

we can look at alternatives that were not available to the earlier researchers in

this field.

During research for the historic perspective chapter (see Chapter 3 starting

on page 13) we looked especially at the example polynomials presented at the

time. Their degree was low, i.e. very little above 20, and the multiplicities

hardly reached 10.

The reason is obvious to us now — computer power was both expensive and

slow. Today, the cost of serious computers is within the reach of individuals, let

alone departments with laboratories full of computers, and the raw materials

are dead cheap. More importantly, their speed has increased dramatically as

can be seen in Table 7.3 on page 98. This is why the machines on our desks

easily out-perform those machines that came before.
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8.1.3 Parallelisation

It is frustrating that the computers we use have operating systems that do not

take account of the CPU cores in each of them, four to be exact in our case.

Our current programming languages are all single-threaded.

If possible, the search stage could be distributed amongst different CPUs and

the results amalgamated as each set of sub-search results became available.

In addition, the iterative stage could be distributed according to IF.

8.2 Alternative Approaches

One alternative might be a change of hardware. We read in the more general

computer literature that Graphical Processing Units (GPUs) process data faster

than conventional CPUs. This is because they are used to implement moving

computer graphics for computer games (and presumably other applications).

A machine that allowed its GPUs to be programmed with our software should

speed up the computations considerably. However, we think that an implemen-

tation of Linux, and its supporting software, is not likely to be seen in the very

near future.

A second alternative might be a change of software. Two popular computer lan-

guages with built-in support for arbitrary precision numbers are Python [Lut08]

and Ruby [FM08]. There are other computer languages that support arbitrary

precision of some form, but we have not followed these up.
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Chapter 9

Further Work

This Chapter presents where we see our research heading in the immediate

future.

9.1 Squares Instead of Circles

We have already mentioned the problems encountered with using circles to de-

termine the number of zeros in an enclosed square. See Chapter 8 starting on

page 101 and its reference back to Figure 3.2 on page 19 for details. Regions

with straight line boundaries should not cause these problem.

Triangles are the simplest, mentioned in [JT09], although we have not followed

this up.

Squares, the next best thing, are mentioned in [Neu88] and used in at least one

implementation, that by Irene Gargantini [GM67].

9.2 Faster Simultaneous IFs

In §5.4.2, starting on page 58, for an IF of order ρ we replace the highest-

order derivative of p(zν), usually in the form of Bρ−1(zν), with a first-order

approximation in terms of Tρ−2(zν).

One possible approach would be to replace some of the lower-order derivatives

of p(zν) with more complex, higher-order, expressions containing combinations

of Ai(zν) and Tk(zν).
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The obvious advantage of replacing Bρ−1(zν), with a first-order approximation

in terms of Tρ−2(zν) is that we replace the computation of two function calls with

a simple summation. Whether this advantage continues with more complicated

replacements remains to be seen.

9.3 Derivative-free IFs

There is a long history of derivative-free IFs, mainly because they avoid addi-

tional polynomial evaluations, which were considered expensive with computers

of that time. Joseph Traub [Tra64, pp. 209–214] devotes a chapter to this topic.

We have concentrated on one-point IFs in our research to date, although we

should give this topic some consideration in the future.

9.4 R-order Convergence

A formal definition is given in [Mon12]. There are also useful references in

[Pet89] and [PPS89]. We will start with these to investigate how we can develop

better bounds for the order of convergence of those IFs using this technique.

9.5 Generalised Order of Convergence

In our work to date, we have derived the order of convergence of our IFs by

hand, or more recently by using tools such as Matlab [Mat12]. However, our

holy grail is to be able to derive closed forms for all of our IFs and, at the same

time, the equations defining their orders of convergence.

Joseph Traub [Tra64] has done some of this, as he covered each different form

of earlier IFs; however, it would really satisfy us if we could complete the work

for our different and newer IFs.

It will be especially important to realise the order of convergence, and therefore

the asymptotic error constant, of our simple and multiple simultaneous IFs.

9.6 Newer Tools

When we first started our research in this area there were very few tools available

that we could use to make our research easier. Numerical algorithms were
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being published in many journals, but the hardware was slow and numerical

programming was dominated by the Fortran programming language [McC61].

In the United Kingdom, Algol 60 [B+63] was the language of choice, but there

were no supporting numerical libraries (the NAG library [FB77] had only just

appeared in October 1971, with Algol 60 and Fortran implementations). As

mentioned elsewhere, this meant that, especially for the search stage, we were

utilising checkpoint/restart techniques to ensure sufficient computer time was

available for the algorithm to terminate.

Since then, the facilities available have multiplied and we are able to accomplish

much more in a more user-friendly environment.

9.6.1 Symbolic manipulation

Programming languages allowing us to perform symbolic computations, as well

as numerical computations, should make our future research easier. This is

reflected in the following sections.

9.6.2 Verification of existing equations

Only recently, have we started using Matlab [Mat12] to verify the correctness of

the equations presented in this thesis. We are also investigating an alternative,

Mathematica [Wel13]. We intend to use such tools to ensure that all existing

equations are verified symbolically.

9.6.3 Generating new IFs

If the new symbolic manipulation tools prove up to the job, it would be nice to

write suitable programs that generated new classes of IFs together with their

asymptotic error constants automatically.
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Appendix A

Equations and Convergence

This Appendix covers the material needed for generating the orders of conver-

gence. It follows the order in which the IFs were introduced in Chapter 5.

Firstly, a couple of definitions.

Let the IF φ(z) generate a sequence z0, z1, . . . , zi, . . . converging to α and let

ǫi = zi−α. If there exista a real number ρ and a non-zero constant C such that

|ǫi+1|
|ǫi|ρ

→ C , (A.1)

then ρ is called the order of the sequence and C is called the asymptotic error

constant. Note that Equation (A.1) can be re-written as

|φ(z)− α|
|z − α|ρ → C . (A.2)

An order is associated with an IF whether or not the generated sequence con-

verges. The order assigned to an IF is the order of the generated sequence when

it converges.

A.1 Simple Zeros

A.1.1 Equations for Simple Zeros

This section is concerned with deriving the order of convergence of our IFs.

Therefore, we need expressions for Ai(z), u(z), and their derivatives, evaluated
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at α. We use the notation Ãi(z) to denote such an expansion, usually a Taylor

series, of Ai(z) about α. Similarly, for ũ(z), T̃k(z), and so on.

Starting from first principles, we need the Taylor series expansion of Ai(z) about

α, namely

Ãi(z) = Ai(α) +A′
i(α)ǫ+

A′′
i (α)

2!
ǫ2 + · · · . (A.3)

where z = α+ ǫ and the usual assumptions for the expansion of Equation (A.9)

are assumed to hold (see [Hen74, pp. 142–143]). Differentiating Equation (2.7)

on page 6, we obtain the following sequence of first-order derivatives.

A′
2(z) = 3A3(z)− 2A2

2(z) ,

A′
3(z) = 4A4(z)− 2A2(z)A3(z) ,

A′
4(z) = 5A5(z)− 2A2(z)A4(z) ,

A′
5(z) = 6A6(z)− 2A2(z)A5(z) ,

(A.4)

etc. Differentiating Equations (A.4), we obtain the following sequence of second-

order derivatives.

A′′
2(z) = 3A′

3(z)− 4A2(z)A
′
2(z) ,

A′′
3(z) = 4A′

4(z)− 2A′
2(z)A3(z)− 2A2(z)A

′
3(z) ,

A′′
4(z) = 5A′

5(z)− 2A′
2(z)A4(z)− 2A2(z)A

′
4(z)

(A.5)

etc. Differentiating Equations (A.5), we obtain the following sequence of third-

order derivatives.

A′′′
2 (z) = 3A′′

3(z)− 4A′
2(z)

2 − 4A2(z)A
′′
2(z) ,

A′′′
3 (z) = 4A′′

4(z)− 2A′′
2(z)A3(z)− 4A′

2(z)A
′
3(z)− 2A2(z)A

′′
3(z) ,

(A.6)

etc. Differentiating Equations (A.6), we obtain the following fourth-order deriva-

tive

A
(iv)
2 (z) = 3A′′′

3 (z)− 12A′
2(z)A

′′
2(z)− 4A2(z)A

′′′
2 (z) . (A.7)

Substituting Equation (A.4) through Equation (A.7) in Equation (A.3) on page 108
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yields the following set of equations

Ã2(z) = A2(α)− [2A2
2(α)− 3A3(α)]ǫ

+ [4A3
2(α)− 9A2(α)A3(α) + 6A4(α)]ǫ

2

− [8A4
2(α)− 24A2

2(α)A3(α) + 16A2(α)A4(α) + 9A2
3(α)

− 10A5(α)]ǫ
3 ,

Ã3(z) = A3(α)− [2A2(α)A3(α)− 4A4(α)]ǫ

+ [4A2
2(α)A3(α)− 8A2(α)A4(α)− 3A2

3(α)

+ 10A5(α)]ǫ
2 ,

Ã4(z) = A4(α)− [2A2(α)A4(α)− 5A5(α)]ǫ ,

(A.8)

which will be required later. Note the use of ·̃ to denote an expansion about α.

Obviously even higher-order derivatives are required as we increase the order of

convergence of this family of IFs.

Following the same procedure, for simple zeros, we need the Taylor series ex-

pansion of u(z) about α, namely

u(z) = u(α) + u′(α)ǫ+
u′′(α)

2!
ǫ2 + · · · . (A.9)

Differentiating Equation (2.6) on page 6 and using Equation (2.7) on page 6,

we derive the following equation.

u′(z) = 1− 2A2(z)u(z) . (A.10)

Differentiating Equation (A.10) repeatedly yields the following sequence of equa-

tions that we use later.

u′(z) = 1− 2A2(z)u(z) ,

u′′(z) = −2[A′
2(z)u(z) +A2(z)u

′(z)] ,

u′′′(z) = −2[A′′
2(z)u(z) + 2A′

2(z)u
′(z) +A2(z)u

′′(z)] ,

u(iv)(z) = −2[A′′′
2 (z)u(z) + 3A′′

2(z)u
′(z)

+ 3A′
2(z)u

′′(z) +A2(z)u
′′′(z)] ,

u(v)(z) = −2[A
(iv)
2 (z)u(z) + 4A′′′

2 (z)u′(z) + 6A′′
2(z)u

′′(z)

+ 4A′
2(z)u

′′′(z) +A2(z)u
(iv)(z)] ,

(A.11)

etc. Putting this together, after some elementary but heavy algebraic manipu-
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lation, we have

u(α) = 0 ,

u′(α) = 1 ,

u′′(α) = −2A2(α) ,

u′′′(α) = 12[A2
2(α)−A3(α)] ,

u(iv)(α) = −24[4A3
2(α)− 7A2(α)A3(α) + 3A4(α)] ,

u(v)(α) = 240[4A4
2(α)− 10A2

2(α)A3(α) + 3A2
3(α)

+ 5A2(α)A4(α)− 2A5(α)] ,

(A.12)

so that Equation (A.9) on page 109 can be re-written as

ũ(z) = ǫ−A2(α)ǫ
2 + 2[A2

2(α)−A3(α)]ǫ
3

− [4A3
2(α)− 7A2(α)A3(α) + 3A4(α)]ǫ

4

+ 2[4A4
2(α)− 10A2

2(α)A3(α) + 5A2(α)A4(α)

+ 3A2
3(α)− 2A5(α)]ǫ

5 + · · ·

. (A.13)

Both Equation (A.8) and Equation (A.13) are used in deriving the order of

convergence of our various IFs for simple zeros.

A.1.2 Convergence of One-point IFs for Simple Zeros

Isaac Newton’s second-order IF

Given Equation (5.13) on page 50 and Equation (A.13) on page 110 we

obtain the order of convergence as follows

ǫ̂ν = ǫν − ũ(zν) ,

= ǫν −
[
ǫν −A2(αν)ǫ

2
ν

]
+O(ǫ3ν) ,

= A2(αν)ǫ
2
ν +O(ǫ3ν) ,

(A.14)

which is the required result.

Edmond Halley’s third-order IF

Given Equation (5.14) on page 50 and Equation (A.13) on page 110 we
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obtain the order of convergence as follows

ǫ̂ν = ǫν − ũ(zν)− Ã2(zν)ũ
2(zν) ,

= ǫν −
{
ǫν −A2(αν)ǫ

2
ν + 2

[
A2

2(αν)−A3(αν)
]
ǫ3ν
}

− {A2(αν)− [2A2(αν)− 3A3(αν)] ǫν}
[
ǫ2ν − 2A2(αν)ǫ

3
ν

]
+O(ǫ4ν) ,

=
[
2A2

2(αν)−A3(αν)
]
ǫ3 +O(ǫ4ν) ,

(A.15)

which is the required result.

I Kiss’ fourth-order IF

Given Equation (5.15) on page 51 we obtain the order of convergence as

follows

ǫ̂ν = ǫν − ũ(zν)− Ã2(zν)ũ
2(zν)−

[

2Ã2
2(zν)− Ã3(zν)

]

ũ3(zν) ,

= . . . ,

=
[
5A3

2(αν)− 5A2(αν)A3(αν) +A4(αν)
]
ǫ4ν +O(ǫ5ν) ,

(A.16)

which is the required result.

I Kiss’ fifth-order IF

Given Equation (5.16) on page 51 we obtain the order of convergence as

follows

ǫ̂ν = ǫν − ũ(zν)− Ã2(zν)ũ
2(zν)−

[

2Ã2
2(zν)− Ã3(zν)

]

ũ3(zν)

−
[

5Ã3
2(zν)− 5Ã2(zν)Ã3(zν) + Ã4(zν)

]

ũ4(zν) ,

= . . . ,

=
[
14A4

2(αν)− 21A2
2(αν)A3(αν) + 6A2(αν)A4(αν)

+3A2
3(αν)−A5(αν)

]
ǫ5ν +O(ǫ6ν) ,

(A.17)

which is the required result.

Note that Equation (A.14) and Equation (A.15) were verified using a Matlab

program, see §C.6.2 on page 200. Equation (A.16) and Equation (A.17) were

generated by the same Matlab program.

A.1.3 Convergence of Simultaneous IFs for Simple Zeros

For those IFs involving simultaneous approximations, we also need the expan-

sion for Tk(zν). Only a first-order approximation is required. Note this is for
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simple zeros.

Tk(zν) =
∑

i6=ν

1

(zν − zi)k
,

=
∑

i6=ν

1

(αν − αi)k

[

1 +
ǫν − ǫi
αν − αi

]−k

,

=
∑

i6=ν

1

(αν − αi)k
− k

∑

i6=ν

ǫν − ǫi
(αν − αi)k+1

+O(ǫ2) ,

=
∑

i6=ν

1

(αν − αi)k
− kǫν

∑

i6=ν

1

(αν − αi)k+1

+ k
∑

i6=ν

ǫi
(αν − αi)k+1

+O(ǫ2) ,

= Sk(αν)− kSk+1(αν)ǫν + k
∑

i6=ν

ǫi
(αν − αi)k+1

+O(ǫ2) .

(A.18)

Given that

S1(αν) = A2(αν) ,

S2(αν) = A2
2(αν)− 2A3(αν) ,

S3(αν) = A3
2(αν)− 3A2(αν)A3(αν) + 3A4(αν) ,

S4(αν) = A4
2(αν)− 4A3

2(αν)A3(αν) + 2A2
3(αν) + 4A2(αν)A4(αν)

− 4A5(αν) ,

(A.19)

we finally have

T̃1(zν) = A2(αν)−
[
3A2

2(αν)− 5A3(αν)
]
ǫν

+
∑

i6=ν

ǫi
(αν − αi)2

+O(ǫ2) ,

T̃2(zν) = A2
2(αν)− 2A3(αν)

− 2
[
3A3

2(αν)− 8A2(αν)A3(αν) + 7A4(αν)
]
ǫν

+ 2
∑

i6=ν

ǫi
(αν − αi)3

+O(ǫ2) ,

T̃3(zν) = A3
2(αν)− 3A2(αν)A3(αν) + 3A4(αν)

− 3
[
A4

2(αν)− 4A3
2(αν)A3(αν) + 10A2(αν)A4(αν)

+5A2
3(αν)− 9A5(αν)

]

+ 3
∑

i6=ν

ǫi
(αν − αi)4

+O(ǫ2) .

(A.20)
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We need powers of u(zν) in order to verify the IF’s orders of convergence and

their asymptotic error constants. We truncate all equations at ǫ5ν as this is the

highest order IFs we discuss.

ũ(zν) = ǫν −A2(αν)ǫ
2
ν + 2[A2

2(αν)−A3(αν)]ǫ
3
ν

− [4A3
2(αν)− 7A2(αν)A3(αν) + 3A4(αν)]ǫ

4
ν

+ 2[4A4
2(αν)− 10A2

2(αν)A3(αν)

+ 5A2(αν)A4(αν)

+ 3A2
3(αν)− 2A5(αν)]ǫ

5
ν + · · · ,

ũ2(zν) = ǫ2ν − 2A2(αν)ǫ
3
ν + [5A2

2(αν)− 4A3(αν)]ǫ
4
ν

− [12A3
2(αν)− 18A2(αν)A3(αν) + 6A4(αν)]ǫ

5
ν ,

ũ3(zν) = ǫ3ν − 3A2(αν)ǫ
4
ν + [9A2

2(αν)− 6A3(αν)]ǫ
5
ν

ũ4(zν) = ǫ4ν − 4A2(αν)ǫ
5
ν ,

ũ5(zν) = ǫ5ν .

(A.21)

Second-order IF

There is no polynomial form for this second-order IF.

Mick Farmer and George Loizou’s third-order IF

Given Equation (5.24) on page 53 and Equation (A.20) on page 112 we

obtain the order of convergence as follows

ǫ̂ν = ǫν − ũ(zν)− T̃1(zν)ũ
2(zν) ,

= ǫν − {ǫν −A2(αν)ǫ
2
ν + 2[A2

2(αν)−A3(αν)]ǫ
3
ν}

−






A2(αν)− [3A2

2(αν)− 5A3(αν)]ǫν +
∑

i6=ν

ǫi
(αν − αi)2







[ǫ2ν − 2A2(αν)ǫ
3
ν ] ,

= 3[A2
2(αν)−A3(αν)]ǫ

3
ν − ǫ2ν

∑

i6=ν

ǫi
(αν − αi)2

,

(A.22)

which is the required result.
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Mick Farmer and George Loizou’s fourth-order IF

Given Equation (5.25) on page 53 we obtain the order of convergence as

follows

ǫ̂ν = ǫν − ũ(zν)− Ã2(zν)ũ
2(zν)−

1

2

[

3Ã2
2(zν) + T̃2(zν)

]

ũ3(zν) ,

= ǫν −A2(αν)ǫ
2
ν + 2

[
A2

2(αν)−A3(αν)
]
ǫ3ν

−
[
4A3

2(αν)− 7A2(αν)A3(αν) + 3A4(αν)
]
ǫ4ν

−
{
A2(αν)−

[
2A2

2(αν)− 3A3(αν)
]
ǫν

+
[
4A3

2(αν)− 9A2(αν)A3(αν) + 6A4(αν)
]
ǫ2ν
}

{
ǫ2ν − 2A2(αν)ǫ

3
ν +

[
5A2

2(αν)− 4A3(αν)
]
ǫ4ν
}

− 1

2



3A2
2(αν) +

∑

i6=ν

ǫi
(αν − αi)3





[
ǫ3ν − 3A2(αν)ǫ

4
ν

]
,

= 2
[
3A3

2(αν)− 4A2(αν)A3(αν) + 2A4(αν)
]
ǫ4ν

+ ǫ3ν
∑

i6=ν

ǫi
(αν − αi)3

,

(A.23)

which is the required result.

Mick Farmer and George Loizou’s fifth-order IF

ǫ̂ν = ǫν − ũ(zν)− Ã2(zν)ũ
2(zν)

−
[

2Ã2
2(zν)− Ã3(zν)

]

ũ3(zν)

− 1

3

[

14Ã3
2(zν) + 12Ã2(zν)Ã3(zν) + T̃3(zν)

]

ũ4(zν)

= . . . ,

=
[
15A4

2(αν)− 4A3
2(αν)A3(αν) + 21A2

2(αν)A3(αν)

+10A2(αν)A4(αν) + 5A2
3(αν)− 5A5(αν)

]
ǫ5ν

− ǫ4ν
∑

i6=ν

ǫi
(αν − αi)4

,

(A.24)

which is the required result.

A.1.4 Convergence of Variable-order IFs for Simple Zeros

In this thesis we have introduced only one example of this class of IF, namely

Equation (5.28) on page 55, which is based on our third-order simultaneous IF,

given in Equation (5.24) on page 53. We accept that it is really a multipoint
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IF and it is an area of our current research. See §9.2 for more details of our

research in this area.

A.2 Multiple Zeros

A.2.1 Equations for Multiple Zeros

The convergence of the IFs for multiple zeros involves, once again, using suf-

ficient terms in the Taylor series expansion of u(z) about u(α), namely Equa-

tion (A.9) on page 109. The following definition is a slight variation on Joseph

Traub’s Bj,m which he calls the generalised normalised Taylor series coeffi-

cient [Tra64, p. 6],

Ci(zν) =
1

mν

p(mν+i−1)(zν)

(mν + i− 1)!

(mν)!

p(mν)(zν)
, i = 1, 2, . . . , (A.25)

which is used when the multiplicity mν > 1. Note that when mν = 1, then

Ai(zν) ≡ Bi(zν) ≡ Ci(zν) . (A.26)

In the case of a multiple zero we have

p(zν) =

∞∑

i=mν

p(i)(αν)

i!
ǫi ,

p′(zν) =
∞∑

i=mν

i
p(i)(αν)

i!
ǫi−1 .

