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ABSTRACT 

 

In spite of many statistical methods for outlier detection and for robust analysis, there is little 

work on further analysis of outliers themselves to determine their origins. For example, there 

are “good” outliers that provide useful information that can lead to the discovery of new 

knowledge, or “bad” outliers that include noisy data points. Successfully distinguishing 

between different types of outliers is an important issue in many applications, including fraud 

detection, medical tests, process analysis and scientific discovery. It requires not only an 

understanding of the mathematical properties of data but also relevant knowledge in the 

domain context in which the outliers occur. 

 

This thesis presents a novel attempt in automating the use of domain knowledge in helping 

distinguish between different types of outliers. Two complementary knowledge-based outlier 

analysis strategies are proposed: one using knowledge regarding how “normal data” should be 

distributed in a domain of interest in order to identify “good” outliers, and the other using the 

understanding of “bad” outliers. This kind of knowledge-based outlier analysis is a useful 

extension to existing work in both statistical and computing communities on outlier detection. 

In addition, a novel way of visualising and detecting outliers using self-organising maps is 

proposed, an active control of data quality is introduced in the data collection stage, and an 

interactive procedure for knowledge discovery from noisy data is suggested. 

 

The methods proposed for outlier management is applied to a class of medical screening 

applications, where data were collected under different clinical environments, including GP 

clinics and large-scale field investigations. Several evaluation strategies are proposed to assess 

various aspects of the proposed methods. Extensive experiments have demonstrated that that 

problem-solving results are improved under these proposed outlier management methods. A 

number of examples are discussed to explain how the proposed methods can be applied to 

other applications as a general methodology in outlier management. 
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Chapter 1 Introduction 

1.1 Intelligent Data Analysis 

Intelligent data analysis (IDA) is an interdisciplinary study concerned with the effective 

analysis of data. It requires careful thinking at every stage of an analysis process, intelligent 

application of relevant domain expertise regarding both data and subject matters, and critical 

assessment and selection of relevant analysis methods. Although statistics has been the 

traditional method for data analysis, the challenge of extracting useful information from large 

quantities of on-line data has called for advanced computational analysis methods. 

 

For the last decade or so, the size of machine-readable data sets has increased dramatically 

and the problem of “data explosion” has become apparent. On the other hand, recent 

developments in computing have provided the infrastructure for fast data access; processing 

and storage devices continue to become cheaper and more powerful; networks provide more 

data accessibility; widely available personal computers and mobile computing devices enable 

easier data collection and processing; and techniques such as On-Line Analytic Processing 

(OLAP) [35] allow rapid retrieval of data from data warehouses. In addition, many of the 

advanced computational methods for extracting information from large quantities of data, or 

“data mining” methods, are beginning to mature, e.g., artificial neural networks, Bayesian 

networks, decision trees, genetic algorithms, and statistical pattern recognition [139]. These 

developments have created a new range of challenges and opportunities for intelligent systems 

in data analysis [64, 115]. 

 

In the quest for intelligent data analysis, the issue of data quality has been found to be one of 

the particularly important ones. Data are now viewed as key organisational resources and the 

use of high-quality data for decision-making has received increasing attention [161]. It is 

commonly accepted that one of the most difficult and costly tasks in large-scale data analysis 

is trying to obtain clean and reliable data. Many have estimated that as much as 50% to 70% 

of a project’s effort is typically spent on this part of the process [116]. 
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Data quality is a relative concept. Nowadays multiple uses of data for different purposes are 

common in the context of data warehouses. The true meanings of items in the initial 

databases may be lost in the transition to a data warehouse as the initial data gatherers or 

database developers may no longer be involved in the transition. Moreover, data with quality 

considered reasonable for one task may not be of suitable quality for another task. 

 

There are many potential quality problems with real-world data. First, data may be noisy for a 

variety of reasons: faulty data collection instruments, problems with data entry, transmission 

errors, confusion over the correct units of measurements etc. Second, data may be missing 

due to problems with manual data entry, sensitive nature of data required, or for reasons of 

economy. Third, data items may be inconsistent in that they may be recorded in different 

formats or in an inappropriate reporting period. Fourth, even when the data are accurate, 

complete, consistent, and so forth, they may not be timely. This is often a crucial 

consideration in many real-time applications such as foreign exchange, the stock market, and 

process control. Last but not least, it is not always easy to separate noisy data items from the 

rest of the data. For example, anomalous data points are often measurement or recording 

errors but some of them can represent phenomena of interest, something significant from the 

viewpoint of the application domain. To distinguish between these two requires a careful 

application of relevant domain knowledge. 

 

In response to this opportunity, data cleaning companies are being created, and data quality 

groups are being set up in institutions. Since the use of the “wrong” data or low-quality data 

often leads to erroneous analysis results, research on data quality has attracted a significant 

amount of attention from different communities, including information systems, management, 

computing, and statistics [178, 168, 145, 106, 143]. 

1.2 Outlier Management 

1.2.1 Issues and Challenges 

A strange data value that stands out because it is not like the rest of the data in some sense is 

commonly called an outlier. An outlier may appear as an extreme value or a peculiar 
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combination of the values in multivariate data. The handling of outlying or anomalous 

observations in a data set is one of the most important tasks in intelligent data analysis, 

because outlying observations can have a considerable influence on the analysis results. 

Altman has given an example in regression analysis where the presence of a single outlier has 

greatly altered the regression result ([4], figure 7.2). A number of regression diagnostics have 

been developed to identify the statistical influence of outliers [52, 15], which can be used to 

check the significance of outlier influence in a given application. 

 

Although outliers are often measurement or recording errors, some of them can represent 

phenomena of interest, something significant from the viewpoint of the application domain. 

Consequently, simply rejecting all outliers may lose useful information, and lead to inaccurate 

or incorrect results in data analysis tasks. For example, in fraud detection, suspicious credit 

card transactions may indeed be fraudulent, but could also be those looking-suspicious, but 

legitimate ones. In hand-written character recognition, a good outlier might be an atypical but 

legitimate pattern, while a bad outlier might be a “garbage” pattern. In [60], Guyon and Stork 

acknowledged the importance of explicitly treating outliers, and pointed out the problems of 

using robust analysis methods in this type of applications. Matic et al. has shown that by 

individually examining outliers and only cleaning those error patterns, the classification error 

has decreased from 11% to 6.7%, whereas the error rate would increase if all outlying 

patterns were cleaned [122]. In process control, abnormal multivariate time series 

observations collected from a plant might be an indication of excessive stress of certain 

equipments, or simply a result of changes made by operators. In the former case, appropriate 

action should promptly be taken to prevent the escalation of the abnormal events leading to 

possible plant shutdown, while nothing much needs to be done for the latter [102]. 

 

In certain situations, outliers may lead to the discovery of unexpected knowledge [19]. In the 

1880s when the English physicist Rayleigh measured nitrogen from different sources, he 

found that there were small discrepancies among the density measurements. After closer 

examination, he discovered that the density of nitrogen obtained from the atmosphere was 

always greater than the nitrogen derived from its chemical compounds by a small but definite 
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margin. He reasoned from this anomaly that the aerial nitrogen must contain a small amount 

of a denser gas. This discovery eventually led to the successful isolation of the gas argon, for 

which he was awarded the Nobel Prize for Physics in 1904. 

 

In the last few decades, many effective statistical analysis methods have been developed to 

deal with outliers. However, statistics alone may provide insignificant or insufficient help to 

some applications, where different types of outliers share similar statistical properties 

regardless of their nature. In [8], Barnet and Lewis have given an example for the case when 

Mr Hadlum appealed against the failure of an early petition for divorce. His claim was based 

on an alleged adultery by Mrs Hadlum, the evidence for which consisted of the fact that Mrs 

Hadlum gave birth to a child 349 days after Mr Hadlum had left the country to serve the 

nation. The average gestation period for a human female is 280 days, so 349 days appeared 

surprisingly long (an outlier). The judges ruled that 349 days, although improbable, was not 

beyond the range of scientific possibility. However, the alleged adultery could equally be true. 

It is apparent that more background knowledge was needed, and statistics alone was not 

sufficient to make the judgement in this case. 

 

Because outliers often share similar statistical properties, it would be difficult to distinguish 

between them without relevant domain knowledge that leads to a basic understanding of why 

they are outlying and what the underlying data generation mechanism is. In order to judge 

whether an outlier is informative or useful in a practical context, other information is often 

needed, such as relevant domain or common-sense knowledge, or the experience of data 

analysts in relation to judging outlying data points, etc. To date, the progress in the explicit 

management of outliers has been largely restricted to the automated detection but manual 

analysis of outliers, as in the investigation of credit card fraud and inside dealing at stock 

markets [57], in hand-written character recognition [61], or in the study of customer 

behaviour [121]. Only after the knowledge becomes available and represented in a computable 

format, is it then possible to develop automated methods to prevent the useful outliers from 

being precluded by the IDA process. 
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Because of the IDA’s unique connection between statistics and AI, it becomes IDA researchers’ 

special challenge and responsibility to analyse outliers detected by statistical or other 

processes, in a domain-sensitive manner. This dissertation will focus on outlier management, 

a fundamental issue in addressing the data quality problem. 

1.2.2 An Intelligent Data Analysis Approach 

Over the last few years, I have developed strategies to analyse and manage outliers based on 

domain knowledge. The approach assumes that detected outliers should not be automatically 

deleted, but should be further analysed using relevant knowledge in connection with 

particular problem-solving tasks. 

 

The strategies I have proposed include the application of various AI techniques to different 

analysis tasks. These techniques include knowledge acquisition, knowledge representation, 

and supervised and unsupervised machine learning techniques. Application-specific expertise 

is acquired and represented, and then applied to detected outliers. Domain knowledge is used 

to model the data based on the established problem-solving objectives and the form of 

knowledge available. I will show that outliers can be distinguished by those knowledge-based 

models. The combined strengths of artificial intelligence and statistics make it possible to 

achieve such an objective towards the “application-sensitive” outlier analysis – a process of 

both fields working in harmony that I consider an integral part of an IDA system. 

 

The study in the thesis extends the existing work in both statistical and computing 

communities on outlier detection by distinguishing between different types of outliers. The 

type of knowledge-based outlier analysis method is a novel approach to outlier management 

and constitutes a useful contribution to the data quality issue in intelligent data analysis 

research. 

 

Apart from the outlier analysis strategies, I have also introduced a method to detect outliers in 

multivariate data using self-organising maps (SOM) [95]. This method is based on the 

“neighbourhood preservation” property of the SOM, that similar data points are mapped onto 

close output nodes on the two-dimensional map. It facilitates outlier visualisation and 
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identification so that the outliers can be explicitly analysed. In particular, because the SOM 

directly maps the input data into clusters on the output map, it becomes possible to “explain” 

the clusters by investigating the associated input data. The clusters on the output map can 

then have “physical meanings,” and the information may be used to visualise and interpret the 

relationship between the main population and the outliers, which are mapped onto different 

areas on the output map. 

 

I have also recognised that reducing noise at the source is another important step in outlier 

management. If the data quality can be improved while the data are collected, the task of 

outlier detection and analysis may be easier and perhaps less dependent on the data model to 

detect and distinguish the outliers. This reduces the risk that too many outliers would have to 

be analysed, especially when domain knowledge is incomplete. 

 

Since the ultimate goal of outlier management is to improve the problem-solving tasks in 

application domains, the entire process is completed by applying the method to a challenging 

real-world application where the proper management of outliers may considerably affect the 

system performance. The outlier management methodology can be summarised as follow 

steps. 

 

1) Reducing noise at source 

2) Detecting outliers with the SOM 

3) Reasoning about outliers using domain-specific knowledge 

4) Using the better quality data to solve domain problems, for example, classification, 

knowledge discovery, etc. 

 

It is important to note that even though I have developed methods for all the steps above, the 

methods are not necessarily associated with each other. In applications where one or more 

steps are relevant, the methods may be applied individually, and some steps may choose other 

existing techniques, or they may be skipped entirely. For example, one may use a statistical 

approach to detect outliers in step 2), and still applies knowledge-based strategies proposed by 
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the thesis to analyse them to make the decision of rejecting bad outliers in step 3), provided 

sufficient domain knowledge can be acquired. In other applications where the distinction 

between “good” and “bad” outliers does not significantly influence the data analysis results, 

step 3) may be skipped altogether and simply rejecting or accommodating the outliers will 

achieve reasonable results. The methodology will be systematically discussed, and various 

circumstances under which this methodology can be applied in Section 2.4. 

1.2.3 Applying the Approach to Real-World Problems 

Visual field testing provides the eye care practitioner with essential information regarding the 

early detection of major blindness-causing diseases such as glaucoma. Testing of the visual 

field is normally performed using an expensive, specially designed instrument whose use 

currently is mostly restricted to eye hospitals. However, it is of great importance that visual 

field testing be offered to subjects at the earliest possible stage. By the time a patient has 

displayed overt symptoms and been referred to a hospital for an eye examination, it is possible 

that the visual field loss is already at an advanced stage and cannot be easily treated. To 

remedy the situation, personal computers (PCs) have been exploited as affordable test 

machines. 

 

One of the major technical challenges is to obtain reliable test data for analysis, given that the 

data collected by the PCs are much noisier than those collected by the specially designed 

instrument. When a PC is used in public environments such as GP clinics or field 

investigations, and is run by amateur operators or patients themselves, noise is typically 

involved in the collected data. As patients’ testing behaviour varies, noise in the collected data 

may be significant. On the other hand, outliers caused by countless unknown pathological 

conditions also have an equal chance of occurring, which is especially common in this new 

form of tests. An application such as this therefore provides an excellent platform for 

developing and testing the outlier management techniques proposed by the thesis. 

 

My research initially targeted a more reliable way of detecting outliers [112, 185]. The SOM-

based method allowed me to individually analyse outliers on a domain-specific basis, where I 

discovered that outliers could be caused by different factors [179, 110]. The research work 
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then quickly evolved to the task of analysing and discriminating among the detected outliers 

for “real measurements” or “real noise.” Such discrimination was made possible by acquiring 

application-specific expertise about either how the noisy data points or the real measurements 

are distributed. The knowledge was extended from its initial incomplete set with machine 

learning, and was used to model the data in different ways. Depending on the types of 

knowledge available, the data models may be formed to explain either real measurements 

[114] or real noise [184] among data points. By testing the outliers against the data models, I 

was able to see their different characteristics, and application-sensitive data cleaning then 

became possible. Evaluating results from my experiments have shown immediate evidence of 

improvement in data quality. 

 

It is worth emphasising that my research did not only focus on analysing outliers. I put efforts 

into improving the data quality in the data collection stage [29, 111], so that it reduces the 

chances of mishandling outliers at a later stage. I have also used the noise-eliminating 

method to help the discovery of new knowledge from cleaned data [28, 30, 31], which 

demonstrates how improved data quality is important to real world problem solving tasks. 

Moreover, I have implemented an integrated IDA system for screening some of the most 

common blinding diseases and applying such a tool to clinical data collected in different 

public environments [29, 107]. Understandably, data cleaning is one of the key capabilities of 

this tool. The thesis demonstrates how integrated intelligent data analysis can be effective and 

useful by applying the approach to real world applications. By receiving favourable results 

from its field trials under real clinical environments, the outlier analysis approach was 

validated in another important way. 

 

Although my research was first motivated by this medical application, the proposed 

methodology is sufficiently general that they may be applied to other types of applications. I 

will further discuss the various applicable and non-applicable circumstances in Section 2.4. 
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1.3 Key Contributions 

I consider that the thesis has made three key contributions to the knowledge in IDA, although 

other contributions will also be discussed in Chapter 9. 

 

First, the idea of explicitly distinguishing between different types of outliers using domain 

knowledge is a useful extension to both statistical and computing communities for outlier 

management. Earlier statisticians first developed a number of statistical tests to determine 

whether to retain or reject outliers. They later realised that any hard assumptions and 

thresholds imposed would not be reasonable to all applications. Therefore, a class of “robust” 

approaches was proposed and explicit outlier treatment received much less attention over the 

past few decades [8]. In these methods, the influences of outliers are accommodated, so that 

inferences drawn from data are not seriously distorted by the presence of outliers. However, 

the accommodation or robust methods may not be suited for those application areas where 

explicit treatment (i.e. rejection or retain) of outliers is desirable (see Section 1.2.1 for 

examples and Section 2.1.3 for general discussion). 

 

In this thesis, I believe that the approach of explicit outlier distinction deserves more attention 

than it currently receives: new computational techniques are being developed which are 

beginning to provide the necessary capability for advancing this important area of research. I 

suggest that the determination of “good” or “bad” outliers is possible if proper domain 

knowledge can be used and I realise that the variety of machine learning techniques have 

become sufficiently mature to facilitate the necessary domain knowledge acquisition. Based on 

the knowledge model, outlier distinction could be made automatically. This will have 

important implications on those data mining applications where the automation of outlier 

analysis could lead to important benefits. It is hoped that the work reported in this thesis will 

help stimulate, or perhaps more accurately, renew research in this important area.  

 

Second, I have proposed two complementary strategies for reasoning with outliers with a view 

to establish their origins. The first strategy aims to identify “good” outliers by building a model 

of how “normal data” should be distributed in a domain of interest. The second strategy, 
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however, tries to construct a model for capturing the behaviour of “bad” outliers and test 

outliers against this model. Each of these two strategies could be applied to a range of 

applications (see Section 2.4.2). 

 

Third, in spite of numerous existing outlier detection methods, outliers in multivariate data 

are still more difficult to identify and to explain than the less structured situations such as 

univariate samples. The SOM-based outlier detection method that I have developed allows to 

visualise the data on a two-dimensional map, and outliers can be identified more easily and 

may be explained using the maps with specific domain meanings. These properties facilitate 

the understanding of multivariate data, and the participation of domain experts. The SOM is 

also suited for outlier detection in different applications (see Section 2.4.1). 

1.4 A Brief Description of Contents 

In Chapter 2, I will start by covering the background information. Research in intelligent data 

analysis, and in particular outlier management, will be reviewed. I will also describe 

backgrounds and terminologies regarding visual field testing and the associated eye diseases, 

in order to better understand the various application-domain specific discussions throughout 

this dissertation. I will end this chapter with a detailed discussion of the methodology for its 

properties and applicability. 

 

Chapter 3 presents the method that I have used in step 2) of the outlier management process 

(as in Section 1.2.2). I will describe the use of self-organising maps (SOM), an unsupervised 

machine learning algorithm, to detect and analyse outliers. Its visualisation properties allow 

individual analysis of outliers, and thereby to discriminate them further. 

 

Chapter 4 presents one of the outlier analysis strategies that I have used in step 3) of the 

outlier management process (as in Section 1.2.2). I introduce a strategy to identify “good” 

outliers by modelling real measurements. Such a strategy is particularly effective if there is 

knowledge about how real measurements should manifest themselves under various 

circumstances. Any surprises outside the model, therefore, can be considered as noise. 
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A complementary strategy for knowledge-based outlier analysis, which I have also used in 

step 3) of the outlier management process, is presented in Chapter 5, where the application 

data are in a different nature and the available knowledge is in a different form. The strategy 

involves the building of a “noise model,” and any outliers that do not fit the model will be 

considered as potentially useful information, and included for further investigation. 

 

Chapter 6 demonstrates the work of reducing noise in the data collection stage (step 1) of the 

outlier management process, see Section 1.2.2) in the context of collecting visual field data in 

clinical environments. 

 

Reducing noise from data is only the first part towards intelligent data analysis. Its success 

can only be validated when such “cleaned data” are used in real-world problem-solving tasks. 

Chapter 7 presents such an example, where outlier analysis methodologies are used to help 

knowledge discovery from noisy data. It demonstrates my work in step 4) of the outlier 

management process. 

 

Chapter 8 systematically describes an IDA system, which integrates the outlier analysis 

strategies, noise reduction methods, and the knowledge discovery techniques. To extend the 

validation further, I present results received from several real community investigations using 

the integrated IDA system. I also evaluate the system using several key software quality 

criteria such as functionality, reliability, and efficiency. 

 

Finally in Chapter 9, the thesis is concluded by summarising the proposed outlier 

management methodology and the contributions made by the dissertation. Further work is 

also outlined in this chapter. 
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Chapter 2 Background 

In this chapter, I will discuss both related work and the proposed methodology. A variety of 

intelligent data analysis techniques will be reviewed. In particular, outlier management will be 

summarised in various aspects including their detection methods, causes, and treatments. I 

will also provide background information and terminologies regarding the application for 

diagnosing eye diseases. I will conclude this chapter with Section 2.4 – a detailed discussion 

of the properties of the proposed outlier management methodology. 

2.1 Outlier Management 

2.1.1 Why Do Outliers Occur? 

An outlying observation, or “outlier,” is one that appears to deviate markedly from other 

members of the sample in which it occurs [58]. Such outliers do not fit with the pattern that 

we have in mind, at the outset of our enquiry, of what constitutes a reasonable set of data. We 

have subjective doubts about the propriety of the outlying values both in relation to the 

specific data set that we have obtained and in relation to our initial views of an appropriate 

model to describe the generation of our data. 

 

So why do outliers occur? They may have arisen for purely deterministic reasons: a reading, 

recording, or a calculating error in the data. The remedy for these situations is clear: the 

offending sample values should be removed from the sample or replaced by corrected values. 

In less clear-cut circumstances where we suspect, but cannot guarantee, such a tangible 

explanation for an outlier, no such obvious remedy is available to us, and we have no 

alternative but to regard the outlier as being of a random nature [8]. 

 

In [62], outliers are classified into one of four classes.  First, an outlier may arise from a 

procedural error, such as a data entry error or a mistake in coding. These outliers should be 

identified in the data cleaning stage, but if overlooked, they should be eliminated or recorded 

as missing values. 
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Second, an outlier is the observation that occurs as the result of an extraordinary event, 

which then is an explanation for the uniqueness of the observation. In this case the 

researcher must decide whether the extraordinary event should be represented in the sample. 

If so, the outlier should be retained in the analysis; if not, it should be deleted. 

 

Third, outliers may represent extraordinary observations for which the researcher has no 

explanation. Although these are the outliers most likely to be omitted, they may be retained if 

the researcher feels they represent a valid segment of the population. 

 

Finally, outliers may be observations that fall within the ordinary range of values on each of 

the variables but are unique in their combination of values across the variables. In these 

situations, the researcher should be very careful in analysing why these observations are 

outlying. Only when specific evidence is available that discounts an outlier as a valid member 

of the population should it be deleted. 

2.1.2 Outlier Detection 

Many statistical techniques have been proposed to detect outliers and comprehensive texts on 

this topic are those by Hawkins [67], Barnet and Lewis [8].  Outliers can be identified from a 

univariate, bivariate, or multivariate perspective. 

