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Abstract

This thesis examines the impact of feedback loops on individual decision-making.

This represents a long standing interest of cognitive psychology in how well human

beings are able to use external information in individual and group settings to re-

vise their beliefs to control complex systems. This thesis consists of six chapters.

Each chapter contains a literature review section, followed by empirical research

used to compare theoretical frameworks to actual human performance on a range of

tasks. Chapter 1 serves as an introductory chapter by placing the subsequent anal-

ysis in the multidisciplinary domain of judgement and decision-making. Chapter

2 represents the first part of the thesis and explores human performance in con-

trolling dynamic physical simulations. It begins by revisiting Berry and Broadbent

(1984) research, followed by the exploration of how well humans are able to control

dynamic physical systems. The chapter is primarily concerned with exploring the

limitations of human control and factors that influence it, ending with the perfor-

mance comparison between human and generic reinforcement learning algorithms.

Chapter 3 extends decision-making into the social domain. It explores the impact

of group dynamics on individual belief revision and proposes new models that may

better reflect actual belief revision. Chapter 4 looks at the impact of incentivisation

on revision and accuracy. It is found that incentivisation has a minor impact on

belief revision. Chapter 5 extends group decision-making into the novel domain of

rank revision. This chapter seeks to better understand how humans aggregate ranks

and revise their beliefs. Finally, Chapter 6 summaries the findings and draws on the

research presented in this thesis to provide concluding remarks on human cognitive

decision-making processes in dynamic settings.
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Chapter 1

Introduction

The world is full of dynamic systems and processes. Something as simple as an

interaction between two people can be infinitely complex; full of happiness, mis-

understanding, trust and forgiveness. Such complexity starts with a single action, a

“hello” perhaps, but soon takes on a life of its own. That hello leads to a response,

ultimately leading to a reaction, which begets a conversation, leading to any number

of possible outcomes. These interactions are inherently dynamic – ever changing as

a result of individual actions. These successive actions and reactions create loops,

more precisely they create feedback loops, which end up creating dynamic systems

we find all around us.

Feedback loops are ubiquitous; from a simple (or complicated) friendship, to

fundamental principles of economics, to the way a car engine works. Our existence

is constantly regulated by positive and negative feedback loops around us (Sterman,

2000). They carry important information about the environment and provide ‘feed-

back’ on its state, so that the next decision can be reached. That decision, in turn,

alters the environment. The next time feedback is sought and received it will be

different. Such systems are inherently difficult to study due to the evolving nature

of the underlying state.

Due to the various interactions, these systems evolve and no two paths through

the system are the same. Feedback loops produce a dynamic system, which reacts

to the user, while forcing the user to adapt to it. Due to the constant flux, dynamic

systems are by their very nature non-deterministic. They are constantly changing as
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a result of the interactions. Since these systems are all around us, human behaviour

and decision-making in such systems is of great interest. Are human beings well

adjusted to make optimal decisions in complex environments? Is their decision-

making optimal? Can they learn from feedback and gain mastery over such sys-

tems? What cognitive processes and strategies are used for decision-making? These

are the questions that this thesis seeks to answer.

1.1 Introduction
Many disciplines - engineering, biology, political science, economics, cognitive sci-

ence - incorporate and account for feedback loops and the resulting dynamic sys-

tems. For example, Orrell (2011) argues that feedback loops are fundamental to

understanding much of the economic decision-making. According to Bernheim

and Rangel (2008), behavioural economics is a “research programme that inves-

tigates the relationship between psychology and economic behaviour”(Bernheim

and Rangel, 2008, p.192). Thus, some of the most recent and relevant research on

decision-making in dynamic systems is found in this field.

Behavioural economists study how feedback loops create structures that cause

certain behaviour in groups. Akerlof and Shiller (2010) argue that asset prices are

susceptible to positive feedback loops where investor confidence is a large determi-

nant of price. Orrell (2011) also attributes many of the modern economic phenom-

ena to feedback loops, from the increasing CEO salaries to the cyclical nature of the

stock market. According to Nassim Taleb (2007), the world is becoming increas-

ingly characterised by complex feedback loops that are creating non-linear effects

resulting in arbitrary, unpredictable, winner-take-all effects. Indeed, as far back as

the 18th century, Adam Smith argued that economics is a series of negative feed-

back loops that together regulate prices and profits, thereby maintaining equilibrium

(Sterman, 2000). The work in this thesis expands on the understanding of feedback

loops by conducting research designed to better understand how individuals control

and incorporate feedback into their decision-making.
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1.1.1 Feedback Loops

According to Sterman (2000), “[a]ll dynamics arise from the interaction of just

two types of feedback loops, positive (or self-reinforcing) and negative (or self-

correcting) loops” (Sterman, 2000, p. 12). Examples of each are contained in

Figures 1.1 (positive), 1.2 (negative). It should be noted that the terms positive and

negative do not carry normative, but substantive connotations, as self-reinforcing

and self-correcting.

Figure 1.1 demonstrates a simple positive feedback loop where chickens pro-

duce eggs. The more chickens there are, the more eggs they produce. With time

this leads to exponential growth that can theoretically be unlimited. On the other

hand, Figure 1.2 demonstrates a negative loop, where chickens die as a result of

crossing roads and with time, they would disappear, provided no new chickens are

born. When these two loops are put together they represent a system that changes

over time. A positive loop is constantly producing chickens and a negative loop that

is constantly removing them. At a certain point this system would reach an equilib-

rium, where the rate of chickens being born would be roughly equal the number of

chickens dying.

Figure 1.1: Example of a positive feedback loop (Sterman, 2000, p. 13).

This interaction between positive and negative loops is fundamental to much
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Figure 1.2: Example of a negative feedback loop (Sterman, 2000, p. 13).

of the world and can be found in nature (Neutel et al., 2014), as much as in engi-

neering, economics, or psychology. Neutel et al. (2014) explains how plant growth

(positive loop) and the resulting soil erosion (negative loop) create a stable system.

Radios rely on the principles of oscillations and bistability, both produced by pos-

itive feedback loops (Zeron, 2008). One of the first artificial automatic regulatory

devices invented – the water clock – that relied on negative feedback loops dates

back to 285-222 BC Hellenistic Greece (Zeron, 2008), and used water level as a

trigger for dropping of pebbles onto a drum to make a sound.

In biology, according to Zeron (2008), feedback origins are not as easy to trace

because:

Nature has been using feedback loops for millions of years, and because

biologists in general discovered the principles of feedback centuries

ago. The concept of negative feedback keeps popping out into our faces

day after day. Properly speaking, it literally keeps popping out into our

eyes, for the pupils light reflex in our eyes is the perfect example of a

negative feedback loop. When light levels are high, the pupil contracts,

reducing the light flux onto the retina. The size of the pupil is controlled

by circularly arranged constricting muscles, which are activated and
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Figure 1.3: An ancient water clock. One of the earliest examples of a human-engineered
device using feedback loops

inhibited (left to relax) by control signals from the brain (Zeron, 2008,

p.69).

In economics, supply gives rise to a positive feedback loop and demand to a

negative one. Given endless resources and time, the product supply would continu-

ally increase, leading to an ever greater output, while the demand is a negative loop

since given enough time, all production would disappear. The equilibrium results

at the point where supply and demand meet, creating a relatively stable system, at

least for the time being.

1.1.2 System Dynamics

System Dynamics was developed in the 1950s by Jay Forrester to study the be-

haviour of complex systems over time. The feedback mechanism is at the heart of

system dynamics, as feedback and circular causality are the tools for conceptualis-

ing systems and predicting outcome. He argued that “social systems belong to the

class called multi-loop nonlinear feedback systems” (Forrester, 1971, p.2) and to

understand any social system, its feedback loops must be understood.
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System dynamics, as popularised by Sterman (2000) in the early 2000’s seeks

to apply engineering theories to social systems. This field has recast human under-

standing of social systems as a series of processes and systems that interact with

each other creating complex structures requiring system thinking. The concept of

total, or global understanding, where everything is connected to everything else, is

of course important to consider. For example, when discussing policy resistance to

change, Sterman writes: “with a holistic worldview, it is argued, we would be able

to learn faster and more effectively, identify high leverage points, avoid policy re-

sistance and make decisions consistent with our long-term best interests” (Sterman,

2002, p. 2). System dynamics ultimately calls for scientific (systematic) application

of a number of concepts and tools from engineering, biology and technical fields

to societal problems. Homer and Hirsch (2006) for example, have used system dy-

namic principles to model chronic disease prevention. According to Homer and

Hirsch (2006): “System dynamics shows promise as a means of modelling multiple

interacting diseases and risks, the interaction of delivery systems and diseased pop-

ulations, and matters of national and state policy” (Homer and Hirsch, 2006, p.452).

Currie et al. (2018) have looked at the application of system dynamics modelling in

the decision-making processes related to environmental health, while Ibrahim Shire

et al. (2018) looked at how system dynamics can help improve industrial safety.

System dynamics is undoubtedly beneficial to understanding complex systems

with multiple feedback loops, which explains its growth and popularity. As is clear

from Figure 1.4, systematic application of feedback as a way to explain complex

systems in a clear manner is indeed powerful. However, as a framework it tends

to focus on a macro perspective for the purposes of system-wide optimisation. It

rarely focuses on the individual, or smaller groups. This is in contrast to cognitive

science, where feedback has been studied in the context of learning, goal-setting

and control.

1.1.3 Cognitive Science

The development of understanding of feedback in cognitive science follows the

work of John Dewey who recognised the feedback loop character of learning around
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Figure 1.4: Model of automobile market (Sterman, 2000, p. 45).

the beginning of the 20th century when he described learning as an iterative cycle of

invention, observation, reflection, and action (Sterman, 2000). In the 1940s, Mau-

rice Merleau-Ponty laid the groundwork for the perceptual control theory, which

is a model of behaviour based on the principles of negative feedback. The theory

stated that negative feedback control applies to living organisms that do not control

their behaviour, but vary their behaviour as the means for controlling perception

(Flynn, 2011). Later, Powers (1973) wrote:

Feedback is such an all-pervasive and fundamental aspect of behaviour

that it is as invisible as the air that we breathe. Quite literally it is

behaviour we know nothing of our own behaviour but the feedback

effects of our own outputs (Powers, 1973, p. 351).

According to Carver and Scheier, behaviour and feedback control are inti-
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mately linked. They argue that goals act as reference values for feedback mech-

anisms, where negative feedback loops seek to diminish or eliminate discrep-

ancy between the target (goal) and input (action) and positive feedback loops as

discrepancy-enlarging (Weiner et al., 2012, p. 187).

This literature is extensive and it examines feedback as it pertains to the system

providing information to the participant to learn from. However, individual impact

on the system is limited. The individual is the receiver of information and adapts

their behaviour as necessary, however, the behaviour itself does not modify the

environment from which the feedback is received.

1.1.4 Dynamic Control

The dynamic control literature sought to expand the understanding of human learn-

ing into the context of more complicated systems that better approximated the real-

world, evolving systems. The first simulations in this field were designed by Dörner

(1975) and Funke (1992), including “a Beer Distribution Game...[where] subjects

seek to minimise costs as they manage the production and distribution of a com-

modity”(Sterman, 1994, p.304). In their seminal study on dynamic control, Berry

and Broadbent (1984) simulated the running of a sugar production facility. These

represented a new kind of decision-making tasks, since the output produced by the

simulation changed as a result of the actions taken by the participant. This estab-

lished a feedback loop, whereby learning depended on the actions, which in turned

produced the learning signal. Both Dörner (1975) and later Berry and Broadbent

(1984) found that participants were actually quite bad at controlling the simulation,

with output constantly fluctuating, and performance not improving with practice

beyond a few initial trials.

Over time, these early tasks were incorporated into a wider body of research

on dynamic decision making (see Cleeremans and Seger, 1994, Gibson et al., 1997,

Gonzalez et al., 2003, 2005, Osman, 2010). The field looked into how well individ-

uals are able to control and succeed in dynamic environments that are hypothesised

to be more akin to the real world systems Gonzalez et al. (2003), Sterman (1994,

2000). Gonzalez et al. (2003) for example had participants conduct a much more
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sophisticated simulation with multiple inputs and feedback loops of a water pu-

rification plant, whereas Sterman (1994) simulated the workings of a beer factory,

again with multiple feedback loops, Brehmer (1992) had participants fight forest

fires, and Funke (1988) had perhaps the most sophisticated simulation of them all,

with over 200 variables available for manipulation, in the so-called ‘Lohhausen’

simulation. Each simulation differed in the dynamism of the system (i.e how often

it changed), complexity (how difficult the system was to operate) and opaqueness

(how apparent the relationships are to the user) (Osman, 2010).

One constant finding is the documented failures of human participants to con-

duct simulations successfully. In an indicative description of human performance

on the beer production task, Sterman (1994) stated that:

[t]he subjects generated costly oscillations with consistent amplitude

and phase relations, even though demand was essentially constant.

Econometric analysis of subjects decisions showed that people were in-

sensitive to the time delays in the system. People did not account well,

and often not at all, for the supply line of orders that had been placed but

not yet received, causing them to overcompensate for inventory short-

falls. Facing an inventory shortfall, many subjects order enough beer to

close the gap. Because of the delay in filling orders, inventory remains

depressed, and the next period they order more beer. Still deliveries are

insufficient, and they order more beer. Finally, the first order arrives, in-

ventory rises to the desired level, and the subjects cut their orders. But

the beer in the supply line continues to arrive, swelling their inventory

many times above the desired levels and causing emotional reactions

from anxiety to anger to chagrin (Sterman, 1994, p.304).

In her review paper on dynamic decision-making Osman (2010) identifies a

whole host of undesirable psychological phenomena exhibited by human partici-

pants in these tasks, including: “high reliance on biases, high persistence of unsuc-

cessful strategies, poor strategy development/rule-based knowledge, misperception

of feedback” (Osman, 2010, p.75). What has not been clearly established in this
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field is whether human failures occur as the result of the simulations being diffi-

cult in of themselves, or whether failures represent a more fundamental problem of

human cognition not being able to exert dynamic control.

Outside of the unanswered questions regarding human performance, the main

limitation of dynamic control tasks is the fact that they focus on a single participant,

controlling these simulations. Given that the world is full of individuals and their

interactions give rise to feedback loops, understanding social, or multi-individual,

systems is of great importance when one wishes to understand impact of feedback

loops on decision-making. Thus, one must go outside of the artificial worlds con-

structed by researchers to fully comprehend the power of feedback loops.

1.1.5 Network Science

With the advent of social media and increased global interconnectedness, feedback

received from social network interactions has only increased. Social interactions

have become more complex and more likely to be impacted by others, as well as

have a wider impact on the environment thereby creating feedback loops.

Network science is a relatively new field of study, but one that is gaining im-

portance in an increasingly interconnected world. With the advent of the internet,

information as well as communications have brought human beings closer together.

With Facebook’s drive to ‘connect the world’ this is only likely to increase further.

Network science is “the study of the collection, management, analysis, interpre-

tation, and presentation of relational data” (Brandes et al., 2013, p. 2). This field

draws on statistical analysis, mathematics, data analysis and management, network

and graph theory, among others. Its applications have been numerous, from con-

tagion spread modelling to opinion dynamics. Given that “the roots of network

science are particularly strong in social psychology, sociology and anthropology”

(Brandes et al., 2013, p. 3), this field has quite a bit to offer in terms of understand-

ing individual behaviour as it relates to the system. Since networks are normally

understood as a series of nodes and links between them (edges), the framework

lends itself quite well to the study of social interactions between individuals (for a

comprehensive overview on network science see Jackson (2010)).
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The earliest social science studies in this field can be attributed to Paul Lazars-

feld, who pioneered opinion research, showing, among other things, how social con-

nections play a role in learning and the formation of opinions and different agents

in a society have different influences (Jackson, 2010). David Krackhard extended

network science to business environment showing how interconnectedness works

within a large organisation (Krackhardt and Hanson, 1993), with informal networks

having an outsize impact on performance. Krackhard predicted in 1993 that as tra-

ditional institutions flatten, network science and network managers will have an

increasingly important job of managing their organisations through the resulting

informal networks (Krackhardt and Hanson, 1993, p.111).

More recently, and with increasing frequency, mathematical models have been

applied to the study of networks. De Groot’s consensus models to this day remain an

important cornerstone for analysing consensus (opinion convergence) in networks

(see Hegselmann and Krause, 2002, Gonzalez et al., 2003, Das et al., 2014a). De

Groot’s consensus model, and much of the subsequent research focused on explain-

ing social interactions in mathematical terms, often preferring hypothetical models

to empirical research. The examples of such models include: the impact of ho-

mophily (the tendency for individuals to seek ties with people who are similar to

themselves) to become educated (Jackson, 2009), consensus convergence (Hegsel-

mann and Krause, 2002), and persuasion (DeMarzo et al., 2003). These applica-

tions are complex, requiring extensive mathematics to describe fundamental social

interactions. The value of such models is to be able to hypothetically explain and

ultimately predict outcomes of social interactions.

While original network science has focused on mathematically simple, but em-

pirically untested assumptions about individual strategies for information incorpo-

ration and belief revision, much of the current research focuses on observation.

Although research has already been done looking at individual and group belief re-

vision (Jönsson et al., 2015, Becker et al., 2017, Moussaı̈d et al., 2017), the purpose

of my research is to examine the strategies individuals use to revise their beliefs.

The goal is better understand how individuals actually revise their beliefs. What
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information do they consider? How likely are they to change their opinions? What

strategies do they use in revising? It is therefore the purpose of this thesis to em-

pirically test existing models on actual human behaviour and if necessary to create

a more robust model that would explain actual belief revision of individuals in so-

cially connected networks.

1.2 System Classification
Dynamic systems and games used to understand decision-making can be broadly

classified into a two-dimensional table. One axis refers to the nature of the system

where the underlying source of knowledge either changes as a result of participant

actions (dynamic), or is unchanging (static). In dynamic tasks every action and

decision actually changes the underlying structure of the task, creating a feedback

loop between the participant and the task. This interaction alters the very structure

of the task and feedback that participants receive is a function of the input that they

provide. Static tasks on the other hand have predefined logic that cannot be altered

by participant behaviour. Examples of each task are presented below.

The other axis represents the collaborative nature of the task at hand. Some

tasks are performed by a single individual, working on a task alone, or in isolation

from others, not receiving any external information from the other participants (in-

dividual). Other tasks involve a group of participants, or indeed entire networks

of connected individuals, working and communicating with each other to solve the

task either collaboratively, or competitively (group). Importantly, participants are

able to communicate and thus receive information from other participants while

doing the task.

The traditional cognitive science tasks where a single person is asked to com-

plete a task, or a challenge that does not change as a result of user input falls

squarely under the static category. An example is the Wason task, where partici-

pants are asked to complete a reasoning task using cards (Wason, 1968). Materials

are static, in so far as their values do not change as a result of user input. Certain

answers may change the path or the level of difficulty of the task, but fundamentally,
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the task and the materials remain unchanged by users actions. Another example is

the artificial language learning tasks for kids and adults (Folia et al., 2010, Uddén

et al., 2012). In these tasks participants are often asked to learn an artificial lan-

guage and answer questions about it. The structure of the language does not change

as a result of user input, although the structure of the task itself can give rise to

complex systems. Such tasks are quite common in cognitive science, as laboratory

experiments tend to be designed to test particular functions, or processes and are

required to be quite deterministic in order to remove extraneous effects.

The field of dynamic decision-making was created as a recognition that de-

cisions in the real world are more complex and that the very systems that call for

decisions are also altered by them Sterman (1994). For example, the sugar factory

simulation required participants to maintain a certain output level over a number of

turns Berry and Broadbent (1984). Output at each stage was a factor of two vari-

ables, the present user input and previous output (and therefore the previous user

input). Thus, users had direct impact on the system and production targets would

change over time based on user input. It mattered what user entered two times in a

row as both of these inputs would have an impact on production. The environment

in the task is non-stationary and changes as a result of user input.

Most of the tasks participants dealt with were simulations of physical processes

Funke (1988), Gonzalez et al. (2003), Sterman (1994). The unifying factor always

being that participants had some information over the task, did not necessarily ex-

plicitly understand the functioning of the system from the onset and had to learn

through feedback. Feedback, which was very much a function of user input in the

first place. This non-stationary and evolving nature of the system makes it a great

paradigm within which to study individual’s ability to control feedback systems.

Studying individual behaviour in dynamic context is valuable. However, given

the rise of social media and the fact that human beings inherently exist in a social

space with others, group dynamics are also important to consider. Understanding

how an individual interacts with the group is an important first step. One set of

work in this domain comes from the literature on advice (Yaniv, 2004a, Yaniv and
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Static Dynamic

Physical
Generic tasks
Wason (1968), Uddén et al. (2012)

Dynamic decision-making tasks
Berry and Broadbent (1984)

Social
Decision-making and belief
revision
Yaniv (2004a)

Individual belief revision
in a group setting
Jönsson et al. (2015)

Table 1.1: Task classification of different feedback systems. These tasks are divided into
four categories based on their properties.

Milyavsky, 2007) (see Yaniv, 2004b, for a review). The advice literature focuses on

mathematical and algorithmic ‘rules’ of advise incorporation, as well as how context

(advisor, confidence, prior knowledge) affects the extent to which the advice takers

revise their beliefs in light of new information (Dalal and Bonaccio, 2010, Yaniv

et al., 2011, Yaniv and Choshen-Hillel, 2012, Wanzel et al., 2017). An individual

is usually asked a question and then is provided with a range of answers that the

‘group’ has come up with. An individual is then asked to revise their belief and

come up with a new answer in light of the information received from the ‘group’.

However, the ‘environment’ in this case does not change. Participants’ answers do

not have an impact on the generated answers. The system remains static. This line

of research is relevant given that the range of answers is generated by a ‘group’ and

provides a framework for extending individual studies into a group context, closer

to the environment experienced in social media.

The final quadrant of the decision-making tasks are tasks where groups are

involved and where the setting is dynamic, constantly changing as a result of user

input. This environment reacts to individual user feedback and each user reacts to

the feedback received from the environment, thereby creating feedback loops. One

line of research where this methodology has been used is in group revision dynamics

by Jönsson et al. (2015). They examined the impact of network structures on indi-

vidual and group accuracy. They had multiple participants participate at the same

time, answers the same questions, while also asking them to revise the answers in

light of the answers generated by their peers. While the purpose was to understand

how network structures impact group and individual accuracy, this paradigm intro-

duces important concepts for studying belief revision. The experiment generated a
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large data set, tracking individual revisions as well as the answers each individual

was exposed to. Multiple rounds of revision allow for the understanding of revision

over time. Questions were general knowledge questions, which participants did not

necessarily know the answers to, but could guess, making this an accessible task to

different people with varied backgrounds. Accuracy as a central measure of suc-

cess is important as well, allowing for measurement of success, or failure of various

strategies for belief revision.

1.3 Hypothesis
So how would individuals behave when presented with feedback? Recent studies

take a rather positive view of human ability to incorporate feedback to produce pos-

itive outcomes (Granovskiy et al., 2015, Jönsson et al., 2015). According to Jönsson

et al. (2015), individual and group accuracy increases as a result of repeated feed-

back. Furthermore, it is apparent from the everyday life that human beings are able

to control a variety of real-world tasks with feedback loops in them. From flying

fighter jets to driving cars, human beings have generally displayed a remarkable

ability to incorporate feedback and achieve control and mastery. However, it has

also been long observed that individuals show limitations in the way they adjust

their behaviour based on feedback (Brehmer, 1995, Gibson et al., 1997, Gonzalez

et al., 2003, Osman, 2010, Sterman, 1994). This is doubly true in situations where

feedback is delayed, or is difficult to interpret.

Given the seemingly contradictory findings, the research in this thesis is fo-

cused on dynamic systems and experiments will be used to better understand how

individuals make decisions in such environments, focusing on the overall ability

to achieve positive results under different conditions. It is hypothesised that fac-

tors that impact human performance are: timing of feedback (delayed vs. instant) –

where delayed feedback will lead to poorer outcomes; social vs. system interactions

– where social interactions will normally lead to increased performance, while inter-

actions directly with the system may lead to more divergent outcomes; randomness

– where more randomness would impede mastery; incentivisation – where provid-
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ing individual incentivisation would lead to greater overall mastery (accuracy) over

the task.

1.4 Thesis Structure
There are two parts to this thesis. Part I focuses on the individual’s ability to control

physical dynamic tasks. Chapter 2 extends the dynamic system control literature

to better understand the challenges individuals face when conducting such simula-

tions. It has been well documented that individuals struggle to complete such sys-

tems. The chapter starts with a replication of the original sugar factory and moves

to explore whether individuals can be taught to better control such systems. It then

moves to the discussion around objective performance metrics and ultimately seeks

to deconstruct the various parts of the simulation to better understand what exactly

causes participants to struggle with control over the simulation.

Part II extends research into the social domain. Specifically, this research looks

at feedback in group opinion dynamics. It starts with Chapter 3 and the search for

strategies that individuals employ in dynamic revision tasks. The goal is to better

model individual belief revision in a group setting to understand what strategies

participants use when revising their beliefs and creating feedback mechanisms as a

result. Once these strategies are understood, Chapter 4 looks at individual vs group

incentivisation performance and what impact it has on the revision strategies, as

well as group accuracy. Finally, Chapter 5 looks at a novel application of feedback

learning in the context of rank aggregation. Ranked lists are lists where there is an

ordered relationship between a set of items such that, for any two items, the first

is either ’ranked higher than’, ’ranked lower than’ or ’ranked equal to’ the second.

Rank aggregation is a particularly interesting application for belief revision, given

that ranked information is often used in computer science and information retrieval.

It is the goal of the chapter to explore what strategies are most beneficial when

aggregating ranks and then understand what people actually do.

Chapter 6 summarises the findings and provides concluding remarks on the

topic of dynamic control and revision.
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The research for each Part was done concurrently. While the overall theme

of feedback and control remains constant, the concluding remarks and the overall

discussion on the hypothesis proposed above are left to the final chapter.



Chapter 2

Part I - Dynamic Control

2.1 Background
To date, the majority of work on learning and decision-making within cognitive sci-

ence has focused on static environments. For example, seminal work by Herbert Si-

mon (1956) focused on rational behaviour in a typical ‘psychological’ environment,

which did not change as a result of the actions taken by the participant. Much later

Gigerenzer (2001), continued to build on this work by looking at the environmental

and social, as well as psychological factors of human rationality, yet the environ-

ment continued to be unchanging and unresponsive to the actions of the individual

in these experiments.

Most real world learning and decision-making occurs in a different type of

an environment. Typically, individuals face an environment that is not static and

changing over time, very often as a response to the interactions within it. Such a dy-

namic environment is by its very nature complex and difficult to predict and requires

holistic understanding of the system for the analysis to be useful Sterman (2000).

The complexity is further compounded by the fact that the type of feedback one

receives – which is essential for learning – is a function of one’s own interactions

Sterman (1994).

Given that these systems appear to approximate the real world, concepts intro-

duced by Sterman and his colleagues have been applied to a multitude of real world

systems, from public health (Homer and Hirsch, 2006), to environmental sustain-
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ability beliefs (Melville, 2010). Homer and Hirsch (2006) for example, have used

the concepts of system dynamics to model chronic disease prevention, which al-

lows for incorporation of “all the basic elements of a modern ecological approach,

including disease outcomes, health and risk behaviours, environmental factors, and

health related resources and delivery systems” (Homer and Hirsch, 2006, p.452). In

other words, system dynamics captures nuances and concepts that exist in the real

world, thereby allowing for a more accurate representation of the real world.

However useful modelling system-level processes is, learning in dynamic en-

vironments is ultimately an individual endeavour. Since a complex system is ul-

timately a composition of individual choices, there is great value in understand-

ing individual decision-making in a complex system. This area of research has

been of cross-disciplinary interest for decades, yet no single theory of learning has

emerged (Osman, 2010). An interdisciplinary field of dynamic decision-making

has attempted to address this knowledge gap by focusing on learning and control

in dynamic, ever evolving systems (Berry and Broadbent, 1984, Brehmer, 1990,

1992, 1995, Gibson et al., 1997, Gonzalez et al., 2003, Gureckis and Love, 2009a,

Osman, 2010, Sterman, 1994).

It has long been observed that individuals show limitations in the way they ad-

just their behaviour based on feedback (Brehmer, 1995, Gibson et al., 1997, Gon-

zalez et al., 2003, Osman, 2010, Sterman, 1994). This is doubly true in situations

where feedback is delayed, or is difficult to interpret. If the underlying system is

unknown and feedback is received without any framework to interpret it, it becomes

difficult to incorporate or make useful inferences from it. Compounded by the par-

ticipants’ inability to verbalise knowledge attained from the task was the fact that

much of the learning was marginal (see Shanks and St John, 1994, on the implicit

learning debate). Over the decades of implicit learning experimentation, many of

the participants failed to effectively perform and control the various tasks presented

to them.

However, failure to achieve positive outcomes in these artificial dynamic

decision-making environments does not in and of itself constitute an objective cog-
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nitive failure on the part of a participant. Without an objective measure against

which to measure performance, it is impossible to establish if failure is indeed due

to cognitive limitations, or due to poor experimental design, which asks participants

to do something that is simply impossible. To our knowledge, no such yardstick has

been proposed in the past. Therefore, determination of the cause of performance

difficulties fell to the researcher.

The goal is to introduce a more objective measure of performance; namely, a

reinforcement learning algorithm tasked with ‘solving’ decision-making tasks and

acting as a yardstick for measuring reasonable performance on a given task. In

particular to apply reinforcement learning algorithms to the famous sugar factory

designed by Berry and Broadbent (1984) in order to measure human performance

against the performance of such an algorithm.

Reinforcement learning has already been used in cognitive science, and

decision-making in particular, to better understand human performance. For exam-

ple, Gureckis and Love (2009a) have used differently programmed reinforcement

learning algorithms to conduct a ‘Farming on Mars’ task in the exploration vs ex-

ploitation paradigm, in order to better understand the various cognitive mechanisms

supporting learning in such tasks. The task was somewhat similar to the sugar fac-

tory in that “the reward structure continually evolved in response to the actions of

the individual” (Gureckis and Love, 2009a, p. 2).

Although reinforcement learning has been shown to approximate human learn-

ing in various circumstances Dayan and Niv (2008), Gureckis and Love (2009b),

Schoenberg et al. (2007), it is used here as a benchmark for understanding the level

of difficulty of the task, rather than a model to explain cognitive process of human

players doing the task. This is an important distinction, as the aim of this section is

to establish and evaluate performance of an artificial agent that can learn to control

the simulation. Once such an agent is established it is possible to compare human

performance against it, allowing us to make a performance comparison, rather than

a cognitive claim.

The goal of this chapter is to focus on developing an artificial agent, powered
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by a reinforcement learning algorithm, that would play the sugar factory in order to

determine which parts of the simulation are objectively more difficult, in an attempt

to establish a baseline against which human performance could be measured.

The chapter is structured as a series of experiments designed to reproduce and

expand on the original sugar factory and explore the nuances of human performance

on the task. First experiment aims to replicate the original study, while the second

experiment is programmed with a different underlying equation to allow for more

refined control, while also examining the efficacy of training materials for the par-

ticipants. A third study extends the domain and the cover story from a fictional

sugar factory and towards a more topical area of climate change to see what im-

pact the cover story has on participants’ ability to control the simulation. It then

moves away from lab experimentation altogether and into a web-based game, al-

lowing for a larger participant pool and a different way for individuals to interact

with the study. Finally, reinforcement learning algorithms are introduced to conduct

the original sugar factory and simulation results are compared to those of human

participants.