(A.27)

Given Equation (2.6) on page 6, dividing the expansion of p(zν) by the expansion

of p′(zν), both from Equation (A.27), yields the following coefficients of mνu(zν)

u(αν) = 0 ,

u′(αν) = 1 ,

u′′(αν) = −C2(αν) ,

u′′′(αν) = (mν + 1)C2
2 (αν)− 2C3(αν) ,

u(iv)(αν) = −(mν + 1)2C3
2 (αν) + (3mν + 4)C2(αν)C3(αν)

− 3C4(αν) ,

(A.28)
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so that Equation (A.9) on page 109 can be re-written for multiple zeros as

ũ(zν) =
1

mν

{
ǫν − C2(αν)ǫ

2
ν +

[
(mν + 1)C2

2 (αν)− 2C3(αν)
]
ǫ3ν

−
[
(mν + 1)2C3

2 (αν) + (3mν + 4)C2(αν)C3(αν)

−3C4(αν)
]
ǫ4ν

+
[
(mν + 1)3C4

2 (αν)

−2(mν + 1)(2mν + 3)C2
2 (αν)C3(αν)

+2(2mν + 3)C2(αν)C4(αν) + 2(mν + 2)C2
3 (αν)

−4C5(αν)] ǫ
5 + . . .

}
.

(A.29)

Note that this time the notation f̃(zν) stands for the Taylor series expansion of

f(zν) about αν , an explicit approximation.

A.2.2 Convergence of One-point IFs for Multiple Zeros

Louis Rall’s second-order modified Newton IF

From Equation (5.36) on page 57 we have

ǫ̂ν = ǫν −mν ũ(zν) ,

= ǫν −mν

[
ǫν
mν

− C2(αν)

mν

ǫ2ν +O(ǫ3ν)

]

,

= C2(αν)ǫ
2
ν +O(ǫ3ν) ,

(A.30)

which is the required result.

Joseph Traub’s third-order IF
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From Equation (5.37) on page 58 we have

ǫ̂ν = ǫν +mν

(
mν − 3

2

)

ũ(zν)−m2
νÃ2(zν)ũ

2(zν) ,

= ǫν +mν

(
mν − 3

2

){
ǫν
mν

− C2(αν)

mν

ǫ2ν

+

[
(mν + 1)C2

2 (αν)− 2C3(αν)

mν

]

ǫ3ν

}

−m2
ν

{(
mν − 1

2ǫν

)

+ (mν + 1)C2(αν)

−
[(

m2
ν + 2mν + 1

2

)

C2
2 (αν)

− (mν − 2)C3(αν)

]

ǫν

}

{
ǫ2ν
m2

ν

− 2
C2(αν)

m2
ν

ǫ3ν

+

[
(2mν + 3)C2

2 (αν)− 4C3(αν)

m2
ν

ǫ4ν

]}

,

= . . . ,

=

[(
mν + 3

2

)

C2
2 (αν)− C3(αν)

]

ǫ3ν +O(ǫ4ν) ,

(A.31)

which is the required result.

Joseph Traub’s fourth-order IF

From Equation (5.38) on page 58 we have

ǫ̂ν = ǫν −mν

(
m2

ν − 6mν + 11

6

)

ũ(zν)

+m2
ν(mν − 2)Ã2(zν)ũ

2(zν)

−m3
ν

[

2Ã2
2(zν)− Ã3(zν)

]

ũ3(zν)

= . . . ,

=

[(
m2

ν + 6mν + 8

3

)

C3
2 (αν)− (mν + 4)C2(αν)C3(αν)

+ C4(αν)

]

ǫ4ν +O(ǫ5ν) ,

(A.32)

which is the required result.

Joseph Traub’s fifth-order IF
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From Equation (5.39) on page 58 we have

ǫ̂ν = ǫν +mν

(
m3

ν − 10m2
ν + 35mν − 50

24

)

ũ(zν)

−m2
ν

(
7m2

ν − 30mν + 35

12

)

Ã2(zν)ũ
2(zν)

+m3
ν

(
3mν − 5

2

)[

2Ã2
2(zν)− Ã3(zν)

]

ũ3(zν)

−m4
ν

[

5Ã3
2(zν)− 5Ã2(zν)Ã3(zν) + Ã4(zν)

]

ũ4(zν) ,

= . . . ,

=

[(
6m3

ν + 55m2
ν + 150mν + 125

24

)

C4
2 (αν)

−
(
2m2

ν + 15mν + 25

2

)

C2
2 (αν)C3(αν)

+ (mν + 5)C2(αν)C4(αν)

+

(
mν + 5

2

)

C2
3 (αν)− C5(αν)

]

ǫ5ν +O(ǫ6ν) ,

(A.33)

which is, we hope, the required result.

A.2.3 Convergence of Simultaneous IFs for Multiple Zeros

Following the same approach as used for simple zeros in Equation (A.18) on

page 112, we have for multiple zeros

Tk(zν) =
∑

i6=ν

mi

(zν − zi)k
,

=
∑

i6=ν

mi

(αν − αi)k

[

1 +
ǫν − ǫi
αν − αi

]−k

,

= . . . ,

= Sk(αν)− kSk+1(αν)ǫν + k
∑

i6=ν

miǫi
(αν − αi)k+1

+O(ǫ2) .

(A.34)

Second-order IF

There is no second-order simultaneous IF in polynomial form.

Mick Farmer and George Loizou’s third-order IF
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ǫ̂ν = ǫν −mν ũ(zν)−mν T̃1(zν)ũ
2(zν) ,

= . . . ,

= 2[C2
2 (αν)− C3(αν)]−

1

m
ǫ2ν
∑

i6=ν

ǫν
(αν − αi)2

,

(A.35)

which is the required result.

Mick Farmer and George Loizou’s fourth-order IF

Asymptotic error constant has not been established.

Mick Farmer and George Loizou’s fifth-order IF

Asymptotic error constant has not been established.

A.2.4 Convergence of Variable-order IFs for Multiple Ze-

ros

These variable-order IFs are still new to us. As we said in §A.1.4 on page 114,

this is a topic for our further research.
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Appendix B

IFs in Rational Form

Many of the IFs presented in this thesis were originally derived in their rational

form. Although we prefer to present these IFs in their polynomial form, it is

useful to maintain links to those original derivations. That is the intention of

this Appendix. Cross-references are provided between both forms in all cases.

However, it is important to understand that there may be a number of different

rational forms of the same order, depending on the degrees of the numerator

and denominator. Joseph Traub has investigated these [Tra64, pp. 88–92] where

he uses a Padé table to collect them together. He suggests, via a couple of

references, that those IFs that lie near the diagonal of the Padé table are best.

This topic will not be covered any further.

B.1 Simple IFs in Rational Form

B.1.1 One-point IFs

The first four equations are the rational forms corresponging to the one-point

IFs for simple zeros described in §5.3.1 starting on page 50.

Isaac Newton’s second-order IF [New36]

ẑν = zν − p(zν)

p′(zν)
. (B.1)

Edmond Halley’s third-order IF [Hal94]
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ẑν = zν − u(zν)

1−A2(zν)u(zν)
, (B.2)

which is often referred to as Chebyshev’s method and stated by Peter Jar-

ratt in [Jar69, p. 121] as well-known. According to Joseph Traub [Tra64,

p. 91], this IF has the distinction of being the most frequently rediscov-

ered IF in the literature. It was also derived two centuries later by Ernst

Schröder [Sch70, p. 352].

I Kiss’ fourth-order IF [Kis54, p. 68]

ẑν = zν − u(zν)[1−A2(zν)u(zν)]

1− 2A2(zν)u(zν) +A3(zν)u2(zν)
. (B.3)

I Kiss’ fifth-order [Kis54, p. 68]

ẑν = zν − u(zν)[1− 2A2(zν) +A3(zν)u
2(zν)]

1− 3A2(zν)u(zν)

+ [2A3(zν) +A2
2(zν)]u

2(zν)

−A4(zν)u
3(zν)

. (B.4)

B.1.2 Simultaneous IFs

The next four equations are the rational forms corresponding to the simultane-

ous IFs for simple zeros described in §5.3.2 starting on page 51.

Kiril Dochev and Byrnev’s second-order IF [DB64, p. 174]

ẑν = zν − p(zν)
∏

i6=ν

(zν − zi)
. (B.5)

Since its original introduction in 1964, this IF has been rediscovered many

times [Ker66, Ehr67, Pre71, GH72], especially when the polynomial is

monic, i.e. an = 1. Interestingly, the term after the first minus sign (-)

is called Weierstrass’s correction in [PPŽ03, p. 2].

Louis Ehrlich’s third-order IF [Ehr67, p. 107]

ẑν = zν − u(zν)

1− T1(zν)u(zν)
. (B.6)

Many researchers refer to this as Aberth’s Method 1, but that paper was

published much later in 1973 [Abe73].

1Occasionally as the Aberth-Ehrlich, or Ehrlich-Aberth, Method.
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Mick Farmer and George Loizou’s fourth-order IF [FL75, p. 252]

ẑν = zν − u(zν)[1−A2(zν)u(zν)]

1− 2A2(zν)u(zν) +
1
2 [A

2
2(zν)− T2(zν)]u2(zν)

(B.7)

Mick Farmer and George Loizou’s fifth-order IF [FL75, p. 252]

ẑν = zν − u(zν)[1−A2(zν)u(zν) +A3(zν)u
2(zν)]

1− 3A2(zν)u(zν)

+ [2A3(zν) +A2
2(zν)]u

2(zν)

− 1

3
[3A2(zν)A3(zν)−A3

2(zν) + T3(zν)]u
3(zν)

. (B.8)

B.2 Multiple IFs in Rational Form

B.2.1 One-point IFs

The first four equations are the rational forms of the one-point IFs for multiple

zeros described in §5.4.1 starting on page 57.

Louis Rall’s second-order modified Newton IF [Ral66]

ẑν = zν −







p(zν)
∏

i6=ν

(zν − zi)
mi







1

mν

. (B.9)

Hansen-Patrick family (third-order) IF [HP77, p. 265]

ẑν = zν − mνu(zν)
mν + 1

2!
−mνA2(zν)u(zν)

. (B.10)

Joseph Traub’s fourth-order IF [Tra64, p. 139]

ẑν = zν −
mν

[
mν + 1

2!
−mνA2(zν)u(zν)

]

u(zν)

(mν + 1)(2mν + 1)

3!

−mν(mν + 1)A2(zν)u(zν)

+m2
νA3(zν)u

2(zν)

, (B.11)

which we defined in [FL77, p. 429].

Joseph Traub’s fifth-order IF [Tra64, p. 139]
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ẑν = zν −

mν








(mν + 1)(2mν + 1)

3!

−mν(mν + 1)A2(zν)u(zν)

+m2
νA3(zν)u

2(zν)







u(zν)

(mν + 1)(2mν + 1)(3mν + 1)

4!

−mν

(mν + 1)(2mν + 1)

2!
A2(zν)u(zν)

+m2
ν(mν + 1)

[
A2

2(zν)

2
+A3(zν)

]

u2(zν)

−m3
νA4(zν)u

3(zν)

, (B.12)

which we defined in [FL77, p. 429].

B.2.2 Simultaneous IFs

The next four equations are the rational forms of the simultaneous IFs for

multiple zeros described in §5.4.2 starting on page 58.

Second-order IF

ẑν = zν −







p(zν)
∏

i6=ν

(zν − zi)
mi







1

mν

. (B.13)

This IF cannot be derived as outlined above2, but comes from a direct

expansion of p(zν), namely

p(zν) = (zν − αν)
mν

∏

i6=ν

(zν − zi)
mi +O(ǫmν+1) . (B.14)

Louis Ehrlich’s third-order IF [Ehr67]

ẑν = zν − mνu(zν)

1− T1(zν)u(zν)
. (B.15)

A paper by Abdel Anourein [Ano77, pp. 244–245] introduces an improve-

ment to Equation (B.15) to fourth-order similar to our variable-order IF,

see Equation (5.28) on page 55.

Mick Farmer and George Loizou’s fourth-order IF [FL77, p. 430]

2which would yield Rall’s modified Newton approximation, Equation (5.36)
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ẑν = zν −
mν

[
1

2
(mν + 1)−mνA2(zν)u(zν)

]

u(zν)

1

8
(m2

ν + 6mν + 1)

− mν

2
(mν + 3)A2(zν)u(zν)

+
m2

ν

2
A2

2(zν)u
2(zν)

− mν

2
T2(zν)u

2(zν)

. (B.16)

Mick Farmer and George Loizou’s fifth-order IF [FL77, p. 430]

ẑν = zν −

mν








1

3!
(mν + 1)(2mν + 1)

−mν(mν + 1)A2(zν)u(zν)

+m2
νA3(zν)u

2(zν)







u(zν)

1

4!
(3m3

ν + 15m2
ν + 5mν + 1)

− mν

12
(7m2

ν + 24mν + 5)A2(zν)u(zν)

+
m2

ν

2
[(mν + 3)A3(zν) + (mν + 1)A2

2(zν)]u
2(zν)

−m3
νA2(zν)A3(zν)u

3(zν)

+
m3

ν

3
A3

2(zν)u
3(zν)

− m2
ν

3
T3(zν)u

3(zν)

. (B.17)

This final equation is the rational form of the variable-order IF for multiple

zeros given in Equation (5.53) on page 61.

ẑν = zν − mνu(zν)

1−
∑

i6=ν

mi

zν − [ẑi = zi −miu(zi)]

. (B.18)
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Appendix C

Program Listings

This appendix brings together all the details concerning the implementation

of our algorithms described in Chapter 5 starting on page 42 in the form of

computer programs and scripts in various languages.

The line numbers given here are not part of the files listed. They are included

for reference purposes only.

C.1 Introduction

C.1.1 Our Equipment

In the early days of our work on the zeros of polynomials we used the ICT1

Atlas 1 computer [Sti72], that was housed in Gordon Square, London, England

and purchased jointly by a consortium of the University of London and British

Petroleum and installed in 1964.

For a look back to these early days, see [Cro12].

We later migrated to a CDC 6600 computer housed in the University of London

Computer Centre (ULCC) building in Guilford Street, London. Although state-

of-the-art at the time, our computations in Fortran’s DOUBLE PRECISION arith-

metic took so long that the iteration stage (all we had at the time) needed check-

point/restart facilities over a number of days before convergence was achieved.

Now fast forward.

1Later to become ICL
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Table C.1 on page 126 summarises the hardware used for our current computa-

tions.

Component Description
Cache 6 MB
Cores 4
CPU Intel Core i5-3470
Disk 500 GB
Memory 8 GB
Model Viglen Genie (Stone PC-1103)

Table C.1: Our Hardware

Table C.2 on page 126 summarises the current software used for our computa-

tions.

Component Description
Kernel Linux 3.8.4-102
Languages GCC 4.7.2 and Matlab 8.0.0.783
Library GMP 5.0.2
OS Fedora 17 x86 64

Table C.2: Our Software

For details of the GMP library, see §C.1.3 on page 127, and for details of Matlab,

see §C.1.4 starting on page 127.

This arrangement allows us to run both the search stage and the iterative stage

in real time taking at most a few minutes to compute the required zeros to our

required accuracy.

That is progress.

C.1.2 Program Options

We have been writing computer programs for many decades now and still find

the traditional UNIX-style command line interface the most flexible program-

ming environment available.

Therefore, it is important that the programs we invoke on the command line

have a consistent look and feel. This is especially important for the programs

that implement the search stage (see §5.5.1 on page 62) and the iterative stage

(see §5.5.2 on page 63). The command line options provide this consistency.

Table C.3 on page 127 shows the options relevant to our workhorse script

solve.sh (see §C.7.3 on page 209).
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Option Description
-c n Consolidation multiplier (default 3). See §5.2.2 on page 47.
-d n Debug search stage. See Table C.4 on page 127.
-D n Debug iterative stage. See Table C.4 on page 127.
-i Iterate only, use search stage results as inputs.
-l polys List of polynomials (default $failure).
-m n Number of outer iterations (default 8).
-n n Number of inner iterations per outer iteration (default 4).
-o Turn off options (text) within polynomials.
-p n Precision during search stage (default 128 bits).
-P n Precision during iterative stage (default 128 bits).
-s n Sides during search stage (default 2 for 4 squares).
-S Use $success list of polynomials.
-z n Zeros available during search stage (default 5*DEGREE(myp)).

Table C.3: Script Options

Table C.4 on page 127 shows the debug options available. When set, these

options trace certain places and output additional values. Options can be com-

bined by adding their values together.

Option Description
1 Polynomial evaluation. See mylib.c in §C.3.6 on page 144.
2 Newton evaluation. See mylib.c in §C.3.6 on page 144.
4 Complex division. See complex.c in §C.3.1 on page 134.

Table C.4: Debug Options

C.1.3 GNU Multiple Precision Arithmetic Library (GMP)

The GNU Multiple Precision Arithmetic Library [Gra11], often referred to as

GMP in the literature, is a library of functions written in C, callable from

other C, and C-compatible, programs. It enables programmers to store and

manipulate numerical values within a specified precision, chosen at run-time.

C.1.4 Matlab

Matlab is a computing environment that attempts to provide the ideal environ-

ment for developing solutions to problems in multiple disciplines[Mat13]. We

quote from their web site.

“Matlab is a high-level language and interactive environment for nu-

merical computation, visualization, and programming. Using Mat-

lab, you can analyze data, develop algorithms, and create models
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and applications. The language, tools, and built-in math functions

enable you to explore multiple approaches and reach a solution faster

than with spreadsheets or traditional programming languages, such

as C/C++ or Java.

“You can use Matlab for a range of applications, including signal

processing and communications, image and video processing, control

systems, test and measurement, computational finance, and compu-

tational biology. More than a million engineers and scientists in

industry and academia use Matlab, the language of technical com-

puting.”

Our Matlab programs are listed in §C.6 starting on page 190.

REMARK 14. C code listings not provided. Winkler point 12.

C.2 C Header Files

This section describes all the C header files used by the programs for imple-

menting both stage 1 and stage 2 of our algorithm.

C.2.1 complex.h

This header file defines our Complex type which is a structure containing two

Real numbers. They are accessed by the macros REAL() and IMAG(). It also

contains the prototypes of the complex arithmetic functions.

1 #include "real.h"

2

3 #ifndef _COMPLEX_

4

5 #define _COMPLEX_

6 #define REAL(c) (c->real)

7 #define IMAG(c) (c->imag)

8

9 typedef struct complex {

10 Real real;

11 Real imag;

12 } Complex[1];

13

14 extern void cabs(Real, const Complex);

15 extern void cadd(Complex, const Complex, const Complex);

16 extern void caddi(Complex, const Complex, const int);

17 extern int ccmp(const Complex, const Complex);
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18 extern void cconj(Complex, const Complex);

19 extern void ccopy(Complex, const Complex);

20 extern void cdiv(Complex, const Complex, const Complex);

21 extern void cdivi(Complex, const Complex, const int);

22 extern void cdivr(Complex, const Complex, const Real);

23 extern void cdump(const Complex);

24 extern void cerror(Real, const Complex, const Complex);

25 extern void cfree(Complex);

26 extern void ciadd(Complex, const int, const Complex);

27 extern void cimul(Complex, const int, const Complex);

28 extern void cinput(Complex);

29 extern void ciota(Complex);

30 extern void cisub(Complex, const int, const Complex);

31 extern void cmul(Complex, const Complex, const Complex);

32 extern void cneg(Complex, const Complex);

33 extern void cnew(Complex, const double, const double);

34 extern void coutput(const Complex);

35 extern void crmul(Complex, const Real, const Complex);

36 extern void cset(Complex, const double, const double);

37 extern void csub(Complex, const Complex, const Complex);

38 extern void cswap(Complex, Complex);

39

40 #endif

C.2.2 farmer3.h et al.

The header files for the IFs we use to demonstrate our approach are identical

except for the name of the IF, e.g. ehrlich3.h, farmer3.h, etc. so a single

sample is given here to show the structure.

This header file contains the prototype of the functions required to run one

specific IF, namely our third-order IF.

1 #include "complex.h"

2 #include "zero.h"

3

4 #ifndef _FARMER3_

5

6 #define _FARMER3_

7

8 void farmer3(Zero, const Zero, const char);

9

10 #endif
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C.2.3 mylib.h

This header file contains a couple of default constants and a number of global

variables in addition to the prototypes of miscellaneous functions used by our

programs, but mainly those used during the iterative stage.

1 #include <math.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include "poly.h"

5 #include "zero.h"

6

7 #ifndef _MYLIB_

8

9 #define _MYLIB_

10 #define MAX_BUFFER 256

11 #define MAX_ITERS 16

12

13 extern int count;

14 extern int debug;

15 extern int *done;

16 extern int precision;

17

18 void A2(Complex, const Complex);

19 void A3(Complex, const Complex);

20 void error(char*, ...);

21 void fatal(char*, ...);

22 int getinteger(void);

23 int iinput(void);

24 int iterate(Zero, const Zero,

25 void (*)(Zero, const Zero, const char), const char);

26 void newton2(Complex, const Complex, const int);

27 int run(int, char *[],

28 void (*)(Zero, const Zero, const char), const char *);

29 void sighandler(int);

30 void T1(Complex, const Zero, const int);

31 void T1n(Complex, Zero, const int);

32 void T2(Complex, const Zero, const int);

33 void T3(Complex, const Zero, const int);

34 void u(Complex, const Complex);

35 void u1(Complex, const Complex);

36

37 #endif
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C.2.4 poly.h

This header file defines our Poly type which is a vector of Complex numbers

indexed from zero to the macro DEGREE(). Individual coefficients are accessed

by the COEFF() macro and the size originally allocated to the polynomial by the

PSIZE() macro. It also contains the prototypes of the polynomial arithmetic

functions.

1 #include "complex.h"

2

3 #ifndef _POLY_

4

5 #define _POLY_

6 #define COEFF(p, i) (p->coeff[i])

7 #define DEGREE(p) (p->degree)

8 #define PSIZE(p) (p->size)

9

10 typedef struct poly {

11 Complex *coeff;

12 int degree; /* current degree */

13 int size; /* declared size of array */

14 } Poly[1];

15

16 extern Poly myp; /* Global polynomial */

17 extern Poly myp1; /* First derivative */

18 extern Poly myp2; /* Second derivative */

19 extern Poly myp3; /* Third derivative */

20

21 extern void padd(Poly, const Poly, const Poly);

22 extern void pcopy(Poly, const Poly);

23 extern int pdegree(const Poly);

24 extern void pdiff(Poly, const Poly);

25 extern void pdivi(Poly, const Poly, const int);

26 extern void pdivr(Poly, const Poly, const Real);

27 extern void pdump(const Poly);

28 extern void peval(Complex, const Poly, const Complex);

29 extern void pfree(Poly);

30 extern void pimul(Poly, const int, const Poly);

31 extern void pinput(Poly);

32 extern void pmul(Poly, const Poly, const Poly);

33 extern void pnew(Poly, const int);

34 extern void poutput(const Poly);

35 extern void pscale(Poly, const Poly, const double);

36 extern void psetup(Poly, const Poly);

37 extern void pshift(Poly, const Poly, const Complex);

38 extern void psmooth(Poly, const Poly);

39 extern void psub(Poly, const Poly, const Poly);
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40

41 #endif

C.2.5 real.h

This header file defines our Real type which is mapped onto a multiple precision

floating-point number from the GNU Multiple Precision Arithmetic Library

(GMP) [Gra11]. It also contains the prototypes of the real arithmetic functions.

