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Abstract 
 

 

This thesis investigates linking the output produced from data mining of 

association rules from a database and the database management system’s query 

optimiser, with the aim of supporting improved query optimisation. A novel 

query optimisation technique, Semantic Inequivalence (SI), is presented based on 

this idea. 

 

The thesis critically reviews data mining of association rules, query processing 

and optimisation, with emphasis on research into the areas that are most relevant 

to the new idea that the thesis introduces.  

 

SI is described and how it differs from other query processing techniques is 

explained. This new concept is also exemplified using sample queries to aid 

understanding, and it is shown how the output from the data mining of 

association rules can be used in conjunction with query processing in a 

complementary way. 

 

An extensible optimiser is reviewed in terms of its structure and how SI can be 

incorporated into it. The thesis goes on to formally define SI within the context 

of an extensible query optimiser. Its input, processing and output are formally 

defined.  

 

An algorithm that implements SI is presented.  The costs and savings of using it 

within query processing are compared to the costs of not using it. Exceptional 

and rare cases are also investigated from an empirical point of view. SI is also 

discussed in detail within the context of the established Decomposition Algorithm 

for query processing.  

 

Empirical evidence of the usefulness of SI is analysed, by using the presented 

algorithm for actual queries posed to real-world large databases with related 

association rules. As well as empirical analysis with real data, SI is studied with 
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synthetic data based on the normal distribution. In all situations the I/O costs of 

using SI is compared to not using SI. Thus the most beneficial scenarios for 

using SI are documented, as well as those situations that do not reap any 

advantage.  
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Chapter 1 

Introduction and Thesis Overview 

 

1.1 A Dynamic and Collaborative Computing Environment 
 

 

This thesis brings together two areas related to database management systems 

that have so far been kept relatively distinct from each other. These are the areas 

of query optimisation and data mining of association rules. 

  

Techniques for query optimisation have been developed which exploit semantic 

information about a database derived from integrity constraints [27]. The scope 

for query optimisation to exploit association rules (or simply rules) has not been 

pursued so fully. This thesis focuses on the exploitation of such rules in query 

optimisation.  

 

This thesis demonstrates the benefits that can be achieved when rules are used to 

enhance query optimisation. The rules can be exploited by the database’s query 

optimiser because they can contribute to reducing the response time, based on 

comparing I/O, of queries that would otherwise take significantly longer to 

execute. This is demonstrated in the thesis by using real-world databases and 

queries, in addition to using synthetic data and queries. An independent costing 

algorithm, based on breaking down a query, rather than I/O required, is also used 

to show the benefits of the new approach.  
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1.2 Motivation and Aims  
 

 

The idea for this thesis originated from the fact that increasingly organisations 

are implementing data warehouses using relational database management 

technology [8]. Hence there is increasing demand for finding useful knowledge 

from data warehouses that can provide otherwise unknown information about an 

organisation, a particular industry or customer preferences. This can enhance the 

competitive advantage of a company and influence decision making; this 

explains the significant interest shown from industry in this area [8]. 

 

The motivation for bringing together the two aforesaid areas came from studying 

the vast amount of research on efficient rule discovery techniques, and the 

potential of how the resultant output can be used by a database management 

system. This thesis views query optimisation as an area that can benefit from the 

association rules that are output in order to improve query response time. This 

has advantages for the user, the organisation and for current and previous 

research in terms of faster response times, discovery of information and using the 

results of data mining of association rules in novel ways for furthering research, 

respectively.   

 

 

1.3 Example of Using an Association Rule with a Database Query  
 

 

If from the available association rules, we know that given the value of column 

A, we can determine the value of column B, or: 

 

if A = value_a then B = value_b (80% confidence)   

 

If a query is:  

 

SELECT DISTINCT B 

FROM  table1 
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WHERE  A = 'value_a' 

 

This can be re-written to take this defined relationship into account, and only 

retrieve what is now unknown, by taking the information that the associated rule 

provides into account.   

 

The rule answers 80% of the query. This is because the query optimiser can 

know from the rule that 80% of the values of the requested column, B, which is 

being retrieved has the value of value_b. Therefore it can eliminate this pre-

defined partial result from the query that is executed by modifying the query to 

only select the rows where column B does not have the value value_b. 

 

The query below demonstrates how the concepts introduced in the thesis propose 

taking this known information from the association rule into account and using it 

in the query optimisation strategy to partly answer the query. It does not execute 

the whole query against the database, but only the subset or part that we do not 

know from the defined association rule. The resulting query to process is:  

 

SELECT DISTINCT B  

FROM  table1 

WHERE  A = 'value_a' 

AND    B <> 'value_b' 

 

The resultant query takes the known information about the pertinent data 

relationship into account, meaning that it only asks for information that is both 

originally requested and not otherwise known. 

 

 

1.4 Contributions  
 
 
The thesis introduces a new query processing strategy, Semantic Inequivalence 

(SI), that intentionally uses inequivalent queries as part of the transformation 

process rather than previously researched query processing extensions [1, 24, 
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41], which emphasise the importance of semantically equivalent query 

transformations [36].  

 

SI can use association rules with 100% or less than 100% confidence to help 

answer queries in a number of different ways. Where association rules have less 

that 100% confidence, the thesis looks at how they can be used in conjunction 

with existing research to build upon and further query optimisation.  

 

An algorithm that implements SI is presented. The algorithm is defined for use 

with select-project queries excluding aggregates, group by and having clauses.  

Empirical evidence of the usefulness of SI is established with analysis of the 

results of using the algorithm with two real data sets and one synthetic data set.  

 

 
1.5 Structure of the Thesis 
 

 

The structure and layout of the thesis is now detailed.  

 

Chapter 2 provides an overview of data mining for association rules, and 

discusses the scope for its use in query optimisation. Query processing and 

optimisation are outlined, as are various aspects of query processing research in 

areas that are most relevant to SI.  

 

Chapter 3 defines the new concept ‘Semantic Inequivalence’. It goes on to 

discuss how SI differs from other techniques. A data model is then defined upon 

which the example queries given throughout the thesis are based. Examples 

within the chapter demonstrate how the output from data mining association 

rules can be exploited in query processing. The use of SI with rules with 100% or 

less than 100% confidence is discussed.  

 

Chapter 4 presents a detailed specification of the SI algorithm. The input, 

processing and output are formally defined. The resulting optimiser is hereafter 

referred to as the SI algorithm.  
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Chapter 5 looks at the cost of using SI because for SI to be a useful query 

processing technique, it should be able to reduce the cost of answering queries in 

some definable situations. The costs of using SI are compared to the costs of not 

using it. Exceptional and rare cases are also looked at. For the purpose of 

demonstrating the effects of applying the SI algorithm on query processing cost, 

the cost of answering queries in their original form is compared with the cost of 

using the corresponding SI queries. This is analysed in order to identify the 

situations where SI adds the greatest advantage. 

 

Chapter 6 focuses on empirical evidence of the usefulness of SI, by looking at 

using the SI algorithm for real-world queries with two real large databases. 

Association rules are found from the databases that are relevant to the queries 

executed. This provides details on the usefulness of SI by posing actual queries 

against large independent databases. The reasons for choosing two distinct real-

world databases are given and the cost outputs that the query optimiser produces 

for the original and SI transformed queries are compared.  

 

Chapter 7 focuses on synthetic data distribution – based on the normal 

distribution - and uses the SI algorithm. Thus this algorithm is also evaluated in a 

controlled environment. It demonstrates how various locations of the data mining 

association rule antecedent on the distribution can affect the use of the said 

algorithm in terms of query costing for original and transformed queries.  

 

Chapter 8, the concluding chapter, presents a summary of what the thesis has 

discussed and achieved. Additionally, it identifies potential areas for further 

related research.  

 

Appendix A1 defines terms and keywords that are used within the thesis.  

 

Appendix A2 defines the different typefaces that are used within the thesis. 

 

Appendix A3 defines the abbreviations that are used within the thesis. 
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Appendix A4, lists all the output that the SI algorithm produces for each of the 

queries used to exemplify SI in Chapters 6 and 7. It lists the optimiser’s chosen 

query plans and I/O.  

 

Appendix A5 discusses SI within the context of an independent query costing 

algorithm - the established Decomposition Algorithm for query processing. This 

autonomously demonstrates how SI can reduce the query processing cost in a 

generic way, without using any specific query example.  
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Chapter 2 

Data Mining of Association Rules and Query 

Optimisation: Background  

2.1 Introduction 
 

 

This chapter provides an overview of the data mining of association rules and 

looks at the main focus of previous research in this area. It discusses the current 

research limitations and how the boundaries can be extended to improve the 

usage of the potentially very valuable information that data mining of association 

rules can produce for use in query optimisation. A clear distinction is made 

between association rules, functional dependencies and integrity constraints. This 

is followed by a discussion of the query optimisation process and existing work 

on semantic query optimisation. Finally an approach for the exploitation of data 

mining rules within an extensible query optimiser is introduced.  

 

 

2.2 Data Mining of Association Rules 
 

 

A large volume of knowledge that may exist can be discovered from a database 

[20]. There are ‘intelligent’ ways to associate a query with the discoverable 

database knowledge [20]. Interest from industry in this area is due to the fact that 

data mining may result in knowledge that can be of vital importance for a 

company [8]. Some useful semantic data patterns that exist in a database are 

simply not known [16]. If they were known they may have been implemented as 
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database integrity constraints. This is however unnecessary if they do not need to 

hold true, but simply reflect the current state of the data held in the database.  

 

Data Mining of Association Rules can be defined as a process for discovering 

association rules from a large database – it is also known as knowledge discovery 

[28].  

 

(Unless otherwise stated, the term data mining when used throughout the thesis 

refers to data mining of association rules). 

 

 

2.3 Rules and Functional Dependencies 
 

 

A rule is not necessarily the same as a functional dependency.  

 

A functional dependency states that the value of an attribute (or set of attributes) 

is uniquely determined by the value of some other attribute (or set of attributes) 

[20]. Hence, given the value of an attribute A, then the value of attribute B can be 

determined with 100% confidence. If a rule has 100% confidence it may be 

called a functional dependency. Otherwise it is an approximate dependency [20].  

 

An approximate dependency is a functional dependency that almost holds. Some 

rows can contain exceptions to the stated dependency. This is an alternative name 

for an association rule [30]. 

 

Therefore association rules provide information on data patterns within the 

database, plus the probability of them occurring. 

 

Integrity constraints enforce the data values that are acceptable for certain 

attributes. In this sense they are like a pre-defined rule. In contrast, association 

rules do not protect the integrity of the data, or enforce particular data values but 

rather characterise the current database environment [16].  
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An association rule (or simply a rule) is of the form X  Y, where X = {x1, x2, 

…xn} and Y = {y1, y2,…ym} are sets of items with xi and yj being distinct items 

for all i where 1 ≤ i ≤ n and all j where 1 ≤ j ≤ m. The database is considered as a 

set of transactions, each transaction containing such items. Any association rule 

has the form LHS (left-hand side)  RHS (right-hand side), where LHS and 

RHS are sets of items. The LHS is the  antecedent of the rule. The RHS is the 

consequent of the rule. The set (LHS ∪ RHS) is called an itemset. The meaning 

of a rule is that a transaction that contains the antecedent set of items also 

contains the consequent set.  

 

In the context of a relational table, X and Y may correspond to values of columns 

within the table. For example, a rule might be: 

 

If column_X = value_X then column_Y = value_Y 

 

This means that a row which has value_X for column_X also has value_Y for 

column_Y.  

 

For a rule to be of interest it should meet some interest criteria. Two measures for 

this are support and confidence. Each itemset has these two associated statistics 

[2, 30]. 

 

A rule’s support is the proportion of rows that contain both the rule’s antecedent 

and the rule’s consequent [12]:  

(LHS  ∪ RHS)  / total number of rows       

 

A rule’s confidence is defined as the number of rows that contain both the rule’s 

antecedent and the rule’s consequent divided by the number of rows that contain 

the rule’s antecedent [12]: 

(LHS ∪ RHS) / number of rows with LHS 
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This is the probability that a row contains both an antecedent and consequent of 

the rule, given that the antecedent occurs. The confidence statistic is the measure 

of a rule’s strength. 

 

The confidence and support statistics of a rule are important in the data mining 

process because they are used as a way to filter rules so that only the most 

prominent ones - those which have a minimum user-specified level of support 

and confidence - are output [36]. This is in order to prevent the output of data 

mining being unnecessarily or unmanageably large [36], given that output can be 

vast. Therefore, data mining rules used by the query optimiser should be limited 

to those that are most useful to the database usage pattern. 

 

Association rules are used throughout the thesis with the format: 

exp_X  exp_Y (N% confidence) 

 

Both exp_X and exp_Y are expressions.  

 

An expression has the form:  

<operand><operator><value> 

 
Where:  

<operand> is a column 

<operator> is in { ‘=’, ‘<’, ‘>’, ‘<>’, ‘>=’, ‘<=’ } 

<value> is a literal value 

 

Columns that exist in the rule’s antecedent cannot also exist in the rule’s 

consequent and vice versa.  

 

 

 

 



 20

2.4 Data Mining Research and Scope for Use in Query 

Optimisation 
 

 

The data mining of association rules can be a very expensive task in terms of I/O, 

processing power and time required [2, 30, 38]. Therefore, data mining research 

has very much focused on the development of algorithms that can find rules that 

exist in a very large DBMS as quickly and efficiently as possible. If a process is 

too expensive it reduces its profitability and worthiness - the advantage of it 

compared to its cost – thereby reducing its usefulness. This has given rise to 

some prominent data mining algorithms, including Apriori [2, 42], AprioriTid 

[2], Partition algorithms [30] and Hash based algorithms [34]. 

 

The aim of these algorithms is to find as efficiently as possible, predominantly by 

minimising I/O cost, associations that exist between data items in a database that 

meet the minimum support and confidence criteria. This can be approached by 

breaking the task down into two problems [2]. The first problem is to find all sets 

of items that have support above the user-declared minimum support. These are 

referred to as large itemsets. This is subsequently used as the input to the second 

part of the problem, which is to find all of the rules meeting the minimum 

confidence level. This is solved by taking each large itemset generated in solving 

the first problem, and for each large itemset, finding 2 subsets within the large 

itemset, such that there is no overlap in the attributes in each.  

  

Hence rules are derived from the large itemsets. Algorithms that are based on this 

two-phased approach include Apriori, AprioriTid and Partition, plus hybrids or 

variants of these. Regardless of the algorithm used, the output is a set of rules 

meeting the minimum support and minimum confidence criteria.  

 

The rules discovered could be actual business rules that are unknown, and hence 

have not been explicitly specified. Alternatively, rather than unspecified business 

rules, they may be what ‘just so happens’ to be the case in the environment 

represented by the database.  
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Even though data mining can discover potentially useful data attribute 

relationships, hence information, and even increase knowledge of the database 

subject’s environment, research has so far very much focused on algorithms to 

produce the output rather than on how to use the output. This thesis proposes 

using association rules to optimise user queries. 

 

The discovery of unexpected association rules would be a useful deployment of 

data mining applications [20]. This makes the need for automatic usage of the 

output more important. An area of the database management system, which 

could benefit from the otherwise unknown, or newly acquired knowledge of data 

patterns or data relationships among attributes, is the query optimiser.   

 

 

2.5 Query Processing and Optimisation 
 

 

Query optimisation is the process of analysing a query, finding out what 

resources are required to answer it and how the resources can be reduced to 

answer the query more efficiently [45]. Query optimisation is often performed in 

two phases: a logical optimisation phase and a physical optimisation phase [8].  

 

During logical query optimisation, the order in which query operations are 

performed is determined. The physical query optimisation then determines how 

the operations can be most efficiently performed [20]. This depends on the way 

the data is stored – its physical schema. Physical optimisation is performed with 

respect to a cost model. This involves searching alternative access paths for 

accessing the database objects. However, when the search space is very large, 

considering all possible alternatives may not be feasible due to the time and 

resources required. Hence a control strategy based on a heuristic approach may 

be used [14]. 
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Modern optimisers are cost based, rather than syntax based. Input to the 

optimiser includes the parsed query, often in Structured Query Language (SQL) 

[32, 45], along with information on the database objects. This may include the 

size of each table in the query, the indexes on the tables, if any, and the type of 

each index, the columns used in the query, the density and distribution of the 

indexed columns, join ordering, the use of internal temporary tables, available 

data cache and the physical I/O sizes supported [45]. The list depends on the 

sophistication of the optimiser’s costing algorithms.  

 

The methods of executing a query are determined and the cost of each found. The 

cheapest, most efficient method is selected by the optimiser to execute the query.  

  

 

2.6 Semantic Query Optimisation 
 

 

The area of semantic query optimisation (SQO) has been well researched [1, 27, 

39, 40, 51]. This is where a query is transformed based on functional 

dependencies known about the data [1]. SQO maintains the semantics or 

meaning of the query – therefore it produces semantic equivalent queries only 

[41]. A transformed query is equivalent to the original one if it gives the same 

answer for every legal database state [4]. 

 

SQO is achieved by adding a constraint to a query based on a rule with 100% 

confidence. The consequent of the rule is added as an additional predicate to the 

query [41]. Hence SQO can only be used with functional dependencies and 

cannot make use of approximate dependencies. Since the rules that SQO can use 

must have 100% confidence, its usability is limited because of not being able to 

use high confidence rules, such as those with 80% or 90% confidence levels. In 

fact, SQO relies upon data constraints rather than the data values reflected in the 

database state. Even association rules discovered with 100% confidence are not 

sufficient for SQO – because they may not always be satisfied unless the data 

values are explicitly constrained.  
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Trigoni and Moody [47, 48] take a different approach to SQO, in that they look 

at using association rules rather than functional dependencies. However they do 

not discuss the probability of rules. This is important when transforming a query 

since if the probability is not 100% the semantics will change.  They therefore 

assume the association rules always hold, hence effectively treating them as 

functional dependencies. Additionally, [48] removes predicates from a query if 

they are implied by other existing predicates. However, removing predicates 

reduces the information supplied to the optimiser. This can reduce the query 

paths that the optimiser considers, which may increase the cost of answering a 

query.  

 

 

2.7 Data Mining Rules  
 

 

Data mining produces information regarding the relationships among data items 

stored in a database [2]. Data mining can produce a large quantity of output [38]. 

Therefore, its output needs to be filtered to those rules that are most useful to the 

applications or query profiles against the database. This requires local knowledge 

of data usage as an input to the rule filtering process.  

 

While the query optimiser tries to find the cheapest way to access data [32], it 

does not currently have the option or availability of using of a rule page to help 

process a query. The concept of a rule page is introduced in this thesis. It is a 

page managed by the DBMS, which holds the most useful rules relevant to a 

database’s querying patterns.  

 

Just as database management systems have data pages, index pages, statistics 

pages, etc. [45], rule pages are similarly used specifically for storing one type of 

data: rules.  

 

An example of a rule is:   
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if age = 30 then residence = 'UK' (70% confidence) 

 

This would be stored on a rule page rather than on part of the database’s data, 

index or statistics pages. Section 3.9 provides an example of the contents of a 

rule page.  

 

Rules to be held on the rule page can be determined by a database administrator 

with local knowledge of data usage. Filtering the rules is important to avoid 

irrelevant rules from consuming space in the rule page. Alternatively, templates 

can be used to describe the pattern of a useful rule [36], so that only those that 

meet the template pattern are considered useful, or ‘interesting’ with respect to 

the environment. Either way, the aim is to prevent too many rules, or ‘rule 

overload’, some of which may not be useful to the environment. Having too 

many ‘non-useful’ rules would compromise the usefulness of the concept as 

more pages would be required for storing the ‘non-useful’ rules. This would 

subsequently result in more I/O required to access the useful rules. The 

information in a rule page may answer a query, or the query optimiser may have 

a module for re-writing the query into a subset of the original query, taking into 

account what is known from the rules. This can be used to answer a subset of the 

original query. This results in a ‘narrower’ query to be answered by the DBMS’s 

query processor.  

 

 

2.8 Extending the Query Optimiser  
 

 

For SI to be a new strategy for the optimisation process, it needs to be 

incorporated into the query optimiser.  To enable this, the DBMS’s optimiser 

requires the flexibility of adding new optimisation strategies or techniques.  

 

Optimiser extensibility refers to the adding of, or the ability to add, new query 

processing strategies to the database management system’s optimiser [10, 31].  
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The strategies are also known as query optimiser components [31]. This thesis 

goes one step further from recent research in new query processing strategies 

because it uses inequivalent queries as part of the transformation process rather 

than previously researched extensions [1, 28, 46], which emphasise the 

importance of semantically equivalent query transformations [14, 41]. 

 

SI is a new strategy in query optimisation. To study SI in more detail an 

extensible optimiser based approach will be used. This means that the optimiser 

has a structure that incorporates the flexibility for adding new strategies in 

optimisation. This is achieved by its having a modular or component-based 

architecture, where each module (also called a region) has a particular goal or 

strategy in the query optimisation process.  

 

Regions are effectively query transformations [31]. They take a query as input, 

transform it using the region’s particular query transformation strategy, and 

produce the transformed query as the region’s output.  

 

Because each region has a particular strategy or goal, for a query optimisation 

region this would mean transforming the input query into an output query that 

has lower execution cost.  

 

In an extensible optimiser, a new query optimisation strategy, such as SI, can be 

added to the optimiser by adding a new region or module to the existing 

structure.  This region then needs to be integrated into the database management 

system’s optimiser. This may be achieved by using a hierarchical control 

structure between regions. Hence, the optimiser’s global control region (the 

parent region) sends the query being processed to the child regions for 

transformations until a final form of the query is produced for execution. The 

hierarchical structure of an extensible optimiser is represented in Figure 2.1.   
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control 

region a region b region c
 

 

Figure 2.1 – Extensible Optimiser Structure 

 

Using the modular, extensible approach, each region embodies a strategy for 

achieving a particular goal in the query optimisation process. For example, there 

may be a region to find the most efficient way of ordering the joining of tables in 

a query. Another region may have a goal to find the best access strategy for each 

table.  

 

There is a parental or control region which is responsible for deciding which 

region/s to send the query to for transformation and hence manipulation.  

Therefore, SI processing can be incorporated by adding a region to an extensible 

optimiser. The region can transform the query into an SI query, if considered 

appropriate by the parent region.  

 

The controlling, parent region decides which subordinate regions should be used 

to transform a query.  To enable this, each region needs to be defined 

unambiguously for the parent to decide whether it is suitable to be used for a 

query.   

 

To facilitate this, the definition of a region should consist of the following:  

1. A description of the set of possible input queries that the region can accept for 

transformations.  

2. The set of transformations that can be performed on the queries.  

3. A goal that characterises the output query produced by the region. This is what 

the region aims to achieve.  

 

The concept of regionalised or modular optimisers provides a great deal of 

flexibility because it enables new query optimisation processes to be added by 

adding a region with an interface that the optimiser understands. This type of 
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structure is ideal for adding SI to.  

 

The architecture of a region, illustrated in Figure 2.2, has two parts:  

1. A control (or implementation) and  

2. An interface to the parent region in the hierarchy.  

 

 

Interface to 
parent

Control

 
 

Figure 2.2 – Region Architecture 

 

The interface to the parent region is needed in order to communicate what type of 

queries it can process. This is required to determine which types of queries can 

be passed as input, and what the region’s goal or purpose of its existence is.   

 

The interface informs the parent control about what the region can do and 

whether it is suitable for the query. The parent uses this information to decide 

which regions the input query should be passed through for manipulation.   

 

The implementation of the region is the region’s control section.  This is the 

encapsulation of the region’s achieving its goal. It is the embodiment of the 

region’s strategy and manipulation of the queries passed into it. The control does 

the decision taking and transforming of the query.  Hence, via the interface to the 

parent, the region receives a query to transform. The region’s control will then 

convert the query, as implementation dictates.  

 

An extensible optimiser allows adding a region with the only requirement that 

the interface can communicate with the parent. Therefore, adding a region causes 

minimal disruption to the existing optimiser features embodied as other regions.  

 

In summary, a region is essentially a query transformation. It has a control 
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strategy for applying transformations and produces a transformed query as 

output.   

 

 

2.9 Conclusion 
 

 

This chapter has given a brief overview of data mining of association rules and 

outlined the main focus of research in this area. It has highlighted how the data 

mining output can be a useful input to the database query optimisation process. 

This is by taking the view that there are intelligent ways to associate a query with 

the discoverable database knowledge [20] that are represented as association 

rules.  

 

For SI to be used as a component of query processing, there should be known 

patterns or association rules between data items present in the database.  

 

The information about data relationships may be viewed as a ‘gap’ in the input to 

the query optimiser that can be filled by data mining output. It takes the view that 

this can add value to the query optimisation procedure. By connecting these two 

separately well-researched areas together we produce a query optimisation 

opportunity believed to be highly valuable, as will be seen throughout the thesis.  

 

The chapter distinguished semantic query optimisation, and its limitation 

regarding usability.   The concept of a rule page was also introduced and how 

query optimiser extensibility is required for adding new query processing 

techniques.  
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Chapter 3 

Semantic Inequivalence 

 

3.1 Introduction  
 

 

Chapter 3 defines SI, discusses its concepts, and demonstrates how SI can be 

used with practical examples. A data model is set up which subsequent example 

queries throughout the thesis are based upon.  

 

The chapter goes on to discuss how the association rules that may be produced 

from data mining, or any other source, can be used as an input to the SI process 

and the potential gains that can be achieved by using the rules in this way. The 

aim of SI bringing together data mining of association rules and query 

optimisation is to achieve increased query selectivity resulting in more efficient 

query processing possibilities. Instead of pursuing the overhead of repeatedly 

requesting known information, SI endeavours to make use of the rules or patterns 

known and defined about the data values, with the aim of reducing the cost of 

answering the original query.  

 

Following this, the chapter goes on to look at some of the different ways in 

which SI can be used in conjunction with other query processing techniques, 

such as partial indexing [37].  

 

Lastly, changes in the confidence levels of association rules are reviewed, 

followed by the chapter’s concluding remarks.  
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3.2 Definition of Semantic Inequivalence 
 

 

Definition: 

Semantic Inequivalence (SI) is a process of transforming a query, Q, into 

another query, Q', by taking known information about the relationships between 

column values that are stored in the database into account.  

 

Let Qr denote the result rows of query Q on relation r. The same obtains for Qr'. 

 

Assume association rule, S, implies the existence of rows Qrs in the result rows 

Qr. 

 
SI transforms Q to Q' such that Qr = Qr' ∪ Qrs. 
 
 

Explanation: 

SI intentionally changes the meaning, or the semantics of the query Q, to only 

request the unknown part of the query, Q', the rest being known and hence can be 

answered from the database’s defined association rules.  

 

The term Semantic Inequivalence is based on the idea of changing the meaning 

of a database query, Q, to a subset of Q, represented by Q', which only inquires 

for that part of the original query that is unknown from information (the 

association rules) held about the column data values in the database. Therefore 

the result of the query that is executed, Q', is a subset of the result of the original 

query, Q. The rows that are not requested by Q' but are requested by Q is the 

implicit information that is provided by the defined association rule, and hence 

can be answered without additional data retrieval.  Consequently, the semantics, 

or the meaning of the query that is executed is different to that of the originally 

requested query.  
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3.3 How Semantic Inequivalence Differs from Syntactic Query          

Optimisation 
 

 

Syntactic query optimisation is based on transforming a query into another one, 

which has the same result set as the original query but can be processed more 

efficiently [25, 46]. The syntactical query optimisation algorithm takes as input a 

query, Q, submitted by a user and aborts it if a contradiction is found, or 

otherwise returns as output an equivalent query Q'', which produces the same 

answer as Q. Syntactical query optimisation can only use 100% confidence rules 

and not approximate dependencies.  

 

This thesis goes one step further from previous research in new query processing 

strategies, because it intentionally uses inequivalent queries as part of the 

transformation process rather than previously researched query processing 

extensions [1, 28, 46], which emphasise the importance of semantically 

equivalent query transformations [14, 41].  

 

SI can use association rules with 100% or less than 100% confidence to help 

answer queries in a number of different ways. This is seen in the following 

section. 

 

 

3.4 Using Semantic Inequivalance With Association Rules 
 

 

This section looks at some ways in which SI can be used in conjunction with 

database association rules.  

 

Firstly, if a rule has 100% confidence it may be used to completely answer a 

query. This may be referred to as rule covering. For rule covered queries, neither 
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the data pages nor the index pages need to be accessed. For this to be the case, 

both, the select list of the query and the column predicate in the where clause 

(assuming queries written in SQL) need to be in the rule as the consequent and 

antecedent, respectively. This is discussed further in Section 3.10.  

