
 
 
 
 
 
 
 

Declaration of Authorship 
 
 

 
I certify that the work presented here is, to the best of my knowledge and belief, original 

and the result of my own investigations, except as acknowledged, and has not been 

submitted, either in part or whole, for a degree at this or any other University. 

 
 
 

Rajaa Najjar  
 
Date: 10 September 2008 

 
 
 



 1

An Empirical Study on Encapsulation and Refactoring in the 

Object-Oriented Paradigm 

 
by 

Rajaa Najjar 

 

 

 

 

 

A Thesis Submitted in Fulfilment of the Requirements for the Degree of 

Doctor of Philosophy 

 
in the 

University of London 

 

 

 

 

September, 2008 

School of Computer Science and Information Systems 

Birkbeck, University of London 
 
 

 



 2

Abstract 
  

Encapsulation lies at the heart of the Object-Oriented (OO) paradigm by regulating access 

to classes through the private, protected and public declaration mechanisms. Refactoring is 

a relatively new software engineering technique that is used to improve the internal 

structure of software, without necessarily affecting its external behaviour, and embraces the 

OO paradigm, including encapsulation.    

 

In this Thesis, we empirically study encapsulation trends in five C++ and five Java systems 

from a refactoring perspective. These systems emanate from a variety of application 

domains and are used as a testbed for our investigations. Two types of refactoring related to 

encapsulation are investigated. The ‘Encapsulate Field’ refactoring which changes a 

declaration of an attribute from public to private, thus guarding the field from being 

accessed directly from outside, and the ‘Replace Multiple Constructors with Creation 

Methods’ refactoring; the latter is employed to remove code ‘bloat’ around constructors, 

improve encapsulation of constructors and improve class comprehension through the 

conversion of constructors to normal methods. Both types of refactoring have a strong bond 

with the need for proper encapsulation of classes and objects as well as with other OO 

constructs such as inheritance. Overall results demonstrate both quantitative and qualitative 

benefits in terms of code removal, improved encapsulation and better understanding of 

system traits in both C++ and Java. 



 3

In the name of God, the Most Merciful the Most Compassionate 

 

 

Acknowledgements 
 

In writing this Thesis, there have, of course, been many people who have inspired, guided 

and supported me in various ways and so deserve mention and credit. In particular, I am 

very grateful to my supervisor Professor George Loizou not only for his very insightful and 

encouraging comments and suggestions on the Thesis, but also for our long discussions at 

the beginning of the project right through the end. 

 

I also owe a great debt of gratitude to my supervisor Dr Steve Counsell for his great 

support, patience, and guidance that helped shape and inform my knowledge and 

understanding of this material. Both George and Steve remain for me an incomparable 

model of scholarly diligence and generosity. I cannot begin to express how much I have 

learned from them and how much I continue to learn.  

 

I would also like to thank Professor Martin Shepperd and Dr Tracy Hall for their 

constructive suggestions. I also owe special thanks to Dr Peter Sozou at the London School 

of Economics for his statistical expertise, and to Phil Gregg and the staff at Birkbeck 

College and all my friends for their support and assistance.  

 

My greatest thanks go to my husband Mataz for his support and to my daughter Sarah who 

is still too young to read this work, but made life such a pleasure despite its moments of 

frustration. It is to these two people that this Thesis is dedicated, with thanks, appreciation 

and love. 

 

To my Mum and Dad, brothers and sisters, I say I am very grateful for your moral support 

and sincere prayers.  



 4

TABLE OF CONTENTS 

TABLE OF CONTENTS................................................................................................. 4 

LIST OF TABLES ........................................................................................................... 9 

LIST OF FIGURES ....................................................................................................... 13 

LIST OF ABBREVIATIONS........................................................................................ 14 

CHAPTER 1 Introduction ............................................................................................ 15 

1.2 Introduction................................................................................................. 15 

1.3 Motivation................................................................................................... 18 

1.4 Objectives and Contribution ........................................................................ 19 

1.5 Application Domains................................................................................... 21 

1.6 A Research Framework ............................................................................... 21 

1.7 Overview of the Thesis................................................................................ 25 

CHAPTER 2 A Survey of Related Work...................................................................... 27 

2.1 Introduction................................................................................................. 27 

2.2 Empirical Software Engineering .................................................................. 27 

2.3 Software Metrics ......................................................................................... 31 

2.4 Encapsulation .............................................................................................. 35 

2.5 Refactoring.................................................................................................. 39 

2.6 Patterns and Antipatterns............................................................................. 42 

CHAPTER 3 Research Methodology ........................................................................... 44 

3.1 Introduction................................................................................................. 44 

3.2 Research Methods in Software Engineering................................................. 45 

3.3 Research Design.......................................................................................... 46 



 5

3.3.1 Identifying research objectives .................................................................... 47 

3.3.2 Generating hypotheses................................................................................. 48 

3.3.3 Identifying testbed software systems ........................................................... 48 

3.3.3.1 Sampling techniques and criteria of choosing the software systems ............. 49 

3.3.3.2 Software systems description....................................................................... 50 

3.3.4 The chosen refactorings............................................................................... 52 

3.3.5 Software metrics definitions ........................................................................ 53 

3.3.5.1 Criteria of choosing the software metrics..................................................... 54 

3.3.6 Data collection ............................................................................................ 54 

3.3.7 Data analysis ............................................................................................... 56 

3.3.7.1 Statistical techniques ................................................................................... 56 

3.3.7.1.1 Cohen’s kappa............................................................................................. 56 

3.3.7.1.2 Cronbach’s alpha......................................................................................... 57 

3.3.7.1.3 One proportion test...................................................................................... 58 

3.3.7.1.4 Two proportions test.................................................................................... 58 

3.3.7.1.5 Kruskal-Wallis test ...................................................................................... 59 

3.3.7.2 Drawing conclusions and the generalisation issue........................................ 60 

3.4 Manual and Automatic Collection of Data................................................... 60 

3.4.1 Motivation and related work........................................................................ 62 

3.4.2 Empirical investigation................................................................................ 63 

3.4.3 Data collected.............................................................................................. 64 

3.4.3.1 Example using priPA................................................................................... 65 

3.4.4 Three hypotheses......................................................................................... 65 

3.4.5 Data analysis ............................................................................................... 66 

3.4.6 Hypotheses re-visited .................................................................................. 71 



 6

3.4.6.1 Hypothesis one re-visited ............................................................................ 71 

3.4.6.2 Hypothesis two re-visited ............................................................................ 72 

3.4.6.3 Hypothesis three re-visited .......................................................................... 73 

3.4.7 Cost versus accuracy ................................................................................... 74 

3.4.8 Discussion................................................................................................... 75 

3.5 Summary..................................................................................................... 76 

CHAPTER 4 Encapsulation Trends in C++ and Java Software Systems................... 78 

4.1 Introduction................................................................................................. 78 

4.2 Encapsulation and Inheritance ..................................................................... 79 

4.3 Motivation and Related Issues ..................................................................... 80 

4.4 Empirical Investigation................................................................................ 81 

4.4.1 The hypotheses............................................................................................ 81 

4.4.2 Data collected.............................................................................................. 84 

4.5 Data Analysis .............................................................................................. 85 

4.5.1 Hypothesis one ............................................................................................ 86 

4.5.2 Hypothesis two............................................................................................ 88 

4.5.3 The role of friends ....................................................................................... 91 

4.5.4 Hypothesis three.......................................................................................... 93 

4.5.5 Hypothesis four ........................................................................................... 97 

4.6 Discussion................................................................................................. 103 

4.7 Summary................................................................................................... 105 

CHAPTER 5 Encapsulate Field Refactoring ............................................................. 107 

5.1 Introduction............................................................................................... 107 

5.2 Motivation and Related Work.................................................................... 108 

5.3 Encapsulate Field Refactoring ................................................................... 109 



 7

5.3.1 Example: the DPoint3 class ....................................................................... 110 

5.4 Empirical Investigation.............................................................................. 113 

5.4.1 Data collected............................................................................................ 113 

5.5 Data Analysis ............................................................................................ 114 

5.5.1 Dependent classes ..................................................................................... 114 

5.5.2 Zero attributes and inheritance................................................................... 119 

5.6 Summary................................................................................................... 121 

CHAPTER 6 Refactoring Class Constructors ........................................................... 122 

6.1 Introduction............................................................................................... 123 

6.2 Motivation and Related Work.................................................................... 124 

6.3 Empirical Investigation.............................................................................. 127 

6.3.1 Refactoring constructors............................................................................ 127 

6.3.2 Chain constructor and creation methods .................................................... 128 

6.3.3 Data collection .......................................................................................... 130 

6.3.4 Counting identical lines between constructors ........................................... 131 

6.4 Data Analysis ............................................................................................ 132 

6.5 Obstacles to Java Refactoring .................................................................... 134 

6.5.1 Alternative constructor formats.................................................................. 135 

6.5.2 Number of interfaces ................................................................................. 137 

6.6 Further Practicalities.................................................................................. 137 

6.6.1 Inheritance ................................................................................................ 138 

6.6.2 Comment lines .......................................................................................... 139 

6.7 Discussion................................................................................................. 141 

6.8 Summary................................................................................................... 142 

CHAPTER 7 Conclusions and Future Work ............................................................. 144 



 8

7.1 Thesis Objectives Re-visited...................................................................... 144 

7.2 Personal Achievement ............................................................................... 147 

7.3 Future Work.............................................................................................. 148 

Glossary of Software Engineering Terms ................................................................... 150 

Appendix A: Some Details of Specific Classes from the Five Java Systems ............. 158 

Appendix B: Java Tool Software Source Code.......................................................... 159 

Appendix C: Publications........................................................................................... 170 

References ............................................................................................................... 172 



 9

LIST OF TABLES 

Table 2.1:  The access levels in Java ........................................................................... 37 

Table 3.1: Breakdown of the number of interfaces, abstract classes and concrete classes 

found in each of the five Java systems ....................................................... 52 

Table 3.2:  Differences between automatic and manual metrics for GraphDraw .......... 67 

Table 3.3:  Differences between automatic and manual metrics for BSF ..................... 68 

Table 3.4:  Differences between automatic and manual metrics for Barat .................... 68 

Table 3.5:  Differences between automatic and manual metrics for Libjava................. 70 

Table 3.6:  Differences between automatic and manual metrics for Swing .................. 70 

Table 3.7: Cronbach’s alpha coefficients for manual and automatic data collection 

metrics of the five Java systems................................................................. 71 

Table 3.7a: The Mann-Whitney test statistics for comparing the mean error rates from 

the large and small software systems groups.................................................72 

Table 3.8:  Total values for errors made for all five Java systems................................ 73 

Table 4.1: The number of inheriting and non-inheriting classes for each of the five C++ 

systems ..................................................................................................... 85 

Table 4.2: The number of private methods and the total number of methods in 

inheriting and non-inheriting classes for each of the five C++ systems ...... 86 

Table 4.3: The p-values of the two proportions test for private vs. total number of 

methods in inheriting and non-inheriting classes for the five C++ systems

............................................................................................................... ...86 

Table 4.3a: The p-values of the two proportions test for private vs. total number of 

methods in inheriting and non-inheriting classes for the five C++ 

systems..........................................................................................................87 

Table 4.4: The number of protected attributes and the total number of attributes in 

inheriting and non-inheriting classes for each of the five C++ systems ...... 88 

Table 4.5: The p-values of the two proportions test for protected attributes vs. total 

number of attributes in inheriting and non-inheriting classes for the five C++ 

systems..........................................................................................................90 

Table 4.6: The number of protected methods and the total number of methods in 

inheriting and non-inheriting classes for each of the five C++ systems ...... 90 



 10

Table 4.7: The p-values of the two proportions test for protected methods vs. total 

number of methods in inheriting and non-inheriting classes for the five C++ 

systems..........................................................................................................91 

Table 4.7a: The p-values of the two proportions test for protected attributes vs. total 

number of attributes in inheriting and non-inheriting classes for the five C++ 

systems..........................................................................................................91 

Table 4.7b: The p-values of the two proportions test for protected methods vs. total 

number of methods in inheriting and non-inheriting classes for the five C++ 

systems..........................................................................................................91 

Table 4.8:  The number and percentage of friends (inheriting or non-inheriting classes)..

 .................................................................................................................. 92 

Table 4.9:  The number of classes with at least one friend (inheriting or non-inheriting 

classes)...................................................................................................... 93 

Table 4.10:  The number and overall percentage of private attributes, the sum of private 

and public and the corresponding protected attributes data ........................ 93 

Table 4.11:  Statistics of the one proportion test for private attributes vs. public attributes 

in the five Java systems ............................................................................. 96 

Table 4.12:  Statistics of the one proportion test for protected attributes vs. public 

attributes in the five Java systems.............................................................. 96 

Table 4.13:  The number of private, protected and public attributes and methods at all 

levels of inheritance of GraphDraw ........................................................... 97 

Table 4.14:  The number of private, protected and public attributes and methods at all 

levels of inheritance of BSF ...................................................................... 98 

Table 4.15: The number of private, protected and public attributes and methods at all 

levels of inheritance of Libjava ................................................................. 98 

Table 4.16: The number of private, protected and public attributes and methods at all 

levels of inheritance of Barat ..................................................................... 99 

Table 4.17: The number of private, protected and public attributes and methods at all 

levels of inheritance of Swing ................................................................... 99 

Table 4.18: The number and overall percentage of private, protected and public attributes 

and methods for non-inheriting classes for each of the five Java 



 11

systems..........................................................................................................10

0 

Table 4.19: Percentage of inheriting and non-inheriting classes in each of the five Java 

systems ................................................................................................... 101 

Table 4.20: The number of protected attributes at the top and all levels of inheritance for 

the five Java systems ............................................................................... 101 

Table 4.21: Statistics of the one proportion test for protected attributes located at the top 

levels of inheritance vs. those at the bottom levels in the five Java systems

................................................................................................................ 102 

Table 4.22: The number of protected methods at the top and all levels of inheritance for 

the five Java systems ............................................................................... 102 

Table 4.23: Statistics of the one proportion test for protected methods located at the top 

levels of inheritance vs. those at the bottom levels in the five Java systems

................................................................................................................ 103 

Table 5.1:  Number of classes with two or more attributes for the five Java systems...114 

Table 5.2:  Attributes and dependent classes for GraphDraw..................................... 115 

Table 5.3:  Attributes and dependent classes for BSF................................................ 115 

Table 5.4:  Attributes and dependent classes for Libjava ........................................... 116 

Table 5.5:  Attributes and dependent classes for Barat............................................... 117 

Table 5.6:  Attributes and dependent classes for Swing ............................................. 118 

Table 5.7:  Number of classes with zero attributes in each system............................. 120 

Table 5.8:  Pattern in distribution of classes in the inheritance hierarchy ................... 120 

Table 6.1:  Number of classes with three or more constructors for the five Java systems .

 ................................................................................................................ 132 

Table 6.2: Frequencies for each of the constructors in classes with three or more 

constructors............................................................................................. 133 

Table 6.3:  Frequency of duplicated lines of code in each Java system ...................... 133 

Table 6.4:  Number of classes with and without at least one super constructor .......... 135 

Table 6.5:  Number of interfaces in each of the five Java systems ............................. 137 

Table 6.6: Frequencies of classes with three or more constructors in three Java 

systems............................................................................................. .......... 138 



 12

Table 6.7: The mean rank values of the comment lines for constructors in the five Java 

systems ................................................................................................... 140 

Table 6.8: The Kruskal-Wallis test statistic for the comment lines of constructors in the 

five Java systems..................................................................................... 140 

Table A.1:  Some details of specific classes ............................................................... 158 
 



 13

LIST OF FIGURES 

Figure 1.1:  Thesis framework in the context of software engineering .......................... 23 

Figure 1.2:  Encapsulation, inheritance and refactoring in the OO paradigm................. 24 

Figure 2.1:  Patterns versus antipatterns (Source:(Brown et al. 1998)) .......................... 43 

Figure 4.1:  Relationship between encapsulation and inheritance.................................. 79 

 
 

 

 

 



 14

LIST OF ABBREVIATIONS 

 

ANA     Average Number of Ancestors 

BSF      Bean Scripting Framework 

CBO Coupling Between Objects (Chidamber and Kemerer metric) 

DIT Depth of Inheritance Tree (Chidamber and Kemerer metric) 

DAM Data Access Metric 

EF ‘Encapsulate Field’ refactoring 

GNU Gnu’s Not Unix  

LCOM    Lack of Cohesion in Methods (Chidamber and Kemerer metric) 

LEDA Library of Efficient Data Algorithms 

LOC Lines Of Code 

MOOD Metrics for Object-Oriented Design 

NOC Number Of Children (Chidamber and Kemerer metric) 

OO Object-Orientated 

OOP Object-Oriented Programming 

RFC Response For a Class (Chidamber and Kemerer metric) 

RMCCM ‘Replace Multiple Constructors with Creation Methods’ refactoring 

RM ‘Rename Method’ refactoring 

SE Software Engineering 

UML Unified Modelling Language 

WMC Weighted Methods per Class (Chidamber and Kemerer metric) 



 15

CHAPTER 1 Introduction 
 

 
 
1.1 Introduction 
 

The Object-Oriented (OO) paradigm was first proposed in the early 1990’s even though its 

underlying principles have been around for considerably longer (Parnas 1972, Liskov et al. 

1977). Nowadays, the OO paradigm has become the most widely used approach to 

problem-solving, with languages such as C++ and Java dominating the commercial IT 

world. These languages have established such a foothold, that it is unlikely we will see a 

paradigm shift and a wholesale move to the use of any other languages in the near future. It 

is of immense importance that we therefore try to understand best practice in the use of 

these languages by developers. To place this importance in context, many legacy systems 

exist whose maintenance burden accounts for a large part of developer time and cost. It is a 

well-known truism that maintenance accounts for approximately 70% of software 

development costs (Pressman 2000). Proper adoption of the OO paradigm is one means by 

which we can address the issue of future maintenance and, some would say, learn the 

lessons of mistakes made in the past.  

 

The OO paradigm incorporates a number of important features such as encapsulation and 

inheritance (Stroustrup 1991). From an encapsulation perspective, the OO paradigm 

implements private, protected and public access specifiers as part of its syntax. 

Encapsulation was incorporated into programming languages to provide the developer with 

a means by which access to the private features of a class could be controlled (or 

encapsulated) and public features made available to all classes. The responsibility for 

enforcing these access mechanisms was thus devolved to the compiler and as a result the 

developer was freed from associated implementation and testing issues.  

 

For example, we can define an attribute of a Java class as private and know that only 

methods of that class can access that attribute. Equally, if we want to allow a method to be 



 16

accessed from outside the class in which it is defined, we can declare that method to be 

public. In C++, different rules apply; the friends facility therein (Stroustrup 1991) allows 

access by classes to the private features of another class, thereby subverting the principle of 

encapsulation. The use of friends stores up future maintenance difficulties, since we can no 

longer rely on the compiler to prevent programming side-effects. Frequent misuse of 

friends in this sense, together with other inappropriate use of encapsulation, thus leads to a 

spiral of poor maintenance, anomalies and ‘decay’ in code (Counsell and Newson 2000).  

 

The concept of inheritance is also a salient feature of OO languages because it promotes 

the reuse of code and, in theory, reflects the way that we as humans structure and 

manipulate information. Proper use of inheritance requires the careful consideration of how 

class features should be encapsulated. While public features can be shared by any other 

class, the protected keyword relates specifically to the use of inheritance by allowing, for 

example, only subclasses of a class X to access the protected class features of X.  

 

A strong and symbiotic bond therefore exists between encapsulation and inheritance; 

appropriate use of one feature requires careful consideration of the other.  Many past and 

ongoing empirical studies have attempted to capture the essential characteristics of these 

features to inform our understanding of OO software.  

 

While anecdotal evidence suggests that inheritance is an aid to program understanding, 

there is conflicting evidence in the research literature (Daly et al. 1996, Cartwright and 

Shepperd 2000). It is not entirely clear that the use of inheritance does deliver the stated 

benefits and there is evidence to suggest that, in certain circumstances, the use of flat 

systems (containing no inheritance) may be more appropriate. Snyder (Snyder 1986) 

suggests that the introduction of inheritance compromises the benefits that proper 

encapsulation brings; the complexities associated with understanding different levels of 

classes may be a factor in this ongoing debate.  

 

In turn, as a software engineering (SE) community, we know very little about the role that 

encapsulation plays in its links with inheritance or how developers maintain encapsulation 



 17

principles in systems. A few studies have examined encapsulation trends in OO software 

(Snyder 1986, Briand et al. 1999b, Skoglund 2003, Schärli et al. 2004).    

