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Abstract

User modelling in Exploratory Learning Environments (ELEs) is an emerging

field with several challenges to be addressed. Due to the freedom given to learn-

ers, the amount of information generated is very large, making the modelling

process very challenging. Consequently, only relevant information should be

used in the user modelling process. This, however, leads to other challenges

such as identification of relevant information, finding an optimal knowledge

representation and defining an inference mechanism by which this knowledge is

used in diagnosing the learner.

This thesis addresses the challenges of user modelling in ELEs by monitoring

learners’ behaviour and taking into account only relevant actions in the context

of an ELE for the domain of mathematical generalisation. An iterative approach

was used, in line with the iterative design of the ELE. The modelling mechanism

employed a modified version of Case-based Reasoning (CBR) and was evaluated

using pedagogical scenarios and data from simulated and real students. This

approach has the advantage of storing only relevant information and allows

learner diagnosis during as well as at the end of a task.

The user model was further exploited to support learning related activities,

such as prioritising feedback and grouping for collaboration. For feedback pri-

oritisation, a mechanism based on Multi-criteria Decision Making was developed

and tested with the help of educational experts. The grouping for collaboration

approach was inspired from Group Technology, a method from cellular manu-

facturing systems, and its testing showed it produces meaningful groups. Both

the feedback prioritisation and the grouping for collaboration mechanisms pro-

pose solutions that are particularly relevant for ELEs by considering pertinent

criteria for this type of learning.

To ensure optimal coverage of the knowledge base, the user modelling ap-

proach was enhanced with adaptive mechanisms for expanding the knowledge

base, which was tested on real and simulated data. This approach ensures that

learner diagnostic is possible when the initial knowledge base is small and/or

new behaviours are encountered over time.
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Chapter 1

Introduction

User modelling involves an inference process from observable data about a user

such as his or her actions, to unobservable information (Zukerman and Albrecht,

2001) such as his or her preferences or intentions. In the context of learning

environments the users are learners 1 and the main unobservable inferred in-

formation is about the learners’ knowledge of a particular domain (Wenger,

1987). There are many reports in the literature on learner modelling research

in the area of Intelligent Tutoring Systems (e.g. VanLehn (1988); Anderson

et al. (1995); Conati et al. (2002); Mitrovic (2003); VanLehn et al. (2005); Kerly

et al. (2008); Baker et al. (2010)), but relatively few in other types of learning

environments. In recent years learner modelling in Exploratory Learning Envi-

ronments (ELEs) has emerged as a new field of research with several challenges

to be addressed.

Exploratory learning environments are build based on a constructionist ped-

agogical approach (Papert, 1993), based on two core ideas: (a) learning is seen

as a reconstruction of knowledge rather than as a transmission of knowledge and

(b) learning is most effective when it is part of an activity in which learners feel

they are constructing a meaningful product (Papert, 1993). The construction-

ist approach is inspired by Piaget’s constructivist theory (Piaget, 1950) which

states that learners construct mental models to understand the world around

them. Consequently, based on these principles, exploratory learning environ-

ments allow learners a high degree of freedom and encourage learners to explore

and experiment with different models within the particular learning system.

Therefore, these environments are radically different from Intelligent Tutoring

Systems in which the learning activities are highly structured and the learner is

guided in a stepwise manner.

1Depending on the setting, teachers or tutors are also users of such environments; here,
however, we focus on the learners as the main users of such systems.
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Chapter 1. Introduction

Exploratory or discovery learning has been argued to be particularly ben-

eficial (de Jong and van Joolingen, 1998) in terms of providing opportunities

for acquiring deep conceptual and structural knowledge. Pure discovery learn-

ing without any guidance and support is, however, less effective than more

constrictive environments where the learner is guided step-by-step (Kirschner

et al., 2006).

The main challenge in exploratory learning is to balance freedom with con-

trol: learners should be given enough freedom so that they can actively engage

in constructing and exploring models, but, at the same time, they should be of-

fered enough guidance to assure that their constructions and explorations lead

to useful knowledge (Mayer, 2004). Besides this clear and well-acknowledged

challenge there are other issues that make the process of learner modelling in

exploratory learning environments demanding:

(a) What to model? Usually learner models relate to knowledge or skills. In the

context of exploratory learning, the knowledge results from constructionist

processes and there is a clearer indication of this knowledge at the end of

these processes. Nevertheless, support is required both during knowledge

construction and at the end of certain processing stages. Thus, a key ques-

tion is what to model so that the system can produce a representation of the

learner’s current state of knowledge from the constructions built so far, and,

consequently, can provide support during and at the end of the knowledge

construction process.

(b) Value of correct vs. incorrect actions. In most e-Learning systems, the

system’s response is related to correctness or incorrectness of answers or

actions, while in ELEs learners’ explorations are difficult to categorise into

correct or incorrect. Moreover, even if such a classification would be possi-

ble, incorrect actions may be more valuable for learning than correct ones.

In fact, one of the advantages of ELEs is that learners are given the oppor-

tunity to realise their own mistakes and learn from them. Thus, rather than

pointing out possible mistakes, the system should provide learners with feed-

back that would encourage reflection on their actions and help them realise

that their knowledge construction is not entirely correct.

(c) Relation between knowledge of abstract concepts and forms of (re)presentation

in the system. ELEs have different ways of (re)presenting and exploring

models that should gradually help learners build knowledge of abstract con-

cepts. Each part of the model and each type of exploration (e.g. changing

parameters, creating new models, testing models etc.) contributes to this

process. Therefore, identification of the relevant abstract concepts is needed

as well as their representation in the learner model.

11



Chapter 1. Introduction

(d) Identification of underlying strategies from actions or sequences of actions.

Sometimes it is neither realistic nor feasible to include all possible outcomes

(correct or incorrect) and ways to achieve them when modelling an exten-

sive knowledge domain. Therefore, a different approach to what is included

in the knowledge structure is required. Rather than storing complete infor-

mation about a task or expert knowledge, key information with informative

educational value could be stored, such as strategies for approaching a task,

and landmarks indicating a particular strategy or (lack of) knowledge about

a particular aspect. The challenge is how to find this information and how

to represent it in the knowledge structure.

Given the above mentioned challenges, a classic approach to learner mod-

elling based on concepts would not fit the purposes of ELEs. The classic ap-

proach involves a particular scenario: learners are required to study materials

about a concept and then their knowledge level is assessed through testing. On

the contrary, ELEs involve knowledge discovery by means of constructionist

activities and the emphasis is on the process rather that the knowledge itself.

Therefore, the learner modelling process should reflect this way of learning.

The nature of this process places the focus on the interactions of the learner

with the system rather than on their answers to tests. Thus, analysing inter-

actions during knowledge construction and extracting relevant information is

an essential part of the learner modelling process that together with knowledge

about student’s learning processes inferred from their models and their learning

progression can play an important role in generating feedback and support.

Individual learner models can be used in ELEs for several purposes:

(a) individual personalised support - provide feedback on individual explo-

ration.

(b) personalised sequencing of activities - depending on knowledge level (but

possibly other individual characteristics as well, like motivation for exam-

ple), the sequence of activities could be personalised. For example, for

high ability students, the sequences of activities could include more difficult

tasks, while for less able students or novices, the sequence could contain

tasks with a lower degree of difficulty (that could be increased gradually).

This would be very useful in a classroom with pupils of different ability

levels.

(c) collaboration and collaboration support - a learner that has difficulties

in his/her exploration could benefit from collaborating with a more able

peer (Vygotsky, 1978) exploring the same thing. The individual learner
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models could be used for grouping learners for collaboration on educa-

tional criteria like the ‘more able peer’ mentioned before; other criteria

could be: complementary skills, the stage in a task, the solutions to a task

(e.g. two learners that have reached two equivalent solutions using different

approaches would benefit from collaboration).

(d) teacher support - inform the teacher about individual learners’ progressions

and difficulties; give suggestions to teachers of possible courses of action for

a specific situation (individual or collaborative). Aggregated information

about the whole class could be provided to the teacher, so that s/he can

see what are the common solutions found by pupils and identify ‘outliers’,

i.e. pupils that are doing things considerably different from the majority,

both correct (e.g. an uncommon solution) and incorrect (e.g. wrong track

on solving the given problem).

The rest of this chapter is structured as follows. The next section presents

the research questions of the PhD, Section 1.2 outlines the structure of the thesis

while Section 1.3 lists the contribution of this PhD research.

1.1 Research questions

The focus of the PhD thesis is on learner modelling in ELEs. The aim is to de-

velop a mechanism that allows modelling of behaviour: (a) during task solving

and (b) at the end of tasks. The information stored in the learner model could

be used for several purposes, such as: personalised individual feedback, person-

alised feedback for groups of learners in the context of collaborative learning,

informing the teacher about the progress of individual learners as well as groups

of learners, presenting the learners with the content of their learner models,

prioritisation of feedback, detection of off-task behaviour, forming groups for

collaborative activities. From this wide range of possible ways of exploiting the

learner model, the PhD research includes the last three.

The research questions are the following:

1. How can relevant interactions be transformed into informative data to be

stored in the learner model?

2. What should be stored in the learner model in order to represent the

evolution of the learner’s constructionist models and their corresponding

cognitive processes?

3. How should the learner model be updated in order to reflect both the

current knowledge and the evolution of knowledge?

13
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4. How can the learner model be exploited for pedagogical purposes? E.g.,

how to prioritise between several aspects that require feedback? how

to group learners for collaborative activities? how to detect off-task be-

haviour?

5. How to ensure the information used in the learner modelling mechanism

is maintained to provide accurate diagnosis over time?

1.2 Structure of Thesis

The thesis contains literature reviews and research that could be categorised

as part of three main strands of work: the development of a learner modelling

mechanism (Chapter 2 and 4), exploiting the learner model for pedagogical

purposes (Chapter 5 and 6) and enriching the knowledge base (Chapter 7).

Chapter 2 presents the literature review on exploratory learning, user/learner

modelling and learner modelling for exploratory learning. The aim of this

chapter is to outline the current knowledge about the processes involved in ex-

ploratory learning, to give an overview of user modelling in general and learner

modelling in particular and, finally, to present previous research in the field of

learner modelling for exploratory learning environments. This literature review

has been conducted with one goal in mind: to provide us with the necessary

knowledge to take an informed decision on the best approach that we can take

for learner modelling in the context of our learning environment. This chapter

informed the development of our proposed approach for learner modelling by

providing the knowledge of the processes involved in discovery learning and the

challenges they pose both from modelling point of view and pedagogical point

of view, and by informing us on the suitability of the various methods previ-

ously used in user/learner modelling both in exploratory learning environments

as well as other types of learning environments.

Chapter 3 presents the methodological consideration of the research pre-

sented in this thesis. A typical mathematical generalisation problem is pre-

sented to facilitate the understanding of the aims and objectives, and of the

challenges for user modelling. The context in which the research was conducted

is described and the need for iterative design is explained; an overview of iter-

ative design is also included. The methodology is presented for each strand of

research in the thesis and an abstract conceptual model is given for the main

strand of research, i.e. user modelling.

Chapter 4 presents our proposed approach for learner modelling in an ex-

ploratory learning environment for the domain of mathematical generalisation,

which was developed in an iterative and incremental manner. The chapter also
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includes overviews of the domain we are working with, i.e. mathematical gener-

alisation, and of case-based reasoning which is used in our modelling approach.

Two versions of the system and of the learner modelling mechanism are pre-

sented together with their corresponding evaluation studies. The results are

discussed and the chapter ends with a summary and an overview of contribu-

tion. The approach presented in this chapter addresses our first three objectives,

i.e. identify the relevant information to be stored in the learner model, represent

the evolution of the learners’ knowledge and develop an updating mechanism.

Furthermore, it constitutes the bases for the research presented in the following

three chapters.

Chapter 5 and 6 present two exploitations of the learner model for pedagog-

ical purposes: feedback prioritisation and grouping for collaboration. Chapter 5

starts with presenting the problem of feedback prioritisation, continues with an

overview of personalised feedback and an overview of Multi-criteria Decision

Making focusing on a method called the Analytic Hierarchy Process which is

employed in our approach, and, finally presents the two iterations of our pro-

posed mechanism for feedback prioritisation. Evaluation studies were conducted

for both versions, and the results are presented and discussed. Chapter 6 starts

with the problem of grouping for collaborative activities and previous work in

this area, continues with a brief overview of Group Technology from which our

approach is inspired, presents our mechanism and its evaluation, and discusses

the results. Both chapters end with a summary and an outline of the contribu-

tion, and both of them address our fourth objective, i.e. exploit the information

in the learner model for pedagogical purposes.

Chapter 7 presents work that aims to improve the coverage of the knowledge

base over time. It starts with an overview of adaptive modelling and contin-

ues with our proposed mechanism for enriching the knowledge base. Several

evaluation studies are presented and discussed, and, finally, the chapter ends

with a summary and an overview of the contribution. The research presented

in this chapter addresses our last objective, i.e. maintain optimal coverage of

the knowledge base.

Finally, Chapter 8 concludes this thesis with a summary of research and

findings, and an outline of the thesis contribution. It also identifies directions

for future work and ways in which they could be addressed.

1.3 Contribution

In Chapter 4, a learner modelling approach for exploratory learning of mathe-

matical generalisation based on Case-Based Reasoning (CBR) is proposed. The

classic CBR approach has been modified to cover problems with multiple solu-
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tions, in which the target is to identify which particular solution is used. The

proposed CBR-based mechanism identifies the approach taken by a learner for

a particular task by comparing the learner’s approach with all the approaches

stored in the knowledge base for that task. To evaluate the mechanism a set

of scenarios of pedagogical importance were identified; the mechanism has been

successfully tested on partial and complete approaches, as well as mixed ap-

proaches. This way of modelling the learner allows diagnosis during the task,

as well as at the end of it, thus giving opportunities for meaningful person-

alised support. Moreover, the mechanism was developed in an iterative and

incremental manner in parallel to other components of the system, including

the interface. Therefore, this chapter also contributes to the methodological

aspects of designing and developing a learner modelling component.

Chapter 5 addresses a problem that is common to exploratory learning en-

vironments, i.e. personalised feedback prioritisation. To address this problem,

an approach was developed based on the Analytic Hierarchy Process, a method

from Multi-criteria Decision Making. The approach takes into consideration sev-

eral criteria such as the context within a particular task and outputs an ordering

among the several task-related aspects on which feedback may me needed. This

approach ensures that when there are several aspects to give feedback on, the

most relevant ones are prioritised, as displaying feedback on all aspects would

be hardly beneficial for the learner and would potentially be more confusing

than helpful. Although designed for our particular educational environment,

this approach could be applied to other educational systems. The criteria and

alternatives, however, would need to be replaced with relevant aspects for the

particular environment.

Chapter 6 also addresses a problem encountered in educational environments

in general and exploratory learning environments in particular, i.e. grouping

students for collaborative activities. Because the students’ interactions with

an exploratory learning environment are different from interactions with other

types of learning environments such as intelligent tutoring systems, different

criteria are important when grouping students for collaborative activities. As

exploratory learning often entails being aware of alternative approaches to the

same problem, the criteria we propose are the approaches used by individual

students and the similarities between various approaches for the particular task.

Our proposed mechanism outputs clusters of learners using similar approaches,

which could be then used by teachers in different ways depending on their aims

and their knowledge about the students. Besides the flexibility offered to the

teacher, our approach can be used to form both homogeneous and heterogeneous

groups.

In Chapter 7 we propose a mechanism for maintaining the optimal coverage
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of the knowledge base using adaptive modelling. This approach has the advan-

tage of being able to start with a small knowledge base and gradually enrich

it. Also, even if initially there is a large knowledge base, over time learners

discover different ways of approaching the tasks, rendering the knowledge base

suboptimal for generating proper feedback, despite the initially good coverage.

With our approach, optimal coverage of the knowledge base is maintained by

gradually incorporating the new approaches when they occur.
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Learner Modelling for

Exploratory Learning

The term Learner Modelling refers to the process of generating a learner model

(Morales Gamboa, 2000) in the context of an intelligent learning environment

(Brusilovsky, 1994). A learner model enables the system to adapt to the learner

who uses it and ideally includes all information about the learner’s behaviour

and knowledge that influences their learning and performance (Wenger, 1987).

The content of a learner model depends on the learning environment and in-

cludes inferred information about aspects such as a learner’s goals, plans, knowl-

edge, attitudes and abilities, but the most important information about a learner

is his or her knowledge of the subject that is being studied (Brusilovsky, 1994).

Although there are many works describing various approaches for learner

modelling in the area of Intelligent Tutoring Systems (VanLehn, 1988; Anderson

et al., 1995; Conati et al., 2002; Mitrovic, 2003), there is relatively little research

in the area of Exploratory Learning Environments. The aim of this chapter is

to present the characteristics of exploratory learning that make them radically

different from tutoring systems and, consequently, require a different approach

for learner modelling. The literature review presented in this chapter offers a

wider context for our aims and objectives and motivates the research questions

presented in the Introduction. Moreover, it also situates our work in relation to

previous research on learner modelling for exploratory learning environments.

The chapter is divided in three subsections: (a) a literature review on ex-

ploratory learning where some theoretical aspects of exploratory learning are

presented; (b) a literature review on learner modelling, where a brief description

of the process and a discussion on learner modelling possibilities and usefulness

in ELEs are included, and (c) a detailed presentation of the previous research
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on learner modelling in ELEs. Finally, the chapter ends with a summary of its

contents.

2.1 Exploratory Learning

Exploratory learning is a teaching approach that encourages the learners to

explore the domain with much less focus on guided teaching and presentation

of already processed information; it is based on the constructionist theory of

learning (Papert, 1993). According to Rieber (2004) exploratory learning is

founded on the following four principles:

(a) Learners can take control of their learning and are encouraged to do so.

(b) The domain to explore is rich and multidimensional.

(c) The domain should allow exploration in various ways (e.g. multiple equiv-

alent solutions to the same problem).

(d) The learners should be given freedom to explore rather than being guided

on a specific path.

Often other names are used for this type of learning, among which are dis-

covery learning and inquiry learning :

- “Discovery learning is a type of learning where learners construct their own

knowledge by experimenting with a domain, and inferring rules from the re-

sults of these experiments. The basic idea of this kind of learning is that

because learners can design their own experiments in the domain and in-

fer the rules of the domain themselves they are actually constructing their

knowledge. Because of these constructive activities, it is assumed they will

understand the domain at a higher level than when the necessary information

is just presented by a teacher or an expository learning environment.” (van

Joolingen, 1999, p. 385).

- “Inquiry is an approach to learning that involves a process of exploring the nat-

ural or material world, and that leads to asking questions, making discoveries,

and rigorously testing those discoveries in the search for new understanding”

(National Science Foundation, 2000, p. 2).

Exploratory learning does not completely exclude guidance or constraints;

their usage is only different from step-by-step guided learning. The focus is on

the fact that the learners finds his/her own path towards a solution and this

process includes errors that are beneficial for learning and need not necessarily

be corrected before moving to a next step (as it is the case with guided learning).
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Discovery learning has been regarded as a ‘search problem’ within two related

spaces (Newell and Simon, 1972; Simon and Lea, 1974; Klahr and Dunbar, 1988):

hypotheses space and experiment space. Hypotheses direct the search in the

experiment space and the results of experiments influence the search of new

(refined) hypotheses. Klahr and Dunbar (1988) describe two search strategies

within the two spaces:

(a) Theorist strategy starts with a set of hypotheses which are tested and refined

based on the results of the experiments; the new hypotheses follow the same

course.

(b) Experimenter strategy starts with data collection before stating a hypothe-

sis.

The main difference between the two strategies is in prior knowledge (Klahr

and Dunbar, 1988). Thus, if a learner can state a hypothesis, s/he is likely to

use a theorist approach; if a hypothesis cannot be stated, a learner tends to

experiment and observe data and thus, takes an experimenter approach. Hence,

where there is no or little prior knowledge the trajectory seems to be from

experimenter strategy to theorist strategy, while when having prior knowledge

the trajectory includes only the theorist strategy.

van Joolingen and de Jong (1997) extended Klahr and Dunbar’s theory by

identifying two subspaces of the hypotheses space:

(a) Learner hypotheses space that contains all hypotheses that a learner can

think of, in terms of variables of the domain and possible relations between

them.

(b) Learner search space that consists only of the hypotheses considered by the

learner as candidates for a particular situation.

For both above mentioned strategies, discovery/inquiry learning involves

several cognitive processes (de Jong, 2006); corresponding skills for each process

are required for successful learning:

(i) Orientation: identification of variables and of relations between them;

(ii) Hypotheses generation: formulating a set of statements about relations

between variables;

(iii) Experimentation: changing values of variables, making predictions, inter-

preting outcomes;

(iv) Conclusions: establishing the validity of hypotheses.
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Besides the above mentioned cognitive processes, there are meta-cognitive

processes (de Jong, 2006) involved that also have influence on the learning out-

comes: (i) Planning : outlining a plan of the discovery process; (ii) Monitoring :

having and updating an overview of the experiments and what has been learned

from them; (iii) Evaluating : reflection on the learning process and the knowledge

that was acquired.

Research indicates that learners encounter difficulties with all these pro-

cesses:

(i) Orientation: learners have problems with choosing the right variables

(de Jong and van Joolingen, 1998);

(ii) Hypotheses generation: learners have difficulties in formulating testable

hypotheses (de Jong and van Joolingen, 1998);

(iii) Experimentation:

- difficulties in linking experimental data with hypotheses, as previous

ideas tend to persist even when contradicted by data (Chinn and Brewer,

1993);

- difficulties to translate the variable from hypothesis into observable vari-

ables in the experiment (Lawson, 2002);

- learners tend to design ineffective experiments, e.g. varying more vari-

ables at one time (Keselman, 2003);

- learners fail to make predictions and make mistakes in interpreting data

(Lewis et al., 1993);

(iv) Conclusions: learners do not draw the right conclusions even when having

well designed experiments (de Jong and van Joolingen, 1998);

(v) Planning : if they plan at all, learners tend to focus only on short-term

planning (Manlove et al., 2006);

(vi) Monitoring : learners do not monitor adequately what they do (Manlove

et al., 2006);

A particular meta-cognitive skill, self-explaining, i.e. generating explana-

tions to oneself in relation to the studied material and with respect to the un-

derlying domain knowledge (Chi et al., 1989), has been shown to be beneficial

for learning (Hausmann and VanLehn, 2007) even when the self-explanation

is incorrect (Chi, 2000). In Bunt et al. (2004) the students’ self-explanatory

behaviour was modelled in the context of an open learning environment and

support for self-explanation was provided. Including eye-tracking information
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in the model of self-explanation has been shown to provide a more accurate

assessment of self-explanation. Moreover, modelling self-explanation improves

the assessment of student exploratory behaviour (Conati and Merten, 2007).

Working with graphical representations has been shown to be more beneficial

than working with textual representation: the students working with graphical

representation design more experiments with their own model, formulate more

qualitative hypotheses and spend more time evaluating their model (Löhner

et al., 2005). Working with a concrete rather than an abstract task has also

been shown to be more beneficial for learning (Wilhelm and Beishuizen, 2003).

As ELEs differ in many respects from structured learning environments, a

different way of supporting learning is required:

“...in system controlled, expository environment, the question is

which information to present based on the interaction with the learner,

in a discovery environment the question is how to assist the learner

in selecting and interpreting information from the learning environ-

ment” (van Joolingen, 1999, p.385).

Bliss recommend that the support for modelling should be done

“according to a systematic strategy as well as to specific reasoning

activities... a process support tool should offer a description of the

processes that need to be performed as well as their interdependen-

cies, but not fix the order of execution of these processes” (Bliss,

1994, p. 458).

Moreover, Bliss (1994) distinguishes two types of modelling:

(a) Explorative modelling in which learners explore a given model; this corre-

sponds to discovery learning with computer simulations;

(b) Expressive modelling in which learners construct their own models.

Discovery learning should allow both types, thought most ELEs use predom-

inantly the first one. The support in the context of this type of modelling makes

use of cognitive tools (van Joolingen, 1999) that offer information to the learner

(e.g. explanations related to the current problem), tools for structuring the

task (e.g. notebooks) or for externalizing learning processes (e.g. provide the

learners with a description of what they are doing (van Joolingen and de Jong,

1997)). More specifically, these tools are targeted to the key processes of dis-

covery learning:
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(i) Hypothesis generation. Help with the structure of hypotheses has been

proposed by providing the learners with a menu of ready made hypotheses

(Michael et al., 1989), which “perform the process for the learner” (van

Joolingen, 1999, p. 390). Other tools “constrain or extend the search

process in the hypothesis space” (van Joolingen, 1999, p. 390), like the

hypothesis scratchpad (van Joolingen and de Jong, 1997) which helps the

learner to formulate hypotheses by constraining the expressions they could

state and by showing the hypothesis space to the learner; templates are

offered to the learners in which they need to fill in variables and relations.

(ii) Monitoring experiments. The tool for monitoring experiments should have

the following capabilities: add/delete experiments, sort experiments, re-

play experiments and change the order of variables. This sort of tool is

useful after experiments have been done by the learner and its main func-

tion is to relieve the memory of the learner. A secondary function is the

offering of an overview of the experiment space that has been searched.

van Joolingen (1999) also talks about hooking intelligent support, which

refers to offering adaptive support, working with the input from the previously

mentioned cognitive tools that make the learning process explicit. This idea was

developed in Veermans and van Joolingen (1998, 2004) and Veermans (2003);

the monitoring tool recorded the learners’ experiments and provided feedback

on the quality of these experiments and on whether they supported the hypothe-

sis. The quality of experiments is assessed by a set of rules, while the hypothesis

support is assessed using deduction principles from the hypothesis (given in the

task) to the experiment space - the experiments’ results are checked against the

predictions generated by the hypothesis. More details are given in Section 2.3.

This section gave a brief overview of exploratory learning, the processes in-

volved, the difficulties learners encounter with these processes and proposed

ways of supporting the learners with cognitive tools corresponding to the pro-

cesses of discovery learning.

2.2 Learner Modelling

A learner model is a representation of a learner and consists of data about

the learner or about what the learner does. Typically, a learner model would

store data about a learner’s knowledge, preferences, goals, tasks, interest, etc.

(Brusilovsky, 2001).

Learner modelling refers to the process of generating a learner model and it

typically includes three main tasks (Morales Gamboa, 2000):
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(a) learner diagnosis that refers to obtaining information about the learner to

be included in the learner model;

(b) model maintenance which is about encoding and integrating the information

in the model and

(c) model employment that refers to the usage of the model for various purposes

that are meant to be beneficial for learning such as adaptive and personalised

feedback, support for collaboration and support for teachers.

Learner modelling has to handle the gap between the information available

about a learner and the conclusions that can be drawn from it, and this process

includes uncertainty. Owing to the research in artificial intelligence (AI) and

especially the development of techniques that handle uncertainty, the learner

modelling research has advanced and currently there are many intelligent learn-

ing environments that use one or more AI techniques: case-based reasoning (e.g.

Stottler and Ramachandran (1999); Han et al. (2005)), Bayesian networks (e.g.

Bunt and Conati (2003); Conati et al. (2002)), fuzzy logic (e.g. Vrettos and

Stafylopatis (2001)), neural networks (e.g. Beck and Woolf (1998)), genetic and

evolutionary algorithms (e.g. Romero et al. (2003)), neuro-fuzzy (e.g. Statha-

copoulou et al. (2003)), genetic algorithms and case-based reasoning (e.g. Huang

et al. (2007)), etc. A review of recent advances using soft computing techniques

for user-adaptive systems can be found in Fŕıas-Mart́ınez et al. (2005).

Discovery learning environments usually do not use learner modelling in the

sense of creating a model of the learner’s knowledge or skills. Arguments for

not using such models are (Veermans, 2003):

(a) It is impossible to model the learner in an ELE because the amount of

information would be too large given the freedom the learners have.

(b) The learner modelling is seen as contradictory to the principles of discovery

learning and constructivism that considers that each learner has a personal

representation of the external world.

According to Veermans (2003) these arguments may explain why traditional

ITS techniques such as learner modelling have not been used for ELEs. Although

these arguments are founded, counter arguments could be given:

(a) There is no need to model everything that the learner does; only relevant

information could be stored and thus, considerably decrease the amount

of information; also, considering that complete freedom is not beneficial

for learning in ELEs (Kirschner et al., 2006) some constraints would be

necessary and they would also contribute to limiting the learner’s actions,

thus decreasing the amount of information as well.
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Veermans (2003) proposes a focus on the processes that lead to acquisition

of knowledge rather that the knowledge itself; the role of the learner model

would be in his view to support the learner in the process of discovery and:

“To do this, the system would not need to maintain a full cognitive

model of the learners domain knowledge, only to infer just enough

from steps taken by the learner to support the learner in the

process of discovery” (Veermans, 2003, p. 21).

(b) Personal representation does not contradict general knowledge; moreover, a

learner model that would register the evolution of learning, with its varia-

tions and changes, would be in line with the constructivist theory and would

reflect more accurately the learners’ knowledge, but also its development.

2.3 Learner Modelling in Exploratory Learning

Environments

Previous attempts in learner modelling for ELEs are very few and include: (a)

the use of heuristics to guide the learning process in a physics domain (Veer-

mans, 2003); (b) Bayesian networks in a mathematical functions domain (Bunt

and Conati, 2003); (c) neuro-fuzzy systems for student diagnosis in a physics do-

main (Stathacopoulou et al., 2005); (d) Fuzzy sets for modelling cognitive states

in a computer-based learning environment for Newtonian dynamics; (e) eye-

tracking for modelling meta-cognitive characteristics such as self-explanation;

(f) a Dynamic Decision Network approach for a dynamic learner model allow-

ing reasoning about the learners behaviour and interventions across time.

Heuristics. The idea of intelligent support was tackled in Veermans (2003)

using induction and deduction, whilst templates were used to generate feed-

back. The system used, SimQuest, is an authoring environment for develop-

ing simulation-based discovery learning environments. A tool was developed to

support learning in this environment that is called “Learner modelling-Feedback

generation” module; however the tool does not use a learner model in its ‘classic’

understanding of having an individual model of the domain knowledge (or skills)

for each learner which is been updated and used for feedback; it only interprets

the behaviour of a learner and uses the interpretation to provide feedback. Thus,

the tool is more a ‘feedback generation’ than a ‘learner modelling’ module.

The research was conducted in the domain of physics. The principles of

induction and deduction and two sources of information were used: (a) the ex-
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periments performed and (b) the investigated hypotheses. A stepwise procedure

was applied:

1) a set of informative experiments about the relation between input and output

variables is filtered from the complete set of performed experiments;

2) a set of informative experiments about the hypothesis is filtered from the pre-

vious set; for each hypothesis from the set of hypotheses, a set of informative

experiments are selected.

3) for each of the informative sets for a hypothesis, predictions are generated

for the output variables.

4) The predictions generated are compared to the values actually found in the

experiments.

As previously mentioned, feedback is provided on correctness of hypotheses

and on experimentation behaviour. The former serves two purposes: “it pre-

vents construction of incorrect knowledge and serves as input for self-assessment

of the exploration process” (Veermans, 2003, p. 43). For the latter, the mon-

itoring tool available in SimQuest was extended. The monitoring tool stored

the experiments performed by learners and allowed them to keep track of what

they were doing. This tool was extended to provide support by: (a) drawing a

graph that provides visualisation of variables, (b) giving feedback on drawing

and interpreting graphs and (c) giving feedback on experimenting.

Two types of heuristics were used: general and specific. The general heuris-

tics were used to asses the experiments of a learner, while the specific heuristics

were employed to asses the experiments of a learner only if the learner fitted a

function on the performed experiments.

One study showed that learners that were given feedback did more experi-

ments compared to the ones that were not given feedback; also they did more

unique experiments and tested more hypotheses. Thus, feedback seems to en-

courage exploratory behaviour.

Bayesian networks. The second approach addresses “effective exploration”

(Bunt, 2001), but uses “standard” student modelling in the sense that essential

cases for the problems to be explored are used as the equivalent of concepts in

classic overlay models. The system used, Adaptive Coach for Exploration (ACE)

is an intelligent open learning environment for the domain of mathematical

functions (Bunt and Conati, 2003). It includes four modules:

1) a GUI that allows exploration of mathematical functions through three units:
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(a) Machine Unit that allows exploration of the relation between input and

output variables of a given function;

(b) The Arrow Unit has the same purpose as the Machine Unit, but requires

more active thought from the learner that has to pair a specific input

with a specific output;

(c) Plot Unit allows exploration of the relation between the graph and the

equation of a function.

2) a Knowledge Base that includes concepts about functions and relevant ex-

ploration cases for each type of function (e.g. constant, linear, polynomial);

3) a Student Model that assesses the effectiveness of the student’s exploration;

4) a Coach that provides feedback using the Student Model; two types of feed-

back are provided: on-demand hints and feedback when the learner moves

to a new exercise without sufficient exploration of the current one.

The Student Model includes two separate Bayesian networks: one for the

Machine and Arrow unit and one for the Plot Unit. Each network has: (a)

exploration nodes that represent the effectiveness of the student’s exploratory

behaviour and (b) knowledge nodes that represent the student’s understanding

of the domain.

Two evaluation studies indicated that the hints generated using the Student

Model assessment improved learning; also they gave evidence that the assess-

ment of the Student Model reflected accurately the student’s learning. However,

the Student Model tended to over-estimate the effectiveness of exploration as

with some students it has been observed that even if they performed the right

set of actions they still failed to learn.

This last aspect may indicate that they learn the procedure, without fully

grasping its purpose or meaning. This is similar to pattern spotting (Küchemann

and Hoyles, 2006) that involves spotting a pattern in the way things work, but

has nothing to do with reasoning on the actual problem to be solved.

In subsequent research self-explanation was added in the model as a predic-

tor of exploratory behaviour (Bunt et al., 2004). Two types of self-explanation

were detected: explicit self-explanation - self-explanation generated by the stu-

dent by using the menu-based tools available in the interface and implicit self-

explanation - generated by students in their heads. For the later time spent on

each exploratory action was used as evidence of implicit self-explanation plus

the presence of stimuli to self-explain: either the learner’s general tendency to

self-explain or a hint from the system to self-explain.
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Neuro-fuzzy approach. The third approach (Stathacopoulou et al., 2005)

combines fuzzy knowledge representation of expertise in teaching physics with

training from practical examples when knowledge is not accurate or well-defined.

It focuses on student diagnosis and feedback is not addressed.

The system, Vectors in Physics and Mathematics, is a discovery learning en-

vironment that was build based on the constructivist theory of learning (Grigo-

riadou et al., 1999a,b). It aims to help teachers and learners with the concepts of

vectors in physics and mathematics in secondary schools. It has several thematic

units that were considered based on knowledge about the conceptual difficulties

of learning vectors and about the difficulties in conceptualising certain phenom-

enas from physics that could be sources of misconceptions.

