
Birkbeck, University of London

Department of Computer Science

Integrating and Querying Linked Data
Sets Through Ontological Rules

Mirko Dimartino

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computer Science and Information Systems

September 2019



Abstract

The Web of Linked Open Data has developed from a few datasets in 2007 into a

large data space containing billions of RDF triples published and stored in hundreds

of independent datasets, so as to form the so called Linked Open Data Cloud. This

information cloud, ranging over a wide set of data domains, poses a challenge when it

comes to reconciling heterogeneous schemas or vocabularies adopted by data publish-

ers. Motivated by this challenge, in this thesis was address the problem of integrat-

ing and querying multiple heterogeneous Linked Data sets through ontological rules.

Firstly, we propose a formalisation of the notion of a peer-to-peer Linked Data inte-

gration system, where the mappings between peers comprise schema-level mappings

and equality constraints between different IRIs; we call this formalism an RDF Peer

System (RPS). We show that the semantics of the mappings preserve tractability of

answering Basic Graph Pattern (BGP) SPARQL queries against the data stored in

the RDF sources and the set of constraints given by the RPS mappings. Then, we

address the problem of SPARQL query rewriting under RPSs and we show that it

is not possible to rewrite an input BGP SPARQL query into a SPARQL 1.0 query

under general RPSs, as the RPS peer mappings are not first-order-rewritable rules;

this is a major drawback of general RPSs since data materialisation is required to

exploit their full semantics.

With the adoption of the more recent standard SPARQL 1.1 and its property paths

we are able to extend the expressivity of the target language beyond first-order

by including regular expressions in the body of the target SPARQL queries, that

is, by expressing conjunctive two-way regular path queries (C2RPQs). Following

this idea, in the second part of the thesis we step away from the language of RPSs

to conduct a study on C2RPQ-rewritability under a broader ontology language.

We define ELHI`inh (harmless linear ELHI), an ontology language that generalises

both the DL-LiteR and linear ELH description logics. We prove the rewritability of

instance queries (queries with a single atom in their body) under ELHI`inh knowledge

bases with C2RPQs as the target language, presenting a query rewriting algorithm

that makes use of non-deterministic finite-state automata. Following from that,
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we propose a query rewriting algorithm for answering conjunctive queries under

ELHI`inh knowledge bases, with C2RPQs as the target language. Since C2RPQs

can be straightforwardly expressed in SPARQL 1.1 by means of property paths, we

believe that our approach is directly applicable to real-world querying settings.

Lastly, we undertake a complexity analysis for query answering under ELHI`inh . We

analyse the computational cost of query answering in terms of both data complexity

(where the ontology and the query are fixed and the data alone is a variable input)

and combined complexity (where query, ontology and data all constitute the variable

input). We show that answering instance queries under ELHI`inh is NLogSpace-

complete for data complexity and in PTime for combined complexity; we also show

that answering CQs under ELHI`inh is NLogSpace-complete for data complexity

and NP-complete for combined complexity.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Linked Data1 is a term used to describe recommended best practices for exposing,

sharing, and connecting pieces of data, information, and knowledge on the Seman-

tic Web using the Resource Description Framework2 (RDF). RDF is a family of

World Wide Web Consortium (W3C) specifications3 originally designed as a meta-

data model for resources on the World-Wide-Web (WWW, Web). RDF describes

resources that are connected by means of properties ; resources are represented by

Internationalized Resource Identifiers (IRIs)4; when resources are unknown or un-

available they are represented by blank nodes. Properties denote relationships be-

tween resources and are predefined IRIs published within RDF vocabularies. An

RDF dataset is a set of triples of the form 〈subject, predicate, object〉, where the

subject is a resource, the predicate is a property and the object is either a resource

or a literal (e.g. a string, a piece of text, a number, etc...). RDF can also be used to

1https://www.w3.org/standards/semanticweb/data
2https://www.w3.org/RDF/
3http://www.dblab.ntua.gr/~bikakis/XMLSemanticWebW3CTimeline.pdf
4https://www.w3.org/International/O-URL-and-ident.html

1

https://www.w3.org/standards/semanticweb/data
https://www.w3.org/RDF/
http://www.dblab.ntua.gr/~bikakis/XMLSemanticWebW3CTimeline.pdf
https://www.w3.org/International/O-URL-and-ident.html
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describe data schemas; for this purpose, the W3C has published two main vocabu-

laries: RDF-Schema, or RDFS5, which provides a basic ontology language, and the

more expressive OWL6, which can be used to represent richer and more complex

knowledge about entities. In order to query RDF databases, the W3C has proposed

the SPARQL7 query language, which can be used to express queries across diverse

data sources, whether the data is stored natively as RDF or viewed as RDF via

middleware.

When Linked Data can be freely used and distributed by anyone, it is called Linked

Open Data (LOD). The Web of Linked Open Data has developed from a few datasets

in 2007 into a large data space containing billions of RDF triples published and

stored in hundreds of independent datasets, so as to form the so called Linked Open

Data Cloud8. This information cloud, ranging over a wide set of data domains,

poses a challenge when it comes to reconciling heterogeneous schemas or vocabular-

ies adopted by data publishers. According to Linked Open Data best practices [66],

data publishers should reuse terms from widely-used vocabularies already present

in the cloud, in order to enable the discovery of additional data and to support

the integration of data from multiple sources. Following this vision, Linked Data

applications should be able to access an open, global data space with an approach

similar to how a single database can be queried, in order to obtain more extensive

answers as new data sources are published on the Web. However, existing vocabu-

laries often do not provide all the terms needed to completely describe the content

of a dataset. Thus, data providers need to define proprietary terms as sets of new

IRIs, again published on the cloud. This trend leads to the formation of islands

of data describing overlapping domains, rather than generating a single consistent

global knowledge base.

5https://www.w3.org/TR/rdf-schema/
6https://www.w3.org/OWL
7https://www.w3.org/TR/rdf-sparql-query/
8https://lod-cloud.net/

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/OWL
https://www.w3.org/TR/rdf-sparql-query/
https://lod-cloud.net/
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Examples of this trend include the DBpedia9, YAGO10, WordNet11 and Freebase12

cross-domain datasets, all defining proprietary vocabularies. Taking it a step further,

we notice several other overlapping datasets, such as ACM 13, IEEE 14, DBLP15 and

ePrints16 in the domain of publications, PubMed17, GeneID18, Drug Bank 19 and

Gen Bank 20 in the life sciences, GeoNames21, Linked GeoData22 and Geo Linked

Data23 in the geographic domain, as well as Last.FM 24, MySpace25, BBC Music26

and Music Brainz 27 in the domain of media. Numerous other examples can be seen

in the Web of Data graph28. The ever-increasing overlap of similar vocabularies is

also observed in a recent survey on the adoption of Linked Data best practices [99],

where the authors show the results of a crawl that includes 1014 different datasets in

the Linked Data cloud: out of the 638 different vocabularies only 263 (41.22%) are

non-proprietary, while 375 vocabularies (58.77%) are proprietary29. In this regard,

the more datasets that are published, the more crucial is the issue of managing

interoperability of such highly heterogeneous vocabularies.

Over the past years, researchers in the Semantic Web community have attempted to

tackle these challenges, proposing several approaches based on semantics-preserving

SPARQL rewriting algorithms [42, 80, 81]. These methods allow users to pose

9https://wiki.dbpedia.org/
10https://github.com/yago-naga/yago3
11https://wordnet.princeton.edu/
12https://www.wikidata.org/wiki/Q15241312
13https://dl.acm.org/
14https://www.ieee.org/
15https://dblp.uni-trier.de/
16https://wiki.eprints.org/w/API:EPrints/Database
17https://www.ncbi.nlm.nih.gov/pubmed/
18https://www.ncbi.nlm.nih.gov/gene
19https://www.drugbank.ca/
20https://www.ncbi.nlm.nih.gov/genbank/
21https://www.geonames.org/
22http://linkedgeodata.org/
23https://old.datahub.io/dataset/geolinkeddata
24https://www.last.fm/
25https://myspace.com/
26https://www.bbc.co.uk/music/
27https://musicbrainz.org/
28http://lod-cloud.net
29The authors consider a vocabulary to be proprietary if it is used only by a single dataset.

https://wiki.dbpedia.org/
https://github.com/yago-naga/yago3
https://wordnet.princeton.edu/
https://www.wikidata.org/wiki/Q15241312
https://dl.acm.org/
https://www.ieee.org/
https://dblp.uni-trier.de/
https://wiki.eprints.org/w/API:EPrints/Database
https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/gene
https://www.drugbank.ca/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.geonames.org/
http://linkedgeodata.org/
https://old.datahub.io/dataset/geolinkeddata
https://www.last.fm/
https://myspace.com/
https://www.bbc.co.uk/music/
https://musicbrainz.org/
http://lod-cloud.net
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SPARQL queries using a preferred vocabulary and a rewriting algorithm provides

translations of the query using similar terms from other vocabularies. To rewrite

queries, these techniques typically utilise reasoning rules with respect to a set of

mappings specified between the RDF sources. The rewritten query is evaluated

over the sources and a more complete answer is returned to the user than would

be returned by the original query. Query rewriting approaches in the literature are

typically based on a two-tier global-to-local schema integration paradigm [74], where

queries are expressed over a global schema and are reformulated into the language

of the source vocabularies, to be then evaluated over the data stored in the data

sources.

In contrast, in the Linked Data cloud each data store is an autonomous resource

whose vocabulary should represent part of the global schema, available on the web.

Linked Data consumers should be able to pose queries adopting any of the source

vocabularies and to access similar sources through query translation, in a transparent

way and without relying on a single global schema. We believe that a peer-to-

peer query rewriting approach is more suitable in this setting than a global-to-local

approach because it provides a decentralised architecture where peers act both as

clients and as servers during the query reformulation process [58]. In addition, the

global-to-local approaches typically require a comprehensive global schema design

before they can be used, thus they are difficult to scale because schema evolution

may break backwards compatibility. Scalability is a key property of LOD-oriented

data mediation systems, due to the continuous increase of data published on the

web.

Implementations or re-adaptations of existing SPARQL query rewriting techniques

in a peer-to-peer environment are impractical. For instance, a query rewriting algo-

rithm which is guaranteed to terminate on computing a query translation from one

source to another may run indefinitely when adopted in a distributed peer-to-peer
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scenario, typically in the presence of cyclic mappings (i.e., mappings through which

peers are mutually dependent on each other). As well as scalability, termination of

the algorithms with arbitrary mappings is a fundamental requirement in the context

of LOD, since the mappings between overlapping domains are not under the control

of any single authority.

Motivated by this challenge, the first part of this thesis proposes a formalisation of

the notion of a peer-to-peer Linked Data integration system that allows us to explore

the decidability of the query answering problem when reasoning over a set of peer-

to-peer mappings between RDF data sources. We call this formalism an RDF Peer

System (RPS). The mappings between peers comprise both schema-level mappings

and equality constraints which entail the semantics of the OWL sameAs30 property .

In Chapter 3 of the thesis we will show that the semantics of the mappings preserve

tractability of the conjunctive SPARQL query answering problem over RPSs, that

is, answering queries expressed in the conjunctive fragment of the SPARQL query

language against the data stored in the RDF sources and the set of constraints given

by the RPSs mappings.

To specify our query rewriting procedure over RPSs we study several works in the

literature that address query rewritability properties for a class of data constraints

called Tuple Generating Dependencies (TGDs) [29]. For a query q expressed in a

language Q, a language L, a set of constraints Σ expressed in a language LΣ, we say

that q and Σ are L-rewritable if there exists a reformulation of q, qΣ, expressed in

the language L such that qΣ evaluated over a data source D yields the same result

as q evaluated against Σ and D. If q and Σ are L-rewritable, then we say that q

and Σ enjoy the L-rewritability property, or that Σ is L-rewritable with respect to

q. Also, given a query language Q, we say that Q and LΣ are L-rewritable if, for

each q ∈ Q and Σ ∈ LΣ, q and Σ are L-rewritable.

30http://sameas.org

 http://sameas.org
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By translating the RPS mappings into TGDs we will see that for (general) RPSs it is

not possible to design a semantics-preserving SPARQL rewriting algorithm. In fact,

we will see that conjunctive SPARQL queries and the set of TGDs corresponding to

(general) RPSs do not enjoy the First Order-rewritability property. The following

example illustrates this.

Example 1.1.1. Consider the mapping given by the following rule:

triple(x, is younger than, z), triple(z, is younger than, y)

→ triple(x, is younger than, y),

where is younger than is the IRI for the relation is younger than. This rule states

that if x is younger than z and z is younger then y, then x is younger than y. This

rule is not FO-rewritable since it captures the transitive closure of the relation is

younger than, and therefore does not allow a rewriting to a finite number of FO

queries [32]. For instance, let us consider the following SPARQL query:

SELECT ?x

WHERE { ?x is_younger_than Paul }

which asks for all the people younger than Paul. It is easy to see that a naive

rewriting technique produces an infinite union in the body of the SPARQL query:

SELECT ?x

WHERE { { ?x is_younger_than Paul }

UNION

{ ?x is_younger_than ?z . ?z is_younger_than Paul }

UNION

{ ?x is_younger_than ?z . ?z is_younger_than ?y .
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?y is_younger_than Paul }

UNION

...

In Chapter 3, we will identify subsets of RPSs that do enjoy the FO-rewritability

property.

With the adoption of the more recent standard SPARQL 1.1 query language, LOD

database systems should be able to answer queries that are more expressive than FO

queries. Using the property paths31 of SPARQL 1.1 it is possible to define regular

expressions on predicates in the body of the query. In fact, any conjunctive regular

path query (CRPQ) can be translated to a SPARQL 1.1 query [10]. It may thus be

possible to find larger subsets of RPSs for which it is possible to answer queries via

query rewriting in SPARQL 1.1.

Example 1.1.2. Let us consider again the query and the TGD in Example 1.1.1.

With the use of the property paths feature of SPARQL 1.1, we can have a finite

rewriting:

SELECT ?x

WHERE { ?x is_younger_than+ Paul }

where is younger than+ is a property path expression. Query evaluation determines

all matches of a property path expression and binds the subject or object as appro-

priate, in this case a path of one or more occurrences of is younger than such that

the final object is Paul.

As in the case of FO-rewritability, we wish to identify (larger) subsets of RPSs

that have the CRPQ-rewritability property. The problem of identifying CRPQ-

31https://www.w3.org/TR/sparql11-property-paths/

https://www.w3.org/TR/sparql11-property-paths/
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rewritability of ontological constraints has not been previously addressed in the

literature. To the best of our knowledge, the closest work is that of [37], which

treats rewriting of regular path queries to regular path queries over views (which

are in turn regular path queries); they do not consider conjunctions of regular path

queries. This gap motivates our exploration of the problem of identifying CRPQ-

rewritability of ontological constraints in Chapters 4 and 5. For this purpose, we

adopt a logic-based formalism that underpins the OWL Web Ontology Language,

known as Description Logic (DL), which is a family of knowledge representation

formalisms that are able to capture a wide range of ontological constructs [8]. DLs

are based on concepts (unary predicates representing classes of individuals) and roles

(binary predicates representing relations between classes).

In our recent work [48], we first consider a DL we call ELH`in also known in the

literature as DL-Lite+ [91]. This is a language that does not allow a finite rewrit-

ing of FO queries into FO queries [55]. We show how to encode CRPQ rewritings

under ELH`in by means of a finite-state automaton; intuitively, the automaton is

able to encode infinite sequences of rewriting steps. In this thesis, we extend this

approach to rewrite conjunctive queries (CQs) into Conjunctive Two-Way Regular

Path Queries32 (C2RPQs) under a more expressive language that we call harm-

less linear ELHI, denoted by ELHI`inh , which is a generalisation of ELH`in . We

show that CQs and ELHI`inh enjoy C2RPQ-rewritability and therefore that under

ELHI`inh it is possible to answer conjunctive SPARQL queries with a pure rewriting

approach that leverages the expressive power of SPARQL 1.1 property paths.

Since the complexity of answering C2RPQs is in the highly tractable class NLogspace

with respect to data complexity [10] (where the ontology and the query are fixed and

the data alone is a variable input) it follows that under C2RPQ-rewritable rules,

the query answering problem would also be highly tractable. As well as considering

32C2RPQs are CRPQs with the additional capability of expressing query navigation in two
directions, forwards and backwards.
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data complexity, we assess in Chapter 5 query answering under C2RPQ-rewritable

rules in terms of combined complexity, where query, ontology and data all constitute

the variable input.

1.2 Thesis Contributions

The contributions of the thesis are the following:

• We propose a formalisation of the notion of a peer-to-peer Linked Data in-

tegration system, where the mappings between peers comprise schema-level

mappings and equality constraints between different IRIs.

• We show that answering conjunctive SPARQL queries on an RDF peer system

can be done in polynomial time in terms of data complexity.

• We present a novel query rewriting technique, based on non-deterministic

finite-state automata, for instance queries (i.e., queries having a single atom

in the query body) on ELHI`inh knowledge bases, with C2RPQs as the target

language.

• Based on the rewriting technique for instance queries, we present a tech-

nique for rewriting CQs into C2RPQs under ELHI`inh . Since C2RPQs can be

straightforwardly expressed in SPARQL 1.1, exploiting its property paths, our

approach is applicable to real-world RDF knowledge bases that are queryable

via SPARQL endpoints.

• We undertake a complexity analysis for query answering under ELHI`inh . We

analyse the computational cost of query answering in terms of both data com-

plexity (where the query is fixed, and the complexity is expressed in terms

of the size of the database) and combined complexity (where the complexity

is measured in the size of both the query and the database). We show that

answering instance queries under ELHI`inh is NLogSpace-complete for data
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complexity and in PTime for combined complexity. We also show that an-

swering CQs under ELHI`inh is NLogSpace-complete for data complexity and

NP-complete for combined complexity.

• We formally prove the correctness of our query rewriting algorithms, and also

that they comply with the upper complexity bounds.

1.3 Outline of the Thesis

The thesis is structured as follows: In Chapter 2 we review fundamentals of relational

databases, conjunctive queries, tuple-generating dependencies and the chase proce-

dure. We review the description logic ELH`in and its model-theoretic semantics. In

the same chapter we review the current state of the art in frameworks for SPARQL

query rewriting, peer-to-peer systems and query rewriting under description logics.

In Chapter 3 we propose a formalisation of the notion of a peer-to-peer Linked Data

integration system, RPS, and we show that it supports tractability of the conjunc-

tive SPARQL query answering problem. Then, we assess FO-rewritability of RPSs.

We show that RPSs are not generally FO-rewritable and we identify a subset that

do enjoy this property. Then we propose a rewriting algorithm for the restricted

form of RPSs and we devise a rewriting in Datalog for the general case. In the

same chapter we propose optimisations for the rewriting algorithms, and we present

a case study for the restricted form of RPSs.

In Chapter 4 we define the description logic ELHI`inh (harmless linear ELHI) and we

prove the rewritability of instance queries (queries with a single atom in their body)

under ELHI`inh knowledge bases with C2RPQs as the target language, presenting a

query rewriting algorithm that makes use of non-deterministic finite-state automata.

In Chapter 5 we propose a query rewriting algorithm for answering conjunctive

queries under ELHI`inh knowledge bases, with C2RPQs as target language. Then,
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we undertake a complexity analysis for query answering under ELHI`inh . We analyse

the computational cost of query answering in terms of both data complexity and

combined complexity.

We conclude this thesis in Chapter 6 with a discussion on the results achieved and

directions for future work.

1.4 Publications

• Peer-to-Peer Semantic Integration of Linked Data [47], covered in Chapter 3;

• Peer-based Query Rewriting in SPARQL for Semantic Integration of Linked

Data [45], covered in Chapter 3;

• Implementing Peer-to-Peer Semantic Integration of Linked Data [46], covered

in Chapter 3;

• Combining Flexible Queries and Knowledge Anchors to facilitate the explo-

ration of Knowledge Graphs [92], covered in Section 3.4 of Chapter 3;

• Query Rewriting under Linear EL Knowledge Bases [48], covered in Chapter 4;

• Efficient Ontological Query Answering by Rewriting into Graph Queries [49],

covered in Chapter 5.



Chapter 2

Background Theory and Related

Work

In this chapter we introduce some background theory and a discussion of the lit-

erature related to the work described in this thesis. The background theory is

covered in Section 2.1, where we review the principles of relational, RDF and graph

databases. A review of the literature relevant to our work follows in Section 2.2,

focussing on frameworks for SPARQL query rewriting (Section 2.2.1), peer-to-peer

systems (Section 2.2.2), and query rewriting under DLs (Section 2.2.3).

2.1 Background Theory

This section is divided into three subsections introducing the worlds of relational,

RDF and graph databases :

• Relational Databases: in Section 2.1.1 we introduce the foundamentals of rela-

tional databases and conjunctive queries, data integration and tuple-generating

12
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dependencies; this section establishes the foundational work on databases and

database management systems.

• RDF Databases: in Section 2.1.2 we present the definitions of RDF, SPARQL,

RDFS and OWL which form the basis of our formalisation of a peer-to-peer

Linked Data integration system.

• Graph Databases: in Section 2.1.3 we introduce the DL ALCHI with its

model-theoretic semantics and the definitions of regular languages and Con-

junctive Regular Path queries, to inform our work on query rewriting using

regular languages under ontologies expressed in DL.

2.1.1 Relational Databases

Relational Databases and Conjunctive Queries

Consider two pairwise disjoint (infinite) sets of symbols ∆c and ∆z such that: ∆c is

a set of constants (which constitutes the domain of a database), and ∆z is a set of

labelled nulls (used as placeholders for unknown values). Different constants repre-

sent different values (unique name assumption), while different nulls may represent

the same value. Throughout this thesis, we denote by X sequences of variables,

e.g., X1, . . . , Xk, where k > 0, and by [n] the set 1, . . . , n, for any n > 1.

A relational schema R (or simply a schema) is a set of relational symbols (or pred-

icate symbols), each with its associated arity. A position r[i] is identified by a

predicate r ∈ R and its i-th argument.

A term t is a constant, labelled null, or variable. An atomic formula (or simply

atom) has the form r(t1, . . . , tn), where r ∈ R has arity n, and t1, . . . , tn are terms.

A conjunction of atoms has the form a1∧a2∧ · · ·∧an, where a1, a2 . . . an are atoms.

Conjunctions of atoms are often identified by the sets of their atoms.
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A substitution from one set of symbols S1 to another set of symbols S2 is a function

h : S1 → S2. Given an atom a = r(t1, . . . , tn) and a substitution h, h(a) denotes

the atom r(h(t1), . . . , h(tn)). Given a two sets of atoms A1, A2, both over the same

schema R, and a substitution h from the set of terms of A1 to the set of terms of A2,

we say that h is a homomorphism from A1 to A2 if the following conditions hold:

(i) if t ∈ ∆c, then h(t) = t;

(ii) if r(t1, . . . , tn) is in A1, then h(r(t1, . . . , tn)) = r(h(t1), . . . , h(tn)) is in A2.

The notion of homomorphism naturally extends to conjunctions of atoms.

Example 2.1.1. Let us consider the set of atoms T1 := {t(x, a, y), t(z, a, u)} and

T2 := {t(v, a, w), r(v, b, w)}, where a, b are constants and x, y, z, v, w are variables.

An example of homomorphism h from T1 to T2 is the function {x→ v, y → w, z →

v, u→ w, a→ a}. By applying h to T1 we have:

h(T1) = {t(h(x), h(a), h(y)), t(h(z), h(a), h(u))} = {t(v, a, w)},

with {t(v, a, w)} ⊆ T2.

A relational instance I for a schema R is a (possibly infinite) set of atoms of the

form r(t1, t2, . . . , tn), where r ∈ R has arity n and t1, t2, . . . , tn ∈ (∆c ∪ ∆z). A

database is a finite relational instance. A conjunctive query (CQ) q of arity n over

a schema R is a formula of the form ansq(X) ← φ(X,Y ), where φ(X,Y ) is a

conjunction of atoms over R, and ansq is an n-ary predicate not in R. φ(X,Y ) is

called the body of q, denoted as body(q), and ansq(X) is the head of q, denoted as

head(q). We use the symbol CQ to denote the class of all CQs. The answer to a

CQ q of arity n over an instance I, denoted as q(I), is the set of all atoms ansq(t)

where t ∈ (∆c)
n and for which there exists a homomorphism h : X ∪Y → ∆c ∪∆z

such that h(φ(X,Y )) ⊆ I and h(X) = t.
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As we will see in Section 2.1.2, RDF databases can contain blank nodes 1, which

represent resources for which a URI or literal is not given. Thus, to have a more

direct mapping between the RDF and the relational worlds, we include null values

in the definition of relational databases.

A boolean conjunctive query (BCQ) is a CQ of arity zero. A BCQ q has either the

empty set or the empty atom ansq(〈〉) as a possible answer; in the latter case it is

said to have a positive answer. Formally, a BCQ q has a positive answer over I,

denoted as I |= q, if and only if ansq(〈〉) ∈ q(I).

A union of CQs (UCQ) Q of arity n is a set of CQs, where each q ∈ Q has the

same arity n and uses the same predicate symbol in the head. The answer to Q

over an instance I, denoted as Q(I), is the set of atoms { ansQ(t) | there exists q ∈

Q such that ansq(t) ∈ q(I) }.

Example 2.1.2. Consider the database

I := {t(a, b, c), t(a, a, b), r(a, b, c)}

and the CQs

q1 := ansq1(Y, Z)← t(a, Y, Z) ∧ r(X, Y, Z)

q2 := ansq2 ← t(X,X, Y )

q3 := ansq3 ← r(X,X, Y )

where a, b, c are constants andX, Y, Z are variables. We note that q2 and q3 are BCQs

since they are of arity zero. We have that q1(I) = {ansq1(b, c)} with the homomor-

phism {X → a, Y → b, Z → c, a→ a}, and q2(I) = {ansq2(〈〉)} with the homomor-

phism {X → a, Y → b}. q3 does not have a positive answer over I (i.e., q3(I) = ∅)

since there does not exist any homomorphism h such that h({r(X,X, Y )}) ⊆ I .

1https://www.w3.org/TR/rdf11-mt/#blank-nodes

https://www.w3.org/TR/rdf11-mt/#blank-nodes
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Tuple-Generating Dependencies

Answering queries under data or schema constraints is a recurring problem in databases

and has been employed in schema integration, information integration, and service

discovery [39]. The problem of answering queries under constraints is related to

the problem of query containment [41] and, in fact, the two problems are mutually

reducible [27].

Here we consider the class of constraints called tuple-generating dependencies (TGDs),

which is a generalisation of inclusion dependencies [2]. As we shall see in Chapter 3,

the mappings defined in our peer-to-peer data integration system can be interpreted

as TGDs that satisfy certain properties.

TGDs are first-order constraints that express an implication from one conjunction

of atoms to another, and extend the well known Datalog language [2] by allowing

existential quantifiers in rule heads. This feature is also known as value invention [79,

22]. We now give definitions of the syntax and semantics of TGDs.

A TGD σ over a schema R is a first-order formula ∀X∀Y φ(X,Y )→ ∃Zψ(X,Z),

where φ(X,Y ) and ψ(X,Z) are conjunctions of atoms over R, called the body and

the head of σ, denoted as body(σ) and head(σ), respectively. To avoid verbosity,

we will omit here the universal quantifiers in TGDs. A TGD σ is satisfied by

an instance I of R if and only if, whenever there exists a homomorphism h such

that h(φ(X,Y )) ⊆ I, there exists an extension h′ of h (i.e., h′ ⊇ h) such that

h′(φ(X,Z)) ⊆ I. The satisfaction relation naturally extends to a set of TGDs.

Formally, an instance I of R satisfies a set of TGDs Σ if, for each σ ∈ Σ, σ is

satisfied by I.

Example 2.1.3. Consider again the database I = {t(a, b, c), t(a, a, b), r(a, b, c)}
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defined in Example 2.1.2, and the following set of TGDs Σ := {σ1, σ2}, with

σ1 := t(X, Y, Z)→ r(X, Y, Z)

σ2 := r(X, Y, Z)→ ∃W t(Y, Y,W ).