2.2 Sugar Factory
The sugar factory was originally designed by Berry and Broadbent in 1984 and

was initially used to test the limitations of learning and feedback control. It also

provided evidence for implicit learning.“The task has been widely used to inves-

tigate hypotheses about how decision makers learn on-line in dynamic decision

environments” (Gibson et al., 1997, p. 1), and is widely cited as one of the pre-

mier simulations of its time (Berry, 1991, Berry and Broadbent, 1984, 1987, 1988,

Buchner et al., 1995, Dienes, 1990, Dienes and Fahey, 1995, Gibson, 1996, Hayes

and Broadbent, 1988, McGeorge and Burton, 1989, Sanderson, 1990, Stanley et al.,

1989) Over time, the sugar factory simulation evolved into a broader set of experi-

ments and simulations on dynamic decision making (Cleeremans and Seger, 1994,

Gibson et al., 1997, Gonzalez et al., 2003, 2005, Osman, 2010). Although not the

first simulation of its kind, it became the foundation upon which a multitude of
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other, more complex simulations were built upon. Its popularity and persistence

in academic literature can be explained by a combination of factors. It was one

of the first simulations. Its authors were influential voices in the implicit learning

debate. The results it produced were surprising, and therefore illuminating to the

limitations of human cognition. Structurally, the simulation is very simple. There

is only one variable that can be influenced and feedback given by the system is

timely and correct. There is no additional noise, parameters, or hidden state shifts

(see Gureckis and Love, 2009a, for a more complex simulation example). Despite

its simplicity, researchers have consistently found that participants are unable to

successfully complete the task. This has given rise to a number of conclusions on

human cognitive limitation, such as ‘misrepresentation of feedback’, ‘poor resource

allocation’, ‘poor attention to feedback’ and others (see Osman, 2010, for overview

of the limitations and biases).

The basic simulation is straightforward. Participants are tasked with control-

ling a computer simulation of a sugar production facility by adjusting the number

of workers assigned to production. Each turn a new number of workers is assigned

and output is displayed on the screen. The task is to achieve and maintain a certain

level of output. After each assignment, participants are provided with immediate

feedback on the actual factory output for the turn and are asked to enter a new

number. This is repeated for a set number of turns. However, as noted by Gibson

et al. (1997) and later Gonzalez et al. (2005) this simulation represents a problem of

significant difficulty due to the way time figures in the underlying equation: the sys-

tem requires two independent inputs – at different times – to stabilise production.

Otherwise, production tends to oscillate between two extremes, and the resulting

feedback only serves to further confuse the participants. Immediate feedback pro-

duced by the task is only marginally useful and most participants fail to learn from

it (at least initially) (Berry and Broadbent, 1984, 1988, Gibson et al., 1997). In-

dividuals do get better with practice, but remain unable to correctly describe the

underlying system (Berry and Broadbent, 1984, 1988, Gibson et al., 1997), with

most of the participants appealing to factors and mechanisms that are not present
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in the actual simulation to describe its inner workings. This is consistent with the

instance-based learning theory (IBLT) suggested by Langley and Simon (1981) and

adopted by Gonzalez et al. (2005). This theory suggests that: “people learn with the

accumulation and refinement of instances, containing the decision-making situation,

action, and utility of decisions. As decision makers interact with a dynamic task,

they recognize a situation according to its similarity to past instances, adapt their

judgement strategies from heuristic-based to instance-based, and refine the accu-

mulated knowledge according to feedback on the result of their actions” (Gonzalez

et al., 2003, p.591). Mastery over dynamic decision-making tasks revolves around

learning the heuristics and pattern recognition, rather than holistic understanding of

the system and its underlying processes.

2.2.1 Experiment 1: Replication

Much time has passed since the original sugar factory was introduced. With the

advent and proliferation of personal computers, it is quite possible that the current

generation may be more adept at controlling the simulation. Because of the amount

of time that has elapsed since Berry and Broadbent’s original study, and the change

in human activities and experiences, such as proliferation of gaming, it may be wise

to start with a replication to provide a baseline of modern performance. All attempts

have been made to stay as close to the parameters of the original study as possible,

using the same underlying equation.

2.2.2 Method

Participants were assigned to one of two conditions based on the instructions they

received. In the first condition, participants were told that they should reach and

maintain a target output of 9,000 tons of sugar per month, which corresponds to

the instructions in the original task. Given that Berry and Broadbent’s evaluation

of performance involved a range, whereby any output between 8,000 and 10,000

counted as ‘on-target’, we also examined a version where participants were told

of this evaluation criterion. For both sets of instructions, output in this range was

considered to be ‘on-target’. All participants completed the simulation twice.
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2.2.2.1 Participants

All participants (n=20) were students at the University of London who volunteered

to do the study. They were all between 18 and 28 years old. No further demographic

information was collected on the participants. Participants were randomly assigned

to one of the two conditions and asked to read a slightly different script regarding the

task. One group of participants were told that only output at 9,000 would count on-

target, whereas participants in the second group were told that any output between

8,000 and 10,000 would be counted as being on target.

2.2.2.2 Materials

The ‘sugar factory’ was coded in MATLAB, and participants saw a simple graph-

ical interface, with a graph in the middle of the screen, with one horizontal line

displaying target output and another showing factory output. The underlying equa-

tion Berry and Broadbent governing factory output each month was:

st+1 = (2at−
st

1000
+ r)∗1000 (2.1)

where s was the output, a was the number of workers, t was the turn number, and r

was a random element (noise), that could assume a discrete value of -1,0 or 1 and

was of uniform distribution. Each participant was given the following instructions,

which were based on the original (Berry and Broadbent, 1984, p.24) instructions.

The full set of instructions can be found in Appendix A:

You are in charge of running a sugar production factory in an underde-

veloped country. You control the rate of production by simply chang-

ing the size of the work force, ignoring all other factors. You start with

600 workers that produced 6000 tonnes of sugar in the previous month.

Your task is to reach and maintain a target output of 9,000 tons per

month. To help with the task, the maximum output of the factory has

been set at 12,000 and the minimum to 1,000. You will have to run the

factory for 30 months. Each month you will assign a number between

1-12 representing the number of workers that would work in the factory
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that month. The computer will multiply your number by 100 to get the

actual number of workers. Example: 6 is 600 workers.

2.2.2.3 Procedure

Participants were asked to control the factory for 30 turns (months). Each turn they

entered a number between 1-12 and receive instant feedback on the factory output.

A sample complete simulation of the factory (run) can be seen in Figure 2.1. After

completing the factory once, all settings were reset and participants were asked to

run the simulation again, with the same instructions, for the second time.

Figure 2.1: A sample output of a player completed basic sugar factory. Each dot represents
factory output.

2.2.3 Results

Output that fell between 8,000 and 10,000 was counted as ’on target’. The number

of times participants managed to achieve this output over 30 turns represented their

performance on the task. As there was no significant difference in performance

depending on the instructions received, the data was combined from both groups.
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Table 2.1 shows the mean performance on our replication study compared with

the original Berry and Broadbent study. The replication results are in line with the

original findings, which indicates that there has not been a notable shift in skills, or

ability to control this type of a game over the past 30 years.

Table 2.1: Replication study average performance of all participants over 30 trials. It is
split by the first and second run of the simulation.

Run Original Result Replication Result
1 5.58 6.1 (SD 4.0)
2 6.83 7.6 (SD 3.1)

Also, as in the original study, a significant practice effect was present, t(19) =

2.5, p = .021, d = 0.57, confirming that participants did significantly better on the

second run.

2.2.4 Experiment 2: ‘Advanced’ Sugar Factory

Based on the results of the replication study, it was clear that control of the original

sugar factory remains as difficult as ever. As suggested by Gibson et al. (1997) and

Gonzalez et al. (2005), difficulty appears to lie in the underlying equation. But, is it

the delayed nature of the feedback that creates this difficulty?

It is difficult to delve deeper into nuanced participant behaviour due to the

noisy output of the equation. For example, entering ‘6’ could produce a factory

output of between 4000 and 9000, depending on previous output and random noise.

This impact of the random variable (r) produces final output that can be up to forty

percent different; coupled with the fact that participants could only control the fac-

tory by assigning workers in hundreds, making gradual increase and decrease vir-

tually impossible. These characteristics also prevent meaningful interpretation of

individual strategies used by the participants.

In order to expand and elaborate on where exactly the difficulty lies, the gov-

erning equation was modified for the second experiment. The new equation gov-

erning the factory gave participants a much greater range of control over the output.

In the original set up, a range of possible inputs was limited to 12 and each worker

was deemed to represent 100. The new equation allowed participants a much greater
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range of inputs of between 0-1200. Furthermore, the new underlying equation was

changed to make the function with a fixed exponent in order to control for the new

ability to set a more exact number of workers, while maintaining the difficulty level,

as greater inputs would still produce a disproportionately large output (but the vari-

ance was still less than the original equation). The delayed nature of feedback was

preserved in the new set up. However, borrowing from the literature on dynamic

decision-making an attempt was made to create explicit ‘training’ materials direct-

ing participants, in general terms, on how they may be able to control the factory

with greater precision. This was a 2x2 between participant factorial design exper-

iment with manipulations of the governing equation (original/power) and training

(present/absent).

2.2.5 Method

Participants started with one type of the factory, and then completed two sets of

the other, with participants in the training group receiving a two-page handout with

explicit instructions after completing the first factory.

2.2.5.1 Training

The strategies outlined for the participants were based on a combination of work

on intuition training (Hogarth, 2001), heuristic competence (Brehmer, 1992, Ster-

man, 1989, Dörner, 1997), and decision competence (Gonzalez et al., 2005). Hoga-

rth (2001) argued that applying the scientific method to decision-making improves

outcomes. The four stages of this method are: observation, speculation, testing

and generalisation (Hogarth, 2001, p.24). This framework was combined with

Brehmer’s observation that performance on such tasks is greater for “subjects who

collect more information, who collect it more systematically, who construct ade-

quate goals, who evaluate the effects of their decisions, and who generally behave in

a systematic fashion tend to perform better than those who do not” (Brehmer, 1992,

p.225). Lastly, Gonzalez et al. (2003) observed that: “decision makers improve their

performance by following heuristics less closely and more inconsistently. Experi-

enced decision makers show a lower fit to heuristics and higher standard deviation
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compared to their own behaviour at the beginning of their practice” Gonzalez et al.

(2003). Combining these insights, it was important to get participants to experi-

ment, and to use a wider range of strategies to tackle the simulation. The strategies

presented to participants in the two-page document were based on the idea that in-

ducing a negative feedback loop-like behaviour would allow for greater control over

the system. The two-page handout provided to the participants included informa-

tion about feedback loops and hints such as: attempt to understand the underlying

processes; test various theories; make changes gradually when testing your theories;

account for noise; and use your answers to create convergence on the goal. Partici-

pants were asked to read the two pages, paying particular attention to the strategies

outlined on the second page. See Appendix A for a copy of the training materials.

2.2.5.2 Participants

Participants (n= 40; 10 per condition) were all students at the University of London

who either volunteered to do the study, or did so for course credit. This was a be-

tween participant (2x2) study where each participants was provided with a different

set of instructions. Hence, there were 4 groups with 10 participants in each group.

No demographic information was collected on the participants.

2.2.5.3 Materials and Procedure

The power version of the sugar factory was governed by the following equation:

bt =
a3

t
10+ r

−at−1 (2.2)

with each variable representing the same assignments as above. The lower and

upper bounds were set at 1,000 and 250,000 respectively.

As in the first experiment, participants were asked to control the factory for 30

turns (months). For the original Berry and Broadbent version (labelled as ’basic’ in

the analysis), participants entered a number between 1-12 (representing multiples

of 100 workers), whereas in the non-linear version (labelled as ’advanced’) partic-

ipants could enter any number between 0-1200, giving them much greater control

over production. In addition, to help with the task, the advanced version of the
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sugar factory contained two further pieces of information. First, the factory output

was displayed above the black line representing the output for the turn. Secondly,

the number of workers assigned by the participant was displayed above a dot on

the chart. This was intended to aid participants in keeping track of the number of

workers they assigned each month. Figure 2.2 demonstrates a successful run in the

advanced factory.

Figure 2.2: Example of a successfully player-controlled advanced sugar factory. Each dot
represents player output and the continuous line represents factory output.

Participants were explicitly told that they would be controlling a different type

of a factory when switching from one type to the next. They were told that one fac-

tory was located in a developed country (advanced factory), or an underdeveloped

country (basic factory). Target output and number of possible workers to assign-

ment differed significantly between the two factories, and served as a cue that the

two factories operated differently. Finally, the output was presented differently in

the two factories further highlighting the differences. However, participants were

not told that each factory was governed by a different equation.



2.2. Sugar Factory 45

It was expected that participants would incorporate the training materials and

perform better in those conditions that included them. Furthermore, it was expected

that participants would find the advanced version of the factory more difficult ini-

tially, but would also perform better with time, as the governing equation allowed

for more varied strategies, and more explicit feedback, which should be more con-

ducive to learning.

2.2.6 Results

The target output of the basic factory was the same as in Experiment 1: 9,000 tons,

with any response between 8,000 and 10,000 scored ‘on-target’. The advanced

factory had a target output of 100,000, with output between 90,000 and 110,000

deemed ‘on-target’.

The number of outputs that each participant scored as on-target was summed

to determine the overall performance. Table 2.2 provides a summary of the mean

number of hits per condition for all participants.

Table 2.2: Average performance on the basic and advanced sugar factory split by simulation
run.

No Training Training
Mean (SD) Mean (SD)

Basic
Run 1 6.7 (2.8) 8.6 (3.3)
Run 2 5.9 (1.4) 11.4 (5.3)

Advanced
Run 1 8.8 (6.5) 4.6 (3.3)
Run 2 12.8 (9.1) 9.2 (6.6)

2.2.6.1 Practice

A two way ANOVA showed a significant effect of practice on performance in the

advanced sugar factory, F(1,18)= 10.427, p= .005, η2
p= 0.578, as well as the basic

version, F(1,18)= 7.097, p=.016, η2
p=0.374.

However, provision of training materials did not produce a statistically sig-

nificant effect, nor was there significant interaction between training materials and

practice for either of the versions of the factory.
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2.2.7 Discussion

Given the somewhat artificial nature of the basic factory, one might suspect that

limitations displayed by participants, including the failure to benefit from explicit

training, may be brought about by its specific characteristics. Unlike the basic fac-

tory, the advanced factory allowed for greater control over the number of workers

being assigned, lower noise levels and a range of solutions that could stabilise the

system and reach the desired output. Nevertheless, most participants still did not

exhibit a high degree of control over the advanced factory. Nor did they benefit

from training.

In order to successfully reach and maintain a target output of 100,000, par-

ticipants would have had to gradually assign up to between 520 and 540 workers

each month. Provided they did so for a few turns, the volatility in the output would

have decreased significantly and it would have settled in the target range. The ex-

ponential growth of the output, however, added to the complexity of finding the

optimal solution. Entering numbers above 650 would yield a significant growth in

output and entering numbers under 400 would have yielded significantly lower out-

put (with neither output particularly helpful to solving the problem). Consequently,

participants who only entered numbers in large ranges did not do particularly well

on this task.

In the advanced factory, those participants who were able to stay on-target

the most tended to exhibit behaviour that was outlined in the training material. In

particular, the most successful individuals tended to test extreme values early on and

then slowly increase, or decrease the amount of workers until they oscillated around

the target. They learned it themselves, not from the training materials, as there was

no significant effect of the training materials on performance. This suggests that

either the method of delivery, or the information itself in the training materials is

not an efficient method of imparting knowledge on how to best control dynamically

changing, nonlinear systems.
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2.3 Experiment 3: Climate Change Simulation
Practice had a statistically significant impact on performance, but participants were

on-target less than 50% of the time, with the average performance on the second run

being 12 out of 30 on-target ‘hits’. Changing the original equation by giving partici-

pants more control over assignment, did not produce any difference in performance,

neither did the provision of training materials.

In the reasoning domain, it has been observed that participants are better at

tasks when they are moved from abstract manipulations to concrete real-world tasks.

For example, experiments using the Wason Selection task materials “add credence

to the conclusion that framing the task in a thematically meaningful way can facil-

itate performance”(Nickerson et al., 2017, p.134). There is general agreement that

it is an oversimplification to treat conditionals as if they were conjunctions, and it

has been suggested that the conflation of the two occurs less often when using real

world materials (Over et al., 2007, Singmann et al., 2014)

It is then worth considering whether participants would interact differently

with a system that more closely resembles a real world system, rather than a more

abstract ‘sugar factory’. In this case participants may be able to draw on their pre-

vious knowledge and experience about a topic to improve their performance, better

incorporating the strategies outlined in the training materials. This would also have

an added benefit of measuring the extent to which behaviour might be affected by

general attitudes, opinions and beliefs.

One of the most high-profile systems in current public debate is Earth’s climate

and the issue of anthropogenic climate change (Revkin and Seelye, 2003, Rosen-

zweig et al., 2008). Climate change is a complex issue with multiple feedback

loops, which seems well suited for the study of systems control that seeks to under-

stand the impact of prior beliefs, while being relevant to the participants. Basing a

simulation on this topic would also have an added benefit of measuring the impact

of interactions with a climate simulation on beliefs about climate change. A new

climate change simulation was developed, complete with a new cover story, inter-

face and a governing equation. The simulation was based on a simplified version of
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the Kaya identity (see Kaya, 1990), which seeks to express the relationship between

various social and economic factors and CO2 emissions.

The Kaya identity incorporates several high level concepts, such as greenhouse

gas emissions, wealth, energy intensity and population in a single equation. The

equation brings together diverse fields of study - physics, economics, engineering,

demographics into a simple equation.

F = P∗ G
P ∗

E
G ∗

F
E where:

F is global CO2 emissions from human sources

P is global population

G is world GDP

E is global energy consumption

As Mann and Gaudet (2018) explain, the interpretation of the equation is that:

by projecting the future changes in population (P), economic pro-

duction (G/P) , energy intensity (E/G) , and carbon efficiency (F/E) , it

is possible to make an informed projection of future carbon emissions

(F). Obviously, population is important as, in the absence of anything

else, more people means more energy use. Moreover, economic pro-

duction measured by GDP per capita plays an important role, as a big-

ger economy means greater use of energy. The energy intensity term is

where technology comes in. As we develop new energy technologies

or improve the efficiency of existing energy technology, we expect that

it will take less energy to increase our GDP by an additional dollar, i.e.,

we should see a decline in energy intensity. Last, but certainly not least,

is the carbon efficiency. As we develop and increasingly switch over to

renewable energy sources and non-fossil fuel based energy alternatives

and improve the carbon efficiency of existing fossil fuel sources (e.g.,

by finding a way to extract and sequester CO2), we can expect a de-

cline in this quantity as well, i.e., less carbon emitted per unit of energy

production (Mann and Gaudet, 2018, para.2).
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The simulation based on the Kaya identity involved maintaining the Gross Do-

mestic Product (GDP) levels of an economy in such a way as to keep voters happy,

while simultaneously maintaining acceptable CO2 targets. The concept of voter

satisfaction was added as a mechanism of tying the various variables together and

providing a way to end the simulation. If voter satisfaction dropped below a certain

level, the player was ’voted out of office’ and the simulation ceased. In addition

to completing the new simulation, participants were asked to complete two rounds

of the advanced sugar factory to test task transfer between the two simulations. It

was expected that the new domain and its proximity to the real world issues would

induce greater interest and ultimately lead to better performance on the task.

2.3.1 Method

In the first stage of the experiment, both groups were asked to complete a short

questionnaire (see sample questionnaire in Appendix C) on their beliefs and opin-

ions regarding climate change. This was followed by one run of the advanced sugar

factory as described in Experiment 2. In the second stage, depending on the con-

dition, participants either received no instructions, or were provided with training

materials similar to those used in Experiment 2, along with a description of the cli-

mate simulation task and asked to control the new system, with the goal of reaching

40 turns. After completing the simulation four times, participants again completed

the climate change questionnaire to gauge the post-intervention beliefs and attitudes

towards climate change. Lastly, participants completed another run of the advanced

sugar factory.

The climate questions were designed to gauge participants’ overall attitudes

towards climate change, their behaviours and intent, and their opinions of collective

and government action. The questionnaire was based on Whitmarsh (2011) climate

scepticism scale. Additional questions probing specific attitudes toward climate ac-

tion were drawn from the Yale and George Mason University Climate Change study

(Leiserowitz et al., 2012) and the Cardiff University report: ‘Public Perceptions of

Climate Change and Energy Futures in Britain’ (Spence et al., 2010). In partic-

ular, questions dealing with behaviour and intent were taken from the Yale study,
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while questions related to government were taken from the Cardiff report. Ad-

ditional questions regarding participants’ own future behavioural intentions were

simple modifications of these questions.

These questions were selected based on their broad coverage of the topic as

well as their previous use in academic studies on climate change beliefs and are

considered to be robust for understanding individual beliefs on the topic (Spence

et al., 2010). The final questionnaire contained questions on climate beliefs, opin-

ions on climate action, views on the role of government in dealing with climate

change and future action intentions. In line with the research from Clark et al.

(2013), it was believed that participant behaviour would be impacted by the simu-

lation and would become more attuned to the issue of climate change, specifically

by its link to human activities. It was also hypothesised that participants who have

stronger belief in human-caused climate change would perform better on the task,

as the task was designed in such a way to promote CO2 reduction.

The advanced sugar factory was added to this experiment in order to introduce

participants to the notion of dynamic decision-making tasks, to see if skill transfer-

ence may occur as a result of completing the climate simulation, and to corroborate

the findings in the previous experiment on the lack of impact of training on the

ability to complete the simulation.

2.3.1.1 Participants

Participants were a diverse group of individuals, and either students at the University

of London, or professionals who either volunteered to do the study, did so for course

credit, or were paid £5. 30 individuals took part in this study, distributed evenly

between the two conditions.

2.3.1.2 Materials

The Climate Change simulation was programmed in MATLAB, with the interface

similar to the previous simulations. It was governed by the following equation:

yt = (x1t−1 ∗1.05)∗ (x2t−1 ∗0.98)∗ (x4t−1 ∗ (at/100)+1)∗100

where y is the final output of the round, t is turn number and a is user input.

x1 was a positive feedback loop that represented carbon content of the economy
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and increased over time, while x2 was a negative feedback loop that represented

energy intensity and diminishes over the course of the simulation; x4 represented

GDP growth.

Where possible numbers corresponding to the actual state on Earth were used

for the simulation, although they were modified to make the simulation run for more

turns. 1.05 was used as the world GDP growth, and approximates the true global

GDP growth number (IMF, 2019), and 0.98 was used as the constant for energy

consumption, which is expected to decline at about an annual rate of 2% (Ritchie

and Roser, 2019). Both of these values were picked to allow for the simulation to

run for more turns. Additionally, while participants were able to indirectly control

x4 by inputting the value for a, x1 and x2 could not be directly influenced. These

values grew and declined automatically, reflecting that the carbon content of the

energy is expected to grow, while energy intensity of the economy is expected to

decline over time and would magnify the choices made by participants.

While participants were asked to control the simulation for 40 turns, it was

not expected that anyone would actually reach that target. Rather, it was important

to see how long participants would last and what choices they would make along

the way. 40 turns were chosen as a benchmark because that would give partici-

pants ample time to try different strategies before they simulation ended. It should

be noted, that it was possible to finish the simulation successfully if a particular

strategy focused on early CO2 reduction was chosen.

2.3.1.3 Procedure

In the climate change simulation, participants could enter any number between 10

and -10, indicating GDP growth or decline. The system provided immediate feed-

back on a graph showing the corresponding CO2 growth or decline. The simulation

also included a voter ‘approval’ bar, which reflected popularity. The bar would

change colour and get progressively redder if negative GDP growth was entered by

the user, or if emission levels became too high. Reaching severe negative approval

levels removed the player from office, ending the simulation prematurely. Partici-

pants had to maintain a balance between the ever rising emissions, which could be
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stopped by GDP growth cuts, and the political unpopularity of such moves, which

would ultimately end the simulation if the economy grew too slowly.

Figure 2.3: Completed Carbon Emissions Simulation. The red line represents emissions
limit, the line in the middle represents the current CO2 output and the red bar
on the right represents popularity with the voters.

After completing the simulation four times participants completed the same

version of the initial climate change questionnaire, but the order of the questions

was randomised. The second administration of the questionnaire was designed to

gauge how conduct of the simulation may have impacted climate change beliefs.

It was postulated that participants would indeed be impacted by the simula-

tion and would become more attuned to the issue of climate change and specifi-

cally its link to human activities. This is in line with the findings of Clark et al.

(2013), who found that a quick introduction to climate change through simulations

or instructions increases climate change acceptance. It was also hypothesised that

participants who have stronger belief in human-caused climate change would per-

form better on the task. Finally, it was predicted that the individuals who received

training will do better on the task. Since the training sheet contained information

regarding the importance of initial choices and determinism thereof it was expected

that the participants would incorporate this into their behaviour.
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2.3.2 Results

2.3.2.1 Climate Change

Unlike the sugar factory, the carbon simulation could end before turn 40 (only one

participant reached the stated goal). The performance metric on this task was the

number of rounds a user was able to keep the simulation going. Table 2.3 sum-

marises the results, broken down by run, and whether or not training was provided.

Table 2.3: Carbon Emissions Simulation Results. It shows the average number of turns
participants were able to control the simulation for, split by the run of the simu-
lation

Category No Training Training
Run 1 13.2 (SD 7.5) 13.3 (SD 7.8)
Run 2 14.0 (SD 8.3) 16.0 (SD 9.3)
Run 3 14.9 (SD 8.8) 15.0 (SD 9.1)
Run 4 15.3 (SD 8.9) 15.3 (SD 9.2)

A 4x2 repeated mixed measures ANOVA with run (1-4) and group (training, no

training) as within and between subject factors showed the main effects of run which

refers to the number of times a simulation was done by a participant, F(3,84)=

3.223, p= .027, η2
p= 0.103. This was a post-hoc anova test comparing different runs

1 and 2 vs 3 and 4. There was no effect of training, nor was there a significant

interaction between the different variables.

2.3.2.2 Beliefs, Opinions and Actions

Questions administered to participants covered four broad categories of climate

change: climate beliefs, opinions on climate action, views on the role of govern-

ment in dealing with climate change, and future action intentions. None of these

categories showed significant effects of engaging with the simulation in the before-

after comparisons. This was unexpected in light of findings by Clark et al. (2013)

and Ranney et al. (2012) who suggested that interaction with climate change knowl-

edge leads to greater belief in climate change. Clark et al. (2013) in particular has

conducted a series of experiments designed to influence climate change beliefs in

a laboratory setting. They found that carefully presented scientific information in a
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form of a 400-word letter can, “clearly change the public’s understandings and opin-

ions [on climate change]” (Clark et al., 2013, p.2070). Furthermore, participants in

past studies have been shown to revise their beliefs and attitudes when presented

with conflicting information (Horne et al., 2013). While participants in our study

did not receive a detailed explanation of scientific evidence for climate change, they

did receive basic explanation of the Kaya identity and their instructions stated the

following:

In front of you is a simulation of the Kaya identity, which economists

use to express the relationship between several social and economic fac-

tors and CO2 emissions. This simulation starts in 2000. You have just

been appointed as the Prime Minister of a developed country and your

job is to stay in power by carefully balancing economic growth with

the rise in CO2 emissions. Climate change is about to become a major

political issue as it is becoming clear that if carbon emissions are not

curbed, the global temperatures will rise, with potentially unpredictable

consequences. As such, you are to navigate a path between economic

growth and carbon emissions. Your task is to maintain healthy GDP

growth, while ensuring that your country’s emissions stay below the

critical threshold of 6 billion tons of CO2 a year.

Regression analysis showed no significant correlation between questionnaire

scores and task performance. Performance did not appear to be influenced by par-

ticipants’ prior beliefs and opinions. Resistance to the use of background knowledge

and beliefs is surprising as increased belief in climate change and need for personal

and governmental action was expected. After all, the system was based on what has

been advanced as a genuine characterisation of the relationship between GDP and

CO2.

2.3.2.3 Sugar Factory

Finally, performance on the advanced version of the sugar factory was analysed,

which participants completed at the beginning and the end of the experiment. Ta-
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ble 2.4 below provides the summary of the results, broken down by run and whether

or not participants received training between first and second run.

Table 2.4: Advanced Sugar Factory Results showing the average number of times partic-
ipants were able to stay on target in the thirty turns. It is split by simulation
run, as well as showing the no training and training conditions, compared to the
second run of the second study.

Category No Training Training
Run 1 9.3 (SD 5.7) 13.1 (SD 5.0)
Run 2 13.4 (SD 7.0) 13.1 (SD 7.1)
Run 2 (Table 2.2) 12.8 (SD 9.1) 9.2 (SD 6.6)

The results for the second run are very similar to the results presented in Ta-

ble 2.2 and are reprinted at the bottom of Table 2.4 for reference. This suggests that

the climate change simulation did not have an effect on participant performance in

the sugar factory task. No skill transfer between the two systems was observed. As

in the previous section, there was no statistically significant effect of training on

performance.

2.4 Experiment 4: Beyond the Lab
Given the inherent shortcomings of conducting lab-based experiments, namely, par-

ticipants having limited time to understand instructions, limit to the number of times

a simulation could be run, and maintaining high motivation, it was important to take

it beyond the lab. Overall, the structured nature of the laboratory environment may

well contribute to the lack of concrete results observed so far. Allowing partici-

pants to play the simulation beyond the lab was the only way to eliminate these

constraints.

To take the study outside the lab is to bring it closer to the way we interact

with feedback loops in the real world. Indeed, as anyone who has played Candy

Crush, or a similar crop of games may have noted, mastery over a task usually

comes naturally, but requires time. To explore whether such mastery may occur

with the sugar factory task it was necessary to program a web-based interface for

the simulation. The goal was to create a simulation that would be ‘addictive’ enough
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for participants to do it over a period that is longer than possible in the lab and to

complete more simulations overall.

The original version used in Experiment 1 of Berry and Broadbent (1984) sugar

factory was selected for the experiment as it provided the most direct link to the orig-

inal studies on the subject and performance could be easily compared, both to the

replication studies conducted in Experiment 1 and original research. Furthermore,

the original sugar factory is a simple simulation, which could be easily explained in

a remote setting, increasing the chances of an individual playing it for longer.

2.4.1 Method

In the first instance, the sugar factory was re-coded in Java and deployed on the

web.1 All attempts were made to retain the original look and feel of the application,

but make it usable ’as-is’, without needing to assist, or further explain the task

to participants. The simulation was hosted on a Digital Ocean server under the

following link: http://178.62.60.219:8080/SimpleServlet/

The link to the simulation was distributed over Facebook among friends of

the researchers to seed distribution, but it could also be publicly accessed with no

restrictions.

Each participant was provided with a link to the website where they had to

register and provide consent to participate in the study. Afterwards, they were able

to login, view a tutorial on the basic controls of the simulation and begin to play the

sugar factory (See Figure 2.5)

2.4.1.1 Participants

In this case participants were simply those who registered and played the web appli-

cation. Demographic information, such as age and level of education was collected

during the registration phase. However, since registration was anonymous it was

impossible to independently verify it and all data was self-reported. Also, due to a

software bug, data was not recorded correctly in the database.

There were 23 unique registrants, but there were actually 20 users who played

1A special thank you to Xiaoling Wang, Guangxuan Song and Junwen Jian for coding the web-
based version of the simulation.
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Figure 2.4: Web Sugar Factory Tutorial. Players would this screen after logging into the
simulation for the first time.

Figure 2.5: Sample Web Sugar Factory Interface. Players would see this screen at the be-
ginning of the simulation, with x-axis representing the turn and y-axis repre-
senting factory output

the simulation at least once. Participants were not paid for participation and no

incentives were provided, beyond a leader board that displayed the highest scores

of the day and the week.
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2.4.1.2 Materials

The web version of the simulation was based on the same set of instructions and

the underlying equation as the original sugar factory featured in Experiment 1. All

instructions were posted online and participants were given an opportunity to play

a tutorial before doing the actual simulation.

There were no restrictions on time or the number of runs that a participant

could do. The target was the same at 9000 tons of sugar per month. The only

addition was the score that participants would see at the top of the screen. This score

reflected their success in maintaining the target and was governed by the following

set of rules:

• 1000*x points for hitting the target of 9,000 tons of sugar, where x is the

number of successive on-target hits

• 500 points for being within 1000 tons from the target (8,000 or 10,000)

• 100 points for being within 2000 tons from the target (7,000 or 11,000)

Although the scoring logic was not readily displayed to participants for review,

it closely matched the instructions and rewarded the type of play where participants

maintained output at the target level for several turns in a row. The more consecutive

turns on target the bigger the multiplier grew, generating a higher overall score. The

score was displayed above the main area and was updated after each turn. At the end

of 30 turns, the final score was displayed, along with the leader board containing top

5 players of the day and their highest scores, as well as the top 5 weekly players and

their respective scores. This added an element of competition and showed partici-

pants the range of scores that was possible to obtain in the simulation, encouraging

additional attempts at beating their own score, as well as those of others.