 

Similarly, yet conversely, a 100% confidence rule may also be used to return a 

null result set very quickly. This would be the case where a contradiction is 

found between the query and the rule, even where a rule does not cover the 

query. This is known as incoherence detection [4], and can be a powerful 

application of SI in terms of reducing the query processing costs.  

 

Secondly, a rule, with either 100% or less than 100% confidence, can be used to 

partially answer a query (where in the former case the rule does not cover the 

query). The query can be re-written into an SI one that answers only the subset of 

the original query that the rule does not answer. If a query has a very large partial 

result set such that it takes a long time to execute, the result from the rule can be 

returned first. This provides the user at least with a partial result to look at 

immediately.  

 

In yet a third way, rules can be used in conjunction with partial indexing [37]. 

Rather than index a whole table, partial indexes only index a portion of rows in a 

table. That is, they only index those values that are not part of a large repeating 

group. Repeating data values in columns is the sort of skew in the data that an 

association rule would define. Hence the rules can replace the indexing of non-

indexed covered values. This helps performance [37] by reducing I/O and 

reducing the object’s storage requirements by having smaller indexes since the 

frequent or commonly occurring values are not repeatedly indexed. Otherwise 

these would be included many times in the index – once per record occurrence. 

This is complementary to SI because partial indexes have fairly extreme 

selectivity involving non-repetitive values, and conversely association rules with 

a significant level of support involve repetitive values. The use of SI with partial 

indexing is complementary in that the query optimiser can use rules for the 

highly repetitive values, and partial indexing for the less repetitive values. The 

less repetitive values are those that would not be covered by a rule.  Both 
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techniques, SI and partial indexing, are based on a non-uniform data distribution, 

or in other words a skewed data distribution.  

 

By SI being able to use rules with less than 100% confidence, a major restriction 

on situations where rules can be used is removed, or at least, reduced.  

 

3.4.1 Semantic Inequivalence Example 

 

This section looks at a sample query based on a set of tables reflecting a simple 

database structure. SQL is used with select-project queries, excluding aggregates, 

group by, having and order by clauses.  

 

Database Structure: 

 

table1 (A, B, C, D) 

table2 (A, E, F, G) 

table3 (E, H, I, J) 

 

The letters A to J represent columns. The underlined columns are primary keys. 

The columns A and E are foreign keys in tables table2 and table3, respectively.  

 

Sample Query:  

 

This is based on the simple relational database structure, and selecting some 

columns across the tables requiring joins between them. The query optimiser has 

no information other than what is provided by the query and the known database 

structure.   

 

A sample query to pick out information from the tables would be:  

 

SELECT t1.B, t3.I 

FROM table1 t1, table2 t2, table3 t3 

WHERE t1.A = t2.A 

AND  t2.E = t3.E 



 34

AND  t1.A = value_a 

 

Sample Query Explanation: 

 

Looking at this SQL query, the variables defined are t1, t2 and t3.  These 

represent the ranges table1, table2 and table3, respectively. The qualification or 

where clause is a Boolean function fn(table1 * table2 * table3) which is the 

product of table1,  table2 and table3. The output of the function fn(table1 * 

table2 * table3) is applied to the function fn(A = value_a) = true.  The columns 

retrieved from the resulting table are B and I. 

 

The proposal is for data mining output to be used to extend and hence modify the 

sample query to take known column values into account as detailed in example 

3.2. This may open up multiple methods for processing the query, with different 

data access paths, having the goal of reducing the cost of the query’s execution.  

 

 

3.5 Demonstrating Semantic Inequivalence 
 

 

If from the available association rules, we know that given the value of column 

A, we can determine the value of column B, or: 

 

if A = value_a then B = value_b (80% confidence)   

 

If a query, Q is:  

 

SELECT DISTINCT B 

FROM  table1 

WHERE  A = value_a 

 

This can be re-written to take this defined relationship into account, and only 

retrieve what is now unknown, by taking the information that the associated rule 
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provides into account.   

 

To form the complete query result, the result set of the SI can be formed with a 

union of the result set that is known from the rules.  

 

The result set that is known from the rules is what is saved from being processed 

unnecessarily through the query optimisation and data access and retrieval 

processes.  

 

The association rules give extra and maybe even new information on the 

relationships between database attributes. For example, to say that column B in 

table1 depends on the value of column A in table1 is the same as saying that 

column A determines the value of column B.  

 

Example 3.1: 

 

Based on the above query, with the stated rule:  

if A = value_a then B = value_b (80% confidence)   

 

Let the following sample data values exist in table table1.  

 

A B C D 

value_a value_b value_c value_d 

value_a value_b value_c2 value_d 

value_a value_b value_c3 value_d 

value_a value_b value_c3 value_d 

value_a value_b value_c2 value_d 

value_a value_b value_c1 value_d 

value_a value_b value_c1 value_d 

value_a value_b value_c1 value_d1 

value_a value_b1 value_c2 value_d1 

value_a value_b2 value_c value_d2 

  Table 3.1 – Sample Data Values 
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Using the query, Q:  

 

SELECT DISTINCT B 

FROM  table1 

WHERE  A = value_a 

 

The rule answers 80% of the query. This is because the query optimiser can 

know from the rule that 80% of the requested column, B, which is being retrieved 

has the value of value_b. Therefore it can eliminate this pre-defined partial result 

from the query that is executed by modifying the query to only select the rows 

where column B does not have the value value_b.  

 

The query below demonstrates how SI proposes taking this known information 

from the association rule into account and using it in the query optimisation 

strategy to partly answer the query. It does not execute the whole query against 

the database, but only the subset or part that we do not know from the defined 

association rule. The reduction in data that is being requested can lead to 

increased efficiency if less I/O is required to answer the query. This is discussed 

in detail in Chapter 4. The resulting SI query is:  

 

SELECT DISTINCT B  

FROM  table1 

WHERE  A = value_a 

AND    B <> value_b 

 

This is a simple style example that provides a practical overview of the concept 

of SI.  

 

 

Example 3.2: 

 

Based on the query defined in Section 3.6.1,  
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Original query:  

 

SELECT t1.B, t3.I 

FROM table1 t1, table2 t2, table3 t3 

WHERE t1.A = t2.A 

AND  t2.E = t3.E 

AND  t1.A = value_a 

 

Applying SI to the original query, by taking what is known into account from the 

example association rule: 

 

if A = value_a then D = value_d (70% confidence) 

 

then we have the following SI query:  

 

SI Query: 

 

SELECT t1.B, t3.I 

FROM table1 t1, table2 t2, table3 t3 

WHERE t1.A = t2.A 

AND  t2.E = t3.E 

AND  t1.A = value_a 

AND  t1.d = value_d 

UNION 

SELECT t1.B, t3.I 

FROM table1 t1, table2 t2, table3 t3 

WHERE t1.A = t2.A 

AND  t2.E = t3.E 

AND  t1.A = value_a 

AND  t1.d <> value_d 

 

This new query may be particularly useful in determining results in a very large 

database if there is an index on column D, or alternatively a composite index on 

columns (A, D), (D, A) or (D, another_column). This transformation will be 
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beneficial if selectivity of the query is increased by the possibility that more 

access paths are made available. If the column, D, or columns A and D are 

indexed, then selectivity should be increased by the query otherwise there would 

be little benefit to having the index in the first place.  

 

In this situation, syntactical query optimisation cannot be used because the rule 

does not have 100% confidence. This effectively ‘wastes’ the opportunity to use 

a highly confident rule that could improve query response time.  

 

 

3.6 Data Model Example 
 

 

The following data model example will be used throughout the thesis to 

exemplify the SI process.  

 

It is based on publishers of books and their associated relationships with authors, 

titles, stores and customers.  

 
A rectangle is used to indicate a table object.  
 
An arrow indicates a one-many relationship between the objects it connects.  
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author_id    title_id    publisher_id 
title_id     title    publisher_name 
     subject_type   city 
     publisher_id   country 
     price 
     total_sold 
     pub_date 
 
 
 
author_id   store_id        store_id 
surname    order_no       order_no 
firstname   title_id        date  
date_of_birth   qty 
sex    total_spent 
phone 
address 
city 
country    
postal_code   manager_id    store_id 
eye_colour   name     store_name 
hair_colour   contact_no    address 

mobile     city 
    date_of_birth       country 
        sex        postalcode 
          contact 
           manager_id 
         no_of_staff 
  
             
         

    
     customer_id 
     date_of_birth 

              sex 
              address 
              city 
              country 
              postalcode 
              contact_no 
              main_interest 
              store_id 
    

Figure 3.1 – Data Model 

 

 

 

TitleAuthor  

Authors 

Managers 

SalesDetails 

Titles Publishers 

Sales 

Stores 

Customers 
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3.7 Data Mining Association Rules and Semantic Inequivalence 

Query Examples 
 

 

Here are examples of association rules that may result from a data mining 

process executed on the above data model example instance that can be used as 

input to the SI process. They were derived manually by inspection. These rules 

serve as an example of the contents of a rule page.  

 

if subject_type = 'cooking' then total_sold = 10000 

(75% confidence) 

 

if Stores.city = 'London' then Stores.country = 'UK' 

(100% confidence) 

 

if subject_type = 'Astronomy' then price = 29.95 (70% 

confidence) 

 

if title = 'Maths for beginners' then price = 15.00 

(70% confidence) 

 

if title = 'Maths for beginners' then total_sold = 

100000 (75% confidence) 

 

if qty = 5 then total_spent = 150 (80% confidence) 

 

if eye_colour = 'brown' then hair_colour = 'brown' 

(70% confidence) 

 

if Customers.city = 'NY' then main_interest = 

'Financial' (65% confidence) 

 

if Customers.city = 'Paris' then main_interest = 

'Fashion' (70% confidence) 
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if store_name = 'The Bookshop' then no_of_staff = 6 

(100% confidence) 

 

As stated in Section 2.7, data mining can produce a large quantity of rules [38]. 

Hence filtering the rules to those that are most useful to the applications is 

important to avoid wasting rule page space that would slow down the 

optimisation process. For example, if it is known that all city attribute values are 

unique in the database so that the country attribute is not needed in order to 

determine the location, then the rules of the form:  

 

if table.city = value then table.country = value   

 

can be discarded.  

 

Similarly, if there is no interest from the database users (no requirement for such 

information via business applications or user queries), in personal attributes of 

authors, then rules on their hair_colour and eye_colour, for example, may be 

discarded.  

 

Example 3.3:  

 

The following example also shows how the output of the data mining process can 

be useful for the SI process and additionally demonstrates how to reduce the cost 

of query execution.  

 

Assume we want to know the prices of books based on the subject ‘Astronomy’.  

For this, we have a query, Q, with the following SQL:  

 

Original Query:  

 

SELECT DISTINCT price 

FROM Titles 

WHERE subject_type = 'Astronomy' 
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Knowing that 70% of Astronomy books have a price of 29.95 based on the rule: 

 

if subject_type = 'Astronomy' then price = 29.95 (70% 

confidence) 

 

we only need to ask for prices of Astronomy books where the price is not 29.95:  

 

SELECT DISTINCT price 

FROM Titles 

WHERE subject_type = 'Astronomy' 

AND price <> 29.95 

 

This query requests 30% of the rows that have subject_type = 

'Astronomy' rather than all of them since 70% are answered by the rule.  

 

In the SI algorithm in Section 5.3, we will see that the actual predicate added 

would be: 

(price < 29.95 or price > 29.95)  

 

Therefore, if there are 500 books with subject_type = 'Astronomy', 

instead of accessing all 500 records, the SI query would access only 30% of the 

500 records where subject_type = 'Astronomy', which is 150 records 

compared to 500.  This would require access to fewer rows than the original 

query. If there is an index on just the price column, especially if it is a clustered, 

B+ tree style index, or if there is a composite index on the (subject, price) 

columns, or on (price, subject), then applying SI would be a useful 

transformation, asking for only that part of the original query that is not 

answerable from rules. The new query is efficient if it has a lower execution cost, 

in terms of physical I/O, compared to the original query. The costing of the 

queries is detailed throughout Chapter 5.   
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3.8 Rules with 100% Confidence 
 

 

In very large databases, data mining may produce some rules with 100% 

confidence. These may not be defined business rules with enforced integrity. 

They may be what ‘just so happens’ to be the case, or they may be ‘unknown’ 

business rules – rules that exist but are not actually known to the business or 

formally pre-defined.  

 

In the case of rules with 100% confidence, these may be able to directly answer 

some queries, without requiring access to the database at all. This is an area that 

has been covered by existing research [41], and discussed in Section 2.6, where 

functional dependencies or 100% integrity constraint rules that are pre-defined 

can be used to help answer a query. This is done by adding the consequent part 

of the rule as an additional predicate to the query [1]. However, even though a 

100% confidence rule may be used this way, it is not the same as a functional 

dependency or integrity constraint, because it may not be pre-defined or always 

be the case. It reflects the database state, which may change. Adding a new 

predicate may help the optimiser find a better access path by giving it more 

information. Moreover, if the column is indexed, a greater or improved choice of 

access paths may be available.  

 

Work on semantic query optimisation encompasses the possibility that a query 

may be wholly answered from a rule, or more generally, an integrity constraint 

[27]. This thesis exploits this concept of ‘rule covering’ – where a rule ‘covers’ 

or completely answers a query, and does not require access to the data or index 

pages of the database. With ‘rule covering’, the rule is used to answer the query 

rather than to add a clause to potentially change the access path of a query to 

become efficient.  The I/O associated with this is equal to the number of rule 

pages that need to be read. If there is a single rule page, then only 1 I/O is 

required. Hence, this can be an extremely powerful and efficient way of 

executing a query.  
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Example 3.4:  

 

This example demonstrates the case of rule covering using a 100% confidence 

rule.  

 

SELECT no_of_staff 

FROM Stores 

WHERE store_name = 'The Bookshop' 

 

The rule: 

 

if store_name = 'The Bookshop' then no_of_staff = 6 

(100% confidence) 

 

exists with 100% confidence, as defined, and is therefore suitable to answer the 

above query completely. This is an example of rule covering. It demonstrates the 

biggest possible advantage that rules can give when used together with the SI 

process.  

 

The rule ‘covers’ or completely answers the query because both the predicate 

column and the column being selected are contained in the rule as the antecedent 

and consequent, respectively. With 100% confidence, there can be no other 

values contained in the query result set. That is:  

 
Qrs ⊇ Qr 
 

 

Example 3.5: 

 

This example is also based on a 100% confidence rule, but does not cover the 

query. That is:  

 



 45

Qr ⊄ Qrs 
 
 
Even if a rule with 100% confidence does not answer a query via rule covering, it 

may still be useful in the SI process. Let the table have an index on the 

no_of_staff column. Given the query:  

 

SELECT  *  

FROM Stores  

WHERE store_name = 'The Bookshop' 

 

From this query, we know that ‘The Bookshop’ is the only store name we are 

interested in from the where clause predicate. Using the same association rule as 

in example 3.4, on store_name, we know that no_of_staff = 6. Hence we can add 

this consequent clause so that the query becomes:  

 

SELECT *  

FROM Stores  

WHERE store_name = 'The Bookshop' 

AND no_of_staff = 6 

 

In this situation, an existing index on no_of_staff can be used to access the table.  

 

This strategy can also be used if there is a join in the query. For example, if there 

is a nested-loop join such that the new clause can be added to the outer table in 

the join, and the index is used to filter the rows in the outer table, then the inner 

table needs to be accessed fewer times. The next example query demonstrates 

this by searching for the names of the managers of stores called ‘The Bookshop’. 

 

Example 3.6: 

 

This example uses a join with a 100% rule that does not cover the query. This 

demonstrates that the SI principle can still be applied.  
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SELECT Managers.name 

FROM Managers, Stores 

WHERE Stores.manager_id = Managers.manager_id 

AND store_name = 'The Bookshop' 

 

As there is a predicate on the table, Stores, this can be used to filter rows from 

the table to join with the Managers table. If Managers is indexed on its primary 

key, manager_id, then this is likely to be the inner table of the join, so that for 

each row in the outer table the inner table can be accessed via the primary key 

index. If the query is as above, as there is no index on stores.store_name, the 

optimiser will need to fully scan the stores table. However, given the rule: 

 

if  store_name = 'The Bookshop' then no_of_staff = 6 

(100% confidence) 

 

the optimiser can add the consequent as a predicate to the outer table, Stores. 

This way it has an index on the new column that can be used to access the table 

to filter the rows that it needs to use to join on the manager_id attribute of the 

inner table.  

 

 

3.9 Physical Access Paths: Rules and Partial Indexing 
 

 

The advantage of SI is most significant when a predicate is added that can 

change the data retrieval path to a more efficient one. For example, if the 

modified query results in the use of an appropriate index instead of a full table 

scan, this can reduce the required I/O. Detailed cost comparisons of different 

access paths resulting from changing the query are demonstrated in Section 5.4. 

Even if using the same access path for both the original and SI queries, the SI 

query may still be more efficient (for an indexed path) if the SI query accesses 

fewer index pages than the original query due to ‘reducing’ or narrowing the 
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query by requesting fewer rows, thus filtering rows that need to be accessed 

higher up the B-tree index.  

 

 

3.10 Changes in the Confidence of Association Rules 
 

 

The generation of association rules and their associated confidence is a relatively 

infrequently executed ‘batch’ style process rather than a frequent online process 

[36]. Since SI is oriented at very large databases, or data warehouses, the rules 

generated from data mining can take a significant amount of time to produce. 

Subsequently they should be filtered by the local database administrator’s 

knowledge regarding those rules that are useful to the environment. However, 

even though SI is meant for relatively static data and not for online transaction 

processing type of databases, the rule generation should not need to be performed 

often because the data is not intended for frequent change. Moreover, due to the 

large quantities of data held (100’s of gigabytes or terabytes) if a row needs an 

ad hoc change, it would not be considered significant enough to impact the rule’s 

probability. Hence association rules would not need re-calculating if there is no 

change to the rules’ confidence levels. This assumes that there are rules based on 

the columns that are updated. It is not considered cost-effective to maintain rules 

for each data change. There is the rare case whereby a 100% confidence rule no 

longer holds. However given this is a rare or extreme case, it is not explicitly 

dealt with. The change would be taken into account when the association rules 

are periodically refreshed.  

 

If there is a requirement to make more frequent data changes such that the skew 

of the data does change, then a ‘subset’ process could be implemented to go 

through and verify the confidence of the association rules on the affected objects 

only. This would involve only re-calculating the rules on the affected objects - or 

even only the affected columns. The verification or re-calculation of rules on a 

per table or column basis would be significantly faster than full rule calculation 

database-wide.  
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Due to the above reasons, changes in association rule confidence are not dealt 

with in the thesis. If, however, despite the reasons above, it is considered 

necessary, it is a large enough area to be dealt with as another research topic in 

its own right.  

 

 

3.11 Conclusion 

 
 

This chapter has defined SI and given examples of how it can reduce a query to 

only request data that is not known from mined association rules held about 

column values in the database.  

 

SI brings together database association rules, which may be output from data 

mining, with the query optimisation process, ensuring that generated rules are 

actually used to improve the efficiency of answering queries, by promoting 

automated usage of the rules.  

 

The notion of SI promotes and is based upon the idea that association rules, held 

about the data in the database, can and should be used to help answer queries. 

This is reasonable given that the association rules are effectively data values that 

are already known to the DBMS. Hence when they can be used to form part of 

the query result set, the query optimiser should take advantage of this. 

 

By adding more predicates to the query to eliminate requesting what is known, it 

has been demonstrated that the number of rows that need to be accessed by the SI 

query may be significantly less than the original query. This is useful if it opens 

up new data access paths, such as paths that enable the use of an index instead of 

a full table scan if this reduces the I/O required for answering a query.  Section 

3.10 demonstrates the special case of rule covering.   
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Rules with less than 100% confidence have also been shown to be very useful to 

the query optimiser. They can be used to partially answer a query and may be 

used in conjunction with other complementary processing techniques, such as 

partial indexing.  

 

The data model example presented in this chapter is used for sample queries 

throughout the thesis.  
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Chapter 4 

Semantic Inequivalence Algorithm 

4.1 Introduction 
 

 

While Chapter 3 gave an overview and examples of SI, this chapter provides a 

detailed specification of the SI algorithm. The algorithm is subsequently 

demonstrated using a sample query. This is followed by further illustrative 

examples of queries using the SI algorithm.  

 

 

4.2 Algorithm of Control Section for Semantic Inequivalence 
Region 
 

 

4.2.1 Notation used for Semantic Inequivalence Algorithm 

 

Before defining the SI algorithm, this section introduces the notation used for the 

algorithm. 

 

The query structure used is:  

 

SELECT DISTINCT select_list 

FROM   table 

WHERE  predicate_list 

 

Where:  
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select_list is the list or projection of columns requested by the query 

table is the table used in the query 

predicate_list is a conjunction of predicates Pi ∈ {P1,…,PN}, in the query  

 
 
A SARG, or search argument, is a predicate in the form: 

 

 <operand><operator><value> 

 
Where:  

<operand> is a column  

<operator> is in { ‘=’, ‘<’, ‘>’, ‘<>’,  ‘≤’, ‘≥’ } 

<value> is a literal value 

 

Even though the input to the SI query is a conjunction of simple predicates, the 

output may be a disjunction of predicates.  

 
The notation used: 

 

Q represents the query 

 

Pi and Pj represent predicates that are SARGs.  

i, j represent variables with values 1 to N 

Ci represents the column of Pi. Likewise, Cj represents the column of Pj 

Vi represents the value of Pi. Likewise, Vj represents the value of Pj 

Pi.operator is the operator used in Pi 

Ci.number_of_distinct_values represents the number of unique values that the 

column Ci contains 

Ci.distinct_values represents the set of unique values that the column Ci contains 

 
An association rule, R, has the form:  
 
 
If <ant> then <cons> 
 
Where: 
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ant is the antecedent of the rule 

cons is the consequent of the rule 

 

Ant and cons have the form:  

 

<operand> = <value> 

 

Where:  

<operand> is a column  

<value> is a literal value 

 

The SI algorithm uses a set of known association rules. 

S is the number of known rules 

Rk represents a rule where Rk ∈ {R1,…,Rs} 

k represents a variable with values 1 to S 

ant represents an antecedent of a rule, Rk 

cons represents a consequent of a rule, Rk 

ant.Ck refers to the column of antecedent of  rule Rk 

cons.Ck refers to the column of consequent of  rule Rk 

 

Rk.ant.Ck.Vk (or simply ant.Vk ) refers to the value used in Rk’s antecedent 

Rk.cons.Ck.Vk (or simply cons.Vk ) refers to the value used in Rk’s consequent 

 

Two auxiliary functions are used:  

  

Add_pred(Pi): this changes the query by adding an additional predicate Pi to the 

query’s predicate_list. 

 

Replace_pred(Pi, Pj.): this changes the query by removing the predicate Pi and 

adding the predicate Pj  to the query’s predicate_list. 

 

The ceiling function ⎡ ⎤  is also used: ⎡X⎤  is the smallest integer greater than or 

equal to X.  
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4.2.2 Query used for Semantic Inequivalence Algorithm 
 
 
The query, Q, is used to demonstrate the SI algorithm subroutines defined in 

Section 4.2.3: 

 

 

SELECT DISTINCT a  

FROM   table_t  

WHERE column_i <operator> value_i 

AND  column_j <operator> value_j 

 

This is the minimum query structure required to exemplify the SI algorithm 

subroutines. This is because 2 predicates are required for incoherence detection. 

Otherwise only 1 is needed.  

 

The example query, Q, is based on table_t.  

 

Let table table_t have columns a, b, c, d, e, f 

 

There is an B+ tree index on columns (a,b), a B-tree index on column (c) and a 

B-tree index on column (e).  

 

Let table table_t have n rows. Each page holds r rows.  So the number of pages is 

NPAG = ⎡ n/r ⎤  

 

Let the rules exist:  

If b = value_1 then a = value_2 (75% confidence) 

If b = value_1 then f = value_2 (75% confidence) 

If d = value_4 then e = value_5 (70% confidence) 
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4.2.3 The Semantic Inequivalence Algorithm 
 

 

This section defines the SI algorithm, using the notation defined in Section 4.2.1. 

Following the definition of each subroutine, the subroutine is demonstrated 

against the sample query and predicates.   

 
Input: Query, Q 
 
Output: Transformed Query, Q' UNION Q'' where Q' is the semantic 

inequivalent query and Q'' is the query corresponding to information known from 

association rules where the rule that is used has less than 100% confidence. 

Where the used rule has 100% confidence Q' is output only since this is 

semantically equivalent to Q. Where a rule covers a query, only Q'' is output. 

Null is output in the case of the algorithm determining that a result set is not 

possible.  

 

Even though the input to the SI query is a conjunction of simple predicates, the 

output may include a disjunction of predicates. 

 

The algorithm steps through each predicate of a query, that is each simple 

expression within the where clause of an SQL statement. If the column used in 

the predicate is also the antecedent of a rule, then the rule may be useful to help 

answer the query. 

 
In the SI algorithm, it is seen that the main components of the control region are 

decision making and transformation of the query.  The decision making, shown 

as the IF statements, determine the transformation that will be made to the query 

by the algorithm.  

 
FOR EACH predicate Pi  ∈ {P1,…,PN}, in Q:  
 
BEGIN 
 

/* depending on the operator value apply one of these functions if criteria 
specified are met. These will increase the potential for using SI by 
replacing inequality with equality */  
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IF ( Pi.operator = '<>' ) /* NOT EQUAL */   
 
BEGIN 

  Execute inequ_operator 
END 

 
  

IF (Pi.operator = '>') 
 

BEGIN 
  Execute greater_than_operator 

END 
  
   

IF ( Pi.operator = '<' ) 
 

BEGIN 
  Execute less_than_operator 

END 
 
 

IF (Ci = ant.Ck  for some k ∈ {1,…,S}) 
/* predicate column is same as the antecedent column in 1 or more 
rules */ 

 
BEGIN 

/* choose a rule. This calls the subroutine to select a rule for 
applying to the query to create the SI query */ 
 

  Rk =  rule_selection() 
 END 

  
 ELSE 
 BEGIN 
 
  Output Q 
 

EXIT algorithm /* since no further rule transformation can take    
place */ 

 
 END 
 
  

IF ( select_list =cons.Ck  OR select_list= (cons.Ck  , ant.Ck) ) 
 
BEGIN 

  Execute select_col_in_rule 
END 
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IF ( cons.Ck ∉ select_list ) 
 
BEGIN 

  Execute select_col_not_in_rule 
END 
 
  
IF (cons.Ck = Cj  for some j ∈ {1,…,N} )  

/* if the rule’s consequent.column is equal to the column  
of a different predicate in the query */ 

 
BEGIN 

  Execute rule_alt_predicate 
END 

  
 
END 
   

Definition of inequ_operator 
 

 IF (Ci = ant.Ck for some k ∈ {1,…,S} 
 AND Ci.number_of_distinct_values = 2  
AND Ci.distinct_values = {V1, V2} 
AND Ci.Vi = V1 ) 

 
 BEGIN 

 
P(N+1)= (Ci = V2) 

 
Replace_pred (Pi,P(N+1)) 
 
/* this will replace a <> SARG with =.   This is useful if there is a 
composite index */ 

   
END 
 

 End of definition of inequ_operator  
  

 Example of inequ_operator:  

 Using the predicate:  

b <> value_0 

 by substituting for Q’s predicate: 

 column_i <operator> value_i 
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If there are only 2 distinct values for b, then the condition 

Ci.number_of_distinct_values = 2 is met.  

Additionally, column b is the antecedent of a rule, hence the 

criterion Ci = ant.Ck is also met.  

If the only other value for column b is value_1, then the predicate 

b <> value_0 

is replaced with: 

b = value_1 

 

If there are more than 2 distinct values for b, then the condition 

Ci.number_of_distinct_values = 2 is not met. Hence no 

transformation takes place. 

 

  End of inequ_operator example.  

 
 
 Definition of greater_than_operator  
 

IF Ci = ant.Ck  for some k ∈ {1,…,S} 
AND Ci.Vi = V1 
AND {x | x ∈ Ci.distinct_values AND x  > V1 } = {V2} 

 
BEGIN 

 
P(N+1) = (Ci = V2) 

 
Replace_pred (Pi,P(N+1)) 
 

 
/* if there is a rule where ant.Ck.Vk = the greater value , then it 
will be able to be used for partially answering the query and 
forming a SI query */ 
 

END 
 

 End of definition of greater_than_operator 
 

  Example of greater_than_operator:  

  Using the predicate:  

b > value_0 

by substituting for Q’s predicate: 
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column_i <operator> value_i 

 

If there is only one value for b which is greater than value_0, then 

the last condition is met.  