σ1 is satisfied if, for each atom in I of the form t(X, Y, Z), there is an atom of the

form r(X, Y, Z). σ2 is satisfied if, for each atom in I of the form r(X, Y, Z), there is

an atom of the form t(Y, Y,W ), with W being any constant. We observe that σ1 is

satisfied in I whereas σ2 is not.

We now define the notion of query answering under TGDs. Given a database D

for R, a set Σ of TGDs over R, and an instance I of R, we say that I |= D ∪ Σ if

I ⊇ D and I satisfies Σ; I is said to be a model of D with respect to Σ. The set

of models of D with respect to Σ, denoted as mods(D,Σ), is the set of all instances

I such that I |= D ∪ Σ. The answer to a CQ q with respect to D and Σ, denoted

as ans(q,D,Σ), is the set {t | t ∈ q(I) for all I ∈ mods(D,Σ)}. The answer to a

BCQ q with respect to D and Σ is positive, denoted as D ∪ Σ |= q, if and only if

ans(q,D,Σ) 6= ∅.

Query answering under general TGDs is undecidable [12], even when the schema

and the set of TGDs are fixed [27]. The two problems of answering CQs and BCQs

under TGDs are logspace-equivalent [41]: we can enumerate the polynomially

many tuples of constants which are possible answers to a CQ q, and then, instead

of answering the given query q, we answer the polynomially many BCQs obtained

by replacing the variables in the body of q with the appropriate constants; a certain

tuple t of constants is in the answer of q if and only if the answer to the BCQ

obtained from t is true.
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Data Integration

Data integration is the problem of combining data stored in different sources and

providing the user with a unified view of this data [74]. The design of data integration

systems is of great importance in real world applications. A clear example of this

is the Web of Linked Open Data, which has developed from a few datasets in 2007

into a large data space containing billions of RDF triples published and stored

in hundreds of independent datasets. This huge information cloud, ranging over

a large number of application domains, poses a great challenge when it comes to

reconciling the heterogeneous schemas, vocabularies and entity names adopted by

data publishers.

Data integration systems are often modelled by an architecture based on a global

schema and a set of data sources. The sources contain the actual data, while the

global schema provides a reconciled, integrated, and virtual view of the underlying

sources. Data can also be “materialised” in the modelling language of the global

schema using the set of mappings between the sources and the global schema. An

example of data materialisation can be found later in this section, where we illustrate

the chase procedure (see Section 2.1.1).

Here we introduce the formal definition of a data integration system taken from [74].

A data integration system is a triple 〈G,S,M〉 where:

• G is the global schema, expressed in a language LG over an alphabet AG.

The alphabet comprises a symbol for each element of G (i.e., relation if G is

relational, class if G is object-oriented, etc.).

• S is the source schema, expressed in a language LS over an alphabet AS . The

alphabet AS includes a symbol for each element of the sources.

• M is the mapping between G and S, constituted by a set of assertions of the



2.1. Background Theory 19

forms qS ; qG, qG ; qS where qS and qG are two queries of the same arity,

respectively over the source schema S, and over the global schema G. Queries

qS are expressed in a query language LM,S over the alphabet AS , and queries

qG are expressed in a query language LM,G over the alphabet AG. Intuitively,

an assertion qS ; qG specifies that the concept represented by the query qS

over the sources corresponds to the concept in the global schema represented

by the query qG (similarly for an assertion of type qG ; qS ).

Intuitively, the source schema describes the structure of the sources, where the real

data are, while the global schema provides a reconciled, integrated, and virtual view

of the underlying sources. The assertions in the mapping establish the connection

between the elements of the global schema and those of the source schema. When

users pose queries over the data integration system, they pose their queries on G,

and these are reformulated to queries on S using the mappings M.

Two common ways to model this correspondence exist: Global as View or GAV and

Local as View or LAV [74, 25].

In the GAV approach, the mappingM associates to each element g in G a query qS

over S. In other words, the query language LM,G allows only expressions constituted

by one symbol of the alphabet AG. Therefore, a GAV mapping is a set of assertions,

one for each element g of G, of the form g ; qS . In the case where LM,G is a set of

TGDs, then a GAV assertion is of the form:

∀Xg(X)← ∃ZψAS (X,Z),

where ψAS (X,Z) is conjunctions of atoms over AS .

From the modeling point of view, the GAV approach is based on the idea that the

content of each element g of the global schema should be characterized in terms of a

view qS over the sources. In some sense, the mapping explicitly tells the system how
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to retrieve the data when one wants to evaluate the various elements of the global

schema.

For example, consider if one of the sources served a weather website. The designer

would add an element corresponding to the concept ‘weather’ in the global schema.

Then the bulk of effort concentrates on specifying mappings that will transform a

global query on ‘weather’ into a query over the weather website. This effort can

become complex if some other source also relates to ‘weather’, because the designer

may need to understand how to combine the results from the two sources into the

global schema.

In the LAV approach, the mapping M associates to each element s of the source

schema S a query qG over G. In other words, the query language LM,S allows

only expressions constituted by one symbol of the alphabet AS . Therefore, a LAV

mapping is a set of assertions, one for each element s of S, of the form s ; qG. In

the case where LM,S is a set of TGDs, then a LAV assertion is of the form:

∀Xs(X)← ∃ZψAG(X,Z),

where ψAG(X,Z) is conjunctions of atoms over AG.

From the modeling point of view, the LAV approach is based on the idea that the

content of each source s should be characterized in terms of a view qG over the global

schema.

Consider again if one of the sources serves a weather website. The designer would add

a corresponding element for ‘weather’ to the global schema if none existed already.

Then, the designer would specify a LAV mapping to transform a local query on the

weather website to a global query on ‘weather’. This requires less effort on the part

of the designer than with the GAV approach. However, global query processing

with LAV mappings requires the more complex process of answering queries using
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views [75].

The TGD Chase. The chase procedure (or simply chase) is a fundamental algo-

rithmic tool introduced for generating the implications of a set of dependencies [78],

and later for checking query containment [68]. The chase provides a process for

repairing a database with respect to a set of dependencies so that the resulting

database satisfies the dependencies. We shall use the term “chase” interchangeably

for both the procedure and its result. The chase works on an instance through the

TGD chase rule.

TGD Chase Rule: Consider a databaseD for a schemaR, and a TGD σ : φ(X,Y )→

∃Zψ(X,Z) over R. If σ is applicable to D, i.e., there exists a homomorphism h

such that h(φ(X,Y )) ⊆ D, then:

• define h′ ⊇ h such that h′(Zi) = zi, for each Zi ∈ Z, where zi ∈ ∆z is a “fresh”

labelled null not introduced before in the chase procedure, and

• add to D the set of atoms in h′(ψ(X,Z)), if there does not exist h′′ ⊇ h such

that h′′(ψ(X,Z)) is already in D.

Given a database D and a set of TGDs Σ, the chase algorithm for D and Σ consists

of a repeated application of the TGD chase rule until a fixpoint is reached. Its result

is a (possibly infinite) chase for D and Σ, denoted as chase(D,Σ) [28]. The (possibly

infinite) chase for D and Σ is a universal model of D with respect to Σ, i.e., for each

instance I ∈ mods(D,Σ), there exists a homomorphism from chase(D,Σ) to I [44].

From this it can be shown that D ∪Σ |= q if and only if chase(D,Σ) |= q, for every

boolean conjunctive query q [28].

The TGD chase rule given above is known as restricted [44], since it checks whether

the TGD under consideration is already satisfied, that is, it adds atoms to the given
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instance only if necessary. The version of the TGD chase rule that applies looser

criteria to the applicability of TGDs, with the aim of adding atoms to the given

instance even if not necessary, is called oblivious [44]. In this thesis, we adopt the

restricted version, since the termination argument given in Theorem 3.1 relies on

the fact that the restricted chase is used.

Example 2.1.4. Consider the database I and the set of TDGs Σ in Example 2.1.3.

We have seen that I does not satisfy the TGD σ2. We can apply the chase procedure

to extend I with respect to the TDGs in Σ so that the resulting database does satisfy

Σ. As we said above, σ1 is satisfied in I so it does not generate any modification

to the database during the chase procedure. By applying the TGD Chase Rule to

the TGD σ2 we find that σ2 is applicable to I with the homomorphism h := {X →

a, Y → b, Z → c}, with h(body(σ2)) = {r(a, b, c)} ⊆ I. As there does not exist any

homomorphism h′′ ⊇ h such that h′′(head(σ2)) ⊆ I, we define a homomorphism

h′ ⊇ h such that h′ = {X → a, Y → b, Z → c,W → ξ}, where ξ ∈ ∆z is a

“fresh” labelled null. Then, we add the set of atoms h′(head(σ2)) = {t(b, b, ξ)} to I.

At this point, I is {t(a, b, c), t(a, a, b), r(a, b, c), t(b, b, ξ)} and satisfies Σ. The chase

procedure therefore terminates as a fixpoint has been reached.

Query rewriting under TGDs. CQ answering over TGDs can be achieved, in

certain cases, by a technique called query rewriting. In query rewriting, starting

from a given query q and a database I, a new query q′ is computed according to a

set of TGDs Σ, such that the answers to q over I and Σ are obtained by evaluating

q′ over I only; it is said that q is rewritten into q′ and that q′ is the perfect rewriting

of q with respect to Σ [54]. The language of q′, called the target language, can be

more expressive than that of q.
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Example 2.1.5 (Query rewriting). Let us consider the TGDs

σ1 := c(X)→ a(X)

σ2 := a(X)→ ∃Y s(X, Y ), c(Y ),

the database D := {a(Ac)} and the query q := ansq(X) ← s(X, Y ). Following the

chase procedure, we obtain a universal model J = {a(Ac), s(Ac, Z0), c(Z0)}, where

Z0 is a labelled null. Then we have that the answer to q over the database I and

the TGDs {σ1, σ2} is {ansq(Ac)}, since s(Ac, Z0) ∈ J . Now, let us rewrite q into

the query q′ := ansq′(X) ← a(X) ∪ s(X, Y ); intuitively, q′ captures the fact that,

to search for terms that appear in an atom of the form s(t1, t2) at position s[1], we

need also to consider atoms of the form a(t), because the TGDs might infer the

former from the latter atom. The evaluation of q′ on I returns the correct answer,

{ansq′(Ac)}, without the need to materialise the universal solution J . Note that,

in this case, the target language is more expressive than that of the original query,

since we obtain a union of CQs as the perfect rewriting of the original CQ.

Several works have addressed rewriting of CQ under TGDs. [30, 31] introduced sets

of TDGs, namely sticky sets, that enjoy the property of being FO-rewritable, i.e.,

for every query that needs to be evaluated under such dependencies it is possible to

compute a first-order query, and thus a SPARQL 1.0 query, as a perfect rewriting.

Stickiness is a sufficient syntactic condition that ensures the so-called sticky property

of the chase, which is as follows. For every instance D, assume that during the chase

of D under a set Σ of TGDs, we apply a TGD σ that has a variable V appearing

more than once in its body; assume also that V maps (via a homomorphism) onto

the constant z, and that by virtue of this application the atom a is generated by

the chase step. In this case, for each atom b in the body of σ, we say that a is

derived from b. Then, we have that z appears in a, and in all atoms resulting from
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some chase derivation sequence starting from a, “sticking” to them (hence the name

“sticky sets of TGDs”).

The formal definition of sticky sets of TGDs, given in [31], is an efficient testable

condition involving variable marking.

Definition 2.1 ([30, 31]). Consider a set Σ of TGDs over a relational alphabet R.

A position r[i] in R is identified by the predicate r ∈ R and its i-th argument (or

attribute). We mark the variables that occur in the body of the TGDs of Σ according

to the following procedure. First, for each TGD σ ∈ Σ and for each variable V in

body(σ), if there exists an atom a in head(σ) such that V does not appear in a,

then we mark each occurrence of V in body(σ). Now, we apply exhaustively (i.e.,

until a fixpoint is reached) the following step: for each TGD σ ∈ Σ, if a marked

variable in body(σ) appears at a position π, then for every TGD σ′ ∈ Σ (including

the case σ′ = σ), we mark each occurrence of the variables in body(σ′) that appear

in head(σ′) at the same position π. We say that Σ is sticky if and only if there is

no TGD σ ∈ Σ such that a marked variable occurs in body(σ) more than once.

Two decidable classes of TGDs that do not enjoy the FO-rewritability property

are Weakly-acyclic and Weakly-guarded sets of TGDs [51, 27]. We introduce the

definitions of weakly-acyclic and weakly-guarded TGDs, which are drawn from [51]

and [27], respectively.

Definition 2.2 (Weakly acyclic set of TGDs). Let Σ be a set of TGDs over a

relational alphabet R. Construct a directed graph, called the dependency graph, as

follows: (1) there is a node for every position r[i] in R; (2) add edges as follows: for

every TGD φ(X,Z)→ ∃Y ψ(X,Y ) in Σ and for every X in X:

• For every occurrence of X in φ in position r[i]:

(a) for every occurrence of X in ψ in position s[j], add an edge r[i] → s[j]

(if it does not already exist);
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(b) in addition, for every existentially quantified variable Y and for every

occurrence of Y in ψ in position t[k], add a special edge r[i]
∗−→ t[k] (if it

does not already exist).

Note that there may be two edges in the same direction between two nodes, if exactly

one of the two edges is special. Then Σ is weakly acyclic if the dependency graph

has no cycle going through a special edge.

Definition 2.3 (Weakly-guarded sets of TGDs). To define weakly guarded sets of

TGDs, we first give the notion of an affected position in a predicate of a relational

schema, given a set of TGDs Σ. Intuitively, a position π is affected in a set of TGDs

Σ if there exists a database D such that a labelled null appears in some atom of

chase(D,Σ) at position π. Given a relational schema R and a set of TGDs Σ over

R, a position π of a predicate p of R is affected with respect to Σ if either:

• (base case) for some σ ∈ Σ, an existentially quantified variable appears in π

in head(σ), or

• (inductive case) for some σ ∈ Σ, the variable appearing at position π in

head(σ) also appears in body(σ), and only at affected positions.

Consider a set of TGDs Σ on a schema R. A TGD σ ∈ Σ is said to be weakly guarded

with respect to Σ if there is an atom in body(σ), called a weak guard, that contains

all the universally quantified variables of σ that appear in affected positions with

respect to Σ and do not also appear in non-affected positions with respect to Σ.

The set Σ is said to be a weakly guarded set of TGDs if each TGD σ ∈ Σ is weakly

guarded with respect to Σ.
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2.1.2 RDF Databases

RDF and SPARQL Syntax

To formalise our peer-to-peer RDF integration system in Chapter 3, we first need

to define the notion of basic graph pattern (BGP) SPARQL queries2 over RDF

databases. The following formalisations of RDF databases and BGP SPARQL

queryes are drawn from [56].

Assume there are pairwise disjoint infinite sets I, B, and L (of IRIs [50], Blank

nodes, and Literals, respectively). A triple (s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L) is

called an RDF triple. In this triple, s is the subject, p the predicate, and o the object.

An RDF database (also called an RDF graph) is a set of RDF triples. Given an

RDF database D, we denote by dom(D) the set of identified resources, that is, the

elements in (I ∪ L) that occur in D.

Here, RDF databases are sets of triples, which by definition do not contain duplicate

entries. However, RDF database management systems may implement a variation

of this model where RDF sources are bags (or multisets) of triples, with duplicates

allowed [4]. Systems that are based on bags rather than sets are said to implement

bag semantics, rather than set semantics. We adopt set semantics to harmonise with

the relational model, where relations are sets of tuples.

Assume also the existence of an infinite set of variables V disjoint from (I ∪B ∪L).

A basic graph pattern is defined recursively as follows:

1. A tuple from (I ∪ L ∪ V ) × (I ∪ V ) × (I ∪ L ∪ V ) is a basic graph pattern.

Specifically, it is a triple pattern.

2. If P1 and P2 are basic graph patterns, then the expression (P1 AND P2) is a

basic graph pattern.

2https://www.w3.org/TR/rdf-sparql-query/#BasicGraphPatterns

https://www.w3.org/TR/rdf-sparql-query/#BasicGraphPatterns
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We denote by var(P ) the set of variables VP ⊆ V that appear in the basic graph

pattern P .

A basic graph pattern (BGP) SPARQL query q of arity n is of the form

X ← Pq

where Pq is a basic graph pattern, and X = x1, . . . , xn ∈ var(Pq) denote the free

variables of q. All the elements in var(Pq) that are not free variables are the exis-

tentially quantified variables of q.

SPARQL Semantics

We now discuss the semantics of BGP SPARQL queries. The following formalisation

is drawn from [89, 21] which defines the evaluation of a basic graph patterns over

an RDF database.

A mapping µ from V to (I ∪B ∪ L) is a partial function µ : V → (I ∪B ∪ L). The

domain of µ, denoted by dom(µ), is the subset of V on which µ is defined. Given

a mapping µ and a variable v ∈ dom(µ), µ(v) denotes the value in (I ∪ B ∪ L)

obtained by applying µ to v. For a triple pattern t, µ(t) denotes the triple obtained

by replacing all variables v in t according with µ(v). Two mappings µ1 and µ2 are

compatible if for all x ∈ dom(µ1) ∩ dom(µ2), it is the case that µ1(x) = µ2(x).

Let Ω1 and Ω2 be sets of mappings. Then the join of Ω1 and Ω2 is defined as follows:

Ω1 ./ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1, µ2 are compatible mappings}

The semantics of basic graph patterns are defined through a function J · KD over

an RDF database, which takes a basic graph pattern as input and returns a set of

mappings defined as follows [21, 89].
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Definition 2.4. (Evaluation of a basic graph pattern). The evaluation of a basic

graph pattern P over an RDF database D, denoted by JP KD, is defined recursively

as follows:

1. If P is a triple pattern t, then JP KD = {µ | dom(µ) = var(t) and µ(t) ∈ D}

2. If P is of the form (P1 AND P2), then JP KD = JP1KD ./ JP2KD.

Given a BGP query q of arity n of the form X ← Pq, where X = x1, . . . xn, we

denote by qD the set of n-tuples returned by the evaluation q over D, where:

qD := {( µ(x1), . . . , µ(xn)) | µ ∈ JPqKD }.

RDFS and OWL

RDF Schema (Resource Description Framework Schema, variously abbreviated as

RDFS, RDF(S), RDF-S, or RDF/S ) is a set of classes and properties expressed

in RDF, providing basic elements for the definition of ontologies (also called RDF

vocabularies) with the aim of adding semantics to RDF resources [3, 103]. Ontologies

are a formal way to describe taxonomies and classification networks, essentially

defining the structure of knowledge for various domains.

The data described by an ontology is interpreted as a set of “individuals” and

a set of “property assertions” which relate these individuals to each other. An

ontology consists of a set of axioms which place constraints on sets of individuals

(called “classes”) and the types of relationships permitted between them. These

axioms provide semantics by allowing systems to infer additional information based

on the data explicitly provided3. Ontologies can import other ontologies, adding

information from the imported ontology to the current ontology.

3https://www.w3.org/TR/owl-guide/

https://www.w3.org/TR/owl-guide/
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Here we illustrate some of the classes and properties of the RDF Schema 1.1 speci-

fication of the W3C4:

Classes . rdfs:Resource is the class of everything. All entities described by RDF

are resources. rdfs:Class declares a resource to be a class of other resources.

An example of an rdfs:Class is foaf:Person in the Friend of a Friend5 (FOAF)

vocabulary. An instance of foaf:Person is a resource that is linked to the class

foaf:Person using the rdf:type property, such as in the following RDF repre-

sentation of the natural-language sentence ’John is a Person’:

ex:John rdf:type foaf:Person

Here, rdf:type is a property used to state that a resource is an instance of a class.

A commonly used abbreviation for this property is ”a”. rdf:, foaf: and ex: are

namespace prefixes.

The definition of rdfs:Class is recursive: rdfs:Class is also the class of classes,

and so it is an instance of itself:

rdfs:Class rdf:type rdfs:Class

Properties . Properties are instances of the class rdf:Property and describe a re-

lationship between subject resources and object resources. When used as such, a

property is regarded as being a predicate.

The property rdfs:domain of an rdf:Property, P , identifies the class of the subject

of any triple whose predicate is P . The property rdfs:range of an rdf:Property,

P , identifies the class or datatype of the object of any triple whose predicate is

P . For example, the following declarations are used to express that the prop-

erty ex:employer relates a subject of type foaf:Person to an object of type

foaf:Organization:

4https://www.w3.org/TR/rdf-schema/
5http://xmlns.com/foaf/spec/

https://www.w3.org/TR/rdf-schema/
http://xmlns.com/foaf/spec/
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ex:employer rdfs:domain foaf:Person

ex:employer rdfs:range foaf:Organization

Given the previous two declarations, the following triple requires that ex:John is

necessarily of type foaf:Person, and ex:CompanyX is necessarily of type foaf:

Organization:

ex:John ex:employer ex:CompanyX

rdfs:subClassOf allows the declaration of hierarchies of classes. For example, the

following declares that ‘Every Person is an Agent’:

foaf:Person rdfs:subClassOf foaf:Agent

rdfs:subPropertyOf is an instance of rdf:Property that is used to state that all

resources related by one property are also related by another. rdfs:label is an

instance of rdf:Property that may be used to provide a human-readable version

of a resource’s name. rdfs:comment is an instance of rdf:Property that may be

used to provide a human-readable description of a resource.

The Web Ontology Language (OWL) is a family of knowledge representation lan-

guages for defining ontologies6 that provide more expressiveness than RDF/S. OWL

has a richer vocabulary which enables a more precise description of properties and

classes. For instance, an OWL ontology describing families might include axioms

stating that a “hasMother” property is only present between two individuals when

“hasParent” is also present, and that individuals of the class “HasTypeOBlood” are

never related via “hasParent” to members of the class “HasTypeABBlood”. Thus,

if it is stated that the individual Harriet is related via “hasMother” to the individual

Sue, and that Harriet is a member of “HasTypeOBlood”, then it can be inferred

that Sue is not a member of “HasTypeABBlood”.

6https://www.w3.org/OWL/

https://www.w3.org/OWL/
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2.1.3 Graph Databases

Description Logics

We now introduce Description Logics (DLs) [7], a family of knowledge representation

languages that further generalise OWL. The name description logics is motivated by

the fact that the important notions of the domain are described by concept descrip-

tions, i.e., expressions that are built from atomic concepts (unary predicates) and

atomic roles (binary predicates) using the concept and role constructors provided

by the particular DL. Here we focus on the DL ALCHI [7], from which the logics

that we address in this thesis are derived.

Syntax The alphabet of ALCHI contains three pairwise disjoint and countably

infinite sets of concept names A, role names R, and individual names I. The alphabet

of ALCHI also contains a set of roles P, such that each P ∈ P is either a role name

in R or its inverse, denoted by R−. A complex concept C is constructed from concept

names, roles and two special primitive concepts > (‘top’), and ⊥ (‘bottom’), using

the following grammar:

C ::= A | > | ⊥ | ¬C | C1 u C2 | C1 t C2 | ∃P.C | ∀P.C,

where A ∈ A and P ∈ P. Note that a DL vocabulary can be seen as a restricted

FO vocabulary containing only unary predicates (concept names), binary predicates

(role names), and constants (individual names). The set of complex concepts is

denoted by C. An example of a complex concept is given by ∃R.A u B which

denotes all the elements of type B that are also connected to elements of type A via

the role R.

An ALCHI terminological box (or TBox) T is a finite set of concept and role
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inclusion axioms (or simply inclusions) of the form

C1 v C2 and P1 v P2,

where C1, C2 ∈ C and P1, P2 ∈ P. An ALCHI assertion box (or ABox) A is a finite

set of concept and role assertions of the form

A(a) and R(a, b),

where A ∈ A, R ∈ R and a, b ∈ I. Given an ABox A, we denote by ind(A) the

set of individual names that occur in A. Taken together, T and A comprise a

knowledge base (or KB) K = (T ,A). In a KB, terminological boxes specify general

properties of concepts and roles, and constrain the way all objects in the domain can

participate in the different concepts and roles; on the other hand, assertion boxes

are facts about specific objects in the domain, that is, they assert that an individual

participates in some concept, or that some role holds between a pair of individuals.

Semantics We adopt the semantics of DL defined in terms of interpretations [7].

An interpretation I is a pair (∆I , ·I) that consists of a non-empty domain of inter-

pretation ∆I and an interpretation function ·I . The function ·I assigns an element

aI ∈ ∆I to each individual name a, a subset AI ⊆ ∆I to each concept name A, and

a binary relation RI ⊆ ∆I ×∆I to each role name R. We adopt the unique name

assumption (UNA), whereby distinct individuals are assumed to be interpreted by

distinct domain elements. The interpretation function ·I is extended inductively for
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complex concepts by taking:

(R−)I = {(v, u) | (u, v) ∈ RI},

>I = ∆I ,

⊥I = ∅,

(¬C)I = ∆I \ CI ,

(C1 u C2)I = CI1 ∩ CI2 ,

(C1 t C2)I = CI1 ∪ CI2 ,

(∃P.C)I = {u | there is a v ∈ CI such that (u, v) ∈ P I},

(∀P.C)I = {u | for all v with (u, v) ∈ P I , v ∈ CI}.

We now define the satisfaction relation |= for inclusions and assertions:

I |= C1 v C2 if and only if CI1 ⊆ CI2 ,

I |= P1 v P2 if and only if P I1 ⊆ P I2 ,

I |= C(a) if and only if aI ∈ CI ,

I |= P (a, b) if and only if (aI , bI) ∈ P I .

We say that an interpretation I is a model of a knowledge base K = (T ,A), written

I |= K, if it satisfies all concept and role inclusions of T and all concept and role

assertions of A.

Example 2.1.6. We give here an example of an ALCHI knowledge base. We

consider the domain of drinks and menus offered by bars. The vocabulary we use

to model this domain contains concept names for drink items, such as PinaColada

or CoconutMilk, and for more general types of drinks, such as SugarFree options

(SugarFree) or hot drinks (HotDrink). We also use concept names for entities such

as Bar, Menu and Drink. The role name hasIngredient is used to relate drinks and

their ingredients. The role contains is a generalisation (or superrole) of hasIngredient

that can also relate drinks with components (such as sugar or alcohol) that would
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not typically be considered as ingredients. The role name hasCocktail relates menus

to the drinks they contain as cocktails, and we may also have specialised versions

of this role such as hasBeer and hasWine. We can also use role names to state that

a bar offers some menu, or that it serves a drink. For entities representing specific

menus, dishes and bars, we use italic, lower-case letters. With this vocabulary in

place, we can write ABox assertions such as::

offers(r,m) hasCocktail(m, d1) PinaColada(p2)

hasBeer(m, p1) Bellini(d1) serves(r, d2)

Beer(p1) serves(r, p2) GinTonic(d2)

which intuitively express that some bar (r) offers a menu (m) containing beer and

Bellini cocktail, and the bar r also serves Pina Colada and Gin Tonic. Below we

give some examples of TBox concept and role inclusion axioms that express general

knowledge about this domain. Here C ≡ D is shorthand for the pair of axioms

C v D and D v C.

∃hasDrink.> v Menu (2.1)

∃hasDrink−.> v Drink (2.2)

hasCocktail v hasDrink (2.3)

hasBeer v hasDrink (2.4)

Menu v ∃hasBeer.> (2.5)

PinaColada v Cocktail u ∃hasIngredient.PineappleJuice (2.6)

GinTonic v ∃hasIngredient.Gin (2.7)

PineappleJuice t Cachaça v ∃contains.Sugar (2.8)

SugarFree ≡ ∀contains.¬Sugar (2.9)

hasIngredient v contains (2.10)
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The concept inclusions (2.1) and (2.2) state respectively that the domain of hasDrink

consists of menus, and its range consists of drinks. The role inclusions (2.3) and

(2.4) express that hasCocktail and hasBeer are specialisations (or subroles) of the

role hasDrink. Concept inclusion (2.5) stipulates that a menu has at least one beer.