A neural network-based fuzzy diagnosis model (Stathacopoulou et al., 2005)

is used for the diagnosis process and updating the student model. The neuro-

fuzzy approach aims to “imitate” the teachers’ way of evaluation a learner’s

characteristics (capabilities, attitudes, knowledge level, motivation and learning

style). Linguistic descriptions of students’ behaviour and learning character-

istics were elicited from teachers and encoded using fuzzy logic that handles

the uncertainty associated with teachers’ subjectivity. The neural network adds

learning and generalisation capabilities to the fuzzy model.

The learner model provides information about the knowledge level on the

domain concepts and learning style with the envisaged purpose of adapting the

feedback and the pedagogical strategy to the learning style of students.

Experimental results (Stathacopoulou et al., 2005) using simulated students

and teachers expertise showed that the neural network-based fuzzy diagnostic

model successfully manages the uncertainty associated with human expertise

in diagnosing students learning. Additionally, for marginal cases the model

performs particularly well by synthesizing conflicting assessments. The model

was also evaluated in real classroom conditions with an overall classification

success of 68% (Stathacopoulou et al., 2007).

Fuzzy sets. A fuzzy algorithm was used to follow the cognitive states of stu-

dents while they were solving a task and to interpret the monitored changes

when working in a computer-based learning environment for Newtonian dy-

namics called FORCES (Andaloro and Bellomonte, 1998).

The students were required to solve problems at the qualitative level. They

explored various systems of different complexity subjected to external forces.

Each selected system was a task and the students were required to draw a

diagram of the corresponding forces. Force vectors could be taken from a menu

and applied to the system components. The system allowed comparison between
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the real motion and the modelled Newtonian motion. Students could repeat a

task as many times as they liked.

The learning environment includes two modules: microworlds and student

models. Microworlds are simulation that present various systems subjected to

external forces. Student models contain representation of the student knowledge

states - they are build up through rules that analyse the student.

A pilot study allowed the authors (Andaloro and Bellomonte, 1998) to elicit

the student representations and the relationships with their behaviour. The

students worked with the simulations and a tutor asked them to draw the corre-

sponding diagrams and to explain their actions, and registered their reasonings

and/or intuitions in interview protocols. Relevant diagrams and their mental

representations were analysed and stored in the system. They have been re-

stricted to models that were common to different students and consistent within

individual responses.

The Student Model infers descriptions of correct, partial and incorrect stu-

dent knowledge about the forces involved in the selected systems from the di-

agrams made by the students. The learning process is evaluated using an al-

gorithm based on fuzzy sets. Dynamic fuzzy weights are calculated, assigning

positive values to changes of mental representations that are considered signifi-

cant for acquiring scientific knowledge and negative values to the ones considered

insignificant.

Eye-tracking. Eye-tracking has been recently used to model meta-cognitive

behaviour and adapt accordingly (Merten and Conati, 2006; Conati and Merten,

2007). The meta-cognitive behaviour included the capability to effectively learn

from free exploration (de Jong and van Joolingen, 1998) and the capability to

self-explain the material given for instruction. The system used was ACE, an

intelligent learning environment for exploration-based learning of mathematical

functions (described above).

Eye-tracking was used as an additional source of evidence for self-explanation

behaviour. Empirical data on the correspondence between the students’ self-

explanation, time and attention patterns were collected and analysed. Time was

found to be a predictor of self-explaining behaviour. Together with gaze shifts

and gaze shifts with time, it was considered as a predictor of self-explanation

behaviour. Results showed that gaze shifts alone were best at detecting the

absence of self-explanation behaviour and that gaze shifts in combination with

time were best at detecting the occurrence of self-explanation behaviour.

An evaluation study was conducted and confirmed that self-explanation was

best predicted by gaze shifts in combination with time, followed by gaze shifts

alone and, lastly, by time alone. It also showed that modelling self-explanation
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leads to a better performance of the model for diagnosing the students’ ex-

ploratory behaviour.

Dynamic Decision Network. A Dynamic Decision Network (DDN) ap-

proach (Ting and Phon-Amnuaisuk, 2009) was used to model a dynamic learner

model allowing reasoning about the learners’ behaviour and interventions across

time. The authors argued that DDN is a better approach in acquiring inquiry

skills because these skills evolve over time, an aspect that would not be cap-

tured in a static network. Their research focused on the factors that influence

the performance of a DNN learner model.

The system used is an intelligent computer-based scientific inquiry learning

environment, INQPRO, for the physics domain. Skills like formulating hypothe-

sis and identifying and controlling variables are probabilistically assessed. The

system includes two modules: a GUI Module, that presents the learning mate-

rials via several GUIs and an animated pedagogical agent, and an Adaptation

and Inference Module.

For each GUI, there is a correspondent decision network (DN) that models

the static aspects of the inquiry skills. Two approaches were used to create

the DDN: (a) combining the DNs of all GUIs and repeating them over time

or (b) appending individual DNs corresponding to the accessed GUI. The first

approach had the advantage of providing a unified solution and of no need to

change the Conditional Probability Tables (CPTs) for the subnetworks that

remained unchanged across time slices. The second approach produced fewer

nodes per time-slice, allowing the DNN to be updated faster.

In a three-step evaluation of the DNN learner model, three factors were

identified to influence the performance of the DNN: the structure of the DNN,

the variable instantiation approach and the weights assignment method for two

consecutive DNs.

The existing approaches have a number of strengths and limitations that

are outlined in the following. Bayesian Networks are an established modelling

technique in the context of intelligent tutoring systems; however, it does not fit

our purpose as we are not dealing with concepts, but with learner actions. The

neuro-fuzzy approach has the advantage of dealing well with uncertainty and

of mimicking teachers’ reasoning; again, concepts in the form of fuzzy variables

are used which do not apply to our situation. Fuzzy sets also deal well with

uncertainty, but have a similar drawback - they keep track of the overall knowl-

edge, while we want to keep track of the models for each task in a more detailed

manner than a number. The dynamic decision networks have the advantage of

dealing with the temporal aspect; however, they are used for modelling skills,
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while we’re interested in modelling knowledge. Moreover, none of these ap-

proaches address the need for diagnosing the learner during a task rather than

at the end of it, and this is a key limitation that this thesis is addressing.

2.4 Summary

In this chapter, we have presented overviews of exploratory learning, user/learner

modelling and learner modelling in exploratory learning environments. We have

discussed the main characteristics of exploratory learning and the reasons why

learner modelling was considered incompatible with this type of learning, and

presented previous work in this area. In previous research, several works mod-

elled knowledge (Veermans, 2003; Stathacopoulou et al., 2005; Andaloro and

Bellomonte, 1998), one modelled skills related to exploratory learning (Ting

and Phon-Amnuaisuk, 2009), one modelled meta-skills related to exploratory

learning (Conati and Merten, 2007) and, finally, one modelled knowledge and

effective exploration at the same time (Bunt, 2001; Bunt and Conati, 2003).

Our approach focuses on modelling knowledge rather than skills or meta-

skills and was developed in the context of an exploratory learning environment

for the domain of mathematical generalisation. This work is presented in the

following chapter.
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Chapter 3

Methodological

Considerations

This research presented is this thesis was conducted using an Exploratory Learn-

ing Environment for mathematical generalisation developed in the context of the

MiGen Project1. The development of the mechanisms presented in the following

chapters was done along with the development of the system and this aspect

had an influence on the methodology used for the development of the learner

modelling techniques. One aspect that had a direct influence on our method-

ology was that the system was developed in an iterative manner; consequently,

our techniques were developed iteratively as well.

Before presenting details of the methodology, a typical generalisation task is

described in the following section to illustrate the aspects that need modeling.

3.1 Problem Description

In this thesis we address the user modelling problem in the context of exploratory

learning, and more specificaly, in the context of a system developed by the

MiGen project for the domain of mathematical generalisation. We describe

here a typical problem for the domain of mathematical generalisation (for UK

secondary school level) that will facilitate understanding of what is needed to

develop a user modelling mechanism for exploratory learning of this domain.

Pond tiling is a mathematical generalisation problem for which the students

are presented with a pond typically of rectangular form of a certain width (w)

1Funded by ESRC, UK, under TLRP e-Learning Phase-II (RES-139-25-0381);
http://www.migen.org
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and height (h) (see Figure 3.1) and are asked how many square tiles, of size 1,

are needed to surround any pond.

Figure 3.1: Pond tiling problem - pond and surrounded pond.

The algebraic solution for this problem is that the number of tiles needed to

surround any rectangular pond is 2∗w+2∗h+4. The MiGen system goal was to

provide an environment in which such tasks can be solved that would facilitate

the transition from a construction to an algebraic formula, thus providing an

understanding of how algebraic rules are derived, i.e. of generalisation.

Thus, the system would present such tasks to the learners and would provide

affordances that allow the learners to build constructions and express algebraic-

rule. Therefore, a user modelling mechanism needs to enable diagnosis on both

aspects. Moreover, the information stored in the user models should facilitate

other pedagogical decisions such as feedback or collaborative activities.

The next section presents the aim and objectives of the thesis and the fol-

lowing section discussed iterative design, as this is an important aspect of the

overall development of the system, as well as of the user modelling component.

Section 3.4 presents the methodology for all strands of research in this thesis,

while Section 3.5 gives a brief overview of the high-level approach taken for the

main stand of research, i.e. user modelling.

3.2 Aims and Objectives

This PhD thesis focuses on learner modelling in Exploratory Learning Environ-

ments and aims to develop an approach that allows modelling of the learners’

behaviour not only at the end of tasks, but also during the task. Moreover, we

want to exploit the information in the learner model for educational purposes

such as feedback prioritisation, group formation for collaborative activities and

off-task detection.

To meet the above mentioned aims the following objectives were defined:

1. Identify relevant interactions and create suitable transformations for pro-

ducing informative data that would be stored in the learner model.

2. Represent the evolution of learners’ constructionist models.
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3. Design and develop an updating mechanism for the learner model that

would reflect both the current knowledge and the evolution of knowledge.

4. Exploit the information in the learner model for purposes such as person-

alised feedback prioritisation, grouping for collaboration and detection of

off-task behaviour.

5. Maintain optimal coverage of the knowledge base.

3.3 Iterative Design

Iterative design refers to the practice of making continuous improvements in

the design of a product on the basis of testing, expert evaluation, and con-

sumer feedback (“Iterative Design”, 2006). In the context of software products,

the design is only one of the processes involved, along with others such as re-

quirements gathering, implementation and testing. There are several software

development models (Sommerville, 2001), some including iterative approaches

(e.g. spiral model, iterative and incremental model, agile computing) and some

not (e.g. waterfall model). As the development of the ELE for mathematical

generalisation and of the learner modelling component followed the iterative

and incremental model, a detailed outline of this model is given, while the other

models are only briefly described.

The Waterfall model was the first explicit model of the software development

process and its name is due to the sequential manner in which a phase follows

from another. This model is criticised for its rigidity, as in practice a phase is

rarely completed when moving to the next (Sommerville, 2001). In the Spiral

model (Boehm, 1986), each loop represents a phase (e.g. system requirements,

system design etc.) and risk analysis is performed in each phase. This model

is used for large and complicated projects. Agile software development (Mar-

tin, 2002) combines teamwork, development and adaptability throughout the

project. It values individuals and interactions over processes and tools, work-

ing software over comprehensive documentation, customer collaboration over

contract negotiation and responding to change over following a plan.

The iterative and incremental development model refers to a cyclic devel-

opment process in which the incremental development refers to a staging and

scheduling strategy in which various parts of the system are developed at dif-

ferent times or rates, and integrated as they are completed, and the iterative

development refers to a rework scheduling strategy in which time is set aside to

revise and improve parts of the system (Cockburn, 2008). The software is devel-

oped incrementally, allowing to build on the knowledge from previous versions

of the system - from both development and deployment. It starts with a simple

34



Chapter 3. Methodological Considerations

implementation, i.e. prototype, that covers key aspects and requirements, that

is then iteratively enhanced in subsequent versions until the full system is im-

plemented. At each iteration, design modifications are made and new functional

capabilities are added.

The procedure includes an initialisation step, an iteration step and the so-

called Project Control List. The initialisation step involves a first version of the

system with basic capabilities that underpin the key aspects of the problem that

are easy to understand and implement. The main purpose of this basic version

is to have something that users can react to and to learn from their responses.

The project control list guides the iterative process and includes items such as

new features to be implemented and aspects of the existing solution that need

to be redesigned. This list is revised in each analysis phase. The iteration

step involves the analysis of the current version of the system and the redesign

and/or implementation of items from the project control list. The analysis of

each iteration is based on user feedback and program analysis (e.g. structure,

modularity, reliability) and the results inform modification in the project control

list. The process is illustrated in Figure 3.2.

Figure 3.2: An iterative and incremental process - reproduced from Krutchen
(2003)

There are several advantaged in using an iterative and incremental ap-

proach (Krutchen, 2003, p. 8):

1. Serious misunderstandings are made evident at the beginning of the life-

cycle, allowing them to be dealt with more easily than if discovered at a

later stage.

2. To elicit the system’s real requirements, user feedback is enabled and
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encouraged.

3. The development is focused on the most critical issues to the project and

is shielded from other issues that may be a distraction from the project’s

real risks.

4. Continuous, iterative testing enables an objective assessment of the project’s

status.

5. Inconsistencies between requirements, design and implementation are de-

tected early.

6. The workload of the team is spread more evenly throughout the project’s

life-cycle.

7. The team can leverage lessons learned and therefore can continuously im-

prove the process.

8. Concrete evidence of the project’s status can be given to stakeholders

throughout its life-cycle.

Apart from software engineering approaches, a lot of research has emerged

within the last 10-15 years in the area of learner-centred design, arguing the

learners’ involvement in the design of intelligent educational systems, especially

when learners are children, as adults have a limited knowledge about how chil-

dren make sense of software. Following is an overview of several approaches

proposed in the area of iterative design with children for educational systems.

Some proposed approaches for learner-centred design focus on the design

product (the educational system ) (e.g. Soloway et al. (1994, 1996)), while others

focus on the design process (e.g. Druin (2002); Scaife and Rogers (1998)).

The TILT model (tasks, interfaces, learner’s needs, tools) (Soloway et al.,

1994) was inspired from user-centred design that uses three of the aforemen-

tioned concepts, i.e. tasks, tools and interfaces, and adds a new concept that

the authors argue as necessary for learner-centred design, i.e. learner’s needs.

The Persistent Collaboration Methodology(PCM) (Conlon and Pain, 1996)

focuses on the process of designing intelligent educational systems. Teachers,

researchers and technologists are involved in a cycle of observation, reflection,

design and action. This approach is considered by Good and Robertson (2006)

to be more school-centred than learner-centred because learners were not part

of the design team.

The term participatory design in which end users are involved and in which

the users are children has been used by Druin (1999, 2002) who defined a

methodology called cooperative inquiry. It involves a four-step process:
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1. the contextual inquiry phase which involves collection of data in users’

own environment;

2. the ‘sticky note critiquing’ phase during which children and adults critique

an exiting piece of technology and, using sticky note pads record their likes,

dislikes and a third category, e.g. surprises;

3. the participatory design phase in which the design team, including chil-

dren, takes part in low-tech prototyping sessions;

4. the technology immersion phase which involves creating a space where chil-

dren are able to access and use the existing technologies over a sustained

period of time with researchers observing children’s activity patterns in

an unconstrained setting.

Several forms of involvement (Druin, 2002) are proposed to include children

in the design of learning environments, which are given in a gradual scale. At

the bottom of the scale the children’s involvement is small as they act as users of

technology. On the next steps, the children are more involved, acting as testers

of prototype software and as informants, i.e. giving input in the design process.

At the top of the scale, the children have the status of design partners acting

as equal stakeholders throughout the design process.

Good and Robertson (2006) pointed out that the focus of cooperative in-

quiry is on children as technology users, while learner-centred design has a more

constrained focus on children as technology learners, i.e. children who use the

technology as a vehicle for learning.

The Informant Design Framework (Scaife and Rogers, 1998) considers several

stakeholders including children, teachers, software designers and psychologists

to contribute to the design of the interactive learning environment. It starts

with specifying the learning goals and teaching practices for the domain and

translate the specification initially into low-tech and later into high-tech designs.

The expertise of the different stakeholders is used on specific aspects of the

learning environment throughout the design process rather than having all the

stakeholders working as an integrated team at all stages of the project.

The CARSS framework (Context, Activities, Roles, Stakeholders, Skills)

(Good and Robertson, 2006) was specifically developed for participatory, learner-

centred design with children. The context refers to the awareness of the broader

context in which the design activity takes place. The activities describe the se-

quence of events that occur in the typical educational software design cycle.

The roles describe the various functions that a member of the design team can

fulfill, which each member possibly fulfilling more than one role. The stakehold-

ers cover all the individuals who have a vested interest in the design process,
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and the skills refer to personal attributes and dispositions necessary to conduct

successful design sessions. This framework can be applied to both intelligent

and non-intelligent learning environments. It attempts to be fully inclusive and

to be used for the design of interactive learning environments for children.

Another methodology entitled Identification-Development-Refinement (IDR)

methodology (Winters and Mor, 2008) was proposed to address the issues related

to interdisciplinary design. It aims to look at the full cycle of the design process

and not just the software output and thus to include other outputs such as de-

sign patterns and pedagogical plans. Also, it focuses on engaging participants

to reflect on their previous successful practices and to scaffold this reflection

to generalizable solutions useful to the wider community. This methodology in-

cludes three stages: (a) the aim of the first stage is to identify potential patterns

through the use of typologies and case studies; (b) the second stage looks at

developing a set of patterns based on design evidence from the case studies; (c)

the third stage aims to improve the patterns through collaborative discussion

and reworking. The patterns are meant to mediate the interdisciplinary design

process through their identification, development and refinement by the project

participants.

The development of our modelling mechanism was directly influenced by the

development of the exploratory learning system, as “user models cannot and

should not be separated from the software systems that use them” (Chin, 2001,

p. 183). Therefore, the development of the modelling mechanism needed to take

an iterative approach, in line with the iterative development of the exploratory

learning system. This, in turn, had an influence on the methodological approach,

which is described in the following section.

3.4 Methodology

Our overall strategy for answering the research questions mentioned in Sec-

tion 1.1 was a process including the following four stages: (a) knowledge elici-

tation; (b) identification of potentially suitable techniques; (c) experimentation

with data based on real situations and (d) evaluation. There are some variations

in the evaluations for the different techniques that will be pointed out below.

As mentioned in the previous section, our methodology was influenced by

the iterative development of the system, leading to a similar iterative approach.

The learning environment that was used is an exploratory learning environment

in which the learners construct models and test them, which is a common feature

of all ELEs. All the learning activities in this system included two parts: (a) the

building of a construction (e.g. a rectangle, a T-shape) and (b) the development

of an algebraic-like rule based on the construction (an example of such a learning
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activity was given above in Section 3.1; more details on this task are presented

in Chapter 4, page 57).

As explained in Section 2.1, in exploratory learning the environment is more

open-ended with no clear-cut right or wrong answers. Thus the interaction is

more unstructured and an approach which allows flexibility in the development

is needed, which had an influence on the choice of technique for learner mod-

elling.

For the development of the learner modelling mechanism, the knowledge

elicitation process involved collecting information about the tasks from educa-

tional experts and observing pupils using the system in small-scale studies that

took place in schools or in the lab where the author was based. Case-Based

Reasoning (CBR) was identified as a potentially good technique for modelling,

as it offers the advantage of storing only relevant information and of being able

to diagnose learners even if they have not completed a task. Moreover, CBR

approaches are flexible and extendable, which was an important factor given

the envisaged iterative development of the learner modelling mechanism. The

CBR-based technique was tested using scenarios based on realistic data; the

scenarios were identified with the help of educational experts.

Exploratory learning leads to situations when learners may need feedback

on several aspects, therefore, raising the issue of what should feedback address

if the learner asks for help. If an automatic feedback component would be

integrated in the system, the problem of feedback prioritisation would also need

an automatic mechanism, which was addressed in this thesis.

For the development of the feedback prioritisation mechanism, the knowl-

edge was elicited from educational experts. One technique was identifies as

being potentially useful for the problem of prioritisation, i.e. Analytic Hier-

archy Process, a method from multi-criteria decision making. Multi-criteria

decision making offers a methodology for making decision when several aspects

need to be considered and several alternatives are possible. Moreover, it is also

employed when expert knowledge is necessary. As feedback prioritisation is a

complex decision problem influenced by many factors, with several possible al-

ternatives and in need of pedagogical expertise, a considered that a multi-criteria

decision approach was appropriate for addressing this issue. The evaluation of

this mechanism was done by comparing the prioritisation delivered by the AHP

technique with prioritisations provided by educational experts.

Group learning activities are more and more common and this is also the case

for exploratory learning, where they play an important role. To enable formation

of meaningful groups, a grouping mechanism that considers relevant criteria is

needed. In this thesis, we addressed this issued following the methodology

described below.
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The knowledge elicitation process for grouping for collaborative learning

activities involved working with pedagogical experts to identify the relevant cri-

teria for grouping and the types of groups to be formed, e.g. homogeneous or

heterogeneous. After eliciting this information, we have identified Group Tech-

nology as a potentially suitable technique to model our problem. Consequently,

we have developed a mechanism based on Group Technology which outputs

clusters of learners based on the approach they used to solve a particular task

and on the similarity between the various approaches. Group Technology was

chosen over clustering methods because of its capability of forming groups based

on several criteria and of being able to modify the definition of criteria in the

sense that a criterion could be defined in a range varying from very strict to very

relaxed. This offers the advantage of being able to alter the grouping mechanism

depending on the different collaborative activities settings and on the learner

characteristics. The evaluation was done only at the data level (using real data

from a classroom session), i.e. the output of the mechanism was checked against

the desired output.

To ensure the user modelling mechanism produces relevant results, the sys-

tem’s knowledge needs a maintenance mechanism. For maintaining the optimal

coverage of the knowledge base, information about the tasks was gathered from

educational experts. Based on this information, a mechanism was developed

that detects new relevant information from learners’ actions and stores it in

the knowledge base for future use. The mechanism uses the similarity of new

information to the one already stored in the knowledge base and, when dissimi-

larities are observed, several checks are performed to ensure the new information

is relevant. If the checks are successful, the new information is stored in the

knowledge base. This adaptive modelling approach was chosen because detect-

ing new relevant information is essential for the user modelling mechanism to

provide accurate diagnosis over time. Also, as the relevant information is about

tasks, the checks are related to characteristics of the tasks. The evaluation was

done using real and simulated data.

For the learner modelling and feedback prioritisation mechanisms, an iter-

ative approach was used, i.e. the mechanisms were developed for two versions

of the system. For the learner modelling mechanism, there were other interme-

diate versions; however, these are not presented in the thesis. Therefore, these

mechanisms were developed knowing that some modifications would be needed

for the following versions of the systems. This influenced our choice of modelling

techniques in the sense that we gave preference to flexible and extendable tech-

niques. The general approach was to develop the initial version, to evaluate it

and then move to the subsequent version of the system and made changes in the

learner modelling and feedback prioritisation mechanisms in line with the the
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new features of the system. After the modifications were made, the mechanisms

were evaluated again.

3.5 High-level CBR approach for user modelling

Based on information about mathematical generalisation tasks, a high-level ap-

proach for user modelling was developed based on case-based reasoning (CBR),

which was chosen for the advantages outlined above (Section 3.4). The following

chapter presents a review of CBR and how the high-level model presented be-

low was refined in two iterative developments. Here we present only a very brief

overview of CBR to explain the terminology in the high-level user modelling

approach.

CBR stores information in form of cases. When a new case is detected (in

our case a construction of a learner), it is compared with all stored cases to find

the best match. Consequently, in our situation, we want to compare learners’

constructions with some cases previously stored. These cases refer to solutions

of the tasks - an example is given below.

We make the assumption that to build a construction learners need to iden-

tify a structure and work with several parts that put together constitute a

solution (this is based on the way such tasks are typically solved with pen and

paper). For example, in the pond tiling task described in Section 3.1, an example

of possible components is displayed in Figure 3.3.

Figure 3.3: Example of a pond-tiling task structure

Thus, the example in Figure 3.3 has 5 parts: the pond, the horizontal top

and bottom bars and the vertical bars on the left and right of the pond. To be

able to compare the learners’ constructions with solutions of the task, we need

to store these solutions - both as part level, as well as a whole. Thus we are

dealing with simple cases such as the pond or the vertical bar, and composite

cases such as the example in Figure 3.3, i.e. the simple cases plus the relations

between them that allow the formation of that particular structure.

Consequently, the following concepts were defined:

Definition 3.1 A case is defined as

Ci = {Fi, RAi, RCi} ,
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where Ci represents a case, Fi is a set of attributes, RAi is a set of relations

between attributes and RCi is a set of relations between cases.

The attributes include aspects such as the width and height. An example of

a relation between attributes for the pond-tiling task is that the width of the

horizontal bar depends on the width of the pond, and more precisely is defined

as ‘the width of the pond plus 2’. Therefore, there could be two types of relations

- one that reflects the dependency and one that reflects the value. Relations

between cases refer to the order in which the different parts were constructed -

thus, two such relations can be defined: previous and next. The first case will

have only a next relation, the last one will have only a previous relation and the

intermediate ones will have both.

Definition 3.2 A composite case or strategy is defined as

Su = {Nu(C), Nu(RA), Nu(RC)} ,

u = 1, r , where

Nu(C) is a set of (simple) cases,

Nu(RA) is a set of relation between attributes

Nu(RC) is a set of relation between cases

Thus, a composite case or strategy should have all the needed information for

defining a particular structure such as the one displayed in Figure 3.3. There-

fore, the modelling principle is to store solutions of tasks (i.e. strategies) in a

knowledge base and compare the learners’ constructions with the stored ones to

identify what they are doing.

This high-level conceptual model was developed further by incorporating

elements of the system, and especially of the interface which define the way

students are to interact with the system. These details are presented in the

following chapter.

3.6 Summary

This chapter discussed the methodological issues of this research in relation to

the aims and objectives and gave an overview of iterative design. The overall

methodological approach was also presented together with other methodological

details that were specific to the different research objectives.
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Chapter 4

Learner Modelling for

Exploratory Learning of

Mathematical

Generalisation

This chapter presents two iterative versions of a learner modelling mechanism

based on case-based reasoning developed in the context of an exploratory learn-

ing environment for the domain of mathematical generalisation. To facilitate the

understanding of the difficulties of teaching and learning mathematical generali-

sation, of the challenges involved in designing a learner modelling component in

the context of iterative development of other components of the system, and of

the techniques used, overviews of mathematical generalisation, iterative design

and case-based reasoning are presented. These overviews are followed by the

two versions of the learner modelling mechanism, each including a description

of the version of the system used, the knowledge representation, the similarity

metrics and an evaluation. This is followed by a discussion of the results, a

summary and an outline of the contribution of the chapter.

4.1 Mathematical Generalisation

Mathematical generalisation has been defined or described in several ways, vary-

ing from philosophical views that could be applied to any type of generalisation

to views very specific to mathematics. Examples from the first category are:
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- “an object and a means of thinking and communicating” (Dorfler, 1991, p.

63);

- “applying an argument in a broader context” (Harel and Tall, 1991, p. 38).

An example from the second category is: “Generalizing problems, also known

as numeric sequences or geometric growing sequences, present patterns of growth

in different contexts. Students are asked to find the underlying structure and

express it as an explicit function or ‘rule’.” (Moss and Beatty, 2006, p. 442).

Mathematical generalisation is at the centre of algebraic expressions, as “al-

gebra is, in one sense, the language of generalisation of quantity. It provides

experience of, and a language for, expressing generality, manipulating generality,

and reasoning about generality” (Mason, 2002, p. 105). This relation, however,

together with the idea of recognising and analysing patterns and articulating

structure, seems to be elusive to students who fail to understand algebra and

its purpose (Geraniou et al., 2008). Students are unable to express a general

pattern or relationship in natural language or in algebraic form (Hoyles and

Küchemann, 2002).

Students, however, are able to identify and predict patterns (Mason, 2002)

and there are claims that it is not the generalisation problems that are causing

difficulties to students, but the way these are presented and the limitations of

the teaching approaches used (Moss and Beatty, 2006). Typically, “generalising

problems are usually presented as numeric or geometric sequences, and typically

ask students to predict the number of elements in any position in the sequence

and to articulate that as a rule” (Moss and Beatty, 2006, p. 443). A com-

mon strategy is “the construction of a table of values from which a closed-form

formula is extracted and checked with one or two examples” (Bednarz et al.,

1991, p. 7), introducing a tendency towards pattern spotting and emphasizing

its numerical aspect (Noss et al., 1997; Noss and Hoyles, 1996). This approach

obscures the variables involved, “which severely limits students ability to con-

ceptualise the functional relationship between variables, explain and justify the

rules that they find, and use the rules in a meaningful way for problem solv-

ing” (Moss and Beatty, 2006, p. 444).

Another approach that affects students’ understanding of generalisation is

the focus on mathematical products rather than mathematical processes (War-

ren and Cooper, 2008; Malara and Navarra, 2003). Malara and Navarra (2003)

argue that students should be taught to distance themselves from the result

and the operations needed to obtain that result, and to reach a higher level of

thinking by focusing on the structure of a problem.

Another difficulty encountered in teaching mathematical generalisation is

the students’ difficulty to use letters that stand for the unknown (Küchemann,
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1991) and to realise that letters represent values (Duke and Graham, 2007).

Secondary school students also tend to lack a mathematical vocabulary for ex-

pressing generality (Geraniou et al., 2008) and research reports on students’ lack

of precision in written responses (Warren and Cooper, 2008).

Taking this aspects into account, a system was developed using an iterative

process that involved designing with students and teachers. The main aim

was to develop an environment that provides the students with the means for

expressing generality rather than considering special cases or spotting pattern.

Several pedagogical requirements were derived from the literature on math-

ematical generalisation, of which a brief overview was given above. Although

expressed differently in different iterative versions of the system, these require-

ments remained invariable (Geraniou et al., 2009; Noss et al., 2009):

1. Providing a rational for generality;

2. Supporting model construction and analysis simultaneously;

3. Scaffolding the route from numbers to variables;

4. Working on a specific case ‘with an eye’ on the general;

5. Supporting reflection on derived expressions.

The way these requirements were expressed for each iterative version is de-

scribed when presenting the versions of the system in the sections following the

overview of iterative design and case-based reasoning. The next section gives

an overview of case-based reasoning (CBR) and its advantages, and includes a

review of CBR applications in general and CBR application in the educational

domain, in particular.

4.2 Case-Based Reasoning

In case-based reasoning (CBR) (Kolodner, 1993) the knowledge is stored as

cases, typically including the description of a problem and the corresponding

solution. When a new problem is encountered, similar cases are searched and the

solution is adapted from one or more of the most similar cases. The CBR cycle

(see Figure 4.1) typically included four processes (Aamodt and Plaza, 1994):

1. Retrieve cases that are similar to the current situation.

2. Reuse the cases and adapt them to solve the current situation.

3. Revise the proposed solution if necessary.

4. Retain the new solution as part of a new case.
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Figure 4.1: CBR cycle.

A number of advantages of CBR over other approaches have been pointed

out (Kolodner, 1993; Watson, 1997); some of them could be particularly useful

in ELEs:

- CBR is suitable for problem solving even with partial domain knowledge; this

is particularly advantageous for domains suitable for exploration, which tend

to be vast and often ill-structured;

- CBR allows shortcuts in reasoning; identifying a suitable case is usually ac-

companied by a solution that can be proposed; in ELEs, when a learner is

getting far from a useful learning trajectory, an automatic intervention could

occur ‘on the spot’.

- CBR can keep a record of each situation that has occurred for future reference

and could also learn from errors.

One may argue that a rule-based approach would be better than CBR. There

are several reasons for not taking this route (Nickles, 1998):

(a) It is easier to elicit knowledge of concrete cases from experts; it is also

easier to teach and learn this kind of knowledge; sources of information like

textbooks and research papers are repositories of such cases.

(b) CBR offers a rational for its decisions; with rule-based reasoning (RBR)

such a rational is less intelligible.

(c) CBR can be faster than RBR as “it relies heavily on past experience and

does not constantly ‘reinvent the wheel’.” (Nickles, 1998, p. 72).

(d) CBR provides a sort of analysis and decomposition of a given situation by

highlighting the differences between the current problem and the case-base,
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generating in this way a set of subproblems to be solved in a new round of

CBR.

(e) While rules are produced by abstraction from contextual detail, CBR pro-

vides more “off the shelf” help for current problems, thus not depending on

the relevant specific details of a particular situation.

(f) CB systems scale better than rule-based systems, as RBR needs complete-

ness in the set of rule to be reliable, but CBR can be useful even with a

very small case-base (virtually from the first case). In general, increasing the

size of the knowledge base slows rule-based systems more than case-based

systems.

Although CBR has been successfully used in applications for domains like

legal reasoning (Aleven, 2003), stock market prediction (Chun and Park, 2005),

recommender systems (Kumar et al., 2005), and other areas, there is little re-

search on using CBR for e-Learning environments. For example, Han et al.

(2005) use CBR in the learner modelling process and call this approach case-

based student modelling, while Huang et al. (2007) use CBR and genetic algo-

rithms to construct an optimal learning path for each learner. CBR is used also

in Stottler and Ramachandran (1999) within a case-based instruction scenario

rather than a method for learner modelling. We have not found any references

in the literature to ELEs that use CBR or CBR combined with other intelligent

methods.

The advantage of CBR for learning environments and especially for ELEs is

that the system does not rely only on the general knowledge of a domain, but

it can also use specific knowledge previously experienced (Han et al., 2005). It

also seems promising for improving the effectiveness of complex and unstruc-

tured decision making (Huang et al., 2007), especially in combination with soft

computing methods.

The following section presents the first iterative version of the exploratory

learning environment for mathematical generalisation and the modelling frame-

work that was developed for this version.

4.3 Iterative Design Version 1

This section presents the first version of the system and of the learner modelling

mechanism together with the evaluation of the latter. The system is described

outlining the principles mentioned in Section 4.1.
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4.3.1 Version 1 of the Exploratory Environment:

the ShapeBuilder

The first version of the software focuses on facilitating structured algebra think-

ing in children by allowing them to create and identify patterns and articulate

structures in order to recognise, express and justify generality, a concept that lies

at the centre of mathematical thinking. It is named ShapeBuilder and has been

designed for classroom use and targets pupils of 11 to 14 year-olds. Each task

involves two main phases: constructing a model and deriving an algebraic-like

rule from it. For example, one such task in entitled ‘pond-tiling’ and requires

from the learners to construct a rectangular pond, to surround it with tiles and

find an algebraic rule that illustrates the relation between the number of tiles

needed to surround the pond and the dimensions of the pond. To solve this

task, the learners construct the pond and surround it by using the affordances

of the system that are detailed below.

Figure 4.2 illustrated the interface of ShapeBuilder which includes an Ex-

pression Toolbar (a), a Shape List (b), and the Expression Palette (d).

Figure 4.2: (a) the Expression Toolbar; (b) the ShapeList; (c) the overall Shape-
Builder interface (the gridded area is the interaction canvas); (d)the Expression
Palette (image obtained from Dr. Darren Pearce and reproduced with permis-
sion).