 

The univariate perspective for identifying outliers examines the distribution of observations 

and selects as outliers those cases falling at the outer ranges of the distribution. The detection 

method is relatively straightforward and the primary issue is to establish the threshold for 

designation of an outlier. For example, some would advocate the heuristic that defines a value 

more than three standard deviations away from the mean as an outlier. 

 

In addition to the univariate assessment, pairs of variables can be assessed jointly through a 

scatterplot. Cases that fall markedly outside the range of other observations can be noted as 

isolated points in the scatterplot. To assist in determining the expected range of observations, 

an ellipse representing a specified confidence interval (varying between 50 and 90 percent of 

the distribution) for a bivariate normal distribution can be superimposed over the scatterplot. 
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This provides a graphical portrayal of the confidence limits and facilitates identification of the 

outliers [62]. 

 

Specific methods are needed for multivariate or highly structured data. Fortunately, a number 

of statistical methods have been developed for this purpose, such as those using the sub-

ordering principle [9], graphical and pictorial methods [91], principal components analysis 

methods [68], and the application of simple test statistics [55]. Some more formal approaches 

provide models for the data, and test the hypotheses of certain observations being outliers 

against the alternative that they are part of the main body of data [67]. 

 

Apart from statistical outlier detection, there are also methods based on information theory, 

which assumes that outliers are most surprising and therefore have the most information gain 

[61]. Neural network based outlier detection was also developed [112, 130]. In addition, a 

variety of AI techniques have been used to help detect outliers in datasets, including Bayesian 

methods, rule-based systems, decision trees, and nearest neighbour classifiers [127, 169]. In 

applying these methods, the challenge is often to balance two things: the blind removal of 

outliers, which may result in an inaccurate and often too simplistic model, and an over-fitted 

model of high complexity, which generalises poorly to data beyond the training set (i.e. by 

including all the outliers). 

 

Robust decision trees detect and remove outliers in categorical data [85]. A C4.5 decision tree 

[140] is used, during the training phase, to build a model from the whole data set. This is 

followed by a pruning phase where nodes are removed whenever this leads to a higher 

estimated error rate. A rule-based system for outlier detection is introduced in [138] to check 

the data quality of patient records in Austrian hospitals. Some other computational methods 

for outlier detection include [5, 22, 92, 122]. 

2.1.3 Methods for Handling Outliers 

Although a considerable amount of work on outlier detection has been done in the statistical 

community, relatively little work has been done on how to decide whether outliers should be 

retained or rejected. One statistical approach advocates an explicit examination or testing of 
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an outlier with a view to determining whether it should be rejected or taken as a welcome 

identification of unsuspected factors of practical importance [59]. However, this judgement is 

extremely difficult to make for statistical methods because different types of outliers often 

share similar characteristics from a statistical point of view [8]. This has led to conclusions by 

some statisticians that “statistical techniques can be used to detect suspicious values, but 

should not be used to determine what happens to them [4].” 

 

In view of the difficulties with explicit examination of outliers, a majority of current statistical 

work adopts an alternative approach that neither rejects nor welcomes an outlier, but 

accommodates it [81]. This approach is characterised by the development of a variety of 

statistical estimation or testing procedures, which are robust against or relatively unaffected 

by outliers. In these procedures, outliers themselves are no longer of prime concern. This 

approach assumes that outliers are somehow undesirable objects and their effect or influence 

ought to be minimised. Unfortunately, this assumption contravenes many practical 

applications, because outliers can actually represent unsuspected factors of practical 

importance and can therefore contain valuable information. In these situations, the influence 

of outliers should be emphasised rather than limited or minimised [122]. Any attempt to 

systematically minimise the influence of outliers without due consideration to these 

applications can lead to loss of valuable information, often crucial for problem solving. 

 

In order to successfully distinguish the outliers, various types of information are normally 

needed. These should not only include various data characteristics and the context in which 

the outliers occur, but also relevant domain knowledge. The procedure for analysing outliers 

has been experimentally shown to be subjective, depending on the above-mentioned factors 

[37]. The analyst is normally given the task of judging which suspicious values are obviously 

impossible and which, while physically possible, should be viewed with caution. For example, 

Matic et al. suggested a method that the outliers are examined manually to determine whether 

they should be included or discarded [122]. However in the context of data mining where a 

large number of cases are normally involved, the number of suspicious cases would be 

sizeable too, and manual analysis would become inefficient. 



30 

2.2 Diversity of IDA Methods 

2.2.1 Artificial Neural Networks 

The development of artificial neural networks has been inspired in part by the observation 

that biological learning systems are built out of a very large number of interconnected 

neurons. This work dates back to the very early days of computer science. In 1943 McCulloch 

and Pitts’ model of artificial neurons [123] caused much excitement, which led to the 

exploration of variations of this model. In the early 1960s, Widrow and Hoff investigated 

perceptron networks (“Adelins”) and the delta rule [175]. By the late 60’s it became clear that 

single-layer perceptron networks had very limited capabilities [125]. Hopfield [79] analysed 

asymmetric networks using statistical mechanics and analogies from physics, and the 

Boltzmann Machine [75] tightened the link between statistical mechanics and neural network 

theory even further. Perhaps the most widely used artificial neural networks are back-

propagation networks [23, 149, 173] and self-organising maps (SOM) [95, 96], which are 

powerful supervised and unsupervised learning methods, respectively. 

 

The back-propagation network has a “teacher” who supervises the learning by providing 

correct output values for each input. The resultant network can then be used to map 

unknown input values to appropriate output values. Consider a neural network with a set of 

input neurons, a set of output neurons, and a set of links, via some intermediate neurons 

connecting the input and output neurons. The back-propagating algorithm allows a correct 

mapping between input and output patterns. Typically, the weights on the links are initially 

set to small random values. Then a set of training inputs is presented sequentially to the 

network.  After each input has propagated through the network and an output has been 

produced, a “teacher” compares the value at each output with the correct values, and the 

weights in the network are adjusted in order to reduce the difference between the network’s 

current output and the correct output. The back-propagation network has been used to 

implement applications in many domains for a variety of problems, including bioinformatics, 

control, speech recognition and credit scoring [6, 69]. 
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On the other hand, Kohonen’s SOM automatically model the features found in the input data 

and reflects these features in topological maps. The resulting maps form local neighbourhoods 

that act as feature classifiers on the set of input patterns in such a way that similar input 

patterns are mapped onto close neighbourhoods in the maps. A typical architecture of the 

SOM consists of two layers. The input layer is a vector of N nodes for presenting the input 

patterns to the network, and the output layer is typically a two-dimensional array of M output 

nodes for forming feature maps. Each input pattern produces one “winner node” in the output 

layer and similar input patterns produce geometrically close winner nodes. The applications of 

the SOM are widespread [86], including biological modelling [133], vector quantisation [153], 

and combinatorial optimisation [46]. I will provide a more detailed description of how the SOM 

is applied to an application in the next chapter. 

2.2.2 Bayesian Networks 

A Bayesian network [103, 136, 84] is a directed, acyclic graph (DAG) that encodes 

probabilistic relationships among variables of interest. The process of using the Bayesian 

network for problem-solving is to find the appropriate structure of the DAG and the 

conditional probability tables (CPT) associated with each node in the DAG. When the structure 

of the DAG is known, say from the domain expert, only CPTs need to be calculated from the 

given data. However, if the network structure is unknown, one has to find that structure, as 

well as its associated CPTs, which best fits the training data. To do so, one needs a metric to 

score candidate networks and a procedure to search among possible structures. A variety of 

score metrics and search procedures has been proposed in the literature [24, 70]. 

 

It has been argued that there are several distinct advantages of using Bayesian networks for 

large-scale data analysis and modelling [70]. First, since the arcs connecting the nodes in the 

DAG can be thought of as representing direct causal relationships, a Bayesian network can be 

used to learn such relationships. Second, because the model has both causal and 

probabilistic semantics, it is an ideal representation for combining prior knowledge and data. 

Third, Bayesian networks can be used both for supervised learning [82] and for unsupervised 

learning [26]. For these reasons, we are beginning to see more Bayesian networks in practical 

applications [53, 119]. 
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In AI, work on Bayesian networks can be traced back to [137] in which “message-passing” 

algorithms for trees were developed. An algorithm for learning “polytrees” with unknown 

structure and fully observable variables is given in [136]. Early work on learning Bayesian 

networks was done in [39], extended by [71] for recovering the structure of general networks 

in the fully observable case.  A deep statistical analysis of Bayesian networks is provided in 

[156] for the fixed structure, fully observable case. Work on missing data can be found in [41, 

54, 143]. 

2.2.3 Extracting Rules from Data 

Many real-world problem-solving tasks are classification – assigning cases to categories or 

classes determined by their attributes. For instance, given the categories of “football player” 

and “netball player,” one might try to assign an individual to one of these two groups and sex 

might be the primary attribute in deciding the assignment.1 Here are two ways of building a 

classification model, which will allow the classification of previously unseen cases. 

 

First, the model may be built by interviewing domain experts to elicit classification rules. For 

example, the expert might say, “if someone is a female, then she is more likely to play netball,” 

and “if someone is a male, then he is more likely to play football.” Early expert systems or 

knowledge-based systems relied heavily, many exclusively, on the acquisition of relevant rules 

from the experts. Despite being one of the most successful sub-fields of AI for over a decade 

with many impressive systems developed [154, 43, 47], these systems suffered from the 

knowledge acquisition brittleness: when a new case falls outside the experts’ considerations, 

these systems fail to give an appropriate answer. 

 

Second, the classification model may be constructed inductively from numerous recorded 

classifications. In the football versus netball example, values of a few attributes might be 

available for a group of individuals with known classifications. Apart from sex, other 

attributes might include age, married or not, hairstyle etc. So how can one construct a 

                                                           
1 The netball/football example is adopted from Professor Max Bramer’s lecture notes. 
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classification model from these recorded classifications and attributes? C4.5 [140], a 

descendant of an early program by the same author, called ID3 [141], is probably the most 

commonly used program for inducing classification rules from a set of labelled training data. 

Essentially, C4.5 recursively selects an attribute by which the training set is split into non-

empty subsets for each value of the attribute. During any stage of the tree building, if all cases 

in a training set belong to the same class, then the value of the class is returned. The key 

requirements for using this approach are that the classes should be discrete and pre-defined, 

and that there should be plenty of cases, far more than classes, expressed in terms of a fixed 

collection of attributes. For applications involving continuous classes, the Classification and 

Regression Trees (CART), developed in the statistical community, may be used [21]. See [151, 

127] for overviews of different rule induction methods. 

 

Recently there has been much work on the extraction of so-called “association rules” from 

databases [2]. Association rules are statements of the form “x% of customers who bought 

items A and B also bought the item C.” Many algorithms have been invented to extract various 

kinds of rules from data [120, 3], and they have been found particularly useful for analysing 

basket data in retail applications for the purposes of cross-marketing, store layout, catalogue 

design and customer segmentation. 

2.2.4 Evolutionary Computation 

The idea that evolution could be used as an optimisation tool for engineering problems was 

studied in the early days of computing. For instance, Rechenberg [144] introduced “evolution 

strategies” and applied them to the optimisation of real-valued parameters for devices such as 

airfoils. Fogel et al. [51] developed “evolutionary programming,” in which finite-state machines 

were used as the representation scheme for candidate solutions. Holland [78] invented 

“genetic algorithms,” aiming to formally study the phenomenon of adaptation as it occurs in 

nature and to develop ways in which the mechanisms of natural adaptation might be 

imported into computer systems. All these approaches shared a common idea: evolving a 

population of candidate solutions to a given problem by using operators inspired by natural 

genetic variation and natural selection. These approaches form the backbone of the field of 

“evolutionary computation [126].” 
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The field of genetic algorithms has progressed a long way since Holland’s pioneer work, 

especially in the last decade. We have witnessed an increasing number of interesting practical 

applications, including “genetic programming,” the evolution of computer programs [99], the 

prediction of protein structure [152], and the prediction of dynamic systems behaviour [134]. 

The basic idea of genetic algorithms may be formulated as the problem of “search” – search for 

solutions. One starts by generating a set of candidate solutions (the initial population) for a 

given problem. The candidate solutions are then evaluated according to some fitness criteria. 

On the basis of the evaluation results one decides which candidates will be kept and which 

will be discarded. Further variants are produced by using appropriate operators such as 

crossover and mutation on the surviving candidates.  After a certain number of iterations 

(generations), the system converges – one then hopes that the best surviving individual 

represents a near-optimum or reasonable solution. 

 

Genetic algorithms can play an important role in IDA since data analysis can often be 

formulated as search problems – for example, a search for the next step in exploratory data 

analysis, a search for the most appropriate model explaining the data, a search for a 

particular structure, etc. In exploratory data analysis, at each stage there is often a set of 

possible operations that could be performed and what to do next often depends on the results 

obtained so far, the problem-solving context, data characteristics and the analyst’s strategy. 

In addition, given each data set there are often a large number of possible fitting models. 

Genetic algorithms are a strong contender for many classes of search problems [56, 126]. 

2.2.5 Other IDA Methods 

In the above sections, I have briefly discussed some of the advanced IDA methods, which have 

been under rapid development for the last decade. These methods have been applied to a wide 

range of practical applications.  However, it should be noted that there are many other 

methods which have much to contribute to data analysis, including case-based reasoning 

[146, 98], fuzzy and rough sets [192, 7, 135], inductive logic programming [129, 142], support 

vector machines [167], and visualisation [40, 131]. Of course, one should not forget that a 
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vast volume of literature on data analysis can be found in statistics and pattern recognition 

[42, 118, 101, 63]. 

2.3 Diagnosing Eye Diseases 

Due to the nature of our medical applications, there is much specialised clinical or 

ophthalmic terminology throughout this dissertation. Because many concepts are crucial for 

understanding the research work in this thesis, I try to systematically but also briefly explain 

them in this section. Explanations for those terms marked with underline in this section can 

also be found in the glossary at the end of this dissertation. 

2.3.1 Optic Nerve Diseases 

The optic nerve contains the retinal nerve fibres at the back of the eye, which carry visual 

impulses from the retina to the brain. Vision would be affected when the function of the optic 

nerve becomes abnormal. Among the eye diseases that cause vision impairment or blindness, 

the cause and cure of optic nerve diseases are least known. Medical researchers have been 

making enormous efforts in studying optic nerve diseases. The application of my study 

focused on two types of the most common optic nerve diseases, namely glaucoma and optic 

neuritis. They are severe threats to blindness in developed and developing countries 

respectively, and their impacts will grow with increased life expectancy [162]. 

 

Glaucoma. It is a condition sometimes associated with high pressure in the eye, which over 

many years can damage the retinal nerve fibres. A badly affected person only notices what is 

being directly looked at, but misses objects to the sides, similar to wearing blinkers, which is 

particularly hazardous in driving or navigating. Established glaucomatous damage is 

irreversible, and some severe cases may eventually result in complete blindness. The earlier 

the condition is detected, the better the chance of preserving sight with treatment. Glaucoma 

affects approximately one in 30 people over the age of 40 and is the second-leading cause of 

irreversible blindness in the developed world [162]. 

 



36 

The diagnosis of glaucoma normally requires a variety of clinical information such as disk 

appearance, intra-ocular pressure, and visual field. However, only visual field testing, called 

perimetry, provides early detection of the disease [80]. 

 

Optic neuritis. It is the most common optic nerve disease affecting young people in 

developing countries, particularly in Africa and Central/South America. It is typically 

associated with onchocerciasis, a major epidemic disease in these areas. When the WHO 

onchocerciasis control programme was started, it estimated that between 20 and 30 million 

people were infected by onchocerciasis throughout the world [174]. The average age of the first 

attack is 31 years, though teenagers and people over 40 might develop this disease for the 

first time as well. It is an inflammation in the optic nerve system, causing blurred central 

vision (the vision used to read and see fine details), reduced colour perception, and reduced 

sensation of light brightness. The exact cause of optic neuritis is still little known. 

 

Ideally, it should be possible to identify early cases of optic neuritis, so that treatment can be 

given and further visual function loss may be prevented [1]. However, patients who are at risk 

of optic nerve disease are not easy to screen by simple traditional visual function tests such as 

visual acuity. Visual field testing devices, which detect early signs of the diseases more 

effectively, are seldom available in the epidemic regions. The provision of simple, low cost but 

scientifically sound technology for developing countries is a priority [162]. 

2.3.2 The Conventional Visual-Field Testing Procedure 

Typical symptoms of optic nerve diseases include abnormality in the visual field – the entire 

portion of the retina in the eye where objects are visible. When the visual field becomes 

affected, some parts are less sensitive to external stimulus, such as light or movement. 

Ophthalmologists therefore, usually rely on an eye-testing procedure, namely perimetry, to 

diagnose optic nerve diseases [80, 105]. 

 

Perimetry systematically examines the visual field at various levels of light sensitivity [105]. 

The procedure involves a perimeter – a special device, and a trained specialist called a 

perimetrist to control and monitor the test. The perimeter presents light stimuli varying in 
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sizes or brightness at a number of locations across the visual field. In order to examine 

different locations in the visual field, the perimeter has a central point (the fixation point) at 

which the observer has to gaze. When stimuli are presented one by one at each location, the 

sensitivity of the corresponding retinal areas is tested. Based on the observer’s responses to 

the stimuli, the perimeter can quantify the distribution of visual functions in the visual field, 

in the form of sensitivity values. Figure 1 depicts such a conventional perimetry. 

 

 

Figure 1. A conventional perimetry 

A number of behavioural factors could contribute to the accuracy of the sensitivity measured 

from such a test, however. As a psychophysical test, it not only measures physiological status, 

but also deals with psychological behaviour. It is naturally subject to behavioural fluctuation 

problems from patients [76, 17, 88], and there have been a number of research attempts to 

address the issue [13, 158, 159, 124]. For example, the precision of the retinal location being 

examined relies on how well the observer focuses on the fixation point. A fixation loss might 

occur if the eyeball moves between two stimuli testing two different retina locations. A false 

negative response will result if the observer is distracted and fails to respond despite the 

stimulus having been seen. Vice versa, a false positive response can occur if the observer 

responds without seeing the stimulus. The perimeter offers several facilities to inspect these 

reliability factors and they have been used to indicate the reliability of test data [87]. 
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• The observer’s fixation is checked by presenting a stimulus in the blind spot. A fixation 

loss has resulted if the observer responds. 

• Occasionally during the test, the perimeter presents a stimulus that is much brighter than 

normal, but the observer does not respond. This is a case of a false negative response. 

• At other times, the projector moves as if to present a stimulus but does not do so. A false 

positive response has occurred if the observer responds. 

 

Perimetry of this type has been successfully used in clinical environments to help diagnosis 

[72]. However, the perimeter is specially designed, expensive, and with limited availability. Its 

use is mostly restricted to eye hospitals [163] and it seems unlikely that the use of such 

devices by opticians will increase much [157]. These factors prevent them from being used for 

community eye screening and massive field epidemiological investigation. On the other hand, 

people should undergo visual field testing at the earliest possible stage. By the time a patient 

with overt symptoms has been referred to a hospital for eye examination, the visual loss might 

already be at an advanced stage and might not be easily treated [155]. 

2.3.3 The CCVP 

As an alternative to the conventional perimetry, the Computer Controlled Video Perimetry 

(CCVP) was proposed as a software-based perimetry operating on a PC [182]. The CCVP is the 

first visual stimulation-generating program implemented on portable PCs, which has shown to 

be a useful measurement for detecting the progress of early glaucoma [177, 188, 180, 181, 

183]. Instead of using light stimuli, the test uses motion stimuli measuring motion sensitivity 

[49] by displaying moving objects on screen. Because of this, it is sometimes referred as 

motion sensitivity perimetry. It examines a number of retinal locations in the visual field, with 

varying moving scales. The CCVP was designed to be a simple, low cost, and user-friendly 

system. 

 

Figure 2 is an example of a CCVP screen layout. The test screen consists of a number of 

vertical bars with the same shape, colour and intensity, but different in size. The controlling 
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program moves a vertical bar horizontally at a pre-designed moment, and expects a response 

from the observer. The observer, always focusing on the circle (the fixation point) at the right 

side of the screen, responds by pressing a key or a mouse button. Moving vertical bars in a 

certain area of the screen would lead to the examination of the corresponding parts of the 

visual field. 

 

Note that not all the vertical bars are used in the CCVP to examine motion sensitivity. The six 

numbers (1 – 6) in Figure 2 are not displayed on screen. Rather, they illustrate the testing 

locations that the particular version of the CCVP uses. The six locations in this case – (L1, L2, 

L3, L4, L5 and L6) are considered sufficient to cover different motion functional areas on the 

retina [182]. 

 

By moving the bars at different scales, the sensitivity of the retinal locations may be 

determined in further detailed levels. At each location, there may be up to four levels of 

movement scales – (S1, S2, S3, S4), with S1, S2, S3 being different movement scales and S4 

being flicker. However, the more popular version of the CCVP only presents S2 at each 

location. 

 

 

Figure 2. An example of the CCVP screen layout 

Figure 3 is an illustration of how a subject self-tests with the CCVP. The subject uses his arm 

to support his chin in front of the screen, in order to maintain proper fixation. Like the 

conventional perimetry, the reliability of measurements may be affected due to the nature of 
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any psychophysical tests. Unlike conventional perimetry, however, the CCVP does not have 

dedicated equipment to monitor the fixation loss or other behavioural instability during a test 

session. 

 

 

Figure 3. The CCVP test 

To facilitate the collection of reliable test results, the CCVP has adopted a strategy called 

Single Amplitude Trial (SAT). The theory for SAT is to measure the observer’s responses to the 

same test condition for a given number of repeating cycles, in order to reduce the effects of 

extraneous noise in a test [159, 160]. The SAT requires all the testing locations to be 

examined repeatedly with a pre-designed sequence during an entire test session. It assumes 

that the fluctuation is so small that the responses to the given stimulus will be constant 

during a test. A reliable observer’s behaviour pattern should be different from an unreliable 

pattern detected by this strategy. To keep the same test conditions, therefore, the sequence of 

stimulus presentations used a look-up table rather than random order. In the table, there are 

two types of sequences for all stimulus locations: 

 

P1: L1→L2→L3→L4→L5→L6 

P2: L2→L4→L6→L1→L3→L5 
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For the test with four levels of stimuli and r repeated testing cycles, the whole sequence for 

the CCVP would be: 

 

(S4P1→S2P2→S1P1→S3P2) × r 

 

At the end of this CCVP test, r number of data matrices vi are produced, each of which records 

the observer’s responses during a single cycle and has the following form. Each element xijk is 

either 1 with the stimulus seen, or 0 with the stimulus unseen, where i is the repeating cycle 

number, j is the location number, and k is the stimulus level. Equation I represents the data 

matrices for the particular version of the CCVP, which tests six retinal locations and four 

levels of movement scales, as described above. 
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Note that the matrices become vectors if the CCVP uses only one stimulus level. 