 

One SE technique that has grown significantly in importance in recent years is that of 

refactoring (Fowler 2000, Kerievsky 2004). Refactoring refers to a technique whereby 

changes are made to a program to improve its design without necessarily changing the 

semantics of that program. As well as a better program design, the benefits of refactoring 

include improved program understandability and, in theory, improved maintainability of 

that program. In the seminal text on refactoring by Fowler (Fowler 2000), refactoring is 

stated as being the reversal of code decay and thus should be applied at every stage of a 

program’s life. In the same text, the mechanics of 72 different Java refactorings are 

described, and, for each, the circumstances as to when the refactoring under consideration 

should be applied are also stated and justified. Many of the 72 refactorings relate 

specifically to an inheritance hierarchy. For example, the ‘Extract Superclass’ refactoring 

creates a superclass from existing classes (appropriate encapsulation mechanisms are 

required as part of the mechanics). Equally, many refactorings involve, for example, the 

explicit use of encapsulation. The ‘Encapsulate Field’ refactoring changes the declaration 

of an attribute from public to private, thereby taking advantage of Java encapsulation. 

Consideration of the effect of this refactoring on any subclasses or superclasses is required 

as part of the mechanics of that refactoring. 

 

While the OO features of encapsulation and inheritance have a strong relationship, when 

cast in terms of a refactoring context, their relationship becomes even more pronounced. 

The purpose of this Thesis is thus to examine trends from an empirical point of view 

according to these three inter-related perspectives, namely, encapsulation, inheritance and 

refactoring. 

 

In view of the above, we empirically investigated the patterns in declarations of attributes 

and methods in the classes of five C++ and five Java systems, with specific recourse to 

where those classes were placed in the inheritance hierarchy. Some quite revealing results 

relating to violation of encapsulation were found; the role that the C++ ‘friends’ facility 

played in this violation was remarkable. The results of this initial study informed the next 



 18

logical step in the research – to explore the potential for the application of relevant 

refactorings amongst the 72 proposed by Fowler. As a result, an empirical study of the 

‘Encapsulate Field’ refactoring (Fowler 2000) amongst the Java systems studied revealed 

significant potential for the application of this refactoring.   

 

During our investigation of the systems studied, a trend that appeared frequently was the 

proliferation of class constructors in many of the classes. The problem with large numbers 

of class constructors is that they invite code ‘bloat’, i.e., too much unnecessary and 

duplicated code in the class (Kerievsky 2004). A further and spiralling problem then 

results; developers will ignore existing constructors in favour of their own declarations. The 

fact that constructors are usually defined as public but need not be, if appropriate steps are 

taken, meant there was significant potential for the application of other refactorings.    

 

In this Thesis a further empirical study was undertaken which employed the ‘Replace 

Multiple Constructors with Creation Methods’ refactoring (Kerievsky 2004). The study 

demonstrated that savings in lines of duplicated code and comment lines could be obtained 

from application of the refactoring (through the process of removing ‘code bloat’).         

 

The three empirical studies combined illustrate how trends in software systems can be 

uncovered and analysed.   

 

 

1.2 Motivation 
 

The motivation for the work in this Thesis stems from the following drivers:  

 

Firstly, to understand the encapsulation features prevalent in C++ and Java systems. The SE 

community knows little about trends in encapsulation, how those trends have arisen and 

even less about how they impact the shape of inheritance hierarchies in systems, and the 

problems of maintaining those systems.     

 



 19

Secondly, the concept of refactoring is well understood from a practical perspective and the 

benefits it has to offer are significant. Yet, the SE community still knows little about the 

potential for application in quantifiable and qualitative terms of applying refactoring; only 

limited evidence has thus far been produced (Tokuda and Batory 2001, Counsell et al. 

2006). 

 

 

1.3 Objectives and Contribution 
 

The objectives of this Thesis are:  

 

1. To obtain a greater understanding of C++ and Java systems from an encapsulation 

perspective; this is complemented by the study of how inheritance figures in those 

encapsulation trends for each type of system considered.   

2. To assess the quantitative and qualitative benefits of applying refactorings related 

specifically to the concepts of encapsulation and inheritance in Java systems. In 

particular, to investigate those refactorings where both encapsulation and 

inheritance have a strong influence.  

 

Software metrics (Shepperd and Ince 1993, Fenton and Pfleeger 2002) will be the vehicle 

for the analysis of our empirical studies, taking care to consider their direct relevance and 

applicability for the goals set in each of those empirical studies.  

 

The Thesis makes a number of contributions to SE from an empirical perspective and these 

contributions have been published in a number of archived sources.  

 

The Thesis has contributed significantly to highlighting problems that arise and trends that 

emerge in software systems as they evolve. In particular, the tendency for anomalies to 

occur from an encapsulation perspective in the systems studied. This is likely to have been 

the result, or cause, of knock-on effects in other parts of the systems, with other OO 

constructs becoming embroiled.   

 



 20

It does additionally contribute to an understanding of the benefits that can be gleaned from 

applying different refactorings, as well as some of the problems and trade-offs that have to 

be considered before undertaking any refactoring. More empirical studies need to be 

undertaken in this sense to build up a body of knowledge in this industrially important area 

(Baker et al. 2006, Zeiss et al. 2006) of SE; we see our contribution as a step in that 

direction.   

 

Finally, we feel careful description and analysis of the problems of data collection and 

methodological aspects of undertaking research using empirical studies informs the choice 

of techniques in future empirical studies. It is as important to learn from the process by 

which empirical studies are undertaken as it is to draw conclusions from their outcomes.    

 

The Thesis therefore contributes to two strands of research. Firstly, few previous studies 

have empirically investigated the role that encapsulation plays and the extent to which it is 

used or abused in OO systems, yet encapsulation is a fundamental part of the OO paradigm. 

The Thesis makes a contribution to our understanding and knowledge in this area, see 

Chapter 4. Equally, few studies have investigated the empirical interplay and practical 

relationships between encapsulation and inheritance (another fundamental aspect of OO) 

and the trends that systems exhibit as a result. The Thesis contributes to our understanding 

and knowledge about those relationships and the interplay thereof, again see Chapter 4.  

 

Secondly, from a refactoring perspective, few studies have empirically explored the 

potential (both qualitative and quantitative) for applying refactorings in which 

encapsulation and inheritance play a central part. The Thesis contributes to our 

understanding of the empirical opportunities, pitfalls and practicalities of undertaking such 

refactorings, see Chapters 5 and 6. Underpinning both strands are issues related to data 

collection, hypothesis setting and appropriate statistical analyses.    

 

 



 21

1.4 Application Domains 
 

The two sets of systems that we use as a testbed throughout the Thesis represent a wide 

spread of application domains and considerable care was taken to ensure that the two sets 

of systems were comparable in terms of the application domains they addressed. Two 

libraries, a compiler, a framework and a graph editor were chosen; from available C++ 

systems and five Java systems chosen also. This spread will allow conclusions to be drawn 

not only across the two languages, but between application domains as well. The reason 

behind choosing these two languages among many other OO languages is that the C++ is 

the forerunner of Java (C++ evolved into Java). 

 

The five C++ systems are: Edge, Rocket, ET++, GNU and LEDA. The five Java systems 

are: GraphDraw, BSF, Libjava, Barat and Swing. More details on these ten systems are 

available in Chapter 3. 

 

 

1.5 A Research Framework  
 
An important feature of the research described in the Thesis is the combination of 

recognised threads of the OO paradigm (i.e., encapsulation and inheritance) and emerging 

SE disciplines, in our case refactoring. In this Thesis, we draw on the theoretical 

underpinnings of both to inform our practical investigations; we also recognise that the 

motivation for applying each draws from many other SE disciplines. For example, there is a 

strong tie between refactoring and software testing, since we are required to test after each 

step of a refactoring. Equally, a fundamental reason for applying a refactoring or set of 

refactorings is to make software easier to comprehend and maintain. Reengineering 

software has strong ties with refactoring, and economic factors such as cost and effort also 

play a large part in dictating the extent to which these activities can be undertaken. SE is 

not a discipline with discrete un-connected elements – it consists of inter-connected 

elements which work together. Figure 1.1 illustrates some of the key SE concepts and how 

these are related to refactoring. 

 



 22

At a more detailed level, the mechanics of each individual refactoring draw on the 

fundamental elements of OO – that of a class and its constituent elements. Methods and 

attributes are also subject to the rules of language syntax and semantics. A refactoring may 

be simple and low-level requiring minor changes to code or complex and high-level 

embracing many other refactorings.  

 
Figure 1.2 shows the key elements that constitute the core of the Thesis from the interplay 

between encapsulation, inheritance and refactoring. It shows the relationships embodied by 

the Encapsulate Field (EF) and Replace Multiple Constructors with Creation Methods 

(RMCCM) refactorings, both central to the Thesis contents. 



 
23

 
Fi

gu
re

 1
.1

: T
he

si
s f

ra
m

ew
or

k 
in

 th
e 

co
nt

ex
t o

f s
of

tw
ar

e 
en

gi
ne

er
in

g 

So
ft

w
ar

e 
E

ng
in

ee
ri

ng
 

Fe
as

ib
ili

ty
 S

tu
dy

 

D
es

ig
n 

C
od

in
g 

T
es

tin
g 

Sy
st

em
 A

na
ly

si
s 

• 
U

ni
t t

es
tin

g 
• 

M
od

ul
e 

te
sti

ng
 

• 
Su

b-
sy

st
em

 te
st

in
g 

• 
Sy

st
em

 te
st

in
g 

• 
A

cc
ep

ta
nc

e 
te

st
in

g 

E
co

no
m

ic
 A

na
ly

si
s  

Fo
rm

al
 M

et
ho

ds
 

M
ai

nt
en

an
ce

 

• 
Pe

rf
ec

tio
n 
≈ 

65
%

 
• 

A
da

pt
iv

e 
  ≈

 1
8%

 
•

C
or

re
ct

iv
e
≈

17
%

C
os

t 
E

ff
or

t 

C
om

pr
eh

en
si

on
 

R
ee

ng
in

ee
ri

ng

R
ef

ac
to

ri
ng



 
24

 
Fi

gu
re

 1
.2

: E
nc

ap
su

la
tio

n,
 in

he
rit

an
ce

 a
nd

 re
fa

ct
or

in
g 

in
 th

e O
O

 p
ar

ad
ig

m
 

PP rr
ii vv

aa tt
ee

EE
nn cc

aa pp
ss uu

ll aa
tt ii oo

nn   
PP rr

oo tt
ee cc

tt ee
dd

PP uu
bb ll

ii cc

A
ttr

ib
ut

es
 

M
et

ho
ds

 
C

on
st

ru
ct

or
s

C
la

ss

RR
ee ff

aa cc
tt oo

rr ii
nn gg

  

LL oo
ww

-- LL
ee vv

ee ll
 

HH
ii gg

hh --
LL

ee vv
ee ll

EE FF
 RR
MM

CC
CC

MM

CC
hh aa

nn gg
ee   

pp uu
bb ll

ii cc
  aa

tt tt rr
ii bb

uu tt
ee ss

  tt oo
  pp

rr ii
vv aa

tt ee
    

AA
dd dd

  gg
ee tt

// ss
ee tt

mm
ee tt

hh oo
dd ss

CC
rr ee

aa tt
ee   

tt hh
ee   

cc aa
tt cc

hh aa
ll ll   

cc oo
nn ss

tt rr
uu cc

tt oo
rr   

PP rr
oo vv

ii dd
ee   

tt hh
ee   

cc rr
ee aa

tt ii oo
nn   

mm
ee tt

hh oo
dd ss

  
DD

ee cc
ll aa

rr ee
  tt hh

ee   
cc aa

tt cc
hh aa

ll ll   
cc oo

nn ss
tt rr

uu cc
tt oo

rr   aa
ss   

pp rr
ii vv

aa tt
ee   

TT hh
ee   

ii nn
hh ee

rr ii
tt aa

nn cc
ee   

hh ii
ee rr

aa rr
cc hh

yy   
pp oo

ss ii
tt ii oo

nn   
oo ff

  tt hh
ee   

rr ee
ff aa

cc tt
oo rr

ee dd
  cc

ll aa
ss ss

    

CC
oo mm

mm
ee nn

tt   ll
ii nn

ee ss
  

DD
uu pp

ll ii cc
aa tt

ee dd
  ll ii

nn ee
ss   

oo ff
  cc

oo dd
ee   

DD
ee pp

ee nn
dd ee

nn cc
ii ee

ss   
  

II nn
hh ee

rr ii
tt aa

nn cc
ee   



1.6 Overview of the Thesis 

 
This chapter presents the context and motivation of our work, and gives an overview of our 

objectives and contributions. The five C++ systems and the five Java systems referred to 

earlier are used as a testbed for our empirical investigations throughout the Thesis. 

 

Chapter 2 describes related work to the research problems addressed. It looks at related and 

complementary work in the area of empirical SE, software metrics, refactoring, design 

patterns (Gamma et al. 1995) and antipatterns (Brown et al. 1998, Laplante and Neill 2006). 

It also provides insights and justification for the nature of the research presented in this 

Thesis. 

 

Chapter 3 provides a detailed description of the research methodology adopted in the 

Thesis including the basis upon which the systems used in the study were chosen, 

justification for the choice of statistical analysis used (together with detailed supporting 

analysis), the assumptions on which the Thesis rests and the process by which research 

decisions were made. As a result of the strong emphasis in the Thesis on data collection 

(and its associated vagaries), we also provide a preliminary study comparing the manual 

and automatic collection of data for the five Java systems presented in Chapter 3. 

 

Chapter 4 gives a description of an empirical study in which trends of encapsulation and 

inheritance, from the five C++ systems and the other five Java systems, described in 

Chapter 3, were investigated. Here, the trends in the use of class features declared as 

private, protected and public for inheriting and non-inheriting classes were investigated. 

Results showed that declaring attributes as public, which violates the principle of 

encapsulation, appears to exist in most of the systems investigated. 

 

Chapter 5 presents an empirical investigation in which problems, opportunities and benefits 

associated with applying the ‘Encapsulate Field’ refactoring (Fowler 2000) were examined. 

A sample of classes from each of the five Java systems was chosen and the EF refactoring 

was then considered. EF is one of the most encapsulated-related refactorings proposed to 

date. Results indicated several key reasons why this particular refactoring can be either 



 26

simple or difficult to implement in practice, depending on the features of the class and its 

role in the inheritance hierarchy. 

 

Chapter 6 empirically investigates again, the problems, opportunities and benefits of 

refactoring class constructors across a sample of classes from the five Java systems. The 

‘Replace Multiple Constructors with Creation Methods’ refactoring (Kerievsky 2004) was 

applied to each of a set of classes containing three or more constructors (see Section 3.3.4). 

Results showed benefits in terms of removed (duplicated) lines of code across the majority 

of systems; they also showed the potential for improved class comprehension by the 

creation of non-constructor methods and improved encapsulation of class elements through 

the use of a private catchall constructor.  

 

Finally, Chapter 7 provides the conclusions and contributions of the research presented in 

this Thesis with reflection on the original objectives and the extent to which they were 

achieved. It also gives some insights into related future research. 



 27

CHAPTER 2 A Survey of Related Work 
 

 

 

2.1 Introduction 
 

In the previous chapter we gave an introduction to the Thesis and described the contents of 

each chapter. In this chapter, we describe work related to the research presented in this 

Thesis. This includes a description of work in the fields of empirical SE, software 

measurement and metrics. It also describes relevant work on refactoring, design patterns 

and antipatterns. For each of these areas, we examine related and complementary work, 

justifying why and in which aspects our work is different.     

 

In Section 2.2 we discuss the theme of empirical studies in SE related specifically to the 

OO paradigm. In Section 2.3 we describe related work in the use and analysis of OO 

metrics. In Section 2.4 we give an in-depth presentation on encapsulation and inheritance. 

In Section 2.5 we present a historical synopsis on refactoring, as a new method of 

improving software design, and we provide justification for choosing and examining 

empirically the types of refactoring undertaken in the context of the Thesis. In Section 2.6 

we provide a briefing in the area of patterns and antipatterns, and their relationship with our 

work, specifically refactoring. 

 

 

2.2 Empirical Software Engineering 
 
SE is still considered to be a young engineering discipline that needs much more empirical 

research to build up its body of knowledge so as to correspond with those of other 

engineering disciplines. Empirical SE can be defined as an approach to SE designed to 

assess the strengths and weaknesses of various software products, processes, and resources 

at their (different) developing stages. We can thus characterise, evaluate, control, 



 28

understand and predict such software-related entities. In this respect, empirical studies are 

as important for SE as for any other engineering discipline. 

 

Much work has been done to find out the problems associated with conducting an empirical 

study and to support empirical SE research. A number of these works have presented useful 

recommendations, guidelines, and suggested steps for conducting an empirical study 

(Seaman 1999, Briand and Wust 2002, Kitchenham et al. 2002). Not surprisingly, most of 

them have suggested that in order to achieve proper improvement in empirical SE, there 

must be more concentration on replicated studies that can be conducted on a large number 

of environments and the results compared. One of the key motivations in our work is to 

carry out an empirical investigation with different types of applications and different 

programming languages to reinforce our knowledge about specific OO issues. 

 

Lewis et al. (Lewis et al. 1991) carried out a controlled experiment designed to evaluate the 

impact of the OO paradigm on software reuse when compared to the procedural paradigm. 

The OO characteristics of encapsulation, inheritance and data abstraction were considered 

key elements for software reuse. They found that the OO paradigm improved software 

productivity partially because of the effect of software reuse. The empirical study thus 

confirmed the hypothesis that the OO paradigm supports reusability more easily than the 

procedural paradigm. 

 

An early empirical study conducted by Basili et al. (Basili et al. 1986) presented a 

framework for analyzing a variety of experimental work performed over several years. The 

aim of the framework, as a mechanism, was to facilitate the definition, planning, operation, 

and interpretation of past and future studies in order to learn lessons, and learn further from 

identifying problems in such experiments. The application of such a framework is 

important for getting the most out of an experiment and facilitating the opportunity for 

replicating experiments especially using the same definitions and operations. For our work 

we can state: the motivation is to understand, assess, learn and improve our knowledge 

about how developers deal with the concept of OO encapsulation; the objects are metrics 

and theory, the purpose is to characterise and evaluate, the perspective is the researcher, the 



 29

domain is program/project and the scope is a multi-project variation study to identify OO 

encapsulation anomalies that are to be ameliorated via refactoring.  

 

Briand and Wust (Briand and Wust 2002) found that many of the measures in the literature 

were redundant, i.e., the number of metrics was much higher than the captured dimensions. 

It also appeared that the metrics suite proposed by Chidamber and Kemerer (Chidamber 

and Kemerer 1994) received the most attention in empirical studies. In other words, 

coupling, inheritance and other size-related metrics have been intensively investigated. In 

terms of our research this provides us with the opportunity to consider empirically 

investigating other OO features not previously investigated thoroughly, such as that of 

encapsulation referred to above.  

 

Seaman (Seaman 1999) presented a study on qualitative methods in empirical studies of 

SE. The work claimed that recent empirical studies in SE have been recognised in the SE 

community for addressing the human role in software development. It was argued that 

qualitative methods and quantitative methods could be adapted and incorporated into the 

design of empirical studies in SE in order to take advantage of the strengths of both 

qualitative and quantitative methods; qualitative analysis in SE research is less widely used 

than quantitative analysis. Also, any assessment based on the latter without metrics is no 

more than an opinion. In a study by Perry et al. (Perry et al. 2000), the strengths and 

weaknesses of empirical research were presented. A general structure for software 

empirical studies and concrete steps for achieving a number of goals were described. These 

are: designing better studies, collecting data more effectively and involving others in 

empirical enterprises. The authors believed that in order to improve the contemporary state 

of empirical research, better studies had to be carried out and more credible conclusions 

and interpretations drawn from them. They stated that: 

 

“… unless we understand the specific factors that cause tools and methods to be more or 

less cost-effective, the development and use of particular technology will essentially be a 

random act. Empirical studies are a key way to get this information and move towards 

well-founded decisions”. 



 30

The main step in improving our understandability about software techniques, methods and 

tools, therefore, is to carry out well-structured empirical studies and draw reliable 

conclusions from them, thus contributing, to some extent, to the body of knowledge in 

empirical SE.  

 

Kitchenham et al. (Kitchenham et al. 2002) reported guidelines necessary for all relevant 

kinds of empirical work and addressed the needs of different stakeholders (i.e., researchers 

and practitioners). They also pointed out that in many SE experiments, the selected design 

is complex, and the analysis method is inappropriate for coping with it.  

 

In addition, they indicated that as part of data collection guidelines, data collection is 

problematic in empirical software studies because software measures are not well-defined. 

They stated that the purpose of data collection guidelines is to ensure that the data 

collection process is defined well enough for experiments to be replicated. They also found 

that some problems in SE studies are related to unstandarised software metrics. In Chapter 

3 we investigate empirically the extent to which manual data collection differs from the 

automatic one from the perspective of the reliability of the former versus the latter; this was 

necessitated by the fact that data collection for some systems could only be done manually. 

 

A survey and description of the major, recent empirical studies of OO artifacts, methods 

and processes was carried out by Briand et al. (Briand et al. 1999a). They presented a 

number of factors that needed to be taken into account for successful empirical studies. 