ShapeBuilder allows construction of different shapes, e.g. rectangles, L-

shapes, T-shapes, and supports numeric, iconic and symbolic representations.

Numeric representations include numbers (constants or variables) and expres-

sions with numbers; iconic representations correspond to icon variables; sym-

bolic representations are names or symbols given by users to variables or ex-

pressions. An icon variable has the value of a dimension of a shape (e.g. width,

height) and can be obtained by double-clicking on the corresponding edge of

the shape. It is represented as an icon of the shape with the corresponding edge

highlighted (see Figure 4.3a).

The Expression Toolbar allows the creation of constants, variables and com-

posite expressions using addition, subtraction, multiplication and division. These
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Figure 4.3: (a) A rectangular shape and its icon variable; (b) an expression
using icon variables; (c) ‘messing up’; (d) general solution that does not ‘mess
up’.

are placed in the Expression Palette and can be used for defining an expression

for the task at hand or to define the properties of the shapes in the ShapeList.

The ShapeList displays the shapes that currently exist on the gridded canvas

and allows the creation of new shapes. The latter is done by dragging expres-

sions from the Expression Palette for the specific shape properties, e.g. width

and height for rectangles, thickness and size for a T-shape, etc. Once created,

the thumbnail of a shape displayed in the ShapeList can be dragged on the

canvas. If several copies of the shape are needed, they can be dragged in the

same way on the canvas; the number above the thumbnail of the shape indicates

the number of shapes existing on the canvas - for example, in Figure 4.2b the

‘3’ above the yellow (lighter colour) thumbnail indicates there are 3 such shapes

on the canvas (see Figure 4.2c), while the ‘1’ above the blue (darker colour)

thumbnail indicates there is only one such shape on the canvas. Existing shapes

can be manipulated on the interaction canvas - they can be moved and attached

to other shapes, and can be resized by either using the mouse or changing their

properties in the ShapeList. When a shape has several copies and the properties

of one of them is changed, all copies are updated appropriately.

The properties of shapes in the ShapeList facilitate the derivation of the

algebraic-like expression for the task at hand by providing parts of the final

expression which is formed by putting together various properties of the shapes

used in the construction. Thus, ShapeBuilder supports simultaneously model

construction and analysis.

Constants, variables and numeric expressions lead to specific constructions,
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while icon variables and expressions using icon variables lead to general construc-

tions. Through the use of icon variables, ShapeBuilder encourages structured

algebra thinking, connecting the visual with the abstract (algebraic) representa-

tion, as “each expression of generality expresses a way of seeing” (Mason, 2002,

p. 116) (see Figure 4.3b). Thus, icon variables scaffold the route from numbers

to variables, by providing a visual link between a value (i.e. number), an image

and a name (i.e. variable).

An important concept for ShapeBuilder is the ‘messing up’ metaphor (Healy

et al., 1994) that consists of asking the learner to resize a construction and ob-

serve the consequences; the model will ‘mess up’ only if it is not general (see

Figures 4.3c and d). By challenging the learners to produce a construction

that cannot be messed up, a rational for generality is provided. Moreover, the

interaction affordances of ShapeBuilder encourage the learners to start with a

specific construction and gradually make it general, and to test its generality

using the ‘messing up’ metaphor. Therefore, the working on a specific case with

‘an eye’ on the general requirement is fulfilled. The learners are also encouraged

to reflect on the correspondence between their construction and their expres-

sion, and to check the generality of their expression; thus, the system promotes

reflection on derived expressions.

The following section presents the modelling framework that was developed

to monitor the learners’ actions and identify aspects of pedagogical importance,

including the corresponding knowledge representation and similarity metrics

employed.

4.3.2 Learner Modelling Version 1

As it is neither possible nor beneficial to model everything that a learner may do

using the system, we chose to focus on underlying various strategies that learners

may follow when solving a task. An important characteristic of the domain

we are working with is the fact that the tasks presented to the learners have

several equally valid solutions and that each task covers one or more learning

objectives of the mathematical generalisation domain. We started our approach

for learner modelling by outlining a high level modelling process or framework

that is displayed in Figure 4.4.

The Learner Model has three components: (a) a Short-Term Model (STM)

where the recent actions of the learner are stored; these are pre-processed and

compared to the information in the Task Model; (b) a Task Long-Term Model

(Task LTM) that contains information about the tasks performed by the learner

and which is updated with the information from the matching process; (c) a
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Figure 4.4: Learner modelling process

Domain Long-Term model (Domain LTM) which is an overlay model of the

Domain Model. The information stored in the Learner Model is then used by

the Exploiting Modules such as the Feedback Module and the Grouping for

Collaboration Module. From this framework developed initially to guide our

research, we focused on the Short-Term Model and the Task LTM and their

usage by the Exploiting Modules.

The Task Model includes several tasks and each task includes different types

of information:

(a) strategies for approaching the task;

(b) algebraic-like rules corresponding to each strategy;

(c) landmarks, i.e. relevant aspects or critical events occurring during the ex-

ploratory process; these are not task specific, but are registered for each

task, end therefore, are included in this structure.

(d) contexts which refer to particular stages within a task; again, these are not

task-specific, but are registered for each task.

The Task LTM includes the information mentioned above for each of the

tasks performed by the learner.

Below we present how the proposed framework addresses the aims and ob-

jectives mentioned in Section 3.2:

(a) Relevant interactions. A representation of the relevant interactions of the

learner with the system is required and several questions need to be ad-

dressed, e.g. identifying the relevant actions or sequences of actions. The

proposed framework addresses this by storing the short-term actions of the

learner and filtering out the relevant ones to be stored in the Task LTM.

To identify the relevant actions in the context of ShapeBuilder, teachers’

expertise and observations of children working with the ELE in the context
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of small-scale exploratory studies are used. This information was used in

the development of the knowledge representation, which is presented below

under the Knowledge Representation heading.

(b) Representing the evolution of the learning process. The proposed learner

modelling process presented in Figure 4.4 addresses this issue. To this

end, the structure of the learner model and the updating process follow the

model of human memory often used in user modelling (e.g. Li et al. (2007);

Anand and Mobasher (2007); Acquaviva et al. (2005)), and includes two

components: a short-term model (STM) and a long-term model (LTM). The

STM includes recent actions of the learner. The LTM contains information

about the tasks and the domain and, thus, has two parts: the Task LTM

that has the same structure as the task model, and the Domain LTM,

which is an overlay model of the domain and maintains the knowledge of

the learning outcomes associated with the learning process as inferred from

the learner’s constructions. In this thesis we did not work with the domain

long-term model, and, thus, the Learner Model covered only the short-term

model and the long-term task model.

(c) Updating the model. The learner model updating mechanisms are illustrated

in Figure 4.4. During each task, the actions of the learner are stored in the

STM and pre-processed. This process aims to transform the raw data into

intermediate level data that will be used to identify (match) the strategies,

landmarks and rules of a learner in the current task. Knowledge of the

domain and teachers’ expertise together with findings from pilot studies are

used to derive these aspects for every task and define a ‘light-weight’ model

for mathematical generalisation. Thus, the modelling process reflects the

constructionist approach of incremental knowledge acquisition. The way in

which the information to be stored in the long-term task model is identified

is explained further on under the Similarity Metrics heading.

(d) Exploitation of the learner model. As illustrated in Figure 4.4, the informa-

tion in the Learner Model feeds into Exploiting Modules. For example, the

Feedback Module could use the information stored in the learner model to

deliver personalised feedback. Details on how the exploitations happens at

computational level are given in Section 4.4.3, and Chapters 5 and 6.

Knowledge Representation

For the reasons outlined in Section 4.2, Case-based Reasoning is used in the

learner modelling process. The cases contain information describing construc-

tions that learners build using ShapeBuilder. Different strategies in approaching
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a task, i.e. building a construction to meet a particular learning objective, are

represented as a series of cases that reflect possible exploratory trajectories of

learners as they build constructions during the various tasks.

Definition 4.1 A case is defined as

Ci = {Fi, RAi, RCi} ,

where Ci represents a case, Fi is a set of attributes, RAi is a set of relations

between attributes of cases and RCi is a set of relations between cases.

Definition 4.2 The set of attributes is represented as

Fi = {αi1 , αi2 , . . . , αiN } .

It includes two types of attributes: (a) numeric and (b) variables. Variables refer

to different string values that an attribute can take. Some numeric attributes

are binary, indicating whether a case can be considered in formulating a par-

ticular strategy or not. This is be represented as a ‘part of strategy’ function:

PartOfSu : Ci → {0, 1},

PartOfSu =

{
1 if Ci ∈ Su
0 if Ci /∈ Su,

where Su represents a strategy and is defined further on. The set of attributes of

a generic case for ShapeBuilder is presented in Table 4.1. The first v attributes

(αij , j = 1, v) are variables, the ones from v + 1 to w are numeric (αij , j =

v + 1, w) and the rest are binary (αij , j = w + 1, N). As all cases share the

same structure, the case base is homogeneous (Watson, 1997).

Definition 4.3 The set of relations between attributes (see Table 4.2) of

the current case with attributes of other cases (including the attributes of the

current case) is represented as

RAi = {RAi1 , RAi2 , . . . , RAiM } ,

where at least one of the attributes in each relation RAim ,∀m = 1,M , is from

Fi, the set of attributes of the current case Ci.

Two types of relations between attributes are used: dependency relations and

value relations.

Definition 4.4 A dependency relation (Dis) is defined as

(αik , αjl) ∈ Dis ⇔ αik = DEP (αjl) ,
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Table 4.1: The set of attributes (Fi) of a case.
Category Name Label Possible Values
Shape Shape type αi1 Rectangle(/L-Shape/T-Shape)
Dimensions Width type αi2 constant (c)/variable (v)/
of shape icon variable (iv)/

numeric expression (n exp)/
expression with iv(s) (iv exp)

Height type αi3 c /v /iv /n exp /iv exp
...

...
...

Thickness type αiv c /v /iv /n exp /iv exp
Width value αiv+1

numeric value
Height value αiv+2 numeric value

...
...

...
Thickness value αiw c /v /iv /n exp /iv exp

Part of PartOfS1 αiw+1
1

Strategy PartOfS2 αiw+2
0

...
...

...
PartOfSr αiN 0

where DEP : αik → αjl for attributes αikand αjl that are variables of cases i

and j (where i = j or i 6= j), and means that αik depends on αjl (if i = j, k 6= l

is a condition as to avoid circular dependencies) (e.g. the width type of a case

is depends on the height type of the same case; the width type of a case depends

on the width type of another case, etc.);

Definition 4.5 A value relation (Vis) is defined as

(αik , αjl) ∈ Vis ⇔ αik = f (αjl) ,

where αikand αjl are numeric attributes and f is a function and could have

different forms depending on context (e.g. the height of a shape is two times its

width; the width of a shape is three times the height of another shape, etc.).

These relations can occur between the current case and itself or between the

current case and other cases (the index j does not have to be the same in each

relation, though that is one of the possible situations).

Definition 4.6 The set of relations between cases is represented as

RCi = {RCi1 , RCi2 , . . . , RCiP } ,

where one of the cases in each relation RCip ,∀p = 1, P is the current case (Ci).
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Table 4.2: The set of relations between attributes (RAi) of cases.
Relation Label Example
Dependency relation Di1 (RAi1) (αik , αjl) ; k, l = 2, v;∀j

...
...

Dit (RAit) (αik , αjl) ; k, l = 2, v;∀j
Value relation Vi1 (RAit+1

) (αik , αjl) ; k, l = v + 1, w;∀j
...

...
Viz (RAiM ) (αik , αjl) ; k, l = v + 1, w;∀j

Two relations about order in time are defined: Prev and Next relations.

Definition 4.7 A Prev relation indicates the previous case with respect to the

current case:

(Ci, Cj) ∈ Prev if t (Cj) < t (Ci)

Definition 4.8 A Next relation indicates the next case with respect to the cur-

rent case:

(Ci, Ck) ∈ Next if t (Ci) < t (Ck) .

Each case includes at most one of each of these two relations (p ≤ 2).

Definition 4.9 A strategy is defined as

Su = {Nu(C), Nu(RA), Nu(RC)} ,

u = 1, r , where

Nu(C) is a set of cases,

Nu(RA) is a set of relation between attributes of cases and

Nu(RC) is a set of relations between cases.

There are two types of strategies depending on the degree of generality: spe-

cific and general. Specific strategies include value relations, but no dependency

relations. The general strategies can be distinguished by the presence of the

dependency relations and by the fact that the dimension type of at least one

of the dimensions of the case is an icon variable or an expression using icon

variable(s). The presence or absence of the above mentioned aspects apply to

all cases that form the composite case with the exception of the first case (which

is independent).

To illustrate our approach we use a mathematical generalisation task called

‘pond tiling’, which is common in the English secondary school curriculum and

expects learners to produce a general expression for finding out how many tiles
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are required for surrounding any rectangular pond. In the context of Shape-

Builder, the task involves building a construction of the pond, surrounding it

and deriving an algebraic-like expression from the construction.

An overview of the Task Model for the ‘pond tiling’ task is given below.

This information has been obtained from small-scale studies with pupils and

contains:

1. Strategies - these are correct or desirable ways of building a construction

and are displayed in Figure 4.5;

2. Rules or expressions corresponding to the strategies - for example, the rule

for the ‘Area’ strategy is (w + 2) ∗ (h + 2) − w ∗ h, where w and h stand

for the width and the height of the pond, respectively.

3. Landmarks - these are events of pedagogical importance that happen dur-

ing the exploratory process. Two such events were identified and they

correspond to inefficient approaches: (i) building a construction using in-

dividual tiles and placing them one-by-one on the canvas - we refer to these

as one-by-one constructions; two examples are displayed in Figure 4.6a and

Figure 4.5: (a) ‘Area’ strategy; (b) ‘I’ strategy; (c) ‘H’ strategy; (d) ‘Spiral’
strategy; (e) ‘+4’ strategy; (f) ‘−4’ strategy; (g) Steps and relations of ‘Area’
strategy; (h) Steps and relations of ‘I’ strategy.
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b, and (ii) building a construction using ‘bits and pieces’, meaning that

the construction is ‘patched up’ rather than constructed with a structure

in mind - an example is given is Figure 4.6c. These ways of building a

construction are considered inefficient because they cannot be generalised.

4. Contexts - two distinct contexts within a task were identified: (i) spe-

cific, i.e. the learners are working with a specific construction and (ii)

general, i.e. the learners are working with a partially general or general

construction.

Figure 4.6: Landmarks: (a) one-by-one construction, including the pond; (b)
one-by-one construction, excluding the pond; (c) ‘bits and pieces’ construction.

From studies with pupils several desirable strategies were identified. These

strategies and their associated solutions (the general expressions for surround-

ing any rectangular pond) are displayed in Figure 4.5(a to f). Two strategies

are presented in detail: the ‘Area’ strategy (S1) and the ‘I’ strategy (S3). The

attributes of cases that are part of these two strategies are presented in Table 4.3

and Table 4.4, respectively. The steps for building these strategies, including

the sets of relations between attributes and between cases for each step are dis-

played in Figure 4.5g and Figure 4.5h, respectively. The two presented strategies

are general ; their specific correspondent strategies would not have dependency

relations and the types of the dimensions of each case would not include any

icon variable (iv) or expression using icon variable (exp iv).

Table 4.3: The set of attributes (Fi) for the cases in the ‘Area’ strategy.
Name Label C1 C2

Shape type αi1 Rectangle Rectangle
Width type αi2 c/v/n exp iv/iv exp
Height type αi3 c/v/n exp iv/iv exp
Width value αi4 5 7
Height value αi5 3 5
PartOfS1 αi6 1 1
...

...
...

...
PartOfS2 αi7 1 0
PartOfS6 αi8 1 0
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Table 4.4: The set of attributes (Fi) for the cases in the ‘I’ strategy.
Label C1 C2 C3 C4 C5

αi1 Rectangle Rectangle Rectangle Rectangle Rectangle
αi2 c/v/n exp iv /iv exp iv /iv exp c/v/n exp c/v/n exp
αi3 c/v/n exp c/v/n exp c/v/n exp iv /iv exp iv /iv exp
αi4 5 7 7 1 1
αi5 3 1 1 3 3
αi6 1 0 0 0 0
αi7 1 1 1 1 1
...

...
...

...
αi8 1 0 0 1 1

Similarity Metrics

In Case-based Reasoning, the role of the similarity metrics is to measure how

close the input case is to the stored ones and to retrieve one or several similar

cases from the case-base. The most common definition of similarity is a weighted

sum of similarities of attributes of cases (Kolodner, 1993):

SIR =

∑N
i=1 oi × sim(f Ii , f

R
i )∑N

i=1 oi
,

where oi represents the weight of each attribute, sim is a similarity function,

and I and R stand for input and retrieved cases, respectively. For our purpose,

four similarity measures are defined for comparing cases:

1. Euclidean distance is used for comparing numeric attributes:

DIR =
√∑w

j=v+1(αIj − αRj
)2

2. The following metric is used for variables: VIR =
∑v

j=1 g(αIj
,αRj

)

v , where g

is defined as:

g(αIj , αRj
) =

{
1 if αIj = αRj

0 if αIj 6= αRj
,

3. Jaccard’s index is used for comparing relations between attributes: AIR =
|RAI∩RAR|
|RAI∪RAR| . AIR is the number of relations between attributes that the

input and retrieved case have in common divided by the the total number

of relations between attributes of the two cases.

4. Similarly, for relations between cases a Jaccard index is used: BIR =
|RCI∩RCR|
|RCI∪RCR| , where BIR is the number of relations between cases that the

input and retrieved case have in common divided by the the total number

of relations between cases of I and R.
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In order to identify the closest strategy to the one employed by a learner,

cumulative similarity measures are used for each of the four types of similarity:

1. Numeric attributes - as this metric has a reversed meaning compared to

the other ones, i.e. a smaller number means a greater similarity, the

following function is used to bring it to the same meaning as the other

three similarity measures, i.e. a greater number means greater similarity.

F1 =

{
z∑z

i=1DIiRi
if
∑z
i=1DIiRi

6= 0

z if
∑z
i=1DIiRi

= 0,

2. Variables: F2 = (
∑z
i=1 VIiRi

)/z.

3. Relations between attributes: F3 = (
∑z
i=1 PIiRi

)/y.

4. Relations between cases. F4 = (
∑z
i=1 TIiRi

)/z.

where z represents the minimum number of cases of the two strategies that

are compared and y represents the number of cases from the retrieved strategy

that have relations between attributes. The strength of similarity between the

current strategy and the various stored strategies is defined as the combined

similarity of these four measures: Sim = F1 + F2 + F3 + F4.

4.3.3 Evaluation

To evaluate the proposed mechanism for identification of strategies, we have

identified several scenarios of pedagogical importance and performed an evalu-

ation for each scenario. Scenario-based techniques (Carroll and Rosson, 1992;

Carroll, 2000) are used in the design and evaluation of systems or systems com-

ponents due to their ability to provide stakeholders with valid units on which

to anchor their analysis because scenarios refer to instances of system use that

can extend across space, time, people and system features (Haynes et al., 2004).

The scenarios were identified based on different types of user behaviour ob-

served in small scale trials combined with pedagogical information about the

importance of identifying certain behaviours. These scenarios, corresponding

to categories of user strategies are given in the first column of Table 4.5, ex-

ample user constructions that belong to each scenario are shown in the second

column, whilst the third column provides the pedagogical rational for monitor-

ing the particular strategy category, e.g. providing appropriate scaffoldings for

users that demonstrate a particular behaviour. For example, the constructions

in the first row of Table 4.5 represent complete strategies, commonly encoun-

tered in trials (Gutiérrez et al., 2008): ‘I’ strategy, ‘H’ strategy, ‘+4’ strategy

and ‘Spiral’ strategy (also displayed previously in Figure 4.5).
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Table 4.5: Scenarios corresponding to user behaviours observed in small scale
trials.

Scenario Example Constructions Pedagogical Rational

Complete strategies Identifying if the learner is
working with the specific
or with the general.

Mixed strategies Identifying used strategies
to guide learners towards a
particular one should they
have difficulties to
generalise.

Non-systematic Guiding the user toward a
strategies symmetric strategy should

they have difficulties to
generalise

Partial Strategies Guiding the learners by
building on the strategy
they started with should
they be stuck or ask for
help.

The first category, i.e. complete strategies, is potentially the most impor-

tant for the purpose of detecting whether users demonstrate learning behaviours

that could lead to generalisation. In ShapeBuilder learners can build construc-

tions either in a specific way or in a general way. A completely general construc-

tion is characterised by relations between all its variable parts, e.g. for the ‘I’

strategy, the rows of tiles at the top and bottom need to be linked to the width

of the pond (this indicates that the learner established a type of dependency

relation between the variables) and have their width equal to the width of the

pond plus 2 (an indication that the user has created a value relation between

variables); similarly, the left and right columns of tiles should be linked to the

height of the pond (an indication that the user identified another dependency

relation) and their height should be equal to the height of the pond (i.e. a

value relation). For the ‘+4’ strategy, the top, bottom, left and right parts are

variable and should be linked to the width and height of the pond respectively,

but the four corners are not variable and need not be linked to the pond. If

none of the variable parts of the construction are linked, the construction is spe-

cific - the value relation is still present but there are no dependency relations.

If some variable parts of the construction are linked, while others are not, the

construction is partially general.

Modelling users’ behaviour expressed through strategies adopted when build-

ing a construction, i.e. specific, partially general or completely general, could

be exploited pedagogically. Especially at the very beginning of the exploratory
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learning, i.e. when the learners are in a “novice state”, it was observed that

learners first build constructions that are specific and only when completing the

specific construction attempt to make it general. Moreover, in practice, after

building a specific construction pupils find it quite challenging to create the first

link between the components of that construction (i.e. a dependency relation).

When learners are working with a symmetric, ‘elegant’ construction the pro-

cess of generalisation becomes easier because the dependency and value relations

are the same for several components of the strategy (see the complete strategies

in Table 4.5) and, therefore, the transition to an algebraic-like rule is facilitated.

However, learners use a variety of strategies when building their constructions,

i.e. they adopt strategies of the second category, the so-called mixed strate-

gies. In that case producing a construction that can be generalised may become

more difficult because of the added complexity of having, for example, four dif-

ferent expressions in a rule instead of two. Trials with pupils using ShapeBuilder

showed that although some learners can still generalise from such a structure,

most learners faced additional difficulties. It was also observed that the tendency

to adopt mixed strategies might relate to the so-called “novice” approach, as

pupils with some experience appear to take advantage of the symmetry in their

construction to generalise. The examples provided in Table 4.5 are, from left to

right: ‘I’ and ‘Spiral’ strategies, ‘H’ and ‘Spiral’ strategies, ‘H’, ‘+4’ and ‘Spiral’

strategies, and ‘+4’ and ‘H’ strategy.

Non-systematic strategies are constructions that are partly made of ‘bits

and pieces’, even when the overall construction indicates that a symmetric strat-

egy has been partly followed - like in the second example displayed in Table 4.5

for this category, where the user’s strategy resembles the ‘I’ strategy, but small

bars of tiles were also used to add up to the desired number of tiles (in the par-

ticular example, the pupil used two bars of three and two tiles, respectively).

Incorporating ‘bits and pieces’ in a construction makes it difficult to explicitly

identify the strategy the learner has followed - as in the first example, where the

learner could be working with the ‘H’ or the ‘+4’ strategy. Nevertheless, trying

to surround a particular pond using ‘bits and pieces’ of tiles, without thinking

whether the solution would work for a pond of any dimension, manifests a par-

ticular learner behaviour that is easily recognisable by tutors and that could also

be automatically detected, as they are ‘symptoms’ of a particular problem. This

was previously introduced as a landmark. In the case of constructions made of

‘bits and pieces’, the problem is that the learner is not thinking generally and

only trying to reproduce a construction without thinking about its structure.

Unlike construction entirely made of ‘bits and pieces’, non-systematic strategies

have some structure in place, as well as some parts that are made of ‘bits and

pieces’.
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Identifying partial strategies, i.e. the fourth scenario, is important for

situations when the learner is stuck or requests help. To make the intervention

beneficial, identifying the strategy they started to work with is valuable. The

examples shown for this scenario go from very little information (only on row

of tiles in the first example) to almost a complete strategy (the last example).

The first three scenarios are more focused on generalisation and how to

address difficulties that learners face with this domain, while the fourth one is

more about helping the learner to get to one of the stages described in the first

three scenarios, as some learners get stuck at an early stage.

In the following we present outputs of our mechanism for each scenario, using

constructions from classroom trials with pupils. In this evaluation we used data

from 10 pupils, where each pupil built one construction. The mechanism used

the input from log files and its output (i.e. most similar strategy or strategies)

was checked by the author against screen videos that were collected for all pupils.

Complete strategies. We present three situations: (a) a complete strategy

that is specific; (b) a complete strategy that is general and (c) a complete

strategy that is partially general. For the first two, we use the ‘H’ strategy

displayed in Figure 4.5c and compare it with all stored strategies; the results

are displayed in Table 4.6. For the third situation, we use the ‘-4’ strategy with

2 general cases and 2 specific cases - see Figure 4.7; the similarities between this

strategy and all stored strategies are displayed in Table 4.7.

Table 4.6: Similarity metrics for the ‘H’ strategy.
Stored Strategies ‘H’ strategy specific ‘H’ strategy general
Area 1.87 2.37
I 2.17 2.97
H 7.20 8.00
Spiral 2.37 3.17
+4 2.89 3.69
-4 2.89 3.69

The results show that the ‘H’ strategy is correctly identified as being the

most similar from the stored strategies, for both the specific and the general

constructions. All strategies are stored in their general form, i.e. they have all

the required dependency relations.

The results in Table 4.7 show that the ‘-4’ strategy is correctly identified as

the most similar strategy to the partially general strategy in Figure 4.7.

Mixed Strategies. Two examples are displayed in Figure 4.8. The similarity

metrics of these two constructions when compared with all stored strategies are
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Figure 4.7: ‘-4’ strategy combining specific and general cases: C2 and C3 are
general; C4 and C5 are specific.

Table 4.7: Similarity metrics for a partially general ‘-4’ strategy.

Stored Strategies Partially general ‘-4’ strategy

Area 2.72
I 3.09
H 3.00
Spiral 2.49
+4 2.39
-4 7.35

given in Table 4.8.

Figure 4.8: Mixed strategies: (a) combination of ‘I’, ‘+4’ and ‘Spiral’ strategies;
(b) combination of ‘Spiral’ and ‘H’ strategies.

Table 4.8: Similarity metrics for the mixed strategies in Figure 4.8.
Stored Strategies Mixed strategy a Mixed strategy b
Area 1.71 1.67
I 4.46 1.75
H 1.70 2.79
Spiral 2.20 2.79
+4 2.79 1.98
-4 2.03 2.14

The first example (Figure 4.8a), has 4 cases in common with two strategies:

the ‘I’ strategy (C1, C3, C4, C5) and the ‘+4’ strategy (C1, C4, C5, C6). More-

over, it also has two case in common with the ‘Spiral’ strategy (C1, C2). The

results in Table 4.8 show that these three strategies are the most similar ones,
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with the ‘I’ strategy being most similar, followed by the ‘+4’ strategy and the

‘Spiral’ strategy. All the other stored strategies have lower similarities.

The second example (Figure 4.8b), has 3 cases in common with two strate-

gies: the ‘Spiral’ strategy (C1, C3, C4) and the ‘H’ strategy (C1, C2, C5). The

results in Table 4.8 show that these two strategies are the most similar ones.

They are also equally similar, due to the symmetry of the construction. As in the

previous example, all the other stored strategies have lower similarities. There-

fore, when mixed strategies are used, the most similar strategies are correctly

identified.

Non-systematic strategies. Two examples are displayed in Figure 4.9 and

their similarities when compared with all stored strategies are given in Table 4.9.

Figure 4.9: Non-systematic strategies: (a) combination of ‘I’ and ‘+4’ strategies
with ‘bits and pieces’; (b) ‘I’ strategy with ‘bits and pieces’.

Table 4.9: Similarity metrics for the non-systematic strategies in Figure 4.9.
Stored Strategies Strategy a Strategy b
Area 1.69 1.64
I 2.28 2.68
H 1.69 1.63
Spiral 1.75 1.71
+4 3.17 2.57
-4 1.57 1.75

For the construction in Figure 4.9a, which is a combination of ‘I’ and ‘+4’

strategies that includes ‘bits and pieces’, the results in Table 4.9 show the ‘+4’

strategy is most similar to this construction (having four cases that correspond

to this construction), followed by the ‘I’ strategy (which has 3 cases that corre-

spond to this construction). For the construction in Figure 4.9b, which is an ‘I’

strategy with ‘bits and pieces’, the results in Table 4.9 show that the ‘I’ strategy

is identified as the most similar strategy.

Partial strategies. Several examples of partial strategies are given in Fig-

ures 4.10, 4.11 and 4.12, varying from incipient construction with only one
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more case besides the pond to almost complete constructions (i.e. only one

case missing). Similarly to the previous scenarios, these examples are based on

observations of learners’ behaviour in classroom context. Using logs of their ac-

tions, snapshots of their constructions were taken at different points during the

task to form the partial constructions. The similarities of these constructions

with all stored strategies are given in Tables 4.10, 4.11 and 4.12. Depending on

how advanced the construction is and on the strategy used, some strategies can

be identified from an early stage while others need to be more advanced for the

identification mechanism to output one most similar strategy. This is discussed

below.

Figure 4.10: Partial strategies: (a) ‘I’ or ‘+ 4’ partial strategy (2 cases); (b)
‘I’ or ‘+ 4’ partial strategy (3 cases); (c) partial ‘I’ strategy; (d) partial ‘+4’
strategy.

Table 4.10: Similarity metrics for the partial strategies in Figure 4.10.
Stored Strategies Strategy a Strategy b Strategy c Strategy d

Area 1.55 1.55 1.72 1.55

I 3.75 4.67 5.63 1.86

H 2.01 1.73 1.63 1.57

Spiral 2.25 1.92 1.82 1.55

+4 3.75 4.67 2.97 7.00

-4 2.01 1.73 2.05 1.48

The constructions in Figure 4.10a and b could belong to the ‘I’ or the ‘+4’

strategy and this is reflected in the results displayed in Table 4.10 by the fact

that the similarity to these two strategies is the same with a value of 3.75

and 4.67, respectively. On the other hand, the constructions in Figure 4.10c

and d are clearly most similar to one of the two strategies: the construction

in Figure 4.10c is most similar to the ‘I’ strategy, while the construction in

Figure 4.10d is most similar to ‘+4’ strategy. This is accurately reflected in the

results given by the identification mechanism, which are displayed in Table 4.10.

Therefore, for the ‘I’ and ‘+4’ strategies that have 2 cases (except the pond)

in common, a strategy containing these common cases can be distinguished as

most similar to one of the two when at least one case that clearly belongs only

to one of the two strategies is also present.

Similarly to the previous examples, the constructions in Figure 4.11a and b
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Figure 4.11: Partial strategies: (a) ‘I’ or ‘-4’ partial strategy (2 cases); (b) ‘I’ or
‘-4’ partial strategy (3 cases); (c) partial ‘I’ strategy; (d) partial ‘-4’ strategy.

Table 4.11: Similarity metrics for the partial strategies in Figure 4.11.
Stored Strategies Strategy a Strategy b Strategy c Strategy d

Area 1.72 1.72 1.72 .72

I 3.75 4.67 5.63 2.97

H 2.01 1.73 1.63 2.05

Spiral 2.40 2.03 1.86 1.89

+4 2.01 1.73 2.05 1.63

-4 3.75 4.67 2.97 5.63

could belong to either the ‘I’ strategy or the ‘-4’ strategy, while the constructions

in Figure 4.11c and d clearly belong to the ‘I’ strategy and to the ‘-4’ strategy,

respectively. The results displayed in Table 4.11 accurately reflect this: both the

‘I’ and the ‘-4’ strategies are equally similar to the constructions in Figure 4.11a

and b, while the construction in Figure 4.11c is most similar to the ‘I’ strategy

and the construction in Figure 4.11d is most similar to the ‘-4’ strategy.

Figure 4.12: Partial strategies: (a) ‘H’ or ‘-4’ partial strategy; (b) ‘H’ or ‘+4’
partial strategy; (c) partial ‘Spiral’ strategy (2 cases); (d) partial ‘Spiral’ strat-
egy (3 cases).

Table 4.12: Similarity metrics for the partial strategies in Figure 4.12.
Stored Strategies Strategy a Strategy b Strategy c Strategy d

Area 1.57 1.67 1.57 1.57

I 2.01 2.01 2.25 1.97

H 3.75 3.75 2.40 1.87

Spiral 2.40 2.25 3.75 4.67

+4 2.01 3.75 2.25 1.92

-4 3.75 2.01 2.40 2.03

The examples in Figure 4.12 cover one construction that could belong to
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either the ‘H’ or the ‘-4’ strategy (Figure 4.12a), one construction that could

belong to either the ‘H’ or the ‘+4’ strategy (Figure 4.12b) and two partial

‘Spiral’ strategies (Figure 4.12c and d). The first two constructions are similar

to the previous examples given in Figure 4.10a and Figure 4.11a, where the

construction could belong to two strategies. This is again accurately reflected

in the similarities displayed in Table 4.12. For the partial ‘Spiral’ strategies, the

similarities in Table 4.12 show that the ‘Spiral’ strategy is clearly identified to

be the most similar even when the construction is in its very incipient stages,

i.e. only one or two cases (besides the pond) are used - see Figure 4.12c and d.

In the examples given in Figures 4.10 and 4.11, constructions including two

cases that could equally belong to two strategies, were identified to be equally

most similar to those corresponding strategies (see Figure 4.10a, Figures 4.10b,

Figure 4.11a, Figure 4.11b and the similarities metrics in Table 4.10 and Ta-

ble 4.11). Also, when one more case was added that belonged to only one of

the two strategies, one strategy become most similar and was correctly iden-

tified by the similarity metrics - see Figure 4.10c, Figures 4.10d, Figure 4.11c,

Figure 4.11d, Table 4.10 and Table 4.11.

To further test the identification mechanism, we looked at incipient partial

strategies that have only two cases (excluding the pond) for which when taken

separately at least one of the two cases could belong to more than one strat-

egy, but when combined they belong to only one strategy. Several such partial

strategies are displayed in Figure 4.13. For example, when taken separately,

both cases (except the pond) in Figure 4.13a could belong to two strategies:

the top bar of tiles could belong to the ‘I’ and ‘-4’ strategies, while the left bar

of tiles could belong to the ‘I’ or the ‘+4’ strategies. For the construction in

Figure 4.13b, only one case (the left bar of tiles) could belong to more than

one strategy (more specifically, to the ‘I’ or the ‘+4’ strategies), while the other

case, i.e. the tile in the top left corner belongs only to the ‘+4’ strategy. For the

constructions in Figure 4.13c and d, both cases taken separately could belong

to two different strategies. When combined, however, these cases could belong

only to one strategy and this is accurately reflected in the similarity metrics

Figure 4.13: Partial strategies: (a) partial ‘I’ strategy; (b) partial ‘+4’ strategy;
(c) partial ‘-4’ strategy (the highlighted corner is due to the overlap between
the horizontal and the vertical bars of tiles); (d) partial ‘H’ strategy.
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displayed in Table 4.13. Moreover, as the construction in Figure 4.13b is the

least ambiguous of the four examples, i.e. only one case of the two could belong

to more than one strategy, its similarity to the most similar strategy (5.00) is

higher than for the other three examples (4.67) for which both cases taken sep-

arately could belong to more than one strategy.