 

As far as each location j is concerned, there will be an average motion sensitivity value sjk for 

each level of stimulus k. It is calculated by dividing the number of positive responses by the 

total number of repeating cycles, as in Equation II. A higher sensitivity value means that the 

corresponding location is more sensitive to a motion stimulus. Clinicians rely on these 

sensitivity values to perform diagnoses. 
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The entire test result would be represented as a visual function pattern P with the sensitivity 

values calculated: 
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The response time, the time between the moment the stimulus is displayed and the moment 

the response is received, is also recorded by the CCVP.  The response time is set to zero if the 

stimulus is not seen. 

 

A few critical issues must be addressed although the CCVP has a number of advantages over 

the conventional perimetry. First, because the CCVP is subject to a substantial amount of 

noise, it is vital to improve the data quality before they can be relied on for clinical decision-

making. Second, as the CCVP was a newly proposed alternative perimetry, one of the most 

crucial tasks would be to validate its performance, e.g., how accurately it can reflect patients’ 

visual functions and how sensitive it is to detecting early optic nerve defects. Third, there is a 

need to address practical issues and to integrate the techniques into an application that can 

be used in real clinical environments. 

 

In Chapter 4 to Chapter 6, I will systematically demonstrate how my noise management 

strategies with AI techniques have addressed the first issue. In Chapter 7, I will show that my  

research has also helped the CCVP to address the second issue, after test results are made 

more reliable. Finally in Chapter 8, I will summarise how my IDA research has contributed to 

the CCVP in establishing it to be a public self-screening tool for eye diseases. 

2.3.4 AI in Diagnostic Visual Field Analysis 

Much work has been done to apply various AI techniques to the diagnosis of visual function 

losses. For example, Weiss and his colleagues developed an expert system called CASNET 

[170, 171] for the diagnosis and treatment of glaucoma. The system was developed using a 

qualitative model of glaucoma and successfully evaluated by a large and varied group of 

ophthalmologists. The diverse opinions of consultants were utilised to establish a knowledge 

base detailing how various important pieces of information regarding visual field, disk 
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appearance, intra-ocular pressure, personal information, etc. are associated with different 

types of glaucoma.  

 

Among the various diagnostic information about glaucoma and other optic nerve diseases, the 

outcome of visual field analysis is crucial to its early detection [105, 76]. Consequently, it is 

not surprising that there have been a lot of AI attempts to make this analysis easier and more 

accurate. A majority of these attempts can be classified into two categories: expert systems 

and neural networks. 

 

The expert systems approach to interpreting visual field data typically involves the use of 

standard knowledge of perimetry utilising the anatomy of visual pathways and the experience 

of individuals in analysing the data. Two such systems are Krakau [100], Boglind and Wanger 

[104]. Recently the use of neural network techniques to analyse visual field data has become 

increasingly popular. A number of networks have been trained to associate the perimetry data 

patterns of individual tests with various kinds of visual function losses [132, 89]. These 

networks are typically trained using the back-propagation technique [149] and past cases 

where diagnostic decisions were already made for each individual case. 

 

One of the major problems with using the above methods to interpret the visual field data is 

that these data, collected from patients, commonly contain the measurement noise. As 

perimeters generally rely on patient feedbacks in reaction to visual stimulation, noise is 

usually caused by behavioural fluctuation such as learning effect, fatigue, inattention, failure 

of fixation, etc. It implies that the data cannot be guaranteed to accurately reflect the visual 

function of an individual, therefore making the clinician’s diagnostic process a challenging 

one. 

 

To help the clinician deal with the data reliability problem, a common strategy is to use 

repeated measurements, which examines locations on the retina following pre-determined 

repetitious sequences. The redundant information collected by repeated measurements 

facilitates noise identification and has the potential of improving data quality [186]. In 
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addition, perimeters often provide facilities for inspecting various reliability factors, such as 

fixation losses, false positive and false negative responses, and for quantifying the data 

variance, such as short-term fluctuation [124]. This statistical information is expected to 

make clinician aware of the potential noise in the data and therefore he or she may consider 

these indications when interpreting the data. 

 

Data interpretation using these indications is nonetheless a difficult one. First, although the 

indications offer a global measurement about the reliability of an individual test, they do not 

tell when and where the noise actually occurred during the test session, which is extremely 

useful for eliminating noise and monitoring the patient’s test behaviour. Second, this kind of 

reliability information cannot be used to explain why the noise occurred, for example, whether 

it is due to the patient’s learning effect, fatigue, anxiety, or to pathological reasons. Third, 

statistical methods used to obtain reliability information often involve certain statistical 

assumptions about the data, which may not always hold. Perhaps more important, the 

clinician has to either discard all the test data if too much noise is involved, or use the noisy 

data for analysis and diagnosis. In the latter case, even though the extent of the noise in the 

data is known, the clinician’s interpretation is ultimately a subjective one, depending on his or 

her experience and knowledge. 

 

These difficulties associated with conventional techniques have led to the seek of an 

alternative way to deal with the noise in the test data. In the next chapter, I will present a new 

computational method that enables us to show when, where, and to a large extent, why the 

noise occurred in the test data. The method is a combination of data visualisation techniques 

and domain knowledge about eye diseases and psychophysical testing behaviour. It can 

demonstrate patients’ temporal behaviour during the test session. This has provided the first 

step to distinguish between behavioural instability and pathological fluctuations. With the real 

noise separated and filtered out, the clinician can then make more accurate diagnostic 

decisions based on quality test data. 
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2.4 The Proposed Methodology for Outlier Analysis 

The objective of my study is to develop computational methods for explicitly managing outliers 

such that the methods should not only identify where the outliers are, but also carefully 

analyse them to distinguish between different types of outliers. For example, “good” outliers 

are normally informative and useful in helping with problem solving activities, while “bad” 

outliers are non-informative in practice, i.e. not useful to a particular problem-solving task. 

Here I propose a general methodology for explicitly distinguishing between different types of 

outliers in data: 

 

1) Visualisation and detection of outliers in multivariate data using self-organising maps. 

 

2) Reason about outliers using domain knowledge. In particular, two strategies have been 

proposed: 

 

i) To identify “good” outliers, namely to model how “normal data” should be 

distributed in a domain of interest, and to reason about outliers based on this 

model. 

 

ii) To use knowledge regarding the understanding of “bad” outliers to help reason 

about outliers. In other words, it attempts to model the behaviour of these outliers 

and accept data outside of the norms if it is not accounted for by the “bad outlier 

model.” 

 

As pointed out in Section 1.2.2, not all the problems require both components although the 

above methodology consists of both outlier detection and outlier analysis. They can be used 

independently to deal with each of these situations. In certain applications, for example, 

outlier detection itself is the focus, while outlier analysis may be the only task when we are 

given particular abnormal (outlying) situations. Similarly, the outlier analysis may be applied 

to statistically detected outliers. The following two sections will explain how the proposed 

outlier detection and analysis procedures work, and their characteristics. 
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2.4.1 Outlier Detection by Self-Organising Maps 

This method is based on the property of the SOM that similar input vectors from a multi-

dimensional space are mapped onto close output nodes on a two-dimensional map. 

Consequently, those input data sharing similar properties are clustered on the output map. 

Because all data points can be visualised on the output map, the main population and 

outliers among input data, which are mapped onto different areas on the output map, may be 

identified and explicitly analysed. In addition, because each cluster on the output map is 

mapped from certain input data, it is possible to “explain” the output map by investigating the 

associated input data and assign the map with “physical meanings.” We may use this 

information to further interpret the relationship between the main population and the 

outliers. 

 

In practice, this method is capable of operating at different levels for multivariate data, 

detecting different types of outliers. Suppose that we have data containing information on 

each football player, such as goals, fouls committed, penalties conceded, time played during 

each game, etc. during a season. Each data vector represents the performance of a player in a 

particular game. We could use the SOM to visualise how well a player played each game 

during this season, by mapping all data vectors of this player onto the two-dimensional map. 

Consequently, certain outliers could be identified, e.g., a player had very poor performance in 

a game. This could be indicated by the phenomenon that the output node associated with the 

specific player data vector is outlying on the output map. Additionally, because the temporal 

behaviour of the individual is visualised, domain experts may be able to identify a particular 

pattern from each of the players. For example, a player had poor performance during the 

initial several games but gradually improved towards the end of the season, or vice versa. In 

Chapter 3, an example of how the SOM can be used for modelling a subject’s visual test 

behaviour is given. 

 

Similarly, the SOM could be used in the same way to model a group of individuals to study 

whether an individual is outlying. For example, if we have each data vector representing the 

overall performance of a football player over the entire season, the SOM would allow us to 
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detecting some outstanding or less competent players in a league. Of course, one could 

conceive that the SOM could also be used to study whether the performance of a football team 

is outlying, if an appropriate data representation scheme is used. 

 

In short, the SOM not only makes it possible to identify outlying individual instances or 

classes, but also allows the behavioural study for an individual class over a period of time. 

This serves as a useful tool for studying temporal behaviour apart from serving the purpose of 

detecting and visualising outlying data. Chapter 5 will show that this feature facilitates the 

labelling of multivariate data by domain experts. 

 

Note that the SOM-based outlier detection method assumes that the interesting property is 

more stable in the data and therefore in the main population, and it exposes the outliers for 

further analysis. For example, the property that a utility demand (gas, water, or electricity) 

time series should follow certain trends (daily, weekly or monthly) is more stable than the 

occasional fluctuation in data caused by special events (e.g., extreme weather, major historic 

events etc.), or data recording errors. This method would not work if data patterns in an 

application are scattered around with no regularity, because there may not be a main 

population representing the interesting properties. 

2.4.2 Two Outlier Analysis Strategies 

In this thesis, two general strategies for distinguishing good and bad outliers are proposed. 

These two strategies are complementary in nature, and together, they cover a range of 

application areas. 

 

The first strategy attempts to identify “good” outliers, i.e. to model how “normal data” should 

be distributed in a domain of interest, and to check outliers against this model. Chapter 4 will 

present such an approach based on examples provided by the domain expert, from which a 

model with four classes of real measurements was constructed using a supervised learning 

algorithm. Such a model is then applied to identify the good outliers. 
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This type of analysis is suited to applications where sufficient examples covering the “real 

measurements” or “normal patterns” are available. For example, in the hand-written character 

recognition experiments [122], human supervisors played the role of distinguishing good 

outliers (rare but valid patterns) from bad outliers (garbage patterns). However, it is possible 

that one could construct the model for normal writing patterns and check suspicious patterns 

(outliers) against the model, and the distinction process may be automated. This “normal 

pattern” model may be built using a sufficient number of training samples involving all kinds 

of valid written patterns representing a given character. Distinguishing fraudulent 

transactions from those looking-suspicious, but legitimate ones is another type of application 

where this modelling approach may be applicable. Given a large number of suspicious credit 

card transactions every day, there is a practical need to automate the process of outlier 

distinction. The corresponding “normal pattern” model may be built using a large number of 

legitimate transactions whether they are looking suspicious or not. In Chapter 4, I will show 

how this model is constructed and applied to outlier analysis in a set of glaucomatous test 

data. 

 

Instead of using the knowledge from the application domain regarding how the normal data 

should be distributed, the second strategy for analysing outliers uses knowledge regarding the 

understanding of “bad” outliers or “undesirable behaviour.” In other words, it attempts to 

model the behaviour of these outliers and accept data outside of the norms if it is not 

accounted for by the bad outlier model. 

 

This type of analysis is particularly useful to applications where sufficient examples covering 

the “bad” outliers or “abnormal patterns” are available. For example, we could try to use this 

modelling approach to distinguish causes for abnormal multivariate time series observations 

collected from a plant as mentioned above. There may be plenty of time series patterns 

associated with a limited number of frequently occurred faults in the plant, which could be 

used to construct the bad outlier model. Chapter 5 presents another case where this type of 

model is constructed using an inductive learning method, and the model was applied to the 

analysis of the CCVP data. 



49 

 

It should be noted that the use of domain knowledge to “explain” outliers can be achieved by 

different means, depending largely on the availability of the relevant knowledge, how the 

knowledge is acquired and which form it takes. For example, if the knowledge is in the form of 

a set of rules acquired from domain experts, then reasoning techniques associated with 

knowledge-based systems may be used. On the other hand, if the knowledge is a set of 

examples provided by an expert, some machine learning methods may be used to extract the 

structure of the data and form useful knowledge. The vast literature on knowledge-based 

systems and machine learning plays the role of providing methods, guidance, and solutions 

for the construction of such kind of knowledge-based models. 

 

As to when to apply each strategy, it often depends on the availability of relevant domain 

knowledge. For example, both strategies could be in principle applied to the case of credit card 

fraud transaction. However, it appears that the approach of modelling “normal patterns” may 

be more realistic here since fraudulent behaviour is often changing fast: the offenders often 

come up with new methods to beat the system. In this thesis, the bad outlier modelling 

method has been found more suitable for making outlier distinction within the CCVP data 

collected from a GP clinic for the following two reasons. First, the normal pattern modelling 

approach would have been difficult, given one would need to have to elicit domain knowledge 

regarding how different eye diseases manifest themselves on the visual field data, because of 

the large number of possible eye diseases with each of the GP patients. Second, the knowledge 

regarding the bad outliers can be acquired more easily because the limited number of typical 

behavioural fluctuations, such as fatigue, learning effect, and inattention are found to cover 

large portion of the bad outliers (see Chapter 5). 

2.4.3 Remarks 

The proposed methodology and its associated outlier detection and outlier analysis strategies 

have been discussed in the above sections, together with an assessment of their applicability. 

This methodology needs to be applied to real-world applications in order to demonstrate how 

effectively it manages outliers. This thesis has chosen the CCVP data in the context of 

screening for blinding diseases for the study of outliers. In this type of applications, outliers 
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often occur in the collected data with different origins, and appropriate analysis is important 

for preventing the elimination of those outliers carrying useful clinical information. I will show 

that the “bad” outliers tend to appear in the form of measurement noise as opposed to “good” 

outliers, which often represent real measurements of the visual functions. The next six 

chapters will be devoted to the application of the methodology to this type of challenging 

medical applications involving the screening of different types of disease such as glaucoma 

and optic neuritis using data collected in a variety of environments such as GP clinics and 

large-scale field investigations. 
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Chapter 3 Outlier Visualisation and Detection 

In this chapter, I shall present my work on outlier detection and visualisation. Using the 

CCVP as an example application, an approach of detecting and analysing outliers by self-

organising maps [95] is discussed. I shall demonstrate that the self-organising maps enable 

the analysis of various test behavioural factors, which are the primary cause of measurement 

noise in this particular application. I will show why outliers can be interesting features or 

measurement noise caused by random, undesirable factors. I will also demonstrate how 

measurement noise may be separated from other outliers by analysing its possible causes. 

3.1 Self-Organising Maps (SOM) 

To overcome the difficulties associated with conventional techniques, we are essentially 

looking for a way of understanding when, where, and how outliers occur in a data set. In this 

section, I introduce a computational method for this purpose. In particular, Kohonen’s self-

organising network [95, 96, 97] is used to model noisy data. Transition trajectories on the 

maps are utilised to provide graphical information about the nature of the outliers. This 

visualisation of outlier patterns establishes a foundation for identifying measurement noise 

among outliers in the data. 

 

input

winner node

output nodes

weights

input nodes (N = 2)

(M = 3 x 3)

 

Figure 4. A self-organising network 

 

A self-organising network can be defined with a set of input nodes V = {v1, v2, …, vN}, a set of 

output nodes C = {c1, c2, …, cM}, a set of weight parameters W = {w11, w12, …, wij, …, wNM} (1 ≤ i ≤ 
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N, 1 ≤ j ≤ M, 0 ≤ wij ≤ 1), and a map topology that defines the distances between any given two 

output nodes. The input nodes represent an N-dimensional vector and the output nodes are 

usually arranged in a 2-dimensional array to form a “map.” The way in which output nodes 

are interconnected is called “map topology.” Common map topologies include hexagon lattice 

and rectangular lattice. One illustrative example of a self-organising network is shown in 

Figure 4 where N=2, M=9 and the map topology is rectangular lattice. Each input node is fully 

connected to every output node via a variable connection, and hence there are N×M 

connections. A weight parameter is associated with each of these connections. For a given 

SOM, an input vector v associates with one winner node cj on the output map. A winner node 

is an output node that has minimum distance to the input vector. 

Equation IV. ij cvcvi −≤−∀ ,  

The distance between an input vector and an output node is defined as 
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An SOM is established by “learning” or “self-organising” on a given set of input N-dimensional 

data. The self-organising algorithm calibrates the weight parameters W initialised by a set of 

given values. The calibration is done by reiteratively applying input samples cyclically or in a 

randomly permuted order. For each iteration t, the weight parameters are updated as 
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The α is a monotonic decay function with t (Equation VII), and γ is a “neighbourhood 

function,” which defines how weight parameters associated with neighbouring output nodes 

are affected. Two popular types of the neighbourhood function are “bubble adaptation” [95] or 

a Gaussian-type function [148] (Equation VIII). Here a, b, c and k are some positive constants, 

and ji cc − is the distance between the learning node ci and the current winner node cj on the 

output map. 
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Figure 5. Three neighbourhoods around the winner  node c 

The neighbourhood set Nc is a set of nodes that surround the winner node c. These nodes in Nc 

will be affected with weight modifications, apart from those changes made to the winner node, 

as defined in Equation VI. These weight changes are made to increase the matching between 

the nodes in Nc and the corresponding input vectors. As the update of weight parameters 

proceeds, the size of the neighbourhood set is slowly decreased to a predefined limit, for 

instance, a single node. Figure 5 shows three different neighbourhood sets around the winner 

node c at different time steps in the algorithm where t1 < t2 < t3. In the discussion above, the 

apparent assumption is that the distance between two output nodes is measured by 

Euclidean distance. 

 

This process leads to several important properties [96]. First, similar inputs are mapped onto 

closely neighboured nodes. Second, each particular node represents one special input cluster. 

Another important property of the maps is their vector quantisation ability, i.e. their ability to 

project high dimensional input data onto a two-dimensional map. This makes visualisation of 

complex data possible, e.g., speech data [94] or symbolic descriptions of objects [147]. 

 

Perhaps the most significant property in many applications is that similar input vectors are 

mapped to geometrically close winner nodes on the output map. This is called neighbourhood 
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preservations, which has turned out to be very useful in visualising and analysing outliers, as 

we shall see below. 

 

As the feature of neighbourhood preservations is the essential concern about the quality of the 

SOM produced, I have used the topographical product [11] as a measurement for this purpose. 
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Where M represents the number of output nodes and R1 and R2 can be calculated as follows: 
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The topographical product is a magnitude indication of neighbourhood violation. The smaller 

its value is, the better the neighbourhood preservation would become [11]. 

3.2 Visualising and Identifying Outliers by the SOM 

In this section, I shall describe how the SOM is used to analyse temporal behaviour by 

visualising the test data over time. I have experimented the method with the CCVP test data 

collected from patients in a hospital and in massive field investigations [185, 179]. The results 

have much interested both AI researchers and ophthalmic clinicians, and a great deal of 

knowledge about psychological testing behaviour has been acquired [110]. 
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As discussed in Chapter 2, the CCVP tests each patient with a fixed number of repeating 

cycles during a single test. For each cycle, one or more types of stimuli are displayed following 

a pre-determined order at a number of designated locations on the retina. It would therefore 

be natural to view the testing process as a patient going through a fixed number of identical 

test cycles. It would also be natural to assume that the responses from one test cycle should 

be similar to another. This assumption, however, is often violated by behavioural factors such 

as learning effects, fatigue, etc., which lead to significant deviations among patients’ 

responses. The redundant information from the repeating cycles, therefore, would help 

identify the outliers involved in the data. 

 

The proposed method consists of three steps. First, Kohonen’s learning technique is used to 

find a network capable of generating maps that reflect the patient’s test behaviour. In 

particular, each response pattern for each repeating cycle is used as an input vector to the 

SOM and a corresponding winner node is produced on the output map. As far as each test 

case is concerned, the number of winner nodes on the output map would equal the number of 

repeating cycles conducted for a particular individual. Paths connecting these winner nodes in 

the order of the repeating cycles would thus constitute a transition trajectory, which 

graphically illustrates on a 2-dimentional map how the individual’s behaviour changed from 

one cycle to the other. 

 

Second, an effort is made to find a network that shows better neighbourhood preservations, i.e. 

similar input vectors are mapped onto identical or closely neighbouring nodes on the output 

map. This step is important as we want to map similar response patterns from patients onto 

similar nodes. As pointed out previously, I have used the topographical product as a 

measurement for this purpose. 

 

Finally, the behaviour maps for all test cases are generated using the network produced in the 

second step, which is then analysed to help identify the measurement noise. They are also 

used to determine the origins of the noise, for example, whether it is because of learning 

effects, fatigue, or other factors. 
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Kohonen’s SOM applied to the test data now follows: 

 

Definitions: Let the number of nodes be M. Let W be a set of connection weight vectors where 

each output node cj (1 ≤ j ≤ M) is associated with a connection weight vector of N-dimensional 

of the form wj = (wj1, ..., wjN) where wjk represents the connection weight between the input 

node k and the output node cj. 

 

1) Initialise the map topology and size of the output map. I have experimented with map 

topology of both hexagon and rectangular lattice, and results were similar. 

 

2) Initialise the weights parameters. Initialise the connection weight parameters to 

random values over the interval [0.0, 1.0], and normalise both the input vectors and the 

connection weight parameters. 

 

3) Present new input. Set i to i+1 and present input vector vi. 

 

4) Select minimum distance. The distance between the input vector vi and each output 

node cj is computed by Equation V. Designate the winner node with minimum distance to 

be c. 

 

5) Update weight parameters. Adjust the weight parameters of the winner node c and its 

neighbouring nodes cj, as specified in Equation VI. As for the neighbourhood function, I 

have found that a Gaussian-type neighbourhood function gives much better 

neighbourhood preservations than a neighbourhood iteration set (i.e. the “bubble” 

adaptation). This finding is consistent with some other studies [117, 44]. 

 

6) Repeat by going to step 3). This iterative process continues until the given iteration 

number is reached. 

 



57 

7) Calculate the topographic product of the resultant network (see Equation IX). 

 

8) Find a well-performed network. If the neighbourhood preservation of the present 

network is not satisfactory as indicated by the current topographic product, go to step 2). 

Otherwise, 

 

9) Use the network to produce one map for each individual test with r repeating cycles. 

There is one winner node corresponding to each cycle vi (see Equation I). All r winner nodes 

constitute a transition trajectory, which shows how the individual behaved from cycle to 

cycle. 

 

The resultant map is then used to analyse outliers and identify the measurement noise among 

them. Individual trajectories and their associated maps are classified into a number of 

categories, e.g., reliable, absolutely unreliable, unreliable due to fatigue, unreliable due to 

learning curve, etc. 