Additionally, column b is the antecedent of a rule, hence the 

criterion Ci = ant.Ck is also met.  

If the only value for column b that is greater than value_0, the 

value specified in the predicate, is value_1, then the predicate 

b > value_0 

is replaced with: 

b = value_1 

 

If there is more than one value for b which is greater than value_0, 

then the last condition is not met. Hence no transformation takes 

place.  

 

End of greater_than_operator example.  

  

 
Definition of less_than_operator 
 

 IF Ci = ant.Ck  for some k ∈ {1,…,S}  
AND Ci.Vi = V1 
AND  {x | x ∈ Ci.distinct_values AND x  < V1 } = {V2} 

  
 

BEGIN 
 

 P(N+1) = (Ci = V2) 
 

Replace_pred (Pi,P(N+1)) 
 

/* if there is a rule where ant.Ck.Vk = the lesser value, then it will 
be able to be used for partially answering the query and forming a 
SI query */ 
 

END 
 

 End of definition of less_than_operator 
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 Example of less_than_operator:  

 Using the predicate:  

b < value_1 

by substituting for Q’s predicate: 

 column_i <operator> value_i 

 

If there is only one value for b which is less than value_1, then the 

last condition is met.  

Additionally, column b is the antecedent of a rule, hence the 

criterion Ci = ant.Ck is also met.  

If the only value for column b that is less than value_0, the value 

specified in the predicate, is value_1, then the predicate 

b < value_1 

is replaced with: 

b = value_0 

 

If there is more than one value for b which is less than value_1, 

then the last condition is not met. Hence no transformation takes 

place. 

 

End of less_than_operator example. 

 
 
Definition of rule_selection 
 
/* rule_selection returns the rule to be applied to transform the query. 
This is the rule most likely to enable an improved data access path to 
answer the query. */ 
 

 IF rule exists where cons.Ck has B+ tree index  
 BEGIN 
  return Rk 
 END 

 
ELSE 
 
BEGIN 

IF rule exists where cons.Ck has B tree index 
 
BEGIN 
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IF more than 1 rule  

choose rule with highest confidence : return Rk 
 

END 
ELSE /* no indexes */ 
BEGIN 
 

choose rule with highest confidence : return Rk 
 

END 
 END 

  
 
End of definition of rule_selection 
 
 

Example of rule_selection:  

Using the predicate: 

b = value_1 

by substituting for Q’s predicate: 

 column_i <operator> value_i 

 

Column b is the antecedent of 2 rules:  

If b = value_1 then a = value_2 (75%) and  

If b = value_1 then f = value_2 (75%) 

 
The consequent of the first rule has a B+ tree index. Hence 

rule_selection will choose the first rule. Output of rule_selection 

is the rule:  

If b = value_1 then a = value_2 

 

 End of rule_selection example.  
 

 

 Definition of select_col_in_rule 
 
IF (Rk.confidence = 100%) 
 
BEGIN 

IF {Pi } = { P1,..,Pn } /* there  is the only 1  predicate in Q */ 
 BEGIN 
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  Q is answered completely by cons.Vk  /* rule covering */ 
 

Q'' = select cons.Vk  /* Sybase allows select of a literal 
without a from clause */ 

 
Output Q'' 

   
 EXIT algorithm 

 
 END 
 
 ELSE 
 BEGIN 
  P(N+1) = (cons.Ck) 
 

 Q' = Add_pred(P(N+1) ) to Q 
  
 Output Q'  
 
 EXIT algorithm 
  

 END 
 
END 
 
ELSE /* confidence < 100% */ 
 
BEGIN 
 
 Q is answered partially by cons.Ck  
  

  
          IF (cons.Ck has an index) 
 
  
 BEGIN 
 

P(N+1)  = ( cons.Ck < cons.Vk OR cons.Ck > cons.Vk  ) 
 
use < and > rather than <>  /* the query will no longer 
request what is known from the rule */  
 
Q' = Add_pred(P(N+1) ) to Q  
 

 END 
 
 ELSE /* no index on cons.Ck */ 
  
 BEGIN 
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  P(N+1)  = ( cons.Ck <> cons.Vk) 
 
  Q' = Add_pred(P(N+1) ) to Q 
 
 END 
 
 /* add the ‘known’ part of query – known from the rule */ 
  
 
 Q'' = select cons.Vk 
 
 Output Q' UNION Q'' 
 

EXIT algorithm 
   

END 
 
End of definition of select_col_in_rule 

  

  Example of select_col_in_rule:  

The select list of Q is column a. This is also the consequent of the 

rule output from rule_selection. The rule has less than 100% 

confidence hence the else part of the subroutine will be executed. 

The consequent of the rule a = value_2 is the partial result set.  

P(N+1)  is the negation of the rule’s consequent, that is: 

a <> value_2 

 

Since the consequent column is indexed, P(N+1)  will be: 

(a < value_2 or a > value_2). 

This is union-ed with the known part of the query that is the rule’s 

conseqent.  

However, if the rule did have 100% confidence and the query Q 

only had the 1 predicate: b = value_1, then the rule would 

answer the query, with the consequent a = value_2 being the 

result set.   

 

End of select_col_in_rule example. 

 
 
Definition of select_col_not_in_rule 
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IF (Rk.confidence = 100%) 
 
BEGIN 
 P(N+1) = (cons.Ck) 
 
 Q' = Add_pred(P(N+1) ) to Q 
 
 Output Q' 
  
 EXIT algorithm 
END 
 
End of definition of select_col_not_in_rule 

   

  Example of select_col_not_in_rule:  

Let the select list of query Q be column c instead of column a.  

If the rule has 100% confidence then the predicate 

a = value_2 

is added to the query.  

 

End of select_col_not_in_rule example 

   
 

Definition of rule_alt_predicate 
 
 IF (Rk.confidence = 100% ) 
 BEGIN 

IF (Cj.Vj <>  cons.Ck.Vk) 
 
  BEGIN 
 
    Q has no result set 
 
   Output NULL 
 
   EXIT algorithm 
 
  END 
 END 
 
 End of definition of rule_alt_predicate 

 

Example of rule_alt_predicate:  

Using the predicate, Pj  
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a = value_3 

by substituting for Q’s second predicate: 

 column_j <operator> value_j 

 

If the rule has 100% confidence, then there is a null result set 

since the query is contradicting a rule with 100% confidence.  

 

 End of rule_alt_predicate example. 

 

 

 

4.3 Conclusion  
 

 

This chapter has defined and demonstrated the SI algorithm in detail. A sample 

query was defined that was used to exemplify each module of the SI algorithm 

and how it transformed the query. 
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Chapter 5  

Cost Comparison 

5.1 Introduction 
 

 

Chapter 4 specified and exemplified the SI algorithm in detail. To build upon 

this, this chapter looks at the cost of using SI because for SI to be a useful query 

processing technique, it should be able to reduce the cost of answering queries in 

some definable situations. There is no single solution that is ideal for every 

possible scenario. Hence SI should be an efficient method in some identifiable 

circumstances.  

 

In Section 1.2, we discussed that the motivation for this thesis is to increase the 

usage of association rules by employing them to partly execute a query. The rules 

are taken advantage of by using them to re-write the query into one that is 

semantically different to the original query - hence taking the information from 

the database rules into account. This chapter demonstrates that by using SI in this 

way it can reduce the cost of answering queries because it reduces the requested 

information, consequently making the result set narrower due to requiring less 

data to be retrieved. This is efficient if it results in lower query processing cost. It 

is seen that the response time for answering the SI query may be less than that for 

answering the original query, given by the potential of being able to use a more 

efficient data access path that would not have been used by the original query but 

is suitable for the modified query.  
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For the purpose of demonstrating the effects of applying the SI algorithm on 

query processing cost, this chapter compares the cost of answering queries in 

their original form, with the cost of using the corresponding SI queries. This is 

done in order to help identify and establish the situations where SI adds the 

greatest advantage. The effect on the cost of processing a query is examined by 

using sample database queries, based on the data model defined in Section 3.8. 

Each query is walked through the SI algorithm. The cost of the original query, 

before applying SI, is compared with that of the SI query, which is achieved as 

the resultant output of the SI algorithm. Hence the effect of SI on query cost is 

demonstrated.  

 

To further and independently demonstrate the benefits that SI has on query 

processing costing, Appendix A5 describes a formal query processing algorithm 

known as the Decomposition Algorithm [50]. This is used for autonomously 

demonstrating how SI can reduce the query processing cost in a generic way, 

without using any specific query example.  

 

 

5.2 Overview of Semantic Inequivalence in Action  
 

 

This section gives an overview of how the application of the SI algorithm can 

help process a simple query. For this, we use a query based on the table, table1.  

 

Let table table1 have 4 columns, a, b, c and d, each of equal data type and length, 

with a composite index on columns (a, b). 

 

Say table1 has 1,000,000 records stored on 100,000 pages. Hence a full table 

scan would require 100,000 I/Os – that is 1 I/O per page. 

 

Example 5.1: 

 

A query, Q, is:  
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SELECT DISTINCT a 

FROM   table1  

WHERE  b = value_1 

 

Let the rule:  

 

if b = value_1 then a = value_2  

exist with 75% confidence.  

 

With SI application, the query Q would be changed to Q':  

 

SELECT  DISTINCT a  

FROM    table1  

WHERE   b = value_1 

AND    (a > value_2 

OR      a < value_2) 

 

The SI query, Q', takes into account that value_2 must be in the result set. This is 

given by definition of the rule, and hence can be eliminated from being requested 

by the query. It is removed from being requested by the extra specification via 

the addition of predicates to only retrieve column a where the value is not equal 

to value_2, the value known or given from the association rule.  

 

The additional query conditions may encourage use of the index for two reasons. 

- With the new predicates that are added to form query Q', the optimiser would 

be more likely to use the index, since there is an increase in selectivity.  

- Moreover, the leading column of the index is being used for Q' as a predicate in 

the query, giving a key column starting point for an indexed-based search.  

  

Say for example, column b has value_1 for 20% of the rows (200000 rows), then 

given the association rule, we know that column a has the value of value_2 for 

75% of these 200000 records. Using the index this would involve reading only 

index pages - no data pages would need to be read because the index covers the 
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query, and only a subset of the index pages would need to be read – that is, those 

where (a > value_2 or a < value_2) and b = value_1.  

 

If the index size is 50% of the table size - assuming equal sized columns, then 

this would result in 50000 pages being read if the whole index is scanned. 

However, with the SI query, if approximately 75% of 20% (where b = value_1) 

of the index pages are read, then only 7500 pages would be read plus 1 rule page, 

assuming there is a single rule page.  

 

If an average index is 10% of table size [45], then by SI enabling index usage it 

will reduce I/O to approximately 10% of what it would have been previously, 

with the original query. 

 

If the rule has 100% confidence then only nrp I/Os would be needed, where nrp 

is the number of rule pages. This compares to 100000 I/Os for a full table scan.  

This is because the rule would answer the query completely – the situation of 

rule covering.  

 

If however the rule’s confidence is 75% as given, and there is no index on the 

columns (a,b), then using SI would actually be more expensive, because it would 

still require 100000 I/Os for the full table scan, plus nrp I/Os for reading the 

rules page. In this situation, the original query should not be changed.  

 

This demonstrates a crude, yet common style of query that can benefit from the 

application of SI. It aims to provide an explanation via an example of the 

advantage of using the SI process and its effects. It is extensible for more 

complex queries, as will be seen in the examples throughout Chapters 6 and 7.  

 

 

 

 

 



 69

5.3 Comparing Costs 
 

 

This section compares the cost of using SI to not using SI, with both B-tree 

indexes and bitmap indexes. The comparison is based on the query example in 

Section 4.2.2: 

 

SELECT  DISTINCT a  

FROM    table1  

WHERE   b = value_1 

 

Costs are based and compared on the I/O required to answer the query. I/O is 

used instead of elapsed time or CPU time for several reasons: it is consistent 

across query executions, it is not dependent on other processes running on the 

machine and it is independent of how slow or fast the underlying hardware may 

be. Hence it is more reliable.  

 

5.3.1 With B-Tree Indexes 

 

Given the original query, Q:  

 

SELECT  DISTINCT a  

FROM    table1  

WHERE   b = value_1 

 

If there is no index on column b, this would require a full table scan, which is 

NPAG I/Os, as defined in Section 4.2.2.  

 

With a composite index on columns (a,b), the original query Q cannot make use 

of the index since Q’s predicate operand is not the leading indexed column, a. 

However, an SI query, Q', derived from Q can make use of the index as now 

discussed.  
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The SI query, Q' , is: 

 

SELECT DISTINCT a  

FROM  table1  

WHERE b = value_1 

AND  (a > value_2 

OR    a < value_2) 

 

This is formed because the original query can be answered partly by the first of 

the three association rules defined in Section 4.2.2 namely,  

If b = value_1 then a = value_2 (75% confidence) 

 and can therefore be altered accordingly by application of the algorithm. 

 

The resulting SI query Q' can make use of the index because it has a predicate 

within its predicate list whose operand is the leading indexed column, a.  

 

The I/O required for the SI query would be:  

 

number of data pages to read while using the index 

+ number of rule pages to read  

+ number of index pages to read  

 

We consider these below.  

 

IF: 

(number of index pages to read + number of rule pages)  

is less than  

(NPAG – number of data pages to read while using index) 

 

THEN:  

The application of SI has resulted in less I/O to answer the query. 
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This condition reflects the difference between executing the SI query, Q', with 

the original query, Q, in terms of the difference in the I/O cost that would result.  

 

Number of Data Pages 

 

The number of data pages that must be read may be significantly reduced given 

the information in the rule relevant to the original query. If half of the rows in 

table1 have b = value_1, then since the confidence of the rule is 75%, 

approximately 25% of those rows, that is 12.5% of the rows in the table as a 

whole, do not have a = value_2 and therefore can satisfy the predicate (a > 

value_2 or a < value_2). The query only needs to access those rows. The exact 

number accessed may be less that 25% of the rows with b = value_1: for 

example, null values would not satisfy the predicate although not being equal to 

value_2 and so between 0% and 25% of the rows with b = value_1 would need 

to be accessed.  

Number of Rule Pages 

To enable SI to be efficient, the number of rules and hence rule pages should be 

limited to those that are most useful to the database querying patterns, coupled 

with those that are most powerful or appropriate. This means that the stored 

association rules should be of relatively high relevance, such that they can be 

used for ad hoc queries in a very large database, or a data warehouse, and 

significantly improve response time. This is the pre-requisite of the association 

rules that should be selected for storage. For example, a rule that has a high 

confidence level but is not providing information that is relevant to the database 

querying should be filtered out. Minimising the number of rule pages is 

important to minimise the impact on I/O. The greater the number of rule pages, 

then the more read I/Os are required, offseting the advantage of using SI. 

 

Such a set of ‘most relevant rules’ can be determined by a database administrator 

or database specialist with local knowledge of data usage. The criteria used for 

selecting rules should be based on criteria such as:  
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- how frequently the attributes in the rule are queried. For example if a 

rule’s attributes are never queried it may not be relevant to the 

applications 

- high confidence level of rule. The greater the rule’s confidence the 

more impact it has on query selectivity when a query is changed to 

use it. 

 

The most ‘powerful’ or ‘relevant’ rules refer to those association rules that help 

reduce the query processing cost by changing the data access path. This includes 

those rules that: 

- enable rule covering 

- enable an index to be used  

- enable an index to be  ‘better’ or more efficiently used  

- enable incoherence detection.  

Number of Index Pages 

 

The depth of an index or number of index levels is a direct measure of 

performance of using an index in evaluating a query [24].  

 

The number of index levels to traverse through depends upon the number of rows 

in the table and the length of the indexed key / columns. The number of index 

levels can also be affected by fragmentation in the database. Therefore the 

number of index levels can be hard to predict precisely. However, using a 

RDBMS, such as Sybase Adaptive Server Enterprise, a table structure such as 

table1 with 1 million records and an index on (a,b) has 3 levels in the index 

(determined using a Sybase system command, sp_estspace), and NPAG is 16000.  

 

Substituting this in the above cost comparison formula:  

(number of index pages to read + number of rule pages) < (NPAG – number of 

data pages to read while using index) 

 

The number of rule pages should be as small as possible since more rule pages 
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will progressively provide less and less relevant rules, whilst requiring more I/O. 

Hence assuming a single rule page and substituting 1 in the formula for number 

of rule pages, we have: 

 

If (3 + 1) < (16000 – number of data pages to read using index) 

then the query transformation will have been effective.  

 

Given that NPAG is the total number of datapages,  

number of data pages to read while using index will be approximately: 

 

percentage of rows that need to be read * NPAG 

 

Hence the more selective the query becomes the percentage of rows that need to 

be read becomes less, reducing the number of data pages to read using index.  

 

This being true is likely with effective indexing. Given the number of index 

pages to read is relatively small  [45], rarely above 3, we can safely assume the 

reduction in I/O attributed to SI application as being the reduction in the number 

of data pages to read using the index.   

 

In this scenario, if 12.5% of rows need to be read and assuming that the index is 

clustered, then the number of data pages to read using the indexed access would 

be 12.5% of 16000 pages, or 2000 pages. Substituting this in the SI cost 

reduction formula:  

(3 + 1 + 2000) < 16000.  

 

Therefore with SI, there is a reduction in I/O of 13096 or nearly 81%.  

 

If the original query could have used the index, such that SI would not change 

the access path, then there may still be some advantage in using SI. This would 

be the case if it adds a predicate on a column that is also included in the index 

because this would increase the data selectivity. However, the advantage would 

not be as profound as when SI enables the access path to be changed from a full 

table scan to indexed access as in the example.  
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If the index were on the same columns but in the reverse order, (b,a), such that it 

could have been used by the optimiser as the access strategy before applying the 

SI algorithm, then there may still be some cost advantage in using SI. The 

advantage would not however be as prominent as when SI enables the index to 

be used when otherwise a full table scan would be used.  

 

If the index were on columns (b,a), the original query would be able to use it, as 

the predicate’s column b is on the leading column of the index, providing a 

starting point for an index-based search. In this case, the number of pages 

accessed would be: 

 

number of index pages to read + number of data pages to read  

 

If 10% of the rows have b = value_1, then 10% of data rows would need to be 

accessed. If additionally, SI introduces the clause of a <> value_2, and 75% of 

rows have (a  = value_2 where b = value_1), as the rule stipulates, then only 

25% of the 10% of the rows need to be accessed with SI application. Therefore, 

using SI to change the query, rather than 10% of total rows being accessed in this 

case, only 10% * 25% of rows would need to be accessed, or 2.5%. This is 

approximately 2.5% of the data pages rather than 10% of the total data pages – a 

75% reduction. Given the number of index pages to read is relatively small  [45], 

rarely above 3, we can safely assume the reduction in I/O can be attributed to SI 

application.  

 

Generally, rather than x% of rows being accessed, where x is the selectivity of 

the leading index column that the query would be able to use,  (100 – y)% * x% 

of rows would need to be accessed, where y is the confidence of the rule. This 

results in only (100 – y)% of the number of rows that would otherwise be 

retrieved. Hence the higher y is, or the higher the rule’s confidence, then the 

more selective the SI query becomes – resulting in greater impact using the same 

query plan.  
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5.3.2 B-tree (Non-Clustered) Indexes vs B+tree (Clustered) Indexes 

 

Clustered indexes work well with predicates that include a range, such as, less 

than < and greater than >, and therefore with SI. This is because the existence of 

rules, upon which SI is based, implies that values are repeated. Hence clustering 

them, or physically storing them together, can help process a query more 

efficiently, since more ‘relevant’ data is read from a page compared to 

randomised data ordering.   

 

Non-clustered indexes are generally more suitable for highly selective point 

queries or where less than 10% of rows would be retrieved [32].  

 

For example, a query Q has a predicate on column b with 30% selectivity of the 

table’s records. Even if column b has a non-clustered index on it, then a full table 

scan is likely to be chosen as the access strategy by the optimiser rather than the 

non-clustered index, because of the high range of values that need to be accessed 

that are not physically stored together. Rather they are disparately stored among 

different pages, unlike with a clustered index storage strategy.  

 

Non-clustered indexes can be useful with SI if previously the index would not be 

used by the original query due to it not being selective enough. The chance of a 

more efficient access path is likely to arise if SI creates either a point query or a 

significantly more selective query, from what previously was not selective 

enough, or not including the leading column of an index. If none of these are 

case, then SI is unlikely to improve the cost of processing the query.  

 

If, however, predicates with < and > are added, where the predicate column is 

indexed, or is the leading column of a composite index, then SI is less likely to 

change a query plan if the predicate does not filter a significant proportion of 

rows. Full table scanning may be more efficient than using a non-clustered index 

where data is not physically in order and a significant proportion of pages need to 

be accessed. This is because if most rows need to be read then indexed access for 

a large number of rows can result in more I/O than accessing the entire table just 

once with a full table scan. Full table scanning also uses sequential access, which 



 76

in practice, with multiple block reads and large I/O sizes, increases the efficiency 

of this type of access.  

 

Non-clustered indexes may help in conjunction with SI for rules with less than 

100% confidence and where even adding an inequality clause (for example, a > 

value_2 or a < value_2) is selective enough for non-clustered indexes to be 

preferred over other access strategies.  

 

A unique usage of non-clustered indexes is their ability to completely answer a 

query, known as index covering. This is where the index has sufficient 

information to answer the query without requiring access to the data pages. Only 

non-clustered indexes have this ability because they are dense indexes. This 

means that they have an entry for every data row, unlike clustered indexes, which 

have an entry for the first row of each data page.  

 

If SI enables index covering to be used, then the advantage can be higher than 

when it enables a clustered index to be used.  

 

For clustered and non-clustered indexes, the principles are similar, except that 

increasing selectivity is not as important with clustered indexes. Additionally, the 

benefits can be achieved even when the query is a range query. SI will be 

beneficial with both clustered and non-clustered indexing if either:   

-   SI enables an index to be used by adding the leading column of the index to 

the query 

-   Selectivity is increased to improve the filtering of the query result set higher 

up the index levels.   

 

If the index is clustered, then using < and > in a new predicate will generally be 

more valuable than using it in a non-clustered index, as the data in a clustered 

index is physically in the indexed attribute order. 

 

5.3.3 With Bitmap Indexes 

 

Even though the cost saving criteria, as defined above, are especially useful with 
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‘index enabling’, it has so far only been discussed with the variants of the B-tree 

index structure.  However, given that SI is suitable for very large databases, such 

as data warehouses, which bit-mapped indexes are very much oriented at [22], 

the use of bitmap indexes should be looked into in conjunction with SI as they 

can complement each other. 

 

Both bitmap indexing and SI are especially beneficial for ad hoc queries and 

very large databases with low levels of data modification transactions. Hence 

they can be used complementarily.  

 

Bitmap indexes can give huge performance gains even on the lowest end of 

hardware and reduce response time dramatically for some ad hoc queries [32], if 

they can be used.  

 

Bitmap indexes are most effective for low cardinality columns  (such as 

marital_status). These types of attributes often have rules intuitively associated 

with them, and can be highly efficient for tables with many rows as would be 

found in a data warehouse type scenario. When bitmap indexes are used for 

columns where each value is repeated many times, the bitmap index will 

typically be less than 25% of the size of a regular B-tree index [22].  

 

If the use of a bitmap index for query optimisation is enabled by SI application or 

at least further improved by promoting selectivity, then I/O can be significantly 

reduced.  

 

For example, given the query:  

 

SELECT DISTINCT a 

FROM   table1  

WHERE  b = value_1 

 

With SI, the query becomes:  

 

SELECT DISTINCT a 
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FROM   table1  

WHERE  b = value_1 

AND    a <> value_2 

 

Bitmap indexes can be used as effectively for inequality (<>) as they can for 

equality (=). This is demonstrated below using the NOT operator.  

 

If there are 5 distinct values for column b and 3 distinct values for column a, an 

example bitmap index on column a is:  

 

 

 

a = value_1  a = value_2 a = value_3 

1   0   0 

0   1   0 

0   1   0 

0   0   1 

 

Each row represents a row in the actual table. A 1 bit indicates the row has the 

value. A 0 bit indicates that it does not have the value.  

 

Using bitmap indexes for the query:  

 

b = value_1 AND NOT a = value_2  

1   AND NOT  1  =  0 

1   AND NOT  0  =  1 

0   AND NOT  0  =  0 

0   AND NOT  1  =  0 

 

This shows that only the second row meets the criteria of the where clause, with 

a result bit of 1, or true.  

 

If bitmap indexes are used correctly, on columns with the same value repeated 

many times, which is complementary to SI, because association rules also require 
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values to be repeated to give data patterns - then they typically take less than 

25% of the size of a regular B-tree index. Therefore storage can be very compact, 

consequently requiring less I/O for accessing them.   

 

Let table table1 have 1million rows with column b having 3 distinct values and 

column a having 5 distinct values.  

 

Using bitmap indexes on these would require: 

1000000 * 8 bits = 1 million bytes or 1MB to store the index.  

 

The cost advantage of using a bitmapped index in this way depends upon 

whether it would have been used before SI was applied to the query, or if SI 

enables it to be used when it would not have been used otherwise.   

 

If a bitmapped index is used after SI is applied only and would not have been 

used previously, then the cost of the SI query using the bitmap index is:  

 

number of bitmap index pages to read + number of rule pages to read 

 

If this is less than NPAG, then SI is useful in reducing query cost.  

 

The number of bitmap index pages is x MB, where x is: 

(number of rows) + (number of distinct values in column) = n bits.  

(n bits / 8) / (1024 * 1024) = x MB.  

 

If the bitmap index could be used first before SI, then adding SI will increase 

selectivity, hence making bitmap index use more effective in reducing the 

number of rows returned.  

 

Taking the original query, Q, for example,  

 

SELECT DISTINCT a 

FROM   table1  

WHERE  b = value_1 
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Only the bitmapped index on column b would need to be accessed. If this has 3 

distinct values, then 1000000 * 3 bits would need to be accessed, resulting in 

accessing approximately one-third of the table’s records assuming uniform data 

distribution.  

 

Now, with the SI query, rather than selecting one-third of the rows, it only selects 

(1/3 * selectivity of new predicate) of the table rows.  

 

The higher the selectivity of the additional predicate is, the fewer the number of 

rows that need to be accessed.  

 

Hence, SI can reduce the number of pages that need to be read at the table level 

by the selectivity of the predicates that are added as a result of applying the SI 

algorithm.  

 

 

5.4 Exceptional Cases 
 

 

The above cost criteria for success are applicable if a relevant rule has less than 

100% confidence. There may however be some cases where a rule has 100% 

confidence, and can cover, or completely answer, a query. The query that can be 

answered using this rule would have I/O reduced to the number of rule pages in 

the database. If there exists only 1 rule page, then only 1 I/O would be required 

to answer the query. Undoubtedly this would be more efficient than any other 

access strategy, such as a full table scan or an indexed access path.  

 

The rule page is likely to be cached if it is used frequently for the SI process, 

using a least-recently-used cache page-ageing algorithm. Alternatively, it can be 

pinned to a page in memory to prevent the need to read it from disk. 

 

Rule covering can be a useful and powerful access strategy in a very large 
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database that has some data patterns that are otherwise unknown to the DBMS 

(without the searched rules) and hence would otherwise require a large amount of 

resource to execute.   

 

Example 5.2:  

 

SELECT no_of_staff 

FROM stores 

WHERE store_name = 'The Bookshop' 

 

This has the relevant rule: 

 

If store_name = 'The Bookshop' then no_of_staff = 6 

(100% confidence)  

 

This rule answers the query, not requiring access to the data or index pages.  

 

There is also the opposite exceptional case where the SI algorithm may discover 

a query has no result set via incoherence detection (the last part of the SI 

algorithm). This is efficient compared to finding an empty result set by reading a 

table or index, as this can be found with the SI algorithm, with minimum 

computational cost, if any I/O, in particular since the rule page, is cached.  

 

 

5.5 Conclusion 
 

 

This chapter has exemplified the effects of SI on the cost of processing a query.  

 

A query is appropriate for SI application if there is a useful rule that can be 

applied. A useful rule is one that can add predicates to a query, such that the 

addition of the predicates enables an access path to be chosen by the query 

optimiser that results in less I/O. 
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Generally, SI can reduce the cost of processing a query in situations where the 

access path used by the optimiser for the SI query is more efficient than the path 

that would be used for the original query, holding other factors constant. 

However, even with the same access path (if an indexed path) being used for the 

original and SI query, the latter may still be more efficient, but the improvement 

will not be as significant. If full table scan access is used before and after, then 

there will be no gain to using SI.  