Table 4.13: Similarity metrics for the partial strategies in Figure 4.13.
Stored Strategies Strategy a Strategy b Strategy c Strategy d

Area 1.72 1.55 1.72 1.67

I 4.67 1.90 2.55 1.73

H 1.73 1.61 2.55 4.67

Spiral 1.97 1.58 2.03 1.97

+4 2.55 5.00 1.73 2.55

-4 2.55 1.51 4.67 2.55

In conclusion, the strategy identification mechanism based on the similarity

metrics presented in Section 4.3.2 can identify several situations of pedagogical

importance with 100% success rate for the 38 tested strategies: complete spe-

cific, partially general or general strategies (6 strategies for each category - see

Figure 4.5 which represents the general strategies), mixed strategies (2 strate-

gies - see Figure 4.8), non-systematic strategies (2 strategies - see Figure 4.9)

and partial strategies (16 strategies - see Figures 4.10, 4.11,4.12 and 4.13).

The next section presents the second iterative version of the exploratory

learning environment and of the learner modelling mechanism.

4.4 Iterative Design Version 2

This section presents the next iterative version of the learner modelling mech-

anism. This was driven by the modification in the exploratory learning envi-

ronment in general, and in the interface in particular. The presented version

of the system has been developed over several smaller iterations, but we focus

on a later version that covers all the features included gradually in the previ-

ous versions. Although what a learner can do in the system did not change at

conceptual level, there were changes at practical level which have implications

for the learner modelling mechanism. Therefore, the new mechanism is a re-

finement of the first version triggered by the modifications in the way learners

interact with the system.

In the next section, an overview of the new system is given, outlining the

changes from ShapeBuilder and the requirements presented in Section 4.1. The
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modification made to the learner modelling mechanism are also presented, to-

gether with an evaluation of the new version.

4.4.1 Version 2 of the Exploratory Environment:

the eXpresser

Like the first version of the system, the second version is designed for class-

room use and targets pupils of 11 to 14 year-olds. Also, each task involves two

main phases: constructing a model and deriving an algebraic-like rule from it.

The features of the new version of the system, named eXpresser, have been

informed by studies with pupils and teachers. Several changes took place that

are presented below:

1. eXpresser allows the construction of patterns rather than shapes; there-

fore, eXpresser is more general than ShapeBuilder in terms of what can

be constructed.

2. The ShapeList has been removed and property lists have been “attached”

to each pattern that enable their creation and the inspection of their prop-

erties.

3. Icon variables are replaced by the so-called T-boxes; they serve the same

purpose as the icon variables, but are defined to represent any of the

properties of a pattern. Unlike icon variables that made a dependency re-

lation unidirectional, T-boxes define multi-directional relations, i.e. when

the variable defined by the T-box changes, the change is reflected in all

related properties.

4. Two ‘worlds’ are included in eXpresser - the student’s world where the stu-

dent builds his/her constructions and rules, and the general world where a

different instance of the student’s construction is displayed. Also, the con-

struction in the general world can be animated to display various instances

of the same construction.

5. To enable the animation of patterns, in eXpresser the rules required by

the task need to be defined and at least one dependency relations needs

to be in place.

6. eXpresser supports collaborative activities, as well as individual ones.

Fig. 4.14 illustrates the system, the property list of a pattern (linked to

another one) and an example of a rule. The screenshot on the left includes two

windows: (a) the students’ world, where the students build their constructions

and (b) the general world that displays the same construction with a different
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value for the variable(s) involved in the task (placed in the area ‘I need to vary’ in

both worlds), and where students can check the generality of their construction

by animating their patterns (using the Play buttons). The presence of these two

spaces allows learners to work on a specific case (in the students’ world) ‘with

an eye’ on the general (in the general world).

Figure 4.14: eXpresser screenshots. The screenshot on the left includes a tool-
bar, the students’ world and the general world. The screenshot on the top right
shows the property list of a pattern. The bottom right screenshot illustrates a
rule.

We illustrate the affordances of eXpresser using the ‘pond tiling’ task previ-

ously introduced in Section 4.3.2 and displayed in the students’ world with a 4

by 3 blue (darker colour) pond and in the general world with a 9 by 7 pond (the

task requires to surround the pond and find a general rule for the number of tiles

needed for this purpose). Here we illustrate the ‘H’ strategy; the components

of this strategy are highlighted in the students’ world for ease of visualisation:

the 4 by 3 pond, 2 horizontal green (lighter colour) rows of 4 tiles and 2 vertical

green bars of 5 tiles.

To provide a rational for generality, the tasks are presented dynamically. For

example, the ‘pond tiling’ task is presented with the image displayed in Fig. 4.14

in the student’s world without any highlighting of structure; this image changes

regularly to show different instances of the pattern. This dynamic presentation

provides “a rationale for deriving a rule that outputs the number of green tiles

for any instance of the pattern, i.e. a ‘general’ rule giving concrete instantiation

to the meaning of ‘any’ ” (Geraniou et al., 2009, p. 52).

The property list of one of the horizontal bars is displayed in the top right

screenshot. The first property (A©) specifies the number of iterations of the

building-block, i.e. the basic unit of a pattern, which is displayed as an icon;

the value for this attribute is set to the value of the width of the pond by using a
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T-box (that includes a name and a value); by using a T-box, the two (or more)

properties are made dependent, i.e. when the value in the T-box changes in one

property, it also changes in the other one(s). The next properties are move-right

( B©), which is set to 1, and move-down (C©), which is set to 0. The last property

(D©) establishes the number for colouring all the tiles in the pattern - for this

simple pattern the value is the same as the iterations and is also related to the

width of the pond through the use of a T-box. The bottom right screenshot

displays a rule for the number of green tiles: (h+ 2) x 2 + w x 2, where h and

w stand for the T-boxes in the area ‘I need to vary’ (the same as the ones in

property lists); a T-box can be displayed with name only, value only or both.

Through their multiple representation, the T-boxes are scaffolding the route

from numbers to variables, emphasizing the idea that variables represent values,

but those values do not need to be known - hence the enabled display of a T-box

with value only, name only or both. Thus the transition from a specific value

to a value that also has a name to a name only (i.e. variable) is facilitated:

“this stands in contrast to the standard approach in which generalisations are

constructed from special cases, and the path to the variable ‘n’ appears as a

separate (often nonnegotiable) cognitive leap” (Geraniou et al., 2009, p. 54).

To make a construction general, T-boxes are needed to link the different

parts of the construction. Without these links, a construction is specific, i.e.

it is valid only as a particular instance of the task pattern; a construction can

also have some links in place, while others are missing, i.e. the construction is

partially general. This is essentially the same as in ShapeBuilder, except for the

replacement of icon variables with T-boxes.

The use of property lists to construct patterns facilitates the derivation of

the algebraic-like rule by the presence of the couloring property which refers

to the number of tiles needed for certain parts of the construction; the rule is

essentially formed by putting together the values of the colouring properties of

all parts of a construction. Thus, the system supports simultaneously model

construction and analysis.

To enable the dynamic presentation of a construction in the general world,

the learners need to define a rule for the number of green tiles. This step was

designed “to encourage students’ reflection on their own actions. This process

allows students to validate the generality of their final rule as well as a means

to express their generalisations ‘symbolically’ ” (Geraniou et al., 2009, p.55).

Thus, the system supports reflection on derived expressions.
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4.4.2 Learner Modelling Version 2

Although, the high level modelling mechanism essentially remained the same,

several modifications were made to the structure of a case and a modification in

the aggregated measure of similarity was introduced. For ease of readability, the

knowledge representation and similarity metrics are given in full, rather than

just outlining the changes from the previous version.

Case Representation

As in the previous version, we used Case-based Reasoning (Kolodner, 1993)

as a starting point and modified the classic approach to fit our problems with

multiple solutions. More specifically, the different strategies that can be used for

building a construction are represented as series of cases with certain relations

between them.

Definition 4.10 A case is defined as Ci = {Fi, RAi, RCi}, where Ci repre-

sents the case and Fi is a set of attributes, corresponding to the property list

of a pattern. RAi is a set of relations between attributes and RCi is a set of

relations between Ci and other cases, respectively.

Definition 4.11 The set of attributes is defined as Fi = {αi1 , αi2 , . . . , αiN }.

The set Fi includes two types of attributes: numeric and variables. The

variables refer to different string values (i.e. type) that an attribute can take.

Some numeric attributes are binary, indicating whether a case is a group of

patterns, or can be considered in formulating a particular strategy through a

‘part of strategy’ function PartOfSu : Ci → {0, 1}

PartOfSu =

{
1 if Ci ∈ Su
0 if Ci /∈ Su,

where Su represents a strategy and is defined further on. The set of attributes

of a generic case for eXpresser is presented in Table 4.14. The first v attributes

(αij , j = 1, v) are variables, the ones from v + 1 to w are numeric (αij , j =

v + 1, w) and the rest are binary (αij , j = w + 1, N).

The complete list of attributes that have a type (variable) and a value (nu-

meric) is: width, height, iterations, ‘move left’, ‘move right’ and colour. All

except the first two are from the property list of a pattern.

Compared with the first version, the new one has the same definition for a

case, but several modifications occurred in the set of attributes:
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Table 4.14: The set of attributes (Fi) of a case.
Category Name Label Possible Values
Patterns Colour αi1 Red/Green/Blue/Yellow
properties Width type αi2 Number(n)/T-box(Tb)/

Numeric expression(ne)/
Expression with T-box(es)(eTb)

Height type αi3 n /Tb /ne /eTb
...

...
...

Colour type αiv n /Tb /ne /eTb
Width value αiv+1 numeric value
Height value αiv+2 numeric value

...
...

...
Colour value αiw−2

numeric value
Location x αiw−1 numeric value
coordinates y αiw numeric value
Group flag isGroup αiw+1

0/1
Part of PartOfS1 αiw+2

0/1
Strategy PartOfS2 αiw+3

0/1
...

...
...

PartOfSr αiN 0/1

1. Shape type was taken out because in eXpresser patterns are used rather

than shapes. Also, patterns can be made by grouping smaller patterns -

this is now reflected in the Group flag;

2. All the attributes under the Dimensions of shape category in the first

version were replaces with attributes about the properties of patterns;

only two of these attributes are the same in both versions, i.e. width and

height;

3. Locations coordinates were added; these play a role in defining a strategy,

as detailed below.

Definition 4.12 The set of relations between attributes of the current case

and attributes of other cases is represented as RAi = {RAi1 , RAi2 , . . . , RAiM },
where at least one of the attributes in each relation RAim ,∀m = 1,M , is from

Fi, the set of attributes of the current case Ci.

Two types of binary relations are used: dependency relations and value relations.

Definition 4.13 A dependency relation (Dis) is defined as (αik , αjl) ∈ Dis ⇔
αik = DEP (αjl), where DEP : αik → αjl for attributes αikand αjl that are

variables of cases i and j (where i = j or i 6= j).
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This means that αik depends on αjl (if i = j, k 6= l is a condition as to avoid

circular dependencies) (e.g. the iterations of a case is linked to the colouring of

another case, the width a case is linked to the height of the same case). The

dependency relations are defined by the learners through the use of T-boxes.

Definition 4.14 A value relation (Vis) is defined as (αik , αjl) ∈ Vis ⇔ αik =

f (αjl), where αikand αjl are numeric attributes and f is a (linear) function and

could have different forms depending on context (e.g. the iterations of a case

are x times the iterations of another case, the height of a shape is its width plus

y).

Definition 4.15 The set of relations between cases is represented as RCi =

{RCi1 , RCi2 , . . . , RCiP }, where one of the cases in each relation RCij ,∀j = 1, P

is the current case (Ci).

The relations between cases are defined based on time; therefore, two time-

relations are used: Prev and Next. Each case includes at most one of each of

these two relations.

Definition 4.16 A Prev relation indicates the previous case with respect to the

current case: (Ci, Cj) ∈ Prev if t (Cj) < t (Ci).

Definition 4.17 A Next relation indicates the next case with respect to the

current case: (Ci, Ck) ∈ Next if t (Ci) < t (Ck).

Definition 4.18 A strategy is defined as Su = {Nu(C), Nu(RA), Nu(RC), Nu(LC)},
u = 1, r , where

Nu(C) is a set of cases,

Nu(RA) is a set of relation between attributes of cases,

Nu(RC) is a set of relations between cases, and

Nu(LC) is a set of location constraints. These location constraints have the fol-

lowing form: xCj
= f(xCi

) and yCj
= f(xCi

), where x and y represent location

coordinates, f and g are linear functions, and Ci is a referential case (a case

that constitutes a reference for other cases). Therefore, the set of constraints

is defined as LC =
{(
xCj

, yCj

)}
, where j takes values from 1 to the number of

cases in Su and j 6= i.

Compared with the first version, the definition of a strategy in the new ver-

sion has a new component, i.e. a set of location constraints.

In the following, a task called ‘stepping stones’ is used to illustrate the

case-base representation. It requires to build a construction such as the one in

Figure 4.15a and to find a rule for the green (lighter colour) tiles in relation to
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the red (darker) tiles, i.e. the ‘stepping stones’. Several strategies to surround

such a pattern are possible; however, we present here only the ones observed in

studies with students (see Figure 4.15). Some constructions are expanded for

ease of visualisation and the variable ‘red’ refers to the number of red tiles. In

these figures, the internal structure of the constructions has been highlighted for

clarity. In eXpresser all constructions would look the same in the normal course

of the task. Three of these strategies (i.e. ‘C’ strategy, ‘HParallel’ strategy and

‘VParallel’ strategy) are considered more ‘desirable’ in the sense that they facil-

itate generalisation (especially when moving from the construction to defining a

rule); the ‘Squares’ strategy is less desirable because it involves overlaps, which

have been observed to be ignored by many students, consequently leading to

wrong rules.

Figure 4.15: ‘Stepping stones’ task constructions and associated rules: (a) the
task construction regardless of structure; (b) the ‘C’ strategy; (c) the ‘HParallel’
strategy; (d) the ‘VParallel’ strategy; (e) the ‘Squares’ strategy

Figure 4.16: Possible steps for ‘HParallel’ strategy with location details.

75



Chapter 4. Learner Modelling for Exploratory Learning of Mathematical Generalisation

Besides multiple possible constructions, there are several ways of reaching

the same construction. A possible trajectory is illustrated for the ‘HParallel’

strategy in Fig. 4.16, including location details. The learner may start with an

horizontal bar of green tiles, copy it and place it below and then add a middle

bar of green tiles with gaps between them. Finally, a bar of red tiles with

gaps between them is placed in the gaps of the middle bar of green tiles. The

definition of the strategy is given for each step of this particular construction in

Table 4.15.

Table 4.15: Su definition for each step of the ‘HParallel’ strategy.
Su Nu (C) Nu (RA) Nu (RC) Nu (LC)
Step 1 C1 - - -
Step 2 C1, C2 - Next(C1) = C2 xC2

= xC1
Prev(C2) = C1 yC2

= yC1
+ 2

Step 3 C1, C2, - Next(Ci) = Ci+1 xCi
= xC1

C3 for i = 1, 2 for i = 2, 3
Prev(Ci+1) = Ci yC2

= yC1
+ 2

for i = 1, 2 yC3
= yC1

+ 1
Step 4 C1, C2 αi4 = 2 ∗ α44 Next(Ci) = Ci+1 xCi

= xC1
C3, C4 for i = 1, 2 for i = 1, 3 for i = 2, 3

α34
= α44

+ 1 Prev(Ci+1) = Ci xC4
= xC1

+ 1
for i = 1, 3 yC2

= yC1
+ 2

yC3
= yC1

+ 1
Step 5 C1, C2 αi4

= 2 ∗ α44
Next(Ci) = Ci+1 xCi

= xC1
C3, C4 for i = 1, 2 for i = 1, 3 for i = 2, 3

α34
= α44

+ 1 Prev(Ci+1) = Ci xC4
= xC1

+ 1
for i = 3 for i = 1, 3 yC2

= yC1
+ 2

αi4 = DEP (α44 ) yC3
= yC1

+ 1
for i = 1, 2

α34
= DEP (α44

)

Up to Step 4, the construction is build in a specific way. In Step 5 the con-

struction is general - all dependencies are presented, although in a real situation,

they would be built in separate steps (three in this case); to avoid repetition,

they are aggregated into one step.

Similarity Metrics

The same four similarity measures that were defined for ShapeBuilder are used

for eXpresser :

(a) Numeric attributes - Euclidean distance: DIR =
√∑w

j=v+1(αIj − αRj
)2 (I

and R stand for input and retrieved cases, respectively);

(b) Variables: VIR =
∑v
j=1 g(αIj , αRj

)/v, where g is defined as: g(αIj , αRj
) = 1

if αIj = αRj
and g(αIj , αRj

) = 0 if αIj 6= αRj
.

(c) Relations between attributes - Jaccard’s coefficient: AIR = |RAI∩RAR|
|RAI∪RAR| . AIR

is the number of relations between attributes that the input and retrieved

case have in common divided by the total number of relations between

attributes of the two cases;
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(d) Relations between cases - Jaccard’s coefficient: BIR = |RCI∩RCR|
|RCI∪RCR| , where

BIR is the number of relations between cases that the input and retrieved

case have in common divided by the the total number of relations between

cases of I and R.

To identify the closest strategy to the one employed by a learner, cumulative

similarity measures are used for each of the four similarity types:

(a) Numeric attributes - as this metric has a reversed meaning compared to the

other ones, i.e. a smaller number means a greater similarity, the following

function is used to bring it to the same meaning as the other three similarity

measures, i.e. a greater number means greater similarity:

F1 =

{
z∑z

i=1DIiRi
if
∑z
i=1DIiRi

6= 0

z if
∑z
i=1DIiRi

= 0,

(b) Variables: F2 = (
∑z
i=1 VIiRi)/z;

(c) Relations between attributes: F3 = (
∑z
i=1AIiRi)/y;

(d) Relations between cases. F4 = (
∑z
i=1BIiRi

)/z.

where z represents the minimum number of cases among the two compared

strategies and y represents the number of cases in the retrieved strategy that

have relations between attributes; for example, the ‘C’ strategy has three cases

and only one that has relations between attributes, i.e. y = 1.

The similarity between the current strategy and a stored strategy is defined

as the sum of these four measures after normalisation is applied as explained

below. As the numeric strategy has a different range from the other three

similarity metrics, normalisation is applied to have a common measurement

scale, i.e. [0, 1]. This is done using linear scaling to unit range (Aksoy and

Haralick, 2001) by applying the following function: x = x−l
u−l , where x is the

value to be normalised, l is the lower bound and u is the upper bound for that

particular value. Consequently, as the range of F1 is [0, z], the normalisation

function is: F1 = F1/z.

After normalisation, weights are applied to the four similarity metrics to

express the central aspect of the construction - the structure. This is mostly

reflected by the F1 metric; the F3 metric is also important as the structure of a

construction is also reflected in the relations between attributes of component

cases. The other two metrics (F2 and F4), although important for the gener-

ality of construction and the order of cases, respectively, have less impact on
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the structure. Considering these aspects, the aggregated similarity is computed

using the following function: Sim = 6 ∗ F1 + F2 + 2 ∗ F3 + F4.

In ShapeBuilder no normalisation was applied, which introduced a positive

weighting on the F1 metric. For eXpresser the normalisation and weighting was

introduced to better control the contribution of each metric in identifying the

most similar strategy.

4.4.3 Evaluation

In this section we present experiments conducted to validate the second version

of the modelling mechanism by doing a low-level testing with a focus on how this

approach operates in practice to identify various types of exploratory learning

behaviour. To this end, real data were used from two classroom sessions using

eXpresser that ran in July 2008 in a secondary school in London. There were

18 students in each session (the same students took part in both sessions) who

were previously familiarised with an earlier version of the software (Gutiérrez

et al., 2008).

The purpose of the first session was to familiarise the students with the new

version of the system and little time was spent on the ‘stepping stones’ task.

The second session focused on the ‘stepping stones’ task and two more tasks

were available should the students finish the main task. The distribution of the

students with respect to the strategies they followed is displayed in Table 4.16.

Some learners built several constructions using different strategies (4 learners in

session 1 and 3 learners in session 2) ; for these students their last construction

was used, and thus we used only one construction from each learner. No student

generalised their construction in the first session, while in the second one only

three students reached generalised constructions.

Table 4.16: Distribution of students according to the followed strategy

Strategies Session 1 Session 2
C 5 6
HParallel 2 4
VParallel 2 2
Squares 2 1
Other 7 5

Log extract

Two extracts of one log file are presented in Tables 4.17 and 4.18 illustrating

the actions of one of the students when solving the ‘stepping stones’ task using

the ‘C’ strategy. The corresponding constructions are also displayed in the
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tables, with the pattern of the current step highlighted - for example, Step 2

includes a construction with two tiles - the leftmost one is highlighted and the

corresponding part of the log displays the information that is logged when that

Table 4.17: Log extract - part 1

No Log extracts Construction
15:05:21,116 - This is the eXpresser log for ‘BR199037’.

1

15:10:30,354 - (Model1) Pattern Shape351 created.
15:10:30,369 - Attribute ‘Att2562’ (‘x’) has value ‘13’.
15:10:30,385 - Attribute ‘Att2563’ (‘y’) has value ‘3’.
15:10:30,385 - Attribute ‘Att2564’ (‘width’) has value ‘1’.
15:10:30,385 - Attribute ‘Att2565’ (‘height’) has value ‘1’.
15:10:30,400 - Attribute ‘Att2581’ (‘inc x’) has value ‘0’.
15:10:30,416 - Attribute ‘Att2582’ (‘inc y’) has value ‘0’.
15:10:30,416 - Attribute ‘Att2568’ (‘iterations’) has value ‘1’.
15:10:30,416 - Attribute ‘Att2566’ (‘colour’) has value

‘[r=0,g=255,b=0]’. (green)
15:10:30,432 - Attribute ‘Att2561’ (‘name’) has value ‘’.
15:10:30,432 - Attribute ‘Att2567’ (‘shape’) has ID ‘Shape352’.

2

15:10:31,258 - (Model1) Pattern Shape354 created.
15:10:31,258 - Attribute ‘Att2584’ (‘x’) has value ‘12’.
15:10:31,258 - Attribute ‘Att2585’ (‘y’) has value ‘3’.
15:10:31,273 - Attribute ‘Att2586’ (‘width’) has value ‘1’.
15:10:31,289 - Attribute ‘Att2587’ (‘height’) has value ‘1’.
15:10:31,289 - Attribute ‘Att2603’ (‘inc x’) has value ‘0’.
15:10:31,289 - Attribute ‘Att2604’ (‘inc y’) has value ‘0’.
15:10:31,304 - Attribute ‘Att2590’ (‘iterations’) has value ‘1’.
15:10:31,304 - Attribute ‘Att2588’ (‘colour’) has value

‘[r=0,g=255,b=0]’. (green)
15:10:31,304 - Attribute ‘Att2583’ (‘name’) has value ‘’.
15:10:31,304 - Attribute ‘Att2589’ (‘shape’) has ID ‘Shape355’.

3 15:10:31,990 - (Model1) Pattern Shape357 created.

4 15:10:33,674 - (Model1) Pattern Shape360 created.

5 15:10:34,593 - (Model1) Pattern Shape363 created.

6

15:10:35,404 - (Model1) Pattern Shape366 created.
15:10:35,419 - Attribute ‘Att2672’ (‘x’) has value ‘13’.
15:10:35,419 - Attribute ‘Att2673’ (‘y’) has value ‘4’.
15:10:35,419 - Attribute ‘Att2674’ (‘width’) has value ‘1’.
15:10:35,419 - Attribute ‘Att2675’ (‘height’) has value ‘1’.
15:10:35,435 - Attribute ‘Att2691’ (‘inc x’) has value ‘0’.
15:10:35,435 - Attribute ‘Att2692’ (‘inc y’) has value ‘0’.
15:10:35,435 - Attribute ‘Att2678’ (‘iterations’) has value ‘1’.
15:10:35,450 - Attribute ‘Att2676’ (‘colour’) has value

‘[r=0,g=255,b=0]’. (green)
15:10:35,450 - Attribute ‘Att2671’ (‘name’) has value ‘’.
15:10:35,450 - Attribute ‘Att2677’ (‘shape’) has ID ‘Shape367’.

7

15:10:35,466 - (Model1) Object Shape366 has been selected.
15:10:38,334 - (Model1) Attribute ‘Att2676’ (’colour’) has changed from

‘[r=0,g=255,b=0]’ (green) to ‘[r=255,g=0,b=0]]’ (red).
15:10:38,350 - Shape Shape366 now has colour

java.awt.Color[r=255,g=0,b=0]. (red)
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tile is created. To avoid unnecessary repetition, some of the steps in Table 4.17

do not have all logged details. This applies only for steps where the missing

information could be easily inferred - for example, the details of Step 3 are

similar to the ones of the previous two steps (the only variations are the IDs of

attributes/shapes and the values of the location coordinates).

Steps 1 to 6 and 10 to 12 illustrate the creation of very simple patterns -

namely, one tile. When such a pattern is created, all its attributes are logged:

location coordinates (x and y), width, height, ‘move left’ (inc x), ‘move down’

(inc y), the number of iterations, the colour and the name if one has been

given to it. Step 7 illustrates what is logged when an attribute of a shape is

changed. In this particular case, the colour has changed from green to red. Step

8 illustrates the creation of a group. The attributes of the group are displayed:

location coordinates, width, height, colour and name. The shapes that are part

of the group are also listed. Step 9 illustrates the iteration of a pattern that is

a group - the new shape created by repeating the previously created group is

logged with all its attributes.

We also illustrate how the log translates into the formal definitions of cases

and strategies - see Table 4.19. These are given for Step 1, 8 and 12, that

illustrate respectively a simple case that is not a group, a simple case that is a

group and a composite case, i.e. a strategy.

Identification of strategies

This section presents the identification of strategies for each of the scenarios

introduced earlier in the evaluation for ShapeBuilder (Section 4.3.3). The same

procedure was used as in the evaluation of ShapeBuilder, i.e. the outputs of the

identification mechanism were checked by the author against the screen videos

that were collected for all learners.

One more scenario was added that covers off-task behaviour, i.e. engaging

in behaviour that does not involve the system or the learning task (Baker et al.,

2004) as an indicator of other issues such as lack of challenging tasks, lack of

motivation or disliking of mathematics, the teacher or the system. Off-task be-

haviour has been proved to lead to poor learning (Baker, 2007) in intelligent

tutoring systems and therefore, it is one of the important aspects to monitor;

this may be even more of an issue in exploratory learning environments (ELEs)

due to the freedom of exploration given in ELEs. The findings of the experi-

ments are discussed for each category.

Complete strategies. Complete strategies refer to complete constructions

that were built using one of the stored strategies. They could be specific, gen-
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Table 4.18: Log extract - part 2

No Log extracts Construction

8

15:10:44,460 - Pressable ‘Group’ pressed.
15:10:44,475 - (Model1) Group Shape369 created.
15:10:44,475 - Attribute ‘Att2694’ (‘x’) has value ‘12’.
15:10:44,491 - Attribute ‘Att2695’ (‘y’) has value ‘3’.
15:10:44,491 - Attribute ‘Att2696’ (‘width’) has value ‘2’.
15:10:44,491 - Attribute ‘Att2697’ (‘height’) has value ‘3’.
15:10:44,537 - Attribute ‘Att2698’ (‘colour’) has value ‘null’.
15:10:44,537 - Attribute ‘Att2693’ (‘name’) has value ‘’.
15:10:44,537 - Shape-1: Shape363.
15:10:44,553 - Shape-2: Shape351.
15:10:44,553 - Shape-3: Shape360.
15:10:44,553 - Shape-4: Shape366.
15:10:44,569 - Shape-5: Shape357.
15:10:44,569 - Shape-6: Shape354.

9

15:10:49,073 - Button ‘Create horizontal’ used.
15:10:49,167 - (Model1) Pattern Shape370 created.
15:10:49,167 - Attribute ‘Att2700’ (‘x’) has value ‘12’.
15:10:49,182 - Attribute ‘Att2701’ (‘y’) has value ‘3’.
15:10:49,182 - Attribute ‘Att2702’ (‘width’) has value ‘24’.
15:10:49,182 - Attribute ‘Att2703’ (‘height’) has value ‘3’.
15:10:49,182 - Attribute ‘Att2845’ (‘inc x’) has value ‘2’.
15:10:49,198 - Attribute ‘Att2846’ (‘inc y’) has value ‘0’.
15:10:49,198 - Attribute ‘Att2706’ (‘iterations’) has value ‘12’.
15:10:49,198 - Attribute ‘Att2704’ (‘colour’) has value ‘[null]’.
15:10:49,213 - Attribute ‘Att2699’ (‘name’) has value ‘’.
15:10:49,213 - Attribute ‘Att2705’ (‘shape’) has ID ‘Shape369’.

10

15:10:51,536 - (Model1) Pattern Shape599 created.
15:10:51,536 - Attribute ‘Att4366’ (‘x’) has value ‘36’.
15:10:51,536 - Attribute ‘Att4367’ (‘y’) has value ‘3’.
15:10:51,551 - Attribute ‘Att4368’ (‘width’) has value ‘1’.
15:10:51,551 - Attribute ‘Att4369’ (‘height’) has value ‘1’.
15:10:51,551 - Attribute ‘Att4385’ (‘inc x’) has value ‘0’.
15:10:51,551 - Attribute ‘Att4386’ (‘inc y’) has value ‘0’.
15:10:51,567 - Attribute ‘Att4372’ (‘iterations’) has value ‘1’.
15:10:51,567 - Attribute ‘Att4370’ (‘colour’) has value

‘[r=0,g=255,b=0]’.
15:10:51,567 - Attribute ‘Att4365’ (‘name’) has value ‘’.
15:10:51,583 - Attribute ‘Att4371’ (‘shape’)‘ has ID ‘Shape600’.

11 15:10:52,487 - (Model1) Pattern Shape602 created.

12

15:10:53,796 - (Model1) Pattern Shape605 created.
15:10:53,812 - Attribute ‘Att4410’ (‘x’) has value ‘36’.
15:10:53,812 - Attribute ‘Att4411’ (‘y’) has value ‘5’.
15:10:53,812 - Attribute ‘Att4412’ (‘width’) has value ‘1’.
15:10:53,827 - Attribute ‘Att4413’ (‘height’) has value ‘1’.
15:10:53,827 - Attribute ‘Att4429’ (‘inc x’) has value ‘0’.
15:10:53,827 - Attribute ‘Att4430’ (‘inc y’) has value ‘0’.
15:10:53,843 - Attribute ‘Att4416’ (‘iterations’) has value ‘1’.
15:10:53,843 - Attribute ‘Att4414’ (‘colour’) has value

‘[r=0,g=255,b=0]’.
15:10:53,843 - Attribute ‘Att4409’ (‘name’) has value ‘’.
15:10:53,858 - Attribute ‘Att4415’ (‘shape’) has ID ‘Shape606’.
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Table 4.19: Knowledge representation for Steps 1, 8 and 12

Step 1
F1 {green, n, n, n, n, n, n, 1, 1, 1, 0, 0, 1; 13, 3; 0; 1, 0, 0, 0}
RA1 φ
RC1 φ

Step 8
F1 {green, red, n, n, n, n, n, n, 2, 3, 1, 0, 0, 5, 1; 12, 3; 1; 1, 0, 0, 0}
RA1 {no greens = 5 ∗ no reds}
RC1 φ

Step 12
N1(C) {C1, C2, C3, C4}
N1(RA) {iterations(C1) = no reds}
N1(RC)

{
Next(Ci) = Ci+1, P rev(Ci+ 1) = Ci, i = 1, 3

}
N1(LC) {x(Ci) = x(C1) + width(C1), i = 2, 4; y(C2) = y(C1 + 2, y(C3) = y(C1) + 1,

y(C4) = y(C1)}

eral or partially general. One of the most important steps in generalisation is

the transition from a specific to a general construction, an aspect that was ob-

served to require support in the studies with pupils. Therefore, detecting if the

learners are working towards a specific or a general construction is an important

feature of the proposed modelling approach. This is particularly important in

two situations: (a) when a learner makes the transition or ‘mental jump’ from

specific to general, so that help with this transition can be provided if needed,

and (b) when this transition has been made with at least one element of the

construction (depending on the strategy, several parts of the constructions need

to be made general, e.g. the ‘HParallel’ strategy), but the learner is unsure

about it and is reluctant to proceed without feedback.

Findings of the experiments show that if the construction has been built in

a general way, the similarity with the corresponding stored strategies has the

maximum value (i.e. 10); if built in a specific way (no general component),

the similarity is 9.33. If some components of the constructions are general and

some are specific, the similarity value varies between 9.33 and 10. The ‘Squares’

strategy is an exception to this, as it involves only one pattern. The similarity

metrics for each specific and general strategy compared to the stored general

strategies are displayed in Table 4.20.

Mixed strategies. Often learners are not systematic in their approach to

solving a task, which can lead to: (a) inefficient strategies such as one-by-one

constructions in which the learners use only individual tiles, placing them one

after the other to obtain the desired look of a construction, without thinking

about the structure or the generality of their approach; (b) combinations of

different strategies that are more easily generalisable when used on their own

rather than mixed with others. As mentioned previously, the one-by-one ap-
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Table 4.20: Similarity metrics for complete specific and general user strategies.
Note that the stored strategies are general.

Stored Strategies
C HParallel VParallel Squares

User strategies

C specific 9.33 2.18 2.33 1.66
C general 10.00 2.51 2.83 2.66
HParallel specific 2.18 9.33 2.34 1.34
HParallel general 3.18 10.00 3.34 2.34
VParallel specific 2.33 2.34 9.33 1.48
VParallel general 3.33 2.84 10.00 2.48
Squares 1.66 1.34 1.48 7.00

proach is considered as a landmark and is detected from raw data produced by

the learner actions and does not need any involvement of the CBR mechanism.

We concentrate here on the detection of mixed strategies, whose pedagogical

value is threefold: (a) support the learner in deriving a general expression if

their arithmetics abilities are good; (b) guide the learners towards one of the

strategies that is reflected in their construction if the learners’ arithmetics abil-

ities are low and, therefore, the use of only one strategy will facilitate deriving

a general expression; (c) point out that systematic and symmetric approaches

are desirable.