 

X X X X X X
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X X X X X X

X X X X X X

X X X X X X

X X X X X X
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X X X X X X
10 trials

4 stimuli

6 locations

winner node for each vector

output nodes

input vector

input nodes

 

Figure 6. Applying the SOM to the CCVP 

Figure 6 illustrates the application of the SOM to a particular type of the CCVP test, where 

there are 4 types of stimuli on 6 locations with 10 test cycles. The basic idea is that the data 

set corresponding to each cycle is used as an input vector. Since each input vector produces a 

winner node, the 10 input vectors for each CCVP test would produce 10 winner nodes. They 

constitute a transition trajectory in the map as shown in Figure 7. 
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Figure 7. A transition trajectory in the output map 

Several observations can be made with this method. The input vectors are quantified to 0 and 

1 from binary attributes of either “seen” or “unseen,” respectively. As Euclidean distance is 

used to elect the winner node among all output nodes, the values representing the binary 

attributes become insignificant once they are normalised [96]. Nevertheless, this assumes that 

all elements in input vectors are equally weighted when calculating the similarity between two 

input vectors. In other words, the attributes of any testing locations are equally regarded, 

without considering any correlation among them. This is generally an inaccurate assumption, 

as I will discover in Chapter 7. In my experiment, however, I have found that the spatial order 

of the SOM has captured the internal relationships without a priori knowledge about 

correlation in attributes. In an example demonstrated in [96], a similar result was also 

obtained without respecting inherent correlation among attributes. 

 

In addition, I have found that the frequencies of input vectors, in addition to their similarities 

in between, are also reflected by the SOM. For example, the most frequently occurring vector, 

(1, 1, 1, 1, 1, 1)t, is usually mapped to one of the four corner nodes. Its nearest neighbouring 

vectors, such as (1, 0, 1, 1, 1, 1)t, are usually projected onto output nodes that are some 

distance away. The output nodes in between do not respond to any existing input vectors. 

This indicates that the SOM has learned from the input samples, and that the difference 

between the “all-seen” vectors and any other vectors is of great importance. Furthermore, it 

seems that the SOM has also learned the differences among testing locations. My study of 
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disease pattern discovery from the SOM has provided further evidence for this feature, as 

described in Chapter 7. 

 

Those findings show that the SOM is able to produce non-linear mapping based on statistical 

characteristics among data. I consider these features important in my domain-specific outlier 

management (see also discussions in Section 2.1.3). 

3.3 Analysing Outliers and Noise Patterns 

However, what does the map really tell us apart from the winner nodes and the transition 

trajectory? As mentioned previously, one of the most important features of the SOM is that 

similar input vectors lead to close winner nodes. So at least we know that different output 

nodes will have somewhat different input vectors associated with them. In other words, output 

nodes represent characteristics of different groups of input vectors, as a result of the learning 

process from a particular data set. Furthermore, there can be various “physical meanings” of 

the map by looking into output nodes in different aspects. In the case of perimetry testing, we 

are primarily interested in the information on visual functionality, i.e. how well the patient 

can see the stimuli on the screen. 

 

     100% 0%  
sensitivity

 

Figure 8. One of the physical meanings of the map – the average motion sensitivity 

Figure 8 is an example of one of the physical meanings of the map, which is produced by 

calculating the average motion sensitivity (Equation II) of all the input vectors associated with 

each output node. I have found that the average motion sensitivity calculated this way is very 
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close to the “alternative average motion sensitivity” calculated from the weight parameters wij 

associated with the output node (see Equation XII, where N is the number of input 

dimensions, and wij are weight parameters). This indicates that the output node, 

characterised by its weight parameters, can be seen as a “representative” vector of all the 

associated input vectors. Further descriptions of this phenomenon are provided in Chapter 7. 

Equation XI I . �
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Two observations can be made from the “physical meanings map.” First, the top right region is 

most sensitive, i.e. patterns from patients who can see most of the time are mapped into this 

region. This is indicated by the most faded grey level of the nodes on the map. An extreme 

case is the node on the top right corner of the map (white), reflecting the pattern of seeing all 

the time, i.e. the corresponding input is a vector of 24 elements of all 1s. Second, the motion 

sensitivity gradually decreases towards the bottom left region, indicated by darker grey levels. 

An extreme case is the node on the bottom left corner (black), reflecting patterns from patients 

who cannot see at all. 

 

These two observations are largely due to the characteristics of the SOM: similar input 

patterns would be mapped onto typographically close nodes on the output map. For example, 

an input vector of all 1s and that of all 0s, when mapped onto the map, has the largest 

geometrical distance between them. 

 

Having obtained and understood the map, the interpretation of the transition trajectory 

becomes the most important task. Does this trajectory tell us that the patient has performed a 

reliable test? If this is the case, most parts of the trajectory should be within a small 

neighbourhood on the map as one would expect the patient’s behaviour to be similar from one 

test cycle to another. Or does this trajectory tell us that it is a totally unreliable test? In this 

case, the winner nodes might be very irregular, and the direction by which the trajectory 

travels is diverse and unpredictable. Or does this trajectory only tell us that this test is in 

between the above two cases? But then can we find out which portions of the test are reliable 
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and which are not? And can we figure out the reasons for the unreliable portion? For example, 

is it due to fatigue, learning, or something else? 

 

In principle, there are several different ways the interpretation task might be achieved. First, 

one can employ some basic algorithms using the geometry positions of the nodes and their 

relative distances to answer some of those questions raised above. For example, if the 

algorithm finds that the majority of the winner nodes are centred around a particular region, 

other winner nodes would then constitute the outliers, such as nodes 9 and 10 in Figure 9. 

The outlier winner nodes can then be further examined using domain-specific knowledge to 

determine their possible causes. 
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Figure 9. An example of reliable test with little noise 

Second, one can also ask the expert to interpret those trajectories using the physical 

meanings of the maps and fundamental knowledge of the perimetry test. For example in 

Figure 10, the trajectory shows that the winner nodes of the first six test cycles are all on the 

same node with a high sensitivity value, which indicates the patient could see most of the 

time. However, the winner nodes of the next four cycles moved away from the first nodes 

towards lower sensitivity regions, which indicates that the patient could not see as clearly as 

earlier in the test. This appears to be a case of fatigue. 
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Figure 10. An example of fatigue 

3.4 Experimental Results 

In this section, the experimental results are presented, applying the proposed method to a set 

of clinical test data from the Moorfields Eye Hospital, London. In particular, the transition 

trajectories for 270 test records were produced and then analysed to identify the noisy data. 

All these transition trajectories were also used to determine which categories each individual 

test belongs to, e.g., whether the test is reliable (little measurement noise is involved), or 

unreliable (significant amount of noise is found). Among the unreliable ones, the trajectories 

and their associated maps are used to further distinguish between different causes, e.g., 

whether there is noise because of the learning effects, fatigue, or others. Below, I shall 

elaborate on the classifications of the psychophysical behaviour, bearing in mind that almost 

all the tests involve a certain amount of noise. 

 

Reliable: A test is reliable if there is little measurement noise involved. In this case, the test 

results should be similar from cycle to cycle with perhaps few exceptions. This implies that an 

overwhelming majority of winner nodes should be centred around a small neighbourhood on 

the map. One of these examples is shown in Figure 9 where the first eight winner nodes are 

gathered on two nodes on the map. 

 

Totally Unreliable: A test is totally unreliable if the motion sensitivity varies a great deal from 

one cycle to the other and there are no regularities in the variations. In this case, the winner 
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nodes might be irregular, and the direction by which the trajectory travels is diverse and 

unpredictable. Figure 11 shows one example of such a case. 

 

	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

 

Figure 11. An example of an unreliable test 

Fatigue: A test is unreliable because of fatigue if the sensitivity values of the initial several 

test cycles are high and similar to each other while the sensitivity values of the remaining 

cycles decrease over time. In this case, the winner nodes of the initial cycles tend to be in a 

small neighbourhood and the winner nodes of the subsequent cycles tend to move away from 

the small neighbourhood to areas where the sensitivity values are lower. One example of such 

a case has already been given in Figure 10. 

 

Learning: A test is unreliable because of the learning effect if the sensitivity values of the 

initial few cycles do not show much regularity, but the sensitivity values of the later cycles 

gradually become similar. In this case, the winner nodes of the initial cycles perhaps are 

irregular, but are gradually gathered around a small neighbourhood on the map. One example 

of such a case can be seen in Figure 12. 
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Figure 12. An example of learning effect 

Others: This category includes those maps that the expert could not easily interpret. The 

outliers might be caused by multiple behavioural factors in a single test, and there are many 

other reasons for the outliers to occur, for example, inattention, failure of fixation, and 

pathological reasons. 

 

Inattention: It is probably the most common reason noise occurred, whether there is little or 

a lot of noise in the test. That is, inattention has probably contributed, to various degrees, to 

all the categories of test behaviour classified above. Although a typical example is given in 

Figure 13 (where the 9th cycle is clearly caused by inattention), inattention could happen in 

almost all other situations, e.g., the 10th cycle in Figure 9 and the 7th cycle in Figure 10. Since 

it is likely that the phenomenon of inattention occurs in most test cases, I have not classified 

it into an independent behavioural category. 
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Figure 13. An example of inattention 
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With the CCVP it is difficult to monitor and assess fixation, i.e. whether a patient is staring at 

the fixation point on the test screen. If a patient can see in a certain area on the retina during 

one cycle, but cannot see any stimuli in the same area during the next cycle, there is good 

reason to suspect that the patient failed to focus on the fixation point. Because the CCVP only 

examines six locations spread over the visual field, it is difficult to identify fixation loss due to 

smaller eyeball movements. However, fixation loss has fewer significant effects for the CCVP 

because motion sensitivity is supposed to be associated with bigger areas instead of precise 

locations on the retina [182]. 

 

False Noise: It is important to note that “false noise” can occur among outliers, because of a 

certain pathological condition of the patient. Even if the patient has fully concentrated during 

the test, there might still be outliers due to short-term pathological fluctuations. These 

outliers cannot be treated as noise, but should be included in diagnostic decision-making. In 

the absence of further deterministic analysis, they were classified into the reliable category if 

there is no significant measurement noise involved; other more difficult cases were classified 

into the category of “others.” 

 

The results of the above analysis are summarised in Table 1. Note that noise is involved in 

virtually every individual test, although its magnitude may vary from one to another. In 

addition, clinicians are provided with another useful piece of information – the trajectory and 

its associated map. They demonstrate the test behaviour graphically and have great potential 

in the clinical decision making process. 
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Behaviour Number of cases Percentage 

Reliable 145 53.7% 

Totally unreliable 55 20.4% 

Fatigue 28 10.4% 

Learning 9 3.3% 

Others 33 12.2% 

Total 270 100% 

Table 1. Behaviour  classifications  

3.5 Concluding Remarks 

In this chapter, I introduce an outlier detection method using the SOM. Based on its 

neighbourhood preservation feature, the SOM is capable of mapping high dimensional data 

onto a two-dimensional map where the data points can be visualised and the outliers can be 

identified. It can be used in general to detect outliers in multivariate data where learning 

samples are sufficient. 

 

Using this outlier detection method, we can explicitly analyse outlying data and identify 

measurement noise among them. The method is used to model the temporal behaviour and to 

demonstrate when, where, and to a large extent, why noise occurs in data. The results from 

this study suggest that the explicit treatment of outliers in data is promising. As briefly 

mentioned before, unstable tests may be caused by either pathological or behavioural factors 

of the individual test. The method proposed in this chapter has provided the foundation for 

identifying and analysing outliers in the data, collected from the CCVP. However, it is obvious 

that data analysis alone, regardless how advanced, is not sufficient for this task. In the next 

two chapters I will present my research about the distinctions between the real noise caused 

by fatigue, inattention, learning etc. and the false noise caused by pathological factors. We 

shall see that it is crucial to apply domain-specific knowledge to the identified outliers. 
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Chapter 4 Outlier Discrimination by Modelling Real Measurements 

In the previous chapter, I suggested how multivariate data could be visualised and analysed 

in detail with the SOM. Not only has it enabled to detect outliers, but it also allows to tell how 

and where outliers are. In the context of analysing the CCVP data, I have noted that not all 

outliers are necessarily measurement noise. In this chapter, I will propose a strategy to 

explicitly identify outliers and then carefully analyse them to distinguish noisy outliers from 

noise-free outliers. I will then apply this strategy to a large quantity of visual testing data. 

Finally I will evaluate this strategy, which shows that it provides a satisfactory way of locating 

and rejecting noise in the test data. 

4.1 A Two-Step Strategy for Outlier Discrimination 

One fundamental assumption made when a new self-organising neural network was proposed 

[14] is that interesting properties in data are more stable than the noise [128]. Consider the 

example of the visual function test for a normal person who does not have visual function 

loss. The property that the person is able to see the stimuli on the screen most of the time 

would be more stable than the occasional fluctuation in data caused by errors for whatever 

reasons. I have adopted this assumption as the basic principle for identifying real 

measurement noise, to which I shall refer as the noise identification principle. 

 

Suppose that repeated measurements are designed where the same observation is made over 

a certain number of cycles, and consider the CCVP as an example. A normal person might be 

distracted in the middle of a test, for instance, the fifth cycle. This would result in poorer 

motion sensitivity values within the visual field, leading to fluctuation in the data. This type of 

fluctuation, however, should not affect the overall results of the visual function, since the 

person is able to see the stimuli most of the other times during the test. The main task here is 

to identify the common feature exhibited by most of the times, i.e. the person can see the 

stimuli most of the time. The part of the data inconsistent with this feature, i.e. the fifth 

measurement, will then be exposed and consequently suspected as noise. 
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As discussed in Chapter 3, I consider unsupervised learning algorithms to be the natural 

candidate to find a computational method capable of detecting common features among data. 

They are known to be capable of extracting meaningful features, which reflect the inherent 

relationships between different parts of the data [48]. For example, we can use an 

unsupervised learning algorithm such as the SOM [95] to let the data self-organise in such a 

way that the more stable part of the data is clustered to reflect certain interesting features. 

Those parts of data that are inconsistent with those features will be separated from the stable 

cluster, and are considered outliers. 

 

It should be emphasised that the outliers should not necessarily be the measurement noise – 

they can actually be the real measurements reflecting the real values of an attribute. In the 

example of diagnosing glaucoma using visual field data, the fluctuation in the data can be 

caused by behavioural factors such as fatigue and inattention, but can also be caused by the 

pathological condition of the patient. Consider a glaucoma patient undergoing a visual field 

test. It is quite possible that there will still be fluctuations in the responses at certain testing 

locations, even if the patient has fully concentrated during the test. The nature of the disease 

has dictated the responses. The elimination of these responses would lead to the loss of much 

useful diagnostic information, and worse still, could lead to incorrect conclusions about the 

patient’s pathological status. 

 

Therefore it is necessary to check whether the outliers are indeed the measurement noise. 

Nevertheless, this task is difficult to fulfil using the data alone, since there are often many 

possible explanations for fluctuation in the same data set, as discussed above. The use of 

appropriate domain-specific knowledge, however, has potential in resolving this difficulty. For 

example, the knowledge of how diseases such as glaucoma manifest themselves on the test 

data is crucial for identifying the measurement noise. With this type of knowledge, we can 

then have a better chance of finding out the component among the outliers which is caused by 

pathological factors. 
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The above discussions lead to a general strategy for identifying the measurement noise in 

data, which consists of two steps. First, an unsupervised learning algorithm is used to cluster 

the more stable part of the data. This algorithm should be able to detect some common 

features among those data. Those outliers, which are inconsistent with those features, then 

become suspects of measurement noise. 

 

Second, knowledge in application domains, together with knowledge about the relationships 

among data, is used to check whether the outliers are indeed the measurement noise. This 

type of domain-specific knowledge, though it may be acquired from experts, is often 

incomplete. For example, only a partial understanding has been obtained about how diseases 

like glaucoma manifest themselves on any visual field test data [182]. Therefore, it is often 

desirable to apply machine learning methods to the initially incomplete knowledge in order to 

generalise over unknown situations. One such example is shown in the next section. 

4.2 Outlier Discrimination 

4.2.1 Outlier Identification 

As discussed in Chapter 3, outliers may be detected by visualising and identifying the more 

stable part of the data; outliers can then be exposed as a result. The method for identifying 

the more stable part of the CCVP data is to model the patient’s test behaviour using the SOM. 

Data clusters are then visualised or calculated. This method consists of three steps. First, 

Kohonen’s learning technique [95] is used to train a network capable of generating maps, 

which reflect the patient’s test behaviour. Second, an effort is made to find a network that 

shows better neighbourhood preservations, i.e. similar input patterns are mapped onto 

identical or closely neighbouring nodes on the output map. Having obtained a well-performed 

network, the final step is to generate the behaviour maps for individual patients and analyse 

these maps to identify the more stable part of the data. As described in Chapter 3, these maps 

graphically illustrate how the patient’s behaviour changed from one test cycle to another 

(Figure 7). 
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As one of the key SOM features is that similar input vectors would lead to similar winner 

nodes, here we have the general rule for identifying the more stable part of the data: if most of 

the winner nodes are centred around one particular region, then the input data vectors 

associated with these nodes constitute the more stable part of the data. These vectors share 

one common feature: they are similar to each other, judged to a large extent by a distance 

measurement such as the geometry distance on the output maps. 

 

The above rule can be implemented by algorithms using the geometry positions of the nodes 

and their relative distances. The approach taken here is to search for a maximum set of nodes 

on the output map that occupies the smallest topographical area. In particular, an evaluation 

function is defined in Equation XIII for this purpose and the objective is to find a subset of 

winner nodes, CS, which minimises the value of F(CS). 

Equation XIII. ( ) ( )( )
2k

kCA
CF S

S =  � �( )12/,,1, +−= rrrk Κ  

Where r is the total number of winner nodes, A denotes the topographical area in the map 

occupied by a subset of winner nodes, and CS (k) represents a subset of winner nodes with k 

members. 

4.2.2 Modelling the Real Measurements 

Let us now examine the outliers, for example, the data vectors associated with winner nodes 9 

and 10 in Figure 9, and see whether some of these vectors are the measurement noise. For 

this particular application, it is especially interesting to find out whether data points among 

outliers are caused by the pathological condition of the patient during the CCVP test. 

 

To achieve this goal, a deep understanding of how diseases manifest themselves on the data is 

essential. Here I have used both knowledge about inherent relationships among data and 

domain knowledge from the expert to obtain this understanding. 

 

The knowledge about data is reflected on the maps produced by the SOM. For example, each 

node on the output map is likely to have a number of input vectors associated with it. These 

input vectors in turn determine the physical meanings of the node such as average motion 
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sensitivity (Equation II), the typical patterns that the node represents, etc. (Figure 8). Using 

these physical meanings, the domain expert can try to group those input patterns that have 

the same or similar pathological meanings. In the case here, an input pattern consists of a 

vector of six elements, each of which represents whether the patient sees a certain stimulus 

location on the computer screen (Figure 2). 

 

The expert identified four groups of patterns representing different pathological conditions. 

Group A is composed of input patterns reflecting that the patient under test is showing the 

early sign of upper hemifield2 damage. Group B consists of patterns demonstrating that the 

upper hemifield of the patient is probably already damaged. Group C and D are made of 

patterns similar to group A and B, except they are used to represent the two different stages of 

the lower hemifield damage. Any two patterns that fall into the same group will be considered 

as having a similar pathological condition. 

 

Take group A as an example. It contains the following four patterns: 

 

{ (1, 1, 0, 1, 1, 1), (1, 1, 1, 1, 0, 1), (1, 1, 0, 1, 0, 1), (1, 1, 0, 1, 0, 0) } 

 

These have been identified as possible patterns for a glaucoma patient showing early signs of 

upper hemifield damage. Two factors have been taken into consideration by the expert when 

selecting these patterns. First, the domain knowledge about early upper hemifield damage is 

used. For instance, damages in the upper hemifield locations 3 and 5 were included in those 

patterns. Damage in location 1 is not included, however, because it often indicates the upper 

hemifield is probably already damaged [182]. Second, the physical meanings of the output 

map are used, especially for how typical input patterns are associated with output nodes. For 

example, the above four patterns are mapped in a topographically connected area on the 

output map. 

 

                                                           
2 Half of the visual field. See glossary. 
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These pathological groups are then used to check whether the outliers are measurement 

noise. This step was simply implemented as follows. First, those input vectors that are 

mapped to the outlier nodes are identified. Then they are checked for whether each of these 

vectors belongs to the same pathological groups as those patterns that were recognised as the 

more stable part of the data. If yes, it is then treated as a real measurement; otherwise, it is 

measurement noise. 

 

One of the major difficulties in applying this method is that the patterns that make up those 

pathological groups are not complete. They (27 in total) are only a subset of all the possible 

patterns (26 = 64). Therefore, when there is a new pattern occurring, the above method cannot 

be applied. One of the main reasons why the expert could not classify all the patterns into 

those four groups is that the CCVP was a newly introduced test and the reflection of glaucoma 

patients and suspects on the CCVP data was not fully understood. 

 

To overcome this difficulty, machine learning methods can be applied to generalise from those 

27 classification examples provided by the expert. In particular, I have used the back-

propagation algorithm [150] for this purpose. The input nodes represent the locations within 

the visual field, output nodes are those pathological groups, and three hidden nodes are used 

in the fully configured network. 

 

The trained back-propagation network is able to reach 100% accuracy for the training 

examples (27) and to further classify another 26 patterns among the known classes, A, B, C 

and D. The remaining patterns are regarded as the unknown class since they have no 

significant output signal in output nodes. They have been found to be much more likely to 

appear in the outliers than in the more stable part of the data (Table 2). 
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Group 

Initial 

classification by 

the expert 

Expanded 

classification by 

back-propagation 

A 4 8 

B 7 22 

C 4 5 

D 9 15 

Other 3 10 

Unclassified 37 4 

Total 64 64 

Table 2. Classification of the four pathological groups 

One of the interesting observations is that patterns within each of the resultant groups tend to 

be clustered in a topographically connected area, demonstrating the same property of the 

initial groups (Figure 14).3 
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Figure 14. The four initial groups are expanded and are mapped onto the SOM 

It should be noted that the example described above is a rather simple one in which there are 

only 26 possible input patterns. This particular version of the CCVP test has been chosen for 

its simplicity in order to make it easier to describe the general ideas in implementing the noise 

                                                           
3 There is not an explicit area representing the patterns in the group “other”  as they are mapped into some isolated 
output nodes in the areas of B and D. 
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identification principle. In fact, there is another popular version of the CCVP, which also tests 

the six locations within the visual field by ten repeating cycles, using, however, four levels of 

stimuli. Therefore, the data vectors produced within this test contain 24 elements instead of 

6. Consequently, there are 224 possible input patterns. I have also experimented with large 

quantities of data from this test using the proposed noise identification strategy. The results 

are similar to those of the simpler test described in the next section. 