1 #include <float.h>

2 #include <gmp.h>

3

4 #ifndef _REAL_

5

6 #define _REAL_

7 /*

8 * IEEE 754 precisions

9 * Single: 32-bit word, 24-bit mantissa (10 decimal digits)

10 * Double: 64-bit word, 53-bit mantissa (17 decimal digits)

11 */

12

13 #define REAL_EPSILON 1e-24

14 #define REAL_FORMAT "% 25.24Fe"

15 #define REAL_IOTA 1e-96

16 #define REAL_PRECISION 128

17

18 typedef mpf_t Real;

19

20 extern void rabs(Real, const Real);

21 extern void radd(Real, const Real, const Real);

22 extern int rcmp(const Real, const Real);

23 extern int rcmpd(const Real, const double);

24 extern void rcopy(Real, const Real);

25 extern void rdiv(Real, const Real, const Real);

26 extern void rdump(const Real);

27 extern void rfree(Real);

28 extern double rget(const Real);

29 extern int rinit(const int);

30 extern void rinput(Real);

31 extern void rmul(Real, const Real, const Real);

32 extern void rneg(Real, const Real);

33 extern void rnew(Real, const double);

34 extern void riota(Real);

35 extern void routput(const Real);

36 extern void rset(Real, const double);

37 extern void rsqrt(Real, const Real);

38 extern void rsub(Real, const Real, const Real);
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39 extern void rswap(Real, Real);

40

41 #endif

C.2.6 search.h

This header file defines various default values used during the search stage. It

also contains the prototypes of the functions used during the search stage.

1 #include "poly.h"

2 #include "zero.h"

3

4 #define COVER 3

5 #define MAX1 8

6 #define MAX2 4

7 #define SIDES 2

8

9 extern double dekker(const Poly);

10 extern int marden(const Poly, const Complex, const double);

11 extern double pave(Zero, const Poly, const Complex,

12 const double, const int);

13 extern void reduce(Poly, const Poly);

14 extern int search(Zero, const Poly, const int, const int,

15 const int, const double);

16 extern void test(Zero, const Poly, const Complex, const double);

C.2.7 zero.h

This header file defines our Zero type which is a vector of structures containing

approximations to the zeros of a polynomial together with their multiplicities,

indexed from zero to ZEROS(). Individual approximations are accessed by the

ZERO() macro and their multiplicity by the MULT() macro. The size of the

vector is accessed by the ZSIZE() macro. It also contains the prototypes of the

zero arithmetic functions.

1 #include "complex.h"

2

3 #ifndef _ZERO_

4

5 #define _ZERO_

6 #define MULT(z, i) (z->mult[i])

7 #define ZSIZE(z) (z->size)

8 #define ZERO(z, i) (z->zero[i])

9 #define ZEROS(z) (z->count)

133



10

11 typedef struct zero {

12 int count; /* current size */

13 int *mult; /* current multiplicities */

14 int size; /* declared size of the array */

15 Complex *zero; /* current zeros */

16 } Zero[1];

17

18 extern void zcopy(Zero, const Zero);

19 extern void zcover(Zero, const Zero, const double, const double);

20 extern int zdegree(const Zero);

21 extern void zdump(const Zero);

22 extern void zfree(Zero);

23 extern void zinput(Zero);

24 extern void znew(Zero, const int);

25 extern void ziota(Zero);

26 extern void zoutput(const Zero);

27 extern int zpartition(Zero, const int, const int, const int);

28 extern void zsort(Zero, const int, const int);

29 extern void zswap(Zero, const int lhs, const int rhs);

30

31 #endif

C.3 C Program Files

This section describes all the C program files used by the programs for imple-

menting both stage 1 and stage 2 of our algorithm.

C.3.1 complex.c

This program file contains the definitions of the functions for manipulating

Complex values. They are based on the functions for manipulating Real values

described in §C.3.9, starting on page 161.

1 #include "complex.h"

2 #include "mylib.h"

3

4 /*

5 * Compute the absolute value of a Complex number

6 */

7 void cabs(Real out, const Complex in) {

8 Real rtmp1;

9 Real rtmp2;

10 rnew(rtmp1, 0);
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11 rnew(rtmp2, 0);

12 rmul(rtmp1, REAL(in), REAL(in));

13 rmul(rtmp2, IMAG(in), IMAG(in));

14 radd(out, rtmp1, rtmp2);

15 rsqrt(out, out);

16 rfree(rtmp1);

17 rfree(rtmp2);

18 }

19

20 /*

21 * Add two Complex numbers

22 */

23 void cadd(Complex out, const Complex lhs, const Complex rhs) {

24 radd(REAL(out), REAL(lhs), REAL(rhs));

25 radd(IMAG(out), IMAG(lhs), IMAG(rhs));

26 }

27

28 /*

29 * Add a Complex number and an integer

30 */

31 void caddi(Complex out, const Complex lhs, const int rhs) {

32 Real rtmp;

33 rnew(rtmp, rhs);

34 radd(REAL(out), REAL(lhs), rtmp);

35 rcopy(IMAG(out), IMAG(lhs));

36 rfree(rtmp);

37 }

38

39 /*

40 * Compare two Complex numbers. Arbitrary ordering for

41 * comparison purposes

42 */

43 int ccmp(const Complex lhs, const Complex rhs) {

44 int tmp = rcmp(REAL(lhs), REAL(rhs));

45 if (tmp != 0) {

46 return tmp;

47 }

48 return rcmp(IMAG(lhs), IMAG(rhs));

49 }

50

51 /*

52 * Compute the complex conjugate

53 */

54 void cconj(Complex out, const Complex in) {

55 rcopy(REAL(out), REAL(in));

56 rneg(IMAG(out), IMAG(in));

57 }

58

59 /*

60 * Copy a Complex number
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61 */

62 void ccopy(Complex out, const Complex in) {

63 rcopy(REAL(out), REAL(in));

64 rcopy(IMAG(out), IMAG(in));

65 }

66

67 /*

68 * Complex division using brute force

69 */

70 void cdiv(Complex out, const Complex numer, const Complex denom) {

71 Complex ctmp;

72 Real rtmp;

73 cnew(ctmp, 0, 0);

74 rnew(rtmp, 0);

75 cconj(ctmp, denom);

76 cmul(ctmp, numer, ctmp);

77 cabs(rtmp, denom);

78 cdivr(out, ctmp, rtmp);

79 cdivr(out, out, rtmp);

80 if (debug & 4) {

81 printf("Debug4: Cdiv\nNumer\n");

82 cdump(numer);

83 printf("\nDenom\n");

84 cdump(denom);

85 printf("\nOutput\n");

86 cdump(out);

87 printf("\n");

88 }

89 cfree(ctmp);

90 rfree(rtmp);

91 }

92

93 /*

94 * Divide a Complex number by an integer

95 */

96 void cdivi(Complex out, const Complex numer, const int denom) {

97 Real rtmp;

98 rnew(rtmp, denom);

99 cdivr(out, numer, rtmp);

100 rfree(rtmp);

101 }

102

103 /*

104 * Divide a Complex number by a Real

105 */

106 void cdivr(Complex out, const Complex numer, const Real denom) {

107 rdiv(REAL(out), REAL(numer), denom);

108 rdiv(IMAG(out), IMAG(numer), denom);

109 }

110
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111 /*

112 * Dump a Complex number to the highest possible accuracy

113 */

114 void cdump(const Complex in) {

115 rdump(REAL(in));

116 printf(" ");

117 rdump(IMAG(in));

118 }

119

120 /*

121 * Compute relative error of two Complex numbers

122 */

123 void cerror(Real out, const Complex lhs, const Complex rhs) {

124 Complex ctmp;

125 Real denom;

126 Real numer;

127 cnew(ctmp, 0, 0);

128 rnew(denom, 0);

129 rnew(numer, 0);

130 csub(ctmp, lhs, rhs);

131 cabs(numer, ctmp);

132 cabs(denom, lhs);

133 rdiv(out, numer, denom);

134 cfree(ctmp);

135 rfree(denom);

136 rfree(numer);

137 }

138

139 /*

140 * Free the storage for a Complex number

141 */

142 void cfree(Complex in) {

143 rfree(REAL(in));

144 rfree(IMAG(in));

145 }

146

147 /*

148 * Add an integer and a Complex number

149 */

150 void ciadd(Complex out, const int lhs, const Complex rhs) {

151 Real tmp;

152 rnew(tmp, lhs);

153 radd(REAL(out), tmp, REAL(rhs));

154 rcopy(IMAG(out), IMAG(rhs));

155 rfree(tmp);

156 }

157

158 /*

159 * Multiple an integer by a Complex number

160 */
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161 void cimul(Complex out, const int lhs, const Complex rhs) {

162 Real tmp;

163 rnew(tmp, lhs);

164 crmul(out, tmp, rhs);

165 rfree(tmp);

166 }

167

168 /*

169 * Input a Complex number

170 */

171 void cinput(Complex out) {

172 rinput(REAL(out));

173 rinput(IMAG(out));

174 }

175

176 /*

177 * Set very small Complex numbers to zero

178 */

179 void ciota(Complex c) {

180 riota(REAL(c));

181 riota(IMAG(c));

182 }

183

184 /*

185 * Subtract a Complex number from an integer

186 */

187 void cisub(Complex out, const int lhs, const Complex rhs) {

188 Real tmp;

189 rnew(tmp, lhs);

190 rsub(REAL(out), tmp, REAL(rhs));

191 rcopy(IMAG(out), IMAG(rhs));

192 rfree(tmp);

193 }

194

195 /*

196 * Multiple two Complex numbers

197 */

198 void cmul(Complex out, const Complex lhs, const Complex rhs) {

199 Complex ctmp;

200 Real rtmp1;

201 Real rtmp2;

202 cnew(ctmp, 0, 0);

203 rnew(rtmp1, 0);

204 rnew(rtmp2, 0);

205 rmul(rtmp1, REAL(lhs), REAL(rhs));

206 rmul(rtmp2, IMAG(lhs), IMAG(rhs));

207 rsub(REAL(ctmp), rtmp1, rtmp2);

208 rmul(rtmp1, REAL(lhs), IMAG(rhs));

209 rmul(rtmp2, IMAG(lhs), REAL(rhs));

210 radd(IMAG(ctmp), rtmp1, rtmp2);
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211 ccopy(out, ctmp);

212 cfree(ctmp);

213 rfree(rtmp1);

214 rfree(rtmp2);

215 }

216

217 /*

218 * Multiple a Real by a Complex number

219 */

220 void crmul(Complex out, const Real lhs, const Complex rhs) {

221 rmul(REAL(out), lhs, REAL(rhs));

222 rmul(IMAG(out), lhs, IMAG(rhs));

223 }

224

225 /*

226 * Negate a Complex number

227 */

228 void cneg(Complex out, const Complex in) {

229 rneg(REAL(out), REAL(in));

230 rneg(IMAG(out), IMAG(in));

231 }

232

233 /*

234 * Create a new Complex number from two double precision

235 * numbers

236 */

237 void cnew(Complex out, const double re, const double im) {

238 rnew(REAL(out), re);

239 rnew(IMAG(out), im);

240 }

241

242 /*

243 * Output a Complex number

244 */

245 void coutput(const Complex in) {

246 routput(REAL(in));

247 printf(" ");

248 routput(IMAG(in));

249 }

250

251 /*

252 * Create a Complex number from two double precision numbers

253 */

254 void cset(Complex out, const double re, const double im) {

255 rset(REAL(out), re);

256 rset(IMAG(out), im);

257 }

258

259 /*

260 * Subtract two Complex numbers
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261 */

262 void csub(Complex out, const Complex lhs, const Complex rhs) {

263 rsub(REAL(out), REAL(lhs), REAL(rhs));

264 rsub(IMAG(out), IMAG(lhs), IMAG(rhs));

265 }

266

267 /*

268 * Swap two Complex numbers

269 */

270 void cswap(Complex lhs, Complex rhs) {

271 rswap(REAL(lhs), REAL(rhs));

272 rswap(IMAG(lhs), IMAG(rhs));

273 }

C.3.2 ehrlich3.c

This program file contains the function for evaluating Louis Ehrlich’s third-order

IF defined in Equation (B.15) on page 123.

1 #include <stdio.h>

2 #include "mylib.h"

3 #include "ehrlich3.h"

4 #include "zero.h"

5

6 int main(int argc, char *argv[]) {

7 return run(argc, argv, &ehrlich3, "Ehrlich’s third-order");

8 }

9

10 /*

11 * Perform one iteration of Ehrlich’s third-order method

12 */

13 void ehrlich3(Zero out, const Zero in, const char mode) {

14 Complex ctmp;

15 Complex denom;

16 int nu;

17 Complex numer;

18 Complex utmp;

19 Zero z;

20 cnew(ctmp, 0, 0);

21 cnew(denom, 0, 0);

22 cnew(numer, 0, 0);

23 cnew(utmp, 0, 0);

24 znew(z, ZEROS(in));

25 zcopy(z, in);

26 for (nu = 0; nu < ZEROS(z); nu++) {

27 if (done[nu]) {

28 continue;
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29 }

30 u(utmp, ZERO(z, nu));

31 cimul(numer, MULT(z, nu), utmp);

32 T1(ctmp, z, nu);

33 cmul(ctmp, ctmp, utmp);

34 cisub(denom, 1, ctmp);

35 cdiv(ctmp, numer, denom);

36 csub(ZERO(out, nu), ZERO(z, nu), ctmp);

37 if (mode == ’s’) {

38 ccopy(ZERO(z, nu), ZERO(out, nu));

39 }

40 }

41 cfree(ctmp);

42 cfree(denom);

43 cfree(numer);

44 cfree(utmp);

45 zfree(z);

46 }

C.3.3 farmer3.c

This program file contains the function for evaluating Mick Farmer and George

Loizou’s third-order IF defined in Equation (5.49) on page 60.

1 #include <stdio.h>

2 #include "mylib.h"

3 #include "farmer3.h"

4 #include "zero.h"

5

6 int main(int argc, char *argv[]) {

7 return run(argc, argv, &farmer3, "Farmer’s third-order (multiple zeros)");

8 }

9

10 /*

11 * Perform one iteration of Farmer’s third-order multiple

12 * zero method (p. 139). Coded for clarity rather than

13 * efficiency.

14 */

15 void farmer3(Zero out, const Zero in, const char mode) {

16 Complex cexpr;

17 Complex cterm;

18 int nu;

19 Complex utemp;

20 Zero z;

21 cnew(cexpr, 0, 0);

22 cnew(cterm, 0, 0);

23 cnew(utemp, 0, 0);
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24 znew(z, ZEROS(in));

25 zcopy(z, in);

26 for (nu = 0; nu < ZEROS(z); nu++) {

27 if (done[nu]) {

28 continue;

29 }

30 u(utemp, ZERO(z, nu));

31 /* Step 1 */

32 cimul(cexpr, MULT(z, nu), utemp);

33 if (debug & 8) {

34 printf("Correction 1\n");

35 coutput(cexpr);

36 printf("\n");

37 }

38 /* Step 2 */

39 T1(cterm, z, nu);

40 cimul(cterm, MULT(z, nu), cterm);

41 cmul(cterm, cterm, utemp);

42 cmul(cterm, cterm, utemp);

43 cadd(cexpr, cexpr, cterm);

44 if (debug & 8) {

45 printf("Correction 2\n");

46 coutput(cexpr);

47 printf("\n");

48 }

49 /* Step 3 */

50 csub(ZERO(out, nu), ZERO(z, nu), cexpr);

51 if (mode == ’s’) {

52 ccopy(ZERO(z, nu), ZERO(out, nu));

53 }

54 }

55 cfree(cexpr);

56 cfree(cterm);

57 cfree(utemp);

58 zfree(z);

59 }

C.3.4 farmerv.c

This program file contains the function for evaluating Mick Farmer and George

Loizou’s variable-order IF defined in Equation (5.53) on page 61.

1 #include <stdio.h>

2 #include "farmerv.h"

3 #include "mylib.h"

4 #include "zero.h"

5
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6 int main(int argc, char *argv[]) {

7 return run(argc, argv, &farmerv, "Farmer’s variable-order");

8 }

9

10 /*

11 * Perform one iteration of Farmer’s variable-order IF

12 * (based on Farmer’s third-order)

13 */

14 void farmerv(Zero out, const Zero in, const char mode) {

15 Complex csum;

16 Complex ctmp;

17 int nu;

18 Complex mutmp;

19 cnew(csum, 1, 0);

20 cnew(ctmp, 0, 0);

21 cnew(mutmp, 0, 0);

22 zcopy(out, in);

23 for (nu = 0; nu < ZEROS(out); nu++) {

24 if (done[nu]) {

25 continue;

26 }

27 u(mutmp, ZERO(out, nu));

28 cimul(mutmp, MULT(out, nu), mutmp);

29 T1n(ctmp, out, nu);

30 cmul(ctmp, ctmp, mutmp);

31 csub(csum, csum, ctmp);

32 cmul(csum, mutmp, csum);

33 csub(ZERO(out, nu), ZERO(out, nu), csum);

34 }

35 cfree(csum);

36 cfree(ctmp);

37 cfree(mutmp);

38 }

C.3.5 hansen3.c

This program file contains the function for evaluating Vagn Hansen’s third-order

IF defined in Equation (B.10) on page 122.

1 #include <stdio.h>

2 #include "hansen3.h"

3 #include "mylib.h"

4 #include "zero.h"

5

6 int main(int argc, char *argv[]) {

7 return run(argc, argv, &hansen3, "Hansen3’s third-order");

8 }
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9

10 /*

11 * Perform one iteration of Hansen’s third-order method

12 */

13 void hansen3(Zero out, const Zero in, const char mode) {

14 Complex ctmp;

15 Complex denom;

16 int nu;

17 Complex numer;

18 Complex utmp;

19 Zero z;

20 cnew(ctmp, 0, 0);

21 cnew(denom, 0, 0);

22 cnew(numer, 0, 0);

23 cnew(utmp, 0, 0);

24 znew(z, ZEROS(in));

25 zcopy(z, in);

26 for (nu = 0; nu < ZEROS(z); nu++) {

27 if (done[nu]) {

28 continue;

29 }

30 u(utmp, ZERO(z, nu));

31 cimul(numer, MULT(z, nu), utmp);

32 cset(denom, 0.5*(1+MULT(z, nu)), 0);

33 A2(ctmp, ZERO(z, nu));

34 cmul(ctmp, numer, ctmp);

35 csub(denom, denom, ctmp);

36 cdiv(ctmp, numer, denom);

37 csub(ZERO(out, nu), ZERO(z, nu), ctmp);

38 }

39 cfree(ctmp);

40 cfree(denom);

41 cfree(numer);

42 cfree(utmp);

43 zfree(z);

44 }

C.3.6 mylib.c

This program file contains the definitions of various functions that do not fit

in with the more focused program files. These vary from functions used in

both stages of our algorithm, e.g. reporting errors or evaluating u(z) and its

derivatives, or those evaluating useful functions, e.g. Ai(z) and Ti(z) which are

used in stage two.

1 /*
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2 * My library of common functions used by other modules

3 */

4 #include <getopt.h>

5 #include <stdarg.h>

6 #include <stdio.h>

7 #include <stdlib.h>

8 #include <string.h>

9 #include <time.h>

10 #include "mylib.h"

11 #include "poly.h"

12 #include "zero.h"

13

14 int count = -1; /* Count of convergent approximations.

