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Abstract

In social networks, analysing the explicit interactions among users can help in

inferring hierarchical relationships and roles that may be implicit. In this thesis,

we focus on two objectives: detecting hierarchical relationships between users and

inferring the hierarchical roles of users interacting via the same online communica-

tion medium. In both cases, we show that considering the temporal dimension of

interaction substantially improves the detection of relationships and roles.

The first focus of this thesis is on the problem of inferring implicit relationships

from interactions between users. Based on promising results obtained by standard

link-analysis methods such as PageRank and Rooted-PageRank (RPR), we introduce

three novel time-based approaches, “Time-F” based on a defined time function,

Filter and Refine (FiRe) which is a hybrid approach based on RPR and Time-F,

and Time-sensitive Rooted-PageRank (T-RPR) which applies RPR in a way that

takes into account the time-dimension of interactions in the process of detecting

hierarchical ties.

We experiment on two datasets, the Enron email dataset to infer manager-

subordinate relationships from email exchanges, and a scientific publication co-

authorship dataset to detect PhD advisor-advisee relationships from paper co-authorships.

Our experiments demonstrate that time-based methods perform better in terms of

recall. In particular T-RPR turns out to be superior over most recent competitor

methods as well as all other approaches we propose.

The second focus of this thesis is examining the online communication behaviour

of users working on the same activity in order to identify the different hierarchical

roles played by the users. We propose two approaches. In the first approach, su-

pervised learning is used to train different classification algorithms. In the second

approach, we address the problem as a sequence classification problem. A novel

sequence classification framework is defined that generates time-dependent features
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based on frequent patterns at multiple levels of time granularity. Our framework is

a flexible technique for sequence classification to be applied in different domains.

We experiment on an educational dataset collected from an asynchronous com-

munication tool used by students to accomplish an underlying group project. Our

experimental findings show that the first supervised approach achieves the best map-

ping of students to their roles when the individual attributes of the students, infor-

mation about the reply relationships among them as well as quantitative time-based

features are considered. Similarly, our multi-granularity pattern-based framework

shows competitive performance in detecting the students’ roles. Both approaches

are significantly better than the baselines considered.
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Chapter 1

Introduction

A social network is defined as a graph structure that consists of a set of actors

(“nodes”) and a set of relationships (“ties” or “edges”) between the actors [127].

With the rapid development of web-based applications, social networks have moved

online. Different types of online social networks have emerged where an online com-

munity can be formed between a group of people who can interact with each other

by sharing of information, experiences, and perspectives throughout community-

oriented websites [130]. Examples of current online social networks include discus-

sion forums, chat rooms, traditional social media, email networks and collaboration

networks.

The number of people involved in online social activities is increasing day by day.

For example, according to the Office of National Statistics1, more than 38 million

people in the UK (76% of the British population) use the Internet, and about 54%

of those use some form of social networking website. This explosion of online life

has attracted the attention of researchers over the past decade.

The scope of research done in this field extends over a wide range of areas. From

a sociological perspective, some work such as [15], has studied the relationship be-

1www.ons.gov.uk/ons/dcp171778_373584.pdf
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tween online and offline social capital, and analysed the differences between them.

However, much research such as ours, has studied online social networks using com-

puter science-based techniques. Mining the huge amount of social capital data can

be beneficial in improving the effectiveness of online social websites as well as many

other applications such as recommender systems, marketing systems, collaboration

systems and search systems.

1.1 Problems addressed by this thesis

In this thesis, we address two problems in the field of social network mining. The

first is detecting hierarchical social relationships (covered in chapters 3, 4 and 5),

such as detecting manager-subordinate relationships from an email network. The

second problem is detecting hierarchical roles (covered in chapters 6 and 7), such

as classifying a user as a project manager or a project worker from interaction on a

project discussion forum.

1.1.1 Detecting hierarchical social relationships

Interactions between groups of people and the patterns of these interactions are

typically affected by the underlying social relationships between the people. In

social networks, such social relationships are usually implicit. Nonetheless, analysing

patterns of social interactions between the members of a social network can help to

detect these implicit social relations. For example, consider a social network where

the members declare explicitly some type of social relationship with others, such as

x is a colleague of y. Now, suppose that we also have available the communication

patterns between x and y, e.g., how often they exchange e-mails in a month. Using

this information we may be able to infer additional relationships between these two

members, such as x is the manager of y. As another example, in a co-authorship

network, explicit relationships exist between co-authors, where authors are linked
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to all their co-authors. Analysing these explicit relationships may help detect other

interesting social ties such as which pairs of co-authors have a PhD advisor-advisee

relationship between them. We call relationships, such as manager-subordinate and

advisor-advisee, hierarchical relationships.

In the first half of this thesis, we address the problem of detecting implicit

hierarchical relationships in a social network by exploiting the interactions between

the members of the network. We mainly focus on two key features that play a

central role in our problem: (a) the structure of the interaction network, and (b) the

evolution of the interactions, or in other words, the “dynamics” of the interactions

over time. Our intuition is that actors connected by a hierarchical tie will exhibit

different temporal interaction patterns to those who are connected by some other

type of tie. Our findings demonstrate that for our problem setting “time matters”.

We formulate the problem as follows: given an input graph of an interaction

network, where nodes represent actors and edges represent interactions between the

actors, we analyse the network and infer an output graph representing a hierarchical

relationship network over the same group of actors as in the input graph.

Detecting hierarchical social ties may be beneficial for many reasons and in dif-

ferent application domains. First, they can be used for classifying actors according

to their role in an organisation or discovering communities and analysing inter- or

intra-community relations. Also, hierarchical ties may be used for detecting influ-

ential actors within a social network and studying how they influence the whole

network. Additionally, such ties can be used for validating the theory of influence

attribution in social science, where it is assumed that information usually flows from

“opinion leaders” to “ordinary users” [70]. In certain applications, such as analysing

a company’s performance, the detected management hierarchy from the interaction

networks can be compared with the real organisational chart. This could help to

assess and adapt the current structure in order to improve the overall work flow.
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1.1.2 Detecting hierarchical roles

In the second half of the thesis, we move from detecting hierarchical ties to inferring

hierarchical roles. Hierarchical roles are assigned to people in many situations. One

example is in project management, where different roles are assigned to project

members.

Promoting learning through collaborative activities is one recent orientation in

learning strategies. Working on a project means working in a team, and a project

team can be seen as a social group where team members are involved in social

interactions with each other, share interests and have the common goal of complet-

ing the project. For example, the learning framework presented by Alba-Eĺıas [4],

assumed that a PRINCE2TM (Projects IN a Controlled Environment) [91] project

has an explicit project management team structure consisting of defined and agreed

roles (not jobs) and responsibilities for the people (such as students) involved in the

project [91]. This project structure facilitates the students’ learning process because

it clarifies the differences between the different roles of persons who work together

on the same project, but with very different responsibilities.

The overall objective of this research is to examine the relationships between

students through their online asynchronous conversations such as discussion posts

and blogs. More generally, this work addresses the problem of detecting user roles

from their online interactions. In this context, we adopt two approaches:

• Educational Data Mining (EDM): We analyse the capability of Educa-

tional Data Mining (EDM) to identify patterns that emerge from the online

interactions between students according to their role in a project. Using this

approach, we identify the set of most relevant features for building a model us-

ing supervised learning. In addition, we show that time-based features, which

capture the temporal dimension of the interactions, improve the classification

results.
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• Sequence Classification (SC): The involvement of each student in a project

is captured as a sequence of communication events such as sending and/or

reading messages. Since the temporal order of various communication patterns

may play a major role in identifying the correct role for each student, we devise

a framework for identifying frequent communication patterns at different levels

of time granularity.

We focus our study on analysing asynchronous communications because they

tend to be better structured and developed than synchronous conversations [44], and

they provide project members time to examine and reflect on a topic before they

formalize their contribution [49] or provide feedback related to a piece of preformed

work. Furthermore, asynchronous communication tools are considered appropriate

for virtual project teams, because this way students can participate in the project

at their own pace.

The knowledge acquired by our proposed algorithms can help teachers under-

stand how students’ roles in a project relate to their communication behaviour. In

addition, teachers may assess the performance of students and whether they fulfill

the roles to which they were assigned. This can be done by comparing a student’s

role and his/her observed interaction patterns. Moreover, our sequence classification

framework can be applied in different domains within the area of sequence classi-

fication. For example, we might use our framework to track a suspicious series of

transactional data in a bank to detect money laundering activities.
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1.2 Thesis Contribution

The contributions of this thesis can be summarised as follows:

Detecting hierarchical social relationships

• We address the problem of detecting hierarchical social relationships in the ex-

treme case when none of these relationships are known beforehand. We exploit a

personalised version of a link-analysis method, namely Rooted-PageRank (RPR)

which gives promising results.

• We propose three novel time-based approaches, called (1) Time function (Time-

F), (2) Filter-and-Refine (FiRe) and (3) time-sensitive Rooted-PageRank (T-RPR)

which take into account how the structure of the interaction network changes over

time. In T-RPR, we propose two approaches for aggregating scores from each of

the time slots over which T-RPR is run, one based on a simple weighted average

and the other based on voting.

• We investigate the performance of all the above methods under different exper-

imental settings using directed, undirected, weighted and unweighted interaction

networks. We use the Enron e-mail network between 155 employees to detect 147

manager-subordinate relationships between them. In addition, we evaluate the

performance on a co-authorship network between more than 1 million authors to

detect 2100 PhD advisor-advisee relationships.

• Our experiments show that our T-RPR, Time-F and FiRe methods achieve consid-

erably better results than the competitor RPR baseline approach. This supports

our claim that “time matters”. For example, T-RPR, Time-F and FiRe score 0.68,

0.62, 0.6 respectively for recall in detecting advisor-advisee relationships compared

to only 0.39 using RPR.
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Detecting hierarchical roles

• In the first approach, we propose and build several supervised classification models

using different data mining algorithms, to detect roles played by project members

who are working in the same project and interacting online. In these models,

we investigate several sets of quantities and network-based features to train the

classification models. We show that the reply-based, time-based and reading-based

features are discriminative in detecting users’ roles.

• In the second approach, we address the problem as a sequence classification prob-

lem. We propose a novel sequence classification framework that generates features

based on frequent patterns at multiple levels of time granularity. Feature selection

techniques are applied to identify the most informative features that are then used

to construct the classification model. Our framework is flexible, so can be applied

in different domains to classify sequences of discrete events.

• We evaluate the performance of these approaches on real data of 194 students

interacting online through a project communication tool and playing different roles.

Our experiments show that, in the first approach, “reply-based” features and a

subset of “time-based” features coinciding with the first weeks of the project,

improve mapping students to their roles. This highlights the importance of initial

interactions between project members. Moreover, our multi-granularity pattern-

based sequence classification framework can achieve competitive performance in

detecting the students’ roles, scoring in the best case more than 0.9 for F-measure

compared to only 0.57 using our baseline similarity-based model.
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1.3 Thesis Outline

Chapter 2 reviews background research on all areas related to the problems we

address in this thesis. This covers areas such as detecting and predicting social

relationships from interaction networks, and analysing and modeling user online

behaviour. We also review previous work done on the bibliographic networks,

which is one of the applications we study. In addition, as we apply our approach

in an educational domain, we highlight related work in that context. The chapter

concludes with other related work that does not belong to any of the aforemen-

tioned areas.

Chapter 3 introduces the main definitions and formulates the problem of detecting

hierarchical social ties from online interaction networks. We also describe the two

real datasets we used in the experiments, i.e., the Enron (emails) dataset and the

coauthor (bibliographic) dataset. In this chapter, we employ our three baseline

methods (PageRank, Degree and Rooted-PageRank) on the explicit interactions

between actors in order to infer the implicit hierarchical relationships.

Chapter 4 proposes two novel time-based approaches “Time-F” and “FiRe” which

take into account the time-dimension of interactions in the process of detecting

hierarchical ties. The chapter furnishes the experimental results obtained using

these approaches on Enron and coauthor datasets. A real case study on the Enron

dataset is explained at the end of this chapter.

Chapter 5 introduces another novel time-sensitive method, called T-RPR, that

captures and exploits the dynamics and evolution of the interaction patterns in

the network in order to identify the underlying hierarchical ties. The results using

T-RPR in different experimental settings are also discussed. The chapter resumes

with the case study covered in chapter 4, presenting the results using T-RPR.
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Chapter 6 studies the application of Educational Data Mining to examine the

online behaviour of students in order to detect their roles. First, several sets of

features used to train the classification models are defined. Second, the process

of selecting the relevant features is explained. Finally, the chapter concludes with

the experimental results and main findings.

Chapter 7 defines a multi-granularity framework for classifying sequences of dis-

crete events. In this chapter, we first introduce our baseline similarity-based

model. Then, we explain the phases of our framework, namely feature genera-

tion, feature selection and model construction. The empirical results of applying

our framework in the educational domain are presented at the end.

Chapter 8 completes the thesis by providing a summary of the contributions and

the conclusions of each chapter. Several future directions are then discussed,

including alternative approaches for investigation.



Chapter 2

Related Work

Although the history of social networks is relatively short, it is considered to be one

of the most active research area these days [92]. Social networks have attracted re-

searchers from different disciplines and backgrounds in computer science. Currently

the interest in social networks covers different types of networks. These include

traditional discussion forums, famous social media such as Facebook and Twitter,

and collaboration networks such as email networks and bibliographic networks.

Given that this thesis aims to detect hierarchical social relationships and roles

in different types of social networks, it is useful to understand the position of this

thesis within the intensive efforts carried out in the literature. In this chapter, we

highlight different areas that are related to our research. We also compare our work

with similar approaches in the literature and explain the differences between our

findings and others’ output.

2.1 Background and Definitions

Data Mining (DM) is the process of extracting knowledge from data. In this

process, the data available is scanned to infer useful, interpretable and hidden infor-

mation [126]. Although many researchers use DM as a synonym for the knowledge

30
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discovery process (KDP) [25], DM is just one step of the KDP. The KDP de-

scribes the entire knowledge extraction process and consists of several steps which are

executed in a sequence. These steps include understanding the application domain,

data preparation, data analysis (i.e., data mining), evaluation and understanding

the generated knowledge.

DM can be performed using a wide range of techniques. In this section, we

highlight some of these techniques that are strongly connected to the related work

and/or our approaches explained later in this thesis.

2.1.1 Machine Learning

Machine learning represents the ability to learn from the data available in order to

extract interesting patterns, and make intelligent decisions based on the detected

patterns. For example, we may learn from a set of labelled examples to detect the

labels of new (unseen) objects. Machine learning can be applied in several ways as

follows:

• Supervised Learning (Classification): The supervision comes from a train-

ing dataset which consists of a set of labelled objects. By learning from the

training dataset, the unknown labels of objects in a given testing dataset can be

detected. We use this technique to detect the roles of students working in the

same project (Chapter 6 and 7). An example of a classification model is a Sup-

port Vector Machine (SVM) [29,125]. This model represents the objects in

the training dataset as points in the space of real vectors. Then, a hyperplane

or a set of hyperplanes is used to separate the points into categories according

to their labels. A good separation is one that keeps gaps as wide as possible

between categories. A new unlabelled example is then mapped to the same space

and assigned to the category it falls in.
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• Unsupervised Learning (Clustering): In clustering, the input is not la-

belled. Based on certain features, clustering groups similar objects in one cluster.

However, since the training data are not labelled, clustering cannot give semantic

meaning to obtained clusters [50].

2.1.2 Statistics

A statistical model is a set of mathematical functions that describe the behaviour

of the objects in a target class in terms of random variables and their probability

distributions. In networks, a number of measures have been introduced to reflect

the importance of nodes e.g., the most influential persons in social networks. These

measures include:

• Degree Centrality : The idea behind this measure is that “an important node

is involved in a large number of interactions” [3]. It is defined as the total number

of links the node has with other nodes. In the case of a directed network, this can

be separated into two measures, namely out-degree and in-degree , in which

the former is the number of arcs from the node to others and the latter one is the

number of arcs to the node from others. However, the limitation of this measure

is that, only the local structure around the node is considered and not the global

structure of the networks.

• Closeness Centrality : The idea behind this measure is that “an important

node is typically close to, and can communicate quickly with, the other nodes in

the network” [86]. It reflects the reachability of a node within a network. It is

defined as the number of other nodes divided by the sum of all distances between

the node and all others. However, one limitation of this measure is that it is not

applicable to networks with disconnected components.
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• Betweenness Centrality : The idea behind this measure is that “an important

node will lie on a high proportion of paths between other nodes in the network” [3].

It reflects the central position of a node x in a network. It is defined as the

proportion of shortest all-pairs paths in which the node x acts as a bridge. The

limitation of this measure is that many nodes may not be located on a shortest

path between two other nodes. This gives them a score of zero.

• Eigenvector Centrality : The idea behind this measure is that “an important

node is connected to important neighbors” [11]. It calculates the importance of a

node in a network relative to all other nodes. In other words, let x be a node with

connections to several nodes in the network. Connections to high-scoring nodes

contribute more to the score of x, compared to connections to low-scoring nodes.

A number of variations of this measure have been introduced into the literature,

such as PageRank [14] and HITs [66].

– PageRank (PR) [14] is a link analysis algorithm used by the Google search

engine. The main idea behind PageRank is that it calculates a probability

distribution that represents the likelihood that a person who is randomly

surfing a graph through edges representing links between web pages, will

arrive at any particular node. PageRank is an iterative algorithm, which

starts by dividing the distribution among all nodes in the graph. After each

pass, the approximate PageRank scores will be assigned to the nodes in the

graph. These PageRank scores approximate the theoretical true value. Let

PR be the vector of PageRank values. Using the recursive definition of

PageRank [14], PR is computed as follows:

PR(v) =
1− d
|V |

+ d
∑
∀u→v

PR(u)

|F (u)|

where F (u) is the set of outgoing arcs from node u; hence |F (u)| corresponds
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to the out-degree of node u, and u → v means that there is an arc from u

to v.

PageRank avoids the problem of “sink states” (i.e., nodes that have no

outgoing edges), by assuming that from such nodes the surfer moves to

some other random node in V . PageRank defines a damping factor of 1− d

as the regulating residual probability of visiting a random node in a graph

from a particular node. The appropriate value of 1 − d depends on the

application and graph. In the case of the web, a random user surfing the web

will typically follow about 6 hyperlinks before becoming bored and choosing

some other random web-page to surf. Thus, in this case, 1−d = 1/6 ≈ 0.15.

– HITs [66]: Kleinberg developed an algorithm that uses the link structure

of the web to discover and rank pages (nodes) relevant for a given query.

The algorithm finds the authoritative pages (nodes) that contain valuable

answers to the query. However, to find “authority” pages, we need to find

“hubs” pages. These are the pages that advertise or point to the “authority”

pages.

In a recursive way, each node is assigned two weights: an authority and a

hub score. When a node v has a good hub score, this increases the authority

scores of all nodes that v points to. Similarly, if v obtained a good authority

score, this increases the hub scores of all nodes pointing to v. The authority

and hub scores of v are defined as follows:

auth(v) =
∑
∀u→v hub(u) hub(v) =

∑
∀u→v auth(u)

• Clustering Coefficient : This measure assesses the tendency of a group of

nodes to form a cluster together. It is based on a theory that, in real world

networks, nodes tend to be in clusters, in which each cluster has a high density

of ties edges between its members. Two variations of clustering coefficient have

been proposed:
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– Global Clustering Coefficient : This measure was first introduced by

Luce and Perry (1949). It reflects the clustering in the whole network and

can be applied on directed or undirected networks. Let a triad be a set

of three nodes which are connected by two edges (open) or three edges

(closed). The global clustering coefficient is defined as the number of closed

triads divided by the number of closed and open triads in the network.

– Local Clustering Coefficient : This measure is based on local density

[113,124,128]. For each node, it is defined as the number of ties present be-

tween the node’s neighbours divided by the number of possible ties between

the neighbours. For example, if the neighbours of node x are all connected

with each other, this gives x a local clustering coefficient of 1. Alternatively,

if none of x’s neighbours are connected to each other, this give x a score of

zero.

2.2 Detecting and predicting social relationships

Similarly to our approach, Rowe et al. [110] approached the problem of inferring the

Enron management hierarchy as a ranking problem. They employed information

that reflects the flow of emails between users such as the number of sent or received

emails. Additionally, they used information about the nature of connections in the

email network. Examples of these include the number of cliques each user is involved

in and the degree centrality scores. A “social” score for each user was computed

using the aforementioned features by which the user was ranked. After that, users

with similar scores were grouped together in order to determine different levels in the

management hierarchy. Although we addressed the problem using a similar ranking

methodology, our research studies the problem of inferring the direct hierarchical

relationships between employees, not detecting a user’s level in the hierarchy.
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An earlier study using the Enron dataset by Klimt and Yang [67] was in the

area of email classification into user-specific folders. In other words, given a user

and a set of his/her defined email folders, the authors built a model to classify a

new email sent to the user to one of these pre-defined folders. They used an SVM

classifier in various ways. First, the individual parts of an email such as From, To,

Subject and Body, were used as features. Then, they used all these features together

with regression weights to train and test a classifier. Their results showed that the

body section was the most discriminative feature among all the individual features

in classifying emails. Furthermore, using ridge regression to combine all the features

linearly proved to give better results.

Gupte et al. [47] premised their study on the assumption that the existence of a

link in an interaction network such as Twitter indicates a social-rank recommenda-

tion. For example, a link showing that u is following v suggests that u recommends

v. In other words, when there is no reverse link from v to u, this suggests that v has

a higher social position in the hierarchy. In this study, the authors introduced the

concept “social agony status”. This status is caused when people connect to others

(or follow others in the case of Twitter) who are lower in the hierarchy. Given a

directed interaction graph, the nodes are ranked in a way that minimises the so-

cial agony. In the same study, a polynomial time algorithm was proposed to find

the largest hierarchy in the directed graph. The results obtained over different on-

line social networks showed how hierarchy emerges as the size of networks increase.

Moreover, they proved that the degree of stratification (i.e. number of levels) in-

creases slowly when the size of graph increases significantly. Compared to our study

on detecting hierarchical relationships, this study focused on inferring a user’s social

stratification level, whereas our approach detects the superior of each user from an

interaction network.
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Agarwal et al. [2] extended the original Enron dataset which includes the di-

rect manager-subordinate relationships between 155 employees. The new extended

version included about 13724 dominance pairs between 1518 employees extracted

manually by investigating the organisational charts of Enron. A dominance pair

is a pair of employees who are connected by a series of manager-subordinate ties.