4.3 Evaluation 

4.3.1 Several Observations Regarding the Strategy 

The noise identification strategy is based on the assumption that the interesting properties in 

data are more stable than the noise. Below are several observations regarding this strategy. 

 

First, explicit identification and deletion of measurement noise in data may be a necessary 

step before the data can be properly explored, as shown in this application. In particular, I 

have found that noise deletion can offer great assistance to the clinician in diagnosing those 

otherwise ambiguous cases (see 4.3.2). In a separate experiment with learning disease 

patterns from the CCVP data (Chapter 7), I have found that many useful features not initially 

found from the raw CCVP data, were uncovered from the data after the measurement noise 

was deleted. 

 

Second, the use of domain knowledge supplied by the expert is of special concern as this type 

of knowledge involves a substantial number of subjective elements, and is often incomplete, 

as shown in this application. It should be pointed out that this strategy might not be effective 

for those applications where there is little relevant knowledge but a lot of false noise, i.e. many 

outliers actually reflect real measurements. Where there is little concern about the false noise 

situation, however, an unsupervised learning algorithm can be used directly to identify the 

measurement noise, in this case, all the outliers identified. 

 

Third, other supervised machine learning techniques should also be applicable with the 

principle of learning from expert examples presented in Section 4.2.2. In particular, the C4.5 
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decision trees algorithm [140], which I use in Chapter 5, was also found effective. In the 

context of supervised machine learning however, there is an essential difference in terms of 

knowledge representation between the two methods, though less important in this 

application. The expertise model that the neural network learns is in a “black box” fashion 

while the decision trees generate a set of explicit rules. Such rules may be further interpreted 

and therefore they benefit experts themselves by expanding their knowledge. 

 

Finally, no claim is made that this strategy can be used to identify all the measurement noise 

in data, or that all the noise identified is the real one. This depends on the ability of the 

chosen algorithms to accurately cluster those data items with common features and the 

quality of domain knowledge used to exclude the false noise. 

4.3.2 The Results 

This section presents the results in applying the proposed strategy to a set of clinical test data 

(2630 data vectors). The data were collected by ophthalmologic specialists from a group of 

glaucoma patients and suspects at the Moorfields Eye Hospital, London. To find out how 

successful this strategy is in achieving its objective, I introduce the concept of reproducibility. 

 

As glaucoma is a long-term progressive disease, the visual function of the same patient should 

remain more or less the same during a short period of time. As a routine clinical procedure, 

identified glaucoma patients are regularly asked to conduct follow-up tests to monitor the 

progress of the treatment. Therefore test patterns from such follow-up tests within this time 

period should be very similar. However, this is not always true under real situations, as 

measurement noise is involved in each test, perhaps for different reasons with various 

appearances. Consequently, it is not surprising that a large number of test patterns from 

such follow-up tests showed disagreements to various degrees. One example of such follow-up 

tests is shown in Figure 15. 

 

As one of the main reasons for the disagreement is the measurement noise, it is natural to 

assume that the motion sensitivity results of the two tests should agree (to a certain degree) 
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after the noise is discarded. This then constitutes a strategy for evaluating the proposed 

strategy for identifying and eliminating noise from data. 
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Figure 15. A pair of follow-up tests 

There were 91 pairs of records available for this purpose. These tests were conducted within 

an average time span of less than a month. The average motion sensitivity measurements 

(percentage values calculated by Equation II) of these tests are contrasted in Figure 16 (left). 

The dot is used to indicate the result of the first test and the oval is used for the result of the 

second test. The difference between the two results for each case is illustrated by the line in 

between them. The same results after the rejection of noise by the proposed method are given 

in Figure 16 (right). 

 

One of the major findings is that the results from the two follow-up tests have much better 

agreements after the noise is rejected. This is indicated by two observations. First, 80% of the 

pairs after the rejection of noise have reached almost total agreement (with less than 1.0% 

error), while only 48% of the pairs agreed in the original data set. This is reflected by the fact 

that there are many more cases on Figure 16 (right) where the dot and oval are overlapping or 

very close than those on Figure 16 (left). Second, if one calculates the mean difference 

between the two tests, 5.6 (95% confidence interval: 4.3 – 7.0) is the figure for the original 

data, while 3.4 (95% confidence interval: 1.8 – 4.9) is obtained after the noise is eliminated. 

This is indicated by the observation that the lines between the two tests are generally 

shortened in Figure 16 (right). These findings have shown that the proposed method does 

provide an effective way of identifying and discarding the noisy data. 
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Figure 16. (left) before noise deletion; (right) after noise deletion 

In addition, noise deletion may also be of direct diagnostic assistance to the clinician. One of 

the difficulties for the clinician is that the result from one test suggests that the patient is 

normal (no glaucoma), while the result from the other test shows that the patient is abnormal 

(having glaucoma of some kind).4 Since much better agreement is shown between the two 

follow-up tests after the deletion of noise, there should be fewer pairs with contradictory test 

results. This is indeed the case with the experiment data as shown in Figure 16: there are 

quite a few conflicting cases in Figure 16 (left), while only two such cases exist in Figure 16 

(right). 

4.4 Concluding Remarks 

In this chapter I have introduced a novel way of distinguishing real measurements from noisy 

data. The principle I adopted to achieve this task is that interesting properties in data are 

more stable than noise. To implement this principle for this application, the SOM is used to 

model a patient’s behaviour during the CCVP test. The output maps are then used to separate 

the more stable part of the data from the outliers. Expert knowledge, augmented by 

supervised machine learning techniques, is used to check whether outliers are measurement 

noise caused by behavioural factors, or caused by the patient’s pathological status. 

 

The evaluation results have shown that the proposed strategy provides a satisfactory way of 

identifying real measurement noise in CCVP test data. Moreover, the explicit identification and 
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elimination of the noise in these data have been found not just desirable, but essential, if the 

data are to be properly modelled and explored for specific problem solving tasks. 

 

Apart from the strategy proposed in this chapter, I have also studied another strategy by 

integrating statistical methods with domain knowledge more closely [108]. It is an alternative 

attempt to model real measurements, i.e. how measurement should be distributed in a 

domain of interest. This approach is based on one of the most popular multivariate outlier 

detection method [176]: only a single outlier at a time is detected if the algorithm is applied 

sequentially [25]. This assumes that an outlier set {o1, o2, …, on} is ordered in that o1, o2, …, oi-1 

must be rejected before oi (1 < i ≤ n) can be rejected. It is therefore possible to find out a subset 

of the outliers that should be rejected by sequentially testing each outlier against each 

plausible hypothesis, in the form of “knowledge-based” probability distributions. This strategy 

has the advantage that a number of competing hypotheses may be established, and can be 

tested against by the sequence of outliers to search for the most probable fit. For example, if 

several diseases have occurred in the data, a given test case may belong to any one of the 

disease categories. It must be checked with all the disease patterns before noisy outliers can 

be rejected correctly [108]. 

 

                                                                                                                                                                                         
4 The study [182] has suggested the “golden line”  in CCVP that divides the normal and abnormal groups at the 
average sensitivity value of 0.75. 
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Chapter 5 Outlier Discrimination by Modelling Noise 

In the previous chapter, a strategy for distinguishing between phenomena of interest and 

measurement noise was proposed and applied to the analysis of a set of visual field test data 

collected from a group of glaucoma patients in an eye hospital. That strategy attempted to 

model “real measurements,” namely, how measurements should be distributed in a domain of 

interest (e.g., how glaucoma manifests itself on visual field data). Based on the knowledge 

acquired, the strategy then rejected outliers that do not fall within the real measurements. As 

pointed out previously, that strategy is applicable when a sufficient amount of knowledge 

about how real measurements should be distributed can be acquired. There are, however, 

many applications where this type of domain knowledge may not be readily available, and yet 

among outliers “phenomena of interest” still needs to be separated from noise.  

 

In this chapter, I propose an outlier analysis strategy using relevant knowledge and 

understanding of the noise in the data. It attempts to model noise such as that caused by 

behavioural factors in the visual field test data, and accept data outside of the norms if they 

are not accounted for by a noise model. The experiment demonstrates that this strategy does 

significantly better at a diagnostic task than an equivalent approach that either utilises all 

data, or attempts to reject all non-normal values. 

5.1 Strategy for Modelling Noise 

The primary objective of this study is to develop computational methods for managing outliers 

by explicitly examining outliers with a view of either rejecting or welcoming them. The 

methods should not only successfully identify where the outliers are, but also carefully 

analyse them and their association with the entire data set to distinguish between the truly 

noisy and “surprising” but useful ones. 

 

There are several issues regarding this process. First, it assumes that the outliers are caused 

by either behavioural fluctuations or pathological instabilities. The task of the expert, 

therefore, is to define and identify those cases, in which outliers are caused by behavioural 

factors and not by interesting pathological status. Second, such knowledge needs to be 
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acquired, as well as to be represented in a form to make automatic processing possible. In 

other words, a “noise model” should be established to formulate an algorithm for 

computational outlier analysis. Here it assumes that such a model is not readily available for 

most applications (things would become much easier if it was), and it needs to be constructed 

or learned. In many application domains, the expert would find it easier to identify noise 

examples than general rules of how noise exhibits in data. Therefore, I proposed noise model 

construction would be based upon a machine learning process from the examples. 

 

Below I outline the strategy for explicitly identifying and analysing outliers in data. 

 

Definitions: 

Let Ω be a p-dimensional sample space. 

Let X = { x1, x2, ..., xn } be a set of vectors drawn from Ω. 

Let O = { o1, o2, ..., or } (1 ≤ r < n) be a set of outliers in X where O ⊂ X. 

Let C = { Cn, Cr } represent two general classes – recognisable noisy cases, Cn, or other cases, 

Cr. 

Let F = { f1, f2, ..., fm } be a set of features extracted from X. 

 

Clustering and Outlier Detection: 

Given a set of data points X, a clustering algorithm is applied to identify the more stable part 

of the data. The less stable parts of the data then become a set of outliers, O. Note that there 

is no guarantee that there will be outliers existing in all the data sets. Sometimes, there may 

be no major cluster of data points (e.g., there are several clusters or no cluster at all). 

 

Noise Model Construction: 

A noise model is constructed that could account for much of recognised measurement noise in 

a domain of interest. In particular, it assumes that a group of data sets, Xs, can be labelled by 

the expert into two general classes {Cn, Cr }, based on their relevant domain knowledge and 

close examination of data sets. This group of labelled data sets, together with a set of features, 

F, which may be extracted from the data sets, is then used to build the classification model 
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(e.g., a set of classification rules) using an inductive learning technique. Those classification 

rules leading to the class Cn then become the noise model, M. 

 

Eliminating Noisy Outliers: 

Each new data set, for instance X’, is tested against the noise model M generated in the above 

step. If applicable, then the outliers O’ within the data set X’ can be rejected (due to known 

measurement noise). 

 

I make the following observations regarding the proposed method: 

 

1) The clustering algorithm used in the method can be a traditional statistical clustering 

algorithm [45], a self-organising neural network [95], or other machine learning methods 

[48]. 

 

2) The construction of the noise model requires a set of representative and labelled 

instances on which the “noise model” may be built. Each data set can be assigned in a 

domain of interest to two mutually exclusive classes. Class Cn indicates that the 

corresponding outliers in this data set are noisy data points, therefore can be deleted. 

Class Cr says we do not think the outliers in the data set are due to measurement noise, 

although we might not be able to say whether they are phenomena of interest either. 

 

3) Note that many classification models may be constructed from a set of labelled 

instances. The classification model as mentioned in the Noise Model Construction step 

refers to the “best” model in terms of its predictive accuracy, its simplicity or 

interpretability, misclassification costs, or other appropriate criteria for the problem under 

investigation [172, 36]. 

 

4) The success of the method very much depends on the correctness and completeness of 

the noise model constructed. The correctness of the model depends largely on the quality 

of domain knowledge – a set of labelled instances in the proposed method, although the 
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choice of inductive learning algorithm might also matter. On the other hand, if the model 

does not sufficiently cover all possible types of measurement noise, the data set after 

cleaning would still contain much noise. 

 

5) The precondition for using the method regarding the availability of relevant knowledge 

about the distribution of noisy data points (labelled instances) is reasonable in many 

applications. For example, in time series forecasting, the understanding of “special 

irregular events” and their effects on the forecasting results can be used to build the 

corresponding “noise model.” Using the data after removing the effect of the special 

irregular effects may often increase the forecasting accuracy. 
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Figure 17. The strategy for modelling noise 

5.2 Analysing Outliers Using Noise Model 

Figure 17 illustrates how the strategy proposed in the previous section based on noise models 

works. Suppose that a set of training data, by using relevant domain knowledge, can be 

labelled into two classes: “noisy” (Cn) and “rest”  (Cr). Class “noisy” indicates that the 

corresponding outliers in the data set are noisy data points, while class “rest” covers all other 

situations. Given a sufficient amount of training data, one can use any supervised machine 
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learning techniques to build a “noise model” and this model, after validation, can then be used 

to help distinguish between the two types of outliers. 

 

Note that the labelling of training instances is not always easy, especially with multi-

dimensional data. To assist in this process, I have used the SOM to visualise and compress 

data into a two-dimensional map as discussed in Chapter 3. Data clusters and outliers then 

become easy to spot, and data are then relatively easily interpreted using the meaning of the 

map and relevant domain knowledge. So, given a data set, outliers may be detected and can 

then be tested using the noise model. As a result, noisy outliers can then be deleted, while the 

rest of the outliers are kept in the data set for further analysis. 

5.2.1 Noise Model I: Noise Definition 

In the application of the CCVP, noise in data are defined as those data points typically 

associated with learning effects, fatigue, and inattention. In this connection, we may define 

outlying data points due to fatigue on the SOM as follows. If the sensitivity values of several 

initial test cycles are high and similar to each other, and the sensitivity values of the 

remaining cycles are decreasing over time, then the data points corresponding to the 

remaining cycles are outlying due to fatigue. In this case, the winner nodes of the initial cycles 

tend to be in a small neighbourhood and the winner nodes of the last few cycles tend to move 

away from the small neighbourhood to areas where the sensitivity values are lower. One 

example of such a case has already been given in Figure 10. 

 

On the other hand, if the sensitivity values of the initial few cycles do not show much 

regularity but the sensitivity values of the remaining cycles gradually become similar, then the 

data points corresponding to the initial cycles are outlying due to learning effects. In this case, 

the winner nodes of the initial cycles perhaps are irregular, but are gradually gathered around 

a small neighbourhood on the map. One example of such cases can be seen in Figure 12. 

 

Figure 13 demonstrates a typical case of inattention. Clearly the subject had a normal visual 

field, but was distracted during the ninth measurement cycle. This results in poor sensitivity 

values for this particular measurement, leading to fluctuation in the data. This type of 
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fluctuation, however, should not affect the overall results of the visual field. Therefore the data 

collected during this cycle can be dropped. 

 

In all the above cases, decisions regarding whether to delete certain outlying data points are 

relatively easy. For example, the data points corresponding to measurements 7, 8, 9 and 10 

may be deleted in Figure 10, while those corresponding to measurements 1 and 2 in Figure 12 

may be cleared. However, things are not always this clear-cut. 
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Figure 18. Examples of glaucoma cases with a cluster (left) and without a cluster (right) 

Figure 18 demonstrates two test results for the same subject who had been confirmed by an 

ophthalmologist as a glaucoma patient. Figure 18 (left) does seem to show there is a cluster in 

the top left corner of the map. However, consider that none of the measurements has shown 

any high motion sensitivity (in the top right corner area) and that there are six measurements 

scattered around on the map. There is good reason to believe that these measurements might 

tell us something about the pathological status of the subject, and should therefore be kept. 

Meanwhile, Figure 18 (right) does not appear to show any interesting clusters and none of the 

measurements is very sensitive to motion. In this case, there is no easy way of finding out 

which measurements are noisy and which are not. All the measurements will therefore be 

kept for further analysis. 

5.2.2 Noise Model II: Construction 

The construction of the noise model in this application is as follows: 
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1) A set of test records (310 in total) was used for the purpose of building the 

classification models.  A domain expert labelled each of the records using the visualised 

data presented by SOMs and relevant knowledge regarding the visual field test. A record is 

categorised into either Cn: corresponding outliers are measurement noise caused by one of 

the three behavioural factors: learning, fatigue and inattention; or Cr, the outliers might 

represent useful information, or “phenomena of interest.” 

 

2) Several features were extracted from the data sets and relevant domain knowledge. 

These features, together with those labelled instances as discussed in the above step, were 

used to develop the classification models. In particular I have used Quinlan’s C4.5 [140] to 

learn a set of production rules in the form of decision trees. Experiments were performed 

to find a set of rules that would minimise the errors on the unseen cases. This includes 

the division of 310 cases into training and testing cases of various sizes and the use of a 

more robust method of 10-fold cross validation. It appears that the 10-fold cross validation 

presents the most confident rules for the data set. 

 

3) Those production rules within the Cn class now become the “noise model,” and the 

model can then be used to delete the corresponding outliers for future test data (see 

below), when applicable. For any given piece of test data as input, the decision trees will 

be able to tell whether the test case belongs to Cn or Cr. It is apparent that the confidence 

of the decisions depends on the quality and coverage of the training samples provided by 

the expert. 

 

I have experimented with learning the production rules by combining all three behavioural 

factors into one class Cn, and tried to separate it from the class Cr for the remaining cases. 

With the labelling of just over 300 cases, useful rules have been learned for deleting “noisy” 

outliers and also for keeping outliers when it is not sure whether they are noisy or not. C4.5 

was able to achieve an error rate of 13.9%, a reasonable result with a small amount of noisy 

data. Remarkably, one of the learned rules closely resembles what the domain expert had 

been using in identifying noise cases: 
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Expert: If the stability5 > 0.60, average-sensitivity6 > 0.75, then delete the outliers (the 

outliers are caused by behavioural factors). 

 

Given T as any test record, the rule says: 

 

C4.5: ∀T, stability(T) > 0.60, 

stability(T) ≤ 0.90, 

average-sensitivity(T) > 0.766667 

→ T ∈ class Cn (with the certainty of 78%) 

 

The rule seems to be a little cleverer in that it has an upper limit for stability (0.90). For 

instance, if the stability is (or very close to) 1.00, then there might be no measurement noise 

after all. Therefore it should not belong to the class Cn. 

5.2.3 Evaluation 

This section presents the results of applying the noise model generated above to the 

elimination of those noisy outliers in a set of visual field test data. The corresponding test was 

recently conducted by ophthalmologic specialists and GP clinicians in a large urban general 

practice in North London for a glaucoma case findings study [188]. All patients aged 40 years 

or older who routinely attended the practice for a three-month period during the pilot study 

were offered the test. In this particular study, the situation is more complicated than that 

associated with the data described in Chapter 4 where the test cases were either normal or 

involved glaucoma at a certain stage. The composition of possible diseases in this study 

includes not only glaucoma but also different types of conditions such as cataract [188]. For 

this reason, the knowledge about how a single disease manifests on the test data, even if it 

can be acquired, will not provide much help in distinguishing outliers. On the other hand, the 

expert found it relatively easy to identify a set of cases with various behavioural fluctuations, 

such as inattention or fatigue. 

                                                           
5 The proportion for the stable part of data to the entire data (see Section 6.2). 
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Figure 19. Detection rates versus false alarm rates for three data sets 

Among those patients screened by the CCVP, 78 were later assessed clinically in the practice 

by an ophthalmologist. Among the tested eyes from the 78 people, 22 eyes were later assessed 

as having glaucoma, 81 eyes were confirmed as normal without any disease, and the rest were 

diagnosed as having other types of ocular abnormalities. The noise model was applied to these 

103 eyes and Figure 19 summarises the results of examining the discriminating power of the 

CCVP in terms of its diagnostic detection rate versus false alarm rate. Three different data sets 

are shown in Figure 19: the original 103 eyes corresponding to all the glaucoma and normal 

eyes, the data set obtained after all outliers are deleted from those test records, and the data 

set with selected outliers (after applying the noise model to eliminate noisy outliers). 

 

The Receiver Operator Characteristic, or ROC analysis [65], is used to assess the test’s 

diagnostic performance by displaying pairs of false alarms and detection rates throughout the 

whole range of the CCVP’s measurements. While the curves shifted towards the upper left of 

the diagram, performance of the test is improved in the sense of maximizing detection rates 

and minimising false alarms. The decision threshold used for discriminating between normal 

and glaucoma eyes is the average motion sensitivity as in Equation II. The curves are plotted 

when the decision threshold is changed throughout the range from 0 to 1.0. For example, the 

                                                                                                                                                                                         
6 See Equation II in Section 2.3. 
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cut-off threshold value of 0.7 has been found to enable the data with selected outliers to 

achieve a detection rate of 90% and a false alarm rate of 20%. 

 

From Figure 19, it is clear that the data with selected outliers performed better than the other 

two in terms of maximising the detection rate and minimising false alarms. For example, this 

group can achieve 100% detection rate, while the corresponding false alarm rate is 30%. This 

is equivalent to saying that none of the subjects suffering from glaucoma would have escaped 

notice and only 30% of those normal subjects would have been unnecessarily referred for 

further examination. To reach 100% detection rate by using the raw data, however, 60% of 

normal subjects would receive false alarms. In comparison with the data with selected 

outliers, this doubles the number of people who would be referred and further examined 

unnecessarily. 

 

It turned out that the data obtained by deleting all the outlying data points (without analysis) 

performed the worst in this experiment. This suggests that a great number of outlying data 

points among the glaucoma patients were indeed reflections of the pathological status of the 

patients. Deleting those outliers leads to loss of critical diagnostic information. 

5.3 Concluding Remarks 

Distinguishing between noisy and noise-free outliers is a difficult problem and I have 

demonstrated how domain knowledge regarding the distribution of noisy data points may be 

used to address this problem. Instead of relying on the knowledge about “real measurements” 

in data, the strategy that I present in this chapter acquires the knowledge about the noise. 

This type of knowledge might be acquired more easily and more reliably in some applications. 

As shown in this chapter, the knowledge about noise may be learned from examples provided 

by the domain expert. By using the classification rules generated from the inductive machine 

learning technique, the noisy outliers can be separated from the noise-free ones. 

 

An important observation from the work reported in here is that due care must be taken when 

deleting outlying data points. As with the visual field data from a GP clinic, the results 
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obtained using “outlier-free” data are even worse than those from the raw data. Appropriate 

analysis should be performed using relevant domain knowledge in this regard. 
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Chapter 6 Noise Reduction at Source 

In this chapter, research work in the thesis will be presented as part of the project METRO 

[109, 113] to help manage measurement noise for the CCVP. METRO is a joint project between 

Birkbeck College, the Institute of Ophthalmology and Moorfields Eye Hospital. Its main 

objective was to make the CCVP a more reliable test. In addition to the studies for outlier 

analysis described in previous chapters, there was also an effort at reducing noise at other 

stages of the IDA process and in particular, at the data collection stage. Several techniques 

have been developed for this purpose. 