 

The cost will be more reduced if there is an improved physical data access path, 

such as a useful index which can be used after SI is applied, which would not 

have been used otherwise, either because without the additional column the 

query would not be selective enough or because the leading part of the index was 

not being used before SI. I/O will be reduced by the number of pages read for a 

full table scan, minus the number of pages read using an alternative access 

technique, plus nrp rule pages. 

 

A generic style query was used to show the cost comparison with both B-tree and 

bitmap indexes. This was subsequently mapped to specific queries. As 

demonstrated by the examples, SI will give the greatest advantage where adding 

a query predicate enables the use of an index where a full table scan would have 

been used otherwise.  

 

SI also adds a big advantage where either a rule covers, or answers, a query or 

where a rule tells that there is no result set, because both of these scenarios can 

prevent an otherwise expensive operation, such as a full table scan, from taking 

place.   

 

Appendix A5 demonstrates cost comparison of queries before and after applying 

SI using an independent costing technique with the established QUEL 

Decomposition Algorithm, but replacing QUEL with the SQL query language.  
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Chapter 6  

Real-world Examples 

6.1 Introduction 
 

 

Chapter 6 puts the SI algorithm to practical use by applying it to tackle real 

world queries, hence providing empirical evidence of its usefulness. For this 

purpose, two completely separate and independent real-world databases are used. 

Two databases are used to strengthen the evidence for the usefulness of SI. Also, 

the effect of possible bias existing in one database and hence arriving at skewed 

conclusions is reduced. 

 

First of all, a set of rules was manually derived from each database. The rules 

have varying degrees of confidence – some below 100% and a few at 100%. The 

cross section of queries executed is selected to show cases where the application 

of SI provides huge advantages to cases where there is no improvement at all 

with the application of SI.  

 

Prior to the demonstration and use of SI against the real database queries, this 

chapter provides some background on the choice of databases, rules and queries 

that are used. This is followed by an overview of the information produced by 

the DBMS optimiser’s query plan and what it means. Then the actual queries are 

listed.  

 

In Sections 6.5 and 6.6, for the real-world queries, each query example set lists 

the I/O costs, the original query followed by appropriate association rules if any, 
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and the corresponding SI query. Each ‘query set’  (consisting of an original query 

plus its corresponding SI query) is compared in terms of the I/O required for each 

– showing the situations where SI gives benefit and how significant the benefit 

actually is. The detailed query plans chosen by the optimiser are listed in 

Appendix A4. The results and findings are summarised in the following section.  

 

6.1.1 Motivation of Research Method 
 
 
Six main categories were identified in terms of the effect of SI on query 

processing cost. Each query fell into one of these categories. These categories are 

listed in Table 6.1 along with the impact on I/O and the query examples that 

exemplify them.  

 

Seeing the impact on I/O reduction that SI can have helps motivation for the 

study of SI queries and their comparison with original queries as conducted in 

Section 6.5 and Section 6.6.  

 
Cause of change between original query and SI query 

 

Average 

approximate 

change in I/O 

SI answered by rule (either rule covering or incoherence 

detection) – requires 100% confidence rule (6.3, 6.8, 

6.15) 

4000 times less 

100% confidence rule that does not answer SI query but 

enables index access (6.6) 

1000 times less 

SI enables index covering (6.2, 6.11, 6.15) 75 times less 

SI enables use of index (6.1, 6.5, 6.7, 6.12, 6.16, 6.17, 

6.18, 6.19) 

24 times less 

SI improves selectivity – but same access path (6.9, 6.10) 4 times less 

No change in access path (6.4) 1.5 times more 

 
Table 6.1 – Categorisation of Query Processing with SI 
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This shows that SI may be a very powerful query processing technique in several 

types of situation. The most powerful usage is in the situation where I/O is 

reduced to 1 via rule covering. Substantial degrees of improvement are also seen 

where a more efficient access path is made available to the query optimiser 

following the application of the SI algorithm. Section 6.7 discusses the results in 

more detail.  

 

The graph below compares the I/O for each query example.  

 

Cost Comparision
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Figure 6.1 – Cost Comparison With and Without SI 

 

 

 

6.2 Background and Reasons for the Choices 
 

 

6.2.1 Choice of Databases 
 

For the empirical analysis of SI, two large real-world databases were used, 

running on Sybase Adaptive Server Enterprise.  

 

The first database is a 14 gigabyte (Gb) management information system (MIS) 

database used to derive a set of sample rules and execute queries against. This 
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database was chosen for a number of reasons. Firstly, it is the type of database 

that SI has the most potential value added for. This is because it is a large data 

warehouse type database with relatively static data used for a decision support 

system (DSS) and MIS type applications and queries. As highlighted throughout 

Chapter 2, this is the type of database system that SI is ideal for. This MIS 

database is actually used for reports and ad hoc queries for historical information 

on stocks and asset portfolios. It is not updated frequently and is used to provide 

a data warehouse style database for a host of asset management business 

applications. It is also relatively large in size, and there are not many such large 

real world databases that one has access to, and are simultaneously suitable for 

this purpose.  

 

The second database used for the set of real world examples is a 9Gb online 

trading database with live data feeds. Some tables were holding many millions of 

records. However, despite updates to the data, patterns remained similar, hence 

rules were found to exist. With respect to association rules, the database was 

therefore relatively static. The type of data that was changed were attributes like 

security prices – whereas rules existed on other non-price attributes, which are 

queried for reporting purposes, including regulatory reporting.  

 

The SI algorithm was applied to each query against its respective database and 

the costs, based on I/O, of the original query and SI query were compared.  

 

The sets of sample queries were manually extracted from the applications that 

use the databases. The queries were found either embedded in the client 

applications or within stored procedures that the clients execute. The selection of 

queries aim to show where SI is most useful, and where it is not useful. A wide 

cross-section of queries was taken with the intention of providing a varied 

sample, yet choosing queries that ‘fit’ into the SI framework in terms of having 

relevant rules that can be used to help answer the queries and enable 

transformation. Thus if an association rule existed on column currency for 

example, a query with currency as a predicate would be a good candidate for 

selection. If none of the column attributes used in a query had any relevance to 

the rules found, then SI is not relevant to use hence such a query was not selected 
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as it would give no value to demonstrating SI because the SI query would be the 

same as the original query.  

 

6.2.2 Finding Association Rules 
 

To manually search for rules, a subset of queries were picked from the 

applications that use the database, and rules based on attributes that these queries 

used were searched for. Rules were found by searching for patterns among 

columns of some of the largest tables used by the queries. Columns that hold data 

items such as codes and indicator values were predominantly searched as they 

are likely to have data relationships or patterns more than those highly unique 

attributes with date/timestamp values, float data types or identifier values (such 

as primary or alternate keys) which tend to be used for point queries. The 

searching was done by manually querying the database tables. 

 

Moreover, it was also observed in the applications that queries were often based 

upon columns that hold codes and/or indicator values. For example, queries may 

be based on finding currency codes for particular country codes or account types 

etc. This type of data is generally useful for DSS type applications or DSS 

queries. Hence finding rules that SI can use may be very useful for corporate 

decision system queries and vice versa.   

 

The rules used for query cost comparison have single column antecedents. This 

is to keep the process of demonstrating SI simple and to the point. Also, the 

example association rules from researched data mining papers were very much 

based around single attributes. Hence this was considered sufficient for 

demonstrating SI.  

 

In the first database, a lot of data was found to be stored on the clients of the 

organisation – customers or clients being a core part of any company’s data. 

Likewise, it was found that many of the application queries were based on 

retrieving client information. Hence rules were especially sought for regarding 

clients. For example, a common query found was based on finding the currency 

that the client uses as his/her base or main currency for dealing in stocks and 
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shares. However, given the base currency, there is a high confidence of the 

client’s country of residence being a particular value, and here SI enables the 

optimiser to take advantage of this sort of relationship.  

 

In the second database, the data stored is based on trades, securities, and curves, 

which are used for the pricing of trades. Therefore, the queries found were based 

around attributes of these entities for the second set of real-world sample queries.  

 

The corresponding SI queries were manually generated by stepping the original 

queries through the SI algorithm.   

 

 

6.3 Optimiser Plan Explanation 
 

 

Each query is followed by the I/O statistics required to answer it followed by the 

I/O needed to answer the corresponding SI query. The detailed query plan or 

execution path that the optimiser chose to process the original and SI queries is 

listed in Appendix A4. The statistics for the queries were collected using a 

Sybase Adaptive Server Enterprise feature to display the query plan chosen by 

the optimiser (set showplan on) and the I/O cost involved (set statistics io on).  

 

The core information in the query plan tells us the table/s being accessed, and 

whether an index or full table scan is being used for the data access. If it is using 

an index, it specifies which one, and the keys or columns in the index that are 

being used for the search request. ASC stands for an ascending index scan, whilst 

DESC for descending index scan – which is effectively backwards reading of the 

index.  

 

We can identify index covering by the description ‘Index contains all needed 

columns. Base table will not be read’.   
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I/O size can be between 2Kb and 16Kb, and may be different for a table and its 

index. The buffer replacement strategy refers to the cache replacement strategy if 

pages need to be read from disk. Pages read from disk can either replace the LRU 

page in cache or the MRU page in cache.  

 

Dynamic index refers to using an OR or an IN within a query.  

 

Getsorted may be used where for example the distinct keyword is used in a 

query, so that the optimiser needs to sort the rows into a worktable (or temporary 

holding space) for the operation.  

 

Worktable signifies a table created by the optimiser during query execution, for 

example, when performing distinct, sort (for ordering data) or grouping 

operations.  

 

Forward scan means that access is starting at the beginning of the index or first 

qualifying row, going through subsequent pages by following page pointers to 

the next page.  

 

 

6.4 Statistics Output Overview 
 

 

As well as including the query path that the optimiser chooses for each query, the 

query optimiser’s output also includes statistics on the input and output that is 

required for query execution.  

 

The statistics section provides information on the number of table accesses, page 

reads and disk reads that are performed.  

 

Scan count is the number of times that a table is accessed by a query.  

 

Logical reads refers to the total number of reads – from cache or disk. 
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Physical reads are the number of reads from disk. 

 

APF (asynchronous pre-fetch) refers to the number of reads that the optimiser 

makes from disk in anticipation of a page being requested, even though it is not 

needed at the time it is read into cache. The optimiser may decide to bring pages 

physically located together on disk into cache if it thinks it will be needed for the 

query. The rest of reads are ‘regular’- pages read from disk due to the data on 

them being requested.  Therefore, 

 

Total reads = regular reads + APF reads 

 

Total writes: the number of writes can be greater than 0 for a query if by its 

reading pages into cache, it causes a dirty (or modified) page in cache to move 

past a marker that indicates that it needs to be flushed or written to disk.  

 

 

6.5 The Query Examples – First Data Set 
 

 

The tables and indexes used for the first data set examples are listed. Following 

the table name is the list of columns, their datatype and the indexes on the table.  

   
Table: TClnt  
(ClientId int 
ClientType char(4) 
Title char(10) 
Fname char(40) 
Lname char(40) 
AddrLine char(200) 
CtryResidenceCode int 
Profession char(20) 
PrInd int 
TelNo char(20) 
FaxNo char(20) 
Email char(40) 
LastUpdate datetime 
Ccy char(3) 
Charity char(1) 
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Deal char(1) 
LocalInt char(1) 
Description char(255)) 
Indexes: 
Clnt_x1 (ClientId) – Primary Key 
Clnt_x2 on (CtryResidenceCode, Ccy) 
Clnt_x3 on (PrInd, Profession) 
Clnt_x4 (ClientType) 
Number of records: 100000 
 
Table: tPortfolio 
(PortNo int 
PortName char(5) 
Description char(255) 
Ccy char(3) 
Base char(1) 
GroupSector int 
Industry int 
IndexCategory int) 
Indexes:  
Pf_ix1 (PortNo) – Primary Key 
Pf_ix2 (Base) 
Pf_ix3 (IndexCategory, GroupSector) 
Number of records: 100000 
 
Table: tCompRet 
(PortNo int 
CompositeType int 
BalDate datetime 
ClassificationCode int 
BaseFee char(1) 
HurdleRate float 
ExpEstimate float 
FundingSpread float) 
Indexes:   
IxCompReturn1 (PortNo, CompositeType) – Primary Key 
IxCompReturn2 (BalDate) 
IxCompReturn3 (ClassificationCode, CompositeType) 
Number of records: 150000 
 
Table: TQuote 
(SecId int 
SecType char(4) 
Category char(4) 
QuoteCode char(12) 
MarketCode char(2) 
Bid float 
Offer float 
Base  float) 
Indexes:  
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Tqu_x1 (QuoteCode, MaketCode) 
Number of records: 1000000 
 

 

Example 6.1:  

 

In this example, I/O is reduced by 95%. The original query uses a full table scan 

while the SI query enables the use of an indexed access because the predicate 

that is added is on an indexed column.  

 

Original Query:  

 

1> select * from TClnt where Ccy = 'ZAR' 

 

Rule: if Ccy = 'ZAR' then CtryResidenceCode = 220 (90% 

confidence) 

 

SI Query:   

 

1> select * from TClnt where ccy = 'ZAR' 

2> and ctrycodeofresidence = 220 

3> union 

4> select * from TClnt where ccy = 'ZAR' 

5> and (ctrycodeofresidence < 220 

6> or ctrycodeofresidence > 220) 

 

Original Query: 6154 I/Os 

SI Query: 364 I/Os 

 

 

Example 6.2:  

 

In this example, I/O is reduced by 200 times. This is because the query optimiser 

decides to full table scan for the original query, while the SI query enables an 
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index to be used which covers the query so that the underlying table does not 

need to be accessed. The index answers the SI query.  

 

Original Query:  

 

1> select distinct PrInd from TClnt  

2> where profession = '160'  

 

Rule: if Profession = '160' then PrInd = 'Y' (95% 

confidence) 

 

SI Query:   

 

1> select distinct PrInd from TClnt  

2> where profession = '160'  

3> and (PrInd < 'Y' or PrInd > 'Y')     

 

Original Query: 6348 I/Os 

SI Query: 37 I/Os 

 

 

Example 6.3:  

 

This example demonstrates the most powerful use of SI – where the rule has 

100% confidence and ‘covers’ or answers the SI query without the need to access 

the table or index. The SI algorithm will answer this without the need for an SI 

query. There are no indexes on either of these columns.  

 

The original query requires a full table scan. With SI, read of the rule page is 

required where it is determined that the rule answers the query. 

 

Original Query: 
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1> select distinct Deal from TClnt where Charity = 'Y' 

 

Rule: if Charity = 'Y' then Deal = 'N' (100% confidence) 

 

Original Query: 6154 I/Os 

SI Query: 1 I/O (rule page – rule covered query). 

 

 

 

Example 6.4 

 

This is similar to a previous example, but the column being selected is not in the 

rule or indexed. This example results in the SI query requiring marginally more 

I/O, hence it is more expensive to execute than the original query. This is 

because it uses the same query plan as the original query for part of the SI query 

(which is 2 queries union-ed), and indexed access to the second part of the union-

ed query. The total I/O therefore is the sum of a table scan plus the cost of the 

indexed access.  

 

Original Query: 

 

1> select Description from TClnt  

2> where profession = '160'  

 

Rule: if Profession = '160' then PrInd = 'Y'  (95% 

confidence) 

 

SI Query: 

 

1> select Description from TClnt  

2> where profession = '160'  

3> and (PrInd < 'Y' or PrInd > 'Y') 

4> union 
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5> select Description from TClnt  

6> where profession = '160'  

7> and PrInd = 'Y' 

 

Original Query: 6154 I/Os 

SI Query: 6385 I/Os 
 
 
 

Example 6.5:  

 

This reduces I/O by two-thirds of the original query, from 33957 to 11745, by 

using indexed access instead of a table scan. However, the reduction is not as 

great as some of the previous examples (examples 6.1 and 6.2) because the SI 

query is a union’ed query, requiring access for each of the 2 parts of the query. 

 

Original Query:  

 

1> select count(*) from tPortfolio   

2> where GroupSector = 13770 

 

Rule: if GroupSector = 13770 then IndexCategory = 8 (99% 

confidence) 

 

SI Query:  

 

The SI query is produced from using the rule:  

 

if GroupSector = 13770 then IndexCategory = 8 (99% 

confidence) 

 

1> select count(*) from tPortfolio  

2> where GroupSector = 13770  

3> and IndexCategory = 8 

4> union 
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5> select count(*) from tPortfolio  

6> where GroupSector = 13770  

7> and (IndexCategory < 8 or IndexCategory > 8) 

 

Original Query: 33957 I/Os 

SI Query: 11745 I/Os 

 

 

Example 6.6:  

 

This example enables the SI query to use a useful index and has a rule with 100% 

confidence. The rule does not cover or answer the query, hence table and index 

access is required to answer the query.  

 

Original Query:  

 

1> select * from TCompRet  

2> where CompositeType = 40 

 

Rule:  if CompositeType = 40 then ClassificationCode = 

157 (100% confidence) 

 

SI Query:  

 

1> select * from TCompRet  

2> where CompositeType = 40 

3> and ClassificationCode = 157 

 

Original Query: 11470 I/Os 

SI Query: 11 I/Os 

 

 

Example 6.7:  
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This example reduces I/O by changing the access path from a table scan to an 

indexed path. The reduction in I/O is profound, but not as much as some queries, 

because the SI query is a union’ed query, requiring access for each of the 2 parts 

of the query.  

 

Original Query:  

 

1> select * from TCompRet where CompositeType = 39 

 

Rule: if CompositeType = 39 then ClassificationCode = 

147 (95% confidence) 

 

SI Query:  

 

1> select * from TCompRet where CompositeType = 39 

2> and ClassificationCode = 147 

3> union 

4> select * from TCompRet where CompositeType = 39 

5> and (ClassificationCode < 147 

6>  or ClassificationCode > 147) 

 

Original Query: 11470 I/Os 

SI Query: 1936 I/Os 

 

 

Example 6.8: 

 

This is an ‘inverse’ example, where the 2 predicates in the where clause conflict 

with a 100% rule, hence no results will be returned. This is an example of 

incoherence detection. 

This example is different in that it uses the SI algorithm to answer the query 

indirectly by telling us that it has no result set. This is because there is a 100% 

confidence rule that the query’s predicate conflicts with.  
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Original Query: 

 

1> select * from TClnt where Charity = 'Y' and Deal = 

'Y' 

 

Rule: if Charity = 'Y' then Deal = 'N' (100% confidence) 

With SI, a read of the rule page is required where it is determined that the rule:  

  

If Charity = 'Y' then Deal = 'N' (100% confidence) 

 

‘inversely’ answers the query (inverse rule covering).  

 

Original Query: 6154 I/O 

SI Query: 1 I/O – for the rule page 

 

 

Example 6.9: 

 

In this example, I/O is reduced in the SI query even though the same access path 

is used (indexed access). In this case, SI enables greater selectivity of the index, 

reducing the I/O required by about 85%. 

 

Original Query: 

 

1> select distinct Security from TQuote  

2> where QuoteCode = 'SETTLEMENT' 

 

Rule: if QuoteCode = 'SETTLEMENT' then MarketCode = 'MM' 

(72% confidence) 

 

SI Query:  
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1> select distinct Security from TQuote  

2> where QuoteCode = 'SETTLEMENT' 

3> and (MarketCode > 'MM' or MarketCode < 'MM') 

4> union 

5> select distinct Security from Tquote 

6> where QuoteCode = 'SETTLEMENT' 

7> and MarketCode = 'MM' 

 

Original Query: 58134 I/Os 

SI Query: 8724 I/Os 

 

 

6.6 The Query Examples – Second Data Set 
 

 

The tables and indexes used for the second data set examples are listed. 

Following the table name is the list of columns, their datatype and the indexes on 

the table. 

 

Table: Login_info 
(login_name char(8) 
machine_name char(8) 
machine_user_name  char(12) 
location char(12) 
login_time datetime 
attempts int) 
Indexes:  
ix2_login_info (login_name, machine_name) 
Number of records: 10000 
 
 
Table: Flow 
(flow_no int 
flow_type_code char(8) 
instrument char(1) 
flow_calc_code char(8) 
flow_ind char(1) 
flow_date dateetime 
ccy char(3) 
flow_amount float) 
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Indexes:  
ix1_flow (flow_calc_code) 
Number of records: 8000000 
 
Table: Curve 
(curve_id int 
curve_type_code char(10) 
no_of_instances int 
currency_code char(3) 
schedule int) 
Indexes: 
ix1_curve (curve_id) – Primary key  
Number of records:  6000000 
 
Table: Trade 
(trade_no int 
instrument char(1) 
trade_type char(1) 
trade_info_code char(4) 
trade_status_code char(8) 
trade_date datetime 
spot_date datetime 
far_date datetime 
process_org_id int 
subject_org_id int 
consideration float 
reversed char(1)) 
Indexes:  
ix1_trade (trade_no) – Primary key 
ix2_trade (trade_info_code, trade_status_code) 
ix3_trade (subject_org_id, process_org_id) 
Number of records: 1000000 
 
Table: Sec 
(Sec_no int 
Sec_code char(3) 
Sec_type char(5) 
Class_name char(15) 
Description char(30) 
Sec_def_code char(10) 
Industry char(10)) 
Indexes:  
ix_sec (sec_no) – Primary key 
ix1_sec  (sec_def_code,  class_name) 
Number of records: 5000000 
 
Table: auth_status 
(auth_category char(3) 
auth_type_code char(10) 
data_group_code char(15) 
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description char(255) 
auth int 
rejected int) 
Indexes: 
ix1_auth_status (auth_category) – Primary key 
ix2_auth_status (data_group_code) 
Number of records: 10000000 

 

Example 6.10:  

 

This is a sample query that would be executed by a Security/Audit group to 

check the machines that logins are from. The same indexed access path is used 

but I/O is reduced in the SI query because it enables greater selectivity by using 2 

indexed columns rather than 1.  

 

Original Query: 

 

1> select distinct machine_user_name from login_info  

2> where login_name = 'PWalds' 

 

Rule: if login_name = 'PWalds' then machine_name = 'RD-

02727' (85% confidence) 

 

SI Query: 

 

1> select distinct machine_user_name from login_info  

2> where login_name = 'PWalds' 

3> and machine_name = 'RD-02727' 

4> union 

5> select distinct machine_user_name from login_info  

6> where login_name = 'PWalds' 

8> and (machine_name < 'RD-02727'  

9> OR machine_name > 'RD-02727') 

 

Original Query: 2078 I/Os 

SI Query: 1426 I/Os 
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Example 6.11: 

 

This query is similar to the previous one, but the column in the select list is 

indexed (whereas in the previous query it is not). Hence this is an ‘index 

covered’ query, and the improvement can be compared to the non-index covered 

query above.  

Since the rule’s consequent is the partial result set it is concatenated to the result 

set of the SI query.  

 

Original Query: 

 

1> select distinct machine_name from login_info  

2> where login_name = 'PWalds' 

 

Rule: if login_name = 'PWalds' then machine name = 'RD-
02727' (85% confidence) 
 
SI Query: 

 

1> select distinct machine_name from login_info  

2> where login_name = 'PWalds' 

3> and (machine_name < 'RD-02727'  

4> or machine_name > 'RD-02727') 

5> union 

6> select 'RD-02727' 

 

Using Sybase, a SELECT statement is permitted without a FROM clause, for 

literal values and variables.  

 

Original Query: 1312 I/Os 

SI Query: 197  I/Os 
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Example 6.12: 

 

This query is selecting the type of cash flow from a table storing all types of 

flows. It retrieves the type of calculation that is used for interest-rate based cash 

flows.  

 

The data access path and query plan are changed significantly, impacting on I/O. 

The main change is from a full table scan to using an appropriate index.  

Since the rule’s consequent is the partial result set it is concatenated to the result 

set of the SI query.  

 

 

Original Query:  

 

1> select distinct flow_calc_code from flow 

2> where flow_type_code = 'INTEREST' 

 

Rule: if flow_type_code = 'INTEREST' then flow_calc_code 

= 'SIMPLEINT' (99% confidence) 

 

SI Query: 

 

1> select distinct flow_calc_code from flow 

2> where flow_type_code = 'INTEREST' 

3> and (flow_calc_code < 'SIMPLEINT' 

4> or flow_calc_code > 'SIMPLEINT') 

5> union 

6> select 'SIMPLEINT' 

 

 

Original Query: 198161 I/Os 

SI Query: 2097 I/Os 
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Example 6.13: 

 

This is a ‘rule covered’ query – the rule used by the SI algorithm answers the 

query completely. With SI, a read of the rule page is required where it is 

determined that the rule answers the query. 

 

Original Query: 

 

1> select distinct curve_type_code from curve  

2> where currency_code = 'CZK' 

 

Rule: if currency_code = 'CZK' then curve_type_code = 

'INTEREST' (100% confidence) 

 
Original Query: 479 I/Os 

SI Query: 1 I/O (rule covered - assuming a single rule page) 
 
 

 

Example 6.14: 

 

This is similar to the previous query but is not rule covered – as the rule is not 

with 100% confidence.  

 

In this example, SI is actually detrimental to performance, because the table 

involved has to be accessed more than once, although the same access path is 

used.  

 

Original Query: 

 

1> select count(*) from curve  

2> where currency_code = 'USD' 

 

Rule: if currency_code = 'USD' then curve_type_code = 

'FX' (79% confidence) 
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SI Query: 

 

1> select count(*) from curve  

2> where currency_code = 'USD' 

3> and curve_type_code = 'FX'  

4> union  

5> select count(*) from curve  

6> where currency_code = 'USD' 

7> and (curve_type_code < 'FX'  

or curve_type_code > 'FX')   

 

Original Query: 394 I/Os 

SI Query: 797 I/Os 

 

 

Example 6.15: 

 

This query is based on trades that have matured (expired or settled in the past).  

 

The rule shows that 90% of the matured trades are foreign exchange (FX) trades, 

which is because they mature quicker than other types of trades.  

 

SI is shown to provide a huge advantage by reducing I/O significantly. This is 

due to being able to use an indexed access path instead of a table scan.  

 

Original Query: 

 

1> select count(*) from trade  

2> where trade_status_code = 'MATURED' 

 

Rule: if trade_status_code  = 'MATURED' then 

trade_info_code = 'FX' (90% confidence) 
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SI Query: 

 

1> select count(*) from trade  

2> where trade_status_code = 'MATURED' 

3> and trade_info_code = 'FX' 

4> union  

5> select count(*) from trade  

6> where trade_status_code = 'MATURED' 

7> and (trade_info_code < 'FX'  

8> or trade_info_code > 'FX') 

 

Original Query: 106799 I/Os 

SI Query: 2328 I/Os 

 

 

Example 6.16: 

 

This query is based on looking at the classifications in a security table. 

  

The use of SI reduces I/O significantly. This is due to being able to use an index 

that covers the query, instead of a table scan. 

 

Original Query: 

 

1> select count(*) from sec where class_name = 

'ISwapLeg' 

 

Rule: if class_name = 'ISwapLeg' then sec_def_code = 

'SPECIFIC' (93% confidence) 

 

SI Query: 

 

1> select count(*)  

2> from sec where class_name = 'ISwapLeg' 
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3> and sec_def_code = 'SPECIFIC' 

4> union 

5> select count(*) 

6> from sec where class_name = 'ISwapLeg' 

7> and (sec_def_code < 'SPECIFIC'  

8> or sec_def_code > 'SPECIFIC') 

 

 

Original Query: 8820 I/Os 

SI Query: 683 I/Os 

 

 

Example 6.17: 

 

This query is based on a security table.  

 

The use of SI reduces I/O significantly. This is due to being able to use an index 

that covers the query, instead of a table scan. 

 

 

Original Query: 

 

1> select distinct source from sec  

2> where class_name = 'ISwapLeg' 

 

Rule: if class_name = 'ISwapLeg' then sec_def_code = 

'SPECIFIC' (93% confidence) 

 

SI Query: 

 

1> select distinct source from sec  

2> where class_name = 'ISwapLeg' 

3> and sec_def_code = 'SPECIFIC' 

4> union  
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5> select distinct source from sec 

6> where class_name = 'ISwapLeg' 

7> and (sec_def_code < 'SPECIFIC'  

8> or sec_def_code > 'SPECIFIC') 

 

Original Query: 121441 I/Os 

SI Query: 9808 I/Os 

 

 

Example 6.18: 

 

This query is based on finding out about authorisation groups (for traders that 

can authorise a trade execution).  

I/O is reduced by about 8 times by using the SI query. This is due to being able 

to use an indexed access path instead of a table scan. 