However, in our experiments, we do not use this extended version since the email

inboxes of those 1518 employees are not complete and the dominance relationships

are not all immediate. Given that two employees are related in the hierarchy, the

authors detected which person dominated the other. Comparing with our work, we

focus on detecting the immediate dominance relationships from the email network

without any previous knowledge whether the pairs of employees are connected in

the hierarchy or not. Agarwal et al. proposed two approaches, (1) a predication

model based on the degree centrality of the nodes, and (2) a model based on NLP

techniques.

Other studies [61,85,95,96] analysed a company structure in general from the on-

line interactions (emails) between employees. In these works, the authors proposed

6 popular metrics (in-degree centrality, out-degree centrality, betweenness centrality,

closeness centrality, clustering coefficient and eigenvector centrality) and used them

as a means to understand the relationship between the formal positions of the em-

ployees in a company hierarchy and the real but informal roles in a social network.

The hierarchical network extracted from email communications were matched with

the company’s organisational chart. The main aim was to understand this rela-

tionship between the inferred hierarchical network and the real organisational chart

which can play a key role in the process of redesigning the company structure. The

authors ran experiments on two real datasets: Enron and a manufacturing com-

pany. Their results showed that the number of incoming emails (in-degree) was

most helpful to distinguish between high level managers and others.
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Tang et al. [118] developed a framework for detecting different types of relation-

ships by learning across heterogeneous networks. In other words, as we did in our

study, they inferred missing social relationships by analysing other types of relation-

ships, namely interaction relationships. For example, using the log files of mobile

calls between a group of users, they detected friendship relationships. However,

their study premised on the assumption that a limited number of the relationships

we want to infer, should be known beforehand. This is different from our context,

where we focused on the extreme case when none of the social relationships are

known. The features used in building their predictive model were based on four so-

cial psychological bases. The first base is “Social Balance” [31] which is a theory that

suggests that people in a social network tend to form a balanced network structure.

The theory states that in a triad, where the three nodes are users and the edges are

the relationships between them, either all three users are friends or only one pair

of them are friends. The second base is “Structural Hole” [16] which represents a

person who is linked to people in parts of the network that are not otherwise well

connected to one another. For example, consider three users a, b, and c, where both

a and b are connected to c but there is no direct connection between a and b. In this

case, c is a structural hole. The authors found that on average a structural hole (e.g.,

c) tends to have the same type of relationship with the other users (e.g., a and b).

The third base used is “Social Status” [32,46,74] which is a theory based on directed

relationships in a network. This theory supposes that each directed relationship is

labelled by a positive “+” or negative “-” sign, where +/- denotes that the target

node has a higher/lower status than the source node. The theory states that, in

a triad, if each negative edge reverses its direction and converts it sign to positive,

then the new triad should be acyclic. The fourth base they used is two-step flow

theory “Opinion Leaders” [70] which states that ideas usually flow first to opinion

leaders then to other people in the network. To validate the “Opinion Leaders”
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theory they applied the PageRank algorithm on the interaction network and con-

sidered the top 1% ranked users as the opinion leaders. In our study, we reuse the

“Opinion Leaders” theory by studying more deeply the appropriate settings for the

PageRank algorithm to detect opinion leaders such as managers and PhD advisers.

We also showed that Rooted-PageRank gives a significant improvement over the

results obtained by the original PageRank algorithm.

In another study [8], the authors addressed the problem of recognising a user’s

romantic partner from the network connections between his/her friends. They de-

veloped a new measure of tie strength called “dispersion” which reflects the extent

to which two people’s mutual friends are well-connected. Their experiments were

conducted over two large Facebook datasets. Results showed that the dispersion-

based classifier is twice as good in identifying partners as an embeddedness-based

classifier, where the embeddedness of a tie is the number of mutual friends shared

between its two endpoints [82]. Further, they found that using machine learning

models which were trained by dispersion-based features as well as some other inter-

action features (such as messaging, commenting, profile-viewing and co-presence at

events and photos) produced even higher accuracy. However, dispersion does not

seem relevant to the problem of detecting hierarchical relationships.

Burke et al. [15] identified differences in how parents communicate to their chil-

dren on Facebook (giving advice, affection, and reminders to call) compared to their

friends. In addition, they investigated the dominant topic in parents’ discussion

with their adult sons and daughters (discussing health issues, talking about their

grandchildren, . . . ) compared to that with their adolescent children. The approach

they proposed was based on quantifying user behaviour (who becomes friends with

whom and when), mutual friends and how communications varies with children’s

ages and with the geographic distance to their parents. In the same study, a predic-

tive language model of parent-child relationships was built, in which text features
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were used in a technique known as elastic-net logistic regression. This model was

used to classify the conversation target as a family member or general friend. The

main findings in this study were, as previously found in offline research, that mothers

tend to express their affection by reminding their children to call. Moreover, fathers

often talk about shared subjects, such as sports, with their children. The study also

found a linguistic shift when parents talk to their adult children compared to those

who talk with their young children. In the former case, parents treat them as adult

friends. However, unlike what has been observed in offline communications, online

interactions between parents and their children do not decrease with geographic

distance.

2.3 Analysing and modelling user behaviour

Classifying users by analysing their on-line activities is one of the most active areas

in the field of social networks. One example is the study carried out by Kumar et al.

on Flicker and Yahoo! data [69]. The users were classified as one of “passive mem-

bers” of networks, “inviters” who motivate other offline friends to migrate online,

or “linkers” who are fully active users. In another study [81], Maia et al. considered

five individual features as well as four interaction features to group YouTube users

into categories such as “small community member”,“content producer”, “content

consumer”, “producer and consumer” and “other”. Choudhury et al. [23] analysed

users’ interaction behaviour on the MySpace website to match each user to one of

three defined roles: “generators”, “mediators” and “receptors”. In newsgroup ap-

plications, Golder and Donath [45] analysed the communications between users to

classify the users’ roles as “celebrities”, “ranters”, “lurkers” or “newbies”.

Wu and Chen [135] carried out their research on a Chinese social network website

called “17salsa-net” which is similar to Facebook. They analysed activities such as

writing posts, sharing photos, commenting and sending emotions. They used the K-
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means method to classify users. The best result was obtained for k = 4 where users

were classified in four groups, “posting-pictures users”, “literary users”, “quickly-

responding users” (responding to photos and text by sending a quick emotional

click) and “commenting users”.

The ego-centric network of a node is the network that includes the node, all

its neighbours, and all edges/arcs between these nodes. Welser et al. [131] extended

ego-centric network analysis to classify roles such as technical editor and substantive

expert in Wikipedia. However, their approach included a high level of manual

analysis which is not easily performed in large-scale forums. Himeloim et al. [52]

addressed the problem of detecting social leaders in political forums using features

such as the number of replies and the number of new threads initiated by users.

Another study [72] used a “regular equivalence” approach [127] in which two users,

who play the same role, must have something in common with respect to the relations

they have with other users. However, this approach seems to be difficult to apply

when the features used are more complex (not binary).

Chan et al. [19, 20] proposed techniques to analyse and classify the behaviour

of the users in discussion forums. They carried out their experiment on a medium-

sized forums (boards.ie). They defined nine features including user’s popularity,

reciprocity, length of interaction, initialisation, neighbours’ roles, and the volume of

communication measures. Then, a two-stage clustering method was used to group

the users into 15 groups and eight roles. Analysing the forums using users’ roles

showed differences in the composition of the forums according to the subject.

Two main differences between the aforementioned studies and our study can

be noted. First, these studies grouped users into categories of roles that are not

known in the data. In the approach we propose in Chapter 6, the roles of users are

pre-known in the dataset. Knowing these roles we can evaluate the effectiveness of

our approach. Second, all these efforts addressed the problem in static settings. In
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other words, the temporal aspect was not considered when the quantitative features

of the activities were analysed. However, our approach investigates the time effects

on the classification results.

Angeletou et al. [6] studied the health of discussion forums and the association

between community evolution and the behaviour of its users. In this study, they

built a semantic model and rules for representing users’ behaviour over time. First,

a method based on semantic rules was employed to match each user to his/her

role. In this method, the dynamic features of the interactions were taken into

account. Also an ontology was built to capture the behavioural features of users in

a common machine-readable format. Using this approach, they analysed the data of

three communities over three years. The experimental results showed that a greater

proportion of “popular participants” leads to a higher level of activities. On the

other hand, having more “ignored” users in the community decreases the activities

in general. It was also found that a stable forum’s leads to an increase in activities

over time, whereas a forum, in which roles fluctuate, negatively affects the online

community’s health in the long term.

Rowe at el. [109] analysed the differences in the behaviour of different types of

communities. The dataset they used belonged to, an IBM Connections enterprise

social software system. Their study focused on the three types of communities: (1)

“Communities of Practice (CoP)”: a group of people with a common interest or

practice share information, (2) “Teams”: who work on a shared goal for a particular

client, project or business function, and (3) “Technical Support Group (Tech)”: who

provide support for a particular technology. In order to identify the behavioural

differences between communities, micro (user-level) and macro (community-level)

features were analysed. A sliding window was used to capture the temporal aspect

of the features. Micro-level features included the total number of items created by

the user and the total replies sent/received by the user. On the other hand, the aim
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of the macro features was to describe the attributes of each community type through

the use of statistical measures. These features included the total number of users

participating in the community as well as the total number of items of content which

received replies from users. In the same study, user questionnaires were conducted to

identify the link between the user’s objectives and the characteristics obtained from

analysing each community type. The empirical results showed differences between

the three analysed types in both the micro and macro levels. For example, in “CoP”

types, users were dispersed in their activities compared with “Teams” and “Tech”

types. However, “Teams” users were more active in creating new content compared

with other types. This is consistent with the questionnaire responses received by

“Teams” users where they gave the ability to create new content the highest priority.

Similarly “CoP” users believed that the ability to reply to existing content was the

most important. This is consistent with experimental results which revealed that

commenting on blogs/post was the highest in the “CoP” type.

Tang at el. [120] studied the problem of detecting influential users in social net-

works by considering dynamic interactions over time. Based on a temporal network

model [119], they extended the static centrality metrics by introducing the defini-

tions of temporal closeness and temporal betweenness to identify the key nodes in

online social networks. Temporal closeness reflects how fast a member can spread

a piece of information. On the other hand, temporal betweenness detects members

who act as bridges in the most active communication paths over time. The evalu-

ation on the Enron email dataset proved that temporal centrality metrics provide

better understanding of dynamic processes and are more accurate in detecting key

players who are able to speed up or block the process of information dissemination in

online social networks compared to traditional static metrics. However, the authors

do not consider the problem of inferring manager-subordinate relationships from the

Enron email dataset.
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2.4 Research in bibliographic networks

Bibliographic networks are defined as collaboration networks, where the nodes gen-

erally consist of one type of object such as authors or papers. When the nodes

represent the set of authors, an edge (undirected link) between authors u and v ex-

ists, if they produced a joint work (paper, book, report, . . . etc). Its weight w(u, v)

is equal to the number of works to which u and v both contributed [10]. Research

on this type of network has focused on analysing the co-authorship network to rank

authors according to their impact in the field [34]. Some other studies, attempted

to predict future collaboration between authors [116]. In our research, we study this

type of network to detect PhD advisee-advisor relationships between authors.

Another type of bibliographic network is a citation network. In this type, nodes

represent the set of papers, and an arc (directed link) from paper p to paper p′ exists

if paper p cited paper p′. The aim of studies carried out on citation networks, is to

rank the papers according to their importance.

In their original versions, most graph-search algorithms (such as PageRank and

HITs) do not consider “the temporal dimension of data”. As a result, several studies

brought time into play in their approaches in order to retrieve higher quality results

in the field of publication search. They followed the intuition that papers consid-

ered to be high quality in the past may not necessarily be considered high quality

in the present or the future. Moreover, applying the original PageRank or HITs

algorithms in bibliographic networks may assign higher scores to older papers since

older publications tend to accumulate more in-links (citations) due to their longer

existence, while recent publications of high quality may not be ranked highly.

Yu at el. [138] proposed several approaches based on the history of publications’

citations as well as the source (author and journal) of each publication. In all their

approaches, the content of the paper was not considered. In order to rank non-recent
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papers, they depended mainly on the content of the publication and the dates when

the publication was cited by other papers. The current importance of an old pub-

lication is determined from recent citations, which are considered more important

than citations which occurred further in the past. To consider these differences in

the importance of citations, a modification to the original PageRank formula was

introduced (“TimedPageRank”) where smaller weights were given to earlier cita-

tions. Also they predicted the importance of a particular paper in the future by

analysing its citation behaviour within the last year. However, this technique does

not seem relevant for ranking very recent papers with few or no citations. For such

cases, they defined reputation-based features which use the reputation of both a

paper’s authors and its venue. The author’s reputation was calculated by averaging

the time-weighted PageRank scores of all his/her papers in the past. Similarly the

journal’s reputation was calculated by considering all papers published in the jour-

nal previously. The empirical results on a dataset of publications from 1992-1999

showed that “TimedPageRank” was significantly better than the original PageRank

in ranking papers. Moreover, using “TimedPageRank” in combination with author

and journal reputation returned the best results. When predicting the importance

of very new papers, the reputation-based approach was promising with more than

half of new high quality papers predicted from the ideal rank of high quality papers

of the next year.

Driven by the similar motivations, and by studying the same problem, Li at

el. [77] proposed a new method in which they used Markov chains and a random

reader to formulate the problem. In all the modifications introduced, they aim to

keep the requirement that the probabilities of going from one page to other pages

sum to one. This is the main difference between this study and the aforementioned

study [138], in which this requirement was violated. Li at el.’s approach was based

on the stationary probability distribution which means that after a series of tran-
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sitions, the probability of the random reader arriving at each state will converge

to a steady state, regardless of the choice of the initial probability at each state.

Also, the transition probability matrix A should be irreducible and aperiodic. The

irreducibility of A means that the citation graph should be strongly connected. In

other words, for any pair of nodes u and v, there is a directed path from u to v.

As there is no directed path from older papers to newer ones, they added an artifi-

cial link (citation) from each paper to every paper and each link was given a small

transition probability controlled by a time function f(t) (0 ≤ f(t) ≥ 1), where t

is the difference between the dates of two publications. The reader will follow an

actual link (citation) with a probability given by f(t). This reader will jump to a

random paper with probability 1 − f(t). If the paper was published a long time

ago, then the value of 1− f(t) of this paper should be large, which means that the

reader will jump to a random paper with high probability. On the other hand, if the

paper is new, the chance to follow a reference (citation) of the paper is high, and

the probability to jump to a random paper is modest. The results obtained showed

that their approach worked considerably better in ranking papers than the orginal

PageRank and even better than the method proposed in [138].

In the same context, Fiala at el. [39, 40] studied the problem of ranking re-

searchers (authors) instead of publications. In their earlier study [40], they used

the PageRank algorithm to rank the authors of papers. The citation graph among

authors was used, in which the weights assigned to the edges were based on informa-

tion from the co-authorship graph as follows: a citation from a colleague (co-author)

should contribute less to the prestige of the cited author than a citation coming from

a foreign researcher, i.e. an author who has never co-authored a paper with the cited

author. However, they consider some exceptions to this rule, such as where the num-

ber of shared papers of the two authors is relatively small compared to the total

number of papers written by the author. They concluded that running PageRank
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on a citation graph weighted in this way returns better results than those obtained

when an unweighted citation graph is used.

Fiala developed the approach further in [39]. By considering also the date of the

publication and date of citation, he aimed to weigh citations more discriminately.

For instance, a citation of one author by another may be made before any shared

papers were published. In such cases, this citation should not be considered as a

friendly citation from a co-author. Fiala defined several “time-aware” modifications

to calculate the weights of edges depending on several factors, such as the number

of common publications and whether or not they were published before or after

the citation was made. The modifications he introduced made the citation weights

reflect the author’s influence in a better way. For each “time-aware” modification

introduced, a ranking of authors was generated and compared with the ranking

obtained by the time-unaware counterpart method. Moreover, a number of common

ranking methods (such as citation, in-degree, HITs, and PageRank) were tested, in

order to evaluate the approach. All the methods proposed were tested on the “Web

of Science” data for computer science journal articles from 1996-2005. The rankings

obtained were compared with the two famous lists of award winners (ACM. A.

M. Turing and ACM SIGMOD E. F. Codd). The results showed that generally

most award winners were ranked highly by all time-aware rankings. However, no

method was best overall since each individual ranking brought an improvement in

some aspect. In all cases, each time-aware variant was always better than its time-

unaware counterpart.

All the aforementioned research addressed problems that are different from our

studied problem. In Chapter 3, 4, and 5, we consider the problem of detecting PhD

advisee-advisor relationships by analysing a co-authorship network.
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2.5 Educational Data Mining

There are many educational environments available, such as traditional classroom, e-

learning [17], learning management systems (LMS) [79], intelligent tutoring systems

[62], concept maps [90], social networks, forums, educational game environments

[98], virtual environments [123] and ubiquitous computing environments [54].

The data provided by each of the aforementioned educational environments is

different, making it possible to analyse various types of problems using Educational

Data Mining (EDM) techniques. The EDM process converts raw data from ed-

ucational systems into useful information that could have a significant impact on

educational research and practice. This process does not differ much from other

areas of application of Data Mining (DM), because it follows the same steps as the

general DM process: preprocessing, DM techniques (such as classification, cluster-

ing, association-rule mining, sequential mining, and text mining, as well as other

approaches, such as regression, correlation and visualisation that are more connected

to statistical analysis), and post-processing.

According to Romero and Ventura [108], the most commonly applied DM tasks in

education are regression, clustering, classification and association-rule mining. The

most commonly used DM techniques/methods in educational research are decision

trees, neural networks and Bayesian networks. Some authors suggest several EDM

subjects as being relevant [18]:

1. Assessing and predicting students’ learning performance from their online be-

haviour/interaction.

2. Developments for the detection of atypical student learning behaviours.

3. Grouping students according to some criteria such as personal behaviour.

These groups of students can be used by the instructor to provide better

teaching using adaptive personalised systems.
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4. Applying social network analysis to study the relationships between students

instead of individual attributes.

5. Evaluating learning material and educational web-based courses.

6. Constructing courseware in an automatic way.

7. Providing course adaptation and learning recommendations based on the stu-

dent’s learning behavior.

8. Providing feedback to teachers and students in e-learning courses to improve

the learning process.

9. Visualising the educational data to highlight useful information and support

decision making.

In this section, we only cover the first four subjects since they are related to the

problem we study in Chapters 5 and 6. In these chapters, we address the problem

of detecting the roles of students working on the same project from their online

behaviour.

2.5.1 Predicting students’ learning performance

Much research in the literature has focused on studying the problem of predicting

students’ performance, scores, or marks from their on-line interactions, some using

quantitative features, others using qualitative features. As an example of the former,

Palmer at el. [94] used stepwise multivariate linear regression to predict students’

marks by analysing message frequencies in online discussion forums, including the

number of posts and replies, the number of messages read, the length of threads,

and students’ average response time to other messages. Cheng et al. [22] used

regression analysis, employing only the number of posts and page views to infer

course performance.
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In the same context, other studies considered qualitative features in their models.

In other words, they analysed the discussion content, which helped in understanding

the explicit semantic information in the transcript from the discussion forums. As an

example of this, the study by Yoo and Kim [137] used stepwise regression analysis to

analyse the question-answer dialogues between students as well as emotional features

covered by LIWC (Linguistic Inquiry and Word Count) to infer the performance of

participants in a project .

Using a combination of features has proved to be more effective in addressing

certain problems in a number of applications. Lopez and Romero et al. [80, 107]

used three types of features (quantitative, qualitative and SNA-based features) to

predict students’ pass/fail results. In their studies, they examined two sets of al-

gorithms. The results obtained using “classification-via clustering” algorithms gave

better results than those obtained using “supervised-learning” algorithms. In the

same study, they filtered out irrelevant features by applying a set of feature-selection

algorithms. In our approach, proposed in Chapter 6, we use a similar approach for

selecting the most relevant and discriminative features from the data of students’

online communication in order to detect the roles of students working on a project.

We also used two types of features (quantitative and SNA-based) in building the

classifier. However, Lopez and Romero built a binary classifier to predict students’

results (pass/fail), whereas we detect three possible classes of students’ roles.

2.5.2 Analysing and modelling students’ behaviour

Research carried out in this area analysed the online behaviour of the students

to detect any undesirable or unusual attitude, such as improper actions, cheating,

wasting a lot of time, etc. Dekker et al. [33] demonstrate the usefulness of decision

tree, Bayesian classifier, logistic models, the rule-based classifiers and random forest

in predicting first-year student drop out. Agapito and Ortigosa [1] proposed an
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approach based on the C4.5 decision tree [101] to detect potential symptoms of

low performance in e-Learning courses. Cocea and Weibelzahl [27] estimate the

motivational level of the student by analysing his/her log file data. The approach

they built was also based on a decision tree classifier. The results showed that both

the performance in tests and the time spent in reading are important factors in

predicting students’ motivation.

Some other research in this area focused on finding students’ groups based on

their observed online actions. The aim of these studies is to help the instructors

in building better and personalised educational system according to each group

requirements. In this task, researchers used two data mining techniques, clustering

(unsupervised learning) and classification (supervised learning).

Various clustering algorithms were used in these studies. For example, Cobo at

el. [26] used agglomerative hierarchical clustering to model students’ behaviour. In

this study, the total number of messages written and read by the student were used as

features. In another study, Khan et al. [65] analysed the frequency of access as well as

the duration of sessions (i.e. the duration the student is logged in) in order to cluster

students into different categories according to their participation. They built their

model using hierarchical cluster analysis (Ward’s method). Zakrzewska [139] used

a hierarchical clustering algorithm as well to divide students into groups according

to their individual learning styles. Chen et al. [21] used K-means clustering in order

to group students who experienced similar learning portfolios such as exam scores,

assignment scores and on-line behaviour.

On the other hand, classification algorithms were widely used to group simi-

lar learners. For example, Superby et al. [117] built a model to classify university

students as early in the academic year as possible in one of three groups, low-risk,

medium-risk or high-risk. In this study, the authors used several classification algo-

rithms such as discriminant analysis, neural networks, random forests and decision
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trees. In another study [30], decision trees were used to classify students according

to their accumulated knowledge in e-learning systems. Fok and Chen [41] proposed

a hidden Markov-based model to classify students according to their navigation or

content access patterns.

2.5.3 Social network analysis in education

More recently, Social Network Analysis (SNA) was used to analyse students’ online

behaviour in discussion forums. In these studies, the discussion forums are repre-

sented as networks, in which students are the nodes, and ties are the relationships

between students (such as reply relationships). SNA analyses the network structure

and gives insight about structural characteristics, such as the nodes with the most

incoming or outgoing ties [84]. Premised on that, many SNA-based tools have been

developed to improve the learning process through analysing data from forums. For

example, Meerkat-ED [102] analyses the network structure and visualizes snapshots

of connections between students. Similarly, SNAPP [9] gives the course instructor

a better view of the evolution of students’ relationships within discussion forums

using SNA techniques. These techniques evaluate the correlation between students’

participation and the learning objectives.

