
A Framework and Architecture for

Quality Assessment in Data

Integration

Jianing Wang

March 2012

A Dissertation Submitted to

Birkbeck College, University of London

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

Department of Computer Science & Information

Systems

Birkbeck College

University of London

2

Declaration

This thesis is the result of my own work, except where explicitly acknowl-

edged in the text.

Jianing Wang

June 26, 2012

1

To my family

2

Abstract
Data integration aims to combine distributed information sources conform-

ing to different modelling methods and provide interfaces for accessing the

integrated resource. Data integration processes may be complex and error-

prone because of the heterogeneities of the information sources. Moreover,

data integration is a collaborative task involving many people with different

levels of experience, knowledge of the application domain, and expectations.

It is difficult to determine and control the quality of a data integration set-

ting due to these factors.

In this thesis, we investigate the methods of improving the quality of

integrated resources with respect to the users’ requirements, in an iterative

integration process. We propose a quality framework that is capable of rep-

resenting different quality requirements arising from stakeholders involved

in the integration process. Ontology-based inferencing within this quality

framework allows the data integrator to identify amendments to the inte-

grated resource so as to satisfy users’ quality expectations better. We define

several quality criteria and factors specific to the context of data integra-

tion and propose a number of quality metrics for measuring these quality

factors. We propose a data integration methodology that supports quality

assessment of the integrated resource and an integration architecture for the

realisation of this methodology. We show how the quality of an integrated

resource could be improved using our quality framework, quality criteria and

factors, and data integration methodology using a real-world case study.

3

Acknowledgements
First and foremost, I would like to thank my supervisors, Alexandra Poulo-

vassilis and Nigel Martin, for their continuous support, their patient guid-

ance and their faith in my work throughout these years. Without their

guidance, I would have never completed this PhD.

Many thanks are due to my colleagues at Birkbeck for their input, col-

laboration and numerous stimulating discussions. I would particularly like

to thank Lucas Zamboulis for his help in familiarisation with the AutoMed

system and also for his enormous contribution to the AutoMed development.

Finally, I would like to thank my family for their support on my study

throughout this period.

4

Contents

1 Introduction 15

1.1 Data Integration . 17

1.2 Motivation and Research Methodology 18

1.3 Contribution . 20

1.4 Thesis Outline . 21

2 Data Integration from a Quality Perspective 23

2.1 Heterogeneity Classification 24

2.2 DI Research . 26

2.2.1 DI Tools . 26

2.2.2 Ontologies in Data Integration 30

2.3 Data Integration Quality . 32

2.3.1 Quality Oriented Research 32

2.3.2 Quality Frameworks 35

2.4 Overview of AutoMed . 36

2.4.1 AutoMed’s Hypergraph Data Model 37

2.4.2 Representing a Simple Relational Model in HDM . . 37

2.4.3 The IQL Query Language 39

2.4.4 AutoMed Transformation Pathways 39

2.4.5 AutoMed Architecture 41

2.5 Summary . 42

5

3 Requirements for a Quality Framework and Architecture for

DI 45

3.1 Analysis of Related Work and Interview with Integrators . . 46

3.2 Our Data Integration Methodology 50

3.3 Case Study . 52

3.3.1 Case Study - Data Sources 54

3.3.2 Case Study - Global Schema 61

3.3.3 Case Study - Domain Ontology 65

3.3.4 Case Study - Assertions 67

3.4 Summary . 72

4 Quality Framework for Data Integration 73

4.1 Design Objectives for the QFDI 74

4.2 Development of the Quality Framework 76

4.3 Reasoning Capability Required by the QFDI 79

4.3.1 Description Logic in Our Approach 79

4.3.2 Reasoning Capability 85

4.4 Formal Foundations of Our DI Setting 88

4.4.1 Data Model Description 88

4.4.2 Integrated Resource Description 89

4.5 Summary . 90

5 Quality Criteria and Metrics for Data Integration 92

5.1 Overview of DI Quality Criteria 93

5.2 The Completeness Criterion 95

5.2.1 The Schema Completeness Criterion 95

5.2.2 The Mapping Completeness Criterion 100

5.2.3 The Query Completeness Criterion 103

5.3 The Consistency Criterion 104

5.3.1 The Schema Consistency Criterion 105

6

5.3.2 The Mapping Consistency Criterion 109

5.3.3 The Query Consistency Criterion 111

5.4 Other Quality Criteria . 113

5.5 Comparison with Related Work 114

5.6 Summary . 117

6 Data Integration Methodology and Architecture 119

6.1 Data Integration Architecture and Workflow 120

6.1.1 DI Architecture with Quality Assessment Functionality 120

6.1.2 Data Integration Workflow 123

6.2 Implementation of our DI Architecture 126

6.2.1 Schema to Ontology Representation 127

6.2.2 Implementation of an OWL Representation of QFDI 129

6.2.3 Implementations of Quality Factors 134

6.3 Summary . 146

7 Evaluation 148

7.1 The Evaluation Domain . 149

7.1.1 Data Sources . 150

7.1.2 Domain Ontology . 154

7.2 Users’ Requirements . 155

7.2.1 User’s Queries . 155

7.2.2 Users’ Quality Requirements and Validation 156

7.2.3 Users’ Assertion . 158

7.3 Data Integration Using our Approach 158

7.3.1 The First DI Iteration 159

7.3.2 The Second DI Iteration 169

7.3.3 The Third DI Iteration 174

7.3.4 Quality Improvement over Three Iterations 176

7.4 Conclusion . 177

7

8 Conclusions and Future Work 179

A Report on the Interview With Data Integrators 187

B Integration Setting for the Case Study 195

B.1 Local Schemas for the Case Study 196

B.2 GS for the Case Study . 199

B.3 University Domain Ontology 200

B.4 Matchings and Mappings for the Case Study 201

B.4.1 Matching Results . 201

B.4.2 Mappings . 201

B.5 Case Study Results . 205

C Schema to Ontology Representation Transformation Algo-

rithm 212

D QFDI in OWL-DL 214

E iSpider Experimentation and Evaluation 215

E.1 iSpider Schemas . 216

E.2 Mappings . 218

E.3 Concept Coverage . 228

E.4 Assessments of Quality Factors 231

E.4.1 Quality Measurement for Iteration 1 231

E.4.2 Quality Measurement for Iteration 2 241

E.4.3 Quality Measurement for Iteration 3 250

F Glossary of Terms 259

8

List of Tables

2.1 Representing a Simple Relational Model in HDM 38

2.2 AutoMed Transformation Primitives 40

3.1 Case-Specific Knowledge . 66

3.2 Users’ Assertions on LS2 . 71

3.3 User’s Assertions on LS3 . 71

3.4 User’s Assertions on GS . 71

3.5 User’s Assertions across LSs and GS 72

4.1 Syntax of the DL we adopt 80

4.2 Syntax of Users’ Quality Requirements 82

4.3 An Example of Quality Assessments in Our Case Study . . . 84

4.4 Users’ Requirements Example 86

4.5 Tableau Expansion Rules (from [1]) 87

5.1 Summary of Our Quality Factors (Fi) 94

5.2 Results of Factor 2 . 100

5.3 Results of Factor 4 . 104

5.4 Summary of Techniques . 115

6.1 OWL-DL Syntax . 130

7.1 Users’ Queries in IQL . 156

9

B.1 Case-Specific Knowledge . 200

B.2 Matching Results . 201

B.3 GAV and LAV Mappings . 205

B.4 Satisfying Elements for Quality Factor 1 205

B.5 not-Satisfying Elements for Quality Factor 1 206

B.6 Coverage of Concepts for Quality Factor 2 206

B.7 Satisfying and non-Satisfying Elements for Quality Factor 2 207

B.8 Satisfying Elements for Quality Factor 3 208

B.9 Not-Satisfying Elements for Quality Factor 3 209

B.10 Coverage of Concepts for Quality Factor 4 209

B.11 Satisfying and not-Satisfying Elements for Quality Factor 4 . 209

B.12 Satisfying Elements for Quality Factor 5 210

B.13 Satisfying Elements for Quality Factor 6 210

B.14 Satisfying Elements for Quality Factor 7 211

B.15 Satisfying Elements for Quality Factor 8 211

E.1 Mappings for Iteration 1 . 222

E.2 Mappings for Iteration 2 . 224

E.3 Mappings for Iteration 3 . 227

E.4 Elements Satisfying Quality Factor 1 in Iteration 1 235

E.5 Elements not-Satisfying Quality Factor 1 in Iteration 1 . . . 237

E.6 Elements Satisfying and not-Satisfying Quality Factor 4 in

Iteration 1 . 238

E.7 Elements Satisfying Quality Factor 7 in Iteration 1 240

E.8 Elements not-Satisfying Quality Factor 7 in Iteration 1 . . . 241

E.9 Elements Satisfying Quality Factor 1 in Iteration 2 246

E.10 Elements not-Satisfying Quality Factor 1 in Iteration 2 . . . 247

E.11 Elements Satisfying and not-Satisfying Quality Factor 4 in

Iteration 2 . 247

E.12 Elements Satisfying Quality Factor 7 in Iteration 2 249

10

E.13 Elements Satisfying Quality Factor 1 in Iteration 3 255

E.14 Elements Satisfying and not-Satisfying Quality Factor 4 in

Iteration 3 . 256

E.15 Elements Satisfying Quality Factor 7 in Iteration 3 258

11

List of Figures

3.1 Iterative DI Methodology with Quality Assessment Function-

ality . 50

3.2 Notations used in the Case Study Schemas 54

3.3 Local Schema 1 (LS1) - Programme - Course 54

3.4 Local Schema 1 (LS1) - Staff 55

3.5 Local Schema 2 (LS2) - Student - Course 56

3.6 Local Schema 2 (LS2) - Student - Programme 57

3.7 Local Schema 2 (LS2) - Staff - Course 58

3.8 Local Schema 3 (LS3) - Student - Course 59

3.9 Local Schema 3 (LS3) - Student - Programme 60

3.10 Local Schema 3 (LS3) - Staff - Course 61

3.11 Global Schema (GS) - Programme - Student 62

3.12 Global Schema (GS) - Programme - Course 63

3.13 Global Schema (GS) - Programme Head - Programme 64

3.14 Global Schema (GS) - Staff - Course 64

4.1 The Quality Framework for Data Integration (QFDI) 77

6.1 Integration Architecture with Quality Assessment 122

6.2 Implementation of the Closed-World Assumption in OWL-DL 132

6.3 Inconsistency between User Requirements A.1 and C.1 . . . 133

6.4 Inconsistency between B.1 and the Instance Level Information 134

12

7.1 Data Source PEDRo . 151

7.2 Data Source gpmDB . 152

7.3 Data Source PepSeeker . 153

7.4 QFDI in OWL DL - This figure shows the domain concepts,

QFDI concepts including the set of users’ quality require-

ments, and a set of general axioms that are used for TBox

reasoning . 162

7.5 Output of TBox Reasoning after Iteration 1. Figure (a) shows

inconsistencies have been discovered and Figure (b) shows the

set of axioms that may cause these inconsistencies 164

7.6 Solution 1 to Resolve Inconsistency - Remove Axiom for R3.

Figure (a) shows that the axiom stating R3.1 has an individ-

ual is removed and Figure (b) shows that an axiom stating

R3.1 is associated with Nothing is generated by the reasoner 165

7.7 ABox Reasoning for R2 after Iteration 1, showing R2.1 has

two individuals gpmdb peptde and pepseeker peptidehit asso-

ciated with it inferred by the reasoner 166

7.8 ABox Reasoning for R3 after Iteration 1, showing R3.1 has

one individual pepseeker proteinhit pepseeker ProteinID as-

sociated with it inferred by the reasoner and R3.2 now has

11 individuals . 167

7.9 ABox Reasoning for R4 after Iteration 1, showing R4.1 has

6 individuals associated with it inferred by the reasoner . . . 168

7.10 ABox Reasoning for R5 after Iteration 1, showing both R5.1

and R5.2 have no individuals associated with them inferred

by the reasoner . 169

7.11 ABox Reasoning for R2 after Iteration 2, showing R2.1 has

three individuals gpmdb aa gpmdb pepid, gpmdb peptde and

pepseeker peptidehit associated with it inferred by the reasoner172

13

7.12 ABox Reasoning for R3 after Iteration 2, showing there is no

individual associated with R3.1 inferred by the reasoner . . 173

7.13 ABox Reasoning for R4 after Iteration 2, showing R4.1 has

four individuals associated with it inferred by the reasoner . 173

7.14 ABox Reasoning for R5 after Iteration 2, showing R5.1 has

individual gpmdb aa gpmdb aaid associated with it inferred

by the reasoner . 174

7.15 ABox Reasoning for R5 after Iteration 3, showing 5.2 is asso-

ciated with an individual pepseeker iontable inferred by the

reasoner . 176

7.16 Increase of Quality Factor in 3 Iterations 177

B.1 Local Schema 1 (LS1) . 196

B.2 Local Schema 2 (LS2) . 197

B.3 Local Schema 3 (LS3) . 198

B.4 Global Schema (GS) . 199

B.5 The University Domain Ontology 200

D.1 QFDI in OWL-DL . 214

E.1 Data Source PEDRo . 216

E.2 Data Source gpmDB . 217

E.3 Data Source PepSeeker . 218

E.4 Concept Coverage of the integrated resource in Iteration 1 . 228

E.5 Concept Coverage of the integrated resource in Iteration 2 . 229

E.6 Concept Coverage of the integrated resource in Iteration 3 . 230

14

Chapter 1

Introduction

Historically and currently, data conforming to different formats are gath-

ered and organised by different parties. However, users may need to access

such data sources according to their own requirements. This may require

redefining data into different formats, combining relevant data from different

sources, and combining incomplete data sources in order to form a more com-

plete view. Combining and transforming data from different data sources is

a complex problem and is the focus of Data Integration (DI) research. In the

DI context, data conforming to different data models can be transformed and

accessed through a global schema using mappings between this schema and

the data sources. A global schema is a view defined over the local schemas.

In the context of this thesis, a global schema is the union of selected local

schema constructs allowing users to access information from the local data

sources. A typical DI setting is represented as a triple ⟨GS,LSs,M⟩, where
GS is the global schema, LSs are the local (i.e. data source) schemas and

M are the mappings between the GS and the LSs.

Many DI tools have been designed to assist data integrators in generating

the global schema and mappings semi-automatically, such as tools for schema

annotation, schema matching, mapping generation and mapping refinement.

15

However, the data integration process may be complex and error-prone even

with the assistances of such tools because of the heterogeneities of the data

sources. For example, it may be difficult to integrate information repre-

sented in different data models and structures using different terminologies.

Moreover, data integration is a collaborative process involving many people

(we use the term users in this thesis). The designs of the global schema

and mappings relate to these users, including the data integrator’s experi-

ence and understanding of the application domain and the expectations of

different end-users. It is difficult to determine and control the quality of the

resulting integrated resource due to these factors. In this thesis, ‘integrated

resource’ refers to the local schemas, the data stored in the data sources, the

global schema, the mappings, and additional assertions representing users’

knowledge of the application domain.

This thesis investigates methods for improving the quality of integrated

resources with respect to users’ quality requirements. In particular, we pro-

pose a quality framework that is capable of representing different quality

requirements arising from users involved in the data integration process.

Ontology-based inferencing within this quality framework allows the data

integrator to identify amendments to the integrated resource so as to satisfy

users’ quality expectations better. We define several quality criteria and

factors specific to the context of data integration and we propose a num-

ber of quality metrics for measuring these quality factors. We propose an

iterative data integration methodology that has embedded within it quality

assessment of the integrated resource, and an integration architecture for

the realisation of this methodology.

16

1.1 Data Integration

Data integration is a broad area and, in practice, there are many different

integration scenarios. For example, data from different data sources may

be combined and such data may be materialised in a repository through a

‘materialised’ global schema (a data warehouse [2]), or users may access such

information through a ‘virtual’ global schema (this is virtual data integra-

tion [3]). In a virtual data integration scenario, the GS is a virtual schema,

meaning that the GS does not have associated stored data but its constructs

are populated by data that is derived from the data sources using the map-

pings when users’ queries on the GS are processed. Compared with mate-

rialised data integration, there are overheads caused by the re-computation

of such data in virtual DI; on the other hand, the data is guaranteed to be

current, whereas this is not generally the case in a materialised approach.

Other integration scenarios are when information represented in one format

is transformed into another representation (this is data exchange [4]), or

when peers containing partial information can be accessed via other peers

to exchange or integrate their data (this is peer-to-peer integration [5]). All

the above scenarios share some common tasks, such as schema matching and

schema mapping.

In this thesis, we focus on virtual data integration, in which one needs

to define rules for transforming and combining information from several

data sources, expressed in the same or different modelling languages, and to

provide a unified interface for accessing this information. This interface is

termed the global schema (GS), the schemas provided by the data sources

are termed the local schemas (LSs) and the rules are termed the mappings

(M).

Schema matching is an automatic or semi-automatic process of discov-

ering possible relationships between the constructs of two schemas, for ex-

ample two local schemas LS1 and LS2, based on their syntax, structure

17

and semantics. The output of this process is a set of matches of the form

(C1, C2, r, cs), where C1 is a construct of schema LS1, C2 is a construct of

schema LS2, r is a specification of the relationship between these constructs

(such as equivalence, subsumption and disjointness) and cs is the confidence

score, i.e., a value in the range [0 . . . 1], that specifies the level of confidence

in the relationship r. Often, given that schemas may be large and com-

plex, the schema matching process may not be able to produce complete or

accurate matches. However, schema matching is valuable for reducing the

search space for schema mappings, allowing the data integrator to focus on

identifying more difficult matchings.

Schema mapping is a manual or (semi)-automatic process of deriving the

precise mappings between two schemas. If these schemas are a local schema

(LS) and a global schema (GS), the mappings can be used to transform a

query posed on the GS to sub-queries posed on the LS, or vice versa.

1.2 Motivation and Research Methodology

The heterogeneity of the data sources can make the DI process complex and

error-prone. Other factors also have impacts on the overall quality of the

integrated resource, such as users’ quality requirements, the real-world se-

mantics, the application domain and the data integrator’s experience. There

is not a clear definition of what is meant by DI quality in the current re-

search and commercial domains. These issues form the motivation of our

research questions addressed in this thesis:

• What are the quality requirements arising from different users in the

integration process? How can such requirements affect the integration

process at different stages?

• How is quality defined in the context of data integration? Do different

users have different quality perspectives?

18

• If there are inconsistencies between such quality definitions, how is the

integrated resource affected?

• Can an ontology be used to formalise different users’ quality perspec-

tives? Can ontology reasoning help to detect inconsistencies between

different users’ quality expectations?

• How can the quality of the integrated resource be determined? What

elements in the integrated resource are useful for measuring its quality?

• How can the integrated resource be improved in order to meet the

users’ expectations? What factors do data integrators consider to be

important in improving the integrated resource?

With these research questions as a starting point, our research is or-

ganised as follows. First, we study the related research and identify the

problems relating to assessing quality in a data integration setting. We also

report on an interview held with several data integrators in order to capture

the concerns data integrators may have in practice and to identify further

questions motivating our research. Second, we propose a quality frame-

work that can be used to represent and assess the quality of an integrated

resource from different users’ perspectives. This quality framework is imple-

mented using the OWL-DL ontology language. Third, we propose a data

integration methodology that incorporates quality assessment functionality

within the integration process. We also propose an integration architecture

as a realisation of this integration methodology. Fourth, we define a set of

quality criteria, a set of corresponding quality factors, and their associated

measurement methods in order to demonstrate our quality framework and

integration methodology. Fifth, we use a real-world integration project in

the life science domain to evaluate the methods proposed in our research.

Throughout this thesis, our work is developed with the following as-

sumptions: We assume that information is stored in structural data sources,

19

such as relational databases, that are to be integrated and the data inte-

grators have direct access to the metadata and data in the data sources

(we leave consideration of the integration of semi-structured data sources as

future work). The end-users of the integrated resource have some quality

requirements they wish it to satisfy. The data integrators have some initial

knowledge about the application domain that can be expressed with respect

to an existing domain ontology.

1.3 Contribution

In this thesis, our main contributions to data integration research are our

integration methodology, quality framework and quality measurement meth-

ods. In particular:

• We propose a quality framework that can represent different users’

quality perspectives. We identify a set of elements in the integrated

resource that are referenced by the quality measurement methods and

are significant for the iterative quality improvement of the integrated

resource. The richness of our quality framework allows different users’

quality requirements to be expressed. Our framework is also extend-

able to allow more quality criteria and factors to be defined.

• We define five quality criteria and two of them have been studied in-

tensively together with several related quality factors that are specific

to the data integration context. The definitions of these quality crite-

ria and factors are capable of forming the quality requirements from

different categories of users.

• We propose quality measurement methods for calculating the level of

satisfaction of the integrated resource compared with the users’ re-

quirements. The results of our quality measurement methods provide

20

quality observations to the data integrator and are also used to calcu-

late the overall quality. In addition, these results are also derived to

support the reasoning in our quality framework.

• We propose an integration methodology which embeds quality assess-

ment within the integration process and allows different quality aspects

of the integrated resource to be assessed and improved in an iterative

fashion. In addition, because of the iterative nature of our DI method-

ology, data source evolution could be handled within it.

1.4 Thesis Outline

This thesis is structured as follows. Chapter 2 reviews previous work on

identifying the issues causing the DI process to be difficult and previous re-

search on quality in the context of information systems and data integration.

We also review ontology representation and reasoning work that is relevant

to our research. The AutoMed data integration system is also introduced.

Chapter 3 discusses the users’ requirements as derived from existing re-

search in DI supplemented by an interview with data integrators. We also

present a simple case study that demonstrates some issues causing the DI

process to be difficult and users’ requirements relating to the quality of the

integrated resource. This case study is also used for illustrating our quality

framework, criteria and methodology proposed in Chapters 4, 5 and 6.

Chapter 4 presents our quality framework and gives a detailed discussion

of its components. We discuss the relationships between these components

and we discuss the reasoning capabilities considered in our research in or-

der to obtain an integrated and consistent quality view of the integrated

resource. The formal foundations of our approach are also laid out in this

chapter.

Chapter 5 proposes five quality criteria specific to the context of data in-

21

tegration. We discuss in detail the completeness and consistency criteria and

the quality measurement methods associated with these criteria. We also

discuss the relationships between such criteria and how reasoning methods

can be applied in order to obtain an integrated and consistent quality view

of an integrated resource.

Chapter 6 introduces our data integration methodology which embeds

quality assessment within the DI process. We also present an integration

architecture for the realisation of this methodology.

Chapter 7 discusses a real-world integration project in the life sciences

domain and demonstrates how our quality framework, quality criteria, mea-

surement and reasoning methods, and integration architecture can be used

to assess and improve the quality of the integrated resource derived within

this project.

Chapter 8 discusses the contributions of the thesis and identifies some

areas of future work.

22

Chapter 2

Data Integration from a

Quality Perspective

Chapter 1 introduced the main data integration tasks and the importance

of users’ requirements in determining DI quality. It also gave the motivation

and the aims of our research described in this thesis. In this chapter, we

will discuss some of the important research relating to our work and indi-

cate areas that need further work. Section 2.1 reviews a classification of the

issues encountered when attempting to integrate information from different

data sources. Section 2.2 then introduces different data integration tools

developed in order to assist data integrators to address these issues. Section

2.3 gives a review and critical analysis of related work on identifying and

measuring quality in the contexts of information systems and data integra-

tion. In Section 2.4, we give an overview of the AutoMed data integration

system, which we build on for ease of development and rapid prototyping of

our DI architecture. Section 2.5 summaries this chapter with more analysis

of the research discussed previously and their relationships to our research.

23

2.1 Heterogeneity Classification

Information stored in the data sources which data integration aims to com-

bine may differ in various aspects, such as the terminology used or the

modelling methods adopted. Solving such heterogeneity issues across data

sources and between the data sources has been the main concern in data

integration research for many decades. Such heterogeneity issues can be

categorised into three groups as discussed in [6, 7, 8, 9, 10, 11], termed 1)

Syntactic or Data Model heterogeneity, 2) Schema or Structural heterogene-

ity and 3) Semantic or Terminology heterogeneity :

Syntactic or Data Model Heterogeneity A data model provides the def-

initions of modelling constructs that can be used to describe how data

are organised under schemas [12], for example, the ER model, the Rela-

tional model or XML. Modelling constructs provided by different data

models may have different semantic meanings and some of them may

be particular to a model as they cannot be replicated in other mod-

els. For example, a table in the relational model is a representation

of a relation which may contain multiple attributes. Such attributes

have a strong relationship with their referencing table, meaning such

attributes only exist when their referencing table exists. In the case of

XML, different types of XML elements are supported, such as XML

entities, attributes, etc. Transforming information represented in dif-

ferent data models may be difficult without changing the original se-

mantics. In addition, the various datatypes defined in data models are

another source of data model heterogeneity, and therefore, need to be

considered carefully in data integration [10].

Schematic or Structural Heterogeneity A schema describes how data

are structured using modelling constructs provided by data models.

There are many types of data structures, such as various kinds of tree

24

representations, relationships with 1:1, 1:N or M:N cardinalities, cyclic

or acyclic structures, nested or flat structures. Identifying correspon-

dences and creating mappings to transform information between dif-

ferent structures may be difficult due to such heterogeneities [13, 14].

Information contained in the original data sources may be lost or

manipulated unnecessarily and may result in the loss of semantics;

conversely, additional information may be created which introduces

new semantics during the integration process. In addition, in order to

combine identical, overlapping, or disjoint information complying with

different structures in the DI context, the design of the GS is also im-

portant in that the GS structure should be capable of representing all

such information in compliance with the users’ requirements.

Semantic or Terminology Heterogeneity refers to the variety of literal

representations of information. The literal representations include the

use of synonyms, homonyms, hyponyms and hypernyms at the data

and metadata level. Identifying the precise relationships between such

literals in different contexts may be difficult. Predefined Upper and

Domain ontologies can contribute to the solution of this problem where

domain specific literals and their relationships have been defined by

the domain experts, such as BioTop [15] and OpenGALEN [16].

There may be other heterogeneities existing in data sources, such as the

query languages designed for different data models, different query process-

ing abilities supported by such data sources and different technologies used

to access the data. These issues may also have impact on the DI processes,

but they involve performance and security related issues which are beyond

the scope of our research and, therefore, they are not discussed in this thesis.

A further important issue which impacts on the quality of data integration

is the quality of the input data itself. This has also been beyond the scope

25

of our research and we identify this as a future research direction in Chapter

8.

2.2 DI Research

2.2.1 DI Tools

In order to solve the heterogeneity issues discussed in the previous section,

many data integration tools have been designed to assist data integrators in

DI tasks such as schema matching, mapping generation, query processing

and DI refinement.

Schema Matching tools such as COMA++ and Cupid, are designed to

discover the correspondences between schema constructs based on their

syntax, structure and semantics. Schema matching algorithms can be

categorised into three types, instance level, schema level and semantic

level matching. Instance level matching algorithms focus on produc-

ing matchings based on the data stored in the data sources. Schema

level matching algorithms are based on the schemas’ structural infor-

mation. Semantic level matching algorithms produce correspondences

based on the semantic information about schema constructs, such as

equivalence and disjointness, and the semantics of the integration do-

main. Such tools normally output 1-1 or 1-n correlations between

schema constructs together with confidence values indicating the cer-

tainty of the detected correlations. However, current schema matching

tools are not capable of handling difficult matching cases, such as in-

formation with complex semantics. Therefore, schema matching tools

are mostly used to provide matching information to the integrators in

order to reduce their workload and allow them to concentrate on more

difficult matchings. We discuss below two popular schema matchers

26

COMA++ and Cupid.

COMA++ [17] was developed as a generic matching tool for data in-

tegration and data exchange applications. It takes two schemas in

various formats, such as XML and the Relational model, as its inputs

and produces matchings between schema constructs together with a

confidence value between 0 and 1. A range of matchers have been

implemented in COMA++ in order to generate more accurate cor-

respondences with respect to the information provided by the data

sources. For example, an instance matcher analyses the similarities

between the extents of schema constructs in order to discover the sim-

ilarity between such schema constructs. A context matcher analyses

the similarity between schema constructs based on the similarities of

other schema constructs that are linked with them through relation-

ships in the schema.

Cupid [18] is a hybrid schema matching system that also supports

various data models. In contrast to COMA++, Cupid operates only

at the schema level and employs linguistic, structural and constraint

matchers to produce 1-1 and 1-n matches.

Mapping Generation tools take the correspondences generated by schema

matching tools as their input and semi-automatically generate map-

pings between the LSs and the GS for transforming information stored

in one schema to another schema. Different mapping approaches

have been proposed, with the global-as-view (GAV) and local-as-view

(LAV) approaches as the two most common ones. In GAV, each GS

construct is defined by a conjunctive query over the LSs [3]. We call

the mappings generated in the GAV approachGAV mappings. In LAV,

each local schema construct is defined by a conjunctive query over the

GS [3]. We call such mappings LAV mappings. There is also a more

general approach called global-local-as-view (GLAV), where conjunc-

27

tive queries on the LSs are mapped to conjunctive queries on the GS

[19]. The both-as-view (BAV) approach has also been proposed where

the mappings consist of a sequence of primitive schema transforma-

tions [20]. These approaches have advantages and disadvantages when

applied in different DI contexts and different kinds of mappings are

also embedded with different semantics. Therefore, the integration

approach needs to be chosen carefully with respect to the integration

domain. We refer readers to [3] for detailed discussions. We discuss in

this thesis the AutoMed and Clio integration frameworks that support

the mapping generation task. In addition to the mapping generation

function, a data integration framework also supports the wrapping

of data sources in order to represent schema-level information from

the data sources using the data modelling methods supported by the

framework. AutoMed is discussed in Section 2.4 and Clio and HeP-

ToX are discussed next. In the commercial domain, there exist many

mapping tools that mainly depend on the manual establishment of

mappings through graphical interfaces. We refer readers to [21] for a

survey of such tools.

Clio [22] is a mature data integration platform which defines mappings

using a logic-based declarative approach. Clio supports GAV, LAV and

GLAV DI approaches. Data integrators have to create the mappings

semi-automatically according to their matching correspondences. In

addition to the mapping creation function, Clio also supports map-

ping verification. Data integrators identify unexpected data in the

extension of the global schema manually and examine the mappings

that generate these data against the integrity constraints of the global

schema. The disadvantage of using this method is that mapping errors

need to be identified manually. If the integrated resource contains a

large volume of data, it is very hard to go through every row of data

28

and find possible errors.

HePToX [23] is a tool for integrating XML data sources in a peer-to-

peer setting. The tool is able to transform a set of mapping definitions

to XQuery queries that are executable at an XML data source for ex-

tracting information from it. The mapping definitions are manually

defined by the integrators and the transformation process is then un-

dertaken automatically. The authors claim that the transformation

algorithm can generate efficient XQuery queries and that constraint

information is not lost. However, there are no validation or quality

assessment processes considered in this research.

Query Answering in DI is the problem of answering a query q over an

integrated resource ⟨LSs,GS,M⟩. q could be expressed either on the

GS or the LSs, depending on the context. For example, in peer-to-

peer data integration, users may express their queries on a single peer

and expect information to be extracted from other peers. In the GAV

approach, query answering is mainly a query unfolding process where

q is unfolded by substituting each global relation by its definition in

terms of the data sources. In the LAV approach, query answering is

mainly a query rewriting problem using views in order to reformulate

q into an equivalent expression that refers only to the data source

structures. Both approaches are followed by the query optimisation

task that aims to optimise the unfolded or rewritten queries in order

to reduce the cost of access to the data sources [24]. The results

of query answering may be ambiguous because of the different query

reformulation mechanisms and we refer readers to [25, 26] for detailed

surveys.

DI Refinement aims to refine an existing DI setting that does not comply

with the users’ expectations. DI refinement tools can be implemented

29

in different ways. For example, data lineage algorithms are used to

identify mappings that extract incorrect information with respect to

the constraints on the LSs and GS [27]. Feedback analysing algo-

rithms have been developed to identify mappings where the users’

requirements cannot be satisfied [28]. Users’ feedback may be anno-

tations that a user provides to comment on the artifacts of a data

integration system, such as relationships between query results. The

design of the GS can also be refined by comparing the current GS with

the stakeholders’ expectations of the GS. We will discuss the details

of such related research in Chapter 5 when comparing this work with

our research.

2.2.2 Ontologies in Data Integration

Ontologies are a formal representation method and represent knowledge as

a set of concepts within a domain and the relationships between those con-

cepts. Ontology reasoning can be applied in order to make inferences about

conceptual relationships between the entities within that domain. Ontolo-

gies have been used in many tasks in the data integration process, such as

matching, mapping, query answering and DI refinement by using their rich

expressive power.

With respect to the matching and mapping tasks, ontologies have two

advantages compared with schemas. First, schemas often do not provide

explicit semantics for their data, while ontologies are able to constrain

the meaning of ontology definitions with a set of logical axioms. Sec-

ond, ontologies provide a vocabulary of terms in some domain. Database

schemas provide an application-dependent vocabulary that is not gener-

ally reusable in other applications. In contrast, ontologies support both

application-dependent and independent vocabulary, such as domain ontolo-

gies and upper-level ontologies in the latter case. Ontologies are designed by

30

domain experts in order to formally describe the domain with a vocabulary of

terms, such as BioTop for the life-science domain (http://www.imbi.uni-fr

eiburg.de/ontology/biotop/) and OpenGALEN [16]. Adopting ontolo-

gies in the matching and mapping tasks in data integration, more accurate

matching and mappings can be discovered. [29] gives a detailed representa-

tion method for integrated resources using Description Logic, which is the

most widely used knowledge representation method used as the foundation of

ontologies. We also refer to [30, 31] for detailed studies of ontology-assisted

matching and mapping techniques. We survey here two well-known ontology

matching/mapping tools, GLUE [32] and PROMPT [33].

GLUE [32] semi-automatically creates mappings between ontologies. GL

-UE finds the most similar concepts between a pair of ontologies and calcu-

lates the joint probability distribution of the concepts using a multi-strategy

learning approach for similarity measurement, including name matching,

content matching and naive Bayes learning [34].

PROMPT [33] is a semi-automatic ontology merging and alignment tool.

Taking as input two ontologies, PROMPT begins with name matching for

the initial comparison and a set of possible matchings are generated. Users

then need to verify these matchings based on their own linguistic and do-

main knowledge. Based on this information, PROMPT generates a merged

ontology along with transformation rules from the input ontologies to this

merged ontology.

Ontologies can also contribute to the query answering task using the rich

semantics embedded within the ontology. The authors in [24] introduced

a three-phase query answering process, comprising query expansion, query

unfolding and query execution phases. They use an ontological description of

the integrated resource to aid in query expansion and optimisation. Similar

work has been done in [35].

The DI refinement task can also benefit from the semantics and formal

31

representation methods embedded within ontologies. In [36], the authors

proposed a reasoning method based on the Distributed Description Logic

(DDL) in order to validate inconsistencies between the semantics of the

schema and the mappings. The authors in [37] proposed a sound and com-

plete ontological reasoning method for validating mappings with respect to

subsumption propagation and disjointness propagation patterns.

Currently, there are many research works that focus on transforming

information from data models, such as the Relational model, into an onto-

logical representation in order to benefit from the additional expressive and

reasoning power of ontology-based techniques [38].

2.3 Data Integration Quality

In this section, we review some quality related work in the context of data in-

tegration. Some of this work was not proposed originally for the DI context,

but their concepts are relevant to and can be adopted in our work.

2.3.1 Quality Oriented Research

Quality is the study of “fitness for use” [10] and is a well established re-

search topic in both the academic and commercial domains for particular

areas, such as data quality, software quality and Quality of Service (QoS).

In the area of data integration, many research works in this area adopt the

quality definitions proposed in information and data quality research for

defining the quality of the data sources in a DI context. In [39], the au-

thors defined a set of data quality criteria for measuring the quality of the

data sources and proposed query answering methods taking into account

such quality measurement. The quality criteria they considered are data

accuracy, completeness, timeliness, availability, reliability and data volume.

[40] also investigated query reformulation methods with respect to the

32

quality indicators from the data sources. The authors considered quality

indicators such as availability, price, response time and accuracy, in order to

generate query plans that can return the most optimised results.

In [41], the authors adopted the definitions proposed for expressing the

quality of information systems and proposed methods for measuring the

quality of information retrieved from data sources. In contrast to [39], the

authors in [41] focused more on the retrieval of complete information by

selecting the appropriate query operation, such as left outer join or full

outer join, in the query reformulation process.

There have been some research works focusing particularly on data inte-

gration quality issues. In [42], the authors discussed work on measuring the

quality of the mappings, based on features calculated from instance-level in-

formation. Such features include distribution of the length of string-valued

instances and frequencies of word categories in the instance sets. A full list

of such features can be found in [42].

In [43], the authors defined three quality criteria explicitly for the DI

context, schema completeness, datatype consistency and schema minimality.

A set of measurement methods were also proposed in order to calculate the

level of satisfaction of the quality definition by the schemas referenced in the

DI setting. [44] took a further step based on the minimality and complete-

ness quality criteria proposed in [43] and proposed structural comparison

methods between the GS and an expert-defined schema that is assumed to

be available to the data integrators.

While not motivated explicitly from a quality perspective, other tech-

niques can be adopted for measuring the quality of integrated resources. [4]

proposed the concept of mapping cores in order to generate the minimum

set of mappings able to answer a set of users’ queries. It provides a non-

redundant instance for answering queries over the target schema. [45, 27]

proposed instance checking methods which may be used to validate and

33

refine mappings.

Integrity constraint checking is another area that relates to our quality as-

sessment research. In [46], the authors discussed the importance of integrity

constraints and their role in query answering methods in data integration.

Query answering techniques are affected heavily by the constraints on the

global schema and the semantics of mappings with respect to incomplete or

inconsistent information being retrieved [46, 47]. Tableaux and chase algo-

rithms are used to test consistency between constraints in the global schemas

and mappings [48, 46, 49, 50]. However, integrity constraints considered in

these works are only based on the global schema, whereas the constraints on

the local schemas are also important. In [51, 52, 53], the authors took the

integrity constraints on the local schemas into the account in generating the

DI mappings. These works focused on generating correct and complete infor-

mation for the global schema, maintaining as many referential constraints

on the local schemas as possible. The Clip project [54] focused on main-

taining information on local schemas via mappings by introducing mapping

builders, termed aggregation, transformation, and grouping. A combina-

tion of these builders constructs a Context Propagation Tree (CPT) that

links different mappings, where mappings linked with different local schema

constructs that are related with constraints may have effects on each other.

Mappings are then generated from the CPT.

Ontology alignment introduced a new form of mappings expressed in DL

[37], such as Distributed Description Logics (DDL), where mappings are in-

clusion assertions [55]. Such assertions are classified as onto-bridge rules and

into-bridge rules. In ontology alignment, distributed ontologies are linked

with DDL assertions, possibly with weights indicating their confidence val-

ues. Distributed reasoners, such as DRAGO (http://drago.itc.it/index

.html), can also use such assertions to examine consistencies across dis-

tributed ontology sources to reduce the reasoning cost [36]. However, in the

34

ontology alignment setting, ontologies are mapped pairwise and mapping

semantics are limited to this context, whereas in data integration, multiple

data sources are available and operations can be performed across multiple

data sources, such as joins and unions. In addition, having only the inclu-

sion relationships supported by DDL mappings, it is not possible to perform

data manipulation operations such as concatenations and splits.

Also, many different stakeholders have been identified in data integration

[56, 57]. Each of them plays their role in the integration process. For

example, data integrators are responsible for implementing the integrated

resource. Administrators are responsible for maintaining the data sources

in order to support the DI processes. Users are responsible for retrieving

information from the integrated resource. There are also different categories

of users in the DI context. For example, in [57], the authors considered

scientists, legislators and policy makers as three categories of users of the

integrated resource in their research. Each such stakeholder has their own

requirements on the data integration process, and the authors in [56, 57]

proposed methods for analysing these requirements.

The approach in [28] determines the quality of collaborative tasks, such

as data integration, with respect to the users’ quality requirements through

users’ feedback.

2.3.2 Quality Frameworks

Quality assessment comprises not only the definitions of quality criteria,

an appropriate quality framework is also required in order to assess quality

comprehensively. Data warehouses are used to store historical data in a

centralised repository for data intensive applications such as decision sup-

port and data mining [2]. The Data Warehouse Quality (DWQ) project

(http://www.dbnet.ece.ntua.gr/∼dwq/) studied quality issues in data

warehouses and quality-driven data warehouse design. The quality dimen-

35

sions proposed in DWQ can be categorised into design/administration qual-

ity, software implementation quality and data usage quality dimensions.

Corresponding to these, the stakeholders of data warehouses are data ware-

house designers/administrators, software programmers who implement the

data warehouse, and decision makers who use the data warehouse. The de-

sign/administration quality dimension includes two sub-dimensions: schema

quality, which is the same as the one proposed in data quality research,

and metadata evolution that concerns the way the data warehouse schema

evolves during the data warehouse operation. The software implementation

quality dimension adopts sub-dimensions proposed in ISO9126 (http://www

.iso.org/iso/home.htm) from a software engineering perspective, which

includes quality dimensions such as functionality, reliability, usability, soft-

ware efficiency, maintainability, changeability and portability. The data

usage quality dimension includes two sub-dimensions, accessibility and use-

fulness, where the former concerns the availability of services provided by

data sources or data warehouses and the latter concerns characteristics of

services provided by data warehouses [2]. The DWQ project considered data

warehouse implementation as a software engineering problem from a high-

level viewpoint, and did not consider solutions to problems of how the data

warehouse design could be modified to improve its quality.

2.4 Overview of AutoMed

For ease of development and rapid prototyping of our DI architecture we have

used and extended the AutoMed data integration system (http://www.doc.

ic.ac.uk/automed/). In this section, we give an overview of schema mod-

elling languages in AutoMed, the AutoMed query language (IQL) and map-

ping language (AutoMed transformation pathways), and the AutoMed ar-

chitecture, which are necessary components relating to our research. In

36

Chapter 6, we will use AutoMed to illustrate our implementation of the

translation between relational schemas and their OWL representations, and

our implementations of the quality factors and metrics of Chapter 5.

2.4.1 AutoMed’s Hypergraph Data Model

The basis of AutoMed is a low-level common data modelling language called

the hypergraph data model (HDM) [20, 58]. An HDM schema S comprises

a triple S = ⟨N,E,C⟩, where N is a set of nodes, E is a set of edges and C

is a set of constraints. Nodes and Edges define a labelled, directed, nested

hypergraph. It is directed because edges link sequences of nodes or edges. It

is nested because edges can link any number of both nodes and other edges.

A query over S is an expression whose variables are members of N ∪ E.

Constraints are expressed as queries over S that return a truth value, with

a constraint being valid if it evaluates to true. Given N = {n1, . . . , nn}, the
extent of N is denoted by ext(N) = ext(n1)∪ . . .∪ ext(nn), where ext(ni) is

the extent of node ni. Given E = {e1, . . . , em}, the extent of E is denoted

by ext(E) = ext(e1) ∪ . . . ∪ ext(em). Given C = {c1, . . . , cp}, the extent of

C is the empty set, denoted by ext(C) = ∅. The extent of a schema S is the

union of the extents of all nodes and edges, ext(S) = ext(N) ∪ ext(E).

Given a schema S and an extent ext(S), we say that S is valid if ext(S)

is evaluated to true with respect to all constraints in S.

2.4.2 Representing a Simple Relational Model in HDM

The HDM can be used to represent schemas in other data modelling lan-

guages, such as relational schemas, XML, RDF/S and OWL [59, 38]. To

illustrate the usage of the HDM, we present here the HDM representation

of a simple Relational model (Table 2.1) [38].

In this simple Relational model, there are four kinds of schema con-

37

structs. A Table construct is identified by a scheme ⟨⟨t⟩⟩, where t is the

table name. The extent of the a Table construct ⟨⟨t⟩⟩ is the projection of

the relation t(ka1, . . . , kan, nka1, . . . , nkam) onto its primary key attributes

ka1, . . . , kan, n ≥ 1 (nka1, . . . , nkam are the non-key attributes of t). An At-

tribute construct is identified by a scheme ⟨⟨t, a⟩⟩, where a is an attribute (key

or non-key) of t. The extent of each Attribute construct ⟨⟨t, a⟩⟩ is the pro-

jection of t onto attributes ka1, ..., kan, a. A primary key construct PKey is

identified by a scheme ⟨⟨t pk, t, ⟨⟨t, ka1⟩⟩, ..., ⟨⟨t, kan⟩⟩⟩⟩, where t pk is the name

of the constraint. A foreign key construct FKey is identified by a scheme

⟨⟨t fk i, t, ⟨⟨t, a1⟩⟩, ..., ⟨⟨t, ap⟩⟩, s, ⟨⟨s, b1⟩⟩, ..., ⟨⟨s, bp⟩⟩⟩⟩, p ≥ 1, where r fk i is the

name of the constraint, ⟨⟨t, a1⟩⟩,...,⟨⟨t, ap⟩⟩ are the referencing attributes, and

⟨⟨s, b1⟩⟩,...,⟨⟨s, bp⟩⟩ are the referenced attributes.

Relational Construct HDM Representation

construct: Table

class: nodal node: ⟨⟨t⟩⟩
scheme: ⟨⟨t⟩⟩
construct: Attribute node: ⟨⟨t : a⟩⟩
class: link-nodal edge: ⟨⟨ , t, t : a⟩⟩
scheme: ⟨⟨t, a⟩⟩
construct: PKey constraint:

class: constraint count ⟨⟨t⟩⟩ = count

scheme: ⟨⟨t pk, t, ⟨⟨t, ka1⟩⟩, . . . ⟨⟨t, kan⟩⟩⟩⟩ [{v1, . . . , vn}|{k, v1} ← ⟨⟨t, ka1⟩⟩; . . . ;
{k, vn} ← ⟨⟨t, kan⟩⟩]

construct: FKey constraint:

class: constraint subset[{v1, . . . , vn}|{k, v1} ← ⟨⟨t, a1⟩⟩; . . . ;
scheme: use ⟨⟨t fk, t, ⟨⟨t, a1⟩⟩, . . . ⟨⟨t, an⟩⟩,⟩⟩ {k, vn} ← ⟨⟨t, an⟩⟩]
s, ⟨⟨s, b1⟩⟩, . . . ⟨⟨s, bn⟩⟩ [{v1, . . . , vn}|{k, v1} ← ⟨⟨s, b1⟩⟩; . . . ;

{k, vn} ← ⟨⟨s, bn⟩⟩]

Table 2.1: Representing a Simple Relational Model in HDM

38

For example, a table staff(sid,name,#studentID), where #studentID

denotes a reference to a foreign key attribute, would be modelled in the

HDM by a Table construct ⟨⟨staff⟩⟩, three Attribute constructs ⟨⟨staff, sid⟩⟩,
⟨⟨staff, name⟩⟩ and ⟨⟨staff, studentID⟩⟩, a PKey construct

⟨⟨staff pk, staff, ⟨⟨staff, sid⟩⟩⟩⟩, and a FKey construct

⟨⟨staff fk 1, staff, ⟨⟨staff, studentID⟩⟩, student, ⟨⟨student, id⟩⟩⟩⟩, assuming there is

another table student(id,name)) and that #studentID of staff references

id of student.

2.4.3 The IQL Query Language

The AutoMed Intermediate Query Language (IQL) [60] is a typed, compre-

hension based functional query language. IQL subsumes query languages

such as SQL-92 and OQL in expressiveness [61, 62]. Its purpose is to provide

a common query language that queries written in various high level query

languages (e.g. SQL, XQuery, OQL) can be translated into and out of.

For example, an SQL query posed on a global schema can be automatically

translated by AutoMed into an IQL query. This query is then formulated

and optimized (a variety of query optimizers are implemented to optimize,

annotate and evaluate IQL queries - see [63]), and then subqueries of it are

translated by the data source wrappers into the query language supported

by the data sources.

2.4.4 AutoMed Transformation Pathways

As discussed in Section 2.4.1, any high-level modelling language can be rep-

resented in the HDM, with each modelling constructed being defined as a

combination of nodes, edges and constraints. For schemas specified in such

modelling languages, AutoMed provides a set of primitive schema transfor-

mations that can be applied to schema constructs (Nodes, Edges and Con-

39

straints) [20]. For extensional schema constructs (Nodes and Edges), “add”

and “delete” transformations can be applied for inserting and deleting, re-

spectively, a schema construct c into and from a schema S. Associated with

an “add” or “delete” transformation is a query, q, expressing how the ex-

tent of construct c can be derived from the existing or remaining constructs

of S. “extend” and “contract” transformations act similarly to “add” and

“delete” except that two queries are associated with them, indicating a range

for the extent of c, with a lower and an upper bound, denoted by ql and qu

respectively. The minimum extent of c is given by query ql, which may take

the constant value Void if no lower bound for this extent can be derived

form S. The maximum extent of c is given by query qu, which may take the

constant value Any if no upper bound for this extent can be derived form S.

These transformations are summarised in Table 2.2. For constraint schema

constructs, “add” and “delete” transformations can be applied for inserting

and deleting a schema constraint associated with a query q. AutoMed also

provides a “rename” transformation that can be used to change the name of

any schema construct of S. AutoMed primitives have been shown to be suffi-

cient for defining the mappings in the major common schema transformation

and integration scenarios [20, 58].

Transformation Syntax Comment

add addT (c, q) Add construct c and populate c

with query q.

extend extendT (c,Range ql qu) Add construct c whose extent is

bounded by ql and qu.

del delT (c, q) Delete construct c whose extent

can be rederived with query q.

extract extractT (c,Range ql qu) Delete construct c whose extent

is bounded by ql and qu.

rename renameT (c, n) Change the name of c to n.

Table 2.2: AutoMed Transformation Primitives

40

A sequence of these primitive transformations from one schema S1 to

another schema S2 is termed a transformation pathway from S1 to S2. All

source, intermediate and integrated schemas and pathways between them

are stored in AutoMed’s Schemas Transformations Repository (STR) (see

the next section). AutoMed is a both-as-view (BAV) data integration system

since add/extend transformations can be reversed by delete/extract trans-

formations with the same arguments1 and vice versa [64]. Each rename

transformation is reversed by swapping its two arguments. As discussed in

[64], BAV subsumes the GAV and LAV approaches in the sense that BAV

transformations can be used to represent both GAV and LAV mappings and

GAV and LAV mappings can be extracted from the BAV transformations.

As discussed in [65], BAV also subsumes the GLAV approach.

In addition, AutoMed also supports the id transformation. The id trans-

formation can be used to connect two schemas that contain the same set of

schema constructs. Using this transformation, the extents of such constructs

can be integrated with different semantics, such as append, union, intersect

and choose [65]. In this thesis, we assume that union semantics are applied.

2.4.5 AutoMed Architecture

AutoMed has a metadata repository composed of two main components, the

Model Definitions Repository (MDR) and the Schemas and Transformations

Repository (STR). MDR defines how each construct of a modelling language

is represented as a combination of nodes, edges and constraints in HDM.

STR contains the AutoMed representation of the data source, intermediate

and global schemas and the transformations between them. AutoMed Wrap-

pers are created for transforming the schema information in the data sources

into the HDM representation. There are Wrappers available for a variety of

1The add/extend transformations are from S1 to S2 and delete/contract transforma-

tions are from S2 to S1.

41

structured and semi-structured data sources. Wrappers also transform the

reformulated IQL queries into the query languages supported by the data

sources.

2.5 Summary

In this chapter, we discussed the heterogeneity issues that cause data inte-

gration to be complex and error-prone. We also reviewed research on the

tools and tasks for data integration, the quality issues considered in the DI

context, and quality frameworks for supporting quality assessment tasks.

In our analysis of related work on DI quality assessment, we have identi-

fied a number of issues that have not been addressed in the literature, which

provides the motivation for our own work:

Much previous data integration research has focused on generating the

integrated resource semi-automatically. Many tools have been developed,

such as schema matching and mapping generation tools, and matching and

mapping algorithms have been implemented in such tools [17]. Ontologies

may also be used to assist such tasks, based on ontologies’ richer semantic

and formal representation features. However, there is still a lack of research

into quality assessment in the DI context.

Some research developed in this area has adopted quality definitions

from other domains, such as information and data quality [39, 40, 41]. The

motivation for this research was to measure the quality of the information

retrievable from an integrated resource with respect to the quality of infor-

mation available from the data sources. However, such work is only applied

at the query answering stage of the DI process and does not contribute to

improving the quality of the integrated resource from the perspective of the

users’ requirements.

The research proposed in [43, 44] focuses on the quality of an integrated

42

resource and is close to our research. However, measurement methods only

were proposed in these works, and a systematic analysis of the reason why

the quality of an integrated resource may be low and how this could be

improved is lacking.

The authors in [2] took a systematic view of quality issues in the data

warehouse context and proposed a formalised quality framework. However,

the quality criteria and definitions in this work were adopted from other

domains and they do not match all the characteristics of DI. The reason-

ing methods for inferencing in their quality framework are simple and the

functionality is limited.

Across all research works reviewed in this chapter, none has suggested

how the integrated resource could be modified in order to improve its qual-

ity. Instead, most of these works focus on answering users’ queries making

use of knowledge of the quality of the data sources, such as information

completeness or correctness, and query plans that can be executed to ex-

tract relatively complete information are then generated. Such work has

a strong assumption that a complete set of mappings is created in order

for the query plan generation tool to function correctly. However, this can

be very difficult to achieve in real data integration projects. In addition,

the quality measurement results generated from such query planning ap-

proaches are not used to modify elements of the integrated resource, such

as mappings, or the global schema in order to achieve better quality. Third,

handling quality requirements from different users has not been studied in

detail, although there has been some work on identifying different categories

of users of a DI application [2, 57]. Fourth, very few research works have

contributed to the refinement of integrated resources with respect to users’

quality perspectives.

In our research, the above points have been considered in designing our

quality framework and architecture, and also in our definitions of the qual-

43

ity criteria and quality factors. In Chapter 3, we will introduce our quality

assessment approach, including a data integration methodology with qual-

ity assessment functionality embedded within it, a quality framework and

quality measurement methods.

44

Chapter 3

Requirements for a Quality

Framework and Architecture

for DI

As indicated in the previous chapter, a variety of users play an important

role during the DI process, including the pre-integration, integration and

post-integration phase. The requirements of the users at different DI stages

are important to our design of a quality framework and architecture for DI,

and a comprehensive review and analysis have been presented in the previous

chapter. In this chapter, we first study and analyse the previous research and

the outcomes of an interview with data integrators in order to develop our

approach in Section 3.1. We then discuss our data integration methodology

with embedded quality assessment functionality in Section 3.2. A case study

is then presented in Section 3.3 that will be used in the presentation of our

framework and architecture in the later chapters. Section 3.4 summaries

this chapter.

45

3.1 Analysis of Related Work and Interview

with Integrators

From the review of related research work in Chapter 2, we see that the data

integration process is a complex one and the integrated resource generally

needs to be defined, implemented, evaluated and refined iteratively [66, 67].

The tasks in the DI process are affected by many factors, such as the re-

quirements from the users [56], the integrators’ knowledge of the application

domain [33], and the complexity of the data sources arising from the in-

formation heterogeneities between them [68]. In general, a DI process is

composed of the information gathering stage, the integration stage and the

evaluation stage. Refinements of the integrated resource are then made and

the data integrators generally need to apply the DI process iteratively [66].

In our research, we discuss these stages using the terms: the pre-integration

phase, the integration phase and the post-integration phase. These three

DI phases are applied iteratively in order to define and refine an integrated

resource that will be closer to users’ expectations.

In the pre-integration phase, the integrators need to understand the data

sources to be integrated and also the application domain. Some existing DI

tools can assist data integrators in this phase, such as tools for exploring

the contents of data sources (database browsers), schema visualisation tools,

tools for identifying data items that violate integrity constraints applied to

the data sources (data cleansing tools), and tools for linking items in data

sources with their real-world meanings, e.g., through a predefined domain

or upper ontology [15, 16]. Additional assertions may be created by data

integrators for annotating the results of these tools [28], indicating informa-

tion that can be used during the integration phase, such as characteristics of

the data sources [40], the users’ requirements [56], inconsistencies between

information stored in the data sources, and inconsistencies between such

46

information and their real-world semantics. In this phase, data integrators

also need to understand the users’ expectations of the interface for accessing

the integrated resource, i.e., the GS. The users’ requirements are rich and

cover three aspects: user-defined assertions on the integrated resource based

on their domain knowledge, users’ specifications of the DI quality criteria,

and the quality requirements on the integrated resource from different users’

perspectives [56]. Different users have their own definitions of DI quality and

their own quality requirements. Such definitions and requirements may or

may not be consistent with each other and need to be assessed in their

totality. This has not been investigated intensively prior to our work.

During the integration phase, mappings need to be generated, defining

the transformations of information from the data sources to the GS. This

process is usually undertaken in two phases, the matching phase and the

mapping phase. In the matching phase, possible correspondences between

schema constructs are created either manually or semi-automatically, for ex-

ample using schema matching tools [17, 18]. Such correspondences may be

correct or incorrect, precise or imprecise, due to the quality and heterogene-

ity of the data sources or capability of the matching tools. Correspondences

may also be defined by the users manually to resolve the deficiencies of

the matching tools, or the users may need to define some additional cor-

respondences based on their knowledge of the application domain [67]. In

the mapping phase, mappings are generated defining how information from

the data sources can be extracted and transformed to comply with the GS

[3]. The quality of the mappings can be affected by many factors, for ex-

ample, the quality of correspondences generated from the matching phase,

the complexity of data sources, the design of the GS, the capability of the

supporting integration framework where some information may not be able

to be represented [67], and the experience of data integrators and users

where inexperienced integrators may define inaccurate mappings. From the

47

schemas of the data sources, the GS and the mappings, an integrated re-

source can then be formed. We discovered that, in practice, integrators may

find it difficult to establish suitable mappings that allows the query answer-

ing to operate correctly due to the above factors and this problem has not

been investigated in detail.

During the post-integration phase, the integrators need to analyze the

quality of the integrated resource created in the integration phase. The

related research work identified several quality criteria such as the ‘correct-

ness’ of the DI setting [40], the ‘completeness’ of the information returned

from the GS [39, 41], the ‘consistency’ of such information, the query ‘per-

formance’ of the integrated resource, and the ‘usefulness’ of the information

extractable from the data sources. Some research [56, 57] experienced that

different users could have their own view of these quality criteria. For ex-

ample, end-users may express their own view of the completeness of the

integrated resource as the amount of information extractable from the GS.

In contrast, data integrators may consider the completeness of the inte-

grated resource as the degree of coverage of users’ requirements relating to

the design of the GS. In addition, different users may have different quality

expectations. For example, users may consider an integrated resource to be

of good quality if it is complete and consistent with respect to their quality

definitions. Integrators may consider an integrated resource to be of good

quality if it contains accurate information, leaving the completeness crite-

rion as an optional requirement. Such different quality expectations may

or may not be consistent, meaning there may exist conflicts across different

users’ quality expectations. Each factor relating to users’ requirements and

data heterogeneity also has individual impact on the overall quality of the

integrated resource and these factors need to be assessed individually and

also in their totality. Very few research works have considered this in the

data integration domain.

48

In addition to the review of related research in the previous chapter, in

order to identify users’ requirements and gather first-hand experience of the

DI process, we organized an interview with three data integrators in 2008.

These people were experienced in the practical aspects of data integration

and had been involved in different stages of several different data integration

applications. The details of this interview are recorded in Appendix A.

The interviewees’ responses reinforced many of the points emerging from

the analysis of related work. They also noted that many ad-hoc methods are

used to determine the quality of an integrated resource. These include run-

ning ad-hoc queries over the integrated resource and examining the results of

such queries, or using test cases to represent the data sources and examining

the extents of the (virtual) constructs in the GS. The integrated resource

may need to be assessed fully or partially using such methods depending on

the users’ priorities. These assessment results could assist the integrators to

refine the integrated resource in various ways and this has been considered

in very few research works. For example, the integrator may change or ask

the users to change the assertions on the data source schemas and expect

more accurate correspondences to be returned from the matching process,

or the integrator may modify the mappings to include more data sources in

order to obtain more complete information. In addition, the data integrators

interviewed gave an example where users first identify the information that

needs to be accessible via the GS. A first version of the GS could then be

created, such as using one data source schema as the GS or using an existing

GS defined from an earlier integration effort. This is unlikely to be suitable

as the final GS and needs to be improved during the subsequent DI phases.

The above analysis of the related work and the practical experiences of

data integrators motivate our DI approach as introduced below.

49

3.2 Our Data Integration Methodology

As we discussed in Section 2.5 of Chapter 2 and in Section 3.1 above, the

common data integration methodology, comprising mainly schema matching,

schema mapping and possible refinement tasks, is not capable of capturing

and assessing users’ requirements with respect to their different quality per-

spectives of the integrated resource. To meet this need, we propose in this

thesis a DI methodology that contains a requirements gathering phase, an

integration domain learning phase, an integration phase and a quality as-

sessment phase. The integration process is then applied iteratively to refine

the integrated resource with respect to the quality assessment results and in

this way an integrated resource with better quality can be achieved. This

DI methodology is illustrated in Figure 3.1 and is discussed in detail below.

Figure 3.1: Iterative DI Methodology with Quality Assessment Functionality

Requirements Gathering Phase focuses on collecting and analysing users’

requirements, and expressing these requirements systematically through-

out the integration process. Such users’ requirements relate to two

aspects:

50

First, we want to collect users’ requirements with respect to additional

knowledge of the integration domain. Such user-defined knowledge

may be more accurate than the domain knowledge extracted from the

existing domain knowledge base, such as the domain ontology. How-

ever, users may not be able to define such knowledge without under-

standing the data sources. Therefore, this phase may need to interact

with the next integration phase. In this case, the users’ requirements

may be expressed as text documents or assertions on schemas.

Second, we want to understand the users’ requirements relating to the

desired quality of the integrated resource. Such requirements may be

expressed in various ways, such as logical expressions over the qual-

ity hierarchy, a prioritised list of requirements and the thresholds of

the quality measurement methods. Users’ requirements may relate di-

rectly to the functionalities of the measurement methods, such as sup-

porting user-defined queries and defining assertions from users’ knowl-

edge. This phase may involve discussions with users of the integrated

resource, identifying their role in the integration process and the re-

quirements associated with their roles, and collecting knowledge of the

integration domain from them.

Integration Domain Learning Phase focuses on understanding the data

sources and additional domain knowledge if necessary. This phase

involves understanding the integration domain, analysing the data

sources that are to be integrated, deciding on the integration approach

to be adopted (e.g. GAV, LAV, a combination of these), identifying

correspondences between schema constructs through schema match-

ing, and designing a global schema and a first version of the mappings

between this and the local schemas, aiming towards meeting the users’

quality requirements as currently expressed.

51

Integration Phase focuses on refining the mappings and the global schema

by translating the local and global schemas into a corresponding OWL

representation, defining additional users’ assertions on these using ex-

tra domain knowledge, applying ontology matching to the extended

OWL schemas, and refining the mappings from the local schemas to

the global schema and possibly the global schema itself. The result is

an integrated resource including the local schemas, the global schema,

the set of mappings, and the set of users’ assertions.

Quality Assessment Phase focuses on assessing the quality of the inte-

grated resource with respect to the users’ quality requirements. This

phase involves extracting information from the integrated resource that

could be used in the quality measurement process, applying the qual-

ity measurement methods, and comparing the measurement results

with the users’ quality requirements. The data integrator can use the

results of the quality assessment to make changes to the integrated

resource in order to achieve higher quality with respect to the users’

requirements. The quality assessment results can also be referred to

the end-users, by the data integrator, for their further feedback and

recommendations.

The above Integration and Quality Assessment phases are applied itera-

tively in order to modify the integrated resource with respect to the users’

feedback until an integrated resource with quality that is acceptable to the

users is generated.

3.3 Case Study

To illustrate our approach to DI quality assessment and improvement, we

now introduce a simple case study relating to the Higher Education (HE)

52

domain. This case study is used to demonstrate our quality framework,

quality criteria and architecture in the following chapters. This case study

relates to a simple domain and assertions can be generated based on our own

knowledge of the domain. The case study is composed of three data sources,

a global schema and a set of users’ requirements. Database 1 is owned by

the University Administration Office and it contains detailed descriptions of

the degree programmes, the courses and the staff of a university. Database

2 is maintained by the Undergraduate School containing detailed informa-

tion about the undergraduate studies of all the undergraduate students of

the university and also of postgraduate students who are taking some ad-

vanced undergraduate courses. Database 3 contains detailed information of

the postgraduate studies of postgraduate students of the university and is

maintained by the Postgraduate School.

In our case study, the university Examination Office requires access to

combined information from the three data sources and a suitable virtual

global schema is created to support this need. We assume that a Higher

Education (HE) domain ontology is available to the data integrator in OWL

format. This domain ontology represents only the general structure of HE

institutions. More specific information is introduced by additional users’ as-

sertions that express users’ institution-specific knowledge. We next describe

the three data sources, the global schema, the HE domain ontology and the

additional assertions of our case study. Figure 3.2 lists the notation we use

in the schema diagrams. One or more foreign keys may be assigned to the

same attribute in a table as it may be linked with attributes that are rep-

resented in one or more other tables. The three data sources are managed

in RDBMS. The local and global schemas and their ontology representation

are wrapped and represented using the HDM data model and stored in the

AutoMed STR repository. Other data models such as XML could be stored

in the same way. The mappings are also stored in the same repository.

53

Figure 3.2: Notations used in the Case Study Schemas

3.3.1 Case Study - Data Sources

Local Schema 1 Local Schema 1 (LS1) contains detailed descriptions of

the degree programmes, the courses and the staff of a university (see Figure

3.3 and 3.4).

Figure 3.3: Local Schema 1 (LS1) - Programme - Course

In Figure 3.3, the programme table contains a unique programme ID,

a programme name, a short description and a programme level indicating

whether the programme is an undergraduate or postgraduate programme. A

Programme Director attribute is also included in the programme table and

it has a value of null for all instances of the table. A programme contains

54

many courses and such courses are categorised as mandatory or optional.

The number and the type of these courses being assigned to each programme

depend on the specifications of the programmes. Each course has a unique

course ID, a course name and a course syllabus. The course Level is an inte-

ger between 1 and 4 indicating in which year of the programme this course

is taken by students on the programme. Three foreign keys are assigned to

the contain table one referencing the PID attribute in the programme table

and the others referencing the CID attributes in the mandatory course and

optional course tables respectively.

Figure 3.4: Local Schema 1 (LS1) - Staff

Figure 3.4 contains information about university staff, called educators.

The educator table contains a unique ID, a staff name and an office location.

Educators are categorized into three main groups with respect to their roles:

lecturers, teaching support staff and academic assistants. Teaching support

staff are university employees who do not have teaching duties but support

55

the running of courses. Academic assistants are students who are study-

ing on a PhD programme and are also university employees who support

the teaching side of courses. Educators are also categorised by their em-

ployment status as full-time or part-time and two foreign key are defined in

the fulltime faculty member and parttime faculty member tables referencing

the TID attribute in the educator table. All lecturers and teaching sup-

port staff must be employed as full-time faculty members while academic

assistants can be either full-time or part-time faculty members. Four for-

eign keys are defined in the lecturer, teachingsupport, ft academic assistant

and pt academic assistant tables, the first 3 referencing the TID attribute

in the fulltime faculty member table and the last referencing the TID at-

tribute in the parttime faculty member table. These foreign keys represent

the sub-class relationships as described above.

Local Schema 2 Local Schema 2 (LS2) contains detailed information

about the undergraduate studies of all the undergraduate students of the

university and also of postgraduate students who are taking some advanced

undergraduate courses (see Figures 3.5, 3.6 and 3.7).

Figure 3.5: Local Schema 2 (LS2) - Student - Course

In Figure 3.5, the undergraduate course table contains a unique course

ID and a Year attribute, indicating the calendar year this course has been

56

run, e.g., 2009, 2010, 2011. The composition of course ID and year is the

primary key of the undergraduate course table. The Status attribute in-

dicates the average of the results of all students who have registered with

this course in Year and the Level attribute indicates the year this course is

taken by students on a programme (i.e., an integer between 1 and 4). Under-

graduate courses can be taken by undergraduate students. Undergraduate

courses at level 4 can also be taken by the postgraduate students. The un-

dergraduate student and postgraduate student tables contain the student ID,

the student name and performance attributes. The performance attribute

represents the average of the results of all courses this student has taken.

The course registration information is contained in the study table, which

is composed of the student ID, the course ID and the year this student has

taken this course. Each undergraduate student can register for up to 8 un-

dergraduate courses each year and each postgraduate student can register

for up to 2 Level 4 undergraduate courses each year. Three foreign keys are

defined in the study table, one referencing the CID and Year attributes in

the undergraduate course table and the others referencing the SID attribute

in the undergraduate student and postgraduate student tables respectively.