In the two sessions, only one case was observed where a combination of

strategies occurred and the student finalised the construction (but did not gen-

eralised it). The construction is displayed in Fig. 4.17 - the various components

are presented apart from each other for ease of visualisation. Nevertheless, in

studies using the ‘pond tiling’ task, mixed strategies occurred more frequently

as reported in Section 4.3.3.

Figure 4.17: Combination of ‘VParallel’ and ‘HParallel’ strategies.

The similarity metrics for the comparison of the construction in Fig. 4.17

with all stored strategies are displayed in Table 4.21. The construction is ade-

quately identified as being most similar to the ‘VParallel’ and ‘HParallel’ strate-

gies.
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Table 4.21: Similarity of the construction in Fig. 4.17 to stored strategies

C HParallel VParallel Squares
Fig. 4.17 construction 2.28 2.37 3.14 1.48

Non-systematic strategies. As mentioned previously, learners are often non-

systematic in their approach to a task, leading to constructions made of ‘bits

and pieces’ that are difficult to generalise. Sometimes they start with such

an approach and gradually move towards something more systematic; however,

they do not always replace all the ‘bits and pieces’ they started with.

An example of such a situation is given in Fig. 4.18a. The overall approach

corresponds to the ‘HParallel’ strategy, but the top raw of green tiles is composed

of ‘bits and pieces’: one row of six tiles plus one tile; also the raw of six tiles is

composed as a group of three tiles repeated twice, as can be seen in the property

list displayed in Fig. 4.18b.

Figure 4.18: Strategy with non-systematic parts: (a) the structure of the strat-
egy; (b) the property list of the top component.

Some students will change this as they are moving towards making a con-

struction general; however, others will not reach that level - often not because

they do not know what to do (as they have done it on other components of

the construction) but because they forget that they have built that part of the

construction with ‘bits and pieces’. Identification of this type of learning be-

haviour could be useful in practice. For some students, a simple highlighting of

the structure could be enough to draw their attention and no further feedback

would be necessary. Others, however, might move to the rule extraction stage

84



Chapter 4. Learner Modelling for Exploratory Learning of Mathematical Generalisation

without changing the construction and this could potentially confuse them at a

later time. For the particular student whose strategy is presented in Fig. 4.18a,

the values of the similarity metric with respect of stored strategies are shown

in Table 4.22. The maximum value reflects the similarity in structure to the

‘HParallel’ strategy; however, the fact that the value is in the lower end of

the similarity range indicates the students’ construction has parts that do not

entirely correspond to the ‘HParallel’ strategy.

Table 4.22: Similarities of the construction in Fig. 4.18 to stored strategies

C HParallel VParallel Squares
Fig. 4.18 construction 2.09 4.31 2.30 1.32

Detection of non-systematic strategies would be useful also as an opportu-

nity to point out to learners that systematic approaches and symmetry facilitate

the process of generalisation. For example, presenting the learners with different

expressions corresponding to symmetric/systematic1 and non-symmetric/non-

systematic constructions could encourage learners’ reflection on the usefulness

of symmetric and systematic approaches. The expressions corresponding to the

non-systematic strategy illustrated in Fig. 4.18a and its most similar strategy

are illustrated in Table 4.23.

Table 4.23: Algebraic-like rules for symmetric and non-symmetric constructions.
Construction Rule
Fig. 4.18a (2 ∗ red+ 1) + (2 ∗ red) + 1 + (red+ 1)
Fig. 4.15c 2 ∗ (2 ∗ red+ 1) + (red+ 1)

Partial strategies. Some students start to solve the task following a cer-

tain strategy, but do not continue with that approach immediately. In our ex-

periments, learners sometimes tried different things, corresponding to different

strategies, and after this period of experimentation, they adopted one particular

approach or a combination of approaches. Therefore, it is important to iden-

tify what strategy the learners are currently working with should they ask for

help at that point. For each strategy two partial constructions are illustrated in

Fig. 4.19, corresponding to different stages in the learners’ process of building a

construction. They are essentially snapshots of learners’ constructions at differ-

ent points in time, where the first snapshot, corresponding to version 1 is taken

fairly early, while the second one, corresponding to version 2, is taken later, but

1Systematic constructions are constructions that facilitate generalisation in terms of ease
of translation to an algebraic-like rule; some systematic constructions are also symmetric, such
as the strategies for the ‘pond tiling’ task or the ‘HParallel’ and ‘VParallel’ strategies for the
‘stepping stones’ task, while others are not, such as the ‘C’ and ‘Squares’ strategies for the
‘stepping stones’ task.
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before the learners have completed the construction. The purpose of this is to

test the metrics in relation to how early they can detect a partial construction as

similar to a particular strategy. The similarity metrics comparing each partial

construction of Fig. 4.19 with the stored strategies are displayed in Table 4.24.

Because the ‘Squares’ strategy has only one component, partial constructions

cannot occur; therefore, this strategy was not included in this section. One may

argue that different stages of building the ‘square’, i.e. the building block of this

strategy, could be considered a partial construction; however, in our definition

of partial constructions, it is essential to work with groups or patterns rather

than single tiles. In other words, we consider partial constructions as incipient

systematic constructions rather than building something that looks like the

desired construction but is made of one-by-one tiles or of ‘bits and pieces’.

Figure 4.19: Partial strategies: (a) partial ‘C’ v1; (b) partial ‘C’ v2; (c) partial
‘HParallel’ v1; (d) partial ‘HParallel’ v2; (e) partial ‘VParallel’ v1; (f) partial
‘VParallel’ v2.

Table 4.24: Similarities of the construction in Fig. 4.19 to stored strategies

C HParallel VParallel Squares

Partial C v1 (Fig. 4.19a) 7.00 2.41 2.90 2.73
Partial C v2 (Fig. 4.19b) 7.83 2.06 2.35 1.49
Partial HParallel v1 (Fig. 4.19c) 1.61 7.00 1.93 1.33
Partial HParallel v2 (Fig. 4.19d) 2.13 7.83 2.49 1.33
Partial VParallel v1 (Fig. 4.19e) 2.80 2.50 2.41 2.08
Partial VParallel v2 (Fig. 4.19f) 2.28 1.93 7.00 1.48
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The construction in Fig. 4.19e has a low similarity with all stored strategies,

as it could be the starting point for three of them (listed in the order of the

similarity metrics in Table 4.24): ‘C’ strategy, ‘VParallel’ and ‘Squares’. The

results, however, show that ‘HParallel’ strategy has a higher similarity than

‘VParallel’ and ‘Squares’ strategy. Therefore, at this stage, it is too early to

assess the strategy the learner is following and the results of the identification

mechanism are not reliable for finding the most similar strategy. The similar-

ity metrics, however, show very close values for all strategies, which could be

an indication that with the available information no strategy can be considered

most similar to the learner’s construction. One the other hand, the construction

in Fig. 4.19e is clearly most similar to the ‘VParallel’ strategy. Consequently,

assessment of learners’ constructions should not be made too early and if help is

requested at such an early stage, the students should be encouraged to continue

with building the construction.

Detecting off-task exploratory behaviour. Detecting whether students

are off-task or not is a challenge in ELEs. On one hand, the freedom for ex-

ploration offered to students can lead to increased off-task behaviour. On the

other hand, the various types of exploratory behaviour observed, ranging from

explorations of how the system works to task–related explorations, should be

effectively distinguished from off-task behaviour as they can be potentially use-

ful to the learning process. Below we present an attempt to identify off-task

behaviour using the data provided by the monitoring mechanism and a few

rules.

We use an example observed in the second classroom session that falls in

the category of off-task, and we compare it with a behaviour which, although

on-task, is inefficient in terms of its generalisation capability. The constructions

corresponding to these two situations are illustrated in Fig. 4.20. The construc-

tion in Fig. 4.20b looks very much like the ‘C’ strategy in the final outcome,

but it is constructed from a group of ten individual tiles that are repeated twice

which makes it difficult to generalise. Nevertheless, unlike the construction in

Fig. 4.20a, this construction is task-related.

The rules for the off-task detection employ two sources of information: (a)

the characteristics of the task in terms of variations of width and height, and the

relation between them if there is any, and (b) the relative position of patterns.

The information about the task acts as a valuable filter when random tiles are

left on the pattern construction area along with a construction that is related

to the task. For example, in the footpath task these characteristics are: the

height is three, the width can vary (with a minimum of three), and there is no

particular relation between the height and the width. With this information,
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Figure 4.20: (a) off-task; (b) on-task, inefficient strategy

from Fig. 4.20a two different constructions can be obtained by filtering out either

the top or the bottom row to satisfy the ‘height equals three’ characteristic.

Then, the second source of information about the relative position of patterns

is used. The relative positions are mapped to the position constraints of the

stored strategies and if there is at least a partial correspondence, the similarity

metrics are calculated. If there is no correspondence, no similarity metrics

are computed. In our example, the constructions obtained by filtering the top

or the bottom row of Fig. 4.20a do not map the position constraints of any

stored strategy. Therefore, using both sources of information we conclude that

the learner is off-task. Algorithm 1, presented below, describes the proposed

approach.

Algorithm 1 OffTask(StrategiesCaseBase, InputStrategy)

if Task.Width is fixed then
if InputStrategy.Width > Task.Width then

cap InputStrategy {cap left or right}
end if

end if
if Task.Height is fixed then

if InputStrategy.Height > Task.Height then
cap InputStrategy {cap top or bottom}

end if
end if
for all combinations of capped constructions do

verify position constraints
if at least one constraint is satisfied then

calculate similarity to all strategies in StrategiesCaseBase
else

return student is off-task
end if

end for

For the construction in Fig. 4.20b, the height of the construction corresponds

to the task characteristics and the relative positions of the patterns partially map

the position constraints of two strategies. Therefore, the similarity metrics are

computed and the ‘C’ strategy is identified as the most similar strategy with a
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value of 3.01.

In conclusion, the second version of the mechanism can also identify situ-

ations of pedagogical importance with 100% success rate for the 26 strategies

that were tested: complete specific, partially general or general strategies (4,

2 and 3 strategies respectivly - see Figure 4.15), mixed strategies (1 startegy -

see Figure 4.17), non-systematic strategies (10 strategies - see one example in

Figure 4.18) and partial strategies (6 strategies - see Figure 4.19).

4.5 Discussion

The results of the evaluation studies conducted for the two iterative versions in-

dicate the CBR-based model for monitoring the exploratory learning behaviour

is able to identify situations of pedagogical importance, such as working in a

specific or a general way, working with several strategies at one time, working

with non-systematic strategies, working with partially constructed strategies

and going off-task.

The evaluation involved 10 pupils for the first version and 18 pupils for

the second version. Although this may seem a small sample, the access to

participants needs to be considered. School systems rarely allow researchers

access to students, limit the number of participants and put constraints on the

setting in which evaluation can take place (Hossain and Brooks, 2008). Thus,

a balance was needed between having the evaluation in a realistic situation and

the number of students available. Therefore, the limitation in the sample size

was compensated by ‘real-life’ data.

This work shows that, despite the challenges raised by the nature of inter-

action in exploratory learning environments, monitoring learners’ activity and

identification of particular situations that carry a pedagogical meaning is pos-

sible. Moreover, learner diagnosis is possible during the process of solving a

task rather than at the end, opening possibilities for more effective personalised

intelligent support. Our work also addresses other issues generally encountered

in exploratory learning environments such as inactivity, working with the right

variables, interpretation of data and generalisations. These aspects are discussed

below for eXpresser and the second version of the modelling mechanism.

As the learner’s actions are monitored continuously, inactivity can be easily

detected. A further assessment of the stage within a task at the occurrence of

inactivity could indicate possible causes of it. For example, if the learner has

built a construction that is specific and then is inactive, two causes are likely:

(a) the learner does not know what to do next in terms of the requirements of
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the task; (b) the learner understands that the next step is to generalise his/her

construction but does not know how to do that. The former is a conceptual

problem, while the latter is pragmatic - knowing what one needs to do but

not knowing how to do it using the tools of the system. There could also be

situations where the learner is inactive from the very beginning, in which case

it is very difficult to infer any possible causes. Besides causes related to the

task, there could also be other types of causes that lead to learners’ inactivity

and they may have to do with motivational status (Pintrich and Schunk, 2002)

and attitudes to subject matter (Beal et al., 2006). Having some knowledge

about these could shed some light on the causes of inactivity, especially when

this occurs from the beginning of the task.

Because of the way strategies are defined, it is possible to detect if the

students are choosing the right variables to works with. For example, in the ‘C’

strategy of the ‘stepping stones’ task (Fig. 4.15b), there are one or more ‘correct’

(or rather useful) variables they can choose: the number of iterations of the 6-tile

group and the number of colour allocations for the red tiles. Similarly, for the

‘HParallel’ strategy (Fig. 4.15c) the useful variables are the number of iterations

of the red tiles and the number of colour allocations for the red tiles. Therefore,

the monitoring mechanism is able to detect if the learners are choosing the right

variables because this information is encoded in the strategies.

Interpretation of data in exploratory learning is usually associated with ex-

periments - by looking at the various results of several experiments the students

are to accept or reject a hypothesis. In the context of eXpresser, the high

level hypothesis corresponds to the algebraic-like rule that the learners need to

find, which is built from the relations between patterns expressed as T-boxes.

The interpretation of data corresponds to observing changes in their construc-

tion when learners vary the values of the patterns’ properties, and the relation

between these changes and the algebraic-rule, i.e. is the rule valid or not? More-

over, lower level hypotheses are tested before the extraction of an algebraic-like

rule, when the learners are ‘figuring out’ the relations between patterns that

lead them to a construction that ‘looks right’, in which case the hypotheses

correspond to the relations between patterns. For example, learners may test

numerical relations, such as “for a footpath of 3 red tiles I need 4 iterations

of the vertical bar of 3 green tiles” to act according to the ‘VParallel’ strat-

egy (Fig. 4.15d) or general relations such as “the iterations of the vertical bar

of 3 tiles need to be the number of red tiles plus 1” to act according to the

same strategy. This is tightly related to generalisation and helping students

generalise. Our monitoring mechanism can identify if the learner’s construction

is specific (i.e. they are working with numeric relations), general (i.e. all the

general relations are in place) of partially general (i.e. some general relations

90



Chapter 4. Learner Modelling for Exploratory Learning of Mathematical Generalisation

are in place, while others are missing), thus providing the necessary informa-

tion for enabling personalised feedback related to interpretation of data and

generalisation.

Although in a limited way, the monitoring mechanism can detect off-task and

inform the teacher who can take finer-grained decisions depending on whether

the learner is really off-task or just off-track. Therefore, the off-task detection

needs additional improvement to reduce further the workload of the teacher.

Factors that could be incorporated in a model for off-task detection are: the

colours used in the construction, the number of cases in the learner’s construc-

tion with respect to the minimum and maximum number of cases of the stored

strategies for that particular task, and the speed at which the cases are con-

structed. For example, if a learner is quickly building many ‘bits and pieces’

of which some have many different colours (as opposed to fewer colours in the

task specification), the learner may be constructing something for their own

amusement rather than for solving the task.

A potential limitation of our approach is that it depends on the activity of

the learner - a minimal construction is needed to infer what strategy the learner

is using, to detect if a learner works with the specific or the general and also,

to infer if a learner is off-task. As mentioned previously, although inactivity

can be detected, its causes are difficult to identify when the learner has not

constructed anything. Another limitation of our mechanism is that apart from

being error-prone, the off-task detection is relying on the teacher to make sure

that the learner is truly off-task; on the other hand, the system is designed for

classroom use with the teacher present, making it less of a problem.

Currently, the aggregated similarity metric for strategies has fixed weights

that maximise the identification of structural similarity; however, depending on

the stage within a task, these could vary to maximise identification of other

aspects like the generality of construction. This direction of research is part

of our future work. Our work could also be extended in the direction of Open

Learner Models, as reflection is an important part of discovery learning (de Jong,

2006) and the open learner models have been shown to encourage learners’

reflection on their own learning (Bull et al., 2006; Bull and Kay, 2007).

The pedagogical scenarios defined in Section 4.3.3 played a central role in

the evaluation of both versions of the learner modelling mechanism. These

were defined with input from teachers and educational experts in a series of

iterative user studies that could be best described as part of the Persistent

Collaboration Methodology (PCM) (Conlon and Pain, 1996). These scenarios

became requirements for the development of the learner modelling mechanism

and were gradually introduced in an incremental manner.

As an iterative and incremental approach was adopted due to the iterative
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design of the system and changes of the interface affordances were expected,

most of the effort was directed to design the initial version of the learner mod-

elling mechanism in a flexible manner that could cope with such changes. As

CBR offered flexibility and extendibility, it was chosen for our purpose; how-

ever, typical CBR covers problems with uniques solutions, while we needed a

mechanism that would identify the most similar solution from a case-base of

solutions for the same problem. Consequently, we modified the typical CBR

approach to make it suitable for problems with multiple solutions.

Due to the iterative approach, changes were expected for both the knowledge

representation and the similarity metrics. Changes in the structure and/or

attributes of cases were expected because of the iterative design of the system

in general and of the interface in particular. In fact, these changes occurred

both in the structure and the attributes of a case. For example, the change in

structure involved adding new attributes (e.g. move-right, more-down), while

the change in attributes involved changes in the values that an attribute could

take (e.g. the type values for ShapeBuilder that were constant/variable/icon

variable/numeric expression/expression with icon variable, were replaced for

eXpresser with number/T-box/numeric expression/expression with T-box(es)).

Also, changes in the similarity metrics were expected; however, these changes

were made in the combination of the four metrics used rather than the basic

metrics themselves.

4.6 Summary and Contribution of the Chapter

In this chapter overviews of mathematical generalisation, iterative design and

case-based reasoning were presented, together with the two iterative versions

of an exploratory learning environment and their corresponding versions of a

learner modelling mechanism.

The learner modelling mechanism has at its centre the idea of strategy - a

particular way of reaching a solution. In our approach, a strategy is defined as a

series of cases related between them by certain properties. While the learner is

solving a task, his/her construction is compared with stored strategies - for this

purpose, similarity metrics have been defined to compare cases and strategies.

In the second version, using different weights for the four similarities defined to

compare cases, the emphasis of the aggregated similarity metric for strategies

was given to structure, as the most important aspect of a construction.

Pedagogically-driven scenarios were defined that the monitoring mechanism

should be able to identify: complete strategies, mixed strategies, non-systematic

strategies, partial strategies and off-task behaviour. All except the last one rely

exclusively on the similarity metrics to identify the mentioned situations. Using

92



Chapter 4. Learner Modelling for Exploratory Learning of Mathematical Generalisation

data from small case studies and classroom sessions, the proposed monitoring

mechanism was validated for all the above mentioned scenarios.

Several challenges were encountered in the development of the proposed

monitoring mechanism. The first and most difficult one was to decide what as-

pects of the learners’ interactive behaviour to monitor. Early trials with pupils

showed that one important aspect was the way they visualised a construction.

Therefore, the focus was given to strategies as different ways to reach the same

construction. The next challenge was how to represent and reason about strate-

gies in such a way that it would be possible to have an idea about the strategy

a learner used even if that strategy was not complete. In other words, it was

important to identify the approach of a learner during a task rather than at the

end of it. To address this challenge, we have modified the classic case-based rea-

soning to fit our purpose: a case was defined as part of a solution and strategies

were defined as series of cases that constitute a solution.

Another challenge was the handling of non-systematic strategies, by which

we mean building a construction with no particular strategy in mind. For exam-

ple, in the ‘pond tiling’ task surrounding the pond with random ‘bits and pieces’.

As mentioned in the second scenario, i.e. identification of non-systematic strate-

gies, it is difficult to generalise when a construction has these ‘bits and pieces’.

This was defined as a landmark to look for in the learners’ actions, as it indi-

cates lack of structure and potential difficulty for generalisation. To handle this,

the following rule was used: if the construction was completely made of these

‘bits and pieces’, similarities with the stored strategies were not computed at

this point unless some position constraints were satisfied. If the construction

was entirely build of ‘one-by-one’ tiles, i.e. another landmark, no similarity was

computed either.

Another challenge was the detection of off-task behaviour. Although error-

prone and virtually reliant on the teacher to ascertain that the learner is actually

off-task, our mechanism can detect off-task behaviour, an aspect that should be

especially considered in exploratory learning environments because of their very

core characteristic: the freedom given to the learner. Future work will look into

ways to improve the off-task detection and make it less reliant on the teacher.

Although the mechanism we propose is tailored to eXpresser, it could be

generalised to other exploratory learning environments where a learner is asked

to build a model (which in the case of eXpresser is a pattern construction) made

of several parts and where these parts could be joined in different ways.

To summarise, the contribution of this chapter consists of:

1. A learner modelling mechanism based on a version of CBR suitable for

problems with multiple solutions that allows diagnosis during the task as
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well as at the end of it. Although developed for a particular learning

environment, this mechanism could be generalised to other exploratory

learning systems. Moreover, it could be extended beyond educational

systems to manufacturing problems such as block assembly or to design

problems with reusable parts.

2. A set of scenarios of pedagogical importance for the evaluation of the

learner modelling mechanism;

3. An iterative approach to learner modelling, in which the flexibility and

extendibility of the approach is essential to enable modifications across

the iterative versions, because “user models cannot and should not be

separated from the software systems that use them” (Chin, 2001, p. 183)

94



Chapter 5

Feedback Prioritisation

In the previous chapter we have described how we diagnose what a learner is

doing in the learning environment by using a learner modelling mechanism. This

information is further used in this chapter to address a pedagogical issue, i.e.

feedback prioritisation.

In exploratory learning, tasks can be approached in many different ways and

are often characterised by some key points the learner needs to address or be

aware of. The actions of learners can indicate what they need help with, but

their personal characteristics may not guarantee the effectiveness of help. Also,

context could bring valuable information that would make help more appropri-

ate and, thus, more effective. Context-awareness has been studied in a diversity

of domains like artificial intelligence (Akman et al., 2001), ubiquitous comput-

ing (Kwon, 2006), educational psychology (Wang et al., 2008) and recommender

systems (Anand and Mobasher, 2007). The definition of context is also diverse,

varying from the wide social context to the specificity of network characteristics.

This chapter presents a context-dependent personalised feedback prioritisa-

tion mechanism using the Analytic Hierarchy Process (Saaty, 1980), a popular

method in Multi-criteria Decision Making (Zopounidis and Doumpos, 2002).

Two versions are presented, corresponding to the versions of the system used

- ShapeBuilder and eXpresser. In the proposed approach context refers to the

stages within a task for both versions; each task has two stages depending on

the generality of construction and expression, i.e. a stage where learners work

with specific constructions and expressions, and one where they work with par-

tially or completely general constructions and expressions. The second version

also refers to the learning mode, i.e. individual or collaborative. Both versions

were tested using scenarios based on data from classroom trials and the second

version was validated by education experts.

For both versions, the aspects to give feedback on were decided based on
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pedagogical information about the tasks and the affordances of the system, and

can be applied to all tasks. Also, for both versions, the relations between the

feedback prioritisation module and the other relevant components are the same

- see Figure 5.1. The feedback prioritisation module takes into consideration

the learner characteristics and information about the task (from Task Model)

to calculate priorities, which are filtered based on the information in the Task

LTM. These relations are illustrated with double line arrows. The single line

arrows illustrate relations that do not directly involve the feedback prioritisation

component of the feedback module. For example, there is a two-way relation

between the Learner Model and the Feedback Module, i.e. the Feedback Module

takes into consideration information from the Learner Model, and the output

of the Feedback Module is registered in the Learner Model (the learner model

includes a history of the feedback that was given1).

Figure 5.1: Relations between the Feedback Prioritisation Module and other
relevant components.

The next section presents a brief overview of personalised feedback. Sec-

tion 5.2 introduces Multi-criteria Decision Making and presents in detail one

method called the Analytic Hierarchy Process which is used in the proposed

mechanism. Section 5.3 presents the first version of the proposed mechanism,

while Section 5.4 presents the second version.

5.1 Personalised Feedback

Feedback is usually a response to the actions of a learner aiming to correct future

iterations of the actions (Mason and Bruning, 2001). It includes information

about what happened or did not happen as a consequence of the user’s actions

in relations to the goal (Wiggins, 2008). This information is given to the users

to compare their performance with the expected one (Johnson and Johnson,

1993) and to make use of it in the following attempt (Wiggins, 2008).

There are several types of feedback reported in the literature. Table 5.1

(adapted from Gouli et al. (2006)), summarises several adaptive feedback ap-

proaches according to their context (theoretical level or computer-based learn-

1this is out of the scope of this thesis and is, therefore, not discussed any further.
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ing environments), the underlying domain and goals/processes served (guiding,

tutoring, reflection), the types of feedback supported, and the adaptation pro-

cess (adaptivity and adaptability). The adaptivity mechanism supported is also

given (gradual provision of the same type of feedback or different types of feed-

back and/or adaptation of feedback according to one or more of the learner’s

individual characteristics).

The adaptive feedback mechanisms presented in Table 5.1 accommodate

mainly the learners’ knowledge level while a limited degree of flexibility is pro-

vided so that learners can adjust and intervene in the feedback presentation

process. In case of gradual provision of feedback, usually the same type of feed-

back is provided in different steps, while the amount of feedback is differentiated.

Also, the research approaches are mainly focusing on the guiding and tutoring

processes and are usually restricting the help support in a domain-specific way.

Thus, open issues in the area are (i) the design of a framework which supports

the provision of adaptive as well adaptable feedback in a way that enhances

learning and serves processes such as reflection, and (ii) the design of a gen-

eral domain-independent form of feedback able to be incorporated in different

learning environments and to serve a variety of domains.

The feedback mechanisms presented above were all developed in the context

of structured environments and we are not aware of any similar work in the

context of exploratory learning environments. Our aim is not to fill this gap by

deriving a framework for personalised feedback as in Gouli et al. (2006), but to

focus on a particular aspect of the feedback generation process, i.e. prioritisa-

tion, and explain why this is particularly important in ELEs.

From the feedback types mentioned in Table 5.1, we present below some of

the more general ones, which we believe are relevant for exploratory learning

environments:

(a) Informative feedback refers to the following type of information: correctness

or incorrectness of response; confirmation in case of a correct response;

performance feedback - usually in the form of a percentage or a number on

a scale;

(b) Tutoring feedback refers to more information than the simple outcome; it

imitates the actions of a human tutor. There are two levels for this type

on feedback: the exploratory level that takes place during problem solving

and the explanation of response level that take place after an answer has

been submitted. The exploratory level includes feedback in several forms:

an image, an example, a similar problem followed by its solution, solutions

of others given to a specific problem. The explanation of response includes

why the wrong answer is wrong and why the right answer is right;
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(c) Reflective feedback is meant to encourage reflection and usually consists of

prompts from the system. It includes two types: belief prompt-rethink

write and error-task prompts. The first type can be generic or directed

to a particular aspect; this kind of prompt applies to correct actions or

answers as well. Error-task related prompts are targeted to specific errors

and question the learner’s belief about the correctness of their input.

Usually feedback is presented in layers with a typical order being: (1) belief

prompt-rethink write, (2) error-task related questions, (3) tutoring feedback and

(4) performance feedback.

In exploratory learning, the freedom given to learners leads to situations

when feedback is required on several aspects. Unlike previous research on per-

sonalised feedback, the focus is on providing personalised prioritisation of feed-

back. In our search of the literature we did not find any reported research on

this topic.

The next section presents an overview of Multi-criteria Decision Making in

general and of the Analytic Hierarchy Process in particular, as the latter is used

in our proposed approach.

5.2 Multi-criteria Decision Making

Multi-criteria Decision Making (MDM) defines a class of problems where a de-

cision from a predefined set of alternatives needs to be reached by taking into

account two or more criteria. Each alternative is evaluated on the set of criteria

and the outcomes would provide a means of comparison between the alternatives

that will facilitate a selection of one or some alternatives, or a ranking between

them. Other purposes are classification of alternatives into groups (cluster-

ing) and group ranking (Zopounidis and Doumpos, 2002). Among the possible

approaches of decision problems that correspond to this description are: sta-

tistical techniques, multi-attribute utility analysis, analytic hierarchy process,

knowledge bases, mathematical models, etc.

The Analytic Hierarchy Process (AHP) (Saaty, 1980) is one of the most

popular methods in MDM and is widely applied in a diversity of areas such as:

logistics (Chan et al., 2006; Partovi, 2006), military (Korkmaz et al., 2008; Crary

et al., 2002), manufacturing (Ertay et al., 2006; Shinno et al., 2006) and health-

care (Kwak and Lee, 2002; Lee and Kwak, 1999). In most cases, AHP is used

in combination with other methods (Ho, 2008); a recent literature review (Ho,

2008) reports five main categories of tools integrated with AHP: (a) mathe-

matical programming, (b) quality function development, (c) meta-heuristics,

(d) SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis and
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(e) data envelopment analysis. Four works related to higher education are re-

ported in areas of IT-based project selection (Kwak and Lee, 1998), teaching

method selection (Lam and Zhao, 1998), education requirement selection (Kok-

sal and Egitman, 1998) and faculty course assignment (Ozdemir and Gasimov,

2004).

In the area of user modelling, AHP has been used in combination with fuzzy

logic (Grigoriadou et al., 2002) for student diagnosis in an adaptive hypermedia

educational system and in combination with Multi-Attribute Utility Theory

(MAUT), another method from MDM, in recommender systems (Schmitt et al.,

2003), where the evaluation function from MAUT is used to rate how well

each alternative fulfills the decision criteria. The rest of this section includes a

description of the AHP formalism.

The Analytic Hierarchy Process uses a hierarchical or network structure to

represent a decision problem and to establish priorities between alternatives

depending on a set of criteria involved in the decision process. It includes three

main steps: (a) construction of the hierarchy; (b) analysis of priorities and

(c) verification of consistency.

The process (see Figure 5.2) starts with the definition of the hierarchy and is

followed by several sets of pairwise comparisons for the criteria involved and the

possible alternatives. These result in weights for the criteria and priority vectors

for the alternatives; their consistency is verified and they are used to calculate

the composite weights of alternatives or final priorities; the consistency of the

whole hierarchy is also verified. If the consistency condition is not satisfied,

revisions of the pairwise comparisons are necessary for a trustworthy decision.

Figure 5.2: AHP Process
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Hierarchy. The hierarchy has the general structure represented in Figure 5.3.

The highest level represents the goal ; the second level includes the criteria based

on which the decision should be taken; the third level includes the possible

alternatives which will be prioritised with respect to the criteria. The first

step includes a decomposition of the decision problem into parts defined by all

relevant attributes; these attributes are arranged into hierarchical levels so as

to reach the hierarchical structure presented in Figure 5.3.

Figure 5.3: Hierarchy in the Analytic Hierarchy Process

Priorities. The analysis of priorities includes pairwise comparisons used to

compute weights for the alternatives; the weights will establish an order between

the alternatives. This process involves two substeps: (a) decide the priorities

between the criteria; (b) decide the priorities between alternatives with respect

to each criterion. The priorities take the form of matrices (see (5.1)): one for the

first substep (priorities amongst criteria) and n for the second substep (priorities

amongst alternatives) (a matrix for each criterion). For both types of matrices

the values below the main diagonal are the reversed values from above the main

diagonal, i.e. cji = 1/cij , aji = 1/aij , as the comparison result between two

objects A and B is reversed when the order changes, i.e. between B and A.
1 c12 ... c1n

1/c12 1 ... c2n

... ... ... ...

1/c1n 1/c2n ... 1




1 a12 ... a1m

1/a12 1 ... a2m

... ... ... ...

1/a1m 1/a2m ... 1

 (5.1)

Each pair of criteria ci and cj has an associated value that specifies their

relative importance. The values of cij (1 ≤ i, j ≤ n) and aij (1 ≤ i, j ≤ m) are

determined using a scale from 1 to 9, where 1 means ‘equally important’ and 9

means ‘extremely more important’. For example, cij = 1 means that the criteria

ci and cj are equally important, cij = 3 means that ci is more important than

cj and cij = 9 means that ci is extremely more important than cj . The values

and meaning for the inverse pairs are: cji = 1 means that cj and ci are equally
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important, cji = 1/3 means that cj is less important than ci and cji = 1/9

means that cj is extremely less important than ci.

The weight of each criterion is calculated using (5.2) and the criteria weight

vector is obtained: W = (w1, w2, . . . , wn).

wi =

(∏n
j=1 cij

)1/n

∑n
i=1

(∏n
j=1 cij

)1/n
(5.2)

For the alternatives, a priority vector is calculated for each matrix (corre-

sponding to a criterion) using the same equation (5.2). Thus priority vectors:

A(Crj) = (A1(Crj), A2(Crj), . . . , Am(Crj)), j = 1, n are obtained. Matrix A

(5.3) results from combining the n priority vectors.

A =


A1(Cr1) A1(Cr2) · · · A1(Crn)

A2(Cr1) A2(Cr2) · · · A2(Crn)
...

...
. . .

...

Am(Cr1) Am(Cr2) · · · Am(Crn)

 (5.3)

By combining the criteria weights and the priority vectors the final alterna-

tives priorities vector P with respect to all criteria is obtained using (5.4). More

specifically, the priority for each alternative is calculated as (5.5).

P = A ∗W (5.4)

pi = Ai(Cr1) ∗ w1 +Ai(Cr2) ∗ w2 + . . .+Ai(Crn) ∗ wn, i = 1,m (5.5)

Consistency. To verify the consistency of the n + 1 pairwise comparisons

matrices (n alternatives matrices and 1 criteria matrix), an approximation of

the maximum eigenvalue for each matrix, denoted as λmax (see Equation 5.6)

is used to calculate the consistency index (CI). Equation (5.7) shows how to

calculate CI for the criteria matrix and the n alternatives matrices.

λmaxj = (

m∑
i=1

ai1,

m∑
i=1

ai2, . . . ,

m∑
i=1

aim)∗

(A1(Crj), A2(Crj), . . . , Am(Crj))
T , j = 1, n

(5.6)

For criteria: CI =
λmax − n
n− 1

For alternatives: CIj =
λmaxj

−m
m− 1

, j = 1,m

(5.7)
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CI and the Random Consistency Index (RCI) are used to calculate the con-

sistency ratio (CR) as in (5.8). The values of the RCI for 1 to 10 criteria are

displayed in Table 5.2. Values of the consistency ratio below 0.10 indicate con-

sistency, while greater values indicate the opposite. In the latter case, revision

of the pairwise comparisons is necessary.

CR =
CI

RCI
(5.8)

Table 5.2: Values of RCI for n = 1, 10.
n 1 2 3 4 5 6 7 8 9 10
RCI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

The overall consistency of the hierarchy is a function of the consistency

indexes of all pairwise matrices, the RCI for the number of criteria and number

of alternatives and the weights of the criteria, as in (5.9).

CR =
CIcriteria + w1 ∗ CIaltCr1

+ w2 ∗ CIaltCr2
+ . . .+ wn ∗ CIaltCrn

RCIn + w1 ∗RCIm + w2 ∗RCIm + . . .+ wn ∗RCIm
(5.9)

Summarising, the AHP process involves three main steps: definition of

the hierarchy, analysis of pairwise comparisons and verification of consistency.