In addition, SNA techniques have been applied in several education-based appli-

cations. Reyes and Tchounikine [106] introduced SNA-based models for mining data

collected from forum-like tools. Based on the theory stating that cohesion plays a

central role in collaborative learning, the aim of this study was to help tutors in

tracking the groups activities and to allow the tutors to pay attention to groups

with a low level of social cohesion. In the same context, Reffat and Chanier [105]

measured the cohesion of small groups in collaborative distance learning that used

discussion forums. The proposed approach helped in detecting isolated people and

active sub-groups. Rallo et al. [103] used data mining on social networks to analyse

the structure and content of educational online communities. In other work, the
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framework they proposed analysed the structure and the relationships that were

established between all the members of education-based community. Nankani et

al. [87] studied the educational collaborative network. They used SNA to support

information fusion through collaborative channels and key participants or groups in

the network. The aim of this study was to aid decision makers in an educational

organisation to take appropriate action depending on the patterns detected.

2.6 Sequence Classification

Chapter 7 employs sequence mining techniques in order to detect the roles of users

from their online interaction behaviour. In this section, we give a brief background

of that field and present its main techniques.

With more and more data from various domains being produced in the form of

event sequences, sequence mining has become an important and much-researched

area. Depending on the types of events they contain, sequences can be discrete (e.g.,

symbolic sequences such as DNA, proteins, or text) or continuous (e.g., time series,

such as sensor measurements, ECGs, or stocks). An important task within the area

of sequence mining is sequence classification. For example, in health-informatics,

an ECG can be used to classify an individual as healthy or sick [129]. Moreover,

in genomics, sequence classification is employed to build models of known protein

sequences in order to detect the function of a new protein [35]. More recently,

research has focused on tracking suspicious series of financial transactions in a bank

to detect money laundering or other fraudulent activities [78].

Sequence classification methods in the literature can be divided into three cate-

gories: distance-based methods such as the baseline approach we describe in Chap-

ter 7, feature-based methods, such as our multi-granularity framework introduced

in Chapter 7, and model-based classifiers such as Hidden Markov Models (HMM)

which are not considered in this thesis.
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In feature-based classification, a sequence is transformed into a single vector

of features. Such vectors are typically constructed by viewing the sequence as a

bag-of-words (i.e., a word is a symbol), and they provide a summarisation of the

sequence. For example, a vector can be the histogram of the mean frequency of

each event symbol included the sequence. However, this approach will ignore the

sequential order of the events. A modified method, called k-grams, was proposed

in [37], where each sequence of k consecutive events is treated as a single feature.

Using k-grams, each sequence can be represented as a binary vector indicating the

presence and the absence of each k-gram in the vector. Given that each sequence

has been converted to a feature vector, a supervised learning algorithm, such as an

SVM [75,76] or a decision tree [24] can be used to train the classifier. Usually if the

number of k-grams is large, some feature-selection technique is required to retrieve

the most relevant features. For example, Chuzhomova et al. [24] employ a genetic

algorithm to find the best subset of features.

One can also use a pattern-based approach to build a feature-based classifier [68,

73]. In this approach, sub-sequence patterns are considered as features. These

sub-sequences must satisfy some pre-defined criteria, such as being frequent and

distinctive in at least one class, and not redundant. In our study, we adopt this

technique, and employ an existing sequential pattern mining algorithm, SPAM [7],

to mine frequent sequences, which are then used as features for training our classifier.

On the other hand, distance-based methods, also known as lazy-learners, use a

similarity function that measures to what extent two sequences are similar. Eu-

clidean distance [63,129] is a similarity measure commonly used in time-series clas-

sification when the compared sequences are of the same length and phase, while

Dynamic Time Warping [64] is used when more flexible matching is desired. Under

the same category, alignment-based methods have been used in several applications

in which the sequences consist of symbols [60]. Two types of functions have been
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proposed: (1) global-alignment functions, such as the Edit Distance, which compute

an optimum global alignment score through dynamic programing [89], and (2) local-

alignment functions, such as Smith-Waterman [115] and BLAST [5], which calculate

scores between two sequences based on most similar sub-regions. Once the similarity

scores have been calculated, an existing classification algorithm, such as k-nearest

neighbour or SVM with a local alignment kernel [112], can be applied. A thorough

overview of sequence classification algorithms is outside the scope of this thesis but

can be found in [136].

2.7 Computational tools

We now review some of the computational tools used in this thesis.

2.7.1 Weka

Weka [134] is open source software written in Java and developed by the University of

Waikato under the GNU General Public License. It includes a collection of machine

learning algorithms which can be applied to data mining tasks. These tasks include

data pre-processing, clustering, classification, regression, visualisation and feature

selection. All Weka’s algorithms can be accessed directly either through a graphical

user interface or from one’s own Java code [58].

The input data has to be available in a single flat file or relation where each point

is represented by a fixed number of attributes (numeric or nominal values). Weka

also supports SQL databases using Java Database Connectivity and can process the

results returned by a database query.

We used Weka when building models for detecting the roles of users working on

a shared activity and interacting online (Chapters 6 and 7).
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2.7.2 Eclipse

Eclipse is a generic Integrated Development Environment (IDE). It is a free Java-

based open source platform which is released under the Eclipse Public License, and

allows software developers to build Java applications. However, users can extend its

abilities by installing plug-ins written for the Eclipse platform, such as development

toolkits for C/C++, R, Perl and Python. Users can also write and contribute their

own plug-in modules.

We used Eclipse when implementing and evaluating all approaches discussed in

this thesis.

2.7.3 JUNG

JUNG (Java Universal Network/Graph Framework)1 is a software library that pro-

vides a common and extendible language for the modelling, analysis, and visualisa-

tion of data that can be represented as a graph or network. It is written in Java,

which allows JUNG-based applications to make use of the extensive built-in capa-

bilities of the Java API, as well as those of other existing third-party Java libraries.

The JUNG architecture is designed to support a variety of representations of

entities and their relations, such as directed and undirected graphs, multi-modal

graphs, graphs with parallel edges, and hypergraphs. It provides a mechanism for

annotating graphs, entities, and relations with metadata. This facilitates the cre-

ation of analytic tools for complex data sets that can examine the relations between

entities as well as the metadata attached to each entity and relation. The cur-

rent distribution of JUNG includes implementations of a number of algorithms from

graph theory, data mining, and social network analysis, such as routines for clus-

tering, decomposition, optimisation, random graph generation, statistical analysis,

1http://jung.sourceforge.net
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and calculation of network distances, flows, and importance measures (centrality,

PageRank, HITS, etc.).

JUNG also provides a visualisation framework that makes it easy to construct

tools for the interactive exploration of network data. Users can use one of the layout

algorithms provided, or use the framework to create their own custom layouts. In ad-

dition, filtering mechanisms are provided which allow users to focus their attention,

or their algorithms, on specific portions of the graph.

We used this library for implementing the PageRank and Rooted-PageRank al-

gorithms according to our proposed approach (Chapter 3).

2.8 Summary

In this chapter, we reviewed work in social network analysis that is related to our

research. We also described briefly the computational tools used in our experiments.

Although many efforts focused on studying the problem of detecting hierarchical

relationships, none of the previous work has studied the extreme case when none

of the social relationships between actors are known beforehand. In this thesis, we

address this extreme case and investigate whether the use of timestamps related to

online interactions between actors can improve the detection of both hierarchical

relationships between actors and hierarchical roles played by the actors. We also

conduct further investigation to examine the ability of heterogeneous models, based

on both temporal and structural features of interactions, to improve the results

obtained using homogeneous models.

Furthermore, in this thesis we develop a novel sequence classification technique

that has not been proposed previously. This technique is based on capturing frequent

sequences at multiple levels of temporal granularity. We show that our sequence

classification technique is competitive in detecting the roles of actors where the

interactions of each actor are captured as a sequence of communication events.



Chapter 3

Detecting Hierarchical Social

Relationships using

Structure-based Algorithms

3.1 Overview

As mentioned in the introductory chapter, social relationships between actors are

not always explicit. The on-line interactions between a group of people can be

analysed to detect these implicit social relationships.

In this chapter, we address the following problem: given a set of actors, who are

connected via a social network, we want to infer potential hierarchical relationships

that may exist between these actors. For example, given a set of employees in

a company, we are interested in relationships such as that between a manager and

subordinate, or, given a set of co-authors, we want to infer relationships such as that

between a PhD advisor and advisee. Our proposed approach takes into account

the interaction between the actors in the network, and infers these hierarchical

relationships by exploiting any interaction patterns that may occur during their

communication.

58
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The main contributions of this chapter are summarised as follows:

• We study the problem of inferring hierarchical relationships in a social network

and approach it as a ranking problem.

• We develop a model to detect the hierarchical relationships using three link-

analysis ranking methods: Vertex-degree Centrality, PageRank, and Rooted-

PageRank. We use the first two methods as a baseline, then use the third

method to solve the problem based on the opinion leader theory.

• We demonstrate the performance of these methods on two large real social

networks: the Enron e-mail network and a co-authorship network. In our

experimental findings, we observe that Rooted-PageRank performs well and

can achieve competitive recall values.

The results presented in this chapter have been published previously in [57].

3.2 Background

In this section, we provide the appropriate definitions and formulate the problem

studied in this chapter.

3.2.1 Problem Setting

Let V denote the set of actors (members) of a social network. We consider two

types of graphs defined over V : the interaction graph and the hierarchy graph.

Definition 1 (Interaction Graph) An interaction graph is defined asGI = (V,Ec,W ),

where Ec is the set of edges (directed or undirected) representing the interactions be-

tween the actors in V and W is a vector of edge weights, where we ∈ W corresponds

to the weight of the edge e connecting nodes u and v.
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Figure 3.1: Inferring implicit social relationships from interaction networks.

We note that GI can be modelled both as a directed or undirected graph, as

well as weighted or unweighted, depending on the nature of the interactions and the

application domain at hand.

Definition 2 (Hierarchy Graph) A hierarchy graph is a directed graph defined

as GH = (V,Es), where Es ⊆ V ×V is a set of of edges representing the hierarchical

relationship between the actors in V . Each edge (u, v) ∈ Es indicates that actor

u ∈ V is the direct superior of actor v ∈ V in the hierarchy.

3.2.2 Problem Formulation

Given a set of actors V and their corresponding interaction graph GI , the problem

is to infer the hierarchy graph GH of V .

For example, given a set of e-mails exchanged among employees, or papers co-

authored by authors, we want to infer manager-subordinate relationships in a com-

pany, or advisor-advisee relationships in academia, respectively.

In Figure 3.1 we can see an example of the problem we want to solve. Given

the interaction graph (a) of the four actors (employees), we want to infer their

corresponding hierarchy graph (b).
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3.3 Methods

We use three structure-based methods, namely degree centrality (DC), Page-

Rank (PR) and Rooted-PageRank (RPR). The first two measures were ex-

plained in chapter(2).

The Rooted-PageRank (RPR) idea was first introduced by White and Smyth

[133], who based their model on [51] and [59] which investigated extending the

PageRank algorithm to generate “personalized” rank. The algorithm starts with a

predefined root node set R ⊆ V . This root set is the set of nodes relative to which

all other nodes are ranked. The difference between general PageRank and rooted

PageRank is that in the latter, the random walker will jump back to a node in R

with a “back probability” β, where 0 ≤ β ≤ 1. As β become larger, the probability

of seeing the random walker at any node in R increases and as a result, the influence

of the root nodes in R grows. However, even when β = 0, the influence of root nodes

is still present since the random walk is launched from a node in R.

The algorithm defines a “prior probability” pv for each node v, with
∑
∀v∈V pv =

1. This measure reflects the importance of root node v relative to other root nodes.

Usually equal prior probabilities are given to all nodes in R, so that pv = 1/|R| if

v ∈ R and pv = 0 otherwise. The formula of Rooted-PageRank can be defined as:

RPR(v) = βpv + (1− β)
∑
∀u→v

RPR(u)

|F (u)|

where F (u) is defined as before.

3.4 Using a Structure-based Model

In this section, we first propose approaches based on degree centrality (DC) and on

PageRank (PR), before discussing the approach based on Rooted PageRank (RPR).
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The key idea of these approaches is based on the “opinion leader” theory. This theory

has been studied for a long time in communication science, being first introduced

by Lazarsfeld et al. [70]. The theory assumes that ideas/innovation usually flow

from opinion leaders to all other actors in a network. In other words, actors who

are classified as opinion leaders have more influence on others than ordinary actors.

Accordingly, opinion leaders are more likely to have higher social position (such as

managers or advisors) than ordinary actors (such as subordinates and advisees).

3.4.1 Degree/PageRank based Approaches

As a starting point, we classify actors in the network into two classes: (a) opinion

leaders (OL) and (b) ordinary users (OU). To do this, we follow three steps (see

Figure 3.2):

Figure 3.2: Main steps in the Degree/PageRank based approach.

1. First we assign a score to each actor. This score should reflect the importance

(influence) of the actor in the whole network by analysing the interaction

network structure. We employ the aforementioned algorithms, PageRank (PR)

and Degree Centrality (DC), to assign a score to each node, as defined by the

following two functions, respectively:

ScoreRP : V → R and ScoreDC : V → R

2. We sort the actors according to their scores, with actors having higher scores

(those in OL) appearing earlier in the list, compared to those with lower scores

(in OU).
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3. Finally, assuming that the set of hierarchical relationships Es is known, we

find the best position to split the sorted list of actors into two sub-lists, one

representing OL and the other OU . The best position is the one that max-

imises the percentage of hierarchical relationships (a, b) ∈ Es (a is the superior

of b) for which it is the case that a ∈ OL and b ∈ OU .

To find the best position, we first calculate the following probabilities for each

possible split position i:

Pi(OL→ OU) = P (a ∈ OL ∧ b ∈ OU) (3.4.1)

Note that if the sorted list of actors is given by (v1, v2, . . . , vi, . . . , vN), then

OL is the set of opinion leaders {v1, v2, . . . , vi}, OU is the set of ordinary users

{vi+1, vi+2, . . . , vN}, and a is a superior of b.

The best split position is that position k where we get the maximum proba-

bility for Pi(OL→ OU), i.e.,

k = argmax
i

Pi(OL→ OU) (3.4.2)

In order to compare this approach with the RPR-based approach explained in

the next section, we also evaluate the results in an alternative way. For each split

position, we calculate the proportion of actors whose superiors appear within the

list of opinion leaders.

First, we define a function minOL on actors. For b ∈ V , this function returns

the length of smallest opinion leaders list that includes the direct superior a of the

actor b as follows:
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For each b ∈ V , such that a ∈ V is the superior of b

minOL(b) =

 |OL| if b /∈ OL ∧ a ∈ OL

|OL| − 1 if b ∈ OL ∧ a ∈ OL
(3.4.3)

where OL is the smallest opinion leaders list which includes the superior a.

Example Consider the ranked list of actors given by (x, y, z, k, l,m). Assume that

y is the superior of z, and k is the superior of x. Then

minOL(z) = 2 since (x, y) is the smallest OL that contains y, and z /∈ OL.

minOL(x) = 3 since (x, y, z, k) is the smallest OL that contains k and x ∈ OL.

Next we define the following recall function on the split position i:

ρ(i) =
|U |
|Es|

× 100 (3.4.4)

where

• Es is the set of pairs of actors, representing the hierarchical relationship be-

tween the actors.

• U = {x|x ∈ V ∧ ∃y ∈ V ∧ (y, x) ∈ Es ∧ minOL(x) ≤ i}.

This function finds the percentages of relationships in which the superiors appear

within the top i actors of the ranked list.

3.4.2 Rooted PageRank-based Approach

In this approach, we address the problem in a different way. Instead of calculating

the global importance of each node, we evaluate the importance of nodes from each

actor’s perspective separately (local view). In other words, a node x may have a big

influence on node y. However the same node x may be ineffective to another node

z. Accordingly, finding the influential users is a relative issue. We may end up with

completely different results when finding the most influential actors for two different

nodes.
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To determine relative influence, we employ the aforementioned Rooted-PageRank

(RPR) algorithm. This algorithm takes as input a set of root nodes. By analysing

the network structure, RPR calculates the importance scores of all nodes relative

to the root nodes. In our application, we choose a single root node representing the

person whose direct superior we are trying to detect. For example, in the emails

dataset, a manager x should be important to his/her subordinates. As a result, x

should have high rank in the list of most influential people for his/her subordinates.

Similarly, in coauthor networks, an advisor should appear in a high position within

the important actors of his/her advisees.

As in the previous approach, this approach passes through three stages:

1. For each node x, x∗ ∈ V such that ∃(x∗, x) ∈ Es, we run RPR with root node

x to evaluate the importance of nodes relative to x. Each node v ∈ V , v 6= x,

in the network will have a score returned by the function:

Scorex(v) = RPRx(v) (3.4.5)

2. Then we produce a list L(x) sorted according to the importance scores, where

L(x) = [v1, v2, ..., vi, ..v|V−1|], such that:

Scorex(vi) ≥ Scorex(vj) and 1 ≤ i < j ≤ |V | − 1

3. Finally, assuming the superior of x is x∗, the rank of x∗ in L(x) is returned by

the function rank(x, x∗). This function returns the total number of actors in

L(x) who have an RPR score greater than or equal to the score of x∗.

We define rank(x, x∗) as follows:

rank(x, x∗) = |{v : v ∈ L(x) ∧ scorex(v) ≥ scorex(x
∗)}| (3.4.6)
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In order to evaluate our approach we use the recall function ρ defined in Equa-

tion (3.4.4). This function represents the percentage of relationships in which the

superiors appear within the top i actors of their inferiors’ ranked lists.

ρ(i) =
|{x : rank(x, x∗) ≤ i}|

|Es|
× 100

where Es is the set of pairs of actors representing the hierarchical relationship be-

tween the actors.

3.5 Datasets

3.5.1 Enron email dataset

The Enron dataset is one of the richest email datasets in the field. It includes the

internal emails exchanged between employees working in a real corporation. It also

includes the external emails between the customers and employees. All these emails

were exchanged in the period 1998–2002. There are several versions of this dataset

which have been made accessible to the public. Starting from mid-2002, when

financial problems hit the company, the Federal Energy Regulatory Commission

(FERC) made a dataset of 619,449 emails from 158 Enron employees available,

after all attachments had been removed. The first revised version was released by

Cohen in 2004, in which he placed each email in a separate text file using the mbox

format. Later on, efforts were made to convert the dataset into a variety of formats.

At the same time, much work addressed inconsistencies and integrity issues within

the dataset.

In our research, we adopted the version which was provided with the ground truth

of manager-subordinate relationships by Diehl et al. [36]. They also pre-processed

the data by deleting extraneous, unneeded emails and fixing some anomalies in
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the collection, such as empty or illegal user email addresses. Also all duplicated and

blank emails were dropped. The version we used consists of 155 employees. However,

some employees used more than one email address. In such cases, we chose one of

them randomly and replaced the others with the chosen one. Additionally, in our

experiments, we removed all email addresses belonging to people not employed by

Enron, since they would only add noise to our analysis. As a result, only internal

emails exchanged between Enron employees were considered.

We ended up with 155 employees, each with a unique email address, and 147

manager-subordinate relationships, formalising the management hierarchy in which

8 employees are top-level managers with no superior. Apart from these top-level

managers, each employee has only one manager, while a manager can have many

subordinates. The statistics of the full dataset can be found in Table 3.1.

Enron Co-author

|V | 155 1036990
Ec type Emails coauthoring
|Ec| 47738 1632442
Es type manager-subordinate advisor-advisee
|Es| 147 2098
From 1998 1967
To 2002 2011

Table 3.1: Statistics of Enron and coauthor datasets.

3.5.2 Co-author dataset

The co-author dataset represents a network of authors. It is built from data crawled

by Tang et al. [121] from Arnetminer.org, which is an intelligent system for extracting

and mining academic social networks. It includes more than one million authors who

contributed to about 1.46 million papers in total between 1967 and 2011. The total

number of co-author relationships is about 3.8 million. Each paper has a title,

date, conference where it was published and a list of authors. Many efforts, such
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as by Tang et al. [122], have been made to infer the advisor-advisee relationships

between the authors. In this study, they created ground truth data by collecting

the advisor-advisee information from the Mathematics Genealogy project1 and the

AI Genealogy project2. Also they crawled the researchers’ home pages to detect

advisor-advisee ties. In our research, we used an extended version of their dataset.

This contains 2099 advisor-advisee relationships. The statistics of the dataset are

presented in Table 3.1.

3.6 Experimental Results

3.6.1 Classifying Opinion Leaders and Ordinary Users

As mentioned earlier, we want to find the position at which to split the list of

actors into sub-lists OL (opinion leaders) and OU (ordinary users) such that the

maximum percentage of hierarchical relationships (u, v) has u ∈ OL and v ∈ OU .

Figure 3.3(a) shows the percentage results we obtained using Equation (3.4.1) for

the Enron dataset. For PageRank (PR), the best split position is when we consider

OL as the top 20% of the sorted list of employees. At that position, for 72% of

manager-subordinate relationships, the manager appears in OL and the subordinate

in OU . Degree Centrality (DC) reveals the same pattern but with worse results:

the best split position is after the top 35% of the sorted list, with only 56% of

manager-subordinate relationships correctly classified.

On the other hand, in the co-author dataset, the best split position is roughly the

same for both PR and DC, namely after the top 3% (see Figure 3.3(b)), with 65%

and 56% of the advisor-advisee relationships being correctly classified, respectively.

1http://www.genealogy.math.ndsu.nodak.edu
2http://aigp.eecs.umich.edu
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Figure 3.3: Results of classifying actors into opinion leaders (OL) and ordinary users
(OU) using PageRank (PR) and Degree Centrality (DC) on (a) the Enron dataset
and (b) the co-author dataset.

3.6.2 Detecting hierarchical ties

For this experiment, we ran Rooted-PageRank (RPR) n times, where n is the number

of relationships in the network, with a different actor (inferior) as the root node each

time. Also, we re-evaluated the results obtained by PageRank (PR) and Degree

Centrality (DC) using Equation (3.4.4). Figures 3.4 and 3.5 show the results on the

Enron and co-author datasets, respectively.

Split-Position Degree Centrality PageRank Rooted-PageRank

1 4.79 6.84 29.45
3 16.43 15.06 59.58
6 32.19 24.65 73.97
10 48.63 48.63 86.30
15 48.63 59.58 88.35
20 62.32 69.86 89.72
30 76.02 85.61 94.52
40 77.39 86.98 95.89

Table 3.2: Percentage results for the Enron dataset.
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Figure 3.4: Results of PR, DC and RPR for the Enron dataset. This represents the
percentages (y axis) of manager-subordinate relationships in which the managers
have rank less or equal to i (x axis).