Once again, the need for replication studies was pointed out as a key factor to successful 

empirical research. Their work was the impetus for our research to empirically investigate 

encapsulation trends in two different OO languages (C++ and Java) and with four different 

types of application. This investigation is comprehensively presented in Chapter 4. 

 
Moreover, the introduction of new techniques to support an OO software development 

process, such as refactoring, places a burden on all stakeholders to propose new metrics 

and to thoroughly investigate such techniques empirically. Consequently, the need for 

empirical studies and the lack of such studies in certain areas of OO SE also inspired us to 

carry out an empirical study focused on OO encapsulation mechanisms and further 



 31

empirical investigations of the opportunities, problems and benefits of encapsulation-

related refactorings across a number of Java software systems. Chapters 5 and 6 deal 

extensively with the EF and RMCCM refactorings, respectively.  

 

 

2.3 Software Metrics 
 

Software metrics are ‘tools’ to measure software quality. For almost forty years, researchers 

and software practitioners have been active in the area of SE measurement. Tom Gilb (Gilb 

1976) was believed to be the first person who used the term ‘software metrics’. Tom 

DeMarco (DeMarco 1982) strongly supports the need for measurement in software 

development: “You can neither predict nor control what you cannot measure”. According 

to Fenton and Pfleeger (Fenton and Pfleeger 2002, p. 28) measurement is a mapping of 

empirical objects to numerical objects with preservation of all relations and structures. 

 

In the SE field, metrics are used to assess software quality early in the software 

development process in order to make changes that might reduce complexity and improve 

the long-term viability of the end-product (Hall et al. 2005). In a sense, software metrics 

can support decision-making during the software life cycle. In theory, a distinction between 

direct and indirect measurement of an attribute should be made (Fenton and Pfleeger 2002, 

p. 39). A direct measurement of an attribute of an object does not depend on any other 

attributes of the same or other objects. For example, class size can be measured in terms of 

its total number of method instances. Indirect measurement involves one or more other 

attributes; for example, module defect density can be measured in terms of the number of 

defects and module size measures. We also need to distinguish between internal and 

external attributes of a software artifact or process; internal attributes are those attributes 

which can be measured merely in terms of the artifacts or processes themselves, while 

external attributes of an artifact or process are those attributes which can only be measured 

with respect to how the artifact or process relates to its environment (Fenton and Pfleeger 

2002, p. 74). For example, internal attributes of a software code can be size, reuse and 

coupling, and the external ones can be usability, maintainability, and reliability. 

 



 32

In the past, a large number of software metrics have been proposed by researchers and 

practitioners for analysing software systems. In the early stages, metrics were proposed for 

measuring software, based on the structural paradigm, such as: cyclomatic complexity 

(McCabe 1976), fan-in and fan-out (Henry and Kafura 1981) and lines of code (Rosenberg 

1997). With the introduction of OO technology, many measures have been proposed to take 

into account the new technology and to analyse the quality of OO software at both 

theoretical and empirical levels.  

 

Much work has been done on proposing and investigating, theoretically and empirically, 

metrics for OO software (Abreu and Carapuca 1994, Chidamber and Kemerer 1994, Lorenz 

and Kidd 1994, Bieman and Zhao 1995, Harrison et al. 1998b, Briand et al. 1999b, 

Cartwright and Shepperd 2000). In (Harrison et al. 1998b) for example, a set of OO 

metrics, called MOOD, were investigated in respect of measurement theory and validated 

empirically by using three different application domains. They concluded that the MOOD 

set of metrics could be used to provide an overall software quality assessment of the 

systems studied. They also found that the MOOD metrics can work complementarily with 

the Chidamber and Kemerer metrics (Chidamber and Kemerer 1994); MOOD can provide 

assessment for the software at system level, whereas the Chidamber and Kemerer metrics 

can provide assessment at class level.  

 

A number of studies have also tried to show how, in practice, OO systems are not 

exhibiting the features we expected they would. The research described in (El Emam et al. 

2001) is one such example, using a C++ telecommunications framework as a basis of the 

study. Currently, empirical studies seem to be shifting from proposing new software 

metrics into investigating the properties and applications of available software metrics, and 

further replicating such investigations (Prechelt et al. 2003, Kanmani et al. 2004, Bocco et 

al. 2005). 

 

An early text on OO software metrics is that by Lorenz and Kidd (Lorenz and Kidd 1994). 

They proposed eleven OO design metrics and provided ‘rules of thumb’ for some of the 

metrics (here we understand the term rules of thumb to mean broad guidelines on optimal 

sizes for each of the metrics). They further divided OO metrics into four categories, i.e., 



 33

size, inheritance, internals and externals. A number of design metrics to measure class size 

in different ways were defined, such as the number of public methods in a class, considered 

to be a good measure of the amount of responsibility in the class. Moreover, the number of 

variables in a class, which counts all the private and protected variables, in addition to the 

public variables if there are any, defined in a class, is also a measure of class size.  

 

Since software metrics provide the means by which software can be measured and systems 

compared with each other, a commonly used metric in the OO paradigm is the Depth in the 

Inheritance Tree (DIT) metric, originally proposed by Chidamber and Kemerer, indicating 

how far down in the inheritance hierarchy (level 0 is considered the base class) a class is. 

Some empirical studies have shown that the deeper a class in the inheritance hierarchy is, 

the more difficult that class will be to understand (Basili et al. 1996). Theory suggests that 

in order to understand a class deep down in an inheritance hierarchy, every class above that 

class has to be understood as well; any modification of a class in an inheritance hierarchy 

may cause side-effects for other classes. The study described in (Cartwright and Shepperd 

2000) also showed that classes with higher change densities were found to be in the lowest 

level of inheritance structures. This may be attributed to the fact that developers tend to 

extend or add more functionality to classes at the lower level of inheritance structures when 

probably there is lack of time, or simply because it is easier to do so. At the same time, this 

draws attention to the need for more empirical studies to accept or refute such claims with 

the support of software metrics. Other empirical studies have shown that flat systems 

(containing no inheritance) are actually easier to understand than systems containing 

inheritance (Harrison et al. 2000), or the deeper the inheritance hierarchy for a software 

system is the more difficult it has become to be maintained (Daly et al. 1996). In (Daly 

1996) it was found that the most common reason among developers for the difficulty in 

understanding C++ software was inheritance. That is to say, if the design was 

inappropriate, inheritance would be a barrier to our understanding of software. 

 

In our view supported by our empirical results (see Section 4.5) and as suggested by other 

studies (Snyder 1986, Skoglund 2003, Schärli et al. 2004), encapsulation and inheritance 

are two interrelated concepts and should be studied in parallel.  

 



 34

In (Berard 1995), five characteristics that can lead to specialised metrics were defined. 

These characteristics were: Localisation, Encapsulation, Information Hiding, Inheritance 

and Abstraction (Kramer 2007). Interestingly, the study considered encapsulation and 

information hiding as two elements in support of measurement at a higher level of 

abstraction and which provide a good indication of the quality of OO design. Ten years 

before, Snyder (Snyder 1986) studied the relationship between encapsulation and 

inheritance. It was suggested then that the introduction of inheritance severely 

compromised the benefits encapsulation could offer. 

 

It is important that any metrics used should be validated theoretically and empirically; thus 

they must represent the attributes they qualify. Validation is therefore essential to the 

success of software metrics (Shepperd 1995). Fenton and Pfleeger (Fenton and Pfleeger 

2002) state a definition for validating a software measure as: 

“The process of ensuring that the measure is a proper numerical characterisation of the 

claimed attribute by showing that the representation condition is satisfied”. 

 
A framework for software measurement validation was presented in (Kitchenham et al. 

1995). They identified concepts that are necessary for measurement: entities (real-world 

objects), attribute (an entity property), units (determines how to measure an attribute) and 

scale type (nominal, ordinal, interval or ratio). Such a framework can help researchers and 

practitioners focus on what they mean by entities and attributes and how to define and 

measure them more consistently.  

 

Finally, the role that human influence plays in the development process needs to be 

considered. A number of studies have investigated the factors that contribute to project 

success or otherwise (Hall et al. 2005); appropriate use of collected metrics plays a key role 

in the assessment and discovery of those factors. In terms of setting up a metrics 

programme, significant thought needs to be given to its purpose and the factors that will 

contribute to its success (Hall and Fenton 1997). 

 

Throughout the Thesis we have consistently followed and strictly adhered to the above-

mentioned validity criteria for all measures employed. 



 35

2.4 Encapsulation 
 

The OO paradigm is characterised by a number of salient features; for example, 

encapsulation, inheritance and polymorphism. Encapsulation, though not originating from 

the OO paradigm, is considered as a class structure, where internal class elements are 

separated from external ones. In other words, most of the class data (attributes) should be 

private and the methods that operate on them public. Encapsulation can minimise the side-

effects of changes to a system when those changes take place. It also facilitates component 

reuse, and reduces overall system coupling (Briand et al. 1999b, Pressman 2000), and may 

also improve the understandability of a system. 

 

Firstly, it is important to point out that encapsulation and information hiding are often 

confused by researchers as well as practitioners. It seems that the lack of standard 

definitions for these two concepts led to this confusion. Encapsulation and information 

hiding were originally established in a structural environment (and then incorporated into 

the OO paradigm). Both terms seem to be different although they are often considered 

identical or similar in the OO community. Some believe that these two terms refer to the 

same thing; others consider them to be different. In OO technology, encapsulation is the 

creation of self-contained modules that contain both the data and the processing. 

Information hiding, on the other hand, has been defined, according to Parnas (Parnas 1972), 

a pioneer in this field, as hiding the most changeable design decisions in a module of a 

program in order  to protect the remaining parts from further changes.  

 

Though there are many definitions for information hiding and its connection with 

encapsulation, it seems that various researchers approach the subject from different 

perspectives (Parsons 1994, Fowler 2000, Pressman 2000, Budd 2002). In (Parsons 1994) 

encapsulation means linking together all data and the operations that work on that data in 

one unit (class), while information hiding means using encapsulation to separate the public 

parts of an object from its private ones, while also hiding the details of the implementation 

from the other units (classes). Budd (Budd 2002) refers to information hiding as hiding the 

implementation of the operations of a class from other parts of the system under 

consideration. Fowler (Fowler 2000) points to encapsulation (data hiding) as hiding class 



 36

attributes from other classes by making them private, so making no distinction between 

encapsulation and data hiding. 

 

The most accepted definition for encapsulation is the one documented in (Snyder 1986). 

Snyder defined encapsulation in terms of defining strict external interfaces (members can 

be accessed from outside their class) between separately-written modules with the intention 

of minimising the interdependencies between these modules. Thus encapsulation means 

separating private members from public ones. Those researchers, who claim that these two 

terms, namely, encapsulation and information hiding, are different, base their view on the 

fact that not every encapsulated member is hidden.  

 

From our point of view, information hiding is more concerned with hiding implementation 

details, and at the same time it cannot be achieved in OO without encapsulation. For 

example, for a class c, say, with n methods, there is no requirement for other classes in the 

system to know how the class c implements those n methods; at the same time the class c 

cannot hide the implementation of the n methods without being encapsulated in c. On the 

other hand, we believe encapsulation as an OO principle indicates two distinct facets. 

Firstly, it is a technique of enclosing data and operations performed on the data within one 

unit called a ‘class’. Secondly, encapsulation is a practice that provides access control to the 

remaining parts of the system by specifying which class members should be private, and 

which ones public. Thus, both data and some of the operations acting on the data can be 

hidden (private members); consequently we can refer to this as information hiding. For 

instance, it should be possible to change the type of, or rename, an attribute of a class 

without affecting the classes (clients) that use such changed classes (hiding data, private 

member). It should also be possible to change the implementation of any method 

(operation) in any class without affecting its clients; for example, changing the type of one 

of the variables from integer to double or replacing a number of statements in the contained 

method with a new method. We consider information hiding as a structural concept, where 

encapsulation is the mechanism that provides the access visibility for class members 

through the use of access specifiers provided by OO language syntax. Our definitions of 

encapsulation and information hiding can be found in the Glossary of Terms. 

 



 37

Most OO languages support encapsulation. In C++ and Java, three mechanisms allow 

classes to control which other classes can have access to their members. These are private, 

protected and public. In addition, C++ also provides the friend mechanism, which controls 

the accessibility among a group of classes, not necessarily related in a single hierarchy. 

Public members are those that are available to all clients and form the external interface. 

When inheritance is considered, class members should be declared as protected to facilitate 

access to the required parent class members, while private members should be considered 

for internal use by the contained class members. Also, Java has default access which allows 

class members that are declared without an access specifier to have full access to all 

members of classes in that package excluding private ones. Table 2.1 shows the levels of 

accessibility for each type of access control in Java. 

 

 
 

 

 

 

 

Table 2.1: The access levels in Java 
 

There is empirical evidence to suggest that encapsulation is practised improperly (Skoglund 

2003). This is realised by declaring class members, specifically the class attributes, as 

public, so every other class can have access to those members and can manipulate them. In 

an experiment conducted by Skoglund (Skoglund 2003), software engineers were used and 

their view of encapsulation issues examined. Some of the interviewed subjects stated that, 

because of time pressure and testing reasons, they often changed private declarations to 

public. In a similar vein, an empirical investigation into the exploitation of OO features was 

carried out by using small-sized C++ programs developed by undergraduate students 

(Kanmani et al. 2004). The main goal of this research was to investigate OO metrics for 

measuring coupling, cohesion and inheritance at the class level. One of the observed results 

showed that inheritance was properly used among the programs in the design of the class 

level attributes and the classes were highly cohesive; however, most of the attributes and 

the methods of the classes were declared to be public.  

  

Specifier Class Package Subclass World 

Private Yes No No No 

Default (no specifier) Yes Yes No No 

Protected Yes Yes Yes No 

Public Yes Yes Yes Yes 



 38

The importance of encapsulation and its effects on other OO fundamental features, such as 

inheritance, were well recognised and considered. Snyder (Snyder 1986) studied the 

relationship between encapsulation and inheritance and suggests that the introduction of 

inheritance severely compromises the benefits encapsulation can offer. Thus, proper use of 

inheritance generally requires us to consider protected declarations in classes when we want 

to restrict access to only subclasses of a particular class. Few studies, however, made the 

connection between available OO metrics for coupling, cohesion, or complexity metrics, 

and encapsulation. In (Rosenberg and Hyatt 1997), a high value of the LCOM cohesion 

metric was considered as a support for class encapsulation. In the same study it was stated 

that: “…effective object-oriented designs maximise cohesion since it promotes 

encapsulation”. Since this metric was originally proposed by Chidamber and Kemerer 

(Chidamber and Kemerer 1994), they failed to give an explanation as to how encapsulation 

would be improved. Thus the aforesaid quoted sentence remains to be substantiated. 

 

In the study conducted by Harrison et al. (Harrison et al. 1998b), the authors empirically 

evaluated and validated the MOOD set of metrics originally proposed by Abreu and 

Carapuca (Abreu and Carapuca 1994). They found that the six MOOD metrics were shown 

to be valid within the context of the framework they provided. However, in terms of the 

two metrics Attribute Hiding Factor (AHF) and Method Hiding Factor (MHF), Harrison et 

al. found that it was difficult to agree that AHF and MHF could be used as indirect 

measures of encapsulation. In other words, they considered these metrics as a measure for 

information hiding. Therefore, we postulate that providing a standard definition for 

encapsulation is essential for our work in this Thesis. 

  

According to Jagdish and Davis (Jagdish and Davis 2002) there are no metrics which 

measure encapsulation; consequently they introduced the Data Access Metric (DAM), 

which is the ratio of the number of private (protected) attributes to the total number of 

attributes declared in the class.  The DAM metric ranges over [0,1] and high values are 

considered desirable. Nevertheless, they do not measure encapsulation in terms of class 

method declarations and the distribution of private, protected and public methods. More 

recently, a study carried out by Laing and Coleman (Laing and Coleman 2006) described 

the results of developing an approach for formulating a set of orthogonal OO metrics. The 



 39

aim of the research was to produce a minimal set of OO metrics capable of analysing code 

quality with the same degree of accuracy as afforded by a metrics set of significantly larger 

cardinality. Interestingly, the minimal set of metrics that capture encapsulation and 

polymorphism was presented in terms of the total number of local methods (inherited 

methods are not counted) and the total number of remote methods for a class; strangely, 

they did not consider class attributes in their metrics set. 

To summarise, most OO mechanisms have received a large amount of attention by the SE 

community. However, encapsulation as an OO key concept has received less attention 

when compared with inheritance and polymorphism. Many metrics have been proposed and 

validated to assess the use of inheritance, such as the DIT and the ANA; relatively few have 

been proposed for measuring encapsulation. Even though the earlier studies suggested that 

proper use of inheritance required concomitant consideration of encapsulation, researchers 

and practitioners alike do not seem to make a clear connection between encapsulation and 

inheritance. The need for metrics and empirical studies to assess the influence of 

encapsulation on the way we write OO systems has motivated our research. In Chapter 4 

we empirically investigated the trends of encapsulation and in Chapter 5 we use the EF 

encapsulation-related refactoring for improving the internal structure of software design. 

The next section reviews refactoring and its impact on encapsulation. 

 

 

2.5 Refactoring 
 

One of the techniques widely used to improve the structure of software systems is 

refactoring. The term refactoring was first used by Opdyke and Johnson in their 1990 paper 

(Opdyke and Johnson 1990). Software restructuring can be considered as the origin of 

refactoring. Software restructuring according to Chikofsky et al. (Chikofsky et al. 1990) is 

“the transformation from one representation form to another at the same relative 

abstraction level, while preserving the system’s external behavior”. Fowler (Fowler 2000) 

defines refactoring in two forms; stating that refactoring is “a change made to the internal 

structure of software to make it easier to understand and cheaper to modify without 



 40

changing its observable behaviour”, and “to restructure software by applying a series of 

refactorings without changing its observable behaviour”. Put in other words, the 

refactoring process can improve software design by tidying up code, moving code to the 

right place or removing code. Therefore, we can say that refactoring propels programmers 

to work more deeply on understanding what the code does and is hence an aid to 

maintenance and reuse (Johnson and Foote 1988).  

 

There is a growing interest in refactoring due to its major role in supporting maintenance 

and reuse in OO software systems (Fowler 2000, Tokuda and Batory 2001, Counsell et al. 

2003, Kerievsky 2004, Advani et al. 2005). Fowler in his seminal text (Fowler 2000) 

identified 72 types of refactoring. He illustrated each type of refactoring with simple 

examples using the notation of UML (Rumbaugh et al. 1998). In this Thesis we empirically 

investigated one of Fowler’s refactorings, namely, the low-level EF refactoring (Fowler 

2000) which is related to encapsulation (see Chapter 5). In addition, in Chapter 6 we 

empirically investigated the high-level RMCCM refactoring highlighted by Kerievsky 

(Kerievsky 2004). 

 

The Ph.D. work of Opdyke (Opdyke 1992) described various types of refactoring 

applicable to OO software and proposed a technique to automate the refactoring process. 

He presented three types of refactoring in detail related to inheritance and aggregation. He 

also demonstrated how to automatically support refactoring in a way that would preserve 

program behaviour. Opdyke and Johnson (Opdyke and Johnson 1993) described a study in 

which they illustrated how to create abstract superclasses from other classes via refactoring. 

They decomposed the refactoring operation into a set of refactoring steps, and provided 

examples. They also discussed a technique that could automate these steps, thus making the 

process of refactoring applicable in practice. In Johnson and Opdyke (Johnson and Opdyke 

1993), some common refactorings based on aggregation, including how to convert from 

inheritance to aggregation, and how to reorganise an aggregate/component hierarchy are 

reported. They also describe how to refine aggregations by moving variables and methods 

between aggregate and component classes, and how to move variables and methods within 

inheritance hierarchies. However, Johnson and Opdyke, in the two previous studies, did not 

provide results for applying such refactorings on a real system, as an empirical validation of 



 41

their work. In Chapters 5 and 6 we empirically investigated opportunities, benefits, and 

problems of the two types of refactoring referred to earlier. This work validates empirically, 

to some extent, the work of Fowler and Kerievsky. 

 

Very little empirical data addresses the question of how widespread refactoring is in 

practice. Empirical work in the refactoring area and its automation is found in Tokuda and 

Batory (Tokuda and Batory 2001), where fourteen thousand lines of code were transformed 

automatically which would otherwise have had to be carried out by hand. In  (Counsell et 

al. 2003) an empirical study was carried out on a set of library classes. In that paper, the 

substitute algorithm refactoring (Fowler 2000) (the substitute algorithm refactoring can be 

described as a modification of the body of a method to improve the way it functions) was 

found to be the most popular type of refactoring identified. Moreover, a survey of software 

refactoring was carried out by Mens and Tourwe (Mens and Tourwe 2004). They describe 

refactoring activities and the techniques that support such activities. For example, the 

activity of identifying where to apply refactoring is supported by the identification of bad 

smells (Fowler 2000) and the activity of the assessment of the refactoring effect on 

software quality is supported, for example, by software metrics and empirical 

measurements. Mens and Tourwe point out that the type of application domain has a great 

impact on identifying the type of refactoring to be applied. They also discovered that 

refactorings can be classified according to the quality attributes they affect. Finally, recent 

work by Advani et al. (Advani et al. 2005) describes the results of an empirical study of the 

trends across multiple versions of open source Java software. A specially developed 

software tool extracted data related to each of fifteen refactorings from multiple versions of 

seven Java systems according to specific criteria. Herein, we have carried out a similar 

study and manually examined the applicable classes for three types of refactoring; EF, 

chain constructors and RMCCM (Najjar et al. 2003, Najjar et al. 2005).  