Axiom (2.6) states that Pina Colada is a kind of cocktail that has an ingredient

pineapple juice. Axiom (2.7) says that Gin Tonic has gin as an ingredient. Axiom

(2.8) states that pineapple juice and Cachaça all contain sugar, and axiom (2.9)

defines sugar-free as the class of entities not containing sugar. Finally, the role

inclusion (2.10) expresses that hasIngredient is a subrole of contains.

Regular Languages and Conjunctive Regular Path

Queries

A non-deterministic finite state automaton (NFA) over a set of symbols Σ is a tuple

α = (Q,Σ, δ, q0, F ), where Q is a finite set of states, δ ⊆ Q×Σ×Q is the transition

relation, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. L(α)

denotes the language defined by an NFA α, and Σ∗ denotes the set of all strings

over symbols in Σ, including the empty string ε. A language that is recognised by a

NFA is a regular language [14].

To define the queries below, it is assumed that there exists a countably infinite set of

variables V, individual names I, concept names A and role names R. The alphabet

also contains a set of roles P, such that each P ∈ P is either a role name in R or

its inverse, denoted by R−. A term t is an individual name in I or a variable in V.

An atom is of the form α(t, t′), where t, t′ are terms, and α is an NFA or regular

expression defining a regular language over P ∪ A. A string s ∈ (P ∪ A)∗ is a path.

A conjunctive two-way regular path query (C2RPQ) q of arity n has the form q(~x)←

∃~y γ(~x, ~y), where ~x = x1, . . . , xn and ~y = y1, . . . , ym are tuples of variables, and

γ(~x, ~y) is a conjunction of atoms with variables from ~x and ~y [38]. Atom q(~x) is the
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head of q, denoted by head(q), and γ(~x, ~y) is the body of q, denoted by body(q). The

variables in ~x are the answer variables of q, while those in ~y are the existentially

quantified variables of q. A conjunctive (one-way) regular path query (CRPQ) is

obtained by allowing only symbols from R ∪ A (i.e., disallowing role inverses) in

atoms. A Boolean C(2)RPQ is a C(2)RPQ with no answer variables. A two-way

regular path query (2RPQ) is a C2RPQ with a single atom in its body. A regular

path query (RPQ) is a CRPQ with a single atom in its body. A two-way path query

(2PQ) is a 2RPQ head(q)← α(x, y) such that α ∈ (P ∪ A)∗. A path query (PQ) is

an RPQ head(q) ← α(x, y) such that α ∈ (R ∪ A)∗. In both the latter cases, α is

called the path of q, denoted by path(q).

A conjunctive query (CQ) q is a CRPQ such that, for each atom α(t, t′) ∈ body(q),

α ∈ (P∪A). Intuitively, a CQ has as body a conjunction of atoms whose predicates

are in A∪P (without regular expressions). Given a C(2)RPQ q with answer variables

~x = x1, . . . , xn and an n-tuple of individuals a = (a1, . . . , an), we use q(a) to refer

to the Boolean C(2)RPQ obtained from q by replacing xi with ai in body(q), for

every 1 6 i 6 n. An instance query (IQ) takes one of the following two forms:

(i) q(x) ← A(x), where A ∈ A (concept instance query); or (ii) q(x, y) ← P (x, y),

where P ∈ P (role instance query).

Semantics of C2RPQs. We now define the semantics of C2RPQs [38]. Given

individual names a and b, an interpretation I, and a regular language α over the

alphabet P ∪ A, we say that b α-follows a in I, denoted by I |= a
α−→ b, if and only

if there is some w = u1 . . . un ∈ L(α) and some sequence e0, . . . , en with ei ∈ ∆I ,

0 6 i 6 n, such that e0 = aI and en = bI , and for all 1 6 i 6 n : (a) if ui = A ∈ A,

then ei−1 = ei ∈ AI ; (b) if ui = P ∈ P, then (ei−1, ei) ∈ P I . A match for a Boolean

C2RPQ q in an interpretation I is a mapping π from the terms in body(q) to the

elements in I such that:
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(a) π(c) = c if c ∈ I;

(b) I |= π(t)
α−→ π(t′) for each atom α(t, t′) in q.

To simplify the notation, we do not allow unary atoms in the body of the query,

since each atom of the form A(t), where A ∈ A and t ∈ V∪ I, can be always replaced

by a binary atom A(t, z), where z is a fresh variable (that is, newly invented and

not appearing elsewhere). However, we shall use unary atoms in some examples

throughout the thesis, whenever this improves the legibility. It is easy to see that a

query with all unary atoms replaced by binary atoms as above is equivalent to the

original query. Given an interpretation I and a C2RPQ q, we say that I |= q if

there is a match for q in I, and that K |= q if I |= q for every model I of the KB

K. Also, we use qI to denote:

qI := {t | I |= q(t)}

and qK to denote:

qK := {t | t ∈ qI for every model I of K}.

Given an ABox A, we use A |= q as a shorthand for (∅,A) |= q, where (∅,A) is a

knowledge base with an empty TBox.

Given a C2RPQ q of arity n, a tuple of individual names a = (a1, . . . , an) is a

certain answer for q with respect to a KB K if and only if K |= q(a).
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2.2 Related Work

2.2.1 Frameworks for SPARQL query rewriting

Several works in the literature address data integration via SPARQL query rewriting.

Very close to our work is [42] which proposes an algorithm to rewrite SPARQL

queries with the aim of achieving RDF data integration. The approach is based

on the encoding of rewriting rules called Entity Alignments, which express semantic

mappings between two datasets and can be interpreted as definite Horn clauses7

in First-Order (FO) logic where only the triple predicate is used. The rewriting is

based on the GAV data integration approach. The main limitation of this work is

that it is not applicable when a more expressive formalism is needed to map between

two schemas, for example, when the relations in the sources need to be specified as

views over the mediated schema, i.e., as LAV mappings. One interesting aspect

is that the framework deals with entity resolution - the task of disambiguating

manifestations of real world entities in various records or mentions - by including

functional dependencies in the mapping rules.

Other SPARQL rewriting approaches are proposed by Makris et al. [80, 81] and in

the work of Thiéblin et al. [104], who define mapping frameworks based on Descrip-

tion Logics, where a term from one vocabulary is mapped to a Description Logic

expression over another vocabulary. These one-to-many mapping approaches can

support either a GAV or a LAV formalism, that is, a combination of GAV and

LAV rules are not permitted in the same setting. A similar limitation is found the

work of Lopes et al. [77] who adopt a rule-based mapping language in which single

atoms are mapped to a conjunction of atoms. Other approaches on data media-

tion are discussed in [84, 98, 106]. Specifically, [84] proposes a LAV approached

called SemLAV, an alternative technique to process SPARQL queries without gen-

7A clause (i.e., a disjunction of literals) is called a Horn clause if it contains at most one positive
literal. Horn clauses are usually written as ¬L1 ∨ ¬L2 ∨ · · · ∨ ¬Ln ∨ L ≡ L1, L2, . . . , Ln → L.
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erating rewritings. SemLAV executes the query against a partial instance of the

global schema which is built on-the-fly with data from the relevant views. Work in

[98] addresses rewriting techniques that consider only co-reference resolution in the

rewriting process. [106] adopts a small set of mapping axioms defined only by those

RDF triples whose predicate is one of the following OWL or RDFS terms: sameAs,

subClassOf, subPropertyOf, equivalentClass, and equivalentProperty. Other

SPARQL rewriting approaches are [73], which is based on SPARQL views specifying

GAV rules, and [97], which is limited to RDFS axioms as mapping language.

All the above-mentioned frameworks address query answering assuming a two-tiered

schema architecture, while we wish to explore a peer-to-peer architecture to encom-

pass the general case, where the mapping topologies are arbitrary.

2.2.2 Peer-to-peer Systems

Peer-to-peer systems based on the relational model have been widely addressed in

the literature. We begin this section with a description of the logical model of the

Piazza Peer Data Management System (PDMS) [58], to illustrate the commonly

adopted approach of interpreting such systems using a first-order semantics, and we

compare it with an alternative approach which relies on epistemic logics [36]. We

then discuss the complexity of the query answering problem in PDMSs, restrictions

to ensure decidability, and the relationship between these results and our own work,

which is based on the RDF data model.

The Piazza PDMS [58, 102, 101, 57, 59] consists of a set of data sources (also known

as peers) which are related through semantic mappings, also called peer mappings.

Each peer defines its own relational peer schema whose relations are called peer

relations. A query in a PDMS is posed over the relations of a specific peer schema.

Peers contribute data to the system in the form of stored relations. Peer relations
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are mapped to stored relations via storage descriptions. All queries submitted to a

peer will be reformulated in terms of stored relations that may be stored locally or

at other peers.

The goal of the Piazza PDMS is to preserve the features of both the GAV and

LAV formalisms, but also to extend them from a two-tiered architecture to a more

general network of interrelated peer and source relations. Peer mappings in a PDMS

are specified between pairs of peer relations. Ultimately, a query over a given peer

schema may be reformulated over source relations stored at any peer reachable from

the transitive closure of the peer mappings.

We now discuss the complexity of the query answering problem in the Piazza PDMS.

Two extreme cases of query answering are characterised [58]:

1. The problem of answering a conjunctive query, Q, for a given PDMS, N , is

undecidable.

2. If N includes only acyclic mappings, then a conjunctive query can be answered

in polynomial time with respect to data complexity.

These results are based on an open-world assumption in which peers have incomplete

rather than full information. The closed-world assumption, which is necessary for

supporting negation in mappings and queries, is known to make the problem of

finding all certain answers much harder (co-NP hard in the size of the data [1]) even

for two peers (and, in fact, even without negation). The proof of these results is in

[60].

There is also an additional special case where query answering in a PDMS is tractable

and two more cases when it is decidable. Note that, in general, decidability is ensured

only when the peer mappings are acyclic.
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Similarly to the Piazza PDMS, in [52] the authors give logical and computational

characterisations of peer-to-peer database systems. Their formalisation is robust

since, unlike other formalisations, it allows for local inconsistencies in some node of

the P2P network: if some rule in the local database schema is not satisfied it will

not result in the entire database being inconsistent. They define a model-theoretic

semantics of a peer-to-peer system which allows for local inconsistency handling, and

then characterise the general computational properties for the problem of answering

queries in such a peer-to-peer system.

A special case of the PDMS framework, called peer data exchange is addressed in

[53]; in this framework, peer mappings can be defined in a single direction, that is,

from a source peer to a target peer. Instead, in a full-fledged PDMS such distinction

of peers does not exist, and mappings can be expressed in either direction (from one

peer to another, and vice versa).

Calvanese and De Giacomo [36] compare the commonly adopted approach of inter-

preting peer-to-peer systems using a first-order logic with an alternative approach

based on epistemic semantics which, in their setting, can be considered as a well-

behaved, sound approximation of the first-order semantics where only the certain

answers are exported from peer to peer. They show that in systems in which peer

mappings are arbitrarily interconnected, the first-order approach may lead to unde-

cidability of query answering, while the epistemic approach always preserves decid-

ability.

In [96] is outlined a major distinction between PDMS frameworks, according to

whether peer mappings are interpreted under global or local reasoning. Global rea-

soning means that peer mappings are interpreted as a single (global) first-order

theory. Under local reasoning, each peer is modeled as a distinct (local) theory,

and inter-peer mappings are interpreted as exchanging certain facts between such

theories only. Of the approaches mentioned above, the work of Calvanese and De
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Giacomo is an example of PDMS interpreted under local reasoning, as opposed to

the Piazza PDMS which is under global reasoning.

Several P2P systems for the RDF data model have been proposed in the literature.

For instance, in [23, 24] the authors describe a distributed RDF metadata storage,

querying and subscription service, as a structured P2P network. Similarly, work in

[88] proposes routing strategies for RDF-based P2P networks. Similar approaches

are described in [86, 87, 71, 105, 100]. However, these are non-database-oriented

tools that have little support for semantic integration of highly heterogeneous RDF

data.

We conclude this section with a brief overview of other papers on peer-to-peer (P2P)

data integration for the relational model that we have reviewed for this thesis. [82,

83] extend an existing approach to data integration, called both-as-view, to be an

effective mechanism for defining peer-to-peer integration at the schema level. [13]

identifies particular database problems introduced by P2P computing and proposes

the Local Relational Model (LRM) to solve some of them. [69] addresses semantic

and algorithmic issues related to the use of mapping tables, arguing that mapping

tables are appropriate for data mapping in a P2P environment and then discussing

alternative semantics for these tables. [95] presents a decentralised strategy that

guides peers in their decision over which further mappings and data a query should

be executed. The strategy uses statistics of the peer’s own data and statistics

of mappings to neighbouring peers to predict whether it is worthwhile to send or

prune the query at a specific point in the peer network. [107] presents a distributed

solution to process and optimise queries in a PDBMS for multi-way join queries. This

approach first processes a multi-way join query based on an initial query evaluation

plan (generated using statistical data that may be obsolete or inaccurate); as the

query is being processed, statistics obtained on-the-fly are used to refine the current

plan dynamically into a more effective one.
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2.2.3 Query Rewriting Under Description Logics

Query rewriting has been extensively employed in conjunctive query answering under

different types of ontologies [54, 90, 85]. The first query rewriting algorithm pro-

posed in DLs is the one presented in [34] where the authors address tractable query

rewriting (in nlogspace) for conjunctive queries to unions of conjunctive queries

under the FO-rewritable DL-Lite family. For the non-FO-rewritable EL family of

languages [6], Rosati [94] uses a rewriting algorithm similar to the one in [34] to show

that query answering in EL is ptime-complete in data complexity. Instance check-

ing (i.e., answering single-atom boolean queries) under DL-LiteR via query rewriting

is addressed in [17]. Another similar work is [91] which presents a resolution-based

query rewriting algorithm for DL-Lite+ ontologies; in this case, a more expressive

language, Linear Datalog [55], is adopted as the target language. Similar approaches

are used when the ontology language is TGDs. For instance, in [9] the authors use

a resolution-based mechanism to identify classes of tuple-generating dependencies

for which reasoning tasks (such as conjunctive query answering or entailment) are

decidable.

In [40] the authors address the problem of how to recover FO-rewritability of SPARQL

lost because of owl:sameAs statements. Other works [15, 16] study FO-rewritability

of conjunctive queries in the presence of ontologies formulated in a description logic

lying between EL and Horn-SHIF (which subsumes EL in expressiveness), along

with related query containment problems. In [63, 62] the authors propose an al-

gorithm for computing FO rewritings of concept queries (i.e., single-atom queries

where the atom relation is a concept name) under EL TBoxes that is tailored towards

efficient implementation.

As we shall see in Chapter 4, the query rewriting algorithm adopted in this thesis

is derived from that of [70, 72], which address query rewriting over EL, QL and

RL, and propose techniques to rewrite conjunctive queries under QL. Similarly
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to our approach, the authors in [20] exploit the SPARQL 1.1 language in query

rewriting. They find that SPARQL 1.1 is powerful enough to encode a schema-

agnostic rewriting under QL. Using additional SPARQL 1.1 features, they develop

a new method of query rewriting, where arbitrary conjunctive queries over QL are

rewritten into equivalent SPARQL 1.1 queries in a way that is fully independent of

the actual schema.

The complexity of answering CRPQs under DL-Lite and EL families is studied

in [18]. To the best of our knowledge, there are no works in the literature that address

the rewriting of CQs (nor CRPQs) into CRPQs under DL ontologies, nor under

other dependency rules for the relational model such as TGDs. In this regard, we

present in Chapters 4 and 5 a novel rewriting technique, based on non-deterministic

finite-state automata, for rewriting CQs into CRPQs under a fragment of the DL

comprising DL-Lite+ of [91] plus the additional feature of inverse role inclusions.

2.3 Discussion

In this chapter we have introduced the necessary background theory and a discussion

of the literature related to the work proposed in this thesis. This review of the

literature raises some open questions, that are investigated in the following chapters

of the thesis:

Q1 How do we formalise an RDF-based peer-to-peer architecture for SPARQL

query answering where the number of peers and the mapping topologies are

arbitrary?

Q2 How can we generate the rewriting of SPARQL queries with respect to the

peer mappings, interpreted so as to preserve decidability?

Q3 Is the expressiveness of SPARQL sufficient for such rewritings?
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Q4 In case that the above rewritings require a more expressive language than

SPARQL (or SPARQL 1.1) a restriction on the mappings is needed to preserve

decidability. How do we restrict the mapping language while keeping it as

expressive as possible?

Q5 Which Description Logic is suitable as the mapping language according to the

task of Q4?

Q1 and Q2 are addressed in Chapter 3 where we we introduce our framework for

peer-to-peer RDF semantic data integration, the RPS. Our goal is to leverage the

techniques for specifying semantic mappings between RDF sources, extending them

beyond a two-tiered architecture and preserving decidability of query answering with

arbitrary mapping topologies.

Q3 is addressed in Section 3.5 of Chapter 3, where we discuss the rewritability of

the mapping language and propose a rewriting algorithm that outputs a union of

conjunctive queries for a restricted version of the mapping language and a Datalog

query for the general case. Finally, Q4 and Q5 are addressed in Chapters 4 and 5,

where we introduce the description logic ELH`in , and a novel ontology language,

named ELHI`inh , which strictly extends the known ontology languages DL-LiteR

and ELH`in . Specifically, in Chapter 5 we show that it is possible to rewrite CQs

into C2RPQs (and therefore into SPARQL 1.1) under ELHI`inh .



Chapter 3

Peer-to-Peer Semantic Integration

of Linked Data

In this chapter, we introduce our framework for peer-to-peer RDF semantic data

integration, the RDF Peer System (RPS). Our goal is to leverage techniques for

specifying semantic mappings between RDF sources, extending them beyond a two-

tiered architecture. In our framework, each peer is represented by its peer schema,

comprising the set of IRIs adopted by the peer to model its data. Integration

is achieved by means of peer-to-peer mappings between these sets of URIs. To

formally specify the problem of query answering, we generalize the notion of certain

answers [1] to our context. The chapter is structured as follows. In Section 3.1

we define the syntax of RPSs and in Section 3.2 we introduce their semantics. The

problem of SPARQL query answering under RPSs is addressed in Section 3.3, where

we show that the semantics of the mappings preserves tractability. In Section 3.4 we

illustrate how our technique can be applied in a real-world case study. The chapter

concludes with Section 3.5, where we address the problem of query rewriting under

RPSs.

46
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3.1 RDF Peer Systems

In this section, we introduce our framework for peer-to-peer RDF semantic data

integration. We present a new peer mapping language designed to be suitable for

the RDF model. In this setting, users can instantiate a peer-to-peer system by

defining sets of BGP SPARQL queries and IRIs arbitrarly mapped in a peer-to-peer

fashion, where each peer schema is simply represented by the set of IRIs adopted

by the RDF datasource.

An RDF Peer System (RPS) P constitutes a set of peers and a set of mappings that

specify the semantic relationships between peers. Formally, an RPS P is defined as

a tuple P = (P,G,E,Π), where:

• P is the set of the peers in P . Each peer p ∈ P has its peer schema, denoted

by Π(p), which is the set of all the constants u ∈ I (where I is the set of all

the IRIs in Linked Data) adopted by p to describe data in the form of RDF

triples. Informally, a peer schema is a subset of I comprising only the IRIs

adopted by the peer. Two peer schemas need not be disjoint sets: this is in

accordance with real Linked Data sources, where two different RDF databases

may share some IRIs in the RDF triples.

• G is a set of graph mapping assertions, each of which is an expression of

the form Q ; Q′, where Q and Q′ are BGP SPARQL queries of the same

arity, expressed over the schemas Π(p) and Π(p′), respectively, of two peers

p, p′ ∈ P . Formally, the graph pattern BGPQ in the query Q contains triple

patterns from (Π(p) ∪ L ∪ V ) × (Π(p) ∪ V ) × (Π(p) ∪ L ∪ V ), and the graph

pattern BGPQ′ in the query Q′ contains triple patterns from (Π(p′)∪L∪V )×

(Π(p′) ∪ V )× (Π(p′) ∪ L ∪ V ).

• E is a set of equivalence mappings of the form c ≡e c′, where c and c′ are in

some Π(p), with p ∈ P .
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• Π : P → 2I is a function from the set of peers to the set of peer schemas.

3.2 Semantics of RDF Peer Systems

We assume that data stored in the peers is in the form of a set of RDF triples for

each peer in the system. Formally, for each peer p ∈ P in P , we have a database d,

that is, a set of triples
(
s, p, o

)
∈
(
Π(p)∪B

)
×Π(p)×

(
Π(p)∪B∪L

)
. Consequently,

the stored database D of an RPS P is the union of all the peer databases d of all

the peers in P . A peer-to-peer database of an RPS P is simply an arbitrary RDF

database containing triples
(
s, p, o

)
∈
(
Π(p1) ∪ · · · ∪ Π(pn) ∪ B

)
×
(
Π(p1) ∪ · · · ∪

Π(pn)
)
×
(
Π(p1) ∪ · · · ∪ Π(pn) ∪B ∪ L

)
, where p1, . . . , pn ∈ P are the peers in P .

We also denote by subjQ(c), predQ(c) and objQ(c) three special BGP SPARQL

queries:

• subjQ(c) := xpred, xobj ← (c, xpred, xobj)

• predQ(c) := xsubj, xobj ← (xsubj, c, xobj)

• objQ(c) := xsubj, xpred ← (xsubj, xpred, c)

where c ∈
(
Π(p1) ∪ · · · ∪ Π(pn) ∪ L

)
.

The evaluation of subjQ(c) over an RDF dataset is the set of pairs of the form

(t.pred, t.obj) containing the predicate and object of all triples in the dataset where

the constant c occurs as the subject. The queries predQ(c) and objQ(c) are defined

similarly, with the constant c now occurring as the predicate and the object of an

RDF triple, respectively.

Below we give formal definitions for a solution of an RPS P and for the set of

certain answers for a query posed against P . Informally, a peer-to-peer database is
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a solution of an RPS P if it contains the stored database of P , as well as all triples

inferred by the mappings of P . The certain answers to a query against P are those

which appear in all possible solutions of P .

Definition 3.1. A peer-to-peer database I is said to be a solution for an RPS P

based on a stored database D if:

1. For every peer database d ∈ D, we have that d ⊆ I.

2. For every graph mapping assertion in G of the form Q ; Q′, we have that

QI
↓ ⊆ Q′I↓, with

QI
↓ := { t | t = (t1, . . . , tn) ∈ QI and t1, . . . , tn ∈ (I ∪ L) }, and

Q′I↓ := { t | t = (t1, . . . , tn) ∈ Q′I and t1, . . . , tn ∈ (I ∪ L) }.

3. For every equivalence mapping in E of the form c ≡e c′, all of the following

hold:

subjQ(c)I = subjQ(c′)I

predQ(c)I = predQ(c′)I

objQ(c)I = objQ(c′)I

As we can see from the above definition, graph mapping assertions “drop” the tuples

containing some elements in B (blank nodes). Blank nodes are used in RDF triples

as placeholders for unknown resources [65]; in other words, they denote variables

which may take values in the set of IRIs and literals (I ∪ L). In this regard, graph

mapping assertions exchange only full information between peers, dropping all the

tuples containing partial information. We can say that, in the context of graph
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Figure 3.1: Example of an RDF graph from three data sources.

mapping assertions, blank nodes are treated as labelled nulls in the relational model,

which are placeholders for unknown values and are not included in query results.

Definition 3.2. We define the certain answers RPS-ans(q,D,P) of an arbitrary

BGP SPARQL query q of arity n, based on a stored database D of an RPS P , as

the set of n-tuples t of constants in
(
Π(p1) ∪ · · · ∪ Π(pn) ∪ L

)
such that, for every

peer-to-peer database I that is a solution for the system P based on D, we have

that t ∈ qI .

The query answering problem is defined as follows: given an RPS P , a stored

database D and a BGP SPARQL query q, find the certain answers RPS-ans(q,D,P).

Example 3.2.1 illustrates how the semantics of certain answers under RPSs can

support integration of multiple RDF sources in a typical Linked Data scenario.

Example 3.2.1. Figure 3.1 illustrates an RDF graph containing triples from three

different sources. Sources 1 and 2 contain data about films, while Source 3 describes
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Figure 3.2: RDF graph of a universal model for the peer system of Example 3.2.1.
Dotted arrows and dashed arrows represent triples inferred by the equivalence map-
pings and the graph mapping assertions, respectively.

people and their properties. We can see that URIs representing the same entities

(e.g., DB1:Spiderman and DB2:Spiderman2002, for the film Spiderman) are linked

by the OWL property sameAs, which states that the linked URIs represent the same

real-world entity (best practices for owl:sameAs are given in [61]). It is clear that

there is a semantic equivalence mapping between URIs linked by sameAs. We can

also see that there is a semantic equivalence mapping between pairs of triples of the

form (a starring z) and ( z artist b) in Source 1 and triples of the form (a

actor b) in Source 2; both represent the relationship that “actor b acted in the film

a”.

We define an RPS P = (P,G,E,Π) as follows:

• P := {p1, p2, p3} are the peers, i.e., the three sources.

• G is composed of a graph mapping assertions of the form Q2 ; Q1, where:
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– Q1 := x, y ← (x, starring, z) AND (z, artist, y),

– Q2 := x, y ← (x, actor, y).

• E contains an equivalence mapping c ≡e c′ for each triple of the form

(c, sameAs, c′).

• Π is defined so that Π(pi) is the set of IRIs in the ith source. For example, we

have that

Π(p2) = {DB2:Spiderman2002,DB2:Willem Dafoe,DB2:Pleasantville, actor}.

Note that, for simplicity, here we do not consider other potential peer mappings -

for instance, the mapping Q1 ; Q2. Now assume that a user poses the following

BGP SPARQL query:

SELECT ?x ?y

WHERE { DB1:Spiderman starring ?z . ?z artist ?x .

?x age ?y }

This query returns an empty result on the data of Figure 3.1, since the sameAs

property is missing from the query, and SPARQL does not automatically exploit

semantic mappings between RDF resources.

Figure 3.2 illustrates an RDF database which is a universal model for P . Let us

consider again the SPARQL query illustrated above. Now, evaluating the query

over the universal model, we obtain the result in Listing 3.1. It is important to

observe that the user poses a query over Sources 1 and 3 but retrieves additional

information also from Source 2 in a transparent way. The RPS, in fact, not only

captures the semantics of the owl:sameAs property, but also performs integration

of similar sources in order to return additional answers to the user. This integration
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#Query

SELECT ?x ?y

WHERE { DB1:Spiderman starring ?z .

?z artist ?x .

?x age ?y }

#Result

DB1:Toby_Maguire "39"

foaf:Toby_Maguire "39"

DB1:Kirsten_Dunst "32"

foaf:Kirsten_Dunst "32"

DB2:Willem_Dafoe "59"

foaf:Willem_Dafoe "59"

#Result without redundancy

DB1:Toby_Maguire "39"

DB1:Kirsten_Dunst "32"

DB2:Willem_Dafoe "59"

Listing 3.1: SPARQL query over the universal model.

can be performed dynamically as new data sources appear, and requires no input

from the user.

3.3 Query answering

To investigate the complexity of the query answering problem, we show that the

problem of finding RPS-ans(q,D,P) can be reduced to CQ answering under a certain

set of TGDs. In this setting, we will see that the set of TGDs retains the decidability

property; this is stated in Theorem 3.1, whose proof shows that the chase terminates

in polynomial time with respect to the size of the data.

We first define the relational schema RRDF := {triple, resource}, where triple is

a ternary relational symbol and resource is a unary relational symbol. Now, for

each RDF database D we define the relational instance DRRDF over the relational
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schema RRDF , such that for each RDF triple (s, p, o) ∈ D there exists an atom

triple(s, p, o) ∈ DRRDF and for each r ∈ dom(D) there exists an atom resource(r) ∈

DRRDF . Note that dom(D) does not include blank nodes contained in D.

Given a BGP SPARQL query q of the form X ← BGPq we define the conjunction

of atoms φq(X,Y ) as follows:

φq(X,Y ) :=
∧

(x,y,z) is a triple pattern in q

triple(x, y, z),

where Y = y1, . . . , ym ∈ var(BGPq) are the existentially quantified variables of q.