As shown in Table 3.2, using PR and DC respectively on the Enron dataset, we

detect only 6.84% and 4.79% of the relationships in which the managers appear at

the top of the sorted lists of their subordinates. RPR gives a significant improve-

ment over these results by returning the employee’s manager as the top result for

almost 30% of the cases. Moreover, in RPR, for about 88% of subordinates, the

managers are within the top 15 employees of the sorted lists of subordinates. The

percentage increases to about 95% when we consider the top 30 employees of each

subordinate’s sorted list. On the other hand, PR can detect the manager of only

59.5% of relationship when we consider the top 15 employees in the sorted list. De-

gree Centrality is even worse with 48.6% of detected relationships appearing within

the top 15 employees.

As shown in Table 3.3, when using RPR on the co-author dataset, 39% of advisors

(821 out of 2099) appear as the top result within the sorted list of authors related to

their advisees. In addition to that, for about 88% of advisees, the advisor appears in

the top 20 results. This percentage rises to 95% when we look at the top 40 results.

On the other hand, DC places up to only 5.4% of advisors in the top 300 authors

within the sorted list. PR places only 4.5% of advisors within the top 300 authors.
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Split-Position Degree Centrality PageRank Rooted-PageRank

1 0 0 39.27
5 0 0 69.06
10 0 0 78.45
20 0 0 87.08
50 0.42 0 96.04
70 0.42 0.42 97.18
100 1.33 0.42 97.90
300 5.48 4.52 98.95
Table 3.3: Percentage results for the co-author dataset.
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Figure 3.5: Results of PR, DC and RPR for the co-author dataset. This represents
the percentages (y axis) of advisor-advisee relationships in which the advisors have
rank less or equal to i (x axis).

The reason for obtaining higher percentages in the Enron dataset is that the

total number of nodes is much larger in the co-author dataset (more than 1 million

nodes) compared to the Enron dataset (only 155 nodes).

The aforementioned results confirm that addressing the problem of detecting

hierarchical relationships using local view-based methods (such as RPR) is more

effective than using global view-based methods (such as PR and Degree). In other

words, in our problem the importance of actors is a relative rather than absolute

measure.
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3.7 Summary

In this chapter, we presented our initial investigation in the field of inferring implicit

hierarchical ties between actors from their interaction networks. We introduced the

main definitions and formulated the problem to be addressed. In this context,

three methods were applied, PageRank (PR), Degree Centrality (DC) and Rooted-

PageRank (RPR). We considered as examples detecting manager-subordinate rela-

tions between employees from their exchanged emails and discovering supervision

relationships in academia by analysing the network of co-authored papers. Our ex-

periments showed that RPR performs considerably better than both the PR and DC

algorithms in terms of the percentage of correctly detected hierarchical relationships

in our two datasets. We compare the computational costs of RPR with alternative

approaches later in Section 5.3.5.

In the following chapters, we investigate whether considering the patterns of

interactions over time can improve the inference of hierarchical relationships between

actors.



Chapter 4

Detecting Hierarchical Relations

using Time-based Methods

4.1 Overview

In the previous chapter, we approached the problem of detecting hierarchical social

relationships in on-line social networks as a ranking problem. Three well-known

algorithms PageRank, Degree Centrality and Rooted-PageRank were used to inves-

tigate this problem. The results showed that Rooted-PageRank significantly out-

performed both PageRank and Degree Centrality in detecting manager-subordinate

and advisor-advisee relationships in our Enron and Co-author datasets.

In this chapter, we continue our study and propose approaches that take into

account the interaction patterns that occur during the communication between the

actors. In other words, we investigate the temporal dimension of user interactions

in addressing the problem of inferring the hierarchical relations. Our intuition is

that actors connected by a hierarchical relationship will exhibit different temporal

interaction patterns to those who are not. Our findings demonstrate that for our

problem setting “time matters”.
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The main contributions of this chapter are as follows:

• As in the previous chapter, we study the problem of inferring hierarchical ties

in a social network, approaching it as a ranking problem.

• We consider the link-analysis ranking method proposed previously, Rooted-

PageRank(RPR), as a baseline approach.

• We propose two novel time-based approaches, called Time Function (Time-F)

and Filter-and-Refine (FiRe), which take into account the time dimension of

the interactions.

• We study the performance of these methods and compare them with Rooted-

PageRank in terms of recall on our large real social networks: the Enron e-mail

network and a co-authorship network. Our experiments show that the time-

based methods achieve considerably better results than Rooted-PageRank (R-

PR). In the Enron network, up to 44% of manager-subordinate ties were de-

tected by time-based methods, compared to only 29% by RPR. Similarly in

the co-author network, about 62% of advisor-advisee ties were detected by

time-based methods, a significant improvement over the 39% achieved by R-

PR.

The results presented in this chapter have been published previously in [57].

4.2 Time-based Methods

In this section, we propose methods which consider the time dimension of actor

interactions, in an attempt to improve on the results of Rooted-PageRank. Our

objective is, for each actor x, to improve the rank of y with respect to x should

he/she exhibit a temporal communication pattern that suggests a strong hierarchical

tie with x. We carry out our study based on the timestamps associated with the
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interactions between actors. For each pair of actors x and y, we define a time-series

Tx,y = [it1 , it2 , ..itn ] representing their interactions over time. Analysing the time-

series patterns of such interactions could improve the detection of hierarchical ties,

in that two actors who are related by a hierarchical tie may interact over time in a

different way from how they interact with other actors.

4.2.1 Time Function Model (Time-F)

As in Rooted-PageRank, for each actor x, we rank all other actors according to their

calculated scores with respect to x. However, in this model, the scores employed to

rank actors are calculated as follows:

TimeScorex(y) =
n∑
t=1

fxy(t) (4.2.1)

where:

• x is the target actor (whose superior we wish to discover).

• TimeScorex(y) is the score of actor y with respect to x

• t is a time slot.

• n is the total number of time slots.

• fxy(t) is the score between x and y over time slot t.

The definition of fxy(t) varies according to the meaning of the hierarchical ties

we are trying to detect. For example, if we are trying to detect a hierarchical tie

which might be indicated by frequent and regular interactions, we define fxy(t) as

follows:

fxy(t) =


nt

Nt
if Nt > 0

0 otherwise
(4.2.2)

where:

• nt is the total number of interactions between x and y within t.

• Nt is the total number of interactions between actor x and all other actors

within t.
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On the other hand, if we expect a hierarchical tie to be indicated by early inter-

actions, we define fxy(t) as follows:

fxy(t) =

 (1− ns

Ns
)× nt

Nt
if Nt, Ns > 0

0 otherwise
(4.2.3)

where:

• ns is the number of time slots between t and the first interaction of x.

• Ns is the number of slots between the first and last interactions of x (so ns

ranges from 0 to Ns − 1).

• nt and Nt are as above.

In this function, y will have a high score in x’s ranked list if x and y interacted in

the early stages of x’s activities. This is captured by the term (1− ns

Ns
) in the formula

above. Moreover, in those early stages, the proportion of x’s interactions with

his/her superior y is expected to be greater than the proportion of x’s interactions

with others. This is captured by the term nt

Nt
in Equation (4.2.3).

We use Definition (4.2.2) for fxy(t) when detecting manager-subordinate ties

where interactions are email exchanges, and Definition (4.2.3) for fxy(t) when de-

tecting advisor-advisee ties where interactions are paper co-authorships which are

generally more intensive in the early stages of the advisee’s activities. In other

applications, alternative weightings could be used for the terms in fxy(t).

For each actor x, we generate the list of actors LTx = [y1, y2, ..y|V |−1] which is

ranked according to the scores calculated by Equation (4.2.1). The rank of his/her

superior x∗ is returned by the function rank(x, x∗). Hence, the rank of the superior

x∗ of x is the number of actors in LT (x) who have scores greater than or equal to

the score of x∗.
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The formal definition of rank(x, x∗) is as follows:

rank(x, x∗) = |{y : y ∈ LT (x) ∧ TimeScorex(y) ≥ TimeScorex(x
∗)}| (4.2.4)

We evaluate the ability of Time-F to detect hierarchical ties using the same

function used to evaluate RPR. This function is based on calculating the recall,

corresponding to using a position i, as follows:

ρ(i) =
|{x : rank(x, x∗) ≤ i}|

|Es|
(4.2.5)

where Es is the set of pairs of actors representing the hierarchical relationships

between actors. For example, if (u, v) ∈ Es, this means that u is the superior of v.

4.2.2 Filter-and-Refine Model (FiRe)

In the following approach, we filter using Time-F and then refine using RPR. The

process of detecting hierarchical ties for an actor x consists of four steps as shown

in Figure 4.1:

1. For each actor x, order the list of other actors by the time-series function scores

(TimeScorex(y)) and Rooted-PageRank scores (RPRScorex(y)), generating

the ranked lists

LTx = [a1, a2, . . . , ak, . . . , a|V |−1] and

LRx = [b1, b2, . . . , bk, . . . , b|V |−1], respectively, where:

TimeScorex(ai) ≥ TimeScorex(ai+1), i = 1, 2, . . . , |V | − 2,

and RPRScorex(bi) ≥ RPRScorex(bi+1), i = 1, 2, . . . , |V | − 2.

2. “Filtering step”: Given parameter k, truncate list LTx at position k to generate

list LTx(k). If the truncation position k is within a group of actors who have

equal scores, we include all these actors in the filtered list LTx(k). Hence, we

have:



4.2. Time-based Methods 78

LTx(k) =



[a1, . . . , ak] if TimeScorex(ak) > TimeScorex(ak+1)

[a1, . . . , ak+s] if TimeScorex(ai) = TimeScorex(ai+1),

for all i = k, . . . , k + s− 1

and TimeScorex(ak+s) > TimeScorex(ak+s+1)

[a1, .., a|V |−1] if TimeScorex(ai) = TimeScorex(ai+1),

for all i = k, . . . , |V | − 2

(4.2.6)

3. “Refine step”: Re-order LTx(k) (obtained in step 2) according to the Rooted-

PageRank scores (obtained in step 1). For simplicity in the various equations

in (4.2.6), we assume that the truncation is actually at position k. The result

of the refine step is the list LTRx = [aπ(1), . . . , aπ(k)], where π defines a per-

mutation of 1, . . . , k and

RPRScorex(aπ(i)) ≥ RPRScorex(aπ(i+1)), i = 1, . . . , k − 1.

4. “Detecting the Relations”: Given that the ranked list LTRx obtained in step

3 is LTRx = [aπ(1), . . . , aπ(i), . . . , aπ(k)], we detect the rank of actor x∗, who is

related to x by a hierarchical tie as follows:

rank(x, x∗) =

 |{y : y ∈ LTRx ∧ scorex(y) ≥ scorex(x
∗)}| if x∗ ∈ LTRx

|V | − 1 if x∗ /∈ LTRx

(4.2.7)

Intuitively, rank(x, x∗) represents the number of actors who are ranked at least

as high as the correct superior of x. In the ideal case, x∗ should be ranked

first in LTRx (i.e. rank(x, x∗) = 1). In the worst case, x∗ may be filtered out

from the list during the filtering step. In such a case, we have to consider the

full set of actors as candidates for the direct superior.
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Figure 4.1: Filter and Refine (FiRe) approach.

In order to evaluate the FiRe approach and compare it with both Time-F and

RPR, we use the same evaluation function (4.2.5) defined earlier.

Note: In the aforementioned methodology, we use Time-F as a “filter step” and

RPR as a “refine step”. However, we also evaluated FiRe when using RPR as a

“filter step” and Time-F as a “refine step”. The results in the latter case were worse

than the former. The reason behind the difference in these results is that Time-F

performs better than RPR in detecting the superiors. In other words, Time-F ranks

superiors higher compared to how RPR ranks them. Using Time-F as a filter step

decreases the chance to filter out the superiors when we consider the top k actors

in the sorted lists. The full results can be found in Appendix A.
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4.3 Results and Analysis

In this section, we first describe the experimental setup for the prediction process.

Then we present the significant improvement we obtained over Rooted-PageRank

by using Time-F and FiRe.

4.3.1 Experimental Setup

Before running the experiments, we had to decide exactly which features to include

in the graph for each dataset.

Enron dataset

As we did in the previous chapter, we excluded all nodes (email-addresses) belonging

to people not employed by Enron, since they would only add noise to our analysis.

As a result, only emails exchanged between Enron employees were considered. More-

over, we ran the experiments on the unweighted directed graph. In other words, if

person u sent m emails to person v, this is reflected in the graph as a single arc

e = (u, v) ∈ Ec where Ec is the set of arcs (pairs) representing the interactions be-

tween the actors. For the results of Time-F and FiRe presented in this chapter, each

time-slot represents one month. However, we obtained similar patterns of results

when we considered weeks instead of months as time slots. The full results can be

found in Appendix A.

Co-author dataset

Since the co-author relationship is symmetric, the graph representing this dataset

is undirected. Like the Enron dataset, the graph is unweighted: there is only one

edge between a pair of authors when they coauthor at least one paper. For Time-F

and FiRe, each time-slot represents one year. Due to the large size of the co-author
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dataset, we used htcondor 1 with 150 nodes in order to run the experiments, which

still took 3.5 hours to complete in the worst case.

4.3.2 Time-Function (Time-F) Results

As described earlier, for each actor x, we rank the other actors by the time-scores

calculated using Equation 4.2.1. Figure 4.2 and Table 4.1 reveal the results obtained

by Time-F in detecting manager-subordinate ties in the Enron dataset. About 35%

of manager-subordinate pairs can be detected precisely, that is, where the manager

appears first within the subordinate’s ranked list. This shows an improvement over

RPR which detected only 29.45% correctly. In general, Time-F performs better than

RPR in detecting manager-subordinate ties when we look at the top i employees in

the subordinate’s ranked list where i ≤ 8 (except for i = 2 when RPR is less than

1% better than Time-F).

In the co-author dataset, as shown in Figure 4.3 and Table 4.2, Time-F is better

than RPR in detecting advisor-advisee relationships with a significant improvement

of 20-30 percentage points in most cases. In 62% of cases, advisors are ranked first

in the list of their advisees. This compares to only 39% in the case of RPR.

4.3.3 Filter-and-refine (FiRe) Results

In order to find the best cut-off position k, we tested all possible values of k from 2

to 20. Tables 4.3 and 4.4 list the most interesting FiRe results using different cut-off

values k on the Enron and co-author datasets respectively.

In the Enron dataset, about 44% of manager-subordinate pairs can be detected

with cut-off k = 4. This percentage decreases slightly to 40% when k = 6 but

with better results for those relations where managers appear in the top 3 or 4 of

their subordinate’s ranked lists. Figure 4.2 compares between RPR, Time-F and

1http://research.cs.wisc.edu/htcondor/
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Figure 4.2: Results of RPR, Time-F and FiRe on the Enron dataset. This represents
the percentages (y axis) of manager-subordinate relationships in which the managers
have rank less or equal to i (x axis).

ρ(i)
i Rooted-PageRank Time-F FiRe(k = 4)

1 29.45 34.93 43.15
2 49.31 48.63 64.38
3 59.58 63.01 68.49
4 64.38 69.86 70.54
5 68.49 76.71 70.54
6 73.97 80.13 70.54
7 78.76 83.56 70.54
8 82.87 84.24 70.54
9 84.93 84.93 70.54
10 86.30 86.98 70.54

Table 4.1: Percentage Results of Rooted-PageRank, Time-F and FiRe on Enron
dataset.

FiRe. Clearly, FiRe is the best approach with significant improvement in detecting

managers who are ranked in the top three of their subordinates’ lists. For example,

in about 44% of manager-subordinate relations, managers come first in the ranked

lists, compared to 34.9% and 29.4% detected by Time-F and RPR respectively.
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Figure 4.3: Results of R-PR, Time-F and FiRe on the co-author dataset. This
represents the percentages (y axis) of advisor-advisee relationships in which the
advisors have rank less or equal to i (x axis).

ρ(i)
i Rooted-PageRank Time-F FiRe(k = 2)

1 39.27 62.66 60.03
2 53.26 80.20 81.35
3 59.79 87.07 82.97
4 65.66 90.41 83.26
5 69.05 93.08 83.59
6 71.38 94.32 83.73
7 73.34 95.27 83.88
8 75.48 95.94 83.88
9 77.01 96.47 83.88
10 78.44 96.85 83.88

Table 4.2: Percentage Results of Rooted-PageRank, Time-F and FiRe on Co-author
dataset.

As shown in Table 4.4, in the co-author dataset, the best results for FiRe are for

a cut-off position of k = 2, with about 60% of advisor-advisee relationships being

detected at rank one, and about 81% at ranks one or two. However the cut-off at

k = 3 is slightly better at retrieving advisors in the top three of their advisees’ lists.

It should be noted that by the definition of LTx(k) in Equation (4.2.6), the cut-off
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at k may return a list of more than k actors. This occurs when multiple actors have

the same scores around the cut off position, and explains the increase in detected

relations for k = 2 when we look at the top two (81.35%) compared to the top three

authors (82.97%). Comparing the three approaches in Figure 4.3, FiRe and Time-F

perform similarly in detecting relations where the advisors come first in the ranked

lists. They achieve 60% and 62% respectively. Time-F is preferable to RPR and

FiRe in cases where advisors appear in the top three or more authors within the

ranked lists.

cut ρ(i)
off i = 1 i = 2 i = 3 i = 4 i = 5

2 39.04 48.63 48.63 48.63 48.63
3 41.78 58.21 63.01 63.01 63.01
4 43.15 64.38 68.49 70.54 70.54
5 41.09 63.01 72.60 76.02 76.71
6 40.41 64.38 73.97 78.08 80.13

Table 4.3: FiRe results for Enron dataset using various cut-off values k.

cut ρ(i))
off i = 1 i = 2 i = 3 i = 4 i = 5

2 60.03 81.35 82.97 83.26 83.59
3 54.60 75.44 84.97 86.98 87.88
4 50.50 71.24 80.44 88.22 90.08
5 48.30 68.24 77.34 84.78 90.89

10 42.53 59.13 67.71 75.05 79.63
15 41.15 56.17 64.13 70.57 74.67

Table 4.4: FiRe results for co-author dataset using various cut-off values k.

In summary, considering the time-dimension of interactions between actors, as

in Time-F, improves the results of detecting hierarchical relationships compared

to structure-based approaches like RPR. Moreover, in some applications like email

networks, hybrid models (FiRe) based on both network structure and the temporal

patterns of interactions give further improvement over the pure time-based (Time-F)

or structure-based models (RPR).
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4.4 Case study

In this section, we consider a real case study from the Enron dataset. The goal of

this section is to show how the aforementioned approaches work and to compare

their results.

Figure 4.4: Neighbourhood of “Gerald Nemec” in the Enron interaction network.

Due to the size of Enron dataset and to give a clearer view, we only present a

sub-interaction graph in Figure 4.4. Figure 4.4 views the interaction graph for the

employee “Gerald Nemec” whose direct manager we are trying to detect. Nemec

interacted with 38 employees over the period from Jan-2000 to Dec-2001. Each node

in the graph represents an employee who sent/received at least one email to/from

Nemec. Each edge from node a to node b is labelled by the total number of emails

sent from employee a to employee b over the same period. Some of these edges are

bidirectional. This is the case for all pairs of employees who sent and received at

least one email from each other within the studied period. For readability, only the

neighbourhood of “Gerald Nemec” is shown, and even though interactions occurred

between neighbours of “Nemec”, they are not shown in Figure 4.4.
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In the following sections, we present how well Rooted-PageRank, Time-F and

FiRe performs in detecting the subordinate-manager relationship between “Gerald

Nemec” and “Barbara Gray”. The interaction between Nemec and Gray is repre-

sented as a pink edge in Figure 4.4.

4.4.1 Rooted-PageRank Results

Although Figure 4.4 shows the weighted version of interaction sub-graph related to

“Gerald Nemec”, the setting used in this experiment is with the unweighted graph.

We ran Rooted-PageRank on the unweighted directed interaction graph of the full

dataset where the root node is the one representing “Gerald Nemec”. Then, we

sorted the list of employees according to the Rooted-PageRank scores.

Table 4.5 lists the top 20 employees in the final sorted list of employees with their

Rooted-PageRank scores. “Barbara Gray” who is the direct manager of Nemec came

in 10th place.

Pos Employee RPRScore Pos Employee RPRScore

1 Louise Kitchen 0.01999 11 Sara Shackleton 0.012913
2 Jeffrey Hodge 0.01990 12 Elizabeth Sager 0.012701
3 John Lavorato 0.01626 13 Kevin Presto 0.012616
4 Mark Taylor 0.01566 14 Phillip Allen 0.012029
5 Barry Tycholiz 0.01492 15 Mary Cook 0.011864
6 Michael Grigsby 0.01406 16 Stacy Dickson 0.011855
7 Mark Haedicke 0.01323 17 Richard Sanders 0.011780
8 Stephanie Miller 0.01322 18 Debra Perlingiere 0.01161
9 Tana Jones 0.01317 19 Leslie Hansen 0.01123
10 Barbara Gray 0.01310 20 Frank Vickers 0.01114

Table 4.5: The resulting list LRNemec after applying Rooted-PageRank to detect
Gerald Nemec’s manager.

4.4.2 Time-F Results

To run this approach, we need to generate the time series of interactions between the

subordinate whose manager we are trying to detect (in our case Gerald Nemec), and
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each employee he interacted with between Jan-2000 and Dec-2001. One interaction

corresponds to any sent or received email in which the subordinate was involved.

Also, as mentioned earlier, each time slot represents one month. Table 4.6 shows

the time series of 81 interactions between Nemec and his manager, Barbara Gray.

Table 4.7 shows the time series of interactions between Nemec and all employees.

As defined in Equation (4.2.1), in order to calculate TimeScorex(y) we need the

time series between x and y as well as the time series of interactions between x and

all employees.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
2000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0 0 0 2 0 2 10 6 12 10 5 6
t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24

2001 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
3 1 2 1 2 4 5 3 3 3 0 1

Table 4.6: An example of the time series of interactions between Gerald Nemec and
his manager Barbara Gray.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
2000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2 4 6 5 3 12 15 11 28 31 45 47
t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24

2001 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
40 39 66 128 102 71 48 68 48 69 111 40

Table 4.7: The time series of interactions between Gerald Nemec and all Enron
employees.