 

One of the interesting areas in refactoring is the natural connection between refactoring and 

design patterns presented in the seminal textbook by Gamma et al. (Gamma et al. 1995). In 

Kerievsky’s text (Kerievsky 2004) too, the link between refactoring and design patterns 

was established. Kerievsky describes, in a well structured way, how developers can 

introduce and remove patterns from code. As part of our work, we empirically investigated 



 42

the high-level refactoring of RMCCM, on Java software systems, in view of the fact that 

encapsulation can be improved through the creation of private objects (Najjar et al. 2003). 

More details can be found in Chapter 6 of this Thesis. 

 

 

2.6 Patterns and Antipatterns 
 

Design patterns (Gamma et al. 1995) are becoming increasingly popular as a way of 

describing solutions to general design problems.  A controlled experiment was carried out 

by Prechelt et al. (Prechelt et al. 2001), in which they investigated whether exploiting 

design patterns in software design was useful or harmful. An example was presented where 

using design patterns made a program harder to maintain. However, they emphasised, due 

to the unexpected new requirements, that it was preferable to use design patterns in 

software construction. An analogous study, conducted by Bieman et al. (Bieman et al. 

2001), empirically investigated the relationships between class size, inheritance and design 

patterns. Their conclusion, in terms of design patterns, was that classes that played roles in 

design patterns were more change-prone than others.  

 

Moreover, Bieman et al. (Bieman et al. 2003) replicated the previous study on the system 

studied in (Bieman et al. 2001) and four additional systems each of which was implemented 

in Java. The results of the replication study were found to support previous work in four out 

of the five case studies; they accounted for change-proneness of pattern-participant classes 

as being the classes that provide key functionality to the four systems. These studies reflect 

how much work needs to be done, so that developers can effectively use design patterns to 

improve OO design. As part of our research we empirically investigated the RMCCM 

refactoring of Kerievsky (Kerievsky 2004), which is based on the factory method pattern 

(Gamma et al. 1995) (see Chapter 6). The results show that quantitative and qualitative 

benefits can be gained by applying this refactoring. 

 

Brown et al. (Brown et al. 1998) stated that patterns can often evolve into antipatterns, as 

shown in Figure 2.1. They defined antipatterns as commonly used solutions to problems 

which in turn produce negative consequences; the aim of identifying and studying 



 43

antipatterns is to describe forms that can then be the subject of refactoring effort. Since both 

design patterns and antipatterns deal with solutions, the difference between them is in the 

context; an antipattern is a pattern used inappropriately thereby generating negative 

consequences. Refactoring is used to evolve the available solution to a better one by 

improving its structure. So, identifying software antipatterns can inform our knowledge 

about refactoring, and thus help to understand the internal structure of OO software design.  

 

The focus of this Thesis is on empirical studies; this, therefore, requires the collection of 

data. How this data is collected, and how representative it can be, is of paramount 

importance. The next chapter deals, to the extent required, with this topic. It also deals with 

the statistical techniques employed in our empirical studies as well as the software systems 

studied and why they were chosen.  

 

 

 

Figure 2.1: Patterns versus antipatterns (Source:(Brown et al. 1998)) 
 



 44

CHAPTER 3 Research Methodology 
 

 
 

In Chapter 2 related work was surveyed and critiqued, and where appropriate, how the 

research presented in this Thesis fits within the overall context of that chapter. In this 

chapter we describe our research strategy and how we make our decisions about the main 

issue of the empirical research. Since our empirical studies depend on data collected 

sometimes automatically and on other occasions manually, we also found it necessary and 

useful to investigate the difference between automatic and manual data collection. 

 

 

3.1 Introduction 
 

The benefit of doing research is a critical question for any researcher. Research in a 

particular area of SE provides information that can help (software) managers making 

informed decisions to deal successfully with (software) problems. The information 

provided could be the result of a careful analysis of data collected by the researcher using 

one of the data collection techniques, such as surveys, questionnaires, interviews, 

experiments and project artifacts. Collected data can be qualitative or quantitative 

depending on the nature of the research questions and the research methodology adopted. 

The technique that a researcher adopts to discover the answers to his or her research 

questions is called ‘the research methodology’. Two schools of thought are recognised in 

terms of research methodology; quantitative and qualitative. The choice of which to adopt 

affects data collection, data analysis and discussions of validity. 

 

This chapter consists mainly of two parts: the first part deals with research methodology 

adopted, and the second part is concerned with the comparison between manual and 

automatic data collection. We note that the preliminary research on which the second part 

of this chapter is based was first published in (Najjar et al. 2004). 



 45

Section 3.2 gives the description of research methods in empirical SE. Details of the 

research design presented in this Thesis and the decisions for conducting the empirical 

investigations are described in Section 3.3 and its subsections. Section 3.4 describes an 

empirical study of the difference between automatic and manual data collection.   

 

 

3.2 Research Methods in Software Engineering 
 

Empirical studies in SE can be performed quantitatively, qualitatively, or in combination. 

The qualitative approach deals with text, pictures and can be used to understand human 

behaviour and reaction towards a situation (such as levels of understanding and 

communication) (Seaman 1999). It also involves a personal subjective interpretation of the 

data. On the other hand, the quantitative approach compares numerical data (Perry et al. 

2000). There is no one single preferable approach for conducting a research. However, it 

could be argued that the approach that serves the purpose of getting most of the required 

information for the research problem(s) and finding out the solution(s) is preferable 

(qualitative, quantitative, or a combination thereof).  

 

The research presented in this Thesis is quantitative in nature; it uses software metrics 

collected from ten C++ and Java software systems and pertaining to encapsulation, 

inheritance and refactoring. Encapsulation is one of the fundamental characteristics of 

OOP. It helps separate responsibilities and provides an easy way to understand software. A 

well-encapsulated class needs less time and effort to understand in order to make changes. 

The class in this sense is more maintainable due to the communication between the class 

and its clients through its public interface. In such a class, data fields cannot be directly 

changed from outside because of their private declarations. Consequently, fewer faults are 

introduced because the clients of the class cannot inadvertently make any changes to the 

data fields without knowledge of the class. With the introduction of inheritance, developers 

should consider the protected declaration for the inherited features. Encapsulation and 

inheritance could be thought of as joint mechanisms. Developers have to decide which 

features are restricted only to the inherited classes, and declare them protected. However, 

inappropriate declarations can be corrected at any stage of the class life (it is preferable that 



 46

this is done as soon as the class is created); using refactoring techniques to achieve this 

improves class encapsulation. 

 

In the next section we describe details on how and why decisions were made to empirically 

investigate encapsulation and inheritance on the basis of the selected C++ and Java 

software systems. Furthermore, we consider whether refactoring could be applied to these 

systems from the perspectives of encapsulation and inheritance.  

 

 

3.3 Research Design 
 

Making plans for any project is one of the key elements of the project success. In terms of 

research, setting the limits and strategy can help researchers decrease the amount of work 

required to complete the research and then draw conclusions.  

 

In general, empirical investigations can be performed using one of the main techniques: 

case studies, experiments, surveys and others. Surveys are retrospective and there is no 

control on the study variables. Such studies are performed if an organisation wants to 

determine how a population feels about a particular set of issues. Case studies and 

experiments, on the other hand, are not retrospective. Researchers have more control on 

their variables. The decision to carry out a case study or experiment depends on the level of 

control required on the variables. To put it another way, carrying out an experiment 

requires researchers to have a high level of control on the variables. Moreover, experiments 

can be used to support generalisation of the research findings, whereas surveys and case 

studies can be used to confirm findings about a tool or a method on a single organisation 

(Fenton and Pfleeger 2002). This research adopts an artifact archived analysis, a technique 

which is different from surveys, case studies, and experiments. Our approach is based on 

investigating software artifacts, mainly, the source code of ten software systems described 

in Section 3.3.3.2. This will aid our understanding of how developers write software system 

code, specifically in terms of encapsulation, inheritance, and encapsulation-related 

refactorings. In other words, the study aims to investigate how developers put theory into 

practice from the perspectives of encapsulation and inheritance. 



 47

A counter-argument may suggest that an approach based on experiments help researchers to 

further generalise their research findings because a formal experiment is carefully 

controlled and contrasts different values of the controlled variables; its results are generally 

applicable to wider community and across many organisations (Fenton and Pfleeger 2002). 

We believe that using software artifacts is the right way for tackling the research problem 

referred to above. Since refactoring is a new technique for improving OO software systems, 

identifying and exploring the opportunities, benefits, and problems of applying refactoring 

can be considered as a first step in applying this new research area. Thus, after having 

known all the problems associated with refactoring, experiments can be carried out to 

support or refute the findings of such studies. The following sections describe the research 

strategy followed in order to achieve the research objectives and deliver the contributions. 

 

3.3.1 Identifying research objectives 

After describing the research problem, it is essential to establish the research direction. This 

is accomplished by identifying the research objectives that describe why we want to do this 

particular research and what we want to accomplish.  

 

In this Thesis, as presented in Chapter 1, we empirically investigate encapsulation, 

inheritance and encapsulation- and inheritance-related refactorings. The motivation and 

objectives of the research are presented in Chapter 1, where we describe how these 

objectives are covered in the remaining chapters and how they are presented and followed 

throughout the Thesis.  

 

This chapter investigates the role that errors play in manual data collection. This is in order 

to establish and provide an insight into the quality of manual data collection (there are 

many occasions when manual data collection is inevitable). 

 

In Chapter 4 we investigate the evolution of the C++ and Java software systems from 

encapsulation and inheritance perspectives. In Chapter 5 we investigate the potential, 

opportunities and benefits of applying EF refactoring. Finally, in Chapter 6 we investigate 

the opportunities and benefits of applying chain constructors and RMCCM refactorings. 

 



 48

3.3.2 Generating hypotheses 

To investigate the research objectives it is important to generate the hypotheses that 

describe and interpret these objectives. A list of hypotheses pertaining to manual data 

collection, encapsulation and inheritance are described in this chapter and Chapters 4 and 6. 

 

The hypotheses are formulated formally by describing and stating the null and the 

alternative hypotheses. The null hypothesis often refers to no (significant) 

relationship/difference between two variables. The alternative hypothesis, on the other 

hand, refers to the existence of the relationship or the difference between the variables. In 

other words, the alternative hypothesis represents the research question and forms the 

researcher’s prediction, while the null hypothesis states the opposite prediction of what the 

researcher thinks (Field 2006).  Moreover, the alternative hypothesis can be directional or 

non-directional (Field 2006). It is always assumed that the null hypothesis is true unless the 

data reveals the opposite. Therefore, testing the null hypothesis is the starting point of 

accepting or rejecting the alternative hypothesis. 

 

3.3.3 Identifying testbed software systems  

One of the challenges that researchers encounter when carrying out empirical studies in any 

scientific discipline is choosing the appropriate sampling method. There are two major 

types of sampling design: probability and non-probability samplings. The main difference 

between these two types of sampling is that the non-probability sampling does not involve 

random selection while probability sampling does. That is, the probability of selecting any 

element from the population, using probability sampling, is known, and the elements, of 

non-probability sampling do not have a known probability of being selected as sample 

subjects. Moreover, generalisation is one of the key aims that every researcher is keen to 

satisfy when selecting the research sample. However, there are many obstacles in defining a 

study sample, such as identifying the population elements, getting all the elements and 

selecting from them a representative sample. Most importantly is accessing those members. 

In SE, identifying all the software systems that are based on the OO paradigm is almost 

impossible. Moreover, there are access restrictions to some categories of these systems and, 

as such, it is hard to carry out ideal probability sampling.  



 49

3.3.3.1 Sampling techniques and criteria of choosing the software systems 

In this Thesis, a non-probability, purposive sampling technique is used to classify research 

samples. One important reason for choosing non-probability over probability sampling is 

cost and time; this is because software systems are often not available from a single source 

and not all of them can be accessed by researchers. Non-probability purposive sampling is 

used to identify the ten software systems according to the following criteria: five software 

systems are implemented in C++ and five in Java; the software systems are real, not toy 

systems, differ in their sizes (in terms of the number of classes) and belong to a wide range 

of application domains (a library package, compiler, graph-editor, and framework). Some 

of these systems are from well established software system corporations (such as IBM, 

GUN and Sun), and have also gone through different maintenance iterations. The diversity 

of application domains and diversity of sizes help identify important common trends or 

differences in terms of those three areas across these applications. Moreover, having 

relatively few representative samples leads to a greater depth of information from the 

carefully selected software systems.  

 

The methodological trade-off between similarity and variety of application domain of the 

selected samples is to achieve variation-based generalization. In other words, the ten 

software systems could have been based on one type of application domain only; however, 

our decision is justified on the basis that we want to obtain more in-depth information about 

OSS across different application domains. As mentioned earlier, time and cost are two key 

elements that play a role in determining which and how many systems can be investigated. 

Twenty or more systems could have been investigated in this research but that was not 

possible due to time limit pressure and the viability of investigating one research problem 

for a long period of time. The choice of the ten systems provides a reasonable basis for 

comparison of different application domains and between the two languages (Java and 

C++). 

 

Replication is another important factor in terms of being able to generalise our research 

findings. In this respect, we can say that the research presented in this Thesis (and the 

analysis of the systems) can be replicated, further supporting the case for generalising the 

findings of the Thesis. 



 50

A stratified sampling technique is used in Chapter 5 to extract a set of classes from each of 

the five Java systems investigated. This method is chosen to ensure that the sample includes 

an adequate number of all sets of classes that can have the same number of attributes. The 

procedure for extracting the sample of classes from each of the five Java systems was 

identical. The set of classes with at least two attributes was ranked according to the number 

of attributes and every fifth class was then selected. The reason behind excluding classes 

with only one attribute is that, after reviewing these classes, we found that most of these 

attributes were private or protected, and as such EF refactoring could not be implemented. 

Since the Java systems we are investigating have different sizes, in terms of the number of 

classes, (GraphDraw has 49 classes, Swing 1043, for example), we chose to take every fifth 

class, after arranging the classes in each of the five Java systems in ascending order (in 

terms of the total number of attributes each class contains) and grouping them into a set 

whose elements are sublists consisting of five classes in ascending order. The last sublist 

may contain less than five classes; this occurs when the total number of classes in a system 

is not divisible by 5. Thus the sample contains the tail of each sublist. This stratified 

sampling (Coolican 1990) yielded a wide range in the size of classes for our empirical 

analysis. 

 

 

3.3.3.2 Software systems description 

The following describes the ten software systems (C++ and Java) used as a testbed basis for 

the work presented in this Thesis: 

  

The five C++ systems are: 

1. System One: Edge, a graph editor, consisting of approximately 30.8 thousand non-

comment source lines (KNCSL). The number of classes available in the header files 

is 41.   

 

2. System Two: ET++, a user interface framework, consisting of approximately 56.3 

KNCSL. 205 classes are available in the header files. 

 



 51

3. System Three: Rocket, a compiler, consisting of 32.4 KNCSL. The number of 

classes available in the header files is 209. 

 

4. System Four: GNU, the C++ class library, consisting of 53.3 KNCSL. The number 

of classes in the header files is 103. 

5. System Five: Library of Efficient Data Algorithms (LEDA) consisting of about 

123 KNCSL and 203 classes available in the header files.  

 

The required data for GNU and LEDA was collected manually. This was due to the 

unavailability of the source code in an online format. In Table 4.1 these numbers of classes 

are referred to as ‘Sample Size’ 

 

The five Java systems are: 

6. System Six: GraphDraw, a Java graph-editor VGJ (Visualizing Graphs with Java), 

is a tool for graph drawing and graph layout. Graphs can be input into VGJ in two 

ways: with a textual description (GML), or through a drawing the user creates using 

a graph editor. The number of files with the extension “.java” is 52, containing 52 

classes. 

 

7. System Seven: Bean Scripting Framework (BSF), an architecture for 

incorporating scripting into Java applications and applets. Scripting languages such 

as Netscape Rhino (Javascript), VBScript, Perl, Tcl, Python, NetRexx and Rexx are 

commonly used to augment an application's function or to script together a set of 

application components to form an application. The number of files with the 

extension “.java” is 60, containing 65 classes. 

 

8. System Eight: Libjava, the language sub-library set of 89 Java classes available 

from the public domain at the Gnu gcc website. The number of files with the 

extension “.java” is 83. 

 

9. System Nine: Barat, a compiler front-end for Java. Barat is a framework that 

supports static analysis of Java programs. It parses Java source code files and class 



 52

files and builds a complete abstract syntax tree from Java source code files, enriched 

with name and type analysis information. The number of files with the extension 

“.java” is 369, containing 407 classes. 

 

10. System Ten: Swing Java Package Library, which provides a set of ‘lightweight’ 

(all-Java language) components that, to the maximum degree possible, perform the 

same on all platforms. The number of files with the extension “.java” is 506, 

containing 1248 classes. 

 

The following table summaries the classes of the Java systems considered by class 

category. 

 
System Total number of 

(.java) files 
Total number 

of classes 
Number of 
Interfaces 

Number of 
abstract classes 

Number of 
concrete classes 

GraphDraw 52 52 2 1 49 
BSF 60 65 5 1 59 
Libjava 83 89 4 4 81 
Barat 369 407 155 31 221 
Swing 506 1248 96 109 1043 

Table 3.1: Breakdown of the number of interfaces, abstract classes and concrete classes found in each of the 
five Java systems 

 
3.3.4 The chosen refactorings 

Refactoring should theoretically improve maintainability. Maintainability can be defined as 

the ability to modify or make changes to the existing functionality of a software system. 

One of the goals of good maintainability is to undertake maintenance without impacting 

other components of the system. It is also known that software maintainers spend 70% of 

the software cost on maintaining the software (Pressman 2000) and 60% out of 

maintenance cost is expended on understanding software code. Therefore, writing code 

with maintainability in mind helps, to some extent, to reduce the long term maintenance 

expenses.  

Refactoring is a technique for improving the design of existing code and reversing code 

decay (Fowler 2000), it is meant to improve code understandability; theoretically, it should 

help improve code maintainability. In theory, refactoring software systems makes them 

easier to understand and modify. In this Thesis we investigate opportunities, benefits and 

problems associated with two main types of refactoring related specifically to encapsulation 



 53

and inheritance. Encapsulate Field (EF) as a low-level refactoring (i.e., refactoring that can 

be done on the basis of adding, deleting or modifying a class member) (Fowler 2000), and 

Replace Multiple Constructors with Creation Methods (RMCCM) as a high-level 

refactoring (i.e., refactoring that can be done on the basis of modification to hierarchies or 

introducing design patterns) (Kerievsky 2004). Furthermore, testing is an important 

underpinning to refactoring. The essential precondition for doing refactoring is to have 

solid tests (Fowler 2000). Robust tests can help determine if the software code has been 

broken after anything is changed. Refactorers, therefore, should improve the software test 

suite in order to ensure that doing refactoring will not break the code. So applying 

refactoring to software systems, theoretically, would improve maintenance and allow more 

time for testing software systems. 

The three types of refactorings that are used primarily in this research are EF, chain 

constructors and RMCCM. EF, a low-level refactoring, is selected from a pool of 72 types 

of refactoring (Fowler 2000). These (72) refactorings involve simple changes at a class 

level such as rename, delete or move method/attribute. The EF refactoring is one of the 

most encapsulation-related refactorings that improves encapsulation by changing class 

attribute declarations from public to private. 

 

The second type of refactoring, chain constructors is a pre-requisite for the third type, 

RMCCM refactoring. RMCCM is a high-level refactoring since it involves the use of 

design patterns (creation methods). The choice of these two refactorings from 27 high-level 

refactorings (Kerievsky 2004) is based on the expected improvement that could be provided 

to class encapsulation through the declaration of the catchall constructor as private, and 

through the declaration of the creation methods as protected in the presence of inheritance. 

  

3.3.5 Software metrics definitions 

Providing a clear definition of software metrics would help in replicating the study to 

support or refute the study findings (Kitchenham et al. 2002). 

 

Herein, we provide the definition of the collected metrics that are used throughout the 

Thesis. Other metrics, related to each chapter, are not included in the following list. 



 54

1. priPA: number of private primitive attributes. 

2. priNPA: number of private non-primitive attributes. 

3. priC: number of private constructors. 

4. priPM: number of private primitive methods. 

5. priNPM: number of private non-primitive methods. 

6. proPA: number of protected primitive attributes. 

7. proNPA: number of protected non-primitive attributes. 

8. proC: number of protected constructors. 

9. proPM: number of protected primitive methods. 