For example, given the following BGP SPARQL query

q := x1, x2 ← (x1, father, y) AND (y, father, x2),

where x1, x2, y ∈ var(BGPq) and father ∈ I, then φq((x1, x2), y) is the conjunction

of atoms

triple(x1, father, y) ∧ triple(y, father, x2),

Now, we derive from a BGP SPARQL query q the CQ qCQ defined as follows:

qCQ := ansqCQ
(X)← φq(X,Y ),

From this formalisation, it follows that t ∈ qD if and only if ansqCQ
(t) ∈ qCQ(DRRDF ).

Given an RPS P = (P,G,E,Π), we are now ready to define a set of TGDs PRRDF

such that RPS-ans(q,D,P) = ans(qCQ, D
RRDF ,PRRDF ). For each graph mapping

assertion Q ; Q′ = X ← BGPQ ; X ′ ← BGPQ′ ∈ G, we have the following

graph mapping TGD in PRRDF :
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φQ(X,Y ) ∧ resource(x1) ∧ · · · ∧ resource(xn)→ ∃Y ′ h(X′,X)

(
φQ′(X

′,Y ′)
)
.

where h(X′,X) : S1 → S2 is the substitution {x′1 → x1, x
′
2 → x2, . . . , x

′
n → xn},

X = x1, x2 . . . , xn and X ′ = x′1, x
′
2 . . . , x

′
n.

For each equivalence mapping c ≡e c′ ∈ E, we have the following set of equivalence

mapping TGDs in PRRDF :

triple(c, y, z)→ triple(c′, y, z),

triple(c′, y, z)→ triple(c, y, z),

triple(x, c, z)→ triple(x, c′, z),

triple(x, c′, z)→ triple(x, c, z),

triple(x, y, c)→ triple(x, y, c′),

triple(x, y, c′)→ triple(x, y, c).

From this definition, it follows that RPS-ans(q,D,P) and ans(qCQ, D
RRDF ,PRRDF )

yield the same result. Thus, to assess the complexity of answering a BGP SPARQL

query q over RPSs, we consider the equivalent problem of finding the certain answers

of the CQ qCQ under DRRDF and the set of TGDs PRRDF .

The set of certain answers for CQ answering under TGDs is computed by evaluating

queries over the so-called universal model [44] (also referred to in the literature as the

universal solution). To generate a universal model, a source database is “chased”

using the set of dependencies. Each step of the chase “extends” the database so

that the chosen dependency is satisfied. As described in Chapter 2, given a TGD

φ(X,Z) → ∃Y ψ(X,Y ) and a mapping h (from the variables in φ(X,Z) to con-

stants) for which the dependency is not satisfied, the chase step generates new atoms

in the instance in order to satisfy the dependency. The new atoms are generated

by: (a) extending h to h′ such that each existentially quantified variable in ψ(X,Y )

is assigned a freshly created constant, a labelled null, followed by: (b) taking the
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image of the atoms of ψ under h′ (see Chapter 2.1.1 for more details of the chase

procedure). An “RDF” version of the chase procedure that has as its input the

mappings in an RPS and an RDF stored database is listed in Algorithm 1; this

version gives a more direct way to implement the chase procedure as it does not

require the translation of RPS mappings into TGDs.

In our set of TGDs PRRDF , there are no atoms of type resource(x) in the head

of any dependency such that the variable x is existentially quantified. Therefore,

the set of IRIs and literals remains constant during the chase procedure. Thus, the

chase generates new blank nodes as labelled nulls. Without loss of generality, we

will use the term newly created blank nodes when we want to denote labelled nulls.

Graph mapping TGDs are the only dependencies in PRRDF that contain existentially

quantified variables in the head, therefore they are the only dependencies for which

the chase may generate newly created blank nodes. Newly created blank nodes

cannot trigger any of the graph mapping TGDs, so the chase sequence is bounded

by a finite number of steps: this is because, following the semantics of the RPS,

tuples containing elements in B (blank nodes) are dropped from the evaluation of

the BGP SPARQL queries in both the head and the body of the graph mapping

assertions. We now show that, in fact, the number of steps in the chase is bounded

by a polynomial in the size of the set of constants, i.e., I ∪ L.

Theorem 3.1. The problem of finding all certain answers RPS-ans(q,D,P) to a

BGP SPARQL query q, for a given RDF Peer System P and a stored database D,

has PTIME data complexity.

Proof. We know that RPS-ans(q,D,P) = ans(qCQ, D
RRDF ,PRRDF ) by the defini-

tions of qCQ, DRRDF and PRRDF . The answer to qCQ with respect to DRRDF and
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Algorithm 1: Using the chase to compute the certain answers
RPS-ans(q,D,P).

Data: Graph pattern query q, RPS P = (P,G,E,Π), stored instance D.
Result: The set ~t of the certain answers RPS-ans(q,D,P).
Initialize instance J = D;
/* Chase step to generate a universal model */

while some of the mappings of P are not satisfied in J do
Let m be such a mapping;
case m of Q; Q′ ∈ G: do

for each tuple t ∈ QJ \Q′J do
generate the boolean query bQ′ by substituting t in the free
variables Q′;

add triples to J generating new blank nodes, such that
bQ′J = true;

case m of c ≡e c′ ∈ E do
if subjQ(c)∗J 6= subjQ(c′)∗J then

for each tuple (p, o) ∈ (subjQ(c)∗J \ subjQ(c′)∗J) do
add the triple (c′, p, o) to J ;

for each tuple (p, o) ∈ (subjQ(c′)∗J \ subjQ(c)∗J) do
add the triple (c, p, o) to J ;

if predQ(c)∗J 6= predQ(c′)∗J then
for each tuple (s, o) ∈ (predQ(c)∗J \ predQ(c′)∗J) do

add the triple (s, c′, o) to J ;

for each tuple (s, o) ∈ (predQ(c′)∗J \ predQ(c)∗J) do
add the triple (s, c, o) to J ;

if objQ(c)∗J 6= objQ(c′)∗J then
for each tuple (s, p) ∈ (objQ(c)∗J \ objQ(c′)∗J) do

add the triple (s, p, c′) to J ;

for each tuple (s, p) ∈ (objQ(c′)∗J \ objQ(c)∗J) do
add the triple (s, p, c) to J ;

/* End of chase */

compute the certain answers ~t := qJ ;
/* The certain answers are generated by evaluating the query

over the universal solution */

return ~t;
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PRRDF is computed by generating a universal model J for DRRDF with respect to

PRRDF and then evaluating qCQ over J .

Let us consider first the chase sequence that generates J . We first check the number

of chase steps that are triggered by the graph mapping TGDs. Since labelled nulls

cannot trigger any such rules, the number of steps is bounded by a function Q(n)

over the number of constants n in I ∪ L. Let us now consider Q(n). The relation

triple(x, y, z) is a 3-ary predicate, therefore the number of tuples that can trigger

one atom in the body of a rule is at most n3. Let d be the maximum number of

atoms of the form triple(x, y, z) appearing in the body of these rules, and s the

number of graph mapping TGDs in PRRDF . Then, number of chase steps that are

triggered by the graph mapping TGDs is bounded by Q(n) = (n3)d× s. Since s and

d are constants, Q(n) is a polynomial.

Consider now the number of chase steps triggered by equivalence mapping TGDs

and let r be the number of equivalence mapping TGDs in PRRDF . This number of

steps is bounded by the function T (n) = (n+nb)
3× r over the number of constants

n in the original source instance and the number of newly created labelled nulls

nb. Equivalence mappings do not contain existentially quantified variables in the

head, so they do not generate newly created blank nodes during the chase. Thus,

nb depends only on the chase sub-sequence under graph mapping assertions, so is

bounded by a polynomial function, say P (m), over the maximum number of chase

steps under graph mapping assertions, i.e., Q(n). Thus, T (n) =
(
n+P (Q(n))

)3

×r.

The number of chase steps is then bounded by

T (n) +Q(n) =
[(
n+ P (Q(n))

)3

× r
]

+Q(n),

since, in a worst-case scenario, one chase step is triggered by a single rule application.

Therefore, a universal model J can be produced in polynomial time. In particular,
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since n is finite, the chase always terminates.

It now remains to generate the set of certain answers by posing the CQ qCQ over J .

Since CQ answering is in AC0 for data complexity [2], the claim follows.

3.4 Case Study

We now present a larger-scale, real-world case study that illustrates the practical

usage of our approach. The case study illustrated here is part of the INSPIRE

project [92], which addresses the domain of career guidance, particularly career

transitions. Although many sources of careers advice exist (school and university

careers advisors; websites such as Jobserve, Prospects, UK National Careers service;

friends, relatives, peers and colleagues), when a person is at a particular career point

they may be unaware of all the possible options and may not see longitudinal paths.

For example, it may be hard to gauge the relevance of available information, the

diversity of information sources may create a sense of ‘being lost’, it may take a

long time to find useful information, and it may be hard to elicit longer-term career

trajectories as opposed to just immediate possible next steps.

The aim of the INSPIRE project is to develop an interactive tool that can aid users’

exploration of Linked Data graphs representing job and learning opportunities by

assisting them in identifying paths in the data that will be beneficial for expanding

their awareness of career options. Such a tool would have the potential to moti-

vate users to explore short- or longer-term career paths, through a combination of

personalised ontological querying and reasoning over large volumes of real careers

data, stored as Linked Data graphs. So far we are using two databases: the L4All

RDF/S ontology arising from the L4All and MyPlan projects, capturing the work

and educational experiences of lifelong learners [93]; and a new RDF/S ontology
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we have designed based on the information published on LinkedIn1, a business and

employment-oriented service that operates via websites and mobile apps. To inte-

grate data from both the L4All ontology and the LinkedIn web service, we define

an RDF Peer System.

In the following sections, we illustrate the steps we followed for the case study: in

Section 3.4.1 we show how we designed a new ontology based on the LinkedIn profile

pages; in Section 3.4.2 we give an overview of the L4All ontology arising from the

L4All and MyPlan projects; finally, in Section 3.4.3 we show how we exploited the

RPS mapping language to materialise an integrated version of the two heterogeneous

data sources.

3.4.1 LinkedIn Ontology design

Based on the LinkedIn members’ pages, we have designed an RDF/S ontology, which

we call here the LinkedIn ontology. Its main concepts are as follows:

• CVItem (represents the various events of a LinkedIn user’s CV);

• EducationItem (represents all CV events related to qualification, including

degree and self-study);

• CertificationItem (represents all CV events leading to a certified qualification,

including professional development courses and MOOCs);

• WorkItem (represents all CV events related to work experience with some

role);

• OtherItem (represents additional CV events, e.g. travel, voluntary experi-

ence);

1https://uk.linkedin.com/

https://uk.linkedin.com/
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• Member (represents information about the person, including skills, hobbies).

Figure 3.3 contains a class diagram of the Linkedin ontology.

Figure 3.3: NeighborGramTM of the Linkedin ontology.

To obtain a set of test data to populate the LinkedIn ontology, we developed a Java

tool that parses LinkedIn HTML profile pages into anonymised RDF triples. To

implement the tool we performed the following steps.

Firstly, we inspected the underlying HTML structure of a LinkedIn profile page.

This process allowed us to identify which HTML tree elements in the LinkedIn

pages (e.g., branches and leaves) contain the information needed to populate the

LinkedIn ontology. Figure 3.4 illustrates the design process we followed for the page

inspection. We first identify the HTML branch containing data regarding education

experience; the root of this branch is the section element with the id ”education-

section”, at the top of the image. Then, this branch is traversed to identify the

sub-branches corresponding to single education items; these branches are called the

education item branches. In the figure, an education item branch root is pointed
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to by a purple arrow. Finally, the information related to the EducationItem class

in the LinkedIn ontology is extracted as text from a set of candidate leaves of

each education item branch: 1) the school, highlighted in red; 2) the degree title,

highlighted in yellow; 3) the field of study, highlighted in green; and 4) the time,

highlighted in blue.

Figure 3.4: Analysis of LinkedIn profile HTML structure.

Following from the page inspection, we developed a Java application that automat-

ically extracts data from the LinkedIn profile pages. The application takes as input

a set of HTML files and outputs an RDF dataset in one of the RDF standard se-

rialisation formats2. The parsing logic was implemented with the Jsoup library3

following the approach described in the example above.

A sample output of the parser is depicted in Figure 3.5 which includes a snapshot

of the RDF data extracted from a LinkedIn HTML profile page, serialised in Turtle

format.

To generate a test database instance for the LinkedIn ontology, we selected a set

2https://www.w3.org/TR/rdf-syntax-grammar/
3https://jsoup.org/

https://www.w3.org/TR/rdf-syntax-grammar/
https://jsoup.org/
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Figure 3.5: Snapshot of RDF data for a LinkedIn profile in Turtle serialisation
format.

of LinkedIn profiles comprised of 31 profiles of users who obtained a BSc in the

field of Computer Science, and 25 profiles of users who obtained a MSc in the field

of Computer Science. Each profile includes a mixture of both education and work

experience items, as well as a set of skills and additional information about the

person, including the profile summary, current job title and hobbies. After parsing

the selected profiles, we obtained an RDF database containing a total of 3190 RDF

statements.

3.4.2 L4All ontology overview

In our case study, we aim at integrating the LinkedIn ontology with the ontology

developed by the L4All project [93]. The L4All system allows users to create and

maintain a chronological record — a timeline — of their learning and work episodes.

This data and metadata are encoded as RDF/S, as shown in Figure 3.6. In par-

ticular, each instance of the Episode class is: linked to a subclass of Episode by an
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Figure 3.6: L4All ontology fragment (from [92]).

edge labelled rdf:type; linked to other episode instances by edges labelled ‘next’ or

‘prereq’ (indicating whether the earlier episode simply preceded, or was necessary

in order to be able to proceed to, the later episode); linked either to an occupa-

tion or to an educational qualification by means of an edge labelled ‘job’ or ‘qualif’.

Each occupation is linked to a subclass of the Occupation class by an edge labelled

rdf:type, and to an instance of the Industry Activity Sector class by an edge la-

belled ‘sector’. Each qualification is linked to a subclass of the Subject class by an

edge labelled rdf:type and to an instance of the National Qualification Framework4

class by an edge labelled ‘level’. The dataset used in our case study comprises 17

timelines derived from the L4All project — 16 from real users, and 1 demonstra-

tion timeline. Similarly to the LinkedIn ontology, each L4All timeline contains both

educational and occupational episodes, and they vary in terms of the number of

episodes contained within them, as well as the classification of each episode. The

dataset contains a total of RDF 195 triples, with an average of 5.3 episodes per

timeline and a total of 91 episodes.

4http://www.cedefop.europa.eu/en/events-and-projects/projects/

national-qualifications-framework-nqf

http://www.cedefop.europa.eu/en/events-and-projects/projects/national-qualifications-framework-nqf
http://www.cedefop.europa.eu/en/events-and-projects/projects/national-qualifications-framework-nqf
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In addition to the above dataset, we translated a subset of the LinkedIn ontology

database into a set of L4All timelines to be added to the existing 17 L4All timelines

so as to create a semantic overlap between the two test databases. To achieve

this, we used the information of 5 LinkedIn profiles from the LinkedIn ontology

in Section 3.4.1 and manually generated a set of 5 corresponding L4All timelines.

The outcome of this step produced a total of 31 additional L4All episodes and 67

additional RDF triples in the L4All dataset.

In order to align the 5 user profiles contained in both the L4All and the LinkedIn

ontology, we defined a set of 36 RPS equivalence mappings; such mappings indicate

that two IRI or blank node references (one in L4All and one in the LinkedIn dataset)

actually refer to the same entity, i.e., the individuals have the same identity. These

equivalence mappings, along with both the source data and the graph mapping

assertions in the following section, form the RPS for this case study.

3.4.3 Mappings in RPS and materialised data

To align the two ontologies illustrated in the previous sections, we defined a set of

mappings adopting the syntax introduced for the RDF peer system in Section 3.1.

Firstly, we linked classes and properties via 1-to-1 mappings, i.e., mappings from

a single LinkedIn term to a single L4All term (and vice versa) when both terms

represent the same ontological concepts. An example is the mapping between the

CVItem class from LinkedIn and the Episode class from L4All, in that both en-

capsulate episodes in a user’s career path, whether an educational episode or an

experience one. For each 1-to-1 mapping, we defined a pair of RPS graph mapping

assertions, one to translate data from the LinkedIn to the L4All schema and one for

translation in the opposite direction. For example, the following mappings consti-

tute the alignment of the CVItem and Episode classes and of the hasCVItem and
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learnerEpisode relationships:

x← (x, rdf:type, CVItem) ; x′ ← (x′, rdf:type, Episode)

x← (x, rdf:type, Episode) ; x′ ← (x′, rdf:type, CVItem)

x, y ← (x, hasCVItem, y) ; x′, y′ ← (x′, learnerEpisode, y′)

x, y ← (x, learnerEpisode, y) ; x′, y′ ← (x′, hasCVItem, y′)

In most cases, identifying a potential link between equivalent ontological concepts

was straightforward (as in the examples above) and the expressive power of 1-to-1

mappings was sufficient. However, some alignment cases appeared to be ambiguous

and required a thorough analysis of the different scenarios, and a more expressive

mapping definition. Examples of this are the RPS graph mapping assertions between

the relationship ‘epStart’ in L4All and the relationship ‘atTime’ in the LinkedIn

Ontology:

x, y ← (x, epStart, y) ; x′, y′ ← (x′, atTime, z′) AND (z′, hasBeginning, y′)

x, y ← (x, atTime, z) AND (z, hasBeginning, y) ; x′, y′ ← (x′, epStart, y′)

The above assertions define the mapping between the L4All property ‘epStart’ and

the path composed of ‘atTime‘ and ‘hasBeginning’ in the LinkedIn ontology. We

also introduced two additional graph mapping assertions to provide alignment of

LinkedIn CV items that are linked to a specific date instead of an interval:

x, y ← (x, atTime, y) ; x′, y′ ← (x′, epStart, y′)

x, y ← (x, atTime, y) ; x′, y′ ← (x′, epEnd, y′)

Ultimately, the RPS defined for this case study contained 22 graph mapping asser-

tions (the full set is listed in Appendix A.1.1) and 36 equivalence mappings (which

we do not include here for reasons of privacy protection). We then generated the

universal model over the source data, the graph mapping assertions and the equiv-
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alence mappings. In order to do so, we implemented the chase step of Algorithm 1

as a Java application and we ran it over the set of mappings illustrated here and the

RDF dataset composed of the union of the triples obtained from LinkedIn and L4All.

The execution of the algorithm outputted a total of 29603 materialised RDF triples,

compared to 10049 RDF triples in both the original sources combined. By answering

queries over the materialised data, we were able to retrieve more information about

the two sources, as illustrated in the example below.

We note that, the above four graph mapping assertions introduce a cycle: this is

because the triple (x, epStart, y) is present on the left hand side and right hand

side of two different assertions (modulo variable renaming). In such scenarios, the

commonly adopted approach of interpreting peer-to-peer systems using a first-order

logic may lead to undecidability of query answering; in this case, in fact, the chase

algorithm does not terminate (see Section 2.2.2). An example is shown in Fig-

ure 3.7, which shows the triples added to the universal model at each step of a

chase procedure under the above four graph mapping assertions, interpreted under

RPS semantics and FO semantics. Under RPS semantics, the chase stops at step

1, whereas under FO semantics it runs indefinitely. This is because :bNode1 does

not trigger the mapping x, y ← (x, atTime, y) ; x′, y′ ← (x′, epStart, y′), since

:bNode1 is a blank node and y is a free variable of the query on the left hand side

of the axiom.

Consider now the following two SPARQL queries:

a) SELECT DISTINCT ?learner

WHERE

{ ?learner L4All:learnerEpisode ?occupEpisode .

?occupEpisode L4All:job ?job .

?job a L4All:Science_and_Technology_Professionals

}
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Figure 3.7: Materialisation of RDF triples via the chase algorithm, under RPS
semantics and FO semantics.

b) SELECT DISTINCT ?learner

WHERE

{ ?member linkedIn:hasCVitem ?occupEpisode .

?occupEpisode linkedIn:role ?role .

?role a linkedIn:Science_and_Technology

}

Query a) asks for all the L4All learners with work experience as a Science and Tech-

nology professional. We ran Query a) over the materialised data and we obtained

27 results, as opposed to 3 results when the same query was posed over just the

original L4All data. Thus, the RPS mappings enable L4All users to retrieve both

L4All and LinkedIn data in a transparent way, without needing to be familiar with
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the LinkedIn ontology. Query b) is equivalent to Query a) but is expressed using

terms of the LinkedIn vocabulary. Query b) produced the same results as Query a)

over the materialised data and no results over just the original LinkedIn data.

3.5 SPARQL query rewriting for RPSs

In this section, we first check in Section 3.5.1 whether the TGDs for the RPS peer

mappings enjoy the FO-rewritability property, which is a property that ensures a

perfect rewriting in a language that is not more expressive than FO queries. As

we will see later in this section, the TGDs for general RPSs mappings are not FO-

rewritable, and thus it is not possible to compute a perfect rewriting in SPARQL 1.0.

In Section 3.5.2 we identify some restrictions on the peer mapping language that do

allow us to formulate such a rewriting. Based on these restrictions, in Section 3.5.3

we describe an empirical evaluation of our prototype of an RPS framework.

3.5.1 FO-rewritable TGDs

With the following proposition, we show that the TGDs for general RPSs mappings

are not FO-rewritable.

Proposition 3.1. Let P be an RDF Peer System. The set of TGDs PRRDF is not

FO-rewritable.

Proof. Let D be a stored database and let PRRDF be defined only by the following

TGD σ:

triple(x,A, z), triple(z, A, y), resource(x), resource(y)→ triple(x,A, y),



3.5. SPARQL query rewriting for RPSs 70

We assume without loss of generality that D does not contain blank nodes. Now let

us drop the atoms resource(x), resource(y) in the body of the TGD resulting in σ−

defined as follows:

triple(x,A, z), triple(z, A, y)→ triple(x,A, y),

Since D does not contain blank nodes, we have that

chase(DRRDF , {σ}) = chase(DRRDF , {σ−}).

Now consider the following set σtrans of TGDs:

triple(x,A, y)→ A(x, y)

A(x, z), A(z, y)→ A(x, y)

A(x, y)→ triple(x,A, y).

Given a relational instance I, let AI be the set of atoms in I of the form A(t1, t2).

It is easy to see that chase(D, σtrans)/A
chase(D,σtrans) = chase(D, σ−). Thus, for a

given BGP query q, we have that qCQ
(
chase(D, σtrans)

)
= qCQ

(
chase(D, σ−)

)
as

the relation A is not a member of the relational schema RRDF . It follows that

qCQ
(
chase(D, σtrans)

)
= qCQ

(
chase(D, σ)

)
,

since chase(DRRDF , {σ}) = chase(DRRDF , {σ−}). Now, assume there exists a FO-

rewriting qCQ
∗ of qCQ with respect to the σ. Then qCQ

∗ is also a FO-rewriting of qCQ

with respect to the σtrans because qCQ
(
chase(D, σtrans)

)
= qCQ

(
chase(D, σ)

)
, which

means that σtrans is a set of FO-rewritable TGDs. This is not possible since the

TGD A(x, z), A(z, y) → A(x, y) in σtrans is not FO-rewritable because it captures

the transitive closure of the relation A, which cannot be done using a finite number

of first-order queries.
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As a result of this, given an RPS and a BGP SPARQL query, a language of higher

expressiveness than FO is required in order to formulate a perfect rewriting; in

practical terms, it is not in general possible to formulate a rewriting in SPARQL 1.0.

This issue motivates our exploration in Chapters 4 and 5 of the problem of identifying

ontological constraints that allow a rewriting in SPARQL 1.1. In the next section,

we study query rewriting for restricted forms of RPSs which guarantee a query

reformulation in FO-queries, and therefore in SPARQL 1.0 queries.

3.5.2 SPARQL 1.0 rewriting for restricted RPSs

Proposition 3.2. Given an RPS P = (S, G,E) and a Boolean BGP SPARQL query

q, if G can be translated into either a linear, sticky, or sticky-join set of TGDs, then

we can generate a set of Boolean BGP SPARQL queries {qP1, qP2, . . . , qPn}, such

that qP
D
1 ∪ qPD2 ∪ · · ·∪ qPDn = qJ , where D is a stored database and J is the universal

solution for P based on D.

Proof. This follows directly from the fact that: i) we can rewrite a BCQ into a

union of BCQs under either a linear, sticky, or sticky-join set of TGDs [31], and ii)

the set of TGDs for the equivalence mappings E is linear.

According to Proposition 3.2, given a BGP SPARQL query q and an RPS P such

that the TGDs for graph mapping assertions of P that enjoy FO-rewritability, we

are able to formulate the perfect rewriting q′ of q with respect to P such that q′ can

be posed over the stored data and the set of certain answers will be retrieved. This

is illustrated by the following example:

Example 3.5.1. Consider again the RPS P and the SPARQL query in Exam-

ple 3.2.1. The set G of graph mapping assertions is linear as it is composed of a

TGD with a single atom in the head. Hence, following from Proposition 3.2, we can
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generate an FO-rewriting of a given Boolean query to entail the mapping assertions

of the RPS. Listing 3.2 shows the rewriting based on the SPARQL query and the

RPS of Example 3.2.1. To compute the set of certain answers of the given query, first

we generate the set of all the possible 2-tuples from the stored database, because

the query has two answer variables. Then we iterate over each 2-tuple t and decide

whether or not t is in the set of certain answers, by substituting t into the original

SPARQL query q to obtain a Boolean query qb (note that this is a polynomial-

time reduction of the problem, since there are polynomially many k-tuples from the

source database).

We now show how the algorithm rewrites the Boolean query

q : q()← triple(DB1:Spiderman, starring , z)∧triple(z, artist ,DB1:Toby Maguire)

∧ triple(DB1:Toby Maguire, age, ”39”)

obtained by substituting 〈DB1:Toby Maguire, ”39”〉 in place of the answer variables

of the query in Example 3.2.1. For simplicity, we show the steps of the rewriting

algorithm given as input only the following TGD

σ : triple(foaf:Toby Maguire, y, z)→ triple(DB1:Toby Maguire, y, z)

which is one of the six TGDs that arise from the equivalence mapping

mboxfoaf:Toby Maguire ≡e DB1:Toby Maguire.

During the rewriting step, the following query is produced

q′ : ansq′()← triple(DB1:Spiderman, starring , z)

∧ triple(z, artist ,DB1:Toby Maguire) ∧ triple(foaf:Toby Maguire, age, ”39”)
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By posing the SPARQL query q UNION q′, we retrieve the certain answers.

#Original query

SELECT ?x ?y

WHERE { DB1:Spiderman starring ?z .

?z artist ?x .

?x age ?y }

#Boolean query: ask if the tuple

#(DB1:Toby_Maguire ,"39") is in the query result.

ASK { DB1:Spiderman starring ?z .

?z artist DB1:Toby_Maguire .

DB1:Toby_Maguire age "39" }

Answer: <false >

#Rewritten query

ASK {{ DB1:Spiderman starring ?z .

?z artist DB1:Toby_Maguire .

DB1:Toby_Maguire age "39" }

UNION

{ DB1:Spiderman starring ?z .

?z artist DB1:Toby_Maguire .

foaf:Toby_Maguire age "39" }}

Answer: <true >

Listing 3.2: SPARQL Boolean query rewriting.

3.5.3 Peer-based Linked Data integration system

For the case study in Section 3.4 we leveraged the semantics of the RPS mapping

assertions by materialising an integrated instance of the sources through the im-

plementation and the execution of Algorithm 1. Here, we undertake a preliminary

empirical evaluation of how the RPS behaves when the peer-to-peer integration is

achieved by adopting a query rewriting approach instead of a data materialisation

approach.

This section describes the main components of a middleware for LOD integration
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that is based on SPARQL query rewriting as described above. In overview, our

middleware exposes a unified view of heterogeneous RDF sources which are se-

mantically linked with the RPS mapping assertions. A unified SPARQL endpoint

accepts queries expressed in any source vocabulary. A SPARQL query rewriting

engine rewrites the queries with respect to the semantic mappings of the RPS. The

rewritten query is evaluated over the sources in a federated approach and the query

result is presented to the user.