6.1 Minimise Measurement Noise Systematically 

As pointed out previously, the difficulty in obtaining reliable test results needs to be overcome 

before the CCVP can be widely used. The main effort in making the CCVP a more reliable test 

is to search for effective and efficient ways of handling the measurement noise. The approach 

is to minimise the chances of introducing noise wherever possible and to identify and delete 

noise after it occurs. It is apparent from the discussions in the previous two chapters, that the 

outlier analysis strategies would be more useful if a certain level of data quality can be 

achieved. For example, the number of “totally unreliable” cases (see Section 3.4) would be 

reduced if data were collected more reliably. As a systematic development towards the 

objective of minimising measurement noise, therefore, it is an obvious choice that noise 

should first be reduced from the source, i.e. while data are being collected. 

 

There has been extensive interaction with domain experts to identify factors that may 

contribute to the noise, apart from analysing measurement noise from the CCVP data using 

the previously described methods. By investigating ways to reduce the effects of these factors, 

therefore, it is possible to decrease noise and higher quality data may be obtained. Several 

significant factors cause most of the noise in data [111]. 

 

As discussed in Chapter 3, the CCVP data necessarily contain a great deal of measurement 

noise caused by individuals’ behavioural fluctuation. Because learning effect, inattention and 

fatigue are among the most common reasons for introducing noise, these undesirable 
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behavioural phenomena should be kept to the minimum wherever possible. For example, 

Collins [38] carried out a number of experiments to find the friendly test interface and most 

effective testing strategies. This will help keep the subject alert and reduce the possibility of 

inattention. An automatic training and self-adaptive session is carried out before each test 

until certain criteria have been satisfied so that the test will proceed with better confidence 

and learning effect will be reduced. Furthermore, because the original CCVP SAT strategy 

always measures visual function with a fixed number of repeating cycles, it may introduce 

unnecessary fatigue effects for individuals who do not need to go over the entire testing cycles 

to obtain their reliable test results. Cho [33] developed a dynamic testing strategy to help 

determine the appropriate number of repeated measurements for each individual CCVP test 

and therefore the noise caused by fatigue may be reduced. These measures will be presented 

in more detail in the “intelligent user interface” in the following section. 

 

In addition to the above measures to decrease the chance of noise occurrences, I have 

introduced another strategy by providing the on-line assessment of the data quality. Here is 

the basic idea: if a test has been deemed “unreliable,” it would be most effective to perform an 

immediate follow-up test. Nonetheless, the follow-up criterion must be carefully determined, 

because 1) data must be collected efficiently in real-world applications and 2) fatigue effect in 

psychophysical tests reduces data reliability and therefore limits the number of repeats. In the 

next section, we shall describe an indicator to estimate data quality on-line. Based on the 

estimation, we employ a set of decision rules as the control strategy to direct the follow-up 

tests as described in Section 6.3. This will be followed by the discussion of experimental 

results in Section 6.4. 

6.2 Intelligent User Interface 

This section describes the study and implementation of the intelligent user interface (IUI), 

which helps reduce noise caused by behavioural factors [107]. The work presented in this 

section (6.2) is a collective effort in METRO and not necessarily done by the author. I however, 

consider it beneficial to be presented for the integrity of the project and to better understand 
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the thesis. Contributions from other people are explicitly stated and the origins of these 

individual pieces of work are referred to in the bibliography accordingly. 

 

Figure 20 illustrates how the medical operator normally manages the standard visual-field 

test and how the intelligent user interface helps provide high quality measurements. 

Normally, the operator invites a subject for a test, explains the test to the subject, and enters 

the subject’s details. The operator then monitors and controls the test, and reports the results 

to the doctor. 
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Figure 20. The role of the intelligent user interface (IUI) 

For the CCVP with IUI, a subject examines the visual field out of his or her interest in the 

early detection of possible diseases. An explanation module explains the test and procedure, 

and the subject enters the data. Self-testing then proceeds under the system’s guidance. 

Finally, the system issues a report, informing the subject whether he or she has passed the 

test and, if not, which part of the visual field appears to have problems. 

 

One of the key considerations in the development of the test interface was how to handle the 

problem of human behavioural instability during the test so that the subjects would make 
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fewer mistakes (false positive or false negative responses). The major behavioural factors are 

learning, inattention, and fatigue. 

 

Learning effects. Subjects are more likely to make mistakes the first time they take the test. 

Subjects who have done the test before, but who are re-tested after a considerable time 

interval, might also make mistakes. 

 

The IUI provides self-training sessions for such users before the actual test. The program 

keeps the subjects in the training session until it judges them familiar enough with the test. It 

bases this judgement on response time (from when the screen displays a stimulus to when the 

subject responds). If the response times for most of the responses collected during the test are 

close to each other and no great irregularity exists, the subject can move on to the actual test. 

 

Inattention. To keep the subject alert during the test, care has been taken to ensure that 

taking the test is an interesting experience rather than something that the subject “has to do.” 

Techniques include 

 

• A feedback system that uses sound and text to indicate the subject’s performance,  

• An adaptive fixation point that uses smiling and frowning faces to attract the subject’s 

attention, 

• Interesting visual stimuli for testing, and 

• Dynamic test strategies for individuals. 

 

For example, one of the original test screens consists of a number of vertical bars with a 

central circle for the fixation point (see Figure 2 in Section 2.3.3). The program tests a fixed 

number of bars, using several different stimuli including bar movements and flickers. Some 

subjects might find the screen layout and the testing stimuli monotonous, and therefore have 

difficulty concentrating on the test. To tackle this problem, alternative screen layouts and 

testing stimuli have been developed, for example, using the front view of cars rather than 

vertical bars. Instead of the simple movement of bars, headlights flashing and windscreen 
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wipers moving are used as stimuli [38]. These developments have led to a test that allows 

several different screen presentations, each providing a different test image and presenting 

different degrees of stimuli. 

 

Additionally, a special function is introduced to check whether the subject is really 

concentrating on the test. The display of the stimuli on the screen is now irregular – for 

example, stopping for a while after a fixed number of regular displays. This strategy is 

particularly effective for dealing with those subjects who anticipate the frequency of stimuli 

presented. 

 

Fatigue. Reducing fatigue was also a focus in METRO. Not every subject needs to go through 

the same number of measurement cycles. The test results from the first few cycles might 

provide sufficient information for those with stable testing behaviour. Therefore, it is 

important to determine whether at a certain stage of the test, a sufficient amount of 

information has been obtained. If it has, testing can be stopped. 

 

This dynamic testing strategy, developed by Cho ([33], [34]) has these key steps: 

 

1) Calculate the sensitivity values of a few initial measurement cycles. 

2) Use these calculated motion sensitivity values to predict the values for all designated 

numbers of cycles. 

3) Calculate the squared error between the sensitivity values of a few initial cycles and 

the predicted values of all designated number cycles. 

4) Compare the squared error with a predetermined tolerance. If the squared error is less 

than the acceptable tolerance, stop testing. Otherwise, perform another measurement 

cycle, and repeat steps 1) to 4). 

 

This strategy was tested on a set of CCVP data involving six test locations, four types of 

testing stimuli and ten measurement cycles. Various techniques such as neural networks, 

multiple regression and decision tree induction were used to implement step 2). This strategy 
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kept the number of measurement cycles relatively small without having much adverse effect 

on diagnostic accuracy. In particular, Quinlan’s decision-tree induction program, C4.5 [140], 

achieved approximately 95% accuracy while saving on average two measurement cycles per 

test. The prediction (classification) models in the form of decision trees were built using four 

attributes, eleven classes and several hundred cases. 

6.3 Stability Analyser and the Follow-Up Control Strategy 

6.3.1 Stability Indicator 

In this section, I introduce indicators that may be used to estimate data quality, immediately 

after data collection is completed. These indicators play an important role in the data 

collection stage, where data may be collected again soon after it is determined to be of poor 

quality. For example, a follow-up test can be performed while the subject is in the clinic, so 

that data may be obtained more reliably. 

 

Two such indicators may be used for this purpose. The first is the stability indicator, which 

measures the amount of outliers contained in a data set. The second is the reliability 

indicator, which measures the amount of noise involved in a data set. The higher the values of 

these indicators are, the less the amount of outliers or noise contained in the data. 

 

Since noise is typically involved in a CCVP test and in general, any psychophysical test, the 

key point in determining a stable test is not the similarity among all repeated measurements, 

but the similarity among most of the measurements. To implement a stability analyser used 

by the CCVP each time a test is conducted, we want to judge whether measurements from a 

substantial number of repeating cycles are close to each other. This is achieved by an outlier 

detection algorithm as presented in Section 4.2, using the geometry positions of the output 

node and their relative distances on the SOM. The approach taken here is to search for a 

maximum set of nodes on the output map, which occupies the smallest topographical area. 

Specifically, Equation XIII is used as an evaluation function for this purpose. The objective is 

to find a set of output nodes, S ⊆ O, which minimises the value of F(S). The test is considered 

unstable if it cannot find an S such that F(S) is sufficiently small. Otherwise, the test is stable 



96 

and S is called “the stable part of test data”. What remains then constitutes outliers. Thus for 

each test, the stability indicator is defined as the proportion of the stable part of data to the 

entire data. 

 

On the other hand, with the strategies described in Chapter 4 and Chapter 5, it would be 

possible to identify the noise instead of all the outliers. One could argue that it would be more 

sensible to use the reliability indicator as opposed to the stability indicator as a data quality 

indicator. There are some problems with the reliability indicator, however. First, the reliability 

indicator requires outliers to be further analysed, but the strategies of analysing outliers need 

much expertise in either known diseases or known behaviour patterns. There is no guarantee 

that the knowledge is solid universally, because the domain knowledge is typically specific 

only to a particular disease or certain behavioural problems exhibited by certain populations. 

The scope of such knowledge would be too narrow, should it be applied to the task of making 

the CCVP a generic eye-screening tool. Second, the CCVP tests are usually carried out as a 

timely diagnostic routine, which is restricted by the availability of both clinicians and patients, 

or as a mass field epidemiological investigation, which is a resource extensive activity. 

Therefore the first-hand information is valuable and cannot afford to be missed. It would be 

an unrecoverable loss if an unstable test were mistakenly presumed reliable so that an 

immediate follow-up was not performed. The outlier analysis strategies are more useful when 

the test data have been already gathered and grouped, when noise cleaning becomes the only 

way to improve data quality. 

 

For the above reasons, I have used the stability indicator to estimate the data quality while 

collecting data in the field. 

6.3.2 Control Strategy 

Once the stability analyser is established, how would it be used to direct the follow-up tests? 

More specifically, how is the indicator used to decide whether the current observer needs to 

have a follow-up test? In principle, the instability of the current test would normally indicate 

that the test needs to be repeated again. However, if this test instability has been found to be 

due to pathological factors pertaining to the patient, it would be inappropriate to ask the 
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patient to keep repeating the test. Besides, these follow-up tests cannot be carried out 

indefinitely as the patient will become increasingly tired and error-prone. All in all, we want to 

adopt a control strategy that can lead to reliable test results without subjecting the individual 

to more repeated follow-ups than necessary or than can be endured. After extensive data 

exploration and interaction with domain experts, I have summarised the knowledge into such 

a strategy below. 

 

If the current test is judged to be stable by the stability analyser, then stop the testing. 

Otherwise, if it is the first test for the observer, conduct a follow-up test, as more information 

is required about the observer before any decision can be made. However, if the second test is 

still not stable, some further possibilities need to be considered. 

 

First, the instability in test results might be due to some non-behavioural factors such as a 

certain pathological condition pertaining to the patient. For example, it is quite possible that 

there are still fluctuations in the responses at certain stimulus locations, even if the observer 

has fully concentrated on the test. The nature of the disease has dictated the responses. 

These fluctuations might be large enough to enable the stability analyser to judge the test as 

unstable. If it is the case, the second test results would bear remarkable resemblance to those 

of the first. In other words, the test can be stopped if the visual function patterns (see Equation 

III) of these two tests show close agreement with each other, supposing the repeatable pattern 

represents a certain pathological status of the observer. 

 

There may exist many possibilities if the second test is still unstable and the agreement 

between the two tests is not found. For example, it might be the case that the observer is not 

in the right “frame of mind” to conduct the test. Equally, it might be the case that the observer 

experienced the test for the very first time and had absolutely no knowledge of computers or 

the test itself. During the second test, the observer had begun to get used to the test. In this 

case, it might be beneficial to subject the observer to another test in order to see whether the 

patterns from the second and third tests are repeatable. 
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There must be some exceptional cases that still remain outside of the scope: the third test is 

still unstable and no repeatable visual function patterns can be found. This might be caused 

by some unknown pathological conditions, or the individual suffered behavioural problems 

during the three tests, or was troubled by the testing environment. In this case, the test 

should be stopped and perhaps advise the individual to come back some other time for 

another complete CCVP test. It is unlikely that a reliable visual function measurement will be 

obtained by continuing to test, as he or she could become very fatiguing. 

 

The above strategy can be expressed as the following decision rules. Let Ti be the ith test of the 

same observer, and let P(Ti) be the visual function pattern calculated from the observer’s ith 

test (defined by Equation III). Let P(Ti-1) ≅ P(Ti) denote the agreement between the patterns of 

the two tests Ti-1 and Ti. This agreement is measured by the Euclidean distance between the 

two patterns. Let S(Ti) be the stability indicator of Ti and δ be a threshold to determine the data 

set is stable. 

if S(Ti) ≥ δ  then stop; output P(Ti) 

otherwise 

if i = 1 then proceed with another follow-up test 

otherwise 

if P(Ti-1) ≅ P(Ti) then stop; output P(Ti) 

otherwise 

if i < 3 then proceed with another follow-up test 

otherwise 

stop; no output 

6.4 Experimental Results 

There have been many experiments conducted for aspects of quality improvement in data 

collection process. This section will present two such efforts as being within the scope of work 

of this dissertation. 
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6.4.1 Number of Repeating Cycles 

As the stability analysis of the CCVP depends on the data collected from repeated 

measurements, it is important to determine an appropriate number of repeating cycles so that 

the number of unstable tests can be minimised. This is accomplished by hypothesising a 

different number of repeated measurements on existing test records and calculating the 

corresponding number of unstable tests assessed by the stability analyser. I found that the 

stability of the CCVP tests would normally improve when the number of repeated 

measurements increased from 6 to 10, indicated by the percentage of stable tests (Table 3). 

This finding is consistent with the previous study, in which the detection power (judging from 

both the detection rate and the false alarm rate) increased as a function of the number of 

repeated measurements from 2 to 10 [182]. Even though a larger number of repeats are more 

likely to obtain more stable test results, arbitrarily increasing the number of repeats would be 

less efficient and would increase fatigue effects. Further results were obtained by Cho [34], 

with dynamically deciding the optimal number of measurements for each individual. 

 

Number of measurements Percentage of stable tests 

6 74.0% 

7 72.4% 

8 80.0% 

9 81.1% 

10 86.9% 

Table 3. Number of repeated measurements and stable tests 

6.4.2 Follow-Up Control Strategy 

The effect of the proposed control unit over a large number of the CCVP observers should also 

be evaluated. For example, the strategy mainly relies on one follow-up test to understand the 

visual function of the observer and only under certain special circumstances is a third test 

advised. Does the observer find the follow-up test easier to follow than the initial one? How 

often is an observer advised to have the second or even the third test? In order to answer 

these questions, one should examine test records not only from those who need to conduct 
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the follow-up test but also from those who are supposed to need only a single test. These 

results shall be reported as follows. 

 

A follow-up test was carried out randomly on 532 different eyes amongst 3182 test records 

collected from 2388 different eyes in Nigeria. I have found that 371 (70%) eyes were stable and 

the remaining 161 eyes were unstable in their first tests. Among those unstable observers, 95 

became stable in their second test. In the rest of 66 observers, 51, though indicated unstable, 

have similar patterns to those from the first test. In other words, only 15 eyes, or 2.8% are 

still left undecided and need to conduct the third test. 

 

The above observations have shown that one test is sufficient to obtain stable CCVP test 

results for 70% of eyes, while one follow-up test is normally adequate for the rest of the 

population. Together with the data reliability evaluation [29], it has indicated that the follow-

up control strategy is an efficient way of obtaining reliable test results for the CCVP. 

6.5 Concluding Remarks 

In this chapter, I have investigated a number of issues regarding how measurement noise may 

be reduced while data are collected. It is an important first step in managing noise, before the 

data are cleaned by any outlier analysis processes. First, the data collection process should be 

made less prone to human errors. Next, it is desirable to provide a more reliable measuring 

facility – external events causing noise such as unstable behavioural problems should be 

minimised. An intelligent user interface was systematically studied in the context of METRO, 

an application that helps improve data quality for CCVP. Several important techniques have 

been developed for this purpose. 

 

While the above measures have helped to improve data quality for the CCVP, a more generic 

approach is to measure the data quality, and to re-do the measurements if indicated to be 

necessary. This is achieved by a stability analyser and a follow-up control strategy. The 

stability analyser provides an indication of the percentage of outliers involved in the data 

without any a priori knowledge about the subject or the population being measured. Though 
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there is no guarantee for the number of outliers approximating the amount of measurement 

noise, there is generally close correlation between the two. Furthermore, the pieces of data 

having a significant amount of outliers are usually a superset of those data having a 

significant amount of noise. The strategy is therefore considered a conservative estimation of 

the need for a follow-up measurement. I have also pointed out that, although follow-up 

measurements are usually an inexpensive way to improve data quality, they are still restricted 

by resources and other limitations. In the example given above, the subject may not tolerate 

too many follow-ups, and operators may be limited by the resources available. As a result, a 

strategy of determining whether a follow-up is still needed after the stability analyser plays its 

role in indicating an unstable test. 
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Chapter 7 Outlier Management and Knowledge Discovery from Noisy 
Data 

In Chapter 4 to Chapter 6, I have demonstrated how the proposed outlier analysis strategies 

have improved data quality for the CCVP. Since the ultimate goal of outlier management is to 

improve the problem-solving tasks in application domains, the outlier analysis strategies shall 

be applied to problem-solving tasks in the CCVP in this chapter. As the CCVP was a newly 

proposed visual screening system, one of the most crucial tasks would be to validate its 

diagnostic power. In other words, how accurately the CCVP can reflect patients’ visual 

functions and how sensitive it is to detecting early optic nerve defects. In addition, to make 

the best use of CCVP test results for detection, diagnosis, and monitoring of optic nerve 

diseases such as glaucoma and optic neuritis, it is important to understand how these 

diseases manifest themselves on the corresponding test data. 

 

In the following sections I shall focus on how outlier management strategies helped to validate 

the CCVP as a diagnostic tool and to acquire relevant knowledge from the noisy clinical data. I 

shall first introduce an interactive-heuristic knowledge discovery process, which is used to 

discover disease patterns from a large quantity of clinical data. I shall then discuss the 

knowledge acquired, which has been found to be useful either for validating the functions of 

the CCVP itself, or for better understanding the manifestation of a particular disease on the 

CCVP data. 

7.1 Interactive-Heuristic Knowledge Discovery 

In this section, I propose a method for knowledge discovery from a large quantity of noisy 

data. It involves several steps with a number of IDA techniques and interaction with the 

knowledge analysts. First, noise in the data is located and eliminated using the proposed 

outlier analysis strategies. The resultant data are then used to discover the hidden features 

and form useful knowledge. The SOM is applied for abstracting features; a visualisation 

method is introduced for displaying those features; and knowledge analysts are invited to 

guide the knowledge acquisition process. This interactive procedure is employed for all these 
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steps, and the knowledge is discovered in a heuristic manner. At the end, I propose a strategy 

using the concept of reproducibility to verify the discovered knowledge. 

 

The general concept of data cleaning in this method is useful to those applications where the 

presence of noise in data significantly impacts knowledge discovery. The interactive knowledge 

discovery process may be applied to situations where data properties are abstracted and 

visualized by the SOM. More specifically, the method may be applied to multivariate data sets 

where analysing correlation among variables may reveal interesting properties pertaining in 

the data, but cannot be directly explained without extensive interaction with human experts. 

 

Figure 21 schematically illustrates this procedure in four steps – filtering noise, abstracting 

features, visualising features and analysing knowledge. I shall discuss these four steps below. 

 

 

SOM noise filter 

new ideas 

quality 
data features graphs 

visualisation 
tool 

raw data knowledge base 

knowledge 
analyst 

 

Figure 21. Interactive knowledge discovery 

7.1.1 Filtering Noise 

As discussed previously, measurement noise is typically involved in most data obtained from 

real-world applications. Any knowledge discovered from these noisy data, therefore, would 

certainly be questioned over its validity. Consequently, the first step of knowledge discovery is 

to filter out noise using outlier analysing strategies described in Chapter 4 and Chapter 5. 

7.1.2 Feature Abstraction with the Self-Organising Maps 

Having managed noise in the test data, I shall discuss how the SOM can be employed to 

uncover the hidden features among the resultant data. 
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The SOM is organised in ways that reflect the physical characteristics of the input data. Using 

Kohonen’s self-supervised competitive learning algorithm [95], output nodes can learn to 

specialise in detecting intrinsic features existing in the input data. For that reason, the SOM 

is sometimes known as “self-organising feature maps [93].” I have observed two important 

characteristics of the learning algorithm from my experiment. 

 

1) Feature Clustering and Representing: output nodes can be used to represent different 

clusters of input data. In other words, each cluster in input data is represented by an 

output node (although there can be many non-representative output nodes on the 

map). This is the effect created by the learning algorithm, which always maps a data 

point onto an output node and updates the weight parameters of that winner node 

accordingly. As a result, the weight vector of each representative node constitutes the 

centre of the cluster (bear in mind that the weight vector of an output node has the 

same dimension as the input vector). After the SOM has learned from the input data, 

therefore, the features in the input data would be abstracted and represented by the 

output nodes on the maps. 

 

2) Neighbourhood Smoothing: representation of clusters or output nodes could be laterally 

affected by their neighbours. This is because the learning algorithm updates 

neighbouring nodes for a given learning node, though to a lesser extent (see Equation 

VI in Section 3.2). As a consequence, these unusual patterns, though they actually 

appear in the input data, may be smoothed by their neighbours. Therefore the features 

represented by the SOM would be formed by those more typical clusters.  