2.4.1.3 Procedure

The link to the registration page was distributed widely through Facebook and

email, starting with the network of the lead researcher. Beyond that, initial re-

cipients were encouraged to share the link with their friends as well. The intention

was to distribute and encourage participation as widely as possible.
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Upon registration, participants were able to access the simulation screen. After

completing a short tutorial they were asked to play the simulation for 30 turns. After

each set of 30 turns they were shown the final score and asked to play again. There

was no limit to the number of times one could play. Indeed, while most participants

only played 5-10 times, others played as many as 30 to 40 times. There were no

time limits and participants could log in at any time to play.

2.4.2 Results

2.4.2.1 Performance

The basic measure of performance on this version of the sugar factory was the

same as for the previous two: the number of times participants were able to be ‘on-

target’, defined as having achieved the output of between 8 and 10 thousand tons in

a given month. Summary statistics, including minimum, maximum and mean for

the number of tries, number of hits on target and highest scores.

Table 2.5: Web Sugar Factory Results showing the mean, minimum and maximum statistics
for all players on the following characteristics: number of runs, number of times
players were on target in each run, as well as the higher score achieved.

Category Runs On Target Highest Score
Mean 9.9 9.23 17,875
Min 1 1 1,000
Max 40 18.02 47,600

Table 2.5 shows that an average user played about ten times and was on target

9.2 times out of 30 turns. This is comparable to the findings in the first experiment.

There is, however, high variability in these measures, with some participants quit-

ting after a single run, while others playing up to 40 times, which is significantly

higher than the number of runs in our lab-based studies, where participants had a

maximum of four chances to complete the simulation.

2.4.2.2 Practice Effects

Overall, there was a statistically significant and strong correlation between the high-

est score achieved by each individual and the number of trials they conducted. This

relationship continues to hold for the individual highest scores as a function of the
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Figure 2.6: Number of runs plotted against the highest score achieved on the run.

number of runs. The regression correlation of this relationship is: R2 = .63, F(1, 18)

= 33.56, p < .001 (see Figure 2.7 for visualisation).

Participants who played the simulation the most, achieved significantly greater

mastery over the task. Their top scores were significantly higher (44,400 to 13,194)

than those who played only a few times and achieved an average number of hits per

trial that was substantially higher (6.77 to 2.57) than the beginners. See Table 2.6

for comparison between the top three most active players and the rest.

There is a clear practice effect, where those who played the most also per-

formed better over time. This is in line with the original findings that demonstrated

presence of the practice effect. On the extreme side, three participants played the

simulation up to 40 times and became competent at it, far surpassing the other 17

who played only a few times, or those who conducted the simulation in the lab.

While there is some divergence in the higher number of trials, this is largely due to

the sparse number of participants who actually completed more than 15 trials.

Although some mastery was achieved through practice, there was also a limit

to this effect. Even top performers could on average be on target only 6.7 times out
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Figure 2.7: Highest score per participant compared against the number of tries attempted
by the participant.

of 30, or just over 20%. And the top score of 44,400 represents just over 10% of

theoretically maximum score of 420,000. And although overall mastery increased

with practice, participants continued to struggle to maintain a stable system, con-

stantly oscillating, and perhaps most interestingly, diverging widely between runs,

achieving some stability on one run, while failing to achieve the same score in the

next.

Table 2.6: Revised Online Sugar Factory Results

Summary Statistics Top 3 Players The Rest
Average Number of Trials 31 6.18
Average Top Score 44,400 13,194
Average Hits per Trial 6.77 2.57

2.4.3 Discussion

To summarise, there was a successful replication of the original sugar factory, with

results suggesting that participants continue to struggle to master the task, although

they do get better with practice. Providing training materials does nothing to in-
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crease performance and neither does giving participants an ability to more finely

control the number of workers in the factory. There did not appear to be any differ-

ence in how they conducted the simulation.

Furthermore, there did not appear to be any transfer learning, or greater mas-

tery displayed when the domain was switched to better approximate the real world

system of climate change. Lastly, providing participants with the ability to play out-

side of the lab setting, does lead to some performance gains, but does not ultimately

result in the participants being able to be on target more than 20-30% of the time.

So far all findings suggest deep limitations in the ability to control the sugar

factory. These findings match closely the original results (Berry and Broadbent,

1988), which has led many researchers to conclude that human mastery in feedback

tasks are difficult to achieve, representing a cognitive limitation (Brehmer, 1992,

Sterman, 1994, Gibson et al., 1997). However, how can one speak about cognitive

limitations control in the absence of an independent measure of success?

2.5 Making a Robot
Are human beings simply bad at doing the sugar factory, or is there a more funda-

mental problem with the sugar factory? How good of an example is the sugar factory

of real world dynamic control tasks that humans perform every day? Clearly human

beings successfully navigate a complex environment that is their daily life, which is

full of feedback loops on the daily basis.

Unfortunately, without a model to compare human behaviour in dynamic tasks

to, this is impossible to answer. Indeed, without a standard against which to com-

pare performance, it is impossible to say if the ability to do the sugar factory is

something that one could possess at all.

2.5.1 Reinforcement learning

There are a number of approaches that can be taken to model human behaviour. Ac-

cording to Kieras and Meyer (1998), “there are two communities that have been in-

terested in modelling and predicting human performance. [One looks at] analyzing

the task that the system operator performs, using systematic task analysis methods
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that have developed over many years of practical experience in system analysis and

design. [While analysis of the second group] are based on computational modelling

packages that implement an overall structure for human cognition, a cognitive archi-

tecture, analogous to the hardware architecture of a computer” (Kieras and Meyer,

1998, p.2) (see Howes et al., 2009, for a more overview of systemic approach to

evaluating human behaviour ).

As computational power has grown, so has the popularity of computational

modelling of human behaviour. As Thomas and Van Heuven (2005) argues, such

models: “force clarity on theories because they require previously vague descrip-

tive notions to be specified sufficiently for implementation to be possible. The im-

plemented model can then serve as a test of the viability of the original theory,

via quantitative comparisons of the model’s output against empirical data. This is

a particular advantage where the implications of a theory’s assumptions are diffi-

cult to anticipate, for instance, if behaviour relies on complex interactions within

the model. Models also allow the generation of new testable hypotheses and per-

mit manipulations that are not possible in normal experimentation” (Thomas and

Van Heuven, 2005, p.203). In the case of the sugar factory and indeed the wider

dynamic decision-making field, few computational models of cognition have been

proposed. The field has largely focused on human performance on the task, without

necessarily focusing on modelling such behaviour in computational form to estab-

lish the baseline to uncover cognitive processes behind solving of such tasks.

Reinforcement learning has shown significant promise in cognitive science for

explaining human behaviour and decision-making in particular. In most general

terms, reinforcement learning is “learning what to do so as to maximise a numerical

reward signal. The learner is not told which actions to take ... but instead must

discover which actions yield the most reward by trying them”(Sutton and Barto,

1998, p.3). Reinforcement learning traces its roots to two distinct fields, which

did not necessarily communicate until the advent of modern reinforcement learning

appearing in the 1990s: 1) psychology of learning, focused on animal and human

learning from the environment, and 2) machine control theory and its attempts to
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use value functions and dynamic programming to achieve maximum performance,

which did not necessarily involve learning (Sutton and Barto, 1998, p.16).

According to Dayan and Niv (2008) the modern field of reinforcement learn-

ing “studies the way that natural and artificial systems can learn to predict the con-

sequences of and optimise their behaviour in environments in which actions lead

them from one state or situation to the next, and can also lead to rewards and pun-

ishments”(Dayan and Niv, 2008, p.185). Such environments can vary greatly and

can be found in ethology, economics, psychology, and control theory. Modern ap-

plications of reinforcement learning can be found throughout, from the seminal pa-

pers published by Google’s DeepMind showing their ability to play complex video

games (Mnih et al., 2013), to contributing to solving complex real-world tasks, such

as autonomous car driving (Bojarski et al., 2017).

Reinforcement learning provides a comprehensive framework that at the very

least approximates human behaviour in decision-making in a variety of ways. It

is also growing body of research, with established methodologies that provide an

interesting, if not an intuitive way to judge human performance against. There-

fore, a properly trained reinforcement learning algorithm could conceivably learn

to play the sugar factory and would approximate human cognitive processes while

doing so. If such algorithms can be trained to perform well on a dynamic decision-

making task, it would provide some measure against which human performance can

be judged. After all, one could at least say that humans perform worse than a ma-

chine approximating human cognitive processes. It is also important to keep such

algorithms as generic as possible. If a very specific algorithm is designed to solve

a specific task, it could only be said that an algorithm exists that could solve the

task, not that human performance is worse than that of an algorithm with a similar

cognitive set up.

2.5.2 Q-Learning

Q-learning is a type of reinforcement learning algorithms, belonging to a class of

unsupervised machine learning algorithms, where an agent tries to learn the optimal

way to behave through the positive and negative feedback it receives from the envi-
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ronment (Watkins, 1989, Watkins and Dayan, 1992, Keerthi and Ravindran, 1994).

“It provides agents with the capability of learning to act optimally in Markovian do-

mains by experiencing the consequences of actions, without requiring them to build

maps of the domains... By trying all actions in all states repeatedly, it learns which

are best overall, judged by long-term discounted reward”(Watkins and Dayan, 1992,

p.279). In the simplest case, when success is achieved, an agent is rewarded with

positive reinforcement (+1), and when negative outcome is achieved negative re-

inforcement is received (−1). All feedback is stored in an array, which is updated

each time new feedback is received. Each time an action is required the array is con-

sulted and each time feedback is received the array and values are updated. Based

on this feedback, an agent learns over time what constitutes positive and negative

actions and learns to successfully navigate a variety of environments. Q-learning

agents have been trained to play complex video games (Mnih et al., 2013), as well

as simpler tasks. The complexity of q-learning algorithms can range from a sim-

ple two dimensional array to complex neural networks with multiple hidden layers,

and beyond (for more information see Sutton and Barto, 1998, Gaskett et al., 1999,

Keerthi and Ravindran, 1994, Barto and Singh, 1991).

Figure 2.8: Q-learning Process ((Simonini, 2018))

When decision-making space is limited, as is the case with the sugar factory,
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Figure 2.9: Q-learning Update Equation (Simonini, 2018)

all states can be mapped into a single two-dimensional look up table (Simonini,

2018)). This table represents all possible states along with the corresponding re-

wards learned from previous trials. Figure 2.8 outlines the entire process. Initially,

there is an initialised q-table, which is used to store the information. An action

is chosen and feedback is received. The table is updated according to the feed-

back. This is repeated as many times as necessary for the agent to begin to success-

fully navigate the environment. The Bellman Equation is used to update the q-table

(Watkins, 1989) (see 2.9).

The sugar factory simulation, in its original form could be formally specified as

a finite Markov Decision Process (MDP), which means that a Q-learning algorithm

could be applied to study it (Sutton and Barto, 1998) 〈S,A,P,R〉.

• The state space S = {1,2, . . . ,12} where each state s ∈ S is a natural number

representing how many thousands of tons of sugar output are currently pro-

duced by the factory, e.g., s = 3 means that the current size of sugar ouput is

3×1,000 = 3,000 tons.

• The action space A = {1,2, . . . ,12} where each action a ∈ A is a natural

number representing how many hundreds of workers have been assigned to

this job, e.g., a = 4 means that the current size of work force is 4×100 = 400

workers.

• The transition kernel P : S ×S ×A→ [0,1] gives the conditional probability

that action at in state st at time t will lead to state st+1 at time t +1:

Pat (st ,st+1) = Pr[st+1|st ,at ] =



1
3 if st+1 = 2×at− st ,

1
3 if st+1 = 2×at− st +1,

1
3 if st+1 = 2×at− st−1,

0 otherwise.
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In other words, the next state is completely determined by the current state

and the action taken: st+1 = 2× at − st + r where r is a random noise being

0, 1, or −1 with equal probabilities2.

• The reward function R : S×S×A→R gives the immediate reward received

after transitioning from state st to state st+1, due to action at :

Rat (st ,st+1) =



1 if st+1 = 9,

1 if st+1 = 9+1 = 10,

1 if st+1 = 9−1 = 8,

0 otherwise.

In other words, the immediate reward rt+1 is completely determined by the

next state st+1 only: a sugar output within the range between 8,000 and

10,000 tons would be regarded as “on target” and be rewarded 1 point.

This MDP has a finite horizon of T = 30, i.e., each “episode” τ of the game consists

of 30 time steps. Moreover the initial state is set to s1 = 6, i.e., 6,000 tons of sugar

production. The goal of our MDP problem is to find a deterministic “policy” — a

function π : S →A that specifies the action π(s) which the decision maker should

choose when in state s. Under the given policy π , the probability of a particular

episode τ = (s1,a1, . . . ,sT ,aT ) can be calculated as

Pr[τ|π] =
T

∏
t=1

Pπ(st)(st ,st+1) , (2.3)

while its cumulative reward is given by

Gπ(τ) =
T

∑
t=1

Rπ(st)(st ,st+1) . (2.4)

2The real transition kernel P is a bit more complicated, as the sugar output would be clipped at
both ends by the fixed lower bound 1,000 and the fixed upper bound 12,000.
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The optimal policy π∗ is the one that maximizes the expected return:

π
∗ = argmax

π

Eτ∼Pr[τ|π]Gπ(τ) . (2.5)

2.5.2.1 Teaching the agent

As a first step, the sugar factory simulation was recreated in Python. Python was

chosen for a number of reasons, namely for its fast prototyping qualities, availability

of machine learning libraries and a sizeable number of tutorials on reinforcement

learning available on the web.

Once the full simulation was recreated in Python, a Q-learning reinforcement-

learning agent was built that could play the sugar factory and most importantly,

learn and improve over time. The initial agent was powered by an epsilon-greedy

Q-learning algorithm. All code was built from scratch and no outside libraries were

used for the sugar factory and the reinforcement learning agent.

Since the sugar factory has a rather simple decision-making space of 12 ((1-

12) possible inputs (actions) and 12 (1000-12000) possible outputs (states), a 2-

dimensional vector could easily hold all of the information the agent needs to learn

to navigate this space. Simple Q-learning algorithms have an added bonus of storing

all of its information in a table with the corresponding weights, making it human-

readable and consequently interpretable.

For the purposes of the simulation a number of decisions and assumptions was

made in creating the agent:

• Type of learning - a simple q-learning table was used to revise and store the

weights (feedback). One axis represented the range of potential outputs, while

the second axis represented the sample space of possible inputs.

• Feedback - although a number of reward mechanisms was considered, it was

found that passing -1 when output was not 9000 (i.e. not on target) and 1

for when the agent hits the target of 9000 tons of sugar in the previous turn

provided for the best results.

• Exploration vs exploitation - a q-learning algorithm relies on some degree
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of randomness to make a decision between ‘exploring’ the environment, i.e.

picking a random value and getting more information about the environment

and ‘exploiting’ it, or picking the value from the look-up table based on pre-

vious feedback. There are a number of different ‘exploration vs exploitation’

mechanisms available. Ultimately, an epsilon-greedy way of determining this

trade-off was picked, which makes the agent explore more initially, and de-

crease exploration with time. Significantly, this is similar to the training

instructions participants received in the lab experiments. The fundamental

tension between exploration and exploitation is inherent in decision-making

(March, 2008, Laureiro-Martinez et al., 2015, Hills et al., 2015, Gureckis and

Love, 2009a). Without some degree of exploration, an optimum strategy can-

not be arrived at. On the other hand, at some point, in order to achieve high

scores, existing knowledge should be used. Q-learning, and indeed, many

of the machine learning algorithms rely on initial exploration to build the

action-state table, but also need to be prevented from excessive exploration

since exploration in this context is random and continuous random actions

cannot lead to optimal outcomes.

• Governing equation - the algorithm was governed by the following equation:

Qs,a = Qs,a + lr ∗ (r+ y∗np.max(Qs1,:)−Qs,a)

where s is number of workers, a is output, lr is learning rate, r is the reward and y is

the second learning rate.

2.5.2.2 Running the simulation

With the agent in place, it started to repeatedly play the sugar factory. The start-

ing conditions of the simulation were the same as those for human players in the

previous studies.

In order to make learning and testing easier the element of randomness was

removed from the sugar factory equation. It was important to make the initial sim-

ulation as easy as possible for the agent to learn, and to increase the difficulty with

time once the initial training parameters were working. The first results are dis-
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played in Figure 2.10. The y-axis represents the total score, while x-axis represents

the number of simulated runs. It is apparent from the figure that the agent learns for

the first 500 or so trials, and subsequently is able to reach the top score. However,

due to the initial exploration parameters it continues to oscillate between high and

low scores for each trial.

Figure 2.10: Score achieved on each run over 10,000 trials by the high greedy exploration
algorithm.

In the next step, the exploration parameter was turned down, which made the

agent explore less and less in subsequent simulations. The result is displayed in

Figure 2.11, where after about 5,000 trials the agent is able to consistently reach

the highest scores of the simulation. It is worth noting that this score represents the

maximum limit of the simulation (420,000). Therefore, it can be concluded that the

agent learns to reliably and successfully conduct the simulation using the q-table

approach, provided randomness is turned off after approximately 5,000 trials.

With the agent able to consistently and successfully play the simulation, the

next step was to better understand the resulting q-table. The table represents a

lookup table with all of the possible current states (output) and all of the possible
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Figure 2.11: Score achieved on each run over 10,000 trials by the low greedy exploration
algorithm.

decisions (workers to be assigned). Each pair has a corresponding expected benefit

associated with the action. Figure 2.12 shows the full version of the q-table after

10,000 simulations.

The agent learns that the optimal combination for achieving the highest score

on the simulation is: 1,5,9,9,9...(repeated). Given that the starting point of every

simulation is 6, the most optimal choice is to select the lowest possible number

of workers to ‘reset’ the factory. After output is reduced, the simulation becomes

solvable by picking 5 and then 9 workers. This patterns allows the agent to achieve

the maximum score.

2.5.2.3 Adding noise

It is clear that an agent can play the sugar factory successfully without noise. Next

the agent played the same version of the sugar factory that human participants had

to do (i.e. with noise). Figure 2.13 shows the results of the agent after playing the

original sugar factory for over 10,000 simulations with randomness turned on.

There are a few notable findings here. Firstly, the agent was not able to achieve
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Figure 2.12: Averaged Q-Table for simulation with no randomness

Figure 2.13: Results of the algorithm conducting the simulation with randomness turned
on.

the same high score once noise was turned on. Secondly, agent’s performance ap-

pears to closely approximate that of human players. There is an initial learning

curve, followed by oscillations between the floor of about 10,000 points and the ceil-

ing of approximately 30,000, with certain simulations achieving scores higher than

that; and with the maximum being about 100,000. There were a few participants

who reached the score above 40,000, although the average was closer to 14,000.

While no human player achieved any scores above 50,000, it is entirely conceiv-

able that given enough simulations it may be possible to see this level of one-off

performance. Importantly, the lower and upper bounds appear to mirror human
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performance, suggesting that the agent approximates quite well the actual human

performance, allowing us to explore human performance and boundaries through

the simulation. Finally and perhaps most importantly, this result demonstrates that

human performance is not necessarily ‘poor’. Indeed, the agent’s performance sug-

gests that there is some learning that can be done initially, however, the impact of

randomness is such that it renders the simulation impossible to complete at the same

levels as without randomness, to any degree of repeatability in the long run.

2.5.3 Discussion

It is possible to conclude two things from the agent’s performance on the simula-

tion. Firstly, the optimal strategy is to reset the simulation by assigning the least

amount of workers possible. Secondly, the randomness factor in the simulation

makes control extremely difficult, not just for human subjects, but also for an agent.

This appears to be the main source of difficulty in the simulation. It has long been

established that the difficulty of the simulation is “due to the lag term [where] two

separate, interdependent inputs are required at times t and t +1 to reach steady-state

production (Gibson et al., 1997, p.4). However, the agent’s inability to control the

factory with randomness suggests that it is actually the factor originally placed to

“to ensure that subjects would exercise continuous control”(Berry and Broadbent,

1984, p.212), which makes the simulation impossible to complete with any degree

of competence.

The agent appears to mimic the initial learning that is observed in human play-

ers, but after the minimum score is reached, the maximum score tends to be the

function of randomness much more than skill, showing that consistent control is

all but impossible. A simple reinforcement algorithm performs as well as human

participants in the lab, suggesting that human performance is actually quite good,

considering that it takes an agent almost 500 tries to get to the same level as a hu-

man player after 10 or so tries. Indeed, when the two are compared, there is no real

difference. Human players are quite adept at learning the initial strategies required

to control the factory and then spend most of the time combating randomness and

its effects on control.
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Berry and Broadbent’s original findings, and subsequent analysis by the

broader decision-making community suggesting that human performance is sub-

par on these tasks can be challenged. It is not human performance that should be

questioned, but rather the task itself and in particular the addition of randomness

as an element of the decision-making paradigm. It is therefore not surprising that

participants only learned implicitly since randomness cannot be learned. Neither

practice, nor preparation, or strategies can have a meaningful impact in an environ-

ment where randomness plays such an important role.

This has important implications for the field of dynamic decision-making. It

is imperative that dynamic simulations are fundamentally solvable, or learnable by

humans. However, these simulations, especially the ones with multiple feedback

loops are designed to be non-linear and potentially impossible to solve from the

onset.

2.6 Experiment 5: Reconsidering the Sugar Factory
In light of the new findings, there appears to be a need to test the new hypothesis,

i.e. that if randomness is removed, human participants can also learn to control

the sugar factory. To test the hypothesis, randomness was removed from the online

version of the sugar factory. It was believed that without randomness the simula-

tion would become ‘solvable’ and human performance would dramatically improve

and become consistent over time, in line with our findings from the agent-based

simulations.

2.6.1 Method

A sugar factory identical to the one described in ‘Experiment 4’ was set up, but with

the minor tweak of randomness factor being removed from the equation.

2.6.1.1 Participants

Participants were University of London students (n=24) who participated in the

study for credit. They had to register online to receive a link to the simulation.

They were asked to complete each simulation at least 10 times – the base number

for improving performance derived from previous studies – after which they were
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granted credit. Three days after registering for the study each participant received a

reminder email to do at least 10 trials and suggesting that there were many partici-

pants who achieved quite high scores on the simulation to encourage participation.

2.6.1.2 Materials

The web version of the simulation was based on the same set of instructions and

the underlying equation as in Experiment 4. All instructions were posted online

and participants were given an opportunity to play a tutorial before doing the actual

simulation.

2.6.1.3 Procedure

Upon registering and creating an account, participants were able to access the sim-

ulation screen. After completing a short tutorial they were asked to play the simu-

lation for 30 turns. After each set of 30 turns they were shown the final score and

asked to play again. There was no limit to the number of times each participant

could play. If participants did not complete at least 10 trials in a 3 day period, they

were sent a reminder email asking them to play at least 10 times. They were also

advised that the simulation was not as difficult as it looks and that many participants

had achieved very high scores of above 300,000.

2.6.2 Results

In total, 24 participants completed the simulation. On average, participants played

14 times before quitting. Two participants were removed because they played only

twice and neither time was done to completion. There were 22 participants whose

results are included in the analysis below. Table 2.7 summarizes the overall perfor-

mance results.

In general, participants could be divided into two groups based on their per-

formance and persistence. Those who played less than 13 times and achieved an

average highest score of just under 10,000, and those there who played more than

13 times and achieved an average highest score of over 200,000. Overall, it took

participants about 14 tries to achieve a score above 100,000.
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Table 2.7: Table showing the results of performance for participants doing the online ver-
sion of the sugar factory with randomness turned off. It is split between partic-
ipants who did more, or less than 13 trials, as this represents the mean point at
which mastery substantially increased

Number of
Tries

Average Highest
Score

Percentage of
turns on target

<13 9,909 8.6 %
>13 256,000 47 %

2.6.2.1 Online Performance Comparison

Figures 2.14 and 2.15 compare performance between the group of participants who

did the online simulation with and without randomness. From Figure 2.14 it is

possible to see that there is very little difference in performance during the first

10 tries between the two groups. That changes immensely when we extend this

analysis to 40 tries in Figure 2.15. It is quite clear that participants that do not have

to deal with randomness learn to control the simulation in a much more effective

way than their peers in the ‘randomness’ group.

Figure 2.14: Online Individual Performance With and Without Randomness.
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Based on these findings, randomness does play the greatest impact on perfor-

mance, in-line with the expectations derived from the simulations. Participants who

did not have to deal with randomness in their simulation learned to effectively con-

trol it after approximately 10 to 14 trials. It took the simulated agent on average

of approximately 500 trials to reach the highest score. This, of course, is signifi-

cantly faster than the reinforcement algorithm used in the simulations. However, it

is worth highlighting that the reinforcement algorithm used in the simulation was

quite generic. It was not specifically designed with the sugar factory problem in

mind. The algorithm did not include complex neural networks, or machine learning

algorithms that would have been biased towards a type of problem that sugar fac-

tory was. It is entirely conceivable that a more specialised algorithm may have been

able to learn to do the simulation much faster, or account for the randomness in

the simulation better. However, a specialised algorithm would not have represented

participants’ experience on the task. This would have simply shown that the sugar

factory is solvable, but not necessarily through generic reinforcement learning.

Figure 2.15: Performance on Initial Trials With and Without Randomness.

The algorithm was chosen specifically due to its generality. Much like a human
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participant who encountered the task for the first time and had to apply his previous

knowledge and current skills to solve it, the algorithm had to be generic enough to

be able to learn the task in a ‘naive’ way. It is, therefore, less important that humans

outperformed the algorithm by learning to control the simulation about 50 times

faster, than the fact that using reinforcement algorithm led to the formulation of a

hypothesis regarding the difficult point of the simulation and allowed to prove it in

an experimental fashion.

The argument here is that in the future machine learning algorithms should

be used more often in an attempt to evaluate the solvability and the difficulty of

dynamic decision-making games before human participants are subjected to them.

This would allow for a more objective evaluation of human performance.

2.7 Overall Discussion
A new way is required to evaluate human performance in this domain. It is not

enough to simply put a seemingly simple dynamic decision making simulation in

front of a human participant and then declare the limit of human cognition when

failure is observed. Without an objective yardstick against which to measure perfor-

mance, simple failure cannot be treated as proof of cognitive limitation, especially

where ability to achieve success is not obvious, or indeed possible.

Application of artificial agents, such as the one presented here could be such

a measure. There are two possible ways to apply reinforcement learning agents

to evaluate dynamic decision-making tasks. In one instance, such agents could

be used to show that simulations are indeed ‘solvable’. On the other hand, they

can be used to evaluate the cognitive requirements of the simulation (Thomas and

Van Heuven, 2005, Gureckis and Love, 2009a). Application of artificial agents can

further provide hypothetical limits to what is possible, as per Howes et al. (2009,

p.721).

Given a rather large number of machine learning approaches and algorithms

available, we suggest a few points of guidance to select the most appropriate one to

evaluate a simulation.
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• Simple - starting with the simplest algorithm first. More generic algorithms

are more likely to reflect human interaction with the simulation and have an

added benefit of being interpretable;

• Interpretable - Ideally, algorithm’s output should be interpretable. Much like

an autopsy, being able to ‘dissect’ the final weights in a model may hold

cues to how the algorithm learned to deal with a particular task and allow the

researcher to alter it accordingly;

• Working - perhaps the most important criteria is that the algorithm should be

capable of solving the simulation in the first instance.

2.7.1 Impact of Feedback Loops

The general nature of the task allows us to draw some conclusions regarding a

general impact of feedback on learning and performance. This Chapter shows that

artificial randomness can prevent learning. It is important to also note that delayed

nature by itself does not necessarily prevent the achievement of mastery over a task.

Experiments contained in this Chapter show that individuals can and do learn from

delayed feedback, but when such feedback is combined with randomness it becomes

much more difficult to control. Other factors such as cover stories and prior beliefs

did not appear to have a significant impact on learning. This suggests that dynamical

tasks can take many forms and still be free from previous participant-specific bias.

2.8 Conclusion
The chapter started with a series of replication studies designed to understand

whether the original sugar factory results remain valid today. Given that Berry and

Broadbent (1984) have introduced the original sugar factory over 30 years ago, it

was important to understand if the proliferation of computer games, many of which

are quite complex, could have had a positive impact on the human sugar factory per-

formance. Unfortunately, despite societal changes, there was no evidence to support

this hypothesis. Participants continue to struggle with controlling the sugar factory

simulation. There was some practice effect observed, whereby performance did im-
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prove in the first few trials, but participants continued to under-perform, reaching

the target only about a third of the time. This effect was consistent with the ex-

isting studies utilising the sugar factory and the field of dynamic decision-making

in general (Berry, 1991, Gibson et al., 1997, Gonzalez et al., 2003, 2005, Osman,

2010).

The next step was to try and improve performance through training. Various

training materials were distributed to the participants in an attempt to get them to use

the ‘scientific method’ or another way of exploring the various strategies in the hope

of finding a single strategy that would lead to better control and higher performance

on the simulation. These materials were consistent with the various hypothesises

on task control and designed to overcome the heuristics demonstrated in the schol-

arship Brehmer (1992), Gonzalez et al. (2003), Osman (2010). Unfortunately, these

methods did not result in any noticeable improvement in performance. Participants

continued to struggle to control the sugar factory beyond the initial practice effect.

The next hypothesis that was tested concerned more explicit control over the

factory. In the original sugar factory setup, participants could only enter numbers

in the range of one to 12, which were multiplied to get the total number of work-

ers. It was believed that providing participants with the greater ability to control the

number of workers would lead to better control. In this case again, participants im-

proved their performance as a result of practice, but continued to struggle to master

the simulation. Furthermore, there did not appear to be any impact of the training

materials, or indeed, skill transfer between the two version of the simulation.

Next, the cover story was changed, moving away from a hypothetical sugar

factory and towards a more realistic climate simulation. It was believed that a more

explicit and realistic cover story would provide participants with an ability to apply

prior knowledge and experience to perform better on the simulation. This also al-

lowed for measurement of impact of prior beliefs on the conduct of the simulation

and performance. Here again, there was a negative result. There did not appear to

be a measurable impact of prior beliefs on the performance in the simulation and

there did not appear to be a statistically significant impact of skill transfer onto the
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sugar factory.

At this point, there did not appear to be a significant impact of prior beliefs,

explicit training, more realistic cover story and simulation, or the ability to control

the exact assignment of workers on performance. Continued poor performance,

coupled with the inability to articulate learning, has usually led to the conclusion

that such tasks are simply too difficult for human beings to do (Gibson et al., 1997,

Gonzalez et al., 2003).

However, research presented in this chapter challenges this notion. Previous

authors relied on data obtained from the simulations to judge human behaviour

and did not necessarily use the modelling methodology suggested by Howes et al.

(2009) of using computational models to build a wider framework for understanding

human behaviour. Following research by Thomas and Van Heuven (2005), Gureckis

and Love (2009a) of using reinforcement learning algorithms to model human be-

haviour, an artificial agent was created to do the sugar factory simulation.

The simulated agent became quite skilled at conducting the simulation pro-

vided randomness was turned off. However, once randomness was turned back on,

the agent struggled to get the same high scores. Its performance became quite com-

parable to those of human players. In fact, once human participants had a chance

to play the simulation without randomness, their performance markedly improved

and they were able to control the sugar factory with extreme precision. Most human

players learned to conduct the simulation after approximately 20 tries. This com-

pares quite favourably to the reinforcement learning agent, which took on average

500 tries to reach the same scores. It can be concluded that human performance on

dynamic decision-making tasks can become quite good, and randomness appears

to be the variable that is most difficult to overcome. Human participants were able

to figure out the delayed nature of feedback, which once was hypothesised as the

difficult part of the simulation, once randomness was turned off. This suggests that

it is in fact the randomness inherent in many of the dynamic decision-making games

that makes them so difficult to solve.