15 * A negative value indicates that we

16 * are in the search stage, where we do

17 * do not call ciota() when evaluating

18 * u(z), see below, because the

19 * function lagouanelle() requires

20 * accurate values, not truncated

21 * towards zero values which suit our

22 * IFs. */

23 int debug = 0; /* Debugging flags */

24 int *done; /* Approximation has converged */

25 int precision = REAL_PRECISION;

26

27 /*

28 * Compute the value of A2(z)

29 */

30 void A2(Complex out, const Complex in) {

31 Complex denom;

32 Complex numer;

33 cnew(denom, 0, 0);

34 cnew(numer, 0, 0);

35 peval(numer, myp2, in);

36 peval(denom, myp1, in);

37 cimul(denom, 2, denom);

38 cdiv(out, numer, denom);

39 cfree(denom);

40 cfree(numer);

41 }

42

43 /*

44 * Compute the value of A3(z)

45 */

46 void A3(Complex out, const Complex in) {

47 Complex denom;

48 Complex numer;

49 cnew(denom, 0, 0);

50 cnew(numer, 0, 0);

51 peval(numer, myp3, in);
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52 peval(denom, myp1, in);

53 cimul(denom, 6, denom);

54 cdiv(out, numer, denom);

55 cfree(denom);

56 cfree(numer);

57 }

58

59 /*

60 * Report an error on standard error

61 */

62 void error(char *fmt, ...) {

63 va_list args;

64 va_start(args, fmt);

65 vfprintf(stderr, fmt, args);

66 fprintf(stderr, "\n");

67 va_end(args);

68 }

69

70 /*

71 * Report a fatal error on standard error, then exit

72 */

73 void fatal(char *fmt, ...) {

74 va_list args;

75 va_start(args, fmt);

76 vfprintf(stderr, fmt, args);

77 fprintf(stderr, "\n");

78 va_end(args);

79 exit(EXIT_FAILURE);

80 }

81

82 /*

83 * Input an integer, stripping blank lines or leading

84 * comments

85 */

86 int getinteger(void) {

87 char buff[MAX_BUFFER];

88 int i;

89 int n;

90 /* Strip leading comments and blank lines */

91 do {

92 fgets(buff, sizeof(buff), stdin);

93 i = strspn(buff, " ");

94 } while (buff[i] == ’#’ || buff[i] == ’\n’);

95 if (sscanf(buff+i, "%d", &n) != 1) {

96 fatal("Getinteger error (%s)", buff);

97 }

98 return n;

99 }

100

101 /*
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102 * Input an integer

103 */

104 int iinput(void) {

105 int n;

106 if (scanf("%d", &n) != 1) {

107 fatal("Iinput read error");

108 }

109 return n;

110 }

111

112 /*

113 * Perform a number of iterations of an IF

114 */

115 int iterate(Zero out, const Zero in,

116 void (*ftn)(Zero, const Zero, const char),

117 const char mode) {

118 int iter;

119 int nu;

120 Real rtmp;

121 clock_t tstart = clock();

122 Zero z;

123 count = 0;

124 done = calloc(ZEROS(in), sizeof(int));

125 rnew(rtmp, 0);

126 znew(z, ZEROS(in));

127 zcopy(z, in);

128 for (iter = 1; count < ZEROS(z) && iter <= MAX_ITERS; iter++) {

129 printf("Iteration %d\n", iter);

130 (*ftn)(out, z, mode);

131 zoutput(out);

132 for (nu = 0; nu < ZEROS(z); nu++) {

133 if (done[nu]) {

134 continue;

135 }

136 cerror(rtmp, ZERO(out, nu), ZERO(z, nu));

137 printf("Err[%2d] ", nu+1);

138 routput(rtmp);

139 if (rcmpd(rtmp, REAL_EPSILON) < 0) {

140 count++;

141 done[nu] = 1;

142 printf(" <==");

143 }

144 printf("\n");

145 }

146 printf("Convergence %d %d\n", iter, count);

147 zcopy(z, out);

148 }

149 free(done);

150 rfree(rtmp);

151 zfree(z);
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152 printf("ITERATE TIME %f\n",

153 (double)(clock()-tstart)/CLOCKS_PER_SEC);

154 if (count == ZEROS(z)) {

155 FILE *fd;

156 if ((fd = fopen("/tmp/iters", "w")) == NULL) {

157 fatal("Iterate can’t open temporary file");

158 }

159 fprintf(fd, "%d\n", iter-1);

160 fclose(fd);

161 rinit(REAL_PRECISION);

162 znew(z, ZEROS(z));

163 zcopy(z, out);

164 ziota(z);

165 zsort(z, 0, ZEROS(z)-1);

166 zoutput(z);

167 return(EXIT_SUCCESS);

168 }

169 return(EXIT_FAILURE);

170 }

171

172 /*

173 * Compute a Newton second-order approximation

174 */

175 void newton2(Complex out, const Complex in, const int mult) {

176 Complex ctmp;

177 cnew(ctmp, 0, 0);

178 u(ctmp, in);

179 cimul(ctmp, mult, ctmp);

180 csub(out, in, ctmp);

181 if (debug & 2) {

182 printf("Debug2: Newton2\nInput\n");

183 cdump(in);

184 printf("\nOutput\n");

185 cdump(out);

186 printf("\n");

187 }

188 cfree(ctmp);

189 }

190

191 /*

192 * Run an IF

193 */

194 int run(int argc, char *argv[],

195 void (*ftn)(Zero, const Zero, const char),

196 const char *name) {

197 int c;

198 Zero in;

199 char mode = ’p’;

200 Zero out;

201 precision = 4*REAL_PRECISION;
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202 while ((c = getopt(argc, argv, "d:p:s")) != -1) {

203 switch (c) {

204 case ’d’:

205 debug = atoi(optarg);

206 break;

207 case ’p’:

208 precision = atoi(optarg);

209 break;

210 case ’s’:

211 mode = ’s’;

212 break;

213 default:

214 fatal("Unknown option %s", argv[optind-1]);

215 }

216 }

217 rinit(precision);

218 printf("%s (%c)\n", name, mode);

219 pinput(myp);

220 printf("Polynomial\n");

221 poutput(myp);

222 psetup(myp, myp);

223 printf("Monic polynomial\n");

224 poutput(myp);

225 pdiff(myp1, myp);

226 printf("First derivative\n");

227 poutput(myp1);

228 pdiff(myp2, myp1);

229 printf("Second derivative\n");

230 poutput(myp2);

231 pdiff(myp3, myp2);

232 printf("Third derivative\n");

233 poutput(myp3);

234 zinput(in);

235 printf("Initial approximations\n");

236 zoutput(in);

237 if (DEGREE(myp) != zdegree(in)) {

238 fatal("Iterate run degree mismatch, poly %d, zeros %d",

239 DEGREE(myp), zdegree(in));

240 }

241 znew(out, ZEROS(in));

242 for (c = 0; c < ZEROS(out); c++) {

243 MULT(out, c) = MULT(in, c);

244 }

245 return iterate(out, in, ftn, mode);

246 }

247

248 /*

249 * Handle a signal, presumably from a failed

250 * assertion

251 */
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252 void sighandler(int sibnum) {

253 fprintf(stderr, "ABORT!\n");

254 exit(EXIT_FAILURE);

255 }

256

257 /*

258 * Compute the value of T1(z_nu)

259 */

260 void T1(Complex out, const Zero in, const int nu) {

261 Complex denom;

262 int i;

263 Complex numer;

264 Complex sum;

265 cnew(denom, 0, 0);

266 cnew(numer, 0, 0);

267 cnew(sum, 0, 0);

268 for (i = 0; i < ZEROS(in); i++) {

269 if (i == nu) {

270 continue;

271 }

272 cset(numer, MULT(in, i), 0);

273 csub(denom, ZERO(in, nu), ZERO(in, i));

274 cdiv(numer, numer, denom);

275 cadd(sum, sum, numer);

276 }

277 ccopy(out, sum);

278 cfree(denom);

279 cfree(numer);

280 cfree(sum);

281 }

282

283 /*

284 * Compute the value of T1n(z_nu)

285 */

286 void T1n(Complex out, Zero in, const int nu) {

287 Complex ctmp;

288 Complex denom;

289 int i;

290 Complex numer;

291 Real rtmp;

292 Complex sum;

293 cnew(ctmp, 0, 0);

294 cnew(denom, 0, 0);

295 cnew(numer, 0, 0);

296 rnew(rtmp, 0);

297 cnew(sum, 0, 0);

298 for (i = 0; i < ZEROS(in); i++) {

299 if (i == nu) {

300 continue;

301 }
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302 cset(numer, MULT(in, i), 0);

303 if (!done[i]) {

304 newton2(ctmp, ZERO(in, i), MULT(in, i));

305 cerror(rtmp, ctmp, ZERO(in, i));

306 if (rcmpd(rtmp, REAL_EPSILON) < 0) {

307 count++;

308 done[i] = 1;

309 printf("Err[%2d] ", i+1);

310 routput(rtmp);

311 printf(" <==\n");

312 }

313 ccopy(ZERO(in, i), ctmp);

314 }

315 csub(denom, ZERO(in, nu), ZERO(in, i));

316 cdiv(numer, numer, denom);

317 cadd(sum, sum, numer);

318 }

319 ccopy(out, sum);

320 cfree(ctmp);

321 cfree(denom);

322 cfree(numer);

323 rfree(rtmp);

324 cfree(sum);

325 }

326

327 /*

328 * Compute the value of T2(z_nu)

329 */

330 void T2(Complex out, const Zero in, const int nu) {

331 Complex denom;

332 int i;

333 Complex numer;

334 Complex sum;

335 cnew(denom, 0, 0);

336 cnew(numer, 0, 0);

337 cnew(sum, 0, 0);

338 for (i = 0; i < ZEROS(in); i++) {

339 if (i == nu) {

340 continue;

341 }

342 cset(numer, MULT(in, i), 0);

343 csub(denom, ZERO(in, nu), ZERO(in, i));

344 cmul(denom, denom, denom);

345 cdiv(numer, numer, denom);

346 cadd(sum, sum, numer);

347 }

348 ccopy(out, sum);

349 cfree(denom);

350 cfree(numer);

351 cfree(sum);
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352 }

353

354 /*

355 * Compute the value of T3(z_nu)

356 */

357 void T3(Complex out, const Zero in, const int nu) {

358 Complex ctemp;

359 Complex denom;

360 int i;

361 Complex numer;

362 Complex sum;

363 cnew(ctemp, 0, 0);

364 cnew(denom, 0, 0);

365 cnew(numer, 0, 0);

366 cnew(sum, 0, 0);

367 for (i = 0; i < ZEROS(in); i++) {

368 if (i == nu) {

369 continue;

370 }

371 cset(numer, MULT(in, i), 0);

372 csub(ctemp, ZERO(in, nu), ZERO(in, i));

373 cmul(denom, ctemp, ctemp);

374 cmul(denom, denom, ctemp);

375 cdiv(numer, numer, denom);

376 cadd(sum, sum, numer);

377 }

378 ccopy(out, sum);

379 cfree(ctemp);

380 cfree(denom);

381 cfree(numer);

382 cfree(sum);

383 }

384

385 /*

386 * Compute the value of u(z)

387 */

388 void u(Complex out, const Complex in) {

389 Complex denom;

390 Complex numer;

391 cnew(denom, 0, 0);

392 cnew(numer, 0, 0);

393 peval(numer, myp, in);

394 peval(denom, myp1, in);

395 /* Search stage, no; iterative stage, yes. */

396 if (count >= 0) {

397 ciota(numer);

398 }

399 cdiv(out, numer, denom);

400 if (debug & 1) {

401 printf("Debug1: Polynomial evaluation (p%d)\nInput\n", precision);
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402 cdump(in);

403 printf("\nNumer\n");

404 cdump(numer);

405 printf("\nDenom\n");

406 cdump(denom);

407 printf("\nOutput\n");

408 cdump(out);

409 printf("\n");

410 }

411 cfree(denom);

412 cfree(numer);

413 }

414

415 /*

416 * Compute the value of u’(z)

417 */

418 void u1(Complex out, const Complex in) {

419 Complex ctmp1;

420 Complex ctmp2;

421 cnew(ctmp1, 2, 0);

422 cnew(ctmp2, 0, 0);

423 A2(ctmp2, in);

424 cmul(ctmp1, ctmp1, ctmp2);

425 u(ctmp2, in);

426 cmul(ctmp1, ctmp1, ctmp2);

427 cset(out, 1, 0);

428 csub(out, out, ctmp1);

429 cfree(ctmp1);

430 cfree(ctmp2);

431 }

C.3.7 poly.c

This program file contains the definitions of the functions for manipulating

Poly values. They obviously rely on the Real functions described in §C.3.9,
starting on page 161, and the Complex functions described in §C.3.1, starting
on page 134.

1 #include <assert.h>

2 #include <stdio.h>

3 #include "mylib.h"

4 #include "poly.h"

5

6 Poly myp; /* Global polynomial */

7 Poly myp1; /* First derivative */

8 Poly myp2; /* Second derivative */

9 Poly myp3; /* Third derivative */
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10

11 /*

12 * Add together two Polys, assuming their degrees are

13 * the same (for Eulerian polynomial)

14 */

15 void padd(Poly out, const Poly lhs, const Poly rhs) {

16 int i;

17 assert(PSIZE(out) > DEGREE(lhs));

18 DEGREE(out) = DEGREE(lhs);

19 for (i = 0; i <= DEGREE(out); i++) {

20 cadd(COEFF(out, i), COEFF(lhs, i), COEFF(rhs, i));

21 }

22 }

23

24 /*

25 * Take a copy of a Poly, ensuring sufficient space

26 */

27 void pcopy(Poly out, const Poly in) {

28 int i;

29 assert(PSIZE(out) > DEGREE(in));

30 DEGREE(out) = DEGREE(in);

31 for (i = DEGREE(out); i >= 0; i--) {

32 ccopy(COEFF(out, i), COEFF(in, i));

33 }

34 }

35

36 /*

37 * Compute the degree of a Poly

38 */

39 int pdegree(const Poly in) {

40 int i;

41 Real tmp;

42 rnew(tmp, 0);

43 for (i = DEGREE(in); i > 0; i--) {

44 cabs(tmp, COEFF(in, i));

45 if (rcmpd(tmp, REAL_EPSILON) > 0) {

46 break;

47 }

48 }

49 rfree(tmp);

50 return i;

51 }

52

53 /*

54 * Compute the coefficients of the differential of a

55 * Poly, allocating sufficient space

56 */

57 void pdiff(Poly out, const Poly in) {

58 int i;

59 if (DEGREE(in) == 0) {
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60 pnew(out, 0);

61 } else {

62 pnew(out, DEGREE(in)-1);

63 for (i = DEGREE(out); i >= 0; i--) {

64 cimul(COEFF(out, i), i+1, COEFF(in, i+1));

65 }

66 }

67 }

68

69 /*

70 * Divide a Poly by an integer

71 */

72 void pdivi(Poly out, const Poly numer, const int denom) {

73 Real tmp;

74 rnew(tmp, denom);

75 pdivr(out, numer, tmp);

76 rfree(tmp);

77 }

78

79 /*

80 * Divide a Poly by a Real number

81 */

82 void pdivr(Poly out, const Poly numer, const Real denom) {

83 int i;

84 assert(PSIZE(out) > DEGREE(numer));

85 DEGREE(out) = DEGREE(numer);

86 for (i = 0; i <= DEGREE(out); i++) {

87 cdivr(COEFF(out, i), COEFF(numer, i), denom);

88 }

89 }

90

91 /*

92 * Dump a Poly to the highest possible accurancy

93 */

94 void pdump(const Poly in) {

95 int i;

96 printf("%d\n", DEGREE(in));

97 for (i = DEGREE(in); i >= 0; i--) {

98 cdump(COEFF(in, i));

99 printf("\n");

100 }

101 }

102

103 /*

104 * Evaluate a Poly

105 */

106 void peval(Complex out, const Poly in, const Complex c) {

107 int i;

108 cnew(out, 0, 0);

109 for (i = DEGREE(in); i >= 0; i--) {
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110 cmul(out, out, c);

111 cadd(out, out, COEFF(in, i));

112 }

113 }

114

115 /*

116 * Free the space allocated for a Poly

117 */

118 void pfree(Poly in) {

119 int i;

120 for (i = 0; i < PSIZE(in); i++) {

121 cfree(COEFF(in, i));

122 }

123 free(in->coeff);

124 }

125

126 /*

127 * Multiply an integer by a Poly

128 */

129 void pimul(Poly out, const int n, const Poly in) {

130 int i;

131 assert(PSIZE(out) > DEGREE(in));

132 DEGREE(out) = DEGREE(in);

133 for (i = 0; i <= DEGREE(out); i++) {

134 cimul(COEFF(out, i), n, COEFF(in, i));

135 }

136 }

137

138 /*

139 * Input a Poly, allocating sufficient space

140 */

141 void pinput(Poly out) {

142 int i;

143 DEGREE(out) = getinteger();

144 PSIZE(out) = DEGREE(out)+1;

145 if ((out->coeff = calloc(PSIZE(out), sizeof(Complex))) == NULL) {

146 fatal("Pinput out of memory %d", PSIZE(out));

147 }

148 for (i = DEGREE(out); i >= 0; i--) {

149 cinput(COEFF(out, i));

150 }

151 }

152

153 /*

154 * Put a Poly into monic form

155 */

156 void pmonic(Poly out, const Poly in) {

157 int i;

158 pcopy(out, in);

159 for (i = 0; i < DEGREE(out); i++) {
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160 cdiv(COEFF(out, i), COEFF(out, i), COEFF(out, DEGREE(out)));

161 }

162 cset(COEFF(out, DEGREE(out)), 1, 0);

163 }

164

165 /*

166 * Multiply two Polys

167 */

168 void pmul(Poly out, const Poly lhs, const Poly rhs) {

169 Complex ctmp;

170 int i;

171 int j;

172 Poly ptmp;

173 cnew(ctmp, 0, 0);

174 pnew(ptmp, DEGREE(lhs)+DEGREE(rhs));

175 for (i = 0; i <= DEGREE(lhs); i++) {

176 for (j = 0; j <= DEGREE(rhs); j++) {

177 cmul(ctmp, COEFF(lhs, i), COEFF(rhs, j));

178 cadd(COEFF(ptmp, i+j), COEFF(ptmp, i+j), ctmp);

179 }

180 }

181 pcopy(out, ptmp);

182 cfree(ctmp);

183 pfree(ptmp);

184 }

185

186 /*

187 * Allocate space for a Poly

188 */

189 void pnew(Poly out, const int degree) {

190 int i;

191 DEGREE(out) = degree;

192 PSIZE(out) = DEGREE(out)+1;

193 if ((out->coeff = calloc(PSIZE(out), sizeof(Complex))) == NULL) {

194 fatal("Pnew out of memory %d", PSIZE(out));

195 }

196 for (i = 0; i < PSIZE(out); i++) {

197 cnew(COEFF(out, i), 0, 0);

198 }

199 }

200

201 /*

202 * Output a Poly

203 */

204 void poutput(const Poly in) {

205 int i;

206 for (i = DEGREE(in); i >= 0; i--) {

207 printf(" p[%2d] ", i);

208 coutput(COEFF(in, i));

209 printf("\n");
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210 }

211 fflush(stdout);

212 }

213

214 /*

215 * Scale a Poly, out(z) = in(radius*z), no special

216 * steps, see Stewart (1969)

217 */

218 void pscale(Poly out, const Poly in, const double radius) {

219 int i;

220 Real rtmp;

221 Real rho;

222 rnew(rho, radius);

223 rnew(rtmp, 1);

224 assert(PSIZE(out) > DEGREE(in));

225 DEGREE(out) = DEGREE(in);

226 for (i = 0; i <= DEGREE(out); i++) {

227 crmul(COEFF(out, i), rtmp, COEFF(in, i));

228 rmul(rtmp, rtmp, rho);

229 }

230 if (debug == 4) {

231 printf("Pscale\n");

232 poutput(out);

233 }

234 rfree(rtmp);

235 rfree(rho);

236 }

237

238 /*

239 * Scale a Poly to monic form and remove zeros at the

240 * origin

241 */

242 void psetup(Poly out, const Poly in) {

243 int i;

244 int n;

245 Real rtmp;

246 rnew(rtmp, 0);

247 pcopy(out, in);

248 for (n = 0; n <= DEGREE(out); n++) {

249 cabs(rtmp, COEFF(out, n));

250 if (rget(rtmp) > 0) {

251 break;

252 }

253 }

254 if (n > 0) {

255 printf("Removing %d zeros at the origin\n", n);

256 DEGREE(out) -= n;

257 for (i = 0; i <= DEGREE(out); i++) {

258 ccopy(COEFF(out, i), COEFF(out, n+i));

259 }
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260 }

261 pmonic(out, out);

262 rfree(rtmp);

263 }

264

265 /*

266 * Shift a Poly, out(z) = in(z+c), see Stewart (1969)

267 */

268 void pshift(Poly out, const Poly in, const Complex c) {

269 Complex ctmp;

270 int i;

271 cnew(ctmp, 0, 0);

272 pcopy(out, in);

273 for (i = 1; i <= DEGREE(out); i++) {

274 int j;

275 for (j = DEGREE(out)-i; j < DEGREE(out); j++) {

276 cmul(ctmp, COEFF(out, j+1), c);

277 cadd(COEFF(out, j), COEFF(out, j), ctmp);

278 }

279 }

280 cfree(ctmp);

281 }

282

283 /*

284 * Smooth a Poly, see Marden for reasoning

285 */

286 void psmooth(Poly out, const Poly in) {

287 Real raverage;

288 int i;

289 Real rtmp;

290 rnew(raverage, 0);

291 rnew(rtmp, 0);

292 for (i = 0; i <= DEGREE(in); i++) {

293 cabs(rtmp, COEFF(in, i));

294 radd(raverage, raverage, rtmp);

295 }

296 rset(rtmp, DEGREE(in)+1);

297 rdiv(raverage, raverage, rtmp);

298 pdivr(out, in, raverage);

299 rfree(raverage);

300 rfree(rtmp);

301 }

302

303 /*

304 * Subtract two Polys (used to build Laguerre polynomials)

305 */

306 void psub(Poly out, const Poly lhs, const Poly rhs) {

307 int i;

308 if (DEGREE(lhs) > DEGREE(rhs)) {

309 pcopy(out, lhs);

159



310 for (i = 0; i <= DEGREE(rhs); i++) {

311 csub(COEFF(out, i), COEFF(out, i), COEFF(rhs, i));

312 }

313 } else {

314 pcopy(out, rhs);

315 for (i = 0; i <= DEGREE(lhs); i++) {

316 csub(COEFF(out, i), COEFF(out, i), COEFF(lhs, i));

317 }

318 }

319 }

C.3.8 rall2.c

This program file contains the function for evaluating Louis Rall’s second-order

IF defined in Equation (B.9) on page 122.

1 #include "mylib.h"

2 #include "rall2.h"

3 #include "zero.h"

4

5 /*

6 * Main program for Rall’s second-order IF

7 */

8 int main(int argc, char *argv[]) {

9 return run(argc, argv, &rall2, "Rall’s second-order");

10 }

11

12 /*

13 * Perform one iteration of Rall’s method

14 */

15 void rall2(Zero out, const Zero in, const char mode) {

16 int nu;

17 Zero z;

18 znew(z, ZEROS(in));

19 zcopy(z, in);

20 for (nu = 0; nu < ZEROS(z); nu++) {

21 if (done[nu]) {

22 continue;

23 }

24 newton2(ZERO(out, nu), ZERO(z, nu), MULT(z, nu));

25 }

26 zfree(z);

27 }
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C.3.9 real.c

This program file contains the definitions of the functions for manipulating Real

values. The majority of these use the low-level functions defined in the GNU

Multiple Precision Arithmetic Library (GMP) [Gra11].