Having built all the time series related to Nemec, we calculate TimeScoreNemec

for each employee using the function defined in Equation (4.2.1). Then, we generate

a ranked list of employees LTNemec according to their time scores. Table 4.8 lists the

top 20 employees in the list LTNemec with their time scores. The manager “Barbara

Gray” appears in the third position.
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Pos Employee TimeScore Pos Employee TimeScore

1 Mark Whitt 4.7153 11 Jean Mrha 0.5960
2 Stephanie Miller 4.6232 12 David Fuller 0.4297
3 Barbara Gray 3.2626 13 Mary Cook 0.3649
4 Susan Scott 3.0813 14 Colleen Sullivan 0.3534
5 Barry Tycholiz 2.1215 15 Richard Sanders 0.3214
6 Debra Perlingiere 1.9530 16 Julie Gomez 0.2380
7 Paul Lucci 1.0935 17 Mark Taylor 0.2008
8 John Hodge 0.9979 18 Stacy Dickson 0.1812
9 Tyrell Harrison 0.8744 19 Leslie Hansen 0.1563
10 Jeffrey Hodge 0.6949 20 Marie Heard 0.1441

Table 4.8: The resulting list LTNemec after applying Time-F to detect Gerald Ne-
mec’s manager.

4.4.3 FiRe Results

After we generate two sorted lists of employees LRNemec and LTNemec using Rooted-

PageRank and Time-F respectively, we can apply the FiRe approach to detect Ne-

mec’s manager. First, in the filtering step, we truncate the top four employees from

LTNemec to be re-sorted in the refining step according to Rooted-PageRank scores.

Tables 4.9 and 4.10 show the lists obtained in filtering and refining steps respec-

tively. The final resulting list using FiRe shows “Barbara Gray”, who is Nemec’s

direct manager, in the second position (see Table 4.10).

Pos Employee TimeScore

1 Mark Whitt 4.7153
2 Stephanie Miller 4.6232
3 Barbara Gray 3.2626
4 Susan Scott 3.0813

Table 4.9: The list obtained after the filter step in the FiRe approach to detect
Gerald Nemec’s manager.

Although FiRe ranks Gray (Nemec’s manager) in second rather than first posi-

tion, it still outperforms both RPR and Time-F which rank Gray in tenth and third

positions respectively (see Chart 4.1). So Nemec is among the 64.38% of employees

whose managers are ranked within the first two positions by FiRe (see Table 4.1).
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Pos Employee RPRScore

1 Stephanie Miller 0.01322
2 Barbara Gray 0.01310
3 Mark Whitt 0.01070
4 Susan Scott 0.00753

Table 4.10: The final list LTRNemec obtained after the refine step in the FiRe
approach to detect Gerald Nemec’s manager.

10Rooted-PageRank

3Time-F

2FiRe

0 2 4 6 8 10 12

Chart 4.1: The rank of Nemec’s manager calculated by Rooted-PageRank, Time-F,
and FiRe.

4.5 Summary
In this chapter, we presented our work on inferring implicit hierarchical ties between

actors from their online interaction networks. We considered as examples detect-

ing manager-subordinate relations between employees from their exchanged emails

and discovering supervision relationships in academia by analysing a network of

co-authored papers. Our experiments showed that including temporal patterns of

interactions results in considerably better predictions of hierarchical ties than mod-

els based on studying network structure alone (like Rooted-PageRank). In some

applications, like email networks, heterogeneous models based on both temporal

and structural features of interaction perform even better than homogeneous mod-

els. We compare the computational costs of RPR with Time-F and FiRe in Section

5.3.5.

In the next chapter, we develop a time-sensitive model based on Rooted-PageRank

which captures the development of the RPR scores over time in order to improve

the inference of hierarchical relationships between actors.



Chapter 5

Detecting Hierarchical Relations

using Time-Sensitive

Rooted-PageRank

5.1 Overview

In the previous chapters, we addressed the problem of detecting hierarchical ties

between a group of actors in a social network by analysing the structure of the in-

teraction network using Rooted-PageRank algorithm (RPR) [133]. We also proposed

two time-based methods, namely Time-F and FiRe, which study the interaction pat-

terns between the actors over time.

In this chapter, we propose another novel method, Time-sensitive Rooted-PageRank

(T-RPR), to capture the RPR scores dynamics of the actors over time. The method

proves to be more effective in detecting hierarchical ties, especially when the period

over which the interactions occur is long enough.

90
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The contributions of this chapter include:

• A novel time-sensitive method (T-RPR) which builds upon the static Rooted-

PageRank (S-RPR) explained in chapter 3, and captures how the structure of

the interaction network changes over time.

• Two approaches for aggregating scores from each of the time slots over which

T-RPR is run, one based on a simple weighted average and the other based

on voting.

• An extensive experimental evaluation of the performance of these methods

in terms of recall on two large real datasets, the Enron e-mail network and

a co-authorship network. Our experiments show that time-sensitive Rooted-

PageRank (T-RPR) achieves considerably better results than the competitors

static Rooted-PageRank (S-RPR), Time-F and FiRe. For example, in the En-

ron network, T-RPR detects up to 58% of manager-subordinate relationships,

compared to only 34% by S-RPR, while in the co-author network it detects

about 68.8% of PhD advisor-advisee relationships, a significant improvement

over the 39.5% achieved by S-RPR.

The results presented in this chapter have been published previously in [56,57].

5.2 Time-Sensitive Rooted-PageRank

We continue our investigation of whether “time matters” in detecting hierarchical

social relationships; in other words, whether significant improvements in detecting

hierarchical ties can be obtained by taking into account the temporal aspects of the

interactions. Here, we adapt the static Rooted-PageRank (S-RPR), as described in

Chapter 3, and introduce Time-Sensitive Rooted Pagerank (T-RPR), which captures

how the ranking scores of the actors change over time. The proposed method consists

of three parts: time segmentation, ranking, and rank aggregation.
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5.2.1 Time Segmentation

Instead of the single interaction graph used in S-RPR, we now consider a number of

interaction graphs, each corresponding to a period of time. Let T = [t1, tm] be the

total time period over which interactions have taken place, starting at time t1 and

ending at time tm. First, T is divided into n equal-sized non-overlapping time slots

{T1, T2, . . . , Tn}, with Tj = [tjk, tjl], ∀j ∈ [1, n], such that tjl − tjk = d, ∀j, where

d ∈ Z+ is the size of the time segments. Observe that a time slot can be any time

unit (e.g., day, fortnight, month, or year) depending on the application. Next, we

define an interaction graph for each time slot.

Definition (Time-Interaction Graph): A time-interaction graph is defined as

Gk
I = (Vk, E

c
k,W ), where Vk ⊆ V is the set of actors who interacted with at least

one other actor within time slot Tk, E
c
k ⊆ Vk × Vk is the set of edges (directed or

undirected) corresponding to the interactions between the set of actors Vk which

took place within Tk, and W is the vector of edge weights.

Finally, a set of time-interaction graphs GI = {G1
I , . . . , G

n
I } is produced for the

n time slots. The next task is to rank the nodes in each graph.

5.2.2 Segment-based Ranking

For each time-slot Tk and each actor x ∈ V , we run RPR on the corresponding

time-interaction graph Gk
I = (Vk, Ek,W ). Let scorex,k(vi) denote the RPR score

of actor vi when x is used as root on Gk
I . This results in a list of actors sorted in

descending order with respect to their RPR scores at time slot k:

L(x)k = [v1, v2, . . . , vN ] ,

where N = |Vk| − 1, Vk\{x} = {v1, v2, . . . , vN}, and scorex,k(vi) ≥ scorex,k(vi+1) for

i = 1, . . . , N − 1.
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The rankings obtained over the n time-slots are aggregated for each root actor

x and all remaining actors vi ∈ V , resulting in an aggregate score aggScorex(vi).

Finally, the aggregate scores are sorted in descending order resulting in the following

aggregate list of actor ranks:

L(x) = [v1, v2, . . . , vM ] ,

whereM = |V |−1, V/{x} = {v1, v2, . . . , vM}, and aggScorex(vi) ≥ aggScorex(vi+1),

for i = 1, . . . ,M − 1. More details on the aggregation techniques are given below.

Finally, as in S-RPR, the hierarchy graph GH is inferred from L(x) by assigning

to each node x ∈ V one of the candidate managers that ranked high in L(x), e.g.,

within the top-K places, for some K.

5.2.3 Rank Aggregation

We explored two rank aggregation techniques, one based on averaging and one based

on voting.

Average-based Time-sensitive RPR (AT-RPR)

In this approach, the ranking in L(x) is based on a weighted average of the individual

RPR scores over all time-slots. We define a set of weights Ω = {ω1, . . . , ωn}, where

ωk is the weight assigned to time slot Tk. Each actor y ∈ L(x) is ranked according

to the obtained scores over all time-slots:

aggScorex(y) = 1/n
n∑
k=1

ωk × scorex,k(y) . (5.2.1)

where:

• x is the actor whose superior we are trying to detect,

• n is the total number of slots,
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• scorex,k(y) is the Rooted-PageRank score obtained for y within the time-slot

tk when x is the root node, and

• ωk is the weight associated with time slot tk.

Assigning the values in Ω is application-dependent. For example, if the inter-

actions between actors and their superiors are distributed regularly over the whole

period T , then all weights can be equal. On the other hand, the interactions between

actors and their superiors may be more intensive in earlier or later time-slots. An

example of the former case is when detecting PhD advisor-advisee relationships in

a co-author network; higher weights are given to scores in early time-slots when the

advisees are expected to publish more papers with their advisors, decreasing in later

time-slots.

Vote-based Time-sensitive RPR (VT-RPR)

An alternative approach to rank aggregation is to assign candidate actors with votes

at each time-slot Tk based on their rank in that slot. The final rank of an actor is

determined according to the total number of votes they win over all time-slots.

More precisely, given L(x)k at slot Tk, a vote is assigned to actor y ∈ V \ {x} -

if y appears among the first c actors in L(x)k. We call c the vote-based cut-off. Let

pos(L(x)k, y) denote the position of y in L(x)k. The total number of votes obtained

by each candidate y is then defined as:

aggScorex(y) =
n∑
k=1

ωk · votex,k,c(y) , (5.2.2)

where:

votex,k,c(y) =

 1 if pos(L(x)k, y) ≤ c

0 otherwise

and ωk is the weight of time slot Tk, which is set depending on the application, as

suggested in the previous subsection.
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5.3 Results and Analysis

We evaluated the AT-RPR and VT-RPR in terms of recall on the same two datasets

we used before: the Enron email dataset and a co-authorship network. We first

explain the approach used to evaluate the results. Then, for each dataset tested, we

propose the experimental settings and discuss the results obtained.

5.3.1 Evaluation Methodology

To evaluate the performance of the two methods, we compute for each subordi-

nate/advisee x the rank of their correct superior/advisor x∗ in L(x):

rank(x, x∗) = |{y : y ∈ L(x) ∧ scorex(y) ≥ scorex(x
∗)}| (5.3.3)

Hence, the rank of the manager x∗ of x is the number of actors in L(x) who have

an RPR score greater than or equal to the score of x∗.

Finally, given a threshold i, we can define the overall rank ρ(i) of V as the

percentage of actors with rank at most i over all hierarchical relations that exist in

GH :

ρ(i) =
|{x : rank(x, x∗) ≤ i}|

|Es|
× 100 (5.3.4)

5.3.2 Enron Results

Experimental Settings

We explored two versions of the Enron interaction graph: directed, where a directed

edge exists from employee u to v if u sent at least one email to v; undirected, where

any interaction (sent or received email) between u and v is represented as an edge

between them.
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Also, we tried the unweighted and weighted versions of the interaction graph. In

the former case, all edge weights are 1. However, in the latter case, the weight of

the edge e between node x and y in the interaction graph within the time period t

is determined by the equation:

wte =
count(x, y)

count(x)
(5.3.5)

where:

• count(x, y) is the total number of emails sent from x to y within t if the

interaction graph is directed. In the case of undirected graph, this represents

the total number of interactions (sent/received emails) between x and y over

the same period t.

• count(x) is the total number of emails sent from x to all other employees

within t when the graph is directed. In the case of undirected graph, this is

the total number of interactions (sent/received emails) occurring during the

period t and in which employee x is involved.

According to the aforementioned two categories of settings, we evaluated our ap-

proaches on the interaction graphs with the following features:

1. undirected, unweighted

2. undirected, weighted

3. directed, unweighted

4. directed, weighted

The weights used in each interaction graph are calculated on the basis of the time-slot

to which the interaction graph relates. In the case of the undirected-weighted graph,

any edge between two employees x and y should have two weights, the weight wxy

from x to y and the weight wyx from y to x. Therefore, we converted the undirected-

weighted graph to a directed-weighted graph where each edge e between x and y is

replaced by an edge exy from x to y weighted by wxy, and an edge eyx from y to x

weighted by wyx.
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For the T-RPR approach, each time-slot represents one month, giving 24 time-

slots in total. In addition, since we expect to have regular interactions between a

subordinate and their manager over the whole time period, each weight ωk (k =

1, . . . , n) in the aggregation functions given in Equations (5.2.1) and (5.2.2) was set

to 1.

Experimental results using a directed graph

The experimental results of AT-RPR and VT-RPR against S-RPR, Time-F and

FiRe using a directed graph representation are shown in Figure 5.1. This includes

the results of (a) the unweighted version and (b) the weighted version. Using this

figure in combination with Tables 5.1 and 5.2 we can make several observations.
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Figure 5.1: Results using S-RPR, Time-F, Fire and T-RPR (both aggregation strate-
gies) on Enron using (a) the directed unweighted interaction graph and (b) the
directed weighted interaction graph. This represents the percentages (y axis) of
manager-subordinate relationships in which the managers have rank less or equal to
i (x axis).

Firstly, S-RPR has nearly identical performance in both weighted and unweighted

versions. For example, S-RPR can detect 49.31% of managers within the top two

positions in their subordinates’ sorted lists using the unweighted graph. This per-

centage increases to only 50% when the weighted graph is used. As explained pre-

viously, Time-F works by ranking the actors according to their scores calculated
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ρ(i)
i S-RPR Time-F FiRe(k = 4) AT-RPR VT-RPR(k = 4)

1 29.45 34.93 43.15 33.56 47.94
2 49.31 48.63 64.38 50 56.16
3 59.58 63.01 68.49 62.32 62.32
4 64.38 69.86 70.54 68.49 66.43
5 68.49 76.71 70.54 71.91 67.80
6 73.97 80.13 70.54 75.34 69.17
7 78.76 83.56 70.54 78.08 69.86
8 82.87 84.24 70.54 79.45 70.54

Table 5.1: Results on directed unweighted Enron graph.

ρ(i)
i S-RPR Time-F FiRe(k = 4) AT-RPR VT-RPR(k = 4)

1 34.24 34.93 36.30 31.50 44.52
2 50 48.63 56.84 47.94 57.53
3 60.95 63.01 67.12 59.58 64.38
4 70.54 69.86 70.54 67.12 67.12
5 75.34 76.71 70.54 69.17 70.54
6 79.45 80.13 70.54 71.91 70.54
7 82.19 83.56 70.54 76.71 71.23
8 83.56 84.24 70.54 80.13 71.91

Table 5.2: Results on directed weighted Enron graph.

cut ρ(i)
off i = 1 i = 2 i = 3 i = 4 i = 5

2 39.72 52.05 56.84 60.27 62.32
3 43.83 54.79 62.32 67.12 67.80
4 47.94 56.16 62.32 66.43 67.80
5 44.52 58.90 63.01 67.12 67.80
6 43.15 58.21 63.69 65.75 67.80
7 41.09 59.58 63.69 65.75 67.12

Table 5.3: VT-RPR results on Enron dataset using vote cut-off c = 2–7 with directed
and unweighted interaction graph.

by the time function. Therefore, we compare the same results obtained by Time-F

with both the results of using weighted and unweighted graphs. Regarding the FiRe

approach, using the unweighted graph returns better results than those obtained

when the weighted graph is used. For example, more than 43% of managers are

ranked first in the sorted lists compared to only 36.3% using the weighted graph.
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cut ρ(i)
off i = 1 i = 2 i = 3 i = 4 i = 5

2 38.35 54.10 57.53 60.95 61.64
3 39.72 60.27 66.43 68.49 69.17
4 44.52 57.53 64.38 67.12 70.54
5 41.09 55.47 62.32 66.43 68.49
6 39.04 57.53 64.38 65.75 68.49
7 39.72 57.53 64.38 66.43 67.80

Table 5.4: VT-RPR results on Enron dataset using vote cut-off c = 2–7 with directed
and weighted interaction graph.

In AT-RPR, the results obtained using the weighted and unweighted graphs are

similar. For VT-RPR, we consider the best value for the voting cut-off. In Tables 5.3

and 5.4, we can see how different values of the voting cut-off affect the performance

percentages of VT-RPR for the unweighted and weighted graphs respectively. If we

consider the managers who come first in the sorted lists, the best cut-off for both

cases (weighted and unweighted) is c = 4. However, VT-RPR performs slightly

better using the unweighted graph rather than the weighted graph. In addition,

VT-RPR (with cut-off at 4) is preferable to AT-RPR in both settings. This is

clear for the managers who appear in the first or second positions within their

subordinates’ sorted lists. For example, in the unweighted graph VT-RPR detects

47.94% of managers in the first position in the sorted lists compared to only 33.56%

detected by AT-RPR.

In the directed graph, when considering the case of managers who are detected

at the top of the sorted list, the best results are obtained using VT-RPR in the

unweighted setting. On the other hand, the FiRe approach is substantially better

for managers appearing within one of the second, third or fourth ranks in the sorted

lists. In general, the results of the unweighted settings are better than those obtained

in the weighted settings when using the directed interaction graph in our methods.
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Experimental results using an undirected graph

Figure 5.2 with Tables 5.5 and 5.6 show the results obtained when the interaction

graph is undirected.

S-RPR works considerably better on the weighted graph than the unweighted

graph when the interactions are undirected. This is clear for managers who are

ranked first in the sorted lists. About 27% of the managers are ranked first using

the weighted graph compared to only 8.9% using the unweighted graph. Regard-

ing Time-F, the same results are obtained with both the weighted and unweighted

graphs.
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Figure 5.2: Results using S-RPR, Time-F, Fire and T-RPR (both aggregation strate-
gies) on Enron using (a) the undirected unweighted interaction graph and (b) the
undirected weighted interaction graph. This represents the percentages (y axis) of
manager-subordinate relationships in which the managers have rank less or equal to
i (x axis).

The picture changes with FiRe, AT-RPR and VT-RPR. In all these approaches,

using the unweighted version of the undirected graph is preferable to using the

weighted version. In the FiRe approach, with a cut-off at 4, the percentage of

detected managers who appear within the top two positions improved by 8-10 points

when the unweighted graph is used. For example, about 61% of managers have one

of the two highest scores using the unweighted graph compared to only 50.6% when

the weights are considered.
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ρ(i)
i S-RPR Time-F FiRe(k = 4) AT-RPR VT-RPR(k = 4)

1 8.90 34.93 36.30 36.30 58.90
2 43.83 48.63 60.95 57.53 73.28
3 56.16 63.01 67.12 74.65 76.71
4 67.80 69.86 69.86 80.82 78.76
5 72.60 76.71 70.54 81.50 80.13
6 75.34 80.13 70.54 83.56 80.82
7 78.76 83.56 70.54 83.56 80.82
8 80.13 84.24 70.54 85.61 80.82

Table 5.5: Results on the undirected unweighted Enron graph.

ρ(i)
i S-RPR Time-F FiRe(k = 4) AT-RPR VT-RPR(k = 4)

1 26.71 34.93 28.76 30.13 47.26
2 40.41 48.63 50.68 49.31 70.54
3 63.69 63.01 67.12 63.69 73.97
4 70.54 69.86 70.54 74.65 75.34
5 73.28 76.71 70.54 79.45 76.71
6 76.02 80.13 70.54 80.82 78.08
7 76.71 83.56 70.54 82.19 78.76
8 80.13 84.24 70.54 82.87 79.45

Table 5.6: Results on the undirected weighted Enron graph.

Similarly, both AT-RPR and VT-RPR give better results using the unweighted

graph. However, VT-RPR is substantially more effective in detecting manager-

subordinate relationships compared to AT-RPR and all other approaches using ei-

ther the weighted or unweighted graph. For example, the percentage of managers

who are ranked first within their subordinates’ sorted lists, does not exceed 37% in

the best case using one of the four approaches: S-RPR, Time-F, FiRe and AT-RPR.

On the other hand, VT-RPR can detect about 59% and 50% of the managers in

the first position using the unweighted and weighted graph, respectively. Moreover,

VT-RPR can infer more than 73% of relationships using the unweighted graph and

by looking at only the first two employees in each sorted list. This gives an improve-

ment over the 60% of detected relationships by the FiRe approach which is the best
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among the other three approaches when we consider the top two employees in each

sorted list.

cut ρ(i)
off i = 1 i = 2 i = 3 i = 4 i = 5

2 52.73 66.43 73.97 76.71 78.76
3 58.21 71.91 76.02 78.08 79.45
4 58.90 73.28 76.71 78.76 80.13
5 57.53 73.28 76.02 77.39 80.13
6 54.79 72.60 75.34 78.08 80.82

Table 5.7: VT-RPR results on Enron dataset using vote cut-off 2–6 with undirected
and unweighted interaction graph.

cut ρ(i)
off i = 1 i = 2 i = 3 i = 4 i = 5

2 47.26 68.49 73.28 76.02 76.71
3 45.89 68.49 73.28 76.02 76.71
4 47.26 70.54 73.97 75.34 76.71
5 50 69.17 71.91 73.97 75.34
6 47.94 65.06 73.28 75.34 76.71

Table 5.8: VT-RPR results on Enron dataset using vote cut-off 2–6 with undirected
and weighted interaction graph.

To find the best possible VT-RPR results, we tested a range of cut-off positions

as shown in Tables 5.7 and 5.8 for the unweighted and weighted graph, respectively.

The best cut-off position in both cases is c = 4 when we look for the managers within

top three ranks (i ≤ 3) of each sorted list (an exception is the weighted graph for

the case of managers who ranked first, where the best cut-off is at 5 with 50% of

managers detected).

In general, similarly to the directed graph, the results obtained using the un-

weighted graph are better than those obtained using the weighted version when the

interaction graph is undirected.

Undirected graph vs. directed graph

As we have seen, generally in both directed and undirected interaction graphs, results

for the unweighted version are better than those for the weighted version. This
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finding indicates that it is not necessarily the case that a subordinate exchanges the

highest fraction of interactions with his/her manager compared to other employees.

In this section, we compare the results obtained by using the undirected unweighted

graph against those of the directed unweighted graph.