In this system, the query rewriting engine is composed of two sub-engines: (i) the

semantic integration module generates a perfect rewriting of the user’s query, that

is, a query that returns, once evaluated, a sound and complete answer of the original

query based on the semantic mappings in the RPS; (ii) the query federation module

executes a second rewriting step exploiting the SERVICE clause of SPARQL 1.1,

generating a federated query to be evaluated over multiple RDF sources.

The system design provides for automated alignment of the peer schemas. It extracts

structural information from the sources, such as the sets of entities, predicates,

classes etc. Then, it performs schema alignment and coreference resolution by: (i)

retrieving mappings between sources, such as owl:sameAs or VoID5 triples, and

other semantic links between sources; (ii) generating new mappings, using existing

ontology matching and instance linkage techniques, such as Falcon-AO [67]; (iii)

translating these alignments into our peer mapping language; and (iv) storing the

mappings in the RPS.

For an empirical evaluation, we implemented the algorithm TGD-rewrite taken from [54]

as a Java application. The algorithm rewrites SPARQL queries under FO-rewritable

sets of peer mappings. In addition, we implemented two optimisations of the rewrit-

ing application. The first optimisation executes a pruning of all the SPARQL dis-

juncts with triple patterns that cannot provide a successful graph pattern match,

5http://www.w3.org/TR/void/

http://www.w3.org/TR/void/
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that is, triple patterns whose IRIs are not contained in one single source. With

the second optimisation, the rewriting application ignores the equivalence mappings

during the rewriting steps, since they lead to a production of SPARQL disjuncts

that grow exponentially with respect to the number of mapping assertions. Instead,

we treat equivalence mappings as sameAs triples which are stored externally on a

Virtuoso6 server and are accessed through a SPARQL endpoint. We then perform

a reflexive, symmetric and transitive closure on the stored sameAs triples. The

SPARQL query is then rewritten in order to leverage the stored sameAs triples to

retrieve a complete answer with respect to the equivalence mappings.

Regarding query federation, triple patterns in the body of the query are grouped

with respect to the RDF sources that can provide a successful graph pattern match.

Then, the groups are assigned to the endpoints of the related sources, and evaluated

using the SPARQL 1.1 SERVICE clause. Finally, the results are presented to the

user. An example of the whole rewriting procedure is shown below.

Empirical Evaluation

The goal of the empirical evaluation is to provide a study of the behaviour of the

current version of the framework with the aim of (i) ensuring that our framework

can be used in its restricted version, (ii) analysing basic performance in terms of

query execution time, and (iii) detecting current weaknesses of our framework to

suggest future developments. We select three large-scale datastores with overlapping

vocabularies in the domain of movies: DBpedia, Linked Movie Database and Fact

Forge. The current version of our middleware is a Java application that takes as

input a BGP SPARQL query, generates the SPARQL rewriting and executes the

rewritten federated query over the selected datastores using Apache Jena7.

6https://en.wikipedia.org/wiki/Virtuoso_Universal_Server
7https://jena.apache.org/

https://en.wikipedia.org/wiki/Virtuoso_Universal_Server
https://jena.apache.org/
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We performed a partial semantic alignment of the DBpedia, Linked Movie Database

and Fact Forge schemas, defining a set of FO-rewritable one-to-one mappings for

similar classes and predicates, adopting the RPS mapping language. For instance,

we define a mapping of the form

x, y ← (x, linkedmdb:actor, y) ; x, y ← (x, dbpedia:starring, y)

to express a 1:1 predicate mapping from the IRI linkedmdb:actor to the IRI

dbpedia:starring, and a mapping of the form

x← (x, rdf:type, ff:Person) ; x← (x, rdf:type, foaf:Person)

to express a 1:1 class mapping from the IRI ff:Person to the IRI foaf:Person,

leveraging the semantics of the built-in RDF predicate rdf:type for the class map-

pings. Also, we retrieved a subset of the sameAs triples from the sources and we

generated new triples so as to encode the reflexive, symmetric and transitive clo-

sure of the sameAs binary relation; this provides co-reference resolution of IRIs as

explained in the previous section. The peer mappings obtained present arbitrary

topologies and include some mapping cycles.

To conduct our tests, we generated a set of SPARQL queries with up to three triple

patterns in the body. We then evaluated the queries over the three endpoints of

the datastores in order to obtain our baselines. Finally, we executed the queries on

our middleware, and we compared the number of results retrieved and the query

execution time. The results are shown in Figure 3.8 and allow us to derive two main

insights. As expected, the amount of information retrieved increases significantly by

adopting our system, due to its provision of interoperability between heterogeneous

vocabularies. In addition, the approach does not compromise query execution time,

since overall the response time of our system can be seen as an average of the query
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response time over the single datastores. In fact, using the RPS can sometimes be

faster than using just one single source endpoint. This may be due to reduction

of the number of joins performed by Jena, by submitting smaller queries to each

endpoint.
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Figure 3.8: Number of results on the left and query execution time in milliseconds
on the right (logarithmic scales). Queries 1 - 6 shown on the x axes.

3.6 Discussion

In this chapter we have proposed a formalisation of the notion of a P2P seman-

tic integration system that achieves decidability of the query answering problem

when reasoning over a set of P2P mappings. The mappings between peers comprise

schema-level mappings as well as equality constraints which entail the semantics of

the OWL property sameAs. We have shown that the semantics of the mappings

preserve tractability of the conjunctive SPARQL query answering problem over the

set of peer mappings. We have also illustrated how our technique can be applied

in a real-world case study relating to obtaining careers guidance. The key novelty

of the RPS is to achieve a tractable semantics for the integration of multiple RDF

sources with arbitrary mapping topologies, whereas existing techniques applied on

the same set of RDF sources may give rise to a set of undecidable rules.
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Next, we have addressed the problem of SPARQL query rewriting under RPSs. We

have firstly compared the problem with CQ rewriting under TGDs and we have seen

that is not possible to generate a SPARQL 1.0 query as the perfect rewriting of an

input BGP SPARQL query under general RPSs, as the RPS peer mappings are in

general not FO-rewritable rules. Following this, we have taken into account well-

known FO-rewritable sets of TGDs and compared them to the peer mappings; thus

we have outlined some restricted forms of RPSs for which it is possible to generate

a SPARQL 1.0 query as perfect rewriting.

Finally, we have presented a middleware system based on this rewriting technique

and we have undertaken an empirical evaluation of its behaviour. When SPARQL

queries are rewritten according to our algorithm and posed over multiple RDF

sources, the amount of information retrieved increases significantly due to its pro-

vision of interoperability between heterogeneous vocabularies. In addition, the ap-

proach does not seem to compromise query execution time, since overall the response

time of our system was seen to be not greater than the maximum query response

time over the single datastores. However, clearly further empirical evaluation is

necessary, and this is an area of future work.

In this chapter we have focussed on the FO-rewritability of the mapping rules. How-

ever, with the adoption of the more recent standard SPARQL 1.1 and its property

paths we are able to extend the expressivity beyond FO by including regular expres-

sions in the body of the target SPARQL queries. Following this direction, in the

next two chapters we will step away from the language of RPSs to conduct study

on C2RPQ-rewritability under a broader ontology language. Ultimately, the results

of Chapter 4 and 5 could be used to potentially find larger subsets of SPARQL 1.1-

rewritable RPSs than those illustrated here.



Chapter 4

Rewriting of IQs to C2RPQs

under harmless linear ELHI

Description Logic

In this chapter we define the description logic harmless linear ELHI, an ontology

language that generalises both DL-LiteR and linear ELH. Extending DL-LiteR

with qualified existential quantification on the left-hand side of concept inclusion

axioms is equivalent to allowing inverse roles in role inclusion axioms in linear ELH

(ELH`in), resulting in ELHI lin. Allowing inverse roles in ELH`in is shown in [91]

to result in PTime-completeness of CQ answering with respect to data complexity;

therefore a rewriting in C2RPQs for this language is not feasible — if, as normally

assumed, NLogSpace is a proper subclass of PTime — since the data complexity

of answering C2RPQs is in NLogSpace. In fact, inverse roles allow the encoding

of a conjunction of concepts on the left hand side of axioms, which is known to lead

to PTime-hardness [91].

The intuition behind the harmlessness property is that, given two role names R1

and R2, whenever ∃R2.A2 is on the left-hand side of an axiom, if there is another

79
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axiom where R1 appears on the left-hand side and A2 on the right-hand side, then

the harmlessness property prevents the entailment of either R1 v R−2 or R2 v R−1 .

This is achieved by preventing any sequence of role inclusions between R1 and R2

where an even number of inverse roles appear.

In this chapter we show that

(a) the harmlessness property prevents the simulation of conjunctions of concepts

on the left hand side of concept inclusion axioms;

(b) the harmlessness property allows the possibility of answering IQs by query

rewritings into 2RPQs.

This chapter is structured as follows. In Section 4.1 we give an introduction to the

work presented in this second part of the thesis, with motivations and examples.

In Section 4.2 we introduce the DL ELHI`in and preliminaries. In Section 4.3 we

define the harmless linear ELHI (ELHI`inh ), an ontology language that generalises

both DL-LiteR and linear ELH. Then, in Section 4.4 we prove the rewritability of

instance queries (queries with a single atom in their body) under ELHI`inh knowledge

bases with C2RPQs as the target language, presenting a query rewriting algorithm

that makes use of non-deterministic finite-state automata. The chapter ends with a

discussion of our contributions in Section 4.5.

4.1 Motivations

We recall from Chapter 2 that a DL knowledge base consists of a TBox (the ter-

minological component) and an ABox (the assertional component). The former is

a conceptual representation of the schema, while the latter is an instance of the

schema. A common assumption in the context of DLs is the so-called open-world
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assumption, namely that the information in the ABox is sound but not complete;

the TBox, in particular, specifies how the ABox can be expanded with additional

information in order to answer queries. Answers to a query in this context are called

certain answers, as they correspond to the answers that are true in all models of

the theory constituted by the knowledge base [74]. Informally, this corresponds to

cautious reasoning, and contrasts with bold reasoning where an answer is returned

if it is entailed by at least one model. The set of all models (which is not necessarily

finite) is represented by the so-called expansion (or chase [33], see Section 2.1.1) of

an ABox A according to a TBox T ; this is illustrated in the following example.

Example 4.1.1. Consider the TBox T comprising the assertions C v A and A v

∃S.C, where C and A are concepts. The concept ∃S.C denotes the objects connected

via the role S to some object belonging to the concept C; in other words, it contains

all x such that S(x, y) and C(y) for some y. The first assertion means that every

object in the class C is also in A; the second means that every object in the class A is

also in the class represented by ∃S.C. Now suppose we have the ABox A = {A(a)};

we can expand A according to the TBox T so as to add to it all atoms entailed

by (T ,A); we therefore add S(a, z0) and C(z0), where z0 is a so-called labelled null,

that is, a placeholder for an unknown value of which we know the existence (note

that, with this approach, A can be expanded further). Given the query q defined

as q(x) ← S(x, y), the answer to q under (T ,A) is {a} because S(a, z0) is entailed

by (T ,A); in fact, the certain answers to q are obtained by evaluating q on the

expansion and by considering answers that do not contain nulls. If we consider the

query q1 defined as q1(x) ← C(x), the answer is empty because z0, though known

to exist, is not known.

Answers to queries over DL knowledge bases can be computed, for certain languages,

by query rewriting [54]. In query rewriting, a new query q′ is computed (rewritten)

from the given query q according to the TBox T , such that the answers to q on
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K = (T ,A) are obtained by evaluating q′ on A; it is said that q is rewritten

into q′ and that q′ is the perfect rewriting of q with respect to T . The language of

q′, called the target language, can be more expressive than that of q. A common

rewriting technique for DLs and other knowledge representation formalisms, inspired

by resolution in Logic Programming, has as the target language unions of conjunctive

queries [33].

Example 4.1.2. Let us consider again the knowledge base of Example 4.1.1. The

perfect rewriting of query q is the query q′ defined as q(x) ← A(x) ∪ S(x, y);

intuitively, q′ captures the fact that, to search for objects from which some other

object is connected via the role S, we need also to consider objects in A, because

the TBox might infer the former from the latter objects. The evaluation of q′ on A

returns the correct answer.

The OWL 2 QL profile of the OWL 2 Web Ontology Language — which is based

on the family of description logics called DL-LiteR [5] — is expressly designed so

that query answering can be performed via query rewriting. Data (assertions) that

are stored in a standard relational database can be queried through an ontology

by rewriting the query into an SQL query that is then answered by the RDBMS,

without any changes to the data (for example, a tractable rewriting was presented

in [34]).

Extending the expressivity of DL-LiteR may lead to the need for a more expressive

target language than SQL, i.e. than first order (FO) queries. This occurs, for

example, when qualified existential quantification is allowed on the left hand side

(LHS) of axioms, i.e., formulae of the form ∃R.D where R is a role and D a concept.

In this case, we say that the language is not FO-rewritable. The following example

illustrates this issue.

Example 4.1.3. Consider the TBox T = {∃R.A v A} and the query q defined

as q(x) ← A(x). Note that an expression of the form ∃R.A is forbidden on the
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left hand of the axioms in DL-LiteR. It is easy to see that the query rewrit-

ing technique described earlier produces an infinite union of conjunctive queries:

q(x) ← A(x), q(x) ← R(x, y), A(y) and all conjunctive queries of the form q(x) ←

R(x, y1), . . . , R(yk, yk+1), A(yk+1), with k > 1. This cannot be captured by an FO-

rewriting.

However, as mentioned in Chapter 3, by adopting the semantic web query lan-

guage SPARQL 1.1 [64], database systems should be able to answer queries that

are more expressive than FO queries since the property paths of SPARQL 1.1 are

able to express navigational queries by defining regular expressions on predicates.

In particular, every conjunctive two-way regular path query (C2RPQ) [38] can be

translated to a SPARQL 1.1 query. Building on this, in this thesis we propose a lan-

guage that extends DL-LiteR but still allows query answering via a simple rewriting

mechanism, with C2RPQs instead of SQL queries as the target language. We allow

qualified existential quantification on the LHS of axioms and identify a property

of the resulting language that allows a rewriting into C2RPQs. The description

logic resulting from this extension, which we call harmless linear ELHI, denoted

by ELHI`inh , is a generalisation of both DL-LiteR [5] and linear ELH [91].

Example 4.1.4. Recall the issue in the previous example, where a finite FO-

rewriting was not feasible. In order to capture the infinite FO-rewriting, we can

produce a rewriting into a C2RPQ q′ defined as q(x)← R∗(x, y), A(y), where R∗ is

a regular expression denoting all finite compositions of R with itself.

The work described in this chapter of the thesis extends our recent work [48] where

we first proposed exploiting the capabilities of navigational queries in order to allow

query rewriting of conjunctive queries into CRPQs (not C2RPQs) under a more

restrictive DL, namely linear ELH. We also give here a complete theoretical devel-

opment and full proofs.
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4.2 Preliminaries

We first introduce the DL ELHI`in [94, 90], from which the logic that we propose

in this thesis is derived. ELHI`in is itself derived from the EL language (which is

the core of the OWL 2 EL profile), extended with the additional features of inverse

roles (I) and role inclusion axioms (H), but disallowing conjunction of concepts on

the left-hand side of concept inclusion axioms.

The syntax of ELHI`in is as follows. The alphabet contains three pairwise disjoint

and countably infinite sets of concept names A, role names R, and individual names

I. The alphabet also contains a set of roles P, such that each P ∈ P is either a

role name R or its inverse, denoted by R−. A complex concept C is constructed

from a special primitive concept > (‘top’), concept names and role names using the

following production rules:

C ::= A | ∃P.C | ∃P.>

where A ∈ A and P ∈ P. The set of complex concepts is denoted by C. The

alphabet includes two additional sets of negated complex concepts E and negated

roles Q constructed using the following production rules:

D ::= A | ∃P.>

E ::= D | ¬D

Q ::= P | ¬P

Here a restricted form of complex concept is defined as part of the definition of

a negated complex concept. Negation on concepts is only applied to elements in

D as complex concepts of the form ∃P.A are not allowed on the right-hand side of

inclusions. In ELHI`in , a TBox T is a finite set of concept and role inclusion axioms

of the form
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C v E and P v Q.

We call positive inclusions (PIs) assertions of the form C v D or P1 v P2 and

negative inclusions (NIs) assertions of the form C v ¬D or P1 v ¬P2.

This language could be enhanced with the capability of allowing qualified existential

quantification on the right-hand side of inclusion assertions on concepts. However,

this can be simulated by making use of inclusions between roles and unqualified

existential quantification of concepts in inclusions between concepts. For instance,

the assertion A v ∃R.B can be simulated by A v ∃R′, ∃R′− v B and R′ v R,

where R′ is a new role name. Therefore, in this thesis, we do not explicitly consider

qualified existential quantification on the RHS of assertions.

Here we adopt the semantics of DLs defined in terms of interpretations [94, 90]. An

interpretation I is a pair (∆I , ·I) that consists of a non-empty countable infinite

domain of interpretation ∆I and an interpretation function ·I which assigns (i) an

element aI ∈ ∆I to each individual name a, (ii) a subset AI ⊆ ∆I to each concept

name A ∈ A and (iii) a binary relation RI ⊆ ∆I × ∆I to each role name R ∈ R.

We adopt the unique name assumption (UNA), so distinct individuals are assumed

to be interpreted by distinct elements in ∆I . The interpretation function ·I for

ELHI`in is extended inductively to complex concepts with the following definitions.

(R−)I = {(v, u) | (u, v) ∈ RI}

(¬P )I = (∆I ×∆I) \ P I

>I = ∆I

(∃P.>)I = {u | there is a v such that (u, v) ∈ P I}

(¬D)I = ∆I \DI

(∃P.C)I = {u | there is a v ∈ CI such that (u, v) ∈ P I}

The satisfaction relation |= for inclusions and assertions is defined similarly to the
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more general case of the ALCHI DL discussed in Section 2.1.3:

I |= C v E if and only if CI ⊆ EI ,

I |= P v Q if and only if P I ⊆ QI ,

I |= C(a) if and only if aI ∈ CI ,

I |= P (a, b) if and only if (aI , bI) ∈ P I .

An interpretation I is a model of a knowledge base K = (T ,A), written I |= K, if

it satisfies all concept and role inclusions of T and all concept and role assertions of

A. A knowledge base is satisfiable if admits at least one model.

Now, we first convert ELHI`in TBoxes to a normal form, taken from [6]:

Definition 4.1. An ELHI`in TBox is said to be in normal form if each of its

concept inclusions and role inclusions is of one of the following forms:

A1 v A2, A1 v ¬A2, ∃R.> v A, ∃R.A1 v A2,

A v ∃R.>, R1 v R2, R1 v ¬R2, R1 v R−2 ,

where A,A1, A2 ∈ A and R,R1, R2 ∈ R.

The inclusions excluded by the normal form are the following: (i) concept inclusion

axioms with ∃R−.A1 on LHS; (ii) concept inclusion axioms with ∃R−.> either on

LHS or RHS; (iii) role inclusion axioms with R− on LHS; (iv) negative inclusions

with either ¬R− or ¬∃R−.> on RHS; (v) concept inclusion axioms with complex

concepts of the form ∃P1.P2.P3. . . . Pn.> or ∃P1.P2.P3. . . . Pn.A on LHS, where Pi is

ether Ri or R−i .

Theorem 4.1. Every ELHI`in TBox L can be transformed into a TBox L′ in

normal form such that the size of L′ is linear in the size of L, and L and L′ are

equivalent in the following sense:
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• every model of L can be extended to a model of L′ by defining interpretations

of the role and concept names that are in L′ but not in L,

• every model of L′ is a model of L .

Proof. The claim follows by showing that each axiom that is not in normal form

can be encoded by a set of axioms of linear size. A concept inclusion axiom of

the form ∃R1.R2.R3.A3 v B is encoded by the following concept inclusion axioms

in normal form: ∃R3.A3 v A2, ∃R2.A2 v A1 and ∃R1.A1 v B. Every concept

inclusion axiom that presents a role R−, with R ∈ R, can be encoded with a concept

inclusion axiom and a role inclusion axiom. The concept inclusion axiom is obtained

by replacing R− with a fresh role name R∗, and the role inclusion axiom is of the

form R v R−∗ . For instance, a concept inclusion axiom of the form A v ∃S−.B

is encoded by A v ∃S∗.B and S v S−∗ . Every role inclusion axiom of the form

R−1 v R2 is equivalent to the role inclusion axiom of the form R1 v R−2 .

Now we need to introduce the notion of a canonical model of a KB. Given an

ELHI`in knowledge base (T ,A) with T in normal form, it is possible to find all

answers to a CQ q over this KB by evaluating q over the (possibly infinite) canonical

model which can be constructed using the chase procedure. We begin by defining

the base model of a given ABox, following from [72].

Definition 4.2 (Base model). The base model IA of the ABox A is defined as

follows:

(1) ∆IA = ind(A);

(2) aIA = a, for a ∈ ind(A);

(3) AIA = {a | A(a) ∈ A}, for each concept name A;

(4) RIA = {(a, b) | R(a, b) ∈ A}, for each role name R.
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We then use the base model to generate the canonical model of a KB, again following

from [72].

Definition 4.3 (Canonical model). To build the canonical model for an ELHI`in

KB K = (A, T ), where T is in normal form, we take the base model IA as I0 and

the following rules are applied inductively to obtain Ik+1 from Ik:

(i) if d ∈ AIk then d is added to AIk+1 ;

(ii) if (d, d′) ∈ RIk then (d, d′) is added to RIk+1 ;

(iii) if d ∈ AIk1 and A1 v A2 ∈ T , then d is added to A
Ik+1

2 ;

(iv) if (d, d′) ∈ RIk1 and R1 v R2 ∈ T , then (d, d′) is added to R
Ik+1

2 ;

(v) if (d, d′) ∈ RIk1 and R1 v R−2 ∈ T , then (d′, d) is added to R
Ik+1

2 ;

(vi) if d ∈ (R.D)Ik and ∃R.D v A ∈ T , where D is a concept name or >, then d

is added to AIk+1 ;

(vii) if d ∈ AIk , A v ∃R.> ∈ T and d 6∈ (∃R.>)Ikthen (d, d′) is added to RIk+1 ,

where d′ is a fresh labelled null.

(viii) if d ∈ AIk , d ∈ BIk and A v ¬B ∈ T then HALT;

(ix) if (d, d′) ∈ RIk , (d, d′) ∈ SIk , and R v ¬S ∈ T then HALT.

We then take a fixpoint interpretation, as k → ∞. If HALT is reached, then the

KB is not satisfiable, which means K does not admit any model. If HALT is not

reached, then K is satisfiable and therefore it admits at least one model. If K is

satisfiable, then the resulting interpretation satisfies all the inclusions in T and all

the assertions in A - i.e., it is a model for K - and is called the canonical model of

K = (T ,A), denoted by JK.
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A useful property of the canonical model is that, given a KB (T ,A) a query q and a

tuple a, we have that (T ,A) |= q(a) if and only if JK |= q(a) ( [33]). We point out

that this procedure is extended from [72], by adding the rule (vii) for the axioms of

the form A v ∃R.>. Also, we note that the above procedure is a reformulation of

the chase [33] tailored for ELHI`in axioms.

Treating negative inclusions

If T contains some NIs, query answering can be undertaken by treating NIs and PIs

in T separately. Suppose that Tn is the set of all the NIs in T and Tp = T \ Tn,

then answering a CQ q over (T ,A) is equivalent to answering q over (Tp,A) and

then additionally checking that each σ ∈ Tn is satisfied in (Tp,A) [29]. Checking

whether σ ∈ Tn is satisfied in (Tp,A) is done by checking that the following boolean

conjunctive queries qσ evaluate to false in (Tp,A):

qσ()← ∃x γ(x) ∧ δ(x) if σ is of the form C v ¬D and

qσ()← ∃x, y ρ1(x, y) ∧ ρ2(x, y), if σ is of the form P1 v ¬P2
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where:

(a) γ(x) = A(x) if C = A,

γ(x) = ∃yR(x, y) if C = ∃R.>,

γ(x) = ∃yR(y, x) if C = ∃R−.>,

γ(x) = ∃yR(x, y) ∧ A(y) if C = ∃R.A,

γ(x) = ∃yR(y, x) ∧ A(y) if C = ∃R−.A,

(b) δ(x) = A(x) if D = A,

δ(x) = ∃yR(x, y) if D = ∃R.>,

δ(x) = ∃yR(y, x) if D = ∃R−.>,

(c) ρi(x, y) = Ri(x, y) if Pi = R, and

ρi(x, y) = Ri(y, x) if Pi = R−.

It is easy to see that, given an interpretation I, we have that I |= σ if and only

if I 6|= qσ. As an immediate consequence, we have that NIs do not increase the

complexity of CQ answering under ELHI`in , therefore NIs are not taken into account

for the rewriting procedures presented in the rest of the thesis.

4.3 Harmless ELHI`in Description Logic

Extending DL-LiteR with qualified existential quantification on the left-hand side

of concept inclusion axioms is equivalent to allowing inverse roles in role inclusion

axioms in ELH`in , resulting in ELHI lin, defined in Section 4.2. Allowing inverse

roles in ELH`in is shown in [91] to result in PTime-completeness of CQ answering

with respect to data complexity; therefore a rewriting in C2RPQs for this language is

not feasible — if, as normally assumed, NLogSpace is a proper subclass of PTime

— since the data complexity of answering C2RPQs is in NLogSpace. In fact,

inverse roles allow the encoding of a conjunction of concepts on the left hand side of
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axioms (as shown in the example below), which is known to lead to PTime-hardness

([91], Theorem 4.3).

Example 4.3.1. Consider the ABox {C1(c), C2(c)} and the TBox {C1 v ∃R.>,

∃R−.C2 v D, ∃R.D v C3}. Using the chase procedure, the first inclusion axiom

generates the assertion R(c, d0), where d0 is a fresh labelled null. Since c is now

connected to d0 via R and c is of type C2, the second rule generates the assertion

D(d0). Now, we have that c is connected to an element of type D via the role R,

so the third rule generates the assertion C3(c). Thus, the TBox encodes the axiom

C1 u C2 v C3.

In this chapter, our aim is to investigate the possibility of finding a sub-language

of ELHI`in whose CQ answering problem has NLogSpace data complexity. We

do so by identifying a syntactic property that does not allow the above encoding of

rules of the type C1uC2 v C3. We then show that the resulting sublanguage allows

a rewriting from CQs to C2RPQs, thus avoiding a polynomial blow-up.

We now define a syntactic property of ELHI`in that identifies what we call harmless

ELHI`in TBoxes, denoted by ELHI`inh . We first introduce some auxiliary defini-

tions.

Definition 4.4. Let R and R′ be two role names appearing in an ELHI`in TBox

L that is in normal form. If R,R′ are two roles in L and there exist R0, . . . , Rn

such that (i) R = R0, R′ = Rn and (ii) for 1 6 i 6 n either Ri−1 v Ri ∈ L or

Ri−1 v R−i ∈ L, then:

(a) if the number of inverse roles R−i is even, we write R ⇀L R
′;

(b) if the number is odd, we write R ⇀L R
′−.

The syntactic property defined above is equivalent to the semantic property of role

inclusion with respect to an ELHI`in TBox. This is stated in the following propo-

sition.
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Proposition 4.1. Given two role names R,R′ appearing in an ELHI`in TBox L

in normal form, we have:

(a) L |= R v R′ if and only if R ⇀L R
′, and

(b) L |= R v R′− if and only if R ⇀L R
′−.

The proof of the above proposition follows from the observation that the only way

to infer a role inclusion in an ELHI`in TBox is through the closure of role inclusion

axioms of the form R1 v R2.

We now define the harmless condition for two given roles appearing in an ELHI`in

TBox in normal form:

Definition 4.5. Let R and R′ be two role names appearing in an ELHI`in TBox

L in normal form. If neither R ⇀L R
′− nor R′ ⇀L R

−, then we say that R and R′

are mutually harmless roles with respect to L.