 

Original Query: 

 

1> select distinct data_group_code  

2> from auth_status  

3> where auth_type_code = 'NEW' 

 

Rule:if auth_type_code = 'NEW' then data_group_code = 

'trade_stlmt' (80% confidence) 

 

SI Query:  

 

1> select distinct data_group_code  

2> from auth_status where auth_type_code = 'NEW' 

3> and (data_group_code < 'trade_stlmt'  

4> or data_group_code > 'trade_stlmt') 

 

Original Query:  893681 I/Os 

SI Query: 114758 I/Os 
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Example 6.19: 

 

In this example, SI enables a change to the access path, giving some 

improvement in the computational efficiency of execution. Although the 

applicable rule has 100% confidence, this is not a rule-covered query.  

 

Original Query: 

 

1> select spot_date from trade 

2> where process_org_id = 3 

 

Rule: if process_org_id = 3 then subject_org_id = 1 

(100% confidence) 

 

SI Query:  

 

1> select spot_date from trade  

2> where process_org_id = 3  

3> and subject_org_id = 1 

 

Original query: 78373 I/Os 

SI query: 49316 I/Os 

 

 

6.7 Results Analysis 
 

 

Table 6.2 below lists the difference in the I/O required between queries executed 

in their original state and their corresponding SI query. The last column gives the 

reason for the difference in I/O – the reason why the SI query uses less I/O or 

more I/O than the original query.  
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From the empirical examples, the impact of SI on query processing is most 

significant for ‘rule covered’ queries. In this situation, SI can reduce the I/O 

required from as much as several million I/Os to just 1 single I/O (being that of 

the rule page). Examples 6.3 and 6.8 from the first dataset, and example 6.13 

from the second dataset attest to this.  

 

 

Example Original Query 

 (I/Os) 

SI Query 

 (I/Os) 

Reason for Difference 

6.1 6154 364 Enable index access 

6.2 6348 37 Enable index covering 

6.3 6154 1 Rule covering 

6.4 6154 6385 Accessed twice (once via index) 

6.5 33957 11745 Enable index access 

6.6 11470 11 Rule + index access 

6.7 11470 1936 Enable Index access 

6.8 6154 1 Incoherence detection (via rule) 

6.9 58134 8724 Improved predicate selectivity 

6.10 2078 1426 Improved predicate selectivity 

6.11 1312 197 Index covering 

6.12 198161 2097 Enable index access 

6.13 479 1 Rule covering 

6.14 394 797 Accessed twice 

6.15 106799 2328 Index covering 

6.16 8820 683 Enable index access 

6.17 121441 9808 Enable index access 

6.18 893681 114758 Enable index access 

6.19 78373 49316 Enable index access 

 

Table 6.2 – I/O Values Between Original and SI Queries 
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With rules that have less than 100% confidence, SI proved to be most useful 

under query conditions where it enabled the use of an index that would not have 

been used otherwise, because the optimiser would not have deemed it selective 

enough without the additional clauses or predicates added by the application of 

the SI algorithm. If by adding a first or an additional indexed column to the 

predicate where clause of the query, so that the optimiser finds it possible and 

efficient to change the query plan to the one used for the original query, then it 

was seen to be beneficial for reducing I/O. This was more pronounced where it 

replaced a table scan. From our examples, it can be seen that where this was the 

case, I/O was reduced by up to about 20 times – to only 5% of the I/O required 

by the original query. This is seen in example 6.1 of the first dataset.  Examples 

6.12, 6.18 and 6.19 of the second dataset also benefited from this type of query 

optimisation plan transformation. Example 6.10 introduces an extra predicate 

such that the predicate’s column is part of the composite index that is used by the 

original query. Hence SI improves selectivity because the SI query can use both 

the columns of the composite index. This narrows the searching. 

 

Where the application of SI enabled index covering, then the impact was even 

greater. The I/O was reduced by 200 times in example 6.2 of the first dataset. 

Examples 6.11 and 6.15 of the second dataset also demonstrated the advantage of 

replacing full table scan by index covered access.  

 

However, if SI leads to a situation where one part of the SI query uses the same 

plan as the original query, and another part of a union-ed SI query uses a 

different access plan, as in example 6.4 of the first dataset and example 6.14 of 

the second dataset, this can lead to more I/O being required. Hence it can be 

more inefficient in this type of situation, requiring the cost of a full table scan 

plus the cost of indexed access.  
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6.8 Conclusion 
 

 

This chapter has put SI to practical use – by applying it to two large, real world 

databases. This provides empirical evidence of its usefulness.  

 

A set of queries for each of the databases has been processed using the SI 

algorithm and the cost of processing the original query was compared to the cost 

of processing the corresponding SI query.  

 

Chapter 6 has demonstrated, with real-world databases, the conditions where SI 

is useful, and the situations in which its application is beneficial to varying 

degrees. Additionally, the conditions where it is not advisable to employ SI were 

demonstrated. The results are discussed and summarised in Section 6.7.  
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Chapter 7  

Semantic Inequivalence with Synthetic Data Distribution 

7.1 Introduction 
 

 

This chapter focuses on the effect of using SI with a synthetic data distribution, 

based on the normal distribution. This is undertaken to provide an independent 

and  well established data distribution pattern to evaluate the usefulness of SI.  

 

First of all, an overview of the normal distribution is provided and an explanation 

as to why it is considered useful for statistical analysis.  

 

Following the overview, a set of example queries are executed against the 

synthetic data where the query predicate’s variable is on varying parts of the 

normal distribution curve. This enables us to look at changes in impact and 

effectiveness of the SI algorithm along the distribution. Initially, the query 

variable is on the ‘low end’ of the normal distribution. Identical queries are 

subsequently performed where the query predicate’s variable is on the ‘high end’ 

of the normal distribution, and at various points in between the two extremes. In 

all of the example cases the original query’s I/O cost is compared with the 

corresponding SI query’s I/O cost.  

 

The queries are devised to exemplify the cases of the SI transformation 

categories: where predicate selectivity is increased enabling more efficient index 

access / usage (such as examples 7.1, 7.2, 7.3, 7.4), the situation where the SI 

query involves 2 different access strategies - full table scan and index based 

access in place of just a table scan (such as examples 7.5, 7.6, 7.7, 7.8) and where 
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the association rule answers part of the query and index usage is enabled (such as 

examples 7.9, 7.10, 7.11). The second category increases the cost of query 

processing. The other two categories reduce the cost of query processing.  

 
 
7.2 Normal Distribution 
 

 

The normal distribution is an important statistical distribution. All normal 

distributions are symmetric and have bell-shaped density curves with a single 

peak.  

 

To speak specifically of any normal distribution, two quantities have to be 

specified: the mean and the standard deviation. The mean is where the peak of 

the density occurs, and the standard deviation indicates the spread or girth of the 

bell curve.  

 

A prominent reason that the normal distribution is considered important is 

because many psychological and educational variables have an approximate 

normal distribution. Measures of reading ability, introversion, job satisfaction, 

and memory are among the many psychological variables approximately 

normally distributed [29]. Although the distributions are only approximately 

normal, they are usually quite close. A second reason the normal distribution is 

considered to be so important is that it is easy for mathematical statisticians to 

work with. This means that many kinds of statistical tests can be derived for 

normal distributions. Generally, these tests work very well even if the 

distribution is only approximately normally distributed [29]. The normal 

distribution curve is illustrated in Figure 7.1.   
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  A  B  C  D
 

Figure 7.1 – Normal Distribution 

 

In our query examples, the horizontal axis is the attribute value of the query’s 

predicate, such as subject_type. The vertical axis represents the frequency of its 

occurrence – or the number of rows containing that value.  

 

Four positions in the normally distributed data are used for each query example: 

point A, at the lowest end hence the predicate having a low frequency to point D 

at the highest end hence the predicate having a high frequency, and at two points 

in between.  

 

 

7.3 Query Examples 
 

 

The query examples for demonstrating the effects of SI with the normal 

distribution are based on the titles table from the example data model set up in 

Section 3.8. 

 

For the data and queries, a titles table was created with the structure defined in 

the data model, and the column subject_type is used as the predicate variable’s 

attribute. 
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Hence the subject_type column is populated with a normally distributed set of 

values. This single variable is used to exemplify the SI impact along the normal 

distribution curve.  

 

Table 7.1 shows the 4 data distributions used for the queries in examples 7.1 to 

7.4. The points (A, B, C or D) indicate the position of the predicate on the curve 

in Figure 7.1.  

 

Subject Type Predicate 
variable at 
low end of 
normal 
distribution 
(point A)  

Predicate 
variable at 
low-mid end 
of normal 
distribution  
(point B) 

Predicate 
variable at 
high-mid 
end of 
normal 
distribution  
(point C) 

Predicate 
variable at 
high end of 
normal 
distribution  
(point D) 

Astronomy             60 2500 10000 150000 

Media                 60 60 60 60 

Astrology             120 120 120 120 

Health                120 120 120 120 

Design                250 250 250 250 

Travelling            250 250 250 250 

Geography             500 500 500 500 

Sociology             500 500 500 500 

Chemicals             1000 1000 1000 1000 

Gardening             1000 1000 1000 1000 

Business              2500 2500 2500 2500 

Economics             2500 5000 2500 2500 

Beauty                5000 5000 5000 5000 

History               5000 10000 5000 5000 

Biology               10000 10000 10000 10000 

Plants                10000 50000 50000 10000 

Languages             50000 50000 50000 50000 

Science               50000 100000 100000 50000 

Maths                 100000 100000 100000 100000 

Music                 100000 150000 150000 100000 

Art                   150000 60 60 60 

 

Table 7.1 – Data Distributions – Set 1 
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Initially the data sample is such that the predicate variable, subject_type is at the 

low end of the normal distribution, at point A in Figure 7.1. For subsequent 

examples, the data distribution is changed, being defined each time, so that the 

antecedent moves to the high end of the normal distribution, up to point D and at 

the various points in between. Therefore the differences in the effect of applying 

SI at various points along the curve in Figure 7.1 can be demonstrated.  

 

The query examples 7.1 to 7.4 are based on the queries and pseudo rule from the 

example data model defined in Section 3.8: 

 

if subject_type = 'Astronomy' then price = 29.95 (70% 

confidence) 

 

The original query used for examples 7.1 to 7.4 is:  

 

1> select distinct price from titles  

2> where subject_type = 'Astronomy' 

 

The corresponding SI query only asks for the information requested by the 

original query and unknown from this rule: 

 

1> select distinct price from titles  

2> where subject_type = 'Astronomy' 

3> and (price < 29.95 or price > 29.95) 

 

 

The subsequent examples (from 7.5 onwards) are based on the rule: 

 

if title = 'Maths for beginners' then price = 15.00 

(70% confidence).  

 

Two groups of queries are used to demonstrate the impact of SI where costs are 

reduced and where costs are increased. 
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The detailed query optimiser’s processing plan that is output for each query is 

listed in Appendix A4.  

 

 

Example 7.1: 

 

With data distribution such that the predicate variable is at the lowest end 

of the normal distribution curve, as shown in Table 7.1 (point A in Figure 

7.1). 

 

Original Query: 79 1/Os 

SI Query: 37 I/Os 

 

The SI query is more efficient than the original query by 42 fewer I/Os (79 I/Os 

for the original and 37 I/Os for the SI query). This is 46% of the original query’s 

I/O – over a 50% improvement. This is due to increased data selectivity 

enhancing the use of the index.  

 

 

Example 7.2: 

 

With data distribution changed so that predicate variable is at the lower-

mid end of the normal distribution curve, as shown in Table 7.1 (point B in 

Figure 7.1). 

 

Here the data is changed so that the antecedent is at neither the top end nor the 

bottom end of the normal distribution – but at the lower-mid end, as can be seen, 

where subject_type = 'Astronomy'. 

 

Original Query: 2666 1/Os 

SI Query: 886 I/Os 
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Here, the benefit is also profound – I/O for the SI query is reduced to just over 

33% of that of the original query – from 2666 I/Os to 886 I/Os due to the 

increased data selectivity reducing the number of pages that need to be accessed. 

 

 

Example 7.3: 

 

With the data distribution changed again so that the predicate variable is at 

the middle-upper range on the normal distribution curve, as shown in Table 

7.1 (point C in Figure 7.1) 
 

Original Query: 10616 1/Os 

SI Query: 3490 I/Os 

 

Here I/O is reduced to less than 33% of the original query from 10616 I/Os to 

3490 I/Os. Again this is due to increased data selectivity enhancing the use of the 

index.  

 

 

Example 7.4: 

 

With data distribution changed so that predicate variable is at the high or 

top end of the normal distribution curve, as shown in Table 7.1 (point D in 

Figure 7.1). 

 

When the data is changed so that subject_type = 'Astronomy' is at the 

top end of the normal distribution, as illustrated in the last column of Table 7.1. 

 

Original Query: 159229 1/Os 

SI Query: 33146 I/Os 

 

In this case, with the predicate variable at the high end of the normal distribution, 

the I/O is reduced by 126083 I/Os - from 159229 I/Os to 33146 I/Os. This is 20% 

of the I/O of the original query.  



 120

 

The reason for this is because the predicate variable, being at the top end of the 

normal distribution curve, has had its selectivity increased sufficiently to have 

made a difference. However, when the variable was at the low end of the normal 

distribution as in example 7.1, selectivity was relatively high to start with, 

therefore adding the additional SI predicate did not increase selectivity by the 

same magnitude.  

 

From the previous 4 examples, we can see that the higher on the normal 

distribution curve the variable is positioned, the greater the benefit of SI in 

reducing I/O by a higher proportion.  

 

 

The rest of the examples are based on the rule: 

 

if title = 'Maths for beginners' then price = 15.00 

(70% confidence).  

 

For each data distribution, there are 2 different queries based on it, for which the 

same rule is applicable, by using the SI procedure. 

 

The original query used for examples 7.5 to 7.8 is:  

 

1> select distinct total_sold from titles  

2> where title = 'Maths for beginners' 

 

The corresponding SI query only asks for the information requested by the 

original query and unknown from this rule:  

 

1> select distinct total_sold from titles  

2> where title = 'Maths for beginners' 

3> and (price < 15 or price > 15) 

4> union 

5> select distinct total_sold from titles  
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6> where title = 'Maths for beginners' 

7> and price = 15  

 

The original query used for examples 7.9 to 7.12 is: 

 

1> select distinct price from titles  

2> where title = 'Maths for beginners' 

 

The corresponding SI query only asks for the information requested by the 

original query and unknown from this rule. The rule indicates the existence of 

price = 15 for this title, hence this is eliminated from the query.   

 

 

SI Query: 

 

1> select distinct price from titles  

2> where title = 'Maths for beginners' 

3> and (price < 15 or price > 15) 

4> union  

5> select 15 

 

As noted in example 6.11, using Sybase, a SELECT statement may retrieve a 

literal value without a FROM clause.  

 

The rule’s antecedent is initially at the low end of the normal distribution. Then 

the data distribution is changed so that it is at intermediate positions on the 

normal distribution curve and lastly on the highest end with examples included at 

each point.  

The data distributions used for the following queries are detailed in Table 7.2 

below. The points (A, B, C or D) indicate the position of the predicate on the 

curve in Figure 7.1. 
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Title Predicate 
variable at 
low end of 
normal 
distribution
(point A)  

Predicate 
variable at 
low-mid end 
of normal 
distribution 
(point B) 

Predicate 
variable at 
high-mid end 
of normal 
distribution  
(point C) 

Predicate 
variable at high 
end of normal 
distribution  
(point D) 

Maths for beginners          60 2000 20000 100000 

World Discovery              60 60 60 60 

European Cities                125 125 125 125 

Houses and Gardens         125 125 125 125 

Cats and Dogs                  250 250 250 250 

Zoo Animals                     250 250 250 250 

House Plants                    500 500 500 500 

Make Up Colour               500 500 500 500 

Australia                       1000 1000 1000 1000 

PC World                        1000 1000 1000 1000 

Running                         2000 60 2000 2000 

Yoga for All                    2000 2000 2000 2000 

Internet Design                 3500 3500 3500 3500 

Starting on the Internet     3500 3500 3500 3500 

Holistic Health                 6000 6000 6000 6000 

Operating Systems           6000 6000 6000 6000 

Java Beans                      10000 10000 10000 10000 

Networks                        10000 10000 10000 10000 

Horticulture                    20000 20000 100000 20000 

Jewellery Design              20000 20000 20000 20000 

Gardening                       25000 25000 25000 25000 

Refloxology for Hands     25000 25000 25000 25000 

Algebra                         50000 50000 50000 50000 

Style                           50000 50000 50000 50000 

Advanced Maths               75000 75000 75000 75000 

Basic Grammar                 75000 75000 75000 75000 

Costumes                100000 100000 60 60 

 

Table 7.2 – Data Distributions – Set 2 
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Example 7.5: 

 

With data distribution such that the antecedent is at the low end of the 

normal distribution curve, as defined in Table 7.2 (point A in Figure 7.1). 

 

Original Query: 77 1/Os 

SI Query:      84 I/Os 

 

In this example, there is no advantage in using SI. I/O is increased by 9%. 

Predicate selectivity was high in the original query, and the SI query did not add 

sufficient extra selectivity that could reduce I/O. Also the columns selected were 

not included in the index hence access to underlying data pages was necessary.  

 

 

Example 7.6: 

 

When the data distribution changed so that the antecedent is on the lower-

mid range of the normal distribution, as shown in Table 7.2 (point B in 

Figure 7.1). 

 

Original Query: 2751 1/Os 

SI Query: 2861 I/Os 

 

In this example, with the antecedent at the lower-mid range of the normal 

distribution, I/O is increased from 2751 to 2861. This is a 4% increase. Again, 

this is because predicate selectivity was high in the original query, and the SI 

query did not add sufficient extra selectivity that could reduce I/O. 

 

 

Example 7.7: 

 

When the antecedent is changed so that it is at the mid-higher end of the 

normal distribution curve (point C in Figure 7.1). 
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Original Query: 41534 1/Os 

SI Query: 62823 I/Os 

 

This example shows that SI has actually increased the I/O from 41534 to 62823, 

- nearly a 50% increase. Since indexed access is not used for this query, an extra 

table scan is required, causing the large increase in I/O.   

 

 

Example 7.8: 

 

With data distribution such that antecedent is at the highest end of the 

normal distribution curve (point D in Figure 7.1). 

 

Original Query: 107837 1/Os 

SI Query: 112476 I/Os 

 

 

This gives no improvement in I/O, but actually increases the cost from 107837 to 

112476 I/Os. This is a 4% increase. Selectivity is not increased enough to effect 

the query plan, since predicate selectivity was high in the original query. 

 

 

Example 7.9: 

 

This example query is based on the same data distribution as example 7.5.  

 

Original Query: 75 1/Os 

SI Query: 33 I/Os 

 

With the antecedent at the low end, the SI query has reduced I/O to 44% of the 

original query – over 50% improvement, from 75 to 33 I/Os. The indexed access 

covers the query and selectivity is increased enough to reduce the I/O required.  
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Example 7.10: 

 

This example query is based on the same data distribution as example 7.6.  

Original Query: 2130 1/Os  

SI Query: 909 I/Os 

 

SI has reduced I/O to 42% of that required by the original query, from 2130 to 

909. Again, this is because the indexed access covers the query and selectivity is 

increased enough to reduce the I/O required. 

 

 

Example 7.11: 

 

This example query is based on the same data distribution as example 7.7. 

 

Original Query: 21077 1/Os 

SI Query: 6825 I/Os 

 

In this example, I/O required by the SI query has been reduced to 33% of the 

I/Os of the original query from 21077 to 6825 for the same reasons as the 

previous example.  

 

 

Example 7.12 

 

This example query is based on the same data distribution as example 7.8.  

 

Original Query: 104079 1/Os 

SI Query: 32777 I/Os 

 

This gives a large improvement in I/O  - from 104079 to 32777, which is only 

31% of the I/Os of the original query, due to increased selectivity enabling 

increase in the use of the index.  
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7.4 Conclusion 

 
 
For the sample query set, we can see that SI is generally better where the 

antecedent is at the high end of the normal distribution. This is because the 

application of the SI algorithm increases the selectivity by a greater order of 

magnitude compared to when the antecedent is at the low end.   

Table 7.3 shows the rounded average improvement in I/O in relation to where the 

antecedent lies on the normal distribution of the queries, where an improvement 

is noted.  

 

Position on normal distribution Approximate Average % improvement 

 

Highest end (point D) 75% 

Upper middle (point C) 70% 

Lower middle (point B) 60% 

Lowest end (point A) 50% 

 

Table 7.3 – Average I/O Improvement with SI and Normal Distribution 

 

The following graph similarly represents the effect of SI in terms of the 

proportion of I/O used for the transformed query depending on where on the 

normal distribution curve the antecedent is. This takes all the sample queries into 

account including where there is no improvement due to there being no change in 

the data access path.  
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Figure 7.2 – Improvement for Normally Distributed Data with SI  

 

Improvement can also be seen where the antecedent is at point A, the low end of 

the normal distribution, although it is not by the same proportion because 

selectivity is relatively high to start with in such cases. Moreover, the SI 

improvement is greater where the increased selectivity is supported by an 

indexed access strategy.  

 
From the examples, it can also be seen that SI provides a distinct advantage 

where the rule actually reduces the query being asked – that is, it especially helps 

where less data is requested because the rule answers some of the original query. 

This is more profound the higher up the normal distribution curve that the 

antecedent is, although the advantage in this situation can be seen all the way 

through, but to a lesser degree on the lower end of the normal distribution curve.   
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Chapter 8  

 

Concluding Remarks and Further Research 

 
8.1 Introduction 
 
 

The work presented in this thesis has been motivated by the scope for 

exploitation in query optimisation of the potentially valuable information that 

association rules, produced from database mining, can provide.  

 

This thesis aims to help fill this gap by introducing a new strategy in query 

processing that brings together two areas of DBMS research. These are data 

mining of association rules and query optimisation. How they can be used 

together in a complementary and novel way is analysed by proposing the new 

concept of SI.  

 

This concluding chapter presents a summary of what the thesis has discussed and 

achieved. Additionally, it identifies some potential areas for further related 

research.  

 

 

8.2 Research Summary 
 

 

Following a review of related work on data mining of association rules and 

DBMS query optimisation, the new concept of SI was introduced and discussed 

in detail. How it is distinguishable from other query processing strategies and can 
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add value in situations, where the current or existing strategies cannot, was also 

examined.  

 

For SI to be practical, it should be able to be used within an existing extensible 

database query optimiser. For it to be usable as a new strategy within an existing 

DBMS query optimiser architecture, it is defined in a modular, encapsulated 

fashion. Hence it is shown how it can be incorporated into the extensible 

architecture as a new query processing module, or component. 

 

The thesis has defined an algorithm for implementing SI, and representative 

database queries processed by stepping through the algorithm. The query I/O 

costs are compared before using SI with the cost of the post-SI transformed 

query.  

 

Following this, empirical evidence of the value of SI has been demonstrated by 

using queries against two large real-world databases and comparing the 

respective costs of processing both the original and the corresponding SI query. 

This was followed by a discussion on when SI is most appropriate to use. For 

this, a wide range of queries were used to help identify the situations where SI 

resulted in increased efficiency. The types of situations that can give rise to 

varying degrees of improvement were reviewed. Moreover, the situations that do 

not benefit from the application of SI were also identified. Exceptional cases and 

the effect that SI has on them were also analysed and presented. 

 

To reduce the potential of bias in a single dataset, two independent real-world 

databases were used for producing empirical results. In addition, a synthetic data 

distribution based on the normal distribution was used to test SI against.  

 

For facilitating further analysis, the independent well-established Decomposition 

Algorithm for query processing was introduced. This enabled the comparison of 

the costs of using SI with the costs of not using it, under a completely separate 

query processing costing algorithm.  
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8.3 Review of Aims and Accomplishments 
 

 

The aim of using the output from the data mining of association rules in query 

optimisation is achieved by SI providing a link between the two areas. The 

reason for the introduction of SI is to reduce the query processing costs in some 

situations where existing methods fail to achieve the same cost reduction. By 

using the database association rules, query processing is extended beyond using 

column value distribution statistics to being able to use relationships that exist 

between data values held in the database. This increases the input to the query 

optimisation process by providing more information than was previously made 

available to it. The information may be sourced from the vast research carried out 

in efficient database association rule mining or from any other source that 

produces similar output. The use of the extra information that association rules 

provide is demonstrated in both the situations where it can and the situations 

where it cannot reduce the cost of answering the query.  

 

Generally, SI reduces the cost of processing a query in situations where the data 

access path used by the DBMS is more efficient for the SI query than for the 

original query. The biggest advantage was seen where a rule can ‘cover’ or 

completely answer a query, or demonstrates that there is a null or empty result 

set.  

 

Relatively large improvements were seen when the SI query is able to use an 

index where previously a full table scan was required. The SI transformation 

process was also useful where the data access path was the same but the 

selectivity was increased so that the indexed search, for example, was narrowed 

earlier in the index traversal procedure.  

 

However, where the SI query resulted in the same access path, or resulted in a 

union query with each part requiring a different access strategy, it was less 

efficient to answer than the original query.  

 

These results were seen with both the synthetic data and the real-world data.  
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With the normally distributed data, SI overall improves the efficiency of query 

processing; however, the improvement was greater where the rule antecedent had 

a higher frequency (higher up on the curve).  

 

It is seen that in addition to encouraging use of concepts such as rule pages and 

rule covering, SI can also be used in conjunction with existing researched 

concepts, such as partial indexing in a complementary manner. This adds to the 

value of related existing research.  

 

 

8.4 Further Research 
 

 

The research started in this thesis can be taken further and built upon in several 

ways.  

 

SI has been studied in respect of SQL select-project queries, excluding 

aggregates, group by and having clauses.  Investigation of a wider class of 

queries in particular those involving joins, remains for future work. 

 

The thesis has studied SI with respect to relational databases only. However, SI 

can be researched with non-relational databases, such as object-oriented or 

network databases. Its applicability and usefulness can similarly be considered 

and a SI query processing region or component introduced into an object-

oriented (or alternatively structured) database’s extensible query optimiser.  A 

limitation to be aware of is that there is not so vast a base of research on data 

mining of association rules for databases other than relational.  

 

Although SI is considered more suitable for very large databases such as data 

warehouses, where the skewness of the data is relatively stable, research could be 

carried out to investigate the effects of varying degrees of changes in the data 

distribution. The impact of SI on query processing efficiency could be 

investigated. The point when it becomes feasible or profitable to update the 
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association rules that are used as input may be studied in more detail, as well as 

the data change volatility impact on the suitability of using SI.  

 

SI and partial indexing are complementary. Research into using these strategies 

in conjunction with each other can be taken further. This may look into 

situations, for example, where a useful high confidence rule is found; the 

question then arises as to whether the remainder of the data should be partially 

indexed? What space saving and performance advantage could this achieve? The 

various trade-offs and turning points in profitability can thus be analysed.  
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Appendix A1 

 

In this appendix, some terms and keywords that are used throughout the thesis 

are defined. The definitions are with respect to relational databases. Terms in 

italics are subsequently defined in the ensuing list of definitions 

 

Approximate dependency  

A functional dependency that almost holds. Some rows can contain exceptions to 

the stated dependency. This is an alternative name for an association rule [30]. 

 

Bitmap Index 

An index that uses a string of bits that corresponds to rows in a table to indicate 

whether the indexed value is stored in a row. There is a bit string for each 

possible data value [12]. 

 
Clustered Index  

An index where the data is physically stored in the order of the indexed columns. 

This contrasts to a non-clustered index where the storage order of data in the 

table is not related to the indexed keys (or columns) [12]. 

 

Confidence 

The probability that a row contains both the antecedent and the consequent of a 

rule given that the antecedent occurs. The confidence statistic is the measure of a 

rule’s strength [12]. 

 

Database page  

A unit of storage for the database objects. Data pages store data rows for the 

tables, index pages store index nodes for the indexes [45]. 

 

Data Mining of Association Rules 

A process for discovering association rules from a large database. This is also 

known as knowledge discovery [12]. 
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Functional dependency  

This states that the value of an attribute (or set of attributes) is uniquely 

determined by the value of some other attribute (or set of attributes) [12]. 

 

Index  

A database object that can speed access to specific data rows by providing an 

access path allowing direct access to data based on an index term [12]. 

 

Integrity constraints  

Enforce the data values that are acceptable for certain attributes [12]. 

 

Optimiser extensibility  

The ability to add new query processing strategies to the database management 

system’s optimiser [17]. 

 

Partial indexes  

A partial index is an index that has some condition applied to it such that it only 

includes a portion of the rows in a table. This can allow the index to remain small 

even though the table may be rather large, and have fairly extreme selectivity 

[37]. 