These are illustrated for ShapeBuilder in the following section.

5.3 Feedback Prioritisation - Iterative Version 1

This section presents the developed approach for feedback prioritisation in the

context of ShapeBuilder. It includes a description of the AHP formalism for our

specific problem and an evaluation through the use of scenarios.

5.3.1 Feedback Prioritisation for ShapeBuilder

This section presents how the AHP process translates in the context of Shape-

Builder. The hierarchy as in the AHP formalism is illustrated in Figure 5.4.

The highest level of the hierarchy represents the goal, which in our case is to

obtain feedback priorities. The next level represents the criteria taken into con-

sideration, which refers the type of context: specific or general. The context

corresponds to the stage within a task; thus, a learner is either working with a

construction and/or expression that is specific, or with a construction and/or

expression that is partially or completely general. The lowest level of the hierar-
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chy designates the alternatives, which in our case correspond to giving feedback

on the following aspects:

(a) correctness of construction (CC) - the learners’ construction should corre-

spond to the construction for the particular task they are working on. For

each task there are several ways to build a correct construction which are

stored in the knowledge base; therefore, the learners’ construction should

correspond to one of them;

(b) correctness of expression (CE) - when reduced to its simplest form, the

learners’ expression should correspond to the expression for the particular

task they are working on;

(c) construction-expression correspondence (C-E) - there should be a corre-

spondence between the learners’ expressions and their constructions; for

example, if they build a construction using a particular strategy, but the

expression corresponds to another strategy, the expression does not corre-

spond to the construction.

(d) symmetry of construction (Sym) - this refers to the way the construction is

built; symmetry is a characteristic of efficiently built constructions;

(e) generality of construction (CGen) - the learner’s construction should be

general, i.e. all relevant components of the constructions should be general;

(f) generality of expression (EGen) - the learner’s expression should be general,

i.e. it should work for any instance of the task;

(g) use of icon variables (IV) - the learners should use icon variables to make

their constructions and expressions general.

Figure 5.4: AHP hierarchy.

The alternatives presented above were selected based on pedagogical infor-

mation about the tasks and on the affordances of ShapeBuilder. They define

the aspects that are relevant for all tasks.

The pairwise comparisons between criteria and between alternatives vary

depending on task and learner characteristics:
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(a) task difficulty, which could be low, medium or high; this is given by the

researcher or teacher;

(b) level of experience (stored for each level of task difficulty), which is mea-

sured by the number of tasks the learners were exposed to for each level

of difficulty; for example, if a learner has previously solved only one task

of medium difficulty his experience with medium difficulty tasks is low; if

s/he has solved ten tasks of medium difficulty, his experience with medium

difficulty tasks is high.

(c) arithmetics knowledge level, which is given and updated by the teacher.

The learner characteristics presented above were considered because they

influence the learner’s performance and the level of support they need. The

arithmetics knowledge is particularly relevant when learners derive expressions

from their constructions. Learners with lower arithmetics ability encounter

difficulty at this stage, even if they have a conceptual understanding of the

correspondence between their construction and expression; their difficulty lies in

their understanding of the arithmetical language rather than the generalisation

process.

The learner characteristics were not included as criteria in the hierarchy be-

cause of the exponential increase in the necessary pairwise comparisons. The

pairwise comparisons, i.e. the cij and aij values mentioned in Section 5.2, are

provided by experts. This is a very time consuming process and therefore, is

limited by the experts availability and willingness to provide the pairwise com-

parisons. Therefore, we chose to build the mechanism with only one criterion,

i.e. the context, and to evaluate it using scenarios that combine various val-

ues for the learner characteristics mentioned above. Although this approach is

time consuming and requires significant involvement from experts, it has the

advantage of closely mimicking the teacher’s prioritisation decisions.

To illustrate the application of AHP for prioritising feedback we consider a

situation when the task difficulty is high, the level of experience of the learner

with highly difficult tasks is low and his/her arithmetics level is good. The

pairwise comparisons in this example and in the evaluation were provided by

one expert.

The pairwise comparisons and weights of the criteria for the above mentioned

situation are displayed in Table 5.3. As in ShapeBuilder the learner is given a

task of high difficulty only after having at least medium experience with low

and medium task difficulty, the specific context is only slightly more important

than the general one.

For each of the two criteria, i.e. specific and general context, there is a

matrix of pairwise comparisons of the alternatives. The pairwise comparisons
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and the priority vector when the context is specific is displayed in Table 5.4,

while the ones for the general context are displayed in Table 5.5. Both matrices

are consistent.

Table 5.3: Criteria pairwise comparisons and weights.
Criteria Specific General Weights
Specific 1 2 0.67
General 1/2 1 0.33
λmax = 2, CI = 0, CR = 0

Table 5.4: Alternatives pairwise comparisons and the priority vector with re-
spect to specific context.

Alternatives CC CE C-E Sym CGen EGen IV Priority Vector
CC 1 3 3 1 7 7 7 0.33
CE 1/3 1 1/2 1/2 3 3 7 0.13
C-E 1/3 2 1 1/2 5 5 7 0.19
Sym 1 2 2 1 2 3 5 0.21
CGen 1/7 1/3 1/5 1/2 1 1 1/2 0.04
EGen 1/7 1/3 1/5 1/3 1 1 1/3 0.04
IV 1/7 1/7 1/7 1/5 2 3 1 0.05
λmax = 7.52, CI = 0.09, CR = 0.07

Table 5.5: Alternatives pairwise comparisons and the priority vector with re-
spect to general context.

Alternatives CC CE C-E Sym CGen EGen IV Priority Vector
CC 1 1 1 1 2 2 1 0.16
CE 1 1 1/2 1/2 1/3 1/3 1/3 0.07
C-E 1 2 1 1 1/3 1/3 1/3 0.09
Sym 1 2 1 1 1/2 2 1/3 0.12
CGen 1/2 3 3 2 1 2 1/2 0.18
EGen 1/2 3 3 1/2 1/2 1 1/2 0.12
IV 1 3 3 3 2 2 1 0.26
λmax = 7.62, CI = 0.10, CR = 0.08

The final alternatives priorities are displayed in Table 5.6. The most impor-

tant aspect to give feedback on is the correctness of construction (CC), followed

by symmetry (Sym), correspondence between construction and expression (C-

E) and use of icon variables (IV); the next aspects to give feedback on are:

correctness of expression (CE), construction generality (CGen) and expression

generality (EGen).

Therefore, when the task difficulty is high, the learners’ experience with this

type of tasks is low and their arithmetics level is good, the most important

aspect is the correctness of construction and its symmetry; symmetry is quite

important as the generalisation of a difficult task is more difficult when the
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Table 5.6: Feedback priorities.
Alternatives CC CE C-E Sym CGen EGen IV
Priorities 0.28 0.11 0.16 0.18 0.09 0.07 0.12

Overall CR = 0.03

construction (and consequently the expression) is not symmetric. The corre-

spondence between construction and expression is used in the development of

the expression and is early encouraged so as to develop the expression in parallel

to the construction; the use of icon variables is encouraged from the beginning

in order to facilitate generalisation at a later stage. Hence, the focus is on the

construction, guiding the learners to build it in a correct way, using symmetry

and icon variables; the generality is addressed later, when these aspects are

taken care of. Also, the importance of the correspondence between construction

and expression is stressed as to facilitate the derivation of the expression.

5.3.2 Evaluation

To evaluate the proposed mechanism we use scenario-based validation (Lalioti

and Theodoulidis, 1995). We analyse the situation of two learners, Alan and

Mike, who have built the same construction, but have different expressions;

also, their learner models hold different characteristics. The constructions and

expressions of these hypothetical learners are based on data from real learners.

Figure 5.5: Combination of ‘I’ and ‘Spiral’ strategies (C2 and C3 are general;
C4 and C5 are specific)

We will start with the common aspect between the two: the construction,

which is displayed in Figure 5.5. It is a combination of two strategies, ‘I’ and

‘Spiral’, and has two general cases (C2 and C3) and two specific ones (C4 and

C5). This is a symmetric situation and consequently, the comparison with

the specific and the general strategies will give the same results. Moreover,

because the surrounding has two cases from one strategy and two cases from

the other one, when compared with these two strategies, the same result is

obtained: 3.44. A piece of information that may be important when deciding

towards which strategy to guide the learner is related to the order in which
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the surrounding is done and the complexity of the strategies: in the current

example, the learners start with a case from the ‘Spiral’ strategy, but move to

the ‘I’ strategy for the next two cases; to complete the surrounding, another

case of from the ‘Spiral’ strategy is used. The fact that 2 subsequent cases

belong to the same strategy may be a good reason to guide the learner towards

that particular strategy; however, on its own, most of the time this cannot be

considered a sign of coherence in the learners’ thinking. Other actions of the

learners and information stored in the learner models are necessary to reach an

informed decision.

The expressions defined by Alan and Mike are displayed in Figure 5.6. Al-

though Alan’s construction has some generality (through the use of icon vari-

ables) the expression is still specific. Mike has some generality in the expression

as well as the construction, but the two do not match.

Figure 5.6: (a) Alan’s expression (b) Mike’s expression

The difficulty of the ‘pond tiling’ task is medium. On one hand, Alan has low

experience with tasks of medium difficulty and he has a low level of arithmetics

knowledge. On the other hand, Mike has high experience with medium difficulty

tasks and his level of arithmetics is good. Taking these aspects into consideration

and the context, i.e. specific and general, the AHP is applied to find in which

order the feedback on the different aspects (the seven alternatives presented in

Section 5.3.1) should be provided.

For Alan, the pairwise comparisons and the weights for the criteria (the two

types of context) are displayed in Table 5.7. As his experience with medium

difficulty tasks is low, the specific context criterion is more important that the

general context one. The matrices for the alternatives are displayed in Table 5.8

and Table 5.9: the first for the specific criterion and the second for the general

one. The final alternatives priorities are displayed in Table 5.10.

The two matrices of pairwise comparisons between alternatives are not con-

sistent according to the standard measurement of consistency, i.e. CR, although

the overall hierarchy is consistent (CR = 0.07). The revised alternatives ma-
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Table 5.7: Alan: Criteria pairwise comparisons and weights.
Criteria Specific General Weights
Specific 1 3 0.75
General 1/3 1 0.25
λmax = 2.00, CI = 0, CR = 0

Table 5.8: Alan: Alternatives pairwise comparisons and the priority vector with
respect to specific context.

Alternatives CC CE C-E Sym CGen EGen IV Priority Vector
CC 1 5 5 3 9 9 9 0.44
CE 1/5 1 1/2 3 5 5 9 0.17
C-E 1/5 2 1 3 5 5 9 0.21
Sym 1/3 1/3 1/3 1 1/3 3 1/7 0.04
CGen 1/9 1/5 1/5 3 1 1 1/2 0.05
EGen 1/9 1/5 1/5 1/3 1 1 1/5 0.03
IV 1/9 1/9 1/9 7 2 5 1 0.07
λmax = 8.62, CI = 0.27, CR = 0.20

Table 5.9: Alan: Alternatives pairwise comparisons and the priority vector with
respect to general context.

Alternatives CC CE C-E Sym CGen EGen IV Priority Vector
CC 1 1 1 2 2 2 1 0.16
CE 1 1 1 2 1/5 1/7 1/5 0.06
C-E 1 1 1 2 1/5 1/7 1/5 0.06
Sym 1/2 1/2 1/2 1 1/3 1/3 1/7 0.05
CGen 1/2 5 5 3 1 2 1/2 0.20
EGen 1/2 7 7 3 1/2 1 1/2 0.18
IV 1 5 5 7 2 2 1 0.30
λmax = 7.98, CI = 0.16, CR = 0.12

Table 5.10: Alan: Feedback priorities.
Alternatives CC CE C-E Sym CGen EGen IV
Priorities 0.37 0.14 0.17 0.04 0.08 0.07 0.12

Overall CR = 0.07

trices are displayed in Table 5.11 and Table 5.12. The new final priorities are

displayed in Table 5.13.

The final order of alternatives is the same in the revised version as in the first

(apparently) inconsistent one, although there are small differences in the val-

ues. The revised matrices were obtained using Saaty’s (Saaty, 1980) suggested

method of reconsidering the alternatives for which the corresponding rows in

the matrix [|aij − (pi/pj)|] have the largest sums. Looking at the original and

the new matrices, a change in numbers is observed, but with the preservation

of the transitivity between the alternatives. As the idea is to prioritise between
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Table 5.11: Alan: Alternatives pairwise comparisons and the priority vector
with respect to specific context - revised.

Alternatives CC CE C-E Sym CGen EGen IV Priority Vector
CC 1 4 4 5 9 9 9 0.44
CE 1/4 1 1/2 3 5 5 7 0.17
C-E 1/4 2 1 5 5 5 7 0.22
Sym 1/5 1/3 1/5 1 1/2 2 1/5 0.04
CGen 1/9 1/5 1/5 2 1 1 1/2 0.04
EGen 1/9 1/5 1/5 1/2 1 1 1/3 0.03
IV 1/9 1/7 1/7 5 2 3 1 0.06
λmax = 7.81, CI = 0.14, CR = 0.10

Table 5.12: Alan: Alternatives pairwise comparisons and the priority vector
with respect to general context - revised.

Alternatives CC CE C-E Sym CGen EGen IV Priority Vector
CC 1 1 1 2 2 2 1 0.18
CE 1 1 1 2 1/3 1/3 1/3 0.09
C-E 1 1 1 2 1/3 1/3 1/3 0.09
Sym 1/2 1/2 1/2 1 1/2 1/2 1/3 0.07
CGen 1/2 3 3 2 1 2 1/2 0.18
EGen 1/2 3 3 2 1/2 1 1/2 0.15
IV 1 3 3 3 2 2 1 0.25
λmax = 7.55, CI = 0.09, CR = 0.07

Table 5.13: Alan: Feedback priorities - revised.
Alternatives CC CE C-E Sym CGen EGen IV
Priorities 0.37 0.15 0.19 0.05 0.08 0.06 0.11

Overall CR = 0.04

alternatives, transitivity is a logical condition and maybe the only necessary in-

dication of consistency, as the preservation of priorities order seems to indicate.

Coming back to the educational aspect related to these priorities, for Alan,

the most important aspect for feedback is the correctness of construction, fol-

lowed by the correspondence between construction and expression, and the cor-

rectness of expression. Thus, as Alan’s arithmetics knowledge is low, a correct

construction (already achieved, although not symmetric) and its correspondence

with the expression (partial correspondence) is used to guide Alan towards a

correct expression. The following aspects to give feedback on are: (a) the use

of icon variables - thus, Alan will be encouraged to introduce the icon variables

in his expression and also to use the icon variable for the the tiles correspond-

ing to cases C4 and C5; (b) the generality of the construction, which can be

achieved through using icon variables; (c) expression’s generality and (d) sym-

metry. Thus, Alan will be guided to achieve a correct and general construction

and expression before introducing symmetry. After this has been achieved, the

benefits of symmetry will be presented and Alan will be guided towards the ‘Spi-
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ral’ or ‘I’ strategy through one of the following options: (i) present the learner

with the two options and let him/her choose one of the two (an approach that

appears more suitable for advanced learners than novices); (ii) automatically

suggest one of the two in a systematic way, e.g. present the one that occurs

more/less often with other learners; (iii) inform the teacher about the learners

trajectory and the frequency of strategies and let him/her decide between the

two. Letting the learner choose is not an feasible option, as Alan has low expe-

rience with this type of tasks. In case of an automatic suggestion, Alan would

probably be guided towards the ‘I’ strategy, as this is used more often by other

learners than the ‘Spiral’ strategy. Alternatively, the teacher could be informed

about Alan’s activity and s/he could choose one of the two.

The pairwise comparisons and weights of the criteria for Mike are displayed

in Table 5.14. As Mike’s level of experience with medium difficulty tasks is high,

the general context criterion is significantly more important than the specific

context one. The alternatives matrices are displayed in Table 5.15 for the specific

context criterion and Table 5.16 for the general context criterion. The final

alternatives priorities for Mike are displayed in Table 5.17. All matrices are

consistent.

Table 5.14: Mike: Criteria pairwise comparisons and weights.
Criteria Specific General Weights
Specific 1 1/5 0.17
General 5 1 0.83
λmax = 2.00, CI = 0, CR = 0

Table 5.15: Mike: Alternatives pairwise comparisons and the priority vector
with respect to specific context.

Alternatives CC CE C-E Sym CGen EGen IV Priority Vector
CC 1 3 3 2 5 5 5 0.35
CE 1/3 1 1/2 1 3 3 5 0.15
C-E 1/3 2 1 1/2 3 3 5 0.17
Sym 1/2 1 1/2 1 3 3 5 0.16
CGen 1/5 1/3 1/3 1/3 1 1 1/3 0.05
EGen 1/5 1/3 1/3 1/3 1 1 1/7 0.04
IV 1/5 1/5 1/5 1/5 3 7 1 0.07
λmax = 7.51, CI = 0.09, CR = 0.06
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Table 5.16: Mike: Alternatives pairwise comparisons and the priority vector
with respect to general context.

Alternatives CC CE C-E Sym CGen EGen IV Priority Vector
CC 1 1 1 2 1/2 1 1 0.13
CE 1 1 1/2 1/2 1/3 1/3 1/3 0.07
C-E 1 2 1 1/2 1/3 1/3 1/3 0.08
Sym 1/2 2 2 1 1 3 1/3 0.14
CGen 2 3 3 1 1 2 1 0.22
EGen 1 3 3 1/3 1/2 1 1/3 0.12
IV 1 3 3 3 1 3 1 0.24
λmax = 7.59, CI = 0.10, CR = 0.07

Table 5.17: Mike: Feedback priorities.
Alternatives CC CE C-E Sym CGen EGen IV
Priorities 0.17 0.08 0.10 0.15 0.19 0.11 0.21

Overall CR = 0.03

For Mike, the most important aspect for feedback is the use of icon variables,

aiming to introduce generality early in the process of solving the task as Mike has

high experience with similar tasks (from difficulty point of view). Thus, Mike

will be encouraged to use icon variables for the tiles corresponding to cases C4

and C5. The second important aspect, construction generality, is done using

the icon variables and only after that feedback should address the correctness of

construction. Thus, as opposed to Alan, Mike is first guided towards ‘thinking

in a general way’ and then ‘fixing’ the construction/expression. After generality

of construction, the following important aspect is symmetry, as it will facilitate

the generalisation and the construction of the corresponding general expression,

which is the next aspect for feedback. At this point, any eventual mismatch

between the construction and expression would be addressed and through this,

Mike would be guided towards a correct expression. Although Mike’s expression

did not correspond to his expression, this aspect is not addressed immediately;

also, the expression shows a way of solving the task that is symmetric, which

will probably be reflected in the construction on the following actions.

A summary of the integrated example is displayed in Table 5.18, including

the input from the Task LTM and Domain LTM, and the output from the

Feedback Priorities component. Thus, a similar diagnosis of the learners models

obtained with the CBR mechanism leads to different outputs from the AHP

method depending on extra information about the learners.

Although this evaluation was limited to two learners, it provided sufficient

evidence that the prioritisation provided by the AHP mechanism is meaningful

from pedagogical point of view. At this point, we were faced with a decision of

spending more time on evaluating this mechanism or using the time for updating

it in accordance with the new version of the system and evaluating the new
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Table 5.18: Feedback priorities depending on the learners’ model.

Alan Mike

Task task pond-tiling pond-tiling
LTM difficulty medium medium

strategies ‘I’ ‘I’
‘Spiral’ ‘Spiral’

expression

Domain experience low high
LTM arithmetics level low good
Feedback priorities CC, C-E, CE, IV, IV, CGen, CC, Sym

CGen, EGen, Sym EGen, C-E, CE

version. As we felt that the evaluation of this version was encouraging albeit its

small scale, we decided to update the mechanism in line with the new system

and to evaluate the new version.

The following section presents the second iteration of this mechanism in the

context of eXpresser. Similarly to this section, the AHP formalism is presented

in the context of eXpresser and evaluated through the use of scenarios.

5.4 Feedback Prioritisation - Iterative Version 2

This section presents a second version of the feedback prioritisation mechanism

tailored for eXpresser. Two modifications occurred in line with the changes

from ShapeBuilder to eXpresser : the icon variables were replaced by T-boxes,

the symmetry of construction was replaced by a more general property of con-

struction, i.e. being built in a systematic way, and a new criterion was added,

i.e. the learning mode - individual or collaborative. The new criterion was added

based on the envisaged use of eXpresser in a collaborative mode in which two

learners with similar approaches are paired to help them both reach a common

general solution. A new learner criterion was added, i.e. preferred approach

(specific to general or general to specific), as these two different approaches

were observed in studies with pupils. In the following the AHP formalism is

presented together with its evaluation using scenarios.

5.4.1 Feedback Prioritisation for eXpresser

Three scenarios using the ‘stepping stones’ task are presented to illustrate and

validate the AHP process in the context of eXpresser. The hierarchy of the AHP

formalism is illustrated in Figure 5.7: the goal is to obtain feedback priorities;

the criteria is the learning mode, i.e. individual or collaborative, and the stage

in a task, i.e. specific and general.
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Figure 5.7: AHP hierarchy. Figure 5.8: Feedback module.

The alternatives are feedback on the following aspects, which are mostly the

same as the ones in Section 5.3.1 (except the two changes mentioned previously):

(a) correctness of construction (CC);

(b) correctness of expression (CE);

(c) construction-expression correspondence (C-E);

(d) systematic approach in building the construction (Sys);

(e) generality of construction (CGen);

(f) generality of expression (EGen);

(g) use of T-boxes (T-box).

The pairwise comparisons between criteria and between alternatives vary

depending on learner’s (dynamic) characteristics:

(a) level of experience (stored for each level of task difficulty),

(b) arithmetics knowledge level and

(c) preferred approach: from specific to general (S-to-G) or from general to

specific (G-to-S).

The first two are the same as in Section 5.3.1 and the third has been intro-

duced because the two approaches were observed in classroom trials.

The feedback module (Figure 5.8) integrates this information together with

information about task difficulty to retrieve sets of pairwise relations from the

Knowledge Base. This generates different instantiations of the AHP process. To

illustrate how AHP is going to operate in different situations, three scenarios

are considered below (summarised in Table 5.19).
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Table 5.19: Scenarios characteristics.
Characteristics Scenario 1 Scenario 2 Scenario 3

Mode individual individual collaborative

Task difficulty medium medium medium

Experience low medium low&medium

Arithmetics high low high&low

Approach G-to-S S-to-G G-to-S&S-to-G

These particular scenarios were used to illustrate that the AHP mechanism

provides adequate prioritisations based on the personal characteristics of learn-

ers. In other words, these scenarios show that the AHP approach delivers per-

sonalised prioritisations that are relevant for the particular combinations of

learner characteristics. Moreover, two learners with the same strategy were

chosen to illustrate that the AHP mechanism provides different prioritisation

for different learner characteristics even when they used the same strategy. Also,

when these two learners work together in a collaborative mode, the output of the

AHP mechanism reflects the combination of characteristics of the two learners,

thus leading to a prioritisation that is different from the individual mode.

5.4.2 Evaluation

The constructions for the scenarios are displayed in Figure 5.9: Constructions 1

and 2 are used in Scenario 1 and 2, respectively. In the collaborative scenario,

i.e. Scenario 3, the learners who produced these constructions and their cor-

responding expressions are working together. The pairing for collaboration is

based on the similarity of their strategies presented in Section 4.4.2 and the com-

plementarity of approach and/or arithmetic level. A diagnosis of the learners’

constructions (see Section 4.4.3) is carried out at the same time with the com-

putation of feedback priorities. Combining these two sources, a decision is taken

with regard to necessary and/or relevant feedback. The pairwise comparisons

for all scenarios were provided by one expert.

The components of Construction 1 are displayed separately for ease of vi-

sualisation; this construction has four patterns: (a) two compact rows of green

(lighter colour) tiles and (b) two rows with gaps in between tiles: one green and

one red (darker colour). The first two mentioned are the same, and consequently,

have the same properties displayed in the property list of the highlighted row

in Construction 1. The first property, i.e. number of iterations, shows that the

pattern depends on the red one because the number of iterations of the green

tiles is set to ‘the number of red tiles multiplied by 2 plus 1’. Construction 2

is built in a similar fashion, but the compact rows of green tiles do not depend

on the red pattern: the first property (number of iterations) from the property
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Figure 5.9: The constructions and expressions of two learners using the ‘H’
strategy in solving the ‘stepping stones’ task; the components of Construction 1
are also presented separately for ease of visualisation.

list is set to 9. At the bottom of Figure 5.9, two expressions corresponding to

the two constructions are displayed. Expression 1 uses the name red for the

number of red tiles, while Expression 2 is entirely numeric.

In the constructions of Figure 5.9, both learners follow the same strategy in

surrounding the stepping stones: two rows of tiles at top and bottom, and one

row of tiles in the gaps of the red pattern; also, for both constructions, the row

of green tiles with gaps in between (the middle one) does not depend on the red

pattern and the expressions do not match their corresponding constructions.

There are, however, a few differences: (a) they work with a different number of

red tiles, i.e. 3 and 4, respectively; (b) the first learner is very close to a general

solution, while the second is still working with the particular case of 4 red tiles;

(c) the expression of the first learner (Expression 1 in Figure 5.9) is already

general, while the expression of the second learner (Expression 2 in Figure 5.3)

is numeric.

Scenario 1. Feedback prioritisation is established by taking into consideration:

(a) the individual learning mode, (b) the learner’s characteristics mentioned in

Table 5.19 and (c) Construction 1 and Expression 1 from Figure 5.9. The crite-

ria pairwise comparison, the corresponding weights and consistency information

are displayed in Table 5.20; the alternatives pairwise comparison with respect

to the criteria (specific and general context), the priority vectors and the consis-
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tency measures are displayed in Table 5.21 and Table 5.22. The final priorities

and the overall consistency are displayed in Table 5.23. From these tables, the

numbers assigned by the designer of the AHP component are the criteria and

the alternatives pairwise comparisons; the rest are computed using the formulas

presented in Section 5.3.

Table 5.20: Criteria pairwise comparison, weights, and consistency.
Criteria Specific General Weights
Specific 1 1/2 0.33
General 2 1 0.67
λmax = 2.00, CI = 0, CR = 0

Table 5.21: Alternatives pairwise comparison, priority vector with respect to
the specific context, and consistency.

Alternatives CC CE C-E Sys CGen EGen T-box Priority vector
CC 1 2 2 5 2 3 1/2 0.22
CE 1/2 1 1/2 3 1/5 1/2 1/2 0.08
C-E 1/2 2 1 3 1/5 2 1/2 0.11
Sys 1/5 1/3 1/3 1 1/3 1/3 1/3 0.04
CGen 1/2 5 5 3 1 3 1/2 0.22
EGen 1/3 2 1/2 3 1/3 1 1/2 0.09
T-box 2 2 2 3 2 2 1 0.23
λmax = 7.75, CI = 0.13, CR = 0.10

Table 5.22: Alternatives pairwise comparison, priority vector with respect to
the general context, and consistency.

Alternatives CC CE C-E Sys CGen EGen T-box Priority vector
CC 1 5 5 7 1 5 1/2 0.27
CE 1/5 1 1/2 7 1/5 2 1/3 0.08
C-E 1/5 2 1 3 1/3 3 1/3 0.10
Sys 1/7 1/7 1/3 1 1/3 3 1/3 0.05
CGen 1 5 3 3 1 2 1/2 0.19
EGen 1/5 1/2 1/3 1/3 1/2 1 1/5 0.04
T-box 2 3 3 3 2 5 1 0.27
λmax = 7.82, CI = 0.14, CR = 0.10

Table 5.23: Scenario 1: Feedback priorities and overall consistency.
Alternatives CC CE C-E Sys CGen EGen T-box
Priorities 0.25 0.08 0.10 0.05 0.20 0.06 0.26
Overall CR = 0.04

As the learner prefers the general-to-specific approach, the top item for feed-

back is T-boxes as they allow general constructions. The next two items to give

feedback on are the correctness of construction and its generality. Construc-

tion 1 has two general components and a specific one, which indicates that the

learner has already used T-boxes, so no feedback on that is necessary; as the

construction is correct, the first feedback to be provided will be on the generality

of the construction, and more specifically, on the generality of the only specific
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component of the construction. From the AHP process, the next priorities are

related to the expression: correspondence between construction and expression,

correctness of expression and expression generality. The last two items are al-

ready in place, so no feedback on them is given. If in the previous step the

learner has made the specific component general, the construction would cor-

respond to the expression; if not, feedback would be provided to the learner

to make sure the construction (partially general) corresponds to the expression

(general).

Scenario 2. In this scenario, the prioritisation is computed for the individual

learning mode, taking in consideration the learner’s characteristics displayed in

Table 5.19, Construction 2 and its corresponding expression from Figure 5.9.

The procedure is applied as in Scenario 1; only the final feedback priorities and

the overall consistency are reported in Table 5.24.

Table 5.24: Scenario 2: Feedback priorities and overall consistency.
Alternatives CC CE C-E Sys CGen EGen T-box
Priorities 0.310 0.108 0.130 0.194 0.092 0.060 0.106
Overall CR = 0.03

As the learner prefers a specific-to-general approach, the feedback addresses

generality at the end. The first aspects to give feedback on are: the correct-

ness of construction, its systematic approach and the correspondence between

construction and expression. The first two aspects are in place, so the feedback

would be given on the correspondence between expression and construction. If

the learner addresses this aspect and the new expression is 2∗9+5, the feedback

on the following item, i.e. correctness of expression, becomes unnecessary. If

the learner does not correct the expression accordingly, the feedback would ad-

dress the correctness of expression, pointing out that the construction is correct

and that the expression should correspond to the construction. So, feedback at

this point includes the two interrelated aspects: the correctness of expression

and the correspondence between construction and expression. Only after estab-

lishing the correctness of construction and expression for the specific case of 4

red tiles, the feedback will address the generality of the construction: the use of

T-boxes, the generality of construction, and, finally, the generality of expression.

Scenario 3. In the collaborative mode, the two learners are working together

towards finding a general solution. The first leaner has a construction with 3

red tiles, while the second has a construction with 4 red tiles. Consequently,

a specific approach on one side will lead to an inadequate construction on the

118



Chapter 5. Feedback Prioritisation

other, which enforces the learners to work with the general. The procedure is

applied as in Scenario 1, i.e. the pairwise comparisons, the weights for the cri-

teria and the priority vectors for each criterion are defined for this collaborative

situation. The feedback priorities are displayed in Table 5.25.

Table 5.25: Scenario 3: Feedback priorities and overall consistency.
Alternatives CC CE C-E Sys CGen EGen T-box
Priorities 0.15 0.08 0.11 0.24 0.17 0.05 0.19
Overall CR = 0.03

As the learners are ‘forced’ to work with the general, the first aspect to

give feedback on is the systematic approach of the construction as, otherwise,

it would be difficult to make it general – as both learners have systematic (and

symmetric) constructions, this is not necessary. The next aspect to give feed-

back on is the use of T-boxes; ideally, this feedback from the system would be

replaced by the feedback of learner one, who has a partially general construc-

tion, to learner two, who has a specific construction. The next two aspects to

be addressed are the generality and the correctness of the construction. For the

same reason mentioned previously, the construction will be correct only when

it is general, so generality is addressed first and correctness afterwards. The

expression is dealt with at the end, starting from the correspondence with the

construction, addressing its correctness and finally, its generality.

The priorities delivered by the AHP process were validated by two experts

in the field of mathematical education who were aware of the way learners in-

teracted with eXpresser. Both of them agreed on the prioritisation for the two

individual situations, but there was one disagreement on the collaborative sce-

nario. One expert agreed with the prioritisation delivered by the AHP process,

while the other argued for the following order: T-box, CGen, CC, Sys, C-E,

CE and EGen. This order differs from the output of the AHP process by the

fact that the systematic approach is moved from the first place to the fourth.

The second expert’s argument for this was that they could build a construction

that is correct and not necessarily systematic. On the other hand, the other

expert argued that a systematic approach is important from the very beginning

to facilitate the generality of construction (and then, the expression) because

one of the learners prefers the specific-to-general approach and also has a low

arithmetics ability; therefore, even if the other learner would be able to reach

a general construction (though non-systematic) and to find a corresponding

expression, for the other learner this would be difficult and hardly beneficial.

Because the AHP mechanism is based on the pairwise comparisons, in case
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of disagreement, the pairwise comparisons can be fine tuned and checked for

consistency, thus allowing to change the prioritisation output. Providing the

teachers/researchers with an easy interface for making such changes is a direc-

tion of future research that could improve our proposed mechanism.

5.5 Discussion

For both versions of the feedback prioritisation mechanism one expert provided

the pairwise comparisons, but the output of the prioritisation mechanism was

checked against two other experts only in the second version. For this latter

version two individual and one collaborative scenario were used. The feedback

priorities for the individual mode were confirmed by both experts, whilst the

priority given to the systematic approach in the collaborative mode was con-

sidered by one of the experts as too high. One possible explanation for the

diversity of the experts’ opinion could be the added complexity of the collab-

orative mode, which is an issue that requires further investigation. The scale

of the evaluation was small due to the time and effort needed from experts to

provide pairwise comparisons and to evaluate the outcomes of the mechanism.

Thus, although the mechanism was proven to deliver meaningful prioritisations

for the three scenarios considered, more evaluation studies should be conducted

using different combinations of learner characteristics before we can claim that

the AHP approach works in general.

As already mentioned above, a considerable limitation of the AHP-based

approach is that in some applications a large number of pairwise comparisons

might be needed. To alleviate this situation in eXpresser we decided to use

a small number of learner characteristics combinations. If a combination of

learner characteristics has no corresponding pairwise comparisons, the closest

combination could be used instead. For example, if the current combination

is individual mode, low task difficulty, medium experience, medium arithmetics

level and a general-to-specific preferred approach, the closest combination would

be individual mode, low task difficulty, medium experience, high arithmetics

level and a general-to-specific preferred approach. This, however, may not lead

to the best prioritisation and may potentially confuse the learner. Further

investigation is needed to evaluate the trade off between keeping the number of

pairwise comparisons low and delivering relevant prioritisations. To address this

limitation future work will look into modelling the AHP process using neural

networks.
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5.6 Summary and Contribution of the Chapter

In this chapter a brief overview of personalised feedback was presented, together

with a proposed approach to feedback prioritisation based on a method from

Multi-criteria Decision Making called the Analytic Hierarchy Process. This

method was presented in detail and examples on how it is used were given for

both versions of the feedback prioritisation mechanism. The second version was

evaluated by two experts who agreed on the output of the proposed mechanism

with a small exception.

The contribution of this chapter is the development of a mechanism for

feedback prioritisation based on the Analytic Hierarchy Process. Although de-

signed for a particular educational environment, this approach could be applied

in other educational systems. The criteria and alternatives, however, would

need to be replaced with relevant aspects for the particular environment and

pairwise comparisons would need to be provided.