10. proNPM: number of protected non-primitive methods. 

11. pubPA: number of public primitive attributes. 

12. pubNPA: number of public non-primitive attributes. 

13. pubC: number of public constructors. 

14. pubPM: number of public primitive methods. 

15. pubNPM: number of public non-primitive methods. 

 

3.3.5.1 Criteria of choosing the software metrics 

We chose to use attributes and methods as a basis for our study since they represent the 

quintessential elements of an OO class. Since we are interested in investigating how 

developers declare class members (attributes, methods and constructors), and the possibility 

of changing some of these member declarations, we collected all the metrics related to the 

types of access modifiers for class members. The access modifiers (private, protected and 

public) of class members and the class location in an inheritance hierarchy are considered 

as the core of the metrics definitions. These metrics are simple and can be collected easily. 

 

3.3.6 Data collection 

Collecting data manually is a process fraught with difficulties. However, the author has 

adopted a method that helped to make this collection free of incorrect data as far as 

possible. At the same time there are a number of confounding factors that affected the 

manual data collection. 

 



 55

In order to keep track of the data counting, a technique was developed that helped to obtain 

the correct figures as far as possible. This technique was based on using colours, shapes, 

lines, and counting numbers. For example, all private members were coloured in green, 

protected in blue and public in red; attributes were underlined, and methods circled in their 

appropriate colour, with the associated counting number.  

 

There are, however, a number of confounding factors that can lead to incorrect figures in 

terms of the number of class members. Having a large class (in terms of the number of 

attributes, methods and constructors, for example) will make it difficult for someone to 

keep track of a series of nine numbers (3 private metrics, 3 protected, and 3 public) 

spanning possibly forty pages or more. The fatigue issue, that is, the ability of dealing with 

numbers, differs from one person to another. Most people become tired and lose 

concentration after two/three hours. Distractions also play a role in getting incorrect figures.  

 

There are, yet again, a number of aspects that can be considered as positive confounding 

factors such as learning system styles, i.e., learning how developers tend to organise class 

members. For example, some developers tend to declare all the attributes at the end of the 

class, others declare all constructors after declaring all class attributes members. Also some 

of the systems tend to have relatively small classes which lends itself to correct manual data 

collection in general. 

 

On the other hand, the automatic collection of data is considered to represent the correct 

data. The results from the automatic data collection were meticulously verified. Whenever 

the software tool (see Appendix B) was used to collect the data based on reading tokens 

from the input-file, it was checked by reading every single token in that file and then 

writing all the read data to an output-file. The output-file was then checked carefully 

against the source file (the input-file) and the appropriate correction to the software tool 

was made. This process was applied to certain files picked up beforehand (some of which 

are among the largest files in terms of the number of class features) in each system across 

the five Java systems, such as the Parser file in Barat. Once all the data of the 

aforementioned files were verified, the software tool was then run on the five Java systems 



 56

for the automated data collection. The same data was collected manually for each of the 

five Java systems. 

 

3.3.7 Data analysis 

Measurement is a fundamental concept in engineering. The conclusions of any empirical 

study are based on values measured on research objects. It is therefore crucial to assess the 

quality of the measurements and hence their conclusions. One of the most important 

properties of measurement is reliability, in the sense that the researchers can rely on the 

accuracy of the measuring agent (artifact or person). With respect to research conclusions 

inferential statistics are a tool that can help researchers give a quantitative estimate of the 

probable truth of the conclusions. 

 

3.3.7.1 Statistical techniques 

Reliability (Cronbach 1951) is the correlation of an item or scale with a supposed one 

which truly measures what it is supposed to. In view of the fact that there is no true scale, 

reliability can therefore be measured in different measurement methods. Popular reliability 

measurements are the inter-rater reliability coefficient of Cohen’s kappa (Cohen 1960), and 

the internal consistency of Cronbach’s alpha coefficient (Cronbach 1951).  

 

In this Thesis, we have considered the aforementioned two reliability coefficients in order 

to investigate the level of reliability of the manually collected software metrics that are used 

as a partial basis of the research presented. In terms of inferential statistics (Field 2006) 

three tests were used, namely, one proportion test, two proportions test and the Kruskal-

Wallis test. 

 

3.3.7.1.1 Cohen’s kappa 

Inter-rater reliability is a measure of the level of agreement between different data-

generating sources referred to as raters. The importance of an inter-rater reliability 

coefficient is that it can control the quality of the data collection method and help in 

generalising the research findings. Cohen (Cohen 1960) suggested the kappa statistic, 

considered as one of the best known inter-rater reliability coefficients (Viera and Garrett 



 57

2005). It provides researchers with a quantitative measure of the magnitude of agreement 

between independent observers (called judges in (Cohen 1960)) and is given by: 

 

p
pp
C

CO

−
−

=
1

κ , 

 

where po is the observed proportion of agreement, and pc is the proportion of agreement 

expected by chance; k equalling one would imply a perfect agreement, and where k equals 

zero, a chance agreement.  

 

In the context of this chapter, data is collected first manually and then automatically. 

Considering each type of data collection as a rater for these data, Cohen’s kappa coefficient 

can then be applied to measure the level of agreement between these two raters, i.e., 

between data collected manually and then automatically. However, this test appears to be 

inapplicable for the manual and automatic data collection presented in the second part of 

this chapter. This is due to the fact that the kappa statistic could not be computed because it 

requires a symmetric 2-way table in which the values of the first variable (in our case the 

manual data collection) correspond to the values of the second variable (the automatic data 

collection) and that was not the case in most of the metrics considered. (In the terminology 

of Cohen (Cohen 1960, Cohen 1968) “categories” did not always match.) 

 

3.3.7.1.2 Cronbach’s alpha 

Cronbach (Cronbach 1951) stated in his original work that: 
 

“Any research based on measurement must be concerned with the accuracy or 
dependability or, as we usually call it, reliability of measurement” 

 
Reliability is estimated by examining the consistency with which different items express 

the same concept, rather than looking at consistency with which the same item is answered 

over time (DeVaus 2002). 

 

Cronbach’s alpha can be calculated either from the original item values or from 

standardised item values. The scores for standardised items have a mean of zero and a 



 58

variance of one. Raw-alpha data can be computed using the variance-covariance matrix 

computed from the item values, where the diagonal of the matrix contains the variance of 

each item and the rest of the matrix is composed of the covariances between all pairs of 

items (Bourque and Clark 1994, p. 73-74). The variance-covariance matrix of the 

standardised scores is the correlation matrix. The alpha formula (Cronbach 1951) using the 

variance-covariance matrix is as follows: 

 

V
C
t

i j
ij

n
n ∑∑
−

=
1

α ,        (i, j = 1,2,…n; i ≠ j) 

 
where n is the number of items, Vt is the variance of the total test and Cij is the covariance 

of two items i and j. High values of alpha are more desirable, since a high alpha value is 

caused by a high Vt. Having a high variance value means that there is a widespread 

distribution of the scores. In our case it means that the errors of manual data collection are 

spread across all the system classes. 

 

Cronbach’s alpha is used in this chapter (see Section 3.4.6) to test the reliability of the 

manual collection of data in comparison with the automatic one. 

 

3.3.7.1.3 One proportion test 

The one proportion test is a hypothesis test to determine whether the proportion of trials 

that produce a certain event is equal to a target value. This procedure tests the null 

hypothesis that the population proportion (p) is equal to a hypothesised value (H0: p = p0). 

The alternative hypothesis can be one-tailed ((p < p0) or (p > p0)), or two-tailed (p ≠ p0). In 

Chapter 4 (see Sections 4.5.4 and 4.5.5), this test is used to test the two one-tailed 

Hypotheses 3 and 4 and for each of which (p > p0). The sample proportion sample p is 

calculated and the confidence interval lower bound and the exact p-value are computed for 

the tested proportion (Field 2006). 

 

3.3.7.1.4 Two proportions test 

The two proportions test is similar to the one proportion test. It is a hypothesis test for two 

population proportions to determine whether the difference between them is statistically 



 59

significant. This procedure uses the null hypothesis that the difference between two 

population proportions is equal to a hypothesised value (H0: p1 - p2 = P0), and tests it 

against an alternative hypothesis, which can be either one-tailed ((p1 - p2 < P0) or (p1 - p2 > 

P0)) or two-tailed (p1 - p2 ≠ P0).  For this test, the z value is calculated and two hypothesis 

tests are reported, which are the normal approximation test, and the Fisher’s exact test. If 

the number of events in either of the tested samples is less than five then the normal 

approximation test may produce an inaccurate p-value, while the Fisher’s exact test is 

accurate for all sample sizes (Collett 2003, Field 2006). 

 

In Chapter 4 (see Sections 4.5.1 and 4.5.2), the two proportions test is used to determine 

whether the difference between the investigated proportions is statistically significant. 

 

3.3.7.1.5 Kruskal-Wallis test 

The purpose of the Kruskal-Wallis test is to investigate whether a set of K (K ≥  2) 

independent groups (samples) are drawn from populations with different median values 

(Field 2006). It is the extension of the non-parametric test of Mann-Whitney U test which 

involves more than two independent samples. Therefore, if we applied Kruskal-Wallis to 

two independent samples, the results will be equivalent to those obtained with the Mann-

Whitney U test. If we have K independent samples of sizes n1,n2,...,nk we combine all the 

samples into one large sample, sort the result from smallest to largest and assign ranks 

(assigning the average rank to any observation in a group of tied observations). The rank 

order statistic H for the k-sample problem  is: 

 

( )13
)1(

12 2

1
+−

+
= ∑

=
N

n
R

NN
H

K

i i

i , 

 
where i = 1,2,…,K, ni is the number in the ith sample, N is the total ∑ in  and iR is the sum 

of ranks for the ith sample. This test has a degree of freedon (df) which is one less than the 

number of the tested samples (K -1). If the result of the Kruskal-Wallis test is significant (p 

< 0.05 ), it indicates that there is a significant difference between at least two sample 

medians of the K medians. Consequently, it can be concluded that there is a high 

propability that two of the samples, at least, represent populations with different medians 



 60

(Sheskin 2004). In Chapter 6, Kruskal-Wallis is used to test the significance of difference in 

the five Java software systems (see Section 6.6.2) in terms of the number of comment lines 

that surrounded, or are embedded within, constructors. 

 

We note that the SPSS (V.11.5) and the Minitab (V.15) statistical packages are used to 

produce the required statistics in this Thesis.  

 

3.3.7.2 Drawing conclusions and the generalisation issue 

The adopted methodology in generalising the results of the research presented in this Thesis 

is based on two themes. Firstly, the testbed systems were chosen from different application 

domains with a wide range of sizes for the purpose of gaining a greater understanding of 

the differences between such systems from our research problem perspectives. Secondly, 

using the inferential statistical techniques (such as the one proportion test and the Kruskal 

Wallis test) is of great help for generalising the research results, since such statistical 

techniques use inductive reasoning. Furthermore, the reliability method of Cronbach’s 

alpha is used to support the generalisation issue from the perspective of manual data 

collection. 

 

Since our empirical studies depend on data collected sometimes automatically and on other 

occasions manually, we found it necessary and useful to investigate to some extent the 

difference between automatic and manual data collection. (A full investigation of this issue 

is outside the scope of the Thesis.) 

 

 

3.4 Manual and Automatic Collection of Data  
 

Collecting metrics and then analysing the resulting data can provide a variety of insights 

into trends, features and habits used in the construction of software artifacts (Harrison et al. 

1998a, Harrison et al. 1998c, MacDonell and Shepperd 2003). The quality of OO software 

(and systems generally) from a maintenance and hence evolutionary point of view is largely 



 61

down to ensuring that their features conform to sound and accepted practice (Kitchenham 

and Pfleeger 1996). 

 

Collection from OO software artifacts can be done either manually, or, using appropriate 

software, automatically. While we accept that there are various advantages to collecting 

such data automatically, i.e., speed and convenience, there are numerous occasions when 

manual data collection is necessary and unavoidable. This is particularly true when, firstly, 

on-line documentation is no longer available and hard copy is the only available source; 

secondly, when it is necessary to check and verify the results of an automatic collection; 

thirdly, when the artifacts (in machine readable format) may be graphical in nature and thus 

difficult to machine-read. We also need to consider an important and emerging OO issue, 

namely, the identification from code of design patterns (Gamma et al. 1995), a task which 

can only be done effectively through manual observation and collection of the relevant 

classes (Bieman et al. 2003). In this case, software tools to facilitate this task do not 

currently exist. 

 

Anecdotally, manual data collection has been viewed as both a highly error-prone and time-

consuming process; we do not dispute this claim. However, very little empirical evidence 

exists to substantiate the extent of the error-proneness associated with manual data 

collection and hence the lack of quality and confidence in the data produced manually. In 

this empirical study, the same data from five Java systems was collected both automatically 

and manually and the differences between the two resulting datasets were analysed. A 

number of metrics, derived from the source code, were used as the basis for our data 

analysis. 

 

 A key indicator of the manual data collection was found to be due to developer coding 

style where class features were un-ordered and arranged in a haphazard way; large classes 

in some of the systems also proved to be a cause for erroneous manual data collection. The 

least error-prone system was an OO framework and the most error-prone was the largest of 

the five Java systems, Swing, which, in other empirical studies (see Section 6.4), has 

consistently been shown to violate accepted OO practice. From the results hereafter, we 

thus hypothesise that relatively small, well-arranged classes are of benefit in terms of 



 62

software maintenance and reengineering with further implications for program 

comprehension. We also conclude, on the empirical evidence available, that the quality of 

data we extracted manually from the five Java systems is a direct reflection of the quality of 

the systems themselves. 

 

3.4.1 Motivation and related work 

In the following sections of this chapter, we present details of an empirical study regarding 

the manual collection of data vis-à-vis its automatic counterpart; various qualitative and 

quantitative analyses have been used in the past (Schneidwind 1992, Basili et al. 1996, 

Briand et al. 1997a, Counsell et al. 2000, El Emam et al. 2001, Darcy et al. 2005) to support 

studies such as the one presented in the sequel. 

 

The key motivation for this study is to establish just how error-prone manual data 

collection can be when compared with its automatic counterpart. Herein, we explore the 

possibility that manual data collection is not significantly more error-prone than an 

automatic collection of the same data; we also explore whether large systems are more 

susceptible to manual data collection errors than relatively smaller systems and, finally, 

whether errors are generally due to under-counting or over-counting by the data collector. 

 

The choice of metrics for our study was made on the basis that changes to classes relate to 

the attributes and methods of those classes. Although it is true to say that systems do grow 

through addition of lines of code per se, significant numbers of attributes and methods 

generally get added throughout the lifetime of an OO system. The metrics collected as part 

of this study thus covered the different types of attribute and method declaration, whether 

private, protected or public. Manual collection of these types of metrics is common in 

empirical studies where often the on-line versions of the software are not available. 

Software metrics are an integral part of any empirical study (Fenton and Pfleeger 2002) and 

guidelines for data analysis techniques and conducting empirical studies properly have been 

proposed by Kitchenham et al. (Kitchenham et al. 2001, Kitchenham et al. 2002). 

 

In (Counsell et al. 2002) the question of encapsulation and inheritance in five different C++ 

systems was addressed. Metrics were automatically collected for three of the systems 



 63

analysed therein. However, the remaining two systems were not available electronically 

and, as a result, manual collection from paper sources was unavoidable. Interestingly, 

common trends were found across all five systems, suggesting that manual data collection 

does have certain merits. 

 

This empirical study has, in addition, implications for refactoring in some cases (Fowler 

2000), since visual understanding and assessment of code is the first stage of any 

refactoring. In (Najjar et al. 2003), an empirical investigation of an OO refactoring was 

described where constructors were replaced with methods and those methods were then 

renamed to make them more meaningful. Part of the process of replacing those constructors 

was to count the number of identical lines between n constructors and also to rename those 

constructors to non-constructor methods; both activities, particularly the latter were almost 

impossible to complete automatically and so manual data collection was essential in that 

case. Finally, Fenton and Pfleeger (Fenton and Pfleeger 2002) describe manual recording as 

a subject to bias, whether deliberate or unconscious, but they do admit that sometimes there 

is no alternative to manual data collection.  

 

3.4.2 Empirical investigation 

Our empirical study consisted of five Java systems described in Section 3.3.3.2. A key 

assumption that we make in our study of the five systems is that the automatic data 

collection represents the correct values of the metrics under consideration. To support this 

assumption, results from the automatic collection were meticulously verified by visual 

inspection. Java software was written (see Appendix B) to collect the data automatically 

and this software run after the manual data collection had finished. Both automatic and 

manual collections were carried out by the author. The said assumption forms the 

benchmark against which we compare the manually collected data. 

 

In the sequel, the terms class features or simply features will be used interchangeably; also, 

the size of a system is taken to be the number of its classes. 

 

 



 64

3.4.3 Data collected 

In total, fifteen class metrics were collected, see Section 3.3.5. The metrics represent three 

Java categories: metrics related to private features, metrics related to protected features and 

metrics related to public features. Herein, we consider every attribute and return type of a 

method as a primitive attribute or primitive method, respectively, if their types are taken 

from one of the following:  

 
int, long, float, double, short, char, byte, boolean, and 

void. 

 
A non-primitive attribute is one which is defined as a class; again this is normally another 

class, but can equally be the class in which the attribute is defined. We define a non-

primitive method as one whose return type is that of a class (which is normally a different 

class, but can equally be the same class in which the method is defined). We chose to 

categorise attributes and methods to this extent to reflect the fact that in most OO systems, 

attributes tend to be declared private and methods public. 

 

We chose to use attributes and methods as a basis for our study since they represent the 

quintessential elements of an OO class. We note that in collecting data manually, it is 

possible for a metric to be under-counted (we will, henceforth, call this a negative error) 

and also to be over-counted (we will, henceforth, call this a positive error). We thus define 

a further four system metrics to aid our overall analysis (taking account of these two 

possibilities): 

 

16. The negative error size (NES) metric: the sum of negative errors for a metric. 

17. The negative error frequency (NEF) metric: the total number of times that negative 

errors occurred for that particular metric. 

18. The positive error size (PES) metric: the sum of positive errors for a metric. 

19. The positive error frequency (PEF) metric: the total number of times that positive 

errors occurred for that particular metric. 

 



 65

3.4.3.1 Example using priPA 

To inform an understanding of the four metrics described earlier, consider the example of a 

system, say S, containing only three classes, X, Y and Z, with the metric priPA computed 

automatically and equal to 9, 11 and 15, respectively. 

 

Let us assume that the data collector counts 9, 8 and 13 priPA, respectively. The NES 

would thus equate to -5 representing an under-count of 3 for class Y and an under-count of 

2 for class Z. The NEF is thus 2 (i.e., a negative error was made on two occasions). 

Correspondingly, PES and PEF can be similarly evaluated. For example, if the data 

collector counts 10, 13 and 16 for X, Y and Z, respectively, then PES = 4 and PEF = 3.  

  

In the sequel, the data collected for these four metrics is presented compactly in summary 

format in terms of NES, NEF, PES and PEF. 

 

3.4.4 Three hypotheses 

Herein, we investigated three hypotheses. We have expressed each in terms of a null and 

alternative hypothesis. We denote a null hypothesis by H0x to distinguish it from the 

alternative hypothesis denoted HAx. Enumerated, the null and alternative hypotheses are: 

 

• Hypothesis one  

H01: There is no quantitative difference between the errors made in the manual 

collection of data from large systems vis-à-vis relatively smaller systems. 

HA1: Manual data collection from large systems is more error-prone than manual data 

collection from relatively smaller systems. 

This is based on the belief that larger systems have undergone more maintenance than 

relatively smaller systems; consequently they will exhibit a less organised layout of classes. 

 

• Hypothesis two  

H02: Errors made in the manual collection of data are consistent in terms of a) number 

of under-counts and b) number of over-counts. 



 66

HA2: Manual data collection will always tend to under-count rather than over-count 

class features. In other words, during manual data collection, class features will be 

under-counted by the data collector rather than over-counted. 

 

• Hypothesis three 

H03: There is equal likelihood of the data collector making manual data collection errors 

in the collection of either private, protected or public class features within each of the 

five systems. 

HA3: There are large differences in the errors associated with the manual collection of 

either private, protected or public class features within each of the five systems. 

This hypothesis is based on the belief that, syntactically, the layout and style of 

declarations of the three access types within each system differs widely. Consequently, 

the data collector is likely to make errors in favour of certain access types. 

 

Henceforward, we refer to the hypotheses as null hypothesis H0x or alternative hypothesis 

HAx; we also refer to hypothesis one, two and three when we mean both the null and 

alternative hypotheses. We adhere to this convention throughout the Thesis.  

 

3.4.5 Data analysis 

After collection of the relevant data, an analysis of the differences between manual and 

automatic collection was conducted. For example, Table 3.2 shows the size of the errors 

from the manual collection for each of the metrics considered.  