 

Query optimisation  

The process of analysing a query to find out what resources are needed to answer 

it and how the resources can be minimized to answer the query more efficiently 

[12]. 

 

Rule covering  

This is where a rule has 100% confidence and may be used to completely answer 

a query if the query’s request has all parts satisfied by the rule. 

 

Rule page 

This is a new concept introduced in the thesis. A rule page is a database page for 

storing the association rules that are relevant to the database querying patterns. 
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Semantic query optimisation  

A query optimisation strategy whereby a query is transformed based on the 

functional dependencies known about the data. It maintains the semantics or 

meaning of the query  [12]. 
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Appendix A2 

 

 
The following typefaces are used throughout the thesis for the purposes defined. 
 
Times New Roman is used for general text.  
 
Courier New is used for code fragments.  
 
Italic is used for definitions, formulae and algorithms. It is also used for 
synonyms and variables. 
 
Arial Narrow is used for query optimiser output and the Decomposition Algorithm 
output.   
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Appendix A3 

 
This lists the main abbreviations used throughout the thesis.  

 

DBMS - Database Management System 

 

DSS - Decision Support System 

 

I/O – Input / Output 

 

LRU - Least Recently Used 

 

MIS - Management Information System 

 

MRU - Most Recently Used 

 

NPAG – Number of Pages 

 

OLTP – On-Line Transaction Processing 

 

RDBMS – Relational Database Management System 

 

SARG – Search Argument 

 

SI - Semantic Inequivalence 

 

SQL - Structured Query Language 

 

SQO – Semantic Query Optimisation 

 

VLDB – Very Large Database 
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Appendix A4 

 
This appendix contains the detailed query plans produced by the optimiser, of the 

original queries and corresponding SI queries that are used in Chapters 6 and 7.  

 

A short explanation of the Sybase Adaptive Server query plans is:  

 

Step: output displays "STEP N" for every query, where N is an integer, 

beginning with "STEP 1". For some queries, Adaptive Server cannot retrieve the 

results in a single step and breaks the query plan into several steps.  

From Table: indicates which table the query is reading from. The "FROM 

TABLE" message is followed on the next line by the table name. 

To Table: for operations that require an intermediate step to insert rows into a 

worktable, "TO TABLE" indicates that the results are going to the "Worktable" 

table rather than to a user table. 

Nested Iteration: indicates one or more loops through a table to return rows.  

Table Scan: indicates the query performs a table scan.  

Clustered Index: indicates that the query optimizer chose to use the clustered 

index on a table to retrieve the rows. 

Index Name: indicates that the query is using an index to retrieve the rows. The 

message includes the index name. 

Scan Direction: indicate the direction of a table or index scan – can be Forward 

scan or Backward scan.  

Index Covering: indicates that an index covers the query. 

Keys: indicates the indexed columns used when an index is used to locate rows. 

I/O Size: this reports the I/O size used in the query.  

Cache Strategy: indicates the buffer cache replacement strategy used for data 

pages and for index leaf pages - least recently used (LRU) pages or most recently 

used (MRU).  
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Chapter 6 Queries – First Data Set 
 

 

Example 6.1:  

 

Original Query: select * from TClnt where Ccy = 'ZAR' 

 

Rule: if Ccy = 'ZAR' then CtryResidenceCode = 220 (90% confidence) 

 

Original Query: 6154 I/Os 

SI Query: 364 I/Os 

 

Original Query:  

 

1> select * from TClnt  

2> where Ccy = 'ZAR' 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is SELECT. 
 
        FROM TABLE 
            TClnt 
        Nested iteration. 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
 
Table: TClnt scan count 1, logical reads: (regular=6154 apf=0 total=6154), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 
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SI Query:   

 

1> select * from TClnt where ccy = 'ZAR' 

2> and ctryresidencecode = 220 

3> union 

4> select * from TClnt where ccy = 'ZAR' 

5> and (ctryresidencecode < 220 

6>    or ctryresidencecode > 220) 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
 
FROM TABLE 
            TClnt 
        Nested iteration. 
        Index : Clnt_x2 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            CtryResidenceCode ASC 
            Ccy  ASC 
        Using I/O Size 16 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
 
        FROM TABLE 
            TClnt 
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        Nested iteration. 
        Index : Clnt_x2 
        Forward scan. 
        Positioning by key. 
        Index contains all needed columns. Base table will not be read. 
        Keys are: 

CtryResidenceCode  ASC 
            Ccy  ASC 
        Using I/O Size 16 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
 
        FROM TABLE 
            TClnt 
        Nested iteration. 
        Index : Clnt_x2 
        Forward scan. 
        Positioning by key. 
        Index contains all needed columns. Base table will not be read. 
        Keys are: 
            CtryResidenceCode  ASC 
            Ccy  ASC 
        Using I/O Size 16 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
 
FROM TABLE 
            TClnt 
        Nested iteration. 
        Index : Clnt_x2 
        Forward scan. 
        Positioning by key. 
        Index contains all needed columns. Base table will not be read. 
        Keys are: 
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            CtryResidenceCode  ASC 
            Ccy  ASC 
        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
 
        FROM TABLE 
            TClnt 
        Nested iteration. 
        Using Dynamic Index. 
        Forward scan. 
        Positioning by Row IDentifier (RID). 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
Table: TClnt scan count 1, logical reads: (regular=7 apf=0 total=7), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
The sort for Worktable2 is done in Serial 
 
Table: TClnt scan count 2, logical reads: (regular=316 apf=0 total=316), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: Worktable2  scan count 1, logical reads: (regular=20 apf=0 total=20), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
The sort for Worktable1 is done in Serial 
 
Table: Worktable1  scan count 0, logical reads: (regular=21 apf=0 total=21), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
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Total writes for this command: 5 
 

 

Example 6.2:  

 

Original Query: select distinct PrInd from TClnt where profession = '160' 

 

Rule: if Profession = '160' then PrInd = 'Y' – 95% confidence 

 

Original Query: 6348 I/Os 

SI Query: 37 I/Os 

 

In this example, I/O is reduced by 200 times. This is because the query optimiser 

decides to full table scan for the original query, while the SI query enables an 

index to be used which covers the query so that the underlying table does not 

need to be accessed. The index answers the SI query.  

 

Original Query:  

 

1> select distinct PrInd from TClnt  

2> where profession = '160'  

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            TClnt 
        Nested iteration. 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
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        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
 
Table: TClnt scan count 1, logical reads: (regular=6154 apf=0 total=6154), physical reads: (regular=0 apf=0 
total=0), a 
pf IOs used=0 
Table: Worktable1  scan count 0, logical reads: (regular=194 apf=0 total=194), physical reads: (regular=0 
apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 
 

SI Query:   

 

1> select distinct PrInd from TClnt  

2> where profession = '160'  

3> and (PrInd < 'Y' or PrInd > 'Y')     

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
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        FROM TABLE 
            TClnt 
        Nested iteration. 
        Index : Clnt_x3 
        Forward scan. 
        Positioning by key. 
        Index contains all needed columns. Base table will not be read. 
        Keys are: 
            PrInd  ASC 
            Profession  ASC 
        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
 
        FROM TABLE 
            TClnt 
        Nested iteration. 
        Index : Clnt_x3 
        Forward scan. 
        Positioning by key. 
        Index contains all needed columns. Base table will not be read. 
        Keys are: 
            PrInd  ASC 
            Profession  ASC 
        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
 
FROM TABLE 
            TClnt 
        Nested iteration. 
        Using Dynamic Index. 
        Forward scan. 
        Positioning by Row IDentifier (RID). 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
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        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable2 is done in Serial 
 
The sort for Worktable1 is done in Serial 
 
Table: TClnt scan count 2, logical reads: (regular=7 apf=0 total=7), physical reads: (regular=0 apf=0 
total=0), apf IOs 
 used=0 
Table: Worktable1  scan count 0, logical reads: (regular=12 apf=0 total=12), physical reads: (regular=0 
apf=0 total=0), apf 
IOs used=0 
Table: Worktable2  scan count 1, logical reads: (regular=18 apf=0 total=18), physical reads: (regular=0 
apf=0 total=0), apf 
IOs used=0 
Total writes for this command: 5 
 

 

Example 6.3:  

 

Original Query: select distinct Deal from TClnt where Charity = 'Y' 

 

Rule: if Charity = 'Y' then Deal = 'N'  (100% confidence) 

 

Original query: 6154 I/Os 

SI query: 1 I/O (rule page – rule covered query). 

 

This example demonstrates the most powerful use of SI – where the rule has 

100% confidence and ‘covers’ or answers the SI query without the need to access 

the table or index.  
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Original Query: 

 

1> select distinct Deal from TClnt  

2> where Charity = 'Y' 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            TClnt 
        Nested iteration. 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
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Table: TClnt scan count 1, logical reads: (regular=6154 apf=0 total=6154), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: Worktable1  scan count 0, logical reads: (regular=925 apf=0 total=925), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 
 

versus: 1 read of the rule page via rule covering. There are no indexes on either 

of these columns.  

 

The rule is  (if Charity = 'Y' then Deal = 'N') – 100% 

confidence 

 

 

Example 6.4 

 

Original Query: select Description from TClnt where profession = '160'  

 

Rule: if Profession = '160' then PrInd = 'Y' (95% confidence) 

 

Original Query: 6154 I/Os 

SI Query: 6385 I/Os 

 

Original Query: 

 

1> select Description from TClnt  

2> where profession = '160'  

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is SELECT. 
 
        FROM TABLE 
            TClnt 
        Nested iteration. 
        Table Scan. 
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        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
 
Table: TClnt scan count 1, logical reads: (regular=6154 apf=0 total=6154), physical reads: (regular=21 
apf=756 total=777), apf IOs used=756 
Total writes for this command: 0 
 

SI Query:  
 

1> select Description from TClnt  

2> where profession = '160'  

3> and (PrInd < 'Y' or PrInd > 'Y') 

4> union 

5> select Description from TClnt  

6> where profession = '160'  

7> and PrInd = 'Y' 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
 
        FROM TABLE 
            TClnt 
        Nested iteration. 
        Index : Clnt_x3 
        Forward scan. 
        Positioning by key. 
        Index contains all needed columns. Base table will not be read. 
        Keys are: 
            PrInd  ASC 
            Profession  ASC 
        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
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FROM TABLE 
            TClnt 
        Nested iteration. 
        Index : Clnt_x3 
        Forward scan. 
        Positioning by key. 
        Index contains all needed columns. Base table will not be read. 
        Keys are: 
            PrInd  ASC 
            Profession  ASC 
        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
 
        FROM TABLE 
            TClnt 
        Nested iteration. 
        Using Dynamic Index. 
        Forward scan. 
        Positioning by Row IDentifier (RID). 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
 
        FROM TABLE 
            TClnt 
        Nested iteration. 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
STEP 1 
        The type of query is SELECT. 
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        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable2 is done in Serial 
 
Table: TClnt scan count 2, logical reads: (regular=7 apf=0 total=7), physical reads: (regular=0 apf=0 
total=0), apf IOs 
 used=0 
Table: Worktable2  scan count 1, logical reads: (regular=18 apf=0 total=18), physical reads: (regular=0 
apf=0 total=0), apf IOs used=0 
Table: TClnt scan count 1, logical reads: (regular=6154 apf=0 total=6154), physical reads: (regular=0 apf=0 
total=0), apf IOs used=0 
The sort for Worktable1 is done in Serial 
 
Table: Worktable1  scan count 0, logical reads: (regular=206 apf=0 total=206), physical reads: (regular=0 
apf=0 total=0), apf IOs used=0 
Total writes for this command: 6 
 

 

 

 

Example 6.5:  

 

Original Query: select count(*) from tPortfolio where GroupSector = 13770 

 

Rule: if GroupSector = 13770 then IndexCategory = 8 (99% confidence) 

 

Original Query: 33957 I/Os 

SI Query: 11745 I/Os 
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This reduces I/O by two-thirds of the original, by using indexed access rather 

than a table scan. However, the reduction is not as great as some of the previous 

examples because the index is accessed twice.  

 

Original Query:  

 

1> select count(*) from tPortfolio  

2> where GroupSector = 13770 

 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is SELECT. 
        Evaluate Ungrouped COUNT AGGREGATE. 
 
        FROM TABLE 
            tPortfolio 
        Nested iteration. 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
    STEP 2 
        The type of query is SELECT. 
 
Table: tPortfolio scan count 1, logical reads: (regular=33957 apf=0 
total=33957), physical reads: (regular=8 apf=5026 total=5034), apf IOs 
used=5026 
Total writes for this command: 0 
 

SI Query:  

 

1> select count(*) from tPortfolio  

2> where GroupSector = 13770 and IndexCategory = 8 
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3> union 

4> select count(*) from tPortfolio  

5> where GroupSector = 13770  

6> and (IndexCategory < 8 or IndexCategory >8) 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is SELECT. 
        Evaluate Ungrouped COUNT AGGREGATE. 
 
        FROM TABLE 
            tPortfolio 
        Nested iteration. 
        Index : Pf_ix3 
        Forward scan. 
        Positioning by key. 
        Index contains all needed columns. Base table will not be read. 
        Keys are: 
            IndexCategory  ASC 
            GroupSector  ASC 
        Using I/O Size 16 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
 
    STEP 2 
        The type of query is INSERT. 
        The update mode is direct. 
        TO TABLE 
            Worktable1. 
  STEP 1 
        The type of query is SELECT. 
        Evaluate Ungrouped COUNT AGGREGATE. 
 
        FROM TABLE 
            tPortfolio 
        Nested iteration. 
        Index : Pf_ix3 
        Forward scan. 
        Positioning at index start. 
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        Index contains all needed columns. Base table will not be read. 
        Using I/O Size 16 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
 
    STEP 2 
        The type of query is INSERT. 
        The update mode is direct. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
Table: tPortfolio scan count 1, logical reads: (regular=4274 apf=0 
total=4274), physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: tPortfolio scan count 1, logical reads: (regular=7463 apf=0 
total=7463), physical reads: (regular=8 apf=380 total=388), apf IOs used=394 
The sort for Worktable1 is done in Serial 
 
Table: Worktable1  scan count 0, logical reads: (regular=10 apf=0 total=10), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 
 

 

Example 6.6:  

 

Original Query: select * from TCompRet where CompositeType = 40 
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Rule:  if CompositeType = 40 then ClassificationCode = 157 (100% 

confidence) 

 

Original Query: 11470 I/Os 

SI Query: 11 I/Os 

 

This example enables the SI query to use a useful index and has a rule with 100% 

confidence. The rule does not ‘cover’ or answer the query, hence table and index 

access are required to answer the query.  

 

Original Query:  

 

1> select * from TCompRet  

2> where CompositeType = 40 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is SELECT. 
 
        FROM TABLE 
            TCompRet 
        Nested iteration. 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
Table: TCompRet scan count 1, logical reads: (regular=11470 apf=0 
total=11470), physical reads: (regular=453 apf=930 total=1383), apf IOs 
used=930 
Total writes for this command: 0 
 

SI Query: 

 

1> select * from TCompRet  
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2> where CompositeType = 40 

3> and ClassificationCode = 157 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is SELECT. 
 
        FROM TABLE 
            TCompRet 
        Nested iteration. 
        Index : ixcompreturn3 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            ClassificationCode  ASC 
            CompositeType  ASC 
        Using I/O Size 16 Kbytes for index leaf pages. 
        With MRU Buffer Replacement Strategy for index leaf pages. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
Table: TCompRet scan count 1, logical reads: (regular=11 apf=0 total=11), 
physical reads: (regular=7 apf=0 total=7), apf IOs used=0 
Total writes for this command: 0 
 

 

 

 

Example 6.7:  

 

Original Query: select * from TCompRet where CompositeType = 39 

 

Rule: If CompositeType = 39 then ClassificationCode = 147 (95%) 

 

Original Query: 11470 I/Os 

SI Query: 1936 I/Os 
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This example reduces I/O by changing the data access path from a table scan to 

an index. The reduction is I/O is profound, but not as much as some queries 

because the SI query is a union’ed query – and the index is accessed twice – once 

for each part of the union-ed query.  

 

Original Query:  

 

1> select * from TCompRet  

2> where CompositeType = 39 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is SELECT. 
 
        FROM TABLE 
            TCompRet 
        Nested iteration. 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
Table: TCompRet scan count 1, logical reads: (regular=11470 apf=0 
total=11386), physical reads: (regular=8 apf=392 total=400), apf IOs used=392 
Total writes for this command: 0 
 

SI Query:  

 

1> select * from TCompRet where CompositeType = 39 

2> and ClassificationCode = 147 

3> union 

4> select * from TCompRet where CompositeType = 39 

5> and (ClassificationCode < 147 

6>  or ClassificationCode > 147) 
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QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
 
        FROM TABLE 
            TCompRet 
        Nested iteration. 
        Index : ixcompreturn3 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            ClassificationCode  ASC 
            CompositeType  ASC 
        Using I/O Size 16 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
 
FROM TABLE 
            TCompRet 
        Nested iteration. 
        Index : ixcompreturn3 
        Forward scan. 
        Positioning at index start. 
        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
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    STEP 1 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
Table: TCompRet scan count 1, logical reads: (regular=20 apf=0 total=20), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: TCompRet scan count 1, logical reads: (regular=1887 apf=0 
total=1887), physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
The sort for Worktable1 is done in Serial 
 
Table: Worktable1  scan count 0, logical reads: (regular=29 apf=0 total=29), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 

 

 

Example 6.8: 

 

Original Query: select * from TClnt where Charity = 'Y' and Deal = 'Y' 

 

Rule: if Charity = 'Y' then Deal = 'N' (100% confidence) 

 

Original query: 6154 I/O 

SI Query: 1 I/O – for the rule page.  

 

This is an ‘inverse’ example, where the 2 predicates in the where clause conflict 

with a 100% rule, hence no results will be returned. 
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This example is different in that it uses the SI algorithm to answer the query 

indirectly by telling that it has no result set. This is because there is a 100% 

confidence rule that the query’s predicate conflicts with.  

 

Original Query: 

 

1> select * from TClnt  

2> where Charity = 'Y' and Deal = 'Y' 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is SELECT. 
 
        FROM TABLE 
            TClnt 
        Nested iteration. 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
Table: TClnt scan count 1, logical reads: (regular=6154 apf=8 total=6162), 
physical reads: (regular=8 apf=664 total=672), apf IOs used=664 
Total writes for this command: 0 
 

 

 

Example 6.9: 

 

Original Query: select distinct Security from TQuote where QuoteCode = 

'SETTLEMENT' 

 

Rule: if QuoteCode = 'SETTLEMENT' then MarketCode = 'MM' (72%) 
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Original Query: 58134 I/Os 

SI Query: 8724 I/Os 

 

In this example, I/O is reduced in the SI query even though the same access path 

is used (indexed acccess). In this, SI enables greater selectivity of the index, 

reducing the I/O required by some 85%. 

 

Original Query: 

 

1> select distinct Security from TQuote  

2> where QuoteCode = 'SETTLEMENT' 

 

 

QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Executed in parallel by coordinating process and 3 worker processes. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            TQuote 
        Nested iteration. 
        Index : tqu_x1 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            QuoteCode  ASC 
        Executed in parallel with a 3-way hash scan. 
        Using I/O Size 16 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        Using I/O Size 16 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
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        The type of query is SELECT. 
        Executed by coordinating process. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
 
Table: TQuote  scan count 3,  logical reads: (regular=8424 apf=0 
total=8424),  physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Table: Worktable1   scan count 0,  logical reads: (regular=49710 apf=0 
total=49710),  physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Total writes for this command: 0 
 

SI Query:  

 

1> select distinct Security from TQuote  

2> where QuoteCode = 'SETTLEMENT' 

3> and (MarketCode > 'MM' or MarketCode < 'MM') 

4> union 

5> select distinct Security from TQuote  

6> where QuoteCode = 'SETTLEMENT' 

7> and MarketCode = 'MM' 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Executed in parallel by coordinating process and 3 worker processes. 
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        FROM TABLE 
            TQuote 
        Nested iteration. 
        Index : tqu_x1 
        Forward scan. 
        Positioning by key. 
        Keys are: 
             QuoteCode  ASC 
             MarketCode  ASC 
        Executed in parallel with a 3-way hash scan. 
        Using I/O Size 16 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        Using I/O Size 16 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Executed in parallel by coordinating process and 3 worker processes. 
 
        FROM TABLE 
            TQuote 
        Nested iteration. 
        Index : tqu_x1 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            QuoteCode  ASC 
            MarketCode  ASC 
        Executed in parallel with a 3-way hash scan. 
        Using I/O Size 16 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        Using I/O Size 16 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
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        The type of query is SELECT. 
        Executed by coordinating process. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
Table: TQuote  scan count 3,  logical reads: (regular=1681 apf=0 
total=1681),  physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Table: TQuote  scan count 3,  logical reads: (regular=6755 apf=0 
total=6755),  physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
The sort for Worktable1 is done in Serial 
 

 

Chapter 6 Queries – Second Data Set 
 

 

Example 6.10:  

 

Original Query:  select distinct machine_user_name from login_info  

 where login_name = 'PWalds' 

 

Rule: if login_name = 'PWalds' then machine name = 'RD-02727' (85% 

confidence) 

 

Original Query: 2078 I/Os 

SI Query: 1426 I/Os 

 

This is a sample query that would be executed by a Security/Audit group to 

check the machines that logins are from.  
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Original Query: 

 

1> select distinct machine_user_name  

2> from login_info  

3> where login_name = 'PWalds' 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 3 worker processes. 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Executed in parallel by coordinating process and 3 worker processes. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            login_info 
        Nested iteration. 
        Index : ix2_login_info 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            login_name  ASC 
        Executed in parallel with a 3-way hash scan. 
        Using I/O Size 16 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        Executed by coordinating process. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
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        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
  
Table: login_info  scan count 3,  logical reads: (regular=738 apf=0 total=738),  
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Table: Worktable1   scan count 0,  logical reads: (regular=1340 apf=0 
total=1340),  physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Total writes for this command: 0 
 

SI Query: 

 

1> select distinct machine_user_name  

2> from login_info  

3> where login_name = 'PWalds' 

4> and machine_name = 'RD-02727' 

5> union 

6> select distinct machine_user_name  

7> from login_info  

8> where login_name = 'PWalds' 

9> and (machine_name < 'RD-02727'  

10>   OR machine_name > 'RD-02727') 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 3 worker processes. 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Executed in parallel by coordinating process and 3 worker processes. 
 
        FROM TABLE 
            login_info 
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        Nested iteration. 
        Index : ix2_login_info 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            login_name  ASC 
            machine_name  ASC 
        Executed in parallel with a 3-way hash scan. 
        Using I/O Size 16 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Executed in parallel by coordinating process and 3 worker processes. 
 
        FROM TABLE 
            login_info 
        Nested iteration. 
        Index : ix2_login_info 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            login_name  ASC 
        Executed in parallel with a 3-way hash scan. 
        Using I/O Size 16 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
        The type of query is SELECT. 
        Executed by coordinating process. 
        This step involves sorting. 
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        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
Table: login_info  scan count 3,  logical reads: (regular=643 apf=0 total=643),  
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Table: login_info  scan count 3,  logical reads: (regular=738 apf=0 total=738),  
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
The sort for Worktable1 is done in Serial 
 
Table: Worktable1   scan count 0,  logical reads: (regular=45 apf=0 total=45),  
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Total writes for this command: 0 
 

 

Example 6.11: 

 

Original Query: select distinct machine_name from login_info  

where login_name = 'PWalds' 

 

Rule: if login_name = 'PWalds' then machine name = 'RD-02727' (85% 

confidence) 

 

Original query: 1312 I/Os 

SI Query: 197  I/Os 

 

This query is similar to the previous one, but the column in the select list is 

indexed (whereas in the previous query it is not). Hence this is an ‘index 

covered’ query, and the improvement can be compared to the non-index covered 

query above.  
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Original Query: 

 

1> select distinct machine_name  

2> from login_info  

3> where login_name = 'PWalds' 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            login_info 
        Nested iteration. 
        Index : ix2_login_info 
        Forward scan. 
        Positioning by key. 
        Index contains all needed columns. Base table will not be read. 
        Keys are: 
            login_name  ASC 
        Using I/O Size 16 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
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The sort for Worktable1 is done in Serial 
  
Table: login_info  scan count 1,  logical reads: (regular=22 apf=0 total=22),  
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Table: Worktable1   scan count 0,  logical reads: (regular=1290 apf=0 
total=1290),  physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Total writes for this command: 0 

 

SI Query: 

 

1> select distinct machine_name from login_info  

2> where login_name = 'PWalds' 

3> and (machine_name < 'RD-02727'  

4>   or machine_name > 'RD-02727') 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
  
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            login_info 
        Nested iteration. 
        Index : ix2_login_info 
        Forward scan. 
        Positioning by key. 
        Index contains all needed columns. Base table will not be read. 
        Keys are: 
            login_name  ASC 
        Using I/O Size 16 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
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        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
 
Table: login_info  scan count 1,  logical reads: (regular=22 apf=0 total=22),  
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Table: Worktable1   scan count 0,  logical reads: (regular=175 apf=0 total=175), 
 physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Total writes for this command: 0 
 

 

Example 6.12: 

 

Original query: select distinct flow_calc_code from flow 

where flow_type_code = 'INTEREST' 

 

Rule: if flow_type_code = 'INTEREST' then flow_calc_code = 'SIMPLE' 

(99% confidence) 

 

Original Query: 198161 

SI Query: 2097 

 

This query is selecting the type of cash flow from a table storing all types of 

flows. This looks at the calculation type used for Interest based cash flows.  

 

Original Query:  

 

1> select distinct flow_calc_code from flow 
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2> where flow_type_code = 'INTEREST' 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            flow 
        Nested iteration. 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
 
Table: flow  scan count 1,  logical reads: (regular=44849 apf=0 total=44849),  
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Table: Worktable1   scan count 0,  logical reads: (regular=153312 apf=0 
total=153312),  physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Total writes for this command: 2 
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SI Query: 

 

1> select distinct flow_calc_code from flow 

2> where flow_type_code = 'INTEREST' 

3> and (flow_calc_code < 'SIMPLEINT' 

4>   or flow_calc_code > 'SIMPLEINT') 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            flow 
        Nested iteration. 
        Index : ix_flow 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            flow_calc_code  ASC 
        Using I/O Size 16 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        Using I/O Size 16 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
 
        FROM TABLE 
            flow 
        Nested iteration. 
        Index : ix_flow 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            flow_calc_code  ASC 
        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        Using I/O Size 2 Kbytes for data pages. 
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        With LRU Buffer Replacement Strategy for data pages. 
 
        FROM TABLE 
            flow 
        Nested iteration. 
        Using Dynamic Index. 
        Forward scan. 
        Positioning by Row IDentifier (RID). 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable2 is done in Serial 
 
The sort for Worktable1 is done in Serial 
 
Table: flow  scan count 2,  logical reads: (regular=1719 apf=0 total=1719),  
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Table: Worktable1   scan count 0,  logical reads: (regular=188 apf=0 total=188), 
 physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Table: Worktable2   scan count 1,  logical reads: (regular=190 apf=0 total=190), 
 physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Total writes for this command: 5 

 

 

Example 6.13: 
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Original Query: select distinct curve_type_code from curve  

where currency_code = 'CZK' 

 

Rule: if currency_code = 'CZK' then curve_type_code = 'INTEREST' 

(100% confidence) 

 

Original Query: 479 I/Os 

SI query: 1 I/O (rule covered - assuming a single rule page) 

 

This is a ‘rule covered’ query – the rule used by SI algorithm answers the query 

completely.  

 

Original Query: 

 

1> select distinct curve_type_code from curve  

2> where currency_code = 'CZK' 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            curve 
        Nested iteration. 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
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        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
 
Table: curve  scan count 1,  logical reads: (regular=394 apf=0 total=394),  
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Table: Worktable1   scan count 0,  logical reads: (regular=85 apf=0 total=85),  
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Total writes for this command: 0 
 

 

Example 6.14: 

 

Original Query: select count(*) from curve where currency_code = 'USD' 

 

Rule: if currency_code = 'USD' then curve_type_code = 'FX' (79% 

confidence) 

 

Original Query: 394 I/Os 

SI Query: 797 I/Os. 

 

This is similar to the previous query but is not rule covered – as the rule is not 

with 100% confidence.  

In this example, SI is actually detrimental to performance.  

 

Original Query: 
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1> select count(*) from curve  

2> where currency_code = 'USD' 

 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is SELECT. 
        Evaluate Ungrouped COUNT AGGREGATE. 
 