1 #include <stdio.h>

2 #include "mylib.h"

3 #include "real.h"

4

5 /*

6 * Absolute value of a Real

7 */

8 void rabs(Real out, const Real in) {

9 mpf_abs(out, in);

10 }

11

12 /*

13 * Add two Reals

14 */

15 void radd(Real out, const Real lhs, const Real rhs) {

16 mpf_add(out, lhs, rhs);

17 }

18

19 /*

20 * Compare two Reals (< is -1, == is 0, > is 1)

21 */

22 int rcmp(const Real lhs, const Real rhs) {

23 return mpf_cmp(lhs, rhs);

24 }

25

26 /*

27 * Compare a Real and a double (< is -1, == is 0, > is 1)

28 */

29 int rcmpd(const Real lhs, const double rhs) {

30 return mpf_cmp_d(lhs, rhs);

31 }

32

33 /*

34 * Copy a Real

35 */

36 void rcopy(Real out, const Real in) {

37 mpf_set(out, in);

38 }

39

40 /*

41 * Divide two Reals

42 */
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43 void rdiv(Real out, const Real numer, const Real denom) {

44 mpf_div(out, numer, denom);

45 }

46

47 /*

48 * Dump a Real to the highest possible accurancy

49 */

50 void rdump(const Real in) {

51 gmp_printf("% .Fe", in);

52 }

53

54 /*

55 * Free the storage used for a Real

56 */

57 void rfree(Real in) {

58 mpf_clear(in);

59 }

60

61 /*

62 * Get the double precision value of a Real

63 */

64 double rget(const Real in) {

65 return mpf_get_d(in);

66 }

67

68 /*

69 * Initialise storage requirements for Reals

70 */

71 int rinit(const int new) {

72 int old = mpf_get_default_prec();

73 mpf_set_default_prec(new);

74 printf("Precision %d\n", new);

75 return old;

76 }

77

78 /*

79 * Input a Real

80 */

81 void rinput(Real out) {

82 mpf_init(out);

83 if (gmp_scanf("%Fe", out) != 1) {

84 fatal("Real input error", NULL);

85 }

86 }

87

88 /*

89 * Set a very small Real to zero

90 */

91 void riota(Real r) {

92 Real tmp;
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93 rnew(tmp, 0);

94 rabs(tmp, r);

95 if (rcmpd(tmp, REAL_IOTA) < 0) {

96 rset(r, 0);

97 }

98 rfree(tmp);

99 }

100

101 /*

102 * Multiply two Reals

103 */

104 void rmul(Real out, const Real lhs, const Real rhs) {

105 mpf_mul(out, lhs, rhs);

106 }

107

108 /*

109 * Negate a Real

110 */

111 void rneg(Real out, const Real in) {

112 mpf_neg(out, in);

113 }

114

115 /*

116 * Create a new Real from a double precision value

117 */

118 void rnew(Real out, const double in) {

119 mpf_init_set_d(out, in);

120 }

121

122 /*

123 * Output a Real

124 */

125 void routput(const Real in) {

126 gmp_printf(REAL_FORMAT, in);

127 }

128

129 /*

130 * Convert a double precision into a Real

131 */

132 void rset(Real out, const double in) {

133 mpf_set_d(out, in);

134 }

135

136 /*

137 * Compute the square root of a Real

138 */

139 void rsqrt(Real out, const Real in) {

140 mpf_sqrt(out, in);

141 }

142
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143 /*

144 * Subtract two Reals

145 */

146 void rsub(Real out, const Real lhs, const Real rhs) {

147 mpf_sub(out, lhs, rhs);

148 }

149

150 /*

151 * swap two Real numbers

152 */

153 void rswap(Real lhs, Real rhs) {

154 mpf_swap(lhs, rhs);

155 }

C.3.10 search.c

This program contains the definitions of our workhorse search function together

with a number of auxiliary functions that are required during the search stage.

1 #include <assert.h>

2 #include <getopt.h>

3 #include <math.h>

4 #include <signal.h>

5 #include <time.h>

6 #include "mylib.h"

7 #include "poly.h"

8 #include "search.h"

9 #include "zero.h"

10

11 /*

12 * Locate a disk about the origin containing all the zeros

13 * of the polynomial p.

14 */

15 double dekker(const Poly p) {

16 int i;

17 double max = 0;

18 Real r;

19 rnew(r, 0);

20 for (i = 0; i <= DEGREE(p); i++) {

21 double d;

22 cabs(r, COEFF(p, i));

23 d = pow(rget(r), 1.0/(DEGREE(p)-i));

24 if (d > max) {

25 max = d;

26 }

27 }

28 rfree(r);

164



29 return 2*max;

30 }

31

32 /*

33 * The limit of 1/u1(z) tends to the multiplicity

34 * of the approximation of the zero in.

35 * Lagouanelle (1966).

36 */

37 int lagouanelle(const Complex in) {

38 Complex c;

39 int m;

40 Real r;

41 cnew(c, 0, 0);

42 rnew(r, 0);

43 u1(c, in);

44 cabs(r, c);

45 m = 1/rget(r)+0.5;

46 cfree(c);

47 rfree(r);

48 return m;

49 }

50

51 /*

52 * Main program for the search phase

53 */

54 int main(int argc, char *argv[]) {

55 int c;

56 double cover = COVER;

57 int max1 = MAX1;

58 int max2 = MAX2;

59 int sides = SIDES;

60 int size;

61 Real rtmp;

62 Zero z;

63 int zeros = 0;

64 signal(SIGABRT, sighandler);

65 rnew(rtmp, 0);

66 while ((c = getopt(argc, argv, "c:d:m:n:p:s:z:")) != -1) {

67 switch (c) {

68 case ’c’:

69 cover = strtod(optarg, NULL);

70 break;

71 case ’d’:

72 debug = atoi(optarg);

73 break;

74 case ’m’:

75 max1 = atoi(optarg);

76 break;

77 case ’n’:

78 max2 = atoi(optarg);
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79 break;

80 case ’p’:

81 precision = atoi(optarg);

82 break;

83 case ’s’:

84 sides = atoi(optarg);

85 break;

86 case ’z’:

87 zeros = atoi(optarg);

88 break;

89 default:

90 fatal("Unknown option %s", argv[optind-1]);

91 }

92 }

93 rinit(precision);

94 printf("Search the complex plane sides %d cover %g\n",

95 sides, cover);

96 printf("Max outer iterations %d", max1);

97 printf(" Max inner iterations %d", max2);

98 printf("\n");

99 pinput(myp);

100 printf("Original polynomial\n");

101 poutput(myp);

102 cabs(rtmp, COEFF(myp, DEGREE(myp)));

103 if (rcmpd(rtmp, REAL_EPSILON) < 0) {

104 error("Leading coefficient too small");

105 zfree(z);

106 return(EXIT_FAILURE);

107 }

108 psetup(myp, myp);

109 printf("Monic polynomial\n");

110 poutput(myp);

111 if (DEGREE(myp) < 2) {

112 error("Degenerate polynomial\n");

113 zfree(z);

114 return(EXIT_FAILURE);

115 }

116 pdiff(myp1, myp);

117 pdiff(myp2, myp1);

118 if (zeros) {

119 size = zeros;

120 } else {

121 size = 6*DEGREE(myp);

122 }

123 znew(z, size);

124 if (search(z, myp, max1, max2, sides, cover)) {

125 return(EXIT_FAILURE);

126 }

127 zdump(z);

128 pfree(myp);
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129 pfree(myp1);

130 pfree(myp2);

131 rfree(rtmp);

132 zfree(z);

133 return(EXIT_SUCCESS);

134 }

135

136 /*

137 * Count the number of zeros of polynomial p in the disk (centre, radius).

138 * A variation on Marden (1947).

139 */

140 int marden(const Poly p, const Complex centre, const double radius) {

141 int count = 0;

142 int i;

143 int sign = 1;

144 Poly tmp;

145 pnew(tmp, DEGREE(p));

146 pshift(tmp, p, centre);

147 pscale(tmp, tmp, radius);

148 for (i = 0; i < DEGREE(p); i++) {

149 double delta;

150 reduce(tmp, tmp);

151 /*

152 * Attempt to avoid delta values being zero.

153 * See Marden paper.

154 */

155 if (DEGREE(tmp) > 0) {

156 psmooth(tmp, tmp);

157 }

158 delta = rget(REAL(COEFF(tmp, 0)));

159 /*

160 if (fabs(delta) < 0.01*REAL_EPSILON) {

161 error("Marden delta %g", delta);

162 poutput(tmp);

163 break;

164 }

165 */

166 if (sign ^ (delta > 0)) {

167 sign = 0;

168 count++;

169 } else {

170 sign = 1;

171 }

172 }

173 pfree(tmp);

174 return count;

175 }

176

177 /*

178 * Pave the square (centre, radius) with n^2 squares each with
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179 * radius radius/n, test each square for a zero and, if so,

180 * add it to the set of zeros z. Return the new radius.

181 */

182 double pave(Zero z, const Poly p, const Complex centre,

183 const double radius, const int n) {

184 Complex c;

185 int i;

186 double r = radius/n;

187 Complex start;

188 cnew(c, 0, 0);

189 cnew(start, 0, 0);

190 for (i = 0; i < n; i++) {

191 int j;

192 cset(c, -i*r, (n-1-i)*r);

193 cadd(start, centre, c);

194 for (j = 0; j < n; j++) {

195 cset(c, j*r, -j*r);

196 cadd(c, start, c);

197 test(z, p, c, r);

198 /*

199 printf("Cover %d %d %d ", i, j, ZEROS(z));

200 coutput(c);

201 printf("\n");

202 */

203 }

204 }

205 cfree(c);

206 cfree(start);

207 return r;

208 }

209

210 /*

211 * Reduce the degree of the polynomial (by one?).

212 * See the Marden paper.

213 */

214 void reduce(Poly out, const Poly in) {

215 Complex ctmp1;

216 Complex ctmp2;

217 Complex ctmp3;

218 int i;

219 Poly ptmp;

220 assert(PSIZE(out) >= DEGREE(in));

221 cnew(ctmp1, 0, 0);

222 cnew(ctmp2, 0, 0);

223 cnew(ctmp3, 0, 0);

224 pnew(ptmp, DEGREE(in));

225 pcopy(ptmp, in);

226 DEGREE(out) = DEGREE(ptmp)-1;

227 cconj(ctmp1, COEFF(ptmp, 0));

228 for (i = 0; i <= DEGREE(out); i++) {
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229 cmul(ctmp2, ctmp1, COEFF(ptmp, i));

230 cconj(ctmp3, COEFF(ptmp, DEGREE(ptmp)-i));

231 cmul(ctmp3, COEFF(ptmp, DEGREE(ptmp)), ctmp3);

232 csub(COEFF(out, i), ctmp2, ctmp3);

233 }

234 cfree(ctmp1);

235 cfree(ctmp2);

236 cfree(ctmp3);

237 pfree(ptmp);

238 }

239

240 /*

241 * Search the complex plane for squares containing zeros of

242 * the polynomial p.

243 */

244 int search(Zero z, const Poly p, const int max1, const int max2,

245 const int sides, const double cover) {

246 int agree;

247 int iter1;

248 double radius = dekker(p);

249 double seconds;

250 clock_t tstart = clock();

251 Zero ztmp;

252 printf("Search dekker radius %g\n", radius);

253 radius *= sqrt(2);

254 printf("Search semi-diagonal (radius) %g\n", radius);

255 znew(ztmp, ZSIZE(z));

256 cset(ZERO(ztmp, 0), 0, 0);

257 ZEROS(ztmp) = 1;

258 for (iter1 = 1; iter1 <= max1; iter1++) {

259 int i;

260 int iter2;

261 printf("Search outer iteration %d (of %d) disks %d\n",

262 iter1, max1, ZEROS(ztmp));

263 for (iter2 = 1; iter2 <= max2; iter2++) {

264 double r;

265 printf("Search inner iteration %d (of %d) disks %d radius %g\n",

266 iter2, max2, ZEROS(ztmp), radius);

267 ZEROS(z) = 0;

268 for (i = 0; i < ZEROS(ztmp); i++) {

269 r = pave(z, p, ZERO(ztmp, i), radius, sides);

270 }

271 if (ZEROS(z) == 0) {

272 fatal("Search lost zeros!");

273 }

274 radius = r;

275 zcopy(ztmp, z);

276 }

277 printf("Search inner done\n");

278 zcover(z, ztmp, radius, cover*radius);
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279 radius *= cover;

280 for (i = 0; i < ZEROS(z); i++) {

281 MULT(z, i) = marden(p, ZERO(z, i), radius);

282 }

283 printf("Search zeros reduced from %d to %d radius %g\n",

284 ZEROS(ztmp), ZEROS(z), radius);

285 zoutput(z);

286 agree = 1;

287 for (i = 0; i < ZEROS(z); i++) {

288 int lag = lagouanelle(ZERO(z, i));

289 printf("Search lagouanelle[%2d] %d\n", i+1, lag);

290 if (lag != MULT(z, i)) {

291 agree = 0;

292 }

293 }

294 if (zdegree(z) < DEGREE(p)) {

295 error("Search missing zeros %d", zdegree(z));

296 break;

297 }

298 zcopy(ztmp, z);

299 }

300 zfree(ztmp);

301 printf("SEARCH TIME %f\n",

302 (double)(clock()-tstart)/CLOCKS_PER_SEC);

303 if (agree && zdegree(z) == DEGREE(p)) {

304 FILE *fd;

305 if ((fd = fopen("/tmp/iters", "w")) == NULL) {

306 fatal("Iterate can’t open temporary file");

307 }

308 fprintf(fd, "%d\n", iter1-1);

309 fclose(fd);

310 printf("Search success\n");

311 return(EXIT_SUCCESS);

312 }

313 printf("Search failure\n");

314 return(EXIT_FAILURE);

315 }

316

317 /*

318 * Test whether polynomial p has a zero in the disk

319 * (centre, radius), if so adding it to the set of

320 * zeros z.

321 */

322 void test(Zero z, const Poly p, const Complex centre,

323 const double radius) {

324 int m;

325 if ((m = marden(p, centre, radius)) == 0) {

326 return;

327 }

328 assert(ZSIZE(z) > ZEROS(z));
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329 ccopy(ZERO(z, ZEROS(z)), centre);

330 MULT(z, ZEROS(z)) = m;

331 ZEROS(z)++;

332 }

C.3.11 traub3.c

This program file contains the function for evaluating Joseph Traub’s third-order

IF defined in Equation (5.37) on page 58.

1 #include <stdio.h>

2 #include "mylib.h"

3 #include "traub3.h"

4 #include "zero.h"

5

6 int main(int argc, char *argv[]) {

7 return run(argc, argv, &traub3, "Traub’s third-order (multiple zeros)");

8 }

9

10 /*

11 * Perform one iteration of Traub’s third-order multiple

12 * zero method (p. 139)

13 */

14 void traub3(Zero out, const Zero in, const char mode) {

15 Complex ctmp;

16 Complex ctmp2;

17 Complex ctmp3;

18 int nu;

19 Complex utmp;

20 Zero z;

21 cnew(ctmp, 0, 0);

22 cnew(ctmp2, 0, 0);

23 cnew(ctmp3, 0, 0);

24 cnew(utmp, 0, 0);

25 znew(z, ZEROS(in));

26 zcopy(z, in);

27 for (nu = 0; nu < ZEROS(z); nu++) {

28 if (done[nu]) {

29 continue;

30 }

31 u(utmp, ZERO(z, nu));

32 cimul(ctmp, MULT(z, nu), utmp);

33 A2(ctmp2, ZERO(z, nu));

34 cmul(ctmp2, ctmp2, utmp);

35 cimul(ctmp2, MULT(z, nu), ctmp2);

36 cset(ctmp3, 0.5*(3-MULT(z, nu)), 0);

37 cadd(ctmp2, ctmp3, ctmp2);
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38 cmul(ctmp, ctmp, ctmp2);

39 csub(ZERO(out, nu), ZERO(z, nu), ctmp);

40 }

41 cfree(ctmp);

42 cfree(ctmp2);

43 cfree(ctmp3);

44 cfree(utmp);

45 zfree(z);

46 }

C.3.12 zero.c

This program file contains the definitions of the functions that manipulate vec-

tors of Zero values. These functions rely on the functions for Real values,

see §C.3.9 starting on page 161, Complex values, see §C.3.1 starting on page 134,

and Poly values, see §C.3.7 starting on page 153.

1 #include <assert.h>

2 #include "complex.h"

3 #include "mylib.h"

4 #include "zero.h"

5

6 /*

7 * Copy a set of zeros

8 */

9 void zcopy(Zero out, const Zero in) {

10 int i;

11 assert(ZSIZE(out) >= ZEROS(in));

12 ZEROS(out) = ZEROS(in);

13 for (i = 0; i < ZEROS(in); i++) {

14 ccopy(ZERO(out, i), ZERO(in, i));

15 MULT(out, i) = MULT(in, i);

16 }

17 }

18

19 /* Remove disks of radius oldrad wholly covered by other

20 * disks of radius newrad

21 */

22 void zcover(Zero out, const Zero in, const double oldrad,

23 const double newrad) {

24 Complex ctmp;

25 int i;

26 Real rtmp;

27 cnew(ctmp, 0, 0);

28 rnew(rtmp, 0);

29 /* Candidates for remaining */

30 for (i = 0; i < ZEROS(in); i++) {
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31 int j;

32 if (MULT(in, i) == 0) {

33 continue;

34 }

35 /* Candidates for removal */

36 for (j = i+1; j < ZEROS(in); j++) {

37 double dtmp;

38 if (MULT(in, j) == 0) {

39 continue;

40 }

41 csub(ctmp, ZERO(in, i), ZERO(in, j));

42 cabs(rtmp, ctmp);

43 dtmp = rget(rtmp)+oldrad;

44 /*

45 printf("%d %d\n", i, j);

46 coutput(ZERO(in, i));

47 coutput(ZERO(in, j));

48 printf(" dtmp %g newrad %g\n", dtmp, newrad);

49 */

50 if (dtmp < newrad) {

51 MULT(in, j) = 0;

52 }

53 }

54 }

55 ZEROS(out) = 0;

56 for (i = 0; i < ZEROS(in); i++) {

57 if (MULT(in, i) == 0) {

58 continue;

59 }

60 assert(ZSIZE(out) > ZEROS(out));

61 ccopy(ZERO(out, ZEROS(out)), ZERO(in, i));

62 MULT(out, ZEROS(out)) = MULT(in, i);

63 ZEROS(out)++;

64 }

65 cfree(ctmp);

66 rfree(rtmp);

67 }

68

69 /*

70 * Compute the polynomial degree from a set of zeros

71 */

72 int zdegree(const Zero in) {

73 int count = 0;

74 int i;

75 for (i = 0; i < ZEROS(in); i++) {

76 count += MULT(in, i);

77 }

78 return count;

79 }

80
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81 /*

82 * Dump a set of zeros to greatest possible accuracy

83 */

84 void zdump(const Zero in) {

85 int i;

86 FILE *fd;

87 if ((fd = fopen("/tmp/zeros", "w")) == NULL) {

88 fatal("Zdump can’t open temporary file");

89 }

90 fprintf(fd, "%d\n", ZEROS(in));

91 for (i = 0; i < ZEROS(in); i++) {

92 gmp_fprintf(fd, "% .Fe", REAL(ZERO(in, i)));

93 fprintf(fd, " ");

94 gmp_fprintf(fd, "% .Fe", IMAG(ZERO(in, i)));

95 fprintf(fd, " %d\n", MULT(in, i));

96 }

97 fclose(fd);

98 }

99

100 /*

101 * Free the storage used by a set of zeros

102 */

103 void zfree(Zero in) {

104 int i;

105 free(in->mult);

106 for (i = 0; i < ZSIZE(in); i++) {

107 cfree(ZERO(in, i));

108 }

109 free(in->zero);

110 }

111

112 /*

113 * Input a set of zeros

114 */

115 void zinput(Zero out) {

116 int i;

117 ZEROS(out) = ZSIZE(out) = getinteger();

118 if ((out->zero = calloc(ZEROS(out), sizeof(Complex))) == NULL) {

119 fatal("Zinput out of memory (zero) %d", ZSIZE(out));

120 }

121 if ((out->mult = calloc(ZEROS(out), sizeof(int))) == NULL) {

122 fatal("Zinput out of memory (mult) %d", ZSIZE(out));

123 }

124 for (i = 0; i < ZEROS(out); i++) {

125 cinput(ZERO(out, i));

126 MULT(out, i) = iinput();

127 }

128 }

129

130 /*
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131 * Allocate storage for a new set of zeros.

132 */

133 void znew(Zero out, const int count) {

134 int i;

135 ZEROS(out) = ZSIZE(out) = count;

136 if ((out->zero = calloc(ZEROS(out), sizeof(Complex))) == NULL) {

137 fatal("Znew out of memory (zero) %d", ZSIZE(out));

138 }

139 if ((out->mult = calloc(ZEROS(out), sizeof(int))) == NULL) {

140 fatal("Znew out of memory (mult) %d", ZSIZE(out));

141 }

142 /* Do we need this? */

143 for (i = 0; i < ZEROS(out); i++) {

144 cnew(ZERO(out, i), 0, 0);

145 MULT(out, i) = 0;

146 }

147 }

148

149 /*

150 * Set very small Zeros to zero

151 */

152 void ziota(Zero z) {

153 int i;

154 for (i = 0; i < ZEROS(z); i++) {

155 ciota(ZERO(z, i));

156 }

157 }

158

159 /*

160 * Output a set of zeros

161 */

162 void zoutput(const Zero in) {

163 int i;

164 for (i = 0; i < ZEROS(in); i++) {

165 printf(" z[%2d] ", i+1);

166 coutput(ZERO(in, i));

167 printf(" %2d\n", MULT(in, i));

168 }

169 fflush(stdout);

170 }

171

172 /*

173 * Partition the zeros around a pivot value

174 */

175 int zpartition(Zero in, const int lhs, const int rhs, int index) {

176 int i;

177 Complex pivot;

178 cnew(pivot, 0, 0);

179 ccopy(pivot, ZERO(in, index));

180 zswap(in, index, rhs);
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181 index = lhs;

182 for (i = lhs; i < rhs; i++) {

183 if (ccmp(ZERO(in, i), pivot) <= 0) {

184 zswap(in, i, index++);

185 }

186 }

187 zswap(in, index, rhs);

188 cfree(pivot);

189 return index;

190 }

191

192 /*

193 * Sort an array of zeros in-place by increasing complex

194 * centres

195 */

196 void zsort(Zero in, const int lhs, const int rhs) {

197 if (rhs > lhs) {

198 int index = zpartition(in, lhs, rhs, (lhs+rhs)/2);

199 zsort(in, lhs, index-1);

200 zsort(in, index+1, rhs);

201 }

202 }

203

204 /*

205 * Swap two zeros in an array of zeros

206 */

207 void zswap(Zero in, const int lhs, const int rhs) {

208 int tmp = MULT(in, lhs);

209 cswap(ZERO(in, lhs), ZERO(in, rhs));

210 MULT(in, lhs) = MULT(in, rhs);

211 MULT(in, rhs) = tmp;

212 }

C.4 C Auxiliary Program Files

This section describes a number of C programs that we use to construct polyno-

mial coefficients, i.e. the vital data required during both stages of our algoritm,

from a variety of different sources. Such sources can be as varied as recurrence

relations for generating the coefficients through a simple list of exact zeros from

a reliable source.