We are now ready to define the class of harmless ELHI`in TBoxes:

Definition 4.6. Given an ELHI`in TBox L in normal form, A1, A2 ∈ A, R1, R2 ∈ R,

we say that L is harmless if, whenever there is some ∃R2.A2 on the left-hand side

of an axiom in L, if there exists some axiom ∃R1.> v A2 or ∃R1.A1 v A2 in L,

then we have that R1 and R2 are mutually harmless roles with respect to L. The

language of all harmless ELHI`in TBoxes is denoted by ELHI`inh .

We note that each DL-LiteR KB is also an ELHI`inh KB, as atoms of the form ∃R.D

are forbidden on the left hand side of DL-LiteR TBoxes. Also, each ELH`in KB is an

ELHI`inh KB, since inverse roles are not included in ELH`in and therefore roles are

always harmless. Thus, ELHI`inh is a generalisation of both DL-LiteR and ELH`in .

We note that ELHI`inh can also express rules with complex concepts of the form

∀R.A on the right hand side (RHS) of concept inclusion axioms. For instance, we
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can encode B v ∀R.A with the TBox L := {∃P.B v A,R v P−}, where P is a

fresh role name, and R and P are harmless roles with respect to L.

In the following sections we show that

(a) the harmlessness property prevents the simulation of conjunctions of concepts

on the left hand side of concept inclusion axioms;

(b) the harmlessness property allows the possibility of answering IQs by query

rewritings into 2RPQs.

4.4 Rewriting Instance Queries into 2RPQs un-

der ELHI`inh

As shown in Example 4.1.3, it is not possible to generate a first order query as a

perfect rewriting if we allow qualified existential quantification on the left hand side

of concept inclusion axioms, even in the case where the input query is an instance

query (IQ). In this section we present a technique that uses the expressive power of

NFAs in order to rewrite IQs into 2RPQs under ELHI`inh TBoxes.

We first describe in Section 4.4.1 a query rewriting technique that is widely adopted

in the Knowledge Representation and Databases literature [26, 33, 34], and inspired

by Partial Evaluation in Logic Programming [76]. It produces the correct (per-

fect [33]) rewritings that compute exactly the set of certain answers to a given CQ.

However, such a technique in our case is not guaranteed to produce finite rewritings,

and is therefore not directly usable. To address this issue, we propose in Section 4.4.2

a novel algorithm, which makes use of NFAs, that is able to rewrite IQs into 2RPQs

under ELHI`inh TBoxes by encoding the possibly infinite steps of the above “basic”

rewriting algorithm.
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4.4.1 Rewriting Conjunctive Queries for ELHI`inh via reso-

lution

In this section, we present a rewriting algorithm for CQs on ELHI`inh knowledge

bases, which relies on a resolution-like procedure widely adopted in the literature [33,

26, 54].

We first formalise the notion of perfect rewriting of a CQ under a TBox into a

C2RPQ. Given a CQ q, we use the assertions of the TBox T to rewrite q into a

C2RPQ p that returns, when evaluated over the data instance (ABox) A, all the

certain answers of q with respect to (T ,A). The rewriting p only depends on the

TBox T and the given query q; it is independent of the ABoxA. In query processing,

therefore, we use A only in the final step, when the rewriting is evaluated on it.

We call a CQ q and a TBox T C2RPQ-rewritable if there exists a C2RPQ p such

that, for any ABox A and any tuple a of individuals in ind(A), we have

(T ,A) |= q(a) if and only if A |= p(a).

In this case, we say that p is the perfect C2RPQ rewriting of q with respect to T .

The algorithm described below, and listed as Algorithm 2, generates the perfect

rewriting of a CQ under ELHI`inh as a set of CQs. This set of CQs is then interpreted

as a union of conjunctive queries which can be evaluated over the ABox. The

rewriting technique is based on two steps: a reduction step, which eliminates atoms

in the query that are more specific than some other atom, and the actual rewriting

step, which is similar to the resolution step in logic programming. We note that

the algorithm might not terminate for ELHI`inh and we will show in Section 4.4.2

that our NFA-based rewriting captures all the rewriting branches produced by the

algorithm, including infinite ones.
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Following the approach of [34], a term of an atom in a query is said to be bound

if it corresponds to (i) an answer variable, (ii) a shared variable, that is, a variable

occurring at least twice in the query body, or (iii) a constant, that is, an element

in I. Conversely, a term of an atom in a query is unbound if it corresponds to a

non-shared existentially quantified variable. As is customary, we adopt the symbol

‘ ’ to represent an unbound term1.

A set of atoms A = {a1, . . . , an}, where n > 2, unifies if there is a function φ :

(V∪ I)→ (V∪ I) , called a unifier for A, such that (i) if t ∈ I, then φ(t) = t, and (ii)

a1(φ(t1), . . . , φ(tm)) = · · · = an(φ(t1), . . . , φ(tm)). A most general unifier (MGU)

for A is a unifier for A, denoted by γA, such that for each other unifier γ for A, there

exists a substitution γ′ such that γ = γ′ ◦ γA. The Reduce function in Algorithm 2

takes as input a conjunctive query q and a set of atoms S occurring in the body of q

and returns a conjunctive query obtained by applying to q the most general unifier

between the atoms of S. We note that, in unifying a set of atoms, each occurrence

of the symbol is considered to be a different unbound variable.

We now recall from [34] the definition of when concept and role inclusion axioms

are applicable to atoms in a query, as used in the rewriting step of Algorithm 2.

An axiom I is applicable to an atom A(x1, x2) for A ∈ A if the RHS of I is A. An

axiom I is applicable to an atom R(x1, x2) for R ∈ R if (1) x2 = and the RHS of I

is ∃R.> ; or (2) the RHS of I is either R or R−. Informally, an axiom I is applicable

to an atom g if the predicate of g is equal to the predicate in the right-hand side

of I and, in the case when I is an inclusion assertion between concepts, if g has at

most one bound argument and corresponds to the object that is implicitly referred

to by the inclusion I.

Below we introduce a set of rewriting rules for the atoms in the body of a query.

1The underscore symbol ‘ ’ is commonly used in Logic Programming, where it is named “don’t
care”. In the presence of multiple occurrences of “don’t care” symbols in a formula, such symbols
are to be considered as distinct existentially quantified variables.
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Since the algorithm in [34] deals with DL-Lite TBoxes, we include here an additional

rule, (c), so that the rewriting algorithm is capable of managing concept inclusion

axioms where qualified existential quantifications appear on the left-hand side (we

recall that ELHI`inh extends DL-LiteR by allowing such existential quantification).

Proof of correctness is shown in [34] when I is of the form A1 v A2 — i.e., for

rule (a) — and is analogous for the other forms listed below, including rule (c) [34].

On the other hand, adding rule (c) does not retain termination, which is guaranteed

when the maximum number of atoms in the body of a conjunctive query generated

by the algorithm is equal to the length of the initial query. It is easy to see that

this condition is violated by applying rule (c), since it may lead to generating an

infinite number of atoms, as we have seen above. We show in Section 4.4.2 in which

cases the expressive power of NFAs finitely captures “regular patterns” of possibly

infinite rewriting steps.

Let I be an inclusion axiom that is applicable to an atom g. The set of atoms

obtained from g by applying I, denoted by gr(g, I), is defined as follows:

(a) If g = A2(x1, x2) and I = A1 v A2, then gr(g, I) = {A1(x1, x2)};

(b) If g = A(x1, x2) and I = ∃R.> v A, then gr(g, I) = {R(x1, )};

(c) If g = A1(x1, x2) and I = ∃R.A2 v A1, then gr(g, I) = {R(x1, z), A2(z, )},

where z is a fresh variable;

(d) If g = R(x1, ) and I = A1 v ∃R.> then gr(g, I) = {A1(x1, )};

(e) If g = R2(x1, x2) and I = R1 v R2 , then gr(g, I) = {R1(x1, x2)};

(f) If g = R2(x1, x2) and I = R1 v R−2 , then gr(g, I) = {R1(x2, x1)}.

The rewriting procedure that generates the perfect rewriting of q with respect to T ,

denoted by Rewrite(q, T ), is given by Algorithm 2. As described above, two steps

(reduction and rewriting) are applied to each query in the set of rewritten queries
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Algorithm 2: Algorithm Rewrite(q, T )

Data: Conjunctive query q, TBox T .
Result: Union of conjunctive queries Q.
Q := {〈q, 1〉};
repeat

Q′ := Q ;
foreach 〈qr, x〉 ∈ Q′ do

/* Reduction step */

if there exists I ∈ T such that I is not applicable to qr then
foreach set of atoms S ⊆ body(qr) do

if S unify then
Q := Q ∪ {〈Reduce(qr, S), 0〉}

/* Rewriting step */

foreach axiom I ∈ T do
if I is applicable to qr then

qr′ := rewrite qr according to I ;
Q := Q ∪ {〈qr′, 1〉}

until Q′ = Q;
Qfin := {q | 〈q, 1〉 ∈ Q} ;
return Qfin

until a fixed point is reached. Note that the reduction step produces a query marked

with ‘0’ whilst the rewriting step marks queries with ‘1’, and only queries marked

with ‘1’ are added to the output set. We adopt this approach to avoid redundancy

in the output set, since a query marked with ‘0’ is always semantically contained in

a query marked with ‘1’.

Example 4.4.1. Consider applying the Rewrite algorithm to the query q defined

by q(x) ← R(x, y), R( , y) over the TBox {A v ∃R.>}, where A ∈ A and R ∈ R.

The atoms R(x, y) and R( , y) in q unify, so executing Reduce(q, {R(x, y), R( , y)})

yields the atom R(x, y). The variable y is now unbound, so can be replaced by

“ ”. Now, the axiom {A v ∃R.>} can be applied to R(x, ), whereas, before the

reduction process, it could not be applied to any atom of the query. Following this,

the rewriting step reformulates the query to q(x) ← A(x, ) which is added to the

output set. For more details on the rewriting procedure, we refer readers to [34, 54].
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Theorem 4.2. Let T be an ELHI`inh TBox in normal form and q a conjunctive

query over T . Assume that Rewrite(q, T ) terminates and let PR be the union of con-

junctive queries returned by Rewrite(q, T ). Then for every ABox A, q(T ,A) =
⋃

S∈PR
S(∅,A).

Proof. From Lemma 39 in [34] we know that for every CQ q′, DL-Lite TBox T ′

and ABox A′, q′(T
′,A′) =

⋃
S∈Rewrite(q′,T ′)

S(∅,A′). The claim follows since the proof of

correctness in [34] is shown for inclusion axioms of the form A1 v A2 — i.e., for

rule (a) — and is analogous for the other forms listed above, including rule (c).

4.4.2 Rewriting Concept Instance Queries to 2RPQs for

ELHI`inh

We now show how to encode rewritings for concept IQs under an ELHI`inh TBox,

by means of a finite-state automaton; intuitively, the automaton is able to encode

infinite sequences of rewriting steps executed according to Algorithm 2. We focus

here on the rewriting of concept IQs, since in the case of role IQs the rewriting can

be computed in polynomial time by a simple check on sequences of role inclusions

in the TBox. We state this with the following corollary of Theorem 4.2.

Corollary 4.4.1. Let L be an ELHI`in TBox in normal form and qR a role IQ of

the form q(x, y)← R(x, y) and qR− a role IQ of the form q(x, y)← R(y, x). Let RT

and R−T be two sets of roles such that R′ ∈ RT if and only if R′ ⇀L R and R′− ∈ R−T

if and only if R′ ⇀L R
−. Then for every ABox A, it holds that

q
(T ,A)
R = q

(∅,A)
R ∪

( ⋃
P∈(RT ∪R−T )

q
(∅,A)
P

)
,

q
(T ,A)

R− = q
(∅,A)

R− ∪
( ⋃
P∈(RT ∪R−T )

q
(∅,A)

P−

)

Proof. We know that, given two role names R,R′ appearing in an ELHI`in TBox L

in normal form, we have that L |= R v R′ if and only if R ⇀L R
′, and L |= R v R′−
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if and only if R ⇀L R
′−. Then the claim immediately follows from Theorem 4.2.

We now present the construction of an NFA based on an ELHI`inh TBox T and

a concept name A. Theorem 4.3 proves that this NFA is capable of encoding the

(possibly infinite) rewriting steps of Algorithm 2 for concept instance IQs.

Definition 4.7. Let T be an ELHI`inh TBox in normal form, Σ be the alphabet

P ∪ A, and A be a concept name appearing in T . The NFA-rewriting of A with

respect to T , denoted by NFA−A,T , is the NFA (Q,Σ, δ, SA, F ) defined as follows:

(1) states SA, SFA and S> are in Q, SFA and S> are in F , and transition

(SA, A, SFA) is in δ; SA is the initial state;

(2) for each B ∈ A that appears in at least one concept or role inclusion axiom of

T , states SB and SFB are in Q, SFB is in F , and transition (SB, B, SFB) is

in δ;

(3) for each concept inclusion axiom ρ ∈ T :

(3.1) if ρ is of the form B v C, where B,C ∈ A, the transition (SC , ε, SB) is

in δ;

(3.2) if ρ is of the form B v ∃R.>, where B ∈ A and R ∈ R, for each transition

(SX , R, S>) ∈ δ, the transition (SX , ε, SB) is in δ;

(3.3) if ρ is of the form ∃R.> v B, where B ∈ A and R ∈ R, the transition

(SB, R, S>) is in δ;

(3.4) if ρ is the form ∃R.D v C, where C,D ∈ A and R ∈ R, the transition

(SC , R, SD) is in δ;

(4.1) for each role inclusion axiom T v S ∈ T and each transition of the form

(SC , S, SB) ∈ δ, the transition (SC , T, SB) is in δ.

(4.2) for each role inclusion axiom T v S− ∈ T and each transition of the form

(SC , S, SB) ∈ δ or (SC , S
−, SB) ∈ δ, the transition (SC , T

−, SB) or (SC , T, SB)

is in δ, respectively.
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We now define a subclass of CQs called a two-way simple path conjunctive queries.

Definition 4.8. A conjunctive query q is a two-way simple path conjunctive query

(2SPCQ) if it is of one of the following forms:

1. q(x1)← A(x1, x2),

2. q(x1)← τR1(x1, y1), τR2(y1, y2), . . . , τRn(yn−1, x2), or

3. q(x1)← τR1(x1, y1), τR2(y1, y2), . . . , τRn(yn−1, yn), A(yn, x2),

where:

• τR(x, y) ::= R(x, y) | R(y, x);

• x1, x2 are answer variables, with x1 6= x2;

• for each i, yi is an existentially quantified variable and, for each j, yi 6= yj;

• for each i, yi 6= x1 and yi 6= x2;

• n > 1;

• A ∈ A and R1, . . . , Rn ∈ R.

A 2SPCQ head(q) ← Z1(x0, x1), . . . , Zn(xn−1, xn) is equivalent to a 2RPQ of the

form head(q) ← Z1 · · ·Zn(x0, xn); thus, throughout the thesis we will use either

the 2RPQ form or the CQ form of a 2SPCQ, whichever is more natural in the

given context. Thus, given a 2SPCQ q, path(q) is Z1 · · ·Zn. For example, if q is

q(x1)← P (x1, y2), T (y3, y2), B(y3, x2), where P, T are role names and B is a concept,

then path(q) is PT−B and if q is q(x1)← P (x1, y2), T (y3, y2), then path(q) is PT−>.

As we illustrated in Example 4.1.3, Algorithm 2 may generate an infinite set of CQs.

After the following example, we show that, given an input of a concept instance query

and an ELHI`inh TBox, each output CQ is a 2SPCQ and the NFA-rewriting encodes

all the possible outputs.
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Example 4.4.2. Consider the TBox T defined by the following inclusion axioms:

∃R.C v ∃P.>, ∃P.> v A, ∃P.> v B, ∃T.B v C, ∃S.A v A and V v T−, where P ,

R, S, T , V are role names and A, B, C are concept names. Consider now the query

q = q(x)← A(x, y). First, we transform T into normal form, T ′, by adding a fresh

concept name X and by replacing ∃R.C v ∃P.> by ∃R.C v X and X v ∃P.>. It

is easy to see that Rewrite(q, T ′) runs indefinitely (for instance, we have an infinite

loop when rule (c) is applied to the atom A(x, y)).

Let us consider the NFA rewriting of A with respect to T ′. We construct NFA−A,T ′

(shown in Figure 4.1) as follows: by (2) in Definition 4.7 we have the transi-

tions (SA, A, SFA), (SB, B, SFB), (SC , C, SFC) and (SX , X, SFX); by (3.3) in Def-

inition 4.7 and the inclusion assertions ∃P.> v A and ∃P.> v B, we have the

transitions (SA, P, S>) and (SB, P, S>); by (3.2) in Definition 4.7 and the inclusion

assertion X v ∃P.>, we have the transitions (SA, ε, SX) and (SB, ε, SX); by (3.4) in

Definition 4.7 and the inclusion assertions ∃R.C v X, ∃T.B v C and ∃S.A v A, we

have the transitions (SX , R, SC), (SC , T, SB) and (SA, S, SA); finally, by (4.2) in Def-

inition 4.7 and the inclusion assertion V v T− we have the transition (SC , V
−, SB).

The language accepted by NFA−A,T ′ can be described by the following regular ex-

pression: S∗((A|P |X)|(((R(T |V −))∗(P |B|X|RC)))). It can be verified that all the

infinite outputs of Rewrite(q, T ′) are of the form q(x)← NFA−A,T ′(x, y). For instance,

some rewritings of q are:

q(x)← P (x, y)

q(x)← S(x, z1), A(z1, y)

q(x)← S(x, z1), S(z1, z2), A(z2, y)

q(x)← S(x, z1), S(z1, z2), P (z2, y)

q(x)← R(x, z1), T (z1, z2), R(z2, z3), C(z3, y)

q(x)← R(x, z1), V (z2, z1), R(z2, z3), C(z3, y)
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It is easy to verify that each of these output queries is a 2SPCQ and that each path

is in L(NFA−A,T ′).

SA

SFA

S> SB

SFB

SC

SFC

SX

SFX

S

A

P

CB

P

X

ε

ε

R
V −
T

Figure 4.1: NFA for Example 4.4.2.

We now introduce two lemmata that are needed for the proof of correctness.

Lemma 4.1. Let L be an ELHI`in TBox in normal form. Given an 2SPCQ q and

an axiom ρ ∈ L that is not applicable to an atom a ∈ body(q), if the atom a unifies

with a set of atoms S ⊆ body(q), then ρ is also not applicable to a′, where a′ is the

atom resulting from applying to {a} ∪ S the most general unifier for {a} ∪ S.

Proof. We consider all the possible cases of ρ.

Case 1: ρ is of the type B v A, ∃P.> v A, ∃R.B v A, R v P , R v P−. ρ is not

applicable to S if S does not contain A(x1, x2) nor P (x1, x2), and the claim follows.

Case 2: ρ is of the type A v ∃R.>. ρ is not applicable to a if a is not an atom of

the type R(x1, x2), or if a is an atom of the type R(x1, x2) and x2 6= . If a is not

of the type R(x1, x2), then clearly no unification can produce an atom to which ρ

can be applied. If a is of the type R(x1, x2) and x2 6= , since q is a 2SPCQ this

happens only if R(x1, x2) is not the last atom of the path, or if it is the last atom

of the path and we have body(q) = ...τR(x1, x2), R(x3, x2), since x2 in this case is

not . In the latter case, there are two ways to unify the atoms R(x3, x2) with S:
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if the atom directly to the left of R(x3, x2) is of the form R(x2, x1), which produces

R(x2, x2) and still we have x2 6= , or the case that the atom directly to the left is

of the form P (x1, x2), which contradicts the condition of L being an ELHI`inh TBox

in normal form. In the case where the atom R(x1, x2) is not at the end of the path,

there are two ways to have x2 = . In case (i), R(x1, x2) unifies with the atom on

its RHS, which has to be of the form τR(x2, x3). If it is of the form R(x2, x3), the

unification produces an atom R(x2, x2), with x2 6= . If it is of the form R(x3, x2),

then we have that L is not an ELHI`inh TBox in normal form. In case (ii), R(x1, x2)

unifies with the atom on its LHS, which has to be of the form τR(x0, x1). If it is of

the form R(x0, x1), the unification produces an atom R(x1, x1), with x1 6= . If it is

of the form R(x1, x1), then we have that L is not an ELHI`inh TBox. The statement

of the lemma therefore follows.

Lemma 4.2. Let L be an ELHI`in TBox in normal form. Let q be a concept IQ

of the form q(x)← A(x, y). If qrew ∈ Rewrite(q, T ), then qrew is a 2SPCQ.

Proof. From Lemma 4.1 we know that queries produced by the reduction step are

never processed by the rewriting step, and so they are never marked with ‘1’. So

queries produced by the reduction step are never in the output set, and thus we

can ignore the reduction step. The proof is then by induction on the set of queries

that are produced after each rewriting step. We denote by Q[i] the set of the queries

produced after the i-th iteration of the repeat loop in Algorithm 2.

Base Step. Q[1] contains {q(x)← A(x, y)} together with the queries obtained by

the first rewriting step. The possible cases are the rewriting rules (a), (b) and (c)

which generate 2SPCQs.

Inductive Step. If q ∈ Q[i+1], then q has been computed by applying a rewriting

rule to a query in Q[i]. The claim follows by induction if, for each rewriting q to

q′, we have that q′ is a 2SPCQ. If q is a 2SPCQ then we can identify a fixed set of
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possible rewriting cases, according to the rewriting rules (a)-(f). For each possible

rewriting case, when q is rewritten to q′, it is easy to see that if q is a 2SPCQ, then

q′ is also a 2SPCQ.

Lemma 4.2 leads to the following claim, which states that ELHI`inh TBoxes cannot

encode conjunctions on the left hand side of concept inclusion axioms.

Claim 1. Given an ELHI`inh TBox L in normal form, L cannot encode a concept

of the form C1 u C2 on the LHS of concept inclusion axioms, where C1, C2 ∈ A

Proof. Suppose that L can encode the assertion C1 u C2 v C3. Now consider the

concept IQ q =: q(x) ← C3(x). Since the Rewrite algorithm generates the perfect

rewriting, then Rewrite(q,L) contains the CQ q(x)← C1(x), C(x) which contradicts

Lemma 4.2.

Theorem 4.3. Let L be an ELHI`inh TBox in normal form, with A ∈ A. We have

that q ∈ Rewrite(q(x)← A(x, y), T ) if and only if path(q) ∈ L(NFA−A,T ).

Proof. (⇒) The proof is by induction on the set of queries that are marked with

‘1’ after each rewriting step of Algorithm 2, as the queries marked with ‘0’ are not

returned by the algorithm. We denote by Q[i] the set of queries marked with ‘1’

after the i-th application of the rewriting step.

Base Step. Q[0] = {q}. By (1) in Definition 4.7 we have that SA is the initial

state q0 and by (2) we have the transition (SA, A, SFA); therefore A ∈ L(NFA−A,T )

and the claim follows trivially.

Inductive Step. From Lemma 4.1 we have that, if an axiom ρ ∈ T is not

applicable to body(q), for each set of atoms S ⊆ body(q) that unify, ρ is also not

applicable to body(Reduce(q, S)). It follows that if a query q′ is marked with ‘0’

then there is no axiom in T that is applicable to q′. Thus, if q ∈ Q[i+1], then q has
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been computed by applying a rewriting rule to a query that is marked with ‘1’ at

the i-th application of the rewriting step, which is a query in Q[i]. Suppose that

for each q ∈ Q[i] we have that path(q) ∈ L(NFA−A,T ). Then the claim follows by

induction if for each rewriting of q to q′, we have that path(q′) ∈ L(NFA−A,T ). From

Lemma 4.2 it follows that the body of each query marked with ‘1’ is a two-way

simple path, thus we can identify a fixed set of possible rewriting cases. For each

form of axiom in T we have the following rewriting cases, and we show for each of

them that path(q′) ∈ L(NFA−qin,T ):

• An axiom of the form B v A is applicable to q only if body(q) contains an

atom of the form A(x1, x2). By applying rule (a) to body(q) we obtain the

same set of atoms in body(q) except with an atom of the form B(x1, x2) in the

place of the atom of the form A(x1, x2). Then path(q′) ∈ L(NFA−qin,T ) as from

(3.1) and (1) we have that (SA, ε, SB), (SB, B, SFB) ∈ δ.

• An axiom of the form B v ∃R.> is applicable to q only if body(q) contains an

atom of the form R(x1, ). By applying rule (d) to body(q) we obtain the same

set of atoms in body(q) except with an atom of the form B(x1, ) in the place

of the atom of the form R(x1, ). Then path(q′) ∈ L(NFA−qin,T ) as from (1) and

(3.2) we have that (SB, B, SFB) ∈ δ and for each transition (SX , R , S>) ∈ δ

there is a transition (SX , ε, SB) ∈ δ.

• An axiom of the form ∃R.> v A is applicable to q only if body(q) contains

an atom of the form A(x1, x2). Applying rule (b) we we obtain the same set

of atoms in body(q) except with an atom of the form R(x1, ) in the place of

the atom of the form A(x1, x2). Then path(q′) ∈ L(NFA−qin,T ) as from (3.3) we

have the transition (SA, R , S>) ∈ δ.

• An axiom of the form ∃R.B v A is applicable to q only if body(q) contains an

atom of the form A(x1, x2). Applying rule (c) we obtain the same set of atoms
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in body(q) except with a pair of atoms of the form R(x0, x1), B(x1, x2) in the

place of the atom of the form A(x1, x2). Then path(q′) ∈ L(NFA−qin,T ), as from

(1) and (3.4) we have that (SB, B, SFB), (SA, R, SB) ∈ δ.

• An axiom of the form R1 v R2 (R1 v R−2 ) is applicable to q only if body(q)

contains an atom of the form R2(xk, xk+1). Applying rule (e) (resp. (f)) we

obtain body(q′) from body(q) by replacing R2(xk, xk+1) with R1(xk, xk+1) (resp.

R1(xk+1, xk)). Thus, it is sufficient to show that, if a sequence of symbols w

contains the symbol R2 and w ∈ L(NFA−qin,T ) then, if we replace an occurrence

of R2 with the symbol R1 (resp. R−1 ) in w, we have that w is still contained in

L(NFA−qin,T ). This follows from (4.1) (resp. (4.2)).

(⇐) Since each rule to construct NFA−A,T corresponds to one of the rewriting steps

(a)-(f), the claim follows by induction on the construction rules of the NFA−A,T ,

starting from A.

Corollary 4.4.2. Given an ELHI`inh TBox T , concept A and a complex concept B,

we have that T |= B v A if and only if, for each ABox A and for each individual

a ∈ ind(A), it holds that IA |= B(a) only if IA |= q()← NFA−A,T (a, y), where y is a

fresh variable.

Proof. From Theorem 4.3 we have that q(x)← NFA−A,T (x, y) is the perfect rewriting

of q(x) ← A(x, y) with respect to T . Therefore, for each ABox A and for each

individual a, it holds that (T ,A) |= q(a) ← A(a, y) if and only if IA |= q(a) ←

NFA−A,T (a, y). Since T |= B v A, for each ABox A and for each individual a

we have that if IA |= B(a) then K = (T ,A) |= q(a) ← A(a, y) and therefore

IA |= q(a)← NFA−A,T (a, y).
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4.5 Discussion

The work presented in this chapter extends our recent work [48] where we first

proposed exploiting the capabilities of navigational queries in order to allow query

rewriting of conjunctive queries into C2RPQs under the DL known in the literature

as linear ELH. In this chapter, we have undertaken the first steps to extend the

above technique to a more expressive DL, namely harmless linear ELHI.

In more detail, we have defined ELHI`inh (harmless linear ELHI), an ontology

language that generalises both DL-LiteR and linear ELH; and we have proved the

rewritability of instance queries (queries with a single atom in their body) under

ELHI`inh knowledge bases with C2RPQs as the target language, presenting a query

rewriting algorithm that makes use of non-deterministic finite-state automata.