        FROM TABLE 
            curve 
        Nested iteration. 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
 
    STEP 2 
        The type of query is SELECT. 
              
Table: curve  scan count 1,  logical reads: (regular=394 apf=0 total=394),  
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Total writes for this command: 0 
 

SI Query: 

 

1> select count(*) from curve  

2> where currency_code = 'USD' 

3> and curve_type_code = 'FX'  

4> union  

5> select count(*) from curve  

6> where currency_code = 'USD' 

7> and (curve_type_code < 'FX' or curve_type_code > 

'FX')   
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QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is SELECT. 
        Evaluate Ungrouped COUNT AGGREGATE. 
 
        FROM TABLE 
            curve 
        Nested iteration. 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
 
    STEP 2 
        The type of query is INSERT. 
        The update mode is direct. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
        The type of query is SELECT. 
        Evaluate Ungrouped COUNT AGGREGATE. 
 
        FROM TABLE 
            curve 
        Nested iteration. 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
 
    STEP 2 
        The type of query is INSERT. 
        The update mode is direct. 
        TO TABLE 
            Worktable1. 
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    STEP 1 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
Table: curve  scan count 1,  logical reads: (regular=394 apf=0 total=394),  
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Table: curve  scan count 1,  logical reads: (regular=394 apf=0 total=394),  
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
The sort for Worktable1 is done in Serial 
              
Table: Worktable1   scan count 0,  logical reads: (regular=9 apf=0 total=9),  
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Total writes for this command: 0 
 

 

Example 6.15: 

 

Original Query: select count(*) from trade where trade_status_code = 

'MATURED' 

 

Rule: if trade_status_code  = 'MATURED' then trade_info_code = 'FX' 

(90% confidence) 

 

Original Query: 106799 I/Os 

SI Query: 2328 I/Os. 
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This query is based on trades that have matured (expired or settled in the past). 

The rule shows that 90% of the matured trades are foreign exchange trades, 

which is because the mature quicker than other types.  

SI is shown to provide a huge advantage in reducing the I/O required to answer 

the query.  

 

Original Query: 

 

1> select count(*) from trade  

2> where trade_status_code = 'MATURED' 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 3 worker processes. 
 
    STEP 1 
        The type of query is SELECT. 
        Evaluate Ungrouped COUNT AGGREGATE. 
        Executed in parallel by coordinating process and 3 worker processes. 
 
        FROM TABLE 
            trade 
        Nested iteration. 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Executed in parallel with a 3-way hash scan. 
        Using I/O Size 16 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
 
        Parallel result buffer merge. 
 
    STEP 2 
        The type of query is SELECT. 
        Executed by coordinating process. 
            
Table: trade  scan count 3,  logical reads: (regular=106799 apf=0 total=106799), 
 physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Total writes for this command: 0 
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SI Query: 

 

1> select count(*) from trade  

2> where trade_status_code = 'MATURED' 

3> and trade_info_code = 'FX' 

4> union  

5> select count(*) from trade  

6> where trade_status_code = 'MATURED' 

7> and (trade_info_code < 'FX' or trade_info_code > 

'FX') 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is SELECT. 
        Evaluate Ungrouped COUNT AGGREGATE. 
 
        FROM TABLE 
            trade 
        Nested iteration. 
        Index : ix2_trade 
        Forward scan. 
        Positioning by key. 
        Index contains all needed columns. Base table will not be read. 
        Keys are: 
            trade_info_code  ASC 
            trade_status_code  ASC 
        Using I/O Size 16 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
 
    STEP 2 
        The type of query is INSERT. 
        The update mode is direct. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
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        The type of query is SELECT. 
        Evaluate Ungrouped COUNT AGGREGATE. 
 
        FROM TABLE 
            trade 
        Nested iteration. 
        Index : ix2_trade 
        Forward scan. 
        Positioning at index start. 
        Index contains all needed columns. Base table will not be read. 
        Using I/O Size 16 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
 
    STEP 2 
        The type of query is INSERT. 
        The update mode is direct. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
Table: trade  scan count 1,  logical reads: (regular=3 apf=0 total=3),  physical 
reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Table: trade  scan count 1,  logical reads: (regular=2316 apf=0 total=2316),  
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
The sort for Worktable1 is done in Serial 
   
Table: Worktable1   scan count 0,  logical reads: (regular=9 apf=0 total=9),  
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
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Total writes for this command: 0 
 

 

Example 6.16: 

 

Original Query: select count(*) from sec where class_name = 'ISwapLeg' 

 

Rule: if class_name = 'ISwapLeg' then sec_def_code = 'SPECIFIC' (93% 

confidence) 

 

Original query: 8820 I/Os 

SI query: 683 I/Os 

 

This query is based on looking at the classifications in a security table.  

 

Original Query: 

 

1> select count(*) from sec  

2> where class_name = 'ISwapLeg' 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 3 worker processes. 
 
    STEP 1 
        The type of query is SELECT. 
        Evaluate Ungrouped COUNT AGGREGATE. 
        Executed in parallel by coordinating process and 3 worker processes. 
 
        FROM TABLE 
            sec 
        Nested iteration. 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Executed in parallel with a 3-way hash scan. 
        Using I/O Size 16 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
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        Parallel result buffer merge. 
 
    STEP 2 
        The type of query is SELECT. 
        Executed by coordinating process. 
  
Table: sec  scan count 3,  logical reads: (regular=8820 apf=0 total=8820),  
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Total writes for this command: 0 
 

SI Query: 

 

1> select count(*)  

2> from sec where class_name = 'ISwapLeg' 

3> and sec_def_code = 'SPECIFIC' 

4> union 

5> select count(*) 

6> from sec where class_name = 'ISwapLeg' 

7> and (sec_def_code < 'SPECIFIC' 

8>   or sec_def_code > 'SPECIFIC') 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is SELECT. 
        Evaluate Ungrouped COUNT AGGREGATE. 
 
        FROM TABLE 
            sec 
        Nested iteration. 
        Index : ix1_sec 
        Forward scan. 
        Positioning by key. 
        Index contains all needed columns. Base table will not be read. 
        Keys are: 
            sec_def_code  ASC 
            class_name  ASC 
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        Using I/O Size 16 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
 
    STEP 2 
        The type of query is INSERT. 
        The update mode is direct. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
        The type of query is SELECT. 
        Evaluate Ungrouped COUNT AGGREGATE. 
 
        FROM TABLE 
            sec 
        Nested iteration. 
        Index : ix1_sec 
        Forward scan. 
        Positioning at index start. 
        Index contains all needed columns. Base table will not be read. 
        Using I/O Size 16 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
 
    STEP 2 
        The type of query is INSERT. 
        The update mode is direct. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
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        With MRU Buffer Replacement Strategy for data pages. 
 
Table: sec  scan count 1,  logical reads: (regular=334 apf=0 total=334),  
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Table: sec  scan count 1,  logical reads: (regular=340 apf=0 total=340),  
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
The sort for Worktable1 is done in Serial        
  
Table: Worktable1   scan count 0,  logical reads: (regular=9 apf=0 total=9),  
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Total writes for this command: 0 
 

 

Example 6.17: 

 

Original Query: select distinct source from sec where class_name = 

'ISwapLeg' 

 

Rule: if class_name = 'ISwapLeg' then sec_def_code = 'SPECIFIC' (93% 

confidence) 

 

Original Query: 121441 I/Os 

SI Query: 9808 I/Os 

 

Original Query: 

 

1> select distinct source from sec  

2> where class_name = 'ISwapLeg' 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 3 worker processes. 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Executed in parallel by coordinating process and 3 worker processes. 
        Worktable1 created for DISTINCT. 
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        FROM TABLE 
            sec 
        Nested iteration. 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Executed in parallel with a 3-way hash scan. 
        Using I/O Size 16 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        Executed by coordinating process. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
 
Table: sec  scan count 3,  logical reads: (regular=8858 apf=0 total=8858),  
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Table: Worktable1   scan count 0,  logical reads: (regular=112583 apf=0 
total=112583),  physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Total writes for this command: 0 
 

SI Query: 

 

1> select distinct source from sec  

2> where class_name = 'ISwapLeg' 
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3> and sec_def_code = 'SPECIFIC' 

4> union  

5> select distinct source from sec 

6> where class_name = 'ISwapLeg' 

8> and (sec_def_code < 'SPECIFIC'  

9>    or sec_def_code > 'SPECIFIC') 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
Executed in parallel by coordinating process and 3 worker processes. 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Executed in parallel by coordinating process and 3 worker processes. 
 
        FROM TABLE 
            sec 
        Nested iteration. 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Executed in parallel with a 3-way hash scan. 
        Using I/O Size 16 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Executed by coordinating process. 
 
        FROM TABLE 
            sec 
        Nested iteration. 
        Index : ix1_sec 
        Forward scan. 
        Positioning by key. 
        Index contains all needed columns. Base table will not be read. 
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        Keys are: 
            sec_def_code  ASC 
            class_name  ASC 
        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
 
        FROM TABLE 
            sec 
        Nested iteration. 
        Index : ix1_sec 
        Forward scan. 
        Positioning by key. 
        Index contains all needed columns. Base table will not be read. 
        Keys are: 
            sec_def_code  ASC 
            class_name  ASC 
        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
 
        FROM TABLE 
            sec 
        Nested iteration. 
        Using Dynamic Index. 
        Forward scan. 
        Positioning by Row IDentifier (RID). 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
        The type of query is SELECT. 
        Executed by coordinating process. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
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        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
Table: sec  scan count 3,  logical reads: (regular=8858 apf=0 total=8858),  
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
The sort for Worktable2 is done in Serial 
 
Table: sec  scan count 3,  logical reads: (regular=38 apf=0 total=38),  physical 
reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Table: Worktable2   scan count 1,  logical reads: (regular=233 apf=0 total=233), 
 physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
The sort for Worktable1 is done in Serial 
 
Table: Worktable1   scan count 0,  logical reads: (regular=679 apf=0 total=679), 
 physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Total writes for this command: 7 
 
 

Example 6.18: 

 

Original Query: select distinct data_group_code from auth_status where 

auth_type_code = 'NEW' 

 

Rule:  if auth_type_code = 'NEW' then data_group_code = 'trade_stlmt' 

(80% confidence) 

 

Original Query:  893681 I/Os 

SI query: 114758 I/Os 

 

Original Query: 

 

1> select distinct data_group_code  

2> from auth_status  

3> where auth_type_code = 'NEW' 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
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Executed in parallel by coordinating process and 3 worker processes. 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Executed in parallel by coordinating process and 3 worker processes. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            auth_status 
        Nested iteration. 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Executed in parallel with a 3-way hash scan. 
        Using I/O Size 16 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        Executed by coordinating process. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Parallel 
 
Table: auth_status  scan count 3,  logical reads: (regular=56487 apf=0 
total=56487),  physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Table: Worktable1   scan count 0,  logical reads: (regular=837194 apf=0 
total=837194),  physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
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Total writes for this command: 3 
 

SI Query:  

 

1> select distinct data_group_code  

2> from auth_status  

3> where auth_type_code = 'NEW' 

4> and (data_group_code < 'trade_stlmt'  

5>   or data_group_code > 'trade_stlmt') 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            auth_status 
        Nested iteration. 
        Index : ix2_auth_status 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            data_group_code  ASC 
        Using I/O Size 16 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        Using I/O Size 16 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
 
        FROM TABLE 
            auth_status 
        Nested iteration. 
        Index : ix2_auth_status 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            data_group_code  ASC 
        Using I/O Size 2 Kbytes for index leaf pages. 
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        With LRU Buffer Replacement Strategy for index leaf pages. 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
 
        FROM TABLE 
            auth_status 
        Nested iteration. 
        Using Dynamic Index. 
        Forward scan. 
        Positioning by Row IDentifier (RID). 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable2 is done in Serial 
 
The sort for Worktable1 is done in Serial 
 
Table: auth_status  scan count 3,  logical reads: (regular=16405 apf=0 
total=16405),  physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Table: Worktable1   scan count 0,  logical reads: (regular=1043 apf=0 
total=1043),  physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Table: Worktable2   scan count 1,  logical reads: (regular=97310 apf=0 
total=97310),  physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Total writes for this command: 541 
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Example 6.19: 

 

Original Query: select spot_date from trade where process_org_id = 3 

 

Rule: if process_org_id = 3 then subject_org_id = 1 (100% confidence) 

 

Original query: 78373 I/Os 

SI query: 49316 I/Os 

 

In this example, SI enables a change to the access path, giving some 

improvement in the efficiency of execution.  

 

Original Query: 

 

1> select spot_date from trade  

2> where process_org_id = 3 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
   
    STEP 1 
        The type of query is SET STATUS ON. 
  
Total writes for this command: 0 
  
QUERY PLAN FOR STATEMENT 1 (at line 1). 
   
    STEP 1 
        The type of query is SELECT. 
  
        FROM TABLE 
            trade 
        Nested iteration. 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 16 Kbytes for data pages. 
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        With LRU Buffer Replacement Strategy for data pages. 
  
Table: trade  scan count 1,  logical reads: (regular=78373 apf=0 total=78373), 
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Total writes for this command: 0 

 

SI Query:  

 

1> select spot_date from trade  

2> where process_org_id = 3  

3> and subject_org_id = 1 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
     STEP 1 
        The type of query is SET STATUS ON. 
 
Total writes for this command: 0 
  
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
Executed in parallel by coordinating process and 3 worker processes. 
  
    STEP 1 
        The type of query is SELECT. 
        Executed in parallel by coordinating process and 3 worker processes. 
  
        FROM TABLE 
            trade 
        Nested iteration. 
        Index : ix3_trade 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            subject_org_id  ASC 
            process_org_id  ASC 
        Executed in parallel with a 3-way hash scan. 
        Using I/O Size 16 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
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        Using I/O Size 16 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
  
        Parallel network buffer merge. 
  
Table: trade  scan count 3,  logical reads: (regular=49316 apf=0 total=49316), 
physical reads: (regular=0 apf=0 total=0),  apf IOs used=0 
Total writes for this command: 0 

 

 

Chapter 7 Queries 
 

 

Example 7.1: 

 

With data distribution such that the antecedent is at the lowest end of the 

normal distribution curve: 

 

Data distribution:  

 

select count(*), subject_type from titles  

group by subject_type  

order by 1 

 

       Total  Subject 

          60  Astronomy            

          60  Media                 

         120  Astrology             

         120  Health                

         250  Design                

         250  Travelling            

         500  Geography            

         500  Sociology             

        1000 Chemicals             
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        1000  Gardening             

        2500  Business              

        2500  Economics            

        5000  Beauty                

        5000  History               

       10000  Biology               

       10000  Plants                

       50000  Languages            

       50000  Science               

      100000  Maths                 

      100000  Music                 

      150000  Art                   

 

Original Query: 
 

1> select distinct price from titles  

2> where subject_type = 'Astronomy' 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
        Using Clustered Index. 
        Index : Cl_1x 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            subject_type  ASC 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
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        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
 
Table: titles scan count 1, logical reads: (regular=11 apf=0 total=11), physical 
reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: Worktable1  scan count 0, logical reads: (regular=68 apf=0 total=68), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 

 

SI Query:  

 

From the rule, we know that: 

 

if subject_type = 'Astronomy' then price = 29.95 (70% 

confidence)  

 

Hence the corresponding SI query only asks for the information requested by the 

original query and unknown from the rule.  

 

1> select distinct price from titles  

2> where subject_type = 'Astronomy' 

3> and (price < 29.95 or price > 29.95) 
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QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
        Using Clustered Index. 
        Index : Cl_1x 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            subject_type  ASC 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
 
Table: titles scan count 1, logical reads: (regular=11 apf=0 total=11), physical 
reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: Worktable1  scan count 0, logical reads: (regular=26 apf=0 total=26), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
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Total writes for this command: 0 

 

From this example, we can see that the SI query is more efficient than the 

original query by 42 fewer I/Os (79 I/Os for the original and 37 I/Os for the SI 

query), which is 46% of the original query’s I/O – over a 50% improvement.  

 

 

Example 7.2: 

 

With data distribution changed so that antecedent is at the high or top end 

of the normal distribution curve: 

 

When the data is changed so that subject_type = 'Astronomy' is at 

the top end of the normal distribution, as follows: 

 

select count(*), subject_type from titles  

group by subject_type 

order by 1 

 

          Total  Subject 

          60  Art                   

          60  Media                 

         120  Astrology             

         120  Health                

         250  Design                

         250  Travelling            

         500  Geography            

         500  Sociology             

        1000  Chemicals             

        1000  Gardening             

        2500  Business              

        2500  Economics            

        5000  Beauty                
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        5000  History               

       10000  Biology               

       10000  Plants                

       50000  Languages            

       50000  Science               

      100000  Maths                 

      100000  Music                 

      150000  Astronomy          

 

Original Query:  

 

1> select distinct price from titles  

2> where subject_type = 'Astronomy' 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
        Using Clustered Index. 
        Index : Cl_1x 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            subject_type  ASC 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
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        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
 
Table: titles scan count 1, logical reads: (regular=6533 apf=0 total=6533), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: Worktable1  scan count 0, logical reads: (regular=152696 apf=0 
total=152696), physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 2 

 

SI Query: 

 

1> select distinct price from titles  

2> where subject_type = 'Astronomy' 

3> and (price < 29.95 or price > 29.95) 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
        Using Clustered Index. 
        Index : Cl_1x 
        Forward scan. 
        Positioning by key. 
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        Keys are: 
            subject_type  ASC 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
 
Table: titles scan count 1, logical reads: (regular=6533 apf=0 total=6533), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: Worktable1  scan count 0, logical reads: (regular=26613 apf=0 
total=26613), physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 

 

In this case, where the antecedent is at the high end of the normal distribution, 

I/O is reduced by 126079 I/Os. This is 20% of the I/O of the original query.  

This is because the antecedent, being at the top end of the normal distribution 

curve, has had its selectivity increased significantly enough to have made a 

difference, whereas when the antecedent was at the low end of the normal 

distribution, selectivity was high to start with, hence adding the SI did not 

increase selectivity by the same magnitude.  

 

Example 7.3: 
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Here the data is changed so that the antecedent is at neither the top end nor the 

bottom end of the normal distribution – but at the lower-mid end, as can be seen, 

where subject_type = 'Astronomy'.  

 

With data distribution changed so that antecedent is at the lower-mid end of 

the normal distribution curve: 

 

select count(*), subject_type from titles  

group by subject_type  

order by 1 

 

      Total Subject 

          60  Art                   

          60  Media                 

         120  Astrology             

         120  Health                

         250  Design                

         250  Travelling            

         500  Geography            

         500  Sociology             

        1000  Chemicals             

        1000  Gardening             

        2500  Astronomy            

        2500  Business              

        5000  Beauty                

        5000  History               

       10000  Biology               

       10000  Plants                

       50000  Languages            

       50000  Science               

      100000  Maths                 

      100000  Music                 

      150000  Economics             
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Original Query: 

 

1> select distinct price from titles  

2> where subject_type = 'Astronomy'  

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
        Using Clustered Index. 
        Index : Cl_1x 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            subject_type  ASC 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
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The sort for Worktable1 is done in Serial 
 
Table: titles scan count 1, logical reads: (regular=116 apf=0 total=116), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: Worktable1  scan count 0, logical reads: (regular=2550 apf=0 total=2550), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 

 

SI Query: 

 

1> select distinct price from titles  

2> where subject_type = 'Astronomy'  

3> and (price < 29.95 or price > 29.95) 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
        Using Clustered Index. 
        Index : Cl_1x 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            subject_type  ASC 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
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        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
 
Table: titles scan count 1, logical reads: (regular=116 apf=0 total=116), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: Worktable1  scan count 0, logical reads: (regular=770 apf=0 total=770), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 

 

Here, the benefit is also profound – I/O for the SI query is reduced to just over 

33% of that of the original query.  
 

 

Example 7.4: 
 

With the data distribution changed again so that the antecedent is at the 

middle-upper range on the normal distribution curve: 
 

select count(*), subject_type from titles  

group by subject_type  

order by 1 

 

      Total Subject 

          60  Art                   

          60  Media                 

         120  Astrology             

         120  Health                

         250  Design                
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         250  Travelling            

         500  Geography            

         500  Sociology             

        1000  Chemicals             

        1000  Gardening             

        2500  Business              

        2500  Plants                

        5000  Beauty                

        5000  History               

       10000  Astronomy            

       10000  Biology               

       50000  Languages            

       50000  Science               

      100000  Maths                 

      100000  Music                 

      150000  Economics            

 

Original Query: 

 

1> select distinct price from titles  

2> where subject_type = 'Astronomy' 

 

QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
        Using Clustered Index. 
        Index : testx 
        Forward scan. 
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        Positioning by key. 
        Keys are: 
            subject_type  ASC 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
 
Table: titles scan count 1, logical reads: (regular=431 apf=0 total=431), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: Worktable1  scan count 0, logical reads: (regular=10185 apf=0 
total=10185), physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 

 

SI Query: 

 

1> select distinct price from titles  

2> where subject_type = 'Astronomy' 

3> and (price < 29.95 or price > 29.95) 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
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        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
        Using Clustered Index. 
        Index : testx 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            subject_type  ASC 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
 
Table: titles scan count 1, logical reads: (regular=431 apf=0 total=431), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: Worktable1  scan count 0, logical reads: (regular=3059 apf=0 total=3059), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 

 

Here I/O is reduced to less than 33% of the original query.  
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From the previous 4 examples, we can see that the higher on the normal 

distribution curve that the antecedent is, the greater the benefit of SI in reducing 

I/O by a higher proportion.  

 

 

The following examples are based on the rule: 

 

if title = 'Maths for beginners' then price = 15.00 

(70% confidence) 

 

The rule’s antecedent is first at the low end of the normal distribution, then the 

data is changed so that it is at the high end with examples included in the 

intermediate positions on the normal distribution curve.  

 

 

Example 7.5: 

 

With data distribution changed so that antecedent is at the low end of the 

normal distribution curve: 

 

select count(*), title from titles  

group by title 

order by 1 

 

      Total Title 

          60  Maths for beginners            

          60  World Discovery                

         125  European Cities                 

         125  Houses and Gardens             

         250  Cats and Dogs                   

         250  Zoo Animals                     

         500  House Plants                    

         500  Make Up Colour                 
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        1000  Australia                       

        1000  PC World                        

        2000  Running                         

        2000  Yoga for All                    

        3500  Internet Design                 

        3500  Starting on the Internet       

        6000  Holistic Health                 

        6000  Operating Systems              

       10000  Java Beans                      

       10000  Networks                        

       20000  Horticulture                    

       20000  Jewellery Design                

       25000  Gardening                       

       25000  Refloxology for Hands         

       50000  Algebra                         

       50000  Style                           

       75000  Advanced Maths                 

       75000  Basic Grammar                   

      100000  Costumes                

 

Original Query:  
 

1> select distinct total_sold from titles  

2> where title = 'Maths for beginners' 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
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        Index : I_x2 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            title  ASC 
        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
  
Table: titles scan count 1, logical reads: (regular=9 apf=0 total=9), physical 
reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: Worktable1  scan count 0, logical reads: (regular=68 apf=0 total=68), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 

 

SI Query: 

 

1> select distinct total_sold from titles  

2> where title = 'Maths for beginners' 

3> and (price < 15 or price > 15) 

4> union 
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5> select distinct total_sold from titles  

6> where title = 'Maths for beginners' 

7> and price = 15  

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
        Index : I_x2 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            title  ASC 
        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
        Index : I_x2 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            title  ASC 
            price  ASC 
        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
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        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
Table: titles scan count 1, logical reads: (regular=9 apf=0 total=9), physical 
reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: titles scan count 1, logical reads: (regular=7 apf=0 total=7), physical 
reads: (regular=0 apf=0 total=0), apf IOs used=0 
The sort for Worktable1 is done in Serial 
  
Table: Worktable1  scan count 0, logical reads: (regular=68 apf=0 total=68), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 

 

In this example, there is no advantage to using SI. Selectivity was high in the 

original query, and the SI query did not add sufficient extra selectivity that could 

reduce I/O. Also the columns selected were not included in the index hence 

access to underlying data pages was necessary.  

 

 

Example 7.6: 

 

This is another example query based on the same data and rule.  
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Original Query: 
 

1> select distinct price from titles  

2> where title = 'Maths for beginners' 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
        Index : testx2 
        Forward scan. 
        Positioning by key. 
        Index contains all needed columns. Base table will not be read. 
        Keys are: 
            title  ASC 
        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
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The sort for Worktable1 is done in Serial 
  
Table: titles scan count 1, logical reads: (regular=7 apf=0 total=7), physical 
reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: Worktable1  scan count 0, logical reads: (regular=68 apf=0 total=68), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 

 

SI Query: 

 

1> select distinct price from titles  

2> where title = 'Maths for beginners' 

3> and (price < 15 or price > 15) 

 

QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
        Index : testx2 
        Forward scan. 
        Positioning by key. 
        Index contains all needed columns. Base table will not be read. 
        Keys are: 
            title  ASC 
        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
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        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
 
Table: titles scan count 1, logical reads: (regular=7 apf=0 total=7), physical 
reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: Worktable1  scan count 0, logical reads: (regular=26 apf=0 total=26), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 

 

With the antecedent at the low end, the SI query has reduced I/O to 44% of the 

original query – over 50% improvement.  

 

With data distribution changed so that antecedent is at the highest end of 

the normal distribution curve: 

 

select count(*), title from titles  

group by title 

order by 1 desc 

 

      Total Title 

      100000  Maths for beginners            

       75000  Advanced Maths                 

       75000  Basic Grammar                   

       50000  Algebra                         

       50000  Style                           

       25000  Gardening                       

       25000  Refloxology for Hands         

       20000  Horticulture                    
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       20000  Jewellery Design                

       10000  Java Beans                      

       10000  Networks                        

        6000  Operating Systems              

        6000  Holistic Health                 

        3500  Internet Design                 

        3500  Starting on the Internet       

        2000  Running                                

        2000  Yoga for All                    

       1000  Australia                       

       1000  PC World                              

        500  House Plants                    

        500  Make Up Colour                 

        250  Cats and Dogs                   

         250  Zoo Animals                     

         125  European Cities                 

         125  Houses and Gardens             

          60  Costumes                        

          60  World Discovery 

          

 

Example 7.7: 

 

Original Query: 

 

1> select distinct total_sold from titles   

2> where title = 'Maths for beginners' 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
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        FROM TABLE 
            titles 
        Nested iteration. 
        Index : I_x2 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            title  ASC 
        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
 
Table: titles scan count 1, logical reads: (regular=6638 apf=0 total=6638), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: Worktable1  scan count 0, logical reads: (regular=101199 apf=0 
total=101199), physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 

 

SI Query: 

 

1> select distinct total_sold from titles   
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2> where title = 'Maths for beginners' 

3> and (price < 15 or price > 15) 

4> union 

5> select distinct total_sold from titles   

6> where title = 'Maths for beginners' 

7> and price = 15  
 

QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
        Index : I_x2 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            title  ASC 
        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
        Index : I_x2 
        Forward scan. 
        Positioning by key. 
        Keys are: 
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            title  ASC 
            price  ASC 
        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
Table: titles scan count 1, logical reads: (regular=6638 apf=0 total=6638), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: titles scan count 1, logical reads: (regular=4639 apf=0 total=4639), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
The sort for Worktable1 is done in Serial 
  
Table: Worktable1  scan count 0, logical reads: (regular=101199 apf=0 
total=101199), physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 

 

This gives no improvement in I/O.  

 

 

Example 7.8 

 

Original Query:  

 



 231

1> select distinct price from titles  

2> where title = 'Maths for beginners' 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
        Index : I_x2 
        Forward scan. 
        Positioning by key. 
        Index contains all needed columns. Base table will not be read. 
        Keys are: 
            title  ASC 
        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
  
Table: titles scan count 1, logical reads: (regular=2277 apf=0 total=2277), 
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physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: Worktable1  scan count 0, logical reads: (regular=101802 apf=0 
total=101802), physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 1 

 

SI Query: 

 

1> select distinct price from titles  

2> where title = 'Maths for beginners' 

3> and (price < 15 or price > 15) 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
        Index : I_x2 
        Forward scan. 
        Positioning by key. 
        Index contains all needed columns. Base table will not be read. 
        Keys are: 
            title  ASC 
        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
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        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
 
Table: titles scan count 1, logical reads: (regular=2277 apf=0 total=2277), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: Worktable1  scan count 0, logical reads: (regular=30500 apf=0 
total=30500), physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 

 

This gives a large improvement in I/O – 69664 fewer I/Os – which is only 31% 

of the I/Os of the original query, due to increased selectivity enabling increase in 

the use of the index.  