Feedback prioritisation is an issue teachers deal with in everyday teaching,

when learners need feedback on several aspects. Let us take the example of

a very simple task in the domain of algebra, where a learner is given a task

in which the first step is to define an algebraic expression. When a learner

has two mistakes in his expression, the teacher decides which one to address

first. In computer-based environments, however, this issues does not seem to be

considered at all.

In the context of structured learning environments, the material is broken

into steps that address only one aspect. Therefore, in such environments, feed-

back prioritisation is avoided altogether by the way the material is structured.

In ELEs, however, there is less structure and the learners are allowed more

freedom, which leads to situations similar to the ones in classroom teaching,

where the teacher needs to assess what the learner has done and which aspect

to address first. Previous research in the area of ELEs, however, does not seem

to address this issue either.

In classroom situations, teachers assess what a learner has done and what

aspects s/he needs feedback on very quickly based on their domain and peda-

gogical expertise (Marzano et al., 2005). In our research, the diagnosis is done

by the learner modelling mechanism presented in Chapter 4, while the priori-

tisation is based on an Analytic Hierarchy Process method which takes into

consideration domain and task knowledge, and pedagogical expertise. In other

words, our approach emulates teachers’ behaviour to address the issues they en-

counter in classrooms and embed it into our exploratory learning environment.

Therefore, the main contribution of the research presented in this chapter is

addressing an important issue, i.e. feedback prioritisation, that has not been
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addressed before, and attempting the developing of a prioritisation mechanism

for our exploratory learning environment.

This AHP mechanism can not be easily applied to other exploratory learn-

ing environments, as it has been developed using domain-specific information.

Thus, to be applied to other environments, the corresponding domain-specific

information needs to be identified, i.e. the criteria and the alternatives. Al-

though this approach seems to provide meaningful prioritisations that mimic

the teacher’s decisions, currently the effort needed for developing this mecha-

nism outweighs the benefits.
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Grouping for Collaborative

Learning Activities

In exploratory learning the focus is more on the knowledge construction process

rather than knowledge itself. Students learning emerges during the construction

and (or) exploration of models by varying their parameters and observing the

effects of these variations (Klahr, 2000). Exploratory learning is particularly

useful for problems that are not well structured and with no clear boundaries

between correct and incorrect approaches to solve a task (Lynch et al., 2006).

Moreover, some problems have several valid solutions but none of them can

be considered better than the others, and a full understanding of the knowl-

edge domain often requires awareness of the various ways the problems could be

solved. In classroom situations, this understanding is developed during collab-

orative activities in which learners discuss similarities and differences between

their approaches (Lynch et al., 2006).

Successful collaboration for learning activities, however, depends on forming

groups in which the activity is relevant for all members of the group. This chap-

ter presents a mechanism inspired from Group Technology (Selim et al., 1998)

for grouping learners for collaborative activities that allows to form groups of

learners based on the similarity of their approaches to the same task. The next

section introduces the problem of grouping in the context of exploratory learning

and gives an overview of general criteria considered for collaboration in learning

environments. The following section gives a brief overview of Group Technol-

ogy, while the subsequent one presents the proposed approach for grouping in

the context of eXpresser. This is followed by an evaluation using classroom

scenarios, a discussion, conclusions and an outline of the contribution of the

chapter.
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6.1 Grouping for Collaborative Learning Activ-

ities

Although collaborative learning has been proved successful in classroom situa-

tions (Brown and Palincsar, 1989; Slavin, 2003), in computer-supported learn-

ing environments it does not seem to lead to the same learning benefits. One

contributing factor is the way the collaborative groups are formed, as forming

efficient groups is very important to ensure an educational benefit from the

group interaction (Daradoumis et al., 2002).

For problems that could be solved in several ways, the aim of collaborative

activities is to discuss similarities and differences between various approaches

followed by students when working individually. Often, establishing similar-

ities and differences between various approaches involves translating between

multiple representations. In simulation-based learning environments, the use of

multiple representations is considered beneficial as it leads learners to deeper

knowledge acquisition of a domain, that in turn, could lead to knowledge trans-

fer in other learning situations (van der Meij and de Jong, 2006). Also, “having

to make the mental transference between representations ... forces reflection be-

yond the boundaries and details of the first representation and an anticipation

of correspondences in the second. The deeper level of cognitive processing can

reveal glitches that might otherwise have been missed” (Petre et al., 1998, p.

474).

Multiple External Representations (MERs) (as opposed to mental repre-

sentations) have several functions: to complement, constrain and construct

(Ainsworth, 1999). “The first function is to use representations that contain

complementary information or support complementary cognitive processes. In

the second, one representation is used to constrain possible (mis)interpretations

in the use of another. Finally, MERs can be used to encourage learners to

construct a deeper understanding of a situation” (Ainsworth, 1999, p. 134).

One of the contributing factors to successful collaboration is the formation

of groups in a way that each group member will benefit from the collaborative

interaction. The criteria for successful grouping, however, are still not well

established, not even for classroom collaborative activities. The tendency is to

group students based on their achievement (Macintyre and Ireson, 2002) and

form heterogeneous or homogeneous groups with the aim to reduce heterogeneity

of learning or of social behaviour (Gregory, 1984). It has been shown that low-

achieving students learn more in heterogeneous groups than in homogeneous

ones, and that high-achieving students benefit equally from heterogeneous and

homogeneous groups (Webb et al., 1997). Besides these findings, there is little

known about the influence of group formation on the collaborative processes
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and performance (Webb et al., 1997; Leornard, 2001).

In computer-supported learning, the criteria used for group formation are

learners’ characteristics related to their performance and social characteristics

(e.g. Gogoulou et al. (2007); Graf and Bekele (2006)) and various approaches

have been proposed to ensure the formation of optimal groups. For example,

an algorithmic approach has been used in Gogoulou et al. (2007) to form ho-

mogeneous and heterogeneous groups, and a Genetic Algorithms approach was

used to form mixed groups by considering the following learners’ characteristics:

learner’s personality, competence level, learning style, an indicator for collab-

orative behaviour and an indicator for acting as evaluator in peer-assessment.

An Ant Colony Optimisation approach is used in Graf and Bekele (2006) to

form heterogeneous groups based on personality traits and performance. Fuzzy

C-Means clustering for formation of homogeneous and heterogeneous groups

is compared to other low complexity algorithms in Christodoulopoulos and Pa-

panikolaou (2007). A framework for collaborative group formation was proposed

in Ounnas et al. (2009) using a constraint satisfaction problem formulation, and

Logic Programming and Semantic Web Technologies. A high-level description

of the processes involved in group formation was proposed for virtual learning

environments where learners do not know each other and several parameters

that influence group collaboration were identified : (a) individual and group

learning, and social goals; (b) relationships among group members; (c) the in-

teraction process; and (d) members’ specific characteristics (Daradoumis et al.,

2002). To ensure formation of optimal groups, dynamic grouping supported

by wireless handhelds has been proposed for classroom use, allowing reconfig-

urations of groups to find optimal ones (Zurita et al., 2005). Consequently,

current research indicates that group formation is a complex problem with no

straightforward answer.

Unlike previous work on group formation, our research is in the field of ex-

ploratory learning environments, where a problem can be solved using different

strategies. The goal of the collaborative activities is to discuss similarities and

differences between strategies adopted by learners to solve the task. There-

fore, the grouping mechanism needs to take into consideration the individual

approaches and the similarities/differences between the approaches followed by

learners. To this end, modelling individual learners’ approaches is required,

together with a systematic way for defining similarities between approaches.

To address the challenging task of modelling individual behaviour, a case-

based reasoning approach was presented in Chapter 4. Simple and composite

cases were defined, where composite cases stand for the various approaches to

solve a task, called strategies, and are defined as a series of simple cases linked

through temporal and dependency relations. Each task has a Task Model con-
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sisting of composite cases; while solving a task, learners’ behaviour is compared

to these cases to identify the ones used by each learner, and this information

is then stored in Learner Models. This formulation allows the recognition of

strategies followed by learners during the task, rather then at the end, allowing

thus to form groups any time the teacher wants to. Moreover, it provides a sys-

tematic way of defining similarities between strategies based on the existence of

common cases. Lastly, it offers teachers flexibility to set their own preferences

about the operation of the similarity detection mechanism by biasing group for-

mation towards their personal grouping preferences, e.g. the teacher may want

to group together students whose strategies have at least 3 cases in common or

students who have largely followed different exploration strategies with just 1

case in common.

To take into consideration the similarity between different approaches fol-

lowed by learners, we use an approach inspired from Group Technology (Selim

et al., 1998) by defining learners and strategies as property vectors, based on

the information from individual Learner Models and from the Task Model, cal-

culating similarities between them and deriving an incidence matrix on which

clustering is performed. This procedure leads to formation of homogeneous

groups; however, heterogeneous groups can also be formed by choosing one or

more learners from each or some of the homogeneous groups.

Unlike previous research, we propose characteristics of individual approaches

and similarities between approaches as criteria for group formation, as these as-

pects are relevant for the way learning activities are defined using eXpresser.

Although the goals of a task have been considered in group formation, we are

not aware of any research that considers our proposed criteria. We are aware of

only one approach based on Group Technology that has been previously used for

group formation for educational purposes. This work was developed for distance

learning environments with the aim to group learners and learning objects so

that students are given the opportunity to learn skills or knowledge that they

do not master already (Pollalis and Mavrommatis, 2009). Also, characteristics

of solutions have been previously used to support collaboration (de los Ange-

les Constantino-Gonzalez et al., 2003); more specifically, differences between

problem solutions are detected to help students recognise and resolve conflicts

between their problem solutions. In contrast to these works, our approach is

developed for an exploratory environment, where users are left free to follow any

strategy they wish to solve a problem, making it difficult during task execution

to distinguish between an approach that could lead to an appropriate solution

and an incorrect one. Moreover, it uses similarities rather than differences be-

tween approaches to solve the task.
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6.2 Group Technology

In order to incorporate our desired criteria in the grouping mechanism, we looked

for a method that can perform grouping based on the defined criteria, as well as

allowing flexibility about the definition of one of the criteria. Thus, we wanted

to take into consideration the strategies used by the learners and the similarities

between the various strategies used for the same task. Moreover, we are inter-

ested in a flexible way of defining similarities between strategies, as this has an

impact on the difficulty of the collaborative task and also is viewed differently by

different teachers (this is discussed in more detail in Section 6.4). Therefore, a

mechanism that can handle this flexibility was required. In our search of the lit-

erature for different grouping approaches we came across a method called Group

Technology which seemed promising for solving our group formation problem.

Group Technology (Selim et al., 1998) designates a method for group for-

mation of machines and parts in cellular manufacturing systems. The idea is to

optimise production of families of parts by creating machine cells. Thus, clusters

of machines can be located in close proximity and be responsible for a particular

family of parts to minimise production/transfer time. Therefore, two types of

groupings are considered: grouping parts into families and grouping machines

into cells. This is referred to as the cell formation problem. Several methods

have been used to solve it, such as descriptive procedures, cluster analysis, graph

partitioning, artificial intelligence and mathematical programming (Selim et al.,

1998; Joines et al., 1996). We are interested in the clustering analysis approach,

which in turn includes several techniques: similarity coefficient, set theoretic,

evaluative and other analytic methods (King and Nakornchai, 1982). Our ap-

proach is using array-based clustering and the similarity coefficient technique.

In array-based clustering, a part-machine incidence matrix is used whose

entries are either zero or one. If the entry in row i and column j is one, part

j needs to visit machine i; if it is zero, no visit is needed. The array-based

techniques lead to clusters of parts and machines by rearranging the order of

rows and columns to form diagonal blocks of one in the part-machine matrix.

The similarity coefficient techniques involve grouping parts and machines

into cells based on similarity measurements between machines and parts, and

between machines. These similarity coefficients are used in agglomerative clus-

tering techniques, of which the most popular is single linkage clustering (Selim

et al., 1998).

In our approach, similarity coefficients are used to form the incidence ma-

trix and array-based clustering is then applied to obtain the cells. For us, the

parts correspond to learners, the machines correspond to exploratory strategies

employed to perform a task, and the goal is to group students according to the
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strategy (or strategies) they used, taking into account that some strategies are

similar to each other while others are different. Consequently, we have devel-

oped a mechanism based on Group Technology under the assumption that this

approach is appropriate for our problem and that it can be applied in this new

context, i.e. learning environments.

6.3 Grouping for Collaboration using eXpresser

In the context of eXpresser multiple representations are used at two levels: (a)

at strategy level, where the same construction can be built using different struc-

tures and (b) at the T-boxes level which can be represented as numbers only,

name only or both. As mentioned in Chapter 4, through their multiple repre-

sentation, the T-boxes have the role of scaffolding the route from numbers to

variables. The aim of collaborative activities is to reflect on the equivalence of

seemingly different constructions and expressions and observe the similarity at

a higher structural level as the essence of generalisation. These collaborative

activities would benefit learners by raising their awareness of the several ways

to approach the same task, and their effort to establish the equivalence of rep-

resentations for both visual patterns and variables expressed with T-boxes will

lead to deeper understanding (van der Meij and de Jong, 2006; Petre et al.,

1998; Ainsworth, 1999).

Fig. 6.1 illustrates two seemingly different constructions and expressions for

the ‘pond tiling’ task. The strategy used to solve the task is the same, i.e. the

‘H’ strategy, but the visual representations of the construction and the repre-

sentation of the variables involved in the task (the T-boxes) seem different. The

learners’ discussion aims to establish the equivalence of these representations by

recognising what is different, e.g. the dimensions of the pond, the names used

for variables, and what is the same and captures the essence of generalisation,

e.g. the structure used (the ‘H’ strategy), the expressions.

Figure 6.1: Two approaches using the ‘H’ strategy.

Translating between representations, however, is found difficult by students

(Ainsworth, 1999; Schoenfeld et al., 2002; Yerushalmy, 1991). Therefore, our
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approach is to group students using the same or similar strategies, which ensures

the presence of structural similarity between their strategies, to facilitate the

translation between their representations of variables and expressions. To this

end, the grouping procedure includes the following phases (see also Fig. 6.2):

Phase 1. Represent all strategies stored in the Task Model as binary vectors

that define similarities between them.

Phase 2. Retrieve learner strategies from the Learner Models and represent

learners as vectors whose elements depict the existence of a relation between

a learner’ strategy and a strategy stored in the set of task strategies.

Phase 3. Define resemblance coefficients and calculate them.

Phase 4. Derive the Strategies-Learners Matrix (SLM) from the results of

previous step.

Phase 5. Perform clustering on SLM.

Figure 6.2: The procedure for group formation.

Definition 6.1 Let S be the set of strategies of a task: S = {sj}, j = 1, 2..., n.

Every strategy can be represented as a n-dimensional vector of 0s and 1s: sj =

(s1
j , s

2
j , ...., s

n
j ) where:

sij =

{
1 if sj is similar to strategy si

0 if sj is not similar to strategy si

For example, the vectors for the five strategies of the ‘pond-tiling’ task illus-

trated in Fig. 6.3 are displayed in Table 6.1.

Each task has multiple solutions corresponding to different visual representa-

tions. Some of these solutions are similar to each other while others are different.

For example, in the ‘pond-tiling’ task the ‘H’ strategy in Fig. 6.1 and the ‘+4’

strategy in Fig. 6.3c share similar characteristics because they have the same

horizontal bars, while the ‘I’ strategy in Fig. 6.3b and ‘+4’ strategy in Fig. 6.3c

share similar characteristics for having the same vertical bars. The constructions
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Figure 6.3: ‘Pond tiling’ task constructions and associated rules: (a) the ‘Area’
strategy; (b) the ‘I’ strategy; (c) the ‘+4’ strategy; (d) the ‘-4’ strategy; (e) the
‘Spiral’ strategy.

are illustrated with same pond; however, learners build constructions of various

dimensions. Therefore, in this work the notion of similarity between different

strategies refers to structural similarity rather than the exact dimensions of the

construction.

Table 6.1: Vectors for the strategies of ‘pond tiling’ task
‘Area’ ‘I’ ‘+4’ ‘-4’ ‘Spiral’

‘Area’ 1 0 0 0 0
‘I’ 0 1 1 1 0
‘+4’ 0 1 1 0 0
‘-4’ 0 1 0 1 0
‘Spiral’ 0 0 0 0 1

In Table 6.1, the vector (0 1 1 1 0) for the ‘I’ strategy (displayed in Fig. 6.3b)

means that this strategy is similar to itself, to the ‘+4’ strategy (Fig. 6.3c) and

to the ‘-4’ strategy (Fig. 6.3d); the vector (0 1 1 0 0) means that the ‘+4’ strategy

is similar to itself and to the ‘I’ strategy (Fig. 6.3b). These similarities can be

automatically deducted from the existence of structurally similar components;

alternatively they can be defined by teachers.

Definition 6.2 Let L = {λk}, k = 1, 2, ....,m be the set of learners.

A learner can be represented as a vector of 0s and 1s: λk = (λ1
k, λ

2
k, ..., λ

n
k ),

where:

λik =

{
1 if learner λk used si strategy

0 if learner λk did not use si strategy

For example, learner A that has used the ‘I’ strategy is represented as

(0 1 0 0 0) and learner B that has used the ‘Spiral’ strategy is represented

as (0 0 0 0 1). Sometimes learners use combinations of different strategies; for

example, learner C who has used the ‘I’ and ‘+4’ strategies would be represented

as (0 1 1 0 0). This vector formulation is based on the information stored in

the Learner Models; thus, learner A and B have in their Learner Models that
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their constructions are most similar to strategies ‘I’ and ‘Spiral’, respectively,

while the Learner Model for learner C indicates that the ‘I’ and ‘+4’ strategies

are most similar.

Definition 6.3 For each learner vector λk and each strategy vector sj, the fol-

lowing are defined (see also Fig. 6.4):

1. a is the number of matching 1s, i.e. the number of strategies contained in

both vectors;

2. b is the number of 1s in λk and 0s in sj, i.e. the number of strategies

followed by the learner which are contained in λk but not included in sj;

3. c is the number of 0s in λk and 1s in sj, i.e. the number of strategies that

the learner did not follow but are included in sj;

4. d is the number of matching 0s, i.e. the number of strategies that are not

contained in neither of the two vectors.

Figure 6.4: Example for Definition 6.3.

Next we use two resemblance coefficients: one for the similarity between

learners and strategies, and one for the relevance of each strategy for a particular

learner.

Definition 6.4 The similarity coefficient (SC) between a learner λk and a strat-

egy sj is defined as: SC(λk, sj) = a
a+b+c , for each learner λk ∈ L, k = 1, 2, ...,m

and each strategy sj ∈ S, j = 1, 2, ..., n.

This was first defined for use in Group Technology by McAuley (1972) and is

in fact a Jaccard similarity coefficient - a well known measure of similarity. A

study that compared 20 similarity coefficients for the cell formation problem

found it to be the most stable (Yin and Yasuda, 2005), i.e. in several trials the

results are within a small variation range around the average result, rather than

within a wide range spanning from bad to very good results (that can still give

a relatively good average).

Definition 6.5 The Relevance Coefficient (RC) of a strategy sj for learner λk

is defined as: RC(λk, sj) = a
a+b , for each learner λk ∈ L, k = 1, 2, ...,m and

each strategy sj ∈ S, j = 1, 2, ..., n.
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The strategies-learners matrix is defined as:

SLM = {cij}, i ∈ [1, n], j ∈ [1,m],

cij =

{
1 if RC ≥ θRC and SC ≥ θSC

0 otherwise

where θRC , θSC ∈ (0, 1].

A minimum density of the matrix is necessary to obtain meaningful results.

More specifically, each column should have at least a ‘1’, i.e. each learner should

follow at least one strategy. Therefore, the minimum density is the number of

learners: m. Consequently, to fulfill the matrix density constraint, the values of

θRC and θSC could be defined dynamically for each class. To avoid unnecessary

computation, however, the following were established: (a) the value of θRC

should not be lower than 0.5; this was decided because the relevance coefficient

reflects the strategies followed by the learner and, consequently, should have

an important role to ensure that the learner is placed in a group of learners

that use at least one of the strategies followed by him/her; (b) calculate values

dynamically only if the density constraint is not satisfied using the value of 0.5

for both thresholds. Therefore, the grouping starts with the value of 0.5 for

both thresholds and if the matrix density constraint is not satisfied, the value

of θSC is gradually decreased until the constraint is satisfied.

To illustrate the next phase of the procedure, i.e. the clustering, let us

consider the matrix displayed in Step 1 of Fig. 6.5. Rank Order Clustering

(ROC), one the most frequently used methods in array-based clustering (Joines

et al., 1996), is applied, which involves organising columns and rows in the

order of decreasing binary weights. The following procedure is applied which is

illustrated in Fig. 6.5:

Step 1. Assign value 2m−j to column j. Evaluate each row (using Rowi =∑m
j=1 cij2

m−j) and order rows in decreasing order. If there is no change com-

pared to previous order, stop. Else, go to step 2.

Step 2. Assign value 2n−i to row i. Evaluate each column (Columnj =∑n
i=1 cij2

n−i) and order columns in decreasing order. If there is no change

compared to previous order, stop. Else, go to step 1.

In this example, the following clusters were formed: learners 1, 3 and 6

with strategies 1 and 3; learners 2 and 5 with strategy 2, and learner 6 with

strategy 4. In this particular example the blocks of 1s are clear cut; however,

that is rarely the case, showing that clusters are not independent. Also, one

strategy may be used by many learners, forming a big cluster; this is known as

the “bottleneck machine problem”, when a large number of components need to
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Figure 6.5: Steps of Rank Order Clustering example.

be processed by one machine. In the context of forming groups for collaboration

using eXpresser, these constraints are not considered critical limitations for the

formulation of strategies-learners clusters: if clusters are not independent, it

means that some learners are using other strategies besides the ones of that

cluster; if many learners are using the same strategy, forming a large cluster, it

can be broken down in several subgroups for the purpose of the collaborative

task.

6.4 Evaluation

We illustrate the approach presented in the previous sections using data from

a classroom session where 18 students used eXpresser to solve the ‘stepping

stones’ task. Out of the 18 learners, 6 used the ‘C’ strategy (C) illustrated

in Fig. 6.6b, 4 used the ‘HParallel’ strategy (H) displayed in Fig. 6.6c, 2 used

the ‘VParallel’ strategy (V) illustrated in Fig. 6.6d, 1 used the ‘Squares’ strat-

egy (S) displayed in Fig. 6.6d, 1 used a combination of ‘HParallel’ and ‘VParallel’

strategies (H&V) and the remaining 4 students were either off-task or used non-

systematic approaches such as building the construction using individual tiles -

see Table 6.2.

Figure 6.6: ‘Stepping stones’ task constructions and associated rules: (a) the
task construction regardless of structure; (b) the ‘C’ strategy; (c) the ‘HParallel’
strategy; (d) the ‘VParallel’ strategy; (e) the ‘Squares’ strategy

A subset of the vectors for strategies and learners is displayed in Table 6.3.

For learners that used the same strategy, only one example is provided; for

example, learners λ1 to λ6 have the same vectors and thus only learner λ1 is

displayed. The learners that did not follow a systematic approach are excluded.
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Table 6.2: Distribution of strategies used by learners.
Strategies C H V S H&V Other
Number of Learners 6 4 2 1 1 4

As shown in Table 6.2, four learners used non-systematic approaches to solve

the task denoted by ‘Other’. These could also be represented by a distinctive

vector which will result in a cluster formed by these learners; however, they are

already classified as a distinctive group and, therefore, including them in the

grouping mechanism will only lead to unnecessary computations.

Table 6.4 displays the values of RC and SC for each strategy and learner.

Using θRC = 0.5 and θSC = 0.5, the initial matrix in Table 6.5 is obtained;

applying ROC to it leads to the final matrix in Table 6.5 and to the following

groups:

(1) Group 1 includes learners λi, i = 1, 2, ..., 6 and λ13 that adopted the ‘C’ and

‘Squares’ strategies;

(2) Group 2 includes learners λi, i = 7, 8, ..., 10 and λ14 that adopted the ‘HPar-

allel’ strategy;

(3) Group 3 includes learners λi, i = 11, 12 that adopted the ‘VParallel’ strat-

egy.

The advantages of using this method, as opposed to clustering based only

on the strategies used, is that the similarities between different strategies could

be modified by the teacher. They could vary from being very strict (a strategy

is similar only to itself) to being very relaxed (a strategy is similar to other

strategies when there is at least one part that is similar). Given the way classes

are formed in the UK, based on achievement levels, a relaxed definition of sim-

ilarity would be more appropriate for high achieving classes that need more

challenges, while a strict definition of similarity would be more appropriate for

low achieving classes. Our proposed approach, thus, gives the necessary flex-

ibility to teachers to define the similarity depending on the characteristics of

Table 6.3: Strategies and learners vectors.
Strategies C H V S Learners λ1 λ7 λ11 λ13 λ14

C 1 0 0 1 C 1 0 0 0 0
H 0 1 0 0 H 0 1 0 0 1
V 1 0 0 0 V 0 0 1 0 1
S 1 0 0 1 S 0 0 0 1 0
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Table 6.4: Similarity between strategies and learners and relevance of strategies
for each learner.

Strategies λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11 λ12 λ13 λ14
C RC 1 1 1 1 1 1 0 0 0 0 0 0 1 0

SC 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0.5 0
HParallel RC 0 0 0 0 0 0 1 1 1 1 0 0 0 0.5

SC 0 0 0 0 0 0 1 1 1 1 0 0 0 0.5
VParallel RC 0 0 0 0 0 0 0 0 0 0 1 1 0 0.5

SC 0 0 0 0 0 0 0 0 0 0 1 1 0 0.5
Squares RC 1 1 1 1 1 1 0 0 0 0 0 0 1 0

SC 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0.5 0

Table 6.5: Initial and final matrix.
Initial matrix Final matrix (after ROC)

the class. More specifically, this can be done by considering this aspect when

defining the vectors for strategies using Definition 6.1 given in Section 6.3.

For example, a teacher may consider the ‘Squares’ strategy to be similar

to the ‘VParallel’ rather than the ‘C’ strategy. Consequently, the strategies

vectors would be: (a) ‘C’ strategy (1 0 0 0); (b) ‘HParallel’ strategy (0 1 0 0);

(c) ‘VParallel’ strategy (0 0 1 1); (d) ‘Squares’ strategy (0 0 1 1). Using these

vectors a new SLM matrix is obtained and the clustering procedure outputs the

following groups:

(1) Group 1 includes learners λi, i = 1, 2, ..., 6 that used the ‘C’ strategy;

(2) Group 2 includes learners λi, i = 7, 8, ..., 10 and λ14 that used the ‘HParallel’

strategy;

(3) Group 3 includes learners λi, i = 11, 12 and λ14 that used the ‘VParallel’

and ‘Squares’ strategies.

The mechanism we developed provides the teachers with groups based on

the strategies followed by learners, i.e. the clusters formed as explained above.

Using this information, teachers decide the size of groups and how the learners

are distributed. Currently, our approach does not include social, cultural or

personality factors, which are handled by the teacher. Future work, however,

will look at integrating these factors and at automating the group formation in
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a flexible manner that, for example, will allow teachers to enter constrains such

as ‘learner X should never be grouped with learner Y’.

6.5 Discussion

The research presented in this chapter had to address the challenging task of

developing a grouping mechanism that takes into account not only the infor-

mation about the strategy or strategies followed by each learner, but also the

similarity between the different strategies of a task. To this end, we were in-

spired by Group Technology approaches as they offer a way of formulating the

problem according to the desired criteria and of performing the grouping using

simple clustering methods.

While the Group Technology inspired mechanism performs well, it has the

limitation of using a ‘black and white’ approach rather than a continuous mea-

surement scale. Thus, a strategy is either similar to another one or it is not

similar at all. A grading scale, however, could be defined to reflect different

degrees of similarity. In the same way, the similarity of a learner’s strategy

to all stored strategies is defined as either similar or dissimilar. It would be

useful in the future to extend this mechanism to exploit information stored in

the Learner Model about the most similar strategies, including similarity val-

ues for each one. For example, if a learner’s strategy is similar to ‘HParallel’

and ‘VParallel’ strategies, with the values of 2.37 and 3.14, respectively, this

information could be used instead of the ‘black and white’ approach.

Currently the approach does not distinguish between the types of strategies

described in Section 4.3.3: complete, mixed, non-systematic and partial, as we

consider that mixing these types would be beneficial for learning. Consequently,

the groups include learners using these different types. Often, the learners who

follow complete strategies have used the other types before, and in practice

teachers usually invite these learners to act as tutors for their peers. Research

shows that peer tutors usually benefit by taking up this role because it helps

them to reflect on their own knowledge and use it as a basis for constructing

new knowledge - a process referred to as knowledge-building (Roscoe and Chi,

2007). Three properties of peer tutoring have been related to tutor learning:

structuring, taking responsibility and reflecting (Biswas et al., 2005). Giving

explanations, asking and answering questions helps peer tutors in structuring

their own knowledge; taking responsibility for their tutee’s learning motivates

peer tutors to gain a better understanding of the material; peer tutors’ reflection

on how their explanations were understood and used helps them in evaluating

their own understanding of the domain.

Research also shows that tutee learning is maximised when the tutee reaches
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an impasse and is prompted to find the right way to continue and explain

it, and is given an explanation only if they failed to do so (Vanlehn et al.,

2003). Therefore, learners with partial constructions that do not know how to

continue would benefit from the explanations of a peer that has completed the

same strategy; the ones with mixed strategies would benefit from discussing

the similarities and differences between their approaches; the ones with non-

systematic strategies would learn about the benefit of working with systematic

approaches.

6.6 Summary and Contribution of the Chapter

In this chapter we presented an approach for group formation that exploits ideas

from Group Technology and takes into consideration aspects that are relevant

for exploratory learning environments in general, and eXpresser in particular.

The criteria used in the grouping process are the strategies followed by learners

in solving a task and the similarities between different strategies of a particular

task.

Resemblance coefficients were used to define: (a) the similarity between

learners and strategies and (b) the relevance of each strategy for a particular

learner. The approach outputs homogeneous groups; however, heterogeneous

groups can be formed by choosing one or more learners from each or some of

the homogeneous groups.

The mechanism we propose has an important advantage compared with sim-

ple clustering, which is the flexibility given to teachers in defining similarities

between strategies. When similarity is defined in a strict way, i.e. a strategy

is similar only to itself, our mechanism gives the same output as a simple clus-

tering method. The latter, however, does not allow a more relaxed definition

of similarity, i.e. a strategy is similar to other strategies when there is at least

one part that is similar or when there is some conceptual similarity, while our

approach supports such definitions.

Similarly to the learner modelling and the feedback prioritisation mecha-

nisms, the proposed approach for grouping can be applied for other learning

environments where it is important to consider the above mentioned criteria,

i.e. ill-defined domains where a problem has multiple equally valid solutions.

In summary, the contribution of this chapter is twofold: (a) identifying rel-

evant criteria for exploratory learning in general and eXpresser in particular

and (b) defining a mechanism that outputs groups of learners based on the

above mentioned criteria.

The evaluation showed that our proposed approach works in the context

of exploratory learning and that it provides meaningful grouping, i.e. learners
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with similar strategies are placed in the same cluster. This evaluation is based

on judging the numerical outputs of the mechanism against the requirement

to cluster learners based on the similarity between their strategies. A more

powerful evaluation, however, would be to present teachers with the outcomes

of the mechanism and ask for them to evaluate them.
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Task Knowledge Base

Adaptation

In Chapter 4 we proposed a learner modelling mechanism for monitoring learn-

ers’ actions when constructing/exploring models by modelling sequences of ac-

tions reflecting different strategies in solving a task. An important problem,

however, remains: only a limited number of strategies are known in advance and

can be introduced by the designer/teacher. In addition, even if all strategies were

known, introducing them in the knowledge base would take considerable time

and effort. Moreover, the knowledge about a task evolves over time - students

may discover different ways of approaching the task, rendering the knowledge

base suboptimal for generating proper feedback, despite the initially good cov-

erage. To address this, we employ a mechanism for adapting the knowledge base

in the context of the second version of the ELE for mathematical generalisation,

i.e. eXpresser.

The task knowledge base adaptation involves a mechanism for acquiring in-

efficient cases, i.e. cases which include actions that make it difficult for students

to create a generalisable model, and a mechanism for acquiring new strategies.

The former could be potentially useful to enable targeted feedback about the

inefficiency of certain parts of a construction, or certain actions of the stu-

dent; this approach could also lead gradually to creating a library of ineffi-

cient constructions produced by students that could be analysed further by a

researcher/teacher. Without the later a new valid strategy will not be recog-

nised as such, and, consequently, the learner modelling module will diagnose the

learner to be still far from a valid solution and any potential feedback will be

confusing as it will guide the learner towards the most similar strategy stored

in the knowledge base.
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The next section gives a brief overview of adaptive modelling and positions

our approach within the literature. Section 7.2 presents the proposed approach

for knowledge base adaptation in the context of eXpresser, Section 7.3 describes

the evaluation studies, and Section 7.4 discusses the results and presents direc-

tions for future work. Finally, Section 7.5 summarises the chapter and gives an

overview of the contribution.

7.1 Adaptive Modelling

Adaptive systems refer to systems that change over time to respond to new

situations. There are three levels of adaptation depending on the complexity

and difficulty of the adaptation process, with the first level being the least

difficult and the third being the most complex and difficult (Anguita, 2001):

1. Adaptation to a changing environment;

2. Adaptation to a similar setting without explicitly being ported to it;

3. Adaptation to a new/unknown application.

As our adaptive modelling mechanism involves adaptivity at the first level,

we will review the literature on this aspect in more detail. At this level, the

system adapts itself to a drift in the environment by recognising the changes

and reacting accordingly (Anguita, 2001).

The most frequently used tools for adaptation are: artificial neural networks

(ANN), fuzzy systems, evolutionary computation and machine leaning.

In the filed of artificial neural networks the term catastrophic interference

(Sharkey and Sharkey, 1995) and Stability-Plasticity Dilemma (Grossberg, 1987)

have been often used for the problem of adapting to a changing environment.

The former refers to the problem of learning and retaining information that

arrives in sequential episodes over time, as training on a new set of items may

drastically disrupt performance on previously learned items (McCloskey and

Cohen, 1989). The latter refers to the dilemma of a system having to be adaptive

enough to allow learning new things while not diluting or forgetting previously

learned patterns (Grossberg, 1987). Therefore, essentially, both terms refer to

the same problem.