Relating to S-RPR, this approach performs considerably better for the directed

graph. This becomes clear when we consider the number of managers ranked first

in a subordinate’s ranked list. About 30% of the managers are ranked first when

using a directed graph compared to only 9% for the undirected graph. Similarly,

relating to the FiRe approach in which S-RPR is used as a refine step, using the

directed interaction graph returns better results compared to those obtained in the

case of the undirected graph. For example, FiRe detects about 43% and 36% of the

managers come first within the sorted list using the directed and undirected settings,

respectively.

On the other hand, this picture changes when we consider the time dimension in

T-RPR. Both AT-RPR and VT-RPR give better results on the undirected graph and

especially when using vote-based aggregation. This finding suggests that the volume

of email matters more than direction for detecting hierarchical ties in a manager-

subordinate setting. A possible explanation is that employees may have similar

communication patterns with respect to the fraction of sent vs. received emails

when they communicate with other employees and also when they communicate

with their manager. However, the volume of the email traffic as a whole can be a

more distinctive feature of the underlying hierarchical tie.

5.3.3 Co-author Results

Experimental Settings

For the purposes of our study, we excluded all single-author papers as well as papers

without a publication date. Due to the symmetric nature of the co-author relation-
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ship, the interaction graph representing this dataset is undirected. Once again, each

edge weight was set to 1. For the T-RPR approach, we defined 45 time-slots, one

per publication year. Moreover, the weights used by both aggregation methods were

defined for each aggScorex(y), as ωk = 1 − (slotk−slot1)
(slotn−slot1) , where (slotk − slot1) is the

number of time-slots (years) between time-slot k and the slot in which the first paper

was co-authored by x, and (slotn − slot1) is the total number of time-slots between

the first and last papers co-authored by x. We defined the weights in this way since

we expect more intensive interactions between an advisee and their advisor in the

early stages of the advisee’s publication activity. Therefore, higher weights are given

to early years. For each advisee whose advisor we wish to detect, we only consider

the period between his/her first and last publication.

Due to the large size of the co-author dataset, we used htcondor 1 with 160 nodes

in order to run the experiments, which still took 4 hours to complete in the worst

case.

Experimental Results

Figure 5.3 and Table 5.9 present the performance of S-RPR, Time-F, FiRe, AT-

RPR and VT-RPR for the co-author dataset. Clearly, the results for both AT-RPR

and VT-RPR, are substantially better than those for S-RPR. For example, for more

than 65% of the advisees, both AT-RPR and VT-RPR correctly infer their advisor

as the top-ranked co-author. This gives a remarkable improvement over the results

of S-RPR which only detects 39.27% of advisors correctly.

On the other hand, the results of AT-RPR are 3–7 percentage points better than

VT-RPR. For instance, more than 95% and 90% of advisor-advisee relationships

can be detected within the top 7 authors by AT-RPR and VT-RPR respectively.

Table 5.10 shows that the best results for VT-RPR are with voting cut-off at 1.

1http://research.cs.wisc.edu/htcondor/
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Figure 5.3: Results for S-RPR, T-RPR (both aggregations) on the co-author dataset.
This represents the percentages (y axis) of advisor-advisee relationships in which the
advisors have rank less or equal to i (x axis).

ρ(i)
i S-RPR Time-F FiRe(k = 2) AT-RPR VT-RP(k = 1)

1 39.27 62.66 60.03 68.86 65.52
2 53.26 80.20 81.35 83.21 79.25
3 59.79 87.07 82.97 88.41 85.12
4 65.66 90.41 83.26 91.41 87.55
5 69.05 93.08 83.59 93.60 89.50
6 71.38 94.32 83.73 94.61 90.12
7 73.34 95.27 83.88 95.42 90.65
8 75.48 95.94 83.88 95.85 90.93
9 77.01 96.47 83.88 96.28 91.17
10 78.44 96.85 83.88 96.75 91.46
11 79.63 97.13 83.88 96.99 91.55
12 80.87 97.52 83.88 97.32 91.60

Table 5.9: Methods applied to the undirected unweighted co-author graph.

5.3.4 Main Findings

For both the Enron and co-author datasets, the time-sensitive methods AT-RPR and

VT-RPR are significantly better than S-RPR. This demonstrates that time matters
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cut ρ(i)
off i = 1 i = 2 i = 3 i = 4 i = 5
1 65.52 79.25 85.12 87.55 89.50
2 60.80 78.54 84.64 88.03 89.93
3 56.84 75.58 82.30 85.78 87.88
4 53.55 72.72 79.97 83.83 86.17
5 50.69 69.48 77.25 81.78 84.21

Table 5.10: VT-RPR results for co-author using vote cut-off c = 1–5.

when detecting hierarchical relationships in social networks. However, AT-RPR and

VT-RPR perform differently on each dataset, with VT-RPR being more effective in

detecting subordinate-manager relationships in the Enron data and AT-RPR being

slightly better in detecting advisee-advisor relationships in the co-author network.

One interpretation of these results is that, when the interactions between actors

and their superiors extend over many time-slots and the number of interactions is

large, then VT-RPR is more appropriate. An example of this is the Enron dataset,

where the interactions occur over 24 time-slots. On the other hand, when the in-

teractions with the superior are intensive within a few time-slots and the number of

interactions is small, AT-RPR is preferable to VT-RPR. This is the case for the co-

author dataset where usually an advisee publishes papers with their advisor within

only 4–5 time-slots while the advisee is completing their PhD. When compared to

the Time-F and FiRe approaches of Chapters 3 and 4, AT-RPR and VT-RPR prove

to be more effective in detecting hierarchical ties.

5.3.5 Computational Cost

In this section, we discuss the computational costs of our proposed approaches in

terms of the run-time required to complete the experiments. Figures 5.4 and 5.5

show the execution time in minutes of each approach on the Enron and co-author

datasets respectively. This represents the average time each approach takes to detect

one relationship.
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Figure 5.4: The execution time to run each method on the Enron dataset.
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Figure 5.5: The execution time to run each method on the co-author dataset.

As mentioned previously, due to the large size of the co-author dataset, we used

htcondor 2 to run the experiments. We used 25 machines, each with an Intel i7 CPU

with 8 or 16 GB RAM. Each CPU consists of a number of cores (4 or 8). The RAM

of each machine is distributed equally among the cores. For example, given a 16GB

machine with 8 cores, each core has 2 GB. Each core executes one submitted job.

In our case, each job is one execution of RPR, FiRe, Time-F or T-RPR.

Both Enron and co-author datasets show similar patterns in terms of execution

time. Although T-RPR was the best method in detecting hierarchical relation-

ships, it takes longer to execute compared to RPR, FiRe and Time-F. For example,

2http://research.cs.wisc.edu/htcondor/
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it takes 50 minutes to detect one advisor-advisee relationship using T-RPR com-

pared to only 40, 5 and 45 minutes using RPR, Time-F and FiRe respectively. The

fastest method among all approaches was Time-F, taking 1 and 5 minutes to detect

manager-subordinate and advisor-advisee relationships respectively.

In conclusion, T-RPR is the best method when greatest precision is required irre-

spective of execution time. On the other hand, when execution time is an important

consideration, then Time-F is the best method.

5.3.6 Case Study

Continuing with the case study proposed in the previous chapter, we show in this

section the results of using T-RPR in detecting the manager of employee “Gerald

Nemec” (namely, “Barbara Gray”). We explain the results using the two aggregation

approaches, namely AT-RPR and VT-RPR.

As shown in Section 5.3.2, the best results of T-RPR were obtained using an

undirected and unweighted interaction graph. In this section, we explain the

performance of T-RPR on our case study using these experimental settings.

The number of emails exchanged between “Nemec” and each other employee over

two years is shown in Table 5.11. Each row in the table represents one employee

and each column represents one month. We only include the employees who have

exchanged at least one email with “Nemec” over two years.

Applying T-RPR

T-RPR starts by running Rooted-PageRank n times, where n is the total number

of months (i.e., 24). In each run, we use the node representing “Nemec” as the root

node. Moreover, in each run, we use the interaction graph of a different month.

This generates n lists of employees sorted by the Rooted-PageRank scores. Tables

5.12 to 5.16 show the top 20 employees in each sorted list. The manager (Barbara

Grey) is highlighted in each list.
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Average-based Time-sensitive RPR (AT-RPR)

The final list of employees, generated using the average-based aggregation approach,

is sorted by the average scores of rooted-PageRank achieved by each employee over

all months. The final list for our case study is shown in Table 5.17.

Rank Employees avg-score

1 Stephanie Miller 0.0616

2 Susan Scott 0.0446

3 Barbara Gray 0.0300

4 Debra Perlingiere 0.0276

5 Mark Whitt 0.0265

6 John Hodge 0.0239

7 Mark Taylor 0.0195

8 Jeffrey Hodge 0.0192

9 Mark Haedicke 0.0188

10 Paul Lucci 0.0183

Table 5.17: Top 10 employess from the
final list sorted by average RPR scores.

Rank Employees total-votes

1 Barbara Gray 12

2 Mark Whitt 11

3 Stephanie Miller 10

6 Mark Haedicke 9

6 Barry Tycholiz 9

6 Mark Taylor 9

8 Susan Scott 8

8 Debra Perlingiere 8

10 Jeffrey Hodge 6

10 John Lavorato 6

Table 5.18: Top 10 employess from the
final list sorted by total votes each em-
ployees obtained when using the cut-off
at 4.

Vote-based Time-sensitive RPR (VT-RPR)

As we saw in Section 5.3.2, the best results for VT-RPR were obtained using the

cut-off k = 4, so for simplicity we only present here the results of VT-RPR using

the cut-off k = 4. Each employee appearing within the top four ranks in each of the

24 sorted lists, will receive a vote. However, it is noted here that in some months,

a group of employees may share an equal rooted-PageRank score and come within

the top 4 ranks in the sorted list. For example, month 5 (Table 5.12), both “John

Hodge” and “Susan Scott” have rank 1 with a rooted-PageRank score of 0.2297.

Moreover, all the other employees have rank 3 with rooted-PageRank scores of 0.

As a result, all employees receive one vote, since all of them have rank ≤ 4 in that

month.
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The final list of employees is generated and sorted by the total votes received

by each employee over all months. The final list for our case study is shown in

Table 5.18.

10Rooted-PageRank

3Time-F

2FiRe (cut-off at 4)

3AT-RPR

1VT-RPR (cut-off at 4)

0 1 2 3 4 5 6 7 8 9 10 11 12

Chart 5.1: The rank of Nemec’s manager in the lists sorted by Rooted-PageRank,
Time-F, FiRe, Average-based Time-sensitive RPR and Vote-based Time-sensitive
RPR

Chart 5.1 shows, VT-RPR is the best approach for detecting Nemec’s manager

(Barbara Gray). In VT-RPR, Gray came first in the final list, compared to AT-

RPR, in which she appeared in the third position. However, the performance of

both AT-RPR and Time-F was identical and slightly worse than the FiRe approach

in which Gray was ranked second. All our approaches were considerably better than

our baseline RPR where 9 other employees came before the manager in the final

sorted list.

5.4 Summary

In this chapter, we introduced T-RPR, a method for detecting hierarchical ties in

an interaction graph. We investigated the impact of the temporal dimension in the

ranking process and adapted Rooted-PageRank to capture the dynamics of the in-

teractions over time between the actors in the network. We explored two variants
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for aggregating the rankings produced at each time slot. Experiments on two real

datasets showed that, although the Time-F and FiRe approaches returned better re-

sults than those obtained by S-RPR, the approach proposed in this chapter, namely

T-RPR, was superior to Time-F, FiRe and S-RPR, hence providing reasonable em-

pirical justification and support for our claim that “time matters” in detecting hier-

archical ties. The results also showed that T-RPR works better when the undirected

interaction graph is used. This highlights the importance of the volume of the in-

teraction traffic more than the fraction of incoming and outgoing interactions as

a distinctive feature of detecting the underlying hierarchical ties when the interac-

tions between actors are asymmetric. These findings were supported by presenting

the results of applying these approaches over the same case study presented in the

previous chapter.



Chapter 6

Detecting Students’ Roles using

Supervised Learning

6.1 Overview

In previous chapters we studied the problem of detecting hierarchical relationships

between actors in an interaction network. In this chapter and the next, we change

our focus to detecting the hierarchical roles of actors in networks. In particular, we

consider the hierarchical roles of actors participating in a project.

Working on a project means working in a team, and a project team can be seen

as a social group where team members are involved in social interactions with each

other, share interests and have the common goal of completing the project. Thus,

based on the learning framework presented in [4], where students assumed three

different roles defined in PRINCE2TM, namely Executive (EX), Project Manager

(PM) and Team Member (TM), the overall objective of this chapter is to examine

the relationships between students through their communication behaviour using

an asynchronous communication tool. More specifically, this work analyses the

capability of Data Mining field (DM) to identify patterns of interaction between

students that are directly related to their position in the project. These roles include:

116
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• EX: Executive. This role is charged with effective management of the project.

Each project is managed by a team of three to five EXs.

• PM: Project Manager, with management responsibilities. On behalf of the

EX, the PMs have the authority to run the project on a day-to-day basis.

Each project is managed by a team of seven to twelve PMs.

• TM: Team member, with engineering task development responsibilities. Each

project is composed of seven to sixteen TMs.

Asynchronous communication tools can play an important role in students’ col-

laborative learning through two types of actions: reading and writing messages [104].

We focused our study on analysing this type of communication and investigated how

reading and writing activities carried out by students working on a project, can be

used to detect students’ roles.

The knowledge acquired by DM algorithms can help teachers understand how

students’ roles in a project relate to their communication behaviour and whether the

students play their presumed roles in the project. Our results show that, by choosing

an appropriate set of features related to students’ communication patterns, a number

of DM algorithms are able to classify students’ roles with both precision and recall

of over 95%.

The results presented in this chapter have been published previously in [55].

6.2 Problem Setting

The problem we wish to solve is as follows. We are given a set of students V who

have interacted via a set of interactions I, through the use of any of the following

asynchronous communication tools (as shown in Figure 6.2) provided by the project

portfolio management (PPM) software used to facilitate the development of the

learning experience (http://www.project.net):
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• Blogs. Blog posts can be created either globally for the project or tied to

specific tasks, keeping a complete record of activity associated with that item

easily accessible. Thus, project members create blog posts to record recent

activities or completed work as well as to ask something related to the work

to be done (Figure 6.1). In summary, blogs:

– record completed work and general comments,

– allow members to view a log of all work activity for a project, and

– facilitate two-way communication between management and team mem-

bers.

• Discussion groups. Project members can establish threaded discussions. The

centralised discussion board allows project members to consolidate thoughts

and ideas and share running commentary with other project members. In this

particular application, discussion posts were also used to inform those project

members responsible for a deliverable that the requested work had been done.

Thus, the person responsible for that deliverable replied in order to provide

feedback to the performed work in a positive (acceptance) or negative (request

changes) way. Furthermore, it is possible to see who posted a discussion com-

ment and who has viewed your comments (Figure 6.2). In summary, a project

member can:

– Hold discussions around specific deliverables/documents.

– Track who has viewed each message.

From these interactions we derive a number of features. These features might

be simple, such as the total number of messages posted by each student, or more

complex, such as the PageRank (PR) score of each student derived from a graph

representing the set of interactions I. Given this information as input, we want to

find a method to infer the different roles students play in the project conversations.
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Figure 6.1: Sample screen for blog messages held within a project

Figure 6.2: Sample screen for discussions held within a project

Input to the method also includes the number of roles; the output should be a

classification of each student to a role.

We represent the input to the role-inference problem by the modelM = (V,R, I, F,MF )

where:

• V = {v1, . . . , vn} is the set of n students using the communication tool. We

sometimes refer to individual students by u and v.
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• R = {R1, . . . , Rm} is the set of m possible roles assigned to students.

• I is the set of messages students submitted through the communication tool.

Each message is represented by a tuple (s, time, type, r), where s ∈ V is the

sender of the message, time is the message timestamp, and type is the message

type which takes its value from a known finite set of types. If the message

is not a reply to a previous message, then r is zero; otherwise, r ∈ V is the

student who sent or posted the message to which the current message is a

reply.

• F = {f1, f2, . . . , fk} is a set of k features derived from I.

• MF is an n×k matrix mapping students to their feature values. For example,

MF (1, 2) = 10 means that the first student has value 10 for the second feature.

Given the above model M as input, we want to infer the n-dimensional vector

MR which maps each student to his or her role in the conversation. For example,

MR(3) = 2 would mean that the third student has role 2.

6.3 Supervised Approach

The approach we used to detect the students’ roles consists of four stages as shown

in Figure 6.3. Firstly, we collected the message data I which extends over three

months. Then, we pre-processed the collected data in order to produce the matrix

MF . This required first finding the set of features F . Next, various supervised

learning approaches were applied to build the models which classify the students

according to their roles. Finally, the results of detecting students’ roles using the

obtained models (i.e. the vector MR) were compared against the actual vector of

student roles in terms of recall, precision and F-measure. Each of these stages are

described in more detail below.
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Figure 6.3: Processing stages

6.3.1 Data collection

The dataset we used is from on-line asynchronous communication tools belong-

ing to Universidad de la Rioja and Universidad Politécnica de Madrid. These

tools are based on the PPM software used to support the learning experience

(http://www.project.net) and are used as a tool for coordinating groups of stu-

dents in order to accomplish and complete the projects they are working on. We

gathered the usage data for 194 students organised in 8 different projects. In each

project, there are about 25 students. Six projects started in October and finished at

the end of December in 2013. The remaining two projects extended over the same

period in 2014.

Recall that three different roles could be played by the students in the projects:

students in Role-1 are executives (EX), those in Role-2 are project managers (PM),

and those in Role-3 are team members (TM). Also, the communication among stu-

dents is via a blog entry or discussion post. These can be categorised as follows:

• BW: blog entry related to reported work.

• BT: blog entry related to a task. This can be used to ask something about

the work to be done.

• BE: blog entry related to anything else.

• BR: reply to a blog entry.

• PE: post entry.

• PR: reply to a post.
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Table 6.1: Statistics about students and messages for each project.

Numbers of students Numbers of messages
Project Role-1 Role-2 Role-3 total BW BT BE BR PE PR total

1 3 12 11 26 641 18 39 92 57 374 1221
2 3 11 10 24 475 49 87 54 35 509 1209
3 3 11 10 24 401 43 97 39 54 741 1375
4 4 10 8 22 484 32 223 259 68 580 1646
5 4 10 9 23 426 9 190 182 38 746 1591
6 5 10 7 22 440 59 34 72 42 669 1316
7 3 9 16 28 342 39 42 50 36 510 1019
8 3 7 15 25 545 29 56 60 79 784 1553

All 28 80 86 194 3760 278 768 808 409 4913 10936

Recall from Section 6.2, in the case of post/blog reply, the message to which the

post/blog is replying, is known in the data. Table 6.1 lists the full statistics of the

collected data.

6.3.2 Data pre-processing

In this step, a set of features is generated for each student. These features are used

to train the classification models. The generated features can be organised into four

different categories as described below.

Quantitative features

These features are based on statistical information about student activities within

the communication tools. They include:

• total-sent: the total number of messages sent by the student over the full

period.

• total-viewed: the total number of messages viewed by the student over the full

period.

• total-BW, total-BT, total-BE, total-BR, total-PE, and total-PR: These are

the total numbers of messages of different types sent by the student over the

full period.
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Frequency-based feature

We use a feature, which we call viewingCommitment, to measure a student’s com-

mitment in viewing the messages sent by other students in their project. We refer

to this feature as “viewing” instead of “reading” because we can be sure that a

message has been displayed to the student but it is not possible to know if the

student has effectively read it, even if the student replies to that message. In spite

of this uncertainty, and because students are not being evaluated according to the

messages they view which could corrupt the students’ behaviour, we think that this

feature can provide useful information about the students’ interest in the project.

This feature is defined as:

viewingCommitment(v) =
1

t
×

t∑
d=1

S(v, d)

A(d)

where d is the day index (d = 1 is the day of first reading), t is the total number

of project days, S(v, d) is the total number of messages the student v has viewed

from the day of first reading until day d, and A(d) is the total number of messages

that have been viewed by at least one student in the project from the first day until

day d.

The motivation behind defining the function in this way is that we want to

measure the viewing activity of a student relative to the other students who are

working on the same project. A student v may view a message only a few days after

the same message has been viewed by another student. The definition penalises

the student for each day of delay in which the student defers viewing messages that

have been viewed previously by others. Defining the function in this cumulative way

captures the student’s viewing pattern. Moreover, this definition avoids “division

by zero” when none of the students view any messages on a particular day.

From the definition, viewingCommitment(v) ∈ [0, 1], where a higher score

means that student v is more active in viewing messages relative to other students’

viewing activities.
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Interaction-based features

These features capture the interactions between students who are working on the

same project. Firstly, we need to generate the reply-graph Greply(Vi, Ei), where Vi

is the set of students who are working on project i, and (v, u) ∈ Ei if u , v ∈ Vi

and v replied to one of u’s messages. Having built the reply-graph, we run two

known algorithms, PageRank [93] and HITs (described in Chapter 2) [66], in order

to generate the interaction-based features as follows:

• PageRank-feature: this is the PageRank score that the student achieved when

we run PageRank on the reply-graph.

• Authority-feature and Hub-feature: these are the authority and hub scores

that the student achieved when we run HITs on the reply-graph.

Time-based features

These features capture the dynamics of the quantitative features and how they

change over the time. We divided the project period into n equal time-slots, and

experimented with different numbers of time-slots (n = 10, 20). In this chapter, we

only report the best results which were obtained for n = 20 (the full set of results

can be found in Appendix B). In this case, each time-slot represents about 3 days

of the project period. For each time slot, we calculate the total number of messages

sent by each student for each message type individually and for all types together.

The result of this process is 140 time-based features (7 features over 20 time-slots).

Each of these features relates to one time-slot. For example, total-sent(3) is the

total number of messages sent by the student within the third time-slot. Similarly,

total-BT(5) is the total number of type BT messages sent within the fifth slot by

the student.
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6.3.3 Classifier training and refinement

The aim of this step is to build a classification model that is able to detect each

student’s role from their on-line activities. We used various classification algorithms

that belong to different categories, based on those available in Weka [134]:

• Bayes-based algorithms are probabilistic classifiers based on Bayes theo-

rem. We tried both “Bayes Net”, which uses a Bayes Network classifier such as

K2 and B [12], and “NaiveBayes”, which uses a simple Naive Bayes classifier

in which numeric attributes are modelled by a normal distribution [38].

• Function-based algorithms try to fit a function to the data. “Logistic”

builds and uses a multinomial logistic regression model with a ridge estima-

tor [71]. “MultilayerPerceptron” uses a back-propagation network to classify

instances [111]. “RBFNetwork” implements a normalised Gaussian radial ba-

sis function network [97]. “SMO” implements a specific sequential minimal

optimisation algorithm for training a support vector classifier [100].