Figure 3.6: Local Schema 2 (LS2) - Student - Programme

In Figure 3.6, the undergraduate programme and postgraduate programme

57

tables each contains a programme ID and the starting year of the programme

as the composite primary key. Each programme is led by one programme

head, who is also a member of the university’s staff and identified by their

staff ID. The programme enrolment details are contained in the undergrad-

uate enrol and postgraduate enrol tables for the undergraduate and post-

graduate programmes respectively. Each undergraduate programme can be

enrolled on by up to 100 undergraduate students and each postgraduate pro-

gramme can be enrolled on by up to 50 postgraduate students. Each student

can only enrol on one programme in each year. These constraints are repre-

sented by the foreign keys defined in the undergraduate enrol and postgrad-

uate enrol tables. Two foreign keys are defined in the undergraduate enrol

table, one referencing the SID attribute in the undergraduate student table

and the other referencing the PID and StartingYear attributes in the un-

dergraduate programme table. Corresponding foreign keys are defined in the

postgraduate enrol table.

Figure 3.7: Local Schema 2 (LS2) - Staff - Course

In Figure 3.7, the teacher table contains the staff ID LID of the staff

who teach undergraduate courses. Each teacher can only teach one under-

graduate course and vice versa. The support members are both the teaching

58

support staff and the academic assistants. Each teaching support staff or

academic assistant can support many undergraduate courses. Each course

can be assisted by one teaching support staff and one academic assistant.

Two foreign keys are defined in the induct table, one referencing the LID

attribute in the teacher table and the other referencing the CID and Year

attributes in the undergraduate course table. Two other foreign keys are

defined in the assist table, one referencing the TID attribute in the sup-

port member table, and the other referencing the CID and Year attributes

in the undergraduate course table.

Local Schema 3 Local Schema 3 (LS3) contains detailed information

about the postgraduate studies of postgraduate students of the university

(see Figures 3.8, 3.9 and 3.10).

Figure 3.8: Local Schema 3 (LS3) - Student - Course

In Figure 3.8, the postgraduate table represents information about post-

graduate students including: the student ID, the year this student is study-

ing, the student name, the average of the results of all courses the student

has taken this year and the average over all course results of all students in

the same programme this year. The student ID and Year attributes comprise

the composite primary key of the table. The enrol table contains informa-

tion about course enrolment and is identified by the composite primary key

of the student ID, the calendar year and the course ID. For the postgradu-

ate study, each student can only enrol on up to 5 postgraduate courses each

year. The enrol table also contains the course average attribute indicating

59

the average results of students who have registered for this course this year

and the mark attribute indicating the student’s own performance for this

course. Two foreign keys are defined in the enrol table referencing the CID

attribute in the postgraduate course table and the SID and Year attributes

in the postgraduate table respectively.

Figure 3.9: Local Schema 3 (LS3) - Student - Programme

In Figure 3.9, the postgraduate programme table contains the programme

ID, the starting year of the programme and programme head who leads

this programme. The ProgrammeHead attribute contains the name of the

programme head. Each programme is led by one programme head. The

students’ programme enrolment information is represented by the postgrad-

uate enrol table that indicates the students who have enrolled with the pro-

gramme in a given year. One postgraduate programme can only be enrolled

on by up to 50 postgraduate students each year. The support staff of post-

graduate programmes are both the teaching support staff and the academic

assistants, identified by their staff IDs and stored in the support member

table. Two foreign keys are defined in the postgraduate enrol table refer-

encing SID and Year attributes in the postgraduate table and the PID and

Year attribute in the postgraduate programme table respectively. Two other

60

foreign keys are defined in the support table referencing the TSID attribute

in the support member table and the PID and Year attributes in the post-

graduate programme table.

Figure 3.10: Local Schema 3 (LS3) - Staff - Course

In Figure 3.10, the lecturers who teach postgraduate courses are rep-

resented by the lecturer table. One course can be taught by up to 2 lec-

turers and each lecturer can only teach one postgraduate course. The edu-

cator assistant table represents the academic assistants. Each assistant can

assist with many postgraduate courses and each course can be assisted by up

to 2 academic assistants. Two foreign keys are defined in the induct table ref-

erencing the TID and CID attributes in the lecturer and postgradaute course

tables respectively. Another two foreign keys are defined in the assist table

referencing the TID attribute in the educator assistant table and the CID

attribute in the postgraduate course table.

3.3.2 Case Study - Global Schema

In this case study, the global schema contains the combined information

from the three local schemas (Figures 3.11 to 3.14).

61

Figure 3.11: Global Schema (GS) - Programme - Student

In Figure 3.11, the student table contains information about each stu-

dent who has registered on either an undergraduate or a postgraduate pro-

gramme. The undergraduate and postgraduate tables represent the under-

graduate and postgraduate students. The programme enrolment informa-

tion is contained in the undergraduate enrol and postgraduate enrol tables.

Each undergraduate programme can be registered for by up to 100 under-

graduate students and each postgraduate programme can be registered for

by up to 50 postgraduate students. Each student can register for only one

programme. Two foreign keys are created in the postgraduate enrol table

referencing the PID, StartingYear attributes in the programme table and

the SID attribute in the postgraduate table. Corresponding foreign keys

are defined in the undergraduate enrol table. Another foreign key is created

in each of the postgraduate and undergraduate tables referencing the SID

attribute in the student table.

In Figure 3.12, the programme table contains three attributes, the pro-

gramme ID, the year the programme starts and the overall performance

of all students who have registered with the programme. In each year, a

programme comprises three types of courses, the undergraduate mandatory

courses, the undergraduate optional courses and the postgraduate courses.

62

Figure 3.12: Global Schema (GS) - Programme - Course

An undergraduate programme comprises of up to 8 mandatory and optional

undergraduate courses. A postgraduate programme comprises of up to 5

postgraduate courses and up to 2 undergraduate courses. Four foreign keys

are defined in the comprise table, one referencing the PID, StartingYear at-

tributes in the programme table, and three referencing the CID attributes

in the undergraduate mandatory course, undergraduate optional course and

postgraduate course tables respectively.

In Figure 3.13, the programme head teacher table represents the pro-

gramme heads, identified by the head teacher’s staff ID TID. The table

also contains the programme name, the programme description, the pro-

gramme head’s name and the programme level, which may be ‘ug’ or ‘pg’

for undergraduate and postgraduate programmes, respectively. The pro-

gramme head teacher table is related to the programme table via the direct

table that contains the programme head’s staff ID, the programme ID and

the starting year of the programme. Each programme head leads both the

programme lecture members and the programme support members, as iden-

tified in the lead table by the programme head’s staff ID, member’s staff

ID and the year of the programme. Two foreign keys are defined in the di-

rect table, one referencing the TID attribute in the programme head teacher

63

Figure 3.13: Global Schema (GS) - Programme Head - Programme

table, and the second referencing the PID and StartingYear attributes in

the programme table. Three foreign keys are defined in the lead table, one

referencing the TID attribute in the programme head teacher table, and the

other two referencing the TID attributes in the programme lecturer member

and programme support member tables respectively.

Figure 3.14: Global Schema (GS) - Staff - Course

64

In Figure 3.14, the student table contains the student ID, the student

name and the average results over all courses the student has taken. The

course table contains the course name and the level of the course as the

table’s primary key. The course table also contains the convenor attribute

that represents the lecturer who inducts the course, the type attribute that

represents if the course is an undergraduate or postgraduate course, the

supportingPersonnel attribute representing the staff who support the course

and the courseAvg attribute representing the results average over all students

who have taken the course. The lecturer table contains the name and role of

lecturers who teach the course. The lecturer table is related to the student

table via the educate table representing which lecturers teach which students.

Three sets of foreign keys are created. Two foreign keys are defined in the

study table referencing the SID attribute in the student table and CName

and Level attributes in the course table. Another two foreign keys are

defined in the educate table referencing the SID attribute in the student

table and the TID attribute in the lecturer table. The final foreign key

is defined in the course table with the Convenor attribute referencing the

TID attribute in the lecturer table, representing the lecturer who inducts

the course.

3.3.3 Case Study - Domain Ontology

A domain ontology is used in our approach in order to represent addi-

tional real-world knowledge about the application domain with primitive

constructs comprising concept, role, universal concept, bottom concept, con-

junction, disjunction, existential quantification, value restriction, transitive

role, inverse role, minimum cardinality and maximum cardinality. In this

case study, we use a manually created HE domain ontology that provides

general knowledge of a university environment (see Figure B.5 in Appendix

B). This ontology has been created manually because of the lack of a suit-

65

able domain ontology in the HE area that is capable of being adapted to

our case study. The relevant aspects to be included in this ontology are

the staff, student, course and programme concepts and their sub-concepts,

the properties representing the sub-class relationships between concepts, the

equivalence relationships between concepts and also other more case-specific

relationships as listed in Table 3.1 which is represented in Description Logic.

No. Case-Specific Knowledge, expressed in Description Logic

B1 postgradaute student ≡≤1 enrol.postgraduate programme

B2 undergraduate student ≡≤1 enrol.undergraduate programme

B3 postgraduate programme ≡≤1 is directed by.programme leader

B4 undergraduate programme ≡≤1 is directed by.programme leader

B5 programme leader ≡≤1 direct.postgraduate programme

B6 programme leader ≡≤1 direct.undergraduate programme

B7 lecturer ≡ ∃teach.postgraduate course

B8 lecturer ≡ ∃teach.undergraduate course

B9 programme leader ≡ ∃lead.lecturer
B10 undergraduate student ≡≤8 study.undergraduate course

B11 postgraduate student ≡≤2 study.undergraduate course

B12 postgraduate student ≡≤5 study.postgraduate course

B13 undergraduate programme ≡≤200 is enrolled by.undergraduate student

B14 postgradaute programme ≡≤100 is enrolled by.postgraduate student

Table 3.1: Case-Specific Knowledge

Description Logic (DL) is a family of formal knowledge representation

languages based on the notions of concepts and roles. DL is characterised

by constructors that allow complex concepts and roles to be built from

atomic ones [1]. In Table 3.1, the symbol ∃ means that there exist some

individuals associated with the concept following it; the symbol ≤n means

that the maximum cardinality of individuals of the concept following it is

n; the symbol ≥n means that the minimum cardinality of individuals of the

concept following it is n. We refer readers to Section 4.3.1 in Chapter 4 for

a full description of the DL language adopted in our research.

In this domain ontology, the properties representing the case-specific re-

lationships that we consider are: 1) the enrol property indicating that an

66

undergraduate or postgraduate student can only enrol at most 1 under-

graduate or postgraduate programme (see B1 and B2 in Table 3.1); 2) the

is directed by property indicating a programme can be led by only one lec-

turer who is the leader of the programme (see B3 and B4 in Table 3.1);

3) the direct property indicating that a lecturer who plays the programme

leader role can only lead 1 programme (see B5 and B6 in Table 3.1); 4)

the teach property indicating a lecturer can teach some undergraduate or

postgraduate courses (see B7 and B8 in Table 3.1); 5) the lead property in-

dicating a programme leader can lead some lecturers (see B9 in Table 3.1);

6) the study property indicating an undergraduate student can study up to

8 undergraduate courses and a postgraduate student can study up to 2 un-

dergraduate courses and up to 5 postgraduate courses (see B10-B12 in Table

3.1); 7) the is enrolled by property indicating an undergraduate programme

can be enrolled by up to 200 undergraduate students and a postgraduate

programme can be enrolled by up to 100 postgraduate students (see B13

and B14 in Table 3.1). The properties representing the sub-class and equiv-

alence relationships are listed in Figure B.5 in Appendix B. The HE domain

ontology is implemented using the OWL language that is a formal language

developed with Description Logic as its logical foundation. We refer read-

ers to Section 6.2.2 in Chapter 6 for the detailed discussion of the OWL

language we adopted.

3.3.4 Case Study - Assertions

In our case study, users’ assertions are expressed based on the ontology

representation of the schemas. There are two reasons that we represent the

schemas as ontologies. First, the data model used by the schemas may not

be expressive enough with respect to the users’ assertions. For example, in

the Relational model, there does not exist a representation for representing

the relationships between two table entities. If the users require to define

67

constraints between the extents of these entities, it is impossible to do so.

Second, we use a domain ontology as the knowledge base of the integration

domain. Representing the schemas as ontologies has the advantage of linking

them semantically with this domain ontology.

In this thesis, we focus on data sources that contain information repre-

sented in the Relational model only for the purpose of fast implementation

of the prototype. But in principle, data sources containing information

in other data models can be integrated, knowledge expressed in such data

sources can be expressed as an ontology, and the quality of the integrated

resources can be measured by adopting our integration architecture since

ontologies have a rich expressibility and can represent knowledge in various

data models. The translation of a relational global schema into an equiv-

alent OWL representation is undertaken using an algorithm based on [69],

which describes the representation of relational databases in RDF. Similarly

to [69], our translation of relational schemas into OWL can support both

single-attribute and composite primary and foreign keys [38]. The purpose

of this algorithm is to illustrate the transformation from relational schema

to ontology so that users’ assertions can be expressed on the ontology and

linked with the domain ontology. The capabilities of the algorithm are suf-

ficient to illustrate our approach. We refer readers to [70] for a survey of

similar and more expressive algorithms.

We discuss this transformation method from the relational schema to an

ontology and demonstrate how this ontological representation can be linked

to the domain ontology as follows:

• For each relational table t in a schema S (which may be a data source

schema or the global schema), if the name of t is a noun, create an

ontology class c for representing t, where the name of c is in the for-

mat ‘S t’ with t indicating the table’s name. The extent of c is the

same as the extent of t. Create a ‘sub-class’ relationship between c

68

and the concept c′ in the domain ontology, if c′ exists, such that c

and c′ can be matched semantically1. For example, given the table

programme head teacher in GS and the programme leader class in the

domain ontology, a new class GS programme head teacher is created

as a sub-class of programme leader. If there does not exist such a c′ in

the domain ontology, create c as a top-level class.

• For each relational table t in a schema S, if the name of t is a verb,

create an ontology object property p for representing t, where the

name of p is in the format ‘S t’ with t indicating the table’s name.

The extent of p is the same as the extent of t. Create a ‘sub-property’

relationship between p and the ontology property p′ in the domain

ontology, if p′ exists, such that p and p′ can be matched semantically.

Assert the ontology classes representing the relational tables relating

to t as the domain and the range of the ontology property p. For

example, given the table undergraduate enrol in GS and the enrol

property in the domain ontology, a new object property is created

termed GS undergraduate enrol and GS undergraduate enrol is a sub-

property of enrol. The domain and range of GS undergraduate enrol

are GS undergraduate and GS programme respectively. If there does

not exist such a p′ in the domain ontology, create p as the top level

object property.

• For each property p created in the above step, create the inverse prop-

erty p−, where the name of p− is in the format ‘S is p∼ by’ with

p∼ as the past tense of p. The domain of p− is the range of p and

the range of p− is the domain of p. For example, given a property

GS undergraduate enrol, its inverse property is GS is Undergraduate

1By “semantically matched” we mean here that both c and c′ have the same real-world

meaning.

69

Enrolled by and its domain and range areGS programme andGS under

graduate respectively.

• Ignore attributes, primary keys and foreign keys for simplicity purpose.

The extended domain ontology created by the above method allows all

tables to be transformed into their corresponding ontology representations.

With the sub-class relationships created between the ontology representa-

tions of the schema constructs and the classes in the original domain ontol-

ogy, constraints applied in the original domain ontology can then be applied

to the new sub-classes, allowing reasoning to be applied to the schema con-

structs for consistency checking. Assertions representing users’ requirements

on the integrated resource from the users’ and integrators’ knowledge of the

application domain can subsequently be expressed on this extended domain

ontology. For our case-study, these are listed in Tables 3.2, 3.3, 3.4 and 3.5

(note that there are no such assertions on LS1).

No. Assertion Description and in DL

A1 A cardinality constraint is placed indicating that one undergraduate student can study up to 8

undergraduate courses.

LS2 undergraduate student ≡ ≤8 LS2 study.LS2 undergraduate course

A2 A cardinality constraint is placed indicating that one postgraduate student can study up to 2 un-

dergraduate courses.

LS2 postgraduate student ≡ ≤2 LS2 study.LS2 undergraduate course

A3 An undergraduate programme can be enrolled on by up to 100 undergraduate students.

LS2 undergraduate programme ≡ ≤100

LS2 isUndergraduateEnrolledBy.LS2 undergraduate student

A4 A postgraduate programme can be enrolled on by up to 50 postgraduate students.

LS2 postgraduate programme ≡ ≤50

LS2 isPostgraduateEnrolledBy.LS2 postgraduate student

A5 One teacher can teach only one undergraduate course.

LS2 teacher ≡ ≤1 LS2 induct.LS2 undergraduate course

LS2 teacher ≡ ≥1 LS2 induct.LS2 undergraduate course

A6 One undergraduate course can only be taught by only one teacher.

LS2 undergraduate course ≡ ≤1 LS2 isInductedBy.LS2 teacher

LS2 undergraduate course ≡ ≥1 LS2 isInductedBy.LS2 teacher

A7 One support member of each kind can support many undergraduate course.

LS2 support memeber ≡ ∃LS2 assist.LS2 undergraduate course

70

A8 One undergraduate course can only be supported by only one support member of each kind.

LS2 undergraduate course ≡ ≤1 LS2 isAssistedBy.LS2 support member

LS2 undergraduate course ≡ ≥1 LS2 isAssistedBy.LS2 support member

Table 3.2: Users’ Assertions on LS2

No. Assertion Description and in DL

A9 A postgraduate programme can be enrolled on by up to 50 postgraduate students.

LS3 postgraduate programme ≡ ≤50

LS3 isPostgraduateEnrolledBy.LS3 postgraduate student

A10 A postgraduate student can enrol on only one postgraduate programme.

LS3 postgraduate ≡ ≤1 LS3 postgraduate enrol.LS3 postgraduate programme

LS3 postgraduate ≡ ≥1 LS3 postgraduate enrol.LS3 postgraduate programme

A11 A postgraduate student can register for up to 5 postgraduate courses.

LS3 postgraduate ≡ ≤5 LS3 enrol.LS3 postgraduate course

A12 A postgraduate course can be inducted by up to 2 lecturers.

LS3 postgraduate course ≡ ≤2 LS3 isInductedBy.LS3 lecturer

A13 A lecturer can induct only one postgraduate course.

LS3 lecturer ≡ ≤1 LS3 induct.LS3 postgraduate course

LS3 lecturer ≡ ≥1 LS3 induct.LS3 postgraduate course

A14 A postgraduate course can be assisted by up to 2 TAs.

LS3 postgraduate course ≡ ≤2 LS3 isAssistedby.LS3 educator assistant

A15 One TA can assist any number of postgraduate courses.

LS3 educator assistant ≡ ∃LS3 assist.LS3 postgraduate course

A16 Each programme can have only one head.

LS3 postgraduate programme ≡ ≤1 LS3 hasHead.LS3 ProgrammeHead

LS3 postgraduate programme ≡ ≥1 LS3 hasHead.LS3 ProgrammeHead

Table 3.3: User’s Assertions on LS3

No. Assertion Description and in DL

A17 One programme can contain up to 8 undergraduate mandatory courses.

GS programme ≡ ≤8 GS comprise.GS undergraduate mandatory course

A18 One programme can contain up to 8 undergraduate optional courses.

GS programme ≡ ≤8 GS comprise.GS undergraduate optional course

A19 One programme can contain up to 5 postgraduate courses.

GS programme ≡ ≤5 GS comprise.GS postgraduate course

A20 One programme head can lead many programme lecturing members

GS programme head teacher ≡ ∃GS lead.GS programme lecture member

A21 One programme head can lead many programme support members

GS programme head teacher ≡ ∃GS lead.GS programme support member

Table 3.4: User’s Assertions on GS

71

No. Assertion Description and in DL

A22 The programme concept in the GS contains all programmes available from the LSs.

GS programme ≡ LS1 programme ∪ LS2 undergraduate programme

∪LS2 postgraduate programme ∪ LS3 : postgraduate programme

A23 The postgraduate student concept in the GS consists of the postgraduate students from both LS2

and LS3.

GS postgraduate ≡ LS2 postgraduate student ∪ LS3 postgraduate

Table 3.5: User’s Assertions across LSs and GS

3.4 Summary

In this chapter, we have discussed and analysed the requirements of data

integrators with respect to the DI process, and the assessment and improve-

ment of DI quality. We also proposed a data integration methodology with

embedded quality assessment functionality. We have presented a case study

that will be used to illustrate the quality criteria and metrics proposed in

Chapter 5. This case study will also be used to demonstrate the functional-

ity and usefulness of our quality framework and architecture in Chapters 4

and 6 respectively.

In Chapter 4, we will present our quality framework designed to meet

data integrators’ requirements as analysed in this chapter.

72

Chapter 4

Quality Framework for Data

Integration

In the previous chapter, we have identified the importance of users’ require-

ments throughout the different DI phases, from the analysis of the interview

with data integrators and the related research surveyed in Chapter 2. The

need for quality assessment methods suitable for the DI context has been

raised and our research focuses in particular on assessment of the quality of

integrated resources. In this chapter, we propose a Quality Framework for

Data Integration (QFDI) that is designed specifically for the DI context. The

chapter is organised as follows. In Section 4.1, we discuss the objectives and

the characteristics of our quality framework. We then propose the frame-

work specification and a discussion of the reasoning capability that needs

to be supported by the framework in Sections 4.2 and 4.3 respectively. In

Section 4.4, we describe formally the data resources that are assumed in the

development of our quality criteria and quality factors in Chapter 5. Section

4.5 provides a summary of this chapter.

73

4.1 Design Objectives for the QFDI

As discussed in the previous chapter, the quality of integrated resources can

have various definitions and can be measured in different ways. Different

end-users may also have their own quality requirements of the integrated

resources from their own perspectives. In our research, we propose a formal

framework, QFDI, for representing these different views of the quality of in-

tegrated resources and we apply formal inference methods for assessing their

quality. This framework is applied in the Quality Assessment phase within

the data integration methodology proposed in Section 3.2 in the previous

chapter. If the users’ quality requirements can be satisfied within our quality

framework, the integration process will then finish. Otherwise, the integra-

tors may revise the integrated resource according to the feedback obtained

from this framework and apply the quality assessment phase again.

The design objectives of our framework are as follows:

First, the data integration process may involve multiple users with dif-

ferent roles, such as administrators, integrators and end-users. Different

categories of users and their quality requirements have been discussed in

various research works, such as [56, 57]. Such requirements may not be

consistent, meaning that the same integrated resource cannot satisfy all re-

quirements from different users and, therefore, either the integrated resource

or the users’ quality requirements need to be modified. A quality framework

for the data integration context therefore has to be capable of representing

these varieties and providing solutions to detect and resolve the possible

inconsistencies or conflicts between the users’ requirements.

Second, the quality framework needs to be capable of representing a

quality hierarchy comprised of quality criteria, quality factors and the re-

lationships between them. Quality criteria represent high-level definitions

of quality, such as correctness, maintainability, usability. The definitions

of such criteria are open to different interpretations and more precise qual-

74

ity definitions are defined by their associated quality factors. We consider

that the quality criteria and the quality factors for interpreting these criteria

have a parent-child relationship. There may also be additional user-specified

relationships between different quality criteria or factors.

Third, the tradeoffs between different quality factors should be formally

expressible and examinable in such a quality framework. As discussed in pre-

vious related research in the area of data quality [71], there may exist trade-

offs between different quality factors, especially in collaborative projects with

different user perspectives, such as data integration. In this case, it may not

be possible to find a common solution that satisfies all quality requirements

and a compromise solution needs to be considered. In our research, we ap-

proach this problem by applying weights to individual quality factors and

we calculate the overall quality measurement as w1×r1+. . .+wn×rn, where
ri and wi are the measurement of a quality factor i and its user-specified

weight, respectively.

Fourth, in the DI context, quality is not only difficult to define precisely,

but it is also not easy to measure due to the large numbers of elements

that are involved in the data integration process, including the data, the

schema constructs, the users’ assertions and the mappings. In addition,

there may also exist correlations between such elements. For example, there

may be many schema objects referenced in a mapping, each such schema

object having an extent consisting of some data from the data sources; such

schema objects may also be restricted by additional constraints specified

in the users’ assertions. A quality framework in the DI context needs to be

able to establish such correlations between the elements and their referenced

quality measurement methods and between the elements themselves.

Fifth, as well as the existence of correlations between different elements

involved in the DI process, difficulties may also arise during the refinement

process that aims to achieve better quality of the integrated resource. Such

75

difficulties arise from the correlations between DI elements1 that are refer-

enced by different measurement methods. For example, suppose we have

two quality criteria, c1 and c2. c1 is the schema completeness quality cri-

terion and c2 is the mapping consistency criterion. c1 is associated with a

quality factor f2 proposed in Chapter 5, which defines schema completeness

as the degree of coverage of local schema constructs that provide overlapping

but possibly partially complete information for the same global schema con-

structs. c2 is associated with quality factor f7 proposed in Chapter 5, which

defines mapping consistency as the proportion of local schema constraints

that are not violated by the new constraints introduced by the mappings.

Suppose there exists a GAV mapping m that derives a global schema con-

struct ca by referencing a local schema construct cb and ca is derived by m

only. Suppose m is used in a the measurement of f2, and ca and cb are used

in the quality measurement f7. The quality refinement process suggests that

m should be deleted in order to achieve better quality for f2 and, therefore,

that ca should also be deleted from the global schema. This action will affect

the measurement of f7 since ca no longer exists. A quality framework should

capture the wider impacts of such changes and suggest the DI elements that

are possibly affected by these changes. Chapter 5 discussed the full set of

quality criteria and metrics.

4.2 Development of the Quality Framework

Taking account of the design objectives discussed above, we propose a Qual-

ity Framework for Data Integration (QFDI) that is composed of four major

parts, termed ITEM, METRIC, QUALITY CRITERI and USER, as illus-

trated in Figure 4.1.

1By ‘DI elements’ we mean the data, the schema constructs, the users’ assertions and

the mappings that together make up an integrated data resource. See the discussion in

76

Figure 4.1: The Quality Framework for Data Integration (QFDI)

ITEM contains the representations of knowledge extractable from the

elements comprising a DI setting. By ‘elements’ we mean the fundamental

constituents of an integrated resource, including Data Item, Schema Con-

struct, Mapping and Assertion. Assertions are defined by integrators so as

to express domain-specific knowledge relating to an integrated resource. All

of these are represented as sub-concepts of the Item concept. Links exist

between these sub-concepts, represented as the link property, to represent

how the instances of one concept relate to those of another.

In the METRIC part, different measurement methods (metrics) are rep-

resented by the Metric concept. Each metric is defined over instances of

the Item concept in the ITEM part. The measurement results are stored as

Section 4.2.

77

instances of the Metric concept.

QUALITY CRITERIA contains the representation of the quality hier-

archy as defined by the data integrator for a particular integrated resource.

This hierarchy is built from two concepts, Criterion and Factor, and the re-

lationships between them namely, is a and isAssociatedWith. Each quality

criterion may have several sub-criteria, linked by the is a property. Each

quality factor is associated with one quality criterion, using the isAssociat-

edWith property. Each quality (sub-)criterion can be associated with several

quality factors. Each quality factor is associated with a quality metric in

the METRIC part using the has metric property. Such metrics can be de-

fined using different methods and we discuss some of these in Chapter 5.

The Weight concept is associated with the Factor concept and indicates the

specific weight of each quality factor as defined by the users.

The contains sat and contains not sat properties link the Factor concept

and the Item concept. These properties represent the DI elements that

satisfy and that do not satisfy a quality factor, respectively. These two

properties are disjoint.

USER contains the User concept. Users with different roles may have

different quality requirements. For example, end-users may have require-

ments regarding the amount and the consistency of information returned

from a DI setting, whereas a data integrator may focus more on query per-

formance requirements. Different user requirements are represented by the

UserQR (User Quality Requirement) concept and they can be related by

using the entail property, meaning that if the integrated resource satisfies

one user requirement, the integrated resource also satisfies another user re-

quirement that is entailed by the first one. Each User concept is composed

of quality criteria, quality factors and the relationships between them. If the

instances of the concepts in the QUALITY CRITERIA and METRIC parts

are satisfactory for the users, then the users’ quality requirements can be

78

regarded as being satisfied by the integrated resource. The Profile concept

represents the overall quality of the integrated resource with respect to a

specific user, calculated as w1 × r1 + . . .+ wn × rn, where ri and wi are the

measurement of a quality factor i and its user-specified weight, respectively.

4.3 Reasoning Capability Required by the

QFDI

As described previously, users can state various quality requirements on an

integrated resource based on their different perspectives. In our framework,

users’ quality requirements are expressed as logic statements about the qual-

ity factors and relationships between them. The relationships we support

are subsumption and equivalence.

4.3.1 Description Logic in Our Approach

In providing the reasoning capabilities required by the QFDI, we use a formal

Description Logic language. Description Logic (DL) is a family of formal

knowledge representation languages based on the notions of concepts and

roles. DL is characterised by constructors that allow complex concepts and

roles to be built from atomic ones.

We discuss here a basic DL language which is a subset of the SI DL [1]

and which provides a limited but sufficient expressive power for our reasoning

purposes in the QFDI. The S of SI extends the ALC DL [1] with the

transitive role [72]. The ALC DL itself comprises constructors for concepts,

universal concept, bottom concept, negation, intersection, union, restriction

and existential quantification. Transitive role means that if a pair (x, y)

is an instance of a role r and a pair (y, z) is an instance of r, then it is

also true that the pair (x, z) is an instance of r. The I of SI extends the

79

ALC DL with the inverse role, where if a pair (x, y) is an instance of a

role r, then the pair (y, x) is also an instance of r. In addition, in order to

express cardinality information that is used in the case study in the previous

chapter, we extend the DL language with a simple cardinality property N .

A cardinality property can be written as ≥n R.C (minimum cardinality)

or ≤n R.C (maximum cardinality), where n ranges over the nonnegative

integers.

In order to define the formal semantics of our quality hierarchy and

quality requirements in this DL language, we consider an interpretation

I = (∆I , ·I) that consists of a non-empty set ∆I which is the domain of

the interpretation. A domain is a set of existing individuals in the world we

are modelling and an interpretation function, ·I , which assigns sets derived

from the domain ∆I to every statement in this language. Table 4.1 lists the

full syntax of the DL language adopted in this thesis.

Syntax Semantics Explanation

C CI ⊆ ∆I a concept

R RI ⊆ ∆I ×∆I a role

⊤ ∆I the universal concept

∅ ∅ the bottom concept S
C ⊓D CI ∩DI conjunction

C ⊔D CI ∪DI disjunction

∃R.C {x|∃y.⟨x, y⟩ ∈ RI ∧ y ∈ CI} existential quantification

∀R.C {x|∀y.⟨x, y⟩ ∈ RI ⇒ y ∈ CI} value restriction

R+ RI = (RI)+ transitive role

R− {⟨x, y⟩|⟨y, x⟩ ∈ RI} inverse role I
≥n R.C {a ∈ ∆I ||{b|(a, b) ∈ RI}| ≥ n} minimum cardinality N
≤n R.C {a ∈ ∆I ||{b|(a, b) ∈ RI}| ≤ n} maximum cardinality

Table 4.1: Syntax of the DL we adopt

Terminology axioms state how concepts are related to each other. The

terminology axioms we consider in our research are inclusion, C ⊑ D, and

80

equality, C ≡ D, where C and D are concepts expressed in the syntax of

Table 4.1. In our approach, such terminology axioms are used to express

the users’ quality requirements. The semantics of these axioms are defined

as follows. An interpretation I satisfies an inclusion C ⊑ D if CI ⊆ DI .

An interpretation I satisfies an equality C ≡ D if CI = DI . Equality

can also be expressed using inclusion, since C ≡ D is equivalent to (C ⊑
D) ∧ (D ⊑ C). If T is a set of axioms of the above forms, then I satisfies

T iff I satisfies each element of T . T is also called the TBox in DL. More

complex assertions can be created from these two basic ones plus negation.

For example, (C ⊓D) ⊑ E, (C ⊓D) ≡ ∅, (C ⊓D) ̸≡ ∅, (∀R.C ⊓D) ̸≡ ∅.
In DL, there are two kinds of assertions. Concept assertions state that

an individual a belongs to a concept C, denoted by C(a). Its semantics

are that aI ∈ CI where aI is the interpretation of the individual a. Role

assertions state that an individual c is a value of the role R for individual

b, denoted by R(b, c). Its semantics are that (bI , cI) ∈ RI . Such assertions

are termed the ABox in DL, denoted as A.
A set of individuals is denoted as {a1, . . . , an}, where a1, . . . , an are the

individuals’ names. Such a set of individuals is interpreted as {aI1 , . . . , aIn}.
In our approach, we adopt the Unique Name Assumption and the Closed-

World Assumption as characteristics of our quality framework2. This is

because in the QFDI, the quality (sub-)criteria and the factors are distinct;

also, the set of DI elements that satisfy and do not satisfy a quality factor

are generated from the quality metrics explicitly, and there are no other DI

elements which could be classified as satisfying or not satisfying the quality

factor.

Our quality framework is represented using the above DL language,

where each oval in Figure 4.1 (except the USER part of the diagram) is

2The Unique Name Assumption [1] states that names or identifiers in I refer to dif-

ferent individuals or entities. The Closed-World Assumption [1] states that what is not

currently known to be true, is false.

81

represented as a DL concept named by the text in the oval and each link

is represented as a role named by the name of the link. The DI elements

are represented as individuals of the Data Item, SchemaConstruct, Map-

ping and Assertion concepts and are associated with quality factors via the

contains sat and contains not sat roles.

Users’ quality requirements are expressed as logic statements using ter-

minology assertions as explained earlier. In Table 4.2, we list the complete

set of users’ quality requirements that we consider in this thesis. We only

list the satisfying relationships in this table. The not-satisfying relationships

can be expressed in logic statements in a similar way.

User’s Quality Requirement Terminology Assertion

The set of DI elements satisfying

quality factor f1 and the set of DI

elements satisfying quality factor

f2 are disjoint

(∀contains sat−.{f1} ⊓ ∀contains sat−.{f2}) ≡ ∅,
∀contains sat−.{f1} ̸≡ ∅, ∀contains sat−.{f2} ̸≡ ∅

The sets of DI elements satisfy-

ing quality factors f1 and f2 are

overlapping

(∀contains sat−.{f1} ⊓ ∀contains sat−.{f2}) ̸≡ ∅

The set of DI elements satisfy-

ing quality factor f1 is a subset

of the set of DI elements satisfy-

ing quality factor f2

∀contains sat−.{f1} ⊑ ∀contains sat−.{f2}

The set of DI elements satisfying

quality factor f1 is the same as

the set of DI elements satisfying

quality factor f2

∀contains sat−.{f1} ≡ ∀contains sat−.{f2}

Table 4.2: Syntax of Users’ Quality Requirements

In order to illustrate the above DL representation of our quality hierarchy

and users’ quality requirements, we consider the Case Study introduced in

Chapter 3 and the following GAV mappings, comprising the union of a set

of conjunctive queries. These mappings are expressed as DL assertions and

82

they derive the programme head teacher table and the attributes contained

in this table in the GS by extracting information from various tables in three

data sources. For example, in m1, the TID and ProgrammeName attributes

of the programme head teacher table are derived from the TID and Name

attributes in the educator table in LS1 and the educator table is joined with

the undergraduate programme table in LS2. The other mappings are similar.
m1 : ∀t, n(∃i, j, k.GS :programme head teacher(t, n, i, j, k)←

∃o, p, y. LS1 :educator(t, n, o) ∧ LS2 :undergraduate programme(p, y, t))

m2 : ∀t, n(∃i, j, k.GS :programme head teacher(t, n, i, j, k)←
∃o, p, y. LS1 :educator(t, n, o), LS2 :postgraduate programme(p, y, t), y > 1999)

m3 : ∀t, n(∃i, j, k.GS :programme head teacher(t, n, i, j, k)←
∃o, p, y. LS1 :educator(t, n, o), LS3 :postgraduate programme(p, y, t))

Assume, in our case study, we have two quality criteria identified by c1

and c2. c1 is the schema completeness quality criterion and c2 is the mapping

consistency criterion3. c1 is associated with quality factor f1, which defines

schema completeness as the degree of coverage of local schema constructs

that provide overlapping but possibly partially complete information for the

same global schema constructs (this is Quality Factor 2 which we explain in

detail in Chapter 5). c2 is associated with quality factor f2, which defines

mapping consistency as the proportion of local schema constraints that are

not violated by the new constraints introduced by the mappings (this is

Quality Factor 7 which we explain in detail in Chapter 5). Table 4.3 lists

the DI elements of the Case Study of Chapter 3 that satisfy and do not

satisfy quality factors f1 and f2.

In this example, the information extracted from local schemas 1, 2 and 3

are combined to derive the tid and tname attributes of the programme head

teacher table in the GS using the GAV mappings we listed above. In the

DL representation, ∆I = {LS1 educator, LS2 undergraduate programme,

LS2 postgraduate programme,LS3 postgraduate programme,

3We discuss these quality criteria in detail in Chapter 5, and understanding their

specifics is not required in order to understand this example.

83

Satisfying Elements not-Satisfying Elements

f1 {LS1 educator, {LS1 fulltime faculty member,

LS1 tideducator, LS1 nameeducator, LS1 tidfulltime faculty member,

LS1 officeeducator, LS1 namefulltime faculty member,

LS2 undergraduate programme, LS1 officefulltime faculty member,

LS2 postgraduate programme, LS1 programme,

LS2 pidundergraduate programme, LS1 pidprogramme,

LS2 pidpostgraduate programme, LS1 levelprogramme,

LS2 StartingY earundergraduate programme, LS1 programme nameprogramme,

LS2 StartingY earpostgraduate programme, LS1 programme descriptionprogramme,

LS2 ProgrammeHeadIDundergraduate programme, LS1 programme directorprogramme,

LS2 ProgrammeHeadIDpostgraduate programme, LS2 teacher,

LS3 postgraduate programme, LS2 lidteacher,

LS3 pidpostgraduate programme, LS3 lecturer,

LS3 StartingY earpostgraduate programme, LS3 tidlecturer}
LS3 ProgrammeHeadpostgraduate programme}

f2 {LS2 undergraduate programme, {LS2 postgraduate programme,

LS2 pidundergraduate programme, LS2 pidpostgraduate programme,

LS2 StartingY earundergraduate programme, LS2 StartingY earpostgraduate programme,

LS2 ProgrammeHeadIDundergraduate programme, LS2 ProgrammeHeadIDpostgraduate programme}
LS3 postgraduate programme,

LS3 pidpostgraduate programme,

LS3 StartingY earpostgraduate programme,

LS3 ProgrammeHeadpostgraduate programme}

Table 4.3: An Example of Quality Assessments in Our Case Study

LS2 tidundergraduate programme, LS2 tidpostgraduate programme,

LS3 tidpostgraduate programme, LS1 tideducator, LS2 nameeducator,

LS1 officeeducator, LS2 pidundergraduate programme,

LS2 pidpostgraduate programme, LS3 pidpostgraduate programme,

LS2 yearundergraduate programme, LS2 yearpostgraduate programme,

LS3 yearpostgraduate programme, LS1 fulltime faculty member, LS2 teacher,

LS3 lecturer, LS1 programme,LS1 tidfulltime faculty member,

LS2 tidteacher, LS3 tidlecturer, LS1 namefulltime faculty member,

LS1 officefulltime faculty member}.

Suppose now that there are three quality requirements issued by three

users, A, B and C as listed in in Table 4.4. It is important for user A

84

that the integrated resource is still consistent with the constraints defined

in the original data sources. In particular, user A requires that the schema

constructs which satisfy the schema completeness factor should also satisfy

the mapping consistency factor (A.1). User B does not require that schema

constructs satisfy both the schema completeness and mapping consistency

factors, but there should not be any which satisfy neither (B.1). User C,

while in general requiring that constructs which satisfy the schema com-

pleteness factor should also satisfy mapping consistency, is more concerned

in the case of programme director information that as much data from the

data sources as possible is retained in the integrated resource, and so in

that specific case schema completeness without mapping consistency is per-

missible. Hence, user C requires that any schema construct which satisfies

schema completeness but not mapping consistency must be related to the

Programme Director concept (C.1). We discuss next the reasoning capabil-

ity of our approach and how this can be used to determine the consistency

of these requirements and the DI elements that violate any of them.

4.3.2 Reasoning Capability

Given a quality hierarchy and logic statements representing different users’

quality requirements, there are two validation steps in QFDI where reasoning

can be applied. First, reasoning can be applied in order to validate different

users’ requirements, as specified from their different quality perspectives.

Second, reasoning can be applied in order to validate individual quality

requirements with respect to the integrated resource. In the former case,

inconsistent logic statements can be identified. In the latter case, the DI

elements that do not satisfy individual logic statements can be discovered.

When an inconsistency is discovered, the DI elements relating to quality

factors referenced in the logic statements or the logic statements themselves

may need to be modified in order to resolve such inconsistencies.

85

No. Requirement Logic Statement in DL

A.1 Schema constructs that satisfy f1

should also satisfy f2.

(Sc ⊓ ∀contains sat−.{f1})
⊑
(Sc ⊓ ∀contains sat−.{f2})

B.1 There should be no schema con-

structs that satisfy neither f2 nor f7.

((Sc ⊓ ∀contains not sat−.{f1})
⊓
(Sc ⊓ ∀contains not sat−.{f2}))
≡ ∅

C.1 A schema construct which satisfies

f2 but does not satisfy f7 must be

related to the Programme Director

concept.

(Sc ⊓ ∀contains sat−.{f1}
⊓∀contains not sat−.{f2})
⊑ (Sc ⊓ ProgrammeDirector)

Table 4.4: Users’ Requirements Example

The former case uses TBox reasoning and the latter case uses ABox

reasoning. We first discuss a general Tableau algorithm for TBox reasoning

[1]. Starting with a concept C0, x is created as an individual of concept

C0 and the ABox is now A = {C0(x)}. Starting from this A, the tableau

algorithm repeatedly applies the expansion rules listed in Table 4.5 until no

more rules can be applied. A′ and A′′ are the possible alternative ABoxes

after applying each expansion rule. If the final ABox, AF , does not contain

a contradiction with both C(x) and ¬C(x) existing in AF , then the original

ABox A is consistent, otherwise it is inconsistent. In Tableau algorithms,

the satisfaction of inclusions is reduced to unsatisfiability, i.e., C ⊑ D is

satisfied iff C ⊓ ¬D is not satisfied.

In ABox reasoning, an Abox A is consistent with respect to a TBox T ,
that is the set of terminology axioms, if there is an interpretation that is

a model of both A and T . ABox reasoning also consists of an expansion

process with expansion rules as in a Tableau algorithm. However, instead

86

⊓ - rule: If A contains (C1 ⊓ C2)(x), but it does not contain both C1(x) and C2(x).

Then A′ = A ∪ {C1(x), C2(x)}.
⊔ - rule: If A contains (C1 ⊔ C2)(x), but it contains neither C1(x) nor C2(x). Then

A′ = A ∪ {C1(x)}, A′′ = A ∪ {C2(x)}.
∃ - rule: A contains (∃R.C)(x), but there is no individual name z such that C(z) and

R(x, z) are in A. Then A′ = A ∪ {C(y), R(x, y)}, where y is an individual

name not occurring in A
∀ - rule: A contains (∀R.C)(x) and R(x, y), but it does not contain C(y). Then A′ =

A ∪ {C(y)}

Table 4.5: Tableau Expansion Rules (from [1])

of starting with an arbitrary individual x, ABox reasoning begins with an

existing individual a of a concept C. If the final ABox, AF , does not contain

a contradiction, then the original ABox A is consistent with respect to T ,
otherwise it is inconsistent.

In our example (see Tables 4.3 and 4.4), inferring from the users’ logic

statements first, without involving the DI elements (i.e., undertaking TBox

reasoning), we can discover that A.1 and C.1 are not consistent since A.1

implies that the set of DI elements satisfying f1 should be a subset of the

DI elements satisfying f2, whereas C.1 implies that there could exist some

programme leadership-related DI elements that do satisfy f1 and do not

satisfy f2. Therefore, either A.1 or C.1 has to be modified. Suppose the data

integrator removes A.1 because A.1 is a general and overall requirement and

loosening it enables the users to define more detailed and flexible quality

requirements such as C.1. We then repeat the inference process. There is

now no conflict between the remaining logic statements (B.1 and C.1).

Next, for each remaining user requirement, we undertake reasoning again,

this time including the DI elements (i.e., undertaking ABox reasoning). We

can discover that while B.1 is satisfied by the DI elements listed in Table

4.3, C.1 is not since there are schema constructs not related to the Pro-

gramme Director concept which satisfy f1 but do not satisfy f2, for exam-

87

ple LS2 pidpostgraduate programme and LS2 StartingY earpostgraduate programme.

Hence, the reasoner throws an exception indicating there is a problem with

the extent of contains not sat−.{f2}.
Once the data integrator has validated the users’ requirements and identi-

fied the DI elements which are indicated by the reasoner as having a problem,

the mappings referencing those DI elements can be re-examined. In our ex-

ample, a problem has been identified with the attributes of LS2 postgraduate

programme which do not satisfy f2. These DI elements are referenced in

mappingm2. Suppose the data integrator modifies mappingm2 by removing

the constraint y > 1999 (a new mapping m′2 is generated). This will expand

the set contains sat−.{f2} and make contains not sat−.{f2} an empty set.

Both B.1 and C.1 can then be satisfied.

m′
2 : ∀t, n(∃i, j, k.GS :programme head teacher(t, n, i, j, k)←

∃o, p, y. LS1 :educator(t, n, o), LS2 :postgraduate programme(p, y, t))

4.4 Formal Foundations of Our DI Setting

In this section, we provide the formal foundations for the data modelling

languages encompassed by our DI quality framework, and the integrated

resources themselves.

4.4.1 Data Model Description

In general, the constructs of any data modelling language may be classi-

fied as either extensional constructs or constraint constructs. Extensional

constructs of a schema S, denoted by extensional(S), are the constructs

that are populated with data values from some value domain. There are

three types of extensional constructs proposed in [59], nodal, linking and

nodal-linking and we adopt these definitions in our research:

Nodal constructs may be present in a schema independent of any other

88

constructs. For example, in the Entity Relationship (ER) model, enti-

ties are nodal constructs since they may exist independently of other

constructs. The set of nodal constructs in a schema S is denoted by

extensional(S)nodal.

Link constructs associate other extensional constructs and can only exist

when these other constructs exist. The extent of a link construct is

a subset of the Cartesian product of the extents of the constructs

which this link construct associates. For example, in an ER model,

relationships are link constructs as they link and depend on one or

more ER entities. The set of linking constructs in a schema S is

denoted by extensional(S)linking.

Link-Nodal constructs are nodal constructs that can only exist when cer-

tain other nodal constructs exist, and that are linked to these con-

structs. For example, in the ER model, attributes of entities and

relationships are link-nodal constructs. They have an extent, but each

value of the extent must be associated with a value in the extent of the

entity or relationship the attributes link with. The set of nodal-linking

constructs in a schema S, is denoted by extensional(S)nodal−linking.

Constraint constructs of a schema S, denoted by constraints(S), repre-

sent restrictions on the extents of extensional constructs and are not popu-

lated with data. For example, in the ER model, cardinalities are constraint

constructs since they have no extent but restrict the extents of entities,

relationships and attributes that they apply to.

4.4.2 Integrated Resource Description

In our research, we consider an integrated resource to be a triple ⟨LSs,GS,M⟩,
comprising a set of local schemas LSs, a global schema GS and a set of

89

mappings M. The set of local schemas is also sometimes represented as

{LS1, . . . , LSn} indicating n local schemas. Mappings may be either local-

as-view (LAV) or global-as-view (GAV) [3] and both of them are supported

by our quality framework discussed earlier4. Therefore, M = MGAV ∪MLAV ,

where MGAV is a set of GAV mappings and MLAV is a set of LAV mappings.

A GAV mapping, o← qLSs, derives a GS construct o using a conjunctive

query over the LSs, denoted by qLSs. In general, there may be a set of such

mappings for a GS construct o. We denote by sources(LSs, o) the set of

local schema constructs that appear in the right-hand-sides (RHS) of o’s

mappings. We denote by sourcescorr(LSs, o) the subset of sources(LSs, o)

whose extents overlap with the extent of o. This is also called the set of

corresponding local schema constructs for o.

A LAV mapping, o ← qGS, derives a local schema construct o using a

conjunctive query over the GS, denoted by qGS. In general, there is only one

such mapping for a local schema construct o. We denote by sources(GS, o)

the set of global schema constructs that appear in the RHS of this mapping.

We denote by sourcescorr(GS, o) the subset of sources(GS, o) whose extents

overlap with the extent of o. This is also called the set of corresponding

global schema constructs for o.

4.5 Summary

We have introduced in this chapter a quality framework, QFDI, that is de-

signed for the DI context. Our quality framework aims to meet the require-

ments identified from our interviews with data integrators and from related

research in data quality. With respect to the first objective in Section 4.1,

the QFDI allows multiple users to express their quality requirements over

the quality hierarchy and inconsistencies between such requirements can be

4We leave consideration of GLAV mappings [19] as future work.

90

discovered by applying reasoning over the framework. Inconsistent users’

quality requirements can be discovered by the reasoning process. With re-

spect to the second objective in Section 4.1, the quality framework comprises

the concepts of quality criterion, quality factor, quality metric and the re-

lationships between them. This enables different interpretations of quality

to be defined and measured. With respect to the third objective in Section

4.1, the Weight and Metric concepts in the framework allow tradeoffs to be

calculated with respect to different quality perspectives. With respect to the

fourth objective in Section 4.1, our quality framework contains the elements

of the integrated resource that are needed in the quality measurement. Such

elements can be correlated in order to represent the relationships between

them. With respect to the fifth objective in Section 4.1, reasoning over

the quality hierarchy allows the DI elements that do not satisfy individual

quality requirements to be discovered.

We have proposed a DL representation of our quality framework and

discussed the reasoning requirements that need to be met in order to discover

(i) inconsistencies between users’ quality requirements, and (ii) DI elements

that conflict with users’ requirements. We have also introduced the formal

foundations of data modelling languages and integrated resources that will

be referred to in Chapter 5.

In Chapter 5, we will define a set of quality criteria that are appropriate

in the context of data integration and a set of associated quality factors.

We will also specify quality metrics for some of these quality factors and

we will describe how the results from measuring these metrics can be used

to improve the overall quality of an integrated resource using our QFDI

framework.

91

Chapter 5

Quality Criteria and Metrics

for Data Integration

In the previous chapter, we introduced our quality framework, QFDI, and

proposed a quality hierarchy comprised of quality criteria, quality factors

and metrics for measuring these. We also discussed the reasoning capabilities

required to generate a quality view of the integrated resource with respect

to different users’ quality requirements as a whole and also individually.

In this chapter, we discuss in more detail the quality criteria and quality

factors that are relevant in the context of data integration, and possible

quality metrics associated with each quality factor. The chapter is organised

as follows. In Section 5.1, we identify our quality criteria and sub-criteria

in the DI context. A set of quality factors associated with the completeness

and consistency quality criteria are then proposed and discussed in detail in

Section 5.2 and 5.3 respectively. Quality metrics for measuring these quality

factors are also proposed in these sections.

The quality factors and measurement methods that we propose in this

chapter are not exhaustive. They are indicators of what is possible within

our quality framework and quality hierarchy, and they may be refined and

92

extended in the future, following validation with real-world case studies and

users. We will also discuss other quality criteria briefly in Section 5.4, includ-

ing accuracy, minimality and performance, and we leave detailed research of

these as future work. A comparison of our work with other research in the

area of information and data quality is discussed in Section 5.5. Section 5.6

provides a summary of the contributions of this chapter.

5.1 Overview of DI Quality Criteria

Motivated by existing research into information and data quality discussed

in Chapter 2 and the analysis of requirements in Chapter 3, we propose in

this chapter a set of quality criteria defined specifically for the DI context. Of

these, we consider that the completeness and consistency quality criteria are

important in the context of data integration because these quality criteria

affect the quality of the information extractable from an integrated resource

by its users. We also consider that accuracy, minimality and performance

are important quality criteria in the DI context because they relate to the

precision of the information extractable from the integrated resource, the size

and the effectiveness of the integrated resource from the users’ perspectives.

The completeness quality criterion considers the degree of coverage of

information of an integrated resource. We consider here that information is

represented by the DI elements: data, schema constructs, mappings and as-

sertions. This quality criterion is categorised into three sub-criteria: schema

completeness, mapping completeness and query completeness. The notion

of information coverage can be interpreted in different ways with respect to

each sub-criterion and the quality factors associated with such sub-criteria.

Schema completeness represents the degree of coverage of information by

the GS or the LSs within an integrated resource. Mapping completeness

represents the degree of coverage of information by the schema constructs

93

that are referenced in the mappings. Query completeness represents the de-

gree of coverage of information represented by the integrated resource that

is extractable by a set of user-defined queries. The completeness quality

criterion is discussed in detail in Section 5.2.

The consistency quality criterion is categorized into three sub-criteria:

schema consistency, mapping consistency and query consistency. Schema

consistency captures the conformance of the local and global schemas with

respect to the modeling methods used, such as model-related data types and

constraints, and to other required semantics such as domain-related con-

straints in or between schemas. In this thesis, we consider that a constraint

on a schema S is a query over the extensional constructs in S that needs to

evaluate to true for all instances of S. Mapping consistency captures whether

the information represented by the mappings conforms to the semantics of

information represented by the schemas of the integrated resource and also

to the semantics of any additional relationships between schema constructs

derived from the integration domain and the users’ requirements. Such user-

defined relationships may be inclusion dependencies, conditional inclusion

dependencies, functional dependencies, conditional functional dependencies

and implications. Query consistency captures the degree of satisfaction of

results returned from user-defined queries with respect to the user-defined

relationships between such result sets. The consistency quality criterion is

discussed in detail in Section 5.3.

Completeness Consistency

Schema F1 GS,LSs F5 GS,LSs

F2 LSs,Ontology F6 GS,LSs,Ontology

Mapping F3 GS,LSs F7 LSs

Query F4 LSs,Ontology F8 Data,Ontology

Table 5.1: Summary of Our Quality Factors (Fi)

In the next two sections, we discuss in detail the completeness and con-

94

sistency quality criteria, and the quality factors associated with them. In

the sections that follow, we also introduce briefly the accuracy, minimality

and performance criteria, leaving a detailed consideration of these for further

work.

Before introducing the quality factors, we present here the general mea-

surement method that will be applied to all quality factors. Each quality

factor Fi is associated with a user-defined threshold µi in the range (0, 1]

indicating the minimum user-desired level for the value of Fi. If the mea-

surement method returns a value λi that is less than µi, then we consider

that the integrated resource does not satisfy this quality factor with respect

to the users’ minimum desired level.

Table 5.1 provides a summary of the quality factors we propose in this

chapter. Each quality factor Fi is associated with a combination of GS, LSs,

Ontology and Data, indicating from which parts of the integrated resource

information is used for measuring Fi.

5.2 The Completeness Criterion

In this section, we propose quality factors for the interpretations of infor-

mation coverage we identified in Section 5.1, and we also introduce one or

more quality metrics for measuring each quality factor.

5.2.1 The Schema Completeness Criterion

In this subsection, we present two quality factors relating to the schema

completeness sub-criterion, and measurement methods for each.

FACTOR 1: Schema completeness is measured as the propor-

tion of information coverage of the global schema GS via the map-

pings M with respect to the information represented by all local

schemas LSs.

95

In this context, we consider that the information represented by the GS

is given by the extensional schema constructs in the GS (ie. we ignore the

integrity constraints). We first define this quality factor separately for the

GAV and LAV mapping approaches, and then consider a combined GAV

and LAV mapping approach (as supported by the AutoMed DI system, for

example [64]).

If the GAV approach is used, this quality factor can be defined as the

number of extensional local schema constructs that have been used for de-

riving the GS via the mappings M compared with the total number of

extensional local schema constructs in the integrated resource. This can be

calculated in the following way:

1. For each extensional GS construct o ∈ extensional(GS), let

sources(LSs,MGAV , o) denote the set of extensional local schema con-

structs from which information is extracted for deriving the extent of

o from the set of GAV mappings in M, MGAV . This is the set of the

local schema constructs appearing in the right-hand-side (RHS) of the

GAV mappings whose left-hand-side (LHS) is o.

2. Form the union of the sets sources(LSs,MGAV , o) over all constructs

o ∈ extensional(GS). This will return a set of distinct extensional lo-

cal schema constructs from which information is extracted for deriving

the GS, which we denote by sources(LSs,MGAV , GS).

3. The degree of completeness of this DI setting is then calculated as

λ1,GAV =
|sources(LSs,MGAV , GS)|∑n

i=1 |extensional(LSi)|

where
∑n

i=1 |extensional(LSi)| is the sum of the number of extensional

local schema constructs over all local schemas.

96

If the LAV approach is used, this quality factor can be defined as the

number of extensional local schema constructs that are derived from the GS

by the LAV mappings compared with the total number of extensional local

schema constructs. This can be calculated in the following way:

1. Let LAV defined(LSs,MLAV) denote the subset of local schema con-

structs such that for each o ∈ LAV defined(LSs,MLAV), there is a

LAV mapping whose LHS is o. MLAV is the set of LAV mappings in

M.

2. The degree of completeness of this DI setting is then calculated as

λ1,LAV =
|LAV defined(LSs,MLAV)|∑n

i=1 |extensional(LSi)|

If both GAV and LAV mapping approaches have been used in the DI set-

ting, this quality factor can be measured using Formula 5.1 which generalises

the previous two formulae1:

λ1 =
|sources(LSs,MGAV , GS) ∪ LAV defined(LSs,MLAV)|∑n

i=1 |extensional(LSi)|
(5.1)

Example: In our Case Study in Chapter 3, we have 39 schema con-

structs in Local Schema 1 in Figures 3.3 and 3.4, 44 schema constructs

in Local Schema 2 in Figures 3.5, 3.6 and 3.7, and 40 schema constructs

in Local Schema 3 in Figures 3.8, 3.9 and 3.10. The total number of

extensional schema constructs represented in the three local schemas is

39 + 44 + 40 = 123. The number of extensional local schema constructs

referenced in the GAV mappings is 45 as listed in Table B.3 and the number

of local schema constructs derived by the LAV mappings is 4. There is one

construct, Name in the educator table, that appears in both the GAV and

the LAV mappings. Therefore, the total number of local schema construct

1Note that duplicate schema constructs are eliminated by the union operation.

97

that have been referenced in GAV or LAV mappings is 45 + 4− 1 = 48 and

the above formula returns a quality value of 48/123 = 0.39 for this quality

factor.

FACTOR 2: Schema completeness is measured as the average

level of coverage of extensional local schema constructs that pro-

vide overlapping but possibly partially complete information for

deriving the same global schema constructs.

The extents of the local schema constructs from different data sources

may provide overlapping information, i.e. may represent the same concept

in the domain ontology. The information in the data sources may be par-

tially complete, and one of the purposes of data integration is to reduce

incompleteness by combining information from different data sources. This

quality factor can be used to verify that the information extracted by the

mappings deriving the GS constructs covers sufficient breadth over the data

sources.

In this context, we consider that information represented by the GS is

given by the extensional schema constructs in the GS. We first define this

quality factor separately for the GAV and LAV mapping approaches, and

then consider a combined GAV and LAV approach.

We denote by concepts(S,O) the set of real-world concepts corresponding

to concepts in the domain ontology O that are represented by extensional

constructs of a schema S. We denote by reduce(C,O) the set of unique

real-world concepts in a set of concepts, C, obtained by removing concepts

that are equivalent to or subsumed by other concepts in the ontology O.

If the GAV approach is used, this quality factor can be defined as the av-

erage level of coverage of information represented by extensional local schema

constructs that relate to the same real-world concept. The measurement of

this quality factor is illustrated in Formula 5.2, where extensional(LSs, c)

is the set of extensional local schema constructs representing the real-world

98

concept c, and sources(LSs,MGAV , c) is the set of extensional local schema

constructs representing the real-world concept c that also appear in the

RHSs of the set of GAV mappings MGAV :

λ2,GAV =

∑
c∈∪n

j=1reduce(concepts(LSj ,O),O)

|sources(LSs,MGAV , c)|
|extensional(LSs, c)|

|
∪n

i=1 reduce(concepts(LSi, O), O)|
(5.2)

If the LAV approach is used, this quality factor is again defined as the

average level of coverage of information represented by extensional local

schema constructs that relate to the same real-world concept. This can be

calculated using Formula 5.3:

λ2,LAV =

∑
c∈∪n

j=1reduce(concepts(LSj ,O),O)

|LAV defined(LSs,MLAV , c)|
|extensional(LSs, c)|

|
∪n

i=1 reduce(concepts(LSi, O), O)|
(5.3)

If both GAV and LAV approaches may be used in the DI setting, this quality

factor can be measured using Formula 5.4 which generalises the previous two

formulae:

λ2 =

∑
c∈∪n

j=1reduce(concepts(LSj ,O),O)

|sources(LSs,MGAV , c) ∪ LAV defined(LSs,MLAV , c)|
|extensional(LSs, c)|

|
∪n

i=1 reduce(concepts(LSi, O), O)|
(5.4)

Example: In our Case Study in Chapter 3, we have identified 14 unique

concepts that are represented by the extensional local schema constructs

referenced in the mappings in Figures B.3. These are illustrated in Table

5.2, where S indicates the number of local schema constructs that satisfy this

quality factor and NS indicates the number of local schema constructs that

do not satisfy this quality factor; Coverage indicates, for each concept, the

proportion of local schema constructs representing this concept. This quality

factor is measured by using Formula 5.4 and returns (0.40 + 0.33 + 1.00 +

0.40+0.50+0.55+0.43+0.33+1.00+0.29+0.67+1.00+0.33+0.60)/14 = 0.56.

99

5.2.2 The Mapping Completeness Criterion

In this subsection, we present a quality factor relating to the mapping com-

pleteness sub-criterion, and a measurement method for it.

FACTOR 3: Mapping completeness is measured as the propor-

tion of local schema constraints removed by the mappings without

information loss compared with the total number of local schema

constraints removed.

Schema constraints play a crucial role in data modelling as they restrict

the extents of the extensional schema constructs. Such constraints can be

associated with the extensional schema constructs in two ways: construct

definition and extent restriction. In the former category, we consider con-

straints such as data types and value ranges. In the latter category, we con-

sider constraints over the extents of extensional schema constructs. In this

quality factor, we focus on the latter category of constraints and we adopt

the categories of constraints on the extents of extensional schema constructs

proposed in [73]. These are: inclusion, exclusion, union, mandatory, unique

and reflexive constraints which are shown in [73] to be sufficiently expres-

sive to represent the constraints supported in the major data modelling lan-

guages. An inclusion constraint between two extensional constructs s1 and

s2 states that ext(s1) is always a subset of ext(s2). An exclusion constraint

between two extensional constructs s1 and s2 states that the intersection of

S NS Coverage S NS Coverage

CID 4 6 0.40 Programme 1 2 0.33

Description 1 2 0.33 register 3 0 1.00

Head 4 0 1.00 SID 2 5 0.29

induct 2 3 0.40 Student 2 1 0.67

Level 2 2 0.50 study 2 0 1.00

Name 6 5 0.55 Teacher 3 6 0.33

PID 3 4 0.43 TID 9 6 0.60

Table 5.2: Results of Factor 2

100

ext(s1) and ext(s2) is always an empty set. A union constraint between an

extensional construct s and a set of extensional constructs s1, ..., sn states

that ext(s) is equivalent to ext(s1) ∪ ... ∪ ext(sn). A mandatory constraint

between a set of nodal constructs n1, ..., nn and an edge construct e states

that every combination of the values in the extents of n1, ..., nn must ap-

pear at least once in ext(e). A unique constraint between a set of nodal

constructs n1, ..., nn and an edge construct e states that every combination

of the values in extents of n1, ..., nn must appear at most once in ext(e).

A reflexive constraint states that if an extent of an extensional construct s

appears in edge e, then a member of the extent of e must be an identity

tuple. Together, the inclusion, mandatory and unique constraints can be

used to represent primary and foreign key constraints [73].

In the DI context, the information represented by such constraints in the

local schemas may be lost via the mappings if the local schema constraints

are removed by the mappings but no corresponding constraints are generated

on the GS. Assume there exists an extensional schema construct o and a

constraint c restricting the extent of o in schema S, and another extensional

construct o′ in another schema S ′ linked by the mappings to schema S.

We say o′ is a corresponding construct of o if o′ is derived from o by the

mappings and ext(o′) ⊆ ext(o). We denote by sourcecorr(S,M, o) the set of

corresponding constructs of o in S ′. We say c′ is a corresponding constraint

of c if c ∈ reformulate(c′,M). Taking an input of a query representing

constraint c′ on the GS and a set of mappings M , the reformulate function

returns a set of queries that are executable on the data sources. We refer

the reader to Section 2.2 for a discussion of query reformation. We denote

by sourcecorr(S,M, c) the set of corresponding constraints of c in S ′.

For both the GAV and LAV approaches, this quality factor is defined as

the proportion of constraints on the local schemas that have been removed

by the mappings but whose corresponding constraints on the GS are also

101

generated in the mappings compared with the total number of local schema

constraints that have been removed by the mappings. This can be calculated

in the following way:

1. Determine the set of constraints in the local schemas, denoted as

constraints(LSs).

2. For each constraint c ∈ constraints(LSs), detect if c is removed in

the GAV mappings MGAV . Removing a constraint in the mappings

can be achieved either implicitly or explicitly. In the former case, the

removal of an extensional schema construct results in the removal of

all constraints associated with this schema construct. In the latter

case, the removal of constraints is achieved by the mapping primitives,

such as the deleteConstraint() operation in AutoMed (see detailed

discussion on AutoMed in Chapter 2). The set of such constraints is

then denoted by removed(constraints(LSs),MGAV).

3. We then need to determine if there exists a corresponding constraint

c′ in the GS for each c ∈ removed(constraints(LSs),MGAV). This

may be determined by reformulating the query associated with c′, de-

noted by qc′ , via the mappings MGAV . We denote the set of such

reformulated queries as reformulate(qc′ ,M). If qc is contained by

reformulate(qc′ ,M), we say that c′ is a corresponding constraint of

c and we assign 1 to corr(qc, reformulate(qc′ ,M))2. Otherwise, we

assign 0 to corr(c, reformulate(qc′ ,M)).

4. The degree of completeness of this integrated resource is then calcu-

lated as in Formula 5.5, where c′ ∈ constraints(GS).

2We say that qc is contained by reformulate(qc′ ,M) if all schema constructs O refer-

enced in qc are also referenced in q ∈ reformulate(qc′ ,M) and there does not exist any

tuple t ∈ ext(O) that satisfies q but does not satisfy qc.

102

λ3 =

∑
c∈removal(constraints(LSs)),c′∈constraints(GS)

corr(qc, reformulate(qc′ ,M))

|removal(constraints(LSs))|
(5.5)

Example: In our Case Study in Chapter 3, we removed 58 local schema

constraints (we consider the primary key and foreign key constraints here)

in the mappings and 50 of them have corresponding constraints on the GS

created. Therefore, using Formula 5.5, this quality factor returns a figure of

50/58 = 0.86.

5.2.3 The Query Completeness Criterion

In this subsection, we present a quality factor relating to the query com-

pleteness sub-criterion, and a measurement method for it.

FACTOR 4: Query completeness is measured as the average

level of coverage of each real-world concept represented by the

local schema constructs that are referenced in the queries arising

from reformulating the set of users’ queries on the GS.

As discussed in quality factor 2, schema constructs may provide over-

lapping but possibly partially complete information. Different from quality

factor 2, we consider here the coverage of real-world concepts as the propor-

tion of the local schema constructs that are referenced in the reformulated

users’ queries on the global schema compared with the total number of local

schema constructs that represent the same concepts. For this quality factor,

we extend the DI setting to a quadruple ⟨LSs,M,GS,QGS⟩, where QGS is

a set of queries on the global schema the users want the integrated resource

to answer.

For both the GAV and LAV approaches, this quality factor is calculated

using Formula 5.6 below, where:

rccr(q,M,O) = reduce(concept(construct(reformulate(q,M)), O), O) is the

set of unique real-world concepts represented by local schema constructs ref-

103

erenced in a reformulated query q ∈ QGS with respect to the domain ontol-

ogy O; construct(reformulate(q,M), c) is the set of local schema constructs

representing c ∈ rccr(q,M,O) that are also referenced in reformulate(q,M);

and construct(LSs, c) is the total set of local schema constructs representing

c.

λ4 =
∑

q∈QGS

∑
c∈rccr(q,M,O)

|construct(reformulate(q,M), c)|
|construct(LSs, c)| × |rccr(q,M,O)| × |QGS |

(5.6)

Example: In our Case Study in Chapter 3, we have one test query

for retrieving information about the programme heads and all members

of the programme the programme heads lead. This query covers the pro-

gramme head teacher, lead and lecturer tables. The reformulated query cov-

ers 6 unique concepts in the domain ontology (illustrated in Table 5.3) and

this quality factor returns a figure of (1.00 + 0.40 + 0.09 + 1.00 + 0.33 +

1.00)/6 = 0.64 by using Formula 5.6

Concept Referenced Unreferenced Result

Head 4 0 1.00

induct 2 3 0.40

Name 1 10 0.09

register 3 0 1.00

Student 1 2 0.33

study 2 0 1.00

Table 5.3: Results of Factor 4

5.3 The Consistency Criterion

We categorize the consistency criterion into three sub-criteria: schema con-

sistency, mapping consistency and query consistency and discuss them in

detail below.