Implementation and use of a simulated agent represents an important step in
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understanding the limitations of human dynamic system control. The general dis-

cussion section contains a set of guidelines that could be used to construct such

agents and measure human performance. Hopefully, the use of simulated agents

will become more widespread and hypothesis on human limitations will gain an

important objective standard against which such performance could be measured.

These findings also challenge the common notion that human performance is

poor (Gibson et al., 1997, Gonzalez et al., 2003, Osman, 2010). When compared

against the artificial agent, human performance is on par. Furthermore, research

in this chapter suggests that randomness embedded in the original simulation is the

source of difficultly, rather than the delayed nature of feedback as previously argued

by Berry and Broadbent (1984, 1988), Gibson et al. (1997).

In order to further generalise these findings, it would be a worth-while endeav-

our to take other dynamic decision-making tasks and train a reinforcement learning

agent to play them to determine their difficulty to compare human performance

against. Additionally, given the difficulty presented by randomness, it would also

be advisable to better understand the impact of computer-generated randomness in

this domain. This suggests two separate strands of research activity: 1) application

of AI-powered algorithms to establish performance benchmark, and 2) removal of

randomness from the simulations to determine the true difficulty of the given sys-

tem.



Chapter 3

Part II - Individual Belief Revision in

Groups

Chapter 2 focused on individual performance and the impact of feedback loops that

arise as a result of the interaction between an individual and a physical system.

However, there is another area where feedback loops play an important role: social

interactions. Here the interaction is between an individual and a wider group, which

creates the very feedback system. Unlike systems in the previous chapter, the feed-

back in these systems is fully a function of the individuals, with no pre-programmed

‘system’ with its own governing logic and equations. The final quadrant of the

decision-making tasks discussed in the introductory chapter are tasks social where

the setting is dynamic, constantly changing as a result of user interactions within

it. This environment reacts to individual user feedback and each user reacts to the

feedback received from the environment, thereby creating feedback loops.

Part II of this thesis is interested in social systems and the impact of social inter-

actions on individual belief revision and group. Chapter 3 focuses on the strategies

that individuals use in group revision tasks. The goal is to better understand and

model individual belief revision behaviour. The second goal is to better understand

what strategies individuals use when revising their beliefs. These strategies give

rise to the feedback system itself and ultimately have an impact on the feedback

each participant receives from the system. This interaction at its simplest form is

expressed in Figure 3.1. An individual has an impact on the group answer (and
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accuracy), which then has an impact on the individual’s answer in the future. The

more individuals are involved the more the group answer becomes a function of

multiple inputs and the more complex the system becomes (see Figure 3.2). There-

fore, there are two things that need to be understood: 1) what do individuals do

(Chapter 3); and 2) what impact it has on accuracy, as accuracy is one of the main

expressions of group interaction (Chapter 4).

Figure 3.1: Simple Group Interaction System.

Figure 3.2: Complex Group Interaction System.
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3.1 Introduction
Social psychology has a long standing interest in group performance as it relates

to individual competence. This line of research traces its roots to the early 20th

century, with the famed Galton (1907) ‘wisdom of the crowd’ experiments. Indeed,

understanding how ‘wisdom’ arises in groups has been an important research area

for social psychologists for a long time (for review see Lorge and Brenner, 1958,

Hill, 1982, Gigone and Hastie, 1997).

This line of research has received renewed relevance and prominence in light

of recent developments in network science, which have shown, both through real

world data analysis and through simulation, how individual behaviour is shaped by

the structure of social networks (see Jackson, 2010, Becker et al., 2017, Centola,

2018). Understanding whom one knows is in many cases the single best predictor

of what they are likely to do (Pentland, 2014). In keeping with this, philosophers

concerned with the nature of knowledge have become increasingly interested in

social epistemology (Goldman, 1999). There have even been studies revisiting the

famed Galton experiments, which are now over a century old, in order to understand

networks dynamics and their impact on the overall wisdom of the crowds (Becker

et al., 2017).

As the world becomes increasingly interconnected – through the advent of the

internet and the relatively recent rise of social networks – individual cognition can-

not be fully understood without considering the impact of the networks one belongs

to. As Bakshy et al. (2015) show:

“the composition of our social networks is the most important factor

limiting the mix of content encountered in social media. The way that

sharing occurs within these networks is not symmetric – liberals tend

to be connected to fewer friends who share conservative content than

conservatives (who tend to be linked to more friends who share liberal

content)”(Bakshy et al., 2015, p.2).

At the same time, full understanding of social network influence on individuals is

impossible without considering how individuals respond to information and cues
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provided by others. Is simply being exposed to the information enough to change

opinion? Is it the amount of information that matters? Is it the strength of convic-

tion? Could it be that the network structure itself plays a role? For example, recent

simulations suggest that network structure plays an important role in contagion and

diffusion (Kretzschmar and Morris, 1996, Watts, 1999, Lazer and Friedman, 2007,

Jönsson et al., 2015, Hahn et al., 2018) (for an overview see Jackson, 2010, Centola,

2018, Doer et al., 2012).

However, much of the modelling research relies upon mathematical formu-

las borrowed from network science rather than empirical studies to model individ-

ual behaviour (Hegselmann and Krause, 2002, Hu, 2017). These simulations rest

upon empirically untested assumptions about individual strategies for information

incorporation and belief revision. Unless these assumptions match, at least crudely,

behaviours of the actual people, the generalisability of these models remains lim-

ited. At the same time, the cognitive science literature on judgement and decision-

making contains remarkably little empirical work on how individuals actually revise

their beliefs over time in light of information they receive from those they are con-

nected to. The belief revision literature tends to focus on group dynamics (Jönsson

et al., 2015, Becker et al., 2017), while individual belief revision and strategies in

this context remain largely unexplored. Given that group revision is a combination

of individual revisions, this underrepresented area may provide important clues for

understanding group dynamics as well.

When one considers belief revision literature, and human cognition modelling

in particular, Bayesian inference and updating comes to mind (Dubois and Prade,

1997). As far back as 1980, basic modes of individual belief revision have been

studied and modelled using the Bayes rule (Levi, 1983). More recently Bayes’ the-

orem has been used to understand probabilistic reasoning (Pearl and Russell, 2011),

and belief revision in light of new evidence (Ma et al., 2010). Much of the work to

understand belief revision using Bayesian modelling involves the creation of mathe-

matical models to approximate cognitive models (Ma et al., 2010, Pearl and Russell,

2011). The question this approach seeks to answer revolves around the understand-
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ing of the cognitive structures of decision-making and their approximation of the

actual cognitive processes.

However, the advice and opinion dynamics literature tends to take a different

approach to understanding human belief revision and aggregation. Especially in the

context of multiple opinions being shared in a group setting, the research tends to

be more experimental, relying on observed behaviour and modelling thereof. More

complex computational methods based on Bayes’ theorem are less common in psy-

chological research on opinion aggregation and are not part of this thesis (Yaniv,

2004b). Furthermore, this thesis seeks to understand and model actual human be-

haviour and the impact of others on it.

The one set of work in this area comes from the studies by Yaniv and colleagues

(Yaniv, 2004a, Yaniv and Milyavsky, 2007) (see also Yaniv, 2004b, for a review in

the context of the literature on advice). In these studies, participants were asked

general knowledge questions such as “in what year was the Suez Canal first opened

for use?” (Yaniv and Milyavsky, 2007). Participants provided an initial “best es-

timate” and then received ‘advice’ from several advisors (e.g., “the best estimate

of advisor #33 was 1905”). Participants were then asked to provide the final “best

estimate”. The main finding of these studies was that participants overweighed their

own opinion over to that of (unknown) others: when participants revised their es-

timates they weigh their own answer more strongly than they did the answers of

others. This is consistent with the results from other advice paradigms such as cue-

learning (Harvey and Fischer, 1997) or forecasting (Lim and O’Connor, 1995). In

contrast to these studies, however, Yaniv and Milyavsky also examined the effects

of receiving multiple pieces of evidence, each from a different agent. In their 2007

study, each participant received an estimate from 2, 4 or 8 advisors (in actual fact

these “advisors” estimates were drawn randomly from a pool of initial estimates

provided by participants in an earlier study). Participants’ accuracy improved in all

conditions as a result of incorporating outside ‘advice’, but the benefit of receiving

additional estimates seemed to decrease with their number. In the same study Yaniv

and Milyavsky (2007) also examined a range of possible models of participant strat-
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egy, finding evidence for models that discounted opinions that were too distant from

participants’ own initial guesses. In general, participants seemed sensitive both to

their own degree of knowledge and to how far other opinions were from their own.

While these studies make an important start in seeking to pin down, on a pro-

cess level, individual belief revision in light of information from others, much work

remains to be done. Given the limited scope of the earlier research, it would also be

desirable to extend the paradigm in a number of ways. For instance, source reliabil-

ity and individual confidence seem two obvious lines of inquiry, as is understanding

the impact of prior knowledge on revision.

This seems particularly important because one plausible reason for the greater

weight placed on participants’ own judgements could lie in considerations of source

reliability. Participants know a fair bit about themselves and nothing about other

sources in these studies, including whether they even exist other than as an exper-

imental manipulation. This is especially important given that information received

from less reliable sources normatively should (and empirically does) have less im-

pact on beliefs (see also Bovens & Hartmann, 2002; Bovens & Hartmann, 2003;

Hahn, Harris & Corner, 2009). It would therefore be interesting to conduct such a

study in a context where it is clear that advisors are human beings who are genuinely

engaged in the task at hand, ideally in the same room, and incentivised to perform

well. Moreover, Yaniv and Milyavsky examined only one cycle of advice and re-

vision, while many social contexts involve repeated exchanges. These exchanges

create dynamic and evolving interactions, where initial opinions change beliefs and

opinions of others and these influence us in return. Consequently, an experiment fo-

cused on repeated revisions over time, with real people, would yield a better insight

into belief revision dynamics.

3.2 Belief Revision
An experimental investigation along these lines needs a design which is as experi-

mentally controlled as Yaniv and Milyavsky’s study, yet enables participants to see

that advice is coming from others. In particular, the experimental context should
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not introduce a plethora of other factors that may impact the perceived reliability

of various information sources. An experimental context in which a group of par-

ticipants is present in the same room at the same time, but interact with each other

only through a computer terminal in front of them, seems most appropriate. After

providing their initial answers, each participant would see the answers of some of

their peers on screen.

One such dataset comes from a study that was conducted by researchers at

Lund University, Sweden. Its primary aim was to examine the impact of network

topology (structure) on the accuracy of participants’ beliefs, both individually and

collectively. The results with respect to individual and collective accuracy has been

published elsewhere (Jönsson et al., 2015). The interest here, however, is in trying

to understand individual belief revision strategies. The original study involved gath-

ering individual trial-by-trial changes in participants’ answers, which allows for a

detailed analysis of individual participant behaviour. The analysis performed on the

same dataset presented here has a different focus. The focus is on determining what

strategies participants used in the Lund study to revise their answers over a number

of rounds. Various models are tested against the actual performance to determine

the goodness of fit of such models.

3.2.1 The Lund Study

In the Jönsson et al. (2015) study participants signed up for one of four sessions,

forming in groups of 9, 9, 7 and 13 participants respectively. The testing conditions,

procedure, materials and instructions were the same across the four groups. There

were 38 undergraduate, University of Lund students (15 male and 23 female) who

participated in the study. In addition to a flat payment for participation (100 SEK),

in each group participant with the most accurate answers received a reward of 300

SEK (Jönsson et al., 2015). In total, there were 7 answers collected for each partic-

ipant for 20 questions. Therefore, the dataset contained 5,320 individual answers.

During the experiment, each member of a group was seated at a computer and

given two sheets of paper with instructions. When everyone in a group stated that

they had understood the instructions, a NetLogo-based program was used to send
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out questions to all of the participants. There was an initial warm-up question, fol-

lowed by ten questions. Each question was repeated eight times over the course

of eight consecutive rounds. During the first round, each participant answered in-

dependently. In the subsequent seven rounds, each participant received information

about what (some) other participants had answered on the previous round and asked

to revise their answer.

For each question, either a random small world (where each participant would

be connected to a few other participants) or a complete network (where participants

saw everyone’s answers) was generated to connect participants, such that it con-

tained one node corresponding to each participant. Participants could then, on the

subsequent rounds, see the answers of the participants corresponding to the nodes

they were immediately connected to. Participants did not, however, know which

answers belong to which person present in the room. Each participant answered the

same question 7 times.

Questions were drawn from a set of 21 questions derived from reports by

Statistics Sweden (‘Statistiska Centralbyrån’) and included questions on Swedish

demographics, agriculture and geography. Except for the warm-up question, ques-

tions were presented in a random order. All questions asked participants to provide

a percentage estimate. Example questions include: “What percent of the Swedes

are between 15-24 years?” and “What percent of Sweden is covered by agricultural

land?” All questions share a common scale and all groups received the same warm

up question followed by 20 questions.

The results can be summarised as follows:

clear evidence of effects of network structure on both collective and in-

dividual accuracy, whereby less densely connected groups outperform

groups where every members judgements are accessible to all. How-

ever, in all groups we find clear evidence against the claim ... that

access to others judgements is detrimental to performance because of

the reduction in diversity that it brings, as we found that individuals

average accuracy rose in response to information about others esti-
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mates. Moreover, in the less densely connected networks even col-

lective competence rose as a result of information exchange. Though

collective competence (wisdom of the crowds) is necessarily a function

of both individual competence and group diversity, less fully connected

groups may increase individual accuracy sufficiently to offset the de-

crease in diversity information exchange brings about (Jönsson et al.,

2015, p.25).

A large data set was collected from the study which reflected individual an-

swers for each round of revision. This dataset provides insights into individual

accuracy and behaviour. The data is used to analyse and understand individual be-

haviour as it relates to the revision and accuracy of belief revision over time.

3.2.2 Analysis

Of the thousands of collected responses four scores were eliminated as likely errors.

Three were zero-answers that probably resulted from the participant accidentally

clicking submit before choosing an estimate (which was done on a sliding bar next

to the submit-button); the fourth was a very large number in a sequence of identical

low numbers which was also probably due to a mis-click. The rest of the results

were left intact and analysed.

3.2.2.1 Rounds

Rounds represent discrete time periods that formed the basis of our analysis. Partic-

ipants entered their initial estimate independently, and were shown the answers of

others in the subsequent rounds. Therefore, belief revision as a result of increased

information could be observed in rounds two to eight. During the seven rounds

of change, participants had an opportunity to enter revised answers, observe others

revise their answers and so on.

3.2.2.2 Change

Two measures were used to determine the magnitude of change exhibited by each

participant: absolute change and percent change. Absolute change was defined

as the absolute difference between the initial and revised answers, while percent
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change refers to the percentage of the change in the subsequent round compared

to the previous answer. Given that different questions had different true answers

in order to be able to compare revisions across questions and round, percentage

change was calculated for each answer. For example, if the initial answer was 5

and the revised answer was 10, this would be an absolute answer change of 5, but a

percentage change of 100%.

The histogram in Figure 3.3 shows that the most prevalent behaviour was to

not change at all. The histogram is the total count of all revisions by round. In the

rounds where changes were made, it was mostly by 1 or 2 points. This was true

across all groups. As shown in Table 3.1, the mean absolute change was between

1.1 and 2.3, depending on the group.

Figure 3.3: Tally of answer changes counted across all rounds and participants.

Table 3.1: Mean absolute answer change for all groups split by group.

Group Mean Change
1 1.1 (SD 2.8)
2 2.3 (SD 3.5)
3 2.2 (SD 2.6)
4 2.1 (SD 2.8)
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Figure 3.4: Percentage of Answer Changes by Revision Round where round one represents
the first revision round (Groups 1-3). Each line represents a different question.

Most changes tended to occur in the first round, dropping off sharply and sta-

bilising in later rounds. As Figure 3.4 demonstrates, some 35 percent of all changes

occurred in the first round. This drops off to just under 20 percent in the second

round and remains at 10 percent for the later rounds. This held true for three of the

four groups.

3.2.2.3 Percentage Change

The percentage change allowed for cross question and group comparison, by nor-

malising these effects to the particular question and group. Two outliers aside, gen-

erally changes were quite mild, which made percentage change a representative and

informative measure for reporting participant behaviour. With respect to the mag-

nitude of change, there were two notable outliers. In Group 4, participant 3 revised

their answer by 4700 percent in round five, from 3 to 96 (with the correct answer

being 96). In Group 3, participant 1 changed their answer by 2010 percent, going

from 3 to 63 in round two (with correct answer being 55). These two instances are

the only changes of this magnitude across all rounds and players. Moreover, these

players did not exhibit similar behaviour on other questions. While these changes

were not excluded from the analysis, they were excluded from the graphs as includ-

ing them in the graphs would significantly distort the overall picture.
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There was great variability in the magnitude of change in the answers both for

individuals and for questions. As an example, Figure 3.5 breaks down the overall

percentage change in answers across rounds for Group 1. Some participants in

this group changed their answers by almost 160 percent, however, many also did

not change their answers at all. The mean value of change was around 20 percent

for this group. Figure 3.6 shows that these same participants also responded very

differently to different questions.

Figure 3.5: Percent Change of Answers by Round (Group 1).

3.2.3 Revision Analysis

A so called ‘absolute answer change’ measure was used to understand which strate-

gies participants were using to revise their beliefs. The measure was calculated as

the absolute difference between the expected answer given by the model and the

actual answer supplied by the participant. The absolute difference was taken as the

measure of fit. Models that had the lowest absolute difference were considered to

be more reflective of the actual participant behaviour. This measure provides a di-

rect indication as to how far away the participant was from answering the question

correctly. The absolute difference, rather than the more typical squared mean er-
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Figure 3.6: Percent Change of Answers by Question (Group 1).

ror used in statistics, was used as it has been found to be a more statistically robust

measure where the error is not necessarily Gaussian in its distribution (Willmott and

Matsuura, 2005, Chai and Draxler, 2014). Willmott and Matsuura (2005), argue that

mean squared error is “inappropriate because it is a function of 3 characteristics of

a set of errors, rather than of one (the average error). RMSE varies with the vari-

ability within the distribution of error magnitudes and with the square root of the

number of errors (n1/2), as well as with the average-error magnitude (MAE). Our

findings indicate that MAE is a more natural measure of average error, and (unlike

RMSE) is unambiguous” (Willmott and Matsuura, 2005, p.79). Given that there is

no Gaussian distribution assumption of the error term in this study, the mean ab-

solute error provides a good measure of individual and group performance, is easy

and transparent to communicate and analyse. Although absolute difference is used

in most of the reporting below, in cases where statistical significance is observed,

squared error was also used to verify significance or lack thereof.
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3.2.3.1 Predictive Models

The starting point for explaining observed behaviour are the existing models of

opinion revision. These models typically focus on the individual adopting some

combination of the mean or median values derived from the group and can be found

in diverse literature on networks and belief revision. These models are widely used

to calculate opinion diffusion, belief revision, and other modelling exercises where

units meaningfully interact with each other. For example, the early studies by Yaniv

(1997) looked at the importance of participants’ weighing (anchoring on own an-

swer) and trimming (discarding other answers). Lorenz et al. (2011) looked at the

importance of confidence in belief revision, while Jackson (2010) has described at

length the models where participants, at some pace, move towards the group mean.

Drawing on these sources, it is possible to come up with several models to test

against the dataset:

• The weighted average model predicts that an individual will adopt the group

mean, but in adopting the mean, will weight their previous answer as an an-

chor, and will give the initial answer a higher weight than the group mean thus

adopting an answer between the two values. In our model we set the weight

at two: a participant would ‘count’ their own answer twice, before averaging

it with the others.

• The “split the difference” model assumes that an individual will take the mean

of the answers and then average that with their previous answer. This is sim-

ply a more aggressive version of the weighted average model.

• The median model predicts that participants will simply adopt the median

value of the available answers (including their own).

• The “previous answer” model simply predicts that the answer in the next

round will be exactly the same as in the previous round, thus no revision will

have occurred.

Finally, the two remaining models are taken from the Yaniv and Milyavsky

(2007) studies. Yaniv and Milyavsky (2007) found that participants were ‘highly
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egocentric’, and gave less weight to advice the further it is from their initial opinion.

They were also sensitive to the variability within the groups’ judgements. This

egocentric trim model seeks to capture that participants will,“weigh the opinions

that are close to their own, while ignoring those that are distant from their own

prior opinion” (Yaniv and Milyavsky, 2007, p.105). In this particular model, an

individual will dismiss value(s) most distant from her own, and adopt the mean

value of all remaining answers (including her own). The consensus trim model

is similar, but here an individual first takes the group mean and then discount the

answer most distant from that mean. They will then take another group mean and

adopt that value as their own (Yaniv and Milyavsky, 2007).

Yaniv and Milyavsky found that the egocentric trim and the median models

most closely accounted for the actual belief revision strategies adopted by their par-

ticipants. Indeed, egocentricity was found to be the overarching principle employed

by the participants. This factor was found to be mediated by prior knowledge (con-

fidence in own answer) (Yaniv and Milyavsky, 2007, p.117). Similarly to the Lund

study there was also a substantial number of trials where participants“ adhered to

[the initial answer] in roughly 35-40% of the trials, changing their opinions only in

the remaining 60-65%” (Yaniv and Milyavsky, 2007, p.116).

3.2.4 Results

Each of the models above was compared to the actual revision done by the partic-

ipants in the Lund study, with the focus on the mean absolute error per turn – the

mean deviation between the predicted value and the actual responses for an indi-

vidual participant in a given round for a single question. Table 3.2 summarises the

results for every model. Higher numbers indicate greater deviation between the pre-

dicted and the observed behaviour and therefore less of a fit between the predicted

and the observed behaviour.

3.2.4.1 First round revision

Firstly, model performance was examined on the initial round of change, where

comparison is most direct with Yaniv and Milyavsky’s study which gave partici-
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Table 3.2: Model Performance

First Round of Revision Across All Rounds
Model Average Across Groups Group 1 Group 2 Group 3 Group 4 Average Across Groups
Weighted Average 7.25 6.39 7.79 8.74 7.61 7.57
Split the Difference 6.33 5.85 7.11 7.93 6.41 6.72
Median 8.13 5.21 7.77 8.66 6.04 6.73
No Change 5.05 4.03 6.41 6.92 6.06 5.82
Egocentric Trim 6.20 4.45 6.72 8.16 6.21 6.27
Consensus Trim 9.24 6.49 8.42 10.12 7.43 7.94

pants only one set of advice and gave an opportunity for only one revision. In con-

trast to their results, the ‘no change’ model had the lowest predictive error for our

data. It was 20% more accurate than the second best performing model of egocen-

tric trim. This is a notable difference from the findings of (Yaniv and Milyavsky,

2007, p.111). In their study the so-called ‘self-initial’ or no revision-model was

outperformed by the median and egocentric trim models.

The notable difference in how participants responded in the Lund study may

be due to the different experimental paradigm. After all, advice was experimenter-

provided in Yaniv and Milyavsky’s (2007) studies, while in Lund other students

were supplying opinions. This difference emphasises the need to examine social

belief dynamics in a broader range of experimental paradigms. Secondly, the fact

that the ‘no change’ model is the best predictor suggests that none of the other

models are particularly good at explaining participant behaviour. From Figure 3.3,

it is clear that participants changed their answers about 50% of the time, and from

Figure 3.5 it is also clear that revision occurs most often in the first round of revision,

yet the no-change model outperformed all of the other models. It appears that the

models seeking to capture this change do not perform well.

Where Lund results do fit with Yaniv and Milyavsky’s findings is in the order

of the other three models they test (median, egocentric trim, consensus trim). The

consensus trim model performs worst, with the median model coming second, and

Yaniv and Milyavsky’s (2007) egocentric trim model being the best in both studies.

Finally, the two additional averaging models place last.

Interestingly, Yaniv and Milyavsky noted a relationship between revision and a

number of pieces of advice presented to participants; more pieces of advice induced
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greater change. This was particularly true with the median and egocentric trim

model performance. Jönsson et al. (2015) add to this finding by introducing the

concept of network topology and the impact it has on revision. Participants in the

Lund study not only saw different number of answers, as a function of whom they

were connected to, but the network itself was wired differently. However, network

topology does not come into play in the first round of revision, given that the first

revision is simply a function of the initial estimate of each participants. The small-

world networks are simply an example of a smaller number of advisers in the Yaniv

and Milyavsky studies. The network dynamics, however, do come into play in the

subsequent revision rounds.

3.2.4.2 Multiple Rounds of Revision

How then do these models fare in predicting repeated rounds of revision in a dynam-

ically changing environment? Again, the ‘no change’ model is the best predictor,

followed somewhat more closely by the egocentric trim model. In fact, moving

from first round to all rounds, the rank order of models changes only between two

of the poorer performing models (median and weighted average). Consensus trim,

again, comes last suggesting that this model fails to capture participants’ approach

to opinion variability in a meaningful way. Again, the no-change model outper-

forms all of the other models.

Where do the failures of the models lie? Firstly, all models, with the obvious

exception of the no change model, over-predict change for the first round of revi-

sion, that is, the transition from participants’ initial answer to their second answer.

Despite the fact that most change in responses occurs in the first round of revision,

participants still change less than the various models suggest they should. This can

be seen by comparing Figure 3.7, which displays round-on-round change for Group

1 participants with Figures 3.8, 3.9, and 3.10. Even the best performing models, the

Yaniv and Milyavsky’s egocentric trim model (Fig. 3.8), predicts noticeably more

change in this round than actually occurs. However, the same models then under-

predict change on the second round of revision. It appears that repeated feedback

encourages participants to take a comparatively greater note of others’ opinions
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on the second revision round. This is particularly clear in comparison with the

weighted average model (Figure 3.10) which predicts a sharp, monotonic decrease

in round-on-round change.

In other words, there is some evidence from these comparisons that ‘weights’

placed on the opinions of others are dynamic, as opposed to static, across the subse-

quent rounds. Seeking to probe the nature of such dynamic changes further seems

imperative given that the most common models of belief and opinion dynamics as-

sume constant weights and relationships between agents.

Figure 3.7: Actual Percentage Change by Round (Group 1).

Figure 3.8: Predicted Percentage Change by Round for Egocentric Trim Model (Group 1).

In order to better account for actual human revision behaviour and overcome

the shortcomings of other models, a new model called, neighbour inclusion was
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Figure 3.9: Predicted Percentage Change by Round for Median Model (Group 1).

Figure 3.10: Predicted Percentage Change by Round for Weighted Average Model (Group
1).

created. The model is a mixture of the egocentric mean and split the difference

models, but with a more egocentric bias (i.e. it more aggressively discounts other

answers). This model predicts that individuals would be more sensitive to answers

closest to their own and exclude those further away. It essentially predicts that a

participant will adopt the mean between their own answer and that of the closest

neighbour.

When applied, it can be seen from Figure 3.11 that the neighbour inclusion

model performs slightly worse than the no change model. However, it significantly

outperforms all of the other models suggested in the literature. Furthermore, by

adjusting the weight factor further towards a respondent’s own answer, the model

essentially performs on par with the no change model. As Figure 3.11 shows, the
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best performing model is the no change model, and no model is able to explain any

unique variance beyond that individuals simply do not change their answers.

Figure 3.11: Cumulative error by round for different revision models, averaged across all
groups for both small and full World Networks.

Notably, some models perform significantly better in the small world context,

while others perform similarly in both contexts. Models that rely on the adoption of

the group’s answer – average, median and egocentric trip models – tend to perform

significantly worse in the full world context, whereas models that use the initial

answer as the starting point have less of a divergence in performance, suggesting

that using the participant’s initial answer better reflects the actual opinion revision

dynamics. This also suggests that overall, less change occurs in the small world

context, as is evident from the performance of the no change model in round one,

where the total error is significantly higher in the full world context.

3.2.4.3 Accuracy

As Yaniv (2004a), Yaniv and Milyavsky (2007), Jönsson et al. (2015) note, partic-

ipants almost always get more accurate with each revision. This is true of both

individual account accuracy, as feedback loops in the system act to facilitate more

optimal behaviour. Yaniv and Milyavsky (2007) found that participants’ initial an-

swer was correct in only 5% of the cases. Moreover, in their study, median, mean,

consensus and egocentric trim produced more accurate final estimates than the no
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change model. This suggests that individual accuracy always improved when in-

formation was incorporated and beliefs were revised. Jönsson et al. (2015) note

that groups overall also get more accurate as a result of revision. Given that exist-

ing models fail to explain this revision, there is a tension between existing models’

ability to explain revision strategies and the fact that revisions do occur, and are

actually beneficial.

3.3 Experiment 6: Individual Belief Revision Part I
The paradox of groups getting more accurate through revision despite every model

failing to account for it, as evidenced by the performance of the no-change model,

was unsatisfactory to say the least. With this, began the quest to better understand

and model individual belief revision in the hope of finding some unique features of

belief revision beyond the no-change model.

The empirical interest is in unpacking the unexplained variance to better un-

derstand change dynamics in order to create a model that can better reflect partici-

pants behaviour. In order to better understand the underlying dynamics a series of

experiments was created to artificially control the generated answers which partici-

pants would see in order to understand the factors that go into the decision-making

process. This was an attempt to take opinion back to basics and vary what may

reasonably affect opinion revision. A basic tenet of all consistency theories of at-

titude change is that individuals seek to resolve discrepancies among their beliefs.

Such theories predict that attitude change should decline with distance (Aronson

et al., 1963, Sherif and Hovland, 1961, Yaniv, 2004a, Yaniv and Milyavsky, 2007).

Distance is a function of multiple opinions then, which are governed by three pa-

rameters: how far they are from each other (standard deviation), how far they are

from the participant (mean), and how far the closest answer is to the participant

(closeness). The follow up study seeks to vary the mean, standard deviation and

closeness to the actual participant response in order to induce and measure the de-

gree of revision.



3.3. Experiment 6: Individual Belief Revision Part I 104

3.3.1 Method

3.3.1.1 Participants

31 University of London students were paid £5 each to participate in the study. Of

the 31 participants, 13 were female and 18 male (n=31). There was no age, or

education information collected from the participants. The study manipulated the

distance and standard deviation of the generated answers in a 2x2x2 factor, within

subject factorial design.

3.3.1.2 Materials

Participants were asked general knowledge questions based on the 2011 UK census

data. All questions were general knowledge questions chosen to allow participants

to develop an intuitive guess (estimate), but not necessarily know the correct answer.

All questions had an answer range between 1 and 100. A sample question was:

‘What is the percentage of adults in the UK who report not drinking alcohol at all?’

A full list of questions can be found in Appendix D. Questions were chosen to be

engaging, but not necessarily easily answerable. They were designed to be ‘general

knowledge’ in a sense of an average individual having an intuition about the answer,

without necessarily knowing the exact answer. Most importantly, each question had

a numeric true answer (i.e. a fact, with evidence in the natural world), so that the

accuracy of answers could be assessed.

After participants provided an initial estimate, they were provided with re-

sponses by ‘other participants’ (computer generated) and given a chance to enter

a new, revised answer. The ‘other responses’ were generated based on the par-

ticipant’s own initial response. Three factors were manipulated depending on the

condition. The first factor was the mean of the generated responses, which was ei-

ther near or far from the participant’s own response. Mean refers to the distance

between the generated answers and the actual answer. High meant that the answer

distance was 10 percentage points away and low meant 5%. The second factor was

the standard deviation of the generated responses, which was either low or high.

In high conditions variance of the generated answers was 20%, in low variance it
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was 10%. The third factor was the generation of a special answer. This answer was

generated based on the distance from the participants answer. In the close condition

this answer was within three points from participant’s answer. In the far condition

the answer was more than three points away.

25 questions were presented to participants. This included an initial warm up

question and three questions per condition. Not all questions could appear in each

condition with equal plausibility (e.g. a question related to average age could not

have generated answers that are implausibly high or low without making it seem in-

credible that these were genuine responses from other participants). To minimise the

impact of question-based variability, however, there were two different assignments

of question to condition with the first 15 participants receiving one assignment, and

the remainder the other.