Research in this area spans from theoretical works (Lecerf, 1999; Hamker,

2001; Robins, 2004; Abraham and Robins, 2005; Fernando, 2010) to applied

research in areas such as identifying unique orthographic word forms (Glotin

et al., 2010), colour image segmentation (Yeo et al., 2005) and fault diagno-

sis (Xu et al., 2009).
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Fuzzy systems have been used in dynamic contexts and substantial work has

been done in the area of adaptive or evolving rule-based models (Angelov and

Buswell, 2002; Angelov, 2003; Xydeas et al., 2006; de Barros and Dexter, 2007;

Angelov et al., 2008). Evolutionary computation uses adaptive (e.g. Igel and

Kreutz (2003); Mallipeddi et al. (2010)) and self-adaptive techniques (e.g. Fister

et al. (2010); Montalvo et al. (2010)). Machine learning is found at the core of

adaptation problems, as it addresses the problem of adaptivity through learn-

ing (Anguita, 2001). The research includes symbolic methods such as decision

trees (Tong et al., 2010) and rules (Yang and Shao, 2007), sub-symbolic methods

such as neural networks (Gadkar et al., 2005) and Bayesian learning (Hirayama

et al., 2006), and statistical methods such as regression analysis (Rodŕıguez-

Serrano et al., 2010), cluster analysis (Zhang et al., 2009) and discriminant

analysis (Dogantekin et al., 2010).

Case-based Reasoning is associated with the second level of adaptivity (An-

guita, 2001), i.e. adapting to a similar setting, due to the principle of reasoning

by analogy that is used, which involves reusing and adapting solutions of known

problems to solve similar problems. In our research, however, the knowledge

base adaptation is not done through the reuse and adapt processes in CBR, but

using an algorithmic approach that exploits knowledge of the domain, and more

specifically, of the tasks involved. Therefore, our approach involves adaptivity

only at the first level, and is presented in detail in the following section.

7.2 Adaptive Modelling for eXpresser

Our approach for adapting the task knowledge base of eXpresser includes ac-

quiring inefficient simple cases and acquiring new strategies. Some examples

from the ‘stepping stones’ task are displayed in Fig. 7.1 for the two situations;

the constructions are broken down into individual components used by the stu-

dents for ease of visualisation. These examples, with the adaptation rationale

and mechanism are discussed below.

Figure 7.1: (a)-(b) ‘HParallel’ strategy with an inefficient component (blue mid-
dle row) and its property list; (c)-(d) ‘VParallel’ strategy with an inefficient
component (blue vertical bars) and its property list; (e) a new strategy
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Acquiring inefficient simple cases. The goal of this mechanism is to iden-

tify parts of strategies constructed in inefficient ways and store them in a set of

‘inefficient constructions’, i.e. constructions that pose difficulties for learners in

their process of generalisation. The set could be used for automatic generation

of feedback or analysed by a researcher/teacher. The results could inform the

design of better interventions, could be presented as a lesson learned to the

scientific community of mathematics teachers/researchers, or even discussed in

class (e.g. if an inefficient construction is often chosen by pupils in that class).

The construction in Fig. 7.1a illustrates an inefficient case within the ‘HPar-

allel’ strategy (see Figure 4.15c in Section 4.4.2) of the ‘stepping stones’ task:

the middle bar of blue tiles is constructed as a group of two tiles repeated twice

- see its property list in Fig. 7.1b. The efficient way to construct this component

is one tile repeated 4 times or, to make it general, one tile repeated the number

of red tiles plus 1. Both approaches, i.e. the efficient and the inefficient, lead to

the same visual output, i.e. there is no difference in the way the construction

looks like, making the situation even more confusing. The difficulty lies in re-

lating the values of the blue middle row (Ci) to the ones of the red middle row

(Cj). If the learner relates value 2 of iterations of Ci to value 3 of iterations of

Cj , i.e. value 2 is obtained by using the iterations of red tiles (3) minus 1, this

would work only for a ‘stepping stones’ task defined for 3 red tiles. In other

words, this will not lead to a general model. Another example of an inefficient

case is given in Fig. 7.1c, with its property list presented in Fig. 7.1d. These

inefficient cases are not related to mathematical misconceptions, but seem to

be a consequence of the system’s affordances combined with little experience of

generalisation tasks, and come from learners’ wish to make there patterns bigger

without considering the generality of their approach. However, they are peda-

gogically important, offering learners the possibility to reflect on their actions

in relation to generalisation.

Algorithms 1, 2 and 3 illustrate how inefficient simple cases are identified

and stored. First, the most similar strategy is found. If there is no exact match,

but the similarity is above a certain threshold θ1, the process continues with the

identification of the inefficient cases; for each of these cases, several checks are

performed (Alg. 2). Upon satisfactory results and if the cases are not already

in the set of inefficient cases, they are then stored (Alg. 3). What is stored

is actually a modification of the most similar (efficient) case, in which only

the numerical values of iterations, move-right and/or move-down are updated

together with the value and dependency relations. These are the only modifica-

tions because, on one hand, they inform the way in which the pattern was built,

including its non-generalisable relations, and, on the other hand, it is important

to preserve the values of PartOfS attributes, so the researcher/teacher knows
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in which strategies these can occur. The colouring attributes and the relation

between cases are not important for this purpose and, therefore, they are not

modified. This has also the advantage of being computationally cheaper.

Algorithm 1 Verification(StrategiesCaseBase, InputStrategy)

Find most similar strategy to InputStrategy from StrategiesCaseBase
StoredStrategy ← most similar strategy;
if similarity > θ1 then

Find cases of InputStrategy that are not an exact match to any case of StoredStrategy
for each case that is not an exact match do
InputCase← the case that is not an exact match
Compare InputCase to all cases of the set of inefficient cases;
if no exact match then

Find the most similar case to InputCase from the cases of StoredStrategy
StoredCase← the most similar case
if Conditions(StoredCase, InputCase) returns true then {see Alg. 2}

InefficientCaseAcquisition(StoredCase, InputCase) {see Alg. 3}
end if

end if
end for

end if

Algorithm 2 Conditions(C1, C2)

if (MoveRight[C1] 6= 0 and Iterations[C1]∗MoveRight[C1] = Iterations[C2]∗MoveRight[C2])
or
(MoveDown[C1] 6= 0 and Iterations[C1]∗MoveDown[C1] = Iterations[C2]∗MoveDown[C2])
then

return true
else

return false
end if

Algorithm 3 InefficientCaseAcquisition(StoredCase, InputCase)

NewCase← StoredCase
for i = 4 to v − 1 do {attributes from iterations to move-down}

if value of attribute i of NewCase is different from that of InputCase then
replace value of attribute i of NewCase with the one of InputCase

end if
end for
for all relations between attributes do {value an dependency relations}

replace relations of NewCase with the ones of InputCase
end for
add NewCase to the set of inefficient cases

New strategy acquisition. The goal is to identify new strategies and store

them for future use. New strategies could be added by the teacher or could

be recognised from the learners’ constructions. In the later case, after some

verification checks (see Algorithm 5), the decision of storing a new strategy is

left with the teacher. This serves as another validation step for the detected

new strategy.

Fig. 7.1e illustrates the so-called ‘I’ strategy, due to its resemblance to letter

I. When compared to all strategies, it is rightly most similar to the ‘VParallel’

one (see Figure 4.15d in Section 4.4.2), as some parts correspond to it. How-

ever, the similarity is low, suggesting it may be a new strategy. Without the
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adaptation mechanism, the learner modelling module will infer the learner is

using the ‘VParallel’ strategy, but is still far from completion. This imprecise

information is potentially damaging as it could, for example, lead to inappro-

priate system actions, e.g. providing confusing feedback by guiding the learner

towards the ‘VParallel’ strategy. Conversely, the adaptation mechanism will

prevent generating such confusing feedback, and storing the new strategy will

enable appropriate feedback in the future - automatically or with input from

the teacher/researcher.

Algorithms 4, 5 and 6 illustrate how an input strategy is identified and stored

as a new strategy (composite case). If the similarity between the input strategy

and the most similar strategy from the case-base is below a certain threshold θ2

(Alg. 4), some validation checks are performed (Alg. 5) and upon satisfaction,

the new strategy is stored in the case-base (Alg. 6). If the input strategy has

been introduced by a teacher and the similarity is below θ2, the teacher can still

store the new strategy, even if very similar to an existing one.

Algorithm 4 NewStrategyVerification(StrategiesCaseBase, InputStrategy)

Find most similar strategy to InputStrategy from the StrategiesCaseBase
if similarity < θ2 then

if ValidSolution(InputStrategy) returns true then {see Alg. 5}
NewStrategyAcquisition(InputStrategy) {see Alg. 6}

end if
end if

Algorithm 5 ValidSolution(InputStrategy)

if SolutionCheck(InputStrategy) returns true then {checks if InputStrategy ‘looks like’ a so-
lution}

if the number of cases of InputStrategy < θ3 then
if InputStrategy has relations between attributes then

RelationVerification(InputStrategy) {verifies that the numeric relation corresponds to
the task rule solution}
if successful verification then

return true
end if

end if
end if

end if

Algorithm 6 NewStrategyAcquisition(NewStrategy)

add NewStrategy to the strategies case-base
adjust values of PartOfS

In Algorithm 5 the SolutionCheck(InputStrategy) function verifies whether

InputStrategy ‘looks like’ a solution by examining if the mask of InputStrategy

corresponds to the mask of the task. The following check takes into consider-

ation the number of simple cases in the InputStrategy. Good solutions are

characterised by a relatively small number of simple cases; therefore, we pro-

pose for the value of θ3 the maximum number of cases among all stored strategies
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for the corresponding task, plus a margin error (such as 3). If this check is sat-

isfied, the RelationVerification(InputStrategy) function derives a rule from the

value relations of the cases and checks its correspondence to the rule solution

of the task. For example, in the construction of Fig. 7.1c, the rule derived is

3∗( red2 +1)+7∗ red2 which corresponds to the solution 5∗red+3. If all checks are

satisfied, the new strategy is stored in the case-base and the PartOfS values

are adjusted.

7.3 Evaluation

The validation of our proposed mechanisms includes:

(a) identifying the boundaries of how far a pattern can be modified and still be

recognised as similar to its original;

(b) correct identification of inefficient cases within these boundaries and

(c) correct identification of new strategies.

This low-level testing of the system shows how the adaptation of the knowledge-

base and the learner modelling module function together to improve the perfor-

mance of the system.

To this end, experiments have been conducted using real as well as artificial

data. The real data comes from small trials (1 to 4 pupils) as well as classroom

use of eXpresser ; the classroom data comes from two sessions that took place

in July 2008 in a secondary school in London (the same as the ones mentioned

in Section 4.4.3). The artificial data was obtained by varying parameters of the

constructions produced by learners in the real settings mentioned above. More

specifically, to obtain artificial data based on a learner’s construction, the values

of the attributes of individual cases were changed, but the overall structure of

the construction is maintained; in other words, the artificial data will reflect a

different instance of the task than the one used by the learner, but the approach

used by the learner is preserved. For example, artificial data based on a learner’s

construction using the ‘H strategy’ for the pond-tiling task and working with a

pond of width 5 and height 7, would be a construction using a pond of width

6 and height 4 following the same strategy (i.e. ‘H strategy’). For partial

and mixed constructions, the same principles apply, i.e. the constructions are

proportionally adjusted to reflect the same structure.

The use of artificial data was necessary to provide a more realistic evaluation

of the algorithms, as the amount of real data available was small. Overall, 55%

is real data and 45% is artificial data. More details about the distribution is

given below, for each experiment.
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First, a preliminary experiment using classroom data was conducted to iden-

tify possible values for the threshold θ1 in Algorithm 1 and threshold θ2 in Al-

gorithm 4. Since our main aim was to test the adaptive modelling mechanism

we decided not to seek optimal values for these thresholds, but only to find a

good enough value for each one. Two possibilities were quickly identified - for

θ1: the minimum overall similarity (4.50) minus an error margin (0.50) or value

1.00 for the numerical similarity ; for θ2: the maximum overall similarity (3.20)

plus an error margin (0.30) or value 1 for the numeric similarity.

Experiment 1: identifying the boundaries of how far a pattern can be inef-

ficiently modified and still be recognised as similar to its original efficient form.

As mentioned previously, we consider changes in a pattern that can lead to the

same visual output as the original one but use different building-blocks. More

specifically, these building-blocks are groups of two or more of the original ef-

ficient building-block. This experiment looks for the limits of changes that a

pattern can undergo without losing its structure. We used 34 artificial inefficient

cases from the ‘pond tiling’ and ‘stepping stones’ tasks.

From the 34 cases, 47% were from the ‘stepping stones’ task and 53% were

from the ‘pond tiling’ task. Using these cases, the following boundaries were

identified:

(i) groups of less than 4 building-blocks;

(ii) groups of 2 building-blocks repeated less than 6 times and

(iii) groups of 3 building-blocks iterated less than 4 times.

To illustrate these bounds the ‘C’ strategy of the ‘stepping stones’ task is

used in Fig. 7.2. The building-block of this strategy is a ‘C shape’ pattern. The

1st column illustrates an inefficient pattern that is still recognisable as similar

to the efficient form displayed in the 3rd column and the 2nd column displays

an inefficient pattern that is not recognisable anymore as similar to the efficient

form. The three rows correspond to the three bounds mentioned above. The

iterations of the efficient pattern from the 3rd column refer to the number of

iteration needed to obtain the same shapes as the ones from the 1st and the

2nd column. For example, in the 1st row, the ‘3/4 iterations’ denotes that 3

iterations are needed to obtain the same shape as the one in the 1st column

and that 4 iterations are needed to obtain the same shape as the one in the 2nd

column; the property list displays the first value.

Due to the awareness of the sub-patterns in the examples illustrated above,

to the human eye the differences between the recognisable and not recognisable
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inefficient patterns seem very small. The metrics, however, do not incorpo-

rate this knowledge and, therefore, are limited to the bounds illustrated above.

An interesting direction for future work would be to investigate the effects of

incorporating such knowledge in the metrics.

Experiment 2: correct identification of inefficient cases within the previously

identified boundaries. From the 34 inefficient cases of Experiment 1, 13 were

outside the identified boundaries and 21 were within. From the 21 cases within

the boundaries, 62% were from the ‘stepping stones’ task and 38% were from

the ‘pond tiling’ task. Using the previously identified values for θ1, we obtained

the following results: out of these 21 cases, 52.48% had the overall similarity

Figure 7.2: Bounds for recognition of inefficient patterns

147



Chapter 7. Task Knowledge Base Adaptation

greater than 4.00 and 100% had the numeric similarity above 1.00. These re-

sults indicate that a small modification of a pattern can drastically affect the

identification of the strategy the learner is following; hence almost half the cases

have an overall similarity less than 4.00. The results obtained using the numeric

similarity are much better, which was expected given that the modifications are

just numerical.

Experiment 3: correct identification of strategies. The data for this experi-

ment included 10 new strategies: 7 observed in trials with pupils and 3 artificial.

Out of the 10 new strategies, 4 were from the ‘pond tiling’ task; all of them were

observed in trials with pupils. The remaining 6 new strategies were from the

‘stepping stones’ task, with 3 of them observed and 3 artificial. The knowledge

base for the two tasks included originally 4 strategies for the ‘stepping stones’

task and 2 strategies for the ‘pond tiling’ task. Using the previously identified

values for θ2, we obtained the following results: out of the 10 new strategies,

100% had the overall similarity below 3.50 and 70% had the numeric similarity

below 1.00. As opposed to Experiment 2, the overall similarity performs better,

being consistent with the fact that the overall similarity reflects better the re-

semblance with the stored strategies than the numeric similarity alone. Given

the range that the overall similarity has, i.e. from 0 to 10, values below 3.50

indicate a very low similarity and therefore, rightly suggest that the learner’s

construction is considerably different from the ones in the knowledge base.

7.4 Discussion

A summary of results is displayed in Table 7.1. They show that the algorithms

are capable of recognising new relevant data with an accuracy of 100% using

two of the previously identified values for the thresholds.

Table 7.1: Summary of results
Experiment Threshold Accuracy
Identification of Overall similarity 4 52.48%
inefficient patterns Numeric similarity 1 100%
Identification of Overall similarity 3.50 100%
new strategies Numeric similarity 1 70%

As already mentioned in Section 4.4.2, the numeric similarity (F1) reflects

the structure of a construction. Therefore, using the numeric similarity for the

thresholds θ1 and θ2 structural modification is identified - performing very well

in Experiment 2, where all changes are numerical, but not as well in Experi-

ment 3, where the changes are not exclusively numerical. As a strategy is not
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defined only by patterns and their structure, but by relations as well, the overall

similarity performs better in Experiment 3.

Automatic detection of inefficient cases and new strategies is potentially use-

ful for improving the feedback given to learners by automatically incorporating

related information or by informing the teacher and allowing them to author

feedback they consider appropriate.

The algorithmic approach presented here has the advantage of being closely

tied up with the strategy identification mechanism, thus, using the same similar-

ity metrics to identify inefficient patterns and new strategies. This advantage

for our particular environment, i.e. eXpresser, however, could be seen as a

disadvantage in terms of the generality of the approach for other learning envi-

ronments.

There are two aspects of the algorithm approach, each with different impli-

cations on the applicability of the proposed mechanism to other environments.

One aspect is the user modelling mechanism and the approach taken to diag-

nose the learner and the other is the identification of the new relevant data. As

the algorithmic approach developed here is tailored for eXpresser and is inter-

twined with the user modelling mechanism, the approach is not applicable to

other learning environments as such. The high-level approach, however, could

be applied to other systems provided that task or domain-related information

is available about how to test the validity of a new approach.

7.5 Summary and Contribution of the Chapter

In this chapter we presented an approach for adaptive modelling of the tasks

knowledge base. This work was motivated by the fact that due to the open

nature of the environment not all strategies are known in advance and that

learners use the system in inefficient ways that lead to difficulties in solving the

given tasks. To overcome these problems, we developed an adaptive modelling

mechanism to expand an initially small knowledge base, by identifying inefficient

cases (i.e. cases that pose additional difficulty to the user’s learning process)

and new strategies.

The proposed mechanism builds on the learner modelling mechanism pre-

sented in Chapter 4 in general, and the similarity metrics in particular (pre-

sented in Section 4.4.2). For both inefficient patterns and new strategies, the

principle is the same: they are compared with data from the knowledge base and

if they are not already stored, some checks are performed and upon successful

verification, they are added to the knowledge base. The checks are related to

specific information about a particular task which are available from the Task
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Model. With this mechanism, new data can be added to the knowledge base

without affecting the recognition of existing data.

Our adaptive modelling mechanism ensures that the learner diagnosis will be

accurate even when the researcher or teacher authors only one or two strategies

for a new task. Also, it ensures that the learner diagnosis will be accurate when

learners’ behaviour changes over time even if initially there is a large knowledge

base.

The evaluation of the proposed approach showed that it is capable of recog-

nising new inefficient patters within certain boundaries and of recognising new

strategies. The boundaries for recognising inefficient patterns are related to

the similarity metrics’ ability to identify how much they have been modified

from their original initial form. When looking at the modifications that learn-

ers tend to make, we notice that they take the form of using repetitions of the

basic building-block, which modify the structure of the pattern. The similarity

metrics, however, were defined to recognise structural similarity. Therefore, to

improve the metrics’ ability to recognise modifications of efficient patterns, they

should be enhanced with the capacity to recognise sub-patterns.

The adaptive mechanism that we developed was tailored for eXpresser and

the domain of mathematical generalisation. We believe, however, that the high

level idea can be used in other exploratory learning environments and for do-

mains where several approaches are possible for the same problem. Therefore,

the main contribution of this chapter is addressing one of the main issues of

exploratory learning environments, i.e. an optimal coverage of the knowledge

base when not everything can or is efficient to be modelled and stored.
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Conclusions

The research presented in this thesis belongs to the broad area of modelling

human behaviour with the purpose to give computers the means to respond

intelligently. In particular, it is relevant to educational systems that want to

adapt to their users and their specific needs and, more specifically, to a particular

type of educational systems called Exploratory Learning Environments (ELEs).

These environments are different from tutoring systems in relation to two main

features: (a) the freedom given to learners and (b) the characteristics of the

domain, e.g. less structure, several valid approaches for the same problem,

understanding of the domain involves being aware of several perspectives on the

same issue.

We focused on a learner modelling mechanism in an ELE for the domain of

mathematical generalisation that infers a learner’s approach to a task, where

each task could be approached in several ways. We have developed a learner

modelling mechanism based on a modified version of Case-based Reasoning that

can deal with problems that have multiple solutions. Our aim was to be able

to diagnose the learner during as well as at the end of a task, and to use the

inferred information for several educational purposes. The main contribution of

this thesis is the development of the learner modelling mechanism, while several

secondary contributions were made in relation to the following issues: feedback

prioritisation, grouping for collaboration and maintaining an optimal coverage

of the knowledge base.

This chapter presents a summary of the research and findings of the the-

sis. It also outlines the contribution of this work, its limitations and possible

extensions.
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8.1 Summary of Research and Findings

Personalised support in exploratory learning is acknowledged as an essential

issue to enable learners to benefit from the advantages of learning by explo-

ration. Achieving personalised support is, however, a very challenging task, as

pointed out in Chapter 1. Several attempts have been presented in Chapter 2

with most approaches focusing on modelling the learners’ knowledge of the do-

main (Veermans, 2003; Stathacopoulou et al., 2005; Andaloro and Bellomonte,

1998), one focusing on modelling skills related to exploratory learning (Ting

and Phon-Amnuaisuk, 2009), one focusing on modelling meta-skills related to

exploratory learning (Conati and Merten, 2007) and, finally, one focusing on

modelling knowledge and effective exploration at the same time (Bunt, 2001;

Bunt and Conati, 2003).

Unlike previous research, the work presented in this thesis focuses on prob-

lems with multiple solutions in an environment where learners build their own

models. The aim is to enable learner diagnosis during as well as at the end

of an exploratory learning task. From the reviewed literature in only two

cases (Stathacopoulou et al., 2005; Andaloro and Bellomonte, 1998) learners

construct as well as explore models, while the rest allow only exploration of

models. Unlike the approach in Stathacopoulou et al. (2005), our approach is

based on strategies rather than concepts of the domain. Although conceptually

our research is close to the approach in Andaloro and Bellomonte (1998) in that

the information stored in the knowledge base is founded on the models that are

common to different students, in addition our approach has a mechanism that

enriches the knowledge base with new data when new relevant information is

encountered.

The research presented in this thesis could be split into three categories:

1. Modelling exploratory user behaviour, which was presented in Chapter 4;

2. Exploiting the information in the learner models for pedagogical purposes,

i.e. feedback prioritisation and grouping for collaboration, which were

presented in Chapters 5 and 6, respectively;

3. Maintaining an optimal knowledge base through adaptive modelling, which

was presented in Chapter 7.

To model users’ exploratory behaviour, a Case-based Reasoning approach

was used, where each task has a knowledge base of strategies corresponding to

possible solutions for the task. The strategies or composite cases are composed

of simple cases which correspond to shapes in ShapeBuilder and patterns in

eXpresser. To identify the strategies followed by learners, their constructions
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are compared to the strategies in the knowledge base of the corresponding task

using an aggregated measure of similarity, and the strategies identified as most

similar are stored in individual learner models. This high-level idea was devel-

oped using the initial version of the learning environment, i.e. ShapeBuilder,

and adjusted for the next version, i.e. eXpresser. Both versions successfully

identified situations of pedagogical importance: complete specific and general

strategies, mixed strategies, non-systematic strategies and partial strategies. In

addition, for the second version a mechanism for identifying off-task behaviour

was also developed. These situations or scenarios were identified using two

sources of information: behaviours observed in trials with pupils and pedagogi-

cal information about the importance of detecting certain behaviours.

The modelling mechanism has been developed in an iterative and incremental

manner, in parallel to other components of the exploratory environment. This

has influenced our approach, directing our efforts towards ensuring the flexi-

bility and extendibility of the modelling mechanism, as “user models cannot

and should not be separated from the software systems that use them” (Chin,

2001, p. 183). The case-based representation that we used allowed us to adjust

the representation to the requirements of the subsequent version with minimal

modifications, even if the interface of the system had considerably changed.

The information in the learner models was subsequently used for feedback

prioritisation and grouping for collaboration. An approach based on the Ana-

lytic Hierarchy Model, a method from Multi-criteria Decision Making, was used

for feedback prioritisation, while the mechanism for grouping for collaboration

was based on Grouping Technology, a method for group formation of machines

and parts in cellular manufacturing systems. The feedback prioritisation mecha-

nism was tested using two experts who agreed with the outcome of the proposed

mechanism, with one small exception. The grouping mechanism was tested us-

ing classroom data and showed that meaningful groups are created while also

allowing flexibility in establishing the degree of similarity between strategies

considered as a criterion for grouping.

To ensure optimal coverage of the knowledge base, an adaptive modelling

mechanism was developed that recognised new relevant data and stored it.

These data refer to inefficient cases, i.e. cases that make the generalisation

task more difficult for the learner, and to new strategies. Three experiments

were conducted and showed that both inefficient cases and new strategies were

correctly identified by our adaptive mechanism.

153



Chapter 8. Conclusions

8.2 Thesis Contributions

This section presents an overview of the thesis contributions. For each chapter

describing research work, the contribution is outlined together with the research

areas to which it has contributed.

The main contribution of this thesis is the development of a learner modelling

mechanism in the context of an exploratory learning environment for mathemat-

ical generalisation, which was described in Chapter 4. Our proposed approach

aimed to provide diagnosis of what a learner is doing during as well as at the

end of a task, and thus, enable the system to adapt its response to each learner.

Thus, this work contributes to the fields of User Modelling and User-Adaptive

Systems, Artificial Intelligence in Education and Intelligent Systems.

Particularly, the proposed approach brings a new way of modelling learner

behaviour in exploratory learning environments. Thus, we focused on learners’

approaches to a particular task, that we call strategies and on identifying what

strategy a learner is using. In this way, we addressed on of the key questions

in the area of modelling exploratory behaviour, i.e. what to model? Modelling

learner’s strategies, rather than concepts for example, gives the advantage of

having a more holistic view of the learner’s perspective of a particular task. In

other words, a strategy contains more information than a probability attached

to a concept. Also, this is more appropriate for ill-defined domains (Lynch et al.,

2006) for which exploratory learning is more suitable than tutoring, as they are

often characterised by complex problems, in which a concept cannot be explored

in separation from other ones because the essence lies in the relation between

concepts.

Although we developed the learner modelling mechanism for our particular

exploratory learning environment (ELE) and a specific domain, i.e. mathemat-

ical generalisation, we believe that the high level idea can be applied to other

ELEs and domains where a problem can have several equally valid solutions.

Moreover, the knowledge representation could potentially extend beyond educa-

tional settings - for example, to manufacturing problems such as block assembly

or to design problems with reusable parts.

Using the modelling mechanism, we addressed two pedagogical issues: per-

sonalised feedback prioritisation and grouping for collaboration. The issue of

feedback prioritisation emerged from our choice to model strategies, as these

included information on several aspects relevant to the tasks. We did not en-

counter any previous research on this issue in computer-based learning envi-

ronments of any type. As our approach aims to deliver personalised feedback

priorities, it contributes to the field of Artificial Intelligence in Education.
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The approach we developed for grouping learners for the purpose of collabo-

rative activities also contributes to the field of Artificial Intelligence in Education

because it aims to deliver groups in such a way as to ensure that each learner

will be in a group that discusses relevant aspects with respect to their individual

approaches.

Our approach to grouping for collaboration is different from previous re-

search in that the criteria used is driven by the aims of the collaborative activi-

ties in the context of exploratory learning. These aims are to discuss similarities

and differences between approaches that learners developed on their own prior

to the collaborative activities. Therefore, the relevant criteria are the individual

approaches and the similarities between them.

Similarly to the learner modelling mechanism, the feedback prioritisation

and the grouping for collaboration mechanisms could be applied to other ELEs.

Feedback prioritisation is likely to be an issue for any ELE that aims to give

more freedom to the learners rather than structure their interactions to avoid

the prioritisation problem. Also, as collaborative activities for less structured

domains (and not only) often involve discussing similarities and differences be-

tween various approaches, we believe the criteria and the mechanism we propose

for grouping learners is relevant for other ELEs (and potentially, other types of

learning environments as well).

To ensure optimal coverage of the knowledge base, we have developed an

adaptive modelling mechanism that updates the knowledge base when new rele-

vant information becomes available. This work could be characterised as adapt-

ing to a changing environment, which falls within the area of Intelligent Systems.

Therefore, our research contributes to this area. As the knowledge base adapta-

tion aims to ensure adequate personalised responses to learners’ behaviour, this

work also contributes to the field of Artificial Intelligence in Education.

Our proposed technique for maintaining an optimal coverage of the knowl-

edge base is also applicable to other ELEs and domains, as one of the issues

in this type of learning environments is that not everything can be modelled

at the beginning and that learners’ behaviour changes over time. Moreover, we

believe the high level idea could also be applied beyond educational systems,

to knowledge based systems where new approaches can develop. For example,

in an inconsistency detection systems, when a new potential inconsistency is

suspected, some checks could be performed and if successful, it should be added

to the knowledge base.

The holistic picture of the contribution evolves around the learner modelling

mechanism that has been developed with the purpose of providing student di-

agnosis during as well as at the end of a task. It also has been enriched with

adaptivity over time and has been deployed for educational purposes such as
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feedback prioritisation and grouping for collaborative activities.

8.3 Directions for Future Research

In this section we present several directions for future work, grouped by our

three main topics: the learner modelling mechanism, the exploitation of the

learner model and the approach for enriching the knowledge base.

The Learner Modelling Mechanism. In Chapter 4, and more specifically

in Section 4.3.2 we presented a high level modelling process, in which the Learner

Model has three parts: a short-term model (STM), a task long-term model (Task

LTM) and a domain long-term model (Domain LTM). The research presented in

this thesis focused on the first two and the most natural extension of this work

would be to integrate a long-term domain model with the existing ones. This

would require expert knowledge about mathematical generalisation concepts

and how each task relates to these concepts, i.e. which concepts are covered

by each task. Besides this knowledge, a modelling mechanism needs to be

developed that updates the status of the students’ domain knowledge based on

their actions for solving particular tasks, which are currently stored in the Task

LTM. Consequently, the modelling mechanism that has as input the information

in the Task LTM should output a Domain LTM that reflects the concepts learned

when solving the particular tasks, allowing also for different degrees of coverage

corresponding to situations when the tasks are only partially solved.

Another extension of the learner modelling mechanism could be to include

another layer that monitors the development of learners’ skills related to ex-

ploratory learning, such as choosing variables and testing models. As mentioned

in Chapter 4 Section 4.5, some information about exploratory learning skills is

already included in the definition of the strategies in the task model. For ex-

ample, the variables are defined in the strategies, allowing to identify whether

learners choose the right ones or not. Other information, however, may need

to be included; for example, in eXpresser testing a model involves pressing a

‘Play’ button. The frequency and timing of using this button could be used to

model if learners are purposefully testing their models.

In Chapter 4 Section 4.4.3 we presented a rule-based approach for off-task

behaviour detection. A direction for future research is to improve this mecha-

nism or even to develop a detection model based on learners’ actions. This could

be accomplished by collecting and analysing usage data and experimenting with

various educational data mining techniques.

Our approach, like most user modelling approaches, depends on the activity
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of the user. To be able to infer what a user is doing, a minimal level of activity

is needed. Although it is easy to detect inactivity, it is less straight-forward how

to remedy it. Moreover, the remedy depends on the cause of inactivity which

needs to be further investigated. For example, the stage within a task at which

inactivity occurs could shed some light on the matter.

The similarity metrics we use to identify what strategies a learner is using

currently have fixed weights that maximise the identification of structural sim-

ilarity. A direction for future research is to investigate the effect of changing

the weights depending on the stage within a task to identify aspects that are

more relevant at that particular stage. For example, the focus could be on the

generality of the approach rather than the structure.

Another possible research extension is related to Open Learner Models (Bull

et al., 2006), as these have been shown to encourage learners reflection on their

own learning (Bull et al., 2006; Bull and Kay, 2007) and reflection is an impor-

tant part of discovery learning (de Jong, 2006).

Exploiting the Learner Model. In Chapters 5 and 6 we presented two ways

in which the information in the learner model can be used to address pedagogical

issues. The first looked at feedback prioritisation, while the second addressed

grouping for collaborative activities. Both approaches could be extended and

improved.

The feedback prioritisation mechanism could be improved to cover all possi-

ble combinations of learner characteristics rather than the most common ones.

This could be done for example by using the generalisation capabilities of neural

networks.

As one of the outcomes of our evaluation was that experts do not always

agree, a useful extension of our feedback prioritisation mechanism would be to

allow the teachers to change the pairwise comparisons, which, in turn, would

change the prioritisation output. As we found the disagreement to occur only

for collaborative activities rather than individual ones, it would be interesting to

investigate if this is related to the added complexity of the collaborative activity.

The grouping for collaboration mechanism could be extended to include

constraints such as to avoid having certain learners in the same group. Such

constraints could be identified by conducting a study with teachers, asking their

opinion on the usefulness of such constraints, as well as asking them on the type

of support and flexibility they would like from such a grouping mechanism.

A limiting aspect of our grouping for collaboration mechanism is the “black-

and-white” way of defining similarities. For example, if a learner has used a

combination of two strategies, his approach is defined as being equally similar

to the two strategies. The Learner Model, however, contains information about
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the similarity of the learner’s approach to the two strategies, from which it can

be inferred if the learner’s approach is more similar to one of them. A way of

improving the mechanism would be to define a continuous scale that allows us

to define different degrees of similarity.

Enriching the Knowledge Base. In Chapter 7 Section 7.3 we presented

a study in which we identify the limits of our similarity metrics in identifying

when a modified pattern is no longer recognisable as similar to the original

pattern. One aspect that could improve the metrics capability to better identify

modified patterns is to develop a mechanism that identifies sub-patterns. For

our particular situation, the best approach would probably be to make use of

the task knowledge, i.e. the basic patterns associated with various strategies,

and check if a certain pattern is composed by repeating any of the basic patterns

for a particular task.

A very useful extension of our proposed mechanism is to exploit the infor-

mation about inefficient cases and new strategies in an automatic way to either

incorporate it in the feedback and/or inform the teachers and allow them to

author feedback.

One other direction for future research is to test our mechanism with more

tasks and to adjust the threshold values if necessary. This could be extended

even further to develop an evolving mechanism that would identify the optimal

values for the thresholds after a new task has been introduced.

Another direction of further research is to develop an approach to populate

the knowledge base of a new task by identifying strategies from learners’ actions.

This would be beneficial when teachers define new tasks for the more advanced

students, while working on other tasks with the less advanced ones and thus,

do not have the time (and may not even have the need) for defining strategies

for that particular task. A possible approach would be to cluster the strategies

used by the learners and present the cluster-centres to the teacher for approval

before they are stored. Another possibility would be to use the most frequent

used strategies within a particular cluster.

8.4 Concluding Remarks

This thesis has investigated the possibility of modelling exploratory learning

behaviour in such a way as to enable support during as well as at the end of

an exploratory task. Our evaluation indicates that despite the challenges of

exploratory learning, modelling exploratory behaviour is possible. Moreover, it

facilitates the development of personalised approaches to other pedagogical is-

sues such as feedback prioritisation and grouping for collaboration. The solution
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presented in this thesis is one way of modelling learner behaviour and exploit-

ing this knowledge in a particular exploratory learning environment (ELE). The

results of this approach can be extended to other ELEs and provide evidence

that learner modelling in exploratory learning deserves further investigation.
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