104

5.3.1 The Schema Consistency Criterion

In this subsection, we present two quality factors relating to the schema

consistency sub-criterion, and measurement methods for each.

FACTOR 5: Schema consistency is measured as the number

of GS constructs whose definitions and associated constraints can

be applied to their corresponding local schema constructs, if they

exist, compared with the total number of GS constructs.

In a DI setting, extensional construct definitions in the local schemas

define the format of the extents of a construct: its data type and any con-

straints on the extents of the construct such as value ranges. In different

local schemas, different definitions may be given for schema constructs repre-

senting the same real-world concept. Such definitions may not be consistent,

in the sense that the extent of one schema construct cannot be transformed

into the extent of another construct without loss of equivalence.

There may be constraints in the GS restricting the extents of the nodal-

linking and linking constructs that connect schema constructs from differ-

ent local schemas. Such constraints may not be satisfiable, in the sense

that there cannot exist extents extracted from the local schemas that satisfy

these constraints. In our research, we consider subsumption, functional de-

pendencies and cardinality constraints because they can be validated using

techniques such as chase [74].

Given a DI setting ⟨LSs,GS,M⟩, the schema consistency criterion can

be measured as the proportion of GS constructs whose definitions and as-

sociated constraints can also be applied to the corresponding local schema

constructs without causing errors. This quality factor can be calculated as

follows:

For measuring the consistency of the construct definitions in GS :

1. We first need to determine the set of GS constructs that have been

derived by a GAV mapping, extensional(GS,MGAV).

105

2. We then need to compute the set of local schema constructs where,

for each o ∈ extensional(GS,MGAV), the extent of such local schema

constructs derive o directly, denoted by sourcescorr(LSs,MGAV , o).

3. For each construct o ∈ extensional(GS,MGAV), we need to determine

if the definition of o subsumes the definition of the local schema con-

structs in sourcescorr(LSs,MGAV , o). By subsumption of a data type

TA over a data type TB, we mean that the extent of a schema construct

defined using TB can be cast to be the extent of a schema construct

defined using TA without information loss. By information loss, we

mean here loss of precision associated with the source data type in the

casting process. By subsumption of a value range VA over a value range

VB, we mean that the extent of a schema construct defined with value

range VB can be transformed to be the extent of a schema construct

defined with value range VA without conflicts.

4. This quality factor can then be calculated using Formula 5.7 for the

construct definition aspect:

λ5,E =
∑

o∈extensional(GS,MGAV)

|consistent(sourcescorr(LSs,MGAV , o), o)|
|sourcescorr(LSs,MGAV , o)| × |extensional(GS,MGS)|

(5.7)

For measuring the consistency of the constraint definitions in GS :

1. We need to first determine the set of constraints on the GS, constraint-

s(GS).

2. For each constraint o ∈ constraints(GS), we reformulate the query

comprising o, qo, and obtain a set of queries on the local schemas,

reformulate(qo,MGAV). For each query q ∈ reformulate(qo,MGAV)

on a local schema, we need to detect if q is satisfied by the local schema

with respect to the current schema instances.

106

3. This quality factor can then be calculated using Formula 5.8 for the

constraint construct aspect, where consistent(q, LSs) is assigned 1 if

q is satisfied. Otherwise, consistent(q, LSs) is assigned 0.

λ5,C =
∑

o∈constraints(GS)

∑
q∈reformulate(qo,MGAV)

consistent(q, LSs)

|reformulate(qo,MGAV)| × |constraints(GS)|

(5.8)

The overall quality measurement, λ5, is given by weighting λ5,E and λ5,C

according to user-specified weights, denoted by wE and wC , respectively.

λ5 = wE × λ5,E + wC × λ5,C

Example: In our Case Study, for simplicity we test the consistency of

the construct definitions only. λ5,E is calculated as 1 since the definition of

each GS construct subsumes the definition of the corresponding local schema

constructs, and λ5,C is set to 0 since it is not considered in our case study. We

give equal weight to both consistency categories for this quality factor, with

wE = wC = 0.5. This quality factor then results in 1× 0.5 + 0× 0.5 = 0.5.

FACTOR 6: Schema consistency can be measured as the pro-

portion of local schema constructs that satisfy their real-world

semantics and whose corresponding GS constructs also satisfy the

same real-world semantics.

The information represented by the LSs may or may not be consistent

with the intended real-world semantics. In data integration, the local schema

constructs that provide such consistent information are important and data

integrators may want to maintain such consistencies in the GS if these local

schema constructs are also represented in the GS. This quality factor is

defined regardless of which integration approach is used and can be measured

as the number of extensional local schema constructs that satisfy their real-

world semantics and whose corresponding GS constructs also satisfy the

same real-world semantics compared with the total number of local schema

107

constructs. Currently, we assume this is a manual process, but it could

be undertaken semi-automatically by linking and comparing the ontological

representation of the data source schemas with the domain ontology. By

corresponding GS constructs, we mean here the constructs that represent

the same real-world concept.

This quality factor can be measured using Formula 5.9, where:

consistent(extensional(LSs), O) is the set of local schema constructs that

are consistent with the definitions of their corresponding real-world concepts

with respect to a domain ontologyO; corr(GS, consistent(extensional(LSs),

O),M) is the set of global schema constructs corresponding to consistent(ex-

tensional(LSs), O); and consistent(corr(GS, consistent(extensional(LSs),

O),M), O) is the subset of consistent(extensional(LSs), O), whose corre-

sponding GS constructs are also consistent with the definition of the same

real-world concepts:

λ6 =
|consistent(corr(GS, consistent(extensional(LSs), O),M), O)|

|consistent(extensional(LSs), O)|
(5.9)

By ‘definition of the real-world concepts’, we mean here the data type and

the value range of the corresponding ontology concepts and the constraints

associated with these concepts. This information can be captured from the

domain ontology. We also need to capture the corresponding information

from the schemas: the data type and value ranges of the nodal and nodal-

linking constructs, and the constraints over the nodal-linking and linking

constructs. In the former case, this is specified by the definitions of these

constructs. In the latter case, it is detected by analyzing the constraints

associated with such schema constructs.

Example: In our Case Study, the real-world semantics are defined as

users’ assertions in Tables 3.2 and 3.3. We can detect that there exist 8

local schema constructs that comply with 15 such assertions in the three

local schemas (A1-A15 in Tables 3.2 and 3.3). In the integrated resources,

11 of these users’ assertions complied with by 6 local schema constructs

108

are also complied with by the corresponding GS constructs (A1-A4, A7-

A11, A14, A15 in Tables 3.2 and 3.3). This quality factor then results in

6/8 = 0.75 using Formula 5.9.

5.3.2 The Mapping Consistency Criterion

In this subsection, we present a quality factor relating to the mapping con-

sistency sub-criterion, and a measurement method for it.

FACTOR 7: Mapping consistency can be measured as the pro-

portion of local schema constraints that are not violated by new

constraints introduced by the mappings M.

Constraints on the local schemas contain important information as they

form restrictions on the extents of the extensional schema constructs. When

such information is transformed for deriving the GS, there is a risk that the

extents extracted from the LSs no longer comply with the local schema con-

straints. Local integrity and entity constraints may be violated by the way

that mappings are specified. For example, suppose that a 1-to-many rela-

tionship exists between a pair of attributes in two tables in a local schema.

The integrator may make a mistake that establishes a many-to-many rela-

tionship between this attribute pair. Therefore, the local integrity constraint

is violated in the integrated resource. New constraints may be added via the

mappings M explicitly or implicitly as discussed in Quality Factor 3 earlier.

In the former case, new constraints can be added to schemas using schema

transformation primitives supported by the integration system, such as the

addConstraint primitive in AutoMed [59]. In the latter case, new constraints

can be expressed in the mapping queries, restricting the extents that are ex-

tracted from the data sources. Constraints on the local schemas may also

be modified or deleted. Again, we adopt the constraint categories proposed

in [73] for this quality factor.

If the GAVmapping approach is used, this quality factor can be measured

109

as the proportion of local schema constructs that satisfy both the queries

representing the constraints on the LSs and also the queries introducing

new constraints in the mappings. This can be calculated using Formula

5.10, where constraints(LSs) is the set of local schema constraints, qo is

the query corresponding to the local schema constraint o, and qs,o is the set

of queries introducing new constraints in the mappings relating to schema

constructs referenced in qo. evaluate(qo, qs,o) is assigned 1 if both qo and

each member of qs,o evaluate to true, in the sense that all extents which

satisfy qo also satisfy all members of qs,o . Otherwise, evaluate(qo, qs,o) is

assigned 0.

λ7,GAV =
∑

o∈constraints(LSs)

evaluate(qo, qs,o)

|constraints(LSs)|
(5.10)

If the LAV mapping approach is used, this quality factor can be measured

as the proportion of queries representing constraints on the LSs that can be

reformulated as queries on the GS and still evaluate to true, compared with

the number of constraints on the LSs. This can be calculated using Formula

5.11, where evaluate(qo, reformulate(qo,MLAV)) is assigned 1 if both qo and

reformulate(qo,MLAV) evaluate to true. Otherwise, evaluate(reformulate

(qo,MLAV)) is assigned 0.

λ7,LAV =
∑

o∈constraints(LSs)

evaluate(qo, reformulate(qo,MLAV))

|constraints(LSs)|
(5.11)

If both the GAV and LAV approaches may be used in the DI setting,

this quality factor can be measured using Formula 5.12, which generalises

the previous two formulae:

λ7 =
∑

o∈constraints(LSs)

min(evaluate(qo, qs), evaluate(qo, reformulate(qo,MLAV)))

|constraints(LSs)|
(5.12)

Example: In our Case Study in Chapter 3, the new constraints introduced

in the mappings are the primary key and foreign key constraints on the GS.

110

Therefore, we evaluate queries associated with each of these constraints and

all of them can be evaluated to be true in the integrated resource. Therefore,

this quality factor is calculated as 1 using Formula 5.12.

5.3.3 The Query Consistency Criterion

In this subsection, we present a quality factor relating to the query consis-

tency sub-criterion, and a measurement method for it.

FACTOR 8: The degree of query consistency is measured as

the level of satisfaction of users’ requirements relating to the re-

lationships between the information retrieved by pairs of users’

queries in a DI setting.

As indicated in our analysis of requirements in Chapter 3, queries have an

important role in assessing the quality of an integrated resource as they allow

users to specify what data are expected to be returned from the integrated

resource without having to fully enumerate the data: enumerating such data

may not be easy, especially from data sources containing large volumes of

data [75]. Some researchers have investigated detecting inconsistencies in

an integrated resource by evaluating queries on the GS and examining the

possible results returned from these queries with respect to the constraints in

the GS [28]. We adopt a similar approach, but our purpose is to define and

measure the consistency of a DI setting by investigating the results returned

from a set of users’ queries.

For this quality factor, we assume a DI setting is a quadruple ⟨LSs,GS,M,

Req⟩ where Req is a set of requirements defining the expected relationships

between the results retrieved by pairs of users’ queries over the LSs and

GS. Each requirement is a triple QLSs,GS
i = ⟨qLSs, qGS, relationship⟩, where

qLSs is a user-defined query on a single local schema or across several lo-

cal schemas (on their union schema), qGS is a user-defined query on the

GS, and relationship is the users’ expected relationship between the results

111

returned from qLSs and from qGS. For this quality criterion, we consider

relationship ∈ {=,⊆,⊇}.
For both the GAV and LAV approaches, this quality factor is defined

as the average level of satisfaction of Req. For each QLSs,GS
i ∈ Req, the

level of satisfaction of QLSs,GS
i is defined by calculating the level of satis-

faction of relationship, denoted by satisfy(QLSs,GS
i), with respect to qLSs

and reformulate(qGS,M), where reformulate(qGS,M) is the query on the

local schemas created by reformulating qGS using the mappings M. For

both the GAV and LAV approach, the measurement method for this qual-

ity factor is the same, except that the reformulation process in each case

is different. For the relationships =, ⊆ and ⊇, satisfy(QLSs,GS
i), where

0 ≤ satisfy(QLSs,GS
i) ≤ 1, can be calculated by using Formula 5.13, For-

mula 5.14 and Formula 5.15 respectively. In these formulae, ext(q) is the

result of evaluating q over the integrated resource. This quality factor is

then defined as the average of satisfy(QLSs,GS
i) for all QLSs,GS

i ∈ Req.

satisfy(⟨qLSs, qGS , “ = ”⟩) =
|ext(qLSs) ∩ ext(reformulate(qGS ,M))|
|ext(qLSs) ∪ ext(reformulate(qGS ,M))|

(5.13)

satisfy(⟨qLSs, qGS , “ ⊆ ”⟩) =
|ext(qLSs) ∩ ext(reformulate(qGS ,M))|

|ext(qLSs)|
(5.14)

satisfy(⟨qLSs, qGS , “ ⊇ ”⟩) =
|ext(qLSs) ∩ ext(reformulate(qGS ,M))|

|ext(reformulate(qGS ,M))|
(5.15)

Example: In our Case Study in Chapter 3, we assume that the users

provide a requirement QLSs,GS comprising a single triple: qLSs is a query

on local schema 3 that retrieves information about all lecturers teaching

postgraduate courses and qGS is a query on the GS that retrieves information

about all educators. The relationship between qLSs and qGS is specified by

the users as qLSs ⊆ qGS. This quality factor is therefore calculated using

Formula 5.14 and results in 4/4 = 1 as 4 lecturers teach postgraduate courses

112

(TID 505 - 508) and 8 lecturers can be retrieved from the GS including

these 4 lecturers teaching postgraduate courses (TID 505 - 508) and 4 more

lecturers teaching undergraduate courses (TID 501 - 504).

5.4 Other Quality Criteria

Other quality criteria that can be considered as being relevant to a DI setting

are accuracy, minimality and redundancy. We briefly discuss these quality

criteria here, but leave a detailed development of metrics as future work.

The accuracy criterion considers the degree of precision of information

represented in an integrated resource. By precision we mean the scope of

information represented by a schema or a mapping, the constraints pre-

served in it, and the granularity of information representation it supports.

This quality criterion is categorized into two sub-criteria: schema accu-

racy and mapping accuracy. Schema accuracy captures to what degree the

information provided by the local schemas is represented by the GS with-

out information loss. Information loss could arise in many ways, such as

inaccurate data types used, missing constraints in different schemas, and

imprecise terminologies used for describing the same information. Mapping

accuracy captures to what degree the information represented by the local

schemas is transformed in the mappings to the global schema without losing

information. Such information loss can occur when some existing semantic

information is ignored or reduced by the mappings.

The minimality criterion considers the degree of redundancy existing in

an integrated resource. By redundancy we mean the schemas and mappings

from which the same information may be extracted. We also use redundancy

to describe unnecessary transformations occurring in mappings. Such redun-

dancies may have impact on performance since overlapping information is

processed unnecessarily. It may also increase the risk of schema and query

113

inconsistencies if redundant schema constructs exist in the DI setting but

do not have an identical extent. The minimality quality criterion may be

categorised into schema minimality and mapping minimality sub-criteria.

The schema minimality sub-criterion captures the redundancies of schema

constructs and information extractable from schema constructs. The map-

ping minimality sub-criterion captures unnecessary transformations occur-

ring within mappings.

The performance criterion considers the cost of query processing in an

integrated resource. The cost of query processing is affected by the capabil-

ity of the DI tool’s global query processor and the data sources’ local query

processors. The capability of the global query processor determines how

user queries are reformulated, optimised and evaluated. The capabilities of

the data sources’ query processors determine how individual reformulated

sub-queries are optimised and evaluated by the local query processors. To

measure the performance criterion, cost models need to be available or spec-

ified for both global and local query processing, so that the performance of

a set of users’ queries on the global schema, reformulated via the mappings,

can be measured.

5.5 Comparison with Related Work

In this section, we summarise and compare related work with the quality

factors and associated quality metrics described above. We also discuss how

techniques from related work can be used within our quality framework.

Table 5.4 presents a summary of related work, and its relationship to our

quality framework.

114

Completeness Consistency Accuracy Minimality Performance

Schema [43] LSs,GS,Onto [43] LSs,GS,Onto [45, 27] Data [43] LSs,GS,Onto

[76] Data [68, 77] LSs,GS

[27, 45] Data

Mapping [42] Data [42] Data [42] Data [42] Data [65] M

[28] GS,Data [28] GS,Data [76] Data [4] Data

[45, 27] Data [68, 77] LSs,GS [65] M

[78] LSs,GS,M

Query [76] Data

Table 5.4: Summary of Techniques

The work closes to ours is [43]. The authors propose several quality mea-

surement methods for the DI context relating to the schema completeness,

schema consistency and schema minimality quality criteria from our research

perspective. Quality metrics are proposed based on information extracted

from the schema metadata, which is one of the four types of DI elements that

we consider in our approach. Their measurement method proposed for mea-

suring schema completeness is defined as the proportion of concepts in the

application domain that are represented by a schema. In order to use this

measurement method in our approach, this method can be developed fur-

ther to discover the sets of schema constructs that satisfy and do not satisfy

this quality definition. Their measurement method proposed for measuring

schema consistency is defined as the proportion of schema constructs rep-

resenting the same concepts that are also defined with the same data type.

This definition can be categorised as a schema consistency sub-criterion in

our approach and their measurement method generates the set of schema

constructs that are defined with consistent data types and the set of schema

constructs that are not. Their measurement method proposed for measuring

schema minimality is defined as the proportion of schema constructs where

there do not exist other schema constructs in the same schema representing

the same concept. This definition can be categorised as a schema minimality

sub-criterion in our approach. The redundant schema constructs discovered

115

by using this quality metric are considered as the ones that do not satisfy

this quality definition.

In [42], the authors discuss an approach for mapping selection based on

the comparison of pairs of instances of the source schema and the target

schema extracted via different mappings in a Data Exchange context. The

principle of this approach is that the more similar the data extractable from

the two schemas via the mappings, the better the mappings are. In order to

discover the similarities of such data, several sampling and analysis functions

are used. This work can be applied within our quality framework with a

user-defined threshold on the similarity comparison indicating its desired

level from the users’ perspective. Mappings whose results are below this

threshold are considered as not satisfying the quality criterion.

[28] discusses the quality of collaborative tasks, such as data integration,

with respect to users’ quality requirements expressed in the form of user

feedback, in contrast to being expressed as logical statements over the quality

hierarchy in our approach. Although their work is primarily focused on

user feedback handling and clustering, their validation methods of the user

feedback with respect to integrated resources can still be applied in our

approach in order to identify the DI elements that are not consistent with

the user feedback.

There also exists other work relating to our research whose original mo-

tivation is not from a quality perspective. However, such work can also be

adapted for measuring quality factors in our approach. Instance-checking

methods have been used in many works in order to validate and refine map-

pings for example [45, 27]. In this work, instances of the GS specified by

users can be ‘traced back’ to the data sources via the mappings and users

can discover if such source data are the users’ desired ones. This can be

developed further in our approach into the schema completeness, schema

accuracy and mapping completeness sub-criteria. Constraint validation is

116

another area relating closely to our research. There is a rich breadth of such

work, for example [68, 77]. This work allows the identification of schema

constructs that may cause schema inconsistencies and can be embedded into

our approach to measure the schema consistency and mapping consistency

quality sub-criteria.

There is also relevant work on checking the consistency of mappings with

respect to schema constraints using Distributed Description Logics and on-

tology reasoning techniques [78]. The work in [4] discusses the core mapping

concept so as to generate the minimum set of mappings with respect to the

users’ queries. The work in [65] discusses the mapping minimality prob-

lem focusing on redundant mapping operations within the same mappings.

Both [78] and [65] can be considered as supporting the mapping minimality

sub-criterion in our approach as they could be applied to remove redundant

mappings and optimise mappings in the integrated resource.

All the works discussed above are relevant to our research, but they need

to developed further from the quality perspective in order to be applied

within our quality framework.

5.6 Summary

We have defined in this chapter five quality criteria and their sub-criteria in

the context of data integration: completeness, consistency, accuracy, mini-

mality and performance. A set of quality factors associated with the com-

pleteness and consistency quality criteria have been proposed and discussed

in detail, together with quality metrics for measuring such factors using

information extracted from the DI elements.

The measurement methods that we have proposed in this chapter are not

exhaustive. They are indicators of what is possible, and they may be refined

and extended in the future, following validation with real-world case studies

117

and users. We briefly introduced the accuracy, minimality and performance

quality criteria and leave detailed research into these as future work. A

comparison of our research with other relevant work was also discussed and

we showed how techniques from this work could be applied within our quality

framework.

In Chapter 6, we will describe our data integration methodology that

embeds quality assessment within the DI process. We will also present an

integration architecture for the realisation of this methodology. The imple-

mentations of the quality factors and metrics introduced in this chapter will

also be discussed in Chapter 6.

118

Chapter 6

Data Integration Methodology

and Architecture

In the previous two chapters, we described our quality assessment approach,

including the quality framework that focuses on representing the users’ qual-

ity requirements and the set of quality criteria, factors and associated quality

metrics for defining and determining the quality of integrated resources. In

this chapter, we propose a data integration methodology that has embedded

within it the quality assessment functionality, in contrast to the traditional

data integration methodology which comprises mainly of schema matching

and mapping tasks. We also propose in this chapter a DI architecture as a

realisation of our methodology and we discuss the implementations of key

components of this architecture.

This chapter is organised as follows. In Section 6.1, we discuss a DI

architecture that realises our DI methodology proposed in Section 3.2 in

Chapter 3 and we also illustrate the DI workflow using this architecture.

The implementations of key components of this DI architecture and of the

quality factors proposed in Chapter 5 are discussed in Section 6.2 including:

the ontology representation of our QFDI, the transformation algorithm from

119

a relational schema to an ontology and the implementation of the quality

factors defined in Chapter 5. Section 6.3 provides a summary of this chapter.

6.1 Data Integration Architecture andWork-

flow

In Section 3.2 of Chapter 3, we propose a DI methodology that contains

a requirements gathering phase, an integration domain learning phase, an

integration phase and a quality assessment phase. The integration process

is then applied iteratively to refine the integrated resource with respect to

the quality assessment results and in this way an integrated resource with

better quality can be achieved. In this section, we propose a DI architecture

as a realisation of our DI methodology.

6.1.1 DI Architecture with Quality Assessment Func-

tionality

Our architecture (see Figure 6.1) is composed of four main components and

covers three of the integration phases: Integration Domain Learning Phase,

Integration Phase, Quality Assessment Phase. The four components are a

pre-existing schema matching tool, data integration tool and ontology match-

ing tool, and the new Quality Measurement tool developed in our research:

1) The schema matching tool, such as COMA++ (http://dbs.uni-leip

zig.de/Research/coma.html), can discover correlations between schemas

automatically. This information helps generate matches between schema

constructs manually or (semi-)automatically.

2) The data integration tool provides functionalities for creating and stor-

ing the integrated resource and for global query processing; we are using the

AutoMed data integration toolkit (http://www.doc.ic.ac.uk/automed/)

120

and we refer to this in our following discussion. In AutoMed, mappings be-

tween the GS and the LSs are composed of transformation pathways. Each

transformation results in an intermediate schema. Modelling language spec-

ifications, schemas and transformation pathways are stored in the AutoMed

repository. We will describe in more detail the AutoMed integration toolkit

in the next section.

3) The ontology matching tool, as also supported by COMA++, discov-

ers more precise correlations between ontology representations using seman-

tic information, as surveyed in [79].

4) The Quality Measurement tool provides functionalities for the users

to express their DI quality requirements as quality criteria, factors and re-

lationships between them, measures each quality factor based on knowledge

extracted from the integrated resource and also applies reasoning function-

alities in order to have an integrated and consistent quality view of the

integrated resource with respect to various users’ quality requirements as

discussed in Chapter 5.

121

Figure 6.1: Integration Architecture with Quality Assessment

6.1.2 Data Integration Workflow

At the outset of a DI process, the data integrator needs to determine the

available data sources and the correspondences between them in order to be-

gin to design the mappings and the global schema. Additional information,

such as domain specific knowledge, can then be added by the integrator,

resulting in an iterative improvement of the integrated resource. The three

integration processes supported are Integration Domain Learning Phase, In-

tegration Phase and Quality Assessment Phase. The Requirements Gather-

ing Phase is not covered explicitly in our architecture, but the tasks involved

in this phase are required for supporting these three phases.

In the Integration Domain Learning Phase (steps 1 and 2 in Figure 6.1),

the integrator first wraps the data sources (shown as DB LS1, DB LS2, DB

LS3 in the figure) using the corresponding AutoMed wrappers. This results

in metadata that describes the data sources being stored within the Au-

toMed STR repository. The integrator then defines the initial mappings by

analysing the results returned after applying the COMA++ matching tool.

For example, a “ladder” integration strategy [66] can be used in the architec-

ture as follows. DB LS1 and DB LS2 are first matched, and the integrator

examines the correspondences returned and designs the first intermediate

schema IS1 (steps 2.a-2.b). IS1 will contain a set of constructs derived from

LS1 and LS2. The integrator then defines mappings between IS1 and LS1,

and IS1 and LS2. The mappings specified are automatically translated into

AutoMed transformation pathways and stored in the AutoMed repository

(steps 2.c-2.d). The matching tool is then run again on IS1 and DB LS3

in order to discover correspondences between these (step 2.e). The match-

ing tool will be able to access the data underlying the virtual schema IS1

(derived from LS1 and LS2) via the global query processing capabilities of

AutoMed. The integrator analyses the returned correspondences and de-

signs the second intermediate schema IS2 (step 2.f). IS2 is also the same as

123

the final global schema GS in this example, but more generally this “ladder”

integration strategy is repeated as many times as necessary. The integrator

then defines the mappings between IS2 and IS1, and IS2 and LS3, and these

mappings will also be stored in the AutoMed repository (steps 2.g-2.h).

According to [80], there is no perfect schema matching tool. Therefore,

our process involves human effort in defining mappings from the schema

matchings returned by the schema matching tool.

In the Integration Phase (steps 3-6 in Figure 6.1), all the local, intermedi-

ate and global schemas (LS1, LS2, LS3, IS1, GS/IS2) are first translated au-

tomatically into their corresponding OWL representation (OS1, OS2, OS3,

OIS1, OGS/OIS2, respectively, in the figure), expressing the translation logic

in the form of AutoMed transformation pathways (step 3). The transforma-

tion pathways between pairs of OWL schemas are automatically generated

by using AutoMed to compose the transformation pathways between the

corresponding non-OWL versions of the schemas with the transformation

pathways expressing the translation logic. The integrator can then define

additional assertions on OS1, OS2, OS3, OIS1, OGS/OIS2 capturing addi-

tional domain knowledge. These assertions can be defined within the same

OWL schema, or across OWL schemas (step 4). In the former case, the asser-

tions can be added to the local/global OWL schemas (OS1, OS2, OS3, OGS).

In the latter case, assertions can be added to the intermediate OWL schemas

(OIS1, OGS/OIS2). The integrator can then refine the existing mappings

by examining the results returned from an ontology matching tool (in the

current prototype, we use COMA++ again) (steps 5.a-5.b). The ontology

matching tool accesses both the OWL schemas and their underlying data

via AutoMed, and matches data source schemas OS1 and OS2. The integra-

tor examines the matching results and defines mappings between OIS1 and

OS1, and OIS1 and OS2 (step 5.c). The new mapping specification needs to

be compared with the previous one defined in step 2.c (step 5.d): if a new

124

mapping has no corresponding mapping in the previous specification, then

it is retained; if both a new and an old mapping involve the same schema

constructs, then the integrator needs to refine the old mapping, using the in-

formation encompassed within the new mapping. The set of new mappings

then needs to be translated into the corresponding AutoMed transformation

pathways and stored in the AutoMed metadata repository (the integrator

should first delete all existing mappings in the AutoMed metadata reposi-

tory that have been subsumed by new versions) (step 6). Steps 4, 5 and 6

are repeated until the integrator is satisfied with the integration setting.

In the Quality Assessment Phase (steps 7-9 in Figure 6.1), the integrator

first sets up the quality hierarchy comprising the appropriate quality criteria

and quality factors, and then expresses the users’ quality requirements as DL

terminology axioms (step 7.a). The OWL representation of the DI elements

that is input to the Quality Measurement tool (step 7.b) has been generated

in the Integration Phase. For each quality factor, the integrator uses the

Quality Measurement tool to measure the quality factor using its associated

metric and to populate the quality framework with the results (step 7.c).

After all the quality factors have been measured, inconsistencies between

the various quality criteria/factors may be discovered by applying an on-

tology reasoner (step 7.d). For example, we can discover the DI elements

that may cause inconsistencies across different users’ quality requirements.

A quality report presenting the quality measurement results will be gener-

ated. The integrator then examines the quality report and makes changes

to the integrated resource, e.g. modifying the schema and mapping speci-

fications, modifying the assertions, or changing the quality requirements in

consultation with end-users (steps 8 and 9).

The whole process is iterative, and steps 4 onwards may be applied mul-

tiple times during the integration process.

125

6.2 Implementation of our DI Architecture

In our prototype implementation of the data integration architecture de-

scribed in Section 6.1, we adopt the existing tools COMA++ and AutoMed

for the schema matching, data integration and ontology matching tasks. The

schema matching tool COMA++ is used in two tasks in our architecture,

the identification of correspondences between schema constructs from data

sources (step 2.a in Figure 6.1) and the identification of correspondences

between ontology constructs that are transformed from the schemas from

the data sources (step 5.b in Figure 6.1). COMA++ could be replaced or

supplemented by other schema matching tools, such as Porsche [81] and

Similarity Flooding [82].

In our prototype implementation, AutoMed is used by the integrators

for three tasks. First, AutoMed is used to wrap the local schemas and the

global schema into the representation supported by AutoMed (HDM) (step

1 in Figure 6.1). Data integrators also use AutoMed to create and store

mappings (transformation pathways in AutoMed) (step 3 in Figure 6.1).

AutoMed also supports query reformulation on the integrated resource. This

function is invoked in query-related metrics, such as quality factors 4 and 8 in

Chapter 5. Again, other data integration frameworks can be adopted in our

architecture, such as Clio [22], so long as they support all functions described

above. Our Quality Measurement tool is mainly invoked in step 7.c and we

have implemented the major functions in this tool including: expressing

formally the definitions of the users’ quality requirements, measuring the

quality factors involved in the users’ requirements, and invoking reasoning on

QFDI in order to detect the DI elements that cause inconsistencies between

users’ requirements and the integrated resources.

In this section, we first discuss the implementation of the schema to

ontology transformation algorithm (Section 6.2.1). Then we discuss the

implementation of the Quality Measurement tool, including the reasoning

126

component of our architecture that is based on the OWL ontology language

and adopts the FaCT++ ontology reasoner for inference purposes (Section

6.2.2). We then discuss the implementation of the quality factors proposed

in Chapter 5 (Section 6.2.3).

6.2.1 Schema to Ontology Representation

The translation of a relational global schema into an equivalent OWL rep-

resentation in Section 6.1 the Integration Domain Learning Phase is under-

taken using an algorithm based on [69], which describes the representation

of relational databases in RDF. Similarly to [69], our translation of rela-

tional schemas into OWL can support both single-attribute and composite

primary and foreign keys [38]. In this thesis, we focus on data sources that

contain information represented in the Relational model only for the purpose

of fast implementation of our DI architecture. But in principle, data sources

containing information in other data models can be integrated, knowledge

expressed in such data sources can be expressed in OWL, and the qual-

ity of the integrated resource can be measured by adopting our integration

architecture.

The algorithm, listed in Panel 4 in Appendix C, takes an AutoMed

relational schema SRel as input and outputs an AutoMed OWL schema

SOnt. The algorithm has three parts. The first part (lines 55–61), trans-

lates the relations of schema SRel. In particular, a relation ⟨⟨R⟩⟩ translates
to a Class C in SOnt, each of its attributes ⟨⟨R, a⟩⟩ translates to a Property

⟨⟨a,C, rdfs : Literal⟩⟩, while the primary key of ⟨⟨R⟩⟩ translates into another

Class ⟨⟨Cpk⟩⟩ and a Property ⟨⟨pk,C,Cpk⟩⟩. The second part (lines 62–70),

translates the foreign key constraints of schema SRel. In particular, the algo-

rithm creates two Class constructs, ⟨⟨CRfk
⟩⟩ and ⟨⟨CSfk⟩⟩, representing the set of

attributes of relation R and the set of attributes of relation S that reference

the former. The algorithm also creates Property constructs ⟨⟨fk,CR,CRfk
⟩⟩,

127

⟨⟨fk,CS,CSfk⟩⟩ and ⟨⟨fk,CSfk ,CRfk
⟩⟩ that link the newly added Class constructs

together with each other and with the Class constructs that represent rela-

tions R and S. The third part (line 71), which removes the relational schema

constructs from schema SOnt is straightforward and omitted [38].

For example, taking the example of a relational table

staff(sid,name,#studentID) discussed in Section 2.4.2, its HDM repre-

sentations are a Table construct ⟨⟨staff⟩⟩, threeAttribute constructs ⟨⟨staff, sid⟩⟩,
⟨⟨staff, name⟩⟩ and ⟨⟨staff, studentID⟩⟩, a PKey construct

⟨⟨staff pk, staff, ⟨⟨staff, sid⟩⟩⟩⟩, and a FKey construct

⟨⟨staff fk 1, staff, ⟨⟨staff, studentID⟩⟩, student, ⟨⟨student, id⟩⟩⟩⟩, assuming there is

another table student(id,name)) and that #studentID of staff references

id of student. According to our algorithm, the following set of corre-

sponding ontology constructs are created: ⟨⟨staff⟩⟩ for the Table construct;

⟨⟨sid, staff, rdfs : Literal⟩⟩, ⟨⟨name, staff, rdfs : Literal⟩⟩ and
⟨⟨studentID, staff, rdfs : Literal⟩⟩ for the Attribute constructs; ⟨⟨pk, staff, sid⟩⟩
for the PKey construct; and ⟨⟨fk, staff, studentID⟩⟩, ⟨⟨fk, student, id⟩⟩,
⟨⟨fk, id, studentID⟩⟩ for the FKey construct referencing to the student table.

The advantage of using this method is that it is able to present different

kinds of keys, such as single and composite primary keys and foreign keys.

It is also able to support alternative candidate keys. The disadvantage is

that it contains redundant extents for the ontology, since the extents of

ontology objects overlap significantly. However, at the time this algorithm

was developed, other similar algorithms close to our purpose had similar

problems [70] and the disadvantage of this algorithm does not affect the

main functionalities in our approach. It is an area of possible further work

to reduce the redundancies contained in the ontology and also its extents.

This algorithm has been used in the iSpider [83] and ASSIST [84] projects.

128

6.2.2 Implementation of an OWL Representation of

QFDI

In our work, we implement our quality framework (QFDI) using a subset

of the Ontology Web Language (OWL), called OWL-DL. We discuss and

demonstrate here how OWL reasoning using an off-the-shelf OWL reasoner

can be applied in order to discover DI elements that cause inconsistencies

between the users’ quality requirements as a whole and also individually.

OWL Language

Ontology Web Language (OWL) is a formal language developed with De-

scription Logic as its logical foundation. There are three OWL languages

with increasing expressive abilities, termed OWL-Lite, OWL-DL and OWL-

Full. The OWL syntax and the corresponding DL expressions are listed in

Table 6.1. We use OWL-DL in our research since it is expressive enough

for representing our quality framework and also the reasoning capability of

OWL-DL can support the reasoning requirements discussed in Chapter 4.

There are also many off-the-shelf OWL reasoners that can be used in the im-

plementation of our framework, such as FaCT++ (http://owl.man.ac.uk/

factplusplus/) and Pellet (http://clarkparsia.com/pellet/).

129

DL Syntax OWL-DL Syntax Explanation

C Class a concept

R Property a general role

ObjectProperty an object role

DatatypeProperty a data role

⊤ Thing the universal concept

∅ Nothing the bottom concept

C ⊓D intersectionOf conjunction

C ⊔D unionOf disjunction

∃R.C someV alueFrom existential quantification

∀R.C allV alueFrom value restriction

R+ transitiveProperty transitive role

R− inverseOf inverse role

≥n R.C minCardinality minimum cardinality of n

≤n R.C maxCardinality maximum cardinality of n

C ⊑ D subClassOf subsumption axiom

C ≡ D equivalentClass equivalent axiom

Table 6.1: OWL-DL Syntax

An OWL Representation of QFDI

Figure D.1 in Appendix D illustrates the OWL implementation of our qual-

ity framework (see Section 4.1 in Chapter 4) in Protege. The criterion

concept is represented as an OWL class termed Criterion and the extent

of this class is the identifiers representing different quality criteria, such

as criteria c1 and c2 in Chapter 4, Section 4.3.2. The factor concept is

also represented as an OWL class termed Factor and the extent of this

class is the identifiers representing different quality factors, appended with

strings s or ns representing the aspects of a quality factor f that can or

cannot be satisfied by the integrated resource, respectively, e.g., f1s and

f1ns represent the part of the quality factor f1 that can and cannot be sat-

isfied by the integrated resources. We use this technique in order to define

130

the closure of properties discussed later. The Item concept is represented

as an OWL class termed Item and the extent of this class is the identi-

fiers representing different DI elements, such as the table LS1 educator and

the attribute LS1 educator tid. Four OWL object properties are created,

contains sat, contains not sat, is contained sat and is contained not sat,

where is contained sat and is contained not sat are the inverse proper-

ties of contains sat and contains not sat, respectively. The domain of

contains sat and contains not sat is the OWL Factor class and the range

is the Item OWL class. We also set all individuals to be distinct, mean-

ing each individual is uniquely identified by their name. The individuals of

the Factor class are linked to the individuals of the Item class with these

properties as listed in Table 4.3 in Chapter 4.

The User class represents the set of users’ requirements and each user

is represented as a subclass of the User class, such as users A, B, C in

Chapter 4. In our implementation of the UserQR concept, we decompose

the logical statements for expressing users’ quality requirements into smaller

segments. Taking the example in Chapter 4, requirement A.1 is defined as

(Sc ⊓ ∀contains sat−.{f1}) ⊑ (Sc ⊓ ∀contains sat−.{f2}). In our imple-

mentation, we define two additional classes A.1.1 and A.1.2, where A.1.1 =

(Sc⊓∀contains sat−.{f1}) and A.1.2 = (Sc⊓∀contains sat−.{f2}). We then

create a general axiom indicating that A.1.2 is a subclass of A.1.1. The same

process applies to B.1 and C.1. We then have a set of segments: A.1.1 =

(Sc⊓ ∀contains sat−.{f1s}), A.1.2 = (Sc⊓ ∀contains sat−.{f2s}), B.1.1 =

((Sc⊓∀contains not sat−.{f1ns})⊓(Sc⊓∀contains not sat−.{f2ns})), B.1.2

= ∅, C.1.1 = (Sc ⊓ ∀contains sat−.{f1s} ⊓ ∀contains not sat−.{f2ns}),
C.1.2 = (Sc ⊓ ProgrammeDirector), A.1.1 ⊆ A.1.2, B.1.1 ≡ B.1.2 and

C.1.1 ⊆ C.1.2.

We also adopt a closed-world assumption in the reasoning over our qual-

ity framework, but most off-the-shelf reasoners support reasoning under the

131

open-world assumption. In order to implement this, we use value restric-

tion syntax that explicitly indicates the extent relating to a role. This is

also termed the closure of a role [1]. Figure 6.2 lists the four role closures

relating to the example in Section 4.1.

Figure 6.2: Implementation of the Closed-World Assumption in OWL-DL

Reasoning in QFDI using FaCT++

In our current implementation, we use the FaCT++ reasoner1 to undertake

inferencing over our quality framework because FaCT++ is supported in the

Protege ontology editor and it has sufficient reasoning power to support our

quality framework. Other reasoners that have equivalent inference power

could also be used, such as Pellet2. As discussed in Chapter 4 the reasoning

on the QFDI could discover inconsistencies between different users’ quality

1http://owl.man.ac.uk/factplusplus/
2http://clarkparsia.com/pellet/

132

requirements and also inconsistencies of each individual requirement with

respect to the DI elements in the integrated resource. In the example we

discussed in Section 4.1, we expect that requirements A.1 and C.1 are not

consistent. This can be discovered by the FaCT++ reasoner and suggestions

can be given by the reasoner about the concepts causing the inconsistency,

as illustrated in Figure 6.3.

Figure 6.3: Inconsistency between User Requirements A.1 and C.1

Suppose we remove requirement A.1 completely from consideration as

discussed in Chapter 4 and we run the FaCT++ reasoner again. This now

shows that no inconsistencies have been discovered between the users’ quality

requirements.

Next, we run the FaCT++ reasoner to discover possible inconsistencies of

individual quality requirements with respect to the DI elements in the inte-

grated resource. The reasoner detects that requirement C.1 is not consistent

(see Figure 6.4 for the error messages). The reasoner has also indicated that

requirement B.1 is consistent with respect to the integrated resource.

We can then make modifications on the DI elements that do not satisfy

quality factor f2 referred to in C.1 as discussed in Chapter 4 and run the

reasoning again. The reasoner will now show that no inconsistencies are

discovered.

133

Figure 6.4: Inconsistency between B.1 and the Instance Level Information

6.2.3 Implementations of Quality Factors

In this section, we discuss how the quality factors proposed in Chapter 5 are

implemented using AutoMed.

FACTOR 1: Schema completeness is measured as the propor-

tion of information coverage of the global schema GS via the map-

pings M with respect to the information represented by all local

schemas LSs.

In AutoMed, this quality factor can be implemented by using the sc()

function [65]. Given an IQL query q posed on schema S, the sc() function

takes q as its input and returns the set of schema constructs referenced by

q. Each of the schema constructs in this set is then processed further by

the sc() function and returns the set of AutoMed schemes upon which the

definition of this schema construct depends.

134

Measuring this quality factor with GAV mappings, we undertake the

following steps, denoting all transformations in the AutoMed repository as

T .

1. For each extensional GS construct o ∈ extensional(GS), we search

through T and find the “add” or “extend” transformations that derive

o. If there are no such steps, then o appears in one or more of the LSs,

and we add o to the set sources(LSs, o).

2. For each discovered “add” or “extend” transformation, obtain the IQL

query associated with this transformation, denoted by qGAV .

3. Apply the sc() function to qGAV and obtain the set of AutoMed schemes

that are referenced in this query.

4. For each such scheme, if it is derived from other schemes, repeat the

first 3 steps for it. Once the LS schemes are detected, we add these

local schema constructs to sources(LSs, o). Finally, we will obtain

a set of extensional local schema constructs from which o is derived,

sources(LSs, o).

5. Repeat the above four steps for all extensional GS constructs. Create

a set containing all unique local schema constructs in sources(LSs, o)

for each o ∈ extensional(GS), denoted by sources(LSs,GS).

6. Count the total number of extensional LS constructs in all LSs as∑n
i=0 |extensional(LSi)|, and compute |sources(LSs,GS)|∑n

i=0 |extensional(LSi)| as the mea-

surement of this quality factor for the GAV mappings.

135

Panel 1: Pseudocode for traceGAV
Input: IQL query q

Output: A set of local schema constructs C

C = ∅;1

schemes = sc(q);2

for e ∈ schemes do3

Obtain the “add” or “extend” transformation T ′′ for deriving e;4

if T ′′ = ∅ then5

Obtain the local schema construct in e as C;6

else7

for t ∈ T ′′ do8

Obtain the IQL query qt in t;9

C = C ∪ traceGAV (qt);10

return C;11

136

Panel 2: Pseudocode for Factor 1
Input: AutoMed Local Schemas LSs, the Global Schema GS, AutoMed

Transformations T , GAV/LAV mapping type indicator gl

Output: Schema Completeness λ1

sources(LSs,GS) = ∅;12

LAV defined(LSs) = ∅;13

if gl = GAV then14

for o ∈ extensional(GS) do15

Obtain T ′ that are the “add” or “extend” transformations deriving16

o where T ′ ⊆ T ;

if T ′ = ∅ then17

sources(LSs,GS) = sources(LSs,GS) ∪ o;18

else19

for t ∈ T ′ do20

Obtain the IQL query qt in t;21

sources(LSs, o) = traceGAV (qt);22

sources(LSs,GS) = sources(LSs,GS) ∪ sources(LSs, o);23

24

else if gl = LAV then25

for o ∈ extensional(LSs) do26

Obtain T ′ that are the “delete” or “contract” transformations27

deriving o where T ′ ⊆ T ;

if T ′ = ∅ then28

LAV defined(LSs) = LAV defined(LSs) ∪ o;29

else30

for t ∈ T ′ do31

Obtain the IQL query qt in t;32

u = traceLAV (qt);33

if u = 1 then34

LAV defined(LSs) = LAV defined(LSs) ∪ o;35

36

37

λ1 =
|sources(LSs,GS)∪LAV defined(LSs)|

|extensional(LSs)| ;38

137

Measuring this quality factor with LAV mappings, we undertake the

following steps:

1. For each extensional LS construct o ∈ extensional(GS), we search

through T and find the “delete” or “contract” transformations that

derive o. If there are no such steps, then o appears in the GS, and we

add o to the set LAV defined(LSs).

2. For each discovered “delete” or “contract” transformation, obtain the

IQL query associated with this transformation, denoted as qLAV .

3. Apply the sc() function to qLAV and obtain the set of AutoMed schemes

that are referenced in this query.

4. For each such scheme, if it is derived from other schemes, repeat the

first 3 steps for it. If at least one GS scheme is detected, we will add

o to LAV defined(LSs).

5. Count the total number of available extensional LS constructs in all

LSs as
∑n

i=0 |extensional(LSi), and compute |LAV defined(LSs)|∑n
i=0 |extensional(LSi)| as

the measurement of this quality factor for the LAV mappings.

138

Panel 3: Pseudocode for traceLAV
Input: IQL query q

Output: Indicator u

u = 0;39

schemes = sc(q);40

for e ∈ schemes do41

Obtain the “delete” or “extract” transformation T ′′ for deriving e;42

if T ′′ = ∅ then43

Obtain the schema construct referenced in e, denoted by c;44

if c ∈ extensional(GS) then45

u = 1;46

else47

u = 0;48

else49

for t ∈ T ′′ do50

Obtain the IQL query qt in t;51

u = traceLAV (qt);52

return u;53

FACTOR 2: Schema completeness is measured as the average

level of coverage of the extensional local schema constructs that

provide overlapping but possibly partially complete information

for deriving the same global schema constructs.

In AutoMed, for both the GAV and LAV approaches, we need to detect

first all distinct real-world concepts represented by the extensional schema

constructs in the LSs, reduce(
∪n

i=1 concepts(LSi)). We use a domain on-

tology that relates to the integration domain and assume that each local

schema construct has a corresponding ontology concept. This quality factor

can be implemented as follows:

139

1. Identify a domain ontology relating to the integration domain and

establish 1-1 correspondences between the LS constructs and this do-

main ontology using the names suggested by the construct labels and

ontology concepts. This is equivalent to the
∪n

i=1 conc-

ept(LSi, O) function.

2. Identify the set of unique ontology concepts represented by the local

schema constructs, denoted by reduce(
∪n

i=1 concept(LSi, O), O). By

unique ontology concepts, we mean the ontology concepts that do not

hold any equivalent or subsumption relationships with other concepts

in this set. For equivalent concepts, we choose any of these as the

unique concept and all other equivalent concepts are identified by this

unique one. For subsumption relationships, we remove concepts that

are subsumed by another concept.

3. Determine the set of schema constructs that have the same ontology

representations, denoted by extensional(LSs, c), where c is one of the

unique concepts. sources(LSs,MGAV , c) is the set of local schema con-

structs that are referenced in a GAV mapping for c and LAV defined(

LSs,MLAV , c) is the set of local schema constructs that are derived by

LAV mappings for c.

This quality factor can then be calculated using Formula 5.4.

FACTOR 3: Mapping completeness is measured as the pro-

portion of the local schema constraints removed by the mappings

without information loss compared with the total number of local

schema constraints removed.

In AutoMed, schema constraints are expressed as constraint constructs

associated with a query that needs to evaluate to true. Schema constraints

can be added and deleted in the transformation pathways. In the former

case, constraints can only be added using the “addConstraint” primitive. In

140

the latter case, constraints can be deleted either explicitly or implicitly. In

AutoMed, a constraint is deleted explicitly by using the “deleteConstraint”

primitive. A constraint can also be deleted automatically, if its associated

extensional schema construct is deleted from the AutoMed repository.

If the GAV approach is used, this quality factor is implemented as follows:

1. Determine the set of constraint constructs on the local schemas, de-

noted by Constraint(LSs) and the set of extensional schema con-

structs with which such constraints are associated

Construct(LSs,Constraint(LSs)).

2. Determine the set of constraint constructs that have been deleted ei-

ther explicitly or implicitly, denoted by removed(constraints(LSs),

MGAV).

3. We then need to determine if there exists a corresponding constraint c′

for c ∈ removed(constraints(LSs),MGAV). In AutoMed, this can be

achieved by comparing both the constraint categories of c and c′, and

the extents of the schema constructs referenced in c and c′. If c and

c′ are defined in the same constraint category, such as “mandatory”

or “unique” proposed in [73] and Construct(GS, c′) is the correspond-

ing construct of Construct(LSs, c), where ext(Construct(GS, c′)) ⊆
ext(Construct(LSs, c)), assign 1 to corr(qc, reformulate(qc′ ,M)). Oth-

erwise, assign 0 to it.

The degree of completeness of this integrated resource is then calculated

as in Formula 5.5. If the LAV approach is used, this quality factor can

be implemented following similar steps as the GAV approach, but we need

to determine for each constraint removed from the GS whether the LAV

mappings introduce a corresponding constraint to the local schemas.

FACTOR 4: Query completeness is measured as the average

level of coverage of each real-world concept represented by the

141

local schema constructs referenced in the queries arising from re-

formulating the set of users’ queries on the GS.

In AutoMed, for both the GAV and LAV approaches, we first need to

calculate the set of queries on the local schemas that are reformulated from

the user-defined queries on the GS via GAV or LAV query reformulation, de-

noted by reformulat(q,M). We then determine, for all concepts represented

by the extensional local schema constructs referenced in reformulat(q,M),

the average degree of the coverage of these concepts. This can be accom-

plished in the following steps:

1. Identify the set of local schema constructs that have been referenced

in reformulate(q,M), denoted by construct(reformulate(q,M)).

2. Determine the set of unique concepts represented by these constructs,

denoted by rccr(q,M,O) = reduce(concept(construct(reformulate

(q,M)), O), O).

3. For each concept c ∈ rccr(q,M,O), we determine the set of extensional

local schema constructs that represent c or whose ontology representa-

tions are equivalent to or subsumed by c, denoted by extensional(LSs, c).

We also determine the set of local schema constructs that represent c

or whose ontology representations are equivalent to or subsumed by

c, denoted by construct(reformulate(qGS,M), c). This quality factor

can then be calculated by Formula 5.6.

FACTOR 5: Schema consistency is measured as the number

of GS constructs whose definitions and associated constraints can

be applied to their corresponding local schema constructs, if they

exist, compared with the total number of GS constructs.

This quality factor comprises of two constraints, the extensional con-

struct definitions and the constraints restricting the extents of the relation-

ship constructs. In the former case, this quality factor can be implemented

142

in AutoMed by simply checking the data type and value range of the two

corresponding local and global schema constructs. In the latter case, this

quality factor can be implemented as follows:

1. We need to determine the set of constraints on the GS, denoted by

constraints(GS).

2. For each constraint o ∈ constraints(GS), we reformulate the query

comprising o, qo, and obtain a set of queries on the local schemas,

reformulate(qo,MGAV) using the AutoMed query reformulator. For

each query q ∈ reformulate(qo,MGAV) on a local schema, we need to

detect if q is satisfied by the local schema with respect to the current

schema instance.

3. This quality factor can then be calculated using Formula 5.8 for the

constraint construct aspect, where consistent(q, LSs) is assigned 1 if

q can be evaluated to true. Otherwise, consistent(q, LSs) is assigned

0.

FACTOR 6: Schema consistency can be measured as the pro-

portion of local schema constructs that satisfy their real-world

semantics and whose corresponding GS constructs also satisfy the

same real-world semantics.

In order to implement this quality factor in AutoMed, we need to first

determine the set of local schema constructs whose semantics are consistent

with their real-world semantics. This is implemented in the following way:

1. Discover the mappings between the extensional constructs in the local

schemas LSs and the domain ontology.

2. Discover the mappings between the extensional construct in the global

schema GS and the domain ontology.

143

3. For detecting the consistency between the schema constructs and their

corresponding domain ontology representation with respect to the data

type and value range definition, we can simply compare these defi-

nitions and determine if the extent of the schema construct can be

transformed to be defined as the extent of the ontology construct.

4. For detecting the consistency between the schema constructs and their

corresponding domain ontology representation with respect to the sch

-ema constraints, we need to determine the set of constraint constructs

on the local schemas, denoted by Constraint(LSs) and the set of ex-

tensional schema constructs with which such constraints are associated

Construct(LSs,Constraint(LSs)) ⊆ Construct(LSs).

5. Determine if the semantics of these constraints in Constraint(LSs) is

consistent with the semantics represented in the ontology between the

ontology representations of the schema constructs in Construct(LSs,

Constraint(LSs)).

6. If they are consistent in both cases, we denote such local schema con-

structs as the set consistent(extensional(LSs), O). We then need to

discover their corresponding global schema constructs corr(GS, consis

tent(extensional(LSs), O),M) and apply the same process again. In

this case, we obtain a set of local schema constructs that satisfy this

quality factor, denoted by consistent(corr(GS, consistent(extensional

(LSs), O),M), O).

This quality factor can then be calculated using Formula 5.9.

FACTOR 7: Mapping consistency can be measured as the pro-

portion of local schema constraints that are not violated by new

constraints introduced by the mappings M .

AutoMed supports new constraints to be added or deleted by using the

AutoMed transformation primitives, addConstraint(con,q) and deleteCon-

144

straint(con,q), where con is the constraint identifier and q is the query repre-

senting this constraint.. This quality factor can be calculated in the following

steps for GAV mappings:

1. Determine the set queries embedded in addConstraint() transforma-

tions in the AutoMed repository, denoted by Qc and determine the set

of the constraints on the local schemas, denoted by constraints(LSs).

2. For each local schema constraint o ∈ constraints(LSs), disable all

other constraints and evaluate each query in the set Qc. If all queries

in Qc evaluate to true, denoted by evalute(qo, Qc,M), we say that o

is not violated by any additional constraints introduced in the map-

pings and we assign evalute(qo, Qc,M) to be 1. Otherwise, assign

evalute(qo, Qc,M) to be 0.

Calculate this quality factor using Formula 5.10.

If LAV mappings have been used, this quality factor can be calculated

in the following steps:

1. Determine the set of constraints on the local schemas, denoted by

constraints(LSs).

2. For each local schema constraint o ∈ constraints(LSs), reformulate

the query associated with o using the LAV mappings and determine a

set of reformulated queries on theGS, denoted by reformulate(qo,MLAV).

3. Determine if both qo and reformulate(qo,MLAV) evaluate to true on

the local schemas and the GS, respectively. If so, assign evaluate(qo,

reformulate(qo,MLAV)) to be 1. Otherwise, assign it to be 0.

Calculate this quality factor using Formula 5.11. If both GAV and LAV

mappings are created, this quality factor can be calculated using Formula

5.12.

145

FACTOR 8: The degree of query consistency is measured as

the level of satisfaction of users’ requirements relating to the re-

lationships between the information retrieved by pairs of users’

queries in a DI setting.

For both the GAV and LAV approaches, this quality factor is defined

as the average level of satisfaction of Req. For each QLS,GS
i ∈ Req, the

level of satisfaction of QLS,GS
i is defined by calculating the level of satis-

faction of relationship, denoted by satisfy(QLS,GS
i) with respect to qLSs

and reformulate(qGS). In our approach, we calculate the level of satis-

faction of relationship by comparing the results of evaluating qLSs and

reformulate(qGS) over the integrated resource. This can be achieved by

using AutoMed’s join and count operators, assuming the schema constructs

referenced in qLSs and reformulate(qGS) are the same. For the = rela-

tionship (Formula 5.13), the extent of ext(qLSs) ∩ ext(reformulate(qGS))

can be calculated by a natural join of the result set returned by qLSs and

reformulate(qGS), while the extent of ext(qLSs) ∪ ext(reformulate(qGS))

can be calculated by taking a left outer join of the result set returned by

qLSs and reformulate(qGS) and a right outer join of the result set returned

by qLSs and reformulate(qGS), then performing a union of both result sets.

A count operation in AutoMed can then be applied in order to calculate

the number of tuples in these result sets. For the ⊆ and ⊇ relationships

(Formulas 5.13, 5.14), the same method can be applied.

6.3 Summary

We have proposed in this chapter a data integration methodology that has

quality assessment functionality embedded within it. We have also proposed

a DI architecture as a realisation of this methodology and we have discussed

the implementations of the major components of this architecture. We have

146

described an implementation of the QFDI in OWL-DL and how the reason-

ing can be performed by using off-the-shelf ontology reasoners in order to

detect inconsistent users’ quality requirements and DI elements that violate

such requirements in the integrated resource. We have also discussed the im-

plementation of the quality factors proposed in Chapter 5 using AutoMed.

Our main contribution in this chapter is the integration methodology

incorporating quality assessment, the integration architecture and the im-

plementation of the quality factors. Our methodology includes the require-

ments gathering phase, the integration domain learning phase, the integra-

tion phase and the quality assessment phase. In contrast to other integration

methodologies, a key distinguishing characteristic of our methodology is the

quality assessment phase embedded within successive iterations of the inte-

gration process.

In the next chapter, we will consider a real-world integration project in

the life sciences domain and will demonstrate how our quality framework,

quality criteria, measuring and reasoning methods, and integration architec-

ture can be used to assess and improve the quality of the integrated resource.

147

Chapter 7

Evaluation

In the previous chapters, we discussed in detail our approach for assessing

the quality of integrated resources. Our approach comprises of the qual-

ity framework (QFDI), a set of quality criteria, factors and metrics, an

integration methodology with quality assessment functionality embedded

within it and an integration architecture as a realisation of our integra-

tion methodology. In this chapter, we aim to demonstrate the usefulness

of our quality assessment approach and evaluate our approach with respect

to a real integration project in the life sciences domain called iSpider (see

http://www.ispider.manchester.ac.uk/).

The evaluation approach we undertake in this chapter includes three

steps: we first generate an initial integrated resource by adopting one of

the local schemas as the global schema as was done in the original iSpider

project. Second, we measure the quality of this integrated resource with

respect to a subset of the quality factors proposed in Chapter 5 (we consider

in this chapter quality factors 1, 4 and 7) and calculate the overall quality

of this integrated resource. Third, we validate a set of users’ quality re-

quirements and identify possible amendments that should be made in order

to fulfil these requirements. Fourth, we iteratively apply these amendments

148

to our initial integrated resource, make the quality measurements and com-

pare the overall quality of the updated integrated resource with the overall

quality of the initial integrated resource.

In this chapter, we apply Quality Factors 1, 4 and 7 that have been

proposed in Chapter 5. In contrast to the case study introduced the in

Chapter 3, the iSpider project has two advantages for our evaluation purpose

in this chapter. First, this case study is developed based on a real-world

data integration project with more realistic users’ requirements. Second,

the integrated resource is more complex than the case study in Chapter 4

and it is therefore more suitable for evaluating our whole approach.

This chapter is organised as follows. Section 7.1 introduces the initial

integrated resource designed for the iSpider project including the three data

sources and the domain ontology. In Section 7.2, we describe the informa-

tion collected from the original iSpider project users including a set of users’

queries, users’ quality requirements and users’ assertions. We then demon-

strate the integration of these data sources and several quality improvements

to the integrated resource in three iterations in Section 7.3. Section 7.4 pro-

vides a summary of this chapter.

7.1 The Evaluation Domain

In order to evaluate our quality assessment approach, we use an existing

integration project, called In Silico Proteome Integrated Data Environment

Resource (iSpider). This project aims to develop an integrated platform of

proteome-related resources, using existing standards from proteomics, bioin-

formatics and e-Science, for answering users’ requests expressed as a set of

queries over this platform. In our integration architecture, the integration

process comprises of the Requirements Gathering Phase, Integration Do-

main Learning Phase, Integration Phase and Quality Assessment Phase.

149

We reuse the schemas and mappings initially created by the iSpider team

to demonstrate how an initial integrated resource can be created and how

its quality can be iteratively improved by applying our quality assessment

methods. The iSpider project is developed based on AutoMed and, there-

fore, the following discussions are presented using the AutoMed syntax for

the mappings and the queries.

7.1.1 Data Sources

In the iSpider project, three autonomous proteomics resources are inte-

grated and all of them contain overlapping and distinct information on

protein/peptide identification. All data sources are represented using the

Relational model. The original schemas of the data sources are huge and we

illustrate here only the core part of such schemas to illustrate our approach.

We refer the readers to the websites of these data sources for full details of

them.

150

The Proteome Experimental Data RepOsitory (PEDRo http://pedro.

man.ac.uk/) stores a collection of descriptions of experimental data sets

in proteomics such as details of the experimenter, the sample source, the

methods and equipment employed and results from these experimentations.

In our evaluation, we consider the PEDRo schema shown in Figure 7.1.

Figure 7.1: Data Source PEDRo

Two foreign keys are defined in the proteinhit table, one with the db search

attribute referencing the id attribute in the dbsearch table, and the other

with the protein attribute referencing the id attribute in the protein table.

Another foreign key is defined in the dbsearch table with the db search para-

meters attribute referencing the id attribute in the dbsearchparameters ta-

ble. Similarly, another foreign key is defined in the peptidehit table with the

db search attribute referencing the id attribute in the dbsearch table.

151

The Global Proteome Machine Database (gpmDB http://www.thegpm.

org/) is a publicly available database with tens of thousands of data con-

tributed by researchers around the world in order to assist in the validation

of peptide MS/MS spectra and protein coverage patterns. We consider the

gpmDB schema shown in Figure 7.2 in our evaluation process.

Figure 7.2: Data Source gpmDB

A foreign key is defined in the aa table with the pepid attribute ref-

erencing the peptid attribute in the peptide table. Another foreign key is

defined in the peptide table with the proid attribute referencing the proid

attribute in the protein table. Two foreign keys are defined in the protein

table referencing the proseqid attribute in the proseq table and the resultid

attribute in the result table respectively.

152

PepSeeker (http://nwsr.smith.man.ac.uk/pepseeker) is a database

capturing the peptide identification and ion information from proteome ex-

periments. The database currently contains 185000+ peptides and associ-

ated database search information. Users of this database can retrieve pep-

tide, protein and spectral information based on protein or peptide informa-

tion, such as amino acid sequences. We consider the PepSeeker schema in

Figure 7.3 in our evaluation process.

Figure 7.3: Data Source PepSeeker

Three foreign keys are defined in the proteinhit table with the Protein-

Score attribute referencing the id attributes in the proteinscore table, the

153

fileparameters attribute referencing the id attribute in the fileparameters

table, and the proteinID attribute referencing the ProteinId attribute in

the species table. Two foreign keys are defined in the peptidehit table with

the iontable attribute referencing the id attributes in the iontable table and

with the proteinscore attribute referencing the id attribute in the protein-

score table. Another foreign key is defined in the fileparameters table with

the MASS attribute referencing the id attribute in the searchmasses table.

7.1.2 Domain Ontology

In the life sciences domain, there exist many ontologies for representing in-

formation about different parts of this very large domain. However, there is

no existing domain ontology that represents the same proteomics concepts

as appearing in the schemas in the iSpider project. Therefore, in this case

study, we consulted the information provided by the original iSpider project

domain experts and identified manually the schema constructs that repre-

sent the same real-world concepts. Figures E.4, E.5 and E.6 in Appendix

E.3 list all such concepts and their corresponding schema constructs. Since

no real-world ontology has been discovered for this project, we do not trans-

form the information represented in the Relational model into an ontological

representation, but we work directly with the correspondences of the data

source schema constructs to the identified real-world concepts. This also

serves to illustrate that the quality measurements aspects of our approach

can be used even if there is not available a suitable initial domain ontology.

However, other techniques could also be used in order to generate the con-

ceptual representations (e.g., domain ontologies), such as database reverse

engineering [85].

154

7.2 Users’ Requirements

In this section, we list two types of users’ requirements: the set of queries

users want to be answered by the integrated resource and the set of users’

quality requirements. We also list here a users’ assertion stating users’ ad-

ditional knowledge of this domain. These requirements are derived from the

iSpider project.

7.2.1 User’s Queries

Q1 Retrieve all protein identifications for a given protein accession number

Q2 Retrieve all protein identifications for a given group of proteins

Q3 Retrieve all protein identifications for a given organism

Q4 Retrieve all protein identifications given a certain peptide and their

related amino acid information

Q5 Retrieve all identifications of a given protein given a certain peptide

Q6 Retrieve all peptide-related information for a given protein identifica-

tion

Q7 Retrieve all ion related information

155

Q1: [{an, lsid}|{lsid, an} ← ⟨⟨UProteinHit, accession number⟩⟩; an = ’ENSP00000339074’]

Q2: [{an, lsid}|{lsid, an} ← ⟨⟨UProteinHit, accession number⟩⟩;
member [lsid|{lsid, d} ← ⟨⟨UProteinHit, description⟩⟩; like d ’%Actin%’] lsid]

Q3: [{an, lsid}|{lsid, an} ← ⟨⟨UProteinHit, accession number⟩⟩;
member [lsid|{lsid, o} ← ⟨⟨UProteinHit, organism⟩⟩; like o ’%sapiens%’] lsid]

Q4: [{pr, sc}|{lsid1, pr} ← ⟨⟨UProteinHit, protein⟩⟩;
{lsid2, seq} ← ⟨⟨UPeptideHit, sequence⟩⟩; seq = ’ATLTSDK’;

{pepID, protID} ← ⟨⟨UPeptideHitToProteinHit mm⟩⟩;
lsid2 = pepID; lsid1 = protID;

{lsid2, sc} ← ⟨⟨UPeptideHit, score⟩⟩;
{aid, pid} ← ⟨⟨GS1 aa,GS1 pepid⟩⟩; pid = pepID]

Q5: [{an, lsid1, sc}|{lsid2, seq} ← ⟨⟨UPeptideHit, sequence⟩⟩; seq = ’LVNELTEFAK’;

{lsid1, an} ← ⟨⟨UProteinHit, accession number⟩⟩; an = ’gi—229552’;

{pepID, protID} ← ⟨⟨UPeptideHitToProteinHit mm⟩⟩;
lsid2 = pepID; lsid1 = protID;

{lsid2, sc} ← ⟨⟨UPeptideHit, score⟩⟩]
Q6 : [{an, seq, sc, pr, dbs}|{lsid1, an} ← ⟨⟨UProteinHit, accession number⟩⟩;

lsid1 = {’URN:LSID:ispider.man.ac.uk:pedro’, 1069};
{pepID, protID} ← ⟨⟨UPeptideHitToProteinHit mm⟩⟩;
lsid1 = protID;

{lsid2, seq} ← ⟨⟨UPeptideHit, sequence⟩⟩; lsid2 = pepID;

{lsid2, sc} ← ⟨⟨UPeptideHit, score⟩⟩;
{lsid2, pr} ← ⟨⟨UPeptideHit, probability⟩⟩;
{lsid1, dbs} ← ⟨⟨UProteinHit, dbsearch⟩⟩]

Q7 : [{ionid,mat, imm}|{ionid} ← ⟨⟨GS1 iontable⟩⟩,
{ionid,mat} ← ⟨⟨GS1 iontable,GS1 Matches⟩⟩,
{ionid, imm} ← ⟨⟨GS1 iontable,GS1 Immon⟩⟩]

Table 7.1: Users’ Queries in IQL

7.2.2 Users’ Quality Requirements and Validation

The users’ quality requirements can be expressed using various relationships

between quality factors 1, 4 and 7 as below:

R1 Schema constructs relating to the same domain concept that satisfy

156

f4 should also satisfy f7 (where Concept denotes the set of domain

concepts and Sc denotes the set of schema constructs):

(Sc ⊓ ∀Concept ⊓ ∀contains sat−.{f4}) ⊑
(Sc ⊓ ∀Concept ⊓ ∀contains sat−.{f7})1

This is decomposed into two segments:

R1.1 = (Sc ⊓ ∀Concept ⊓ ∀contains sat−.{f4})
R1.2 = (Sc ⊓ ∀Concept ⊓ ∀contains sat−.{f7})

R2 There should be at least one schema construct relating to the Peptide

domain concept that satisfies f4:

(Sc ⊓ Peptide ⊓ ∀contains sat−.{f4}) ̸≡ ∅

We have one segment:

R2.1 = (Sc ⊓ Peptide ⊓ ∀contains sat−.{f4})

R3 Any schema construct that satisfies f4 but does not satisfy f7 must be

related to the Peptide concept:

(Sc⊓∀contains sat−.{f4}⊓∀contains not sat−.{f7}) ⊑ (Sc⊓Peptide)

This is decomposed into two segments:

R3.1 = (Sc ⊓ ∀contains sat−{f4} ⊓ ∀contains not sat−.{f7})
R3.2 = (Sc ⊓ Peptide)

R4 Schema constructs that relate to the Mass concept should satisfy f4:

Mass ⊓ ∀contains not sat−.{f4} ≡ ∅

We have one segment:

R4.1 = (Mass ⊓ ∀contains not sat−.{f4})
1We note that ∀Concept is not defined in the DL syntax presented in Table 6.1. Its

usage within requirement R1 is a shorthand, and there are actually a set of requirements

R1c1 , ..., R1cn , one for each concept ci in the domain ontology. For example, in our case

study we define R1Peptide as (Sc ⊓ Peptide ⊓ ∀contains sat−.{f4}) ⊑ (Sc ⊓ Peptide ⊓
∀contains sat−.{f7}) for the Peptide concept; and similarly for other domain concepts.