• Rules-based algorithms learn classification rules. DTNB builds a decision

table/naive Bayes hybrid classifier [48]. JRip implements a propositional rule

learner as an optimised version of the IREP algorithm [28]. NNge is a nearest-

neighbour-like algorithm using non-nested generalised exemplars which are

hyperrectangles that can be viewed as rules [83]. Ridor is the implementation

of a Ripple-Down Rule learner [43].

• Tree-based algorithms build decision trees. BFTree uses binary split for

both nominal and numeric attributes [42, 114]. J48 is an optimized version

of the C4.5 decision tree [101]. LADTree generates a multiclass alternating

decision tree using the LogitBoost strategy [53]. RandomForest constructs

random forests based on Breiman’s algorithm [13].
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In order to find the best classification model, we considered various groups of

features in building the models. For each group of features explained below, we

trained all the aforementioned algorithms and compared their results with the results

obtained by using the other groups. The following three sets of features were used

to train the classification models:

• Basic Set: This set represents the basic features relating to student activities:

(1) total-sent, (2) total-viewed and (3) viewingCommitment.

• Basic+ Set: In addition to the features included in the Basic set, this set

includes the features related to each message type, i.e. total-BW, total-BT,

total-BE, total-BR, total-PE, and total-PR. Moreover, the three interaction-

based features, i.e. PageRank-feature, authority-feature and hub-feature, were

also included.

• Full Set: All the features generated in the pre-processing stage were included.

This includes all the features of the “Basic+” set, as well as all 140 time-based

features.

• Filtered Set: As the full set of features consists of a large number of features

(152 features), it is likely that not all these features are relevant for detecting

students’ roles. If we use all features, some of these features may cause noise

in the results. We used a subset of features by filtering out those that are not

discriminative in detecting student roles. In order to select the most relevant

time-based features, we applied an approach similar to that used by [80,137],

using the following ten feature-selection algorithms:

1. CfsSubsetEval evaluates the worth of a subset of attributes by considering

the individual predictive ability of each feature along with the degree of

redundancy between them.
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2. ConsistencySubset-Eval evaluates the worth of a subset of attributes by

the level of consistency in the class values when the training instances

are projected onto the subset of attributes.

3. ChiSquaredAttributeEval evaluates the worth of an attribute by comput-

ing the value of the chi-squared statistic with respect to the class.

4. SignificanceAttributeEval evaluates the worth of an attribute by comput-

ing the probabilistic significance as a two-way function.

5. SymmetricalUncertAttributeEval evaluates the worth of an attribute by

measuring the symmetrical uncertainty with respect to the class.

6. GainRatio-AttributeEval evaluates the worth of an attribute by measur-

ing the gain ratio with respect to the class.

7. InfoGainAttributeEval evaluates the worth of an attribute by measuring

the information gain with respect to the class.

8. OneRAttributeEval evaluates the worth of an attribute by using the

OneR classifier.

9. ReliefFAttributeEval evaluates the worth of an attribute by repeatedly

sampling an instance and considering the value of the given attribute for

the nearest instance of the same and different class.

10. SVMAttributeEval evaluates the worth of an attribute by using an SVM

classifier.

The first two algorithms return a subset of relevant features. However, the re-

maining algorithms return a ranked list of all features. In these cases, we considered

only the top k features returned. The final set of filtered features consists of those

selected by at least m algorithms out of the ten algorithms used. We tried several

combinations of k and m values (k = 10, 20, 30 and m = 1, 5). The full set of results

can be found in Appendix B. In this chapter, we only present the best results ob-
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tained, which were when k = 10 and m = 1, giving rise to 19 selected features out

of 152 possible features. The selected features are shown in Tables 6.2 and 6.3.

Type
Time-slots

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
BW 6 6 4 3
BT
BE
BR
PE
PR 1 2

All-types 2 1 9 10 2

Table 6.2: Frequency of appearance of time-based features using 10 feature-selection
algorithms.

Basic and Basic+ Features
total total total total total total total total viewing PageRank Authority Hub
BW BT BE BR PE PR sent viewed commitment feature feature feature

1 4 7 5 9 7 9 9

Table 6.3: Frequency of appearance of Basic and Basic+ features using 10 feature-
selection algorithms.

For example, the entry 6 for blogs of type BW in time slot 3 means that 6 out

of 10 feature-selection algorithms selected the number of BW-blogs submitted by

students as a discriminitive feature of students’ roles.

6.3.4 Evaluating the results

In order to evaluate classification performance, we use the three scores: precision,

recall and F-measure. First, we calculate these three scores for each role individually.

Then, the weighted average is used to evaluate the overall results. This is computed

by weighting the measures of role (precision, recall, F-Measure) by the proportion

of students there are in that role:

Precision =
m∑
i=1

ωi · Precisioni

Recall =
m∑
i=1

ωi ·Recalli
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F -Measure =
m∑
i=1

ωi · F -Measurei

where m is the total number of roles, and Precisioni, Recalli, F -Measurei are the

three scores for detecting the students of role i and ωi is the proportion of students

who have been assigned role i.

6.4 Results and Analysis

All the experiments were run using the Weka tool [134]. In order to estimate the

accuracy of the obtained models, we use 10-fold cross validation in all executions.

The model is built by partitioning the dataset into 10 equal subsets. Then each

algorithm is executed 10 times. Each time, one subset is used as the testing set,

while the other 9 form the training set. The final evaluation is based on the mean of

all runs. As we mentioned before, we applied several supervised algorithms to build

the classification models for detecting students’ roles. For each algorithm, we used

four groups of features, as described in Section 6.3.3. The full list of results can be

found in Table 6.4, while the F-measure scores are shown visually in Figure 6.4.

For the “Basic” features, the best classification was generated by the NaiveBayes

algorithm. The results of all algorithms ranged between 0.66 and 0.83 for precision,

recall and F-measure. On the other hand, the results were better for all algorithms

except Ridor and LADTree when we used the “Basic+” group of features. This

means that including the “interaction-based” features as well as the total count

of each message type improves the classification of roles. This is clear for all the

function-based algorithms particularly. For example, the best model was built by

MultilayerPerceptron and Logistic which achieved around 0.86 for precision, recall

and F-measure.
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Figure 6.4: F-measure scores for each classifier using the Basic, Basic+, Full, and
Filtered sets of features.
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The performance of the models trained by the “Full” set of features were sub-

stantially superior. In most cases, the results of classifying students using the “Full”

set of features were better than the results obtained using the “Basic” or “Basic+”

sets. For example, in JRip, the F-Measure improved from 0.74 in “Basic+” to 0.923

using the “Full” set of features. The RBFNetwork and Logistic algorithms were the

only exceptions. In the former, the F-Measure decreased from 0.832 to 0.79 using

the “Basic+” and ”Full” set of features, respectively. The best classification model

among those trained by the “Full” set of features was J48 with an F-measure of

about 0.93.

As mentioned previously, the “Full” set includes a large number of features (152).

In order to reduce the number of features and remove irrelevant ones, we produced

a “Filtered” set of features by keeping only those selected within the top 10 fea-

tures by at least one of the ten feature-selection algorithms we used. The majority

of algorithms trained by the “Filtered” set of features returned better or similar

results to those obtained using the “Full” set. For example, the NaiveBayes algo-

rithm performs better in the case of the “Filtered” set, achieving an F-measure of

0.923 compared to only 0.836 and 0.812 obtained for the “Basic+” and “Full” sets

respectively. For BayesNet, JRip, Ridor and J48, the results obtained using the

“Full” and “Filtered” sets are similar, with minor improvements using the latter

set. Although DTNB worked better when it was trained with the “Full” set, the

difference between the “Full” set results and “Filtered” set results is very slight. In

general, all algorithms achieved an F-measure above 0.9 for the “Filtered” set. The

best results using the “Filtered” set were obtained in the case of RandomForest with

above 0.97 for precision, recall and F-measure.
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6.4.1 Main Findings

As expected, individual attributes (“Basic” features) were partially useful to cor-

rectly classify the students’ roles in the project. Quantitative and frequency-based

features alone do not provide a complete picture of the interactions between project

members.

On the other hand, although the information captured from the social network

analysis (“interaction-based” features) generally improved mapping students to their

roles, the use of “time-based” features was crucial to correctly identify students’

roles. It must be noted that the complete set of these “time-based” features was

not necessary to achieve good classification performances: by using the 8% of the

“time-based” features — 11 variables — it was possible to achieve an F-measure

above 0.95.

Additionally, the feature-selection methods showed that most of the selected

“time-based” features coincide with the first weeks of working on the project, which

indicates the importance of initial interactions between project members. Interaction-

based features were also selected by most of the feature-selection methods. This

confirms the importance of the reply-relationship among the students in their dis-

cussions. This finding is consistent with the claim that the relationships among

the individuals is important to understand individual and group behaviour and/or

attitudes [99]. The viewing/reading activities also were recognised as discrimina-

tive features for detecting students’ roles. This is for both “total-viewed” and

“viewingCommitment” features which were selected by 5 and 9 out of 10 feature-

selection methods respectively.

The good classification results illustrate that the interactions corresponding

to particular roles show distinctive patterns and asynchronous conversations have

proven to be useful in identifying these project roles.
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6.5 Summary

This chapter has presented an application of data mining (DM) to the detection of

students’ roles in a project according to their use of online communication tools (dis-

cussion posts and blogs). The analysed data included individual attributes related

to messages sent and read, as well as information about the interactions between the

project members provided by two social network analysis measures (PageRank [93]

and HITs [66]).

Based on the results obtained using several sets of features and classification

algorithms, it is possible to confirm the usefulness of DM to analyse the online in-

teractions between students working together in a project. Moreover, it has been

shown that considering information about the reply relations among the project

members is more relevant than the individual attributes of students. Another in-

teresting result is the selection of “time-based” features as relevant to identify the

students’ roles. Taking into account that most of these features coincide with the

first weeks of the project, it seems to corroborate that the PRINCE2TM project

structure facilitates the students’ learning process because it clarifies the project

team organisation.
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Table 6.4: The results of classifying students using different supervised algorithms
and different sets of features.

Category
Classification Evaluation

Basic Basic+ Full Filtered
Algorithm Method

B
ay

es
-b

as
ed BayesNet

Precision 0.71 0.829 0.912 0.921
Recall 0.722 0.825 0.912 0.923

F-Measure 0.715 0.823 0.912 0.922

NaiveBayes
Precision 0.836 0.849 0.835 0.926

Recall 0.84 0.835 0.804 0.923
F-Measure 0.834 0.836 0.812 0.923

F
u
n
ct

io
n
-b

as
ed

Logistic
Precision 0.795 0.865 0.799 0.886

Recall 0.814 0.866 0.799 0.887
F-Measure 0.798 0.865 0.794 0.886

MultilayerPerceptron
Precision 0.782 0.867 0.907 0.948

Recall 0.784 0.866 0.907 0.948
F-Measure 0.782 0.865 0.906 0.948

RBFNetwork
Precision 0.782 0.83 0.813 0.941

Recall 0.789 0.835 0.778 0.938
F-Measure 0.784 0.832 0.79 0.939

SMO
Precision 0.669 0.687 0.927 0.949

Recall 0.778 0.794 0.928 0.948
F-Measure 0.719 0.736 0.927 0.948

R
u
le

s-
b
as

ed

DTNB
Precision 0.713 0.754 0.916 0.911

Recall 0.753 0.742 0.918 0.912
F-Measure 0.717 0.743 0.916 0.911

JRip
Precision 0.729 0.74 0.922 0.935

Recall 0.727 0.742 0.923 0.933
F-Measure 0.726 0.74 0.923 0.934

NNge
Precision 0.762 0.813 0.858 0.911

Recall 0.768 0.814 0.84 0.907
F-Measure 0.763 0.803 0.842 0.908

Ridor
Precision 0.785 0.76 0.909 0.917

Recall 0.794 0.758 0.907 0.918
F-Measure 0.787 0.758 0.908 0.917

T
re

e-
b
as

ed

BFTree
Precision 0.754 0.753 0.902 0.933

Recall 0.758 0.763 0.902 0.933
F-Measure 0.756 0.756 0.901 0.932

J48
Precision 0.731 0.747 0.933 0.943
Recall 0.747 0.747 0.933 0.943

F-Measure 0.725 0.747 0.933 0.943

LADTree
Precision 0.777 0.737 0.914 0.933

Recall 0.784 0.742 0.912 0.933
F-Measure 0.777 0.74 0.913 0.933

RandomForest
Precision 0.768 0.814 0.914 0.974

Recall 0.768 0.82 0.912 0.974
F-Measure 0.767 0.816 0.906 0.974



Chapter 7

A Multi-granularity Pattern-based

Sequence Classification Framework

7.1 Overview

In many applications (including that of detecting students’ roles from the previous

chapter), sequences of events occurring over time and in order need to be studied

in order to understand the generative process behind these sequences, and hence

classify new examples. As a result, the need for developing efficient and flexible

techniques for sequence classification that can be applied in different domains has

become in demand. One of the key challenges of classification is how to identify

and extract appropriate features from the data in order to train and build robust

and effective classification models. This task becomes even more challenging in the

case of sequences, since there are no explicit features at our disposal. Such features

should be captured in a way that both the temporal dimension and the sequential

order of the properties of the sequence are maintained. In addition, the number of

extracted features can, in general, be rather large. Hence, the need for employing

appropriate feature selection methods arises. The latter is not always trivial, due

to the time dimension, which makes the feature selection process more complicated.

This chapter addresses these two challenges in the area of sequence classification.

135
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The contributions of this chapter can be summarised as follows: We formu-

late a multi-granularity framework for classifying sequences of discrete events. The

framework consists of three phases: feature generation, feature selection, and model

construction. The proposed feature generation technique can effectively capture the

inherent temporal structure of the sequences by mining frequent sequential patterns

at different window sizes. The extracted features capture not only the temporal

aspects of the underlying sequences, but also their variability at multiple levels of

time granularity. Next, the most important features are identified by applying stan-

dard variable importance algorithms for feature selection. The classification model

is then constructed by using the selected features. In our experimental evaluation,

we demonstrate how the proposed framework can be used for classifying students

working on the same project, while interacting through asynchronous communica-

tion tools. We study the performance of our framework in terms of recall, precision,

F-measure, and area under the ROC, and compare with a similarity-based baseline

approach. The experimental results show that our framework is able to detect cor-

rectly the role of more than 90% of the students, compared to only 57% using the

baseline similarity-based model, in the best case.

Our goal in this chapter is not to compete with the literature of sequence classi-

fication, but to introduce a multi-granularity pattern-based classification framework

that employs the novel idea of using frequent patterns at variable window lengths

as class features, and demonstrate its high applicability to the application area of

education.

7.2 Baseline: Nearest Neighbour classifier

A baseline method for classifying sequences of discrete events is to apply a standard

nearest neighbour classifier under a string similarity or distance function, such as

Smith-Waterman [115] or edit-distance [88]).
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Figure 7.1: Stages of a Nearest Neighbour classifier.

Consider a collection of labelled sequences, D, where each record s ∈ D is a

sequence of discrete events. Suppose that D is split into two non-overlapping parts

D1 and D2, the training and testing datasets, respectively. Building a Nearest

Neighbour classifier consists of several stages as shown in Figure 7.1:

• In Stage 1, we retrieve all event sequences from D1. We call the list of obtained

sequences the training list Ltrain. Each sequence in the list consists of a set

of events that occurred in order. In addition, each sequence belongs to one of

the known classes.

• In Stage 2, we retrieve all event sequences from D2. The resulting sequences

form the testing list Ltest. Our aim is to build a classifier that is able to detect

the class of each sequence in the testing list using the list of events comprising

the sequence and the training list.

• In Stage 3, for each sequence s ∈ D2, we identify the most similar sequence in

D1. Similarity is computed by using a common similarity function for strings,

such as edit-distance [88] or Smith-Waterman [115]). The class of each test

sequence s is determined as follows:

– If only a single sequence in r ∈ D2 has the highest similarity with s,

then the class of sequence s is taken to be the class of r. In other
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words, for each sequence s ∈ Ltest, class(s) is made equal to class(r) if

arg maxr∈Ltrain
sim(s, r) and @r′ ∈ Ltrain(r 6= r′) : sim(s, r) = sim(s, r′)

– If the highest score is shared by multiple sequences R = {r1, r2, .., rn} ⊆

D2, then the class of s is the majority class in R.

– If there is no majority class among the sequences in R, we randomly

choose one of classes in R.

• In Stage 4, we evaluate the classification performance in terms of precision,

recall, F-measure, and AUC. First, we calculate these three scores for each

class individually. Then, the weighted average is used to evaluate the overall

results. This is computed by weighting the measures of class (precision, recall,

F-Measure) by the proportion of sequences there are in that class. We also use

“AUC” (area under the ROC) to evaluate the performance of our approach.

7.3 Multi-granularity pattern-based classification

In this section, we introduce a multi-granularity sequence classification framework.

The framework consists of three phases as shown in Figure 7.2: the feature gener-

ation phase, the feature selection phase, and finally the model construction phase.

Next, we first provide some definitions and then describe the three phases.

7.3.1 Definitions

Let E be the space of possible events that can occur in a sequence. A transaction

is a triple T = 〈id, e, t〉, where T.id is the identifier of the transaction, T.e ⊆ E is a

single event or a set of events from E , and T.t is the time-stamp of the transaction.

For example, a transaction may correspond to the set of student communication

activities (events) during a day or a week (time-stamp).
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Given a set of predefined classes C = {c1, c2, . . . , cn}, a transactional sequence S

is of the form 〈id, c, (T1, . . . , Tn)〉, where S.id is the identifier of S, S.c ∈ C is the class

of S, and (T1, . . . , Tn) is an ordered set of transactions, such that, if 1 ≤ i < j ≤ n

then Ti occurs before Tj. In other words, the transactional sequence respects the

order of transactions within it. A collection of transactional sequences defines a

dataset D.

Before proceeding to the first phase of the proposed framework, we assume that

our dataset D is partitioned into two non-overlapping parts: a training set D1 and

a validation set D2. We will use D1 to generate our feature space and D2 to validate

the constructed model.

7.3.2 Feature generation phase

The aim of this phase is to generate sequential features that capture the inherent

time dependencies between the transactions and are highly correlated with the class

label. These features correspond to maximum sequences that are characteristic of

a class in D1, i.e., occur frequently in that class, but at the same time they are

infrequent in other classes. These frequent sequences will be used as the set of

features when building the multi-granularity classifier in the next phase.

Firstly, we employ SPAM, an efficient algorithm proposed by Ayres et al. [7] for

mining frequent sequential patterns within a transactional dataset. SPAM has been

shown to be efficient in mining frequent sequences when the sequential patterns in

the data are very long. Specifically, SPAM is applied to D1 and the set of frequent

patterns per class is extracted. We should note, however, that our framework is

flexible enough to allow for any alternative sequential pattern mining algorithm to

be applied.

More formally, a sequential pattern p = (p1, . . . , pm) is a sequence of patterns,

where each pattern pi is a subset of E . Let P define the space of possible sequential
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Figure 7.2: Stages of the multi-granularity classification framework.

patterns that can be generated from E . We say that a transaction T = 〈id, e, t〉

supports pattern p, denoted p ≺ T , if p ⊆ e. In addition, a transactional sequence

S supports sequential pattern p ∈ P , denoted p ≺ S, if

∀pi : i ∈ {1, 2, . . . ,m}

 ∃Tj : pi ≺ Tj if i = 1

∃Tj : pi ≺ Tj and ∃Tk : pi−1 ≺ Tk and k < j if i > 1

For each class c ∈ C, let |c| denote the number of sequences in D which belong

to class c, i.e. |c| = |{S ∈ D1 | S.class = c}|. The frequency of a sequential pattern

p ∈ P in class c ∈ C is defined as follows:

FreqD(p, c) =
|{S ∈ D1 | p ≺ S ∧ S.class = c}|

|c|
.

Given a user-specified minimum frequency threshold σ, the set Pc of frequent

sequences of class c is the following:

Pc = f(P , D,≺, σ, c) = {p ∈ P | FreqD(p, c) ≥ σ},
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where f is a function that corresponds to the algorithm producing these patterns,

in our case SPAM.

Sequence Id Class Transactions
1 c1 ({a}, {a, b}, {e})
2 c1 ({a}, {c, d}, {a}, {a, b})
3 c1 ({e}, {a, b}, {a, b}, {c, d, e})
4 c1 ({a}, {b}, {c}, {a})
5 c1 ({a, b}, {a, b}, {a, b})
6 c2 ({a}, {a}, {a, b})
7 c2 ({a, c, b})
8 c2 ({b}, {d}, {a, d}, {a, b})
9 c2 ({a, b})
10 c2 ({e}, {a, b}, {e}, {a, b})

Table 7.1: Example of a transactional dataset.

Example. Assume that we have an event space E = {a, b, c, d, e} and a transactional

dataset D consisting of the 10 sequences shown in Table 7.1. Each row in the table

represents one sequence. The first column shows the sequence identifier, the second

column indicates the class of the sequence, and the third column shows the events

of transactions forming the sequence. Each transaction in the sequence consists of a

set of one or more events. To simplify the example, we have omitted the identifiers

and durations of transactions. Now consider the sequential pattern p = ({a}, {a, b})

and the minimum frequency threshold σ = 0.7. Pattern p is a frequent sequence

for class c1, because p is supported by 4 out of the 5 sequences in class c1, namely

sequences 1, 2, 3 and 5, hence

FreqD(({a}, {a, b}), c1) = 4/5 = 0.8 ≥ 0.7.

It becomes apparent that each set Pc captures the sequential patterns that occur

frequently in a class c. Nonetheless, it fails to take into consideration the exact

location of these patterns in the sequences. For example, in the student project

application used in the previous chapter, a similar frequent communication pattern
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could occur between a project executive and a project manager, but the location

of this pattern in the sequences might be different between the two roles. Hence,

using the pattern as a classification feature and ignoring the temporal location would

increase the classification error.

In order to capture time dependencies between the patterns and classes in the

sequences at different levels of granularity, we segment the time-line of the dataset

into n non-overlapping windows {w1, . . . , wn}. Given a minimum frequency thresh-

old σ, we run SPAM to find the set of frequent sequences Pkc for each class c and

each window wk:

Pkc = f(P , D1,≺, σ, c, n, k) = {p ∈ P | FreqD1(p, c, n, k) ≥ σ},

where f is again the algorithm that generates the set of patterns, ≺ is the sup-

port operator, n is the total number of windows, k ∈ [1, n] is the window index,

FreqD1(p, c, n, k) is the frequency of the sequence (pattern) p that occurs within the

window wk, when we consider sequences of class c in D1.