In the following chapter, we will use the NFA-based technique proposed here to

obtain a rewriting of CQs into C2RPQs under ELHI`inh ; this is achieved by extending

the rewriting algorithm known in the literature as tree witness rewriting [72] with

the NFAs presented in this chapter. We will then undertake a complexity analysis

for query answering under ELHI`inh ; we will formally prove the correctness of our

algorithms, and also that they comply with the upper complexity bounds.



Chapter 5

Rewriting of CQs to C2RPQs

under harmless linear ELHI

Description Logic

In this chapter, we develop a rewriting of CQs following the approach of [70, 72]

which splits the problem of rewriting CQs under DL-LiteR in two. Firstly, it deals

separately with the part of the TBox that does not have existential quantifications

on the right-hand side of assertions (that is, the part that when expanded does not

produce any labelled null), also called the flat part of the TBox. Informally, this

is obtained by leveraging the NFAs presented in the previous chapter (Section 4.4),

which allow us to finitely encode all the (possibly infinite) rewritings of concept

instance queries under ELHI`inh TBoxes; this approach is described in Section 5.1.

In Section 5.2, we show how the rewriting of the flat part of the TBox is “merged”

with the rewriting of the rest of the TBox to generate the perfect rewriting of CQs.

Then, in Section 5.3, we undertake a complexity analysis for query answering under

ELHI`inh .

108
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5.1 Rewriting for Flat ELHI`inh

We now show how to rewrite CQs under the special case of flat ELHI`inh TBoxes,

i.e., those that do not contain existential quantifiers on the right-hand side of concept

inclusions. In other words, flat ELHI`inh in normal form can only contain concept

and role inclusions of the form A1 v A2, ∃R.D v A, R1 v R2 or R1 v R−2 , for

concept names A,A1, A2, role names R1, R2, and D a concept name or >.

Let T be a flat ELHI`inh TBox, q a conjunctive query and a a tuple of individuals.

Since JK is the canonical model for K = (T ,A), we have that (T ,A) |= q(a) if and

only if q(a) is true in the canonical model JK. If the TBox is flat, the canonical model

JK contains no labelled nulls, and so, from the definition of JK and Corollary 4.4.2,

we have that:

• frJK |= A(a) if and only if IA |= q()← B(a, y) and B ∈ L(NFA−A,T ), for some

B,

• JK |= P (a, b) if and only if IA |= R(a, b) and T |= R v P , for some R.

Following from this observation, we are now able to define a C2RPQ qT −ext such

that, for any CQ q and any flat ELHI`inh TBox T , qT −ext is the perfect rewriting

of q with respect to T .

Definition 5.1. Given a CQ q and an ELHI`inh TBox T , we construct a C2RPQ

qT −ext by replacing every atom A(z1, z2) in q with AT −ext(z1, z2) and every atom

P (z1, z2) in q with PT −ext(z1, z2), where AT −ext(z1, z2) and PT −ext(z1, z2) are the

following formulas:

AT −ext(u1, u2) = α(u1, u2),
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where α is a regular expression denoting L(NFA−A,T ), and

PT −ext(u1, u2) =
⋃

T |=RvP

R(u1, u2) ∪
⋃

T |=RvP−
R(u2, u1),

Note that PT −ext(u1, u2) can be expressed as a single RPQ, as shown in Exam-

ple 5.1.1.

Example 5.1.1. Consider the flat ELHI`inh TBox T = {∃R.A v A, P v R}

and the CQ q = q(x, y) ← ∃z A(x, z), R(x, y). Following from Definition 5.1 we

construct qT −ext as follows:

q(x, y)← ∃z (R|P )∗A(x, z), R|P (x, y)

Now we show that, for any CQ q and any flat ELHI`inh TBox T , qT −ext is the

C2RPQ rewriting of q with respect to T .

Proposition 5.1. For every ELHI`inh KB K = (T ,A), every concept name A, role

name P and individual names a and b we have:

• JK |= A(a) if and only if IA |= q()← AT −ext(a, y), where y is a fresh variable,

• JK |= P (a, b) if and only if IA |= q()← PT −ext(a, b).

Proof. From Corollary 4.4.2 we have that q()← AT −ext(a, y) is the perfect rewriting

of q() ← A(a) with respect to T . The fact that JK |= P (a, b) if and only if

q() ← PT −ext(a, b) follows from the observation that the only way to infer a role

inclusion in an ELHI`in TBox is through the closure of role inclusion axioms of the

form R1 v R2 and R1 v R−2 . The claim follows.

Proposition 5.2. For any CQ q and any flat ELHI`inh TBox T , qT −ext is the

C2RPQ rewriting of q with respect to T .
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Proof. Since T is flat, no axioms contain existential quantifiers on the right-hand

side, so no labelled nulls appear during the chase procedure. Therefore we can con-

struct the perfect rewriting of a conjunctive query q by splitting q into its atoms,

generating the perfect rewriting of the single atomic queries and taking the conjunc-

tion of the resulting set of atoms. More specifically, we can substitute every atom

A(z1, z2) in q with AT −ext(z1, z2) and every atom P (z1, z2) in q with PT −ext(z1, z2)

which gives rise to qT −ext.

5.2 Rewriting for Full ELHI`inh

To generate rewritings for full ELHI`inh TBoxes, we need a closer look at the con-

struction of the canonical model through the application of rules (i)-(vii) in Defini-

tion 4.3 to the base model IA. There are two key observations: first, fresh labelled

nulls can only be added by applying rule (vii), and, second, if two labelled nulls,

d1 and d2, are introduced by applying rule (vii) using the same concept inclusion

A v ∃R.>, then the same rules will be applicable to d1 and d2 in the continuation

of the chase procedure. In addition, from Proposition 5.1, we know that for every

ELHI`inh KB K = (T ,A), every concept name A and individual name a, we have

JK |= A(a) if and only if IA |= q()← AT −ext(a, y), where y is a fresh variable. Thus,

for each labelled null d′ resulting from applying (vii) we can identify an individual

name d ∈ ind(A) that “triggers” an application of rule (vii) and a subsequent series

of applications of (vii) that leads to the generation of d′.

To formalise this, we first introduce a symbol w∃R as a witness for ∃R.> and we

define a generating relation ;T ,A on the set of these witnesses together with ind(A)

by taking:

(α) a ;T ,A w∃R, if a ∈ ind(A), IA |= q(a),← NFA−A,T (a, y), A v ∃R.> ∈ T and

IA 6|= ∃R.>(a),
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(β) w∃S ;T ,A w∃R if S− ∈ L(NFA−A,T ) and also that A v ∃R.> ∈ T , where S is a

role name.

(α) and (β) reflect the two key observations above, respectively. Note that, if a

labelled null d1 is introduced by applying (vii) via some concept inclusion B v ∃S.>

and S− ∈ L(NFA−A,T ), then, at some point in the chase, the concept assertion A(d1)

is generated; thus, (β) is necessary in the definition of the generating relation.

A path σ on the generating relation ;T ,A is a finite concatenation aw∃R1 . . . w∃Rn ,

n > 0, such that a ∈ ind(A) and, if n > 0, then a;T ,A w∃R1 and w∃Ri
;T ,A w∃Ri+1

,

for i < n. Thus, a path of the form σw∃R also denotes the fresh labelled null

introduced by applying (vii) to some A v ∃R.> on the individual σ. For brevity,

we denote by “;T ,A-path σ” a path σ on the generating relation ;T ,A.

We point out that the approach of defining a generating relation for labelled nulls

is originally introduced in [70, 72]. Here, we extend it by introducing NFA−A,T in

the above formulas, allowing us to follow a similar approach and define a finite

generating relation ;T ,A when T is an ELHI`inh TBox.

Following from the observations above, we now show that for any ELHI`in TBox

T and ABox A we are able to express each labelled null generated during the chase

procedure as a ;T ,A-path σ.

Proposition 5.3. Consider an ELHI`inh KB K = (A, T ) and an element d0 ∈

ind(A). Suppose that AI00 = {d0} and that there is a sequence of applications of

rules (i)-(vii) of Definition 4.3 during the chase procedure as follows:

• the rule (vii) is applied to A0 v ∃P0.>, so the fresh labelled null d1 is generated

and (d0, d1) is added to P I10 ;

• for 1 6 i 6 n we have di ∈ A
I
(i+

∑i
j=1

kj)

i , and (vii) is applied to Ai v ∃Pi.>, so

the fresh labelled null di+1 is generated and (di, di+1) is added to P
I
(i+1+

∑i
j=1

kj)

i ;
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with k1, . . . , kn > 1. Such a sequence of rule applications is performed during the

chase if and only if it holds that:

d0 ;T ,A w∃P1 and w∃Pi
;T ,A w∃Pi+1

, for i < n.

Proof. We show this by the induction on the i-th application of the rule (vii).

(⇒) Base step. For i = 0 we have that the rule (vii) is applied according to an

axiom A0 v ∃P0.> which means that I0 6|= ∃P0.>(a) . For rule (α) in the definition

of the generating relation we have that d0 ;T ,A w∃P0 .

Inductive step. For i = l, by induction hypothesis it holds that

d0 ;T ,A w∃P1 and w∃Pi
;T ,A w∃Pi+1

, with 1 6 i < l.

The proof follows if it also holds that w∃Pl
;T ,A w∃Pl+1

. By the induction hypothesis,

we have that dl+1 ∈ A
I
(l+1+

∑l+1
j=1

Kj)

l+1 . Since dl+1 is generated by applying Al v ∃Pl.>

it holds that P−l ∈ L(NFA−Al+1,T ) and also that Al+1 v ∃Pl+1.> ∈ T . Thus, by rule

(β) in the generating relation it also holds that w∃Pl
;T ,A w∃Pl+1

and the claim

follows.

(⇐) Base step. For i = 0 we have

d0 ;T ,A w∃P1

Thus, by the rule (α) in definition of the generating relation we have that there is

concept name A0 such that a ∈ ind(A), IA |= q(a),← NFA−A0,T (a, y), A0 v ∃P1.> ∈

T and IA 6|= P1.>(a). Therefore the rule (vii) is applied according to A0 v ∃P0.>,

so a fresh labelled null , say d1, is generated and (a, d1) is added to P I10 .

Inductive step. Now assume that the claim holds for i = l. For i = l + 1 we

have that w∃Pl
;T ,A w∃Pl+1

, and therefore, by the rule (β) in the definition of the
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generating relation, there is a concept name, say Al+1, such that P−l ∈ L(NFA−Al+1,T )

and Al+1 v ∃Pl+1.> ∈ T . Thus, at a certain point in the chase, say at the (l +

1 +
∑l+1

j=1Kj)-th cycle, the assertion Al+1(dl+1) is generated, since by the induction

hypothesis it holds that ∃Pl.>(dl+1)
I
(l+1+

∑l
j=1

Kj) . Therefore, dl+1 ∈ A
I
(l+1+

∑l+1
j=1

Kj)

l+1

and (vii) is applied according to Al+1 v ∃Pl+1.> and the fresh labelled null, say dl+2,

is generated and (dl+1, dl+2) is added to P

I(
(l+2)+

∑l+1
j=1

Kj

)
l+1 . The claim follows.

Following from Proposition 5.3, we are now able to generate the rewriting for

ELHI`inh TBoxes, similarly to [70, 72] for DL-LiteR. For each ELHI`in TBox T

and ABox A we can express each labelled null generated during the chase proce-

dure as a ;T ,A-path σ. Thus, we are now able to construct the canonical model

in a top-down fashion by “unravelling” σ. Let us denote by tail(σ) the last element

in σ. Following from Proposition 5.3 we know that the last element in the ;T ,A-

path σ uniquely determines all the subsequent rule applications. Therefore, we can

construct a canonical model CT ,A as follows.

Definition 5.2. Let K = (T ,A) be an ELHI`inh KB, and ∆CT ,A be the set of all

;T ,A-paths. The canonical model CT ,A is defined by taking:

(1) aCT ,A = a, for a ∈ ind(A);

(2) ACT ,A = {a ∈ ind(A) | IA |= B(a) and B ∈ L(NFA−A,T )} ∪

{σw∃R | R− ∈ L(NFA−A,T )}, for each concept name A;

(3) P CT ,A = {(a, b) | IA |= R(a, b) and T |= R v P} ∪

{(σw∃R, σ) | tail(σ) ;T ,A w∃R, T |= R v P−} ∪

{(σ, σw∃R) | tail(σ) ;T ,A w∃R, T |= R v P}, for each role name P.

In the following theorem, we show that CT ,A is in fact a canonical model for K =

(T ,A).
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Theorem 5.1. For every ELHI`inh KB K = (T ,A), any CQ q(~x) of arity n and

any n-tuple ~a ⊆ ind(A)n, K |= q(~a) if and only if CT ,A |= q(~a).

Proof. By the definition of rule (iii) and (vi) and Corollary 4.4.2, an ABox individual

a belongs to ACT ,A just in the case IA |= q() ← NFA−A,T (a, y). Similarly, by the

definition of rules (iii) and (vii) and by Proposition 5.3, a labelled null of the form

σw∃R belongs to ACT ,A just in the case R− ∈ L(NFA−A,T ). For a role name P , rules (v)

and (vii) provide an analogous argument. More precisely, by the definition of rule

(v), a pair (d, d′) of domain elements belongs to P CT ,A just in the case (d, d′) ∈ RCT ,A

and T |= R v P for some P (note that checking T |= R v P can be done in linear

time). It then follows from the definition of rule (vi) and from Proposition 5.3 that

a pair (d, d′) belongs to P CT ,A just in three cases: for some R,

• both elements of the pair are ABox individuals with IA |= R(d, d′) and T |=

R v P ,

• the first component of the pair is created by an application of the rule (vii) to

the second component of the pair: d = σw∃R, d
′ = σ and T |= R v P−,

• the second component of the pair is created by an application of the rule (vii)

to the first component of the pair: d = σ, d′ = σw∃R and T |= R v P .

These three cases are reflected in the three sets in the union in Definition 5.2 of

P CT ,A . Thus, CT ,A is a canonical model for K and the claim follows.

Suppose T is an ELHI`inh TBox in normal form. To compute the certain answers to

a conjunctive query q over (T ,A), for some A, it is enough to find answers to q in

the canonical model CT ,A. To do so, we have to check, for every tuple of elements in

ind(A), whether there exists a homomorphism from q to CT ,A. The answer variables

take values only from ind(A), while the existentially quantified variables in q can
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Figure 5.1: The canonical model CT ,A from Example 5.2.1.

be mapped either to ind(A) or to the labelled nulls in CT ,A. In order to define a

rewriting that is independent from a particular ABox, we now look more closely at

the structure of the canonical models CT ,A with fixed T and varying A.

Let T be an ELHI`in TBox and A v ∃R.> an axiom in T . For an arbitrary

individual name a, we define the tree C∃R(a)
T as the canonical model of the KB

(T , {A(a)}). Now, take any ABox A and any a ∈ ind(A). By the definition of the

canonical model, if a ;T ,A ω∃R then CT ,A contains a subset that is isomorphic to

C∃R(a)
T . Moreover, such subsets may intersect only on their common root a. It is

easy to see that, for an individual name a ∈ ind(A), C∃R(a)
T is the restriction of the

canonical model CT ,A to only the domain that consists of a and all the labelled nulls

with the prefix aω∃R.

Example 5.2.1. Consider a TBox T with the following concept inclusions: A v

∃R.>, R v R−∗ , ∃T v D D v ∃P1.>, D v ∃P2.> and B v ∃S.>, and suppose that

an ABox A contains A(a), P1(a, b), A(b), B(b) and P2(b, c). The canonical model

CT ,A is depicted in Fig. 5.1. The individual a in this canonical model has a single

tree C∃R(a)
T . The individual b has trees C∃R(b)

T and C∃S(b)
T . These two trees intersect

only at their common root b.

We now show that in the case of ELHI`inh KBs, we can follow the approach of [70, 72]

for DL-LiteR, which shows how the process of constructing FO-rewritings can be
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split into two steps: the first step considers only the flat part of the TBox and

uses the formulas AT −ext(u1, u2) and PT −ext(u1, u2) defined in the previous section;

the second step (described below) takes account of the remaining part of the TBox,

that is, inclusions of the form A v ∃R.>. We first need some preliminary definitions

(adapted from [70, 72]).

Definition 5.3. (H-completeness) Let T be a (not necessarily flat) ELHI`inh TBox.

A simple ABox A is said to be H-complete with respect to T if, for all concept names

A and role names P , we have:

• A(a) ∈ A if IA |= q()← NFA−A,T (a, y), where y is a fresh variable;

• P (a, b) ∈ A if IA |= R(a, b) and T |= R v P , for some R.

Our definition of H-completeness differs from that in [72] in that it includes the NFAs

defined in Section 4.4, which allow us to finitely encode all the (possibly infinite)

complex concept expressions B that entail a concept name A ∈ A under ELHI`inh

TBoxes. We say that a C2RPQ p is a perfect rewriting of q with respect to T , if,

for any ABox A and any tuple a from ind(A), the following holds:

(T ,A) |= q(a) if and only if IA |= p(a).

In the case that the above formula holds only if A is H-complete with respect to T ,

then we say that p is a perfect rewriting of q and T over H-complete ABoxes [72].

The authors in [72] observe that, if an ABox A is H-complete with respect to T ,

then the ABox part of CT ,A, the part that does not contain labelled nulls, coincides

with IA. Thus, if T is flat then q itself is clearly the perfect rewriting of q and T over

H-complete ABoxes. Following from this observation, we show that we can easily

obtain rewritings (over arbitrary ABoxes) from rewritings over H-complete ABoxes.



5.2. Rewriting for Full ELHI`inh 118

We now introduce two additional lemmata that are needed for the proof of correct-

ness.

Lemma 5.1. Let q be a conjunctive query of arity n, A an H-complete ABox, T an

ELHI`inh TBox and t = (a1, . . . , an), with a1, . . . , an ∈ ind(A). Then t ∈ qIA if and

only if t ∈ qT −extIA.

Proof. (⇒) It follows immediately from the definition of qT −ext.

(⇐) Since A is H-complete, then A(a) ∈ A if IA |= q()← B(a, y) and B ∈ NFA−A,T .

In similar way, P (a, b) ∈ A if IA |= R(a, b) and T |= R v P , for some R. Thus,

A(a) ∈ A if IA |= q() ← AT −ext(a, y) and P (a, b) ∈ A if IA |= q() ← PT −ext(a, y)

(with q()← PT −ext(a, y) expressed as a single RPQ). Since qT −ext is composed only

by replacing every atom A(z1, z2) in q with AT −ext(z1, z2) and every atom P (z1, z2)

in q with PT −ext(z1, z2), the claim follows.

Corollary 5.2.1. If p is a perfect rewriting of q and T over H-complete ABoxes,

then pT −ext is a perfect rewriting of q and T over H-complete ABoxes.

Proof. The proof follows immediately from Lemma 5.1.

Definition 5.4. Let AH be an ABox constructed as follows. We take the base

model IA as I0 and the following rules are applied inductively to obtain Ik+1 from

Ik:

(i) if d ∈ AIk then d is added to AIk+1 ;

(ii) if (d, d′) ∈ RIk then (d, d′) is added to RIk+1 ;

(iii) if d ∈ AIk1 and A1 v A2 ∈ T , then d is added to A
Ik+1

2 ;

(iv) if (d, d′) ∈ RIk1 and R1 v R2 ∈ T , then (d, d′) is added to R
Ik+1

2 ;

(v) if (d, d′) ∈ RIk1 and R1 v R−2 ∈ T , then (d′, d) is added to R
Ik+1

2 ;
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(vi) if d ∈ (R.D)Ik and ∃R.D v A ∈ T , where D is a concept name or >, then d

is added to AIk+1 ;

We then take a fixpoint interpretation, as k → ∞, and we denote the resulting

interpretation with IAH
. We take AH as the ABox of which the base model is

IAH
. Note that, by definition, AH is H-complete. We call such an ABox, AH , an a

H-complete extension of A.

Lemma 5.2. Let q be a conjunctive query of arity n, A an ABox, T an ELHI`inh

TBox and t = (a1, . . . , an), with a1, . . . , an ∈ ind(A). Then t ∈ qT −extIAH if and only

if t ∈ qT −extIA.

Proof. (⇒) Let us assume that t ∈ qT −ext
IAH and t 6∈ qT −ext

IA . Then, from the

definition of qT −ext this is possible when either of the following two conditions is

satisfied:

• for some concept name A appearing in q and some a ∈ ind(AH) we have that

IAH
|= q() ← AT −ext(a, y) and IA 6|= q() ← AT −ext(a, y), where y is a fresh

variable.

• for some role name P appearing in q and some a, b ∈ ind(AH) we have that

IAH
|= q()← PT −ext(a, b) and IA 6|= q()← PT −ext(a, b).

Now, without loss of generality, let us assume that T is in normal form and let us

consider the TBox TH defined as follows:

TH = { r | r ∈ T , r is not of the form A v ∃R.>}.

From the definition of TH we have that J(A,TH) = IAH
. Then, following from Propo-

sition 5.1 we have that IAH
|= q()← A(a, y) if and only if IA |= q()← AT −ext(a, y)

and IAH
|= q() ← P (a, b) if and only if IA |= q() ← PT −ext(a, b). Since q() ←
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A(a, y) is contained in q() ← AT −ext(a, y) and q() ← P (a, b) is contained in q() ←

PT −ext(a, b), neither of the two conditions above can be satisfied and the claim fol-

lows.

(⇐) The claim follows since C2RPQs are monotonic1 and A ⊆ AH .

Theorem 5.2. If p is the perfect rewriting of q and T over H-complete ABoxes,

then pT −ext is the perfect rewriting of q with respect to T .

Proof. We know that A ⊆ AH from the definition of AH and that pT −ext
IAH =

pT −ext
IA from Lemma 5.2. Since p is the perfect rewriting of q and T over H-

complete ABoxes, from Corollary 5.2.1 we know that also pT −ext is a perfect rewriting

of q and T over H-complete ABoxes. The claim follows since AH is H-complete by

definition.

So, to generate a C2RPQ rewriting we can now focus on constructing rewritings

over H-complete ABoxes.

Tree Witnesses. Consider a CQ q and a knowledge base (T ,A). Suppose that,

for some tuple a in ind(A), there is a homomorphism h from q(a) to CT ,A. Then h

partitions q(a) into the atoms mapped by h to the ABox part and atoms mapped

by h to the trees C∃R(a)
T of the anonymous part of CT ,A. The tree-witness rewriting

of q and T we are going to present now lists all possible partitions of the atoms of

q into such subsets. We begin with an example which illustrates this idea.

1In database theory, a query is monotonic if for each pair of databases I and J over the same
schema, I ⊆ J implies q(I) ⊆ q(J)



5.2. Rewriting for Full ELHI`inh 121

Example 5.2.2. Consider the TBox T with the concept and role inclusions

A v ∃R.>,

R v S−,

∃S.>v B,

B v ∃T.>,

B v ∃P.>

and the CQ

q(x)← ∃y, z R(x, y) ∧ T (y, z).

We recall that if the canonical model CT ,A for some ABox A contains some indi-

viduals a ∈ ACT ,A and b ∈ BCT ,A , then CT ,A must also contain the trees C∃R(a)
T and

C∃T (b)
T . Let us consider all the different ways of obtaining certain answers to the

query by checking all possible homomorphisms from atoms of q(x) to CT ,A so that

the answer variable x is mapped to ind(A). First, the variables x, y and z can be

mapped to ABox individuals. Also, x and y can be mapped to ABox individuals, a

and b, and if b is in BCT ,A , then there is a homomorphism h1 from the last atom

of q(a) to the anonymous part; this is shown in Fig. 5.2. Another way to obtain a

homomorphism is to map only x to an ABox individual, a, and if a is in ACT ,A then

the whole of q(a) can be homomorphically mapped to the anonymous part; see h2 in

Fig. 5.2. The possible ways of mapping subsets of a query to the anonymous part of

the canonical model are called tree witnesses [72]. The three tree witnesses for q(x)

and T found above give rise to the rewriting qtw(x) of q(x) and T over H-complete
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ABoxes as the union of the following conjunctive queries:

q1tw(x)← ∃y, z R(x, y) ∧ T (y, z),

q2tw(x)← ∃y R(x, y) ∧B(y),

q3tw(x)← A(x).

B

A

R S

TP

C∃R(a)
T

B

T P

C∃T (b)
T

z

y

q
x

R

T

h1

h1

h2

h2

h2

Figure 5.2: Homomorphisms from subsets of q to C∃R(a)
T and C∃T (b)

T .

We now recall from [72] a general definition of the tree-witness rewriting over H-

complete ABoxes. Let T be an ELHI`inh TBox in normal form and q a CQ with at

least one existentially quantified variable in its body. Consider a pair t = (tr, ti)

of disjoint sets of terms in q, where ti is non-empty and contains only existentially

quantified variables (tr, on the other hand, can be empty and can contain answer

variables and individual names). Let

qt = {S(z) ∈ q | z ⊆ tr ∪ ti and z 6⊆ tr}.

Then t is defined as a tree witness for q and T generated by ∃R.> if the following

two conditions are satisfied:

(a) there exists a homomorphism h from qt to C∃R(a)
T , for some a, such that tr =
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{z | h(z) = a} and ti contains the remaining variables in qt,

(b) qt is a minimal subset of q such that, for any y ∈ ti, every atom in q containing

y belongs to qt.

Note that unary atoms with arguments in tr or binary atoms with both arguments

in tr do not belong to qt and, therefore, condition (a) does not require them to be

homomorphically mapped into C∃R(a)
T . The terms in tr (if any) are called the roots

of t and the (existentially quantified) variables in ti the interior of t [72]. The

homomorphism h in condition (a) is not necessarily unique; however, it is important

that all roots are mapped to a and all variables of the interior are not mapped to

a. Thus, qt can contain at most one individual name, a; if qt does not contain an

individual name then the choice of a is irrelevant. Condition (b) reflects the fact

that if a homomorphism from q to the canonical model of (T ,A), for some A, maps

a variable y of an atom R(y, z) to a non-root of a tree C∃R(a)
T then the other variable

of the atom must be mapped to the same tree. Let t = (tr, ti) be a tree witness for

q and T . Consider the following formula from [72]:

twt = ∃u [
∧
x∈tr

(x = u) ∧
∨

Bv∃R.>∈T
t generated by ∃R.>

B(u)],

whose free variables are the roots, tr, of t. The formula twt describes the ABox

individuals that root the trees in the anonymous part of CT ,A into which the atoms

qt of the tree witness t can be homomorphically mapped. More formally, if IA |=

twt(a, . . . , a), for some a ∈ ind(A), then CT ,A contains the tree C∃R(a)
T , and so there

is a homomorphism from qt to CT ,A that maps all the roots of t to a. Conversely, if

there is a homomorphism from qt to CT ,A such that all the roots of t are mapped to

a (but all the variables from the interior, ti, of t are mapped to labelled nulls) then

IA |= twt(a, . . . , a).
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Continuing with the terminology of [72], let Θq
T be the set of tree witnesses for q

and T . Tree witnesses t and t′ are said to be conflicting if qt ∩ qt′ 6= ∅ (in other

words, the interior of one tree witness, say, t, contains a root or an interior variable

of the other, t′, or the other way round, which makes it impossible to have both

tree witnesses mapped into the anonymous part of CT ,A at the same time). A set

Θ ⊆ Θq
T of tree witnesses is said to be independent if any two distinct tree witnesses

in Θ are non-conflicting. If Θ is independent then we can ‘cut’ the query q into

independent subqueries in the following way. Consider a homomorphism that, for

each t ∈ Θ, maps the subset qt of q to the tree C∃R(a)
T , for some a, (provided that

t is generated by ∃R.>) and maps the remaining atoms in q to the ABox part of

CT ,A. Such a homomorphism is possible if there is a tuple a in ind(A) such that the

formula

qΘ
cut = ∃y

(
(q\qΘ) ∧

∧
t∈Θ

twt

)
holds in IA on a, where q\qΘ is the conjunction of all the atoms in q that do not

belong to qt, for any t ∈ Θ. Conversely, if there is a homomorphism from q(a) to

CT ,A then there exists an independent set Θ of tree witnesses such that IA |= qΘ
cut(a).