157

R5 Information relating to the amino acid (AA) concept and information

relating to the ion concept should be retrievable via the users’ queries:

(AA ⊓ ∀contains sat−.{f4}) ̸≡ ∅
(Ion ⊓ ∀contains sat−.{f4}) ̸≡ ∅

These comprise two segments:

R5.1 = (AA ⊓ ∀contains sat−.{f4})
R5.2 = (Ion ⊓ ∀contains sat−.{f4})

7.2.3 Users’ Assertion

An additional users’ assertion states that the proteinID and id attributes in

the proteinhit table of the PepSeeker data source are disjoint.

A1 (pepseeker proteinhit proteinID ⊓ pepseeker proteinhit id) ≡ ∅

7.3 Data Integration Using our Approach

In this section, we undertake our data integration process in three iterations.

We assess the quality of the integrated resource with respect to quality

factors 1, 4 and 7 (see Sections 5.2 and 5.3 in Chapter 5) after each iteration

and derive the amendments to the integrated resource for the subsequent

iteration. In the first iteration, we use the PEDRo schema as Global Schema

1 (GS1) and establish mappings between the three data sources and GS1.

In the second iteration, we improve the global schema by incorporating the

schema constructs from the gpmDB data source, obtaining Global Schema 2

(GS2) and establish mappings for deriving the additional schema constructs

of this schema. In the third iteration, we update GS2 by involving the

schema constructs from the PepSeeker data source, obtaining Global Schema

3 (GS3) and establish the corresponding mappings.

158

7.3.1 The First DI Iteration

Definition of Global Schema 1

In the first iteration, we use the PEDRo schema as Global Schema 1 (GS1)

due to the much richer contents of this schema compared with the gpmDB

and PepSeeker schemas. AutoMed mappings are then established between

the three data sources and GS1 for deriving the schema constructs in GS1.

All GS1 schema constructs have a derivation from the PEDRo data source.

Information from the gpmDB and PepSeeker data sources is used for deriving

GS1 schema constructs that relate to the GS1 tables: dbsearch, dbsearch-

parameters, peak, peptidehit, protein and proteinhit. Table E.1 in Appendix

E lists all these mappings. We list there only the mappings associating GS1

constructs with non-empty extents and we omit all other GS1 constructs

which are populated with Void in the mappings.

Quality Measurement for Iteration 1

The quality of this integrated resource is then measured with respect to

quality factors 1, 4 and 7. Regarding quality factor 1, there are 674 ex-

tensional schema constructs (tables and attributes) available from the three

data sources and 473 of them are referenced in the mappings. Therefore,

quality factor 1 is calculated as 473/674 = 0.702 using Formula 5.1. Regard-

ing quality factor 4, the set of users’ queries that need to be supported by

the integrated resource are listed in Section 7.2.2. The current integrated

resource represents 11 domain concepts as listed in Figure E.4 in Appendix

E and 7 of them relate to the reformulated queries corresponding to users’

queries. These domain concepts are Mass, Peptide, Protein, Result, Peptide

Sequence, Protein Sequence and Score. Therefore quality factor 4 is calcu-

lated as (0.18 + 0.29 + 0.60 + 0.20 + 0.25 + 0.40)/8 = 0.24 using Formula

5.6.

159

Regarding quality factor 7, there are 18 local constraint constructs (pri-

mary key and foreign key constraints) and a users’ assertion indicating that

the proteinID and id attributes in the proteinhit table in Pepseeker are dis-

joint (see Section 7.2.3). However, we discovered in undertaking this Case

Study that the transformation defined by the iSpider project team for de-

riving the foreign key constraint on GS1 between the protein and proteinHit

tables references the proteinID and id attributes that are sourced from the

proteinhit table in PepSeeker, and is therefore not consistent with the users’

assertion. We list here the relevant transformations, with the definition of

the foreign key constraint being the last one:

add ⟨⟨GS1 proteinhit⟩⟩ /* adding the proteinhit table in GS1 */

[{′proteinhit′ + d}|d← ⟨⟨pepseeker proteinhit⟩⟩];
add ⟨⟨GS1 proteinhit,GS1 protein⟩⟩ /* adding its protein attribute */

[{{′proteinhit′, d}, {′proteinhit′, x}}|{d, x} ← ⟨⟨pepseeker proteinhit, pepseeker ProteinID⟩⟩];
add ⟨⟨GS1 protein⟩⟩ /* adding the protein table */

[{′proteinhit′, d}|d← ⟨⟨pepseeker proteinhit⟩⟩];
add ⟨⟨GS1 protein,GS1 id⟩⟩ /* adding its id attribute */

[{{′proteinhit′, d}, {′proteinhit′, d}}|d← ⟨⟨pepseeker proteinhit⟩⟩];
add /* adding a foreign key constraint */

⟨⟨GS1 fk proteinhit protein1,GS1 proteinhit, ⟨⟨GS1 proteinhit,GS1 protein⟩⟩,
GS1 protein, ⟨⟨GS1 protein,GS1 id⟩⟩⟩⟩;

Therefore, quality factor 7 is calculated as 18/19 = 0.95 using Formula

5.12.

Assuming these three factors are assigned equal weight, the overall qual-

ity of the integrated resource after iteration 1 is calculated as 0.702+0.24+0.95
3

=

0.63. The set of items that do and do not satisfy each quality factor is sum-

marised in Tables E.4,E.5,E.6, E.7 and E.8 in Appendix E. We next validate

the users’ quality requirements with respect to the measurement results, as

described below.

160

Reasoning in QFDI for Iteration 1

We extended the OWL-DL implementation of our QFDI with users’ quality

requirements and DI items that do and do not satisfy each quality factor (see

Figure 7.4). Two kinds of reasonings are applied, TBox reasoning, where

only the classes and axioms are involved in the process, and ABox reasoning,

where instances are also considered in the inference process. As the result

of TBox reasoning, the reasoner detected that the quality requirements of

Section 7.2.2 are not consistent with each other since the reasoner cannot

generate a model that can satisfy all of them. The error messages from the

reasoner are illustrated in Figure 7.5.

161

Figure 7.4: QFDI in OWL DL - This figure shows the domain concepts,

QFDI concepts including the set of users’ quality requirements, and a set of

general axioms that are used for TBox reasoning

In order to resolve these inconsistency issues, we apply TBox reasoning

again, after relaxing the general axioms stating that there must exist an

individual satisfying each user quality requirement. Generally, we remove

in turn each axiom as suggested in the reasoning output in Figure 7.5 and

observe the new reasoning result. In particular, if we remove the general

axiom as relating to requirement R3.1 we discover, using the reasoner, that

R3.1 must be associated with no individual (identified by the Nothing con-

cept being inferred for R3.1 — see Figure 7.6). Alternatively, if we remove

the subclass relationship between R1.1 and R1.2, there will not be any in-

162

consistency exceptions generated by the reasoner. Therefore, we conclude

that R1 and R3 cannot be satisfied at the same time. In our case study,

we chose to remove R1 from the set of users’ quality requirements to resolve

this inconsistency, resulting in an updated set of users’ quality requirements

comprising R2, R3, R4 and R5.

163

(a)

(b)

Figure 7.5: Output of TBox Reasoning after Iteration 1. Figure (a) shows

inconsistencies have been discovered and Figure (b) shows the set of axioms

that may cause these inconsistencies

164

(a)

(b)

Figure 7.6: Solution 1 to Resolve Inconsistency - Remove Axiom for R3.

Figure (a) shows that the axiom stating R3.1 has an individual is removed

and Figure (b) shows that an axiom stating R3.1 is associated with Nothing

is generated by the reasoner

For applying ABox reasoning, we specified assertions indicating the items

that do and do not satisfy each quality factor in our framework by gener-

ating the OWL-DL individuals and corresponding axioms for each quality

factor. Such items are automatically collected in the assessment processes

for quality factors discussed in Chapter 5 and stored in the file system. We

then developed a program to generate OWL-DL assertions with respect to

these items.

After we applied the ABox reasoning process, each quality requirement

has associated with it a set of items arising from the inference (see Figures

7.7, 7.8, 7.9 and 7.10 for quality requirements R2, R3, R4 and R5 respec-

tively). The original R2 indicated that there should be at least one item to

satisfy R2 and it has been confirmed by the reasoning results (Figure 7.7).

165

For R3, we then apply the subclass relationship between R3.1 and R3.2 (see

Figure 7.8) and we discover that this relationship cannot be satisfied with

respect to the current integrated resource. For R4, there should not be any

item inferred as satisfying it, but the current integrated resource cannot sat-

isfy this requirement (see Figure 7.9). For R5, the original R5 indicated that

there should be at least one item satisfying it, but the reasoner inferred that

R5 is associated with no item. Therefore, the current integrated resource

needs to be modified in order to satisfy R3, R4 and R5.

Figure 7.7: ABox Reasoning for R2 after Iteration 1, showing R2.1 has

two individuals gpmdb peptde and pepseeker peptidehit associated with it

inferred by the reasoner

166

(a)

(b)

Figure 7.8: ABox Reasoning for R3 after Iteration 1, showing R3.1 has

one individual pepseeker proteinhit pepseeker ProteinID associated with

it inferred by the reasoner and R3.2 now has 11 individuals

167

Figure 7.9: ABox Reasoning for R4 after Iteration 1, showing R4.1 has 6

individuals associated with it inferred by the reasoner

168

(a)

(b)

Figure 7.10: ABox Reasoning for R5 after Iteration 1, showing both R5.1

and R5.2 have no individuals associated with them inferred by the reasoner

7.3.2 The Second DI Iteration

Definition of Global Schema 2

As discussed in the previous section, we have identified that quality re-

quirements 3, 4 and 5 cannot be satisfied. We then analysed the reasoning

results and the previous integrated resource, and provided the following

amendments in the second iteration.

In the second iteration, we improved the global schema by adding to it the

schema constructs from the gpmDB data source, resulting in global schema

169

GS2. This enriches the query answerability relating to quality requirement

5. Regarding quality requirement 3, we took the solution of removing the

items that do satisfy quality factor 4 and do not satisfy quality factor 7 by

modifying the PEDRo schema. In the updated PEDRo schema, we modified

the foreign key between the protein and proteinHit tables by linking the id

attributes in each table instead of linking the id attribute in the protein

table and the ProteinID attribute in the proteinHit table. We also modified

the transformations for deriving this foreign key. We list here the relevant

transformations, with the updated foreign key definition being the last of

these:

add ⟨⟨GS1 proteinhit⟩⟩ /* adding the proteinhit table in GS1 */

[{′proteinhit′ + d}|d← ⟨⟨pepseeker proteinhit⟩⟩];
add ⟨⟨GS1 proteinhit,GS1 id⟩⟩ /* adding its id attribute */

[{{′proteinhit′, d}, {′proteinhit′, d}}|d← ⟨⟨pepseeker proteinhit⟩⟩];
add ⟨⟨GS1 protein⟩⟩ /* adding the protein table */

[{′proteinhit′, d}|d← ⟨⟨pepseeker proteinhit⟩⟩];
add ⟨⟨GS1 protein,GS1 id⟩⟩ /* adding its id attribute */

[{{′proteinhit′, d}, {′proteinhit′, d}}|d← ⟨⟨pepseeker proteinhit⟩⟩];
add /* adding a foreign key constraint */

⟨⟨GS1 fk proteinhit protein1,GS1 proteinhit, ⟨⟨GS1 proteinhit,GS1 id⟩⟩,
GS1 protein, ⟨⟨GS1 protein,GS1 id⟩⟩⟩⟩;

In addition, we also modify the transformations that are used for de-

riving the mass value type and mass error type constructs on GS1 by ref-

erencing also the MASS and TOLU schema constructs from the PepSeeker

data source, which were missing from the old iSpider mappings. This also

improved the concept coverage in quality factor 4. Table E.2 in Appendix

E lists the set of mappings that were amended in the second iteration.

The quality of this integrated resource is again measured with respect

to quality factors 1, 4 and 7. Regarding quality factor 1, there are 674 ex-

tensional schema constructs (tables and attributes) available from the three

170

data sources and 569 of them are now referenced in the mappings. There-

fore, quality factor 1 is calculated as 569/674 = 0.844 using Formula 5.1

(higher than the value of 0.702 in iteration 1).

Regarding the same set of users’ queries that need to be supported by

the integrated resource in quality factor 4, the modified integrated resource

represents 11 domain concepts as listed in Table E.5 in Appendix E and 8

of them relate to the reformulated queries of users’ queries. These domain

concepts are Mass, Peptide, Protein, Result, Peptide Sequence, Protein Se-

quence, Score and AA, and quality factor 4 is calculated as (0.27 + 0.36 +

0.25 + 0.60 + 0.20 + 0.40 + 0.50)/8 = 0.32 using Formula 5.6.

Regarding quality factor 7, there are 18 local constraint constructs and

1 users’ assertion. After the modification of the foreign key between the

protein and proteinHit tables and the associated transformations resolves

the inconsistency with the users’ assertion A1, all constraints are now valid

with respect to the current set of transformations. Therefore, quality factor

7 is calculated as 19/19 = 1.00 using Formula 5.12.

Assuming these three factors are assigned equal weight, the overall qual-

ity of the integrated resource after iteration 2 is calculated as 0.844+0.32+1.00
3

= 0.72. We note that this is higher than the value of 0.63 in iteration 1. The

set of items that do and do not satisfy each quality factor is summarised in

Tables E.9, E.10, E.11 and E.12 in Appendix E. We next validated users’

quality requirements with respect to the measurement results as follows.

Reasoning in QFDI for Iteration 2

We extended the OWL-DL implementation of our QFDI with the updated

DI items that do and do not satisfy each quality factor in this iteration.

TBox and ABox reasonings are then applied. Regarding the TBox reason-

ing, since there are no changes to the users’ quality requirements from the

first iteration, the reasoning process results in no inconsistency exceptions.

171

Regarding the ABox reasoning, the reasoner is applied to the updated in-

dividuals for each quality factor. The outputs for quality requirement R2,

R3, R4 and R5 change as a result (see Figures 7.11, 7.12, 7.13 and 7.14

respectively). R2 and R3 are now satisfied. R4 has been improved since

the number of individuals that do not satisfy this quality requirement has

reduced to 4 from the previous value of 6. R5 has also been improved be-

cause an individual gpmdb aa gpmdb aaid is now associated with R5.1. We

discovered that quality requirement R5.2 is still not satisfied since the up-

dated integrated resource still lacks the Ion information and we designed

the third iteration in order to satisfy quality requirements R4 and R5.2.

Figure 7.11: ABox Reasoning for R2 after Iteration 2, showing

R2.1 has three individuals gpmdb aa gpmdb pepid, gpmdb peptde and

pepseeker peptidehit associated with it inferred by the reasoner

172

Figure 7.12: ABox Reasoning for R3 after Iteration 2, showing there is no

individual associated with R3.1 inferred by the reasoner

Figure 7.13: ABox Reasoning for R4 after Iteration 2, showing R4.1 has

four individuals associated with it inferred by the reasoner

173

Figure 7.14: ABox Reasoning for R5 after Iteration 2, showing R5.1 has

individual gpmdb aa gpmdb aaid associated with it inferred by the reasoner

7.3.3 The Third DI Iteration

Definition of Global Schema 3

In the second iteration, we have improved the overall quality from 0.654

to 0.741, but the integrated resource still lacks support for quality require-

ments R4 and R5.2. Therefore, we applied a third integration iteration

involving information available only from the PepSeeker data source in the

integration process. We updated the global schema by adding the schema

constructs from the PepSeeker data source, giving new global schema GS3.

This enriches the query answerability relating to quality requirement R5.

In addition, we also modified the mappings that were used for deriving the

charge constructs on GS2 by referencing also the CHARGE schema con-

struct from the PepSeeker data source, which were missing from the old

iSpider mappings. This also improved the concept coverage in quality factor

4. Table E.3 in Appendix E lists the mappings that were amended in the

third iteration.

The quality of this integrated resource is again measured with respect

to quality factors 1, 4 and 7. Regarding quality factor 1, there are 674 ex-

174

tensional schema constructs (tables and attributes) available from the three

data sources and all of them are now referenced in the mappings. Therefore,

quality factor 1 is calculated as 674/674 = 1 using Formula 5.1.

Regarding the users’ queries that need to be supported by the integrated

resource in quality factor 4, the modified integrated resource represents 11

domain concepts as listed in Table E.6 in Appendix E and 9 of them relate

to the reformulated queries of the users’ queries. These domain concepts are

Mass, Peptide, Protein, Result, Peptide Sequence, Protein Sequence, Score,

AA and Ion, and quality factor 4 is calculated as (0.27+0.36+0.25+0.33+

0.60 + 0.20 + 0.40 + 0.50)/8 = 0.36 using Formula 5.6. Regarding quality

factor 7, there are 18 local constraint constructs and 1 users’ assertion.

All such constraints are valid with respect to the current set of mappings.

Therefore, quality factor 7 is calculated as 19/19 = 1.00 using Formula 5.12.

Assuming these three factors are assigned qual weight, the overall quality of

the integrated resource after iteration 3 is calculated as 1.00+0.36+1.00
3

= 0.79.

The set of items that do and do not satisfy each quality factor is summarised

in Tables E.13, E.14 and E.15 in Appendix E. We next validated users’

quality requirements with respect to the measurement results as follows.

Reasoning in QFDI for Iteration 3

We extended the OWL-DL implementation of our QFDI with the updated

DI items that do and do not satisfy each quality factor in this iteration

TBox and ABox reasonings are then applied. Regarding the TBox reason-

ing, since there are no changes to the users’ quality requirements from the

first iteration, the reasoning process results in no inconsistency exceptions.

Regarding the ABox reasoning, the reasoner is applied to the updated indi-

viduals for each quality factor. Quality requirement R5.2 is now associated

with an individual pepseeker iontable inferred by the reasoner (see Figure

7.15). However, quality requirement R4 is still not fully satisfied by the

175

current integrated resource, but there are fewer individuals are associated

with this requirement than in the first iteration.

Figure 7.15: ABox Reasoning for R5 after Iteration 3, showing 5.2 is asso-

ciated with an individual pepseeker iontable inferred by the reasoner

7.3.4 Quality Improvement over Three Iterations

We have demonstrated above how our QFDI can be used for increasing

the quality of the integrated iSPIDER resource with respect to the users’

quality requirements. Figure 7.16 illustrates the quality increase of each

quality factor in the three integration iterations. We can see that each

quality factor and the overall quality have been improved incrementally.

All users’ quality requirements have been satisfied by the final integrated

resource except R4. However, there are also improvements with respect to

R4 compared with the initial global schema GS1, because the number of

items that do not satisfy R4 has been reduced from 6 to 4.

176

Figure 7.16: Increase of Quality Factor in 3 Iterations

7.4 Conclusion

We have presented in this chapter an evaluation of our approach to assessing

and improving the quality of integrated resources, using the iSpider life

sciences data integration project. Our evaluation comprised of three steps,

the creation of the initial integrated resource, the measurement and quality

assessment step, and the quality improvement step. This was repeated over

three iterations. Through this simple evaluation, we have demonstrated that

the quality of the iSpider integrated resource can be improved by using our

quality assessment and improvement approach.

Future work will focus on a larger evaluation of our quality assessment

approach based on the iSpider project. In our current evaluation process, we

began by adopting the PEDRo schema as the original integrated resource,

as was done by the original iSpider integrators. In our future work, we will

create a number of alternative initial integrated resources and compare their

quality. Since there is no existing domain ontology in the life-science domain

that is suitable to represent the information stored in the data sources,

177

in our evaluation process we did not consider the ontology-related quality

factors. Therefore, in our future work, we will construct an ontology that

uses terminology similar to that of the iSpider data sources in order to be

able to link the data sources to the domain ontology and to evaluate our

ontology-related quality factors.

178

Chapter 8

Conclusions and Future Work

In this thesis, we have presented a quality assessment approach in the context

of data integration which comprises a quality framework, a set of quality

criteria and factors, and a novel data integration methodology incorporating

quality assessment functionality. In this chapter, we first provide an overview

of the thesis and then discuss its contributions and the areas of future work.

In Chapter 2, we reviewed the major quality related issues in data inte-

gration and information systems, with particular focus on the difficulties and

characteristics of data quality definition and measurement methods in the

DI context. We also reviewed related work on quality frameworks proposed

in the areas of data integration and e-science. The AutoMed heterogeneous

data integration system, which was used as the basis of implementing our

approach, is also introduced in this chapter.

In Chapter 3, we proposed our research approach derived by analysing

the research literature, supplemented by the practical experiences of a group

of data integrators identified through an interview with them conducted in

2008. We identified the users’ requirements that we consider are crucial

in our research. In this chapter, we also proposed our DI methodology

incorporating quality assessment functionality. We then introduced a case

179

study that was used in our discussions in later chapters.

In Chapter 4, we introduced our Quality Framework for Data Integration

(QFDI) and proposed a quality hierarchy comprised of quality criteria, qual-

ity factors and metrics for measuring these. We also discussed the reasoning

capabilities required to generate a consistent and integrated quality view of

the integrated resource with respect to different users’ quality requirements

as a whole and also individually.

In Chapter 5, we defined five quality criteria and their sub-criteria in

the DI context: completeness, consistency, accuracy, minimality and perfor-

mance. A set of quality factors relating to the completeness and consistency

quality criteria were proposed and discussed in detail, together with quality

metrics for measuring these factors using knowledge extracted from the DI

elements.

In Chapter 6, we introduced a DI architecture that realises our DI

methodology proposed in Chapter 3. We also illustrated a typical data

integration workflow using this architecture. We discussed in detail the im-

plementation of key components of our DI architecture, including the OWL

representation of our QFDI, the transformation algorithm from a relational

schema to an ontology representation and the implementation of the quality

factors proposed in Chapter 5.

In Chapter 7, we evaluated our quality assessment approach, demonstrat-

ing its usefulness with respect to a real-world life sciences data integration

project, iSpider. We demonstrated quality measurement of the iSpider inte-

grated resource and quality improvement adopting our approach.

Our research presented in this thesis makes several contributions:

• We have proposed a quality framework that is able to represent differ-

ent users’ quality perspectives. We have identified a set of elements in

the integrated resource that can be referenced by quality measurement

methods and that are significant for the iterative quality improvement

180

of the integrated resource.

• We have defined five quality criteria and a set of quality factors for in-

terpreting two of these criteria that are specific to the data integration

context.

• We have proposed a set of quality measurement methods for calculat-

ing the level of satisfaction of the integrated resource with respect to

the quality factors and the users’ requirements.

• We have proposed a novel data integration methodology. This inte-

gration methodology embeds quality assessment functionalities within

the integration process and allows the quality assessment and itera-

tive improvement of the integrated resource. We have demonstrated

the use of our quality assessment approach in a real-world life sciences

data integration project and have illustrated how our approach can be

used to improve the quality of the integrated resource.

• We have proposed an ontological representation of our quality frame-

work and have identified the ontological expressiveness and reasoning

abilities necessary for this framework in order to generate a consistent

and integrated quality view. This enables off-the-shelf ontology rea-

soners to be adopted in detecting inconsistencies within and between

the users’ quality requirements and the integrated resource.

This thesis has also presented an implementation of our quality assess-

ment approach that uses the AutoMed data integration system in order

to provide the mappings and query processing capabilities. However, our

approach could be implemented using any other data integration system,

so long as this supports GAV and LAV mappings and sufficiently expres-

sive query reformulation capability. In our implementation, we also used

181

COMA++ and FaCT++ for the matching and inference aspects, respec-

tively. Other schema matching tools and ontology reasoning tools can also

be adopted in our approach if they provide sufficient schema matching and

reasoning capabilities as described in Chapter 4. We also illustrated in Chap-

ter 7 that the quality measurement and improvement aspects of our approach

can be used even if a suitable initial domain ontology is not available.

The results of our thesis work have been published as follows. A first

version of the transformation algorithm between the relational schema and

its ontology representation was described in [38]. An early version of our

DI methodology and its realisation was proposed in [86] and our quality

framework was first introduced in [87]. The application of our approach

introduced in this thesis was described in [88].

Throughout our research, we identified and addressed several challenges.

First, data integration is a complex process and there are various stages

within it where quality can be assessed. We resolved this problem by in-

troducing our DI methodology that enables the different quality aspects

of the integrated resource to be assessed iteratively. Second, it is difficult

to identify the many elements that have impact on the quality aspect of

data integration. We resolved this by focussing on the crucial DI elements:

schema constructs, mappings, assertions and data, in developing our quality

factors. Third, the quality of the integrated resources can be interpreted

from various perspectives. We resolved this problem by proposing our qual-

ity framework with a range of quality criteria and associated quality factors,

each of which can be extended. We also proposed quality measurement

methods for measuring these quality factors. Such measurement methods

can also be extended in order to provide more precise quality measurements

and provide more precise inputs to our quality framework. Fourth, the rich-

ness of the quality framework made its formalisation a challenge and we

also required that a certain level of reasoning can be applied in order to

182

identify the DI elements that may cause inconsistencies between the users’

quality requirements and the integrated resource. We resolved this problem

by adopting the description logic and OWL-DL language for formalisation

of our framework. These provide sufficient expressiveness and inferencing

power for representing our quality framework in this thesis. However, the

reasoning mechanisms of such techniques are based on weak assumptions,

such as the Open-World assumption, and reasoning with more restricted

assumptions would be more appropriate. In addition, the possible sources

of inconsistency resulting from the current reasoning approach can be ex-

tensive and it is difficult to identify the precise elements that give rise to

inconsistency.

The strengths of our approach are the rich expressiveness of our qual-

ity framework, which is also extendable to allow more quality criteria and

factors to be defined. Our DI methodology allows different quality aspects

of the integrated resource to be assessed iteratively. In addition, because

of the iterative nature of our DI methodology, data source evolution could

be handled within it. The current limitations of our approach are the com-

plexity that arises from the richness of our quality framework. The feedback

from the reasoners can also be extensive. Therefore, future work is needed

in these areas also.

There are several other directions of future work building on the results

of this thesis:

• Develop more quality factors for the completeness and consistency

quality criteria proposed in Chapter 5.

So far, we have proposed one quality factor for each quality criterion

and sub-criterion. In the future, more quality factors can be devel-

oped in order to interpret quality criteria from different perspectives.

Another task is to develop quality metrics that can measure more

accurately the quality of an integrated resource and return the DI

183

elements that are more critical to its quality improvement. We will

also consider the characteristics of semi-structured data sources when

considering assessment and improvement of an integrated resource.

• Extend our work for the accuracy, minimality and performance quality

criteria.

In addition to the completeness and consistency quality criteria dis-

cussed in this thesis, in the future we will also investigate the accuracy,

minimality and performance criteria and their quality factors interpret-

ing them with respect to our quality framework. These quality criteria

focus on the quality of the integrated resource from different aspects

and they could provide users with more options in expressing their

quality requirements.

• Provide graphical user interfaces for users to express their quality re-

quirements.

Throughout our work, we found that users may find it difficult to

express their quality requirements in the formal language we adopted

in our research if users are not familiar with this language and our

approach. Therefore, in the future, we will take this into account by

researching and developing appropriate graphical interfaces in order to

guide users in expressing their quality requirements, and automatically

transforming these into their formal representations.

• Extend our work in order to detect more precisely the DI elements

that cause inconsistency.

In this thesis, we have proposed a reasoning approach that can de-

tect inconsistencies between the users’ quality requirements and the

integrated resource. However, current off-the-shelf reasoners return a

rather low-level set of suggestions on what the inconsistencies are and

184

it is difficult to discover the useful information from the reasoning feed-

back. Therefore, we need to develop reasoning tools that can provide

more meaningful feedback with respect to the quality improvement

task in the DI context. In addition, the reasoning should take into ac-

count the relationships between DI elements, which is not supported

by our current reasoning implementation.

• Extend our quality framework by adopting more expressive logic lan-

guages.

In this thesis, we have proposed our quality framework based on the

logical foundation of description logics and implemented it using the

OWL language. Such languages are sufficient to formalise our quality

framework and off-the-shelf reasoners are available in order to support

inferencing within the framework. However, our quality framework can

be extended to support more complex users’ quality requirements as

discussed previously. Therefore, in order to formalise such additional

requirements and extend the inferencing capability accordingly, other

more expressive logic languages could be considered, such as fuzzy or

temporal logics.

• Extend the framework to capture the quality of the data sources and

to extract semantic information related to the data sources.

An important issue which impacts on the quality of data integration

is the intrinsic quality of the input data itself. This has been beyond

the scope of this thesis, but extending our framework to incorporate

this aspect would be a significant enhancement. Our framework could

also be extended with a database reverse engineering phase for extract-

ing conceptual schemas from the data sources as a first step towards

the construction of an ontology in cases where a domain ontology is

missing.

185

• We will continue the experimentation with other integration projects

with a wider range of data sources.

In this thesis, we have adopted the iSpider project for demonstrat-

ing the usefulness of our quality assessment approach. Other non-

academic data integration projects that may be more complex than

iSpider should also be investigated in the future work. This, while

beyond the scope of this thesis work, would be valuable since it would

demonstrate how our quality assessment approach can handle more

complex data integration scenarios.

In conclusion, in this thesis we have presented our quality assessment ap-

proach in the DI context. Our work provides solutions for several issues that

are not addressed or not researched in detail by state-of-the-art approaches

found in the literature. Data integration is a complex and error-prone pro-

cess. There have been many research works in this domain and most of them

focus on the creation of the integrated resource, including schema matching,

mapping generation, and processing of users’ requirements and feedback.

However, since data integration is a collaborative process involving a va-

riety of users, it is important that users are involved throughout the DI

process. Our work has demonstrated that data integration quality can be

formally modelled, assessed and improved with respect to the users’ quality

requirements.

Assessing and improving the quality of an integrated resource is crucial as

it relates directly to the users’ expectations with respect to a data integration

application. This thesis has proposed a new approach in data integration

research that could assist data integrators to create integrated resources that

are closer to users’ requirements. This is a topic which can be expected to be

of growing practical importance as the degree to which information systems

meet users’ requirements increases in significance.

186

Appendix A

Report on the Interview With

Data Integrators

This appendix gives details of the interview held with data integrators in

order to identify users’ requirements and gather first-hand experience of the

DI process. This interview took place at London Knowledge Lab in 2008

and the integrators who contributed in the interview were Alexandra Poulo-

vassilis (AP), Nigel Martin (NM) and Lucas Zamboulis (LZ). There were

three main objectives of this interview: 1) We aimed to identify the proce-

dures that data integrators undertake during the DI processes in practice

and understand the difficulties that integrators face from their experience

in order to identify the key factors to be considered in our research. 2) We

aimed to identify the users’ requirements relating to the integration process

and how data integrators aim to meet such requirements. 3) We aimed to

study possible approaches to addressing the DI difficulties that integrators

may adopt in their experience. We aimed to identify from such solutions the

type of information our methods should provide to data integrators in order

to help in improvement of an integrated resource. The questions posed, and

the answers of the data integrators, were as follows:

187

What features do you expect an automatic data integration tool

to provide if there exists one? What are the inputs and outputs?

Answer - Manual data integration process is complex, time-consuming, error-

prone and boring. Computer scientists are searching for the methods that

could assist integrators in the data integration process either automatically

or semi-automatically. In fact, data integration involves many different in-

formation domains and it is not feasible for a computer program to have

such comprehensive information. Therefore, it is not feasible to achieve full

integration process automatically at this time. Therefore, LZ noted that,

more likely, integration tools are semi-automatic and provide some or all of

the features categorised as follows: Schema matching tool aims to identify

correspondences across data sources, and between data sources and the GS ;

Mapping creation tool aims to create mappings between data sources and

the GS specified in the mapping language supported by the tool. This is

also considered as part of a schema matching tool in some research works;

Debugging tool aims to detect errors in the mappings that are generated au-

tomatically or manually; GS creation tool aims to create the GS according

to the users’ requirements; Schema annotation tool aims to automatically

annotate the GS using possible annotations from data sources.

Apart from the above features, functions are also required to examine the

data sources. NM discussed this problem from data warehouse designers’

perspective. He also indicated that a data transformation tool should be

considered as one of the data integration tools, which is to convert data

from one database into another one. The integrator has to decide what

datatype needs to be used, whether to convert to the target datatype before

the integration or use native datatypes directly. That also raises another

problem when local data sources are not formatted correctly in terms of the

GS. As an instance, LZ gave an example in the ASSIST project, where

no primary keys were given for relational data sources. This needs lots of

188

human efforts to prune the data sources.

AP also added that it could be an interactive tool beyond automatic

tools, such as the Clio project, to visualise the mappings and the GS con-

structing processes. It would be very helpful especially when there exist a

number of constraints on data sources, such as accessing permission con-

straints, that need to be handled. An integrator may not know them com-

prehensively. This tool will express these constraints on the actual schema

merging process. Also, there could also be tools to evaluate alternative

mapping solutions.

How much information do you know about data sources before the

integration process?

Answer - Because data integration projects may involve various application

domains, it is highly likely that the integrators do not have much knowledge

about such domains. Therefore, the integration resources may be correct

with respect to the application domain, but may be wrong or inaccurate

from the users’ perspectives. Apart from the domain information, integra-

tors also need to be aware of information contained in the data sources. NM

gave two examples: the data sources may not be well structured, such as

no primary key defined in the relational data sources, or the semantics of

schemas may be separated from the data itself, especially when middleware

are used. Such information may or may not be documented and delivered

with the data sources, such as schema diagrams. However, AP said that

these documents may not be enough or may be wrong, out of date, incom-

plete or too abstract. Therefore, the data integrators may need to interview

the data providers, the users, and also examine the data sources if necessary.

Data profiling techniques can be used in this process. Useful information can

be discovered in the profiling process, such as NULL values, duplications at

data or schema levels. NM also said that, sometimes, data examination may

189

also not be enough, if data is not easy to be understood, or if the related

data are widely distributed over many schemas. Therefore, interviews with

data source providers may be necessary.

Is there any regulation you can follow for data integration?

Answer - In data integration, regulations can be expressed in two aspects,

the data models used and the DI process standards the integrators have to

follow, said by AP. In the former aspect, the integrators have to consider the

data models adopted by the data sources, the mapping languages used by

the integration tool, the query language supported. In the latter aspect, NM

indicated that there exist some standards in building data warehouses that

the warehouse programmers need to follow, such as architectural standards

and quality standards. However, these standards are not highly adopted.

Which integration methodologies do you use, GAV, LAV, GLAV

or BAV? What are the difficulties in each approach?

Answer - The choice of different integration methodology depends on the

integration scenarios, said by AP. For example, GAV is more suitable in the

scenario when the details of the data sources are known, but the GS is not.

LAV is suitable when there exists one or many well-adopted or well-known

global schemas, such as the domain ontology. LZ gave an example of the

ASSIST project where integrations are required to integrate data sources

in order to comply with an medical domain ontology as the global schema.

AP also said that different information is contained in the mapping when

different methodologies are use.

How do you create the global schema?

Answer - The global schema may be given by the users or the integrators

have to create one with respect to the data sources. In the latter case,

190

LZ said that one solution is to use one schema from the data sources as

the GS as a starting point. During the integration process, the integrators

may find that this temporary GS is not capable of representing information

available from all data sources. In this case, the integrators need to modify

this GS to meet the requirements. Another way of creating the GS is a two

step process. Firstly, the data integrators need to construct a GS that can

represent all constructs from all data sources. Secondly, the integrator needs

to refine this schema with respect to the users’ requirements.

Regarding the performance issue in data integration, LZ said that the

primary goal of data integration is to have a working version that meets all

users’ requirements. Performance will be improved after the primary goal

has been achieved. This is because it is hard to identify the places where

the performance drawbacks are. This is also agreed by AP and NM.

Another GS design concern from LZ is that the GS should be as simple

as possible. LZ said that two aspects need to be considered during the

GS creation process, the users’ requirements and the information contained

in data sources. Users may require that certain information must or must

not appear in the GS. Also, users may change their perspectives during the

integration process. Therefore, the integration process has to be incremental

and mappings can be improved in each iteration.

Regarding the aspect of the complexity of the global schema, AP said

that integrators do not want to have the same information appear in multiple

places in the GS, which will increase its complexity. If the data sources

contain duplicated information, it is better to inherit them in the GS, then

drop these duplications in the following step, if necessary. She also said

that it is not necessary to achieve normal form in the GS since that could

increase the complexity of the mappings.

191

Do you validate the mappings after the integration process?

Answer - LZ said that he normally runs queries on the GS and checks the

query results in order to decide if the mappings are correct. However, he

also indicated a few problems when this approach is used. For example, the

integrators can only detect if the integrated resources are working and return

results, such as no exceptions being returned. However, the data integrators

do not know that if the returned values are correct with respect to the

users’ requirements. In this case, AP said one solution is to develop the test

cases. In a complete test case, the integrators need to give the inputs and

expected outputs. This solution is similar to the acceptance test in software

engineering domain. LZ said that, in the iSpider project, this approach

was adopted with only testing queries, not the expected results. Real data

are preferred in such test cases. In some cases, sample data also need to

be generated. In the future, programs should be created to capture the

characteristics of the data sources and generate sample data automatically.

For the question of at which stage, the mappings should be validated,

LZ said he would run queries for each GS construct when it is created and

discover if it returns correct results. Then the integrators need to decide how

they will examine the mappings with respect to such results. NM gave an

example of examining mappings relating to particular areas of interest. The

integrators may be interested in all GS constructs representing relationships

between sequences and structure of proteins, and completely leave aside the

functional analysis of what these proteins do. Therefore, he concluded that,

in this step, integrators need to consider particular groups of applications

which connect with a subset of the overall GS and examine this subset

of constructs one by one. This is also agreed by AP. LZ added an example

from the iSpider project that protein queries and peptide queries were tested

separately in the testing stage.

192

How do you find the conflicts in the mappings? What kinds of

conflicts have you discovered from your past work?

Answer - In terms of conflicts existing in the mappings, LZ presented the

examples of four possible conflicts, data types, structure, synonym and

antonym names used in the corresponding schema constructs. Information

could be lost due to these conflicts. NM and LZ gave an example in the

iSpider project where the structures used in the data sources contain some

features which the GS does not represent. In this case, the information

represented in the data sources are lost after the creation of mappings be-

tween the data sources and the GS. Such features could be that the GS

constructs have 1-1 relationships, whereas the data sources support M-M

relationships between the corresponding constructs. Such information loss

is not avoidable and in the worst case, the integrators have to admit this

loss and be careful in writing the queries over the GS. The only solution to

this problem is to change the local sources or create a more comprehensive

GS.

NM also addressed that in addition to the information completeness is-

sue, the correctness of query is also important. The integrator has to guar-

antee that he is not writing a query to extract uncertain information. AP

said, in this case, integrators also have to design queries to investigate the

answer returned from users’ queries. Correctness of queries is not a simple

concept, she concluded. It requires to have the precise users’ requirements

to which kinds of correctness criteria users require. Therefore, it depends on

the users’ requirements and the users’ queries to decide whether to provide

complete, sound or exact query results.

How can you tell that your mappings include all related constructs

in the data sources?

Answer - Manually, said by LZ. There is no other way to examine this issue.

193

If functions, such as aggregation and type transformation func-

tions, are used in the mappings, is it possible to track back to the

original sources where information are extracted?

Answer - AP said this is the research of data lineage which can be found in

many research works. She also suggested the work done by Fan Hao in the

AutoMed project.

Do you consider reusing your mappings? How do you reuse the

mappings? Is it often?

Answer - LZ said he would reuse his mappings depending on the integration

scenarios. If the data source evolves, he may use the original mappings as

the starting point and modify them to meet the changes.

194

Appendix B

Integration Setting for the

Case Study

This appendix contains the case study relating to the HE domain we used

to discuss the quality framework, quality factors and quality architecture in

Chapters 4, 5 and 6. Section B.1 presents three local schemas we integrate

in the case study and Section B.2 presents the GS in this case study. Section

B.3 presents the HE domain ontology we created manually. Section B.4 lists

the matchings and mappings generated for this case study and Section B.5

lists the corresponding quality measurement results discussed in Chapter 6.

195

B.1 Local Schemas for the Case Study

Figure B.1: Local Schema 1 (LS1)

196

Figure B.2: Local Schema 2 (LS2)

197

Figure B.3: Local Schema 3 (LS3)

198

B.2 GS for the Case Study

Figure B.4: Global Schema (GS)

199

B.3 University Domain Ontology

Figure B.5: The University Domain Ontology

No. Case-Specific Knowledge, expressed in OWL-DL

B1 postgradaute student ≡ enrol max 1postgraduate programme

B2 undergraduate student ≡ enrol max 1undergraduate programme

B3 postgraduate programme ≡ is directed by max 1programme leader

B4 undergraduate programme ≡ is directed by max 1programme leader

B5 programme leader ≡ direct max 1postgraduate programme

B6 programme leader ≡ direct max 1undergraduate programme

B7 lecturer ≡ teachsomepostgraduate course

B8 lecturer ≡ teachsomeundergraduate course

B9 programme leader ≡ leadsomelecturer

B10 undergraduate student ≡ study max 8undergraduate course

B11 postgraduate student ≡ study max 2undergraduate course

B12 postgraduate student ≡ study max 5postgraduate course

B13 undergraduate programme ≡ is enrolled by max 200undergraduate student

B14 postgradaute programme ≡ is enrolled by max 100postgraduate student

Table B.1: Case-Specific Knowledge

200

B.4 Matchings and Mappings for the Case

Study

B.4.1 Matching Results

No. Correspondence

1 GS : ProgrammeHead− LS1 : ProgrammeHead

2 GS : ProgrammeHead− LS2 : ProgrammeHead

3 GS : ProgrammeHead− LS3 : ProgrammeHead

4 GS : ProgrammeStaff − LS1 : Staff

5 GS : ProgrammeStaff − LS1 : Lecturers

6 GS : ProgrammeStaff − LS2 : Lecturer

7 GS : ProgrammeStaff − LS3 : Teacher

8 GS : Course− LS1 : MandatoryCourse

9 GS : Course− LS1 : OptionalCourse

10 GS : Course− LS2 : ugCourse

11 GS : Course− LS3 : pgCourse

12 GS : pgCourse− LS3 : Module

13 GS : Student− LS2 : ugStudents

14 GS : Student− LS2 : pgStudents

15 GS : undergraduate− LS2 : ugStudents

16 GS : postgraduate− LS2 : pgStudents

17 GS : postgraduate− LS3 : postgraduate

18 GS : AcademicStaff − LS1 : Staff

19 GS : AcademicStaff − LS1 : Lecturers

20 GS : AcademicStaff − LS2 : Lecturer

21 GS : AcademicStaff − LS3 : Teacher

22 GS : assist− LS3 : assists

23 GS : teaches− LS2 : lecture

24 GS : teaches− LS3 : teach

25 GS : uenrol − LS2 : uenrol

26 GS : penrol − LS2 : penrol

27 GS : penrol − LS3 : penrol

28 GS : studies− ls2 : studies

Table B.2: Matching Results

B.4.2 Mappings

No. GS Construct : − GAV mappings

201

1 ⟨⟨programme head teacher⟩⟩ :
[{tid}|{pid, phname}←⟨⟨ls1 LS1 programme, ls1 LS1 Programme Director⟩⟩;
{tid, sname}←⟨⟨ls1 LS1 educator, ls1 LS1 Name⟩⟩; phname = sname]

++

[{tid}|{{pid, year}, tid}←⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩]
++

[{tid}|{{pid, year}, tid}←⟨⟨ls2 LS2 postgraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩; year > 1999]

++

[{tid}|{{pid, year}, phname}←⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 ProgrammeHead⟩⟩;
{tid, tname}←⟨⟨ls1 LS1 educator, ls1 LS1 Name⟩⟩; phname = tname]

2 ⟨⟨programme head teacher,TID⟩⟩ :
[{tid, tid}|{pid, phname}←⟨⟨ls1 LS1 programme, ls1 LS1 Programme Director⟩⟩;
{tid, sname}←⟨⟨ls1 LS1 educator, ls1 LS1 Name⟩⟩; phname = sname]

++

[{tid, tid}|{{pid, year}, tid}←⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩]
++

[{tid, tid}|{{pid, year}, tid}←⟨⟨ls2 LS2 postgraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩]
++

[{tid, tid}|{{pid, year}, phname}←⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 ProgrammeHead⟩⟩;
{tid, tname}←⟨⟨ls1 LS1 educator, ls1 LS1 Name⟩⟩; phname = tname]

3 ⟨⟨programme head teacher, ProgrammeName⟩⟩ :
[{phid, pname}|{pid, pname}←⟨⟨ls1 LS1 programme, ls1 LS1 Programme Name⟩⟩;
{{year, pid}, phid}←⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩]
++

[{phid, pname}|{pid, pname}←⟨⟨ls1 LS1 programme, ls1 LS1 Programme Name⟩⟩;
{{year, pid}, phid}←⟨⟨ls2 LS2 postgraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩]
++

[{phid, pname}|{pid, pname}←⟨⟨ls1 LS1 programme, ls1 LS1 Programme Name⟩⟩;
{{year, pid}, phname}←⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 ProgrammeHead⟩⟩;
{phid, phname}←⟨⟨ls1 LS1 educator, ls1 LS1 Name⟩⟩]

4 ⟨⟨programme head teacher,Description⟩⟩ :
[{phid, pdes}|{pid, pdes}←⟨⟨ls1 LS1 programme, ls1 LS1 Programme Description⟩⟩;
{{year, pid}, phid}←⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩]
++

[{phid, pdes}|{pid, pdes}←⟨⟨ls1 LS1 programme, ls1 LS1 Programme Description⟩⟩;
{{year, pid}, phid}←⟨⟨ls2 LS2 postgraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩]
++

[{phid, pdes}|{pid, pdes}←⟨⟨ls1 LS1 programme, ls1 LS1 Programme Description⟩⟩;
{{year, pid}, phname}←⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 ProgrammeHead⟩⟩;
{phid, phname}←⟨⟨ls1 LS1 educator, ls1 LS1 Name⟩⟩]

5 ⟨⟨programme head teacher,HeadName⟩⟩ :
[{phid, tname}|{{pid, year}, phid}←⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩;
{tsid, tid}←⟨⟨ls1 LS1 lecturer, ls1 LS1 TID⟩⟩; phid = tid;

{tid, tname}←⟨⟨ls1 LS1 fulltime faculty member, ls1 LS1 Name⟩⟩; tid = tsid]

++

[{phid, tname}|{{pid, year}, phid}←⟨⟨ls2 LS2 postgraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩;
{tid, tname}←⟨⟨ls1 LS1 fulltime faculty member, ls1 LS1 Name⟩⟩; phid = tid]

++

[{tid, tname}|{{pid, year}, phname}←⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 ProgrammeHead⟩⟩;
{tid, tname}←⟨⟨ls1 LS1 educator, ls1 LS1 Name⟩⟩; phname = tname]

6 ⟨⟨programme head teacher, Level⟩⟩ :
[{phid, “ug”}|{{pid, year}, phid}←⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩]
++

[{phid, “pg”}|{{pid, year}, phid}←⟨⟨ls2 LS2 postgraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩]
++

[{phid, “pg”}|{{pid, year}, phname}←⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 ProgrammeHead⟩⟩;
{phid, phname}←⟨⟨ls1 LS1 educator, ls1 LS1 Name⟩⟩]

7 ⟨⟨lead⟩⟩ :
[{phid, lid}|{cid, lid, year}←⟨⟨ls2 LS2 induct⟩⟩; {year, cid}←⟨⟨ls2 LS2 undergraduate course⟩⟩;

202

{sid, cid, year}←⟨⟨ls2 LS2 study⟩⟩; {{year, pid}, phid}←⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩;
{sid, pid}←⟨⟨ls2 LS2 undergraduate enrol⟩⟩; {sid}←⟨⟨ls2 LS2 undergraduate student⟩⟩]
++

[{phid, lid}|{cid, lid, year}←⟨⟨ls2 LS2 induct⟩⟩; {year, cid}←⟨⟨ls2 LS2 undergraduate course⟩⟩;
{sid, cid, year}←⟨⟨ls2 LS2 study⟩⟩; {{year, pid}, phid}←⟨⟨ls2 LS2 postgraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩;
{sid, pid}←⟨⟨ls2 LS2 postgraduate enrol⟩⟩; {sid}←⟨⟨ls2 LS2 postgraduate student⟩⟩]
++

[{phid, tid}|{tid, cid}←⟨⟨ls3 LS3 induct⟩⟩; {sid, cid}←⟨⟨ls3 LS3 enrol⟩⟩;
{year, sid, pid}←⟨⟨ls3 LS3 postgraduate enrol⟩⟩; {phid, phname}←⟨⟨ls1 LS1 educator, ls1 LS1 Name⟩⟩;
{{year, pid}, phname}←⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 ProgrammeHead⟩⟩]

8 ⟨⟨lead,TID⟩⟩ :
[{{phid, lid}, lid}|{cid, lid, year}←⟨⟨ls2 LS2 induct⟩⟩; {year, cid}←⟨⟨ls2 LS2 undergraduate course⟩⟩;
{sid, cid, year}←⟨⟨ls2 LS2 study⟩⟩; {{year, pid}, phid}←⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩;
{sid, pid}←⟨⟨ls2 LS2 undergraduate enrol⟩⟩; {sid}←⟨⟨ls2 LS2 undergraduate student⟩⟩]
++

[{{phid, lid}, lid}|{cid, lid, year}←⟨⟨ls2 LS2 induct⟩⟩; {year, cid}←⟨⟨ls2 LS2 undergraduate course⟩⟩;
{sid, cid, year}←⟨⟨ls2 LS2 study⟩⟩; {{year, pid}, phid}←⟨⟨ls2 LS2 postgraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩;
{sid}←⟨⟨ls2 LS2 postgraduate student⟩⟩; {sid, pid}←⟨⟨ls2 LS2 postgraduate enrol⟩⟩;
++

[{{phid, tid}, tid}|{tid, cid}←⟨⟨ls3 LS3 induct⟩⟩; {year, sid, pid}←⟨⟨ls3 LS3 postgraduate enrol⟩⟩;
{sid, cid}←⟨⟨ls3 LS3 enrol⟩⟩; {phid, phname}←⟨⟨ls1 LS1 educator, ls1 LS1 Name⟩⟩;
{{year, pid}, phname}←⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 ProgrammeHead⟩⟩;

9 ⟨⟨lead, PHID⟩⟩ :
[{{phid, lid}, phid}|{cid, lid, year}←⟨⟨ls2 LS2 induct⟩⟩; {sid, cid, year}←⟨⟨ls2 LS2 study⟩⟩;
{year, cid}←⟨⟨ls2 LS2 undergraduate course⟩⟩; {sid}←⟨⟨ls2 LS2 undergraduate student⟩⟩;
{sid, pid}←⟨⟨ls2 LS2 undergraduate enrol⟩⟩; {{year, pid}, phid}←⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩]
++

[{{phid, lid}, phid}|{cid, lid, year}←⟨⟨ls2 LS2 induct⟩⟩; {year, cid}←⟨⟨ls2 LS2 undergraduate course⟩⟩;
{sid, cid, year}←⟨⟨ls2 LS2 study⟩⟩; {{year, pid}, phid}←⟨⟨ls2 LS2 postgraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩;
{sid}←⟨⟨ls2 LS2 postgraduate student⟩⟩; {sid, pid}←⟨⟨ls2 LS2 postgraduate enrol⟩⟩]
++

[{{phid, tid}, phid}|{tid, cid}←⟨⟨ls3 LS3 induct⟩⟩; {year, sid, pid}←⟨⟨ls3 LS3 postgraduate enrol⟩⟩;
{sid, cid}←⟨⟨ls3 LS3 enrol⟩⟩; {{year, pid}, phname}←⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 ProgrammeHead⟩⟩;
{phid, phname}←⟨⟨ls1 LS1 educator, ls1 LS1 Name⟩⟩]

10 ⟨⟨lead, Year⟩⟩ :
[{{phid, lid}, year}|{cid, lid, year}←⟨⟨ls2 LS2 induct⟩⟩; {year, cid}←⟨⟨ls2 LS2 undergraduate course⟩⟩;
{sid, cid, year}←⟨⟨ls2 LS2 study⟩⟩; {{year, pid}, phid}←⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩;
{sid}←⟨⟨ls2 LS2 undergraduate student⟩⟩;
{sid, pid}←⟨⟨ls2 LS2 undergraduate enrol⟩⟩]
++

[{{phid, lid}, year}|{cid, lid, year}←⟨⟨ls2 LS2 induct⟩⟩; {year, cid}←⟨⟨ls2 LS2 undergraduate course⟩⟩;
{sid, cid, year}←⟨⟨ls2 LS2 study⟩⟩; {{year, pid}, phid}←⟨⟨ls2 LS2 postgraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩;
{sid}←⟨⟨ls2 LS2 postgraduate student⟩⟩; {sid, pid}←⟨⟨ls2 LS2 postgraduate enrol⟩⟩;
++

[{{phid, tid}, year}|{tid, cid}←⟨⟨ls3 LS3 induct⟩⟩;
{sid, cid}←⟨⟨ls3 LS3 enrol⟩⟩; {{year, pid}, phname}←⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 ProgrammeHead⟩⟩;
{year, sid, pid}←⟨⟨ls3 LS3 postgraduate enrol⟩⟩; {phid, phname}←⟨⟨ls1 LS1 educator, ls1 LS1 Name⟩⟩]

11 ⟨⟨programme lecturer member⟩⟩ :
[{lid}|lid←⟨⟨ls2 LS2 teacher⟩⟩]
++

[{tid}|tid←⟨⟨ls3 LS3 lecturer⟩⟩]
12 ⟨⟨programme lecturer member,TID⟩⟩ :

[{lid, lid}|lid←⟨⟨ls2 LS2 teacher⟩⟩]
++

[{tid, tid}|tid←⟨⟨ls3 LS3 lecturer⟩⟩]
13 ⟨⟨programme support member⟩⟩ :

[{tid}|{tid, ttid}←⟨⟨ls1 LS1 teachingsupport, ls1 LS1 TID⟩⟩]
++

[{ftid}|{ftid, ltid}←⟨⟨ls1 LS1 ft academic assistant, ls1 LS1 TID⟩⟩; {ftid, ltid}←⟨⟨ls2 LS2 support member, ls2 LS2 TID⟩⟩]
++

203

[{ptid}|{ptid, ltid}←⟨⟨ls1 LS1 pt academic assistant, ls1 LS1 TID⟩⟩; {ptid, ltid}←⟨⟨ls2 LS2 support member, ls2 LS2 TID⟩⟩]
++

[{ftid}|{ftid, ltid}←⟨⟨ls1 LS1 ft academic assistant, ls1 LS1 TID⟩⟩; {ftid, ltid}←⟨⟨ls3 LS3 educator assistant, ls3 LS3 TID⟩⟩]
++

[{ptid}|{ptid, ltid}←⟨⟨ls1 LS1 pt academic assistant, ls1 LS1 TID⟩⟩; {ptid, ltid}←⟨⟨ls3 LS3 support member, ls3 LS3 TSID⟩⟩]
14 ⟨⟨programme support member,TID⟩⟩ :

[{tsid, tsid}|{tsid, tid}←⟨⟨ls1 LS1 teachingsupport, ls1 LS1 TID⟩⟩]
++

[{ftid, ftid}|{ftid, lid}←⟨⟨ls2 LS2 support member, ls2 LS2 TID⟩⟩]
++

[{taid, taid}|{taid, lid}←⟨⟨ls3 LS3 educator assistant, ls3 LS3 TID⟩⟩]
++

[{tsid, tsid}|{tsid, lid}←⟨⟨ls3 LS3 support member, ls3 LS3 TSID⟩⟩]
15 ⟨⟨programme support member,Name⟩⟩ :

[{ftid, name}|{ftid, name}←⟨⟨ls1 LS1 fulltime faculty member, ls1 LS1 Name⟩⟩;
{ftid, lid}←⟨⟨ls2 LS2 support member, ls2 LS2 TID⟩⟩]
++

[{ptid, name}|{ptid, name}←⟨⟨ls1 LS1 parttime faculty member, ls1 LS1 Name⟩⟩;
{ptid, lid}←⟨⟨ls2 LS2 support member, ls2 LS2 TID⟩⟩]
++

[{ftid, name}|{ftid, name}←⟨⟨ls1 LS1 fulltime faculty member, ls1 LS1 Name⟩⟩;
{taid, lid}←⟨⟨ls3 LS3 educator assistant, ls3 LS3 TID⟩⟩; ftid = taid]

++

[{ptid, name}|{ptid, name}←⟨⟨ls1 LS1 parttime faculty member, ls1 LS1 Name⟩⟩;
{ptid, lid}←⟨⟨ls3 LS3 support member, ls3 LS3 TSID⟩⟩]

16 ⟨⟨course⟩⟩ :
[{cname, level}|{cid, cname}←⟨⟨ls1 LS1 mandatory course, ls1 LS1 CourseName⟩⟩;
{cid, level}←⟨⟨ls1 LS1 mandatory course, ls1 LS1 Level⟩⟩]
++

[{cname, level}|{cid, cname}←⟨⟨ls1 LS1 optional course, ls1 LS1 CourseName⟩⟩;
{cid, level}←⟨⟨ls1 LS1 optional course, ls1 LS1 Level⟩⟩]

17 ⟨⟨course, Cname⟩⟩ :
[{{cname, level}, cname}|{cid, cname}←⟨⟨ls1 LS1 mandatory course, ls1 LS1 CourseName⟩⟩;
{cid, level}←⟨⟨ls1 LS1 mandatory course, ls1 LS1 Level⟩⟩]
++

[{{cname, level}, cname}|{cid, cname}←⟨⟨ls1 LS1 optional course, ls1 LS1 CourseName⟩⟩;
{cid, level}←⟨⟨ls1 LS1 optional course, ls1 LS1 Level⟩⟩]

18 ⟨⟨course, Level⟩⟩ :
[{{cname, level}, level}|{cid, cname}←⟨⟨ls1 LS1 mandatory course, ls1 LS1 CourseName⟩⟩;
{cid, level}←⟨⟨ls1 LS1 mandatory course, ls1 LS1 Level⟩⟩]
++

[{{cname, level}, level}|{cid, cname}←⟨⟨ls1 LS1 optional course, ls1 LS1 CourseName⟩⟩;
{cid, level}←⟨⟨ls1 LS1 optional course, ls1 LS1 Level⟩⟩]

19 ⟨⟨course, Convenor⟩⟩ :
[{{cname, level}, name}|{{year, tid, cid}, ccid}←⟨⟨ls2 LS2 induct, ls2 LS2 CID⟩⟩;
{tid, ttid}←⟨⟨ls1 LS1 lecturer, ls1 LS1 TID⟩⟩; {tid, name}←⟨⟨ls1 LS1 fulltime faculty member, ls1 LS1 Name⟩⟩;
{cid, cname}←⟨⟨ls1 LS1 mandatory course, ls1 LS1 CourseName⟩⟩; {cid, level}←⟨⟨ls1 LS1 mandatory course, ls1 LS1 Level⟩⟩]
++

[{{cname, level}, name}|{{tid, cid}, ccid}←⟨⟨ls3 LS3 induct, ls3 LS3 CID⟩⟩;
{tid, ttid}←⟨⟨ls1 LS1 lecturer, ls1 LS1 TID⟩⟩; {tid, name}←⟨⟨ls1 LS1 fulltime faculty member, ls1 LS1 Name⟩⟩;
{cid, cname}←⟨⟨ls1 LS1 mandatory course, ls1 LS1 CourseName⟩⟩; {cid, level}←⟨⟨ls1 LS1 mandatory course, ls1 LS1 Level⟩⟩]

20 ⟨⟨course,Type⟩⟩ :
[{{cname, level}, “ug”}|{cid, ccid}←⟨⟨ls2 LS2 undergraduate course, ls2 LS2 CID⟩⟩;
{cid, cname}←⟨⟨ls1 LS1 mandatory course, ls1 LS1 CourseName⟩⟩; {cid, level}←⟨⟨ls1 LS1 mandatory course, ls1 LS1 Level⟩⟩]
++

[{{cname, level}, “pg”}|{cid, ccid}←⟨⟨ls3 LS3 postgraduate course, ls3 LS3 CID⟩⟩;
{cid, cname}←⟨⟨ls1 LS1 mandatory course, ls1 LS1 CourseName⟩⟩; {cid, level}←⟨⟨ls1 LS1 mandatory course, ls1 LS1 Level⟩⟩]

21 ⟨⟨course, SupportingPersonnel⟩⟩ :
[{{cname, level}, tid}|{cid}←⟨⟨ls2 LS2 undergraduate course⟩⟩; {{tid, cid}, ttid}←⟨⟨ls2 LS2 assist, ls2 LS2 TID⟩⟩;
{cid, cname}←⟨⟨ls1 LS1 mandatory course, ls1 LS1 CourseName⟩⟩; {cid, level}←⟨⟨ls1 LS1 mandatory course, ls1 LS1 Level⟩⟩]

204

++

[{{cname, level}, tid}|{cid, ccid}←⟨⟨ls3 LS3 postgraduate course, ls3 LS3 CID⟩⟩; {{tid, cid}, ttid}←⟨⟨ls3 LS3 assist, ls3 LS3 TID⟩⟩;
{cid, cname}←⟨⟨ls1 LS1 mandatory course, ls1 LS1 CourseName⟩⟩; {cid, level}←⟨⟨ls1 LS1 mandatory course, ls1 LS1 Level⟩⟩]

22 ⟨⟨lecturer⟩⟩ :
[{tid}|{tid, name}←⟨⟨ls1 LS1 fulltime faculty member, ls1 LS1 Name⟩⟩; {tid, ttid}←⟨⟨ls1 LS1 lecturer, ls1 LS1 TID⟩⟩]

23 ⟨⟨lecturer,TID⟩⟩ :
[{tid, tid}|{tid, name}←⟨⟨ls1 LS1 fulltime faculty member, ls1 LS1 Name⟩⟩; {tid, ttid}←⟨⟨ls1 LS1 lecturer, ls1 LS1 TID⟩⟩]

24 ⟨⟨educate⟩⟩ :
[{lid, sid}|{{year, lid, cid}, ccid}←⟨⟨ls2 LS2 induct, ls2 LS2 CID⟩⟩; {{year, sid, cid}, ssid}←⟨⟨ls2 LS2 study, ls2 LS2 SID⟩⟩]
++

[{tid, sid}|{{tid, cid}, ttid}←⟨⟨ls3 LS3 induct, ls3 LS3 TID⟩⟩; {{year, sid, cid}, ssid}←⟨⟨ls3 LS3 enrol, ls3 LS3 SID⟩⟩]
25 ⟨⟨programme⟩⟩ :

[{pid, year}|pid←⟨⟨ls1 LS1 programme⟩⟩; {{year, pid}, a}←⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 PID⟩⟩]
++

[{pid, year}|pid←⟨⟨ls1 LS1 programme⟩⟩; {{year, pid}, a}←⟨⟨ls2 LS2 postgraduate programme, ls2 LS2 PID⟩⟩; year > 1999]

++

[{pid, year}|{{year, pid}, a}←⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 PID⟩⟩]
Table B.3: GAV and LAV Mappings

B.5 Case Study Results

Quality Factor 1

Satisfying Elements

⟨⟨ls1 LS1 educator, ls1 LS1 Name⟩⟩ ⟨⟨ls2 LS2 study, ls2 LS2 SID⟩⟩
⟨⟨ls1 LS1 ft academic assistant, ls1 LS1 TID⟩⟩ ⟨⟨ls2 LS2 support member, ls2 LS2 TID⟩⟩
⟨⟨ls1 LS1 fulltime faculty member, ls1 LS1 Name⟩⟩ ⟨⟨ls2 LS2 teacher⟩⟩
⟨⟨ls1 LS1 lecturer, ls1 LS1 TID⟩⟩ ⟨⟨ls2 LS2 undergraduate course⟩⟩
⟨⟨ls1 LS1 mandatory course, ls1 LS1 CourseName⟩⟩ ⟨⟨ls2 LS2 undergraduate course, ls2 LS2 CID⟩⟩
⟨⟨ls1 LS1 mandatory course, ls1 LS1 Level⟩⟩ ⟨⟨ls2 LS2 undergraduate enrol⟩⟩
⟨⟨ls1 LS1 optional course, ls1 LS1 CourseName⟩⟩ ⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 PID⟩⟩
⟨⟨ls1 LS1 optional course, ls1 LS1 Level⟩⟩ ⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩
⟨⟨ls1 LS1 parttime faculty member, ls1 LS1 Name⟩⟩ ⟨⟨ls2 LS2 undergraduate student⟩⟩
⟨⟨ls1 LS1 programme⟩⟩ ⟨⟨ls3 LS3 assist, ls3 LS3 TID⟩⟩
⟨⟨ls1 LS1 programme, ls1 LS1 Programme Description⟩⟩ ⟨⟨ls3 LS3 educator assistant, ls3 LS3 TID⟩⟩
⟨⟨ls1 LS1 programme, ls1 LS1 Programme Director⟩⟩ ⟨⟨ls3 LS3 induct⟩⟩
⟨⟨ls1 LS1 programme, ls1 LS1 Programme Name⟩⟩ ⟨⟨ls3 LS3 induct, ls3 LS3 CID⟩⟩
⟨⟨ls1 LS1 pt academic assistant, ls1 LS1 TID⟩⟩ ⟨⟨ls3 LS3 induct, ls3 LS3 TID⟩⟩
⟨⟨ls1 LS1 teachingsupport, ls1 LS1 TID⟩⟩ ⟨⟨ls3 LS3 lecturer⟩⟩
⟨⟨ls2 LS2 assist, ls2 LS2 TID⟩⟩ ⟨⟨ls3 LS3 postgraduate course, ls3 LS3 CID⟩⟩
⟨⟨ls2 LS2 induct⟩⟩ ⟨⟨ls3 LS3 postgraduate enrol⟩⟩
⟨⟨ls2 LS2 induct, ls2 LS2 CID⟩⟩ ⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 PID⟩⟩
⟨⟨ls2 LS2 postgraduate programme, ls2 LS2 PID⟩⟩ ⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 ProgrammeHead⟩⟩
⟨⟨ls2 LS2 postgraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩ ⟨⟨ls3 LS3 study⟩⟩
⟨⟨ls2 LS2 postgraduate enrol⟩⟩ ⟨⟨ls3 LS3 study, ls3 LS3 SID⟩⟩
⟨⟨ls2 LS2 postgraduate student⟩⟩ ⟨⟨ls3 LS3 support member, ls3 LS3 TSID⟩⟩
⟨⟨ls2 LS2 study⟩⟩

Table B.4: Satisfying Elements for Quality Factor 1

not-Satisfying Elements

⟨⟨ls1 LS1 contain⟩⟩ ⟨⟨ls2 LS2 teacher, ls2 LS2 LID⟩⟩
⟨⟨ls1 LS1 contain, ls1 LS1 CID⟩⟩ ⟨⟨ls2 LS2 undergraduate course, ls2 LS2 Level⟩⟩