The experiment was conducted using a MATLAB-based user interface that

displayed the pre-programmed questions. See Figure 3.12 for an example of a user

interface. Upon entering their estimate, participants were presented with their an-

swers as a red dot and computer generated answers as blue dots on a graph. Partic-

ipants were told that the blue dots are in fact the answers of participants who had

done this study prior to them. In actual fact, blue answers were computer-generated

to match the experimental condition for each question. Figure 3.13

3.3.1.3 Procedure

For each question, participants provided a numeric answer between 1 and 100. In a

separate box they also indicated their confidence on a scale from 1 (not at all) to 10

(completely) in the accuracy of their estimate. Once participants entered their esti-

mates, they were shown five other answers (see Figure 3.13 for a sample interface

with the generated answers).

Once participants saw other responses, they were prompted to answer the same

question again as well as enter a new confidence estimate. Each question was an-

swered twice: once before participants saw other answers and once after. Once

a question was answered twice, a new question was displayed and the procedure

repeated. In total 25 questions were asked.
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Figure 3.12: Sample Participant Interface.

Figure 3.13: Sample Interface with Generated Answers.
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Table 3.3: Breakdown of the mean, standard deviation and distance to the closest answer
of the generated answers by condition.

Measure
Mean: Near
Std: Low
Closest: Close

Mean: Near
Std: High
Closest: Close

Mean: Near
Std: Low
Closest: Far

Mean: Near
Std: High
Closest: Far

Mean: Far
Std: High
Closest: Close

Mean: Far
Std: Low
Closest: Close

Mean: Far
Std: High
Closest: Far

Mean: Far
Std: Low
Closest: Far

Mean (SD) 1.52 (3.18) 0.74 (6.93) 4.93 (5.81) 2.72 (7.68) 7.92 (11.46) 13.26 (9.1) 11.28 (17.03) 16.56 (6.28)
Distance to Closest Ans. 1.00 2.01 6.80 5.20 1.60 1.64 12.30 12.02

The other responses were generated based on the participant’s initial answer.

For example, in the first condition where the mean was ‘near’ the initial answer,

the standard deviation was ‘low’ and the closest answer was ‘close’, the distance

of the generated answers to participant’s initial answer was on average only 1 point

away, the mean of the generated answers was only 1.52 points away and the stan-

dard deviation was 3.18. This contrasts with the condition where the mean was

far (11.28 points away), standard deviation was high (17.03) and the closest an-

swer was far (12.30 point away). Table 3.3 summarises generated answer statistics,

where ‘Mean’ refers to the mean distance of the generated answers to that of the

user. Near refers to the condition where the distance to the generated answer was

within 5 points, whereas far meant that the distance was beyond the five points.

‘Std’ refers to the standard deviation of the generated answers. Low means the

standard deviation was around 6 points and high meant that the standard deviation

of the generated answers was above 6. ‘Closest’ variable refers to how close the

closest answer was to that of the participant. In close condition the answer was

one or two points away, whereas in the far condition it was above 5 points away.

Each column in the table refers to an experimental condition where three variables

were manipulated. As is clear from Table 3.3, it was not always possible for each

condition to be exactly balanced as the three variables are intertwined, however, all

efforts were made to make each condition as balanced as possible.

3.3.2 Results

The primary measure of participant behaviour was the degree of absolute change

between their initial judgement and their second, revised judgement, that is, the

absolute difference between the first and second estimates for each question. This

measure was chosen to make analysis similar to the Lund study analysis described
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above. The purpose was to determine which of the experimental factors caused par-

ticipants to change their judgements, and to see whether there were any interactions

between these. The secondary aim was to determine the relative importance of each

of these factors, and gather a data set that could be used to mathematically compute

the impact of each of the factors allowing to better understand human revision.

3.3.2.1 Outliers

There was great variability in the amount of revision displaced by the participants.

There were three notable outliers. There were two participants (13 and 24) who did

not change their answers at all and participant 5 only changed their answer once

(by 5 points). Although participant 13 had the lowest confidence, their average

confidence was within two standard deviations of the group mean; the other two

participants did not report unusual confidence levels. Since their behaviour could

not be explained by any available analysis, the three participants were excluded

from further analysis due to likely non-engagement with the task.

3.3.2.2 Descriptive Statistics

Table 3.4: Participant mean and standard deviation of answer change by condition.

Condition
Mean: Near
Std: Low
Closest: Close

Mean: Near
Std: High
Closest: Close

Mean: Near
Std: Low
Closest: Far

Mean: Near
Std: High
Closest: Far

Mean: Far
Std: High
Closest: Close

Mean: Far
Std: Low
Closest: Close

Mean: Far
Std: High
Closest: Far

Mean: Far
Std: Low
Closest: Far

Mean (SD) 0.516 (1.241) 0.973 (2.959) 2.237 (3.160) 1.194 (2.896) 2.118 (3.448) 3.882 (5.042) 3.946 (7.594) 5.183 (6.587)

The primary point of interest was the impact of experimental condition on an-

swer change (belief revision). Table 3.4 summarises answer change by condition.

The structure of the table is similar to Table 3.3. Each column refers to a different

experimental condition and the three variables that were manipulated for the gener-

ated answers. From Table 3.3 it is apparent that certain conditions had more of an

impact on participant behaviour change than others. Conditions where most of the

generated answers were close to participants’ initial answers induced the mean an-

swer change of less than 0.5, while conditions 7 and 8, where many of the generated

answers were far away from the initial answer, induced the average answer change

of more than 5 points. This suggests that distance and dispersion of the generated
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answers had an impact on the way participants revised their answers.

Given that certain conditions were hard coded to certain questions to make

generated answers more plausible, it was important to evaluate the impact of ac-

curacy in the initial answer. If initial accuracy was greater for certain conditions,

lower revision independently of manipulations in the condition would likely occur.

Table 3.5 shows mean distance between the correct answer and the initial guess,

by condition. Conditions 1 and 2 had lowest initial accuracy, while the rest of the

conditions had similar initial accuracy.

It was expected that lower initial accuracy would lead to higher answer change

– since an initial answer that is further from the correct answer should prompt par-

ticipants to change more. However, results did not show this. As can be seen from

Table 3.4, participants changed the least in conditions one and two, where initial

accuracy was the lowest. There was no statistically significant relationship between

initial accuracy and revision between rounds, nor was there a statistically significant

relationship between initial accuracy and condition, as well as initial confidence and

condition. It is therefore possible to conclude that experimental approach in itself

did not bias participants towards greater change and it was the manipulation of the

experimental variables that led to change.

Table 3.5: Participant initial accuracy for each condition

Condition
Mean: Near
Std: Low
Closest: Close

Mean: Near
Std: High
Closest: Close

Mean: Near
Std: Low
Closest: Far

Mean: Near
Std: Low
Closest: Far

Mean: Far
Std: High
Closest: Close

Mean: Far
Std: Low
Closest: Close

Mean: Far
Std: High
Closest: Far

Mean: Far
Std: Low
Closest: Far

Mean 22.486 20.57 17.48 17.658 16.541 18.823 19.551 17.054

3.3.2.3 Multivariate Modelling

Given the apparent relationship between between experimental manipulations and

degree of change, it was important to understand a more exact measure of this re-

lationship for future modelling. To better understand this relationship multivariate

regression modelling was used.

The initial model was based on the significant factors identified by the ANOVA

model – absolute distance from the mean, standard deviation of the generated an-

swers and distance between participant’s answer and the closest generated answer.
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In the first instance the actual distance between the mean of the generated answers

and that of the participant, the standard deviation of the generated answers, as well

as the distance between participant’s answer and the closest generated answer was

calculated.

Table 3.6 shows that only distance to the mean significantly predicted estimate

revision b = 0.299, t(672) = 9.383, p <.001. The other two factors (SD of the

answers and distance to the closest answer) were not statistically significant. The

overall model with adjusted R2 = 0.16, F (672) = 43.502, p<.001 is quite predictive

of revision.

However, the fact that SD of the answers and distance to the closest answer

does not appear to impact revision is important. This result diverges from the

ANOVA results, suggesting that while some factors may have correlated with belief

revision, their impact is limited, as demonstrated by further modelling. Given that

experimental cells were not entirely balanced, regression results are more robust

and more likely to be indicative of real behaviour.

3.3.2.4 Hierarchical Model

While the base model provides a starting point there is a deeper level of analysis

that can be done. Based on the plots below (see Figures 3.14, 3.15, 3.16, 3.17), it is

clear that different participants behaved differently on the task. From Table 3.17 it is

possible to see that some participants revised less when their confidence was high,

while others did the opposite. While Table 3.16 shows that most participants revised

more when the closest answer was further away, however the slopes are clearly

different, reflecting individual dynamics not captured by ANOVA and multi-level

models above. In order to account for this variability, a technique called hierarchical

modelling was used. Modelling was done in R, with the help of a package called

‘lme4’.
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Table 3.6: Multivariate regression model for the absolute answer change looking at mean
distance, standard deviation and distance to the closest answer.

Dependent variable:

Absolute Answer Change

Distance to the Mean 0.299∗∗∗

(0.032)

SD of generated answers −0.016
(0.038)

Distance to Closest 0.069
(0.042)

Constant 0.341
(0.403)

Observations 672
R2 0.163
Adjusted R2 0.160
Residual Std. Error 4.812 (df = 668)
F Statistic 43.502∗∗∗ (df = 3; 668)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 3.14: Distance from the group mean and belief revision per player.
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Figure 3.16: Distance from the closest generated answer and belief revision per player.
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Figure 3.17: Initial confidence and belief revision per player.
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In hierarchical regression models individual regression coefficients – here par-

ticipants – are given their own probability models, which can often better capture

the underlying dynamics of behaviour, not captured by standard ANOVA models

(Gelman and Hill, 2007). In this case multilevel modelling allows probability mod-

els for the coefficients at the lower levels, thereby increasing its explanatory and

predictive power, estimating hyper-parameters from the data itself.

As is evident from the graphs, there is considerable difference between individ-

ual participants in terms of their revision. In order to understand individual differ-

ences, hierarchical modelling was used to create a more robust model for the data.

Since we obtained multiple measures from the same participants (nested within sub-

ject) the data lent itself well to multi-level modelling.

As in the previous regression model, the goal was to determine which factors

influence the magnitude of answer change. The dependent variable was the amount

by which participants changed their answer. Level-1 unit was the actual answer

changes, while level-2 unit was the answer change by participant. This allowed the

model to accommodate individual differences among the participants. The standard

measure of estimates is the inter-rater reliability, “or the amount of variance in in-

dividual level responses that can be explained by group level properties” (Castro,

2002, p.70), which is also called the Interclass Correlation Coefficient. It is not

influenced by group size or by the number of groups. The ICC(1) measure was

about 15%. While not extremely high, it suggests that hierarchical model may add

additional explanatory power by allowing for individual slopes for each participant.

Hierarchical modelling works by building successive models, with additional

factors and interactions, which evaluating their AIC and BIC scores, which are

goodness of fit measures. The lower the scores, the better the model fits the data.

Table 3.7 outlines each model, along with the AIC and BIC scores, along with the

Chi Squared statistic and its corresponding P value.

The basic model includes Mean Difference to the generated answers and par-

ticipant Confidence as the two factors, in addition to the intercepts for each par-

ticipant. The second model adds an interaction term between dean Difference and
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Table 3.7: Multilevel Model showing summary statistics for the variables impacting belief
revision.

Model Df AIC BIC logLik deviance Chisq Df Pr(>Chisq)

MeanDiff + Confidence + (1 — Player) 5 3949.9 3972.4 -1970.0 3939.9
MeanDiff + MeanDiff * Confidence + Closest + (1 — Player) 7 3937.7 3969.2 -1961.8 3923.7 16.241 2 0.0002974 ***
MeanDiff + MeanDiff * Confidence + (MeanDiff — Player) 8 3878.7 3914.8 -1931.3 3862.7 60.976 1 <0.001***
MeanDiff + MeanDiff * Confidence + (MeanDiff + Closest — Player) 11 3862.3 3911.9 -1920.1 3840.3 22.421 3 <0.001***

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Confidence, as well as the distance to the closest answer. The next model also al-

lowed the slope for random effects to vary with Mean Difference. The last model

added the distance to the closest answer as another random effect. While several

other models were tried, such as a model with standard deviation of the generated

answers as a factor, they did not produce better fit models (ie models with lower

AIC scores).

The four models presented in Table 3.7, show the progression of the factors that

in successive sequence produced models that fit the data, with increased closeness.

An ANOVA test was used to compare the four models and determine the relative

goodness of fit of each model. As can be seen from Table 3.7, each model performed

statistically better, with AIC being reduced in each model.

The model with the lower AIC was the fourth model. The factors in the model

were: distance between participant’s answer and that of the mean of the group, ini-

tial confidence and the interaction term between Mean Difference and Confidence,

as well as individual slopes for each participant. All other variables and terms were

found to be to extraneous and were excluded.

The model contained three fixed effects: the mean difference, confidence and

the interaction term of mean difference and confidence. Table 3.8 summarises beta

statistics for the fixed effects. The random effects in the model were the Mean-

Difference and the Closest Answer, as these varied by participant. Table 3.9 sum-

marises random effects.

To conclude, participant revision appears to be influenced by a combination of

factors. It is strongly influenced by the distance to the mean (coefficient of 0.52516).

The further away the group mean, the more revision there is. Confidence appears

to have a moderating influence on this relationship, suggesting that less confidence
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Table 3.8: Fixed Effects Statistics of the model showing factors that impact belief revision.

Fixed Effects Estimate Std. Error t-value

(Intercept) 0.61438 0.65719 0.935
Mean Difference 0.52516 0.08449 6.215
Confidence -0.04143 0.10970 -0.378
MeanDiff:Confidence -0.03535 0.01271 -2.781

Table 3.9: Random Effects Statistics of the model for belief revision

Random Effects Variance Std.Dev Corr

(Intercept) 0.70207 0.8379 0.935
Mean Difference 0.03980 0.1995 0.43
Closest Answer 0.07853 0.2802 -0.93

produces more revision, in combination with the distance to the group mean. The

coefficient for the interaction between the distance to the mean and initial confi-

dence is statistically significant, albeit small (-0.03535). Finally, revision is im-

pacted by a number of effects which depend on the individual participants, namely:

the distance to the mean and distance to the closest answer. The results suggest that

some participants reacted very strongly to these variations, while others less so.

3.3.3 Discussion

Modelling revealed a number of factors that impact revision. In all models distance

to the mean was the most important predictor of revision. Hierarchical modelling

also revealed a mediating effect of confidence and was further improved by the

inclusion of distance to the closest answer as a random effect. Perhaps the most

important finding is that variability in participant behaviour is also an important

factor when considering belief revision. The discussion about the various factors

and individual differences follows.

3.3.3.1 Distance to the Group Mean

Individual distance to the group mean has the most significant impact on whether

an individual will change the initial answer. This has proved to be true for most

participants. The mean difference is a significant factor in both ANOVA and hierar-

chical regression models. This suggests that individuals are indeed sensitive to the

answers of others.
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The significance of the ‘group mean’ partly supports the earlier models. Al-

though, individuals do not adopt the group mean as their answer in the second

round, they do usually move towards it. For every one point in distance, on av-

erage, there is a 0.26511 move towards the mean. Therefore, individuals tend to

move about a quarter of the way towards the mean. This suggests that the weighted

averaging models would work better, although the factor that weights individuals’

‘own’ answers would have to be quite high.

3.3.3.2 Individual Differences

Although some individuals are clearly sensitive to the distance to the group, others

appear to be much less so. This is apparent both from the individual revision (Ta-

ble 3.14) and from the hierarchical modelling. Out of 28 participants, some display

positive correlation between the distance to the mean and revision, while other do

not follow this relationship at all, by either rarely revising, or revising in the oppo-

site direction. The same finding applies to the other experimental manipulations,

SD and distance to the closest answer, although they appear to be weaker.

More research exploring individual differences in needed to produce a more

complete account of divergence in participants’ behaviour. This would also be in-

strumental in building a more holistic model of belief revision in the future. This

research could be extended by providing participants with an individual differences

inventory such as Big5 personality questionnaire, or examining more closely prior

beliefs on a range of topics, or a level of initial knowledge on the topic to better

understand other factors that may influence individual behaviour.

3.3.3.3 Confidence

There is a statistically significant interaction between confidence and distance to the

mean, as a fixed factor in the hierarchical model. Although the interaction term is

small (-0.03535), it suggests that confidence moderates the adoption of the group

mean.

Previous studies such as Moussaid et al. (2013), Lorenz et al. (2011), have

looked at confidence as an important explanatory variable in decision-making. They

suggest that confidence has important influence on belief revision in situations
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where participants are exposed to both the opinion and the confidence level of

another participant. The impact of confidence on belief revision was much more

muted in our study. While self-reported initial confidence does seem to play a role

in belief revision, as suggested by the modelling, its effects appear to be difficult to

detect. Furthermore, Moussaid et al. (2013) observed that “judgements of high con-

fidence are good indicators of accuracy before social influence occurs” (Moussaid

et al., 2013, p.7). Yet, no such relationship between confidence and accuracy was

observed in our study.

3.4 Experiment 7: Individual Belief Revision Part II
Although the effects on revision discussed above appear to be in line with the find-

ings from the Lund study, there seems to be a combination of factors at play, that

are not well captured by the existing models. None of the findings from the previ-

ous experiment are helpful in building a model that can outperform the no-change

model. Given that individuals are sensitive to the distance to the closest answer (the

neighbourhood inclusion model accounts for this) and are sensitive to the distance

to the mean and move towards the mean (the weighted average model accounts for

this), these behaviours are far from being consistent. Looking at the data from the

experiment, there appeared to be a factor that has not been previously discussed in

the literature however. Participants tended to change their answers more when their

answers were an outlier of the group. In other words, whenever they were on the

outside of the group, not surrounded by other answers, they changed their answers

more; moving towards the group mean and the closest answer.

In order to confirm that this relationship was indeed present, a followup study

was conducted focusing on a single manipulation. The generated answers either

surrounded a participant’s initial estimate, or put it on the outside. If the participants

did indeed revise more in the outside condition, this would help tie together the

various insights gained from the previous experiments, such as the observed move

towards the mean, and the significance of the closest neighbour in the original study.
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3.4.1 Method

Given that the hypothesis was based on the previous study, the original methodology

was preserved and replicated with minor variations. The same computer interface

was used and participants were given the same set of instructions: to answer general

knowledge questions and to provide a confidence score for each estimate.

3.4.1.1 Participants

18 (12 female and 6 male) University of London students participated in the study.

They did so as part of another larger study and were paid £5 for their participation.

3.4.1.2 Materials and Procedure

The same MATLAB-based interface as described in Experiment 6 was used. As this

was a follow up study, intended to test a single hypothesis, the number of questions

asked of each participant was reduced from 25 to 11. Each participant did a practice

question, before doing 10 actual questions. It was noted that there was some vari-

ability among the 25 original questions in terms of difficulty, as measured by the

distance between respondents initial estimates and the correct answer. With this in

mind, an effort was made to ensure that the 11 questions selected for the follow-up

study were of comparable difficulty, so as to eliminate, to the extent possible, the

impact of the difficulty factor and focus on the manipulation itself. This was based

on participants initial distance to the true answer in Experiment 6.

There was a single manipulation of the experimental condition. This was a

within-subject study where some questions were programmed to generate answers

that placed participant’s initial answer in the middle (‘inside’) of the generated an-

swers, while other answers placed participant’s answer outside of the generated an-

swers (‘outside’). In the inside condition, participants would see their own answers

enveloped by the generated answers, while in the outside condition, all generated

answers would be either above or below participants estimates (see Figures 3.18 and

3.19 for examples of what participants saw in either condition). The hypothesis was

that the ‘outside’ condition would induce a greater answer change, as participants

would feel more pressure to conform to the group mean. In the inside condition, the
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Figure 3.18: Outside condition. Figure 3.19: Inside condition.

opposite was expected. It was predicted that fewer answers would be revised.

3.4.2 Results

In order to determine whether participants acted differently in the two conditions,

a new measure of answer change was created. It took into account whether the

group mean was above or below a participant’s initial answer and multiplied the

answer change by either -1, if the group mean was below, or by 1 if it was above.

This created a measure of change that took into account the expected direction of

change, allowing the comparison of answer change between the two conditions.

The mean change of the two groups was 7.03 (SD 6.3) for the ‘outside’ condi-

tion and 2.1 (SD 6.1) for the ‘inside’ condition. Boxplot 3.20 below demonstrates

the difference in behaviour between the two conditions. The outside condition has

a clear positive impact on revision towards the group mean. In other words this

condition had an effect of encouraging participants to move closer to the mean. At

the same time, in the inside condition, the median is equal to 0, with some par-

ticipants moving closer to and some moving further away from the group mean,

with no coherent direction. An ANOVA showed significant difference between the

two conditions, F(1, 177) = 31.26, p <0.001, η2 = 0.15. There were no significant

differences between the two groups in terms of initial confidence levels.
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Figure 3.20: Distance from the group mean and belief revision summed across all players.

Further regression analysis indicates that a model which includes distance to

the mean and condition as the interaction term is able to account better for the

answer change, with both variables contributing to the explanatory power of the

model. Although distance to the mean of the generated answers is the main ex-

planatory variable (R2=.30, F(1,177)=79.06, p<.01), the model that in addition in-

cludes condition as an interaction term is more robust (R2=.34, F(3,175)=30.21,

p<.01) (see Table 3.10 for the full regression model). This analysis confirms earlier

findings that distance to the mean plays an important role in inducing revision, how-

ever, this experiment also confirms that being outside the group influences revision

behaviour.

When looking at absolute revision and the absolute distance between partici-

pants’ answers and the mean, the impact of revision becomes even more clear. As

can be seen from Figure 3.21, in the inside condition participants who are further

away from the mean are actually less likely to revise their answers, whereas dis-
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Table 3.10: Multivariate regression model for the participant answer change based on the
distance to the mean and condition as an interaction term.

Dependent variable:

Answer Change

Distance to the Mean -0.674∗∗∗

(0.073)

Condition 2.358∗∗

(1.130)

Distance to the Mean:Condition 0.601∗∗∗

(0.217)

Constant -0.709
(0.814)

Observations 179
R2 0.341
Adjusted R2 0.330
Residual Std. Error 6.265 (df = 175)
F Statistic 30.214∗∗∗ (df = 3; 175)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

tance from the mean induces more change in the outside condition. Regression

analysis further confirms the statistical significance of the relationship: R2=.04,

F(2,176)=5.572, p<.05.

This finding suggests that where participants initial answers lie in relation to

other answers has a substantial influence on individual revision behaviour. In cases

where participants own answers were ‘outside’ the range of answers offered by

others, a a significant and deliberate move towards the group mean was observed,

whereas the ‘inside’ condition produced a much more haphazard and undirected

change. To summarise, being outside the group caused participants to move towards

the group, while being inside the group produced undirected, and comparatively

small change, either away or towards the group, centering around previous answer.
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Figure 3.21: Absolute answer change plotted against absolute distance to the mean com-
pared by condition.
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3.5 Towards a Better Model
Taking the new insight about participant revision into account, it was important to

revisit the original models and see if it is possible to improve existing models to

make them more predictive of the Lund data. If this could be the case it would

confirm the finding on a different data set and will hopefully lead to the creation of

a model that is more predictive of participant behaviour and more predictive than

the no-change model.

The new model is a combination of several insights gained from the two lab

studies. It includes the check on whether participant’s answer is inside, or outside

of the group. It also predicts that participants will move towards the group mean,

but will weigh their initial answer more heavily.

The updated model can be summarised as follows:

1. Revision is estimated for the first revision round only. While change does oc-

cur in subsequent rounds, these rules only apply for the first round of revision.

Answers in subsequent rounds equal to the previously stated answer.

2. The decision to move towards the group mean is predicated on whether the

initial guess is inside, or outside of the minimum and maximum values of the

group.

3. The formula for revision is as follows: predicted change = absolute difference

between the initial answer and the group mean *α 0.26, iff user’s answer was

outside of the group.

The α coefficient refers to the elasticity of revision displayed by the group.

0.26 is taken from Experiment 6 where participants moved about a quarter of the

way (0.26511) towards the group mean. This factor could be changed to reflect

different revision elasticity of the different groups.

Figure 3.22 and 3.23 apply the new model and compare it to the performance of

the ‘no-change’ and ‘split the difference’ models on the Lund dataset. Two different

revision coefficients are applied. 0.26 is taken from Experiment 6 and a the more
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extreme 0.1 where participants change their opinions even less, which appears to

work better where fewer opinions are available.

When applied to the Lund data, the new model performed marginally better

than the no change model across all groups and in small world and full world net-

works. The differences were small, but consistent. The overall improvement was

approximately 3%. This was not a statistically significant difference however. Al-

though, the gains are small, this is the first model to consistently perform better, in

both small and full world contexts, than the no change model.

There were two α coefficients that were applied to the Lund data. The original

0.26 coefficient appears to perform better in predicting revision in the full world

network group. This explanation also fits with the earlier finding from Figure 3.11,

where it is hypothesised that there is less overall change occurring in the small world

context. This supports the theory that much of the revision occurs in the context of

a social pull where more opinions are ‘forcing’ participants on the extreme ends to

move closer to the group mean.

The smaller 0.1 α coefficient model performs better on the small world net-

work group. It should be noted when this coefficient is set to 0, it would converge on

the no change model (participant would be predicted to not revise at all). However,

when the coefficient was reduced to below 0.1 the overall error increased, indicat-

ing that the model was indeed accounting for unique behaviour. In the small world

context, where participants saw few answers revision appears to be rarer, which is

why the reduced coefficient performed better. This finding does stand in contrast to

Yaniv and Milyavsky (2007), where just a few opinions induced great change. Al-

though, it is possible that there was enhanced source reliability introduced by their

study, by labelling other opinions as ‘expert’.

Notably, the new model also outperformed the split the difference model with

the same α coefficient, especially in the full world context, suggesting that the

inside/outside rule adds additional explanatory power, beyond the general rule of

splitting the difference, which the new model is based on. Furthermore, when the

rule was applied for multiple rounds of revision, rather than only the first one, the
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overall error increased, suggesting that revision could only be accounted for in the

first round. There was simply too little revision occurring in subsequent rounds, so

any revision predicted by these models only increased the overall error.

Figure 3.22: Top Four Model Comparison (Small World Network).

Figure 3.23: Top Four Model Comparison (Full World Network).

The α coefficient is an interesting variable. It appears to be responsive to the

group size, and signifies the groups’ overall susceptibility to belief change. Based
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on the analysis of Lund data, it appears that at least the number of opinions influence

this term, but there may be other variables that can impact it. Indeed, it would be

quite interested to look at α and group accuracy, as well as α and group size, source

reliability, incentisivisation, etc.

3.6 General Discussion
The Lund data set provided an important empirical backdrop against which different

models of human belief revision in a group environment could be compared. It also

provided an interesting puzzle, as none of the existing models could accurately

predict belief revision.

A number of such models, from a variety of fields were applied to the data set.

These models are widely used to calculate opinion diffusion and belief revision (for

examples, see Yaniv, 1997, Jackson, 2010, Lorenz et al., 2011). However, it was

found that none of the current models predicted revision with great accuracy. The

best performing model was the ‘no change’ model that suggests that participants

do not change their answers from one round to another. However, this was not

satisfactory, as it was clear that participants did chance their answers from round to

round and they became more accurate as a result. The group as a whole was getting

closer to the true answer, yet no model could explain where this ‘wisdom of the

crowd’ was coming from.

A deeper analysis of the Lund dataset revealed that most change tended to oc-

cur in the first round, dropping off sharply and stabilising in the later rounds. Some

35 percent of all change occurred in the first round. This drops off to just under 20

percent in the second round and remains at 10 percent for the later rounds. Further-

more, participants tended to revise their answers slowly, mostly sticking closely to

their original answers, except in a few rare cases.

Two experiments were conducted in order to better understand individual fac-

tors that may influence belief revision. In the first experiment the generated re-

sponses by ‘other participants’ were manipulated. Of all the factors, distance to the

mean was the most significant predictor of belief revision. Including the distance
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to the closest answer, as well as initial confidence improved the as well model.

Although, relative impact of either variable was small.

The second experiment went a step further by simplifying the design and only

manipulating whether the generated answers enveloped the initial participant an-

swer, or placed it outside. It was found that when participants’ answer was outside

they moved towards the group mean, further confirming our initial findings and

discovering the new factor to belief revision.

A number of discoveries were made as a result of these experiments. It was

found that participants tended to move towards the group mean, but were strongly

anchored to their initial answer, which supports findings by Das et al. (2014b),

Granovskiy et al. (2015). It was also found that individuals were strongly affected

by the fact they were either inside the group, and not changing their answers, or

outside the group, where change occurred much more readily.

Based on these findings a new model of revision was built and applied to the

original Lund data set. The final model predicts that most changes occurs in the

first round, opinions moves towards the group mean group, albeit remaining heavily

weighted by the initial response, and is influenced by whether is initial estimate is

inside, or outside of the group of opinions presented.

One of the most important findings to come from the work is the so-called

al pha factor of group revision. This factor has been shown to reflect group’s opinion

elastisity, or the propensity to revise answers. When applied to Lund’s small world

groups, it appeared to be much smaller (i.e. participants changed their answers

less), while a larger al pha factor appeared to better describe revision where more

opinions were available to each participant in the full world groups.

Future research of individual revision will need to focus on expanding on this

model and evaluating the conditions that influence the al pha factor. The features

of our model include: answer ‘stickiness’ (al pha), revision when outside of the

group, revision towards the group mean, some mediation of the initial confidence –

although this could not be tested in the Lund data, as no confidence was collected,

and importance of the number of opinions (network structure). The findings suggest
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that individuals are particularly resistant to change and only incorporate information

when they are sufficiently outside of a sufficiently large group to be compelled to

move closer to it.

The work in this chapter builds upon a number of studies conducted in recent

times, looking at modelling similar dynamics. A recent set of studies on belief revi-

sion comes from Das et al. (2014b) who modelled update opinions based on neigh-

bour opinions and introduced important concepts of ‘stubbornness’, ‘compromise’,

and ‘biased conformity’. Importantly, Das et al. (2014b) argues that individuals

are quite reluctant to change their opinions and their models rely on adjusting the

ratio of ‘stubborn’ nodes to recreate experimental results. They propose a biased-

voter model, which has ”only two parameters, one capturing the stubbornness in be-

haviour, and the other capturing the conformity bias of the user” (Das et al., 2014b,

p.2). More recently, Goldstone and his colleagues looked at the integration of so-

cial information and its impact on belief revision. Their best performing model had

two parameters, the probability of changing an answer and the magnitude of change

(Granovskiy et al., 2015).

In contrast to the Granovskiy et al. (2015) model, which provides a probabilis-

tic term for changing the answer, and creates a stochastic model that is difficult to

apply, our model is procedural in nature, and it goes further by unpacking the pa-

rameters into more defined constituent parts. The stochastic nature of their model,

is elaborated by our successive studies to better determine what makes an individ-

ual change their answer at all. Our free parameter is similar to their’s and could be

adjusted for a particular group. It can also be used as an indicator of group’s ’sticki-

ness’, or unwillingness to chance their answers. Building upon the Granovskiy et al.

(2015) findings, research in this Chapter outlines the reason for why people change

their opinions in the first place.

There are two parts to every revision. Our model unpacks stickiness in two

ways. Whether you change at all and how much you change. The Goldstone has

a probability of change, while our model digs deeper and suggests a reasons for

whether people will change at all. The model presented in this chapter unpacks
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where revision comes from in the first place, going further than the Granovskiy

et al. (2015) model.

Undoubtedly, further research is required in this area. Although our model

performs better than the no-change model, much remains to be understood. In par-

ticular, the relationship between source reliability, incentivisation, group size and

willingness to change needs to be explored, along with the individual differences,

such as personality, intelligence and prior knowledge. The dynamics of constant

updating also need to be better understood. The final model assumes no revision

beyond the first round, and empirical data suggests a big drop, however, some re-

vision does occur. The nature and dynamics of this revision is beyond the scope of

this chapter.