 

The minimum (Min) column represents the minimum value of the number of negative 

errors made in the manual collection for that particular metric. For example, -5 signifies the 

largest single negative error for the priPA metric. Similarly, the maximum (Max) column 

represents the maximum value of the number of positive errors made for that particular 

metric. For example, 4 signifies the largest single positive error made for the priNPA 

metric. We note that some rows of Table 3.2 are omitted for metrics where the differences 

between manual and automatic are zero (or the corresponding metrics values are zero for 

both manual and automatic data collection). 

 



 67

The values for priPA and priNPA show relatively large negative and positive errors, 

respectively. The reason for these errors is primarily due to the way that attributes were 

defined in GraphDraw (as opposed to the way one would expect them to be defined in a 

normal system). This took the form: 
 
String x = new String("foo"), y = new String("foo1")....; 

 
The usual coding convention is to arrange attributes on separate lines; it seems that the 

syntax adopted for this system may have been the cause of errors in the manual data 

collection. 

 
GraphDraw Metric Differences 

 NES      NEF PES PEF Min Max 
priPA -5 1 1 1 -5 1 
priNPA -1 1 4 1 -1 4 
priC -1 1 0 0 -1 0 
priPM -1 1 0 0 -1 0 
priNPM 0 0 1 1 0 1 
proPA -1 1 0 0 -1 0 
pubNPM -2 1 0 0 -2 0 

Table 3.2: Differences between automatic and manual metrics for GraphDraw 
 

An interesting feature from Table 3.2 is the relative lack of errors in protected and public 

members. Visual inspection of the classes revealed the protected and public declarations for 

GraphDraw to be well ordered and easily distinguishable from the other class features; they 

were thus collected relatively free from error. 

 

Table 3.3 shows the number of the errors for the BSF (framework) system. The most error-

prone metrics relate to public features, although the general trend in BSF is for low errors 

across all metrics. Interestingly, the rows of protected metrics are absent from Table 3.3. A 

number of explanations may clarify why this is the case. 

 

In Chapter 4 (cf. Counsell et al. 2002) the ET++ framework system was shown to be the 

most conformant with sound OO encapsulation principles. We would thus generally expect 

classes outside any inheritance hierarchy to contain zero protected features and classes 

inside an inheritance hierarchy to contain large numbers of protected features. 

 



 68

En passant we note that in Chapter 4 five C++ systems are investigated; large numbers of 

protected features are found in classes outside any inheritance hierarchy for four of the five 

systems. The only exception to that trend is the ET++ framework (Weinand et al. 1988). 

Chapter 4 (see Section 4.5.2) and the current findings for the BSF framework system, 

therefore, support previous findings about frameworks. Tentatively, we could conclude that 

the better written system has caused relatively fewer manual errors. 

 
BSF Metric Differences 

 NES NEF PES PEF Min Max 
priNPA -1 1 0 0 -1 0 
priPM -1 1 0 0 -1 0 
pubNPA -1 1 1 1 -1 1 
pubPM -3 2 1 1 -2 1 
pubNPM 0 0 2 2 0 1 

Table 3.3: Differences between automatic and manual metrics for BSF 
 

Noticeable from Table 3.4 is the number of negative errors, particularly for the pubNPM 

metric. The NES value for this metric was -10 with frequency 9, suggesting that on average 

roughly one method was overlooked on each occasion. One reason to explain the difficulty 

of collecting data manually from Barat is that it may have evolved to a far greater extent 

than the other systems with more maintenance having been applied to it than BSF and 

GraphDraw. Private, protected and public metrics all show errors in their manual 

collection. A number of reasons may explain why this is so.  

 
 

Barat Metric Differences 
 NES      NEF PES PEF Min Max 
priPA -1 1 2 2 -1 1 
priNPA -4 4 0 0 -1 0 
priNPM 0 0 1 1 0 1 
proPA 0 0 1 1 0 1 
proNPA -1 1 1 1 -1 1 
proC -1 1 0 0 -1 0 
proPM 0 0 3 3 0 1 
proNPM -3 3 0 0 -1 0 
pubPA -1 1 0 0 -1 0 
pubNPA -1 1 1 1 -1 1 
pubC -1 1 1 1 -1 1 
pubPM -5 5 2 2 -1 1 
pubNPM -10 9 0 0 -2 0 

Table 3.4: Differences between automatic and manual metrics for Barat 
 



 69

Firstly, collection of attributes and methods in this system was fraught with difficulty 

because of a tendency by the developers to interleave private, protected and public 

declarations, thus increasing the possibility of overlooking such declarations in the manual 

collection process. As an example, a series of public method declarations would be 

followed by a series of private method declarations, followed by more public method 

declarations, etc. As well as making the task of the data collector difficult, this would 

hamper the task of any maintainer should changes be needed to these class features. We 

would claim that this is a sign of poor maintenance (and possibly degradation during 

evolution). 

 

Secondly, there was a wide variation in the style of layout of Barat's classes, which made 

those classes even more difficult to follow and collect data from. This may be due to 

different developers enhancing those classes (or even originally developing those classes in 

that way). The lack of coding standards for this system may be one contributing factor in 

the error-proneness of the manual data collection. 

 

Thirdly, Barat also contained a high proportion of very large classes (one such class 

covered eighty-nine A4 pages, portrait format).  

 

These three factors combined to make the manual data collection relatively error-prone for 

Barat. As a result, the quality of the data collected suffered. 

 

Further evidence of the poor structure of the Barat system can be found in Chapter 6 (see 

Section 6.4) (cf. Najjar et al. 2003), where Barat was found to have the highest frequency of 

large numbers of constructors amongst its classes (when compared with the same four other 

Java systems). In contrast, it is also noted, in the same chapter, that the BSF system has the 

lowest value for the same frequency. We suggest that a class with a high frequency of large 

numbers of constructors is evidence of poor programming practice, since from a 

maintainability point of view, the class becomes difficult to understand, causes developers 

to add yet more constructors and hence is a prime candidate for refactoring (Fowler 2000, 

Kerievsky 2004). In this respect, the quality of the Barat system seems to be relatively poor 

vis-à-vis BSF and GraphDraw. 



 70

For the private and public features of Libjava, there is some evidence of discrepancies 

between the automatically and manually collected data. Table 3.5 shows a relatively high 

NES value for pubPM. We would expect the Libjava system to contain a high proportion of 

public methods as part of the library classes' definition; the designers of the library classes 

would also want the developer to have as much freedom of access to, and modifiability of, 

the methods in the library classes as possible. 

 
Libjava Metric Differences 

 NES      NEF PES PEF Min Max 
priC -1 1 0 0 -1 0 
priPM 0 0 1 1 0 1 
pubC -1 1 1 1 -1 1 
pubPM -7 5 1 1 -2 1 
pubNPM -1 1 1 1 -1 1 

Table 3.5: Differences between automatic and manual metrics for Libjava 
 
In Table 3.6 for the Swing system, there appear to be widespread errors in the manual data 

collection. One explanation for this result may be that for Swing (as with the Barat system) 

the classes have had larger and more frequent changes applied to them. In turn, this has 

caused the classes to deteriorate from their original form. Such a deterioration may have 

contributed to errors in the process of manual data collection. The values for both the sum 

of errors and maximum errors point to public features being the most erroneous. It is 

interesting that the minimum and maximum errors for the pubPM metric are -7 and 7, 

respectively. This suggests that frequent errors were made through both under-counting and 

over-counting. 

 
Swing Metric Differences 

 NES      NEF PES PEF Min Max 
priPA -12 10 7 4 -3 3 
priNPA -17 14 7 7 -2 1 
priPM -3 2 3 2 -2 2 
priNPM -4 3 7 6 -2 2 
proPA -6 5 2 2 -2 1 
proNPA -12 8 0 0 -4 0 
proPM -12 9 4 3 -3 2 
proNPM -5 5 3 3 -1 1 
pubNPA -8 5 1 1 -3 1 
pubC -4 4 1 1 -1 1 
pubPM -25 18 16 8 -7 7 
pubNPM -18 14 12 8 -3 3 

Table 3.6: Differences between automatic and manual metrics for Swing  
 



 71

3.4.6 Hypotheses re-visited 

For the reader’s sake, we re-state each of the three null and alternative hypotheses. 
 

3.4.6.1 Hypothesis one re-visited 

• H01: There is no quantitative difference between the errors made in the manual 

collection of data from large systems vis-à-vis relatively smaller systems.  

• HA1: Manual data collection from large systems is more error-prone than manual data 

collection from relatively smaller systems.  

 
Table 3.7 shows Cronbach’s alpha coefficient values across the five Java systems. A na 

entry in the table reflects the fact that only zero values existed for that particular metric 

within the system (and hence no alpha value could be computed). The values of alpha are 

greater than 0.9 (except for one case) indicating that the two methods of data collection are 

equivalent (Field 2006). Using the evidence from Table 3.7, the least error-prone systems 

on balance appear marginally to be Libjava and BSF; each of these systems has 9 perfect 

alpha values (the most error-prone is Swing, which has 12 imperfect alpha values). Using 

the number of classes as the size of a system, Libjava is the third largest of the five systems. 

When Barat and Swing (the two largest and most error-prone of the five systems) are 

benchmarked against Libjava, the data does support HA1, whilst when GraphDraw and BSF 

are benchmarked against Libjava, the data does not support HA1.  

 
Cronbach’s Alpha Coefficient 

 GraphDraw BSF Barat Libjava Swing 
priPA 0.9976 1.0000 0.9983 1.0000 0.9973 
priNPA 0.9972 0.9997 0.9990 1.0000 0.9988 
priC 0.7968 1.0000 na 0.9700 1.0000 
priPM 0.9998 0.9953 1.0000 0.9979 0.9990 
priNPM 0.9953 1.0000 0.9982 1.0000 0.9922 
proPA 0.9987 1.0000 0.9971 1.0000 0.9979 
proNPA 1.0000 1.0000 0.9988 na 0.9987 
proC na na na 1.0000 1.0000 
proPM 1.0000 1.0000 0.9968 1.0000 0.9996 
proNPM na 1.0000 0.9482 1.0000 0.9992 
pubPA 1.0000 1.0000 0.9930 1.0000 1.0000 
pubNPA 1.0000 0.9791 0.9957 1.0000 0.9998 
pubC 1.0000 1.0000 0.9991 0.9975 0.9993 
pubPM 1.0000 0.9988 1.0000 0.9995 0.9995 
pubNPM 0.9980 0.9992 0.9998 0.9998 0.9994 

Table 3.7: Cronbach’s alpha coefficients for manual and automatic data collection metrics of the five Java 
systems 



 72

However, in order to test the significance difference between the large software systems 

group (Swing and Barat) and  the small systems group (GraphDraw, Libjava and BSF), the 

non-parametric Mann-Whitney test (Field 2006) is used to compare the median error rates 

from the aforesaid two groups, for each metric collected from the five Java systems.  

Table 3.7a shows the Mann-Whitney statistic U, z value and the significance for each 

metric considered. From Table 3.7a we can conclude that the large software systems group 

under consideration does not significantly vary (> 0.05 in most of the cases) from the small 

systems group in terms of median error rates. 

 

Therefore, there is not enough evidence to reject the null hypothesis (H01). We conclude 

that there is no quantitative difference between the errors made in the manual collection of 

data from large systems vis-à-vis relatively smaller systems. 

 
 Mann-Whitney U Z value Asymptotic significance Exact significance 
priPA 169958.00 -0.40 0.34 0.49 
priNPA 170155.00 -0.20 0.42 0.40 
priC 168810.00 -4.01 0.00 0.01 
priPM 169639.00 -1.07 0.14 0.11 
priNPM 170051.50 -0.43 0.33 0.49 
proPA 169845.50 -0.71 0.24 0.39 
proNPA 169641.00 -0.90 0.19 0.35 
proC 170362.00 -0.35 0.36 0.89 
proPM 170156.00 -0.27 0.39 0.43 
proNPM 169950.00 -0.53 0.30 0.40 
pubPA 170362.00 -0.35 0.36 0.89 
pubNPA 170054.00 -0.47 0.33 0.53 
pubC 170157.50 -0.35 0.36 0.60 
pubPM 167551.00 -1.54 0.06 0.04 
pubNPM 168130.50 -1.35 0.09 0.13 

Table 3.7a: The Mann-Whitney test statistics for comparing the mean error rates from the large and small 
software systems groups 

 
 

3.4.6.2 Hypothesis two re-visited 

• H02: Errors made in the manual collection of data are consistent in terms of a) number 

of under-counts and b) number of over-counts. 

• HA2: Manual data collection will always tend to under-count rather than over-count 

class features. In other words, during manual data collection, class features will be 

under-counted by the data collector rather than over-counted. 

 



 73

Table 3.8 shows the total of the negative and positive error values for the 

five systems. Clearly, the Swing system is the most error-prone, and BSF the least 

error-prone. 

 
Summary Table 

System NES      NEF PES PEF Min Max 
GraphDraw -11 6 6 3 -5 4 
BSF -6 5 4 4 -2 1 
Barat -28 27 12 12 -2 1 
Libjava -10 8 4 4 -2 1 
Swing -126 97 63 45 -7 7 

Table 3.8: Total values for errors made for all five Java systems 
 

From the data in Table 3.8 we can see that the sum of negative errors made over the five 

systems outstrips that of the positive errors. The total frequency of the negative errors is 

also higher than that of the positive errors in every case. We thus conclude that, given the 

evidence in Table 3.8, HA2 can be supported by the data. 

 

3.4.6.3 Hypothesis three re-visited 

• H03: There is equal likelihood of the data collector making manual data collection 

errors in the collection of either private, protected or public class features within each 

of the five systems.  

• HA3: There are large differences in the errors associated with the manual collection of 

either private, protected or public class features within each of the five systems. 

 

Remarkable from Table 3.7 are the perfect alpha vales for the complete set of protected 

features for both BSF and Libjava. The alpha values for public declarations for Graphdraw, 

on the other hand, are all perfect except pubNPM; this system has the highest number of 

perfect alpha values for public declarations vis-à-vis private or protected (or both). It can be 

seen from this table that the number of perfect alpha varies widely between systems. 

Both the BSF and Libjava systems have also the highest number of perfect alpha values for 

the private declarations vis-à-vis the public ones. All three access types show wide 

variation within each system. There is thus no obvious pattern to the empirical results. 

Based on the evidence from Table 3.7 we support HA3.  



 74

3.4.7 Cost versus accuracy 

Measuring the accuracy of the manual data collection process provides a valuable insight 

into the types of error a data collector is likely to make. Careful consideration, however, 

needs to be given to the cost of collecting that data against the accuracy that the said 

process offers. 

 

The data collector in this empirical study spent the equivalent of three months full-time on 

collecting the data from the five systems. Working five days a week, seven hours a day for 

twelve weeks equates to a total of 420 hours. If we say, for argument's sake, that the cost of 

collection in pounds/dollars is x per hour, then the total cost of collection is 420x 

pounds/dollars. 

 

If we then make the very broad assumption that each class takes the same amount of time to 

inspect and collect the fifteen metrics from, the five systems would have absorbed costs in 

the ratios 52:1861 (3%), 65:1861 (3%), 407:1861 (22%), 89:1861 (5%) and 1248:1861 

(67%), for Graphdraw, BSF, Barat, Libjava and Swing, respectively; 1861 is the sum of all 

classes across the five systems. If we then allocate the 420x costs according to these ratios, 

we get approximately: 13x, 13x, 92x, 21x and 281x for the same five systems. 

 

Next, we need to consider the sum of errors made in each system, from which we can then 

assess the average cost in x's for each error made. The sum of errors made for the five 

systems (in the same order as previously stated) were: 17, 10, 40, 14 and 189. This means 

that, on average, the cost of an error in Graphdraw was 13x/17 (0.76x), in BSF 13x/10 

(1.30x), in Barat 92x/40 (2.30x), in Libjava 21x/14 (1.50x) and in Swing 281x/189 (1.48x). 

 

From this analysis we can then conclude that the Graphdraw system provides most value 

for time expended (only 0.76x was expended by the data collector for each error made in 

this system). The least value was for the Barat system, where it cost 2.30x for each error 

made by the data collector. In other words, given the choice between the five systems, the 

time of the data collector was best spent collecting data manually from the Graphdraw 

system, and least effective when collecting data from the Barat system. Of course, we have 



 75

also made the assumption in our analysis that each error made by the data collector incurs 

an equivalent amount of cost. 

 

As an epilogue, a wide range of errors were made by the data collector (whether through 

under-counting or over-counting), so in reality the cost allocation may be different. One 

interesting aspect of future work would be to associate a level of complexity to each error 

made and then carry out a form of weighted analysis. 

 

3.4.8 Discussion 

In a study of this type, we have to carefully consider the caveats to the validity of the study 

and the conclusions thereof. The first caveat comes from the assumption that values from 

the automatic data collection are the correct values. While we do see the possibility that the 

automatic collection can produce incorrect values, significant effort was invested in making 

sure (see Section 3.3.6) that the correct values had been obtained, and that the software 

employed was as fault-free as possible. 

 

A further caveat comes from the belief that it is the size of the Swing system which made it 

the most cumbersome of the five systems to collect data from. This caveat could be 

criticised, since the error-proneness may be due merely to fatigue on the part of the data 

collector. While this may be true, the collection was not helped by the poor layout and 

inconsistent ordering of the private, protected and public class features as well as other poor 

coding practices. We therefore suggest that it would have been the most error-prone system 

of the five systems even allowing for significant fatigue effects. Also, from a time point of 

view, the systems were analysed on a consistent and regular basis over a six-month period 

and not according to their size. 

 

Finally, it was surprising to discover how few errors were made (and, indeed, the number of 

those errors) as part of the manual collection. Only on one or two occasions were the 

metrics values very different from those of the automatic collection. This may be due to the 

simplicity of the metrics chosen; more complex metrics may prove more error-prone. An 

aspect of future work will focus on this issue.  

 



 76

While these empirical results go some way to dispelling the myth about the error-proneness 

of manual data collection, more studies need to be undertaken before any concrete 

conclusions can be drawn. It is a worrying scenario that poorly written and/or maintained 

systems seem to pose the most difficult problems for manual data collection. We would 

speculate that for maintainers of the code, similar difficulties do arise.  

 

 

3.5 Summary 
 

Two main themes are discussed in this chapter. The first theme addresses the rationale for 

the decisions made concerning research methodology. The second theme of this chapter 

pertains to the investigation of the extent to which manual data collection compares with its 

automatic counterpart when gathering the same data for the five Java systems.   

 

In this chapter, we have provided a discussion on the research methodology. The research 

presented in this Thesis is quantitative and uses software artifacts. Ten C++ and Java 

software systems were selected purposively according to a number of criteria. Justification 

for how the selection of the research methods specifically supports achieving our objectives 

was presented and how this impacts generalisation. The statistical techniques that are used 

throughout the Thesis are also presented. 

 

The second part of this chapter is concerned with investigating the extent to which manual 

data collection compares with its automatic counterpart. We found that poor programmer 

habits, disorganised code and large classes seemed to be the real reasons why manual data 

collection was error-prone and departs from its automatic counterpart. It was also found 

that a data collector would tend to under-count rather than over-count class features during 

data collection (Hypothesis two). This empirical study provides an insight into some of the 

typical problems associated with collecting data manually and highlights possible coding 

pitfalls, which may cause problems from a reengineering and maintenance perspective. 

 

We conclude from this empirical investigation and that, from a quality perspective, a poorly 

written system will contribute to errors in any manual data collection. In other words, the 



 77

quality of such data reflects how well the system itself was coded. From a practical 

perspective, it would seem important for developers to always adhere to recognised (or in-

house) coding standards. Failure to do so may cause problems associated with maintaining 

the software and, in turn, compromise its quality as it evolves. 

 

Since the core of this Thesis is to investigate how encapsulation is interpreted, improved 

upon and put into practice, the following chapter will empirically investigate the trends of 

encapsulation in the ten C++ and Java systems referred to earlier in this chapter (see 

Section 3.3.3.2). 



 78

CHAPTER 4 Encapsulation Trends in C++ and Java            

Software Systems 

 
 
 
4.1 Introduction  
 
In the previous chapter we described our research strategy and how we made our decisions 

about the main issue of the empirical research. In Chapter 3, we also empirically 

investigated the extent to which manual data collection can differ from its automatic 

counterpart. 

 

In this chapter, we present an empirical study in which encapsulation and inheritance trends 

from the ten C++ and Java systems (introduced and described in Chapter 3) were examined 

from collected data. Encapsulation and inheritance are two of the cornerstones of the OO 

paradigm. In fact, we could view their relationship as symbiotic, since proper use of 

inheritance requires the developer to consider protected declarations as standard design 

practice. We would also expect developers to consider the use of private methods in 

inheriting classes in order to prevent subclasses accessing certain behaviour of superclasses 

(parent classes).  

 
In Section 4.2 we describe how encapsulation and inheritance are related to each other 

theoretically. In Section 4.3 we present the motivation for the undertaken work and in 

Section 4.4 we present the details of the empirical evaluation, including a statement of four 

hypotheses. In Section 4.5 we provide a description of the data analysis undertaken. A 

discussion of the issues raised in this chapter is given in Section 4.6 including possible 

caveats to the validity of the study and the conclusions thereof, and we provide a summary 

for this chapter in Section 4.7. 