The following formula qtw is called the tree-witness rewriting of q and T over H-

complete ABoxes:

qtw =
∨

Θ∈Θq
T independent

qΘ
cut.

Example 5.2.3. Consider a ELHI`inh TBox in normal form with the following
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concept inclusions

A0 v ∃R.> A v ∃T.>

B0 v ∃U.> B v ∃S.>

U v U−1 R v R−1

∃U1.> v B ∃R1.> v A

and the following CQ q

q(x, y′′)← ∃y, z, y′, x′, z′, x′′ R(x, y) ∧ T (y, z) ∧ T (y′, z),

R(x′, y′) ∧ S(x′, z′) ∧ S(x′′, z′) ∧ U(y′′, x′′)

There are four tree witnesses for q and T :

• t1 = (t1
r, t

1
i ) generated by ∃T.> with t1

r = {y, y′} and t1
i = {z} and q1

t =

{T (y, z), T (y′, z)};

• t2 = (t2
r, t

2
i ) generated by ∃S.> with t2

r = {x′, x′′} and t2
i = {z′} and q2

t =

{S(x′, z′), S(x′′, z′)};

• t3 = (t3
r, t

3
i ) generated by ∃R.> with t3

r = {x, x′} and t3
i = {y, y′, z} and

q3
t = {R(x, y), T (y, z),

T (y′, z), R(x′, y′)};

• t4 = (t4
r, t

4
i ) generated by ∃U.> with t4

r = {y′, y′′} and t4
i = {x′, x′′, z′} and

q4
t = {R(x′, y′), S(x′, z′),

S(x′′, z′), U(x′′, y′′)};

Clearly, t3 and t4 are conflicting since, for example, y′ ∈ t3
i and y′ ∈ t4

r; t3 is also

conflicting with t1, since y′ ∈ t1
r, but not with t2 because t3

i ∩ (t2
r ∪ t2

i ) = ∅ and
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t2
i ∩ (t3

r ∪ t3
i ) = ∅. Also, t4 is conflicting with t2 since, for example, z′ ∈ t4

i and

t2
i = {z′}. Thus, we have the following 8 independent sets of tree witnesses:

∅, {t1}, {t2}, {t3}, {t4}, {t1, t2}, {t1, t4}, {t2, t3},

which result in a tree-witness rewriting of 8 subqueries with the following tree witness

formulas:

twt1(y, y
′) = ∃u ((u = y) ∧ (u = y′) ∧ A(u)),

twt2(x
′, x′′) = ∃u ((u = x′) ∧ (u = x′′) ∧B(u)),

twt3(x, x
′) = ∃u ((u = x) ∧ (u = x′) ∧ A0(u)),

twt4(y
′, y′′) = ∃u ((u = y′) ∧ (u = y′′) ∧B0(u).

Proposition 5.4. Let T be an ELHI`inh TBox and q a CQ. For any H-complete

ABox A and any tuple a in ind(A), we have CT ,A |= q(a) if and only if IA |= qtw(a).

Proof. Proposition 27 in [70] shows that CT ,A |= q(a) if and only if IA |= qtw(a), for

any H-complete ABox A and any tuple a in ind(A), where T is a QL TBox. Since A

is H-complete, the proof involves only the structure of the anonymous part of CT ,A,

which is isomorphic to the union of the trees C∃R(a)
T . Now, say that T is an ELHI`inh

TBox and that CT ,A	 is the anonymous part of CT ,A, that is, the subset of the graph

of CT ,A where all the edges are attached to at least one null. From Definition 5.2 we

know that:

• ACT ,A
	

= {σw∃R | R− ∈ L(NFA−A,T )}, for each concept name A;

• P CT ,A
	

= {(σw∃R, σ) | tail(σ) ;T ,A w∃R, T |= R v P−} ∪

{(σ, σw∃R) | tail(σ) ;T ,A w∃R, T |= R v P}, for each role name P.

Thus, every node in CT ,A	 is a path σw∃R, i.e., CT ,A	 is isomorphic to a subset of
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the union of the C∃R(a)
T trees, for some a ∈ ind(A). Therefore, the proof in [70] is

analogous for ELHI`inh TBoxes.

As stated above, a tree-witness rewriting p is a perfect rewriting of q and T over

H-complete ABoxes. Consider an ABox A := {R(a, b), R(b, c), A0(c)}, the TBox T

in Example 5.2.3, and the query

q(y)← ∃y′, z T (y, z) ∧ T (y′, z).

There is one (independent) tree witness for q, which is t1, and therefore, one tree-

witness rewriting

p(y)← ∃u, y′, z ((u = y) ∧ (u = y′) ∧ A(u)),

which by variable renaming can be simplified to

p(y)← A(y).

Clearly, A is not H-complete with respect to T since it does not contain the atoms

A0(a), A0(b), and thus the answer of p over the ABox only, pA, holds an incomplete

answer. In fact, pA = {(c)} while q(T ,A) = {(a), (b), (c)}. To generate a rewriting

over arbitrary ABoxes, the rewriting p needs to be rewritten into pT −ext (see Defini-

tion 5.1) which replaces every atom in p with the formulas AT −ext and PT −ext. This

reformulation produces the following (C2)RPQ:

pT −ext(y)← ∃p R∗A(y, p).

Now, pT −ext
A = {(a), (b), (c)}.

Theorem 5.3. Let T be an ELHI`inh TBox and q a CQ. For any ABox A and any

tuple a in ind(A), we have CT ,A |= q(a) if and only if IA |= qtwT −ext(a).
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Proof. The proof follows directly from Theorem 5.2 and Proposition 5.4.

Corollary 5.2.2. Let T be an ELHI`inh TBox and q a CQ. T is C2RPQ-rewritable

with respect to q.

5.3 Complexity Analysis

In this section we establish results on the computational complexity of the problem

of conjunctive query answering for ELHI`inh knowledge bases. The results are sum-

marised in Figure 5.5. Note that the results on DL-liteR and ELH are known. We

present our complexity results in terms of query answering problems (as is common

practice [35]), although technically the results refer to the decision versions of the

problems.

Here we think of a CQ as a labelled directed multigraph 〈N,E, `N , `E〉 with N a

set of nodes, E ⊆ N ×N a set of edges, `N : N → A a function assigning labels to

nodes from the set of concept names, and `E : E → R a function assigning labels

to edges from the set of role names. For a given CQ q, the graph of q is composed

as follows: (i) the set of nodes N is the set of terms in q; (ii) for each atom in the

body of q of the form A(x) there is a label assignment x → A ∈ `N ; and (iii) for

each atom of the form R(x1, x2) there is an edge (x1, x2) ∈ E and a label assignment

(x1, x2)→ R ∈ `E. For example, the graph of the query

q(x1, x2, x3)← ∃y1, y2, y3A1(x1) ∧ A3(x3) ∧B3(y3) ∧ T (x1, y1) ∧R(x1, x2)

∧ T (x2, x3) ∧ S(x3, y2) ∧ S(y3, y2)

is illustrated in Figure 5.3. Also, in this section we adopt the notion of a poly-

tree, which is simply a directed acyclic graph with the property that ignoring the

directions on edges yields a graph with no cycles [43]. Another way of checking if
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Figure 5.3: Conjunctive query as a labelled directed multigraph. The answer vari-
ables are filled in black.

a directed graph is a polytree is by checking that its symmetric closure does not

contain cycles.

Definition 5.5. Given a CQ q and a set of terms t in q, we say that q is polytree-

transformable with respect to t if there is a substitution h from the terms of q to

terms of q, such that: i) for each tr ∈ t, h(tr) = rooth, where rooth is either a

constant or a variable, and denotes the root of h; ii) for each term in q, ti, such that

ti 6∈ t, we have that h(ti) 6= rooth; iii) the graph of h(q) is a polytree.

Example 5.3.1. An example of polytree-transformable query is given by the CQ q

q(x)← ∃y1, y2, y3, y4, y5 R(x, y1) ∧R(x, y2) ∧ S(y1, y3)

∧ T (y1, y4) ∧ T (y2, y4) ∧R(y5, y2),

which is not a polytree but is polytree-transformable with respect to {x, y5} via the

substitution h = {y1 → y2, y5 → x} where rooth = x. The transformation results in

the query h(q)

h(q)(x)← ∃y2, y3, y4 ∧R(x, y2) ∧ S(y2, y3) ∧ T (y2, y4).

Figure 5.4 shows the graphs of q and h(q).

Definition 5.6. Consider a query q such that the graph of q is a polytree, a term

root in q, a constant a and a TBox T . We say that q tree-maps C∃R(a)
T on root if

there is a homomorphism h from the atoms of q to C∃R(a)
T such that h is an injective

function and h(t) = a only if t = root.



5.3. Complexity Analysis 130

y5y3

y4

y1 y2

q
x

R R

RTTS

h

h

y4

y3

y2

h(q)
x

R

T
S

Figure 5.4: The graphs of q and h(q) of Example 5.3.1

Proposition 5.5. Consider a CQ q, a set of terms t in q, a TBox T and a pair

t = (tr, ti) of disjoint sets of terms in q, where ti is non-empty and contains only

existentially quantified variables, and tr contains the remaining terms of q. Then,

there exists a homomorphism h from the atoms of q to C∃R(a)
T , for some a, such that

tr = {z | h(z) = a} if and only if q is polytree-transformable with respect to tr via a

homomorphism h, and h(q) tree-maps C∃R(a)
T on rooth.

Proof. (⇒) From the definition of h, we know that h(z) = a if and only if z ∈ tr,

and therefore conditions i), ii) in Definition 5.5 are satisfied. From Theorem 5.1 we

know that, for every ABox A, each null in C∃R(a)
T is also a path σ on the generating

relation ;T ,A, therefore the graph of C∃R(a)
T (ignoring the direction on edges) does

not contain cycles, and thus h(q) is a polytree and condition iii) in Definition 5.5

is also satisfied. Now, we know that q is polytree-transformable with respect to tr

via h(q) with rooth = a and that h(q) is a polytree. It follows that h(q) tree-maps

C∃R(a)
T on a via the identity function i, since h is a homomorphism from the atoms

of q to C∃R(a)
T and i(t) = a only if t = rooth = a. Also, the identity function i is

injective by definition, and the claim follows.

(⇐) We know that q is polytree-transformable with respect to tr via a homomor-

phism h, and h(q) tree-maps C∃R(a)
T on rooth via a homomorphism h∗. Now, set
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h = h ◦ h∗. Then, h is a homomorphism from the atoms of q to C∃R(a)
T . From

Definition 5.6 we know h∗(t) = a only if t = rooth. Also, from Definition 5.6 we

know that i) for each tr ∈ tr, h(tr) = rooth, and that ii) for each term in q, ti, such

that ti 6∈ tr, we have that h(ti) 6= rooth. Thus, tr = {z | h(z) = a} and the claim

follows.

Definition 5.7. Given an ELHI`inh TBox T , an arbitrary individual name a and a

complex concept of the form ∃R appearing on the LHS of an axiom in T . We define

C∃R(a)
Tn as the maximum subset of C∃R(a)

T such that each null in C∃R(a)
Tn is a sequence

aω∃Rω∃T1 ...ω∃Tl−2
of length l 6 n+ 1.

Lemma 5.3. Given a polytree query q with root root, where each path starting from

root is of length l 6 n, an ELHI`inh TBox T and an individual name a, q tree-maps

C∃R(a)
T on root only if q tree-maps C∃R(a)

Tn on root.

Proof. We prove this lemma by showing that, for each i > n, if q does not tree-map

C∃R(a)
Ti on root, then q does not tree-map C∃R(a)

Ti+1
on root. Let us now assume that q

does not tree-map C∃R(a)
Ti on root but it tree-maps C∃R(a)

Ti+1
on root. This is possible

only if:

• C∃R(a)
Ti+1

contains at least one null x that is a sequence aω∃Rω∃T1 ...ω∃Ti of length

i+ 2;

• one variable of q is mapped to x, since the mapping function is injective by

definition;

Thus, n variables of q are mapped to i+1 nulls, aω∃R, aω∃Rω∃T1 , . . . , aω∃Rω∃T1 ...ω∃Ti ,

for the definition of C∃R(a)
T in Definition 5.2, item (3), and because the mapping

function is injective. This is not possible since i > n. Therefore, for each i > n, if

q does not tree-map C∃R(a)
Ti on root, then q does not tree-map C∃R(a)

Ti+1
on root, and by
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Figure 5.5: Summary of complexity results of ELHI`inh . All bounds are tight, unless
otherwise stated. Our results are in the grey box.

induction, if q does not tree-map C∃R(a)
Tn on root, then q does not tree-map C∃R(a)

T on

root. The claim follows.

Theorem 5.4. Answering ICs and CQs on ELHI`inh knowledge bases is NLogSpace-

complete with respect to data complexity.

Proof. It is known that the data complexity of answering IQs in ELH`in [35] is

NLogSpace-hard, so the same holds for ELHI`inh , which is a proper extension of

ELH`in . Membership in NLogSpace for IQ answering follows from the fact that we

can rewrite instance queries to 2RPQs, and answering 2RPQs is in NLogSpace [11].

For CQs, the upper bound follows from our algorithm to compute a perfect rewriting

of q for T as C2RPQ queries, and the fact that the data complexity of C2RPQ

answering is NLogSpace-complete [11]. For both IQs and CQs, the rewriting

algorithm relies solely on the query and the TBox. Since both the query and the

TBox are considered fixed in the definition of data complexity, then producing the

rewriting is done in constant time; therefore, the rewriting algorithm does not use

more than logarithmic space. The lower bound follows from hardness for IQs. We

also need to consider the cost of satisfiability of NIs, which is done by treating

NIs and PIs separately, that is, removing the NIs from the TBox and checking the

resulting knowledge base against a set of Boolean CQs (see Section 4.2) of linear
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size with respect to the TBox. Since the TBox is fixed, then checking satisfiability

of NIs is also done in logarithmic space.
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Theorem 5.5. Answering CQs on ELHI`inh knowledge bases is NP-complete with

respect to combined complexity.

Proof. In this case, satisfiability check of NIs does not carry extra cost, as it is done

by answering an additional set of Boolean CQs which can be given as input for the

rewriting algorithm. Since the above set of BCQs is of linear size with respect to

the TBox, then the cost of satisfiability check is included in the cost of answering

CQs. For the upper bound for CQs, we devise a non-deterministic version of the

rewriting algorithm for a given CQ q and a TBox T . The algorithm is as follows:

[step 1] guess a qt = {S(z) ∈ q | z ⊆ tr ∪ ti and z 6⊆ tr}, i.e., a possible tree-

witness. Since qt is a subset of atoms in q, the guess is done in polynomial time;

[step 2] guess a homomorphism h from the atoms of qt to the atoms of qt; this

step is performed in non-deterministic polynomial time, as the space of guesses is of

size 2n, where n is the number of nodes in the graph of qt;

[step 3] check that each term t ∈ tr maps to the same term, i.e., rooth;

[step 4] check if the graph of h(qt) is a tree via a graph traversal (in polynomial

time with respect to the size of qt);

[step 5] guess an ∃R and generate C∃R(a)
Tm , where a = rooth if rooth is a individual

name (or for an arbitrary individual a otherwise), and m is the length of the longest

path in h(qt) starting from rooth; the cost of generating C∃R(a)
Tm is boned by m× |T |;

[step 6] check if h(qt) tree-maps C∃R(a)
Tm on rooth:

[step 6.1] guess an injective function h from the terms in h(qt) to the terms in

C∃R(a)
Tm , where the spaces of guesses is (m× |T |)!;

[step 6.2] check if h(h(qt)) ⊆ C∃R(a)
Tm ;

[step 7] check if qt is a minimal subset of q such that, for any y ∈ ti, every atom

in q containing y belongs to qt;

[step 8] rewrite q′ accordingly and generate q′T −ext;

[step 9] check if q′T −ext is true when evaluated on the ABox.
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Since q′T −ext is a C2RPQ and the data complexity of answering C2RPQs over a

plain database is in NLogSpace, the problem of answering q is in NP. This NP

bound is optimal, since CQ answering is already NP-hard over an ABox alone.

Theorem 5.6. Answering IQs on ELHI`inh knowledge bases is in PTime with re-

spect to combined complexity.

Proof. To answer IQs, for a concept instance query we can build in polynomial time

the NFA, and then answer the path query resulting from the rewriting over the

ABox. For a role instance query, the rewriting can be constructed in linear time and

the resulting query is a 2RPQ. We also need to consider the cost of satisfiability of

NIs, which is done by checking the knowledge base against a set of boolean CQs of

linear size with respect to the TBox. By definition, those boolean CQs contain at

most two atoms and two variables. Thus, we can generate the rewriting of each BCQ

in polynomial time by substituting the non-deterministic guesses of the algorithm

above with the following deterministic steps:

[step 1] generate all the possible tree-witnesses qt, which are at most three;

[step 2] generate the homomorphisms h from the atoms of qt to the atoms of qt;

the number of homomorphisms is bounded by 22;

[step 5] generate the set of all C∃R(a)
Tm , whose size is bounded by |T |; note that m

is at most 1;

[step 6] check if h(qt) tree-maps C∃R(a)
Tm on rooth; by definition, this is possible only

if the term in h(qt) that is not rooth is mapped via h to a term in C∃R(a)
Tm that is not

a, and then h(h(qt)) ⊆ C∃R(a)
Tm ; since m is at most 1, then the number of injective

functions h is bounded by |T |.

At this point, we only need to check each rewritten query against the ABox alone,

thus not using more than logarithmic space for each query, since they are boolean

C2RPQs.
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5.4 Discussion

In Chapter 4, we introduced a new ontology language, named ELHI`inh , which

strictly extends the known ontology languages DL-LiteR and linear ELH. Fol-

lowing from that, in this chapter we have proposed a query rewriting algorithm

for answering conjunctive queries under ELHI`inh knowledge bases, with C2RPQs

as target language. This algorithm extends the tree witness rewriting of [72] and

uses the NFA-based rewriting technique presented in Chapter 4. Since C2RPQs

can be straightforwardly expressed in SPARQL 1.1 by means of property paths, our

approach is therefore directly applicable to real-world querying settings.

Lastly, we have undertaken a complexity analysis for query answering under ELHI`inh .

We have analysed the computational cost of query answering in terms of both

data complexity and combined complexity. We have shown that answering instance

queries under ELHI`inh is NLogSpace-complete for data complexity and in PTime

for combined complexity; we have also shown that answering CQs under ELHI`inh

is NLogSpace-complete for data complexity and NP-complete for combined com-

plexity.



Chapter 6

Conclusion

6.1 Summary of Thesis Contributions

The research in this thesis was motivated by the problem of integrating and querying

multiple heterogeneous Linked Data sets through ontological rules. In the first

part of this thesis, we have proposed a formalisation of the notion of a peer-to-

peer Linked Data integration system, where the mappings between peers comprise

schema-level mappings and equality constraints between different IRIs; we call this

formalism an RDF Peer System (RPS). We have shown that the semantics of the

mappings preserve tractability of the conjunctive SPARQL query answering problem

over RPSs, that is, answering queries expressed in the conjunctive fragment of the

SPARQL query language against the data stored in the RDF sources and the set

of constraints given by the RPSs mappings. In more detail, we have shown that

answering Basic Graph Pattern (BGP) SPARQL queries on an RPS can be done

in polynomial time in terms of data complexity. The key novelty of the RPS is

to achieve a tractable semantics for the integration of multiple RDF sources with

arbitrary mapping topologies, whereas previous techniques applied on the same set

of RDF sources may give rise to a set of undecidable rules.
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To illustrate the practical usage of our approach, we have presented a larger-scale

real-world case study, undertaken as part of the INSPIRE project [92], which ad-

dresses the domain of career guidance, particularly career transitions. We have

undertaken the integration of two databases: the L4All RDF/S ontology arising

from the L4All and MyPlan projects, capturing the work and educational experi-

ences of lifelong learners [93]; and a new RDF/S ontology we have designed based on

the information published on LinkedIn, a business and employment-oriented service

that operates via websites and mobile apps. Through the case study, we have shown

how to exploit the RPS mapping language to materialise an integrated version of

the two heterogeneous data sources.

Next, we have addressed the problem of SPARQL query rewriting under RPSs. We

have firstly compared the problem with CQ rewriting under TGDs and we have

seen that is not possible to generate a SPARQL 1.0 query as the perfect rewriting

of an input BGP SPARQL query under general RPSs, as the RPS peer mappings

are generally not FO-rewritable rules; this is a major drawback of general RPSs

since data materialisation is required to exploit their full semantics. Following this,

we have taken into account well-known FO-rewritable sets of TGDs and compared

them to our peer mappings; thus we have outlined some restricted forms of RPSs

for which it is possible to generate a SPARQL 1.0 query as a perfect rewriting.

Next, we have presented a middleware system based on these restricted forms of

RPSs and we have undertaken an empirical evaluation of its behaviour. We have

seen that, when BGP SPARQL queries are rewritten according to our algorithm

and posed over multiple RDF sources, the amount of information retrieved increases

significantly due to the provision of interoperability between heterogeneous vocab-

ularies. In addition, the approach does not seem to compromise query execution

time since, overall, the response time of our system was seen to be not greater than

the maximum query response time over the single datastores. However, further
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empirical evaluation is necessary, and this is an area of future work.

With the adoption of the more recent standard SPARQL 1.1 and its property paths

we are able to extend the expressivity of the target language beyond FO by includ-

ing regular expressions in the body of the target SPARQL queries. Following this

idea, in the second part of the thesis we have stepped away from the language of

RPSs to conduct a study on C2RPQ-rewritability under a broader ontology lan-

guage. We have defined ELHI`inh (harmless linear ELHI), an ontology language

that generalises both the DL-LiteR and linear ELH description logics. We have

proved the rewritability of instance queries (queries with a single atom in their

body) under ELHI`inh knowledge bases with C2RPQs as the target language, pre-

senting a query rewriting algorithm that makes use of non-deterministic finite-state

automata. Following from that, we have proposed a query rewriting algorithm for

answering conjunctive queries under ELHI`inh knowledge bases, with C2RPQs as the

target language. This algorithm extends the tree witness rewriting of [72] and uses

the above NFA-based rewriting technique. Since C2RPQs can be straightforwardly

expressed in SPARQL 1.1 by means of property paths, we believe that our approach

is directly applicable to real-world querying settings. In addition, the complexity of

answering C2RPQs is in the highly tractable class Nlogspace with respect to data

complexity. It follows that, under C2RPQ-rewritable rules, the query answering

problem would also be highly tractable. Ultimately, these results could be used to

potentially find larger subsets of SPARQL 1.1-rewritable RPSs than those identified

in the first part of this thesis.

Lastly, we have undertaken a complexity analysis for query answering under ELHI`inh .

We have analysed the computational cost of query answering in terms of both data

complexity (where the ontology and the query are fixed and the data alone is a

variable input) and combined complexity (where query, ontology and data all con-

stitute the variable input). We have shown that answering instance queries under
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ELHI`inh is NLogSpace-complete for data complexity and in PTime for combined

complexity; we have also shown that answering CQs under ELHI`inh is NLogSpace-

complete for data complexity and NP-complete for combined complexity.

6.2 Future Work

As future work, we intend to verify if ELHI`inh enjoys the C2RPQ-rewritability

property when C2RPQs - instead of CQs - are given as input queries. The re-

sults in [19] demonstrate that, in data complexity, the cost of answering C2RPQs

is NLogSpace-complete under DL-LiteR. Upon first analysis, we predict that

NLogSpace-completeness is retained when we extend DL-LiteR with a restricted

form of inverse roles, as in ELHI`inh ; if our prediction is correct, then a rewriting of

C2RPQs to C2RPQs under ELHI`inh might be feasible.

We also plan to investigate more expressive ontology languages that may lie within

the scope of C2RPQ-rewritability. In particular, it would be interesting to inves-

tigate more general ways of integrating inverse roles into ELHI`inh , and to include

complex role chains and unions in the language, as in [85].

We point out that studying C2RPQ-rewritability of DLs may lead to finding new

languages that are candidates for future standards recommendations. For instance,

in OWL 2 - a new version of the OWL ontology language that is currently a W3C

candidate recommendation - scalability requirements are addressed by profiles which

are subsets of the language that enjoy desirable computational properties. In par-

ticular, the OWL 2 QL profile1, based on the DL-LiteR description logic, was ex-

pressly designed for query answering via a pure query rewriting approach; however

it is restricted by the FO-rewritability of the underpinning logic. Thus, finding

C2RQP-rewritable DLs may result in finding more expressive profiles for which

1https://www.w3.org/TR/owl2-profiles/#OWL_2_QL

https://www.w3.org/TR/owl2-profiles/#OWL_2_QL
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query answering can also be done via query rewriting.

Future work includes also an empirical evaluation of our rewriting algorithms on

real-world databases. Since query answering is not tractable in the size of queries

(i.e., NP-complete for CQs), we need to consider what shape and size of rewritings

we should aim at to make query answering under ELHI`inh efficient. In particular,

we would like to investigate what causes exponentially long rewritings of CQs over

ELHI`inh ontologies and to check empirically whether those scenarios occur in real-

world queries and ontologies.

Finally, future work on our proposed RPS framework includes developing a full end-

to-end reference implementation of the RPS system design, to encompass all the

components and functionalities of the peer-based Linked Data integration system

discussed in Section 3.5.3. We also aim to optimise the evaluation of RPS mapping

rules in the general case, which require (full) data materialisation. In particular, we

intend to investigate query answering techniques that follow a “hybrid” approach,

i.e., partial data materialisation and partial query rewriting. In addition, we plan

to use our findings in the second part of this thesis to find larger subsets of RPSs

that support a “pure” rewriting approach. An immediate step in this direction

could be comparing the set of graph mapping assertions to ELHI`inh axioms and

implementing the NFA-based algorithm introduced in Chapter 5, and thus leveraging

the expressive power of SPARQL 1.1’s property paths in the rewriting.
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Appendix A

RPS mappings for the case study

in Chapter 3

A.1 Graph mapping assertions

A.1.1 Mapping of classes

x← (x, rdf:type, CVItem) ; x′ ← (x′, rdf:type, Episode)

x← (x, rdf:type, Episode) ; x′ ← (x′, rdf:type, CVItem)

x← (x, rdf:type, EducationItem) ; x′ ← (x′, rdf:type, Educational Episode)

x← (x, rdf:type, Educational Episode) ; x′ ← (x′, rdf:type, EducationItem)

x← (x, rdf:type, Degree) ; x′ ← (x′, rdf:type, University Episode)

x← (x, rdf:type, University Episode) ; x′ ← (x′, rdf:type, Degree)

x← (x, rdf:type, ExperienceItem) ; x′ ← (x′, rdf:type, Occupational Episode)

x← (x, rdf:type, Occupational Episode) ; x′ ← (x′, rdf:type, ExperienceItem)

x← (x, rdf:type, Member) ; x′ ← (x′, rdf:type, Learner)

x← (x, rdf:type, Learner) ; x′ ← (x′, rdf:type, Member)

x← (x, rdf:type, FieldOfStudy) ; x′ ← (x′, rdf:type, Subject)

x← (x, rdf:type, Subject) ; x′ ← (x′, rdf:type, FieldOfStudy)

x← (x, rdf:type, Role) ; x′ ← (x′, rdf:type, Occupation)

x← (x, rdf:type, Occupation) ; x′ ← (x′, rdf:type, Role)
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A.1.2 Mapping of properties

x, y ← (x, hasCVItem, y) ; x′, y′ ← (x′, learnerEpisode, y′)

x, y ← (x, learnerEpisode, y) ; x′, y′ ← (x′, hasCVItem, y′)

x, y ← (x, withRole, y) ; x′, y′ ← (x′, job, y′)

x, y ← (x, job, y) ; x′, y′ ← (x′, withRole, y′)

x, y ← (x, atTime, y) ; x′, y′ ← (x′, epStart, y′)

x, y ← (x, atTime, y) ; x′, y′ ← (x′, epEnd, y′)

x, y ← (x, epStart, y) ; x′, y′ ← (x′, atTime, z′) AND (z′, hasBeginning, y′)

x, y ← (x, atTime, z) AND (z, hasBeginning, y) ; x′, y′ ← (x′, epStart, y′)
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