205

⟨⟨ls1 LS1 contain, ls1 LS1 PID⟩⟩ ⟨⟨ls2 LS2 undergraduate course, ls2 LS2 Status⟩⟩
⟨⟨ls1 LS1 educator⟩⟩ ⟨⟨ls2 LS2 undergraduate course, ls2 LS2 Year⟩⟩
⟨⟨ls1 LS1 educator, ls1 LS1 Office⟩⟩ ⟨⟨ls2 LS2 undergraduate enrol, ls2 LS2 PID⟩⟩
⟨⟨ls1 LS1 educator, ls1 LS1 TID⟩⟩ ⟨⟨ls2 LS2 undergraduate enrol, ls2 LS2 SID⟩⟩
⟨⟨ls1 LS1 ft academic assistant⟩⟩ ⟨⟨ls2 LS2 undergraduate enrol, ls2 LS2 Year⟩⟩
⟨⟨ls1 LS1 fulltime faculty member⟩⟩ ⟨⟨ls2 LS2 undergraduate programme⟩⟩
⟨⟨ls1 LS1 fulltime faculty member, ls1 LS1 Office⟩⟩ ⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 StartingYear⟩⟩
⟨⟨ls1 LS1 fulltime faculty member, ls1 LS1 TID⟩⟩ ⟨⟨ls2 LS2 undergraduate student, ls2 LS2 Name⟩⟩
⟨⟨ls1 LS1 lecturer⟩⟩ ⟨⟨ls2 LS2 undergraduate student, ls2 LS2 Performance⟩⟩
⟨⟨ls1 LS1 mandatory course⟩⟩ ⟨⟨ls2 LS2 undergraduate student, ls2 LS2 SID⟩⟩
⟨⟨ls1 LS1 mandatory course, ls1 LS1 CID⟩⟩ ⟨⟨ls3 LS3 assist⟩⟩
⟨⟨ls1 LS1 mandatory course, ls1 LS1 CourseSyllabus⟩⟩ ⟨⟨ls3 LS3 assist, ls3 LS3 CID⟩⟩
⟨⟨ls1 LS1 optional course⟩⟩ ⟨⟨ls3 LS3 educator assistant⟩⟩
⟨⟨ls1 LS1 optional course, ls1 LS1 CID⟩⟩ ⟨⟨ls3 LS3 educator assistant, ls3 LS3 Firstname⟩⟩
⟨⟨ls1 LS1 optional course, ls1 LS1 CourseSyllabus⟩⟩ ⟨⟨ls3 LS3 educator assistant, ls3 LS3 Surname⟩⟩
⟨⟨ls1 LS1 parttime faculty member⟩⟩ ⟨⟨ls3 LS3 lecturer, ls3 LS3 TID⟩⟩
⟨⟨ls1 LS1 parttime faculty member, ls1 LS1 Office⟩⟩ ⟨⟨ls3 LS3 postgraduate⟩⟩
⟨⟨ls1 LS1 parttime faculty member, ls1 LS1 TID⟩⟩ ⟨⟨ls3 LS3 postgraduate, ls3 LS3 ProgrammeAvg⟩⟩
⟨⟨ls1 LS1 programme, ls1 LS1 Level⟩⟩ ⟨⟨ls3 LS3 postgraduate, ls3 LS3 SID⟩⟩
⟨⟨ls1 LS1 programme, ls1 LS1 PID⟩⟩ ⟨⟨ls3 LS3 postgraduate, ls3 LS3 StudentAvg⟩⟩
⟨⟨ls1 LS1 pt academic assistant⟩⟩ ⟨⟨ls3 LS3 postgraduate, ls3 LS3 StudentName⟩⟩
⟨⟨ls1 LS1 teachingsupport⟩⟩ ⟨⟨ls3 LS3 postgraduate, ls3 LS3 Year⟩⟩
⟨⟨ls2 LS2 assist⟩⟩ ⟨⟨ls3 LS3 postgraduate course⟩⟩
⟨⟨ls2 LS2 assist, ls2 LS2 CID⟩⟩ ⟨⟨ls3 LS3 postgraduate enrol, ls3 LS3 PID⟩⟩
⟨⟨ls2 LS2 induct, ls2 LS2 LID⟩⟩ ⟨⟨ls3 LS3 postgraduate enrol, ls3 LS3 SID⟩⟩
⟨⟨ls2 LS2 induct, ls2 LS2 Year⟩⟩ ⟨⟨ls3 LS3 postgraduate enrol, ls3 LS3 Year⟩⟩
⟨⟨ls2 LS2 postgraduate programme⟩⟩ ⟨⟨ls3 LS3 postgraduate programme⟩⟩
⟨⟨ls2 LS2 postgraduate programme, ls2 LS2 StartingYear⟩⟩ ⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 Year⟩⟩
⟨⟨ls2 LS2 postgraduate enrol, ls2 LS2 PID⟩⟩ ⟨⟨ls3 LS3 study, ls3 LS3 CID⟩⟩
⟨⟨ls2 LS2 postgraduate enrol, ls2 LS2 SID⟩⟩ ⟨⟨ls3 LS3 study, ls3 LS3 CourseAvg⟩⟩
⟨⟨ls2 LS2 postgraduate enrol, ls2 LS2 Year⟩⟩ ⟨⟨ls3 LS3 study, ls3 LS3 Mark⟩⟩
⟨⟨ls2 LS2 postgraduate student, ls2 LS2 Name⟩⟩ ⟨⟨ls3 LS3 study, ls3 LS3 Year⟩⟩
⟨⟨ls2 LS2 postgraduate student, ls2 LS2 Performance⟩⟩ ⟨⟨ls3 LS3 support⟩⟩
⟨⟨ls2 LS2 postgraduate student, ls2 LS2 SID⟩⟩ ⟨⟨ls3 LS3 support, ls3 LS3 PID⟩⟩
⟨⟨ls2 LS2 study, ls2 LS2 CID⟩⟩ ⟨⟨ls3 LS3 support, ls3 LS3 TID⟩⟩
⟨⟨ls2 LS2 study, ls2 LS2 Year⟩⟩ ⟨⟨ls3 LS3 support member⟩⟩
⟨⟨ls2 LS2 support member⟩⟩

Table B.5: not-Satisfying Elements for Quality Factor 1

Quality Factor 2

Concept Referenced Unreferenced Result

CID 4 7 0.40

Description 1 2 0.33

Head 4 0 1.00

induct 2 3 0.40

Level 2 2 0.50

Name 6 5 0.55

PID 3 4 0.43

Programme 1 2 0.33

register 3 0 1.00

SID 2 6 0.29

Student 2 1 0.67

study 2 0 1.00

Teacher 3 6 0.33

TID 9 6 0.60

Table B.6: Coverage of Concepts for Quality Factor 2

206

Concepts Satisfying Elements non-Satisfying Elements

CID ⟨⟨ls2 LS2 induct, ls2 LS2 CID⟩⟩ ⟨⟨ls1 LS1 mandatory course, ls1 LS1 CID⟩⟩
⟨⟨ls2 LS2 undergraduate course, ls2 LS2 CID⟩⟩ ⟨⟨ls1 LS1 optional course, ls1 LS1 CID⟩⟩
⟨⟨ls3 LS3 induct, ls3 LS3 CID⟩⟩ ⟨⟨ls2 LS2 assist, ls2 LS2 CID⟩⟩
⟨⟨ls3 LS3 postgraduate course, ls3 LS3 CID⟩⟩ ⟨⟨ls2 LS2 study, ls2 LS2 CID⟩⟩

⟨⟨ls3 LS3 assist, ls3 LS3 CID⟩⟩
⟨⟨ls3 LS3 study, ls3 LS3 CID⟩⟩

Description ⟨⟨ls1 LS1 programme, ls1 LS1 Programme Description⟩⟩ ⟨⟨ls1 LS1 mandatory course, ls1 LS1 CourseSyllabus⟩⟩
⟨⟨ls1 LS1 optional course, ls1 LS1 CourseSyllabus⟩⟩

Head ⟨⟨ls1 LS1 programme, ls1 LS1 Programme Director⟩⟩
⟨⟨ls2 LS2 postgraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩
⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩
⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 ProgrammeHead⟩⟩

induct ⟨⟨ls2 LS2 induct⟩⟩ ⟨⟨ls2 LS2 assist⟩⟩
⟨⟨ls3 LS3 induct⟩⟩ ⟨⟨ls3 LS3 assist⟩⟩

⟨⟨ls3 LS3 support⟩⟩
Level ⟨⟨ls1 LS1 mandatory course, ls1 LS1 Level⟩⟩ ⟨⟨ls1 LS1 programme, ls1 LS1 Level⟩⟩

⟨⟨ls1 LS1 optional course, ls1 LS1 Level⟩⟩ ⟨⟨ls2 LS2 undergraduate course, ls2 LS2 Level⟩⟩
Name ⟨⟨ls1 LS1 educator, ls1 LS1 Name⟩⟩ ⟨⟨ls2 LS2 postgraduate student, ls2 LS2 Name⟩⟩

⟨⟨ls1 LS1 fulltime faculty member, ls1 LS1 Name⟩⟩ ⟨⟨ls2 LS2 undergraduate student, ls2 LS2 Name⟩⟩
⟨⟨ls1 LS1 mandatory course, ls1 LS1 CourseName⟩⟩ ⟨⟨ls3 LS3 educator assistant, ls3 LS3 Firstname⟩⟩
⟨⟨ls1 LS1 optional course, ls1 LS1 CourseName⟩⟩ ⟨⟨ls3 LS3 educator assistant, ls3 LS3 Surname⟩⟩
⟨⟨ls1 LS1 parttime faculty member, ls1 LS1 Name⟩⟩ ⟨⟨ls3 LS3 postgraduate, ls3 LS3 StudentName⟩⟩
⟨⟨ls1 LS1 programme, ls1 LS1 Programme Name⟩⟩

PID ⟨⟨ls2 LS2 postgraduate programme, ls2 LS2 PID⟩⟩ ⟨⟨ls1 LS1 programme, ls1 LS1 PID⟩⟩
⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 PID⟩⟩ ⟨⟨ls2 LS2 postgraduate enrol, ls2 LS2 PID⟩⟩
⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 PID⟩⟩ ⟨⟨ls3 LS3 postgraduate enrol, ls3 LS3 PID⟩⟩

⟨⟨ls3 LS3 support, ls3 LS3 PID⟩⟩
Programme ⟨⟨ls1 LS1 programme⟩⟩ ⟨⟨ls2 LS2 postgraduate programme⟩⟩

⟨⟨ls3 LS3 postgraduate programme⟩⟩
register ⟨⟨ls2 LS2 postgraduate enrol⟩⟩

⟨⟨ls2 LS2 undergraduate enrol⟩⟩
⟨⟨ls3 LS3 postgraduate enrol⟩⟩

SID ⟨⟨ls2 LS2 study, ls2 LS2 SID⟩⟩ ⟨⟨ls2 LS2 postgraduate enrol, ls2 LS2 SID⟩⟩
⟨⟨ls3 LS3 study, ls3 LS3 SID⟩⟩ ⟨⟨ls2 LS2 postgraduate student, ls2 LS2 SID⟩⟩

⟨⟨ls2 LS2 undergraduate student, ls2 LS2 SID⟩⟩
⟨⟨ls3 LS3 postgraduate, ls3 LS3 SID⟩⟩
⟨⟨ls3 LS3 postgraduate enrol, ls3 LS3 SID⟩⟩

Student ⟨⟨ls2 LS2 postgraduate student⟩⟩ ⟨⟨ls3 LS3 postgraduate⟩⟩
⟨⟨ls2 LS2 undergraduate student⟩⟩

study ⟨⟨ls2 LS2 study⟩⟩
⟨⟨ls3 LS3 study⟩⟩

Teacher ⟨⟨ls1 LS1 educator, ls1 LS1 Name⟩⟩ ⟨⟨ls1 LS1 fulltime faculty member⟩⟩
⟨⟨ls2 LS2 teacher⟩⟩ ⟨⟨ls1 LS1 lecturer⟩⟩
⟨⟨ls3 LS3 lecturer⟩⟩ ⟨⟨ls1 LS1 pt academic assistant⟩⟩

⟨⟨ls1 LS1 teachingsupport⟩⟩
⟨⟨ls3 LS3 educator assistant⟩⟩
⟨⟨ls3 LS3 support member⟩⟩

TID ⟨⟨ls1 LS1 ft academic assistant, ls1 LS1 TID⟩⟩ ⟨⟨ls1 LS1 fulltime faculty member, ls1 LS1 TID⟩⟩
⟨⟨ls1 LS1 lecturer, ls1 LS1 TID⟩⟩ ⟨⟨ls1 LS1 parttime faculty member, ls1 LS1 TID⟩⟩
⟨⟨ls1 LS1 pt academic assistant, ls1 LS1 TID⟩⟩ ⟨⟨ls2 LS2 induct, ls2 LS2 LID⟩⟩
⟨⟨ls1 LS1 teachingsupport, ls1 LS1 TID⟩⟩ ⟨⟨ls2 LS2 teacher, ls2 LS2 LID⟩⟩
⟨⟨ls2 LS2 assist, ls2 LS2 TID⟩⟩ ⟨⟨ls3 LS3 lecturer, ls3 LS3 TID⟩⟩
⟨⟨ls2 LS2 support member, ls2 LS2 TID⟩⟩ ⟨⟨ls3 LS3 support, ls3 LS3 TID⟩⟩
⟨⟨ls3 LS3 assist, ls3 LS3 TID⟩⟩
⟨⟨ls3 LS3 induct, ls3 LS3 TID⟩⟩
⟨⟨ls3 LS3 support member, ls3 LS3 TSID⟩⟩

Table B.7: Satisfying and non-Satisfying Elements for Quality Factor 2

207

Quality Factor 3

Satisfying Elements

⟨⟨ls1 LS1 educator pkey, ls1 LS1 educator, ⟨⟨ls1 LS1 educator, ls1 LS1 TID⟩⟩⟩⟩
⟨⟨ls1 LS1 ft academic assistant pkey, ls1 LS1 ft academic assistant, ⟨⟨ls1 LS1 ft academic assistant, ls1 LS1 TID⟩⟩⟩⟩
⟨⟨ls1 LS1 fulltime faculty member pkey, ls1 LS1 fulltime faculty member, ⟨⟨ls1 LS1 fulltime faculty member, ls1 LS1 TID⟩⟩⟩⟩
⟨⟨ls1 LS1 lecturer pkey, ls1 LS1 lecturer, ⟨⟨ls1 LS1 lecturer, ls1 LS1 TID⟩⟩⟩⟩
⟨⟨ls1 LS1 mandatory course pkey, ls1 LS1 mandatory course, ⟨⟨ls1 LS1 mandatory course, ls1 LS1 CID⟩⟩⟩⟩
⟨⟨ls1 LS1 optional course pkey, ls1 LS1 optional course, ⟨⟨ls1 LS1 optional course, ls1 LS1 CID⟩⟩⟩⟩
⟨⟨ls1 LS1 parttime faculty member pkey, ls1 LS1 parttime faculty member, ⟨⟨ls1 LS1 parttime faculty member, ls1 LS1 TID⟩⟩⟩⟩
⟨⟨ls1 LS1 programme pkey, ls1 LS1 programme, ⟨⟨ls1 LS1 programme, ls1 LS1 PID⟩⟩⟩⟩
⟨⟨ls1 LS1 pt academic assistant pkey, ls1 LS1 pt academic assistant, ⟨⟨ls1 LS1 pt academic assistant, ls1 LS1 TID⟩⟩⟩⟩
⟨⟨ls1 LS1 teachingsupport pkey, ls1 LS1 teachingsupport, ⟨⟨ls1 LS1 teachingsupport, ls1 LS1 TID⟩⟩⟩⟩
⟨⟨ls2 LS2 assist pkey, ls2 LS2 assist, ⟨⟨ls2 LS2 assist, ls2 LS2 TID⟩⟩⟩⟩
⟨⟨ls2 LS2 assist pkey, ls2 LS2 assist, ⟨⟨ls2 LS2 assist, ls2 LS2 CID⟩⟩⟩⟩
⟨⟨ls2 LS2 induct pkey, ls2 LS2 induct, ⟨⟨ls2 LS2 induct, ls2 LS2 CID⟩⟩⟩⟩
⟨⟨ls2 LS2 induct pkey, ls2 LS2 induct, ⟨⟨ls2 LS2 induct, ls2 LS2 LID⟩⟩⟩⟩
⟨⟨ls2 LS2 induct pkey, ls2 LS2 induct, ⟨⟨ls2 LS2 induct, ls2 LS2 Year⟩⟩⟩⟩
⟨⟨ls2 LS2 postgraduate programme pkey, ls2 LS2 postgraduate programme, ⟨⟨ls2 LS2 postgraduate programme, ls2 LS2 PID⟩⟩⟩⟩
⟨⟨ls2 LS2 postgraduate programme pkey, ls2 LS2 postgraduate programme, ⟨⟨ls2 LS2 postgraduate programme, ls2 LS2 StartingYear⟩⟩⟩⟩
⟨⟨ls2 LS2 postgraduate enrol pkey, ls2 LS2 postgraduate enrol, ⟨⟨ls2 LS2 postgraduate enrol, ls2 LS2 SID⟩⟩⟩⟩
⟨⟨ls2 LS2 postgraduate enrol pkey, ls2 LS2 postgraduate enrol, ⟨⟨ls2 LS2 postgraduate enrol, ls2 LS2 Year⟩⟩⟩⟩
⟨⟨ls2 LS2 postgraduate enrol pkey, ls2 LS2 postgraduate enrol, ⟨⟨ls2 LS2 postgraduate enrol, ls2 LS2 PID⟩⟩⟩⟩
⟨⟨ls2 LS2 postgraduate student pkey, ls2 LS2 postgraduate student, ⟨⟨ls2 LS2 postgraduate student, ls2 LS2 SID⟩⟩⟩⟩
⟨⟨ls2 LS2 study pkey, ls2 LS2 study, ⟨⟨ls2 LS2 study, ls2 LS2 SID⟩⟩⟩⟩
⟨⟨ls2 LS2 study pkey, ls2 LS2 study, ⟨⟨ls2 LS2 study, ls2 LS2 CID⟩⟩⟩⟩
⟨⟨ls2 LS2 study pkey, ls2 LS2 study, ⟨⟨ls2 LS2 study, ls2 LS2 Year⟩⟩⟩⟩
⟨⟨ls2 LS2 support member pkey, ls2 LS2 support member, ⟨⟨ls2 LS2 support member, ls2 LS2 TID⟩⟩⟩⟩
⟨⟨ls2 LS2 teacher pkey, ls2 LS2 teacher, ⟨⟨ls2 LS2 teacher, ls2 LS2 LID⟩⟩⟩⟩
⟨⟨ls2 LS2 undergraduate course pkey, ls2 LS2 undergraduate course, ⟨⟨ls2 LS2 undergraduate course, ls2 LS2 CID⟩⟩⟩⟩
⟨⟨ls2 LS2 undergraduate course pkey, ls2 LS2 undergraduate course, ⟨⟨ls2 LS2 undergraduate course, ls2 LS2 Year⟩⟩⟩⟩
⟨⟨ls2 LS2 undergraduate enrol pkey, ls2 LS2 undergraduate enrol, ⟨⟨ls2 LS2 undergraduate enrol, ls2 LS2 SID⟩⟩⟩⟩
⟨⟨ls2 LS2 undergraduate enrol pkey, ls2 LS2 undergraduate enrol, ⟨⟨ls2 LS2 undergraduate enrol, ls2 LS2 PID⟩⟩⟩⟩
⟨⟨ls2 LS2 undergraduate enrol pkey, ls2 LS2 undergraduate enrol, ⟨⟨ls2 LS2 undergraduate enrol, ls2 LS2 Year⟩⟩⟩⟩
⟨⟨ls2 LS2 undergraduate programme pkey, ls2 LS2 undergraduate programme, ⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 PID⟩⟩⟩⟩
⟨⟨ls2 LS2 undergraduate programme pkey, ls2 LS2 undergraduate programme, ⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 StartingYear⟩⟩⟩⟩
⟨⟨ls2 LS2 undergraduate student pkey, ls2 LS2 undergraduate student, ⟨⟨ls2 LS2 undergraduate student, ls2 LS2 SID⟩⟩⟩⟩
⟨⟨ls3 LS3 assist pkey, ls3 LS3 assist, ⟨⟨ls3 LS3 assist, ls3 LS3 TID⟩⟩⟩⟩
⟨⟨ls3 LS3 assist pkey, ls3 LS3 assist, ⟨⟨ls3 LS3 assist, ls3 LS3 CID⟩⟩⟩⟩
⟨⟨ls3 LS3 educator assistant pkey, ls3 LS3 educator assistant, ⟨⟨ls3 LS3 educator assistant, ls3 LS3 TID⟩⟩⟩⟩
⟨⟨ls3 LS3 induct pkey, ls3 LS3 induct, ⟨⟨ls3 LS3 induct, ls3 LS3 TID⟩⟩⟩⟩
⟨⟨ls3 LS3 induct pkey, ls3 LS3 induct, ⟨⟨ls3 LS3 induct, ls3 LS3 CID⟩⟩⟩⟩
⟨⟨ls3 LS3 lecturer pkey, ls3 LS3 lecturer, ⟨⟨ls3 LS3 lecturer, ls3 LS3 TID⟩⟩⟩⟩
⟨⟨ls3 LS3 postgraduate course pkey, ls3 LS3 postgraduate course, ⟨⟨ls3 LS3 postgraduate course, ls3 LS3 CID⟩⟩⟩⟩
⟨⟨ls3 LS3 postgraduate enrol pkey, ls3 LS3 postgraduate enrol, ⟨⟨ls3 LS3 postgraduate enrol, ls3 LS3 SID⟩⟩⟩⟩
⟨⟨ls3 LS3 postgraduate enrol pkey, ls3 LS3 postgraduate enrol, ⟨⟨ls3 LS3 postgraduate enrol, ls3 LS3 PID⟩⟩⟩⟩
⟨⟨ls3 LS3 postgraduate enrol pkey, ls3 LS3 postgraduate enrol, ⟨⟨ls3 LS3 postgraduate enrol, ls3 LS3 Year⟩⟩⟩⟩
⟨⟨ls3 LS3 postgraduate programme pkey, ls3 LS3 postgraduate programme, ⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 PID⟩⟩⟩⟩
⟨⟨ls3 LS3 postgraduate programme pkey, ls3 LS3 postgraduate programme, ⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 Year⟩⟩⟩⟩
⟨⟨ls3 LS3 study pkey, ls3 LS3 study, ⟨⟨ls3 LS3 study, ls3 LS3 SID⟩⟩⟩⟩
⟨⟨ls3 LS3 study pkey, ls3 LS3 study, ⟨⟨ls3 LS3 study, ls3 LS3 CID⟩⟩⟩⟩
⟨⟨ls3 LS3 study pkey, ls3 LS3 study, ⟨⟨ls3 LS3 study, ls3 LS3 Year⟩⟩⟩⟩
⟨⟨ls3 LS3 support member pkey, ls3 LS3 support member, ⟨⟨ls3 LS3 support member, ls3 LS3 TSID⟩⟩⟩⟩

Table B.8: Satisfying Elements for Quality Factor 3

208

not-Satisfying Elements

⟨⟨ls1 LS1 contain pkey, ls1 LS1 contain, ⟨⟨ls1 LS1 contain, ls1 LS1 PID⟩⟩⟩⟩
⟨⟨ls1 LS1 contain pkey, ls1 LS1 contain, ⟨⟨ls1 LS1 contain, ls1 LS1 CID⟩⟩⟩⟩
⟨⟨ls3 LS3 postgraduate pkey, ls3 LS3 postgraduate, ⟨⟨ls3 LS3 postgraduate, ls3 LS3 SID⟩⟩⟩⟩
⟨⟨ls3 LS3 postgraduate pkey, ls3 LS3 postgraduate, ⟨⟨ls3 LS3 postgraduate, ls3 LS3 Year⟩⟩⟩⟩
⟨⟨ls3 LS3 support pkey, ls3 LS3 support, ⟨⟨ls3 LS3 support, ls3 LS3 TID⟩⟩⟩⟩
⟨⟨ls3 LS3 support pkey, ls3 LS3 support, ⟨⟨ls3 LS3 support, ls3 LS3 PID⟩⟩⟩⟩

Table B.9: Not-Satisfying Elements for Quality Factor 3

Quality Factor 4

Concept Referenced Unreferenced Result

Head 4 0 1.00

induct 2 3 0.40

Name 1 10 0.09

register 3 0 1.00

Student 1 2 0.33

study 2 0 1.00

Table B.10: Coverage of Concepts for Quality Factor 4

Concept Referenced Unreferenced

Head ⟨⟨ls1 LS1 programmels1 LS1 Programme Director⟩⟩
⟨⟨ls2 LS2 postgraduate programmels2 LS2 ProgrammeHeadID⟩⟩
⟨⟨ls2 LS2 undergraduate programmels2 LS2 ProgrammeHeadID⟩⟩
⟨⟨ls3 LS3 postgraduate programmels3 LS3 ProgrammeHead⟩⟩

induct ⟨⟨ls2 LS2 induct⟩⟩ ⟨⟨ls2 LS2 assist⟩⟩
⟨⟨ls3 LS3 induct⟩⟩ ⟨⟨ls3 LS3 assist⟩⟩

⟨⟨ls3 LS3 support⟩⟩
Name ⟨⟨ls1 LS1 educatorls1 LS1 Name⟩⟩ ⟨⟨ls2 LS2 postgraduate studentls2 LS2 Name⟩⟩

⟨⟨ls2 LS2 undergraduate studentls2 LS2 Name⟩⟩
⟨⟨ls3 LS3 educator assistantls3 LS3 Firstname⟩⟩
⟨⟨ls3 LS3 educator assistantls3 LS3 Surname⟩⟩
⟨⟨ls3 LS3 postgraduatels3 LS3 StudentName⟩⟩
⟨⟨ls1 LS1 fulltime faculty memberls1 LS1 Name⟩⟩
⟨⟨ls1 LS1 mandatory coursels1 LS1 CourseName⟩⟩
⟨⟨ls1 LS1 optional coursels1 LS1 CourseName⟩⟩
⟨⟨ls1 LS1 parttime faculty memberls1 LS1 Name⟩⟩
⟨⟨ls1 LS1 programmels1 LS1 Programme Name⟩⟩

register ⟨⟨ls2 LS2 postgraduate enrol⟩⟩
⟨⟨ls2 LS2 undergraduate enrol⟩⟩
⟨⟨ls3 LS3 postgraduate enrol⟩⟩

Student ⟨⟨ls2 LS2 undergraduate student⟩⟩ ⟨⟨ls3 LS3 postgraduate⟩⟩
⟨⟨ls2 LS2 postgraduate student⟩⟩

study ⟨⟨ls2 LS2 study⟩⟩
⟨⟨ls3 LS3 study⟩⟩

Table B.11: Satisfying and not-Satisfying Elements for Quality Factor 4

209

Quality Factor 5

Satisfying Elements

⟨⟨ls1 LS1 educator, ls1 LS1 Name⟩⟩ ⟨⟨ls2 LS2 postgraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩
⟨⟨ls1 LS1 ft academic assistant, ls1 LS1 TID⟩⟩ ⟨⟨ls2 LS2 study, ls2 LS2 SID⟩⟩
⟨⟨ls1 LS1 fulltime faculty member, ls1 LS1 Name⟩⟩ ⟨⟨ls2 LS2 study⟩⟩
⟨⟨ls1 LS1 lecturer, ls1 LS1 TID⟩⟩ ⟨⟨ls2 LS2 support member, ls2 LS2 TID⟩⟩
⟨⟨ls1 LS1 mandatory course, ls1 LS1 CourseName⟩⟩ ⟨⟨ls2 LS2 teacher⟩⟩
⟨⟨ls1 LS1 mandatory course, ls1 LS1 Level⟩⟩ ⟨⟨ls2 LS2 undergraduate course⟩⟩
⟨⟨ls1 LS1 optional course, ls1 LS1 CourseName⟩⟩ ⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 PID⟩⟩
⟨⟨ls1 LS1 optional course, ls1 LS1 Level⟩⟩ ⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 ProgrammeHeadID⟩⟩
⟨⟨ls1 LS1 parttime faculty member, ls1 LS1 Name⟩⟩ ⟨⟨ls3 LS3 assist, ls3 LS3 TID⟩⟩
⟨⟨ls1 LS1 programme, ls1 LS1 Programme Description⟩⟩ ⟨⟨ls3 LS3 educator assistant, ls3 LS3 TID⟩⟩
⟨⟨ls1 LS1 programme, ls1 LS1 Programme Name⟩⟩ ⟨⟨ls3 LS3 induct, ls3 LS3 TID⟩⟩
⟨⟨ls1 LS1 programme⟩⟩ ⟨⟨ls3 LS3 induct⟩⟩
⟨⟨ls1 LS1 pt academic assistant, ls1 LS1 TID⟩⟩ ⟨⟨ls3 LS3 lecturer⟩⟩
⟨⟨ls1 LS1 teachingsupport, ls1 LS1 TID⟩⟩ ⟨⟨ls3 LS3 postgraduate enrol⟩⟩
⟨⟨ls2 LS2 assist, ls2 LS2 TID⟩⟩ ⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 PID⟩⟩
⟨⟨ls2 LS2 induct, ls2 LS2 CID⟩⟩ ⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 ProgrammeHead⟩⟩
⟨⟨ls2 LS2 induct⟩⟩ ⟨⟨ls3 LS3 study, ls3 LS3 SID⟩⟩
⟨⟨ls2 LS2 postgraduate programme, ls2 LS2 PID⟩⟩ ⟨⟨ls3 LS3 support member, ls3 LS3 TSID⟩⟩

Table B.12: Satisfying Elements for Quality Factor 5

Quality Factor 6

Satisfying Elements

⟨⟨ls1 LS1 contain, ls1 LS1 CID⟩⟩ ⟨⟨ls2 LS2 undergraduate course, ls2 LS2 Year⟩⟩
⟨⟨ls1 LS1 contain, ls1 LS1 PID⟩⟩ ⟨⟨ls2 LS2 undergraduate enrol, ls2 LS2 PID⟩⟩
⟨⟨ls1 LS1 educator, ls1 LS1 TID⟩⟩ ⟨⟨ls2 LS2 undergraduate enrol, ls2 LS2 SID⟩⟩
⟨⟨ls1 LS1 ft academic assistant, ls1 LS1 TID⟩⟩ ⟨⟨ls2 LS2 undergraduate enrol, ls2 LS2 Year⟩⟩
⟨⟨ls1 LS1 fulltime faculty member, ls1 LS1 TID⟩⟩ ⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 PID⟩⟩
⟨⟨ls1 LS1 lecturer, ls1 LS1 TID⟩⟩ ⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 StartingYear⟩⟩
⟨⟨ls1 LS1 mandatory course, ls1 LS1 CID⟩⟩ ⟨⟨ls2 LS2 undergraduate student, ls2 LS2 SID⟩⟩
⟨⟨ls1 LS1 optional course, ls1 LS1 CID⟩⟩ ⟨⟨ls3 LS3 assist, ls3 LS3 CID⟩⟩
⟨⟨ls1 LS1 parttime faculty member, ls1 LS1 TID⟩⟩ ⟨⟨ls3 LS3 assist, ls3 LS3 TID⟩⟩
⟨⟨ls1 LS1 programme, ls1 LS1 PID⟩⟩ ⟨⟨ls3 LS3 educator assistant, ls3 LS3 TID⟩⟩
⟨⟨ls1 LS1 pt academic assistant, ls1 LS1 TID⟩⟩ ⟨⟨ls3 LS3 induct, ls3 LS3 CID⟩⟩
⟨⟨ls1 LS1 teachingsupport, ls1 LS1 TID⟩⟩ ⟨⟨ls3 LS3 induct, ls3 LS3 TID⟩⟩
⟨⟨ls2 LS2 assist, ls2 LS2 CID⟩⟩ ⟨⟨ls3 LS3 lecturer, ls3 LS3 TID⟩⟩
⟨⟨ls2 LS2 assist, ls2 LS2 TID⟩⟩ ⟨⟨ls3 LS3 postgraduate⟩⟩
⟨⟨ls2 LS2 induct, ls2 LS2 CID⟩⟩ ⟨⟨ls3 LS3 postgraduate, ls3 LS3 SID⟩⟩
⟨⟨ls2 LS2 induct, ls2 LS2 LID⟩⟩ ⟨⟨ls3 LS3 postgraduate, ls3 LS3 Year⟩⟩
⟨⟨ls2 LS2 induct, ls2 LS2 Year⟩⟩ ⟨⟨ls3 LS3 postgraduate course, ls3 LS3 CID⟩⟩
⟨⟨ls2 LS2 postgraduate enrol, ls2 LS2 PID⟩⟩ ⟨⟨ls3 LS3 postgraduate enrol, ls3 LS3 PID⟩⟩
⟨⟨ls2 LS2 postgraduate enrol, ls2 LS2 SID⟩⟩ ⟨⟨ls3 LS3 postgraduate enrol, ls3 LS3 SID⟩⟩
⟨⟨ls2 LS2 postgraduate enrol, ls2 LS2 Year⟩⟩ ⟨⟨ls3 LS3 postgraduate enrol, ls3 LS3 Year⟩⟩
⟨⟨ls2 LS2 postgraduate programme, ls2 LS2 PID⟩⟩ ⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 PID⟩⟩
⟨⟨ls2 LS2 postgraduate programme, ls2 LS2 StartingYear⟩⟩ ⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 Year⟩⟩
⟨⟨ls2 LS2 postgraduate student, ls2 LS2 SID⟩⟩ ⟨⟨ls3 LS3 study, ls3 LS3 CID⟩⟩
⟨⟨ls2 LS2 study, ls2 LS2 CID⟩⟩ ⟨⟨ls3 LS3 study, ls3 LS3 SID⟩⟩
⟨⟨ls2 LS2 study, ls2 LS2 SID⟩⟩ ⟨⟨ls3 LS3 study, ls3 LS3 Year⟩⟩
⟨⟨ls2 LS2 study, ls2 LS2 Year⟩⟩ ⟨⟨ls3 LS3 support, ls3 LS3 PID⟩⟩
⟨⟨ls2 LS2 support member, ls2 LS2 TID⟩⟩ ⟨⟨ls3 LS3 support, ls3 LS3 TID⟩⟩
⟨⟨ls2 LS2 teacher, ls2 LS2 LID⟩⟩ ⟨⟨ls3 LS3 support member, ls3 LS3 TSID⟩⟩
⟨⟨ls2 LS2 undergraduate course, ls2 LS2 CID⟩⟩

Table B.13: Satisfying Elements for Quality Factor 6

210

Quality Factor 7

Satisfying Elements

⟨⟨ls2 LS2 support member pkey, ls2 LS2 support member, ⟨⟨ls2 LS2 support member, ls2 LS2 TID⟩⟩⟩⟩
⟨⟨ls2 LS2 teacher pkey, ls2 LS2 teacher, ⟨⟨ls2 LS2 teacher, ls2 LS2 LID⟩⟩⟩⟩
⟨⟨ls2 LS2 undergraduate course pkey, ls2 LS2 undergraduate course, ⟨⟨ls2 LS2 undergraduate course, ls2 LS2 CID⟩⟩⟩⟩
⟨⟨ls2 LS2 undergraduate course pkey, ls2 LS2 undergraduate course, ⟨⟨ls2 LS2 undergraduate course, ls2 LS2 Year⟩⟩⟩⟩
⟨⟨ls2 LS2 undergraduate enrol pkey, ls2 LS2 undergraduate enrol, ⟨⟨ls2 LS2 undergraduate enrol, ls2 LS2 SID⟩⟩⟩⟩
⟨⟨ls2 LS2 undergraduate enrol pkey, ls2 LS2 undergraduate enrol, ⟨⟨ls2 LS2 undergraduate enrol, ls2 LS2 PID⟩⟩⟩⟩
⟨⟨ls2 LS2 undergraduate enrol pkey, ls2 LS2 undergraduate enrol, ⟨⟨ls2 LS2 undergraduate enrol, ls2 LS2 Year⟩⟩⟩⟩
⟨⟨ls2 LS2 undergraduate programme pkey, ls2 LS2 undergraduate programme, ⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 PID⟩⟩⟩⟩
⟨⟨ls2 LS2 undergraduate programme pkey, ls2 LS2 undergraduate programme, ⟨⟨ls2 LS2 undergraduate programme, ls2 LS2 StartingYear⟩⟩⟩⟩
⟨⟨ls2 LS2 undergraduate student pkey, ls2 LS2 undergraduate student, ⟨⟨ls2 LS2 undergraduate student, ls2 LS2 SID⟩⟩⟩⟩
⟨⟨ls3 LS3 assist pkey, ls3 LS3 assist, ⟨⟨ls3 LS3 assist, ls3 LS3 TID⟩⟩⟩⟩
⟨⟨ls3 LS3 assist pkey, ls3 LS3 assist, ⟨⟨ls3 LS3 assist, ls3 LS3 CID⟩⟩⟩⟩
⟨⟨ls3 LS3 educator assistant pkey, ls3 LS3 educator assistant, ⟨⟨ls3 LS3 educator assistant, ls3 LS3 TID⟩⟩⟩⟩
⟨⟨ls3 LS3 induct pkey, ls3 LS3 induct, ⟨⟨ls3 LS3 induct, ls3 LS3 TID⟩⟩⟩⟩
⟨⟨ls3 LS3 induct pkey, ls3 LS3 induct, ⟨⟨ls3 LS3 induct, ls3 LS3 CID⟩⟩⟩⟩
⟨⟨ls3 LS3 lecturer pkey, ls3 LS3 lecturer, ⟨⟨ls3 LS3 lecturer, ls3 LS3 TID⟩⟩⟩⟩
⟨⟨ls3 LS3 postgraduate course pkey, ls3 LS3 postgraduate course, ⟨⟨ls3 LS3 postgraduate course, ls3 LS3 CID⟩⟩⟩⟩
⟨⟨ls3 LS3 postgraduate enrol pkey, ls3 LS3 postgraduate enrol, ⟨⟨ls3 LS3 postgraduate enrol, ls3 LS3 SID⟩⟩⟩⟩
⟨⟨ls3 LS3 postgraduate enrol pkey, ls3 LS3 postgraduate enrol, ⟨⟨ls3 LS3 postgraduate enrol, ls3 LS3 PID⟩⟩⟩⟩
⟨⟨ls3 LS3 postgraduate enrol pkey, ls3 LS3 postgraduate enrol, ⟨⟨ls3 LS3 postgraduate enrol, ls3 LS3 Year⟩⟩⟩⟩
⟨⟨ls3 LS3 postgraduate programme pkey, ls3 LS3 postgraduate programme, ⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 PID⟩⟩⟩⟩
⟨⟨ls3 LS3 postgraduate programme pkey, ls3 LS3 postgraduate programme, ⟨⟨ls3 LS3 postgraduate programme, ls3 LS3 Year⟩⟩⟩⟩
⟨⟨ls3 LS3 study pkey, ls3 LS3 study, ⟨⟨ls3 LS3 study, ls3 LS3 SID⟩⟩⟩⟩
⟨⟨ls3 LS3 study pkey, ls3 LS3 study, ⟨⟨ls3 LS3 study, ls3 LS3 CID⟩⟩⟩⟩
⟨⟨ls3 LS3 study pkey, ls3 LS3 study, ⟨⟨ls3 LS3 study, ls3 LS3 Year⟩⟩⟩⟩
⟨⟨ls3 LS3 support member pkey, ls3 LS3 support member, ⟨⟨ls3 LS3 support member, ls3 LS3 TSID⟩⟩⟩⟩
⟨⟨ls1 LS1 contain pkey, ls1 LS1 contain, ⟨⟨ls1 LS1 contain, ls1 LS1 PID⟩⟩⟩⟩
⟨⟨ls1 LS1 contain pkey, ls1 LS1 contain, ⟨⟨ls1 LS1 contain, ls1 LS1 CID⟩⟩⟩⟩
⟨⟨ls3 LS3 postgraduate pkey, ls3 LS3 postgraduate, ⟨⟨ls3 LS3 postgraduate, ls3 LS3 SID⟩⟩⟩⟩
⟨⟨ls3 LS3 postgraduate pkey, ls3 LS3 postgraduate, ⟨⟨ls3 LS3 postgraduate, ls3 LS3 Year⟩⟩⟩⟩
⟨⟨ls3 LS3 support pkey, ls3 LS3 support, ⟨⟨ls3 LS3 support, ls3 LS3 TID⟩⟩⟩⟩
⟨⟨ls3 LS3 support pkey, ls3 LS3 support, ⟨⟨ls3 LS3 support, ls3 LS3 PID⟩⟩⟩⟩

Table B.14: Satisfying Elements for Quality Factor 7

Quality Factor 8

Satisfied Data Item

505,506,507,508

Table B.15: Satisfying Elements for Quality Factor 8

211

Appendix C

Schema to Ontology

Representation Transformation

Algorithm

This appendix lists the algorithm that transforms a relational schema to its

corresponding ontological representation. This algorithm takes as input a

set of relational schema constructs in the HDM representation and outputs

the corresponding ontology constructs also in their HDM representation.

This algorithm has three parts. The first part (lines 55–61), translates the

relations of schema SRel. In particular, a relation ⟨⟨R⟩⟩ translates to a Class

C in the output ontology, SOnt, each of its attributes ⟨⟨R, a⟩⟩ translates to a

Property ⟨⟨a,C, rdfs : Literal⟩⟩, while the primary key of ⟨⟨R⟩⟩ translates into

another Class ⟨⟨Cpk⟩⟩ and a Property ⟨⟨pk,C,Cpk⟩⟩. The second part (lines 62–

70), translates the foreign key constraints of schema SRel. In particular,

the algorithm creates two Class constructs, ⟨⟨CRfk
⟩⟩ and ⟨⟨CSfk⟩⟩, representing

the set of attributes of relation R and the set of attributes of relation S

that reference the former. The algorithm also creates Property constructs

⟨⟨fk,CR,CRfk
⟩⟩, ⟨⟨fk,CS,CSfk⟩⟩ and ⟨⟨fk,CSfk ,CRfk

⟩⟩ that link the newly added

212

Class constructs together with each other and with the Class constructs that

represent relations R and S. The third part (line 71) removes the relational

schema constructs from schema SOnt.

Panel 4: Relational-to-OWL Translation
Input: AutoMed Relational Schema SRel

Output: AutoMed OWL Schema SOnt

Copy SRel to SOnt54

Add class ⟨⟨rdfs : Literal⟩⟩ to SOnt55

for each relation R in SRel do56

Add class ⟨⟨C⟩⟩ to SOnt and populate its extent using query [getLSID ⟨⟨R⟩⟩ r|r← ⟨⟨R⟩⟩]57

for each attribute a of R do58

Add property ⟨⟨a,C, rdfs : Literal⟩⟩ to SOnt and populate its extent using query59

[{(getLSID ⟨⟨R⟩⟩ r), a}|{r, a} ← ⟨⟨R, a⟩⟩]

Add class ⟨⟨Cpk⟩⟩ to SOnt and populate its extent using query [getLSID ⟨⟨R⟩⟩ r|r← ⟨⟨R⟩⟩]60

Add property ⟨⟨pk,C,Cpk⟩⟩ and populate its extent using query61

[{(getLSID ⟨⟨R⟩⟩ r), (getLSID ⟨⟨R⟩⟩ r)}|r← ⟨⟨R⟩⟩]

for each relation R in SRel do62

for each foreign key with label fk identifying attributes ai of R being referenced by63

attributes bi of S (1 ≤ i ≤ n) do

Let Q1 be [{r, {a1, . . . , ai, . . . , an}}|r← ⟨⟨R⟩⟩; {r, a1} ← ⟨⟨R, a1⟩⟩; . . . ; {r, ai} ←64

⟨⟨R, ai⟩⟩ . . . ; {r, an} ← ⟨⟨R, an⟩⟩]
Let Q2 be [{s, {b1, . . . , bi, . . . , bn}}|s← ⟨⟨S⟩⟩; {s, b1} ← ⟨⟨S, b1⟩⟩; . . . ; {s, bi} ←65

⟨⟨S, bi⟩⟩ . . . ; {s, bn} ← ⟨⟨S, bn⟩⟩]
Add class ⟨⟨CRfk

⟩⟩ to SOnt and populate its extent using query66

[(getLSID ⟨⟨R⟩⟩ cr)|{r, cr} ← Q1]

Add class ⟨⟨CSfk ⟩⟩ to SOnt and populate its extent using query67

[(getLSID ⟨⟨S⟩⟩ cs)|{s, cs} ← Q2]

Add property ⟨⟨fk,CR,CRfk
⟩⟩ to SOnt and populate its extent using query Q168

Add property ⟨⟨fk,CS,CSfk ⟩⟩ to SOnt and populate its extent using query Q269

Add property ⟨⟨fk,CSfk ,CRfk
⟩⟩ to SOnt and populate its extent using query70

[{(getLSID ⟨⟨R⟩⟩ cs), (getLSID ⟨⟨S⟩⟩ cs)}|{s, cs} ← Q2]

deleteRelationalConstructs(SOnt)71

213

Appendix D

QFDI in OWL-DL

Figure D.1: QFDI in OWL-DL

214

Appendix E

iSpider Experimentation and

Evaluation

This appendix contains data relating to the iSpider project that is used for

evaluating our approach in Chapter 7. Section E.1 illustrates the schemas

of three data sources: PEDRo, gpmDB and PepSeeker. Section E.2 lists all

the mappings generated in three DI iterations. Section E.3 illustrates the

concept coverage of the integrated resource in three DI iterations. Section

E.4 lists the DI elements that do and do not satisfy Quality Factor 1, 4 and

7 for each DI iteration.

215

E.1 iSpider Schemas

Figure E.1: Data Source PEDRo

216

Figure E.2: Data Source gpmDB

217

Figure E.3: Data Source PepSeeker

E.2 Mappings

AutoMed transformation pathways for the three iterations are listed in Ta-

bles E.1, E.2 and E.3 below.

218

g
p
m
D
B
→

G
S
1

e
x
te

n
d

⟨⟨
G
S
1
d
b
se
ar
ch
⟩⟩

[{
′ U

R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
re
su
lt
′ ,

d
}|

d
←
⟨⟨
g
p
m
d
b
re
su
lt
⟩⟩
]

e
x
te

n
d

⟨⟨
G
S
1
d
b
se
ar
ch

,
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
re
su
lt
′ ,

d
},
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
re
su
lt
′ ,

d
}}
|d
←
⟨⟨
g
p
m
d
b
re
su
lt
⟩⟩
]

e
x
te

n
d

⟨⟨
G
S
1
d
b
se
ar
ch

,
G
S
1
id
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
re
su
lt
′ ,

d
},
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
re
su
lt
′ ,

d
}}
|d
←
⟨⟨
g
p
m
d
b
re
su
lt
⟩⟩
]

e
x
te

n
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩

[{
′ U

R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
re
su
lt
′ ,

d
}|

d
←
⟨⟨
g
p
m
d
b
re
su
lt
⟩⟩
]

e
x
te

n
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
id
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
re
su
lt
′ ,

d
},
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
re
su
lt
′ ,

d
}}
|d
←
⟨⟨
g
p
m
d
b
re
su
lt
⟩⟩
]

e
x
te

n
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
p
ro
g
ra
m
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
re
su
lt
′ ,

d
},

tv
}|
{d

,
tv
}
←
⟨⟨
g
p
m
d
b
re
su
lt
,
g
p
m
d
b
ta
n
d
em

ve
rs
io
n
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ep

ti
d
eh

it
⟩⟩

[{
′ U

R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ep

ti
d
e′
,
d
}|

d
←
⟨⟨
g
p
m
d
b
p
ep

ti
d
e⟩
⟩]

a
d
d

⟨⟨
G
S
1
p
ep

ti
d
eh

it
,
G
S
1
id
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ep

ti
d
e′
,
d
},
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ep

ti
d
e′
,
d
}}
|d
←
⟨⟨
g
p
m
d
b
p
ep

ti
d
e⟩
⟩]

a
d
d

⟨⟨
G
S
1
p
ep

ti
d
eh

it
,
G
S
1
p
ro
b
a
b
il
it
y⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ep

ti
d
e′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
g
p
m
d
b
p
ep

ti
d
e,

g
p
m
d
b
ex
p
ec
t⟩⟩

]

e
x
te

n
d

⟨⟨
G
S
1
p
ep

ti
d
eh

it
,
G
S
1
sc
or
e⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ep

ti
d
e′
,
d
},

′
N
u
ll
′ }
|d
←
⟨⟨
g
p
m
d
b
p
ep

ti
d
e⟩
⟩]

a
d
d

⟨⟨
G
S
1
p
ep

ti
d
eh

it
,
G
S
1
se
q
u
en

ce
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ep

ti
d
e′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
g
p
m
d
b
p
ep

ti
d
e,

g
p
m
d
b
se
q
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
⟩⟩

[{
′ U

R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ro
te
in
′ ,

d
}|

d
←
⟨⟨
g
p
m
d
b
p
ro
te
in
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
a
cc
es
si
o
n
n
u
m
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ro
te
in
′ ,

p
id
},

x}
|{

p
id
,
p
ro
se
q
id
}
←
⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
p
ro
se
q
id
⟩⟩
;

{p
ro
se
q
id
,
x}
←
⟨⟨
g
p
m
d
b
p
ro
se
q
,
g
p
m
d
b
la
b
el
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
id
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ro
te
in
′ ,

d
},
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ro
te
in
′ ,

d
}}
|d
←
⟨⟨
g
p
m
d
b
p
ro
te
in
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
se
q
u
en

ce
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ro
te
in
′ ,

p
id
},

x}
|{

p
id
,
p
ro
se
q
id
}
←
⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
p
ro
se
q
id
⟩⟩
;

{p
ro
se
q
id
,
x}
←
⟨⟨
g
p
m
d
b
p
ro
se
q
,
g
p
m
d
b
se
q
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
h
it
⟩⟩

[{
′ U

R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ro
te
in
′ ,

d
}|

d
←
⟨⟨
g
p
m
d
b
p
ro
te
in
⟩⟩
]

e
x
te

n
d

⟨⟨
G
S
1
p
ro
te
in
h
it
,
G
S
1
d
b
se
ar
ch
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ro
te
in
′ ,

p
id
},
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
re
su
lt
′ ,

ri
d
}}
|

{p
id
,
ri
d
}
←
⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
re
su
lt
id
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
h
it
,
G
S
1
id
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ro
te
in
′ ,

d
},
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ro
te
in
′ ,

d
}}
|d
←
⟨⟨
g
p
m
d
b
p
ro
te
in
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
h
it
,
G
S
1
p
ro
te
in
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ro
te
in
′ ,

d
},
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ro
se
q
id
′ ,

x}
}|

{d
,
x}
←
⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
p
ro
se
q
id
⟩⟩
]

P
E
D
R
o
→

G
S
1

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch
⟩⟩

[{
′ U

R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

′ ,
d
}|

d
←
⟨⟨
p
ed

ro
d
b
se
ar
ch
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

,
G
S
1
c
te
rm

in
a
l
a
a
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

′ ,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
c
te
rm

in
a
l
a
a
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

,
G
S
1
co

u
n
t
o
f
sp
ec
ifi
c
a
a
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

′ ,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
co

u
n
t
o
f
sp
ec
ifi
c
a
a
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

,
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

′ ,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

,
G
S
1
id

d
a
te
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

′ ,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
id

d
a
te
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

,
G
S
1
id
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

′ ,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
id
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

,
G
S
1
n
te
rm

in
a
l
a
a
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

′ ,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
n
te
rm

in
a
l
a
a
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

,
G
S
1
n
a
m
e
o
f
co

u
n
te
d
a
a
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

′ ,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
n
a
m
e
o
f
co

u
n
te
d
a
a
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

,
G
S
1
p
ea
k
li
st
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

′ ,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
p
ea
k
li
st
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

,
G
S
1
re
g
ex

p
a
tt
er
n
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

′ ,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
re
g
ex

p
a
tt
er
n
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

,
G
S
1
u
se
rn
a
m
e⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

′ ,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
u
se
rn
a
m
e⟩
⟩]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩

[{
′ U

R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

p
ar
a
m
et
er
s′
,
d
}|

d
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
a
cc
u
ra
te

m
a
ss

m
o
d
e⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
a
cc
u
ra
te

m
a
ss

m
o
d
e⟩
⟩]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
d
a
ta
b
a
se

d
a
te
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
d
a
ta
b
a
se

d
a
te
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
d
a
ta
b
a
se

n
a
m
e⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
d
a
ta
b
a
se

n
a
m
e⟩
⟩]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
fi
xe
d
m
o
d
ifi
ca
ti
o
n
s⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
fi
xe
d
m
o
d
ifi
ca
ti
o
n
s⟩
⟩]

219

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
fr
a
g
m
en

t
io
n
to
le
ra
n
ce
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
fr
a
g
m
en

t
io
n
to
le
ra
n
ce
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
ic
a
t
o
p
ti
o
n
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
ic
a
t
o
p
ti
o
n
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
id
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
id
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
m
a
ss

er
ro
r
ty
p
e⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
m
a
ss

er
ro
r
ty
p
e⟩
⟩]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
m
a
ss

er
ro
r⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
m
a
ss

er
ro
r⟩⟩

]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
m
a
ss

va
lu
e
ty
p
e⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
m
a
ss

va
lu
e
ty
p
e⟩
⟩]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
m
a
x
m
is
se
d
cl
ea
va
g
es
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
m
a
x
m
is
se
d
cl
ea
va
g
es
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
p
ar
a
m
et
er
s
fi
le
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
p
ar
a
m
et
er
s
fi
le
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
p
ep

ti
d
e
m
a
ss

to
le
ra
n
ce
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
p
ep

ti
d
e
m
a
ss

to
le
ra
n
ce
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
p
ro
g
ra
m
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
p
ro
g
ra
m
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
p
ro
to
n
a
te
d
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
p
ro
to
n
a
te
d
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
ta
xo

n
o
m
ic
a
l
fi
lt
er
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
ta
xo

n
o
m
ic
a
l
fi
lt
er
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
va
ri
a
b
le

m
o
d
ifi
ca
ti
o
n
s⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
d
b
se
ar
ch

p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
va
ri
a
b
le

m
o
d
ifi
ca
ti
o
n
s⟩
⟩]

a
d
d

⟨⟨
G
S
1
p
ea
k
⟩⟩

[{
′ U

R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ea
k
′ ,

d
}|

d
←
⟨⟨
p
ed

ro
p
ea
k
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ea
k
,
G
S
1
a
b
u
n
d
a
n
ce
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ea
k
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ea
k
,
p
ed

ro
a
b
u
n
d
a
n
ce
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ea
k
,
G
S
1
id
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ea
k
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ea
k
,
p
ed

ro
id
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ea
k
,
G
S
1
m

to
z⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ea
k
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ea
k
,
p
ed

ro
m

to
z⟩
⟩]

a
d
d

⟨⟨
G
S
1
p
ea
k
,
G
S
1
m
u
lt
ip
li
ci
ty
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ea
k
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ea
k
,
p
ed

ro
m
u
lt
ip
li
ci
ty
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ea
k
,
G
S
1
p
ea
k
li
st
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ea
k
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ea
k
,
p
ed

ro
p
ea
k
li
st
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ep

ti
d
eh

it
⟩⟩

[{
′ U

R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ep

ti
d
eh

it
′ ,

d
}|

d
←
⟨⟨
p
ed

ro
p
ep

ti
d
eh

it
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ep

ti
d
eh

it
,
G
S
1
d
b
se
ar
ch
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ep

ti
d
eh

it
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ep

ti
d
eh

it
,
p
ed

ro
d
b
se
ar
ch
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ep

ti
d
eh

it
,
G
S
1
id
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ep

ti
d
eh

it
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ep

ti
d
eh

it
,
p
ed

ro
id
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ep

ti
d
eh

it
,
G
S
1
in
fo
rm

a
ti
o
n
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ep

ti
d
eh

it
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ep

ti
d
eh

it
,
p
ed

ro
in
fo
rm

a
ti
o
n
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ep

ti
d
eh

it
,
G
S
1
p
ro
b
a
b
il
it
y⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ep

ti
d
eh

it
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ep

ti
d
eh

it
,
p
ed

ro
p
ro
b
a
b
il
it
y⟩
⟩]

a
d
d

⟨⟨
G
S
1
p
ep

ti
d
eh

it
,
G
S
1
sc
or
e
ty
p
e⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ep

ti
d
eh

it
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ep

ti
d
eh

it
,
p
ed

ro
sc
or
e
ty
p
e⟩
⟩]

a
d
d

⟨⟨
G
S
1
p
ep

ti
d
eh

it
,
G
S
1
sc
or
e⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ep

ti
d
eh

it
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ep

ti
d
eh

it
,
p
ed

ro
sc
or
e⟩
⟩]

a
d
d

⟨⟨
G
S
1
p
ep

ti
d
eh

it
,
G
S
1
se
q
u
en

ce
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ep

ti
d
eh

it
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ep

ti
d
eh

it
,
p
ed

ro
se
q
u
en

ce
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
⟩⟩

[{
′ U

R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ro
te
in
′ ,

d
}|

d
←
⟨⟨
p
ed

ro
p
ro
te
in
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
a
cc
es
si
o
n
n
u
m
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ro
te
in
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ro
te
in
,
p
ed

ro
a
cc
es
si
o
n
n
u
m
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
d
es
cr
ip
ti
o
n
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ro
te
in
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ro
te
in
,
p
ed

ro
d
es
cr
ip
ti
o
n
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
g
en

e
n
a
m
e⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ro
te
in
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ro
te
in
,
p
ed

ro
g
en

e
n
a
m
e⟩
⟩]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
id
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ro
te
in
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ro
te
in
,
p
ed

ro
id
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
m
o
d
ifi
ca
ti
o
n
s⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ro
te
in
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ro
te
in
,
p
ed

ro
m
o
d
ifi
ca
ti
o
n
s⟩
⟩]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
or
f
n
u
m
b
er
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ro
te
in
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ro
te
in
,
p
ed

ro
or
f
n
u
m
b
er
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
or
g
a
n
is
m
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ro
te
in
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ro
te
in
,
p
ed

ro
or
g
a
n
is
m
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
p
re
d
ic
te
d
m
a
ss
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ro
te
in
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ro
te
in
,
p
ed

ro
p
re
d
ic
te
d
m
a
ss
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
p
re
d
ic
te
d
p
i⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ro
te
in
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ro
te
in
,
p
ed

ro
p
re
d
ic
te
d
p
i⟩⟩

]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
se
q
u
en

ce
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ro
te
in
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ro
te
in
,
p
ed

ro
se
q
u
en

ce
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
sy
n
o
n
ym

s⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ro
te
in
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ro
te
in
,
p
ed

ro
sy
n
o
n
ym

s⟩
⟩]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
h
it
⟩⟩

[{
′ U

R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ro
te
in
h
it
′ ,

d
}|

d
←
⟨⟨
p
ed

ro
p
ro
te
in
h
it
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
h
it
,
G
S
1
a
ll
p
ep

ti
d
es

m
a
tc
h
ed
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ro
te
in
h
it
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ro
te
in
h
it
,
p
ed

ro
a
ll
p
ep

ti
d
es

m
a
tc
h
ed
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
h
it
,
G
S
1
co

m
p
o
n
en

t
p
ep

ti
d
es
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ro
te
in
h
it
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ro
te
in
h
it
,
p
ed

ro
co

m
p
o
n
en

t
p
ep

ti
d
es
⟩⟩
]

220

a
d
d

⟨⟨
G
S
1
p
ro
te
in
h
it
,
G
S
1
d
b
se
ar
ch
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ro
te
in
h
it
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ro
te
in
h
it
,
p
ed

ro
d
b
se
ar
ch
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
h
it
,
G
S
1
id
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ro
te
in
h
it
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ro
te
in
h
it
,
p
ed

ro
id
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
h
it
,
G
S
1
m
a
ss
es

m
a
tc
h
ed
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ro
te
in
h
it
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ro
te
in
h
it
,
p
ed

ro
m
a
ss
es

m
a
tc
h
ed
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
h
it
,
G
S
1
p
ro
te
in
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ro
te
in
h
it
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ro
te
in
h
it
,
p
ed

ro
p
ro
te
in
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
h
it
,
G
S
1
sc
or
e
ty
p
e⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ro
te
in
h
it
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ro
te
in
h
it
,
p
ed

ro
sc
or
e
ty
p
e⟩
⟩]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
h
it
,
G
S
1
sc
or
e⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ed

ro
:
p
ro
te
in
h
it
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ed

ro
p
ro
te
in
h
it
,
p
ed

ro
sc
or
e⟩
⟩]

P
e
p
se

e
k
e
r
→

G
S
1

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch
⟩⟩

[{
′ U

R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
}|

d
←
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s⟩
⟩]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

,
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
},
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
x}
}|

{d
,
x}
←
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

Id
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

,
G
S
1
id
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
},
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
}}
|

d
←
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s⟩
⟩]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

,
G
S
1
u
se
rn
a
m
e⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

U
se
rn
a
m
e⟩
⟩]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩

[{
′ U

R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
}|

d
←
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s⟩
⟩]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
a
cc
u
ra
te

m
a
ss

m
o
d
e⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

S
E
G
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
fi
xe
d
m
o
d
ifi
ca
ti
o
n
s⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

M
O
D
S
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
fr
a
g
m
en

t
io
n
to
le
ra
n
ce
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

IT
O
L
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
id
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
},
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
}}
|

d
←
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s⟩
⟩]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
m
a
x
m
is
se
d
cl
ea
va
g
es
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

P
F
A
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
p
ar
a
m
et
er
s
fi
le
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

F
il
en

a
m
e⟩
⟩]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
p
ep

ti
d
e
m
a
ss

to
le
ra
n
ce
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

T
O
L
⟩⟩
]

e
x
te

n
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
p
ro
g
ra
m
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
},

′
M
a
sc
o
t′
}|

d
←
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s⟩
⟩]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
p
ro
to
n
a
te
d
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

C
H
A
R
G
E
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
ta
xo

n
o
m
ic
a
l
fi
lt
er
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

T
A
X
O
N
O
M
Y
⟩⟩
]

a
d
d

⟨⟨
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
1
va
ri
a
b
le

m
o
d
ifi
ca
ti
o
n
s⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

IT
M
O
D
S
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ep

ti
d
eh

it
⟩⟩

[{
′ U

R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ep

ti
d
eh

it
′ ,

d
}|

d
←
⟨⟨
p
ep

se
ek
er

p
ep

ti
d
eh

it
⟩⟩
]

e
x
te

n
d

⟨⟨
G
S
1
p
ep

ti
d
eh

it
,
G
S
1
d
b
se
ar
ch
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ep

ti
d
eh

it
′ ,

d
},

′
N
u
ll
′ }
|d
←
⟨⟨
p
ep

se
ek
er

p
ep

ti
d
eh

it
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ep

ti
d
eh

it
,
G
S
1
id
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

′ ,
k
},
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ep

ti
d
eh

it
′ ,

k
}}
|

k
←
⟨⟨
p
ep

se
ek
er

p
ep

ti
d
eh

it
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ep

ti
d
eh

it
,
G
S
1
p
ro
b
a
b
il
it
y⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ep

ti
d
eh

it
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

m
a
sc
o
te
xp

ec
t,
p
ep

se
ek
er

ex
p
ec
t⟩⟩

]

a
d
d

⟨⟨
G
S
1
p
ep

ti
d
eh

it
,
G
S
1
sc
or
e⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ep

ti
d
eh

it
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

p
ep

ti
d
eh

it
,
p
ep

se
ek
er

p
ro
te
in
sc
or
e⟩
⟩]

a
d
d

⟨⟨
G
S
1
p
ep

ti
d
eh

it
,
G
S
1
se
q
u
en

ce
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ep

ti
d
eh

it
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

p
ep

ti
d
eh

it
,
p
ep

se
ek
er

p
ep

se
q
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
⟩⟩

[{
′ U

R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ro
te
in
h
it
′ ,

d
}|

d
←
⟨⟨
p
ep

se
ek
er

p
ro
te
in
h
it
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
a
cc
es
si
o
n
n
u
m
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ro
te
in
h
it
′ ,

p
id
},

x}
|{

p
id
,
x}
←
⟨⟨
p
ep

se
ek
er

p
ro
te
in
h
it
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
g
en

e
n
a
m
e⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ro
te
in
h
it
′ ,

p
id
},

x}
|{

p
id
,
x}
←
⟨⟨
p
ep

se
ek
er

p
ro
te
in
h
it
,
p
ep

se
ek
er

P
ro
te
in
n
a
m
e⟩
⟩]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
id
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ro
te
in
h
it
′ ,

d
},
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ro
te
in
h
it
′ ,

d
}}
|

d
←
⟨⟨
p
ep

se
ek
er

p
ro
te
in
h
it
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
or
g
a
n
is
m
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ro
te
in
h
it
′ ,

p
h
},

o
n
a
m
e}
|{

s,
p
h
}
←
⟨⟨
p
ep

se
ek
er

sp
ec
ie
s,

p
ep

se
ek
er

P
ro
te
in
Id
⟩⟩
;

{s
,
o
n
a
m
e}
←
⟨⟨
p
ep

se
ek
er

sp
ec
ie
s,
p
ep

se
ek
er

sp
ec
ie
s⟩
⟩]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
p
re
d
ic
te
d
m
a
ss
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ro
te
in
h
it
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

p
ro
te
in
h
it
,
p
ep

se
ek
er

M
a
ss
⟩⟩
]

221

a
d
d

⟨⟨
G
S
1
p
ro
te
in
h
it
⟩⟩

[{
′ U

R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ro
te
in
h
it
′ ,

d
}|

d
←
⟨⟨
p
ep

se
ek
er

p
ro
te
in
h
it
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
h
it
,
G
S
1
d
b
se
ar
ch
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ro
te
in
h
it
′ ,

d
},
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
x}
}|

{d
,
x}
←
⟨⟨
p
ep

se
ek
er

p
ro
te
in
h
it
,
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s⟩
⟩]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
h
it
,
G
S
1
id
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ro
te
in
h
it
′ ,

d
},
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ro
te
in
h
it
′ ,

d
}}
|

d
←
⟨⟨
p
ep

se
ek
er

p
ro
te
in
h
it
⟩⟩
]

a
d
d

⟨⟨
G
S
1
p
ro
te
in
h
it
,
G
S
1
p
ro
te
in
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ro
te
in
h
it
′ ,

d
},
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ro
te
in
h
it
′ ,

x}
}|

{d
,
x}
←
⟨⟨
p
ep

se
ek
er

p
ro
te
in
h
it
,
p
ep

se
ek
er

P
ro
te
in
ID
⟩⟩
]

e
x
te

n
d

⟨⟨
G
S
1
p
ro
te
in
h
it
,
G
S
1
sc
or
e⟩
⟩

d
is
ti
n
c
t
[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ro
te
in
h
it
′ ,

k
2
},

x}
|{

k
2
,
x}
←
⟨⟨
p
ep

se
ek
er

p
ro
te
in
sc
or
e,

p
ep

se
ek
er

S
co
re
⟩⟩
]

T
a
b
le

E
.1
:
M

a
p
p
in

g
s
fo
r
It
e
ra

ti
o
n

1

222

g
p
m
D
B
→

G
S
2

a
d
d

⟨⟨
G
S
2
a
a
⟩⟩

[{
′ U

R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
a
a
′ ,

d
}|

d
←
⟨⟨
g
p
m
d
b
a
a
⟩⟩
]

a
d
d

⟨⟨
G
S
2
a
a
,
G
S
2
a
a
id
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
a
a
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
g
p
m
d
b
a
a
,
g
p
m
d
b
a
a
id
⟩⟩
]

a
d
d

⟨⟨
G
S
2
a
a
,
G
S
2
p
ep

id
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
a
a
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
g
p
m
d
b
a
a
,
g
p
m
d
b
p
ep

id
⟩⟩
]

a
d
d

⟨⟨
G
S
2
a
a
,
G
S
2
ty
p
e⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
a
a
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
g
p
m
d
b
a
a
,
g
p
m
d
b
ty
p
e⟩
⟩]

a
d
d

⟨⟨
G
S
2
a
a
,
G
S
2
a
t⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
a
a
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
g
p
m
d
b
a
a
,
g
p
m
d
b
a
t⟩⟩

]

a
d
d

⟨⟨
G
S
2
a
a
,
G
S
2
m
o
d
ifi
ed
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
a
a
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
g
p
m
d
b
a
a
,
g
p
m
d
b
m
o
d
ifi
ed
⟩⟩
]

a
d
d

⟨⟨
G
S
2
a
a
,
G
S
2
p
m
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
a
a
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
g
p
m
d
b
a
a
,
g
p
m
d
b
p
m
⟩⟩
]

a
d
d

⟨⟨
G
S
2
p
ep

ti
d
e,

G
S
2
m
h
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ep

ti
d
e′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
g
p
m
d
b
p
ep

ti
d
e,

g
p
m
d
b
m
h
⟩⟩
]

a
d
d

⟨⟨
G
S
2
p
ep

ti
d
e,

G
S
2
st
ar
t⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ep

ti
d
e′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
g
p
m
d
b
p
ep

ti
d
e,

g
p
m
d
b
st
ar
t⟩⟩

]

a
d
d

⟨⟨
G
S
2
p
ep

ti
d
e,

G
S
2
en

d
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ep

ti
d
e′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
g
p
m
d
b
p
ep

ti
d
e,

g
p
m
d
b
en

d
⟩⟩
]

a
d
d

⟨⟨
G
S
2
p
ep

ti
d
e,

G
S
2
ch

ar
g
e⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ep

ti
d
e′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
g
p
m
d
b
p
ep

ti
d
e,

g
p
m
d
b
ch

ar
g
e⟩
⟩]

a
d
d

⟨⟨
G
S
2
p
ep

ti
d
e,

G
S
2
d
el
ta
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ep

ti
d
e′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
g
p
m
d
b
p
ep

ti
d
e,

g
p
m
d
b
d
el
ta
⟩⟩
]

a
d
d

⟨⟨
G
S
2
p
ro
se
q
,
G
S
2
rf
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ro
se
q
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
g
p
m
d
b
p
ro
se
q
,
g
p
m
d
b
rf
⟩⟩
]

a
d
d

⟨⟨
G
S
2
p
ro
te
in
,
G
S
2
ex
p
ec
t⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
g
p
m
d
b
:
p
ro
te
in
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
ex
p
ec
t⟩⟩