 

The first characteristic is obviously required in this application, as we want the features 

represented by the SOM to reflect the nature of input data. Vector quantisation (VQ) error is a 

standard measurement for this characteristic as in Equation XIV, where vi (i = 1, …, ND) is the 

input vector and cj is the winner node of the given input vector. 
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The second characteristic is also appropriate because noise in the data, though significantly 

reduced using the techniques discussed previously, may still remain and interfere with 

extracting features. The “smoothing effect” of the learning algorithm would help reduce the 

interference. Consequently, it would be reasonable to assume the weight parameters to be 

better representations of the motion sensitivity measurements for its corresponding cluster 

than the input data themselves. I have found that using the SOM “abstracted features” with 

weight parameters instead of the raw data has improved feature visualisation. As we will see 

in the following sections, the features discovered by this method have helped this application 

in significant ways. 

 

The topographical product (Equation IX in Section 3.2) is considered a good candidate for 

measuring the second characteristic. Optimising both characteristics therefore, has been the 

convergence criterion in my implementation, which is done by minimising both of the 

measurements. 

 

At the end of the process, the weight parameters in the SOM are shown to represent “features” 

in the input data. For a given SOM with N input nodes and M output nodes, there will be M 

weight vectors, each with N dimensions. Instead of analysing all the ND input data vectors, I 

shall take the M (usually M << ND) weight vectors to visualise the features abstracted, as it is 

shown in the next section. 

7.1.3 Visualising Features 

By visualising the weight parameters, features in the large quantity of data can be discovered 

more easily. For a given set of weight parameters, there can be a number of ways to visualise 

them. An obvious choice would be to examine the “physical meanings” of the maps, as 

described in Section 3.3. But instead of averaging all input vectors, here it averages the weight 

parameters on connections to all input nodes for a given output node. 
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Suppose C = {c1, c2, …, cM} is a set of output nodes with weight parameters W = {w11, w12, …, wij, 

…, wNM} where N is the number of input dimensions,  P = {p1, p2, …, pM}.  A set of M×N 

“physical-meaning maps” is then calculated as in Equation XII. For the application of CCVP 

data, the maps mean the average motion sensitivity for all levels of stimuli and over all testing 

locations on the retina. An example is given in Figure 8 (in Section 3.4), except it was 

calibrated with input data instead of weight parameters. 

 

Subsequently, one might find that the physical meanings of the output nodes vary greatly if 

only looking at the maps at each individual input dimension. In this case, the physical 

meaning P would be represented as pj = wij (1 ≤ i ≤ N, it corresponds to the input dimension). 

As a result, N physical-meaning maps were produced for all input dimensions and they were 

visually studied by the knowledge analyst. In the case of CCVP data, the map of an individual 

input dimension corresponds to the motion sensitivity value at a single stimulus level and a 

single testing location on the retina. An example of the physical-meaning maps for a set of six 

dimensional data is illustrated by Figure 22, where the six dimensions correspond to the six 

testing locations (see Figure 2). Instead of plotting discrete output nodes with density values 

in Figure 8, I have used a continuous contour plot for easier visualisation of the density 

distributions of the weight parameters. The contour graphs use relative grey scale range 

(min(pi), max(pi)) instead of (0, 1), so that non-linear correlation among dimensions may be 

exposed more easily. 
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Location 3 Location 1 Location 5

 
Location 4 Location 2 Location 6

 

Figure 22. Physical-meaning maps for individual input dimensions 

Like the case shown in Figure 22, one might discover that the maps of certain input 

dimensions are more similar to each other than to others. This discovery leads to an effort to 

visualise correlation among all input dimensions. First, the weight vectors associated with 

output nodes are used to form a new vector Pi = (pi1, pi2, …, piM)t for each input dimension i, 

where pij = wij (1 ≤ i ≤ N). Vectors associated with any two input dimensions, Px and Py, can then 

be used to draw their correlative graphs. Figure 23 is one way of drawing such a graph, which 

is done by taking each of the pairs (pxj, pyj) (1 ≤ j ≤ M) from the two vectors, Px and Py, to plot in 

a two-dimensional graph. 
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Figure 23. A correlative graph 

There are several properties associated with this type of graph. First, a trend line can be made 

by a regression algorithm (such as an order-3 polynomial curve in Figure 23) to demonstrate 
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the relationship between any two dimensions. For instance, a linear trend line shows strong 

correlation between two dimensions. Second, there can be a “line of equivalence” drawn for 

each of the two-dimensional graphs, f(x) = y. This means that the corresponding 

measurements (from input data) of dimensions X and Y are always equal. If a dot is found 

below this line, it indicates the input dimension represented by the X-axis is measured less 

than the input dimension represented by the Y-axis.  

 

Figure 23 is a correlative graph for locations 3 and 5 for glaucoma patients or suspects, where 

the dots are found around a near-linear trend line, and mostly below the dashed “line of 

equivalence.” Two interesting features can be observed from this plot. First, the motion 

sensitivity measurements from location 3 and location 5 are strongly correlated. This feature 

is also visible by comparing the similarity between the physical-meaning maps drawn on 

location 3 and 5 in Figure 22. It means that the two testing locations are more likely to be 

affected by the disease at the same time, though to different levels. Second, the sensitivity of 

location 5 is lower than that of location 3 when sensitivity values of both locations are lower 

(e.g., both are below 0.7). This indicates that location 5 is mostly worse than location 3 for this 

disease. These features will be discussed in further detail in Section 7.2. 

 

Using these visualisation techniques, correlation among all testing locations is studied. In 

general, the features demonstrated by neural networks are considered low level [139]. A basic 

proposition is that these low level features inherent in the data, when combined with the 

knowledge and judgement of human experts, would be promoted to high level knowledge 

useful for problem solving or decision making. Therefore, visualisation methods for presenting 

features in a human-oriented form are vital in assisting the interactive knowledge discovery 

[139]. In Section 7.2 I will discuss how knowledge is inducted and conclusions are drawn 

based on the analysis. 

7.1.4 Knowledge Analyst 

The knowledge analyst, who plays a central role in interactive knowledge discovery, needs to 

perform several important tasks. First, initial hypotheses regarding what to explore in the 

data need to be formed using the domain knowledge. Second, the appropriate input data to 



109 

the SOM need to be categorised and grouped, based on age, clinical information, etc. Third, 

the features displayed by the visualisation techniques have to be organised, observed, and 

analysed. Fourth, the knowledge analyst needs to decide whether more specific data selection 

or other alternatives should be made to train the maps again, or whether something 

interesting has been discovered. This interactive procedure is carried out until a full picture of 

the test and its associated diagnostic knowledge has been drawn, and validated if possible. 

 

One of the designers of the CCVP test has fulfilled the role of knowledge analyst. In 

collaboration with other researchers, he effectively performed those tasks using his experience 

and fundamental knowledge about ophthalmological anatomy. As a result, much useful 

knowledge regarding the CCVP test characteristics and its relevance for screening optic nerve 

diseases such as glaucoma and onchocerciasis has been established, which is described in 

the following sections. 

7.1.5 Evaluation Strategy and Results 

In this section, the proposed knowledge discovery method is evaluated. Again, I use the 

concept of reproducibility to verify the knowledge discovered, i.e. to see whether the features 

produced from one group of data are reproduced by another group. Here it assumes that true 

features are more reproducible than false ones. I shall also use this concept to measure the 

significance of noise elimination. 

 

I have chosen 431 CCVP data (263 from right eyes and 168 from left eyes) from patients with 

early glaucoma and 1585 CCVP data (837 from right eyes and 748 from left eyes) from 

onchocercal populations to experiment. The evaluation strategy is that the features found 

from the left eye group are verified using those from the right eye group. This is assumed 

based on the symmetry between the two eyes suggested by ophthalmic anatomy. The results, 

as in Table 4, show the percentage of agreement between features discovered from both eyes 

with respect to the two patient groups. 
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Noise deletion Before After 

Glaucoma 20% 66% 

Onchocerciasis 53% 100% 

Table 4. Rates of feature agreement before and after noise deletion 

One can apparently observe that features discovered are scarcely reproducible before the 

deletion of noise, and the agreement is considerably improved after the noise is deleted. 

Therefore, the proposed knowledge discovery process with outlier management capabilities 

does seem to provide a good way of detecting useful features from noisy data.  

7.2 Problem-Solving Applications 

Using the above-proposed method, different kinds of previously unknown knowledge has been 

discovered, though some were suspected to be the case. Here I will present results on how 

certain pieces of knowledge are obtained using the proposed method and discuss their 

implications. 

7.2.1 Discovering Known Knowledge for CCVP Validation 

This section describes how the process of knowledge discovery from noisy data has helped to 

validate the CCVP as an optic nerve disease screening tool. The validation strategy is to 

compare the disease patterns with those from well-known conventional instruments. 

 

I have experimented with the 431 clinical CCVP test records from patients with glaucoma. 

Using the methodology described in Section 7.1, I have focused on the relationship for motion 

sensitivity measurements among all testing locations. 

 

Figure 24 is another correlative graph between testing location 3 and 4, which shows little 

correlation between the two locations. By comparing it with Figure 23, two of the features are 

evident: 1) the motion sensitivity measurements from location 3 are much more correlated to 

location 5 than to location 4; 2) the motion sensitivity measurements from location 3 are 

higher than those from location 5, when the motion sensitivity is low (e.g., below 0.7). I have 

carried out a systematic study for the correlative graphs between two of all testing locations in 

such a way [32]. Three discoveries were confirmed: 1) There is strong correlation among 
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locations 1, 3, 5 (the “upper hemifield”). 2) Locations 2, 4, 6 (the “lower hemifield”) are also 

strongly correlated. 3) The lower hemifield tends to be affected more severely than the upper 

hemifield. 
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Figure 24. A correlative graph between testing location 3 and 4 

The three discoveries make a strong argument that the CCVP is effective at detecting early 

glaucoma, since the discoveries are compatible with existing knowledge about glaucoma from 

past studies. In fact, studies carried out based on conventional perimetry have shown the 

unbalanced horizontal hemifields (retinal locations 1, 3, and 5 versus 2, 4, and 6, refer to 

Figure 2) as an early sign of glaucoma [73]. Additionally, anatomical [66] and clinical [155] 

evidence also supports the phenomenon of unbalanced hemifields with the more progressive 

lower hemifield. As a result, this evidence has not only validated the CCVP as an effective 

glaucoma screening tool, but more importantly in my research, it has validated the proposed 

knowledge discovery process. 

7.2.2 Discovering New Knowledge from CCVP Data 

This section will discuss how the knowledge discovery process has led to learning about 

lesser-known diseases from the CCVP data. Though onchocerciasis has been a severe threat 

for blindness, little knowledge has been established, compared to glaucoma, with regard to 

how the disease affects visual functions. With the help of the WHO project, ophthalmologic 

specialists were able to collect a large quantity of the CCVP data from onchocercal 
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populations. Based on these data, the proposed knowledge discovery process was able to 

reveal new knowledge about this disease. 

 

I have applied similar analysis discussed above to onchocerciasis data – 1585 test records 

collected in West Africa. A strong correlation between certain pairs of retinal locations has 

been found, but this time crossing the two horizontal hemifields, i.e. between locations 3 and 

4, and locations 1 and 2 (refer to Figure 2). This discovery is in conflict with the belief that 

onchocerciasis and glaucoma are similar in terms of relationship among damage at retinal 

locations [16], since a strong correlation among horizontal hemifields is known for glaucoma. 

Therefore, this new discovery has drawn ophthalmologists’ attention. To check the validity of 

this finding, they have conducted a topographic analysis of clinical chorioretinal changes 

related to the visual sensitivity at these testing locations. This is done by ophthalmologists 

examining the pathological condition of the retina of each selected patient. The study has 

confirmed the finding [187] and the encouraging result has further shown the effectiveness of 

the proposed method. 

 

In addition, since the reactions of stimuli reflect the physiological condition of the eye, it is 

possible to find out how the retina and optic nerves are damaged in these patients by looking 

at relationships between testing locations in the retina. The results of my study have provided 

clinicians with anther way of finding out the cause and mechanisms of these optic nerve 

diseases. 

7.3 Concluding Remarks 

In this chapter, I have demonstrated how the proposed noisy management methods are 

applied to real world application for practical problem-solving tasks. An interactive method is 

proposed for knowledge discovery from clinical data. It involves managing outliers (filtering 

noise), abstracting and visualising features, and the knowledge analyst, who guides the 

heuristic process in an interactive manner.  The process has been applied to large quantities 

of raw visual field test data. As a result, much useful knowledge regarding the CCVP test and 
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its relevance for screening optic nerve diseases such as glaucoma and onchocerciasis has 

been established. 

 

The knowledge discovered from the CCVP glaucomatous data is consistent with what was 

known from conventional perimetry, and therefore the finding has helped to validate the CCVP 

as an effective visual screening tool. The other type of discovery involving a lesser-known 

disease has improved the understanding of the disease. In particular, I use the concept of 

repeatability to see whether the features produced from one group of data are reproduced 

from another group, based on the assumption that true features are more repeatable than 

false ones. The results have shown that noise deletion (outlier analysis) is a crucial first step 

in discovering useful knowledge from noisy clinical data. 

 

Much of the work on knowledge acquisition from noisy data has been on the use of statistical 

techniques to acquire classificatory knowledge. Notable examples include the TDIDT (Top 

Down Induction of Decision Trees) family of learning systems using the chi-square test with 

various pruning techniques [141, 20]. There have been also attempts to use neural networks 

to acquire knowledge from noisy data. Some of the most relevant work is Ultsch [165, 166], 

which uses unsupervised neural networks to find regularities from data. An ID3-like induction 

method is used to transform those regularities into classificatory knowledge. 

 

There are two key differences in proposed approach. First, an effort is made to eliminate noise 

before data are used to discover features. I have shown that explicit treatment of noise is a 

necessary step to ensure that discovered features truly reflect data relationships. As discussed 

in Section 7.1.5, the features found from the raw glaucoma data can rarely be reproduced and 

this suggests that they have noise. Second, an interactive method, rather than an automatic 

process as in Ultsch’s approach, has been used. Ultsch correctly pointed out that the 

“emergence” ability of the SOM is critical in extracting underlying knowledge in data [164]. 

The “emergent features,” however, still rely on visual examination and interpretation of 

human beings, unless the type of knowledge is pre-determined. Ultsch’s method uses neural 

networks to learn from the data, and classificatory knowledge is automatically generated from 
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the weight parameters using an inductive algorithm. The role of knowledge analyst can 

therefore be taken by machine learning strategies. In this application, the type of knowledge to 

be discovered is unknown, and we are interested in finding out any information related to a 

particular group of subjects. As a result, the method attempts to combine the best capabilities 

of human and machine: using human knowledge and judgement to guide the knowledge 

acquisition process, but relying on the SOM to search in the data, and abstract information in 

a more representative way. 
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Chapter 8 Intelligent Data Analysis for Public Health: Self-Screening 
for Eye Diseases 

This chapter will present my IDA research in the entire application context – self-screening for 

eye diseases. The application, as part of the METRO project (see Chapter 6), is to establish a 

software system that enables self-examination for public use [107, 189]. The CCVP visual test 

was first developed by Dr Wu in his initial study [182]. Since then, a number of developments 

have been made to address the data quality issue, which have been described from Chapter 3 

to Chapter 7. I have integrated those improvements into an application with Dr Wu’s CCVP 

program, to make it a more reliable and more acceptable self-screening tool for eye diseases. 

The integrated system was put to several trial runs and has received encouraging feedback. At 

the end of the chapter, the system with field application results will be evaluated. As well, I 

have systematically studied the key issues involved in evaluating software quality and carried 

out the evaluations with different strategies. 

8.1 Self-Screening for Eye Diseases 

Medical diagnostic tests give doctors important clinical information. Such tests normally 

require a specially designed device and a medical operator’s attention; a doctor then analyses 

the test results. These testing devices are often very expensive and not widely available for 

mass screening – for example, testing in large-scale epidemic investigations, general 

practitioner clinics, and public halls. To make these tests easily accessible to the community, 

thus improving recognition of early signs of disease, one must seek an economical way of 

providing the tests without compromising reliability. 

 

Developing a test capable of mass screening involves three important issues: delivery, 

interface, and interpretation [107]. First, the test should be easy to deliver without too much 

cost or compromise in the test reliability. Second, the test interface should adequately support 

the subject undertaking the test, preferably providing a self-testing environment where no 

instructions from a medical operator are necessary. Third, the test system should be able to 

interpret the test results, to give the subject a general warning of possible problems, without a 

doctor’s involvement. 
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For many years, psychophysical researchers, influenced by the pioneer work of M. Flocks and 

his colleagues [50], have been trying to apply CRT and LCD technology as stimulus display 

devices for visual-function testing. Flocks’ group and his followers partially addressed the test 

delivery issue – the use of television for eye testing lets many ordinary people perform the test 

without additional cost. However, this idea was not properly developed and realised, largely 

because human behavioural variants during the testing made obtaining reliable test results 

difficult, especially in a self-testing environment. The collected data contained much noise, 

making the interpretation of these results particularly difficult. Also, such an approach did 

not address the issue of the interface between the subject and the machine; communication 

was essentially one-way. Finally, the machine did not record the test results, and 

interpretation of the data recorded on paper was tedious. 

 

More recently, the CCVP has demonstrated early success in detecting damage in optic nerves 

[182]. Like Flocks’ work, the CCVP partially addresses the delivery issue by using PCs as 

testing machines, and the data collected from individual subjects also contain much 

measurement noise. Unlike Flocks’ work however, the software-based approach addresses the 

interface issue: communication between the subject and the PC is two-way. Moreover, on-site 

interpretation of test results becomes possible. 

 

In the last decade, a self-screening test has been developed based on CCPV, in which PCs 

without specialised hardware can examine visual functions. To address the above three 

issues, the test system has three main intelligent components: machine-learning programs, 

an intelligent user interface, and an interactive knowledge-discovery process. Operating on 

portable or desktop computers, this system has been used in several different public 

environments. Managing data quality is one of the major developments in this effort, as we 

shall see from the following discussions. A number of IDA methods have been integrated into 

the system, which contributed to the success of this application. This demonstrates how the 

integrated IDA techniques help in real world applications. 
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8.2 AI for Self-Screening Eye Diseases 

To develop an effective self-screening system, various AI methods have been integrated into 

the CCVP. Three major software components have made it possible for the transformation 

from a standard perimetry system to a self-screening system. First, the self-screening system 

uses software-controlled perimetry that operates on PCs, where the proposed IDA methods are 

incorporated to help clean measurement noise and maintain reliability of the tests. Second, 

instead of having an experienced medical operator constantly monitoring the subject during 

the test, the system incorporates an intelligent user interface (see Chapter 6), which allows 

helpful interaction between the subject and the test. Third, rather than asking a doctor to 

make sense of the test results, the system attempts to provide the subject with important 

information regarding their visual functions. This allows pre-screening of the suspects with 

potential eye defects so that they can be referred to ophthalmologists for further diagnosis. 

8.2.1 Reliability in Software-Based Perimetry 

The development of the software-based perimetry based on the CCVP has been discussed in 

the previous chapters. The most significant problem with software-based visual field tests is 

that there is no longer dedicated hardware capable of monitoring the behaviour of the subject 

and providing reliability indicators. In addition, there is no longer the luxury of a standard 

test environment where important factors such as light and viewing distance can be strictly 

controlled. Therefore, software-based tests will naturally be less reliable in that the data 

collected from subjects will contain more measurement noise, which has been a key issue in 

the project. Computational methods have been developed based on a variety of IDA 

techniques, among which outlier management plays a central role. It essentially involves three 

phases. 

 

1) Collecting data more reliably and reducing noise at source 

2) Modelling test behaviour by visualising data and detecting outliers 

3) Separating noise from real measurements among outliers 
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Phase 1) has been discussed in Chapter 6; phase 2) have been detailed in Chapter 3. Phase 3), 

described in Chapter 4 and Chapter 5, is achieved by modelling either noise or real 

measurements, depending on the type of information and domain knowledge available. 

8.2.2 Interactive Knowledge Discovery for Pre-Screening 

At the end of a self-testing, subjects are naturally interested in knowing whether their vision 

is normal. The average motion sensitivity values for different testing locations give an overall 

assessment of how well the subject has done. However, an indication of the likely diagnosis 

based on these sensitivity values and the relationships between different test locations would 

be desirable. For example, might the subject have a certain disease, if the sensitivity values 

for a subject are low for testing locations 3 and 4 (see Figure 2) but high for other testing 

locations? 

 

To determine which test results indicate possible eye diseases, several thousand clinical test 

records were compiled from patients with vision loss from glaucoma and optic neuritis. The 

records were then analysed them using interactive data exploration where a data analyst 

steered the discovery process [30]. 

 

The analyst performed three important tasks. First, the analyst used relevant domain 

knowledge to form initial hypotheses regarding what to explore in the data. Second, the 

analyst organised different data sets according to various criteria such as disease types and 

sampling considerations before using those sets to extract the behavioural relationships 

between test locations. Third, after the relevant features were extracted by neural networks 

and were displayed by visualisation techniques, the analyst organised, observed and analysed 

them. This was very much an interactive and iterative process where the analyst made a 

number of decisions, e.g., whether to select more specific data or to take alternative action, 

whether any patterns detected had any significant meanings, and whether they could be 

validated. 
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The detailed findings of the above analysis were discussed in Chapter 7. The discovered 

disease patterns are then used to provide warning messages to the subject regarding the 

possible danger. 

8.2.3 The Integrated IDA System 

As pointed out previously, there are many areas where efforts have been made to improve data 

quality for the CCVP. Therefore it would be not only desirable, but also natural to facilitate the 

efforts by incorporating these efforts into an integrated system. A fully automated system 

would have not only a least resource requirement, but also a minimum chance of human 

errors. Such a system, with improved reliability, self-screening capability and better user 

acceptance, would be then put to the test for public health screening. 

 

The architecture of such an integrated system that I have implemented is illustrated in Figure 

25. The integrated system comprises a number of components: 

 

• The computer controlled perimetry, taking advantage of processing power facilitating 

advanced AI and statistical techniques, and the mobile and inexpensive features from 

notebook computers 

• The stability analyser that estimates data quality for each test as described in Section 

6.3.1 

• The control unit that decides whether the observer needs to have a follow-up test using 

the strategy described in Section 6.3.2 

• An intelligent user interface that facilitates self-screening capabilities and reduces 

undesirable behavioural effects 

• A database containing patients’ personal information as well as test results, which 

makes it particularly easy for pre-test data entry and historic testing data retrieval 

(Figure 26) 

• A visual function reporting facility that automatically generates a test result after each 

test, or presents past results retrieved from the database 
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• The knowledge discovery process, though not fully automated, that can provide 

disease patterns, therefore facilitating automated pre-screening on a large quantity of 

test data 
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Figure 25. Architecture of the integrated system 

 

 

Figure 26. The user interface for pre-test data entry, connected to a database 
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8.3 Self-Screening in the Community 

The self-screening system has been used in a World Health Organisation (WHO) program for 

preventing optic neuritis [29], in occupational health screening [177], and most recently, in a 

Medical Research Council (MRC) pilot study to detect people with glaucoma [107, 188]. These 

studies have been conducted to evaluate the test’s performance and acceptance (i.e. how 

many people agree to take the test) in different primary care settings. 