 

 

With the data distribution changed so that the antecedent is on the lower-

mid range of the normal distribution 

 

select count(*), title from titles  

group by title  

order by 1 

 

       Total Title 

          60  Running                         

          60  World Discovery                

         125  European Cities                 

         125  Houses and Gardens             

         250  Cats and Dogs                   

         250  Zoo Animals                     

         500  House Plants                    

         500  Make Up Colour                 
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        1000  Australia                       

        1000  PC World                            

        2000  Maths for beginners            

        2000  Yoga for All                    

        3500  Internet Design                 

        3500  Starting on the Internet       

        6000  Holistic Health                 

        6000  Operating Systems              

       10000  Java Beans                      

       10000  Networks                        

       20000  Horticulture                    

       20000  Jewellery Design                

       25000  Gardening                       

       25000  Refloxology for Hands         

       50000  Algebra                         

       50000  Style                           

       75000  Advanced Maths                 

       75000  Basic Grammar                   

      100000  Costumes         

 

 

Example 7.9: 

 

Original Query: 

 

1> select distinct total_sold from titles  

2> where title = 'Maths for beginners' 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
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        FROM TABLE 
            titles 
        Nested iteration. 
        Index : I_x2 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            title  ASC 
        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
 
Table: titles scan count 1, logical reads: (regular=722 apf=0 total=722), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: Worktable1  scan count 0, logical reads: (regular=2029 apf=0 total=2029), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 

 

SI Query: 

 

1> select distinct total_sold from titles  
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2> where title = 'Maths for beginners' 

3> and (price < 15 or price > 15) 

4> union 

5> select distinct total_sold from titles  

6> where title = 'Maths for beginners' 

7> and price = 15  

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
        Index : I_x2 
        Forward scan. 
        Positioning by key. 
        Keys are: 
            title  ASC 
        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
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        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
 
Table: titles scan count 1, logical reads: (regular=722 apf=0 total=722), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: titles scan count 1, logical reads: (regular=110 apf=0 total=110), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
The sort for Worktable1 is done in Serial 
 
Table: Worktable1  scan count 0, logical reads: (regular=2029 apf=0 total=2029), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 

 

 

Example 7.10: 

 

Original Query: 

 

1> select distinct price from titles  

2> where title = 'Maths for beginners' 

 

QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
        Index : I_x2 
        Forward scan. 
        Positioning by key. 
        Index contains all needed columns. Base table will not be read. 
        Keys are: 
            title  ASC 
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        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
 
Table: titles scan count 1, logical reads: (regular=89 apf=0 total=89), physical 
reads: (regular=8 apf=129 total=137), apf IOs used=81 
Table: Worktable1  scan count 0, logical reads: (regular=2041 apf=0 total=2041), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 

 

SI Query: 

 

1> select distinct price from titles  

2> where title = 'Maths for beginners' 

3> and (price < 15 or price > 15) 

 

QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
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        FROM TABLE 
            titles 
        Nested iteration. 
        Index : I_x2 
        Forward scan. 
        Positioning by key. 
        Index contains all needed columns. Base table will not be read. 
        Keys are: 
            title  ASC 
        Using I/O Size 2 Kbytes for index leaf pages. 
        With LRU Buffer Replacement Strategy for index leaf pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
 
Table: titles scan count 1, logical reads: (regular=89 apf=0 total=89), physical 
reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: Worktable1  scan count 0, logical reads: (regular=820 apf=0 total=820), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 

 

SI has reduced I/O to 42% of that required by the original query.  

 

When the antecedent is changed so that it is at the mid-higher end of the 

normal distribution curve: 
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select count(*), title from titles  

group by title  

order by 1 

 

     Total Title 

          60  Costumes                        

          60  World Discovery                

         125  European Cities                 

         125  Houses and Gardens             

         250  Cats and Dogs                   

         250  Zoo Animals                     

         500  House Plants                    

         500  Make Up Colour                 

        1000  Australia                       

        1000  PC World                              

        2000  Running                         

        2000  Yoga for All                    

        3500  Internet Design                 

        3500  Starting on the Internet       

        6000  Holistic Health                 

        6000  Operating Systems              

       10000  Java Beans                      

       10000  Networks                        

       20000  Jewellery Design                

       20000  Maths for beginners            

       25000  Gardening                       

       25000  Refloxology for Hands         

       50000  Algebra                         

       50000  Style                           

       75000  Advanced Maths                 

       75000  Basic Grammar                   

      100000  Horticulture 
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Example 7.11: 

 

Original Query: 

 

1> select distinct total_sold from titles  

2> where title = 'Maths for beginners' 

 

QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
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The sort for Worktable1 is done in Serial 
 
Table: titles scan count 1, logical reads: (regular=21289 apf=0 total=21289), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: Worktable1  scan count 0, logical reads: (regular=20245 apf=0 
total=20245), physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 

 

SI Query: 

 

1> select distinct total_sold from titles  

2> where title = 'Maths for beginners' 

3> and (price < 15 or price > 15)  

4> union 

5> select distinct total_sold from titles  

6> where title = 'Maths for beginners' 

7> and price = 15  

 

QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
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        FROM TABLE 
            titles 
        Nested iteration. 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 1 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
 
Table: titles scan count 1, logical reads: (regular=21289 apf=0 total=21289), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: titles scan count 1, logical reads: (regular=21289 apf=0 total=21289), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
The sort for Worktable1 is done in Serial 
 
Table: Worktable1  scan count 0, logical reads: (regular=20245 apf=0 
total=20245), physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 

 

 

Example 7.12: 
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Original Query: 

 

1> select distinct price from titles  

2> where title = 'Maths for beginners' 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
        Index: I_x2 
        Forward scan. 
        Positioning by key. 
        Index contains all needed columns. Base table will not be read. 
        Keys are: 
 Title ASC  
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
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The sort for Worktable1 is done in Serial 
 
Table: titles scan count 1, logical reads: (regular=712 apf=0 total=712), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: Worktable1  scan count 0, logical reads: (regular=20365 apf=0 
total=20365), physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 

 

SI Query: 

 

1> select distinct price from titles  

2> where title = 'Maths for beginners' 

3> and (price < 15 or price > 15) 

 
QUERY PLAN FOR STATEMENT 1 (at line 1). 
    STEP 1 
        The type of query is INSERT. 
        The update mode is direct. 
        Worktable1 created for DISTINCT. 
 
        FROM TABLE 
            titles 
        Nested iteration. 
        Index: I_x2 
        Forward scan. 
        Positioning by key. 
        Index contains all needed columns. Base table will not be read. 
        Keys are: 
 Title ASC  
        Using I/O Size 2 Kbytes for data pages. 
        With LRU Buffer Replacement Strategy for data pages. 
        TO TABLE 
            Worktable1. 
 
    STEP 2 
        The type of query is SELECT. 
        This step involves sorting. 
 
        FROM TABLE 
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            Worktable1. 
        Using GETSORTED 
        Table Scan. 
        Forward scan. 
        Positioning at start of table. 
        Using I/O Size 2 Kbytes for data pages. 
        With MRU Buffer Replacement Strategy for data pages. 
 
The sort for Worktable1 is done in Serial 
 
Table: titles scan count 1, logical reads: (regular=712 apf=0 total=712), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Table: Worktable1  scan count 0, logical reads: (regular=6113 apf=0 total=6113), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0 
Total writes for this command: 0 
 

In this example, I/O required by the SI query has been reduced to 33% of the 

I/Os of the original query. 
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Appendix A5 

 

This appendix provides independent costing of SI using the established 

Decomposition Algorithm [50] for query processing. It looks at original queries 

along with their corresponding SI queries in conjunction with the Decomposition 

Algorithm for costing and comparison.  

 
Processing the Query 

 

The following query is used for demonstrating the Decomposition Algorithm.  

 

Example: 

 

SELECT A.b, C.i 

FROM table1 A, table2 B, table3 C 

WHERE A.a = B.a 

AND  B.e = C.e 

AND  A.a = value_1 

 

Processing the query in the intuitive way of forming a cartesian product, 

determining which tuples satisfy the f(A(selection a = 'value') * B * C) = true condition, 

and performing a projection on the restricted subset is highly expensive. This is 

because the cardinality of the product is equal to the product of the cardinalities 

of  A(selection a = 'value') , B and C. Therefore, query processing algorithms attempt to 

make this more efficient.  

 

Overview of Decomposition 

 

The Decomposition Algorithm for query processing is called so because it is 

based on reducing a multi variable query (in this case the variables are A, B and 

C with corresponding ranges table1, table2 and table3, respectively) into smaller 
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single variable queries. Therefore it decomposes or breaks down the query until it 

cannot be reduced any further.  

 

This is done by two types of operation, which together, can decompose any 

query completely:  

 

1. Tuple substitution - this is where a query with n variables is replaced by a 

query with (n-1) variables.  This is done by replacing one of the variables with 

each individual tuple comprising the range of the variable. 

 

2. Detachment - this is the process where a query with an overlapping variable is 

replaced by two sub-queries, such that each has a single variable in common. 

Restriction, or the application of predicates, and projection are special cases of 

detachment.  

 

Tuple substitution should only be used when detachment operations cannot be 

used to reduce the query. The reason is that the range of variables should be as 

small as possible by applying detachment before applying tuple substitution, 

because by applying tuple substitution, the cost of processing the rest of the 

query is multiplied by the cardinality of the variable that is to be substituted for 

(tuple by tuple).  Therefore this cardinality should be minimised prior to tuple 

substitution.  Hence, as much detachment as possible is performed before using 

tuple substitution.  

 

The Decomposition Algorithm is made up of four steps, or sub algorithms. The 

first is reduction. This breaks a query into irreducible components. This is then 

passed to the second step, sub-query sequencing, which generates a succession of 

sub-queries, by using the result of reduction, and passes them, one by one, to the 

third step, tuple substitution. Tuple substitution manages the process of 

substituting a variable by each tuple in its range. It calls variable selection, the 

final step, in order to choose the variable to substitute for. Variable selection 

chooses the variable with minimum estimated cost to use for tuple substitution. 

For this, it may pre-process restriction operations which are one-variable clauses. 
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The Decomposition Query Processing Algorithm and the Original Query 

 

This section gives a practical in-depth application of the Ingres Decomposition 

Algorithm for query processing, using SQL instead of QUEL, by applying it to 

the original query. The next section applies it to the corresponding SI query to 

allow for subsequent comparison. Hence this provides an independent costing 

mechanism for comparing the effect of SI on query processing.  

 

The original query, without using association rules and SI, is:  

 

SELECT A.b, C.i 

FROM table1 A, table2 B, table3 C 

WHERE A.a = B.a 

AND  B.e = C.e 

AND  A.a = value_1 

 

The first step of decomposition is reduction - or breaking the query into 

irreducible components.  

 

An irreducible component of a query is defined by the query having no disjoint 

sub-query and being one-free. A disjoint sub-query is a part of the query that can 

be broken off from the rest of the query, having no variables in common with the 

rest of the query.  One-free means the query has no sub-queries or components 

with only one variable overlapping (or in common) with a variable in the rest of 

the query. This query is one-free.  

 

The query must be broken into irreducible components before going any further.  

 

The algorithm for reduction is (paraphrased from [50]):  

 

IF (number of variables in query) > 1 THEN 

 IF (query is connected) THEN 

  separate into irreducible components 

 ELSE 
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  separate into disjoint components 

ELSE 

 no reduction required 

 

 

From this algorithm, we need a method to tell if a query is connected. This is 

called a connectivity algorithm. The Decomposition query processing strategy 

provides us with this procedure by using the concept of an incidence matrix. This 

is a method of representing a query using a matrix with a row for each predicate 

in the where clause, plus a row for the projection list, and a column for each 

variable in the query.  

 

The incidence matrix for the original query is defined in Figure A5.1:  

 

     A B C 

T  : A.b,  C.i   1 0 1 

C1 : A.a = B.a    1 1 0 

C2 : B.e = C.e   0 1 1 

C3 : A.a = value_1  1 0 0 

 

Figure A5.1 – Incidence Matrix 

 

The 1 digit in the incidence matrix implies the presence of the variable in the 

clause on the left-hand side, a 0 implies the absence of the variable in the clause.  

 

For each variable (column 1 to column n, where n is 3 in this example), the 

logical OR of all rows with a 1 for the variable (or column) is formed. This 

replaces the first row with the occurrence of a 1 in the column. The rest of the 

rows with a 1 in the column are deleted.  

 

This is the procedure for the connectivity algorithm.  Applying this to the above 

incidence matrix, we successively get:  

 

First do for the presence of 1 in column one:  
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     A B C 

T, C1, C3 :    1 1 1 

C2        :           0    1    1 

 

 

Next, do for the presence of 1 in column two:  

 

T, C1, C3, C2 :     1 1 1 

 

If the final matrix has only one row at the end of applying the algorithm, then it 

is connected, as above.  If there is more than one row, then the query is disjoint, 

and the connected components of the disjoint query are in the same row of the 

final matrix. Each row of the final matrix represents a disjoint sub-query.  

 

Now that we know that the original query is a connected, multi-variable query, it 

needs to be reduced, if possible, into irreducible components. The connectivity 

algorithm again can be used for this.  A query is irreducible if the elimination of 

any variable causes the query to be disconnected. Such a variable, whose 

elimination disconnects a query, is called a joining variable. Hence, if a query 

has no joining variable it is irreducible - fulfilling the reduction stage of the 

Decomposition Algorithm. 

 

To break this query into irreducible components, we need to check for each 

variable being a joining variable. We use the connectivity algorithm for this 

because a variable is joining if its removal causes the query to be disconnected. 

After applying this  - removing each variable (column) successively, and testing 

for connectedness  - the query Q can be represented by the irreducible 

components, in a similar matrix, using variables for columns and the irreducible 

components as rows. From this we generate a reduced incidence matrix.  

 

An irreducible component of Q is comprised of 1 or more rows of the original 

query incidence matrix, and is represented by the logical OR of those rows.  

 



 252

Using the incidence matrix defined in Figure A5.1, the query is irreducible 

because there is no variable whose elimination would disconnect the query.  

 

The reduced incidence matrix is:  

    

     A B C 

C3 :     1 0 0 

C1 :     1 1 0  

C2, T:    1 1 1 

 

 

This is done by organising the rows so that the single-variable clauses, if any, are 

first, excluding the target list. Then rows that do not contain the target list are 

listed. The target list is always last.  

 

Once the reduction stage is complete, the output is sent to the second stage, sub-

query sequencing. This forms sub-queries from the rows in the reduced-

incidence matrix to pass to the tuple substitution stage.  

 

Sub-query sequencing is relatively simple. It takes the first multi-variable row of 

the reduced incidence matrix, and combines it with one-variable clauses in the 

same variables. This means combining C1 with C3.  

 

Hence, the sub-queries are: 

  

Q1 : C1, C3 

Q2 : C2, T 

 

Or in SQL query form:  

 

Q1 is:    

            SELECT A.b, B.e INTO table_temp  

 FROM table1 A, table2 B 

 WHERE (A.a = B.a) 
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 AND (A.a = value_1) 

 

Q2 is:  

     SELECT (X.b, C.i) 

 FROM table_temp X, table3 C 

 WHERE  (X.e = C.e) 

 

      

Q2 uses the output of Q1.  

 

For each sub-query, in this case two, Q1 and Q2, the tuple substitution step 

processes each one. For this it calls variable selection, in order to determine the 

best variable in the now irreducible query that should be substituted for, tuple by 

tuple, or row by row.  

 

The first query, Q1, is a two-variable query. When passed to tuple substitution, 

and a variable is selected by variable selection, it becomes a single variable query 

for each tuple in the second variable that is having its range substituted by a 

value. Each such query (number of such queries is equal to the number of tuples 

in the range of the substituted variable) is passed to reduction, returning the 

result. The larger the range of the variable to be substituted for, the greater the 

number of single-variable tuple substituted ‘reduced’ queries that will need to be 

executed. Results from all ‘tuple reduced’ queries are concatenated to form the 

final result. 

 

Variable selection aims to optimise the query by choosing the optimal, or lowest 

cost variable to substitute for.  The variable that is chosen for tuple substitution 

should have its range reduced as much as possible, by applying query predicates 

on the variable where possible. The fewer the number of tuples to substitute for 

tuple by tuple, the smaller the number of reduced tuple substituted queries to 

execute via the decomposition process again.  Hence, a variable with a small 

range should be chosen and reduced where possible. This can be done for the 

original query, because there is one single-variable predicate that reduces the 

range of the variable A. However, more variables can have their range reduced in 
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the SI query, rather than just that of variable A.   

 

Reducing the variable reduces the query processing cost.  If a variable, say Xi, in 

a query Q, is chosen for tuple substitution, then the new tuple substituted query is 

denoted by Qi(t), where  t  represents a tuple.  There is a query for each 

substituted tuple from Xi.  Let C(Q) denote the cost of processing a query. Then 

the cost of processing a tuple substituted query is C(Qi(t)).  The variable from the 

query that is selected for tuple substitution should correspond to the i which 

minimises an estimated value for:  

               

C = ∑ C(Qi(t))               
            t∈Ri 

 

where t ranges over the tuples of  Ri.   

 

The variable that is selected for substitution should minimise this cost.  Hence, 

the optimisation that is performed by variable selection is in minimising cost. If 

the cost of processing a tuple substituted query is C(Qi(t)), and if this is taken to 

be independent of the tuple, t, and of the variable i, then the minimum cost, Ci, 

corresponds to the smallest range R of the variable substituted.  Hence we try to 

reduce the range R of a variable by applying predicates.  This is the variable 

selection method in the query processing that is used in Ingres.  

 

Using this, taking Q1 into account, 

 

Q1 is:  

  

SELECT A.b, B.e  

INTO table_temp  

FROM table1 A, table2 B 

WHERE (A.a = B.a) 

AND (A.a = value_1) 

 

Let table1 have n1 records and table2 have n2 records. If n1 < n2, then table1 
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has the smallest range. In addition, the variable, table1 can be reduced because 

there is a single-variable predicate to restrict it.  Hence, table1 should be chosen 

for tuple substitution by the variable selection process according to the cost 

minimisation algorithm of Ingres. If table1 has d distinct values, this will 

generate approximately n1/d sub-queries (Q1(t))  -  one for each tuple in table1 

assuming the values are evenly distributed.  

 

Applying the predicate on table1 gives us n1/d records left for the tuple 

substituted queries, as opposed to n2 queries if table2 was used, and hence would 

be generated by substituting for table2.  Each such sub-query is now single 

variable. It has only the variable table table2. The table, table1 has been replaced 

by its actual record values, each one generating a query. The query cost would 

be:  

 

 n1/d 

∑ C(Qi(t))               
 i=1 
 

The smaller the value of n1, and the more selective the predicate on it (the higher 

the value of d) then the lower the total query cost.  

 

However, if n2 < n1, and the single variable predicate is on table1, then the 

variable used for tuple substitution should be whichever is less out of n1/d or n2. 

In this case, if n2 is still less than n1/d, then table2 would be used for tuple 

substitution rather than table1. Nonetheless, in the next section it is shown that 

the cost would still be less for the SI query than for the original query, because of 

the additional predicate increasing the filtering in the resulting single variable 

query, with table1.  

 

If table1 has 30 records and table2 has 5000 records, then table1 has the smallest 

range and additionally the variable, table1, can be reduced because there is a 

single-variable predicate to reduce it.  Hence, table1 should be chosen for tuple 

substitution by the variable selection process according to the cost minimisation 

algorithm of Ingres. If table1 has 3 distinct values, this will generate 
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approximately 10 sub-queries (Q1(t))  -  one for each tuple in table1 assuming the 

values are evenly distributed, so that applying the predicate on table1 gives us 10 

records left from it in the query (as opposed to 5000 tuple substituted queries that 

would be generated by substituting for table2).  Each such sub-query is now 

single variable. It has only the table table2.  Table1 has been replaced by actual 

tuple values in place of the table. For example, if the first record in table1 has the 

values: 

 

a = '3'  and  b = '5' 

 

then the first tuple substituted query becomes :  

 

SELECT B.e, '5' 

INTO table_temp  

FROM table2 B 

WHERE (B.a = '3') 

 

The query, (Q1(t)), will be executed for each of the 10 tuples in table1, that have 

a = '3' and the results concatenated to produce a list of B.e and A.b that are held 

in table_temp table, to be used in Q2.  

 

After Q1 is processed by applying tuple substitution, the next sub-query 

generated by sub-query sequencing, Q2, is passed into tuple substitution for 

processing.   

 

Q2 is:  

 

SELECT (X.b, C.i ) 

FROM table_temp X, table3 C 

WHERE  (X.e = C.e) 

 

If there are 5000 records in table_temp table, which is passed into Q2, and the 

table3 table has 500 records in it, then the table3 table will be chosen for tuple 

substitution in order to get each student name and course name. As there are no 
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predicates to reduce the range of either variable, this will require 500 tuple- 

substituted queries - one for each table3 table entry.  

 

So, the complete query requires 10 tuple-substituted sub-queries for Q1, and 500 

for Q2, totalling 530 single variable queries. Using the Ingres minimum cost 

estimate for processing the query, this is the cheapest method for the original 

unmodified query. 

 

 

The Decomposition Query Processing Algorithm and the Semantically 

Inequivalent Query 

 

The SI query that results from applying the SI algorithm to the original query is:   

 

SELECT (A.b, C.i) 

FROM   table1 A, table2 B, table3 C 

WHERE  A.a = B.a 

AND    B.e = C.e 

AND    A.a = value_1 

AND    B.f = value_2 

 

This uses the rule that given the value of a, the value of  f can be determined.  

 

Passing this through the Decomposition Algorithm for query processing, this 

query is first broken into irreducible components by reduction.  To perform this, 

the incidence matrix needs to be generated for the SI query.  This is:  

 

     A B C 

T :  A.b, C.i    1 0 1 

C1 : A.a = B.a   1 1 0 

C2 : B.e = C.e   0 1 1 

C3 : A.a = value_1   1 0 0 

C4 : B.f = value_2  0 1 0 

 



 258

This has two additional rows compared to the original query - for the additional 

predicates that apply the rules to the tables.  

 

Applying the connectivity algorithm, where each column is taken, and the logical 

OR of all rows with a 1 in the column is formed, replacing the first row with a 1 

in the column, and deleting the rest, we successively get:  

(for 1 in column one) : 

     A B C 

T, C1, C3 :   1 1 1 

C2 :     0 1 1   

  

C4 :     0 1 0   

 

(for 1 in column 2) : 

     A B C 

T, C1, C2, C3, C4 :  1 1 1 

 

(for 1 in column 3) : 

     A B C 

T, C1, C2, C3, C4 :  1 1 1 

 

The final matrix has one row, hence the query is connected, and has no disjoint 

components.  

 

Since this is a connected, multi-variable query it needs to be reduced into 

irreducible components.  The query can be reduced if the elimination of any 

variable causes the incidence matrix to become disconnected.  This query has no 

such joining variable (the removal of no single variable is enough to disconnect 

the incidence matrix), hence it is irreducible, fulfilling the reduction stage of the 

Decomposition Algorithm.    

 

To generate the reduced-incidence matrix to pass to sub-query sequencing, the 

original matrix is re-organised, placing the single variable rows first, and the 

target list last.  The reduced- incidence matrix is therefore:  
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     A B C 

C3 :     0 0 1 

C4 :     0 1 0 

C1 :     0 1 1 

C2, T    1 1 1 

 

 

This reduced-incidence matrix is passed into sub-query sequencing, where sub-

queries are formed based on this matrix, to pass to tuple substitution.  

 

When passed to sub-query sequencing, the first multi-variable row from the 

reduced-incidence matrix is taken and combined with one-variable clauses in the 

same variables as in the multi-variable clause.  

 

Applying this, the sub-queries generated are:  

 

Q1 : C1, C3, C4 

Q2 : C2, T 

 

In SQL query form, these are:  

 

Q1 is:   

 

SELECT INTO table_temp (A.b, B.e) 

FROM table1 A, table2 B 

WHERE (A.a = B.a) 

AND (A.a = value_1) 

AND (B.f = value_2)      

 

Q2 is:  

 

SELECT (X.b, C.i) 

FROM table_temp X, table3 C 
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WHERE  (X.e = C.e) 

 

where Q2 uses the output of Q1 via the intermediary table, table_temp. 

 

Each sub-query is passed to tuple substitution, where it is processed, and variable 

selection is invoked to determine which variable to tuple substitute for.  

 

When variable selection is called from tuple substitution, it will optimise the 

query by choosing the lowest cost variable to replace by tuple substitution. For 

this, it will reduce the range of variables as much as possible by applying the 

single-variable query predicates on the variable, to help determine how efficient 

tuple substitution for the variable would be. It tries to choose a variable with as 

small a range as possible, because the fewer the tuples in the range, the fewer the 

number of tuple substituted single-variable queries there are to execute via the 

decomposition process. With the additional predicates, derived from applying the 

rules added to the original query to produce the SI query, the range of the 

variables can be reduced, resulting in fewer tuple-substituted queries, Qi(t),  to 

execute.  The cost of each one of these queries is C(Qi(t)), and the variable that 

we choose should minimise the cost for substituting by reducing and selecting 

the variable which minimises it :  

              R 

C = ∑ (Qi(t))               
            i=1 

 

which corresponds to the smallest range of the substituted variable.  

 

Taking Q1 into account:  

 

Q1 is:  

  

SELECT A.b, B.e  

INTO table_temp  

FROM table1 A, table2 B 

WHERE (A.a = B.a) 
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AND   (A.a = value_1) 

AND   (B.f = value_2) 

 

Again, let table1 have n1 records and table2 have n2 records. If n1 < n2, then 

table1 has the smaller range. The variable, table1 can be reduced because there is 

a single-variable predicate to restrict it.  However, table2 can also be reduced 

now with the SI query, given the predicate that SI has added to it. If table1 has 

d1 distinct values for attribute a, this will generate approximately n1/d1 sub-

queries (Q1(t))  -  one for each tuple in table1 assuming the values are evenly 

distributed, if used for tuple substitution.  

 

If table2 has d2 distinct values for attribute f, this would generate approximately 

n2/d2 sub-queries (Q1(t))  -  one for each tuple in table2 again assuming the 

values are evenly distributed. 

 

If the table, table1, has been replaced by its actual record values, each one 

generating a query. The query cost would be:  

 

 

n1/d1 

∑ C(Qi(t))               
 i=1 

 

The smaller the value of n1, and the more selective the predicate on it (the higher 

the value of d1), then the lower the total query cost would be.  

 

If table2 has been replaced by its actual record values, each one generating a 

query, the query cost would be:  

 

n2/d2 

∑ C(Qi(t))               
 i=1 

 

The smaller the value of n2, and the more selective the predicate on it (the higher 

the value of d2), then the lower the total query cost would be.  



 262

 

The tuple substitution procedure would chose table1 to substitute for if n1/d1 is 

less than n2/d2. It would chose table2 if n2/d2 < n1/d1.  

 

To compare the cost with the original query, the same table example statistics 

will be used. Hence, let table1 have 30 records and table2 have 5000 records. 

Both variables can be reduced due to the extra predicates, which variable 

selection would perform in order to improve query processing in accordance with 

the cost minimisation algorithm of Ingres.  

 

Applying the single variable predicates: 

(A.a = value_1) and (B.f  = value_2) 

 

(A.a = value_1) would leave table1 with 24 tuples, instead of 30.  

 

The predicate (B.f  = value_2) would leave table2 with 2000 records 

(assuming that there are 2000 rows with B.f = value_2).   

 

Hence, the ranges of variables have been reduced. Table1 has been reduced from 

30 to 24 tuples and table2 has been reduced from 5000 to 2000 tuples.  

 

The SI query requires a total of 24 + 500 = 524 tuple-substituted queries, 

compared to 530 for the original queries.  500 of the queries required to process 

the SI query are on a table (table_temp) of significantly reduced size - due to 

rules applied in Q1, which made it much smaller, prior to it being used by Q2. 

According to the cost estimate based on the number of pages in the queried table 

(table_temp), each of the 500 queries, produced for Q2, will have 40% of the 

cost of counterpart queries in the original (ignoring issues of data fragmentation) 

query.  

 

Therefore, the greater the selectivity is, increased by SI introducing additional 

predicates, the fewer the number of single variable queries there will be. 

Assuming that each single variable query has the same cost due to being 
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processed in the same way by the query optimiser, then SI reduces the query 

processing cost by the same proportion that it increases the selectivity by.  
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