]

a
d
d

⟨⟨
G
S
2
a
a
p
ke
y,

G
S
2
a
a
,
⟨⟨
G
S
2
a
a
,
G
S
2
a
a
id
⟩⟩
⟩⟩

n
u
ll

e
x
te

n
d

⟨⟨
G
S
1
fk

p
ro
te
in
h
it

p
ro
te
in
1
,
G
S
1
p
ro
te
in
h
it
,
⟨⟨
G
S
1
p
ro
te
in
h
it
,
G
S
1
id
⟩⟩
,
G
S
1
p
ro
te
in
,
⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
id
⟩⟩
⟩⟩

n
u
ll

P
E
D
R
o
→

G
S
2

a
d
d

⟨⟨
G
S
2
a
a
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
2
a
a
,
G
S
2
a
a
id
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
2
a
a
,
G
S
2
p
ep

id
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
2
a
a
,
G
S
2
ty
p
e⟩
⟩

V
o
id

a
d
d

⟨⟨
G
S
2
a
a
,
G
S
2
a
t⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
2
a
a
,
G
S
2
m
o
d
ifi
ed
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
2
a
a
,
G
S
2
p
m
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
2
p
ep

ti
d
e,

G
S
2
m
h
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
2
p
ep

ti
d
e,

G
S
2
st
ar
t⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
2
p
ep

ti
d
e,

G
S
2
en

d
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
2
p
ep

ti
d
e,

G
S
2
ch

ar
g
e⟩
⟩

V
o
id

a
d
d

⟨⟨
G
S
2
p
ep

ti
d
e,

G
S
2
d
el
ta
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
2
p
ro
se
q
,
G
S
2
rf
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
2
p
ro
te
in
,
G
S
2
ex
p
ec
t⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
2
a
a
p
ke
y,

G
S
2
a
a
,
⟨⟨
G
S
2
a
a
,
G
S
2
a
a
id
⟩⟩
⟩⟩

n
u
ll

P
e
p
se

e
k
e
r
→

G
S
2

a
d
d

⟨⟨
G
S
2
p
ep

ti
d
e,

G
S
2
st
ar
t⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ep

ti
d
eh

it
′ ,

d
},

x}
|

{d
,
x}
←
⟨⟨
p
ep

se
ek
er

p
ep

ti
d
eh

it
,
p
ep

se
ek
er

st
ar
tr
es
id
u
e⟩
⟩]

a
d
d

⟨⟨
G
S
2
p
ep

ti
d
e,

G
S
2
en

d
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ep

ti
d
eh

it
′ ,

d
},

x}
|

{d
,
x}
←
⟨⟨
p
ep

se
ek
er

p
ep

ti
d
eh

it
,
p
ep

se
ek
er

en
d
re
si
d
u
e⟩
⟩]

a
d
d

⟨⟨
G
S
2
a
a
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
2
a
a
,
G
S
2
a
a
id
⟩⟩

V
o
id

223

a
d
d

⟨⟨
G
S
2
a
a
,
G
S
2
p
ep

id
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
2
a
a
,
G
S
2
ty
p
e⟩
⟩

V
o
id

a
d
d

⟨⟨
G
S
2
a
a
,
G
S
2
a
t⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
2
a
a
,
G
S
2
m
o
d
ifi
ed
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
2
a
a
,
G
S
2
p
m
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
2
p
ep

ti
d
e,

G
S
2
m
h
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
2
p
ep

ti
d
e,

G
S
2
ch

ar
g
e⟩
⟩

V
o
id

a
d
d

⟨⟨
G
S
2
p
ep

ti
d
e,

G
S
2
d
el
ta
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
2
p
ro
se
q
,
G
S
2
rf
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
2
p
ro
te
in
,
G
S
2
ex
p
ec
t⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
2
a
a
p
ke
y,

G
S
2
a
a
,
⟨⟨
G
S
2
a
a
,
G
S
2
a
a
id
⟩⟩
⟩⟩

n
u
ll

a
d
d

⟨⟨
G
S
1
fk

p
ro
te
in
h
it

p
ro
te
in
1
,
G
S
1
p
ro
te
in
h
it
,
⟨⟨
G
S
1
p
ro
te
in
h
it
,
G
S
1
id
⟩⟩
,
G
S
1
p
ro
te
in
,
⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
id
⟩⟩
⟩⟩

n
u
ll

G
S
1
2

U
n
io
n
→

G
S
1
2

Im
p
ro

v
ed

a
d
d

⟨⟨
G
S
2
G
S
1
p
ep

ti
d
eh

it
,
G
S
2
G
S
1
p
ep

st
ar
t⟩⟩

[{
id
,
st
ar
t}
|{

id
,
st
ar
t}
←
⟨⟨
G
S
2
p
ep

ti
d
e,

G
S
2
st
ar
t⟩⟩

;
id
←
⟨⟨
G
S
2
G
S
1
p
ep

ti
d
eh

it
⟩⟩
]

a
d
d

⟨⟨
G
S
2
G
S
1
p
ep

ti
d
eh

it
,
G
S
2
G
S
1
p
ep

en
d
⟩⟩

[{
id
,
en

d
}|
{i
d
,
en

d
}
←
⟨⟨
G
S
2
p
ep

ti
d
e,

G
S
2
en

d
⟩⟩
;
id
←
⟨⟨
G
S
2
G
S
1
p
ep

ti
d
eh

it
⟩⟩
]

T
a
b
le

E
.2
:
M

a
p
p
in

g
s
fo
r
It
e
ra

ti
o
n

2

224

g
p
m
D
B
→

G
S
3

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
T
O
L
U
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
IT

O
L
U
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
C
L
E
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
IC
A
T
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
IN

S
T
R
U
M
E
N
T
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
U
se
re
m
a
il
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Id
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Im

m
o
n
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
A
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
A
S
ta
r⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
B
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
B
st
ar
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
B
st
ar
p
lu
sp
lu
s⟩
⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
B
ze
ro
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
B
Z
er
o
p
lu
sp
lu
s⟩
⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Y
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Y
p
lu
sp
lu
s⟩
⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Y
st
ar
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Y
st
ar
p
lu
sp
lu
s⟩
⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Y
Z
er
o
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Y
Z
er
o
p
lu
sp
lu
s⟩
⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
B
p
lu
sp
lu
s⟩
⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
A
p
lu
sp
lu
s⟩
⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
A
st
ar
p
lu
sp
lu
s⟩
⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
A
ze
ro
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
M
a
tc
h
es
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
p
ep

ti
d
eh

it
,
G
S
3
M
a
ss
N
o
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
p
ep

ti
d
eh

it
,
G
S
3
M
is
sC

le
a
v⟩
⟩

V
o
id

a
d
d

⟨⟨
G
S
3
p
ep

ti
d
eh

it
,
G
S
3
M
rE

xp
ct
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
se
ar
ch

m
a
ss
es
,
G
S
3
Id
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le

p
ke
y,

G
S
3
io
n
ta
b
le
,
⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Id
⟩⟩
⟩⟩

n
u
ll

P
E
D
R
o
→

G
S
3

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
T
O
L
U
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
IT

O
L
U
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
C
L
E
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
IC
A
T
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
IN

S
T
R
U
M
E
N
T
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
U
se
re
m
a
il
⟩⟩

V
o
id

225

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Id
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Im

m
o
n
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
A
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
A
S
ta
r⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
B
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
B
st
ar
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
B
st
ar
p
lu
sp
lu
s⟩
⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
B
ze
ro
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
B
Z
er
o
p
lu
sp
lu
s⟩
⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Y
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Y
p
lu
sp
lu
s⟩
⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Y
st
ar
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Y
st
ar
p
lu
sp
lu
s⟩
⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Y
Z
er
o
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Y
Z
er
o
p
lu
sp
lu
s⟩
⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
B
p
lu
sp
lu
s⟩
⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
A
p
lu
sp
lu
s⟩
⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
A
st
ar
p
lu
sp
lu
s⟩
⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
A
ze
ro
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
M
a
tc
h
es
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
p
ep

ti
d
eh

it
,
G
S
3
M
a
ss
N
o
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
p
ep

ti
d
eh

it
,
G
S
3
M
is
sC

le
a
v⟩
⟩

V
o
id

a
d
d

⟨⟨
G
S
3
p
ep

ti
d
eh

it
,
G
S
3
M
rE

xp
ct
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
se
ar
ch

m
a
ss
es
,
G
S
3
Id
⟩⟩

V
o
id

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le

p
ke
y,

G
S
3
io
n
ta
b
le
,
⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Id
⟩⟩
⟩⟩

n
u
ll

P
e
p
se

e
k
e
r
→

G
S
3

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
⟩⟩

[{
′ U

R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
io
n
ta
b
le
′ ,

d
}|

d
←
⟨⟨
p
ep

se
ek
er

io
n
ta
b
le
⟩⟩
]

a
d
d

⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
T
O
L
U
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

T
O
L
U
⟩⟩
]

a
d
d

⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
IT

O
L
U
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

IT
O
L
U
⟩⟩
]

a
d
d

⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
C
L
E
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

C
L
E
⟩⟩
]

a
d
d

⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
IC
A
T
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

IC
A
T
⟩⟩
]

a
d
d

⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
IN

S
T
R
U
M
E
N
T
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

IN
S
T
R
U
M
E
N
T
⟩⟩
]

a
d
d

⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
U
se
re
m
a
il
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
fi
le
p
ar
a
m
et
er
s′
,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

U
se
re
m
a
il
⟩⟩
]

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Id
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
io
n
ta
b
le
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

io
n
ta
b
le
,
p
ep

se
ek
er

Id
⟩⟩
]

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Im

m
o
n
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
io
n
ta
b
le
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

io
n
ta
b
le
,
p
ep

se
ek
er

Im
m
o
n
⟩⟩
]

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
A
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
io
n
ta
b
le
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

io
n
ta
b
le
,
p
ep

se
ek
er

A
⟩⟩
]

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
A
S
ta
r⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
io
n
ta
b
le
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

io
n
ta
b
le
,
p
ep

se
ek
er

A
S
ta
r⟩⟩

]

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
B
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
io
n
ta
b
le
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

io
n
ta
b
le
,
p
ep

se
ek
er

B
⟩⟩
]

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
B
st
ar
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
io
n
ta
b
le
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

io
n
ta
b
le
,
p
ep

se
ek
er

B
st
ar
⟩⟩
]

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
B
st
ar
p
lu
sp
lu
s⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
io
n
ta
b
le
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

io
n
ta
b
le
,
p
ep

se
ek
er

B
st
ar
p
lu
sp
lu
s⟩
⟩]

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
B
ze
ro
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
io
n
ta
b
le
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

io
n
ta
b
le
,
p
ep

se
ek
er

B
ze
ro
⟩⟩
]

226

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
B
Z
er
o
p
lu
sp
lu
s⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
io
n
ta
b
le
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

io
n
ta
b
le
,
p
ep

se
ek
er

B
Z
er
o
p
lu
sp
lu
s⟩
⟩]

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Y
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
io
n
ta
b
le
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

io
n
ta
b
le
,
p
ep

se
ek
er

Y
⟩⟩
]

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Y
p
lu
sp
lu
s⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
io
n
ta
b
le
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

io
n
ta
b
le
,
p
ep

se
ek
er

Y
p
lu
sp
lu
s⟩
⟩]

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Y
st
ar
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
io
n
ta
b
le
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

io
n
ta
b
le
,
p
ep

se
ek
er

Y
st
ar
⟩⟩
]

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Y
st
ar
p
lu
sp
lu
s⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
io
n
ta
b
le
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

io
n
ta
b
le
,
p
ep

se
ek
er

Y
st
ar
p
lu
sp
lu
s⟩
⟩]

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Y
Z
er
o
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
io
n
ta
b
le
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

io
n
ta
b
le
,
p
ep

se
ek
er

Y
Z
er
o
⟩⟩
]

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Y
Z
er
o
p
lu
sp
lu
s⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
io
n
ta
b
le
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

io
n
ta
b
le
,
p
ep

se
ek
er

Y
Z
er
o
p
lu
sp
lu
s⟩
⟩]

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
B
p
lu
sp
lu
s⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
io
n
ta
b
le
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

io
n
ta
b
le
,
p
ep

se
ek
er

B
p
lu
sp
lu
s⟩
⟩]

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
A
p
lu
sp
lu
s⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
io
n
ta
b
le
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

io
n
ta
b
le
,
p
ep

se
ek
er

A
p
lu
sp
lu
s⟩
⟩]

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
A
st
ar
p
lu
sp
lu
s⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
io
n
ta
b
le
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

io
n
ta
b
le
,
p
ep

se
ek
er

A
st
ar
p
lu
sp
lu
s⟩
⟩]

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
A
ze
ro
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
io
n
ta
b
le
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

io
n
ta
b
le
,
p
ep

se
ek
er

A
ze
ro
⟩⟩
]

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
M
a
tc
h
es
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
io
n
ta
b
le
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

io
n
ta
b
le
,
p
ep

se
ek
er

M
a
tc
h
es
⟩⟩
]

a
d
d

⟨⟨
G
S
3
p
ep

ti
d
eh

it
,
G
S
3
M
a
ss
N
o
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ep

ti
d
eh

it
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

p
ep

ti
d
eh

it
,
p
ep

se
ek
er

M
a
ss
N
o
⟩⟩
]

a
d
d

⟨⟨
G
S
3
p
ep

ti
d
eh

it
,
G
S
3
M
is
sC

le
a
v⟩
⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ep

ti
d
eh

it
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

p
ep

ti
d
eh

it
,
p
ep

se
ek
er

M
is
sC

le
a
v⟩
⟩]

a
d
d

⟨⟨
G
S
3
p
ep

ti
d
eh

it
,
G
S
3
M
rE

xp
ct
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
p
ep

ti
d
eh

it
′ ,

d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

p
ep

ti
d
eh

it
,
p
ep

se
ek
er

M
rE

xp
ct
⟩⟩
]

a
d
d

⟨⟨
G
S
3
se
ar
ch

m
a
ss
es
,
G
S
3
Id
⟩⟩

[{
{′

U
R
N

:
L
S
ID

:
is
p
id
er
.m

a
n
.a
c.
u
k
:
p
ep

se
ek
er

:
se
ar
ch

m
a
ss
es

′ ,
d
},

x}
|{

d
,
x}
←
⟨⟨
p
ep

se
ek
er

se
ar
ch

m
a
ss
es
,
p
ep

se
ek
er

Id
⟩⟩
]

a
d
d

⟨⟨
G
S
3
io
n
ta
b
le

p
ke
y,

G
S
3
io
n
ta
b
le
,
⟨⟨
G
S
3
io
n
ta
b
le
,
G
S
3
Id
⟩⟩
⟩⟩

n
u
ll

G
S
1
2
3

U
n
io
n
→

G
S
1
2
3

Im
p
ro

v
ed

a
d
d

⟨⟨
G
S
3
G
S
2
G
S
1
d
b
se
ar
ch

,
G
S
3
G
S
2
G
S
1
C
L
E
⟩⟩

[{
id
,
cl
e}
|{

id
,
cl
e}
←
⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
C
L
E
⟩⟩
;
id
←
⟨⟨
G
S
3
G
S
2
G
S
1
d
b
se
ar
ch
⟩⟩
]

a
d
d

⟨⟨
G
S
3
G
S
2
G
S
1
d
b
se
ar
ch

,
G
S
3
G
S
2
G
S
1
u
se
rm

a
il
⟩⟩

[{
id
,
u
m
a
il
}|
{i
d
,
u
m
a
il
}
←
⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
U
se
re
m
a
il
⟩⟩
;
id
←
⟨⟨
G
S
3
G
S
2
G
S
1
d
b
se
ar
ch
⟩⟩
]

a
d
d

⟨⟨
G
S
3
G
S
2
G
S
1
p
ep

ti
d
eh

it
,
G
S
3
G
S
2
G
S
1
M
is
sC

le
a
v⟩
⟩

[{
id
,
M
is
sC

le
a
v}
|{

id
,
M
is
sC

le
a
v}
←
⟨⟨
G
S
3
p
ep

ti
d
eh

it
,
G
S
3
M
is
sC

le
a
v⟩
⟩;

id
←
⟨⟨
G
S
3
G
S
2
G
S
1
p
ep

ti
d
eh

it
⟩⟩
]

a
d
d

⟨⟨
G
S
3
G
S
2
G
S
1
p
ep

ti
d
eh

it
,
G
S
3
G
S
2
G
S
1
M
rE

xp
ct
⟩⟩

[{
id
,
M
rE

xp
ct
}|
{i
d
,
M
rE

xp
ct
}
←
⟨⟨
G
S
3
p
ep

ti
d
eh

it
,
G
S
3
M
rE

xp
ct
⟩⟩
;
id
←
⟨⟨
G
S
3
G
S
2
G
S
1
p
ep

ti
d
eh

it
⟩⟩
]

a
d
d

⟨⟨
G
S
3
G
S
2
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
3
G
S
2
G
S
1
T
O
L
U
⟩⟩

[{
id
,
to
lu
}|
{i
d
,
to
lu
}
←
⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
T
O
L
U
⟩⟩
;
id
←
⟨⟨
G
S
3
G
S
2
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩]

a
d
d

⟨⟨
G
S
3
G
S
2
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
3
G
S
2
G
S
1
IT

O
L
U
⟩⟩

[{
id
,
it
o
lu
}|
{i
d
,
it
o
lu
}
←
⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
IT

O
L
U
⟩⟩
;
id
←
⟨⟨
G
S
3
G
S
2
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩]

a
d
d

⟨⟨
G
S
3
G
S
2
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
3
G
S
2
G
S
1
IC
A
T
⟩⟩

[{
id
,
ic
a
t}
|{

id
,
ic
a
t}
←
⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
IC
A
T
⟩⟩
;
id
←
⟨⟨
G
S
3
G
S
2
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩]

a
d
d

⟨⟨
G
S
3
G
S
2
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s,
G
S
3
G
S
2
G
S
1
IN

S
T
R
U
M
E
N
T
⟩⟩

[{
id
,
in
st
ru
m
en

t}
|{

id
,
in
st
ru
m
en

t}
←
⟨⟨
G
S
3
fi
le
p
ar
a
m
et
er
s,
G
S
3
IN

S
T
R
U
M
E
N
T
⟩⟩
;
id
←
⟨⟨
G
S
3
G
S
2
G
S
1
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩]

a
d
d

⟨⟨
G
S
3
G
S
2
G
S
1
p
ea
k
,
G
S
3
G
S
2
G
S
1
sp
ec
tr
u
m
⟩⟩

[{
id
,
sp
ec
tr
u
m
}|
{i
d
,
sp
ec
tr
u
m
}
←
⟨⟨
G
S
3
se
ar
ch

m
a
ss
es
,
G
S
3
Id
⟩⟩
;
id
←
⟨⟨
G
S
3
G
S
2
G
S
1
p
ea
k
⟩⟩
]

T
a
b
le

E
.3
:
M

a
p
p
in

g
s
fo
r
It
e
ra

ti
o
n

3

227

E.3 Concept Coverage

Figure E.4: Concept Coverage of the integrated resource in Iteration 1

228

Figure E.5: Concept Coverage of the integrated resource in Iteration 2

229

Figure E.6: Concept Coverage of the integrated resource in Iteration 3

230

E.4 Assessments of Quality Factors

E.4.1 Quality Measurement for Iteration 1

Factor 1

⟨⟨gpmdb protein⟩⟩ ⟨⟨pedro iontrap, pedro mz analysis⟩⟩
⟨⟨gpmdb protein, gpmdb proseqid⟩⟩ ⟨⟨pedro lccolumn⟩⟩
⟨⟨gpmdb protein, gpmdb resultid⟩⟩ ⟨⟨pedro lccolumn, pedro id⟩⟩
⟨⟨gpmdb peptide⟩⟩ ⟨⟨pedro lccolumn, pedro description⟩⟩
⟨⟨gpmdb peptide, gpmdb seq⟩⟩ ⟨⟨pedro lccolumn, pedro manufacturer⟩⟩
⟨⟨gpmdb peptide, gpmdb expect⟩⟩ ⟨⟨pedro lccolumn, pedro part number⟩⟩
⟨⟨gpmdb result⟩⟩ ⟨⟨pedro lccolumn, pedro batch number⟩⟩
⟨⟨gpmdb result, gpmdb tandemversion⟩⟩ ⟨⟨pedro lccolumn, pedro internal length⟩⟩
⟨⟨gpmdb proseq, gpmdb label⟩⟩ ⟨⟨pedro lccolumn, pedro internal diameter⟩⟩
⟨⟨gpmdb proseq, gpmdb seq⟩⟩ ⟨⟨pedro lccolumn, pedro stationary phase⟩⟩
⟨⟨pedro proteinhit⟩⟩ ⟨⟨pedro lccolumn, pedro bead size⟩⟩
⟨⟨pedro proteinhit, pedro id⟩⟩ ⟨⟨pedro lccolumn, pedro pore size⟩⟩
⟨⟨pedro proteinhit, pedro all peptides matched⟩⟩ ⟨⟨pedro lccolumn, pedro temperature⟩⟩
⟨⟨pedro proteinhit, pedro score⟩⟩ ⟨⟨pedro lccolumn, pedro flow rate⟩⟩
⟨⟨pedro proteinhit, pedro protein⟩⟩ ⟨⟨pedro lccolumn, pedro injection volume⟩⟩
⟨⟨pedro proteinhit, pedro db search⟩⟩ ⟨⟨pedro lccolumn, pedro parameters file⟩⟩
⟨⟨pedro proteinhit, pedro component peptides⟩⟩ ⟨⟨pedro lccolumn, pedro lc column⟩⟩
⟨⟨pedro proteinhit, pedro masses matched⟩⟩ ⟨⟨pedro lccolumn, pedro analyte processing step⟩⟩
⟨⟨pedro proteinhit, pedro score type⟩⟩ ⟨⟨pedro listprocessing⟩⟩
⟨⟨pedro peptidehit⟩⟩ ⟨⟨pedro listprocessing, pedro id⟩⟩
⟨⟨pedro peptidehit, pedro id⟩⟩ ⟨⟨pedro listprocessing, pedro smoothing process⟩⟩
⟨⟨pedro peptidehit, pedro score⟩⟩ ⟨⟨pedro listprocessing, pedro background threshold⟩⟩
⟨⟨pedro peptidehit, pedro score type⟩⟩ ⟨⟨pedro listprocessing, pedro peak list⟩⟩
⟨⟨pedro peptidehit, pedro sequence⟩⟩ ⟨⟨pedro maldi⟩⟩
⟨⟨pedro peptidehit, pedro information⟩⟩ ⟨⟨pedro maldi, pedro id⟩⟩
⟨⟨pedro peptidehit, pedro probability⟩⟩ ⟨⟨pedro maldi, pedro laser wavelength⟩⟩
⟨⟨pedro peptidehit, pedro db search⟩⟩ ⟨⟨pedro maldi, pedro laser power⟩⟩
⟨⟨pedro dbsearch⟩⟩ ⟨⟨pedro maldi, pedro matrix type⟩⟩
⟨⟨pedro dbsearch, pedro id⟩⟩ ⟨⟨pedro maldi, pedro grid voltage⟩⟩
⟨⟨pedro dbsearch, pedro username⟩⟩ ⟨⟨pedro maldi, pedro acceleration voltage⟩⟩
⟨⟨pedro dbsearch, pedro id date⟩⟩ ⟨⟨pedro maldi, pedro ion mode⟩⟩
⟨⟨pedro dbsearch, pedro n terminal aa⟩⟩ ⟨⟨pedro maldi, pedro ion source⟩⟩
⟨⟨pedro dbsearch, pedro c terminal aa⟩⟩ ⟨⟨pedro massspecexperiment⟩⟩
⟨⟨pedro dbsearch, pedro count of specific aa⟩⟩ ⟨⟨pedro massspecexperiment, pedro id⟩⟩
⟨⟨pedro dbsearch, pedro name of counted aa⟩⟩ ⟨⟨pedro massspecexperiment, pedro description⟩⟩
⟨⟨pedro dbsearch, pedro regex pattern⟩⟩ ⟨⟨pedro massspecexperiment, pedro parameters file⟩⟩
⟨⟨pedro dbsearch, pedro db search parameters⟩⟩ ⟨⟨pedro massspecexperiment, pedro analyte processing step⟩⟩
⟨⟨pedro dbsearch, pedro peak list⟩⟩ ⟨⟨pedro massspecmachine⟩⟩
⟨⟨pedro dbsearchparameters⟩⟩ ⟨⟨pedro massspecmachine, pedro id⟩⟩
⟨⟨pedro dbsearchparameters, pedro id⟩⟩ ⟨⟨pedro massspecmachine, pedro manufacturer⟩⟩
⟨⟨pedro dbsearchparameters, pedro program⟩⟩ ⟨⟨pedro massspecmachine, pedro model name⟩⟩
⟨⟨pedro dbsearchparameters, pedro database name⟩⟩ ⟨⟨pedro massspecmachine, pedro software version⟩⟩
⟨⟨pedro dbsearchparameters, pedro database date⟩⟩ ⟨⟨pedro massspecmachine, pedro ion source⟩⟩
⟨⟨pedro dbsearchparameters, pedro parameters file⟩⟩ ⟨⟨pedro mobilephasecomponent⟩⟩
⟨⟨pedro dbsearchparameters, pedro taxonomical filter⟩⟩ ⟨⟨pedro mobilephasecomponent, pedro id⟩⟩
⟨⟨pedro dbsearchparameters, pedro fixed modifications⟩⟩ ⟨⟨pedro mobilephasecomponent, pedro description⟩⟩
⟨⟨pedro dbsearchparameters, pedro variable modifications⟩⟩ ⟨⟨pedro mobilephasecomponent, pedro concentration⟩⟩
⟨⟨pedro dbsearchparameters, pedro max missed cleavages⟩⟩ ⟨⟨pedro mobilephasecomponent, pedro lc column⟩⟩
⟨⟨pedro dbsearchparameters, pedro mass value type⟩⟩ ⟨⟨pedro msmsfraction⟩⟩
⟨⟨pedro dbsearchparameters, pedro fragment ion tolerance⟩⟩ ⟨⟨pedro msmsfraction, pedro id⟩⟩
⟨⟨pedro dbsearchparameters, pedro peptide mass tolerance⟩⟩ ⟨⟨pedro msmsfraction, pedro target m to z⟩⟩

231

⟨⟨pedro dbsearchparameters, pedro accurate mass mode⟩⟩ ⟨⟨pedro msmsfraction, pedro plus or minus⟩⟩
⟨⟨pedro dbsearchparameters, pedro mass error type⟩⟩ ⟨⟨pedro msmsfraction, pedro peak list⟩⟩
⟨⟨pedro dbsearchparameters, pedro mass error⟩⟩ ⟨⟨pedro mzanalysis⟩⟩
⟨⟨pedro dbsearchparameters, pedro protonated⟩⟩ ⟨⟨pedro mzanalysis, pedro id⟩⟩
⟨⟨pedro dbsearchparameters, pedro icat option⟩⟩ ⟨⟨pedro mzanalysis, pedro type⟩⟩
⟨⟨pedro peak⟩⟩ ⟨⟨pedro mzanalysis, pedro detection⟩⟩
⟨⟨pedro peak, pedro id⟩⟩ ⟨⟨pedro ontologyentry⟩⟩
⟨⟨pedro peak, pedro m to z⟩⟩ ⟨⟨pedro ontologyentry, pedro id⟩⟩
⟨⟨pedro peak, pedro abundance⟩⟩ ⟨⟨pedro ontologyentry, pedro category⟩⟩
⟨⟨pedro peak, pedro multiplicity⟩⟩ ⟨⟨pedro ontologyentry, pedro value⟩⟩
⟨⟨pedro peak, pedro peak list⟩⟩ ⟨⟨pedro ontologyentry, pedro description⟩⟩
⟨⟨pedro protein⟩⟩ ⟨⟨pedro organism⟩⟩
⟨⟨pedro protein, pedro id⟩⟩ ⟨⟨pedro organism, pedro id⟩⟩
⟨⟨pedro protein, pedro accession num⟩⟩ ⟨⟨pedro organism, pedro species name⟩⟩
⟨⟨pedro protein, pedro gene name⟩⟩ ⟨⟨pedro organism, pedro strain identifier⟩⟩
⟨⟨pedro protein, pedro synonyms⟩⟩ ⟨⟨pedro organism, pedro relevant genotype⟩⟩
⟨⟨pedro protein, pedro organism⟩⟩ ⟨⟨pedro otheranalyte⟩⟩
⟨⟨pedro protein, pedro orf number⟩⟩ ⟨⟨pedro otheranalyte, pedro id⟩⟩
⟨⟨pedro protein, pedro description⟩⟩ ⟨⟨pedro otheranalyte, pedro name⟩⟩
⟨⟨pedro protein, pedro sequence⟩⟩ ⟨⟨pedro otheranalyte, pedro other analyte processing step⟩⟩
⟨⟨pedro protein, pedro modifications⟩⟩ ⟨⟨pedro otheranalyte otm analyteps⟩⟩
⟨⟨pedro protein, pedro predicted mass⟩⟩ ⟨⟨pedro otheranalyte otm analyteps, pedro other analyte⟩⟩
⟨⟨pedro protein, pedro predicted pi⟩⟩ ⟨⟨pedro otheranalyte otm analyteps, pedro analyte processing step⟩⟩
⟨⟨pedro analyteprocessingstep⟩⟩ ⟨⟨pedro otheranalyte otm ontent⟩⟩
⟨⟨pedro analyteprocessingstep, pedro id⟩⟩ ⟨⟨pedro otheranalyte otm ontent, pedro other analyte⟩⟩
⟨⟨pedro analyteprocessingstep, pedro input type⟩⟩ ⟨⟨pedro otheranalyte otm ontent, pedro ontology entry⟩⟩
⟨⟨pedro analyteprocessingstep, pedro processing type⟩⟩ ⟨⟨pedro otheranalyteps⟩⟩
⟨⟨pedro assaydatapoint⟩⟩ ⟨⟨pedro otheranalyteps, pedro id⟩⟩
⟨⟨pedro assaydatapoint, pedro id⟩⟩ ⟨⟨pedro otheranalyteps, pedro name⟩⟩
⟨⟨pedro assaydatapoint, pedro time⟩⟩ ⟨⟨pedro otheranalyteps, pedro analyte processing step⟩⟩
⟨⟨pedro assaydatapoint, pedro protein assay⟩⟩ ⟨⟨pedro otheranalyteps otm ontent⟩⟩
⟨⟨pedro assaydatapoint, pedro lc column⟩⟩ ⟨⟨pedro otheranalyteps otm ontent, pedro other analyte processing step⟩⟩
⟨⟨pedro band⟩⟩ ⟨⟨pedro otheranalyteps otm ontent, pedro ontology entry⟩⟩
⟨⟨pedro band, pedro id⟩⟩ ⟨⟨pedro otherionisation⟩⟩
⟨⟨pedro band, pedro area⟩⟩ ⟨⟨pedro otherionisation, pedro id⟩⟩
⟨⟨pedro band, pedro intensity⟩⟩ ⟨⟨pedro otherionisation, pedro name⟩⟩
⟨⟨pedro band, pedro local background⟩⟩ ⟨⟨pedro otherionisation, pedro ion source⟩⟩
⟨⟨pedro band, pedro annotation⟩⟩ ⟨⟨pedro otherionisation otm ontent⟩⟩
⟨⟨pedro band, pedro annotation source⟩⟩ ⟨⟨pedro otherionisation otm ontent, pedro other ionisation⟩⟩
⟨⟨pedro band, pedro volume⟩⟩ ⟨⟨pedro otherionisation otm ontent, pedro ontology entry⟩⟩
⟨⟨pedro band, pedro pixel x coord⟩⟩ ⟨⟨pedro othermzanalysis⟩⟩
⟨⟨pedro band, pedro pixel y coord⟩⟩ ⟨⟨pedro othermzanalysis, pedro id⟩⟩
⟨⟨pedro band, pedro pixel radius⟩⟩ ⟨⟨pedro othermzanalysis, pedro name⟩⟩
⟨⟨pedro band, pedro normalisation⟩⟩ ⟨⟨pedro othermzanalysis, pedro mz analysis⟩⟩
⟨⟨pedro band, pedro normalised volume⟩⟩ ⟨⟨pedro othermzanalysis otm ontent⟩⟩
⟨⟨pedro band, pedro lane number⟩⟩ ⟨⟨pedro othermzanalysis otm ontent, pedro other mz analysis⟩⟩
⟨⟨pedro band, pedro apparent mass⟩⟩ ⟨⟨pedro othermzanalysis otm ontent, pedro ontology entry⟩⟩
⟨⟨pedro band, pedro gel 1d⟩⟩ ⟨⟨pedro peaklist⟩⟩
⟨⟨pedro band otm analyteps⟩⟩ ⟨⟨pedro peaklist, pedro id⟩⟩
⟨⟨pedro band otm analyteps, pedro band gel 1d⟩⟩ ⟨⟨pedro peaklist, pedro list type⟩⟩
⟨⟨pedro band otm analyteps, pedro band id⟩⟩ ⟨⟨pedro peaklist, pedro description⟩⟩
⟨⟨pedro band otm analyteps, pedro analyte processing step⟩⟩ ⟨⟨pedro peaklist, pedro mass value type⟩⟩
⟨⟨pedro boundarypoint⟩⟩ ⟨⟨pedro peaklist, pedro mass spec experiment⟩⟩
⟨⟨pedro boundarypoint, pedro id⟩⟩ ⟨⟨pedro peakspecificchromint⟩⟩
⟨⟨pedro boundarypoint, pedro pixel x coord⟩⟩ ⟨⟨pedro peakspecificchromint, pedro id⟩⟩
⟨⟨pedro boundarypoint, pedro pixel y coord⟩⟩ ⟨⟨pedro peakspecificchromint, pedro resolution⟩⟩
⟨⟨pedro boundarypoint, pedro spot gel 2d⟩⟩ ⟨⟨pedro peakspecificchromint, pedro software version⟩⟩
⟨⟨pedro boundarypoint, pedro spot id⟩⟩ ⟨⟨pedro peakspecificchromint, pedro background threshold⟩⟩
⟨⟨pedro chemicaltreatment⟩⟩ ⟨⟨pedro peakspecificchromint, pedro area under curve⟩⟩
⟨⟨pedro chemicaltreatment, pedro id⟩⟩ ⟨⟨pedro peakspecificchromint, pedro peak description⟩⟩

232

⟨⟨pedro chemicaltreatment, pedro digestion⟩⟩ ⟨⟨pedro peakspecificchromint, pedro sister peak reference⟩⟩
⟨⟨pedro chemicaltreatment, pedro derivatisations⟩⟩ ⟨⟨pedro peakspecificchromint, pedro peak⟩⟩
⟨⟨pedro chemicaltreatment, pedro analyte processing step⟩⟩ ⟨⟨pedro peptidehit mtm ontent⟩⟩
⟨⟨pedro chromatogrampoint⟩⟩ ⟨⟨pedro peptidehit mtm ontent, pedro peptide hit id⟩⟩
⟨⟨pedro chromatogrampoint, pedro id⟩⟩ ⟨⟨pedro peptidehit mtm ontent, pedro peptide hit db search⟩⟩
⟨⟨pedro chromatogrampoint, pedro time point⟩⟩ ⟨⟨pedro peptidehit mtm ontent, pedro ontology entry⟩⟩
⟨⟨pedro chromatogrampoint, pedro ion count⟩⟩ ⟨⟨pedro percentx⟩⟩
⟨⟨pedro chromatogrampoint, pedro peak⟩⟩ ⟨⟨pedro percentx, pedro id⟩⟩
⟨⟨pedro collisioncell⟩⟩ ⟨⟨pedro percentx, pedro percentage⟩⟩
⟨⟨pedro collisioncell, pedro id⟩⟩ ⟨⟨pedro percentx, pedro mobile phase component⟩⟩
⟨⟨pedro collisioncell, pedro gas type⟩⟩ ⟨⟨pedro percentx, pedro gradient step lc column⟩⟩
⟨⟨pedro collisioncell, pedro gas pressure⟩⟩ ⟨⟨pedro percentx, pedro gradient step id⟩⟩
⟨⟨pedro collisioncell, pedro collision offset⟩⟩ ⟨⟨pedro quadrupole⟩⟩
⟨⟨pedro collisioncell, pedro mz analysis⟩⟩ ⟨⟨pedro quadrupole, pedro id⟩⟩
⟨⟨pedro dbsearchpars otm ontent⟩⟩ ⟨⟨pedro quadrupole, pedro description⟩⟩
⟨⟨pedro dbsearchpars otm ontent, pedro db search parameters⟩⟩ ⟨⟨pedro quadrupole, pedro mz analysis⟩⟩
⟨⟨pedro dbsearchpars otm ontent, pedro ontology entry⟩⟩ ⟨⟨pedro relatedgelitem⟩⟩
⟨⟨pedro detection⟩⟩ ⟨⟨pedro relatedgelitem, pedro id⟩⟩
⟨⟨pedro detection, pedro id⟩⟩ ⟨⟨pedro relatedgelitem, pedro description⟩⟩
⟨⟨pedro detection, pedro type⟩⟩ ⟨⟨pedro relatedgelitem, pedro gel reference⟩⟩
⟨⟨pedro digegel⟩⟩ ⟨⟨pedro relatedgelitem, pedro item reference⟩⟩
⟨⟨pedro digegel, pedro id⟩⟩ ⟨⟨pedro relatedgelitem, pedro band gel 1d⟩⟩
⟨⟨pedro digegel, pedro dye type⟩⟩ ⟨⟨pedro relatedgelitem, pedro band id⟩⟩
⟨⟨pedro digegel, pedro excitation wavelength⟩⟩ ⟨⟨pedro relatedgelitem, pedro spot gel 2d⟩⟩
⟨⟨pedro digegel, pedro exposure time⟩⟩ ⟨⟨pedro relatedgelitem, pedro spot id⟩⟩
⟨⟨pedro digegel, pedro tiff image⟩⟩ ⟨⟨pedro relgelitem mtm proteinhit⟩⟩
⟨⟨pedro digegel, pedro gel 1d⟩⟩ ⟨⟨pedro relgelitem mtm proteinhit, pedro related gel item⟩⟩
⟨⟨pedro digegel, pedro gel 2d⟩⟩ ⟨⟨pedro relgelitem mtm proteinhit, pedro protein hit⟩⟩
⟨⟨pedro digegelitem⟩⟩ ⟨⟨pedro sample⟩⟩
⟨⟨pedro digegelitem, pedro id⟩⟩ ⟨⟨pedro sample, pedro sample id⟩⟩
⟨⟨pedro digegelitem, pedro dye type⟩⟩ ⟨⟨pedro sample, pedro sample date⟩⟩
⟨⟨pedro digegelitem, pedro band gel 1d⟩⟩ ⟨⟨pedro sample, pedro experimenter⟩⟩
⟨⟨pedro digegelitem, pedro band id⟩⟩ ⟨⟨pedro sample, pedro experiment⟩⟩
⟨⟨pedro digegelitem, pedro spot gel 2d⟩⟩ ⟨⟨pedro sample mtm sampleorigin⟩⟩
⟨⟨pedro digegelitem, pedro spot id⟩⟩ ⟨⟨pedro sample mtm sampleorigin, pedro sample⟩⟩
⟨⟨pedro electrospray⟩⟩ ⟨⟨pedro sample mtm sampleorigin, pedro sample origin⟩⟩
⟨⟨pedro electrospray, pedro id⟩⟩ ⟨⟨pedro sample otm analyteps⟩⟩
⟨⟨pedro electrospray, pedro spray tip voltage⟩⟩ ⟨⟨pedro sample otm analyteps, pedro sample⟩⟩
⟨⟨pedro electrospray, pedro spray tip diameter⟩⟩ ⟨⟨pedro sample otm analyteps, pedro analyte processing step⟩⟩
⟨⟨pedro electrospray, pedro solution voltage⟩⟩ ⟨⟨pedro sampleorigin⟩⟩
⟨⟨pedro electrospray, pedro cone voltage⟩⟩ ⟨⟨pedro sampleorigin, pedro id⟩⟩
⟨⟨pedro electrospray, pedro loading type⟩⟩ ⟨⟨pedro sampleorigin, pedro description⟩⟩
⟨⟨pedro electrospray, pedro solvent⟩⟩ ⟨⟨pedro sampleorigin, pedro sample condition⟩⟩
⟨⟨pedro electrospray, pedro interface manufacturer⟩⟩ ⟨⟨pedro sampleorigin, pedro condition degree⟩⟩
⟨⟨pedro electrospray, pedro spray tip manufacturer⟩⟩ ⟨⟨pedro sampleorigin, pedro environment⟩⟩
⟨⟨pedro electrospray, pedro ion source⟩⟩ ⟨⟨pedro sampleorigin, pedro tissue type⟩⟩
⟨⟨pedro experiment⟩⟩ ⟨⟨pedro sampleorigin, pedro cell type⟩⟩
⟨⟨pedro experiment, pedro id⟩⟩ ⟨⟨pedro sampleorigin, pedro cell cycle phase⟩⟩
⟨⟨pedro experiment, pedro hypothesis⟩⟩ ⟨⟨pedro sampleorigin, pedro cell component⟩⟩
⟨⟨pedro experiment, pedro method citations⟩⟩ ⟨⟨pedro sampleorigin, pedro technique⟩⟩
⟨⟨pedro experiment, pedro result citations⟩⟩ ⟨⟨pedro sampleorigin, pedro metabolic label⟩⟩
⟨⟨pedro fraction⟩⟩ ⟨⟨pedro sampleorigin, pedro organism⟩⟩
⟨⟨pedro fraction, pedro id⟩⟩ ⟨⟨pedro sampleorigin, pedro tagging process⟩⟩
⟨⟨pedro fraction, pedro start point⟩⟩ ⟨⟨pedro spot⟩⟩
⟨⟨pedro fraction, pedro end point⟩⟩ ⟨⟨pedro spot, pedro id⟩⟩
⟨⟨pedro fraction, pedro protein assay⟩⟩ ⟨⟨pedro spot, pedro area⟩⟩
⟨⟨pedro fraction, pedro lc column⟩⟩ ⟨⟨pedro spot, pedro intensity⟩⟩
⟨⟨pedro fraction otm analyteps⟩⟩ ⟨⟨pedro spot, pedro local background⟩⟩
⟨⟨pedro fraction otm analyteps, pedro fraction lc column⟩⟩ ⟨⟨pedro spot, pedro annotation⟩⟩
⟨⟨pedro fraction otm analyteps, pedro fraction id⟩⟩ ⟨⟨pedro spot, pedro annotation source⟩⟩

233

⟨⟨pedro fraction otm analyteps, pedro analyte processing step⟩⟩ ⟨⟨pedro spot, pedro volume⟩⟩
⟨⟨pedro gel1d⟩⟩ ⟨⟨pedro spot, pedro pixel x coord⟩⟩
⟨⟨pedro gel1d, pedro id⟩⟩ ⟨⟨pedro spot, pedro pixel y coord⟩⟩
⟨⟨pedro gel1d, pedro description⟩⟩ ⟨⟨pedro spot, pedro pixel radius⟩⟩
⟨⟨pedro gel1d, pedro raw image⟩⟩ ⟨⟨pedro spot, pedro normalisation⟩⟩
⟨⟨pedro gel1d, pedro annotated image⟩⟩ ⟨⟨pedro spot, pedro normalised volume⟩⟩
⟨⟨pedro gel1d, pedro software version⟩⟩ ⟨⟨pedro spot, pedro apparent pi⟩⟩
⟨⟨pedro gel1d, pedro warped image⟩⟩ ⟨⟨pedro spot, pedro apparent mass⟩⟩
⟨⟨pedro gel1d, pedro warping map⟩⟩ ⟨⟨pedro spot, pedro gel 2d⟩⟩
⟨⟨pedro gel1d, pedro equipment⟩⟩ ⟨⟨pedro spot otm analyteps⟩⟩
⟨⟨pedro gel1d, pedro percent acrylamide⟩⟩ ⟨⟨pedro spot otm analyteps, pedro spot gel 2d⟩⟩
⟨⟨pedro gel1d, pedro solubilization buffer⟩⟩ ⟨⟨pedro spot otm analyteps, pedro spot id⟩⟩
⟨⟨pedro gel1d, pedro stain details⟩⟩ ⟨⟨pedro spot otm analyteps, pedro analyte processing step⟩⟩
⟨⟨pedro gel1d, pedro protein assay⟩⟩ ⟨⟨pedro taggingprocess⟩⟩
⟨⟨pedro gel1d, pedro in gel digestion⟩⟩ ⟨⟨pedro taggingprocess, pedro id⟩⟩
⟨⟨pedro gel1d, pedro background⟩⟩ ⟨⟨pedro taggingprocess, pedro lysis buffer⟩⟩
⟨⟨pedro gel1d, pedro pixel size x⟩⟩ ⟨⟨pedro taggingprocess, pedro tag type⟩⟩
⟨⟨pedro gel1d, pedro pixel size y⟩⟩ ⟨⟨pedro taggingprocess, pedro tag purity⟩⟩
⟨⟨pedro gel1d, pedro denaturing agent⟩⟩ ⟨⟨pedro taggingprocess, pedro protein concentration⟩⟩
⟨⟨pedro gel1d, pedro mass start⟩⟩ ⟨⟨pedro taggingprocess, pedro tag concentration⟩⟩
⟨⟨pedro gel1d, pedro mass end⟩⟩ ⟨⟨pedro taggingprocess, pedro final volume⟩⟩
⟨⟨pedro gel1d, pedro run details⟩⟩ ⟨⟨pedro tandemsequencedata⟩⟩
⟨⟨pedro gel1d, pedro analyte processing step⟩⟩ ⟨⟨pedro tandemsequencedata, pedro id⟩⟩
⟨⟨pedro gel2d⟩⟩ ⟨⟨pedro tandemsequencedata, pedro source type⟩⟩
⟨⟨pedro gel2d, pedro id⟩⟩ ⟨⟨pedro tandemsequencedata, pedro sequence⟩⟩
⟨⟨pedro gel2d, pedro description⟩⟩ ⟨⟨pedro tandemsequencedata, pedro db search parameters⟩⟩
⟨⟨pedro gel2d, pedro raw image⟩⟩ ⟨⟨pedro tof⟩⟩
⟨⟨pedro gel2d, pedro annotated image⟩⟩ ⟨⟨pedro tof, pedro id⟩⟩
⟨⟨pedro gel2d, pedro software version⟩⟩ ⟨⟨pedro tof, pedro reflectron state⟩⟩
⟨⟨pedro gel2d, pedro warped image⟩⟩ ⟨⟨pedro tof, pedro internal length⟩⟩
⟨⟨pedro gel2d, pedro warping map⟩⟩ ⟨⟨pedro tof, pedro mz analysis⟩⟩
⟨⟨pedro gel2d, pedro equipment⟩⟩ ⟨⟨pedro treatedanalyte⟩⟩
⟨⟨pedro gel2d, pedro percent acrylamide⟩⟩ ⟨⟨pedro treatedanalyte, pedro id⟩⟩
⟨⟨pedro gel2d, pedro solubilization buffer⟩⟩ ⟨⟨pedro treatedanalyte, pedro chemical treatment⟩⟩
⟨⟨pedro gel2d, pedro stain details⟩⟩ ⟨⟨pedro treatedanalyte otm analyteps⟩⟩
⟨⟨pedro gel2d, pedro protein assay⟩⟩ ⟨⟨pedro treatedanalyte otm analyteps, pedro treated analyte⟩⟩
⟨⟨pedro gel2d, pedro in gel digestion⟩⟩ ⟨⟨pedro treatedanalyte otm analyteps, pedro analyte processing step⟩⟩
⟨⟨pedro gel2d, pedro background⟩⟩ ⟨⟨pepseeker proteinhit⟩⟩
⟨⟨pedro gel2d, pedro pixel size x⟩⟩ ⟨⟨pepseeker proteinscore, pepseeker Score⟩⟩
⟨⟨pedro gel2d, pedro pixel size y⟩⟩ ⟨⟨pepseeker proteinhit, pepseeker ProteinID⟩⟩
⟨⟨pedro gel2d, pedro pi start⟩⟩ ⟨⟨pepseeker proteinhit, pepseeker fileparameters⟩⟩
⟨⟨pedro gel2d, pedro pi end⟩⟩ ⟨⟨pepseeker peptidehit⟩⟩
⟨⟨pedro gel2d, pedro mass start⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker proteinscore⟩⟩
⟨⟨pedro gel2d, pedro mass end⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker pepseq⟩⟩
⟨⟨pedro gel2d, pedro first dim details⟩⟩ ⟨⟨pepseeker mascotexpect, pepseeker expect⟩⟩
⟨⟨pedro gel2d, pedro second dim details⟩⟩ ⟨⟨pepseeker fileparameters⟩⟩
⟨⟨pedro gel2d, pedro analyte processing step⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker Username⟩⟩
⟨⟨pedro gradientstep⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker Id⟩⟩
⟨⟨pedro gradientstep, pedro id⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker Filename⟩⟩
⟨⟨pedro gradientstep, pedro step time⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker TAXONOMY⟩⟩
⟨⟨pedro gradientstep, pedro lc column⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker MODS⟩⟩
⟨⟨pedro hexapole⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker IT MODS⟩⟩
⟨⟨pedro hexapole, pedro id⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker PFA⟩⟩
⟨⟨pedro hexapole, pedro description⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker ITOL⟩⟩
⟨⟨pedro hexapole, pedro mz analysis⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker TOL⟩⟩
⟨⟨pedro ionsource⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker SEG⟩⟩
⟨⟨pedro ionsource, pedro id⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker CHARGE⟩⟩
⟨⟨pedro ionsource, pedro collision energy⟩⟩ ⟨⟨pepseeker searchmasses⟩⟩
⟨⟨pedro ionsource, pedro type⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker Products⟩⟩
⟨⟨pedro ionsource, pedro mz analysis⟩⟩ ⟨⟨pepseeker proteinhit, pepseeker Proteinname⟩⟩

234

⟨⟨pedro iontrap⟩⟩ ⟨⟨pepseeker species, pepseeker species⟩⟩
⟨⟨pedro iontrap, pedro id⟩⟩ ⟨⟨pepseeker proteinhit, pepseeker Mass⟩⟩
⟨⟨pedro iontrap, pedro gas type⟩⟩
⟨⟨pedro iontrap, pedro gas pressure⟩⟩
⟨⟨pedro iontrap, pedro rf frequency⟩⟩
⟨⟨pedro iontrap, pedro excitation amplitude⟩⟩
⟨⟨pedro iontrap, pedro isolation centre⟩⟩
⟨⟨pedro iontrap, pedro isolation width⟩⟩
⟨⟨pedro iontrap, pedro final ms level⟩⟩

Table E.4: Elements Satisfying Quality Factor 1 in Iteration 1

235

⟨⟨gpmdb aa⟩⟩ ⟨⟨pepseeker db, pepseeker location⟩⟩
⟨⟨gpmdb aa, gpmdb aaid⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker ProcessNo⟩⟩
⟨⟨gpmdb aa, gpmdb pepid⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker mp⟩⟩
⟨⟨gpmdb aa, gpmdb type⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker NM⟩⟩
⟨⟨gpmdb aa, gpmdb at⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker SEGT⟩⟩
⟨⟨gpmdb aa, gpmdb modified⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker SEGTU⟩⟩
⟨⟨gpmdb aa, gpmdb pm⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker LTOL⟩⟩
⟨⟨gpmdb bad file del⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker TOLU⟩⟩
⟨⟨gpmdb bad file del, gpmdb file⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker ITH⟩⟩
⟨⟨gpmdb distinctseq⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker ITOLU⟩⟩
⟨⟨gpmdb distinctseq, gpmdb seq⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker DB⟩⟩
⟨⟨gpmdb fullpeptide⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker MASS⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb pepid⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker CLE⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb proid⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker PEAK⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb seq⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker QUE⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb mh⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker TWO⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb expect⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker SEARCH⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb start⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker INTERMEDIATE⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb end⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker REPORT⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb charge⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker OVERVIEW⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb delta⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker FORMAT⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb dida⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker FORMVER⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb aastring⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker FRAG⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb mh2⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker PRECURSOR⟩⟩
⟨⟨gpmdb fullpeptidediagnostic⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker ACCESSION⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb pepid⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker REPTYPE⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb proid⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker SUBCLUSTER⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb seq⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker ICAT⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb mh⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker INSTRUMENT⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb expect⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker ERRORTOLERANT⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb start⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker Useremail⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb end⟩⟩ ⟨⟨pepseeker fp to db⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb charge⟩⟩ ⟨⟨pepseeker fp to db, pepseeker fp id⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb delta⟩⟩ ⟨⟨pepseeker fp to db, pepseeker db id⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb dida⟩⟩ ⟨⟨pepseeker iontable⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb aastring⟩⟩ ⟨⟨pepseeker iontable, pepseeker Id⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb mh2⟩⟩ ⟨⟨pepseeker iontable, pepseeker Immon⟩⟩
⟨⟨gpmdb paths⟩⟩ ⟨⟨pepseeker iontable, pepseeker A⟩⟩
⟨⟨gpmdb paths, gpmdb pathid⟩⟩ ⟨⟨pepseeker iontable, pepseeker AStar⟩⟩
⟨⟨gpmdb paths, gpmdb protocol⟩⟩ ⟨⟨pepseeker iontable, pepseeker B⟩⟩
⟨⟨gpmdb paths, gpmdb server⟩⟩ ⟨⟨pepseeker iontable, pepseeker Bstar⟩⟩
⟨⟨gpmdb paths, gpmdb localpath⟩⟩ ⟨⟨pepseeker iontable, pepseeker Bstarplusplus⟩⟩
⟨⟨gpmdb paths, gpmdb relpath⟩⟩ ⟨⟨pepseeker iontable, pepseeker Bzero⟩⟩
⟨⟨gpmdb pep temp⟩⟩ ⟨⟨pepseeker iontable, pepseeker BZeroplusplus⟩⟩
⟨⟨gpmdb pep temp, gpmdb pepid⟩⟩ ⟨⟨pepseeker iontable, pepseeker Y⟩⟩
⟨⟨gpmdb pep temp, gpmdb seq⟩⟩ ⟨⟨pepseeker iontable, pepseeker Yplusplus⟩⟩
⟨⟨gpmdb peptide, gpmdb pepid⟩⟩ ⟨⟨pepseeker iontable, pepseeker Ystar⟩⟩
⟨⟨gpmdb peptide, gpmdb proid⟩⟩ ⟨⟨pepseeker iontable, pepseeker Ystarplusplus⟩⟩
⟨⟨gpmdb peptide, gpmdb mh⟩⟩ ⟨⟨pepseeker iontable, pepseeker YZero⟩⟩
⟨⟨gpmdb peptide, gpmdb start⟩⟩ ⟨⟨pepseeker iontable, pepseeker YZeroplusplus⟩⟩
⟨⟨gpmdb peptide, gpmdb end⟩⟩ ⟨⟨pepseeker iontable, pepseeker Bplusplus⟩⟩
⟨⟨gpmdb peptide, gpmdb charge⟩⟩ ⟨⟨pepseeker iontable, pepseeker Aplusplus⟩⟩
⟨⟨gpmdb peptide, gpmdb delta⟩⟩ ⟨⟨pepseeker iontable, pepseeker Astarplusplus⟩⟩
⟨⟨gpmdb peptide, gpmdb dida⟩⟩ ⟨⟨pepseeker iontable, pepseeker Azero⟩⟩
⟨⟨gpmdb peptide, gpmdb didb⟩⟩ ⟨⟨pepseeker iontable, pepseeker Matches⟩⟩
⟨⟨gpmdb peptide, gpmdb didc⟩⟩ ⟨⟨pepseeker lastsession⟩⟩
⟨⟨gpmdb peptide word index⟩⟩ ⟨⟨pepseeker lastsession, pepseeker Id⟩⟩
⟨⟨gpmdb peptide word index, gpmdb keyid⟩⟩ ⟨⟨pepseeker lastsession, pepseeker url⟩⟩
⟨⟨gpmdb peptide word index, gpmdb word⟩⟩ ⟨⟨pepseeker mascotexpect⟩⟩
⟨⟨gpmdb peptide word index, gpmdb pepid list⟩⟩ ⟨⟨pepseeker mascotexpect, pepseeker peptidehit Id⟩⟩

236

⟨⟨gpmdb peptide word index, gpmdb ts created⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker Id⟩⟩
⟨⟨gpmdb peptide words⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker MassNo⟩⟩
⟨⟨gpmdb peptide words, gpmdb seq word⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker MissCleav⟩⟩
⟨⟨gpmdb peptide words, gpmdb pepid list⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker MrCalc⟩⟩
⟨⟨gpmdb project⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker Delta⟩⟩
⟨⟨gpmdb project, gpmdb projectid⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker MrExpct⟩⟩
⟨⟨gpmdb project, gpmdb resultid⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker startresidue⟩⟩
⟨⟨gpmdb project, gpmdb name⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker endresidue⟩⟩
⟨⟨gpmdb project, gpmdb institution⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker Score⟩⟩
⟨⟨gpmdb project, gpmdb email⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker ions⟩⟩
⟨⟨gpmdb project, gpmdb project⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker Rank⟩⟩
⟨⟨gpmdb project, gpmdb description⟩⟩ ⟨⟨pepseeker peptideprophet⟩⟩
⟨⟨gpmdb proseq⟩⟩ ⟨⟨pepseeker peptideprophet, pepseeker peptidehit Id⟩⟩
⟨⟨gpmdb proseq, gpmdb proseqid⟩⟩ ⟨⟨pepseeker peptideprophet, pepseeker tpp pvalue⟩⟩
⟨⟨gpmdb proseq, gpmdb label aux⟩⟩ ⟨⟨pepseeker proteinhit, pepseeker Id⟩⟩
⟨⟨gpmdb proseq, gpmdb rf⟩⟩ ⟨⟨pepseeker proteinhit, pepseeker ProteinScore⟩⟩
⟨⟨gpmdb protein, gpmdb proid⟩⟩ ⟨⟨pepseeker proteinscore⟩⟩
⟨⟨gpmdb protein, gpmdb expect⟩⟩ ⟨⟨pepseeker proteinscore, pepseeker Id⟩⟩
⟨⟨gpmdb protein, gpmdb pida⟩⟩ ⟨⟨pepseeker proteinscore, pepseeker querypeptides⟩⟩
⟨⟨gpmdb protein, gpmdb pidb⟩⟩ ⟨⟨pepseeker proteinscore, pepseeker Matchedpeptides⟩⟩
⟨⟨gpmdb protein, gpmdb uid⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker Id⟩⟩
⟨⟨gpmdb proteinrevision⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker queryno⟩⟩
⟨⟨gpmdb proteinrevision, gpmdb prorevid⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker Precursor⟩⟩
⟨⟨gpmdb proteinrevision, gpmdb proid⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker Title⟩⟩
⟨⟨gpmdb proteinrevision, gpmdb label⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker Mass min⟩⟩
⟨⟨gpmdb result, gpmdb resultid⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker Mass Max⟩⟩
⟨⟨gpmdb result, gpmdb pathid⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker int min⟩⟩
⟨⟨gpmdb result, gpmdb file⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker Int max⟩⟩
⟨⟨gpmdb result, gpmdb completed⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker num vals⟩⟩
⟨⟨gpmdb result, gpmdb active⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker num used⟩⟩
⟨⟨gpmdb result, gpmdb rating⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker fileparameters⟩⟩
⟨⟨gpmdb result, gpmdb comments⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker searchmassescol⟩⟩
⟨⟨pepseeker db⟩⟩ ⟨⟨pepseeker species⟩⟩
⟨⟨pepseeker db, pepseeker id⟩⟩ ⟨⟨pepseeker species, pepseeker ProteinId⟩⟩
⟨⟨pepseeker db, pepseeker name⟩⟩ ⟨⟨pepseeker species, pepseeker fp id⟩⟩
⟨⟨pepseeker db, pepseeker release⟩⟩ ⟨⟨pepseeker species, pepseeker species id⟩⟩
⟨⟨pepseeker db, pepseeker release date⟩⟩ ⟨⟨pepseeker yeastacc⟩⟩
⟨⟨pepseeker db, pepseeker system date⟩⟩ ⟨⟨pepseeker yeastacc, pepseeker id⟩⟩
⟨⟨pepseeker db, pepseeker entries⟩⟩ ⟨⟨pepseeker yeastacc, pepseeker accession⟩⟩
⟨⟨pepseeker db, pepseeker residue type⟩⟩ ⟨⟨pepseeker yeastacc, pepseeker oln⟩⟩
⟨⟨pepseeker yeastacc, pepseeker yeast acc id⟩⟩

Table E.5: Elements not-Satisfying Quality Factor 1 in Iteration 1

Factor 4

Satisfying Items not-Satisfying Items

⟨⟨gpmdb peptide, gpmdb seq⟩⟩ ⟨⟨gpmdb peptide, gpmdb pepid⟩⟩
⟨⟨gpmdb peptide⟩⟩ ⟨⟨gpmdb aa, gpmdb pepid⟩⟩
⟨⟨gpmdb protein, gpmdb proseqid⟩⟩ ⟨⟨gpmdb fullpeptide, gpmdb pepid⟩⟩
⟨⟨gpmdb protein, gpmdb resultid⟩⟩ ⟨⟨gpmdb fullpeptidediagnostic, gpmdb pepid⟩⟩
⟨⟨pedro peptidehit, pedro db search⟩⟩ ⟨⟨pedro peptidehit⟩⟩
⟨⟨pedro peptidehit, pedro score⟩⟩ ⟨⟨pedro peptidehit, pedro id⟩⟩
⟨⟨pedro peptidehit, pedro sequence⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker Id⟩⟩
⟨⟨pedro protein, pedro accession num⟩⟩ ⟨⟨pepseeker mascotexpect, pepseeker peptidehit Id⟩⟩
⟨⟨pedro protein, pedro description⟩⟩ ⟨⟨pepseeker peptideprophet, pepseeker peptidehit Id⟩⟩
⟨⟨pedro protein, pedro organism⟩⟩ ⟨⟨gpmdb protein⟩⟩
⟨⟨pedro proteinhit, pedro db search⟩⟩ ⟨⟨gpmdb protein, gpmdb proid⟩⟩

237

⟨⟨pedro proteinhit, pedro protein⟩⟩ ⟨⟨gpmdb peptide, gpmdb proid⟩⟩
⟨⟨pepseeker peptidehit, pepseeker pepseq⟩⟩ ⟨⟨gpmdb fullpeptide, gpmdb proid⟩⟩
⟨⟨pepseeker peptidehit, pepseeker proteinscore⟩⟩ ⟨⟨gpmdb fullpeptidediagnostic, gpmdb proid⟩⟩
⟨⟨pepseeker peptidehit⟩⟩ ⟨⟨gpmdb proseq, gpmdb label⟩⟩
⟨⟨pepseeker proteinhit, pepseeker fileparameters⟩⟩ ⟨⟨pedro protein⟩⟩
⟨⟨pepseeker proteinhit, pepseeker ProteinID⟩⟩ ⟨⟨pedro protein, pedro id⟩⟩
⟨⟨pedro dbsearchparameters, pedro mass value type⟩⟩ ⟨⟨pedro proteinhit, pedro id⟩⟩
⟨⟨pedro dbsearchparameters, pedro mass error type⟩⟩ ⟨⟨pepseeker proteinhit⟩⟩

⟨⟨pepseeker proteinhit, pepseeker Id⟩⟩
⟨⟨pepseeker species, pepseeker ProteinID⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb seq⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb seq⟩⟩
⟨⟨gpmdb aa, gpmdb type⟩⟩
⟨⟨gpmdb aa⟩⟩
⟨⟨gpmdb aa, gpmdb aaid⟩⟩
⟨⟨gpmdb proseq⟩⟩
⟨⟨gpmdb proseq, gpmdb proseqid⟩⟩
⟨⟨gpmdb proseq, gpmdb seq⟩⟩
⟨⟨pedro protein, pedro sequence⟩⟩
⟨⟨pepseeker proteinscore, pepseeker Id⟩⟩
⟨⟨pepseeker proteinscore, pepseeker Score⟩⟩
⟨⟨pepseeker proteinhit, pepseeker ProteinScore⟩⟩
⟨⟨pedro peaklist, pedro mass value type⟩⟩
⟨⟨pepseeker proteinhit, pepseeker Mass⟩⟩
⟨⟨pepseeker peptidehit, pepseeker MassNo⟩⟩
⟨⟨pepseeker fileparameters, pepseeker ITOLU⟩⟩
⟨⟨pepseeker fileparameters, pepseeker MASS⟩⟩
⟨⟨pepseeker fileparameters, pepseeker TOLU⟩⟩

Table E.6: Elements Satisfying and not-Satisfying Quality Factor 4 in Iteration 1

Factor 7

238

⟨⟨
p
ed

ro
fk

d
b
se
ar
ch

d
b
se
ar
ch

p
ar
a
m
et
er
s1
,
p
ed

ro
d
b
se
ar
ch

,
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩,

p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
fk

p
ro
te
in
h
it

d
b
se
ar
ch

1
,
p
ed

ro
p
ro
te
in
h
it
,
⟨⟨
p
ed

ro
p
ro
te
in
h
it
,
p
ed

ro
d
b
se
ar
ch
⟩⟩
,
p
ed

ro
d
b
se
ar
ch

,
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
g
p
m
d
b
re
su
lt
⟩⟩

⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s⟩
⟩

⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
Id
⟩⟩

⟨⟨
g
p
m
d
b
p
ro
te
in
⟩⟩

⟨⟨
g
p
m
d
b
p
ro
te
in
,
p
ro
se
q
id
⟩⟩

⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
re
su
lt
id
⟩⟩

⟨⟨
p
ep

se
ek
er

p
ro
te
in
h
it
,
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s⟩
⟩

⟨⟨
g
p
m
d
b
p
ep

ti
d
e,

g
p
m
d
b
p
ep

id
⟩⟩

⟨⟨
g
p
m
d
b
fk

p
ep

ti
d
e
p
ro
te
in
1
,
g
p
m
d
b
p
ep

ti
d
e,
⟨⟨
g
p
m
d
b
p
ep

ti
d
e,

g
p
m
d
b
p
ro
id
⟩⟩
,
g
p
m
d
b
p
ro
te
in
,
⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
p
ro
id
⟩⟩
⟩⟩

⟨⟨
g
p
m
d
b
p
ep

ti
d
e,

g
p
m
d
b
p
ro
id
⟩⟩

⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
p
ro
id
⟩⟩

⟨⟨
g
p
m
d
b
fk

p
ro
te
in

p
ro
se
q
,
g
p
m
d
b
p
ro
te
in
,
⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
p
ro
se
q
id
⟩⟩
,
g
p
m
d
b
p
ro
se
q
,
⟨⟨
g
p
m
d
b
p
ro
se
q
,
g
p
m
d
b
p
ro
se
q
id
⟩⟩
⟩⟩

⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
p
ro
se
q
id
⟩⟩

⟨⟨
g
p
m
d
b
p
ro
se
q
,
g
p
m
d
b
p
ro
se
q
id
⟩⟩

⟨⟨
g
p
m
d
b
fk

p
ro
te
in

re
su
lt
1
,
g
p
m
d
b
p
ro
te
in
,
⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
re
su
lt
id
⟩⟩
,
g
p
m
d
b
re
su
lt
,
⟨⟨
g
p
m
d
b
re
su
lt
,
g
p
m
d
b
re
su
lt
id
⟩⟩
⟩⟩

⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
re
su
lt
id
⟩⟩

⟨⟨
g
p
m
d
b
re
su
lt
,
g
p
m
d
b
re
su
lt
id
⟩⟩

⟨⟨
p
ed

ro
fk

d
b
se
ar
ch

d
b
se
ar
ch

p
ar
a
m
et
er
s1
,
p
ed

ro
d
b
se
ar
ch

,
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩,

p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩

⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

ch
ro
m
a
to
g
ra
m
p
o
in
t
p
ea
k
1
,
p
ed

ro
ch

ro
m
a
to
g
ra
m
p
o
in
t,
⟨⟨
p
ed

ro
ch

ro
m
a
to
g
ra
m
p
o
in
t,
p
ed

ro
p
ea
k
⟩⟩
,
p
ed

ro
p
ea
k
,
⟨⟨
p
ed

ro
p
ea
k
,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
ch

ro
m
a
to
g
ra
m
p
o
in
t,
p
ed

ro
p
ea
k
⟩⟩

⟨⟨
p
ed

ro
p
ea
k
,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

d
b
se
ar
ch

p
ea
k
li
st
1
,
p
ed

ro
d
b
se
ar
ch

,
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
p
ea
k
li
st
⟩⟩
,
p
ed

ro
p
ea
k
li
st
,
⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
p
ea
k
li
st
⟩⟩

⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

li
st
p
ro
ce
ss
in
g
p
ea
k
li
st
1
,
p
ed

ro
li
st
p
ro
ce
ss
in
g
,
⟨⟨
p
ed

ro
li
st
p
ro
ce
ss
in
g
,
p
ed

ro
p
ea
k
li
st
⟩⟩
,
p
ed

ro
p
ea
k
li
st
,
⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
li
st
p
ro
ce
ss
in
g
,
p
ed

ro
p
ea
k
li
st
⟩⟩

⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

m
sm

sf
ra
ct
io
n
p
ea
k
li
st
1
,
p
ed

ro
m
sm

sf
ra
ct
io
n
,
⟨⟨
p
ed

ro
m
sm

sf
ra
ct
io
n
,
p
ed

ro
p
ea
k
li
st
⟩⟩
,
p
ed

ro
p
ea
k
li
st
,
⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
m
sm

sf
ra
ct
io
n
,
p
ed

ro
p
ea
k
li
st
⟩⟩

⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

p
ea
k
p
ea
k
li
st
,
p
ed

ro
p
ea
k
,
⟨⟨
p
ed

ro
p
ea
k
,
p
ed

ro
p
ea
k
li
st
⟩⟩
,
p
ed

ro
p
ea
k
li
st
,
⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
p
ea
k
,
p
ed

ro
p
ea
k
li
st
⟩⟩

⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

p
ea
k
li
st

m
a
ss
sp
ec
m
a
ch

in
e1

,
p
ed

ro
p
ea
k
li
st
,
⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
m
a
ss

sp
ec

ex
p
er
im

en
t⟩⟩

,
p
ed

ro
m
a
ss
sp
ec
m
a
ch

in
e,
⟨⟨
p
ed

ro
m
a
ss
sp
ec
m
a
ch

in
e,

p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
m
a
ss

sp
ec

ex
p
er
im

en
t⟩⟩

⟨⟨
p
ed

ro
m
a
ss
sp
ec
m
a
ch

in
e,

p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

p
ep

ti
d
eh

it
d
b
se
ar
ch

1
,
p
ed

ro
p
ep

ti
d
eh

it
,
⟨⟨
p
ed

ro
p
ep

ti
d
eh

it
,
p
ed

ro
d
b
se
ar
ch
⟩⟩
,
p
ed

ro
d
b
se
ar
ch

,
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
id
⟩⟩
⟩⟩

239

⟨⟨
p
ed

ro
p
ep

ti
d
eh

it
,
p
ed

ro
d
b
se
ar
ch
⟩⟩

⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

p
ro
te
in
h
it

d
b
se
ar
ch

1
,
p
ed

ro
p
ro
te
in
h
it
,
⟨⟨
p
ed

ro
p
ro
te
in
h
it
,
p
ed

ro
d
b
se
ar
ch
⟩⟩
,
p
ed

ro
d
b
se
ar
ch

,
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
p
ro
te
in
h
it
,
p
ed

ro
d
b
se
ar
ch
⟩⟩

⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

ta
n
d
em

se
q
u
en

ce
d
a
ta

d
b
se
ar
ch

1
,
p
ed

ro
ta
n
d
em

se
q
u
en

ce
d
a
ta
,
⟨⟨
p
ed

ro
ta
n
d
em

se
q
u
en

ce
d
a
ta
,
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩,

p
ed

ro
d
b
se
ar
ch

,
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩⟩
⟩

⟨⟨
p
ed

ro
ta
n
d
em

se
q
u
en

ce
d
a
ta
,
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩

⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩

⟨⟨
p
ep

se
ek
er

fk
m
a
sc
o
te
xp

ec
t
p
ep

ti
d
eh

it
1
,
p
ep

se
ek
er

m
a
sc
o
te
xp

ec
t,
⟨⟨
p
ep

se
ek
er

m
a
sc
o
te
xp

ec
t,
p
ep

se
ek
er

p
ep

ti
d
eh

it
Id
⟩⟩
,
p
ep

se
ek
er

p
ep

ti
d
eh

it
,
⟨⟨
p
ep

se
ek
er

p
ep

ti
d
eh

it
,
p
ep

se
ek
er

Id
⟩⟩
⟩⟩

⟨⟨
p
ep

se
ek
er

m
a
sc
o
te
xp

ec
t,
p
ep

se
ek
er

p
ep

ti
d
eh

it
Id
⟩⟩

⟨⟨
p
ep

se
ek
er

p
ep

ti
d
eh

it
,
p
ep

se
ek
er

Id
⟩⟩

⟨⟨
p
ep

se
ek
er

fk
se
ar
ch

m
a
ss
es

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

se
ar
ch

m
a
ss
es
,
⟨⟨
p
ep

se
ek
er

se
ar
ch

m
a
ss
es
,
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s⟩
⟩,

p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

Id
⟩⟩
⟩⟩

⟨⟨
p
ep

se
ek
er

se
ar
ch

m
a
ss
es
,
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s⟩
⟩

⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

Id
⟩⟩

T
a
b
le

E
.7
:
E
le
m

e
n
ts

S
a
ti
sf
y
in

g
Q
u
a
li
ty

F
a
c
to

r
7

in
It
e
ra

ti
o
n

1

240

⟨⟨GS1 fk proteinhit protein1, GS1 proteinhit, ⟨⟨GS1 proteinhit, GS1 protein⟩⟩, GS1 protein, ⟨⟨GS1 protein, GS1 id⟩⟩⟩⟩
⟨⟨pepseeker proteinhit, pepseeker ProteinID⟩⟩
⟨⟨pepseeker proteinhit⟩⟩
⟨⟨GS1 proteinhit, GS1 protein⟩⟩
⟨⟨GS1 protein, GS1 id⟩⟩

Table E.8: Elements not-Satisfying Quality Factor 7 in Iteration 1

E.4.2 Quality Measurement for Iteration 2

Factor 1

⟨⟨gpmdb aa, gpmdb aaid⟩⟩ ⟨⟨pedro listprocessing, pedro background threshold⟩⟩
⟨⟨gpmdb aa, gpmdb at⟩⟩ ⟨⟨pedro listprocessing, pedro id⟩⟩
⟨⟨gpmdb aa, gpmdb modified⟩⟩ ⟨⟨pedro listprocessing, pedro peak list⟩⟩
⟨⟨gpmdb aa, gpmdb pepid⟩⟩ ⟨⟨pedro listprocessing, pedro smoothing process⟩⟩
⟨⟨gpmdb aa, gpmdb pm⟩⟩ ⟨⟨pedro maldi, pedro acceleration voltage⟩⟩
⟨⟨gpmdb aa, gpmdb type⟩⟩ ⟨⟨pedro maldi, pedro grid voltage⟩⟩
⟨⟨gpmdb bad file del, gpmdb file⟩⟩ ⟨⟨pedro maldi, pedro id⟩⟩
⟨⟨gpmdb distinctseq, gpmdb seq⟩⟩ ⟨⟨pedro maldi, pedro ion mode⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb aastring⟩⟩ ⟨⟨pedro maldi, pedro ion source⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb charge⟩⟩ ⟨⟨pedro maldi, pedro laser power⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb delta⟩⟩ ⟨⟨pedro maldi, pedro laser wavelength⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb dida⟩⟩ ⟨⟨pedro maldi, pedro matrix type⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb end⟩⟩ ⟨⟨pedro massspecexperiment, pedro analyte processing step⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb expect⟩⟩ ⟨⟨pedro massspecexperiment, pedro description⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb mh⟩⟩ ⟨⟨pedro massspecexperiment, pedro id⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb mh2⟩⟩ ⟨⟨pedro massspecexperiment, pedro parameters file⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb pepid⟩⟩ ⟨⟨pedro massspecmachine, pedro id⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb proid⟩⟩ ⟨⟨pedro massspecmachine, pedro ion source⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb seq⟩⟩ ⟨⟨pedro massspecmachine, pedro manufacturer⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb start⟩⟩ ⟨⟨pedro massspecmachine, pedro model name⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb aastring⟩⟩ ⟨⟨pedro massspecmachine, pedro software version⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb charge⟩⟩ ⟨⟨pedro mobilephasecomponent, pedro concentration⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb delta⟩⟩ ⟨⟨pedro mobilephasecomponent, pedro description⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb dida⟩⟩ ⟨⟨pedro mobilephasecomponent, pedro id⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb end⟩⟩ ⟨⟨pedro mobilephasecomponent, pedro lc column⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb expect⟩⟩ ⟨⟨pedro msmsfraction, pedro id⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb mh⟩⟩ ⟨⟨pedro msmsfraction, pedro peak list⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb mh2⟩⟩ ⟨⟨pedro msmsfraction, pedro plus or minus⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb pepid⟩⟩ ⟨⟨pedro msmsfraction, pedro target m to z⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb proid⟩⟩ ⟨⟨pedro mzanalysis, pedro detection⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb seq⟩⟩ ⟨⟨pedro mzanalysis, pedro id⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb start⟩⟩ ⟨⟨pedro mzanalysis, pedro type⟩⟩
⟨⟨gpmdb paths, gpmdb localpath⟩⟩ ⟨⟨pedro ontologyentry, pedro category⟩⟩
⟨⟨gpmdb paths, gpmdb pathid⟩⟩ ⟨⟨pedro ontologyentry, pedro description⟩⟩
⟨⟨gpmdb paths, gpmdb protocol⟩⟩ ⟨⟨pedro ontologyentry, pedro id⟩⟩
⟨⟨gpmdb paths, gpmdb relpath⟩⟩ ⟨⟨pedro ontologyentry, pedro value⟩⟩
⟨⟨gpmdb paths, gpmdb server⟩⟩ ⟨⟨pedro organism, pedro id⟩⟩
⟨⟨gpmdb pep temp, gpmdb pepid⟩⟩ ⟨⟨pedro organism, pedro relevant genotype⟩⟩
⟨⟨gpmdb pep temp, gpmdb seq⟩⟩ ⟨⟨pedro organism, pedro species name⟩⟩
⟨⟨gpmdb peptide, gpmdb charge⟩⟩ ⟨⟨pedro organism, pedro strain identifier⟩⟩
⟨⟨gpmdb peptide, gpmdb delta⟩⟩ ⟨⟨pedro otheranalyte, pedro id⟩⟩
⟨⟨gpmdb peptide, gpmdb dida⟩⟩ ⟨⟨pedro otheranalyte, pedro name⟩⟩
⟨⟨gpmdb peptide, gpmdb didb⟩⟩ ⟨⟨pedro otheranalyte, pedro other analyte processing step⟩⟩

241

⟨⟨gpmdb peptide, gpmdb didc⟩⟩ ⟨⟨pedro otheranalyte otm analyteps, pedro analyte processing step⟩⟩
⟨⟨gpmdb peptide, gpmdb end⟩⟩ ⟨⟨pedro otheranalyte otm analyteps, pedro other analyte⟩⟩
⟨⟨gpmdb peptide, gpmdb expect⟩⟩ ⟨⟨pedro otheranalyte otm ontent, pedro ontology entry⟩⟩
⟨⟨gpmdb peptide, gpmdb mh⟩⟩ ⟨⟨pedro otheranalyte otm ontent, pedro other analyte⟩⟩
⟨⟨gpmdb peptide, gpmdb pepid⟩⟩ ⟨⟨pedro otheranalyteps, pedro analyte processing step⟩⟩
⟨⟨gpmdb peptide, gpmdb proid⟩⟩ ⟨⟨pedro otheranalyteps, pedro id⟩⟩
⟨⟨gpmdb peptide, gpmdb seq⟩⟩ ⟨⟨pedro otheranalyteps, pedro name⟩⟩
⟨⟨gpmdb peptide, gpmdb start⟩⟩ ⟨⟨pedro otheranalyteps otm ontent, pedro ontology entry⟩⟩
⟨⟨gpmdb peptide word index, gpmdb keyid⟩⟩ ⟨⟨pedro otheranalyteps otm ontent, pedro other analyte processing step⟩⟩
⟨⟨gpmdb peptide word index, gpmdb pepid list⟩⟩ ⟨⟨pedro otherionisation, pedro id⟩⟩
⟨⟨gpmdb peptide word index, gpmdb ts created⟩⟩ ⟨⟨pedro otherionisation, pedro ion source⟩⟩
⟨⟨gpmdb peptide word index, gpmdb word⟩⟩ ⟨⟨pedro otherionisation, pedro name⟩⟩
⟨⟨gpmdb peptide words, gpmdb pepid list⟩⟩ ⟨⟨pedro otherionisation otm ontent, pedro ontology entry⟩⟩
⟨⟨gpmdb peptide words, gpmdb seq word⟩⟩ ⟨⟨pedro otherionisation otm ontent, pedro other ionisation⟩⟩
⟨⟨gpmdb project, gpmdb description⟩⟩ ⟨⟨pedro othermzanalysis, pedro id⟩⟩
⟨⟨gpmdb project, gpmdb email⟩⟩ ⟨⟨pedro othermzanalysis, pedro mz analysis⟩⟩
⟨⟨gpmdb project, gpmdb institution⟩⟩ ⟨⟨pedro othermzanalysis, pedro name⟩⟩
⟨⟨gpmdb project, gpmdb name⟩⟩ ⟨⟨pedro othermzanalysis otm ontent, pedro ontology entry⟩⟩
⟨⟨gpmdb project, gpmdb project⟩⟩ ⟨⟨pedro othermzanalysis otm ontent, pedro other mz analysis⟩⟩
⟨⟨gpmdb project, gpmdb projectid⟩⟩ ⟨⟨pedro peak, pedro abundance⟩⟩
⟨⟨gpmdb project, gpmdb resultid⟩⟩ ⟨⟨pedro peak, pedro id⟩⟩
⟨⟨gpmdb proseq, gpmdb label aux⟩⟩ ⟨⟨pedro peak, pedro m to z⟩⟩
⟨⟨gpmdb proseq, gpmdb label⟩⟩ ⟨⟨pedro peak, pedro multiplicity⟩⟩
⟨⟨gpmdb proseq, gpmdb proseqid⟩⟩ ⟨⟨pedro peak, pedro peak list⟩⟩
⟨⟨gpmdb proseq, gpmdb rf⟩⟩ ⟨⟨pedro peaklist, pedro description⟩⟩
⟨⟨gpmdb proseq, gpmdb seq⟩⟩ ⟨⟨pedro peaklist, pedro id⟩⟩
⟨⟨gpmdb protein, gpmdb expect⟩⟩ ⟨⟨pedro peaklist, pedro list type⟩⟩
⟨⟨gpmdb protein, gpmdb pida⟩⟩ ⟨⟨pedro peaklist, pedro mass spec experiment⟩⟩
⟨⟨gpmdb protein, gpmdb pidb⟩⟩ ⟨⟨pedro peaklist, pedro mass value type⟩⟩
⟨⟨gpmdb protein, gpmdb proid⟩⟩ ⟨⟨pedro peakspecificchromint, pedro area under curve⟩⟩
⟨⟨gpmdb protein, gpmdb proseqid⟩⟩ ⟨⟨pedro peakspecificchromint, pedro background threshold⟩⟩
⟨⟨gpmdb protein, gpmdb resultid⟩⟩ ⟨⟨pedro peakspecificchromint, pedro id⟩⟩
⟨⟨gpmdb protein, gpmdb uid⟩⟩ ⟨⟨pedro peakspecificchromint, pedro peak description⟩⟩
⟨⟨gpmdb proteinrevision, gpmdb label⟩⟩ ⟨⟨pedro peakspecificchromint, pedro peak⟩⟩
⟨⟨gpmdb proteinrevision, gpmdb proid⟩⟩ ⟨⟨pedro peakspecificchromint, pedro resolution⟩⟩
⟨⟨gpmdb proteinrevision, gpmdb prorevid⟩⟩ ⟨⟨pedro peakspecificchromint, pedro sister peak reference⟩⟩
⟨⟨gpmdb result, gpmdb active⟩⟩ ⟨⟨pedro peakspecificchromint, pedro software version⟩⟩
⟨⟨gpmdb result, gpmdb comments⟩⟩ ⟨⟨pedro peptidehit, pedro db search⟩⟩
⟨⟨gpmdb result, gpmdb completed⟩⟩ ⟨⟨pedro peptidehit, pedro id⟩⟩
⟨⟨gpmdb result, gpmdb file⟩⟩ ⟨⟨pedro peptidehit, pedro information⟩⟩
⟨⟨gpmdb result, gpmdb pathid⟩⟩ ⟨⟨pedro peptidehit, pedro probability⟩⟩
⟨⟨gpmdb result, gpmdb rating⟩⟩ ⟨⟨pedro peptidehit, pedro score type⟩⟩
⟨⟨gpmdb result, gpmdb resultid⟩⟩ ⟨⟨pedro peptidehit, pedro score⟩⟩
⟨⟨gpmdb result, gpmdb tandemversion⟩⟩ ⟨⟨pedro peptidehit, pedro sequence⟩⟩
⟨⟨gpmdb aa⟩⟩ ⟨⟨pedro peptidehit mtm ontent, pedro ontology entry⟩⟩
⟨⟨gpmdb bad file del⟩⟩ ⟨⟨pedro peptidehit mtm ontent, pedro peptide hit db search⟩⟩
⟨⟨gpmdb distinctseq⟩⟩ ⟨⟨pedro peptidehit mtm ontent, pedro peptide hit id⟩⟩
⟨⟨gpmdb fullpeptide⟩⟩ ⟨⟨pedro percentx, pedro gradient step id⟩⟩
⟨⟨gpmdb fullpeptidediagnostic⟩⟩ ⟨⟨pedro percentx, pedro gradient step lc column⟩⟩
⟨⟨gpmdb paths⟩⟩ ⟨⟨pedro percentx, pedro id⟩⟩
⟨⟨gpmdb pep temp⟩⟩ ⟨⟨pedro percentx, pedro mobile phase component⟩⟩
⟨⟨gpmdb peptide word index⟩⟩ ⟨⟨pedro percentx, pedro percentage⟩⟩
⟨⟨gpmdb peptide words⟩⟩ ⟨⟨pedro protein, pedro accession num⟩⟩
⟨⟨gpmdb peptide⟩⟩ ⟨⟨pedro protein, pedro description⟩⟩
⟨⟨gpmdb project⟩⟩ ⟨⟨pedro protein, pedro gene name⟩⟩
⟨⟨gpmdb proseq⟩⟩ ⟨⟨pedro protein, pedro id⟩⟩
⟨⟨gpmdb protein⟩⟩ ⟨⟨pedro protein, pedro modifications⟩⟩
⟨⟨gpmdb proteinrevision⟩⟩ ⟨⟨pedro protein, pedro orf number⟩⟩
⟨⟨gpmdb result⟩⟩ ⟨⟨pedro protein, pedro organism⟩⟩
⟨⟨pedro analyteprocessingstep, pedro id⟩⟩ ⟨⟨pedro protein, pedro predicted mass⟩⟩

242

⟨⟨pedro analyteprocessingstep, pedro input type⟩⟩ ⟨⟨pedro protein, pedro predicted pi⟩⟩
⟨⟨pedro analyteprocessingstep, pedro processing type⟩⟩ ⟨⟨pedro protein, pedro sequence⟩⟩
⟨⟨pedro assaydatapoint, pedro id⟩⟩ ⟨⟨pedro protein, pedro synonyms⟩⟩
⟨⟨pedro assaydatapoint, pedro lc column⟩⟩ ⟨⟨pedro proteinhit, pedro all peptides matched⟩⟩
⟨⟨pedro assaydatapoint, pedro protein assay⟩⟩ ⟨⟨pedro proteinhit, pedro component peptides⟩⟩
⟨⟨pedro assaydatapoint, pedro time⟩⟩ ⟨⟨pedro proteinhit, pedro db search⟩⟩
⟨⟨pedro band, pedro annotation source⟩⟩ ⟨⟨pedro proteinhit, pedro id⟩⟩
⟨⟨pedro band, pedro annotation⟩⟩ ⟨⟨pedro proteinhit, pedro masses matched⟩⟩
⟨⟨pedro band, pedro apparent mass⟩⟩ ⟨⟨pedro proteinhit, pedro protein⟩⟩
⟨⟨pedro band, pedro area⟩⟩ ⟨⟨pedro proteinhit, pedro score type⟩⟩
⟨⟨pedro band, pedro gel 1d⟩⟩ ⟨⟨pedro proteinhit, pedro score⟩⟩
⟨⟨pedro band, pedro id⟩⟩ ⟨⟨pedro quadrupole, pedro description⟩⟩
⟨⟨pedro band, pedro intensity⟩⟩ ⟨⟨pedro quadrupole, pedro id⟩⟩
⟨⟨pedro band, pedro lane number⟩⟩ ⟨⟨pedro quadrupole, pedro mz analysis⟩⟩
⟨⟨pedro band, pedro local background⟩⟩ ⟨⟨pedro relatedgelitem, pedro band gel 1d⟩⟩
⟨⟨pedro band, pedro normalisation⟩⟩ ⟨⟨pedro relatedgelitem, pedro band id⟩⟩
⟨⟨pedro band, pedro normalised volume⟩⟩ ⟨⟨pedro relatedgelitem, pedro description⟩⟩
⟨⟨pedro band, pedro pixel radius⟩⟩ ⟨⟨pedro relatedgelitem, pedro gel reference⟩⟩
⟨⟨pedro band, pedro pixel x coord⟩⟩ ⟨⟨pedro relatedgelitem, pedro id⟩⟩
⟨⟨pedro band, pedro pixel y coord⟩⟩ ⟨⟨pedro relatedgelitem, pedro item reference⟩⟩
⟨⟨pedro band, pedro volume⟩⟩ ⟨⟨pedro relatedgelitem, pedro spot gel 2d⟩⟩
⟨⟨pedro band otm analyteps, pedro analyte processing step⟩⟩ ⟨⟨pedro relatedgelitem, pedro spot id⟩⟩
⟨⟨pedro band otm analyteps, pedro band gel 1d⟩⟩ ⟨⟨pedro relgelitem mtm proteinhit, pedro protein hit⟩⟩
⟨⟨pedro band otm analyteps, pedro band id⟩⟩ ⟨⟨pedro relgelitem mtm proteinhit, pedro related gel item⟩⟩
⟨⟨pedro boundarypoint, pedro id⟩⟩ ⟨⟨pedro sample, pedro experiment⟩⟩
⟨⟨pedro boundarypoint, pedro pixel x coord⟩⟩ ⟨⟨pedro sample, pedro experimenter⟩⟩
⟨⟨pedro boundarypoint, pedro pixel y coord⟩⟩ ⟨⟨pedro sample, pedro sample date⟩⟩
⟨⟨pedro boundarypoint, pedro spot gel 2d⟩⟩ ⟨⟨pedro sample, pedro sample id⟩⟩
⟨⟨pedro boundarypoint, pedro spot id⟩⟩ ⟨⟨pedro sample mtm sampleorigin, pedro sample origin⟩⟩
⟨⟨pedro chemicaltreatment, pedro analyte processing step⟩⟩ ⟨⟨pedro sample mtm sampleorigin, pedro sample⟩⟩
⟨⟨pedro chemicaltreatment, pedro derivatisations⟩⟩ ⟨⟨pedro sample otm analyteps, pedro analyte processing step⟩⟩
⟨⟨pedro chemicaltreatment, pedro digestion⟩⟩ ⟨⟨pedro sample otm analyteps, pedro sample⟩⟩
⟨⟨pedro chemicaltreatment, pedro id⟩⟩ ⟨⟨pedro sampleorigin, pedro cell component⟩⟩
⟨⟨pedro chromatogrampoint, pedro id⟩⟩ ⟨⟨pedro sampleorigin, pedro cell cycle phase⟩⟩
⟨⟨pedro chromatogrampoint, pedro ion count⟩⟩ ⟨⟨pedro sampleorigin, pedro cell type⟩⟩
⟨⟨pedro chromatogrampoint, pedro peak⟩⟩ ⟨⟨pedro sampleorigin, pedro condition degree⟩⟩
⟨⟨pedro chromatogrampoint, pedro time point⟩⟩ ⟨⟨pedro sampleorigin, pedro description⟩⟩
⟨⟨pedro collisioncell, pedro collision offset⟩⟩ ⟨⟨pedro sampleorigin, pedro environment⟩⟩
⟨⟨pedro collisioncell, pedro gas pressure⟩⟩ ⟨⟨pedro sampleorigin, pedro id⟩⟩
⟨⟨pedro collisioncell, pedro gas type⟩⟩ ⟨⟨pedro sampleorigin, pedro metabolic label⟩⟩
⟨⟨pedro collisioncell, pedro id⟩⟩ ⟨⟨pedro sampleorigin, pedro organism⟩⟩
⟨⟨pedro collisioncell, pedro mz analysis⟩⟩ ⟨⟨pedro sampleorigin, pedro sample condition⟩⟩
⟨⟨pedro dbsearch, pedro c terminal aa⟩⟩ ⟨⟨pedro sampleorigin, pedro tagging process⟩⟩
⟨⟨pedro dbsearch, pedro count of specific aa⟩⟩ ⟨⟨pedro sampleorigin, pedro technique⟩⟩
⟨⟨pedro dbsearch, pedro db search parameters⟩⟩ ⟨⟨pedro sampleorigin, pedro tissue type⟩⟩
⟨⟨pedro dbsearch, pedro id date⟩⟩ ⟨⟨pedro spot, pedro annotation source⟩⟩
⟨⟨pedro dbsearch, pedro id⟩⟩ ⟨⟨pedro spot, pedro annotation⟩⟩
⟨⟨pedro dbsearch, pedro n terminal aa⟩⟩ ⟨⟨pedro spot, pedro apparent mass⟩⟩
⟨⟨pedro dbsearch, pedro name of counted aa⟩⟩ ⟨⟨pedro spot, pedro apparent pi⟩⟩
⟨⟨pedro dbsearch, pedro peak list⟩⟩ ⟨⟨pedro spot, pedro area⟩⟩
⟨⟨pedro dbsearch, pedro regex pattern⟩⟩ ⟨⟨pedro spot, pedro gel 2d⟩⟩
⟨⟨pedro dbsearch, pedro username⟩⟩ ⟨⟨pedro spot, pedro id⟩⟩
⟨⟨pedro dbsearchparameters, pedro accurate mass mode⟩⟩ ⟨⟨pedro spot, pedro intensity⟩⟩
⟨⟨pedro dbsearchparameters, pedro database date⟩⟩ ⟨⟨pedro spot, pedro local background⟩⟩
⟨⟨pedro dbsearchparameters, pedro database name⟩⟩ ⟨⟨pedro spot, pedro normalisation⟩⟩
⟨⟨pedro dbsearchparameters, pedro fixed modifications⟩⟩ ⟨⟨pedro spot, pedro normalised volume⟩⟩
⟨⟨pedro dbsearchparameters, pedro fragment ion tolerance⟩⟩ ⟨⟨pedro spot, pedro pixel radius⟩⟩
⟨⟨pedro dbsearchparameters, pedro icat option⟩⟩ ⟨⟨pedro spot, pedro pixel x coord⟩⟩
⟨⟨pedro dbsearchparameters, pedro id⟩⟩ ⟨⟨pedro spot, pedro pixel y coord⟩⟩
⟨⟨pedro dbsearchparameters, pedro mass error type⟩⟩ ⟨⟨pedro spot, pedro volume⟩⟩

243

⟨⟨pedro dbsearchparameters, pedro mass error⟩⟩ ⟨⟨pedro spot otm analyteps, pedro analyte processing step⟩⟩
⟨⟨pedro dbsearchparameters, pedro mass value type⟩⟩ ⟨⟨pedro spot otm analyteps, pedro spot gel 2d⟩⟩
⟨⟨pedro dbsearchparameters, pedro max missed cleavages⟩⟩ ⟨⟨pedro spot otm analyteps, pedro spot id⟩⟩
⟨⟨pedro dbsearchparameters, pedro parameters file⟩⟩ ⟨⟨pedro taggingprocess, pedro final volume⟩⟩
⟨⟨pedro dbsearchparameters, pedro peptide mass tolerance⟩⟩ ⟨⟨pedro taggingprocess, pedro id⟩⟩
⟨⟨pedro dbsearchparameters, pedro program⟩⟩ ⟨⟨pedro taggingprocess, pedro lysis buffer⟩⟩
⟨⟨pedro dbsearchparameters, pedro protonated⟩⟩ ⟨⟨pedro taggingprocess, pedro protein concentration⟩⟩
⟨⟨pedro dbsearchparameters, pedro taxonomical filter⟩⟩ ⟨⟨pedro taggingprocess, pedro tag concentration⟩⟩
⟨⟨pedro dbsearchparameters, pedro variable modifications⟩⟩ ⟨⟨pedro taggingprocess, pedro tag purity⟩⟩
⟨⟨pedro dbsearchpars otm ontent, pedro db search parameters⟩⟩ ⟨⟨pedro taggingprocess, pedro tag type⟩⟩
⟨⟨pedro dbsearchpars otm ontent, pedro ontology entry⟩⟩ ⟨⟨pedro tandemsequencedata, pedro db search parameters⟩⟩
⟨⟨pedro detection, pedro id⟩⟩ ⟨⟨pedro tandemsequencedata, pedro id⟩⟩
⟨⟨pedro detection, pedro type⟩⟩ ⟨⟨pedro tandemsequencedata, pedro sequence⟩⟩
⟨⟨pedro digegel, pedro dye type⟩⟩ ⟨⟨pedro tandemsequencedata, pedro source type⟩⟩
⟨⟨pedro digegel, pedro excitation wavelength⟩⟩ ⟨⟨pedro tof, pedro id⟩⟩
⟨⟨pedro digegel, pedro exposure time⟩⟩ ⟨⟨pedro tof, pedro internal length⟩⟩
⟨⟨pedro digegel, pedro gel 1d⟩⟩ ⟨⟨pedro tof, pedro mz analysis⟩⟩
⟨⟨pedro digegel, pedro gel 2d⟩⟩ ⟨⟨pedro tof, pedro reflectron state⟩⟩
⟨⟨pedro digegel, pedro id⟩⟩ ⟨⟨pedro treatedanalyte, pedro chemical treatment⟩⟩
⟨⟨pedro digegel, pedro tiff image⟩⟩ ⟨⟨pedro treatedanalyte, pedro id⟩⟩
⟨⟨pedro digegelitem, pedro band gel 1d⟩⟩ ⟨⟨pedro treatedanalyte otm analyteps, pedro analyte processing step⟩⟩
⟨⟨pedro digegelitem, pedro band id⟩⟩ ⟨⟨pedro treatedanalyte otm analyteps, pedro treated analyte⟩⟩
⟨⟨pedro digegelitem, pedro dye type⟩⟩ ⟨⟨pedro analyteprocessingstep⟩⟩
⟨⟨pedro digegelitem, pedro id⟩⟩ ⟨⟨pedro assaydatapoint⟩⟩
⟨⟨pedro digegelitem, pedro spot gel 2d⟩⟩ ⟨⟨pedro band otm analyteps⟩⟩
⟨⟨pedro digegelitem, pedro spot id⟩⟩ ⟨⟨pedro band⟩⟩
⟨⟨pedro electrospray, pedro cone voltage⟩⟩ ⟨⟨pedro boundarypoint⟩⟩
⟨⟨pedro electrospray, pedro id⟩⟩ ⟨⟨pedro chemicaltreatment⟩⟩
⟨⟨pedro electrospray, pedro interface manufacturer⟩⟩ ⟨⟨pedro chromatogrampoint⟩⟩
⟨⟨pedro electrospray, pedro ion source⟩⟩ ⟨⟨pedro collisioncell⟩⟩
⟨⟨pedro electrospray, pedro loading type⟩⟩ ⟨⟨pedro dbsearch⟩⟩
⟨⟨pedro electrospray, pedro solution voltage⟩⟩ ⟨⟨pedro dbsearchparameters⟩⟩
⟨⟨pedro electrospray, pedro solvent⟩⟩ ⟨⟨pedro dbsearchpars otm ontent⟩⟩
⟨⟨pedro electrospray, pedro spray tip diameter⟩⟩ ⟨⟨pedro detection⟩⟩
⟨⟨pedro electrospray, pedro spray tip manufacturer⟩⟩ ⟨⟨pedro digegel⟩⟩
⟨⟨pedro electrospray, pedro spray tip voltage⟩⟩ ⟨⟨pedro digegelitem⟩⟩
⟨⟨pedro experiment, pedro hypothesis⟩⟩ ⟨⟨pedro electrospray⟩⟩
⟨⟨pedro experiment, pedro id⟩⟩ ⟨⟨pedro experiment⟩⟩
⟨⟨pedro experiment, pedro method citations⟩⟩ ⟨⟨pedro fraction otm analyteps⟩⟩
⟨⟨pedro experiment, pedro result citations⟩⟩ ⟨⟨pedro fraction⟩⟩
⟨⟨pedro fraction, pedro end point⟩⟩ ⟨⟨pedro gel1d⟩⟩
⟨⟨pedro fraction, pedro id⟩⟩ ⟨⟨pedro gel2d⟩⟩
⟨⟨pedro fraction, pedro lc column⟩⟩ ⟨⟨pedro gradientstep⟩⟩
⟨⟨pedro fraction, pedro protein assay⟩⟩ ⟨⟨pedro hexapole⟩⟩
⟨⟨pedro fraction, pedro start point⟩⟩ ⟨⟨pedro ionsource⟩⟩
⟨⟨pedro fraction otm analyteps, pedro analyte processing step⟩⟩ ⟨⟨pedro iontrap⟩⟩
⟨⟨pedro fraction otm analyteps, pedro fraction id⟩⟩ ⟨⟨pedro lccolumn⟩⟩
⟨⟨pedro fraction otm analyteps, pedro fraction lc column⟩⟩ ⟨⟨pedro listprocessing⟩⟩
⟨⟨pedro gel1d, pedro analyte processing step⟩⟩ ⟨⟨pedro maldi⟩⟩
⟨⟨pedro gel1d, pedro annotated image⟩⟩ ⟨⟨pedro massspecexperiment⟩⟩
⟨⟨pedro gel1d, pedro background⟩⟩ ⟨⟨pedro massspecmachine⟩⟩
⟨⟨pedro gel1d, pedro denaturing agent⟩⟩ ⟨⟨pedro mobilephasecomponent⟩⟩
⟨⟨pedro gel1d, pedro description⟩⟩ ⟨⟨pedro msmsfraction⟩⟩
⟨⟨pedro gel1d, pedro equipment⟩⟩ ⟨⟨pedro mzanalysis⟩⟩
⟨⟨pedro gel1d, pedro id⟩⟩ ⟨⟨pedro ontologyentry⟩⟩
⟨⟨pedro gel1d, pedro in gel digestion⟩⟩ ⟨⟨pedro organism⟩⟩
⟨⟨pedro gel1d, pedro mass end⟩⟩ ⟨⟨pedro otheranalyte otm analyteps⟩⟩
⟨⟨pedro gel1d, pedro mass start⟩⟩ ⟨⟨pedro otheranalyte otm ontent⟩⟩
⟨⟨pedro gel1d, pedro percent acrylamide⟩⟩ ⟨⟨pedro otheranalyte⟩⟩
⟨⟨pedro gel1d, pedro pixel size x⟩⟩ ⟨⟨pedro otheranalyteps otm ontent⟩⟩

244

⟨⟨pedro gel1d, pedro pixel size y⟩⟩ ⟨⟨pedro otheranalyteps⟩⟩
⟨⟨pedro gel1d, pedro protein assay⟩⟩ ⟨⟨pedro otherionisation otm ontent⟩⟩
⟨⟨pedro gel1d, pedro raw image⟩⟩ ⟨⟨pedro otherionisation⟩⟩
⟨⟨pedro gel1d, pedro run details⟩⟩ ⟨⟨pedro othermzanalysis otm ontent⟩⟩
⟨⟨pedro gel1d, pedro software version⟩⟩ ⟨⟨pedro othermzanalysis⟩⟩
⟨⟨pedro gel1d, pedro solubilization buffer⟩⟩ ⟨⟨pedro peak⟩⟩
⟨⟨pedro gel1d, pedro stain details⟩⟩ ⟨⟨pedro peaklist⟩⟩
⟨⟨pedro gel1d, pedro warped image⟩⟩ ⟨⟨pedro peakspecificchromint⟩⟩
⟨⟨pedro gel1d, pedro warping map⟩⟩ ⟨⟨pedro peptidehit mtm ontent⟩⟩
⟨⟨pedro gel2d, pedro analyte processing step⟩⟩ ⟨⟨pedro peptidehit⟩⟩
⟨⟨pedro gel2d, pedro annotated image⟩⟩ ⟨⟨pedro percentx⟩⟩
⟨⟨pedro gel2d, pedro background⟩⟩ ⟨⟨pedro protein⟩⟩
⟨⟨pedro gel2d, pedro description⟩⟩ ⟨⟨pedro proteinhit⟩⟩
⟨⟨pedro gel2d, pedro equipment⟩⟩ ⟨⟨pedro quadrupole⟩⟩
⟨⟨pedro gel2d, pedro first dim details⟩⟩ ⟨⟨pedro relatedgelitem⟩⟩
⟨⟨pedro gel2d, pedro id⟩⟩ ⟨⟨pedro relgelitem mtm proteinhit⟩⟩
⟨⟨pedro gel2d, pedro in gel digestion⟩⟩ ⟨⟨pedro sample mtm sampleorigin⟩⟩
⟨⟨pedro gel2d, pedro mass end⟩⟩ ⟨⟨pedro sample otm analyteps⟩⟩
⟨⟨pedro gel2d, pedro mass start⟩⟩ ⟨⟨pedro sample⟩⟩
⟨⟨pedro gel2d, pedro percent acrylamide⟩⟩ ⟨⟨pedro sampleorigin⟩⟩
⟨⟨pedro gel2d, pedro pi end⟩⟩ ⟨⟨pedro spot otm analyteps⟩⟩
⟨⟨pedro gel2d, pedro pi start⟩⟩ ⟨⟨pedro spot⟩⟩
⟨⟨pedro gel2d, pedro pixel size x⟩⟩ ⟨⟨pedro taggingprocess⟩⟩
⟨⟨pedro gel2d, pedro pixel size y⟩⟩ ⟨⟨pedro tandemsequencedata⟩⟩
⟨⟨pedro gel2d, pedro protein assay⟩⟩ ⟨⟨pedro tof⟩⟩
⟨⟨pedro gel2d, pedro raw image⟩⟩ ⟨⟨pedro treatedanalyte otm analyteps⟩⟩
⟨⟨pedro gel2d, pedro second dim details⟩⟩ ⟨⟨pedro treatedanalyte⟩⟩
⟨⟨pedro gel2d, pedro software version⟩⟩ ⟨⟨pepseeker proteinhit⟩⟩
⟨⟨pedro gel2d, pedro solubilization buffer⟩⟩ ⟨⟨pepseeker proteinscore, pepseeker Score⟩⟩
⟨⟨pedro gel2d, pedro stain details⟩⟩ ⟨⟨pepseeker proteinhit, pepseeker ProteinID⟩⟩
⟨⟨pedro gel2d, pedro warped image⟩⟩ ⟨⟨pepseeker proteinhit, pepseeker fileparameters⟩⟩
⟨⟨pedro gel2d, pedro warping map⟩⟩ ⟨⟨pepseeker peptidehit⟩⟩
⟨⟨pedro gradientstep, pedro id⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker proteinscore⟩⟩
⟨⟨pedro gradientstep, pedro lc column⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker pepseq⟩⟩
⟨⟨pedro gradientstep, pedro step time⟩⟩ ⟨⟨pepseeker mascotexpect, pepseeker expect⟩⟩
⟨⟨pedro hexapole, pedro description⟩⟩ ⟨⟨pepseeker fileparameters⟩⟩
⟨⟨pedro hexapole, pedro id⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker Username⟩⟩
⟨⟨pedro hexapole, pedro mz analysis⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker Id⟩⟩
⟨⟨pedro ionsource, pedro collision energy⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker Filename⟩⟩
⟨⟨pedro ionsource, pedro id⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker TAXONOMY⟩⟩
⟨⟨pedro ionsource, pedro mz analysis⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker MODS⟩⟩
⟨⟨pedro ionsource, pedro type⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker IT MODS⟩⟩
⟨⟨pedro iontrap, pedro excitation amplitude⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker PFA⟩⟩
⟨⟨pedro iontrap, pedro final ms level⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker MASS⟩⟩
⟨⟨pedro iontrap, pedro gas pressure⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker ITOL⟩⟩
⟨⟨pedro iontrap, pedro gas type⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker TOL⟩⟩
⟨⟨pedro iontrap, pedro id⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker SEG⟩⟩
⟨⟨pedro iontrap, pedro isolation centre⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker TOLU⟩⟩
⟨⟨pedro iontrap, pedro isolation width⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker CHARGE⟩⟩
⟨⟨pedro iontrap, pedro mz analysis⟩⟩ ⟨⟨pepseeker searchmasses⟩⟩
⟨⟨pedro iontrap, pedro rf frequency⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker Products⟩⟩
⟨⟨pedro lccolumn, pedro analyte processing step⟩⟩ ⟨⟨pepseeker proteinhit, pepseeker Proteinname⟩⟩
⟨⟨pedro lccolumn, pedro batch number⟩⟩ ⟨⟨pepseeker species, pepseeker species⟩⟩
⟨⟨pedro lccolumn, pedro bead size⟩⟩ ⟨⟨pepseeker proteinhit, pepseeker Mass⟩⟩
⟨⟨pedro lccolumn, pedro description⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker startresidue⟩⟩
⟨⟨pedro lccolumn, pedro flow rate⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker endresidue⟩⟩
⟨⟨pedro lccolumn, pedro id⟩⟩
⟨⟨pedro lccolumn, pedro injection volume⟩⟩
⟨⟨pedro lccolumn, pedro internal diameter⟩⟩
⟨⟨pedro lccolumn, pedro internal length⟩⟩

245

⟨⟨pedro lccolumn, pedro lc column⟩⟩
⟨⟨pedro lccolumn, pedro manufacturer⟩⟩
⟨⟨pedro lccolumn, pedro parameters file⟩⟩
⟨⟨pedro lccolumn, pedro part number⟩⟩
⟨⟨pedro lccolumn, pedro pore size⟩⟩
⟨⟨pedro lccolumn, pedro stationary phase⟩⟩
⟨⟨pedro lccolumn, pedro temperature⟩⟩

Table E.9: Elements Satisfying Quality Factor 1 in Iteration 2

⟨⟨pepseeker db, pepseeker entries⟩⟩ ⟨⟨pepseeker iontable, pepseeker Ystarplusplus⟩⟩
⟨⟨pepseeker db, pepseeker id⟩⟩ ⟨⟨pepseeker iontable, pepseeker YZero⟩⟩
⟨⟨pepseeker db, pepseeker location⟩⟩ ⟨⟨pepseeker iontable, pepseeker YZeroplusplus⟩⟩
⟨⟨pepseeker db, pepseeker name⟩⟩ ⟨⟨pepseeker lastsession, pepseeker Id⟩⟩
⟨⟨pepseeker db, pepseeker release date⟩⟩ ⟨⟨pepseeker lastsession, pepseeker url⟩⟩
⟨⟨pepseeker db, pepseeker release⟩⟩ ⟨⟨pepseeker mascotexpect, pepseeker peptidehit Id⟩⟩
⟨⟨pepseeker db, pepseeker residue type⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker Delta⟩⟩
⟨⟨pepseeker db, pepseeker system date⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker Id⟩⟩
⟨⟨pepseeker fileparameters, pepseeker ACCESSION⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker ions⟩⟩
⟨⟨pepseeker fileparameters, pepseeker CLE⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker MassNo⟩⟩
⟨⟨pepseeker fileparameters, pepseeker DB⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker MissCleav⟩⟩
⟨⟨pepseeker fileparameters, pepseeker ERRORTOLERANT⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker MrCalc⟩⟩
⟨⟨pepseeker fileparameters, pepseeker FORMAT⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker MrExpct⟩⟩
⟨⟨pepseeker fileparameters, pepseeker FORMVER⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker Rank⟩⟩
⟨⟨pepseeker fileparameters, pepseeker FRAG⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker Score⟩⟩
⟨⟨pepseeker fileparameters, pepseeker ICAT⟩⟩ ⟨⟨pepseeker peptideprophet, pepseeker peptidehit Id⟩⟩
⟨⟨pepseeker fileparameters, pepseeker INSTRUMENT⟩⟩ ⟨⟨pepseeker peptideprophet, pepseeker tpp pvalue⟩⟩
⟨⟨pepseeker fileparameters, pepseeker INTERMEDIATE⟩⟩ ⟨⟨pepseeker proteinhit, pepseeker Id⟩⟩
⟨⟨pepseeker fileparameters, pepseeker ITH⟩⟩ ⟨⟨pepseeker proteinhit, pepseeker ProteinScore⟩⟩
⟨⟨pepseeker fileparameters, pepseeker ITOLU⟩⟩ ⟨⟨pepseeker proteinscore, pepseeker Id⟩⟩
⟨⟨pepseeker fileparameters, pepseeker LTOL⟩⟩ ⟨⟨pepseeker proteinscore, pepseeker Matchedpeptides⟩⟩
⟨⟨pepseeker fileparameters, pepseeker mp⟩⟩ ⟨⟨pepseeker proteinscore, pepseeker querypeptides⟩⟩
⟨⟨pepseeker fileparameters, pepseeker NM⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker fileparameters⟩⟩
⟨⟨pepseeker fileparameters, pepseeker OVERVIEW⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker Id⟩⟩
⟨⟨pepseeker fileparameters, pepseeker PEAK⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker Int max⟩⟩
⟨⟨pepseeker fileparameters, pepseeker PRECURSOR⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker int min⟩⟩
⟨⟨pepseeker fileparameters, pepseeker ProcessNo⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker Mass Max⟩⟩
⟨⟨pepseeker fileparameters, pepseeker QUE⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker Mass min⟩⟩
⟨⟨pepseeker fileparameters, pepseeker REPORT⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker num used⟩⟩
⟨⟨pepseeker fileparameters, pepseeker REPTYPE⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker num vals⟩⟩
⟨⟨pepseeker fileparameters, pepseeker SEARCH⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker Precursor⟩⟩
⟨⟨pepseeker fileparameters, pepseeker SEGT⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker queryno⟩⟩
⟨⟨pepseeker fileparameters, pepseeker SEGTU⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker searchmassescol⟩⟩
⟨⟨pepseeker fileparameters, pepseeker SUBCLUSTER⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker Title⟩⟩
⟨⟨pepseeker fileparameters, pepseeker TWO⟩⟩ ⟨⟨pepseeker species, pepseeker fp id⟩⟩
⟨⟨pepseeker fileparameters, pepseeker Useremail⟩⟩ ⟨⟨pepseeker species, pepseeker ProteinId⟩⟩
⟨⟨pepseeker fp to db, pepseeker db id⟩⟩ ⟨⟨pepseeker species, pepseeker species id⟩⟩
⟨⟨pepseeker fp to db, pepseeker fp id⟩⟩ ⟨⟨pepseeker yeastacc, pepseeker accession⟩⟩
⟨⟨pepseeker iontable, pepseeker A⟩⟩ ⟨⟨pepseeker yeastacc, pepseeker id⟩⟩
⟨⟨pepseeker iontable, pepseeker Aplusplus⟩⟩ ⟨⟨pepseeker yeastacc, pepseeker oln⟩⟩
⟨⟨pepseeker iontable, pepseeker AStar⟩⟩ ⟨⟨pepseeker yeastacc, pepseeker yeast acc id⟩⟩
⟨⟨pepseeker iontable, pepseeker Astarplusplus⟩⟩ ⟨⟨pepseeker db⟩⟩
⟨⟨pepseeker iontable, pepseeker Azero⟩⟩ ⟨⟨pepseeker fp to db⟩⟩
⟨⟨pepseeker iontable, pepseeker B⟩⟩ ⟨⟨pepseeker iontable⟩⟩
⟨⟨pepseeker iontable, pepseeker Bplusplus⟩⟩ ⟨⟨pepseeker lastsession⟩⟩
⟨⟨pepseeker iontable, pepseeker Bstar⟩⟩ ⟨⟨pepseeker mascotexpect⟩⟩
⟨⟨pepseeker iontable, pepseeker Bstarplusplus⟩⟩ ⟨⟨pepseeker peptideprophet⟩⟩
⟨⟨pepseeker iontable, pepseeker Bzero⟩⟩ ⟨⟨pepseeker proteinscore⟩⟩
⟨⟨pepseeker iontable, pepseeker BZeroplusplus⟩⟩ ⟨⟨pepseeker species⟩⟩

246

⟨⟨pepseeker iontable, pepseeker Id⟩⟩ ⟨⟨pepseeker yeastacc⟩⟩
⟨⟨pepseeker iontable, pepseeker Immon⟩⟩
⟨⟨pepseeker iontable, pepseeker Matches⟩⟩
⟨⟨pepseeker iontable, pepseeker Y⟩⟩
⟨⟨pepseeker iontable, pepseeker Yplusplus⟩⟩
⟨⟨pepseeker iontable, pepseeker Ystar⟩⟩

Table E.10: Elements not-Satisfying Quality Factor 1 in Iteration 2

Factor 4

Satisfying Items not-Satisfying Items

⟨⟨gpmdb aa, gpmdb aaid⟩⟩ ⟨⟨gpmdb peptide, gpmdb pepid⟩⟩
⟨⟨gpmdb aa, gpmdb pepid⟩⟩ ⟨⟨gpmdb fullpeptide, gpmdb pepid⟩⟩
⟨⟨gpmdb peptide, gpmdb seq⟩⟩ ⟨⟨gpmdb fullpeptidediagnostic, gpmdb pepid⟩⟩
⟨⟨gpmdb peptide⟩⟩ ⟨⟨pedro peptidehit⟩⟩
⟨⟨gpmdb proseq, gpmdb label⟩⟩ ⟨⟨pedro peptidehit, pedro id⟩⟩
⟨⟨gpmdb protein, gpmdb proseqid⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker Id⟩⟩
⟨⟨gpmdb protein, gpmdb resultid⟩⟩ ⟨⟨pepseeker mascotexpect, pepseeker peptidehit Id⟩⟩
⟨⟨gpmdb protein⟩⟩ ⟨⟨pepseeker peptideprophet, pepseeker peptidehit Id⟩⟩
⟨⟨pedro peptidehit, pedro score⟩⟩ ⟨⟨gpmdb protein, gpmdb proid⟩⟩
⟨⟨pedro peptidehit, pedro sequence⟩⟩ ⟨⟨gpmdb peptide, gpmdb proid⟩⟩
⟨⟨pedro proteinhit, pedro protein⟩⟩ ⟨⟨gpmdb fullpeptide, gpmdb proid⟩⟩
⟨⟨pepseeker peptidehit, pepseeker pepseq⟩⟩ ⟨⟨gpmdb fullpeptidediagnostic, gpmdb proid⟩⟩
⟨⟨pepseeker peptidehit, pepseeker proteinscore⟩⟩ ⟨⟨pedro protein⟩⟩
⟨⟨pepseeker peptidehit⟩⟩ ⟨⟨pedro protein, pedro id⟩⟩
⟨⟨pepseeker proteinhit, pepseeker ProteinID⟩⟩ ⟨⟨pedro proteinhit, pedro id⟩⟩
⟨⟨pepseeker proteinhit⟩⟩ ⟨⟨pepseeker proteinhit, pepseeker Id⟩⟩
⟨⟨pedro dbsearchparameters, pedro mass value type⟩⟩ ⟨⟨pepseeker species, pepseeker ProteinID⟩⟩
⟨⟨pedro dbsearchparameters, pedro mass error type⟩⟩ ⟨⟨gpmdb result⟩⟩
⟨⟨pepseeker fileparameters, pepseeker MASS⟩⟩ ⟨⟨gpmdb result, gpmdb resultid⟩⟩
⟨⟨pepseeker fileparameters, pepseeker TOLU⟩⟩ ⟨⟨gpmdb project, gpmdb resultid⟩⟩

⟨⟨gpmdb fullpeptide, gpmdb seq⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb seq⟩⟩
⟨⟨gpmdb proseq⟩⟩
⟨⟨gpmdb proseq, gpmdb proseqid⟩⟩
⟨⟨gpmdb proseq, gpmdb seq⟩⟩
⟨⟨pedro protein, pedro sequence⟩⟩
⟨⟨pepseeker proteinscore, pepseeker Id⟩⟩
⟨⟨pepseeker proteinscore, pepseeker Score⟩⟩
⟨⟨pepseeker proteinhit, pepseeker ProteinScore⟩⟩
⟨⟨gpmdb aa⟩⟩
⟨⟨pedro peaklist, pedro mass value type⟩⟩
⟨⟨pepseeker proteinhit, pepseeker Mass⟩⟩
⟨⟨pepseeker peptidehit, pepseeker MassNo⟩⟩
⟨⟨pepseeker fileparameters, pepseeker ITOLU⟩⟩

Table E.11: Elements Satisfying and not-Satisfying Quality Factor 4 in Iteration 2

Factor 7

247

⟨⟨
p
ed

ro
fk

d
b
se
ar
ch

d
b
se
ar
ch

p
ar
a
m
et
er
s1
,
p
ed

ro
d
b
se
ar
ch

,
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩,

p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
fk

p
ro
te
in
h
it

d
b
se
ar
ch

1
,
p
ed

ro
p
ro
te
in
h
it
,
⟨⟨
p
ed

ro
p
ro
te
in
h
it
,
p
ed

ro
d
b
se
ar
ch
⟩⟩
,
p
ed

ro
d
b
se
ar
ch

,
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
g
p
m
d
b
re
su
lt
⟩⟩

⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s⟩
⟩

⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
Id
⟩⟩

⟨⟨
g
p
m
d
b
p
ro
te
in
⟩⟩

⟨⟨
g
p
m
d
b
p
ro
te
in
,
p
ro
se
q
id
⟩⟩

⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
re
su
lt
id
⟩⟩

⟨⟨
p
ep

se
ek
er

p
ro
te
in
h
it
,
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s⟩
⟩

⟨⟨
g
p
m
d
b
p
ep

ti
d
e,

g
p
m
d
b
p
ep

id
⟩⟩

⟨⟨
g
p
m
d
b
fk

p
ep

ti
d
e
p
ro
te
in
1
,
g
p
m
d
b
p
ep

ti
d
e,
⟨⟨
g
p
m
d
b
p
ep

ti
d
e,

g
p
m
d
b
p
ro
id
⟩⟩
,
g
p
m
d
b
p
ro
te
in
,
⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
p
ro
id
⟩⟩
⟩⟩

⟨⟨
g
p
m
d
b
p
ep

ti
d
e,

g
p
m
d
b
p
ro
id
⟩⟩

⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
p
ro
id
⟩⟩

⟨⟨
g
p
m
d
b
fk

p
ro
te
in

p
ro
se
q
,
g
p
m
d
b
p
ro
te
in
,
⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
p
ro
se
q
id
⟩⟩
,
g
p
m
d
b
p
ro
se
q
,
⟨⟨
g
p
m
d
b
p
ro
se
q
,
g
p
m
d
b
p
ro
se
q
id
⟩⟩
⟩⟩

⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
p
ro
se
q
id
⟩⟩

⟨⟨
g
p
m
d
b
p
ro
se
q
,
g
p
m
d
b
p
ro
se
q
id
⟩⟩

⟨⟨
g
p
m
d
b
fk

p
ro
te
in

re
su
lt
1
,
g
p
m
d
b
p
ro
te
in
,
⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
re
su
lt
id
⟩⟩
,
g
p
m
d
b
re
su
lt
,
⟨⟨
g
p
m
d
b
re
su
lt
,
g
p
m
d
b
re
su
lt
id
⟩⟩
⟩⟩

⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
re
su
lt
id
⟩⟩

⟨⟨
g
p
m
d
b
re
su
lt
,
g
p
m
d
b
re
su
lt
id
⟩⟩

⟨⟨
p
ed

ro
fk

d
b
se
ar
ch

d
b
se
ar
ch

p
ar
a
m
et
er
s1
,
p
ed

ro
d
b
se
ar
ch

,
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩,

p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩

⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

ch
ro
m
a
to
g
ra
m
p
o
in
t
p
ea
k
1
,
p
ed

ro
ch

ro
m
a
to
g
ra
m
p
o
in
t,
⟨⟨
p
ed

ro
ch

ro
m
a
to
g
ra
m
p
o
in
t,
p
ed

ro
p
ea
k
⟩⟩
,
p
ed

ro
p
ea
k
,
⟨⟨
p
ed

ro
p
ea
k
,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
ch

ro
m
a
to
g
ra
m
p
o
in
t,
p
ed

ro
p
ea
k
⟩⟩

⟨⟨
p
ed

ro
p
ea
k
,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

d
b
se
ar
ch

p
ea
k
li
st
1
,
p
ed

ro
d
b
se
ar
ch

,
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
p
ea
k
li
st
⟩⟩
,
p
ed

ro
p
ea
k
li
st
,
⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
p
ea
k
li
st
⟩⟩

⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

li
st
p
ro
ce
ss
in
g
p
ea
k
li
st
1
,
p
ed

ro
li
st
p
ro
ce
ss
in
g
,
⟨⟨
p
ed

ro
li
st
p
ro
ce
ss
in
g
,
p
ed

ro
p
ea
k
li
st
⟩⟩
,
p
ed

ro
p
ea
k
li
st
,
⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
li
st
p
ro
ce
ss
in
g
,
p
ed

ro
p
ea
k
li
st
⟩⟩

⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

m
sm

sf
ra
ct
io
n
p
ea
k
li
st
1
,
p
ed

ro
m
sm

sf
ra
ct
io
n
,
⟨⟨
p
ed

ro
m
sm

sf
ra
ct
io
n
,
p
ed

ro
p
ea
k
li
st
⟩⟩
,
p
ed

ro
p
ea
k
li
st
,
⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
m
sm

sf
ra
ct
io
n
,
p
ed

ro
p
ea
k
li
st
⟩⟩

⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

p
ea
k
p
ea
k
li
st
,
p
ed

ro
p
ea
k
,
⟨⟨
p
ed

ro
p
ea
k
,
p
ed

ro
p
ea
k
li
st
⟩⟩
,
p
ed

ro
p
ea
k
li
st
,
⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
p
ea
k
,
p
ed

ro
p
ea
k
li
st
⟩⟩

⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

p
ea
k
li
st

m
a
ss
sp
ec
m
a
ch

in
e1

,
p
ed

ro
p
ea
k
li
st
,
⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
m
a
ss

sp
ec

ex
p
er
im

en
t⟩⟩

,
p
ed

ro
m
a
ss
sp
ec
m
a
ch

in
e,
⟨⟨
p
ed

ro
m
a
ss
sp
ec
m
a
ch

in
e,

p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
m
a
ss

sp
ec

ex
p
er
im

en
t⟩⟩

⟨⟨
p
ed

ro
m
a
ss
sp
ec
m
a
ch

in
e,

p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

p
ep

ti
d
eh

it
d
b
se
ar
ch

1
,
p
ed

ro
p
ep

ti
d
eh

it
,
⟨⟨
p
ed

ro
p
ep

ti
d
eh

it
,
p
ed

ro
d
b
se
ar
ch
⟩⟩
,
p
ed

ro
d
b
se
ar
ch

,
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
id
⟩⟩
⟩⟩

248

⟨⟨
p
ed

ro
p
ep

ti
d
eh

it
,
p
ed

ro
d
b
se
ar
ch
⟩⟩

⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

p
ro
te
in
h
it

d
b
se
ar
ch

1
,
p
ed

ro
p
ro
te
in
h
it
,
⟨⟨
p
ed

ro
p
ro
te
in
h
it
,
p
ed

ro
d
b
se
ar
ch
⟩⟩
,
p
ed

ro
d
b
se
ar
ch

,
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
p
ro
te
in
h
it
,
p
ed

ro
d
b
se
ar
ch
⟩⟩

⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

ta
n
d
em

se
q
u
en

ce
d
a
ta

d
b
se
ar
ch

1
,
p
ed

ro
ta
n
d
em

se
q
u
en

ce
d
a
ta
,
⟨⟨
p
ed

ro
ta
n
d
em

se
q
u
en

ce
d
a
ta
,
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩,

p
ed

ro
d
b
se
ar
ch

,
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩⟩
⟩

⟨⟨
p
ed

ro
ta
n
d
em

se
q
u
en

ce
d
a
ta
,
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩

⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩

⟨⟨
p
ep

se
ek
er

fk
m
a
sc
o
te
xp

ec
t
p
ep

ti
d
eh

it
1
,
p
ep

se
ek
er

m
a
sc
o
te
xp

ec
t,
⟨⟨
p
ep

se
ek
er

m
a
sc
o
te
xp

ec
t,
p
ep

se
ek
er

p
ep

ti
d
eh

it
Id
⟩⟩
,
p
ep

se
ek
er

p
ep

ti
d
eh

it
,
⟨⟨
p
ep

se
ek
er

p
ep

ti
d
eh

it
,
p
ep

se
ek
er

Id
⟩⟩
⟩⟩

⟨⟨
p
ep

se
ek
er

m
a
sc
o
te
xp

ec
t,
p
ep

se
ek
er

p
ep

ti
d
eh

it
Id
⟩⟩

⟨⟨
p
ep

se
ek
er

p
ep

ti
d
eh

it
,
p
ep

se
ek
er

Id
⟩⟩

⟨⟨
p
ep

se
ek
er

fk
se
ar
ch

m
a
ss
es

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

se
ar
ch

m
a
ss
es
,
⟨⟨
p
ep

se
ek
er

se
ar
ch

m
a
ss
es
,
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s⟩
⟩,

p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

Id
⟩⟩
⟩⟩

⟨⟨
p
ep

se
ek
er

se
ar
ch

m
a
ss
es
,
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s⟩
⟩

⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

Id
⟩⟩

⟨⟨
G
S
1
fk

p
ro
te
in
h
it

p
ro
te
in
1
,
G
S
1
p
ro
te
in
h
it
,
⟨⟨
G
S
1
p
ro
te
in
h
it
,
G
S
1
id
⟩⟩
,
G
S
1
p
ro
te
in
,
⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
id
⟩⟩
⟩⟩

⟨⟨
p
ep

se
ek
er

p
ro
te
in
h
it
⟩⟩

⟨⟨
G
S
1
p
ro
te
in
h
it
,
G
S
1
id
⟩⟩

⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
id
⟩⟩

T
a
b
le

E
.1
2
:
E
le
m

e
n
ts

S
a
ti
sf
y
in

g
Q
u
a
li
ty

F
a
c
to

r
7

in
It
e
ra

ti
o
n

2

249

E.4.3 Quality Measurement for Iteration 3

Factor 1

⟨⟨gpmdb aa, gpmdb aaid⟩⟩ ⟨⟨pedro othermzanalysis, pedro name⟩⟩
⟨⟨gpmdb aa, gpmdb at⟩⟩ ⟨⟨pedro othermzanalysis otm ontent, pedro ontology entry⟩⟩
⟨⟨gpmdb aa, gpmdb modified⟩⟩ ⟨⟨pedro othermzanalysis otm ontent, pedro other mz analysis⟩⟩
⟨⟨gpmdb aa, gpmdb pepid⟩⟩ ⟨⟨pedro peak, pedro abundance⟩⟩
⟨⟨gpmdb aa, gpmdb pm⟩⟩ ⟨⟨pedro peak, pedro id⟩⟩
⟨⟨gpmdb aa, gpmdb type⟩⟩ ⟨⟨pedro peak, pedro m to z⟩⟩
⟨⟨gpmdb bad file del, gpmdb file⟩⟩ ⟨⟨pedro peak, pedro multiplicity⟩⟩
⟨⟨gpmdb distinctseq, gpmdb seq⟩⟩ ⟨⟨pedro peak, pedro peak list⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb aastring⟩⟩ ⟨⟨pedro peaklist, pedro description⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb charge⟩⟩ ⟨⟨pedro peaklist, pedro id⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb delta⟩⟩ ⟨⟨pedro peaklist, pedro list type⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb dida⟩⟩ ⟨⟨pedro peaklist, pedro mass spec experiment⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb end⟩⟩ ⟨⟨pedro peaklist, pedro mass value type⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb expect⟩⟩ ⟨⟨pedro peakspecificchromint, pedro area under curve⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb mh⟩⟩ ⟨⟨pedro peakspecificchromint, pedro background threshold⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb mh2⟩⟩ ⟨⟨pedro peakspecificchromint, pedro id⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb pepid⟩⟩ ⟨⟨pedro peakspecificchromint, pedro peak description⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb proid⟩⟩ ⟨⟨pedro peakspecificchromint, pedro peak⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb seq⟩⟩ ⟨⟨pedro peakspecificchromint, pedro resolution⟩⟩
⟨⟨gpmdb fullpeptide, gpmdb start⟩⟩ ⟨⟨pedro peakspecificchromint, pedro sister peak reference⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb aastring⟩⟩ ⟨⟨pedro peakspecificchromint, pedro software version⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb charge⟩⟩ ⟨⟨pedro peptidehit, pedro db search⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb delta⟩⟩ ⟨⟨pedro peptidehit, pedro id⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb dida⟩⟩ ⟨⟨pedro peptidehit, pedro information⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb end⟩⟩ ⟨⟨pedro peptidehit, pedro probability⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb expect⟩⟩ ⟨⟨pedro peptidehit, pedro score type⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb mh⟩⟩ ⟨⟨pedro peptidehit, pedro score⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb mh2⟩⟩ ⟨⟨pedro peptidehit, pedro sequence⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb pepid⟩⟩ ⟨⟨pedro peptidehit mtm ontent, pedro ontology entry⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb proid⟩⟩ ⟨⟨pedro peptidehit mtm ontent, pedro peptide hit db search⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb seq⟩⟩ ⟨⟨pedro peptidehit mtm ontent, pedro peptide hit id⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb start⟩⟩ ⟨⟨pedro percentx, pedro gradient step id⟩⟩
⟨⟨gpmdb paths, gpmdb localpath⟩⟩ ⟨⟨pedro percentx, pedro gradient step lc column⟩⟩
⟨⟨gpmdb paths, gpmdb pathid⟩⟩ ⟨⟨pedro percentx, pedro id⟩⟩
⟨⟨gpmdb paths, gpmdb protocol⟩⟩ ⟨⟨pedro percentx, pedro mobile phase component⟩⟩
⟨⟨gpmdb paths, gpmdb relpath⟩⟩ ⟨⟨pedro percentx, pedro percentage⟩⟩
⟨⟨gpmdb paths, gpmdb server⟩⟩ ⟨⟨pedro protein, pedro accession num⟩⟩
⟨⟨gpmdb pep temp, gpmdb pepid⟩⟩ ⟨⟨pedro protein, pedro description⟩⟩
⟨⟨gpmdb pep temp, gpmdb seq⟩⟩ ⟨⟨pedro protein, pedro gene name⟩⟩
⟨⟨gpmdb peptide, gpmdb charge⟩⟩ ⟨⟨pedro protein, pedro id⟩⟩
⟨⟨gpmdb peptide, gpmdb delta⟩⟩ ⟨⟨pedro protein, pedro modifications⟩⟩
⟨⟨gpmdb peptide, gpmdb dida⟩⟩ ⟨⟨pedro protein, pedro orf number⟩⟩
⟨⟨gpmdb peptide, gpmdb didb⟩⟩ ⟨⟨pedro protein, pedro organism⟩⟩
⟨⟨gpmdb peptide, gpmdb didc⟩⟩ ⟨⟨pedro protein, pedro predicted mass⟩⟩
⟨⟨gpmdb peptide, gpmdb end⟩⟩ ⟨⟨pedro protein, pedro predicted pi⟩⟩
⟨⟨gpmdb peptide, gpmdb expect⟩⟩ ⟨⟨pedro protein, pedro sequence⟩⟩
⟨⟨gpmdb peptide, gpmdb mh⟩⟩ ⟨⟨pedro protein, pedro synonyms⟩⟩
⟨⟨gpmdb peptide, gpmdb pepid⟩⟩ ⟨⟨pedro proteinhit, pedro all peptides matched⟩⟩
⟨⟨gpmdb peptide, gpmdb proid⟩⟩ ⟨⟨pedro proteinhit, pedro component peptides⟩⟩
⟨⟨gpmdb peptide, gpmdb seq⟩⟩ ⟨⟨pedro proteinhit, pedro db search⟩⟩
⟨⟨gpmdb peptide, gpmdb start⟩⟩ ⟨⟨pedro proteinhit, pedro id⟩⟩
⟨⟨gpmdb peptide word index, gpmdb keyid⟩⟩ ⟨⟨pedro proteinhit, pedro masses matched⟩⟩
⟨⟨gpmdb peptide word index, gpmdb pepid list⟩⟩ ⟨⟨pedro proteinhit, pedro protein⟩⟩
⟨⟨gpmdb peptide word index, gpmdb ts created⟩⟩ ⟨⟨pedro proteinhit, pedro score type⟩⟩
⟨⟨gpmdb peptide word index, gpmdb word⟩⟩ ⟨⟨pedro proteinhit, pedro score⟩⟩