C.4.1 ebuild.c

This program builds the coefficients of an Eulerian polynomial using the recur-

rence relation given in [MW08, p. 1]. The zeros are all real.

176



1 /*

2 * Build a Eulerian polynomial

3 */

4 #include <stdio.h>

5 #include <stdlib.h>

6 #include "mylib.h"

7 #include "poly.h"

8 #include "zero.h"

9

10 char *optarg;

11 int opterr, optind, optopt;

12

13 /*

14 * Main program to build an Eulerian polynomial from the

15 * recurrence relation given in Ma, et.al.

16 */

17 int main(int argc, char *argv[]) {

18 int c;

19 int degree = 0;

20 Poly fact0;

21 Poly fact1;

22 int i;

23 Poly ptmp;

24 while ((c = getopt(argc, argv, "n:p:")) != -1) {

25 switch (c) {

26 case ’n’:

27 degree = atoi(optarg);

28 break;

29 case ’p’:

30 precision = atoi(optarg);

31 break;

32 default:

33 fatal("Unknown option %s", argv[optind-1]);

34 }

35 }

36 rinit(precision);

37 pnew(fact0, 1);

38 pnew(fact1, 2);

39 pnew(myp, degree);

40 pnew(myp1, degree-1);

41 pnew(ptmp, degree);

42 DEGREE(fact0) = 1;

43 cset(COEFF(fact0, 1), 1, 0);

44 cset(COEFF(fact0, 0), 0, 0);

45 DEGREE(fact1) = 2;

46 cset(COEFF(fact1, 2), -1, 0);

47 cset(COEFF(fact1, 1), 1, 0);

48 cset(COEFF(fact1, 0), 0, 0);

49 DEGREE(myp) = 1;

50 cset(COEFF(myp, 1), 1, 0);
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51 cset(COEFF(myp, 0), 0, 0);

52 for (i = 2; i <= degree; i++) {

53 pdiff(myp1, myp);

54 pimul(myp, i, myp);

55 pmul(myp, fact0, myp);

56 pmul(ptmp, fact1, myp1);

57 padd(myp, myp, ptmp);

58 }

59 printf("# Used ebuild -p%d\n", precision);

60 pdump(myp);

61 pfree(fact0);

62 pfree(fact1);

63 pfree(ptmp);

64 }

C.4.2 fbuild.c

This program builds the coefficients of an arbitrary polynomial from a collection

of factors, some single and some multiple.

1 /*

2 * Build a polynomial (on standout) from underlying factors

3 * (on stdin)

4 */

5 #include <stdio.h>

6 #include <stdlib.h>

7 #include "mylib.h"

8 #include "poly.h"

9 #include "zero.h"

10

11 char *optarg;

12 int opterr, optind, optopt;

13

14 int main(int argc, char *argv[]) {

15 int c;

16 int count = 0;

17 int degree;

18 int f;

19 int factors;

20 Poly ptmp;

21 while ((c = getopt(argc, argv, "p:")) != -1) {

22 switch (c) {

23 case ’p’:

24 precision = atoi(optarg);

25 break;

26 default:

27 fatal("Unknown option %s", argv[optind-1]);
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28 }

29 }

30 rinit(precision);

31 degree = getinteger();

32 pnew(myp, degree);

33 DEGREE(myp) = 0;

34 cset(COEFF(myp, 0), 1, 0);

35 factors = getinteger();

36 while (factors-- > 0) {

37 int mult = iinput();

38 pinput(ptmp);

39 count += mult*DEGREE(ptmp);

40 while (mult-- > 0) {

41 pmul(myp, myp, ptmp);

42 }

43 pfree(ptmp);

44 }

45 if (count != degree) {

46 fatal("Fbuild size mismatch %d %d\n", degree, count);

47 }

48 printf("# Used fbuild -p%d\n", precision);

49 pdump(myp);

50 }

C.4.3 kbuild.c

This program builds the coefficients of a Kirrinnis polynomial using the equation

given by Dario Bini as part of his test suite [BF00b, p. 14].

1 /*

2 * Build a Kirrinnis polynomial (on stdout). See Bini p. 14

3 * for details.

4 */

5 #include "mylib.h"

6 #include "poly.h"

7 #include "zero.h"

8

9 char *optarg;

10 int opterr, optind, optopt;

11

12 int main(int argc, char *argv[]) {

13 int c;

14 int degree;

15 double dtmp;

16 double epsilon = 1.0/4096;

17 int i;

18 int n = 10;
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19 Poly ptmp;

20 while ((c = getopt(argc, argv, "n:p:")) != -1) {

21 switch (c) {

22 case ’n’:

23 n = atoi(optarg);

24 break;

25 case ’p’:

26 precision = atoi(optarg);

27 break;

28 default:

29 fatal("Unknown option %s", argv[optind-1]);

30 }

31 }

32 rinit(precision);

33 pnew(myp, degree = 4*n+4);

34 DEGREE(myp) = 4;

35 cset(COEFF(myp, 4), 1, 0);

36 dtmp = 0.5+epsilon;

37 cset(COEFF(myp, 0), dtmp*dtmp*dtmp*dtmp, 0);

38 pdump(myp);

39 pnew(ptmp, 4);

40 cset(COEFF(ptmp, 4), 1, 0);

41 cset(COEFF(ptmp, 0), -0.0625, 0);

42 pdump(ptmp);

43 for (i = 1; i <= n; i++) {

44 pmul(myp, myp, ptmp);

45 }

46 printf("# Used kbuild -n%d -p%d\n", n, precision);

47 pdump(myp);

48 pfree(myp);

49 pfree(ptmp);

50 }

C.4.4 lbuild.c

This program builds the coefficients of a Laguerre polynomial using the recur-

rence relation given in [AS70, pp. 799–780].

1 /*

2 * Build a Laguerre polynomial

3 */

4 #include <stdio.h>

5 #include <stdlib.h>

6 #include "mylib.h"

7 #include "poly.h"

8 #include "zero.h"

9

180



10 char *optarg;

11 int opterr, optind, optopt;

12

13 /*

14 * Main program to build a Laguerre polynomial from the

15 * recurrence relation given in Abromowitz & Stegun

16 */

17 int main(int argc, char *argv[]) {

18 int c;

19 int degree = 0;

20 int i;

21 Poly lag0;

22 Poly lag1;

23 Poly ptmp;

24 while ((c = getopt(argc, argv, "n:p:")) != -1) {

25 switch (c) {

26 case ’n’:

27 degree = atoi(optarg);

28 break;

29 case ’p’:

30 precision = atoi(optarg);

31 break;

32 default:

33 fatal("Unknown option %s", argv[optind-1]);

34 }

35 }

36 rinit(precision);

37 pnew(lag0, degree);

38 pnew(lag1, degree);

39 pnew(myp, degree);

40 pnew(ptmp, degree);

41 DEGREE(lag1) = 0;

42 cset(COEFF(lag1, 0), 1, 0);

43 DEGREE(myp) = 1;

44 cset(COEFF(myp, 1), -1, 0);

45 cset(COEFF(myp, 0), 1, 0);

46 for (i = 2; i <= degree; i++) {

47 pcopy(lag0, lag1);

48 pcopy(lag1, myp);

49 DEGREE(ptmp) = 1;

50 cset(COEFF(ptmp, 1), -1, 0);

51 cset(COEFF(ptmp, 0), 2*i-1, 0);

52 pmul(ptmp, ptmp, lag1);

53 pimul(lag0, (i-1)*(i-1), lag0);

54 psub(myp, ptmp, lag0);

55 }

56 printf("# Used lbuild -p%d\n", precision);

57 pdump(myp);

58 pfree(lag0);

59 pfree(lag1);
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60 pfree(ptmp);

61 }

C.4.5 mbuild.c

This program builds the coefficients of a Mandelbrot polynomial using the re-

currence relation given in [BF00a, p. 3].

1 /*

2 * Build a Mandelbrot polynomial

3 */

4 #include <math.h>

5 #include <stdio.h>

6 #include <stdlib.h>

7 #include "mylib.h"

8 #include "poly.h"

9 #include "zero.h"

10

11 char *optarg;

12 int opterr, optind, optopt;

13

14 /*

15 * Build a Mandelbrot polynomial from the recursive formula

16 * given in Bini (p. 5)

17 */

18 int main(int argc, char *argv[]) {

19 int c;

20 int degree = 0;

21 int i;

22 int k;

23 Poly ptmp;

24 double r;

25 while ((c = getopt(argc, argv, "n:p:")) != -1) {

26 switch (c) {

27 case ’n’:

28 degree = atoi(optarg);

29 break;

30 case ’p’:

31 precision = atoi(optarg);

32 break;

33 default:

34 fatal("Unknown option %s", argv[optind-1]);

35 }

36 }

37 rinit(precision);

38 r = log(degree+1)/log(2);

39 k = (int)r;
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40 if (k != log(degree+1)/log(2)) {

41 printf("Invalid Mandelbrot degree %d\n", degree);

42 exit(EXIT_FAILURE);

43 }

44 pnew(myp, degree);

45 DEGREE(myp) = 0;

46 cset(COEFF(myp, 0), 1, 0);

47 pnew(ptmp, 1);

48 cset(COEFF(ptmp, 1), 1, 0);

49 for (i = 1; i <= k; i++) {

50 pmul(myp, myp, myp);

51 pmul(myp, ptmp, myp);

52 cset(COEFF(myp,0), 1, 0);

53 }

54 printf("# Used mbuild -p%d\n", precision);

55 pdump(myp);

56 pfree(ptmp);

57 }

C.4.6 validate.c

This program performs an extremely crude validation on a set of approximate

zeros. It computes their sum and their product and prints these values. They

should equal the coefficients an−1 and a0, respectively, of the monic polynomial,

see Equation (2.4) on page 6.

1 /*

2 * Crudely validate a polynomial (on stdout) from

3 * its zeros (on stdin). Check their sum and product.

4 */

5 #include "mylib.h"

6 #include "zero.h"

7

8 char *optarg;

9 int opterr, optind, optopt;

10

11 int main(int argc, char *argv[]) {

12 int c;

13 Complex product;

14 Complex sum;

15 int i;

16 Zero z;

17 while ((c = getopt(argc, argv, "p:")) != -1) {

18 switch (c) {

19 case ’p’:

20 precision = atoi(optarg);

21 break;
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22 default:

23 fatal("Unknown option %s", argv[optind-1]);

24 }

25 }

26 rinit(precision);

27 zinput(z);

28 printf("Zeros\n");

29 zoutput(z);

30 cnew(product, 1, 0);

31 cnew(sum, 0, 0);

32 for (i = 0; i < ZEROS(z); i++) {

33 int j;

34 for (j = 0; j < MULT(z, i); j++) {

35 cadd(sum, sum, ZERO(z, i));

36 cmul(product, product, ZERO(z, i));

37 }

38 }

39 printf("Used validate -p%d\n", precision);

40 printf("Sum = ");

41 coutput(sum);

42 printf("\nProduct = ");

43 coutput(product);

44 printf("\n");

45 cfree(product);

46 cfree(sum);

47 }

C.4.7 zbuild.c

This program builds the coefficients of an arbitrary polynomial from a collection

of complex zero values, including their multiplicities.

1 /*

2 * Build a polynomial (on stdout) from its zeros (on stdin)

3 */

4 #include "mylib.h"

5 #include "poly.h"

6 #include "zero.h"

7

8 char *optarg;

9 int opterr, optind, optopt;

10

11 int main(int argc, char *argv[]) {

12 int c;

13 Complex ctmp;

14 int degree = 0;

15 int i;
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16 Zero z;

17 while ((c = getopt(argc, argv, "p:")) != -1) {

18 switch (c) {

19 case ’p’:

20 precision = atoi(optarg);

21 break;

22 default:

23 fatal("Unknown option %s", argv[optind-1]);

24 }

25 }

26 rinit(precision);

27 zinput(z);

28 printf("Zeros\n");

29 zoutput(z);

30 pnew(myp, zdegree(z));

31 cnew(COEFF(myp, 0), 1, 0);

32 cnew(ctmp, 0, 0);

33 for (i = 0; i < ZEROS(z); i++) {

34 int j;

35 for (j = 0; j < MULT(z, i); j++) {

36 int k;

37 degree++;

38 cnew(COEFF(myp, degree), 1, 0);

39 for (k = degree-1; k > 0; k--) {

40 cmul(ctmp, COEFF(myp, k), ZERO(z, i));

41 csub(COEFF(myp, k), COEFF(myp, k-1), ctmp);

42 }

43 cmul(ctmp, COEFF(myp, 0), ZERO(z, i));

44 cneg(COEFF(myp, 0), ctmp);

45 }

46 }

47 printf("# Used zbuild -p%d\n", precision);

48 pdump(myp);

49 cfree(ctmp);

50 pfree(myp);

51 }

C.5 Makefile

This section describes the Makefile for maintaining the executable files used by

our algorithm. Needless to say that another Makefile is used for maintaining

an up-to-date version of this thesis. Details of the make program can be found

in [Fou10].

1 CC = gcc

2 CFLAGS = -ansi -g
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3 DEPEND = makedepend

4 EXES = cbuild ebuild ehrlich3 farmer3 farmer4 \

5 farmer5 farmerv \

6 fbuild hansen3 kbuild lbuild mbuild rall2 \

7 sbuild search traub3 validate zbuild

8 HDRS = complex.h ehrlich3.h farmer3.h farmer4.h \

9 farmer5.h farmerv.h \

10 hansen3.h mylib.h poly.h rall2.h \

11 real.h search.h traub3.h zero.h

12 LIBS = -lgmp -lm -lrt

13 OBJS = complex.o mylib.o poly.o real.o zero.o

14 SRCS = cbuild.c complex.c ehrlich3.c farmer3.c farmer4.c \

15 farmer5.c farmerv.c hansen3.c kbuild.c mylib.c \

16 poly.c rall2.c real.c sbuild.c search.c traub3.c \

17 validate.c zero.c

18

19 # It says it all

20 #

21 all: $(EXES)

22

23 # Generic rules (GNU Make only)

24 #

25 %.c: %.h

26 touch $@

27 %.o: %.c

28 $(CC) $(CFLAGS) -c $<

29

30 # Mylib infrastracture

31 #

32 mylib.h: poly.h zero.h

33 touch mylib.h

34

35 # Complex arithmetic infrastracture

36 #

37 complex.h: real.h

38 touch complex.h

39 complex.c: complex.h mylib.h

40 touch complex.c

41

42 # Polynomial arithmetic infrastracture

43 #

44 poly.h: complex.h

45 touch poly.h

46

47 # Real arithmetic

48 #

49 real.c: mylib.h real.h

50 touch real.c

51

52 # Search complex plane
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53 #

54 search.h: poly.h zero.h

55 touch search.h

56 search.c: mylib.h search.h

57 touch search.c

58 search: search.o $(OBJS)

59 $(CC) $(LIBS) -o $@ $^

60

61 # Zero arithmetic infrastracture

62 #

63 zero.h: complex.h

64 touch zero.h

65

66 # Rall’s second-order modified Newton method

67 #

68 rall2.c: mylib.h complex.h rall2.h poly.h zero.h

69 touch rall2.c

70 rall2: rall2.o $(OBJS)

71 $(CC) $(LIBS) -o $@ $^

72

73 # Ehrlich’s third-order IF

74 #

75 ehrlich3.c: mylib.h complex.h poly.h ehrlich3.h zero.h

76 touch ehrlich3.c

77 ehrlich3: ehrlich3.o $(OBJS)

78 $(CC) $(LIBS) -o $@ $^

79

80 # Farmer’s third-order IF

81 #

82 farmer3.c: mylib.h complex.h farmer3.h poly.h zero.h

83 touch farmer3.c

84 farmer3: farmer3.o $(OBJS)

85 $(CC) $(LIBS) -o $@ $^

86

87 # Farmer’s fourth-order IF

88 #

89 farmer4.c: mylib.h complex.h farmer4.h poly.h zero.h

90 touch farmer4.c

91 farmer4: farmer4.o $(OBJS)

92 $(CC) $(LIBS) -o $@ $^

93

94 # Farmer’s fifth-order IF

95 #

96 farmer5.c: mylib.h complex.h farmer5.h poly.h zero.h

97 touch farmer5.c

98 farmer5: farmer5.o $(OBJS)

99 $(CC) $(LIBS) -o $@ $^

100

101 # Farmer’s variable-order IF

102 #
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103 farmerv.c: mylib.h complex.h farmerv.h poly.h zero.h

104 touch farmerv.c

105 farmerv: farmerv.o $(OBJS)

106 $(CC) $(LIBS) -o $@ $^

107

108 # Hansen’s third-order IF

109 #

110 hansen3.c: mylib.h complex.h poly.h hansen3.h zero.h

111 touch hansen3.c

112 hansen3: hansen3.o $(OBJS)

113 $(CC) $(LIBS) -o $@ $^

114

115 # Traub’s third-order IF (from book p.139)

116 #

117 traub3.c: mylib.h complex.h poly.h traub3.h zero.h

118 touch traub3.c

119 traub3: traub3.o $(OBJS)

120 $(CC) $(LIBS) -o $@ $^

121

122 # Build polynomial from given coefficients

123 cbuild.c: mylib.h poly.h

124 touch cbuild.c

125 cbuild: cbuild.o $(OBJS)

126 $(CC) $(LIBS) -o $@ $^

127

128 # Build Eulerian polynomial

129 #

130 ebuild.c: mylib.h poly.h

131 touch ebuild.c

132 ebuild: ebuild.o $(OBJS)

133 $(CC) $(LIBS) -o $@ $^

134

135 # Build polynomial from the factors

136 #

137 fbuild.c: mylib.h poly.h

138 touch fbuild.c

139 fbuild: fbuild.o $(OBJS)

140 $(CC) $(LIBS) -o $@ $^

141

142 # Build Kirrinnis polynomial

143 #

144 kbuild.c: mylib.h poly.h

145 touch kbuild.c

146 kbuild: kbuild.o $(OBJS)

147 $(CC) $(LIBS) -o $@ $^

148

149 # Build Laguerre polynomial

150 #

151 lbuild.c: mylib.h poly.h

152 touch lbuild.c
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153 lbuild: lbuild.o $(OBJS)

154 $(CC) $(LIBS) -o $@ $^

155

156 # Build Mandelbrot polynomial

157 #

158 mbuild.c: mylib.h poly.h

159 touch mbuild.c

160 mbuild: mbuild.o $(OBJS)

161 $(CC) $(LIBS) -o $@ $^

162

163 # Build spiral polynomial

164 #

165 sbuild.c: mylib.h poly.h

166 touch sbuild.c

167 sbuild: sbuild.o $(OBJS)

168 $(CC) $(LIBS) -o $@ $^

169

170 # Validate polynomial from the zeros

171 #

172 validate.c: mylib.h zero.h

173 touch validate.c

174 validate: validate.o $(OBJS)

175 $(CC) $(LIBS) -o $@ $^

176

177 # Build polynomial from the zeros

178 #

179 zbuild.c: mylib.h complex.h poly.h zero.h

180 touch zbuild.c

181 zbuild: zbuild.o $(OBJS)

182 $(CC) $(LIBS) -o $@ $^

183

184 # Clean up

185 #

186 clean:

187 rm *~ *.o

188

189 # Dependencies

190 #

191 depend: $(SRCS)

192 $(DEPEND) $(CFLAGS) $(SRCS)

193

194 # Print documents

195 #

196 print: $(HDRS) $(SRCS)

197 pr $^ | lpr

198

199 # DO NOT DELETE THIS LINE -- makedepend depends on it.
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C.6 Matlab Program Files

This section describes the various Matlab [Mat12] programs used to generate

and verify the equations and IFs used for implementing the second stage of our

algorithm. They are heavy users of the symbolic manipulation module.

C.6.1 multiple.m

This program file generates symbolic equations for our multiple IFs, both one-

point and simultaneous, together with their orders of convergence and asmyp-

totic error constants.

1 % Multiple IFs. Polynomial format rather than rational

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 time = clock();

4 fprintf(’Begin program %i:%i:%i\n’, ...

5 time(4), time(5), round(time(6)));

6 % Define symbols with the following notation

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8 % u = Taylor series expansion of u(z) about z.

9 % ua = Taylor series expansion of u(z) about alpha.

10 % Ditto for all other variables.

11

12 syms A2 A3 A4 A5;

13 syms B2 B3 B4 B5 B6;

14 syms C2 C3 C4 C5 C6 C7 C8 C9;

15 syms C2a C3a C4a C5a C6a C7a C8a C9a;

16 syms eps;

17 syms hat2 hat3 hat4 hat5;

18 syms Lambda2 Lambda3 Lambda4 Lambda5;

19 syms m;

20 syms oeps2 oeps3 oeps4 oeps5;

21 syms ohat2 ohat3 ohat4 ohat5;

22 syms p pa p1a p2a p3a;

23 syms seps3 seps4 seps5;

24 syms shat3 shat4 shat5;

25 syms S1 S2 S3;

26 syms S1a S2a S3a;

27 syms SUM(n);

28 syms T1 T2 T3;

29 syms T1a T2a T3a;

30 syms u U;

31 syms z;

32 time = clock();

33 fprintf(’End definitions %i:%i:%i\n’, ...

34 time(4), time(5), round(time(6)));
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35

36 % Step 1. Build Lambda_i(z)

37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

38 % Equation (18)

39 Lambda2 = U;

40 Lambda3 = U ...

41 + B2*Lambda2^2;

42 Lambda4 = U ...

43 + B2*Lambda3^2 ...

44 - B3*Lambda2^3;

45 Lambda5 = U ...

46 + B2*Lambda4^2 ...

47 - B3*Lambda3^3 ...