 

We note that part of the research in this chapter, dealing with the C++ systems, was 

published in (Counsell et al. 2002). 



 79

4.2 Encapsulation and Inheritance 
 

Encapsulation and inheritance are two of the cornerstones of the OO paradigm. Inheritance 

lies at the heart of the OO paradigm. It is the mechanism that allows a class b to inherit all 

of the attributes and methods provided by a class a; all the data structures and methods or 

operations designed and implemented for a are available for b. In other words, inheritance 

is the mechanism that creates a new class from an existing one. Access to the inherited data 

and methods is regulated by access specifiers provided by encapsulation. Encapsulation is a 

technique that encloses data and operations performed on the data within one class and 

provides the access control to the remaining classes of the system by specifying which class 

members should be private, which protected and which public.  

 

 

 

 

 

 

 

 

 

 
Figure 4.1: Relationship between encapsulation and inheritance 

 

Figure 4.1 describes the relationship between encapsulation and inheritance for class ‘a’ 

and class ‘b’. All the protected (also the public) members which belong to ‘a’ are directly 

used by its subclass ‘b’. So class ‘b’ has the advantage of using the protected and public 

members (Aa2&Ma2 and Aa3&Ma3) of its superclass ‘a’. At the same time, it has new 

members (Ab1&Mb1, Ab2&Mb2 and Ab3&Mb3), attributes and methods, which are required 

to complete its definition. In the C++ and Java languages, class members can be declared as 

private, protected or public. 

 

In C++, public members of a class can be accessed by any function. We note that in C++ 

there is the concept of a global function and data which do not belong to any class in the 

Subclass b  

private Ab1&Mb1 
 

            
protected 

Ab2&Mb2 

Aa2&Ma2 

 

                         
public 

 Ab3&Mb3 
Aa3&Ma3 

Superclass a  

Private Aa1&Ma1 

 

protected Aa2&Ma2 

 

public Aa3&Ma3 



 80

system. Throughout this Thesis the terms ‘function’ and ‘method’ are used interchangeably. 

A private member is only accessible by methods that are members of the class under 

consideration and by classes and methods explicitly granted access permission by the 

friends facility (Stroustrup 1991). A protected member can be accessed by members of 

classes that inherit from the class in addition to the class itself (and any friend). So, friends, 

whether they are classes or methods, are allowed to access both private and protected 

members. Also, in C++, a class member is private by default.  

 

In Java, the private members of a class can only be accessed by their class members. 

Protected members are accessible from anywhere within the package in which they were 

declared, and by any classes which inherit from the class containing the said protected 

members (Eckel 2000). As in C++, public members are accessible to all remaining classes 

in the system. Java has a default access, called package access, which facilitates access to 

all the classes defined within the same package. 

 

In the following section, the motivation for, and related issues of, our empirical study are 

described. 

 

 

4.3 Motivation and Related Issues 
 

A large body of work has been carried out to investigate the influence of inheritance on the 

way we write OO systems and, to a much lesser extent, that of encapsulation. Even fewer 

studies have investigated the relationship between the two. Encapsulation and inheritance 

play a fundamental role in the OO paradigm. Inheritance is a mechanism that creates a new 

class from an existing class, providing attributes and methods in the created class without 

affecting existing classes. Encapsulation is a way of controlling the visibility of attributes 

and methods of a class from inside and outside. Practically, encapsulation controls the 

visibility of attributes and methods by providing one of the access specifiers (private, 

protected, or public). In well-designed OO software, any changes to a method’s 

implementation in an object should have no impact on other objects; however, sometimes 

achieving no impact on other objects is difficult for many reasons. We believe that, in 



 81

practice, encapsulation and inheritance are not properly used in OO in a mutually 

supportive way. Several studies have investigated the benefits and the use of encapsulation 

and inheritance, and the relationships between them in different OO languages (Snyder 

1986, Post 2001, Skoglund 2003, Schärli et al. 2004). 

  

In this chapter, we present, as a first step of our empirical research, a study in which 

encapsulation and inheritance trends from the C++ and Java systems, described in Chapter 

3, were examined from relevant collected data. Trends in the use of class features declared 

as private, protected and public for both inheriting and non-inheriting classes were 

investigated. 

 

 

4.4 Empirical Investigation 
 

We investigated the trends of encapsulation through four hypotheses; two were investigated 

for the C++ software systems and the other two for the Java systems. We next describe the 

details of these hypotheses. 

 
 
4.4.1 The hypotheses 

In the description of the two hypotheses for the C++ systems, we have expressed each 

hypothesis in such a way that its opposite is what we would expect to find according to 

proper OO design principles. The hypotheses support our intuition about what really 

happens in OO systems. We will therefore seek to support the hypotheses through standard 

statistical analysis. Each of these four hypotheses is expressed in terms of a null and an 

alternative hypothesis. The first two hypotheses are for the C++ software systems: 

 

• Hypothesis one: 

H01: There is no quantitative difference between the proportion of privately declared 

methods (as opposed to protected and public) of classes which engage in inheritance 

from those which do not. 



 82

HA1: Classes which engage in inheritance have a lower proportion of privately declared 

methods (as opposed to protected and public) than classes which do not engage in 

inheritance.  

 

This hypothesis is based on the belief that the software developer should encapsulate 

(private) attributes and methods which are not supposed to be inherited by subclasses in the 

inheritance hierarchy. However, we reject the (perhaps) accepted notion (Stroustrup 1991) 

that classes which engage in inheritance should have a higher proportion of privately 

declared attributes and methods than classes which do not engage in inheritance. 

 

Hypotheses two, three and four are expressed in terms of two sub-hypotheses.  

 

• Hypothesis two: 

H02i: There is no quantitative difference between the proportion of protected attributes 

(as opposed to private and public) of classes which engage in inheritance from those 

which do not engage in inheritance. 

HA2i: Classes which engage in inheritance have a lower proportion of protected 

attributes (as opposed to private and public) than classes which do not engage in 

inheritance.  

 

H02ii: There is no quantitative difference between the proportion of protected methods 

(as opposed to private and public) of classes which engage in inheritance from those 

which do not engage in inheritance. 

HA2ii: Classes which engage in inheritance have a lower proportion of protected 

methods (as opposed to private and public) than classes which do not engage in 

inheritance.  

 

This hypothesis is based on the belief that, in theory, as part of using inheritance, the 

software developer should encapsulate attributes and methods (whilst permitting 

inheritance of data and behaviour) through protected declarations. However, we feel that 

this is not generally the case in C++ systems. We therefore reject the (perhaps) accepted 

notion (Stroustrup 1991) that classes which engage in inheritance should have a higher 



 83

proportion of protected attributes and methods than classes which do not engage in 

inheritance. 

 

For the Java systems, we propose the following two hypotheses: 

• Hypothesis three: 

H03i: There is no quantitative difference between the proportion of private attributes and 

the proportion of public attributes in Java software systems. 

HA3i: The proportion of private attributes is greater than the proportion of public 

attributes in Java software systems. 

 

H03ii: There is no quantitative difference between the proportion of protected attributes 

and the proportion of public attributes in Java software systems. 

HA3ii: The proportion of protected attributes is greater than the proportion of public 

attributes in Java software systems. 

 

This hypothesis is based on the theoretical premise that every class in Java is a subclass of 

at least the Object class. So we would expect to see that the smallest number of attributes 

declared is public, and the largest one is private. We would also expect to see more 

declaration of protected attributes than public ones; if a class is part of an inheritance 

hierarchy, attributes should be declared as protected to facilitate access to inherited classes 

and prevent access to them from outside the inheritance hierarchy. 

    

• Hypothesis four: 

H04i: Classes at the top of an inheritance hierarchy or at the bottom have equal 

proportion of protected attributes. 

HA4i: Classes at the top of an inheritance hierarchy have a greater proportion of 

protected attributes than classes at the bottom. 

 

H04ii: Classes at the top of an inheritance hierarchy or at the bottom have an equal 

proportion of protected methods. 

HA4ii: Classes at the top of an inheritance hierarchy have a greater proportion of 

protected methods than classes at the bottom. 



 84

This hypothesis is based on the belief that classes located at the top of the inheritance 

hierarchy should contain all generic behaviour, and the inheriting classes should have 

additional attributes and methods to satisfy their own additional functionalities.  

 

4.4.2 Data collected 

The data used to aid the investigation was collected automatically for three of the five C++ 

systems by parsing only the header files (Edge, ET++, Rocket). Since only paper versions 

of the GNU and LEDA systems were available at the time of the collection, data from the 

header files of these two systems was collected manually. Correspondingly, the data from 

the five Java systems was collected automatically by using Java software (see Appendix B). 

 

We define a class as non-inheriting if it has neither a subclass nor a superclass. Since 

encapsulation controls the accessibility (private, protected and public) of class members, 

we chose metrics that were related to the declaration types for class attributes and methods. 

For each of the C++ and Java systems, the following metrics were collected:  

 

1. The number of private attributes found in each class (see metrics 1 and 2 in Section 

3.3.5, i.e., priPA and priNPA). 

2. The number of private methods found in each class (see metrics 4 and 5 in Section 

3.3.5, i.e., priPM and priNPM). 

3. The number of protected attributes found in each class for classes which do not inherit 

in the system (cf. metrics 6 and 7 in Section 3.3.5, i.e., proPA and proNPA). 

4. The number of protected attributes found in each class for classes which inherit in the 

system (cf. metrics 6 and 7 in Section 3.3.5, i.e., proPA and proNPA). 

5. The number of protected methods found in each class for all classes which do not 

inherit in the system (cf. metrics 9 and 10 in Section 3.3.5, i.e., proPM and proNPM). 

6. The number of protected methods found in each class for all classes which inherit in 

the system (cf. metrics 9 and 10 in Section 3.3.5, i.e., proPM and proNPM). 

7. The number of public attributes found in each class (see metrics 11 and 12 in Section 

3.3.5, i.e., pubPA and pubNPA). 

8. The number of public methods found in each class (see metrics 14 and 15 in Section 

3.3.5, i.e., pubPM and pubNPM). 



 85

9. The number of friend declarations found in each class (for C++ systems only). 

 

In addition, for each of the five Java systems, we collected all the data (except for 9 which 

does not obtain) for classes which participate in inheritance at each level of the inheritance 

hierarchy, and for classes which do not participate in any inheritance hierarchy. We 

consider only class inheritance hierarchies; interfaces and abstract classes were not 

included in the inheritance hierarchies for data collection. We did not include interfaces in 

our analysis because they do not contain attributes and are not part of any inheritance 

hierarchy. Correspondingly, we did not include abstract classes because we consider them 

as a special type of class, some of whose methods may be left unimplemented – they are 

different to other classes in this respect. 

 

Table 4.1 gives the breakdown in terms of the number of inheriting and non-inheriting 

classes found in each of the five C++ systems. We note that from the sample of classes 

chosen for the Edge system, more classes did not engage in inheritance than did. Of the 

remaining four systems, the framework ET++ system (Weinand et al. 1988) had the lowest 

proportion of non-inheriting classes (10.73%), whilst the highest proportion of non-

inheriting classes belonged to GNU, the library-based system (37.86%). Although these 

figures only present samples of selected classes, they do reflect the kind of differences 

existing in the five C++ systems and, in particular with reference to the ET++ framework, 

which stood out from the rest in terms of its adherence to OO principles.  

 

 
 
 

 
 
 

Table 4.1: The number of inheriting and non-inheriting classes for each of the five C++ systems 
 
 
 
4.5 Data Analysis 
 
In this section we provide the analysis and support for each of the four hypotheses we 

described in Section 4.4.1. We also discuss the role of friends in C++ classes with respect 

System Sample Size Inheriting Non-inheriting 
Edge 41 15 26 
ET++ 205 183 22 
Rocket 209 172 37 
GNU 103 64 39 
LEDA 203 131 72 



 86

to encapsulation and inheritance. We note that n/a refers to those cases where it is not 

applicable to calculate the normal approximation p-value and the z value, because of the 

non existence of data.  

 

4.5.1 Hypothesis one 

Table 4.2 shows the number of private methods and the total number of methods declared 

(which represents the sum number of private, protected and public methods) in inheriting 

and non-inheriting classes for each of the five C++ systems. The two library-based systems, 

GNU and LEDA, have a proportionately larger number of private methods vis-à-vis the 

other three systems and in particular with that of LEDA. One suggestion for the relatively 

high number of private methods in the two library-based systems may be due to the 

relatively large amount of care taken in the initial development of those classes, and 

subsequent fine-tuning which the same classes in these systems have undergone. 

 
Inheriting Non-inheriting 

System Private 
methods 

Total number of 
methods 

Private 
methods 

Total number of 
methods 

Edge 1 144 8 658 
ET++ 62 2310 4 196 
Rocket 6 1601 6 226 
GNU 57 546 45 856 
LEDA 520 2952 242 1270 

Table 4.2: The number of private methods and the total number of methods in inheriting and non-inheriting 
classes for each of the five C++ systems 

 

Table 4.3 shows the p-values of the normal approximation test and the p-values of Fisher’s 

exact test of the two proportions test (see Section 3.3.7.1.4) for private methods (as opposed 

to protected and public methods) in inheriting and non-inheriting classes for each of the 

five C++ systems. Since the data sets, in some cases (as in the number of private methods 

for inheriting classes of Edge and in the number of private methods for non-inheriting 

classes of ET++), are small, it is more accurate to rely on the results of Fisher’s exact test. 

 

System z value p-value Fisher’s p-value 
Edge -0.64 0.261 0.499 
ET++ 0.60 0.727 0.772 
Rocket -2.11 0.017 0.002 
GNU 3.42 1.000 1.000 
LEDA -1.10 0.135 0.142 

Table 4.3: The p-values of the two proportions test for private vs. total number of methods in inheriting and 
non-inheriting classes for the five C++ systems 



 87

We note that because we are running several tests, there is more danger of getting a false 

positive result. For this reason, the threshold p-value of 0.01 is used rather than 0.05 in 

terms of the Fisher’s exact test results. In Table 4.3 the only p-value that is less than 0.01 

belongs to the Rocket system. Therefore there is significant evidence to reject the null 

hypothesis at the 1% level for Rocket. For the remaining four systems (Edge, ET++, GNU 

and LEDA), the p-values of the Fisher’s exact test are greater than 0.01, therefore we do 

not reject the corresponding null hypothesis (H01). In other words, the proportion of private 

methods for inheriting classes does not differ from the proportion of the non-inheriting ones 

for four out of the five C++ systems under consideration.  

 

We next consider the hypothesis that the proportion of private methods is greater (as 

opposed to protected and public) in inheriting classes than non-inheriting classes in C++ 

software systems. We apply the two proportions test to the data in Table 4.2, and again note 

that this hypothesis is not supported by the contents of Table 4.3a. Only for GNU was there 

significant evidence of having more private methods in inheriting classes than non-

inheriting ones. In other words, no real pattern emerges in declaring private methods for 

inheriting or non-inheriting classes in the C++ software systems under consideration. 

 
 

Opposite of alternative hypothesis one in the C++ systems 
(The proportion of private methods (as opposed to protected and public methods) in inheriting classes is 

greater than those in non-inheriting classes) 
System z value p-value Fisher’s exact p-value 
Edge -0.64 0.739 0.833 
ET++ 0.60 0.273 0.402 
Rocket -2.11 0.983 1.000 
GNU 3.42 0.000 0.000 
LEDA -1.10 0.865 0.877 

Table 4.3a: The p-values of the two proportions test for private vs. total number of methods in inheriting and 
non-inheriting classes for the five C++ systems 

 

Based on the evidence presented, there is not enough support to accept H01. Therefore, we 

conclude that it is not always the case that classes which do engage in inheritance have a 

lower proportion of privately declared methods than classes which do not engage in 

inheritance.  

 



 88

4.5.2 Hypothesis two 

• The first sub-hypothesis: 

 Table 4.4 shows the number of protected attributes and the total number of attributes 

declared (representing the sum number of private, protected and public attributes) in 

inheriting and non-inheriting classes for each of the five C++ systems. Neither Edge nor 

ET++ has any protected attributes in their non-inheriting classes. On the basis that there is 

no other reason for having protected attributes other than for classes included in an 

inheritance hierarchy, it would seem, at first, that these two systems conform to OO 

principles. 
 

Inheriting Non-inheriting 
System Protected 

attributes 
Total number of 

attributes 
Protected 
attributes 

Total number of 
attributes 

Edge 0 38 0 256 
ET++ 266 615 0 58 
Rocket 198 403 26 127 
GNU 48 140 34 108 
LEDA 20 350 15 383 

Table 4.4: The number of protected attributes and the total number of attributes in inheriting and non-
inheriting classes for each of the five C++ systems 

 

The first possibility for the presence of protected attributes in the remaining three systems 

is that at some stage, those relevant classes were removed from the inheritance hierarchy 

without their attributes being re-defined from that of the protected category. Without 

knowing why these classes were removed from the hierarchy (i.e., the exact intentions of 

the original developers), it is difficult to hypothesise. However, one theory is that those 

classes were identified as key classes (Counsell et al. 2000) after they were placed in the 

inheritance hierarchy; they were thus removed to allow easier access to their attributes and 

methods. The second possibility (but less likely perhaps due to developer time and cost 

pressures) is that the developer anticipated incorporating those classes into the inheritance 

hierarchy at a later stage and hence declared attributes of relevant classes as protected at 

their creation. 

 

Interestingly, Edge contains no protected attributes (Table 4.4) amongst the fifteen 

inheriting classes investigated (see Table 4.1) – no evidence of any protected attributes was 

therefore found for this system, suggesting that contrary to what was initially thought, it 

does not conform particularly well to OO design principles. However, one theory to explain 



 89

why no protected features were found in Edge may be that inheritance was used for pure 

reuse purposes and hence no protection was required. It is noted here that graphically-based 

systems do tend to use and need inheritance structures by their very nature (Harrison et al. 

1998a). 

 

One theory for why LEDA would contain such a relatively small number of protected 

attributes relates to the nature of classes in that system; classes in LEDA tend to be 

relatively small in terms of their number of methods (Counsell and Newson 2000), and 

revolve around the use of two or three attributes, a typical example being the manipulation 

of x and y co-ordinate values for a geometric object (declared as primitive, e.g., int or float). 

The GNU and Rocket systems were different to LEDA in this respect, as can be seen from 

the relatively high number of protected attributes for inheriting and non-inheriting classes. 

 

From Table 4.4, it would seem that the protected definition of attributes for (non-) 

inheriting classes is used very sparingly and, in some cases, is not used at all. Moreover, 

evidence of protected attributes in classes not engaging in inheritance point to the existence 

of either orphaned classes, i.e., classes which were once part of an inheritance hierarchy but 

were removed at some point, perhaps because they were identified as potential key classes 

(central to the operation of the system as a whole); alternatively, it may be that the 

developers anticipated their use in another inheritance hierarchy at a later date. The latter 

explanation would also seem less plausible, since declaring attributes in classes as protected 

with a view to later inclusion in an inheritance hierarchy is more likely to confuse rather 

than assist another developer or software maintainer. 

 

Table 4.5 shows the two proportions test statistics for each of the five C++ systems in terms 

of protected attributes (as opposed to private and public attributes) in inheriting and non-

inheriting classes. For the five C++ systems, the p-values of the Fisher’s exact test are 

greater than 0.01 and we do not therefore reject the null hypothesis (H02i). We conclude that 

it is not always the case that classes which do engage in inheritance have a lower proportion 

of protected attributes than classes which do not engage in inheritance. 

 

 



 90

System z value p-value Fisher’s p-value 
Edge n/a n/a 1.000 
ET++ 21.65 1.000 1.000 
Rocket 6.57 1.000 1.000 
GNU 0.47 0.680 0.726 
LEDA 1.13 0.871 0.906 

Table 4.5: The p-values of the two proportions test for protected attributes vs. total number of attributes in 
inheriting and non-inheriting classes for the five C++ systems 

 

 

• The second sub-hypothesis: 

Table 4.6 shows the number of protected methods and the total number of methods for 

inheriting and non-inheriting classes for each of the five C++ systems. Again, the Edge and 

ET++ systems show no evidence of protected methods in their non-inheriting classes, and 

the three remaining systems (as was found for attributes) contain varying levels of 

protected methods. Edge also shows no evidence of any protected methods in inheriting 

classes. For the Rocket system, the relatively high number of protected attributes, yet 

relatively low number of methods, is remarkable. This suggests one of two possible 

scenarios during the evolution of this system. Firstly, classes in the Rocket system, 

removed from the inheritance hierarchy, had their method declarations changed to private 

or public whilst the attribute declarations of classes remained unchanged. Secondly, those 

methods were initially defined in that way, namely, private or public (this latter scenario 

would seem unlikely, since data and behaviour are normally inherited in unison and hence 

we would expect both attributes and methods to be declared as protected, if this was indeed 

the case). 