250

⟨⟨gpmdb peptide words, gpmdb pepid list⟩⟩ ⟨⟨pedro quadrupole, pedro description⟩⟩
⟨⟨gpmdb peptide words, gpmdb seq word⟩⟩ ⟨⟨pedro quadrupole, pedro id⟩⟩
⟨⟨gpmdb project, gpmdb description⟩⟩ ⟨⟨pedro quadrupole, pedro mz analysis⟩⟩
⟨⟨gpmdb project, gpmdb email⟩⟩ ⟨⟨pedro relatedgelitem, pedro band gel 1d⟩⟩
⟨⟨gpmdb project, gpmdb institution⟩⟩ ⟨⟨pedro relatedgelitem, pedro band id⟩⟩
⟨⟨gpmdb project, gpmdb name⟩⟩ ⟨⟨pedro relatedgelitem, pedro description⟩⟩
⟨⟨gpmdb project, gpmdb project⟩⟩ ⟨⟨pedro relatedgelitem, pedro gel reference⟩⟩
⟨⟨gpmdb project, gpmdb projectid⟩⟩ ⟨⟨pedro relatedgelitem, pedro id⟩⟩
⟨⟨gpmdb project, gpmdb resultid⟩⟩ ⟨⟨pedro relatedgelitem, pedro item reference⟩⟩
⟨⟨gpmdb proseq, gpmdb label aux⟩⟩ ⟨⟨pedro relatedgelitem, pedro spot gel 2d⟩⟩
⟨⟨gpmdb proseq, gpmdb label⟩⟩ ⟨⟨pedro relatedgelitem, pedro spot id⟩⟩
⟨⟨gpmdb proseq, gpmdb proseqid⟩⟩ ⟨⟨pedro relgelitem mtm proteinhit, pedro protein hit⟩⟩
⟨⟨gpmdb proseq, gpmdb rf⟩⟩ ⟨⟨pedro relgelitem mtm proteinhit, pedro related gel item⟩⟩
⟨⟨gpmdb proseq, gpmdb seq⟩⟩ ⟨⟨pedro sample, pedro experiment⟩⟩
⟨⟨gpmdb protein, gpmdb expect⟩⟩ ⟨⟨pedro sample, pedro experimenter⟩⟩
⟨⟨gpmdb protein, gpmdb pida⟩⟩ ⟨⟨pedro sample, pedro sample date⟩⟩
⟨⟨gpmdb protein, gpmdb pidb⟩⟩ ⟨⟨pedro sample, pedro sample id⟩⟩
⟨⟨gpmdb protein, gpmdb proid⟩⟩ ⟨⟨pedro sample mtm sampleorigin, pedro sample origin⟩⟩
⟨⟨gpmdb protein, gpmdb proseqid⟩⟩ ⟨⟨pedro sample mtm sampleorigin, pedro sample⟩⟩
⟨⟨gpmdb protein, gpmdb resultid⟩⟩ ⟨⟨pedro sample otm analyteps, pedro analyte processing step⟩⟩
⟨⟨gpmdb protein, gpmdb uid⟩⟩ ⟨⟨pedro sample otm analyteps, pedro sample⟩⟩
⟨⟨gpmdb proteinrevision, gpmdb label⟩⟩ ⟨⟨pedro sampleorigin, pedro cell component⟩⟩
⟨⟨gpmdb proteinrevision, gpmdb proid⟩⟩ ⟨⟨pedro sampleorigin, pedro cell cycle phase⟩⟩
⟨⟨gpmdb proteinrevision, gpmdb prorevid⟩⟩ ⟨⟨pedro sampleorigin, pedro cell type⟩⟩
⟨⟨gpmdb result, gpmdb active⟩⟩ ⟨⟨pedro sampleorigin, pedro condition degree⟩⟩
⟨⟨gpmdb result, gpmdb comments⟩⟩ ⟨⟨pedro sampleorigin, pedro description⟩⟩
⟨⟨gpmdb result, gpmdb completed⟩⟩ ⟨⟨pedro sampleorigin, pedro environment⟩⟩
⟨⟨gpmdb result, gpmdb file⟩⟩ ⟨⟨pedro sampleorigin, pedro id⟩⟩
⟨⟨gpmdb result, gpmdb pathid⟩⟩ ⟨⟨pedro sampleorigin, pedro metabolic label⟩⟩
⟨⟨gpmdb result, gpmdb rating⟩⟩ ⟨⟨pedro sampleorigin, pedro organism⟩⟩
⟨⟨gpmdb result, gpmdb resultid⟩⟩ ⟨⟨pedro sampleorigin, pedro sample condition⟩⟩
⟨⟨gpmdb result, gpmdb tandemversion⟩⟩ ⟨⟨pedro sampleorigin, pedro tagging process⟩⟩
⟨⟨gpmdb aa⟩⟩ ⟨⟨pedro sampleorigin, pedro technique⟩⟩
⟨⟨gpmdb bad file del⟩⟩ ⟨⟨pedro sampleorigin, pedro tissue type⟩⟩
⟨⟨gpmdb distinctseq⟩⟩ ⟨⟨pedro spot, pedro annotation source⟩⟩
⟨⟨gpmdb fullpeptide⟩⟩ ⟨⟨pedro spot, pedro annotation⟩⟩
⟨⟨gpmdb fullpeptidediagnostic⟩⟩ ⟨⟨pedro spot, pedro apparent mass⟩⟩
⟨⟨gpmdb paths⟩⟩ ⟨⟨pedro spot, pedro apparent pi⟩⟩
⟨⟨gpmdb pep temp⟩⟩ ⟨⟨pedro spot, pedro area⟩⟩
⟨⟨gpmdb peptide word index⟩⟩ ⟨⟨pedro spot, pedro gel 2d⟩⟩
⟨⟨gpmdb peptide words⟩⟩ ⟨⟨pedro spot, pedro id⟩⟩
⟨⟨gpmdb peptide⟩⟩ ⟨⟨pedro spot, pedro intensity⟩⟩
⟨⟨gpmdb project⟩⟩ ⟨⟨pedro spot, pedro local background⟩⟩
⟨⟨gpmdb proseq⟩⟩ ⟨⟨pedro spot, pedro normalisation⟩⟩
⟨⟨gpmdb protein⟩⟩ ⟨⟨pedro spot, pedro normalised volume⟩⟩
⟨⟨gpmdb proteinrevision⟩⟩ ⟨⟨pedro spot, pedro pixel radius⟩⟩
⟨⟨gpmdb result⟩⟩ ⟨⟨pedro spot, pedro pixel x coord⟩⟩
⟨⟨pedro analyteprocessingstep, pedro id⟩⟩ ⟨⟨pedro spot, pedro pixel y coord⟩⟩
⟨⟨pedro analyteprocessingstep, pedro input type⟩⟩ ⟨⟨pedro spot, pedro volume⟩⟩
⟨⟨pedro analyteprocessingstep, pedro processing type⟩⟩ ⟨⟨pedro spot otm analyteps, pedro analyte processing step⟩⟩
⟨⟨pedro assaydatapoint, pedro id⟩⟩ ⟨⟨pedro spot otm analyteps, pedro spot gel 2d⟩⟩
⟨⟨pedro assaydatapoint, pedro lc column⟩⟩ ⟨⟨pedro spot otm analyteps, pedro spot id⟩⟩
⟨⟨pedro assaydatapoint, pedro protein assay⟩⟩ ⟨⟨pedro taggingprocess, pedro final volume⟩⟩
⟨⟨pedro assaydatapoint, pedro time⟩⟩ ⟨⟨pedro taggingprocess, pedro id⟩⟩
⟨⟨pedro band, pedro annotation source⟩⟩ ⟨⟨pedro taggingprocess, pedro lysis buffer⟩⟩
⟨⟨pedro band, pedro annotation⟩⟩ ⟨⟨pedro taggingprocess, pedro protein concentration⟩⟩
⟨⟨pedro band, pedro apparent mass⟩⟩ ⟨⟨pedro taggingprocess, pedro tag concentration⟩⟩
⟨⟨pedro band, pedro area⟩⟩ ⟨⟨pedro taggingprocess, pedro tag purity⟩⟩
⟨⟨pedro band, pedro gel 1d⟩⟩ ⟨⟨pedro taggingprocess, pedro tag type⟩⟩
⟨⟨pedro band, pedro id⟩⟩ ⟨⟨pedro tandemsequencedata, pedro db search parameters⟩⟩

251

⟨⟨pedro band, pedro intensity⟩⟩ ⟨⟨pedro tandemsequencedata, pedro id⟩⟩
⟨⟨pedro band, pedro lane number⟩⟩ ⟨⟨pedro tandemsequencedata, pedro sequence⟩⟩
⟨⟨pedro band, pedro local background⟩⟩ ⟨⟨pedro tandemsequencedata, pedro source type⟩⟩
⟨⟨pedro band, pedro normalisation⟩⟩ ⟨⟨pedro tof, pedro id⟩⟩
⟨⟨pedro band, pedro normalised volume⟩⟩ ⟨⟨pedro tof, pedro internal length⟩⟩
⟨⟨pedro band, pedro pixel radius⟩⟩ ⟨⟨pedro tof, pedro mz analysis⟩⟩
⟨⟨pedro band, pedro pixel x coord⟩⟩ ⟨⟨pedro tof, pedro reflectron state⟩⟩
⟨⟨pedro band, pedro pixel y coord⟩⟩ ⟨⟨pedro treatedanalyte, pedro chemical treatment⟩⟩
⟨⟨pedro band, pedro volume⟩⟩ ⟨⟨pedro treatedanalyte, pedro id⟩⟩
⟨⟨pedro band otm analyteps, pedro analyte processing step⟩⟩ ⟨⟨pedro treatedanalyte otm analyteps, pedro analyte processing step⟩⟩
⟨⟨pedro band otm analyteps, pedro band gel 1d⟩⟩ ⟨⟨pedro treatedanalyte otm analyteps, pedro treated analyte⟩⟩
⟨⟨pedro band otm analyteps, pedro band id⟩⟩ ⟨⟨pedro analyteprocessingstep⟩⟩
⟨⟨pedro boundarypoint, pedro id⟩⟩ ⟨⟨pedro assaydatapoint⟩⟩
⟨⟨pedro boundarypoint, pedro pixel x coord⟩⟩ ⟨⟨pedro band otm analyteps⟩⟩
⟨⟨pedro boundarypoint, pedro pixel y coord⟩⟩ ⟨⟨pedro band⟩⟩
⟨⟨pedro boundarypoint, pedro spot gel 2d⟩⟩ ⟨⟨pedro boundarypoint⟩⟩
⟨⟨pedro boundarypoint, pedro spot id⟩⟩ ⟨⟨pedro chemicaltreatment⟩⟩
⟨⟨pedro chemicaltreatment, pedro analyte processing step⟩⟩ ⟨⟨pedro chromatogrampoint⟩⟩
⟨⟨pedro chemicaltreatment, pedro derivatisations⟩⟩ ⟨⟨pedro collisioncell⟩⟩
⟨⟨pedro chemicaltreatment, pedro digestion⟩⟩ ⟨⟨pedro dbsearch⟩⟩
⟨⟨pedro chemicaltreatment, pedro id⟩⟩ ⟨⟨pedro dbsearchparameters⟩⟩
⟨⟨pedro chromatogrampoint, pedro id⟩⟩ ⟨⟨pedro dbsearchpars otm ontent⟩⟩
⟨⟨pedro chromatogrampoint, pedro ion count⟩⟩ ⟨⟨pedro detection⟩⟩
⟨⟨pedro chromatogrampoint, pedro peak⟩⟩ ⟨⟨pedro digegel⟩⟩
⟨⟨pedro chromatogrampoint, pedro time point⟩⟩ ⟨⟨pedro digegelitem⟩⟩
⟨⟨pedro collisioncell, pedro collision offset⟩⟩ ⟨⟨pedro electrospray⟩⟩
⟨⟨pedro collisioncell, pedro gas pressure⟩⟩ ⟨⟨pedro experiment⟩⟩
⟨⟨pedro collisioncell, pedro gas type⟩⟩ ⟨⟨pedro fraction otm analyteps⟩⟩
⟨⟨pedro collisioncell, pedro id⟩⟩ ⟨⟨pedro fraction⟩⟩
⟨⟨pedro collisioncell, pedro mz analysis⟩⟩ ⟨⟨pedro gel1d⟩⟩
⟨⟨pedro dbsearch, pedro c terminal aa⟩⟩ ⟨⟨pedro gel2d⟩⟩
⟨⟨pedro dbsearch, pedro count of specific aa⟩⟩ ⟨⟨pedro gradientstep⟩⟩
⟨⟨pedro dbsearch, pedro db search parameters⟩⟩ ⟨⟨pedro hexapole⟩⟩
⟨⟨pedro dbsearch, pedro id date⟩⟩ ⟨⟨pedro ionsource⟩⟩
⟨⟨pedro dbsearch, pedro id⟩⟩ ⟨⟨pedro iontrap⟩⟩
⟨⟨pedro dbsearch, pedro n terminal aa⟩⟩ ⟨⟨pedro lccolumn⟩⟩
⟨⟨pedro dbsearch, pedro name of counted aa⟩⟩ ⟨⟨pedro listprocessing⟩⟩
⟨⟨pedro dbsearch, pedro peak list⟩⟩ ⟨⟨pedro maldi⟩⟩
⟨⟨pedro dbsearch, pedro regex pattern⟩⟩ ⟨⟨pedro massspecexperiment⟩⟩
⟨⟨pedro dbsearch, pedro username⟩⟩ ⟨⟨pedro massspecmachine⟩⟩
⟨⟨pedro dbsearchparameters, pedro accurate mass mode⟩⟩ ⟨⟨pedro mobilephasecomponent⟩⟩
⟨⟨pedro dbsearchparameters, pedro database date⟩⟩ ⟨⟨pedro msmsfraction⟩⟩
⟨⟨pedro dbsearchparameters, pedro database name⟩⟩ ⟨⟨pedro mzanalysis⟩⟩
⟨⟨pedro dbsearchparameters, pedro fixed modifications⟩⟩ ⟨⟨pedro ontologyentry⟩⟩
⟨⟨pedro dbsearchparameters, pedro fragment ion tolerance⟩⟩ ⟨⟨pedro organism⟩⟩
⟨⟨pedro dbsearchparameters, pedro icat option⟩⟩ ⟨⟨pedro otheranalyte otm analyteps⟩⟩
⟨⟨pedro dbsearchparameters, pedro id⟩⟩ ⟨⟨pedro otheranalyte otm ontent⟩⟩
⟨⟨pedro dbsearchparameters, pedro mass error type⟩⟩ ⟨⟨pedro otheranalyte⟩⟩
⟨⟨pedro dbsearchparameters, pedro mass error⟩⟩ ⟨⟨pedro otheranalyteps otm ontent⟩⟩
⟨⟨pedro dbsearchparameters, pedro mass value type⟩⟩ ⟨⟨pedro otheranalyteps⟩⟩
⟨⟨pedro dbsearchparameters, pedro max missed cleavages⟩⟩ ⟨⟨pedro otherionisation otm ontent⟩⟩
⟨⟨pedro dbsearchparameters, pedro parameters file⟩⟩ ⟨⟨pedro otherionisation⟩⟩
⟨⟨pedro dbsearchparameters, pedro peptide mass tolerance⟩⟩ ⟨⟨pedro othermzanalysis otm ontent⟩⟩
⟨⟨pedro dbsearchparameters, pedro program⟩⟩ ⟨⟨pedro othermzanalysis⟩⟩
⟨⟨pedro dbsearchparameters, pedro protonated⟩⟩ ⟨⟨pedro peak⟩⟩
⟨⟨pedro dbsearchparameters, pedro taxonomical filter⟩⟩ ⟨⟨pedro peaklist⟩⟩
⟨⟨pedro dbsearchparameters, pedro variable modifications⟩⟩ ⟨⟨pedro peakspecificchromint⟩⟩
⟨⟨pedro dbsearchpars otm ontent, pedro db search parameters⟩⟩ ⟨⟨pedro peptidehit mtm ontent⟩⟩
⟨⟨pedro dbsearchpars otm ontent, pedro ontology entry⟩⟩ ⟨⟨pedro peptidehit⟩⟩
⟨⟨pedro detection, pedro id⟩⟩ ⟨⟨pedro percentx⟩⟩

252

⟨⟨pedro detection, pedro type⟩⟩ ⟨⟨pedro protein⟩⟩
⟨⟨pedro digegel, pedro dye type⟩⟩ ⟨⟨pedro proteinhit⟩⟩
⟨⟨pedro digegel, pedro excitation wavelength⟩⟩ ⟨⟨pedro quadrupole⟩⟩
⟨⟨pedro digegel, pedro exposure time⟩⟩ ⟨⟨pedro relatedgelitem⟩⟩
⟨⟨pedro digegel, pedro gel 1d⟩⟩ ⟨⟨pedro relgelitem mtm proteinhit⟩⟩
⟨⟨pedro digegel, pedro gel 2d⟩⟩ ⟨⟨pedro sample mtm sampleorigin⟩⟩
⟨⟨pedro digegel, pedro id⟩⟩ ⟨⟨pedro sample otm analyteps⟩⟩
⟨⟨pedro digegel, pedro tiff image⟩⟩ ⟨⟨pedro sample⟩⟩
⟨⟨pedro digegelitem, pedro band gel 1d⟩⟩ ⟨⟨pedro sampleorigin⟩⟩
⟨⟨pedro digegelitem, pedro band id⟩⟩ ⟨⟨pedro spot otm analyteps⟩⟩
⟨⟨pedro digegelitem, pedro dye type⟩⟩ ⟨⟨pedro spot⟩⟩
⟨⟨pedro digegelitem, pedro id⟩⟩ ⟨⟨pedro taggingprocess⟩⟩
⟨⟨pedro digegelitem, pedro spot gel 2d⟩⟩ ⟨⟨pedro tandemsequencedata⟩⟩
⟨⟨pedro digegelitem, pedro spot id⟩⟩ ⟨⟨pedro tof⟩⟩
⟨⟨pedro electrospray, pedro cone voltage⟩⟩ ⟨⟨pedro treatedanalyte otm analyteps⟩⟩
⟨⟨pedro electrospray, pedro id⟩⟩ ⟨⟨pedro treatedanalyte⟩⟩
⟨⟨pedro electrospray, pedro interface manufacturer⟩⟩ ⟨⟨pepseeker proteinhit⟩⟩
⟨⟨pedro electrospray, pedro ion source⟩⟩ ⟨⟨pepseeker proteinscore, pepseeker Score⟩⟩
⟨⟨pedro electrospray, pedro loading type⟩⟩ ⟨⟨pepseeker proteinhit, pepseeker ProteinID⟩⟩
⟨⟨pedro electrospray, pedro solution voltage⟩⟩ ⟨⟨pepseeker proteinhit, pepseeker fileparameters⟩⟩
⟨⟨pedro electrospray, pedro solvent⟩⟩ ⟨⟨pepseeker peptidehit⟩⟩
⟨⟨pedro electrospray, pedro spray tip diameter⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker proteinscore⟩⟩
⟨⟨pedro electrospray, pedro spray tip manufacturer⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker pepseq⟩⟩
⟨⟨pedro electrospray, pedro spray tip voltage⟩⟩ ⟨⟨pepseeker mascotexpect, pepseeker expect⟩⟩
⟨⟨pedro experiment, pedro hypothesis⟩⟩ ⟨⟨pepseeker fileparameters⟩⟩
⟨⟨pedro experiment, pedro id⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker Username⟩⟩
⟨⟨pedro experiment, pedro method citations⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker Id⟩⟩
⟨⟨pedro experiment, pedro result citations⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker Filename⟩⟩
⟨⟨pedro fraction, pedro end point⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker TAXONOMY⟩⟩
⟨⟨pedro fraction, pedro id⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker MODS⟩⟩
⟨⟨pedro fraction, pedro lc column⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker IT MODS⟩⟩
⟨⟨pedro fraction, pedro protein assay⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker PFA⟩⟩
⟨⟨pedro fraction, pedro start point⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker MASS⟩⟩
⟨⟨pedro fraction otm analyteps, pedro analyte processing step⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker ITOL⟩⟩
⟨⟨pedro fraction otm analyteps, pedro fraction id⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker TOL⟩⟩
⟨⟨pedro fraction otm analyteps, pedro fraction lc column⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker SEG⟩⟩
⟨⟨pedro gel1d, pedro analyte processing step⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker TOLU⟩⟩
⟨⟨pedro gel1d, pedro annotated image⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker CHARGE⟩⟩
⟨⟨pedro gel1d, pedro background⟩⟩ ⟨⟨pepseeker searchmasses⟩⟩
⟨⟨pedro gel1d, pedro denaturing agent⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker Products⟩⟩
⟨⟨pedro gel1d, pedro description⟩⟩ ⟨⟨pepseeker proteinhit, pepseeker Proteinname⟩⟩
⟨⟨pedro gel1d, pedro equipment⟩⟩ ⟨⟨pepseeker species, pepseeker species⟩⟩
⟨⟨pedro gel1d, pedro id⟩⟩ ⟨⟨pepseeker proteinhit, pepseeker Mass⟩⟩
⟨⟨pedro gel1d, pedro in gel digestion⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker startresidue⟩⟩
⟨⟨pedro gel1d, pedro mass end⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker endresidue⟩⟩
⟨⟨pedro gel1d, pedro mass start⟩⟩ ⟨⟨pepseeker db, pepseeker entries⟩⟩
⟨⟨pedro gel1d, pedro percent acrylamide⟩⟩ ⟨⟨pepseeker db, pepseeker id⟩⟩
⟨⟨pedro gel1d, pedro pixel size x⟩⟩ ⟨⟨pepseeker db, pepseeker location⟩⟩
⟨⟨pedro gel1d, pedro pixel size y⟩⟩ ⟨⟨pepseeker db, pepseeker name⟩⟩
⟨⟨pedro gel1d, pedro protein assay⟩⟩ ⟨⟨pepseeker db, pepseeker release date⟩⟩
⟨⟨pedro gel1d, pedro raw image⟩⟩ ⟨⟨pepseeker db, pepseeker release⟩⟩
⟨⟨pedro gel1d, pedro run details⟩⟩ ⟨⟨pepseeker db, pepseeker residue type⟩⟩
⟨⟨pedro gel1d, pedro software version⟩⟩ ⟨⟨pepseeker db, pepseeker system date⟩⟩
⟨⟨pedro gel1d, pedro solubilization buffer⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker ACCESSION⟩⟩
⟨⟨pedro gel1d, pedro stain details⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker CLE⟩⟩
⟨⟨pedro gel1d, pedro warped image⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker DB⟩⟩
⟨⟨pedro gel1d, pedro warping map⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker ERRORTOLERANT⟩⟩
⟨⟨pedro gel2d, pedro analyte processing step⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker FORMAT⟩⟩
⟨⟨pedro gel2d, pedro annotated image⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker FORMVER⟩⟩
⟨⟨pedro gel2d, pedro background⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker FRAG⟩⟩

253

⟨⟨pedro gel2d, pedro description⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker ICAT⟩⟩
⟨⟨pedro gel2d, pedro equipment⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker INSTRUMENT⟩⟩
⟨⟨pedro gel2d, pedro first dim details⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker INTERMEDIATE⟩⟩
⟨⟨pedro gel2d, pedro id⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker ITH⟩⟩
⟨⟨pedro gel2d, pedro in gel digestion⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker ITOLU⟩⟩
⟨⟨pedro gel2d, pedro mass end⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker LTOL⟩⟩
⟨⟨pedro gel2d, pedro mass start⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker mp⟩⟩
⟨⟨pedro gel2d, pedro percent acrylamide⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker NM⟩⟩
⟨⟨pedro gel2d, pedro pi end⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker OVERVIEW⟩⟩
⟨⟨pedro gel2d, pedro pi start⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker PEAK⟩⟩
⟨⟨pedro gel2d, pedro pixel size x⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker PRECURSOR⟩⟩
⟨⟨pedro gel2d, pedro pixel size y⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker ProcessNo⟩⟩
⟨⟨pedro gel2d, pedro protein assay⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker QUE⟩⟩
⟨⟨pedro gel2d, pedro raw image⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker REPORT⟩⟩
⟨⟨pedro gel2d, pedro second dim details⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker REPTYPE⟩⟩
⟨⟨pedro gel2d, pedro software version⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker SEARCH⟩⟩
⟨⟨pedro gel2d, pedro solubilization buffer⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker SEGT⟩⟩
⟨⟨pedro gel2d, pedro stain details⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker SEGTU⟩⟩
⟨⟨pedro gel2d, pedro warped image⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker SUBCLUSTER⟩⟩
⟨⟨pedro gel2d, pedro warping map⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker TWO⟩⟩
⟨⟨pedro gradientstep, pedro id⟩⟩ ⟨⟨pepseeker fileparameters, pepseeker Useremail⟩⟩
⟨⟨pedro gradientstep, pedro lc column⟩⟩ ⟨⟨pepseeker fp to db, pepseeker db id⟩⟩
⟨⟨pedro gradientstep, pedro step time⟩⟩ ⟨⟨pepseeker fp to db, pepseeker fp id⟩⟩
⟨⟨pedro hexapole, pedro description⟩⟩ ⟨⟨pepseeker iontable, pepseeker A⟩⟩
⟨⟨pedro hexapole, pedro id⟩⟩ ⟨⟨pepseeker iontable, pepseeker Aplusplus⟩⟩
⟨⟨pedro hexapole, pedro mz analysis⟩⟩ ⟨⟨pepseeker iontable, pepseeker AStar⟩⟩
⟨⟨pedro ionsource, pedro collision energy⟩⟩ ⟨⟨pepseeker iontable, pepseeker Astarplusplus⟩⟩
⟨⟨pedro ionsource, pedro id⟩⟩ ⟨⟨pepseeker iontable, pepseeker Azero⟩⟩
⟨⟨pedro ionsource, pedro mz analysis⟩⟩ ⟨⟨pepseeker iontable, pepseeker B⟩⟩
⟨⟨pedro ionsource, pedro type⟩⟩ ⟨⟨pepseeker iontable, pepseeker Bplusplus⟩⟩
⟨⟨pedro iontrap, pedro excitation amplitude⟩⟩ ⟨⟨pepseeker iontable, pepseeker Bstar⟩⟩
⟨⟨pedro iontrap, pedro final ms level⟩⟩ ⟨⟨pepseeker iontable, pepseeker Bstarplusplus⟩⟩
⟨⟨pedro iontrap, pedro gas pressure⟩⟩ ⟨⟨pepseeker iontable, pepseeker Bzero⟩⟩
⟨⟨pedro iontrap, pedro gas type⟩⟩ ⟨⟨pepseeker iontable, pepseeker BZeroplusplus⟩⟩
⟨⟨pedro iontrap, pedro id⟩⟩ ⟨⟨pepseeker iontable, pepseeker Id⟩⟩
⟨⟨pedro iontrap, pedro isolation centre⟩⟩ ⟨⟨pepseeker iontable, pepseeker Immon⟩⟩
⟨⟨pedro iontrap, pedro isolation width⟩⟩ ⟨⟨pepseeker iontable, pepseeker Matches⟩⟩
⟨⟨pedro iontrap, pedro mz analysis⟩⟩ ⟨⟨pepseeker iontable, pepseeker Y⟩⟩
⟨⟨pedro iontrap, pedro rf frequency⟩⟩ ⟨⟨pepseeker iontable, pepseeker Yplusplus⟩⟩
⟨⟨pedro lccolumn, pedro analyte processing step⟩⟩ ⟨⟨pepseeker iontable, pepseeker Ystar⟩⟩
⟨⟨pedro lccolumn, pedro batch number⟩⟩ ⟨⟨pepseeker iontable, pepseeker Ystarplusplus⟩⟩
⟨⟨pedro lccolumn, pedro bead size⟩⟩ ⟨⟨pepseeker iontable, pepseeker YZero⟩⟩
⟨⟨pedro lccolumn, pedro description⟩⟩ ⟨⟨pepseeker iontable, pepseeker YZeroplusplus⟩⟩
⟨⟨pedro lccolumn, pedro flow rate⟩⟩ ⟨⟨pepseeker lastsession, pepseeker Id⟩⟩
⟨⟨pedro lccolumn, pedro id⟩⟩ ⟨⟨pepseeker lastsession, pepseeker url⟩⟩
⟨⟨pedro lccolumn, pedro injection volume⟩⟩ ⟨⟨pepseeker mascotexpect, pepseeker peptidehit Id⟩⟩
⟨⟨pedro lccolumn, pedro internal diameter⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker Delta⟩⟩
⟨⟨pedro lccolumn, pedro internal length⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker Id⟩⟩
⟨⟨pedro lccolumn, pedro lc column⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker ions⟩⟩
⟨⟨pedro lccolumn, pedro manufacturer⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker MassNo⟩⟩
⟨⟨pedro lccolumn, pedro parameters file⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker MissCleav⟩⟩
⟨⟨pedro lccolumn, pedro part number⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker MrCalc⟩⟩
⟨⟨pedro lccolumn, pedro pore size⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker MrExpct⟩⟩
⟨⟨pedro lccolumn, pedro stationary phase⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker Rank⟩⟩
⟨⟨pedro lccolumn, pedro temperature⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker Score⟩⟩
⟨⟨pedro listprocessing, pedro background threshold⟩⟩ ⟨⟨pepseeker peptideprophet, pepseeker peptidehit Id⟩⟩
⟨⟨pedro listprocessing, pedro id⟩⟩ ⟨⟨pepseeker peptideprophet, pepseeker tpp pvalue⟩⟩
⟨⟨pedro listprocessing, pedro peak list⟩⟩ ⟨⟨pepseeker proteinhit, pepseeker Id⟩⟩
⟨⟨pedro listprocessing, pedro smoothing process⟩⟩ ⟨⟨pepseeker proteinhit, pepseeker ProteinScore⟩⟩
⟨⟨pedro maldi, pedro acceleration voltage⟩⟩ ⟨⟨pepseeker proteinscore, pepseeker Id⟩⟩

254

⟨⟨pedro maldi, pedro grid voltage⟩⟩ ⟨⟨pepseeker proteinscore, pepseeker Matchedpeptides⟩⟩
⟨⟨pedro maldi, pedro id⟩⟩ ⟨⟨pepseeker proteinscore, pepseeker querypeptides⟩⟩
⟨⟨pedro maldi, pedro ion mode⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker fileparameters⟩⟩
⟨⟨pedro maldi, pedro ion source⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker Id⟩⟩
⟨⟨pedro maldi, pedro laser power⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker Int max⟩⟩
⟨⟨pedro maldi, pedro laser wavelength⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker int min⟩⟩
⟨⟨pedro maldi, pedro matrix type⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker Mass Max⟩⟩
⟨⟨pedro massspecexperiment, pedro analyte processing step⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker Mass min⟩⟩
⟨⟨pedro massspecexperiment, pedro description⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker num used⟩⟩
⟨⟨pedro massspecexperiment, pedro id⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker num vals⟩⟩
⟨⟨pedro massspecexperiment, pedro parameters file⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker Precursor⟩⟩
⟨⟨pedro massspecmachine, pedro id⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker queryno⟩⟩
⟨⟨pedro massspecmachine, pedro ion source⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker searchmassescol⟩⟩
⟨⟨pedro massspecmachine, pedro manufacturer⟩⟩ ⟨⟨pepseeker searchmasses, pepseeker Title⟩⟩
⟨⟨pedro massspecmachine, pedro model name⟩⟩ ⟨⟨pepseeker species, pepseeker fp id⟩⟩
⟨⟨pedro massspecmachine, pedro software version⟩⟩ ⟨⟨pepseeker species, pepseeker ProteinId⟩⟩
⟨⟨pedro mobilephasecomponent, pedro concentration⟩⟩ ⟨⟨pepseeker species, pepseeker species id⟩⟩
⟨⟨pedro mobilephasecomponent, pedro description⟩⟩ ⟨⟨pepseeker yeastacc, pepseeker accession⟩⟩
⟨⟨pedro mobilephasecomponent, pedro id⟩⟩ ⟨⟨pepseeker yeastacc, pepseeker id⟩⟩
⟨⟨pedro mobilephasecomponent, pedro lc column⟩⟩ ⟨⟨pepseeker yeastacc, pepseeker oln⟩⟩
⟨⟨pedro msmsfraction, pedro id⟩⟩ ⟨⟨pepseeker yeastacc, pepseeker yeast acc id⟩⟩
⟨⟨pedro msmsfraction, pedro peak list⟩⟩ ⟨⟨pepseeker db⟩⟩
⟨⟨pedro msmsfraction, pedro plus or minus⟩⟩ ⟨⟨pepseeker fp to db⟩⟩
⟨⟨pedro msmsfraction, pedro target m to z⟩⟩ ⟨⟨pepseeker iontable⟩⟩
⟨⟨pedro mzanalysis, pedro detection⟩⟩ ⟨⟨pepseeker lastsession⟩⟩
⟨⟨pedro mzanalysis, pedro id⟩⟩ ⟨⟨pepseeker mascotexpect⟩⟩
⟨⟨pedro mzanalysis, pedro type⟩⟩ ⟨⟨pepseeker peptideprophet⟩⟩
⟨⟨pedro ontologyentry, pedro category⟩⟩ ⟨⟨pepseeker proteinscore⟩⟩
⟨⟨pedro ontologyentry, pedro description⟩⟩ ⟨⟨pepseeker species⟩⟩
⟨⟨pedro ontologyentry, pedro id⟩⟩ ⟨⟨pepseeker yeastacc⟩⟩
⟨⟨pedro ontologyentry, pedro value⟩⟩
⟨⟨pedro organism, pedro id⟩⟩
⟨⟨pedro organism, pedro relevant genotype⟩⟩
⟨⟨pedro organism, pedro species name⟩⟩
⟨⟨pedro organism, pedro strain identifier⟩⟩
⟨⟨pedro otheranalyte, pedro id⟩⟩
⟨⟨pedro otheranalyte, pedro name⟩⟩
⟨⟨pedro otheranalyte, pedro other analyte processing step⟩⟩
⟨⟨pedro otheranalyte otm analyteps, pedro analyte processing step⟩⟩
⟨⟨pedro otheranalyte otm analyteps, pedro other analyte⟩⟩
⟨⟨pedro otheranalyte otm ontent, pedro ontology entry⟩⟩
⟨⟨pedro otheranalyte otm ontent, pedro other analyte⟩⟩
⟨⟨pedro otheranalyteps, pedro analyte processing step⟩⟩
⟨⟨pedro otheranalyteps, pedro id⟩⟩
⟨⟨pedro otheranalyteps, pedro name⟩⟩
⟨⟨pedro otheranalyteps otm ontent, pedro ontology entry⟩⟩
⟨⟨pedro otheranalyteps otm ontent, pedro other analyte processing step⟩⟩
⟨⟨pedro otherionisation, pedro id⟩⟩
⟨⟨pedro otherionisation, pedro ion source⟩⟩
⟨⟨pedro otherionisation, pedro name⟩⟩
⟨⟨pedro otherionisation otm ontent, pedro ontology entry⟩⟩
⟨⟨pedro otherionisation otm ontent, pedro other ionisation⟩⟩
⟨⟨pedro othermzanalysis, pedro id⟩⟩
⟨⟨pedro othermzanalysis, pedro mz analysis⟩⟩

Table E.13: Elements Satisfying Quality Factor 1 in Iteration 3

Factor 4

255

Satisfying Items not-Satisfying Items

⟨⟨gpmdb aa, gpmdb aaid⟩⟩ ⟨⟨gpmdb peptide, gpmdb pepid⟩⟩
⟨⟨gpmdb aa, gpmdb pepid⟩⟩ ⟨⟨gpmdb fullpeptide, gpmdb pepid⟩⟩
⟨⟨gpmdb peptide, gpmdb seq⟩⟩ ⟨⟨gpmdb fullpeptidediagnostic, gpmdb pepid⟩⟩
⟨⟨gpmdb peptide⟩⟩ ⟨⟨pedro peptidehit⟩⟩
⟨⟨gpmdb proseq, gpmdb label⟩⟩ ⟨⟨pedro peptidehit, pedro id⟩⟩
⟨⟨gpmdb protein, gpmdb proseqid⟩⟩ ⟨⟨pepseeker peptidehit, pepseeker Id⟩⟩
⟨⟨gpmdb protein, gpmdb resultid⟩⟩ ⟨⟨pepseeker mascotexpect, pepseeker peptidehit Id⟩⟩
⟨⟨gpmdb protein⟩⟩ ⟨⟨pepseeker peptideprophet, pepseeker peptidehit Id⟩⟩
⟨⟨pedro peptidehit, pedro score⟩⟩ ⟨⟨gpmdb protein, gpmdb proid⟩⟩
⟨⟨pedro peptidehit, pedro sequence⟩⟩ ⟨⟨gpmdb peptide, gpmdb proid⟩⟩
⟨⟨pedro proteinhit, pedro protein⟩⟩ ⟨⟨gpmdb fullpeptide, gpmdb proid⟩⟩
⟨⟨pepseeker peptidehit, pepseeker pepseq⟩⟩ ⟨⟨gpmdb fullpeptidediagnostic, gpmdb proid⟩⟩
⟨⟨pepseeker peptidehit, pepseeker proteinscore⟩⟩ ⟨⟨pedro protein⟩⟩
⟨⟨pepseeker peptidehit⟩⟩ ⟨⟨pedro protein, pedro id⟩⟩
⟨⟨pepseeker proteinhit, pepseeker ProteinID⟩⟩ ⟨⟨pedro proteinhit, pedro id⟩⟩
⟨⟨pepseeker proteinhit⟩⟩ ⟨⟨pepseeker proteinhit, pepseeker Id⟩⟩
⟨⟨pedro dbsearchparameters, pedro mass value type⟩⟩ ⟨⟨pepseeker species, pepseeker ProteinID⟩⟩
⟨⟨pedro dbsearchparameters, pedro mass error type⟩⟩ ⟨⟨gpmdb result⟩⟩
⟨⟨pepseeker fileparameters, pepseeker MASS⟩⟩ ⟨⟨gpmdb result, gpmdb resultid⟩⟩
⟨⟨pepseeker fileparameters, pepseeker TOLU⟩⟩ ⟨⟨gpmdb project, gpmdb resultid⟩⟩
⟨⟨pepseeker iontable⟩⟩ ⟨⟨gpmdb fullpeptide, gpmdb seq⟩⟩
⟨⟨gpmdb fullpeptidediagnostic, gpmdb seq⟩⟩
⟨⟨gpmdb proseq⟩⟩
⟨⟨gpmdb proseq, gpmdb proseqid⟩⟩
⟨⟨gpmdb proseq, gpmdb seq⟩⟩
⟨⟨pedro protein, pedro sequence⟩⟩
⟨⟨pepseeker proteinscore, pepseeker Id⟩⟩
⟨⟨pepseeker proteinscore, pepseeker Score⟩⟩
⟨⟨pepseeker proteinhit, pepseeker ProteinScore⟩⟩
⟨⟨gpmdb aa⟩⟩
⟨⟨pedro peaklist, pedro mass value type⟩⟩
⟨⟨pepseeker proteinhit, pepseeker Mass⟩⟩
⟨⟨pepseeker peptidehit, pepseeker MassNo⟩⟩
⟨⟨pepseeker fileparameters, pepseeker ITOLU⟩⟩
⟨⟨pepseeker iontable, pepseeker id⟩⟩
⟨⟨pepseeker peptidehit, pepseeker ions⟩⟩

Table E.14: Elements Satisfying and not-Satisfying Quality Factor 4 in Iteration 3

Factor 7

256

⟨⟨
p
ed

ro
fk

d
b
se
ar
ch

d
b
se
ar
ch

p
ar
a
m
et
er
s1
,
p
ed

ro
d
b
se
ar
ch

,
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩,

p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
fk

p
ro
te
in
h
it

d
b
se
ar
ch

1
,
p
ed

ro
p
ro
te
in
h
it
,
⟨⟨
p
ed

ro
p
ro
te
in
h
it
,
p
ed

ro
d
b
se
ar
ch
⟩⟩
,
p
ed

ro
d
b
se
ar
ch

,
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
g
p
m
d
b
re
su
lt
⟩⟩

⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s⟩
⟩

⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
Id
⟩⟩

⟨⟨
g
p
m
d
b
p
ro
te
in
⟩⟩

⟨⟨
g
p
m
d
b
p
ro
te
in
,
p
ro
se
q
id
⟩⟩

⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
re
su
lt
id
⟩⟩

⟨⟨
p
ep

se
ek
er

p
ro
te
in
h
it
,
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s⟩
⟩

⟨⟨
g
p
m
d
b
p
ep

ti
d
e,

g
p
m
d
b
p
ep

id
⟩⟩

⟨⟨
g
p
m
d
b
fk

p
ep

ti
d
e
p
ro
te
in
1
,
g
p
m
d
b
p
ep

ti
d
e,
⟨⟨
g
p
m
d
b
p
ep

ti
d
e,

g
p
m
d
b
p
ro
id
⟩⟩
,
g
p
m
d
b
p
ro
te
in
,
⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
p
ro
id
⟩⟩
⟩⟩

⟨⟨
g
p
m
d
b
p
ep

ti
d
e,

g
p
m
d
b
p
ro
id
⟩⟩

⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
p
ro
id
⟩⟩

⟨⟨
g
p
m
d
b
fk

p
ro
te
in

p
ro
se
q
,
g
p
m
d
b
p
ro
te
in
,
⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
p
ro
se
q
id
⟩⟩
,
g
p
m
d
b
p
ro
se
q
,
⟨⟨
g
p
m
d
b
p
ro
se
q
,
g
p
m
d
b
p
ro
se
q
id
⟩⟩
⟩⟩

⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
p
ro
se
q
id
⟩⟩

⟨⟨
g
p
m
d
b
p
ro
se
q
,
g
p
m
d
b
p
ro
se
q
id
⟩⟩

⟨⟨
g
p
m
d
b
fk

p
ro
te
in

re
su
lt
1
,
g
p
m
d
b
p
ro
te
in
,
⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
re
su
lt
id
⟩⟩
,
g
p
m
d
b
re
su
lt
,
⟨⟨
g
p
m
d
b
re
su
lt
,
g
p
m
d
b
re
su
lt
id
⟩⟩
⟩⟩

⟨⟨
g
p
m
d
b
p
ro
te
in
,
g
p
m
d
b
re
su
lt
id
⟩⟩

⟨⟨
g
p
m
d
b
re
su
lt
,
g
p
m
d
b
re
su
lt
id
⟩⟩

⟨⟨
p
ed

ro
fk

d
b
se
ar
ch

d
b
se
ar
ch

p
ar
a
m
et
er
s1
,
p
ed

ro
d
b
se
ar
ch

,
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩,

p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩

⟨⟨
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

ch
ro
m
a
to
g
ra
m
p
o
in
t
p
ea
k
1
,
p
ed

ro
ch

ro
m
a
to
g
ra
m
p
o
in
t,
⟨⟨
p
ed

ro
ch

ro
m
a
to
g
ra
m
p
o
in
t,
p
ed

ro
p
ea
k
⟩⟩
,
p
ed

ro
p
ea
k
,
⟨⟨
p
ed

ro
p
ea
k
,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
ch

ro
m
a
to
g
ra
m
p
o
in
t,
p
ed

ro
p
ea
k
⟩⟩

⟨⟨
p
ed

ro
p
ea
k
,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

d
b
se
ar
ch

p
ea
k
li
st
1
,
p
ed

ro
d
b
se
ar
ch

,
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
p
ea
k
li
st
⟩⟩
,
p
ed

ro
p
ea
k
li
st
,
⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
p
ea
k
li
st
⟩⟩

⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

li
st
p
ro
ce
ss
in
g
p
ea
k
li
st
1
,
p
ed

ro
li
st
p
ro
ce
ss
in
g
,
⟨⟨
p
ed

ro
li
st
p
ro
ce
ss
in
g
,
p
ed

ro
p
ea
k
li
st
⟩⟩
,
p
ed

ro
p
ea
k
li
st
,
⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
li
st
p
ro
ce
ss
in
g
,
p
ed

ro
p
ea
k
li
st
⟩⟩

⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

m
sm

sf
ra
ct
io
n
p
ea
k
li
st
1
,
p
ed

ro
m
sm

sf
ra
ct
io
n
,
⟨⟨
p
ed

ro
m
sm

sf
ra
ct
io
n
,
p
ed

ro
p
ea
k
li
st
⟩⟩
,
p
ed

ro
p
ea
k
li
st
,
⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
m
sm

sf
ra
ct
io
n
,
p
ed

ro
p
ea
k
li
st
⟩⟩

⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

p
ea
k
p
ea
k
li
st
,
p
ed

ro
p
ea
k
,
⟨⟨
p
ed

ro
p
ea
k
,
p
ed

ro
p
ea
k
li
st
⟩⟩
,
p
ed

ro
p
ea
k
li
st
,
⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
p
ea
k
,
p
ed

ro
p
ea
k
li
st
⟩⟩

⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

p
ea
k
li
st

m
a
ss
sp
ec
m
a
ch

in
e1

,
p
ed

ro
p
ea
k
li
st
,
⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
m
a
ss

sp
ec

ex
p
er
im

en
t⟩⟩

,
p
ed

ro
m
a
ss
sp
ec
m
a
ch

in
e,
⟨⟨
p
ed

ro
m
a
ss
sp
ec
m
a
ch

in
e,

p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
p
ea
k
li
st
,
p
ed

ro
m
a
ss

sp
ec

ex
p
er
im

en
t⟩⟩

⟨⟨
p
ed

ro
m
a
ss
sp
ec
m
a
ch

in
e,

p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

p
ep

ti
d
eh

it
d
b
se
ar
ch

1
,
p
ed

ro
p
ep

ti
d
eh

it
,
⟨⟨
p
ed

ro
p
ep

ti
d
eh

it
,
p
ed

ro
d
b
se
ar
ch
⟩⟩
,
p
ed

ro
d
b
se
ar
ch

,
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
id
⟩⟩
⟩⟩

257

⟨⟨
p
ed

ro
p
ep

ti
d
eh

it
,
p
ed

ro
d
b
se
ar
ch
⟩⟩

⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

p
ro
te
in
h
it

d
b
se
ar
ch

1
,
p
ed

ro
p
ro
te
in
h
it
,
⟨⟨
p
ed

ro
p
ro
te
in
h
it
,
p
ed

ro
d
b
se
ar
ch
⟩⟩
,
p
ed

ro
d
b
se
ar
ch

,
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
id
⟩⟩
⟩⟩

⟨⟨
p
ed

ro
p
ro
te
in
h
it
,
p
ed

ro
d
b
se
ar
ch
⟩⟩

⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
id
⟩⟩

⟨⟨
p
ed

ro
fk

ta
n
d
em

se
q
u
en

ce
d
a
ta

d
b
se
ar
ch

1
,
p
ed

ro
ta
n
d
em

se
q
u
en

ce
d
a
ta
,
⟨⟨
p
ed

ro
ta
n
d
em

se
q
u
en

ce
d
a
ta
,
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩,

p
ed

ro
d
b
se
ar
ch

,
⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩⟩
⟩

⟨⟨
p
ed

ro
ta
n
d
em

se
q
u
en

ce
d
a
ta
,
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩

⟨⟨
p
ed

ro
d
b
se
ar
ch

,
p
ed

ro
d
b
se
ar
ch

p
ar
a
m
et
er
s⟩
⟩

⟨⟨
p
ep

se
ek
er

fk
m
a
sc
o
te
xp

ec
t
p
ep

ti
d
eh

it
1
,
p
ep

se
ek
er

m
a
sc
o
te
xp

ec
t,
⟨⟨
p
ep

se
ek
er

m
a
sc
o
te
xp

ec
t,
p
ep

se
ek
er

p
ep

ti
d
eh

it
Id
⟩⟩
,
p
ep

se
ek
er

p
ep

ti
d
eh

it
,
⟨⟨
p
ep

se
ek
er

p
ep

ti
d
eh

it
,
p
ep

se
ek
er

Id
⟩⟩
⟩⟩

⟨⟨
p
ep

se
ek
er

m
a
sc
o
te
xp

ec
t,
p
ep

se
ek
er

p
ep

ti
d
eh

it
Id
⟩⟩

⟨⟨
p
ep

se
ek
er

p
ep

ti
d
eh

it
,
p
ep

se
ek
er

Id
⟩⟩

⟨⟨
p
ep

se
ek
er

fk
se
ar
ch

m
a
ss
es

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

se
ar
ch

m
a
ss
es
,
⟨⟨
p
ep

se
ek
er

se
ar
ch

m
a
ss
es
,
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s⟩
⟩,

p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

Id
⟩⟩
⟩⟩

⟨⟨
p
ep

se
ek
er

se
ar
ch

m
a
ss
es
,
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s⟩
⟩

⟨⟨
p
ep

se
ek
er

fi
le
p
ar
a
m
et
er
s,
p
ep

se
ek
er

Id
⟩⟩

⟨⟨
G
S
1
fk

p
ro
te
in
h
it

p
ro
te
in
1
,
G
S
1
p
ro
te
in
h
it
,
⟨⟨
G
S
1
p
ro
te
in
h
it
,
G
S
1
id
⟩⟩
,
G
S
1
p
ro
te
in
,
⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
id
⟩⟩
⟩⟩

⟨⟨
p
ep

se
ek
er

p
ro
te
in
h
it
⟩⟩

⟨⟨
G
S
1
p
ro
te
in
h
it
,
G
S
1
id
⟩⟩

⟨⟨
G
S
1
p
ro
te
in
,
G
S
1
id
⟩⟩

T
a
b
le

E
.1
5
:
E
le
m

e
n
ts

S
a
ti
sf
y
in

g
Q
u
a
li
ty

F
a
c
to

r
7

in
It
e
ra

ti
o
n

3

258

Appendix F

Glossary of Terms

Syntax Meaning

concepts(S,O) The set of concepts represented by all schema

constructs in schema S with respect to a domain

ontology O.

consistent(extensional(S), O) The set of schema constructs that are consistent

with the definitions of their corresponding real-

world concepts with respect to a domain ontol-

ogy O.

consistent(q, S) Assigned 1 if q evaluates to true on a schema, or

schemas, S, otherwise assigned 0.

constraints(S) The set of constraint constructs of a schema, or

schemas, S.

construct(q) The set of schema constructs referenced in q.

corr(q, reformulate(q′,M)) Assigned the value 1 if q is contained by

reformulate(q′,M), otherwise assigned 0.

evaluate(q, q′) Assigned the value 1 if both q and each member

of q′ evaluate to true, otherwise assigned 0.

ext(o) The extent of the schema construct o.

259

ext(q) The result set returned by a query or a set of

queries, q.

extensional(GS,MGAV) The set of extensional GS constructs derived by

MGAV .

extensional(S) The set of extensional schema constructs of a

schema, or schemas, S.

GS The global schema

LAV defined(LSs,MLAV) The set of the local schema constructs, o, such

that there is a LAV mapping whose LHS is o.

LSs The local schemas

M Mappings

reduce(C,O) The set of unique real-world concepts in a group

of concepts, C, obtained by removing concepts

that are equivalent to or subsumed by other con-

cepts in the ontology O.

reformulate(q,M) The set of reformulated queries for a query q via

mappings M.

removed(constraints(S),MGAV) The set of constraint constructs in schema, or

schemas, S that are deleted by the GAV map-

pings.

sourcecorr(S,M, c) The set of constraint constructs in schema, or

schemas, S where all constraints o in this set

and c are restricting the same set of extents.

sourcecorr(S,M, o) The set of extensional schema constructs in

schema, or schemas, S from which o ∈
extensional(S′) is derived via the mappings M.

sources(S,M, o) The set of constructs of schema, or schemas, S,

from which construct o is derived via the map-

pings M.

260

sources(S,M, S′) The set of constructs of schema, or schemas, S,

from which constructs of schema S′ are derived

via the mappings M.

S A schema or schemas S

T AutoMed Transformations.

261

Bibliography

[1] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele

Nardi, and Peter F. Patel-Schneider, editors. The description logic

handbook: theory, implementation, and applications. Cambridge Uni-

versity Press, New York, NY, USA, 2003.

[2] Matthias Jarke, Y. Vassiliou, P. Vassiliadis, and M. Lenzerini. Funda-

mentals of Data Warehouses. 1999.

[3] Maurizio Lenzerini. Data integration: a theoretical perspective. In

Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART sym-

posium on Principles of database systems, pages 233–246, 2002.

[4] Ronald Fagin, Phokion G. Kolaitis, and Lucian Popa. Data exchange:

getting to the core. ACM Trans. Database Syst., 30:174–210, 2005.

[5] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Ric-

cardo Rosati. Logical foundations of peer-to-peer data integration. In

Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART sym-

posium on Principles of database systems, pages 241–251, 2004.

[6] Richard Hull. Managing semantic heterogeneity in databases: a the-

oretical prospective. In Proceedings of the sixteenth ACM SIGACT-

SIGMOD-SIGART symposium on Principles of database systems,

PODS ’97, pages 51–61, 1997.

262

[7] Yaser A. Bishr. Overcoming the semantic and other barriers to gis inter-

operability. International Journal of Geographical Information Science,

12(4):299–314, 1998.

[8] Amit P. Sheth. Changing focus on interoperability in information sys-

tems: from system, syntax, structure to semantics. Interoperating Ge-

ographic Information Systems, pages 5–30, 1999.

[9] Mokrane Bouzeghoub and Maurizio Lenzerini. Introduction to the spe-

cial issue on data extraction, cleaning, and reconciliation. Inf. Syst.,

26(8):535–536, 2001.

[10] Carlo Batini and Monica Scannapieco. Data Quality: Concepts,

Methodologies and Techniques (Data-Centric Systems and Applica-

tions). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[11] Lucas Zamboulis, Nigel Martin, and Alexandra Poulovassilis. Bioinfor-

matics service reconciliation by heterogeneous schema transformation.

In Proceedings of the 4th international conference on Data integration

in the life sciences, pages 89–104, 2007.

[12] Dionysios C. Tsichritzis and Frederick H. Lochovsky. Data Models.

Prentice Hall Professional Technical Reference, 1982.

[13] Bogdan Alexe, Wang Chiew Tan, and Yannis Velegrakis. Stbenchmark:

towards a benchmark for mapping systems. PVLDB, 1(1):230–244,

2008.

[14] Bogdan Alexe, Wang-Chiew Tan, and Yannis Velegrakis. Comparing

and evaluating mapping systems with stbenchmark. Proc. VLDB En-

dow., 1:1468–1471, August 2008.

[15] Elena Beisswanger, Stefan Schulz, Holger Stenzhorn, and Udo Hahn.

Biotop: An upper domain ontology for the life sciences: A description

263

of its current structure, contents and interfaces to obo ontologies. Appl.

Ontol., 3:205–212, 2008.

[16] A. L. Rector, J. E. Rogers, P. E. Zanstra, and E. van der Haring.

Opengalen: Open source medical terminology and tools. In Proc AMIA

Symp, volume 982, 2003.

[17] David Aumueller, Hong Hai Do, Sabine Massmann, and Erhard Rahm.

Schema and ontology matching with coma++. In SIGMOD Conference,

pages 906–908, 2005.

[18] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic

schema matching with cupid. In Proceedings of the 27th International

Conference on Very Large Data Bases, pages 49–58, 2001.

[19] Marc Friedman, Alon Levy, and Todd Millstein. Navigational plans

for data integration. In Proceedings of the sixteenth national confer-

ence on Artificial intelligence and the eleventh Innovative applications

of artificial intelligence conference innovative applications of artificial

intelligence, pages 67–73, 1999.

[20] Alexandra Poulovassilis and Peter Mc. Brien. A general formal frame-

work for schema transformation. Data Knowl. Eng., 28:47–71, October

1998.

[21] Alon Y. Halevy, Naveen Ashish, Dina Bitton, Michael Carey, Denise

Draper, Jeff Pollock, Arnon Rosenthal, and Vishal Sikka. Enterprise

information integration: successes, challenges and controversies. In

Proceedings of the 2005 ACM SIGMOD international conference on

Management of data, pages 778–787, 2005.

264

[22] Renée J. Miller, Mauricio A. Hernández, Laura M. Haas, Ling-Ling Yan,

C. T. Howard Ho, Ronald Fagin, and Lucian Popa. The clio project:

Managing heterogeneity. SIGMOD Record, 30(1):78–83, 2001.

[23] Angela Bonifati, Elaine Qing Chang, Aks V. S. Lakshmanan, Terence

Ho, and Rachel Pottinger. Heptox: marrying xml and heterogeneity in

your p2p databases. In Proceedings of the 31st international conference

on Very large data bases, VLDB ’05, pages 1267–1270, 2005.

[24] Andrea Cal̀ı, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenz-

erini, Paolo Naggar, and Fabio Vernacotola. Ibis: semantic data in-

tegration at work. In Proceedings of the 15th international conference

on Advanced information systems engineering, CAiSE’03, pages 79–94,

2003.

[25] Alon Y. Halevy. Answering queries using views: A survey. The VLDB

Journal, 10:270–294, December 2001.

[26] Diego Calvanese, Domenico Lembo, and Maurizio Lenzerini. Survey on

methods for query rewriting and query answering using views, 2001.

[27] Laura Chiticariu and Wang-Chiew Tan. Debugging schema mappings

with routes. In Proceedings of the 32nd international conference on

Very large data bases, pages 79–90, 2006.

[28] Khalid Belhajjame, Norman W. Paton, Alvaro A. A. Fernandes, Cor-

nelia Hedeler, and Suzanne M. Embury. User feedback as a first class

citizen in information integration systems. In CIDR, pages 175–183,

2011.

[29] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. De-

scription logics for information integration. In Computational Logic:

265

Logic Programming and Beyond, Essays in Honour of Robert A. Kowal-

ski, Part II, pages 41–60, 2002.

[30] Yannis Kalfoglou and Marco Schorlemmer. Ontology mapping: the

state of the art. Knowl. Eng. Rev., 18:1–31, 2003.

[31] Namyoun Choi, Il-Yeol Song, and Hyoil Han. A survey on ontology

mapping. SIGMOD Rec., 35(3):34–41, 2006.

[32] Steffen Staab and Rudi Studer, editors. Handbook on Ontologies. In-

ternational Handbooks on Information Systems. Springer, 2004.

[33] Natalya Fridman Noy and Mark A. Musen. Prompt: Algorithm and

tool for automated ontology merging and alignment. In AAAI/IAAI,

pages 450–455, 2000.

[34] AnHai Doan, Pedro Domingos, and Alon Y. Halevy. Reconciling

schemas of disparate data sources: a machine-learning approach. SIG-

MOD Rec., 30(2):509–520, 2001.

[35] Chokri Ben Necib and Johann Christoph Freytag. Using ontologies for

database query reformulation. In ADBIS (Local Proceedings), 2004.

[36] Luciano Serafini and Andrei Tamilin. Drago: Distributed reasoning

architecture for the semantic web. In ESWC, pages 361–376, 2005.

[37] Christian Meilicke, Heiner Stuckenschmidt, and Ondrej Sváb-Zamazal.

A reasoning-based support tool for ontology mapping evaluation. In

ESWC, pages 878–882, 2009.

[38] Lucas Zamboulis, Alexandra Poulovassilis, and Jianing Wang.

Ontology-assisted data transformation and integration. In ODBIS,

pages 29–36, 2008.

266

[39] Michael Gertz. Managing data quality and integrity in federated

databases. In Proceedings of the IFIP TC11 Working Group 11.5, Sec-

ond Working Conference on Integrity and Internal Control in Informa-

tion Systems: Bridging Business Requirements and Research Results,

pages 211–230, 1998.

[40] Felix Naumann, Ulf Leser, and Johann Christoph Freytag. Quality-

driven integration of heterogenous information systems. In Proceedings

of the 25th International Conference on Very Large Data Bases, pages

447–458, 1999.

[41] Ulf Leser, Felix Naumann, and Barbara A. Eckman, editors. Data Inte-

gration in the Life Sciences, Third International Workshop, DILS 2006,

Hinxton, UK, July 20-22, 2006, Proceedings, volume 4075 of Lecture

Notes in Computer Science. Springer, 2006.

[42] Angela Bonifati, Giansalvatore Mecca, Alessandro Pappalardo, Salva-

tore Raunich, and Gianvito Summa. Schema mapping verification: the

spicy way. In EDBT, pages 85–96, 2008.

[43] Maria da Conceição Moraes Batista and Ana Carolina Salgado. In-

formation quality measurement in data integration schemas. In QDB,

pages 61–72, 2007.

[44] Fabien Duchateau and Zohra Bellahsene. Measuring the quality of an

integrated schema. In Proceedings of the 29th international conference

on Conceptual modeling, pages 261–273, 2010.

[45] Ling Ling Yan, Renée J. Miller, Laura M. Haas, and Ronald Fagin.

Data-driven understanding and refinement of schema mappings. SIG-

MOD Rec., 30:485–496, May 2001.

267

[46] Andrea Cal̀ı, Diego Calvanese, Giuseppe De Giacomo, and Maurizio

Lenzerini. On the role of integrity constraints in data integration. IEEE

Data Eng. Bull., 25(3):39–45, 2002.

[47] Cong Yu and Lucian Popa. Constraint-based xml query rewriting for

data integration. In SIGMOD ’04: Proceedings of the 2004 ACM SIG-

MOD international conference on Management of data, pages 371–382,

2004.

[48] Todd Millstein, Alon Halevy, and Marc Friedman. Query containment

for data integration systems. In J. Comput. Syst. Sci., volume 66, pages

20–39, 2003.

[49] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and

Moshe Y. Vardi. View-based query containment. In Proceedings of the

twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Prin-

ciples of database systems, pages 56–67, 2003.

[50] Alan Nash, Alin Deutsch, and Jeff REmmel. Data ex-

change, data integration and chase. Technical report,

University Of California, San Diego, 2006. http://www-

cse.ucsd.edu/Dienst/UI/2.0/Describe/ncstrl.ucsd cse/CS2006-0859.

[51] Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-

cardo Rosati. Tackling inconsistencies in data integration through

source preferences. In Proceedings of the 2004 international workshop

on Information quality in information systems, IQIS ’04, pages 27–34,

2004.

[52] Gianluigi Greco and Domenico Lembo. Data integration with prefer-

ences among sources. In ER, pages 231–244, 2004.

268

[53] Luca Cabibbo. On keys, foreign keys and nullable attributes in rela-

tional mapping systems. In EDBT ’09: Proceedings of the 12th Inter-

national Conference on Extending Database Technology, pages 263–274,

2009.

[54] Alessandro Raffio, Daniele Braga, Stefano Ceri, Paolo Papotti, and

Mauricio A. Hernandez. Clip: a visual language for explicit schema

mappings. In ICDE ’08: Proceedings of the 2008 IEEE 24th Interna-

tional Conference on Data Engineering, pages 30–39, 2008.

[55] Alexander Borgida and Luciano Serafini. Distributed description logics:

Assimilating information from peer sources. J. Data Semantics, 1:153–

184, 2003.

[56] Matthias Jarke and Yannis Vassiliou. Data warehouse quality: A review

of the dwq project. In IQ, pages 299–313, 1997.

[57] Stefan Poslad and Landong Zuo. An adaptive semantic framework

to support multiple user viewpoints over multiple databases. In Ad-

vances in Semantic Media Adaptation and Personalization, pages 261–

284. 2008.

[58] Peter McBrien and Alexandra Poulovassilis. A formalisation of semantic

schema integration. Inf. Syst., 23(5):307–334, 1998.

[59] Peter McBrien and Alexandra Poulovassilis. A uniform approach to

inter-model transformations. In Proceedings of the 11th International

Conference on Advanced Information Systems Engineering, pages 333–

348, 1999.

[60] Alexandra Poulovassilis. The automed intermediate query langauge.

Technical report 2, Department of Computer Science & Information

Systems, Birkbeck College, June 2001.

269

[61] Peter Buneman, Leonid Libkin, Dan Suciu, Val Tannen, and Limsoon

Wong. Comprehension syntax. SIGMOD Rec., 23:87–96, March 1994.

[62] Leonidas Fegaras and David Maier. Towards an effective calculus for

object query languages. SIGMOD Rec., 24:47–58, 1995.

[63] Lucas Zamboulis. XML Data Transformation and Integration - A

Schema Transformation Approach. Phd thesis, Birkbeck College, 2009.

[64] Peter McBrien and Alexandra Poulovassilis. Data integration by bi-

directional schema transformation rules. In ICDE, pages 227–238, 2003.

[65] Edgar Jasper, Nerissa Tong, Peter McBrien, and Alexandra Poulovas-

silis. View generation and optimisation in the automed data integration

framework. In CAiSE Short Paper Proceedings, 2003.

[66] Carlo Batini, Maurizio Lenzerini, and Shamkant B. Navathe. A compar-

ative analysis of methodologies for database schema integration. ACM

Comput. Surv., 18:323–364, 1986.

[67] Philip A. Bernstein. Tool requirements for precise data in-

tegration. In Workshop on Information Integration, 2006.

http://db.cis.upenn.edu/iiworkshop/postworkshop/positionPapers/105.pdf.

[68] Andrea Cal̀ı, Diego Calvanese, Giuseppe De Giacomo, and Maurizio

Lenzerini. Data integration under integrity constraints. Inf. Syst.,

29:147–163, April 2004.

[69] Georg Lausen. Relational databases in RDF: Keys and foreign keys. In

Vassilis Christophides, Martine Collard, and Claudio Gutierrez, editors,

Semantic Web, Ontologies and Databases, pages 43–56. 2008.

[70] Satya S. Sahoo, Wolfgang Halb, Sebastian Hellmann, Kingsley Idehen,

Ted Thibodeau Jr, S02ren Auer, Juan Sequeda, and Ahmed Ezzat. A

270

survey of current approaches for mapping of relational databases to rdf.

Technical report, 2009.

[71] Donald P. Ballou and Harold L. Pazer. Modeling completeness versus

consistency tradeoffs in information decision contexts. IEEE Trans. on

Knowl. and Data Eng., 15:240–243, 2003.

[72] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning

for expressive description logics. In Proceedings of the 6th International

Conference on Logic Programming and Automated Reasoning, pages

161–180, 1999.

[73] Michael Boyd and Peter McBrien. Comparing and transforming be-

tween data models via an intermediate hypergraph data model. J.

Data Semantics IV, pages 69–109, 2005.

[74] Serge Abiteboul, Richard Hull, and Victor Vianu, editors. Foundations

of Databases: The Logical Level. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1st edition, 1995.

[75] Bogdan Alexe, Phokion G. Kolaitis, and Wang-Chiew Tan. Charac-

terizing schema mappings via data examples. In Proceedings of the

twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on Princi-

ples of database systems, PODS ’10, pages 261–272, 2010.

[76] Guillem Rull, Carles Farré, Ernest Teniente, and Toni Urṕı. Validation

of mappings between schemas. Data Knowl. Eng., 66:414–437, Septem-

ber 2008.

[77] Luca Cabibbo. On keys, foreign keys and nullable attributes in re-

lational mapping systems. In Proceedings of the 12th International

Conference on Extending Database Technology: Advances in Database

Technology, pages 263–274, 2009.

271

[78] Christian Meilicke, Heiner Stuckenschmidt, and Andrei Tamilin. Sup-

porting manual mapping revision using logical reasoning. In Proceed-

ings of the 23rd national conference on Artificial intelligence - Volume

2, pages 1213–1218, 2008.

[79] Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer, 2007.

[80] Avigdor Gal. The generation y of xml schema matching panel descrip-

tion. In XSym, pages 137–139, 2007.

[81] Khalid Saleem, Zohra Bellahsene, and Ela Hunt. Porsche: Performance

oriented schema mediation. Inf. Syst., 33:637–657, 2008.

[82] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity

flooding: A versatile graph matching algorithm and its application to

schema matching. In Proceedings of the 18th International Conference

on Data Engineering, ICDE ’02, pages 117–120, 2002.

[83] Lucas Zamboulis, Hao Fan, Khalid Belhajjame, Jennifer A. Siepen,

Andrew C. Jones, Nigel J. Martin, Alexandra Poulovassilis, Simon J.

Hubbard, Suzanne M. Embury, and Norman W. Paton. Data access

and integration in the ispider proteomics grid. In DILS, pages 3–18,

2006.

[84] Lucas Zamboulis, Alexandra Poulovassilis, and George Roussos. Flexi-

ble data integration and ontology-based data access to medical records.

In BIBE, pages 1–6, 2008.

[85] Jean-Luc Hainaut, M. Chandelon, C. Tonneau, and M. Joris. Contri-

bution to a theory of database reverse engineering. In WCRE, pages

161–170, 1993.

[86] Jianing Wang. A data integration methodology and architecture with

quality assessment functionality. In BNCOD, pages 151–154, 2010.

272

[87] Jianing Wang. A quality framework for data integration. In BNCOD,

pages 131–134, 2010.

[88] Jianing Wang, Nigel Martin, and Alexandra Poulovassilis. An ontology-

based quality framework for data integration. In Workshops on Busi-

ness Informatics Research, pages 196 – 208, 2011.

273