3.6.1 Impact of Feedback Loops

In terms of the feedback loop elements that impact belief revision, research in this

chapter shows that being further away from the group mean and in particular being

outside of the group leads to greater revision. This behaviour also leads to more

accurate estimates in successive rounds. Interestingly, in a social system random-

ness, or indeed, the distribution of participants’ initial estimates does not in itself

prevent the group from becoming more accurate. Given that this randomness is nat-

ural in a sense that it is produced by the participants themselves, rather than by the

system, this suggests that not all noise is detrimental to performance. In contrast

to Chapter 2, where noise impeded performance, here it can be seen as neutral, or

even enhancing in a sense of providing revision direction to other participants.

Lastly, it should be noted that much of the revision relies on the diversity of

opinions. If all opinions were exactly the same, or quickly converged towards the

mean, there would not have been the accuracy enhancing element that can be seen

with subsequent revision. The temporal nature of the task actually allows partici-

pants to get better, suggesting that time is an important element of feedback learn-

ing.
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3.7 Conclusion
This chapter makes important contribution to our understanding of belief revision.

It builds upon the research of Yaniv (2004b), Yaniv and Milyavsky (2007) and uses

the research paradigm first introduced by Jönsson et al. (2015) to better understand

what strategies individuals use to revise their beliefs in a group setting. So where

does Galton’s ‘wisdom of the crowds’ come from? Why do individuals get more

accurate while revising their beliefs?

Conformity appears to be an important factor in this interaction. Individuals

whose answers are outside of the group tend to become more conformist, by mov-

ing closer to the mean of the group. This behaviour appears to conforms with the

Hegselmann and Krause (2002) models. Individuals tend to be sensitive to how far

away they are from the group and how close they are to the closest answer. How-

ever, they are most sensitive to whether they are inside or outside of the group. This

particular behaviour tends to disappear once the participant’s answer is corralled by

other answers and revision ceases. Furthermore, full convergence towards the group

mean does not occur largely because participants barely revise their answers after

the initial revision round.

The entire feedback system in group revision is created by the individuals

within the system. Interestingly, each individual acts as both a positive and a nega-

tive feedback loop. In the first round of revision, participants tend to readily move

towards the group mean, especially those with the outlying views. This produces a

positive loop in terms of the amount of revision, whereby new information is intro-

duced into the system, further encouraging participants to revise their answers on

subsequent rounds. At the same time, participants act as negative feedback loops

in subsequent rounds, where the probability of each person revising drops precipi-

tously, which leads to lack of new information, which leads to further reduction in

revision. The overall revision largely disappears in the later rounds. This leads to

virtual extinction of revision. Without outside influence, the negative feedback loop

essentially takes over and brings the dynamic system to an end.

Importantly, individual confidence had only a minor impact on belief revision.
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This stands in contradiction to Lorenz et al. (2011) who found that confidence in-

creased over time and had a significant impact on revision. Research presented in

this chapter suggests that confidence had a moderating impact on how much indi-

viduals moved towards the group mean. However, it was the group size, and in

particular the effective number of opinions that mattered most, with larger effec-

tive number of opinions inducing more change among the participants. It should

be noted that this finding on the impact of confidence should be considered in the

particular paradigm in which is has been derived from. It is entirely possible that

under different circumstances, confidence may play a more significant role in belief

revision, or lack thereof.

Taking these insights, this chapter outlined a more comprehensive model of

belief revision that closer reflects true human performance on belief revision tasks.

This follows closely the work and findings of Granovskiy et al. (2015), but also

goes further by understanding why participants revise their answers, rather than just

how.

The hope is that this research leads towards more accurate models of belief

revisions than are currently used across multiple disciplines to model, or incorpo-

rate human decision-making in a group setting. This research seems particularly

important due to the proliferation of computational models that incorporate human

decision-making in order to explain a range of real-world phenomena, from opinion

dynamics to network science. More empirical research will hopefully lead to more

accurate models of human performance, which could then be used as more accurate

models of human agents in the relevant tasks.



Chapter 4

Belief Revision and Incentivisation

4.1 Introduction
Chapter 3 dealt with feedback loops in a system that is constructed by the interac-

tions of participants within the system. Participants in Experiments 6 and 7, were

only paid for participation and there was limited influence on participants to con-

form to certain goals, or beliefs. In fact, participant motivation in these experiments

was all intrinsic rather than extrinsic (n.b. for a meta review on rewards and mo-

tivation see Deci et al., 2005). Beyond each participants’ innate desire to perform

well on the task, there was little outside influence on this desire. In other words,

the system created by the feedback loops is in some way unrepresentative of the

real world system. Often, in the real world, how one behaves is not only influenced

by the system one is in, but also by the incentives: economic and social, (Bonner

and Sprinkle, 2002, Guala, 2005), which also influence individual behaviour and,

ultimately, are part of any social system.

This chapter builds upon the research presented in Chapter 3 by comparing

participant performance under different incentivisation frameworks. Incentivisa-

tion should alter how participants behave and lead to substantively different group

dynamics since it alters the very structure of the feedback system by introducing an

additional source of influence.

There are two types of incentives introduced in this chapter. Individual incen-

tivisation – where each participant has a monetary incentive to perform better, and



4.1. Introduction 136

group incentivisation – where incentive is aligned in such a way that every partici-

pant only benefits if the group does well. As can be seen from the feedback system

created by providing performance incentives to individuals in Figure 4.1, each in-

dividual gains personal incentive to perform better, which may not necessarily help

the group. The individual modifier acts to mitigate the actions of every participant,

introducing another source of influence on the answer to be provided. It is not clear

what this impact may be. Given the wealth of research that suggests that incentivi-

sation has an important effect on performance in laboratory research (Brase, 2009,

Cadsby et al., 2016, Bowen and Kensinger, 2017), and individual and group incen-

tivisation can be found in every day life, it becomes an important empirical question

of how exactly incentivisation influences individual and group dynamics.

In the previous studies by Jönsson et al. (2015), a simple incentivisation mech-

anism was used, whereby participants with the most accurate answers in each group

received a performance bonus. This was done largely so that participants would take

the task seriously. It is the purpose of this Chapter to better understand how this and

other incentivisation mechanics impact participant behaviour and accuracy.

As Jönsson et al. (2015) noted:

“Participants in the complete network condition could have fairly eas-

ily (roughly) calculated the mean answer, and, on average, if they had

adopted this answer, their individual accuracies would have been much

higher... However, had they done so, they would not have improved as

a group at all, and missed out on the collective improvement that they

did in fact obtain. In other words, over-weighting of their own opinions

led participants to less accurate individual responses than they could

have otherwise obtained, but it is only due to that selective weighting

that collective competence improved (Jönsson et al., 2015, p.202).

If all individuals adopted the group mean after the first round, convergence

would be achieved and learning would cease. Although each individual might im-

prove their immediate accuracy by adopting the group mean, they would sacrifice

all possible future learning by becoming essentially a homogeneous group. By not
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Figure 4.1: Individual Incentivisation System.

adopting the group mean, individuals sacrifice individual accuracy, but the group re-

tains the ability to learn new information from the subsequent rounds and improve

overall as a group. However, it remains unclear whether this accuracy enhancing

mechanism was due to the performance incentivisation, whereby participants did

not want to adopt the group mean, fearing it would lead them to a less accurate

answer, or due to some other factors inherent to the group dynamics.

In addition to exploring the new incentivisation domain, replicating the larger

group experiment in the UK would serve to further broaden the applicability of the

models derived in Chapter 3.

4.2 Literature Review

4.2.0.1 Incentivisation

Inventivisation has been shown to directly effect participant performance in psy-

chological experiments (Deci et al., 2005). In tasks where payment is tied to per-

formance, participants have often displayed risk aversion (Bowen and Kensinger,

2017). Other researchers found that participants who were paid for their time out-
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performed those who merely received credit (Brase et al., 2006). The debate around

incentivisation of performance crosses disciplinary boundaries as well.

For example, it is well established in behavioural economics that economic in-

centivisation is imperative in laboratory studies to bring performance to the level

of the real-world systems, with direct impact on effort and performance. As Guala

(2005) notes: ”monetary incentives has become de-facto a prerequisite for publi-

cation in economics journals – and, conversely, the lack of incentives is consid-

ered a sufficient condition for the rejection of an experimental study”(Guala, 2005,

p. 231). In psychology, monetary incentivisation, especially for performance, is not

as widespread. It is nonetheless an important feature of many experiments.

Naturally, incentivisation can also be applied outside of the laboratory grounds

to job performance. As Bonner and Sprinkle (2002) suggest, a combination of

monetary incentives and goal setting can have significant positive impact on perfor-

mance.

It is perhaps telling that much of the literature on belief revision does not take

into account incentivisation. Most of the Yaniv and Miyavsky studies do not in-

centivise participants beyond compensating for participation. Indeed, incentives

may well alter the very behaviour one is seeking to measure; an argument that be-

havioural economists echo (Guala, 2005). Furthermore, in the real world, much

of the behaviour is insentivised and ‘putting your money where your mouth is’ is

a common belief in investment and elsewhere for identifying how serious one is

about the advice one is giving (Guala, 2005). Borrowing from mechanism design

theory, this chapter seeks to explore how altering the insentivisation structure of the

group belief revision studies may alter participant behaviour.

4.3 Experiment 8: Group vs Individual Incentivisa-

tion
The purpose of this experiment is to determine how individual and group accu-

racy may change under different incentive schemes. Incentivising either individual,

or group performance, is expected to produce the employment of different revision
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strategies. As discussed in the introduction to the chapter, incentivisation potentially

creates an additional factor for participants to consider when revising their answers.

Given that real-world systems often contain different incentivisation mechanisms

the potential difference in revision strategies is important to understand. Further-

more, it is important to understand if different incentivisation schemes may have an

impact on individual and group accuracy. It is hypothesised that group rewarding

should lead to faster convergence to consensus and group accuracy would decline as

a result, since early group cohesion constricts the available information in the sys-

tem, leading to less information and less accuracy (for discussion on group accuracy

see Jönsson et al., 2015).

4.3.1 Method

4.3.1.1 Participants

Participants were all students from Birkbeck College, University of London (n=37).

Eight groups of five participants each were assembled in the study. Given that

this was a group experiment and all participants had to be in the room at the same

time, in some cases the experiment was conducted even if not all participants came

on time. As a result five groups had five participants and three groups had four

participants each, with three participants not showing up at the designated time for

the experiment. Each participant received £5 for participation.

4.3.1.2 Materials & Procedure

The experiment was conducted using the same software and methodology as in

Experiment 6 and 7 described in Chapter 3. Participants were presented with a

NetLogo interface connected in a network to all other computers in the room. Once

participants read the instructions, they were presented with a series of questions,

which they used the interface to answer. A sample interface can be found in the

Figure 4.2 below.

To answer each question participants used a slider bar to enter an initial, inde-

pendent, guess. After entering their answer they would see estimates of the other

participants. Following the first round, participants had a chance to revise their an-
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swers in light of what their peers entered. This procedure was repeated for three

rounds for each question. In total each person answered the same question four

times.

In total, each participant answered 20 different questions and provided a total

of 80 answers (20x4rounds). The questions were the same as in Experiments 6 and

7 presented in Chapter 3. All questions were general knowledge questions based on

the 2011 UK census data, chosen to allow participants to have an intuitive guess,

but not necessarily know the correct answer. All questions had an answer range

between 1 and 100. A full list of questions along iwth the correct answers can be

found in Appendix D.

All participants were answering the same set of questions at the same time

in the same order and had to wait for everyone in their group to finish providing

their estimate before moving on to the next round and question. All participants

answered the same set of 20 questions.

It was a between group manipulation study. In the individual reward condi-

tion, participants were told that they would be rewarded for individual performance.

They were told that the top five individuals across all groups would receive an ad-

ditional £10 payment if, individually, they had the lowest overall error, defined as

the distance between the true and stated answers. In the second condition partici-

pants were told that all of participants of the group that achieved the highest accu-

racy (lowest cumulative error) would receive the £10 bonus payment. The payment

amount was double the participation amount, and was considered to be a sufficient

incentive to have an impact on participant behaviour.

4.3.2 Results

Given the creation of additional incentivisation components, it was important to

understand whether treatment influenced individual belief revision. The first section

focuses on understanding the impact of incentivisation on revision, while the second

part focuses on understanding the impact of incentivisation on accuracy.
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Figure 4.2: An example of a NetLogo interface. Participants communicated with each
other through such an interface.

4.3.2.1 Revision

In this study there was an already familiar distribution of revision among the partic-

ipants. As Figure 4.3 shows, in about half of the cases, participants did not revise

their answers. This is a similar pattern that can be observed in studies in the previous

chapter.

Participants revised their opinions each round. Most of the revision occurred

in the first round, with the magnitude of revisions in the last round being about half

of that of the first revision round. When revision is broken down by condition, there

was no statistically significant relationship between the group and the magnitude of

revision (t = -1.6858, df = 2211.8, p-value = 0.09198).

Table 4.1: Sum of all participants answer changes split by individual and group reward
conditions.

Condition Answer Change
Individual Reward 251.167

Group Reward 282.947

4.3.3 Revision Analysis

Regression analysis was then conducted to better understand the underlying dynam-

ics. The aim was to confirm previous findings of revision dynamics and determine

if incentivisation had an impact on the revision strategies.
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Figure 4.3: Total cumulative distribution of individual answer revision by the magnitude of
revision.

4.3.3.1 Linear Regression

Linear regression was applied to the revision data, with absolute revision (absolute

difference between the previous and current answers) as the dependent variable.

Simple regression models taking into account, individually, condition, participant

group, and group size did not show a statistically significant relationship with revi-

sion.

However, a combined linear regression model with group and condition as

independent factors was statistically significant in predicting belief revision (see

Table 4.2). A significant regression equation was: R2 = .17,F(2,34) = 3.483, p <

.01. The statistical significance of the results was confirmed when re-tested using

the mean squared error instead of the absolute mean error, suggesting robustness of

the finding. This suggests that condition and the group to which participants belong

to did indeed have some impact on the way they revised their answers.

This model is incomplete, however. As is evident from Figure 4.4, there is also

considerable difference between individual participants in terms of how much and
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when they revised their answers. These individual dynamics were very much the

factor in the previous chapter and required hierarchical regression modelling in or-

der to better understand the underlying dynamics. Similarly, in order to understand

individual differences, hierarchical modelling was used to analyse and create a more

robust model for the data. The data lent itself well to be modelled with multi-level

modelling given that multiple measures were obtained from the same participants

(nested within subject).
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Figure 4.4: Magnitude of individual participant revision plotted again each round of revision.
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Table 4.2: Regression model for revision by group and condition.

Dependent variable:

Revision

Group −48.624∗∗

(19.213)

Condition 232.815∗∗

(90.059)

Constant 137.209∗

(75.020)

Observations 37
R2 0.170
Adjusted R2 0.121
Residual Std. Error 128.996 (df = 34)
F Statistic 3.483∗∗ (df = 2; 34)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

4.3.3.2 Hierarchical Modelling

Hierarchical regression modelling was used in order to quantify the relationship be-

tween experimental variables and revision. The level-1 unit was the overall answer

change, while the level-2 unit was the answer change by each participant. This

allowed the model to accommodate individual differences among the participants.

Models were built in a sequence starting with a Group variable that was found to be

statistically significant in the regression analysis. Additional variables were added

and an ANOVA goodness of fit test was used to compare the relative performance

of each variable. Some of the variables that did not add explanatory power, such as

participant confidence, were removed from the final model. Each step in building

the model is detailed below.

The basic model included the Group variable, which was found to be statis-

tically significant in the regression analysis above, as well as allowed for random

intercepts for each participant. ‘Condition’ was added as an interaction term, which

was an important factor from the linear model as well. Next, the difference to
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the true answer was added (represented as ‘Abs diff’) as an interaction term to the

model. The last version of the model included ‘Round number’ as another interac-

tion variable. All other variables were applied, but did not add to the model. An

ANOVA goodness of fit test was used to compare the four models and determine

the relative performance of each. As can be seen from Table 4.3, each model per-

formed statistically better, with AIC being reduced in each model, meaning that

these variables all had some impact in explaining revision.

Table 4.3: Hierarchical Multilevel Modelling of Factors Influencing Belief Revision.

Dependent variable:

Absolute Revision

(1) (2) (3) (4)

Abs diff 0.076∗∗∗ 0.074∗∗∗

(0.010) (0.010)

Round −1.390∗∗∗

(0.181)

Condition 3.880∗∗∗ 3.539∗∗ 3.550∗∗

(1.439) (1.440) (1.440)

Group −0.080 −0.810∗∗∗ −0.721∗∗ −0.724∗∗

(0.158) (0.307) (0.307) (0.307)

Constant 4.824∗∗∗ 2.287∗ 1.101 5.309∗∗∗

(0.812) (1.199) (1.210) (1.328)

Observations 2,220 2,220 2,220 2,220
Log Likelihood -7,543.573 -7,540.254 -7,514.332 -7,485.145
Akaike Inf. Crit. 15,095.150 15,090.510 15,040.660 14,984.290
Bayesian Inf. Crit. 15,117.970 15,119.030 15,074.900 15,024.230

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

What this suggests is that participants were sensitive to a number of factors

when revising their beliefs. In the first instance both condition and the group which

participants belong to had an impact. Participants revised more in the group incen-

tivisation condition and also were impacted by the group they belong to, but not

necessarily the group size. The round of revision was also important in whether

participants revised or not. Finally, distance to the true answer also had a minor
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(0.076), but statistically significant coefficient. It can be concluded that treatment

had at least some part in altering participant behaviour, although it was mostly in

combination with the other factors outlined above.

4.3.3.3 Accuracy

But, if condition had an impact on revision, did it also have an impact on accu-

racy? Belief revision in a social context relies on feedback from the system created

by the individuals to improve individual and group accuracy. Individual and group

accuracy improvements have been a subject of some debate however. Lorenz et al.

(2011) have found that the so-called wisdom of the crowds effect can be under-

mined by even mild social influence effects, “diminishing the diversity of the crowd

without improvements of its collective error, moving the position of the truth to pe-

ripheral regions of the range of estimates so that the crowd becomes less reliable in

providing expertise for external observers... boost[ing] individuals confidence after

convergence of their estimates despite lack of improved accuracy” (Lorenz et al.,

2011, p.9020). On the other hand, Farrell (2011) found that social influence is in

fact accuracy enhancing, finding methodological errors in Lorenz et al. (2011) anal-

ysis. More recently, work by Jönsson et al. (2015) also showed increase in group

accuracy as a result of social interactions.

The measure of accuracy for this study is the same as in the earlier opinion

dynamics tasks presented in Chapter 3; the absolute difference between the stated

and actual answers. This measure provides a direct indication as to how far away

the participant was from answering the question correctly. It has also been found to

be a more statistically robust measure where the error is not necessarily Gaussian in

its distribution (Willmott and Matsuura, 2005, Chai and Draxler, 2014). Given that

there is no Gaussian distribution assumption of the error term in this study, the mean

absolute error provides a good measure of individual and group performance, and

is easy and transparent to communicate and analyse. Although, absolute difference

is used in most of the reporting below, in cases where statistical significance is

observed, squared error was also used to verify significance, or lack thereof.

As can be seen from Figure 4.5, in aggregate, participants in the individual
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Figure 4.5: Cumulative error for each round of revision broken down by the individual and
group reward conditions.

reward condition were more accurate in their estimates. Similarly to the observed

behaviour in the Lund study described in Chapter 3, the overall accuracy continually

increased with each round of revision. Both conditions performed more or less

equally on the task and a t-test on the accuracy by condition confirmed that there was

no statistically significant difference between the two conditions(t = 0.20158, df =

34.98, p-value = 0.8414). Therefore, condition did not have statistically significant

impact on participant behaviour or accuracy.

4.3.4 Discussion

Altering incentivisation did not appear to cause differences in group accuracy, or

in the way participants behaved. Although individually, participants in the group

reward condition were more accurate and four of the top five participants were from

this condition, the relationship was not statistically significant when extended to all

participants.

Hierarchical regression was used to analyse the factors that may have induced
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belief revision. This was done because of the high variance of change exhibited by

individual participants. It showed that experimental condition had some impact on

participant behaviour, although other factors had a stronger impact. Overall, four

statistically significant factors emerged: distance to the true answer, round number,

condition and group.

The fact that distance to the true answer positively impacts revision, suggests

that as participants get closer to the true answer, they are less likely to revise their

beliefs. Overall, participants became more accurate with each revision, therefore it

is not surprising that they revised less. This drift towards the correct answer is well

documented (see Galton, 1907, Jönsson et al., 2015, Hill, 1982), and results here

continue to support the finding that groups as a whole become more accurate. This

interplay also suggests that individual participants get more accurate, which causes

the rate of change to slow down. This means that as participants get closer to the

true answer there is less of a chance for them to become less accurate since there is

less information in the system overall.

Round number negatively impacts revision, which is also corroborated by the

results. In all of the previous studies discussed in Chapter 3, it was found that

participants change their answers less frequently and by a smaller magnitude with

each revision round. This holds true for this study as well. This further contributes

to the observed dynamic of slowing change over time. The first round of revision

is the most significant, as participants are much more likely to change during this

round.

The incentive condition did not appear to have a particularly strong impact on

revision. Condition did not have a statistically significant impact on accuracy, or re-

vision on its own. However, when combined with other factors, it was a statistically

significant factor in the multi-level the regression model, suggesting that condition

had at least some effect on belief revision, but only in combination with the other

variables. Its inclusion improved the predictive power of the model, suggesting that

at least some participants did in fact react differently to incentivisation.

Finally, the group that participants belonged to also had a statistically signif-
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icant impact on behaviour. Interestingly, it was not the group size, but the actual

group membership that was statistically significant. Since participants self-selected

the time slots, it was impossible to control for this variable.

These findings broadly conform with the revision factors discussed in Chap-

ter 3. Indeed, there was significant overlap between this study and the data observed

in Lund. As far as replication goes, this study confirmed many of the findings;

namely that revision occurs most often in the first round and groups get more accu-

rate and revise less with time. This study also found that incentivisation had minor

impact on revision and virtually no impact on group accuracy.

4.4 General Discussion
As a final step in understanding belief revision dynamics in this study, it was im-

portant to apply previous models of belief revision onto the new data obtained in

this study. The goal was to see if previous findings would hold and if the model

created in Chapter 3 would perform better than the no-change model in explaining

participant behaviour.

Two models were applied to the data to test which strategies participants used

to revise their answers. Both models came from the analysis done in Chapter 3.

The first model applied was the no change model, which was originally the best

performing model. This model predicts that participants will not change their an-

swers at all. The second model used was the custom revision model developed in

Chapter 3, which was shown to explain revision better than the no change model. As

a reminder, the custom model developed in Chapter 3 assumed that only the outliers

– two of the most extreme answers – would move some distance towards the group

mean, taking their initial answer as the anchor point. In the model the magnitude

(distance) of the move is determined by the change coefficient (0 representing no

change and 1 representing the adoption of the group mean). The experimental find-

ings show that a chance coefficient of 0.26 was representative of the behaviour in the

Lund study. Its application on a different data set is an important step in validating

its applicability beyond the very specific data set in which it was developed.
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Figure 4.6: Comparative Model Accuracy for the first round of revision.

The methodology of applying the models is the same as in Chapter 3. Each

model predicted what the next answer would be, had participants used the same

rule as the model. For example, the no change model assumes participants do not

change their answers from one round to another and that the next answer will be

the same as the previous answer. The fit of the model is determined by the the

absolute difference between the model predicted answer and the actual participant

answer. A model with the lower difference has a better fit to the actual data and

better represents the observed participant behaviour.

As can be seen in Figure 4.6, in the first round of revision, the custom model

outperforms the no change model in all groups. There were two coefficients 0.26

and 0.1 that were tested in Chapter 3. When applied to the data gathered in this

experiment, the model with the stronger coefficient of 0.26 outperforms both the no

change model and the model which predicts less change with the 0.1 change coeffi-

cient. However, a t-test between groups shows that this difference is not statistically

significant (t = 1.5059, df = 14, p-value = 0.1543). Perhaps a larger sample size

would make these findings more robust.

Given that this study included an incentivisation condition, it was important to

look at the aggregate performance of the models by condition. Figure 4.7 shows that

the change coefficient models outperformed the no change models for both condi-
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Figure 4.7: Comparative Model Accuracy by condition.

tions. However, a chi-squared test did not show statistical significance, suggesting

that a larger sample size may be necessary to make these results more robust.

4.5 Conclusion
The clear relevance and applicability of the custom change model in the UK sug-

gests its applicability beyond the original data set. The fact that it is able to outper-

form the no-change model for an entirely new data set is promising. This further

suggests its usefulness as a model to understand belief revision that is more closely

matches actual human behaviour on such tasks. As a first of its kind, cross-country

application of the models to understand belief revision, this analysis and findings

provide an important contribution towards the understanding of belief revision dy-

namics.

The fact that the custom model better explains behaviour in the group incen-

tivisation condition is also important. Monetary incentivisation, and its relatively

modest impact on revision, suggests that monetary rewards for performance do not

lead to more accuracy or greater revision. It does, however, lead to greater confor-

mity, particularly among the outliers. While there was no statistically significant
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relationship between individual and group incentivisation and performance on the

belief revision task and participants did not answer questions more accurately, or,

indeed revise their beliefs more as a result of the different incentivisation schemes

employed in this study, they did revise differently. Participants in the group in-

centivisation condition were much more likely to revise towards the group mean,

suggesting that incentivisation lead to greater conformity. It is notable then, that

greater conformity did not lead to increase in accuracy.

When talking about feedback systems, participants in this study sought much

greater conformity than in the Lund study. It appears to be be at least partly due

to the incentivisation introduced in the study. Notably, the difference between the

two types of incentivisation (individual vs group) was not particularly big. But, the

fact that overall participants revised more towards the group mean, than in the Lund

study is important. It is possible that incentivisation in general alters the system in

such a way that greater conformity is induced. It could be due to fear of blame,

or a desire to be more helpful to the group that leads to this behaviour. Further

research will be required to better understand what impact incentivisation has on

behaviour, however, the research here represents the first, but very important step in

understanding its impact.



Chapter 5

Rank Aggregation and Belief

Revision

5.1 Introduction
The research in the second part of this thesis thus far has dealt with absolute values

and questions which have a singular answer. This chapter extends this analysis by

looking at ranks and ranking as a sub-domain of belief revision and group accuracy.

This chapter looks at a special application of feedback learning in the context of

rank aggregation. Rank aggregation is a particularly interesting application for be-

lief revision, given that ranked information is often used in computer science and

information retrieval. It is the goal of this chapter to explore what strategies are

most beneficial when aggregating ranks and then understand what people actually

do.

Chapters 3 and 4 have demonstrated repeatedly the effect of group accuracy in-

crease under different circumstances. Individuals create dynamic systems through

repeated interaction with others which leads to increased accuracy. In the previ-

ous chapter incentivisation was used to alter the underlying structure to introduce

greater conformity among the participants. This chapter extends this research into

the new domain of rank aggregation.

The problem of rank aggregation where ranked lists from a diverse set of

“judges” are combined into a single “consensus” ranked list, is an active research
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area in computer science. Rank aggregation has found successful applications in

meta-search (Dwork et al., 2001, Renda and Straccia, 2003, Fernández et al., 2006),

crowd-sourcing (Niu et al., 2015), and recommender systems (Baltrunas et al.,

2010). Aggregation can take many forms. In its simplest form aggregation can

mean taking the most popular list (i.e. list that appears most often). The most com-

plicated forms of aggregation can include calculating the distances between the lists

in order to come up with an aggregate list that most closely matches all other lists.

This requires computing new measures for rank distance (i.e. how far away each

list is from each other) and then calculating the one list that is the closest to all of

the others. Computational complexity is increased as a result.

Although extensive studies have already been conducted on this topic by com-

puter scientists, these largely concern only the algorithmic issues, i.e., how to pro-

duce the “optimal” ranked list, without questioning the very concept of optimal-

ity. Computer scientists working on the topic normally use the more computation-

ally intensive methods to create the aggregate list, in order to optimise a particular

project. Dwork et al. (2001) for example were looking for aggregation measures that

would produce, “rank aggregation techniques that can effectively combat ‘spam,’ a

serious problem in Web searches”(Dwork et al., 2001, p.613).

5.2 Literature Review
Rank aggregation is a study in condensing complex information into its most com-

mon and appropriate form. It is of interest to a diverse group of research communi-

ties dating back to the beginning of the 20th century. For example, rank aggregation

was an important concept in information retrieval dating back to the middle of the

20th century. Rank aggregation is key in information retrieval as information is

ranked and displayed based on its relevance to the user (Kumar and Vassilvitskii,

2010, Brancotte et al., 2015). Since all information needs to be ranked, various rank

aggregation and rank distance measures provide for a way to do so. Some are more

optimised than others to deal with the various complexities that arise from dealing

with large volumes and diversity of information.



5.3. Modelling 156

In bioinformatics rank aggregation is used for a variety of purposes. For ex-

ample to aggregate gene lists, which are essentially lists of DNA strands that need

to be compiled to determine the ‘common’ strand (Kolde et al., 2012). In the wider

field of biology, which often uses clustering techniques for micro-array data analy-

sis to discover relevant biological groupings, rank aggregation is used to reconcile

the different results of the clustering methods (Pihur et al., 2007). Thus, biology

relies heavily on rank aggregation to solve some of its most complex problems.

Arguably, the most prevalent use of rank aggregation today can be found in

website indexing – a field similar to information retrieval that deals with displaying

relevant search results in the most optimal way; defined as the order most relevant

for a given query. Given that there is a proliferation of website indexing services,

rank aggregation is most commonly used in “building meta-search engines, com-

bining ranking functions, selecting documents based on multiple criteria, and im-

proving search precision through word associations” (Dwork et al., 2001, p.613).

Interestingly, aggregation has always been firmly in the domain of mathemat-

ics and computational sciences, with little regard for how humans aggregate ranks.

Since ranks are everywhere, from football table leagues, to voting, it is quite an

interesting empirical question indeed. However, before we launch into testing, it

is similarly important to understand the performance of some of the more common

aggregation techniques under various conditions and for that the use of modelling

is required.

5.3 Modelling
The purpose of this section is to simulate various aggregation techniques in order to

better understand how well the different methods perform under different conditions

and to determine the most salient variables that have the greatest impact on the

relative performance of the various methods.1

Modelling provides a way of analysing the task, and providing better under-

standing of the relative performance of the different aggregation methods. Given

1The work in this section is based on the original concept paper by Stephan Hartmann and col-
leagues at LMU.
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that these methods are not normally compared against each other in a standardised

way, it is the aim of this section to establish their relative performance to each other.

It is not designed to model human cognition, or to make any claims about human

cognitive processes in rank aggregation.

In the first instance, a theoretical simulation was developed to test the accuracy

of the various rank aggregation methods. This simulation can be thought of as a

hypothetical meta-search engine, which aggregates the results from various other

search engines that generate search results. Given that rank aggregation is heavily

used in information retrieval and website indexing this seems to be a particularly

fitting thought experiment.

Imagine there is a new super web indexing website, which queries Google,

Bing and other search engines on the same keyword and then aggregates and re-

turns a single list. Importantly, lets imagine that there is indeed a single list that is

‘the best’. This list would contain the items in just the right way. The first item

would be most relevant to the search term, followed by the second, third, and so on.

The objective of the meta-engine is to query various search engines, combine their

results and return a single list that would rank items in the best order possible. The

assumption that there is a single list superior, or true list, is quite important here, as

it allows us to test the various aggregation methods against this truth. The goal is to

see which of the aggregation methods produce the optimal list most frequently and

under what conditions.

Given a set of m items (e.g., web pages), we consider n ranked list of them,

{r1, . . . ,rn}, each of which is given by a judge (e.g., search engine). One, and only

one, of the possible ranking orders (permutations) r∗ is deemed to be true (the ‘best

list’).

Each judge is characterised by his “competence” which is defined as the proba-

bility of providing the true list. Imagine that each search engine would use different

algorithms to generate the list and that the algorithm would have material impact on

the ability of the engine to produce optimal lists.

Once each judge generates a list, the simulation takes these generated lists
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and aggregates them into a single list using one of the rules outlined further in this

section.