48 + B4*Lambda2^4;

49 time = clock();

50 fprintf(’End step 1 %i:%i:%i\n’, ...

51 time(4), time(5), round(time(6)));

52

53 % Step 2. Build basic equations

54 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

55 % Equation (20)

56 basic2 = z - collect(Lambda2, U);

57 basic3 = z - collect(Lambda3, U);

58 basic4 = z - collect(Lambda4, U);

59 basic5 = z - collect(Lambda5, U);

60 for n = 4 : 4

61 basic4 = subs(basic4, U^n, 0);

62 end

63 for n = 5 : 8

64 basic5 = subs(basic5, U^n, 0);

65 end

66 time = clock();

67 fprintf(’End step 2 %i:%i:%i\n’, ...

68 time(4), time(5), round(time(6)));

69

70 % Step 3. Build one-point IFs with A_i(z) and m*u(z)

71 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

72 % Equation (21)

73 B2 = -(m-1)/(factorial(2)*m*u)+A2;

74 B3 = (m-1)*(2*m-1)/(factorial(3)*(m*u)^2) ...

75 -(m-1)/(m*u)*A2+A3;

76 B4 = -(m-1)*(2*m-1)*(3*m-1)/(factorial(4)*(m*u)^3) ...

77 +(m-1)*(2*m-1)/(factorial(2)*(m*u)^2)*A2 ...

78 -(m-1)/(m*u)*(A2^2/factorial(2)+A3)+A4;

79 B5 = (m-1)*(2*m-1)*(3*m-1)*(4*m-1)/(factorial(5)*(m*u)^4) ...

80 -(m-1)*(2*m-1)*(3*m-1)/(factorial(3)*(m*n)^3)*A2 ...

81 +(m-1)*(2*m-1)/(factorial(2)*(m*u)^2)*(A2^2+A3) ...

82 -(m-1)/(m*u)*(A2*A3+A4)+A5;

83 U = m*u;

84
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85 % Schroder’s second-order

86 %%%%%%%%%%%%%%%%%%%%%%%%%

87 % Equation (22)

88 ohat2 = collect(eval(basic2), u);

89

90 % Hansen’s third-order

91 %%%%%%%%%%%%%%%%%%%%%%

92 % Equation (23)

93 ohat3 = collect(eval(basic3), u);

94

95 % Traub’s fourth-order

96 %%%%%%%%%%%%%%%%%%%%%%

97 % Equation (24)

98 ohat4 = collect(eval(basic4), u);

99

100 % Traub’s fifth-order

101 %%%%%%%%%%%%%%%%%%%%%

102 % Equation (25)

103 ohat5 = collect(eval(basic5), u);

104 time = clock();

105 fprintf(’End step 3 %i:%i:%i\n’, ...

106 time(4), time(5), round(time(6)));

107

108 % Step 4. Build simultaneous IFs

109 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

110

111 % Derivatives of B_i(z)

112 %%%%%%%%%%%%%%%%%%%%%%%

113 B21 = 3*B3 - 2*B2^2;

114 B31 = 4*B4 - 2*B2*B3;

115 B41 = 5*B5 - 2*B2*B4;

116 %B51 = 6*B6 - 2*B2*B5;

117 B22 = 3*B31 - 4*B2*B21;

118 B32 = 4*B41 - 2*B21*B3 - 2*B2*B31;

119 %B42 = 5*B51 - 2*B21*B4 - 2*B2*B41;

120 B23 = 3*B32 - 4*B21^2 - 4*B2*B22;

121

122 % S_i(z)

123 %%%%%%%%

124 S10 = m*(B2 ...

125 + (B2^2 - B3)*eps ...

126 + (B2^3 - 2*B2*B3 + B4)*eps^2 ...

127 + (B2^4 - 3*B2^2*B3 + B2*B4 ...

128 + B3^2 - B5)*eps^3);

129 S11 = m*(B21 ...

130 + B2^2 - B3 + (2*B2*B21 - B31)*eps ...

131 + 2*(B2^3 - 2*B2*B3 + B4)*eps ...

132 + 3*(B2^4 - 3*B2^2*B3 + B2*B4 ...

133 + B3^2 - B5)*eps^2);

134 S12 = m*(B22 ...
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135 + 2*B2*B21 - B31 + 2*B2*B21 - B31 ...

136 + 2*(B2^3 - 2*B2*B3 + B4) ...

137 + 6*(B2^4 - 3*B2^2*B3 + B2*B4 ...

138 + B3^2 - B5)*eps);

139 S13 = m*(B23 ...

140 + 2*B21^2 + 2*B2*B22 - B32 ...

141 + 2*B21^2 + 2*B2*B22 - B32 ...

142 + 2*(3*B2^2*B21 - 2*B21*B3 - 2*B2*B31 ...

143 + B41) ...

144 + 6*(B2^4 - 3*B2^2*B3 + B2*B4 ...

145 + B3^2 - B5));

146 S1 = subs(S10, eps, 0);

147 S2 = subs(-S11, eps, 0);

148 S3 = subs(S12/2, eps, 0);

149 S4 = -S13/3;

150

151

152 % Farmer & Loizou’s third-order

153 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

154 % Equation (36)

155 B2 = T1/m;

156 shat3 = collect(eval(basic3), u);

157 B2 = -(m-1)/(factorial(2)*m*u)+A2;

158

159 % Farmer & Loizou’s fourth-order

160 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

161 % Equation (37)

162 B3 = (B2^2 - T2/m)/2;

163 shat4 = collect(eval(basic4), u);

164 B3 = (m-1)*(2*m-1)/(factorial(3)*(m*u)^2) ...

165 -(m-1)/(m*u)*A2+A3;

166

167 % Farmer & Loizou’s fifth-order

168 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

169 % Equation (38)

170 B4 = (-B2^3+3*B2*B3+T3/m)/3;

171 shat5 = collect(eval(basic5), u);

172 B4 = -(m-1)*(2*m-1)*(3*m-1)/(factorial(4)*(m*u)^3) ...

173 +(m-1)*(2*m-1)/(factorial(2)*(m*u)^2)*A2 ...

174 -(m-1)/(m*u)*(A2^2/factorial(2)+A3)+A4;

175

176 time = clock();

177 fprintf(’End step 4 %i:%i:%i\n’, ...

178 time(4), time(5), round(time(6)));

179

180 % Rational third-order

181 %%%%%%%%%%%%%%%%%%%%%%

182 rhat3 = z - m*u ...

183 - (m*u^2)/(1 - T1*u);

184
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185 % Step 5. Orders of convergence

186 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

187 % Equation (47)

188 % Note! All base/primitive equations divided by

189 % p^(m)(alpha)eps^{m-1}/m! It makes life easier.

190

191 % Define p(z)@alpha and its derivatives

192 % Equation (47)

193 pa = eps/m ...

194 + C2a*eps^2 ...

195 + C3a*eps^3 ...

196 + C4a*eps^4 ...

197 + C5a*eps^5;

198 time = clock();

199 fprintf(’End p(z)@alpha %i:%i:%i\n’, ...

200 time(4), time(5), round(time(6)));

201

202 p1a = 1 ...

203 + (m+1)*C2a*eps ...

204 + (m+2)*C3a*eps^2 ...

205 + (m+3)*C4a*eps^3 ...

206 + (m+4)*C5a*eps^4 ...

207 + (m+5)*C6a*eps^5;

208 time = clock();

209 fprintf(’End p’’(z)@alpha %i:%i:%i\n’, ...

210 time(4), time(5), round(time(6)));

211

212 p2a = (m-1)/eps ...

213 + m*(m+1)*C2a ...

214 + (m+1)*(m+2)*C3a*eps ...

215 + (m+2)*(m+3)*C4a*eps^2 ...

216 + (m+3)*(m+4)*C5a*eps^3 ...

217 + (m+4)*(m+5)*C6a*eps^4 ...

218 + (m+5)*(m+6)*C7a*eps^5;

219 time = clock();

220 fprintf(’End p’’’’(z)@alpha %i:%i:%i\n’, ...

221 time(4), time(5), round(time(6)));

222

223 p3a = (m-2)*(m-1)/eps^2 ...

224 + (m-1)*m*(m+1)*C2a/eps ...

225 + m*(m+1)*(m+2)*C3a ...

226 + (m+1)*(m+2)*(m+3)*C4a*eps ...

227 + (m+2)*(m+3)*(m+4)*C5a*eps^2 ...

228 + (m+3)*(m+4)*(m+5)*C6a*eps^3 ...

229 + (m+4)*(m+5)*(m+6)*C7a*eps^4 ...

230 + (m+5)*(m+6)*(m+7)*C8a*eps^5;

231 time = clock();

232 fprintf(’End p’’’’’’(z)@alpha %i:%i:%i\n’, ...

233 time(4), time(5), round(time(6)));

234
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235 p4a = (m-3)*(m-2)*(m-1)/eps^3 ...

236 + (m-2)*(m-1)*m*(m+1)*C2a/eps^2 ...

237 + (m-1)*m*(m+1)*(m+2)*C3a/eps ...

238 + m*(m+1)*(m+2)*(m+3)*C4a ...

239 + (m+1)*(m+2)*(m+3)*(m+4)*C5a*eps ...

240 + (m+2)*(m+3)*(m+4)*(m+5)*C6a*eps^2 ...

241 + (m+3)*(m+4)*(m+5)*(m+6)*C7a*eps^3 ...

242 + (m+4)*(m+5)*(m+6)*(m+7)*C8a*eps^4 ...

243 + (m+5)*(m+6)*(m+7)*(m+8)*C9a*eps^5;

244 time = clock();

245 fprintf(’End p’’’’’’’’(z)@alpha %i:%i:%i\n’, ...

246 time(4), time(5), round(time(6)));

247

248 recip = collect(taylor(1/p1a, eps), eps);

249

250 % Define u(z)@alpha

251 % Equation (48)

252 ua = simplify(pa*recip);

253 ua = collect(ua, eps);

254 for n = 6 : 10

255 ua = subs(ua, eps^n, 0);

256 end

257 time = clock();

258 fprintf(’End u(z)@alpha %i:%i:%i\n’, ...

259 time(4), time(5), round(time(6)));

260

261 % Define A_k(z)@alpha

262 % Equation (50)

263 A2a = eps*p2a*recip/factorial(2);

264 A2a = collect(A2a, eps);

265 for n = 5 : 11

266 A2a = subs(A2a, eps^n, 0);

267 end

268 A2a = A2a/eps;

269 time = clock();

270 fprintf(’End A2(z)@alpha %i:%i:%i\n’, ...

271 time(4), time(5), round(time(6)));

272

273 A3a = eps^2*p3a*recip/factorial(3);

274 A3a = collect(A3a, eps);

275 for n = 5 : 12

276 A3a = subs(A3a, eps^n, 0);

277 end

278 A3a = A3a/eps^2;

279 time = clock();

280 fprintf(’End A3(z)@alpha %i:%i:%i\n’, ...

281 time(4), time(5), round(time(6)));

282

283 A4a = eps^3*p4a*recip/factorial(4);

284 A4a = collect(A4a, eps);
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285 for n = 5 : 13

286 A4a = subs(A4a, eps^n, 0);

287 end

288 A4a = A4a/eps^3;

289 time = clock();

290 fprintf(’End A4(z)@alpha %i:%i:%i\n’, ...

291 time(4), time(5), round(time(6)));

292

293 % Define S_k(z)@alpha

294 %%%%%%%%%%%%%%%%%%

295 % Equation (52)

296 S1a = m*C2a;

297 time = clock();

298 fprintf(’End S1(z)@alpha %i:%i:%i\n’, ...

299 time(4), time(5), round(time(6)));

300

301 S2a = m*(m*C2a^2 ...

302 - 2*C3a);

303 time = clock();

304 fprintf(’End S2(z)@alpha %i:%i:%i\n’, ...

305 time(4), time(5), round(time(6)));

306

307 S3a = m*(m^2*C2a^3 ...

308 - 3*m*C2a*C3a ...

309 + 3*C4a);

310 time = clock();

311 fprintf(’End S3(z)@alpha %i:%i:%i\n’, ...

312 time(4), time(5), round(time(6)));

313

314 S4a = m*(m^3*C2a^4 ...

315 - 4*m^2*C2a^2*C3a ...

316 + 4*m*C2a*C4a ...

317 + 2*m*C3a^2 ...

318 - 4*C5a);

319 time = clock();

320 fprintf(’End S4(z)@alpha %i:%i:%i\n’, ...

321 time(4), time(5), round(time(6)));

322

323 % Define T_k(z)@alpha

324 T1a = simplify(S1a ...

325 - S2a*eps ...

326 + SUM(2));

327 T1a = collect(T1a, eps);

328 for n = 6 : 10

329 T1a = subs(T1a, eps^n, 0);

330 end

331 time = clock();

332 fprintf(’End T1(z)@alpha %i:%i:%i\n’, ...

333 time(4), time(5), round(time(6)));

334
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335 T2a = simplify(S2a ...

336 - 2*S3a*eps ...

337 + 2*SUM(3));

338 T2a = collect(T2a, eps);

339 for n = 6 : 10

340 T2a = subs(T2a, eps^n, 0);

341 end

342 time = clock();

343 fprintf(’End T2(z)@alpha %i:%i:%i\n’, ...

344 time(4), time(5), round(time(6)));

345

346 T3a = simplify(S3a ...

347 - 3*S4a*eps ...

348 + 3*SUM(4));

349 T3a = collect(T3a, eps);

350 for n = 6 : 10

351 T3a = subs(T3a, eps^n, 0);

352 end

353 time = clock();

354 fprintf(’End T3(z)@alpha %i:%i:%i\n’, ...

355 time(4), time(5), round(time(6)));

356 time = clock();

357 fprintf(’End step 5 %i:%i:%i\n’, ...

358 time(4), time(5), round(time(6)));

359

360 % Step 6. One-point IFs

361 %%%%%%%%%%%%%%%%%%%%%%%%

362

363 A2 = A2a;

364 A3 = A3a;

365 A4 = A4a;

366 u = ua;

367 z = eps;

368

369 % Schroder’s second-order

370 %%%%%%%%%%%%%%%%%%%%%%%%%

371 % Equation (54)

372 oeps2 = ohat2;

373 oeps2 = collect(eval(oeps2), eps);

374 for n = 3 : 5

375 oeps2 = subs(oeps2, eps^n, 0);

376 end

377 oeps2 = simplify(oeps2);

378 time = clock();

379 fprintf(’End Rall(2) %i:%i:%i\n’, ...

380 time(4), time(5), round(time(6)));

381

382 % Ehrlich’s third-order

383 %%%%%%%%%%%%%%%%%%%%%%%

384 % Equation (55)
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385 oeps3 = ohat3;

386 oeps3 = collect(eval(oeps3), eps);

387 for n = 4 : 13

388 oeps3 = subs(oeps3, eps^n, 0);

389 end

390 oeps3 = simplify(oeps3);

391 time = clock();

392 fprintf(’End Ehrlich(3) %i:%i:%i\n’, ...

393 time(4), time(5), round(time(6)));

394

395 % Traub’s fourth-order

396 %%%%%%%%%%%%%%%%%%%%%%

397 % Equation (56)

398 oeps4 = ohat4;

399 oeps4 = collect(eval(oeps4), eps);

400 for n = 5 : 21

401 oeps4 = subs(oeps4, eps^n, 0);

402 end

403 oeps4 = simplify(oeps4);

404 time = clock();

405 fprintf(’End Traub(4) %i:%i:%i\n’, ...

406 time(4), time(5), round(time(6)));

407

408 % Traub’s fifth-order

409 %%%%%%%%%%%%%%%%%%%%%

410 % Equation (57)

411 oeps5 = ohat5;

412 oeps5 = collect(eval(oeps5), eps);

413 for n = 6 : 29

414 oeps5 = subs(oeps5, eps^n, 0);

415 end

416 oeps5 = simplify(oeps5);

417 time = clock();

418 fprintf(’End Traub(5) %i:%i:%i\n’, ...

419 time(4), time(5), round(time(6)));

420 time = clock();

421 fprintf(’End step 6 %i:%i:%i\n’, ...

422 time(4), time(5), round(time(6)));

423

424 % Step 7. Simultaneous IFs

425 %%%%%%%%%%%%%%%%%%%%%%%%%%%

426

427 T1 = T1a;

428 T2 = T2a;

429 T3 = T3a;

430

431 % No second-order in polynomial form

432

433 % Farmer & Loizou’s third-order

434 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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435 % Equation (58)

436 seps3 = shat3;

437 seps3 = collect(eval(seps3), eps);

438 for n = 4 : 11

439 seps3 = subs(seps3, eps^n, 0);

440 end

441 seps3 = simplify(seps3);

442 time = clock();

443 fprintf(’End Farmer(3) %i:%i:%i\n’, ...

444 time(4), time(5), round(time(6)));

445

446 % Farmer & Loizou’s fourth-order

447 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

448 % Equation (59)

449 seps4 = shat4;

450 seps4 = collect(eval(seps4), eps);

451 for n = 5 : 21

452 seps4 = subs(seps4, eps^n, 0);

453 end

454 seps4 = simplify(seps4);

455 time = clock();

456 fprintf(’End Farmer(4) %i:%i:%i\n’, ...

457 time(4), time(5), round(time(6)));

458

459 % Farmer & Loizou’s fifth-order

460 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

461 % Equation (60)

462 seps5 = shat5;

463 seps5 = collect(eval(seps5), eps);

464 for n = 6 : 29

465 seps5 = subs(seps5, eps^n, 0);

466 end

467 seps5 = simplify(seps5);

468 time = clock();

469 fprintf(’End Farmer(5) %i:%i:%i\n’, ...

470 time(4), time(5), round(time(6)));

471

472 % Rational third-order

473 %%%%%%%%%%%%%%%%%%%%%%

474 numer = m*u;

475 denom = 1 - T1*u;

476 recip = taylor(1/denom, eps);

477 reps3 = numer*recip;

478 for n = 4 : 11

479 reps3 = subs(reps3, eps^n, 0);

480 end

481 reps3 = collect(reps3, eps);

482 for n = 4 : 6

483 reps3 = subs(reps3, eps^n, 0);

484 end
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485 reps3 = simplify(reps3);

486

487 time = clock();

488 fprintf(’End step 7 %i:%i:%i\n’, ...

489 time(4), time(5), round(time(6)));

490

C.6.2 simple.m

This program file generates symbolic equations for our simple IFs, both one-

point and simultaneous, together with their orders of convergence.

This listing has only been included for completeness as all IFs, together with

their orders of convergence and asymptotic error constants, can be obtained

from the Matlab program for multiple zeros, see §C.6.1 on page 190.

1 % Simple IFs. Polynomial form rather than rational

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3

4 % Define basic symbols

5 syms alpha eps z;

6

7 % Define basic functions

8 syms A2(z) A3(z) A4(z) A5(z) A6(z) A7(z);

9 syms S1(z) S2(z) S3(z) S4(z) S5(z);

10 syms T1(z) T2(z) T3(z);

11 syms p(z) SUM(n) u(z);

12

13 % Step 1. Build lambda_i(z)

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

15 lambda2(z) = u(z);

16 lambda3(z) = u(z) ...

17 + A2(z)*lambda2(z)^2;

18 lambda4(z) = u(z) ...

19 + A2(z)*lambda3(z)^2 ...

20 - A3(z)*lambda2(z)^3;

21 lambda5(z) = u(z) ...

22 + A2(z)*lambda4(z)^2 ...

23 - A3(z)*lambda3(z)^3 ...

24 + A4(z)*lambda2(z)^4;

25 lambda6(z) = u(z) ...

26 + A2(z)*lambda5(z)^2 ...

27 - A3(z)*lambda4(z)^3 ...

28 + A4(z)*lambda3(z)^4 ...

29 - A5(z)*lambda2(z)^5;

30

31 % Step 2. Build one-point IFs
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32 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

33

34 % Newton’s second-order

35 % Equation (5.13)

36 ohat2(z) = z - lambda2(z);

37

38 % Halley’s third-order

39 % Equation (5.14)

40 ohat3(z) = z - lambda3(z);

41

42 % Kiss’ fourth-order

43 % Equation (5.15)

44 ohat4(z) = z - collect(lambda4(z), u(z));

45 for n = 4 : 4

46 ohat4(z) = subs(ohat4(z), u(z)^n, 0);

47 end

48

49 % Kiss’ fifth-order

50 % Equation (5.16)

51 ohat5(z) = z - collect(lambda5(z), u(z));

52 for n = 5 : 8

53 ohat5(z) = subs(ohat5(z), u(z)^n, 0);

54 end

55

56 % Step 3. Build simultaneous IFs

57 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

58

59 % No second-order in polynomial form

60

61 % Farmer & Loizou’s third-order

62 % Equation (5.24)

63 shat3(z) = subs(ohat3(z), A2(z), T1(z));

64 shat3(z) = simplify(shat3(z));

65

66 % Farmer & Loizou’s fourth-order

67 % Equation (5.25)

68 shat4(z) = subs(ohat4(z), A3(z), (A2(z)^2 ...

69 - T2(z))/2);

70 shat4(z) = simplify(shat4(z));

71

72 % Farmer & Loizou’s fifth-order

73 % Equation (5.26)

74 shat5(z) = subs(ohat5(z), A4(z), ...