 

In the WHO study – mass screening for vision loss due to optic neuritis – the subjects were 

from a farming community in Africa. These subjects were largely computer-illiterate; the test 

was conducted in farmers’ houses, using portable PCs. In the occupational health study – 

screening for ocular abnormalities and vision defects – the subjects were the employees of a 

large telecommunications company. These subjects were young (the average age was about 

thirty) and healthy, and they used computers daily; the test was performed in the company’s 

offices using PCs connected by a local-area network. In the glaucoma study, the subjects were 

visitors of a general practice, and the test was conducted in the waiting room, using a desktop 

PC. Each study examined a large number of subjects and reported a good acceptance of the 

test. 

 

Looking at the third of these studies in more detail, the test was offered during routine 

attendance at a large urban general practice in North London and was conducted by subjects 

themselves in the waiting room. For a three-month period during the pilot study, all patients 

aged forty or older who routinely attended the practice were offered the test. Upon entering the 

clinic, each patient received an information sheet explaining the purpose of the pilot study, 

the test and the nature of glaucoma, what to expect during and after the test, and information 

about whom to contact if they wished to know more about the test in general or were 

concerned about their own results. Each interested patient then signed a consent form. 

 

Of the 925 people tested during the three-month period, 33 failed the test, i.e. the results 

indicated an abnormality in their visual field. These 33 people, together with 45 of those who 
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passed the test were chosen as the “control group,” and were later assessed clinically in the 

practice by an ophthalmologist, who had no knowledge about the CCVP and its test results. 

 

Figure 27 summarises the results. The overall picture is clear: the “failed group” had many 

more eye problems than the “control group.” For example, none in the “control group” was a 

confirmed glaucoma case, and 70% in the “control group” had a normal visual field. On the 

other hand, 82% in the “failed group” had various visual defects, including 34% confirmed 

glaucoma cases and 9% glaucoma suspects.7 These findings are particularly encouraging, as 

an overwhelming majority of the subjects did not consider the possibility of having any eye 

problems when they visited the clinic. This opportunistic test has shown a high detection rate 

and allowed for the early detection of eye diseases such as glaucoma. 
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Figure 27. Distributions of clinical diagnosis by an ophthalmologist: (left) subjects who failed the test (the 
failed group); (right) selected subjects who passed the test (the control group) 

Acceptance is also one of the most important issues in evaluating a screening test or an 

opportunistic test. Although little was done to increase the number of patients participating 

(no advertising, and little stimulation from the clinic staff), this study showed higher-than-

expected acceptance: of the 1,215 people who were offered the test, 925 (76%) accepted. 

Surveyed by the same study, the acceptance rate was only 58% if a free eye test could be 

offered by an ophthalmologist in an eye hospital [188]. This is an encouraging finding in such 

an elderly population during a very short period, as the acceptance of opportunistic tests in 

city practices generally ranges from 50% to 70% [78]. 

 

                                                           
7 Those who had an increased intraocular pressure or whose optic disc appeared abnormal, but who had no visual-
field loss. 
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The study has concluded that testing patients in the GP’s waiting room offers a good 

opportunity to screen patients effectively and with minimal additional cost. Moreover, it 

provides patients with a meaningful alternative to the usual activities in the waiting room – 

reading newspapers and magazines, or chatting with others. 

8.4 Software System Evaluation 

A sensible evaluation of AI systems or software systems in general has always been a 

challenging research issue [10, 90, 27]. A careful assessment of such systems in laboratory 

environments is important but is no substitute for testing them in the real-world 

environments that they are developed for. This is especially important in medical informatics 

applications where their use in clinical environments is vital [190]. In the above section, I give 

examples of using the IDA-based self-screening system in different clinical environments. In 

this section, I systematically study various characteristics affecting software quality. Clinical 

data collected from laboratory-based and field-based investigations in different communities 

were used to analyse those aspects. 

 

There has been much research carried out on how to evaluate software systems. In particular, 

there is an ISO document, which specifies various software evaluation characteristics, 

including functionality, reliability, usability, and efficiency, etc. [83]. I shall focus on strategies 

in evaluating functionality, reliability, and efficiency, as they are the most important 

characteristics for screening applications. 

8.4.1 Functionality 

This refers to a set of functions that satisfy the stated needs for an application. For the 

screening application, it means the discriminating power – maximising the detection rate 

while minimising false alarms. To serve this purpose, ROC analysis [65] is considered the 

most direct assessment method. ROC curves are drawn to assess a test’s diagnostic 

performance by displaying pairs of detection rates and false alarm rates throughout the whole 

range of a test’s measurements [74]. I have applied ROC analysis to the data collected by the 

screening system [29, 188], and evaluated the functionality of the self-screening system [27]. 

Figure 28 is an example of such a ROC analysis result from the WHO study. 
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Figure 28. Detection rates versus false alarm rates for the self-screening system: the WHO study 

8.4.2 Reliability 

This is defined as the capability of software to maintain its level of performance under the 

stated conditions for a stated period. One of the most important criteria for screening 

applications is how reliably the data collected by the system reflect a subject’s visual 

functions or impairment. I have proposed the following two criteria for measuring such 

reliability. 

 

The consistency between the follow-up test results from the same subject. Since typical 

optic nerve diseases such as glaucoma and optic neuritis are generally long-term progressive 

diseases, patients’ visual function should change little during a few weeks or even several 

months. Therefore test results from within a short time frame should be close, though under 

real clinical situations this is not always true since measurement noise is normally involved in 

each test. Naturally, the agreement between two tests repeated on the same individual within 

a short period can be a good indicator for the reliability of the test. As an example, Chapter 4 

(see Figure 16) provides one such agreement analysis. 
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The agreement between disease patterns discovered from this application and those 

from other established visual functional tests. A reasonable assumption is that the 

detected patterns of impaired vision should be similar to those from conventional testing 

instruments, or can be verified by clinical or anatomical analysis. With this assumption, it has 

been able to discover compatible patterns for glaucomatous impairment found by 

conventional perimetry [30]. The findings in the WHO study were also successfully verified by 

a clinical analysis [187]. 

8.4.3 Efficiency 

Efficiency is concerned with the relationship between the level of performance of the software 

and the amount of resources used. In the screening context, this is about how to minimise the 

amount of time a subject has to spend on a visit, while maintaining the quality of the test 

results. The system uses the following two ways to determine the testing duration. 

 

Controlling the number of follow-ups if the previous test was unstable. I have suggested a 

strategy to decide whether an immediate follow-up test is required in order to obtain more 

reliable measurements, as described in Chapter 6. Two criteria were used to evaluate how 

efficient this strategy is: first, how many tests are so unstable that outlier management 

strategies will not work (the class of “totally unreliable” described in Chapter 3), and among 

them how many become more reliable in their follow-up tests; second, how the overall quality 

of test results improves when following the recommendations made by the system. 

 

Using a dynamic number of repeated testing cycles during a single test. A test with a 

dynamic number of repeating cycles, or “dynamic testing” in short, has been devised by Cho 

[34] to find out the minimal number of repeating measurement cycles for an individual test, 

while maintaining the quality of the test results. The measurements obtained by the tests with 

a fixed number of cycles were used as the “golden standard” to evaluate how dynamic testing 

performs. 
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8.5 Concluding Remarks 

Public health care is the collective action taken by society to protect and promote the health of 

entire populations [12]. Medical screening, with its focus on the prevention of disease at the 

population level, is one of the most important tools contributing to public health care. 

 

A mass screening test should be easy to deliver at low cost while maintaining reliability; it 

should be easy to use while providing a supportive and interesting test interface; and it should 

offer early, appropriate warning messages for those who fail the test. It has explored the use of 

the computer as an affordable test machine and examined several challenging issues involved 

in a software-based test, such as the handling of data quality problems, the provision of 

intelligent assistance to the subject under examination and the understanding of patterns in 

the test data. It is found that AI has played a crucial role in managing these issues. Machine 

learning programs, an intelligent user interface and a knowledge discovery process are the 

major AI components of a self-screening system, which has found successful applications in 

different primary care settings with high acceptability. 

 

As computers become ever more accessible, software-based tests are an obvious choice for 

mass screening in the community without additional hardware costs. Although most general 

practices in the UK have PCs, no solid evidence indicates that this has led to significant 

clinical improvement [191]. One of the problems is the lack of clinically orientated software for 

general practitioners. By making such software available in GP clinics, we could efficiently use 

existing computing resources to provide additional medical care to the community at minimal 

capital cost. 

 

The integrated system, which incorporates most of the developments, has been used under 

diversifying health-care environments. It has so far demonstrated that reliable data from 

volatile test environments can be obtained, and the acceptability of the integrated system is 

also encouraging. 
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I have found it very important to carefully analyse various factors affecting the system 

evaluation, including evaluation objectives, target populations, related operating constraints, 

and what and how data should be collected. The feedback from early system trials had 

contributed in no small part to the continuing refinement of the screening system. I have 

adopted a systematic way of evaluating different aspects of the screening system. 

 

Finally, this is a truly interdisciplinary project in which community health experts, computer 

scientists, epidemiologists, eye specialists, general practitioners, and ophthalmic nurses have 

worked together in identifying the system requirements, designing and implementing the 

system, testing the system in different operating environments, analysing the data collected, 

and continuously refining the software. Collaboration from the trial communities is also vital 

as this is directly related to the quality of data collected. Currently the test is being used in 

more health-care environments and the data collected will allow further improvement of the 

system. 
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Chapter 9 General Conclusions and Further Research 

One of the most difficult and costly tasks in intelligent data analysis is trying to extract clean 

and reliable data, and many have estimated that as much as 50% to 70% of a project’s effort 

is typically spent on this part of the process. It is the general objective of this dissertation to 

conduct a systematic investigation into the handling of outliers, a difficult but important topic 

for the following reasons. First, outliers can have a considerable influence on the results of an 

analysis [4, 8]. Second, although outliers are often measurement or recording errors, some of 

them can represent phenomena of interest, something significant from the viewpoint of the 

application domain. Third, for many applications, exceptions identified may lead to the 

discovery of unexpected knowledge. 

  

The statistical literature is full of methods for detecting outliers in different data sets, but is 

short on methods for automatically distinguishing between different types of outliers. Such a 

method would require the use of relevant domain knowledge. In this study, I have developed 

novel ways of using such knowledge to reason about outliers, and to improve data quality. 

 

In this dissertation, the different types of outliers in problem-solving contexts have been 

discussed, and the statistical treatment of outliers has been reviewed. The need for reasoning 

with outliers using relevant domain knowledge has been described in the context of intelligent 

data analysis. For this purpose, I have introduced a large-scale medical application for 

screening eye diseases, involving thousands of subjects in different field studies. It is ideal for 

the study of outliers since the effective management of outliers in test data is essential to the 

success of the application. I have shown how different outlier management strategies have 

been effectively applied to a variety of data sets collected from this application. I have also 

explored interactive methods for knowledge discovery from noisy data, which has 

demonstrated how the “cleaned data” have helped real-world problem-solving tasks. As a 

result, previous unknown knowledge has been discovered from clinical data, which has helped 

ophthalmologists validate their tests as well as further their understanding of diseases such 

as onchocerciasis. 
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My research on outlier management was initially motivated by a challenging medical 

application. However, the proposed methodology is sufficiently general to be applied to other 

types of applications, as discussed in Section 2.4. I have found that AI modelling techniques, 

when properly integrated, have great potential in automating the knowledge-based outlier 

analysis process. 

9.1 An IDA Approach to Outlier Management 

As summarised above, I have developed a systematic approach to the related issues in the 

entire process of outlier management: 

 

1) Reducing noise at source 

2) Detecting outliers using the SOM 

3) Reasoning about outliers using domain-specific knowledge 

4) Using the better quality data to solve domain problems 

 

Although much of the approach is generic and can be applied to different applications (see 

Section 2.4), this approach has been carefully applied to a class of medical applications where 

the management of outliers is important to the success of the applications.  

 

In the second step, Kohonen’s SOM has been suggested as an effective way of visualising and 

learning characteristics among data, and has been found suitable in detecting outliers in 

visual field data. In particular, individual patients’ behaviour during the test can be 

visualised, which offers an interesting way of understanding the test data. Early analysis 

results suggest that the SOM appears to be capable of showing when, where, and to a large 

extent, why outliers occur in the data. However, this method alone is not able to help 

distinguish the outliers. 

 

Further research has been conducted on how to analyse outliers using domain knowledge for 

the third step. Two general strategies have been proposed to distinguish between “good” and 
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“bad” outliers. The first strategy attempted to identify “good” outliers by modelling how 

“normal data” should be distributed in a domain of interest, and rejected outliers that did not 

fall within the model. In this context, domain experts are involved in providing examples of 

different patterns representing different pathological conditions, and machine learning 

methods such as back-propagation are used to generalise over these examples of how patients 

manifest themselves on the test data. The positive results of applying this strategy to the 

visual screening data have been reported using the notion of “reproducibility.” 

 

The next general strategy for the third step uses knowledge regarding the understanding of 

“bad” outliers, or measurement noise in this particular application. Here it attempts to model 

undesirable outliers instead, and accept data outside of the norms if it is not accounted for by 

this model. A system that uses this strategy has been found to perform significantly better at 

a diagnostic task than an equivalent approach that either utilises all data, or attempts to 

reject all non-normal values. This strategy is better suited to those applications where relevant 

knowledge about undesirable outliers can be obtained. 

 

Realising that much of the noise may be reduced at the data collection phase, a considerable 

amount of effort has been made to address the issues in the first step above. An intelligent 

user interface has been developed to obtain measurements with better quality. The interface 

has directly targeted a number of root causes of the measurement noise. Additionally, the 

outlier detection method is used to assess the stability of the test results on-line. A rule-based 

control strategy has been derived from the domain expertise and the results of data 

exploration, so that follow-up tests can be conducted immediately afterwards, based on the 

stability indicator and the rules. Consequently, I have shown that higher quality data may be 

collected on-line, instead of having to work with very noisy data off-line. 

 

One of the key objectives in reasoning about outliers is the discovery of useful knowledge in 

the relevant application area. As a result, I have proposed an interactive process for 

knowledge discovery from noisy clinical data, as in the fourth step. This process has been 

applied to several thousand test records and many interesting patterns were uncovered. For 



131 

example, the test patterns corresponding to onchocerciasis discovered from the data were in 

conflict with the existing knowledge that onchocerciasis and glaucoma should have similar 

patterns. This has attracted the attention of ophthalmologists, who have subsequently 

confirmed this finding by examining the pathological condition of the retina of patients 

involved. 

 

Finally, I have presented my research in the application context – self-screening for eye 

diseases. In this IDA system, I have integrated virtually all the IDA methods that have been 

developed: noise reduction techniques in data collection, outlier detection and analysis, noise 

filtering, and interactive knowledge discovery from noisy data. It is a demonstration of how a 

variety of IDA techniques can be integrated to address various requirements from an 

application. Based on the application, I have also presented the evaluation methods from two 

aspects: the results of the field application and the quality of the IDA software system in terms 

of functionality, reliability, and efficiency. 

9.2 Summary of Contributions 

The main contributions of this dissertation are the following. 

 

• Realisation that IDA techniques are sufficiently mature for explicit outlier treatment. I 

have argued that the explicit treatment of outliers are necessary for some types of 

applications where different types of outliers contribute to the data analysis results in 

significantly different ways. Using IDA techniques, specially machine learning 

methods, it is able to show that different types of outliers can be distinguished with 

domain knowledge. It is hoped that this will help stimulate the work on outlier 

management to go beyond traditional outlier detection to outlier explanation. 

• First application of the self-organising maps in visualising and detecting outliers 

(Chapter 3). I have demonstrated the special features of the SOM in visualising high 

dimensional data and detect outliers based on both of their mathematical distances 

and their statistical frequencies. I have also shown that the SOM is capable of 

exposing temporal behaviour of individuals. These two key features have made the 
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SOM-based outlier detection method a novel addition to the existing outlier detection 

methods. 

• First automated knowledge-based approaches for distinguishing different types of 

outliers (Chapter 4 and Chapter 5). It has been long acknowledged that outliers may be 

of different nature and decisions of retaining or rejecting them should be made 

carefully. However, the existing work, almost without exception, has been suggesting 

analysts to perform such a task. In the thesis I have developed two methods to learn 

knowledge from domain experts and construct data models to analyse the outliers 

automatically. 

• Introducing IDA techniques for outlier reduction at source as part of outlier 

management process (Chapter 6). I have shown that with various IDA techniques, the 

quality of data may be improved before given to data analysts. 

• Knowledge-discovery from noisy data (Chapter 7). I have helped the clinicians to 

discover new knowledge about some previously lesser-known disease. I have also 

helped verify the knowledge about some better-known disease by comparing it with 

traditional perimetry, so that it validates CCVP’s diagnosis power. In particular, the 

study shows that the cleaned data can provide better quality knowledge, and this has 

provided a supporting example that outlier analysis is needed in this application. 

• Successful real world applications in public health (Chapter 8). I have shown how the 

integrated IDA system, in which outlier management plays an important role, has 

helped to solve a challenging medical screening problem. 

• Systematic evaluation of IDA systems (Section 8.4). The issue of how IDA systems 

should be evaluated has not received sufficient attention. This thesis has introduced a 

systematic way of evaluating an IDA system from the software quality perspective. 

9.3 Further Work 

Although much has been achieved as discussed above, further work has also been considered. 

The proposed outlier management strategies should be investigated more completely by using 

different AI and statistical methods, and by conducting careful comparative studies to 

establish the most appropriate methods connected to a particular type of application. 
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For example, the SOM was used as a basis for detecting outliers and for visualising 

behavioural data. However, the Generative Topographic Mapping (GTM) approach has recently 

been proposed and shown to have certain advantages over the SOM [18]. It would be 

interesting to find out whether GTM can help build a better outlier detection method. 

 

Second, it would be desirable to explore different knowledge acquisition and representation 

techniques based on various situations in the application domain. My study has largely 

explored the instance-based machine learning methods to establish data models for outlier 

distinction, but there may be different form of knowledge available for other types of 

applications. For example, if the knowledge can be acquired as a set of rules from domain 

experts, then reasoning techniques associated with knowledge-based systems, such as 

Bayesian networks, may be a better candidate for investigation. 

 

Finally, yet importantly, it is of great interest to have further analytical or experimental work 

on testing the proposed outlier strategies on other data sets in different fields, such as in 

science, engineering and economics. More extensive study should be carried out to address 

additional issues that might come up with applications of an entirely different nature, 

although my study presented here has shown itself capable of addressing most of the 

challenging issues of outlier management in this type of medical applications. 
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GLOSSARY 

Blind spot: Also called optic disk, it is the place on the retina of the eye from which the optic 

nerve emerges. This spot is insensitive to light. In binocular vision it is not noticed, because 

the part of the visual field covered by the blind spot of one eye is covered by a sensitive area in 

the other. (See also: visual field.) 

 

Cataract: A cataract is a clouding of the eye’s lens that causes loss of vision. 

 

False negative response: In the context of perimetry, the subject fails to indicate seeing a 

stimulus, which is supposed to be seen. (See also: false positive response, perimetry.) 

 

False positive response: In the context of perimetry, the subject indicates seeing a stimulus, 

which does not exist or is not supposed to be seen. (See also: false negative response, 

perimetry.) 

 

Fixation loss: The subject’s eyeball moves during the perimetry test. (See also: fixation 

point, perimetry.) 

 

Fixation point: A spot in the perimeter to which the subject stares at in order to maintain a 

fixed direction of the eyeball during the perimetry test. (See also: perimeter, perimetry.) 

 

Glaucoma: Glaucoma refers to a group of eye symptomatic conditions. These can include 

raised intra-ocular pressure, visual field loss, enlargement of the blind spot and changes in 

the appearance of the optic nerve head. (See also: blind spot, optic nerve, visual field.) 

 

Hemifield: Half of the visual field. (See also: visual field.) 

 

Motion sensitivity: The capacity of an organ or organism to respond to stimulation in the 

form of a moving object. 
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Onchocerciasis: Also known as “river blindness,” is a major public health problem in tropical 

Africa and Central America. It gives rise to serious visual impairment, including blindness; to 

intensely itching rashes, wrinkling and depigmentation of the skin; to lymphadenitis, resulting 

in hanging groins and elephantiasis of the genitals; and to general debilitation. Victims often 

become blind by the time they have reached their mid-30’s. 

 

Optic disk: See blind spot. 

 

Optic nerve: The nerve that carries visual impulses from the retina to the brain. In the eye, 

the nerve forms from the convergence of visual nerve fibres in the optic disk at the rear of the 

eyeball. (See also: optic disk, retina.) 

 

Optic neuritis: An inflammation of the optic nerve. The nerve tissue becomes swollen and 

red, and the nerve fibres do not work properly. (See also: optic nerve.) 

 

Perimeter: A device used in perimetry for quantitating the function of the visual field. (See 

also: perimetry, visual field.) 

 

Perimetrist: A specialist who operates, controls, or monitors the perimeter to examine the 

function of the visual field. (See also: perimeter, visual field.) 

 

Perimetry: The systematic measurement of visual field function. Colour vision testing, flicker 

sensitivity, contrast sensitivity, pupillary responses and motion testing are some of the other 

methods of quantitative vision evaluation. (See also: visual field.) 

 

Psychophysical test: A procedure that makes experimental measurements of perception 

using the relationships between physical stimuli and resulting sensations and mental states 

of human beings. 
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Receiver Operator Characteristic curve: It shows the relationship of “probability of false 

alarm” (x-axis) to “probability of detection” (y-axis) for a certain test. Alternatively in medical 

terms: the “probability of a positive test, given no disease” to the “probability of a positive test, 

given disease.” The ROC curve may be used to determine an “optimal” cutoff point for the test. 

 

Retina: The retina is the part of the eye that receives the light and converts it into chemical 

energy. The chemical energy activates nerves that conduct the messages out of the eye into 

the higher regions of the brain. 

 

Detection rate: The ability to correctly identify those who have the disease. (See also false 

alarm rate.) 
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False alarm rate: The ability to correctly identify those who do not have the disease. (See also 

detection rate.) 
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Ideally, a test should have 100% detection rate and 0% false alarm rate, i.e. the test always 

correctly identifies the disease status of the people tested. 

 

Disease Status 
Result of Screening 

Disease No Disease 

Abnormal True abnormal False abnormal 

Normal False normal True normal 

 

The people who have the disease are the “true abnormals” (also called “true positives”). The 

people who do not have the disease are the “true normals” (also called “true negatives”). 

 



155 

Visual acuity: The capacity to discriminate the fine details of objects. 

 

Visual field: The portion of space in which objects are visible in the eye at the same moment 

during steady fixation of gaze in one direction. 
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