Unlike previous work on this subject, such as Fernández et al. (2006), for each

item in a list only its rank position vis-a-vis other items is known. No other prop-

erties are available. Indeed, only the the relative order of the items is known, no

information on how or why each judge chose that particular order is revealed.

It is often impossible or unrealistic to obtain the scores of individual items and

only their relative positioning to each other is available (Dwork et al., 2001, Renda

and Straccia, 2003). This is true of many of the real-life problems such as gene lists

(Kolde et al., 2012). More importantly, a wealth of psychological research suggests

that in many domains, humans represent faithfully only ranking order information

and more detailed information is unhelpful (Stewart et al., 2006). We simulate the

relative rank order and not the underlying information about each item on the list.

For the sake of simplicity, modelling considers that each judge will produce

a complete list and no ties are possible. So when ranking items it will rank all of

the available choices and will rank them relative to each other in such a way that

each item will occupy a unique position. The choices available will be uniform for

all of the judges. Furthermore, it is assumed that every judge in the model has the

same level of competence c ∈ [0,1]. Finally, when a certain rule produces multiple

lists that are equally optimal, one of them is selected at random to break the tie.

This work could be generalised straightforwardly in the future by relaxing these

assumptions and constraints.

The following rank aggregation methods and rules have been proposed in pre-

vious literature and are widely used in practice, and will be modelled here:

• majority: the consensus list is just the ranked list that appears most fre-

quently (Dwork et al., 2001).

• average: the consensus list is generated by ranking the items according

to their average rank positions, which is essentially same as the Borda’s

count (Dwork et al., 2001).
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• Spearman: the consensus list is the one with the minimum sum of Spear-

man’s footrule to entire ranked list. Spearman’s footrule is defined as the total

number of displacements needed to achieve parity between two lists (Diaco-

nis and Graham, 1977)

• Kendall: the consensus list is the one with the minimum sum of Kendall’s tau

to the ranked list. Kendall’s tau is defined as the total number of inversions

required to achieve parity between two lists (Kendall, 1938).

• Kemeny-Snell: the consensus list is the one with the minimum sum of

Kemeny-Snell distance to all the given ranked list. The Kemeny-Snell (KS)

distance is similar to Kendall’s tau, but more robust when dealing with

ties (Heiser and D’Ambrosio, 2013).

While the first two methods are simple and easy to compute, the other three

are based on distance measures and have high computational complexity. It has

been shown that finding the optimally ranked list based on Kendall’s tau (known as

the Kemeney optimal aggregation) is an NP hard problem with just four full lists

(Dwork et al., 2001). This naturally places a limit on the size of the lists, which we

will explore in more detail further on.

The research question is then: “which rank aggregation method would produce

the most accurate results?” Accuracy is defined as the frequency with which the

consensus list is returned by a rank aggregation method and is indeed the true list.

Each time rank aggregation returns a list, which is then compared to the true list

and if the two match it is considered to be correct and if not, the opposite result is

recorded. At the end, it is possible to judge each aggregation method on its ability

to produce the true list under different conditions.

5.4 Computer Simulations
The simulation was coded in R. It is programmed to generate a number of lists from

different judges and uses different aggregation methods to determine the list reflec-

tive of the group, or the ‘average list.’ The generated consensus lists are then com-

pared with the true list to calculate accuracy, which is used as the “performance”
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measure for the aggregation method. This procedure is repeated while sampling and

increasing number of judges with each iteration. In order to smooth out effects of

randomness, bootstrapping is performed at each number of judges and the average

value is taken. Therefore, each set of judges was simulated multiple times, before

adding additional judges.

The simulation had a number of free parameters that could be altered:

• list size: number of unique items in a list

• competence level: individual probability of picking the correct list

• aggregation method: methods of aggregation described above

• number of simulations: a number of repeats of the same simulation with the

same conditions to smooth out any noise due to randomness

We began with a list size of 4, meaning there were 4 unique items in the list

that could be arranged in order. With no ties there were 24 possible permutations.

In the simulation k groups consisting of n number of judges would draw a single list

from the full list of permutations. Using one of the aggregation methods, a single

list would be selected for each group as the aggregate product, and then compared

to the true list. Each group of judges would be re-sampled a number of times to

boostrap the results to get a smoother result. Scores reported below are the average

results sampled over multiple trials for the same group.

5.4.0.1 Error Models

One important consideration in the study was the underlying error model that gov-

erned a judge’s probability of picking the wrong list among all possible permuta-

tions. The error distribution was important since it governed the probability of pick-

ing any of the permutations, outside of the true list. We modelled each judge to have

a competence measure which reflected the probability of picking the true list. The

rest of the probability was distributed among the remaining possible choices. We

modelled three different error distribution models to reflect different assumptions

about each judge’s ability to pick the various lists. These include: the linear-decay
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model where the probability of picking the correct list diminishes with the distance

from the true list; fastest-decay model where the selection probability drops rapidly

as a function of distance so only the closest lists to the true list are selected; and,

none-decay, all lists have the same probability of being selected. Each model is

described in more detail below.

The first modelled assumption was that judges know something about the do-

main in question and as such, the probability of picking a wrong list is likely to be

an inverse function of the distance from that list to the true list. Without the loss

of generality, we used the Kemeny-Snell distance measure d(·, ·) to determine the

probability of a given list being selected. It is defined as follows:

Pr[ri] =


c if ri = r∗,

(1− c) 1/d(ri,r∗)
∑ j 6=∗(1/d(r j,r∗))

otherwise.
(5.1)

In effect, lists that are closer to the true list would be more likely to be drawn than

the lists further away. This was called a linear decay error distribution since the

probability of picking lists further away from the true list decays with distance.

We wanted to see relative performance of the various aggregation methods as

the number of judges increased. For all results, a constant competence level of

c = 0.1 was maintained, which meant a 10% chance for a judge to pick the true list

r∗. We selected the simulation range from 5 to 100 judges. After running several

different simulations we produced a number of interesting and insightful results,

summarised in a series of graphs below (see Figure 5.1).

5.4.0.2 Results

Each graph in Figure 5.1 summarises a simulation, which models sampling by 5

to 100 judges (x-axis) and demonstrates the relative performance of the various

aggregation methods, as defined by their accuracy (y-axis). Figure 5.1a summarises

the linear-decay error model. As can be observed from the graph the majority rule

performs significantly worse than the alternatives and does not increase in accuracy

as the number of judges increases. This aggregation method produces correct result
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(a) linear-decay error model (list size 4)
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(b) fastest-decay error model (list size 4)
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(c) none-decay error model (list size 4)
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(d) linear-decay error model (list size 7)
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(e) fastest-decay error model (list size 7)
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(f) none-decay error model (list size 7)

Figure 5.1: Comparison of aggregation methods plotted over multiple conditions.

just about a quarter of the time. On the other hand, the other four methods perform

similarly to each other and their accuracy increases as the number of judges goes

up.

It is important to note that the Kemeny-Snell aggregation method does not

perform significantly better than the other distance-based methods, despite it be-

ing used as the distance measure in the error distribution! Furthermore, averaging,
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which is a very simple method (both computationally and cognitively), performs at

least on par with the more computationally complex distance-based methods.

A minor comment regarding the competence measure is due at this point. It

was found that once the probability of picking the true list was higher than 20%,

there was a quick rise towards perfect accuracy of all methods. This is true be-

cause beyond this threshold the probability of picking the true list was higher than

the probability of picking any other list, especially for the larger list sizes. Given

that there is no differentiation between the performance of the various methods at

or above this level of competence, there is little analysis that can be performed.

Therefore, the competence level was kept well below this threshold in order to un-

derstand how robust different rank aggregation methods would be under the more

challenging condition of lower individual competence.

In the linear-decay error mode, with a 10% chance of picking the correct list,

the remaining 90 points are divided among the remaining 23 lists, based on their

distance to the true list. That means alternative lists, on average, have a 4% (90/23)

probability of being picked. However, due to the non-linear nature of the error

distribution, the probability is more than double for lists closer to the true list, ex-

ceeding the probability of the true list being picked. This effect is demonstrated

by the low performance of the majority list. The true list simply does not come up

more often than any of the other lists. As the number of judges increases, the overall

accuracy of the majority model does not increase. However, the performance of the

other models does increase. This suggests that models that look for averages, or

take into account distances between the lists and look for a common list, are more

adaptive in the circumstances where the probability of picking the true list is not

highest.

Linear decay, as represented by the equation above (5.1), is just one way of

converting the underlying KS-distance to the targeted true list into a probability of

erroneous list selection. Actually any monotonic decaying transformations – such as

an exponential decay – of those distances could be utilised to pick the non-true lists.

To generalise the results, two extreme cases of monotonic decay of distance were



5.4. Computer Simulations 164

considered: at one end (fastest-decay), the selection probability drops so rapidly as

a function of distance that only the closest lists to the true list stand a chance of

being selected; at the other end (none-decay), the selection function is flat and the

lists of all distances are equally likely to be selected. We have examined both of

these extreme cases.

First, let us consider the case where only the lists closest to the true list had

a non-zero selection probability (with each list at that distance equally likely to be

picked). The results of this error distribution are represented by Figure 5.1b. From

the results of the simulation it is apparent that the majority method plummets almost

immediately towards zero accuracy. This is due to the fact that the competence

level, i.e., the probability of picking the true list (10%), is significantly lower than

the probability of picking any of those closest lists (which is 30% in this example

as there are three lists that are similarly close).

The other methods appear to quickly move towards perfect accuracy. All 4 lists

that could be picked are very similar and the average list of the 4 is indeed the true

list by definition. The averaging aggregation method, in particular moves quickly to

perfect accuracy and outperforms the other methods. There also appears to be little

difference among the other distance-based methods and they all behave similarly to

the average method.

Secondly, we consider the case where a judge is equally likely to pick any of

the wrong lists, regardless of their distance to the true list. The none-decay model

equally distributes the error among all possible lists.

The results of this simulation stand in stark contrast to the other two simu-

lations. The majority method performs significantly better and improves with the

number of judges, which is exactly reverse of what was observed in the earlier sim-

ulations.

Although the observation was initially quite surprising, the explanation is fairly

intuitive. Since the probability of picking the true list is 10%, the remaining proba-

bility would be distributed evenly over 23 other possible permutations, which leads

to only 3.9% per permutation. This means that the true list is more than twice as
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likely to be picked, as any other list. Therefore, the ranked list occurring most

frequently is almost guaranteed to be the true list, and the majority method would

always perform the best.

Just as importantly, the other aggregation methods appear to falter at this stage.

Although there is some improvement along with the increase in the number of

judges, the accuracy stays well below 0.5, even for groups with 100 judges. No-

tably, the average method performed the worst, while the Spearman method per-

formed the best among the three distance-based methods.

5.4.0.3 Larger Lists

How general are these findings? To explore this, we applied the same simulation

to larger list sizes. Beyond a certain list size, the number of possible permutations

becomes unwieldy and computationally intensive. However, we were able to extend

the simulation to list size of 7 and still compute the results. At this list size, there

are 5,040 possible permutations.

We tested the performance of the various aggregation methods on the larger list

size, using the same methodology as above; applying the three different error dis-

tribution models on the larger list size. The results are summarised in Figures 5.1d,

5.1e, and 5.1f. In order to be comparable, the competence level remained the same.

Given the larger sample space, this would have obvious implications on the perfor-

mance described below.

The most important differences can be found in Figures 5.1d and 5.1f. It is

not surprising that the majority model does better, given the relatively high compe-

tence level. However, what is surprising is the terrible performance of the averaging

model. Unlike its performance in the list size 4 simulations, with larger simulations

this method begins to falter, especially as more judges are added. As Figure 5.1d

shows that the other methods begin to outperform the averaging method. This trend

was observed for list sizes 5 and 6 and is most pronounced in list size 7, which sug-

gests that if the list size is further increased, the relative performance distance would

only continue to increase, making averaging impractical for all, but the smallest list

sizes.
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5.4.1 Discussion

A few key insights emerge from our modelling efforts. The first and most impor-

tant one is that there appears to be little benefit of using computationally-expensive

distance-based methods to conduct rank aggregation for smaller list sizes. However,

as list size increases, along with the possible number of permutations, averaging fal-

ters, while the more computationally intensive methods continue to be robust, with

their effectiveness increasing with the number of judges. The number of judges also

appears to play an important role. As the number of judges increases, the accuracy

goes up across most conditions. This suggests that extra information is picked up

in larger lists and robust aggregation methods ‘collect’ this information as a result

of a larger number of overall guesses in the system. The only method that appears

to not improve with the number of judges is the averaging method. It can be con-

cluded that averaging is a good method when the list size is small, but as the space

increases, as a result of larger list size, this method does not work.

The last notable finding is around the majority method. There is a rather binary

nature to this aggregation method. It appears to work well when competence is

high, but fails miserably when the probability of picking the true list is less than

those of the other lists. It is a rather simple heuristic method of aggregating and

its success and failure is evident in the modelling. If one believes that judges are

competent, there is no better way to aggregate their opinions (see 5.1c, 5.1d, 5.1f)

but to go with the majority, but in virtually every other situation this method fails

(see Figures 5.1a, 5.1b, 5.1e). It also does not increase in any meaningful way

with a larger number of judges suggesting that groups, or larger ‘crowds’, do not

produce more accurate lists with this aggregation method. We therefore, must look

elsewhere for what gives rise to the ‘wisdom’ of the crowds, as majority is simply

not it.

This supports Condorcet’s jury theorem (Condorcet, 1785) where p (the prob-

ability of picking the correct answer) is more than 1/2 makes juries more accurate

and where p is less than 1/2 adding more jury members makes the probability of

the correct decision less probable.
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So why do the computationally intensive methods perform better under the

same conditions, with larger list size? Distance between individual lists appears to

hold the key. Distance is clearly an important measure of relevance. Lists which

are closer to each other all signal that the correct answer must be in that vicinity.

Methods that take into account distance between lists are able to take this additional

information into account. What is perhaps most interesting is the performance of

the averaging model. With smaller list sizes it performs on par with the other mod-

els, suggesting averaging is a component of the overall wisdom. However, as its

performance decreases with larger list sizes, it is evident that averaging does not

really capture the distance differences effectively. There is simply more to effective

aggregation than simple averaging.

In terms of feedback, it seems there is a clear effect of individual competence

that is aggregated into a more competent group answer. However, simple aggrega-

tion does not capture the necessary information, whereas computationally intensive

methods appear to do so quite effectively, especially with the larger pool of judges.

Although judges in the simulations makes independent guesses and subsequent an-

swers are not impacted by the previous inputs, there is nonetheless group wisdom

that occurs at the system level once individual answers are aggregated.

5.4.1.1 Application of Findings

These findings have clear impact on the various fields concerned with rank aggre-

gation. It indeed appears that the use of more computationally complex methods is

advantageous if the task at hand is complex: the number of independent sources is

high, the list size is high and the probability of selecting an optimal list by any one

judge is low.

This has direct implications in the field of web search and information retrieval.

Based on the modelling, we would suggest that the use of simple models, such as

picking the list that occurs most often, or averaging the results based on their relative

position would not produce very accurate results beyond very specific conditions.

Namely, the number of ranked results would have to be extremely limited (up to 6)

and the number of different aggregators quite high. For virtually all other cases, dis-
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tance based aggregation methods would yield better results. There does not appear

to be a computationally optimal shortcut that could be taken here.

5.5 Experiment 9: Rank Revision
Modelling suggests that a system created by multiple answers should become more

accurate provided it uses the more computationally intensive aggregation methods.

While this is evident from the simulations, these simulations are based on assump-

tions. They provide a way of creating a baseline against which human behaviour

could be tested. Given that there is little empirical studies that have looked at how

individuals aggregate ranks, this is a natural extension of this line of inquiry.

There are elements from Experiments 5–8 that can be applied to better under-

stand rank aggregation dynamics. The domain of feedback loop tasks, whereby the

same question is asked multiple times and participants are able to see other answers

and revise their beliefs accordingly, lends itself quite well to understand individual

belief revision dynamics and to see how accuracy enhancing they are. The main

research question at this point was: how would human beings perform in a rank

aggregation task? What revision methods, if any, would they choose? And would

they become more accurate with time?

From the modelling it is clear that different aggregation methods work better

under different conditions, it is not clear what strategies human would choose when

aggregate ranks. While it may appear that taking the group mean is advantageous

from the accuracy point of view, it is also more difficult to calculate quickly and

may be the less preferred strategy than simply adopting the majority opinion for

example, not to speak of the more computationally complex methods that would be

next to impossible to calculate on the fly. To test this, a study was designed that

looked at individual rank revision in a group setting, with the emphasis on feedback

incorporation and accuracy measurement of the outcome.

The study was a modification of elements of belief revision used in the Lund

study and outlined in Chapters 3 and 4. The purpose of the experiment was to test

what rules, if any, individuals use to revise their beliefs in light of new information
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and what methods may explain the revision process as described by the aggregation

methods above. Unlike similar studies on the topic that have mostly looked at ab-

solute answers and estimates, we were interested in applying this in the context of

rank revision. In other words, the interest was in understanding how participants re-

vise ranked orders when presented with ranked information from their peers. From

the modelling exercises above we knew that adopting the group mean is the most

beneficial strategy a person can take with smaller list sizes.

5.5.1 Method

5.5.1.1 Participants

Participants for this study were volunteers from the University of London commu-

nity. Participants were paid £5 for taking part in the study. There were 19 partici-

pants who took part, which created three panels of five participants and one panel

with four participants (n=19). Each group of participants took part at the same time

and were hosted in the same room. No particular exclusion criteria were used and

participants were free to self select which of the time slots worked best for them to

attend the study. It did not appear that any participants knew each other prior to the

study.

5.5.1.2 Materials & Procedure

Participants were seated in a computer lab, spaced apart in a way that prevented

them from seeing each others’ screens. Each participant had a computer in front of

them that contained a NetLogo interface that was connected in a network to other

computers in the room. See Figure 5.2 for a sample interface that each participant

saw.

Initially, participants were read basic instructions regarding the task. The task

involved each participant ranking four cities from the largest to smallest by popula-

tion size (list size 4). Each city was presented in a text box and contained a number

along with the name of the city (see example in Figure 5.2). In the drop down box

‘City A’ they were instructed to put the number of the city they believed to be the

largest, ‘City B’ were to contain the second largest, and so on. After all four boxes



5.5. Experiment 9: Rank Revision 170

Figure 5.2: An example of a NetLogo interface through which participants communicated
with each other.

were filled, participants had to submit their answers and wait for everyone else in

the room to finish. Once, all answers were submitted, participants could see how

everyone else had ranked the cities. At this point, everyone had an opportunity to

revise their answers in light of additional information (see Figure 5.3 and zoomed

in view in Figure 5.4). They repeated this process three times for each question,

resulting in four rounds - initial round, plus three revision rounds.

In total, each participant answered 21 questions. There was an initial practice

question which participants did in a directed manner, followed by 20 other ques-

tions, which were done independently and free from any additional instructions.

Each question contained a different set of cities and in different order, but the task

was the same. There was only a single experimental condition and all participants

were treated the same; they were shown the same set of questions, in the same order.

5.5.2 Results

In the first instance we were interested in individual belief revision. We analysed

how often individuals changed their answers and what rules they used to do so. In-

dividual revision in this context is a combination of belief revision and rank aggre-
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Figure 5.3: An example of a NetLogo interface that a participant would see once other
participants submitted their answers.

Figure 5.4: Zoomed in view of the answers of the other participants.

gation as some participants will choose to maintain their own, independent beliefs,

while others will choose to revise their answers and adopt those of the group. In this

case, participants will, by necessity, need to aggregate group opinions into a single

list. Their new answers will reflect at least some of the individual strategies. The

findings are outlined below.

5.5.2.1 Individual Revision

Discounting the first question, there were 60 opportunities for each participant to

revise their answer (20 questions * 3 revision rounds). On average participants

changed their answers 10.3 (SD 7.51) times over the course of the simulation, or

about 16% of the time. While some participants changed their answers as little as

once, others changed almost a third of their answers. In total, participants revised

their answers 196 times.

Most revisions occurred in the first round, where almost as many revisions

occurred as in the subsequent two rounds. Table 5.1 breaks down revisions by



5.5. Experiment 9: Rank Revision 172

round. This is quite similar to the previous studies on belief revision conducted in

Chapter 4. Revisions occurred unevenly between questions. Seven questions had

between 13 and 15 revisions, while remaining 13 questions had between five and

nine revisions.

The number of revisions made by participants was rather low, but the overall

profile of the changes, i.e. mostly in the first round and more for some questions

than others, is consistent with the Lund study, along with the UK-based studies in

Chapters 3,4.

Table 5.1: Number of revisions made by all participants in each round.

Revision Revision Revision
Round 1 Round 2 Round 3
96 58 42

5.5.2.2 Models of Revision

Several models presented in the first part were examined to predict individual be-

lief revision rules that induced the change (such as mean, median, majority and

Spearman models). We decided to restrict our fitting to three in particular: mean,

majority and Spearman. Mean and majority models had very interesting proper-

ties in our earlier modelling exercise and Spearman was chosen as a representative

model of the more computationally intensive class of models. Given that all compu-

tational models preformed similarly for smaller list sizes, one distance based model

was enough to understand participant revision.

Mean and majority models are computationally easy and should have been

most likely to be calculable to participants. Since ranked lists were relatively small

and were visually represented near each other, identifying the majority list, or cal-

culating the mean list was conceivable and would be something that a participant

could engage in prior to revising their answer.

The Spearman model of revision would have been more difficult to calcu-

late. Indeed, it was not expected that participants would consciously calculate the

common Spearman list of the different answers. However, this model calculates a
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distance-based list and we wanted to see how reflective this model may be of the

actual rank revision.

In order to test whether participants actually behaved in a way predicted by a

model, we generated an answer that a participant would pick if they were guided by

a model and then compared the predicted answer with the actual answer in a binary

fashion.

Table 5.2 summarises the results. The table is divided into four columns: the

total number of revisions for each method, revisions that only occurred when mean

and majority models produced different predictions, the average number of revi-

sions per participant corresponding to the model, and the percentage of revisions

explained by each model.

Table 5.2 demonstrates that there were significantly more revisions that moved

towards the mean than majority. In fact, of the 196 total revisions, 62 or 31.6% were

revisions that adopted the group mean, and 44 or 22% that adopted the majority

list. On average, the mean model was adopted 3.26 times per participant, while the

majority model was adopted 2.32 times. A Fisher’s exact test confirms that this is

statistically different (1, N = 19) p = 0.025).

Naturally, there were instances where both models predicted the same list and

the above numbers include revisions where the mean and majority lists coincide.

There were 35 revisions where both models predicted the same result. When re-

moved from the total revision count for each model, there were 27 revisions that

adopted the group mean and only 9 revisions that adopted the majority list. This

provides strong evidence to suggest that participants in the study adopted the group

mean much more readily than the majority list.

A notable finding was how well the Spearman model performed in predicting

participant revision. There appears to be a total of 65 or 33% of revisions that could

be explained by this model. This is 3 more revisions than the mean model. This is

interesting given that Spearman model is complex to calculate. It is, however, an

advantageous model to use, as has been demonstrated by our modelling. Although

the difference between Spearman and Mean models was not statistically significant
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(Fisher’s exact test (N=19) p=0.8292), the difference between Spearman and Ma-

jority was (p=0.0232).

Table 5.2: Summary of the revisions made by participants which match the predicted revi-
sions of the different models (mean, majority and spearman). The table shows
the total number of revisions, revisions that fell into either mean or majority cat-
egory, average number of revisions explained by the model and the percentage
of explained revisions by each model

Model Total Model Only Average Revision %
Mean 62 27 3.263 31.6
Majority 44 9 2.316 22.4
Spearman 65 - 3.421 33.2

5.5.2.3 Towards a Model of Human Rank Revision

Our findings suggest that human participants are 3 times more likely to adopt the

group mean over the majority list in cases where the two do not coincide. This

suggests that computational models that emphasise mean ranks may be closer to the

way humans make revisions given additional information in a ranked format.

However, it was the more computationally heavy Spearman model that out-

performed both, the mean and the majority models, although its performance was

only statistically different from the majority model. It must be noted that mean and

Spearman were extremely close in terms of the number of revisions made. It is

entirely possible that Spearman model outperformed the mean model due to ran-

domness. However, the important fact here is that Spearman was competitive at all.

We initially expected that this model would not perform particularity well, perhaps

even below the majority, given that there was no indication that participants use

sophisticated calculations while revising their answers.

5.5.2.4 Accuracy

Up to this point we did not look at how accuracy enhancing revisions made partici-

pants. Table 5.3 summarises the accuracy by round. Unlike previous studies in this

thesis, participants did not appear to get more accurate with each revision round. In

fact, it appears that collectively participants actually get less accurate with revision.

Table 5.3 shows that the number of lists that correspond to the correct answer ac-
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tually decline in the 4t h round and the distance (as measured by Spearman score)

actually increases. Participants on aggregate appear to be most accurate in their

initial estimate, decreasing with each round, and being least accurate after the 3rd

revision round.

Individually, none of the participants improved in accuracy over the three re-

vision rounds. In fact, there were only 3 individuals who did improve slightly in

accuracy from their initial estimate to the final one. It appears that while revision

did occur, it was not as beneficial in the rank situation as with belief revision of

absolute values discussed in the previous chapters.

The situation is quite similar in terms of group accuracy. As can be seen from

Graph 5.5 only one group becomes slightly more accurate with repeated revision,

with three groups becoming less so. Ultimately, none of the groups show statisti-

cally significant overall increase in accuracy as a result of repeated group revision.

Table 5.3: Group aggregate accuracy by round.

Round
Absolute
Correct

Correct by
Distance

1 25 787
2 25 796
3 25 792
4 23 802

5.6 General Discussion
As demonstrated by the modelling at the beginning of the chapter, simple rules

perform well under specific conditions. The mean model does well when list size

is small, and the majority model does well when individual competence is high.

However, it is the more computationally intensive methods, which take into account

distance between ranks that are able to capture the complexity of larger lists and

perform better under the more complex conditions. These methods also perform

better, as the number of judges increases, further enhancing its benefits. To compute

an aggregate list using a Spearman model, one would have to calculate distance

between every list and then to select a single list that most closely matches all of the
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Figure 5.5: Group accuracy over four rounds.

other lists. This is no easy task and computational complexity makes it difficult to

extend this beyond relatively small lists.

It was found that human participants in the experiment appeared to use this

model in roughly 33% of all revisions that they made. This is notable given that

participants spent mere seconds on each revision and did not have any tools at their

disposal to do the calculations, or to keep track of the distances. This was done

intuitively. Participants appeared to revise their answers that we have shown to be

advantageous. Given that we did not expect this finding, we did not ask participants

to indicate what aggregation methods they may have used, but it would be surprising

if they knew anything about distance based measures, or indeed, about Spearman’s
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model.

However, this behaviour did not lead to increased accuracy. In fact, collec-

tively all groups got worse with each revision. Participants were most accurate

on their initial, independent guess and did not improve their accuracy with more

information. Individually, most participants also got worse as a result of the addi-

tional information. Although participants may have used models that have shown

to be robust in rank aggregation, this did not translate into increase in performance,

individual, or otherwise. This is an important finding as it suggests that rank ag-

gregation is a special class of problems in belief revision, where standard findings

do not appear to apply. This could be due to the increased complexity of the task,

or the need to keep track and incorporate multiple pieces of information, contained

in a rank. Regardless, further research is necessary to understand why additional

information and opportunity to revise, does not lead to increased accuracy in this

domain.

5.7 Conclusion
This chapter addresses two important concepts. In the first instance, our models

demonstrate that distance-based methods do not produce significantly better results

when list sizes are small, suggesting that the problem of rank aggregation could

be satisfactorily solved by simpler methods such as taking the average or majority.

This changes markedly as list size grows, suggesting that for most real-world prob-

lems, where list sizes can reach hundreds, if not thousands, the more complex, and

computationally exhausting aggregation methods need to be employed.

The second finding occurred as a result of the lab experiment, which extended

the modelling to better understand how humans aggregate ranks. It was found that

participants most often picked the list that reflected the use of distance-based aggre-

gation methods. This is a particularly interesting finding given that distance-based

aggregation methods are computationally intense and no previous research has ob-

served such behaviour. Given that these methods have been demonstrated to be

robust and performing well as a function of list size, we believe we have identi-
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fied an important element of adoptive human behaviour suggesting innate positive

adaptability in the realm of rank aggregation.

Finally, it was found that participants did not improve in accuracy, and in fact

became worse with each revision round. Every group collectively performed worse

as a result of being exposed to additional information and the opportunity to revise,

while individually only a few participants improved, while the large majority also

got worse. This suggests that the standard belief revision dynamics do not appear

to apply to the rank aggregation domain.

It would appear that time does not have the same accuracy enhancing effect

across all social feedback systems. In the case of rank revision, participants did

not become some accuracy, either individually, or as a group, suggesting that time

is context depended. This further suggests that there may be other circumstances

under which social feedback systems would not produce similar accuracy enhancing

characteristics observed in Chapters 3 and 4.



Chapter 6

General Conclusion

Feedback is a fundamental part of human interactions and plays a fundamental role

in one’s ability to learn from the environment (Orrell, 2011, Powers, 1973, Ster-

man, 2000, Taleb, 2007). This thesis explored systems, both physical and social

that change over time as a result of interactions within them. The goal was to better

understand how feedback systems impact individual behaviour and to extend schol-

arship beyond traditional understanding of systems in classical cognitive literature,

as static environments. The research in this thesis builds upon the relatively recent

fields of dynamic decision-making and group belief revision by introducing social

feedback and observing how human participants interact with and within such sys-

tems and how their behaviour changed as a result.

Part I of this thesis focused on one’s ability to control physical dynamical sys-

tems. Such systems are designed to approximate real-world processes and systems

in order to better understand how humans solve problems and make complex de-

cisions (Osman, 2010). Initially designed by Dörner (1975), it was later expanded

by Berry and Broadbent (1984) and later extended into a field of dynamic decision-

making (for overview see Osman, 2010). Part II of the thesis extended focus onto

social dynamical systems. The aim was to better understand how group dynamics

influence individual behaviour, which in turn influences the group. The experi-

ments conducted for this purpose involved human participants that could interact

with each other by exchanging information. They could learn, while cooperating

and competing. Ultimately, this thesis is about understanding and quantifying the
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impact of positive and negative influences of feedback on performance and the un-

derstanding of the different conditions that lead to positive and negative outcomes

in social dynamic system.

6.1 Feedback and Performance
So what features of feedback impact performance? Performance was largely defined

as the ability to achieve high scores in Part I and the ability to get closer to the correct

answer in Part II.

Overall, there were several findings that are important to highlight in regards

to feedback loops and performance. Artificial randomness was found to have a

substantive effect on performance. When removed from the original sugar factory,

participants were able to learn from delayed feedback and achieve mastery over

the task. This demonstrates that the delayed nature of feedback does not necessarily

lead to the inability to control a feedback simulation, but artificial randomness does.

Natural noise, however, created by participants in group interactions in Part II

led to increased to accuracy over time, highlighting an important difference between

artificial randomness and naturally occurring noise.

Time was found to be an important consideration in feedback learning. There

was a strong practice effect in Part I and participants became more accurate with

each revision in Part II. Time allows participants to gain more information and learn

to better control the system over time.

The one outlier to this the rank revision experiments performed in Chapter 5,

where participants did not improve over time. In the rank revision task, participants

did not improve their performance with each round of revision. This suggests that

the nature of a social feedback task is quite important and the general view of in-

creased performance does not necessarily extend to all domains. It is possible that

rank aggregation is a different class of problems altogether, however, broader claim

would require further research.

Finally, Chapter 4 found no statistically significant impact of incentivisation

on performance in social feedback loops, or on the revision strategies employed by
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the participants. It should be noted however, that such findings are not necessarily

general in nature and should be interpreted in the context of the task they were found

in.