75 (-A2(z)^3 + 3*A2(z)*A3(z) + T3(z))/3);

76 shat5(z) = simplify(shat5(z));

77

78 % Orders of Convergence

79 %%%%%%%%%%%%%%%%%%%%%%%

80 % Also useful for verification of equations

81

201



82 % Define first derivatives of Ai(z) (second digit)

83 % Equation (A.4)

84 A21(z) = 3*A3(z) - 2*A2(z)^2;

85 A31(z) = 4*A4(z) - 2*A2(z)*A3(z);

86 A41(z) = 5*A5(z) - 2*A2(z)*A4(z);

87 A51(z) = 6*A6(z) - 2*A2(z)*A5(z);

88 A61(z) = 7*A7(z) - 2*A2(z)*A6(z);

89

90 % Define second derivatives of Ai(z) (second digit)

91 % Equation (A.5)

92 A22(z) = 3*A31(z) - 4*A2(z)*A21(z);

93 A32(z) = 4*A41(z) - 2*A21(z)*A3(z) ...

94 - 2*A2(z)*A31(z);

95 A42(z) = 5*A51(z) - 2*A21(z)*A4(z) ...

96 - 2*A2(z)*A41(z);

97 A52(z) = 6*A61(z) - 2*A21(z)*A5(z) ...

98 - 2*A2(z)*A51(z);

99

100 % Define third derivatives of Ai(z) (second digit)

101 % Equation (A.6)

102 A23(z) = 3*A32(z) - 4*A21(z)^2 ...

103 - 4*A2(z)*A22(z);

104 A33(z) = 4*A42(z) - 2*A22(z)*A3(z) ...

105 - 4*A21(z)*A31(z) - 2*A2(z)*A32(z);

106 A43(z) = 5*A52(z) - 2*A22(z)*A4(z)...

107 - 4*A21(z)*A41(z) - 2*A2(z)*A42(z);

108

109 % Define fourth derivatives of Ai(z) (second digit)

110 % Equation (A.7)

111 A24(z) = 3*A33(z) - 12*A21(z)*A22(z) ...

112 - 4*A2(z)*A23(z);

113 A34(z) = 4*A43(z) - 2*A23(z)*A3(z) ...

114 - 6*A22(z)*A31(z) - 6*A21(z)*A32(z) ...

115 - 2*A2(z)*A33(z);

116

117 % Define derivatives of Ai(z)@alpha

118 % Equation (A.8)

119 A2a = A2(alpha) + A21(alpha)*eps ...

120 + A22(alpha)*eps^2/factorial(2) ...

121 + A23(alpha)*eps^3/factorial(3) ...

122 + A24(alpha)*eps^4/factorial(4);

123 A2a = simplify(A2a);

124 A2a = collect(A2a, eps);

125 for n = 4 : 4

126 A2a = subs(A2a, eps^n, 0);

127 end

128 A3a = A3(alpha) + A31(alpha)*eps ...

129 + A32(alpha)*eps^2/factorial(2) ...

130 + A33(alpha)*eps^3/factorial(3) ...

131 + A34(alpha)*eps^4/factorial(4);
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132 A3a = simplify(A3a);

133 A3a = collect(A3a, eps);

134 for n = 3 : 4

135 A3a = subs(A3a, eps^n, 0);

136 end

137 A4a = A4(alpha) + A41(alpha)*eps;

138 A4a = simplify(A4a);

139 A4a = collect(A4a, eps);

140 for n = 2 : 4

141 A4a = subs(A4a, eps^n, 0);

142 end

143 A5a = A5(alpha);

144

145 % Define powers of Ai(z)@alpha (second digit)

146 A2a2 = collect(A2a^2, eps);

147 for n = 6 : 10

148 A2a2 = subs(A2a2, eps^n, 0);

149 end

150 A2a2 = simplify(A2a2);

151 A2a2 = collect(A2a2, eps);

152

153 A2a3 = collect(A2a^3, eps);

154 for n = 6 : 15

155 A2a3 = subs(A2a3, eps^n, 0);

156 end

157 A2a3 = simplify(A2a3);

158 A2a3 = collect(A2a3, eps);

159

160 A2a4 = collect(A2a^4, eps);

161 for n = 6 : 20

162 A2a4 = subs(A2a4, eps^n, 0);

163 end

164 A2a4 = simplify(A2a4);

165 A2a4 = collect(A2a4, eps);

166

167 A3a2 = collect(A3a^2, eps);

168 for n = 6 : 10

169 A3a2 = subs(A3a2, eps^n, 0);

170 end

171 A3a2 = simplify(A3a2);

172 A3a2 = collect(A3a2, eps);

173

174 % Define derivatives of u(z)

175 % Equation (A.11)

176 u1(z) = 1 - 2*A2(z)*u(z);

177 u2(z) = -2*(A21(z)*u(z) ...

178 + A2(z)*u1(z));

179 u2(z) = collect(u2(z), u(z));

180 u3(z) = -2*(A22(z)*u(z) + 2*A21(z)*u1(z) ...

181 + A2(z)*u2(z));
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182 u3(z) = simplify(u3(z));

183 u3(z) = collect(u3(z), u(z));

184 u4(z) = -2*(A23(z)*u(z) + 3*A22(z)*u1(z) ...

185 + 3*A21(z)*u2(z) + A2(z)*u3(z));

186 u4(z) = simplify(u4(z));

187 u4(z) = collect(u4(z), u(z));

188 u5(z) = -2*(A24(z)*u(z) + 4*A23(z)*u1(z) ...

189 + 6*A22(z)*u2(z) + 4*A21(z)*u3(z) ...

190 + A2(z)*u4(z));

191 u5(z) = simplify(u5(z));

192 u5(z) = collect(u5(z), u(z));

193

194 % Define derivatives of u(z)@alpha

195 % Equation (A.12)

196 u1a = subs(u1(alpha), u(alpha), 0);

197 u2a = subs(u2(alpha), u(alpha), 0);

198 u3a = subs(u3(alpha), u(alpha), 0);

199 u4a = subs(u4(alpha), u(alpha), 0);

200 u4a = simplify(u4a);

201 u5a = subs(u5(alpha), u(alpha), 0);

202 u5a = simplify(u5a);

203

204 % Define u(z)@alpha

205 % Equation (A.13)

206 ua = u1a*eps ...

207 + u2a*eps^2/factorial(2) ...

208 + u3a*eps^3/factorial(3) ...

209 + u4a*eps^4/factorial(4) ...

210 + u5a*eps^5/factorial(5);

211 ua = simplify(ua);

212 ua = collect(ua, eps);

213

214 % Powers of ua

215 ua2 = simplify(ua^2);

216 ua2 = collect(ua2, eps);

217 for n = 6 : 25

218 ua2 = subs(ua2, eps^n, 0);

219 end

220 ua2 = simplify(ua2);

221 ua2 = collect(ua2, eps);

222 ua3 = simplify(ua^3);

223 ua3 = collect(ua3, eps);

224 for n = 6 : 125

225 ua3 = subs(ua3, eps^n, 0);

226 end

227 ua3 = simplify(ua3);

228 ua3 = collect(ua3, eps);

229 ua4 = simplify(ua^4);

230 ua4 = collect(ua4, eps);

231 for n = 6 : 625
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232 ua4 = subs(ua4, eps^n, 0);

233 end

234 ua4 = simplify(ua4);

235 ua4 = collect(ua4, eps);

236 ua5 = simplify(ua^5);

237 ua5 = collect(ua5, eps);

238 for n = 6 : 3125

239 ua5 = subs(ua5, eps^n, 0);

240 end

241 ua5 = simplify(ua5);

242 ua5 = collect(ua5, eps);

243

244 % Define Tk(z)@alpha

245 T1a = A2a - (A2a2 - 2*A3a)*eps + SUM(2);

246 T1a = simplify(T1a);

247 T1a = collect(T1a, eps);

248 for n = 2 : 10

249 T1a = subs(T1a, eps^n, 0);

250 end

251 T2a = A2a2 - 2*A3a - 2*(A2a3 - 3*A2a*A3a + 3*A4a)*eps ...

252 + 2*SUM(3);

253 T2a = simplify(T2a);

254 T2a = collect(T2a, eps);

255 for n = 2 : 10

256 T2a = subs(T2a, eps^n, 0);

257 end

258 T2a = simplify(T2a);

259 T2a = collect(T2a, eps);

260 T3a = A2a3 - 3*A2a*A3a + 3*A4a ...

261 -3*(A2a4 - 4*A2a3*A3a + 4*A2a*A4a ...

262 + 2*A3a2 - 4*A5a)*eps + 3*SUM(4);

263 T3a = simplify(T3a);

264 T3a = collect(T3a, eps);

265 for n = 2 : 15

266 T3a = subs(T3a, eps^n, 0);

267 end

268 T3a = simplify(T3a);

269 T3a = collect(T3a, eps);

270

271 % Simple one-point IFs

272 %%%%%%%%%%%%%%%%%%%%%%

273 % Isaac Newton’s second-order IF

274 % Equation (A.14)

275 oeps2 = simplify(eps - ua);

276 oeps2 =collect(oeps2, eps);

277 for n = 3 : 10

278 oeps2 = subs(oeps2, eps^n, 0);

279 end

280

281 % Edmond Halley’s third-order IF
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282 % Equation (A.15)

283 oeps3 = simplify(eps - ua - A2a*ua2);

284 oeps3 = collect(oeps3, eps);

285 for n = 4 : 15

286 oeps3 = subs(oeps3, eps^n, 0);

287 end

288

289 % I Kiss’ fourth-order IF

290 % Equation (A.16)

291 oeps4 = simplify(eps - ua - A2a*ua2 ...

292 - (2*A2a2 - A3a)*ua3);

293 oeps4 = collect(oeps4, eps);

294 for n = 5 : 21

295 oeps4 = subs(oeps4, eps^n, 0);

296 end

297 oeps4 = simplify(oeps4);

298 oeps4 = collect(oeps4, eps);

299

300 % I Kiss’ fifth-order-IF

301 % Equation (A.17)

302 oeps5 = simplify(eps - ua - A2a*ua2 ...

303 - (2*A2a2 - A3a)*ua3 ...

304 - (5*A2a3 - 5*A2a*A3a + A4a)*ua4);

305 oeps5 = collect(oeps5, eps);

306 for n = 6 : 50

307 oeps5 = subs(oeps5, eps^n, 0);

308 end

309 oeps5 = simplify(oeps5);

310 oeps5 = collect(oeps5, eps);

311

312 % Simple simultaneous IFs

313 %%%%%%%%%%%%%%%%%%%%%%%%%

314 % Mick Farmer and George Loizou’s third-order IF

315 % Equation (A.22)

316 seps3 = simplify(eps - ua - T1a*ua2);

317 seps3 = collect(seps3, eps);

318 for n = 4 : 25

319 seps3 = subs(seps3, eps^n, 0);

320 end

321 seps3 = simplify(seps3);

322

323 % Mick Farmer and George Loizou’s fourth-order IF

324 % Equation (A.23)

325 seps4 = simplify(eps - ua - A2a*ua2 ...

326 - (3*A2a2 + T2a)*ua3/2);

327 seps4 = collect(seps4, eps);

328 for n = 5 : 25

329 seps4 = subs(seps4, eps^n, 0);

330 end

331 seps4 = simplify(seps4);
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332

333 % Mick Farmer and George Loizou’s fifth-order IF

334 % Equation (A.24)

335 seps5 = simplify(eps - ua - A2a*ua2 ...

336 - (2*A2a2 - A3a)*ua3 ...

337 - (14*A2a3 - 12*A2a*A3a + T3a)*ua4/3);

338 seps5 = collect(seps5, eps);

339 for n = 6 : 125

340 seps5 = subs(seps5, eps^n, 0);

341 end

342 seps5 = simplify(seps5);

343 seps5 = collect(seps5, eps);

C.7 Shell Program Files

This section describes the shell programs that we invoke from the command line

in order to process our test polynomials and collate our results into this thesis.

C.7.1 iters.sh

This program builds the table summary of results, see §7.1 starting on page 87.

1 #

2 # Summarise how many iterations were taken by each IF

3 #

4 trap "exit;" 2

5 source polys.sh

6

7 inputs="../data/inputs"

8 list="$failure"

9 methods="rall2 ehrlich3 farmer3 hansen3 traub3 farmer4"

10 methods="$methods farmer5 farmerv"

11 outputs="../data/outputs"

12

13 #

14 # Process global options

15 #

16 # -B use both success and failure lists

17 # -l list of polynomials (default failure)

18 # -S use success list

19 #

20 while getopts "Bl:S" option

21 do

22 case $option in

23 B) list=‘echo $failure $success | sed ’s/ /\n/g’ | sort‘
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24 ;;

25 l) list="$OPTARG"

26 ;;

27 S) list="$success"

28 ;;

29 *) exit 1

30 ;;

31 esac

32 done

33 shift $(($OPTIND - 1))

34 for item in $list

35 do

36 #

37 # Process all polynomials of the same degree

38 #

39 for poly in $inputs/polys/$item

40 do

41 echo -n ‘basename $poly‘

42 input="$outputs/search/"‘basename $poly‘

43 output=‘tail -1 $input‘

44 if [ "$output" = "SEARCH FAILURE" ]

45 then

46 echo $output

47 echo " & F \\\\"

48 continue

49 fi

50 output=‘echo $output | sed ’s/SEARCH SUCCESS //’‘

51 echo -n " & S"

52 for method in $methods

53 do

54 input="$outputs/$method/‘basename $poly‘"

55 output=‘tail -1 $input‘

56 if [ "$output" = "ITERATE FAILURE" ]

57 then

58 echo -n " & F"

59 else

60 output=‘echo $output | sed ’s/ITERATE SUCCESS //’‘

61 echo -n " & $output"

62 fi

63 if [ -f "./${method}s" ]

64 then

65 input="$outputs/${method}s/‘basename $poly‘"

66 output=‘tail -1 $input‘

67 if [ "$output" = "ITERATE FAILURE" ]

68 then

69 echo -n " & F"

70 else

71 output=‘echo $output | sed ’s/ITERATE SUCCESS //’‘

72 echo -n " & $output"

73 fi
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74 fi

75 done

76 echo " \\\\"

77 done

78 done

C.7.2 polys.sh

This program divides the names of all the polynomials in our database into two

shell variables, $failure and $success that are accessed by two other shell

programs iters.sh, see §C.7.1 starting on page 207, and solve.sh, see §C.7.3
starting on page 209. It keeps the dichotomy between success and failure in one

place.

1 #

2 # The test polynomials broken down into failures and

3 # successes. For use by other scripts to stay in sync

4 #

5 failure="020o 040a"

6 success="002[a-d] 003[a-r] 004[a-s] 005[a-u] \

7 006[a-q] 007[a-l] 008[a-j] 009[a-h] 010[a-m] \

8 012[a-d] 013[a-d] 014[a-c] 015[a-h] 016[a-g] \

9 017[ab] 018[a-d] 019[ab] 020[a-n] 024[ab] \

10 028[ab] 029a 030[a-e] 031a 035a 036[ab] 038a \

11 040b 044[ab] 048a 050[a-e] 052a 055[ab] 056a 057a \

12 060[ab] 080a 100[a-e] 101a 150[ab] 164a 200a 400a"

C.7.3 solve.sh

This program drives our complete algorithm. Initially it runs the search stage,

collecting the appropriate results. If this stage is successful, i.e. it produces a

realistic set of approximations, it runs the iterative stage for each of the IFs

available. Again, the results are saved and summarised.

1 # Search for the zeros of a polynomial (mick, 27 Jan 2008).

2 # This shell script can’t be run in parallel because it

3 # uses fixed-name temporary files (/tmp/arg1, /tmp/zeros,

4 # etc.).

5 #

6 source polys.sh

7 arg1=""

8 arg2=""

9 inputs="../data/inputs"
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10 list="$failure"

11 #methods="rall2 ehrlich3 farmer3 hansen3 traub3 farmer4 farmerv"

12 methods="farmer5"

13 options="yes"

14 outputs="../data/outputs"

15 search="yes"

16 # Process global options for all polynomials

17 #

18 # -c multiplier when covering smaller squares (default 3)

19 # -d debug search stage

20 # 1 = Polynomial evaluation and u(z) (mylib.c)

21 # 2 = Newton evaluation (mylib.c)

22 # 4 = Complex division (complex.c)

23 # -D debug iteration stage

24 # 1 = Polynomial evaluation and u(z) (mylib.c)

25 # 2 = Newton evaluation (mylib.c)

26 # 4 = Complex division (complex.c)

27 # 8 = Correction values (all IFs)

28 # -i iterate only, use search stage results

29 # -l list of polynomials (default $failure).

30 # An explicit list of more than one should be quoted

31 # -m maximum outer iterations during search stage (default 8)

32 # -n maximum inner iterations during search stage (default 4)

33 # -o turn off options within polynomials

34 # -p precision during search stage (in bits)

35 # -P precision during iteration stage (in bits)

36 # -s sides during search stage (default 2 for 4 squares)

37 # -S use success list

38 # -z zeros during search stage (default 5*DEGREE(myp))

39 #

40 while getopts "c:d:D:il:m:n:op:P:s:Sz:" option

41 do

42 case $option in

43 c) arg1="$arg1 -c$OPTARG"

44 ;;

45 d) arg1="$arg1 -d$OPTARG"

46 ;;

47 D) arg2="$arg2 -d$OPTARG"

48 ;;

49 i) search="no"

50 ;;

51 l) list="$OPTARG"

52 ;;

53 m) arg1="$arg1 -m$OPTARG"

54 ;;

55 n) arg1="$arg1 -n$OPTARG"

56 ;;

57 o) options="no"

58 ;;

59 p) arg1="$arg1 -p$OPTARG"
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60 ;;

61 P) arg2="$arg2 -p$OPTARG"

62 ;;

63 s) arg1="$arg1 -s$OPTARG"

64 ;;

65 S) list="$success"

66 ;;

67 z) arg1="$arg1 -z$OPTARG"

68 ;;

69 *) exit 1

70 ;;

71 esac

72 done

73 shift $(($OPTIND - 1))

74 echo "Arg1 $arg1"

75 echo "Arg2 $arg2"

76 # Process all polynomials in the list

77 #

78 echo "Solve $list"

79 for item in $list

80 do

81 echo "Polys $item"

82 # Process all polynomials of the same degree

83 #

84 for poly in $inputs/polys/$item

85 do

86 echo $poly

87 # Process local options for each polynomial

88 #

89 if [ $options == "yes" ]

90 then

91 opt1=""

92 if grep -m1 ’# Opt1 ’ $poly > /tmp/opt1

93 then

94 opt1=‘cut -b7- < /tmp/opt1‘

95 echo "Opt1 $opt1"

96 fi

97 opt2=""

98 if grep -m1 ’# Opt2 ’ $poly > /tmp/opt2

99 then

100 opt2=‘cut -b7- < /tmp/opt2‘

101 echo "Opt2 $opt2"

102 fi

103 fi

104 if [ $search == "yes" ]

105 then

106 # Search stage for squares containing zeros

107 #

108 output="$outputs/search/"‘basename $poly‘

109 ./search $opt1 $arg1 < $poly 2>&1 | tee $output
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110 if tail -n1 $output | grep -v "success"

111 then

112 echo "SEARCH FAILURE" >> $output

113 continue

114 fi

115 # Save approximations

116 #

117 echo -n "SEARCH SUCCESS " >> $output

118 cat /tmp/iters >> $output

119 cp /tmp/zeros $inputs/search/‘basename $poly‘

120 else

121 echo "No search"

122 fi

123 # Iteration stage to improve approximations

124 #

125 echo "Opt2 $opt2"

126 echo "Arg2 $arg2"

127 for method in $methods

128 do

129 cat $poly $inputs/search/‘basename $poly‘ > /tmp/inputs

130 output="$outputs/$method/‘basename $poly‘"

131 ./$method $opt2 $arg2 < /tmp/inputs > $output 2>&1

132 status=$?

133 echo -e "$method\t\t$status"

134 if [ $status -ne 0 ]

135 then

136 echo "ITERATE FAILURE" >> $output

137 else

138 echo -n "ITERATE SUCCESS " >> $output

139 cat /tmp/iters >> $output

140 fi

141 if [ -f "./${method}s" ]

142 then

143 # Option for IFs only

144 #

145 # -s use serial form of the IF

146 #

147 output="$outputs/${method}s/‘basename $poly‘"

148 ./$method -s $opt2 $arg2 < /tmp/inputs > $output 2>&1

149 status=$?

150 echo -e "$method (s)\t$status"

151 if [ $status -ne 0 ]

152 then

153 echo "ITERATE FAILURE" >> $output

154 else

155 echo -n "ITERATE SUCCESS " >> $output

156 cat /tmp/iters >> $output

157 fi

158 fi

159 done
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160 done

161 done

REMARK 15. When this is number one, we are done.
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[AH74] Götz Alefeld and Jürgen Herzberger. On the convergence speed of

some algorithms for the simultaneous approximation of polynomial

zeros. SIAM Journal of Numerical Analysis, 11:237–243, 1974.

[Ano77] Abdel Anourein. An improvement on two iteration methods for si-

multaneous determination of the zeros of a polynomial. International

Journal of Computer Mathematics, 6(3):241–252, January 1977.

[AS70] Milton Abramowitz and Irene Stegun, editors. Handbook of Mathe-

matical Functions with Formulas, Graphs, and Mathematical Tables.

Dover Publications, Inc., New York, ninth Dover printing, (tenth

GPO printing) edition, 1970.

[B+63] John Backus et al. Revised report on the algorithmic language AL-

GOL 60. Communications of the ACM, 6(1):1–17, May 1963.

[BBE+10] Dario Bini, Paola Boito, Yuli Eidelman, Luca Gemignani, and Israel

Gohberg. A fast implicit QR eigenvalue algorithm for companion

matrices. Linear Algebra and its Applications, 432:2006–2032, 2010.

[Ber56] Algernon Berriman. The Babylonian quadratic equation. The Math-

ematical Gazette, 40(333):185–192, October 1956.

[BF00a] Dario Bini and Giuseppe Fiorentino. Design, analysis, and imple-

mentation of a multiprecision polynomial rootfinder. Numerical Al-

gorithms, 23:127–173, 2000.

[BF00b] Dario Bini and Giuseppe Fiorentino. Numerical computation of poly-

nomial roots using MPSolve version 2.2. Technical report, Diparti-

214
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[Dun74] Donna Dunaway. Calculation of zeros of a real polynomial through

factorization using Euclid’s algorithm. SIAM Journal of Numerical

Analysis, 11(6):1087–1104, December 1974.

215



[Dvo69] Josef Dvorc̆uk. Factorisation of a polynomial into quadratic factors

by Newton method. Applied Mathematics, 14:54–80, 1969.

[Ehr67] Louis Ehrlich. A modified Newton method for polynomials. Com-

munications of the ACM, 10(2):107–108, 1967.

[FB77] Brian Ford and Janet Bentley. The NAG library ”machine”. ACM

Signum Newsletter, 12(4):23–24, December 1977.

[FL73] Michael Farmer and George Loizou. A note on a paper by Pólya.
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[Pet89] Miodrag Petković. Iterative methods for simultaneous inclusion of

polynomial zeros. In A Dold and B Eckmann, editors, Lecture Notes

in Mathematics, volume 1387. Springer-Verlag, Berlin, 1989.
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