Example. To clarify the idea, we give a simple example of a dataset that consists

of five transactional sequences. Each sequence consists of 10 transactions, where

each transaction consists of a single event from the set E = {a, b, c, d, e}. Given a

threshold σ of 0.8, Figure 7.3 shows the frequent patterns in each window when we

divide the time-line into (a) 2 and (b) 5 windows.

Next, we post-process the SPAM output to reduce the amount of redundancy

and dependencies in the features. More precisely, we reduce the number of returned

patterns by keeping only the maximal ones, i.e., those for which no superset is

frequent. For notation purposes, we use fmax to denote the whole algorithmic pro-

cedure: running SPAM and pruning out the non-maximal patterns. For example,

Figure 7.3(a) shows 7 frequent sequences for the first window and 5 frequent se-

quences for the second. In each case, there is only one maximal sequence: (a, b, c)

for the first window, and (a, c, c) for the second.
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Id 1 2 3 4 5 6 7 8 9 10
1 a e b e c e a c c e
2 c d a b c a b b c c
3 a a b b c a c d c b
4 d a b c b d c a c c
5 a b b b c b a c d c

k = 1 k = 2
(a) (a)

(a, b) (a, c)
(a, b, c) (a, c, c)
(a, c) (c)
(b) (c, c)

(b, c)
(c)

(A)

Id 1 2 3 4 5 6 7 8 9 10
1 a e b e c e a c c e
2 c d a b c a b b c c
3 a a b b c a c d c b
4 d a b c b d c a c c
5 a b b b c b a c d c

k = 1 k = 2 k = 3 k = 4 k = 5
(a) (b) (c) (c) (c)

(B)

Figure 7.3: Generated features with σ = 0.8 using (A) 2 windows, and (B) 5 win-
dows.

Our framework observes the data at multiple levels of granularity by using mul-

tiple window sizes. In other words, we repeat the previous steps several times,

each time using a different number of windows n ∈ N , with N denoting the set

of window sizes employed in this step. The motivation behind considering different

window sizes is that a particular window size could be useful to detect one class,

but irrelevant for another. The final set of patterns is, hence, the following:

F =
⋃
c∈C

⋃
n∈N

⋃
k∈[1,n]

fmax(P ,D1,≺, σ, c, n, k).

where c is the sequence class, n is the total number of windows, and k is the window

index. Any frequent pattern f ∈ F is a triple f = (p, k, n) where F.p is a frequent

sequential pattern appearing in window k, given that the time-line is divided into n

windows.

In spite of the large number of frequent patterns obtained using this approach,

many patterns can be removed during the feature-selection phase that follows.
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7.3.3 Feature selection and model construction

We will now use the set of features F generated in the previous phase to build a

multi-granularity sequence classification model. For this purpose, we will use the

validation set D2. Firstly, we map D2 to a binary feature matrix that is used for

building the classification model. For each sequence s in D2, we check, for each

feature f = (e, k, n) ∈ F , whether s supports e, using the following function:

check(s, f) =


1 if e ≺ s

0 otherwise

Assume that D2 = {s1, . . . , sn} and F = {f1, . . . , fm}. Then, this step will result in

an n×m Boolean matrix M , where Mi,j = check(si, fj), ∀ i ∈ [1, n] and j ∈ [1,m].

This is in fact the matrix that contains all the features (Boolean) of the validation

set. The process of building the classifier consists of the following steps:

Feature selection: a feature-selection algorithm is applied to M , so that only

the most discriminative class features are selected. Depending on the classification

method at hand, we may use different alternatives, such as SVM feature selec-

tion [132] or Random Forest [13].

Model construction: using the selected set of features from the previous step

and the validation set D2, we build a classifier for the transactional sequences. Our

framework provides us with the flexibility to use any supervised learning algorithm

at this step.

7.4 Experiments

As in Chapter 6, we studied the performance of our framework on a dataset repre-

senting on-line interactions between students while undertaking projects. The task
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was to correctly detect the team-member role of each student. The full details of the

dataset used can be found in Chapter 6/Section 6.3.1. Below, we first describe the

details of the experimental setting, followed by a discussion of the obtained results.

7.4.1 Setup

In order to generate stable results, we ran the experiments several times. For each

run, we used two projects as the training dataset D1 and the remaining six projects

as the validation dataset D2. Since dataset D consists of 8 projects, this yields 28

different ways to divide the full dataset into the training and testing datasets. The

overall results are reported as the average obtained over all 28 executions. The four

evaluation metrics used were precision, recall, F-measure, and area under the ROC.

Nearest-Neighbour classifier. Each student in the dataset is considered as

a sequence of events. An event is either reading or sending a message, hence

E = {reading, sending}. We experimented with two functions: (1) edit-distance

(NN-ED), which counts the minimum number of edit operations (insertion, dele-

tion, substitution) required to transform one sequence into another, and (2) Smith-

Waterman (NN-SW), which performs local sequence alignment.

Multi-granularity pattern-based classifier. Each student is modelled as a se-

quence of transactions, and each transaction represents one day. This means that

the event space becomes E = {reading, sending, gap}, where the gap event means

that no reading or sending activity was carried out by the student in a particu-

lar transaction (day). We used a minimum frequency threshold of σ = 0.8 when

running the SPAM algorithm. As mentioned before, we generated the set of fre-

quent sequences by dividing the time-line of the projects in the dataset D1 into n

windows of equal size, applying the SPAM algorithm on each of these n windows.

We explored different levels of time granularity by iterating this process using four

different window sizes, i.e., N = {10, 15, 20, 25}.
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For training and testing our classifier, we used Weka [134] for all experiments.

For the feature-selection step, we investigated two algorithms:

• SVM [132]: returns a ranked list of features. In this case, we denote the

classifier by MG-SVM-l, where we consider the top l features when building

the classifier in the next step. We evaluated the results obtained for l ∈

{10, 20, 30, 40, 50}.

• RandomForest [13]: returns a subset of features to be used for training the

classifier. We denote this classifier by MG-RF.

After selecting the features, the final model can be built using any supervised-

learning algorithm. In our experiments, we used the Random Forest classifier.

Finally, we used 10-fold cross validation by partitioning the validation dataset D2

consisting of 6 projects into 10 equal subsets. The values of the evaluation metrics

were based on their means over all runs.

7.4.2 Experimental results

The results for the MG-SVM classifiers when using various top-l features for l ∈

{10, 20, 30, 40, 50} are highly similar. As the results for l = 40 are slightly better

than the others, we used them (MG-SVM-40) when comparing to MG-RF and the

two baselines NN-SW and NN-ED in Table 7.2 and Figure 7.4. Clearly, MG-RF

returns a result very close to that obtained by MG-SVM-40, with an F-measure of

0.886 compared to 0.912. However, both MG-RF and MG-SVM-40 are substantially

better than the two baseline classifiers, where the F-measure scores were only 0.313

for NN-SW and 0.567 for NN-ED. The reason behind the difference in these results

is that NN-ED performs global sequence alignment, and hence local structure within

the classes may be hidden by the global structure captured by NN-ED. On the other

hand, NN-SW performs local alignment, hence favouring local structural similarity

between the classes.
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NN-SW NN-ED MG-RF MG-SVM-40
precision 0.548 0.611 0.886 0.914
recall 0.387 0.563 0.890 0.915
F-measure 0.313 0.567 0.886 0.912

Table 7.2: Average precision, recall, and F-measure using NN-SW, NN-ED, MG-RF
and MG-SVM-40.
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Figure 7.4: Comparison between NN-SW, NN-ED, MG-RF and MG-SVM-40
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Figure 7.5: F-measure per experiment using NN-SW, NN-ED, MG-RF, and
MG-SVM-40.
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When considering the individual results of the 28 experiments, a similar pattern

emerges, as shown in Figure 7.5. In all experiments, NN-ED performs better than

NN-SW, while the performance of MG-SVM-40 and MG-RF are quite similar and

considerably better than both NN-ED and NN-SW. When algorithm execution time

is a factor, then MG-SVM is preferable to MG-RF; each experiment using MG-SVM

takes about 15 minutes compared to more than 60 minutes for MG-RF. In addition,

the ROC scores in Table 7.3 show that, for all the top-l features we considered,

MG-SVM is better than MG-RF. On the other hand, using MG-SVM is not recom-

mended when there are many redundant features. If the set of features generated

from the first phase includes many redundant features, MG-RF is more effective in

classifying the transactional sequences since it selects only a subset of features. This

subset will include only non-redundant features if those features are discriminative

for classifying the sequences.

MG-RF SVM-10 SVM-20 SVM-30 SVM-40 SVM-50
ROC 0.942 0.957 0.967 0.971 0.973 0.973

Table 7.3: The average ROC scores using MG-RF and all MG-SVM variants.

7.5 Summary

We proposed a multi-granularity framework for classifying sequences of discrete

events which employs frequent sequential patterns at different time granularity lev-

els as distinctive class features. We applied our framework to detect the roles of

students working in a project and interacting via an online asynchronous commu-

nication. We approached the problem as a sequence classification problem in which

students can be represented by sequences of their online activities. Our results

demonstrate the superiority of the multi-granularity pattern-based classifier against

the baseline Nearest-Neighbour classifier which built using a similarity-based func-

tion. Our multi-granularity pattern-based classifier can detect the correct student

role on average more than 90% of the time.



Chapter 8

Conclusions and Future Work

In this thesis, we have addressed two problems within the area of social network

analysis: (1) detecting hierarchical ties between users, and (2) inferring users’ hi-

erarchical roles. In both cases, we analysed the interaction network between users

to address the problem. Our main focus was to demonstrate that taking into ac-

count the time-dimension of interactions (including at different levels of granularity)

improves the quality of results obtained compared to when temporal aspects are ig-

nored.

In this chapter, we provide a brief summary of the contributions achieved in

this thesis. Then, we present possible directions for our research in the immediate

future.

8.1 Summary of Thesis

The contributions of this thesis are summarised in the following two subsections.

8.1.1 Detecting hierarchical ties

We studied the problem of inferring hierarchical ties between users in online in-

teraction networks. We approached the problem as a ranking problem. In other

149
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words, to infer the hierarchical tie between x and y, where y is the superior of x, we

rank all users other than x according to their scores calculated from analysing the

interaction network. The better the ranking approach, the higher the superior y is

ranked.

Based on the promising results we obtained when we employed link-analysis

ranking methods such as PageRank and Rooted-PageRank (RPR) (Chapter 3), we

proposed three novel approaches which took the temporal dimension of the interac-

tions into account:

• Time-F (Chapter 4): This approach was built using a time-function whose

definition depended on which periods of interactions in the application were

considered to be important. Higher weights were assigned to the interactions

that occurred in periods considered to be more important. For example, in

academia, a person’s early papers are more likely to be co-authored with their

advisor than later papers. In such a case, higher weights were given to early

interactions (shared papers).

• Filter-and-Refine (FiRe) (Chapter 4): This was a hybrid approach based

on both RPR and Time-F. We filtered the list of users ranked according to

Time-F by considering only the top k users. Then we reordered the filtered

list using RPR scores.

• Time-sensitive Rooted PageRank (T-RPR) (Chapter 5): This method

was designed to capture the dynamics of RPR scores of the network users

which considerably improved the detection of hierarchical relationships com-

pared to Rooted-PageRank. The method starts by dividing the time period

of interactions into n time-slots. Then RPR is applied n times, once for each

interaction graph corresponding to one of the n time-slots. This generates n

ranked lists of users which are aggregated to generate the final ranked list.

We proposed two approaches to aggregation, one based on a simple weighted

average and the other based on voting.
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Our extensive experimental evaluation on two real large datasets, the Enron

e-mail network and a co-authorship network, provides reasonable empirical justifi-

cation for our claim that “time matters” in detecting hierarchical ties. The results

of detecting hierarchical ties in both datasets using our time-based methods includ-

ing Time-F, FiRe and T-RPR, were substantially superior to link-analysis methods

such as PageRank, Degree Centrality, and Rooted-PageRank, which do not consider

the temporal aspect of interactions. Of our methods, T-RPR performed best overall

when it was applied on an undirected interaction graph. For example, using recall

for evaluation, T-RPR scored 0.58 in detecting manager-subordinate Enron rela-

tionships, compared to only 0.43, 0.34 and 0.3 in the best case using FiRe, Time-F

and RPR respectively.

8.1.2 Inferring hierarchical roles

We studied the problem of inferring hierarchical roles in an educational environment,

where students are interacting via an online communication medium to accomplish

a project they are working on. By analysing their online interaction, we aimed to

detect the hierarchical role of each student in the project. We addressed the problem

using two approaches as follows:

• Supervised Learning (Chapter 6): We used features including individual at-

tributes related to messages sent and read, as well as reply-based features pro-

vided by two social network analysis measures, namely PageRank and HITs.

We also used time-based features to capture the dynamics of the quantitative

features and how they change over time. We applied a number of feature-

selection algorithms to find the best set of features which were used later to

train a classification model. We tested a number of classification algorithms

that belong to different categories, such as Tree-based algorithms and Bayes-

based algorithms.
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• Sequence Classification (Chapter 7): Given that each student can be repre-

sented as a sequence of his/her online activities, we proposed a multi-granularity

feature-based framework for classifying sequences of discrete events. Our

framework employed frequent sequential patterns at different time granular-

ity levels as distinctive class features. In this way, we captured the inherent

temporal structure of the sequences by mining frequent sequential patterns in

different window sizes. The irrelevant features were filtered out by applying

a feature selection algorithm on the full set of features. Then, the selected

features were used to construct the classification model.

We evaluated our approach on real educational data collected from asynchronous

communication tools in which students can interact to collaborate on a project they

are working on. Each student can play one of three possible roles, project man-

ager, executive or team member. Our empirical results showed that, in supervised

learning, the reply-based features were selected as distinctive features for detecting

students’ roles. Moreover, many time-based features related to the first stages of

working on the project, were selected as relevant features. This highlighted the im-

portance of the initial days of launching a project in detecting the members’ roles.

Generally, all classification algorithms we used achieved an F-measure above 0.9

when we used the filtered set of features.

Similarly, our multi-granularity feature-based framework was effective in detect-

ing students’ roles with more than 0.9 scored for F-measure, compared to only 0.57

using a baseline similarity-based model. The way we built this framework makes it

flexible and applicable to any domain in the area of classifying sequences of discrete

events.
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8.2 Limitations and Constraints

Below we identify some limitations of our work:

• In Time-F, FiRe and T-RPR we captured the temporal dimension of interac-

tions using an application-dependent methodology. For example, when detect-

ing advisor-advisee relationships, we assigned higher weights to early papers

since advisees are expected to interact more with their advisors in the early

stages of their academic activity. On the other hand, all exchanged emails were

assigned equal weights in the case of detecting manager-subordinate relation-

ships. Given a new dataset without any prior knowledge about the nature of

communications, how do we define an appropriate time function? One possible

solution would be to learn the weights using a supervised learning model.

• In all our time-based approaches, the size of time slot which returns the best

results is not known beforehand. For example, a day, week, month or any other

temporal duration can be used as one time slot in T-RPR. Further studies are

required to discover the ideal size of time slots for each application.

• Running Rooted-PageRank (RPR) on a large graph can be very costly in

terms of computational resources and the time taken by the algorithm. For

example, RPR took about one hour when applied on the co-author network

which consists of more than one million nodes. To address this issue, pruning

techniques to reduce the size of the graph should be investigated.

• The approaches we proposed to detect the roles of users are based on the

assumption that all users play their assigned roles from the start to the end

of the project they are working on. However, in some cases users can play

different roles according to the stage of project development. We need to

extend our approaches in order to capture the dynamics of roles in such cases.
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8.3 Other Directions for Future Work

In this section, we discuss further future directions for our research. We present

each group of directions according to the problems we addressed in this thesis.

8.3.1 Detecting hierarchical ties

We plan to validate the obtained results further using different datasets. Also,

since we addressed this problem using an unsupervised learning model, we intend to

explore it also using a supervised learning model. Moreover, we aim to consider some

features that were not taken into account in our methodology in order to improve

our results. These include the following:

• Analysing the content of interactions: The communication between two users

may contain interactions that are not related to their relationship. By analysing

the content of interactions, we can filter out interactions that cause noise in

the results. For example, by analysing the text of emails exchanged between

employees, we can keep only the emails that are related to their work, and

drop the others.

• The order of users involved in each interaction: For example, in bibliographic

networks, an advisee is often the first author in a paper coauthored with

his/her advisor. In addition, a subordinate often cc’s their manager to keep

them in the loop.

• The average response time between a user’s interactions: In some cases, such

as email networks, a subordinate is expected to respond faster to an email sent

from his/her manager, compared to his/her response to emails from others.

We intend to explore the average response time between messages and their

replies to detect managers from their subordinates’ replies.
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In the models discussed in this thesis, the aforementioned features can be cap-

tured and considered in calculating the edge weights in the interaction networks. In

supervised learning, these features can be used as attributes to train the classifica-

tion model.

Relating to our Filter-and-Refine (FiRe) approach built using RPR and Time-F

approaches, it is worth investigating the results obtained using other methods in

each of the filtering and refining steps.

8.3.2 Inferring hierarchical roles

For our supervised learning model, we plan to validate the obtained results further

using different educational datasets. We also intend to test our proposed model

on other educational mining problems such as predicting the final marks of stu-

dents from their online interactions. It would also be interesting to analyse message

content as a way to improve the prediction of team member roles by filtering out

messages unrelated to the project.

For our multi-granularity sequence classification framework, directions for future

work include the validation of the proposed framework in other domains. In addi-

tion, we plan to compare results obtained by our framework with other competitive

approaches proposed in the field.

It is also worth addressing this problem using an unsupervised learning approach

(clustering) for the cases when the number of possible roles is not known beforehand.

Premised on an intuition that users of similar role experience similar interaction

features, we can group similar people in clusters based on their online interactions.



Appendix A

Time-based Methods

In this appendix, we present the results of detecting managers in the Enron dataset

using the Time-F and FiRe methods. First, we present the results of the Time-F

and FiRe approaches when the time-slots are months, the filter step is RPR and

the refine step is Time-F. Then we present the full results when we use week-based

time-slots.

A.1 FiRe results (month-based time-slots)
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Figure A.1: Results of RPR, Time-F and FiRe (RPR is the filter and Time-F is the
refiner) on the Enron dataset using month-based time-slots.
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ρ(i)
i Rooted-PageRank Time-F FiRe(k = 4)

1 29.45 34.93 39.04
2 49.31 48.63 56.84
3 59.58 63.01 61.64
4 64.38 69.86 64.38
5 68.49 76.71 64.38
6 73.97 80.13 64.38
7 78.76 83.56 64.38
8 82.87 84.24 64.38

Table A.1: Percentage Results for Rooted-PageRank, Time-F and FiRe (RPR is the
filter and Time-F is the refiner) on Enron dataset using month-based time-slots.

cut ρ(i)
off = 1 i = 2 i = 3 i = 4 i = 5

2 35.61 49.31 49.31 49.31 49.31
3 39.04 57.53 59.58 59.58 59.58
4 39.04 56.84 61.64 64.38 64.38
5 39.72 58.21 63.69 67.12 68.49
6 37.67 56.84 68.49 72.60 72.60

Table A.2: FiRe (RPR is the filter and Time-F is the refiner) month-based results
for Enron dataset using various cut-off values k.

A.2 FiRe results (week-based time-slots)
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Figure A.2: Results of RPR, Time-F and FiRe (Time-F is the filter and RPR is the
refiner) on the Enron dataset using week-based time-slots.
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ρ(i)
i Rooted-PageRank Time-F FiRe(k = 4)

1 29.45 36.98 43.83
2 49.31 47.94 66.43
3 59.58 65.75 71.91
4 64.38 72.60 73.28
5 68.49 76.02 73.28
6 73.97 80.82 73.28
7 78.76 83.56 73.28
8 82.87 85.61 73.28

Table A.3: Percentage Results for Rooted-PageRank, Time-F and FiRe (Time-F is
the filter and RPR is the refiner) on Enron dataset using week-based time-slots.

cut ρ(i)
off i = 1 i = 2 i = 3 i = 4 ≤ 5

2 36.98 48.63 48.63 48.63 48.63
3 43.83 60.27 65.75 65.75 65.75
4 43.83 66.43 71.91 73.28 73.28
5 40.41 63.013 73.97 76.02 77.39
6 41.09 63.01 72.60 78.76 80.82

Table A.4: FiRe (Time-F is the filter and RPR is the refiner) week-based results for
Enron dataset using various cut-off values k.
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Figure A.3: Results of RPR, Time-F and FiRe (RPR is the filter and Time-F is the
refiner) on the Enron dataset using week-based time-slots.
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ρ(i)
i Rooted-PageRank Time-F FiRe(k = 4)

1 29.45 36.98 39.04
2 49.31 47.94 55.47
3 59.58 65.75 63.01
4 64.38 72.60 64.38
5 68.49 76.02 64.38
6 73.97 80.82 64.38
7 78.76 83.56 64.38
8 82.87 85.61 64.38

Table A.5: Percentage Results for Rooted-PageRank, Time-F and FiRe (RPR is the
filter and Time-F is the refiner) on Enron dataset using week-based time-slots.

cut ρ(i)
off i = 1 i = 2 i = 3 i = 4 ≤ 5

2 36.30 49.31 49.31 49.31 49.31
3 40.41 57.53 59.58 59.58 59.58
4 39.04 55.47 63.01 64.38 64.38
5 39.72 57.53 65.06 66.43 68.49
6 39.04 56.16 70.54 71.91 72.60

Table A.6: FiRe (RPR is the filter and Time-F is the refiner) week-based results for
Enron dataset using various cut-off values k.



Appendix B

Detecting students’ roles

In this appendix, we present the full results of applying our supervised model dis-

cussed in Chapter 6 in order to detect the roles of students working in a project.

According to the number of windows used to generate the time-based features, we

list two groups of results: (1) results using 10 non-overlapping windows, and (2)

results using 20 non-overlapping windows.

In addition, according to the filtering technique we used to find the filtered set

of features, we present the results of different cases. Let k be the number of top

features considered for each feature-selection algorithm, and m be the number of

algorithms (out of 10) that should select the feature within their top k in order for

the feature to be placed in the filtered set. We considered the following cases:

Case k m
1 10 5
2 10 1
3 20 5
4 20 1
5 30 5
6 30 1

First we present the results using 10 time-based windows in Tables B.1 to B.4

and in Figures B.1 to B.4. Then, we present the results using 20 time-based windows

in Tables B.5 to B.8 and in Figures B.5 to B.8.
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[95] S. Palus, P. Bródka, and P. Kazienko. How to analyze company using so-

cial network? In Knowledge Management, Information Systems, E-Learning,

and Sustainability Research, volume 111 of Communications in Computer and

Information Science, pages 159–164. Springer, 2010.



Bibliography 181
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