6.2 Feedback Control
Part I, or more specifically, Chapter 2 focused on physical dynamic systems as rep-

resented by the sugar factory (Berry and Broadbent, 1984, 1988). The chapter

started with a replication study (Experiment 1), which sought to re-evaluate pre-

vious findings in light of the time lapse since original research took place. This

experiment confirmed the original findings. 30 years since the original sugar fac-

tory, human beings are still relatively poor at the task. Experiment 2 changed the

original equation and provided participants with a finer control over the number of

workers they could assign. Participants were also provided with training materials

(see Appendix A for the copy of the materials) designed to help control physical

dynamic systems. It was found that participants still struggled to control the output

of the sugar factory and materials did not appear to have any impact on perfor-

mance. In Experiment 3, the cover story was changed to bring the sugar factory

into a climate change domain. This was done in order to create a task in a more

meaningful domain, where participants might be expected to have more relevant

prior real world knowledge. These participants were also provided with training

materials to help control the simulation. However, neither bringing the system into

a new domain, nor providing the training materials improved performance. Next,

Experiment 4 extended the sugar factory beyond the lab, giving participants an abil-

ity to play the sugar factory at home. They were free to explore the simulation and

play it as many times as they wished. Yet, this did not produce a noticeable in-

crease in performance. These findings are consistent with much of the dynamic

control literature. Human participants are not particularly good at controlling such

simulations (Osman, 2010).

After repeated failure to improve human performance, a question arose regard-

ing the overall plausibility of controlling such simulations. However, as with much
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of the literature one unanswered question remained: human performance was poor

compared to what? There simply were not a practical measure available to com-

pare human performance against. As such, a simulated agent was created, based on

a simple reinforcement learning algorithm, which was trained to control the sugar

factory.

This led to three main findings. Firstly, human performance was actually on par

with the performance of the simulated agent. Secondly, randomness was identified

as the main culprit behind poor performance of both human and artificial agents.

Once removed the artificial agent’s markedly improved, which led the third finding.

Experiment 5 confirmed that once randomness is removed human participants are

able to learn to control the simulation in a matter of dozen tries; significantly quicker

than the simulated agent. Experiment 5 demonstrates that individuals can actually

be quite adept at controlling dynamic environments.

This challenges the notion that the temporal nature of feedback is the main rea-

son for poor human performance (Berry and Broadbent, 1988). Indeed, by training

a reinforcement learning-based agent – against which human performance could be

measured – it became clear that the main problem with the original sugar factory

is the randomness factor embedded into the governing equation. Once randomness

is removed, participants learned to control the simulation in the matter of a dozen

trials. The original rationale for including the randomness was so that, “subjects

would exercise continuous control. Subjects might, through chance, hit the target

value early in a series of trials. They would be unlikely, however, to remain on this

target if they repeatedly entered the same input value” (Berry and Broadbent, 1984,

p. 212). Thus, by wishing to ensure continuous control, they inadvertently made the

simulation impossible to control.

Randomness, however, is used in many domains without the same adverse

consequences in performance. Randomness is used in reaction-time experimenta-

tion to display different stimuli (Sternberg, 2010) and in psychophysics randomness

is used to delay the display of stimuli at random intervals (Whalen et al., 1999).

Even the simulated agent’s epsilon greedy algorithm has randomness built in, in
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order to allow the agent to switch between exploration and exploitation to explore

the environment it is in (Gureckis and Love, 2009b, Simonini, 2018). But random

noise in a feedback system can have devastating consequences to learning. This is

demonstrated by the simulated agent not able to learn. It is also not surprising that

Berry and Broadbent (1988) have found that participants achieve fragmented (im-

plicit) learning, without the ability to verbalise what they learned (explicit learning)

(Berry and Broadbent, 1988, Cleeremans and Seger, 1994, Sanderson, 1990).

6.3 Belief Revision In Groups
Part II of the thesis focused on a different type of system interaction; that of the

group. Unlike the first part, which focused on an individual participant interacting

with a physical feedback system, the second part of the thesis focused on social

systems. Social systems are created by the interactions of the participants within it.

There are two levels of feedback that give rise to such systems. The first level con-

sists of individual-to-individual interactions, which have an impact on behaviour.

The second level consists of individual and group accuracy and the interplay be-

tween the two. Unlike the physical systems in the first part, the feedback is a

function of the these two interactions, which operate within the pre-programmed

system, but would not otherwise exist without the participants.

The principal aim of Part II was to better understand the interactions that occur

between an individual and the wider group and the two feedback systems that are

created by this interaction. Chapter 3 dealt with the strategies that individuals use in

group revision tasks. The goal was to better understand and model individual belief

revision behaviour and to better understand what strategies individuals use when

revising their beliefs, which give rise to the feedback system itself and ultimately

has impact on the feedback each participant receives from the system.

Initial work focused on the Lund study conducted by Jönsson et al. (2015). Un-

like the paper, however, the focus was on the strategies individuals use to revise their

answers in light of the information received from the group. Several different belief

revision models taken from the literature were applied. However, it was found that
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the ‘no-change’ model performed the best in predicting actual revision. Experiment

6 focused on individual belief revision. Mean, standard deviation and distance to

participant’s answers were manipulated in order to better understand what impact

each of these variables would have on revision. It was found that the mean dis-

tance to the other answers had the most impact on revision. Standard deviation and

distance to the closest answer had a moderate mediating impact on revision. And

participant’s confidence had very little correlation with revision. Interestingly, Ex-

periment 6 also showed that confidence did not appear to have significant impact on

belief revision on its own, but it did when combined with the distance to the mean.

In order words, if individuals were less confidence and were further away form the

group them they did move closer to it.

Experiment 7 focused on a single experimental manipulation, sometimes leav-

ing participant’s answer enclosed by other answers and sometimes making it the

most extreme answer. This was done to measure the impact of being on the ‘inside’

or ‘outside’ of the other answers would have on belief revision. The main finding

of this experiment was that individuals were quite sensitive to where they were in

relation to the group. Individuals whose answers are outside of the group tend to

become more conformist, by moving closer to the mean of the group.

Over the course of several revisions, each individual acts as both a positive and

a negative feedback loop. In the first round of revision, participants tend to readily

move towards the group mean, especially those whose views are more extreme.

This produces a positive loop in terms of the amount of revision, whereby new

information is introduced into the system, further encouraging participants to revise

their answers on subsequent rounds. At the same time, participants act as negative

feedback loops in subsequent rounds, where the probability of each person revising

drops precipitously, which leads to the lack of new information being introduced,

which leads to further reduction in revision.

In the context of feedback loops, change has an impact on accuracy. Given that

revision by necessity is the only way for the group to get more accurate, it provides

an observable link between feedback and real world outcomes. Consequentially,
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when participants did change their answers they moved in the right direction, im-

proving group accuracy (see Jönsson et al., 2015, for detailed discussion on group

accuracy).

Research in this chapter culminated in the creation of a new model of human

belief revision that incorporated much of the behaviours that participants displayed

in the Lund study and Experiments 6 and 7 into a framework that could be used to

approximate human behaviour more accurately than the ‘no-change’ model. When

applied to the Lund dataset, the new model outperformed the previously best per-

forming ‘no-change’ model for all of the groups. The new model also performed

well Experiment 8 discussed in Chapter 4, which applied the model to a different set

of participants in an entirely new country (the UK). Given that this model’s perfor-

mance was not statistically different from the ‘no-change’ model, it certainly does

not capture the whole range of revision behaviours that participants have exhibited

and further research with larger groups is required.

6.4 Individual vs Collective Incentivisation
Whereas Chapter 3 focused mainly on the feedback loop between the participants.

The focus was on the individual, their revision strategies and how they influences

other participants. Chapter 4 and specifically Experiment 8 focused on the second-

level feedback loop, that of the interplay between individual and group accuracy by

manipulating the nature of incentivisation. The second loop is not as mysterious as

it may appear at first and through various incentivisation it can be influenced and its

effects studied.

Many of the individuals in the real world systems are incentivised in some

way. Two types of incentivisation were used in Chapter 4: individual and group. In

the individual condition, bonus was paid to participants who achieved the highest

individual accuracy, regardless of how well the group did. In the group condition, a

bonus is paid to participants of the group that achieved the highest accuracy as the

group, compared to other groups. By contrast, a single participant per group was

paid the bonus in the Lund study.
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It was found that participants in Experiment 8 sought much greater conformity

than in the Lund study. However, when compared to each other, the two types of

incentivisation (individual vs group) had modest impact on revision. Participants in

the two conditions did revise differently. Participants in the group incentivisation

condition were much more likely to revise towards the group mean, suggesting that

incentivisation leads to greater conformity. This, however, did not lead to increased

accuracy. This created to a unique phenomena of decreased accuracy in the group

incentivisation condition in the last round. These differences were minor, however

and further studies are required to corroborate these effects.

As demonstrated by Hertwig and Ortmann (2001) in their large review of

performance-based monetary reward studies, there is a real mix of findings in this

area. Many studies show the impact of monetary incentivisation and yet fail to reach

statistical significance (for summary discussion on group accuracy see Hertwig and

Ortmann, 2001, p.392). Our findings suggest that performance-based monetary

rewards have an effect of producing greater conformity, which is not accuracy en-

hancing, however.

6.5 Rank Revision
Chapter 5 expanded belief revision to a new domain of rank aggregation. The

purpose of this chapter was to better understand how humans aggregate ranks and

whether their methods correspond to those that have been shown to produce more

accurate results in modelling exercises.

First, different models of rank aggregation were modelled and examined on

their properties to produce accurate lists under different conditions. It was found

that under smaller list sizes of 4-5 items, simpler aggregation methods, such as

averaging produced results that were on-par, or better than the more complicated,

computationally intensive methods, such as Kemmeny-Snell distance based aggre-

gation. Furthermore, it was found that depending on the individual competence of

the judges, majority aggregation would either produce very accurate results, or fail

completely, regardless of the number of judges. When list size was increased to 6
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and beyond, the computationally intensive methods began to outperform the sim-

pler methods, suggesting that in the limit they would be the only reliable way of

aggregating large ranks. Furthermore, the individual accuracy required for the ma-

jority method also increases, making this a less desirable aggregation method with

larger list sizes.

Next, we ran a study actually looking at human performance. In Experiment

9 participants were asked to rank different cities in the order of population size

from largest to smallest. They were then given a chance to revise their rankings in

light of the other answers they saw from the participants around them. This study

used the existing belief revision experimental design employed in the Lund study,

as well as Experiment 8, applied to the new domain of rank revision. Participant be-

haviour obtained in Experiment 9 showed that distance-based aggregation methods

better accounted for the revision. This is a notable finding given that distance-based

aggregation methods are computationally intense and no previous research has ob-

served such behaviour. Given that these methods have been demonstrated to be

robust and performing well as a function of list size, this finding shows participants

demonstrating a high level of sophistication in ranked belief revision.

6.6 Research Limitations
This thesis makes a number of claims and findings that are backed by nine experi-

ments and a number of modelling exercises. However, as with any research, there

are a number of considerations that limit the wider applicability of this research.

Naturally, experiments in Chapter 2 approximate some of the tasks that indi-

viduals may face in the real world. However, real-world tasks that contain feedback

loops are simply too complex to model fully. Thus, the findings in the chapter

regarding randomness should be considered in a specific context from which it is

derived.

Similarly, the findings in Chapter 3 around the lack of impact of confidence on

belief revision may have been caused to the nature of the experiment itself, where

the task was not one where confidence plays an important role. Given that these
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were general knowledge questions, it is possible that confidence, or the accuracy of

the self-reported confidence measures, was simply not important to the participants

and that in a different context, such measure would indeed correlate with belief

revision.

All lab experiments are time-bound and the findings are limited by the number

of trials one could do. The sugar factory was bound by 30 trials, while belief revi-

sion tasks asked participants to revise their answers up to 3 times. The number of

measures such tasks generate are too few to draw general conclusions about human

behaviour in the real world. It is certainly an indication, but the limited nature of

such experiments precludes us from being about to draw wider conclusions.

6.7 Future Research
This thesis introduces several lines of inquiry and models that require further testing

if they are to be incorporated into the wider literature on human decision-making

and dynamic systems. There findings can be divided into three sub-sections and are

outlined in greater detail below.

6.7.1 Dynamic Control

Given that the common wisdom of the difficulties of the sugar factory due to the

delayed feedback nature of the system, may not be correct, it is worthwhile to ex-

plore the approach presented in this paper to other virtual physical systems that have

been employed in the literature (Cleeremans and Seger, 1994, Funke, 1988, Gonza-

lez et al., 2005, Osman, 2010). In particular, it would be important to test different

simulations with an artificial agent to see if such tasks have a solution in the first

place. The second step would be to identify where artificial agents have difficulties

and to rework the tasks in such a way that they become controllable. The last step

would be to have human participants conduct the new simulations and to see if they

performance improved as a result.

The second research strand that is worthwhile in this space is to reduce the

reliance on randomness in these simulations. The artificial randomness introduced

into these simulations, which is usually intended to make the task more engaging,
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actually makes it quite difficult for participants to do. This somewhat negates the

original intent behind the experiment, as it becomes a case of human against arti-

ficial randomness. As has been demonstrated in this paper, randomness ultimately

prevails, but such an outcome does not necessarily provide a useful insight into the

real world dynamics, as real world systems are not governed by artificially created

randomness, but by the complexity of the interactions of the agents with in.

6.7.2 Models of Human Belief Revision

Chapter 3 introduced an improved model of human belief revision in a dynamic

system. This comprehensive model of belief revision appears to closer reflect true

human behaviour on belief revision tasks. The hope is that this research leads

to more accurate models of belief revisions than are currently used across multi-

ple disciplines to model, or incorporate human decision-making in a group setting.

This research seems particularly important due to the proliferation of computational

models that incorporate human decision-making in order to explain a range of real-

world phenomena, from opinion dynamics to network science.

Undoubtedly, further research is required in this area. The new model shows

promise, although much remains to be understood. In particular, the relationship

between source reliability, incentivisation, group size and willingness to change

should be explored, along with role of individual difference, such as personality,

intelligence and prior knowledge. The dynamics of constant updating also need to

be better understood. The final model assumes no revision beyond the first round,

and empirical data suggests a big drop off, however, some revision does occur. The

nature and dynamics of this revision is beyond the scope of this thesis, but presents

an important avenue for future research.

Future research of individual revision will need to focus on expanding on this

model and evaluating the conditions that influence the alpha factor. The seminal

feature of the new model includes the so-called stickiness (alpha) factor. The factor

was first introduced in Chapter 3 and further expanded in Chapter 4. This factor

refers to groups opinion elasticity, or the propensity to revise belief. The greater the

factor, the more revision occurs in the system. Experiment 8 showed that this this
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factor can vary based on incentivisation and geography. As a follow up it would be

quite important to understand individual and group dynamics that lead to its increase

or decrease. One such factor appears to be different incentivisation, another may be

geography and culture, and there may be others. This line of research would further

extend the understanding of group cohesion by specifically focusing on factors that

make individuals revise their answers more, or less depending on their context.

Rank revision introduced in Chapter 5 also requires further research. Exper-

iment 9 dealt with list size 4 and future experiments should extend the list size

to better understand how humans revise larger ranks. Furthermore, modelling can

be extended to list sizes of 10 or greater, although that would require new com-

putational strategies to model. The larger list size modelling would show which

aggregation methods are optimal as list sizes get bigger and bigger and come to

approximate many of the real world problems where rank aggregation is important.

6.8 Terminus
This thesis and the research contained therein was compiled over four years and

represents an effort to understand a complex phenomena of the impact of feedback

loops on individual decision-making and the systems that these interactions give

rise to. As more and more interactions take place online, social systems are coming

to increasingly resemble feedback properties discussed in these chapters.

There are several lessons that I have learned while doing research in this space.

Firstly, overall, individuals are uncomfortable with being on the margins. Whenever

possible, they will move to conform, adopting just enough of the opinions of others

to fit into the group. Secondly, we will listen to opinions even if they are extreme.

Being exposed to even unbelievably crazy opinions still makes us wonder and re-

vise, even if slightly towards the mean. Third, two individuals is a complex system,

but three people is a truly complex world. It becomes increasingly difficult to truly

discern patterns and desires of individuals in a complex system and eventually the

two concepts become one. It becomes impossible to understand individual actions

without understanding the context and vice versa. Finally, not all revision leads to
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more accuracy. When aggregating ranks, having more information did not lead to

greater accuracy.

It is my hope that this research may be a call to action to further bridge the

gap between theoretical understanding and practical evaluation of actual human

performance. A bridge that psychology and computer science is bound to build as

cognitive science becomes more prevalent as a discipline.
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PILOT	Testing	(n=30)	

Condition	1:	Cover	Story	–	Sugar	Factory	(Exact)	(n=15)	

You	are	in	charge	of	running	a	sugar	production	factory	in	an	underdeveloped	country.	You	control	
the	rate	of	production	by	simply	changing	the	size	of	the	work	force,	ignoring	all	other	factors.	You	
start	with	600	workers	that	produced	6000	tonnes	of	sugar	in	the	previous	month.	

Your	task	 is	to	reach	and	maintain	a	target	output	of	9,000	tons	per	month.	To	help	with	the	task,	
the	maximum	output	of	the	factory	has	been	set	at	12,000	and	the	minimum	to	1,000.	

You	will	have	to	run	the	factory	for	30	months.	Each	month	you	will	assign	a	number	between	1-12	
representing	the	number	of	workers	that	would	work	in	the	factory	that	month.	The	computer	will	
multiply	your	number	by	100	to	get	the	actual	number	of	workers.	Example:	6	is	600	workers.	

Condition	2:	Cover	Story	–	Sugar	Factory	(Range)	(n=15)	

You	are	in	charge	of	running	a	sugar	production	factory	in	an	underdeveloped	country.	You	control	
the	rate	of	production	by	simply	changing	the	size	of	the	work	force,	ignoring	all	other	factors.	You	
start	with	600	workers	that	produced	6000	tonnes	of	sugar	in	the	previous	month.	

Your	task	 is	to	reach	and	maintain	a	target	output	of	9,000	tons	per	month.	However,	we	will	also	
score	any	output	between	8000	and	10,000	as	being	on	target.		

To	help	with	the	task,	the	maximum	output	of	the	factory	has	been	set	at	12,000	and	the	minimum	
to	1,000.	

You	will	have	to	run	the	factory	for	30	months.	Each	month	you	will	assign	a	number	between	1-12	
representing	the	number	of	workers	that	would	work	in	the	factory	that	month.	The	computer	will	
multiply	your	number	by	100	to	get	the	actual	number	of	workers.	Example:	6	is	600	workers.	
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PART	II	

Condition	1:	Cover	Story	–	Sugar	Factory	(Target)	(n=20)	

You	are	in	charge	of	running	a	sugar	production	factory	in	an	underdeveloped	country.	You	control	
the	rate	of	production	by	simply	changing	the	size	of	the	work	force,	ignoring	all	other	factors.	You	
start	with	600	workers	that	produced	6000	tonnes	of	sugar	in	the	previous	month.	

Your	task	 is	to	reach	and	maintain	a	target	output	of	9,000	tons	per	month.	To	help	with	the	task,	
the	maximum	output	of	the	factory	has	been	set	at	12,000	and	the	minimum	to	1,000.	

You	will	have	to	run	the	factory	for	30	months.	Each	month	you	will	assign	a	number	between	1-12	
representing	the	number	of	workers	that	would	work	in	the	factory	that	month.	The	computer	will	
multiply	your	number	by	100	to	get	the	actual	number	of	workers.	Example:	6	is	600	workers.	

	

Condition	2:	Cover	Story	–	Sugar	Factory	(Non-Linear)		(n=20)	

You	 are	 now	 in	 charge	 of	 running	 a	 factory	 in	 a	 developed	 country	with	 a	well-integrated	 supply	
chain	 management	 and	 dynamic	 output	 control	 that	 is	 more	 responsive	 to	 the	 changes	 to	 the	
workforce.	Your	goal	has	 increased	and	you	are	 to	 reach	and	maintain	a	 target	output	of	100,000	
tons	of	sugar	per	month.	You	start	with	6000	tons	that	were	produced	by	60	workers.	To	help	with	
this	task,	the	maximum	output	has	been	set	at	240,000	and	the	minimum	at	1,000.	

You	will	run	this	factory	for	30	months,	please	note	that	since	this	factory	is	much	more	advanced,	
you	will	now	have	the	ability	to	fine-tune	the	number	of	workers	you	assign	each	month.	You	may	
assign	a	number	 from	0-1200	 representing	 the	number	of	workers	 that	would	work	 in	 the	 factory	
that	month.	The	computer	will	no	longer	multiply	your	number	by	100.	
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Basics	of	‘feedback’	loops/Controlling	Feedback	loops	

Feedback	loop	is	a	phenomenon	where	previous	output	becomes	part	of	future	input.	For	example,	
think	of	population	growth,	more	births	result	in	a	larger	population	and	larger	population	results	in	
more	births.	The	relationship	between	births	(input)	and	population	(output)	is	known	as	a	positive	
feedback	loop.	A	figure	1	below	illustrates	this	characteristic:	

	

	

(Figure	1:	Birth	Rate	Feedback	Loop)	(de	Rosnay,	1979)	http://pespmc1.vub.ac.be/feedback.html	

Positive	feedback	loops,	if	left	alone	can	lead	to	significant,	uncontrollable,	growth	or	decay.	As	can	
be	seen	from	Figure	2,	the	growth	or	decay	can	become	exponential	in	nature,	which	makes	reversal	
more	difficult,	the	longer	the	loop	is	allowed	to	operate.		

	

(Figure	2:	Positive	Feedback	Loops)	(de	Rosnay,	1979)	http://pespmc1.vub.ac.be/feedback.html	

	

	

	

	

	

195



Positive	feedback	loops		

The	sugar	 factory	you	have	 just	controlled	was	governed	by	a	positive	 feedback	 loop.	The	formula	
for	 production	 took	 into	 account	 previous	month’s	 output	 in	 determining	 how	much	 the	 factory	
produced	 in	 the	 subsequent	month.	When	dealing	with	 such	 systems,	 it	 is	 important	 to	 keep	 the	
following	strategies	in	mind:	

- Attempt	 to	 understand	 the	 underlying	 processes:	 What	 is	 the	 governing	 equation	 of	 the	
system?	Are	there	any	patterns	to	the	output?	What	is	the	impact	of	the	different	variables?	
How	does	the	system	grow	and	decline?	

- Test	various	theories:	Try	to	vary	your	answers	and	test	different	patterns.	Switch	between	
different	 hypothesises	 and	 test	 them	 in	 a	methodical	way.	 Seek	 and	 accept	 evidence	 that	
may	 disprove	 the	 hypothesis	 you	 are	 testing.	 Do	 not	 only	 seek	 and	 accept	 answers	 that	
confirm	your	hypothesis.	

- Make	changes	gradually	when	testing	your	theories.	Sudden	and	large	changes	in	input	can	
have	adverse	reactions	within	the	system	and	taint	any	feedback.	This	is	particularly	true	for	
systems	governed	by	non-linear	growth,	or	decline.	

- Account	for	noise.	Some	variation	and	randomness	is	to	be	expected.	
- Use	your	answers	to	create	convergence	on	the	goal.	Try	a	strategy	that	instead	of	focusing	

on	 hitting	 the	 target	 attempts	 to	 converge	 on	 it	 over	 several	 turns.
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PART	III	

Cover	Story	–	Sugar	Factory	(Non-Linear)		(n=20)	

You	 are	 in	 charge	 of	 running	 a	 sugar	 factory	 in	 a	 developed	 country	 with	 a	 well-integrated	
supply	chain	management	system	that	is	very	responsive	to	any	changes	in	the	workforce	you	
make.	Your	 goal	 is	 to	 assign	workers	 to	work	 in	 the	 factory,	 and	 reach	 and	maintain	a	 target	
output	of	100,000	tons	of	sugar	per	month.	In	the	previous	month	60	workers	produced	6000	
tons.	To	help	with	this	task,	the	maximum	output	of	the	factory	has	been	set	at	240,000	and	the	
minimum	at	1,000.	

As	you	progress,	you	will	see	a	black	line	with	a	number	above	it	indicating	the	factory	output,	
as	well	as	dots	with	a	number	of	workers	that	you	assigned.		

You	will	 run	 this	 factory	 for	 30	months,	 each	month	 you	will	 assign	 a	 number	 from	 0-1200	
representing	the	number	of	workers	that	would	work	in	the	factory	that	month.		

Cover	Story	–	Climate	Change		

In	 front	 of	 you	 is	 a	 simulation	 of	 the	 Kaya	 identity,	 which	 economists	 use	 to	 express	 the	
relationship	between	several	social	and	economic	factors	and	CO2	emissions.		

This	 simulation	 starts	 in	 2000.	 You	 have	 just	 been	 appointed	 as	 the	 Prime	 Minister	 of	 a	
developed	country	and	your	job	is	to	stay	in	power	by	carefully	balancing	economic	growth	with	
the	 rise	 in	 CO2	 emissions.	 Climate	 change	 is	 about	 to	 become	 a	major	 political	 issue	 as	 it	 is	
becoming	clear	that	if	carbon	emissions	are	not	curbed,	the	global	temperatures	will	rise,	with	
potentially	unpredictable	consequences.	As	such,	you	are	to	navigate	a	path	between	economic	
growth	and	carbon	emissions.	Your	task	is	to	maintain	healthy	GDP	growth,	while	ensuring	that	
your	country’s	emissions	stay	below	the	critical	threshold	of	6	billion	tons	of	CO2	a	year.	

You	are	to	run	your	country	for	the	next	40	turns,	controlling	quarterly	GDP	growth.	Each	turn	
you	may	enter	any	number	between	10	and	-10	indicating	GDP	growth	or	decline	that	you	set	in	
the	budget.	Keep	in	mind	that	consistent	GDP	decline	will	lead	to	popular	unrest	and	ultimately	
will	result	in	your	dismissal.	

Your	 approval	 rating	 is	 to	 your	 right	 and	 will	 change	 color	 to	 reflect	 your	 popularity.	 If	 it	
becomes	too	red,	you	will	be	voted	out	of	office	and	the	simulation	will	end	prematurely.	The	
black	line	on	the	graph	shows	current	CO2	emission	levels.	The	red	line	represents	the	limit	of	
6000	as	mentioned	before.	
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Climate	Change	Questionnaire	–	PART	I	

	
Below	are	23	questions	about	your	views	on	climate	change.	Please	indicate	your	answer	by	marking	
the	appropriate	item	on	the	scale.	
	
1.	Claims	that	human	activities	are	changing	the	climate	are	exaggerated		
	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
2.	Climate	change	is	just	a	natural	fluctuation	in	earth’s	temperatures	
	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
3.	I	do	not	believe	climate	change	is	a	real	problem	
	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
4.	I	am	uncertain	about	whether	climate	change	is	really	happening	
	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
5.	The	evidence	for	climate	change	is	unreliable	
	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
6.	There	is	too	much	conflicting	evidence	about	climate	change	to	know	whether	it	is	actually	
happening		

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
7.	Too	much	fuss	is	made	about	climate	change	
	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	
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8.	Floods	and	heat-waves	are	not	increasing,	there	is	just	more	reporting	of	it	in	the	media	these	days		
	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
9.	Many	leading	experts	still	question	if	human	activity	is	contributing	to	climate	change	
	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
10.	The	media	is	often	too	alarmist	about	issues	like	climate	change	
	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
11.	I	believe	climate	change	is	reversible	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
12.	I	often	set	my	thermostat	to	20	degrees	or	cooler	in	wintertime	to	reduce	my	contributions	to	
climate	change	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
13.	It	is	my	responsibility	to	do	something	about	climate	change	
	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
14.	I	support	government	action	to	tackle	climate	change		

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
15.	I	use	public	transportation	or	car-pooling	to	reduce	my	contributions	to	climate	change	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	
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16.	I	believe	government	action	is	necessary	to	moderate	climate	change	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
17.	Dealing	with	climate	change	requires	drastic	collective	action	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
18.	I	believe	government	action	will	be	effective	in	moderating	climate	change	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
19.	I	intend	in	the	future	to	set	my	thermostat	to	20	degrees	or	cooler	in	wintertime	to	reduce	my	
contributions	to	climate	change	
	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
20.	I	intend	to	write	a	letter,	email,	or	phone	a	government	official	about	climate	change	over	the	next	
12	months	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
21.	I	intend	to	in	the	future	use	public	transportation	or	car-pooling	to	reduce	my	contributions	to	
climate	change	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
22.	Dealing	with	climate	change	requires	immediate	collective	action	
	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

23.	I	believe	government	should	cut	CO2	emissions	even	if	that	leads	to	increased	unemployment		
Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	
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23.	I	support	carbon	tax	(tax	on	companies	emitting	carbon	into	the	atmosphere)	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
23.	I	support	drastic	economic	measures	(ex.	closing	down	factories)	in	order	to	cut	CO2	levels	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
	
23.	I	believe	UK	government	is	doing	enough	to	combat	climate	change	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
23.	I	suppose	cleaner	energy	sources	(ex.	wind,	solar)	even	if	it	means	paying	more	for	electricity	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
	
	
23.	Climate	change	is	too	complex	and	uncertain	for	scientists	to	make	useful	forecasts	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
Climate	Change	Questionnaire	–	PART	II	

	
Below	are	further	questions	about	your	views	on	climate	change.	Please	indicate	your	answer	by	
marking	the	appropriate	item	on	the	scale.	
	
1.	Many	leading	experts	still	question	if	human	activity	is	contributing	to	climate	change	
	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	

	
2.	Climate	change	is	just	a	natural	fluctuation	in	earth’s	temperatures	
	

Strongly	
Disagree	

	 	 	 	 	 	 Strongly	
Agree	

	 	 	 	 	 	 	 	 	 	
1		 	 2		 	 3		 	 4		 	 5	 	
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Appendix D

UK Census Questions



Answer	 Question	

2.6	
"What	is	the	percent	of	adults	(over	the	age	of	16)	who	have	been	
unemployed	for	over	12	months?"	

21	
"What	is	the	percentage	of	adults	in	the	UK	who	report	not	drinking	alcohol	at	
all?"	

86	
"What	is	the	proportion	of	individuals	living	in	the	UK	that	have	been	born	in	
the	UK?"	

19	 "What	is	the	proportion	of	children	in	the	UK	living	in	absolute	poverty?"	
78.4	 "What	is	the	average	male	life	expectancy	in	the	UK?"	

72	
"What	is	the	proportion	of	people	in	the	UK	engaging	in	any	volunteering	
activity	at	least	once	a	year?"	

98	
"What	is	the	proportion	of	people	in	the	UK	who	report	having	a	partner,	
family	member,	or	friend	to	rely	on	if	they	have	a	serious	problem?"	

41	
"What	is	the	proportion	of	people	agreeing	that	people	in	their	
neighbourhood	can	be	trusted?"	

58	 "What	percentage	of	workers	are	part	of	a	workplace	pension	scheme?"	
19.5	 "What	proportion	of	the	population	in	the	UK	smokes?"	
28.5	 "What	proportion	of	adults	does	less	than	30	minutes	of	exercise	a	week?"	
4.1	 "What	percentage	of	energy	is	consumed	from	Renewable	Sources?"	
43.2	 "What	percentage	of	households	recycle?"	
25	 "What	percentage	of	total	land	in	the	UK	is	used	for	agriculture?"		
53	 "What	percentage	of	the	food	consumed	in	the	UK	comes	from	the	UK?"	

30	
"What	percentage	of	the	food	consumed	in	the	UK	comes	from	the	EU	and	
Europe?"	

20	 "What	percentage	of	rivers	in	the	UK	failed	chemical	testing	in	2012?"	
47	 "What	percentage	of	fish	is	harvested	sustainably	in	the	UK?"	

15	
"What	percentage	of	the	population	in	the	UK	reported	binge	drinking	(8+	
drinks	on	a	single	night)	at	least	once	in	the	previous	week?"	

15	 "What	is	the	percentage	of	self-employed	workers	in	the	UK?"	
41	 "What	is	the	average	age	of	a	worker	in	the	UK?"	
42	 "What	percentage	of	marriages	end	in	divorse	in	the	UK"	

34.4	 "What	percentage	of	adults(18+)	in	the	UK	have	a	unversity	degree"	

64	
"What	percentage	of	adults(18+)	in	the	UK	are	classified	as	overweight	or	
obese?"	

10	 "What	percentage	of	the	population	is	lefthanded?"	
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