 
 

 
 
 
 
 
 
 

Table 4.6: The number of protected methods and the total number of methods in inheriting and non-inheriting 
classes for each of the five C++ systems 

 

Table 4.7 shows the two proportions test statistics for each of the five C++ systems in terms 

of protected methods (as opposed to private and public methods) in inheriting and non-

inheriting classes. For the five C++ systems, the p-values of the Fisher’s exact test are 

Inheriting Non-inheriting 
System Protected 

methods 
Total number of 

methods 
Protected 
methods 

Total number of 
methods 

Edge 0 144 0 658 
ET++ 152 2310 0 196 
Rocket 3 1601 1 226 
GNU 33 546 25 856 
LEDA 171 2952 12 1270 



 91

greater than 0.01 and we do not therefore reject the null hypothesis (H02ii). We conclude 

that it is not always the case that classes which do engage in inheritance have a lower 

proportion of protected methods than classes which do not engage in inheritance. 

 
System z value p-value Fisher’s p-value 
Edge n/a n/a 1.000 
ET++ 12.76 1.000 1.000 
Rocket -0.56 0.287 0.411 
GNU 2.67 0.996 0.998 
LEDA 9.53 1.000 1.000 

Table 4.7: The p-values of the two proportions test for protected methods vs. total number of methods in 
inheriting and non-inheriting classes for the five C++ systems 

 

Finally, by inspecting Tables 4.7a and 4.7b, we see that the only system for which there is 

significant evidence of having consistently more protected features (attributes and methods) 

is ET++; this suggests that the ET++ user-interface framework system conforms best to OO 

practice. 
 

Opposite of alternative hypothesis two (first sub-hypothesis) in the C++ systems 
(The proportion of protected attributes (as opposed to private and public attributes) in inheriting classes is 

greater than those in non-inheriting classes) 
System  z value p-value Fisher’s exact p-value 
Edge n/a n/a 1.000 
ET++ 21.65 0.000 0.000 
Rocket 6.57 0.000 0.000 
GNU 0.47 0.320 0.372 
LEDA 1.13 0.129 0.167 

Table 4.7a: The p-values of the two proportions test for protected attributes vs. total number of attributes in 
inheriting and non-inheriting classes for the five C++ systems 

 
 

Opposite of alternative hypothesis two (second sub-hypothesis) in the C++ systems 
(The proportion of protected methods (as opposed to private and public methods) in inheriting classes is 

greater than those in non-inheriting classes) 
System z value p-value Fisher’s exact p-value 
Edge n/a n/a 1.000 
ET++ 12.76 0.000 0.000 
Rocket -0.56 0.713 0.923 
GNU 2.67 0.004 0.004 
LEDA  9.53 0.000 0.000 

Table 4.7b: The p-values of the two proportions test for protected methods vs. total number of methods in  
inheriting and non-inheriting classes for the five C++ systems 

 

 

4.5.3 The role of friends 

One feature of any analysis of encapsulation and inheritance which cannot be ignored in a 

study of this type relates to the use of friends in each of the five C++ systems. Friends 



 92

presents a violation of encapsulation, and a potential alternative to the use of inheritance. 

An earlier study (Counsell and Newson 2000) found that friends tended to be found at 

lower (i.e., deeper) levels of the inheritance hierarchies where they could take advantage of 

the inherited functionality. On a similar theme, an empirical study conducted by English et 

al. (English et al. 2005) examined the use of the friend construct and its effects on other OO 

measures (inheritance, coupling and size) across a large number of open-source software 

developed at least partially in C++. They found that classes which were declared as friends 

were bigger and had higher coupling than other system classes. Furthermore, they found no 

indication that friends are used as an alternative to inheritance even though a small number 

of the investigated systems tend to use friends as an alternative to multiple inheritance. In 

terms of the relationship between friends and encapsulation, they found that the relationship 

between the number of private and protected members in a class and the number of friends 

declared in the class was supported by 13 out of 21 systems under consideration. 

 

 

 

 

 
Table 4.8: The number and percentage of friends (inheriting or non-inheriting classes) 

 

Table 4.8 shows the proportion of friends found in each set of inheriting and non-inheriting 

classes together with the percentage that this represents. An interesting conflict can be seen 

between the three non-library based systems and the library-based systems GNU and 

LEDA. In the latter two, a higher percentage of friends was found in the set of non-

inheriting classes than in the set of inheriting classes. For the other three systems, the 

opposite is true, namely, inheriting classes were found to have a higher percentage of 

friends than non-inheriting classes. 

 
Friends may well have been added (or initially incorporated into classes) in the GNU and 

LEDA systems as a fast and effective substitute for other forms of coupling (including that 

of inheritance). While friends is generally considered to be poor programming practice, and 

has been associated with an increased incidence of faults (Briand et al. 1999b), they do 

have the advantage, nonetheless, of being simple and quick to introduce into code. Lack of 

System Inheriting Percentage Non-inheriting Percentage 
Edge 12/15 80% 10/26 38.46% 
ET++ 32/183 17.48% 1/22 4.55% 
Rocket 12/172 6.98% 0/37 0% 
GNU 4/64 6.25% 11/39 28.21% 
LEDA 69/131 52.67% 67/72 93.06% 



 93

foresight at the design stage can easily be rectified at the implementation stage by the use of 

friends. 

 
Table 4.9 shows the number of classes in each of the five C++ systems with at least one 

friend (inheriting and non-inheriting classes). Table 4.9 shows that the Edge system has the 

highest proportion of friends for inheriting classes, since graphically-based systems use 

inheritance for pure reuse; it seems that Edge developers used friends as an alternative to 

inheritance to avoid dependencies. It is also clear from Table 4.9 that the percentage of the 

non-inheriting classes with at least one friend is higher than the percentage of inheriting 

classes in the two library-based systems (GNU and LEDA). 

 

 

 
 
 
 

Table 4.9: The number of classes with at least one friend (inheriting or non-inheriting classes) 
 

 

4.5.4 Hypothesis three 

The two sub-hypotheses of Hypothesis three are discussed and analysed in tandem. Table 

4.10 presents the number and the overall percentage of private attributes, the sum of private 

and public attributes, the number and the overall percentage of protected attributes, and the 

sum of protected and public attributes for all classes in each of the five Java systems.  

 

System Private 
attributes 

Overall 
percentage 

Sum of private and 
public attributes 

Protected 
attributes 

Overall 
percentage 

Sum of protected and 
public attributes 

GraphDraw 352 72.13 461 27 5.53 136 
BSF 71 58.68 107 14 11.57 50 
Libjava 176 49.30 356 1 0.28 181 
Barat 268 65.21 305 106 25.79 143 
Swing 1186 44.69 1795 859 32.36 1468 

Table 4.10: The number and overall percentage of private attributes, the sum of private and public and the 
corresponding protected attributes data 

 

Except for Libjava, the percentage values for private attributes are greater than those for 

public attributes (we note that the percentage of public attributes can be obtained by 

subtracting the sum of the private and protected percentages from 100). The percentage 

System Inheriting Percentage Non-inheriting Percentage 
Edge 5/15 33.33% 6/26 23.08% 
ET++ 21/183 11.47% 1/22 4.55% 
Rocket 11/172 6.93.% 0/37 0% 
GNU 4/64 6.25% 9/39 23.08% 
LEDA 35/131 26.72% 44/72 61.11% 



 94

values for private attributes, for three of the five Java systems, GraphDraw, BSF and Barat, 

are more than 58%, whilst those for the two library-based systems (Libjava and Swing) are 

less than 50%; this is perhaps due to the fact that library-based systems may need to 

provide more easy access to their features for their clients. 

 

Looking at the percentage values for the protected attributes, for three systems (Graphdraw, 

BSF and Libjava) these values are relatively small. We observe that Libjava has the lowest 

percentage value for protected attributes, and the highest for public attributes. 

 

The limited existence of protected attributes in GraphDraw, a graphically-based system, 

can be justified theoretically by the fact that inheritance may be used for reuse purposes 

only and therefore no protection was required (cf. Section 4.5.2). One suggestion for the 

difference between the two library-based systems (Libjava and Swing) in terms of the 

distribution of attribute declarations may be that Swing is a more mature library system; it 

has probably gone through more development iterations than Libjava. 

 

Looking at the percentage values of the private and protected attributes for Barat and Swing 

in Table 4.10, it is evident that both systems have a conforming pattern with regard to the 

distribution of attribute declarations; that is, the proportion of private attributes is greater 

than that of public attributes and the proportion of protected attributes is greater than that of 

public attributes. These two systems (Barat and Swing) support both the alternative sub-

hypotheses of Hypothesis three (HA3i and HA3ii), since the proportion of private or protected 

attributes is greater than that of public attributes. 

 

It appears from Table 4.10, that in the three systems, GraphDraw, BSF and Libjava, 

developers prefer to declare attributes as public rather than protected. Remarkably, the 

Libjava system has the lowest number of protected attributes among the five Java systems; 

in fact, it has only one protected attribute. 

 

We next offer some tentative explanations for this phenomenon. 

 



 95

Firstly, the possibility for the low presence of protected attributes in the GraphDraw, BSF 

and Libjava systems is that developers declared some attributes as public for the purpose of 

testing or maintenance, and because of time pressure they did not subsequently change the 

declaration to private or protected. Secondly, the explanation for having more public 

attributes than protected ones is that (perhaps) developers declared public attributes at key 

stages of the development process to provide new objects for ease of communication with 

existing objects. Alternatively, inheritance was used for pure reuse purposes and hence no 

protection was required, as is the case for the graphically-based system GraphDraw (cf. 

Section 4.5.2). Thirdly, the low number of protected attributes may be due to some key 

classes that contain a number of attributes intentionally declared as public in order to 

facilitate the access to these attributes from all classes in the system.  

 

The Libjava system has the highest percentage value for public attributes among the five 

Java systems. The high percentage value for public attributes in Libjava is due to the class 

‘UnicodeBlock’ (see Appendix A), which contains 85 public attributes. By inspecting this 

class, we found it to be an inner class of the class ‘Character’ (see Appendix A). Libjava 

does not support HA3i as the other four systems do and as mentioned earlier, it has only one 

protected attribute. That attribute belongs to a class called ‘SecurityManager’ (see 

Appendix A), which has most of the protected features (i.e., 7 protected methods) of the 

system.  

 

In order to claim support for, or refutation of, Hypothesis three, the proportions of private 

or protected attributes (as opposed to public attributes) need to be re-assessed. 

 

Table 4.11 shows the statistics of the one proportion test for the private attributes (as 

opposed to public attributes) in the five Java systems. It is clear from Table 4.11 that 

Libjava stands out from the other four systems. Statistics show that there is significant 

evidence (p-value < 0.01) for rejecting the corresponding null hypothesis (H03i) for each of 

these four systems. In other words, in the four Java Systems (GraphDraw, BSF, Barat and 

Swing) the proportion of private attributes is greater than that of the public ones. 

 

 



 96

System Sample p 95% Lower bound Exact p-value 
GraphDraw 0.763 0.728 0.000 
BSF 0.664 0.581 0.000 
Libjava 0.494 0.450 0.604 
Barat 0.879 0.844 0.000 
Swing 0.661 0.642 0.000 

Table 4.11: Statistics of the one proportion test for private attributes vs. public attributes in the five Java 
systems 

 

Similarly, Table 4.12 shows the statistics of the one proportion test for the protected 

attributes (as opposed to public attributes) in the five Java systems. From Table 4.12 

statistics show that there is significant evidence (p-value < 0.01) for rejecting the 

corresponding null hypothesis (H03ii) for only two Java systems (Barat and Swing). For the 

remaining three systems (Graphdraw, BSF and Libjava) the corresponding null hypothesis 

(H03ii) is supported.  

 

System Sample p 95% Lower bound Exact p-value 
GraphDraw 0.199 0.144 1.000 
BSF 0.280 0.178 1.000 
Libjava 0.006 0.000 1.000 
Barat 0.741 0.674 0.000 
Swing 0.585 0.564 0.000 

Table 4.12: Statistics of the one proportion test for protected attributes vs. public attributes in the five Java 
systems 

 

After further study of Tables 4.11 and 4.12, we can see that, in terms of the alternative sub-

hypotheses, HA3i is supported by four of the five Java systems, whilst HA3ii is supported 

only in the case of the Barat and Swing systems. 

 

While there is significant support for the first sub-hypothesis of Hypothesis three, further 

investigations need to be carried out to determine whether to accept or refute this sub-

hypothesis (H03i and HA3i). With respect to the second sub-hypothesis of Hypothesis three 

(H03ii and HA3ii) there is only limited support; we thus neither accept nor reject Hypothesis 

three. We conclude that the proportion of public attributes is not always the smallest 

compared to the corresponding private and protected proportions of attributes in OO 

software systems. This seems to tentatively indicate that software developers attend least to 

protected declarations.  

 



 97

4.5.5 Hypothesis four 

In Java, the class ‘Object’ is the root of every class hierarchy, so every class has Object as a 

superclass. In the sequel, as a result of this assumption, we encounter multiple hierarchies. 

However, in this chapter, because we did not follow the inheritance hierarchy beyond the 

classes available in each system, we consider the level of inheritance for each class located 

at the top of its inheritance hierarchy as level zero, and so on. 

 

Table 4.13 presents the number of attributes and methods, declared as private, protected 

and public at each level of the inheritance hierarchy and the number of classes (in 

parentheses) at each level of the inheritance hierarchy for GraphDraw. Table 4.13 shows 

that GraphDraw has only two levels of inheritance, comprising 6 classes. It can also be seen 

from this table that the majority of attributes and methods are at level zero. It is interesting 

to note that for inheriting classes in GraphDraw there are no protected attributes and 

methods. Even though the number of classes of this system is relatively small, GraphDraw 

has certain key classes containing large amounts of functionality. For example, the class 

‘Graph’ (see Appendix A) has 45 methods. 

 
Inheriting classes at 
various levels Private Protected Public 

Zero (2) 5 0 4 Attributes One (4) 0 0 0 
Zero (2) 6 0 48 Methods 
One (4) 0 0 31 

Table 4.13: The number of private, protected and public attributes and methods at all levels of inheritance of 
GraphDraw 

 

Regarding the BSF system, we found only one class ‘EventAdapterImpl’ (see Appendix A) 

at level zero. This class (EventAdapterImpl) forms the root for 13 other classes and it only 

has one protected attribute and one public method at level zero. As can be seen from Table 

4.14, all classes found at level one contain all the methods for BSF except one. No classes 

were found below level one for this system. Two possible reasons may account for this. 

Firstly, the design of BSF is such that developers should be able to tailor their classes to 

their own use without dependencies associated with levels of inheritance. Secondly, the 

BSF system may have been subject to less maintenance effort and, as a result, fewer classes 

have been added in order to enhance its functionality. 

 



 98

Inheriting classes at 
various levels Private Protected Public 

Zero (1) 0 1 0 Attributes One (13) 0 0 0 
Zero (1) 0 0 1 Methods 
One (13) 0 0 31 

Table 4.14: The number of private, protected and public attributes and methods at all levels of inheritance of 
BSF 

 

Table 4.15 presents the data for the Libjava system. It is interesting to note that one of the 

classes, ‘UnicodeBlock’, contains a large number of public attributes and is located at level 

one. Unexpectedly, there are no protected attributes at any level (a possible reason for this 

can be found in the second paragraph on page 93). Considering the number of classes at 

each level of inheritance in Table 4.15, we see that most of the methods are at levels zero, 

one and two. By inspecting the level four classes, we found that each of these classes had 2 

or 3 public constructors and 1 attribute declared without an access specifier (package 

access). However, as we can see from Table 4.15, the latter classes have no methods at all; 

it may be that these classes make use of their superclasses. We note that the vast majority of 

classes are at levels two, three and four. 

 
Inheriting classes at 
various levels Private  Protected Public 

Zero (3) 5 0 1 
One (4) 4 0 85 
Two (10) 2 0 0 
Three (18) 1 0 0 

Attributes 

Four (10) 0 0 0 
Zero (3) 1 1 12 
One (4) 1 1 3 
Two (10) 2 0 4 
Three (18) 0 0 4 

Methods 

Four (10) 0 0 0 
Table 4.15: The number of private, protected and public attributes and methods at all levels of inheritance of 

Libjava 
 

Similarly, Table 4.16 shows the corresponding data for attributes and methods for the Barat 

system. It is interesting to note that all levels of inheritance contain some number of 

attributes and methods, but Barat has the highest number of attributes and methods at level 

zero of the inheritance hierarchies. Again, we note that the vast majority of classes are at 

levels zero and one.      

 

 

 



 99

 
 
 
 
 
 
 
 

Table 4.16: The number of private, protected and public attributes and methods at all levels of inheritance of 
Barat 

 

Table 4.17 shows the data for the Swing system. It is clear that lower levels (three and four) 

of the inheritance hierarchies have fewer classes. (It is worth noting that levels zero and one 

contain the majority of attributes and methods.) In contrast to Libjava, all levels of the 

inheritance hierarchies of Swing contain some number of protected attributes (except level 

four) and methods, but both Libjava and Swing have the same DIT. As expected, large 

numbers of public attributes and methods were found at levels zero, one and two of the 

inheritance hierarchies. This can be accounted for by the nature of the Swing system as a 

library package.  

 
Inheriting classes at 
various levels Private Protected Public 

Zero (102) 265 367 224 
One (205) 221 128 34 
Two (48) 41 4 13 
Three (5) 5 3 0 

Attributes 

Four (1) 3 0 0 
Zero (102) 102 652 1239 
One (205) 109 344 801 
Two (48) 3 34 113 
Three (5) 0 5 9 

Methods 

Four (1) 0 1 3 
Table 4.17: The number of private, protected and public attributes and methods at all levels of inheritance of 

Swing 
 

Table 4.17 also shows large numbers of methods at the top of the inheritance hierarchies; 

the higher levels of the inheritance hierarchies contain high numbers of public methods; the 

opposite is true for lower levels. This may be due to inheritance subclassing employed for 

specialization which is the acknowledged use of inheritance, and for which design 

developers should strive (Budd 2002). We note that the vast majority of classes are at levels 

zero, one and two. 

 

Inheriting classes at 
various levels Private Protected Public 

Zero (10) 7 23 2 
One (13) 1 6 0 Attributes 
Two (2) 0 2 0 
Zero (10) 24 17 215 
One (13) 6 3 156 Methods 
Two (2) 2 0 2 



 100

Table 4.18 shows the number and overall percentage of private, protected and public 

attributes and methods for classes that do not have any inheritance links (except for 

inheriting from abstract classes) for each of the five Java systems.  

 
Non-inheriting classes  
(total number of classes) 

Private 
attributes 

Overall 
percentage 

Protected 
attributes 

Overall 
percentage 

Public 
attributes 

Overall 
percentage 

GraphDraw (43) 336 72.41 27 21.77 101 5.82 
BSF (45) 71 59.17 13 10.83 36 30.00 
Libjava (36) 164 63.08 1 0.38 95 36.54 
Barat (196) 252 70.59 74 20.73 31 8.68 

Attributes 

Swing (696) 651 48.36 357 26.52 338 25.11 
GraphDraw (43) 112 27.59 1 0.25 293 72.17 
BSF(45) 27 10.04 11 4.09 231 85.87 
Libjava (36) 45 7.74 10 1.72 526 90.53 
Barat (190) 112 6.11 22 1.20 1698 92.68 

Methods 

Swing (696) 333 7.34 409 9.02 3793 83.64 
Table 4.18: The number and overall percentage of private, protected and public attributes and methods for 

non-inheriting classes for each of the five Java systems 
 
From Table 4.18, it is clear that all the five Java systems have protected attributes and 

methods for the classes that do not belong to any inheritance hierarchy. However, these 

classes contain a significant number of protected attributes and methods in comparison to 

the classes that engage in inheritance. This may be because when developers created these 

classes they expected them to be used as superclasses in future development. The 

percentage values of public methods for the five Java systems are comparable and high; this 

conforms to expected practice in the declaration of methods in OO systems. 

 

Comparing Tables 4.13 to 4.17 in terms of attributes, all the five Java systems have most of 

their private, protected and public attributes at levels zero and one. On the other hand, there 

are no protected attributes at all levels of inheritance in two out of the five Java systems 

(Tables 4.13 and 4.15); developers seem to prefer declaring attributes as private or public. 

For the remaining three systems (BSF, Barat and Swing) most of the protected attributes 

are found at the top of their inheritance hierarchies (Tables 4.14, 4.16 and 4.17). 

 

We next consider methods; again, all the systems have a large amount of their methods at 

the first two levels of inheritance. Both BSF and GraphDraw have no protected methods at 

any level of inheritance. However, the majority of the protected methods for the other three 

systems (Libjava, Barat and Swing) are found at the top of their inheritance hierarchies. 

 



 101

Table 4.19 presents the percentage of inheriting and non-inheriting classes for each the five 

Java systems. Most of the system classes seem to be created in isolation, since the 

percentage of inheriting classes is overall low in comparison with that of the non-inheriting 

classes. Except for Libjava, the other four systems have more than 65% of their classes 

without inheritance links. This is perhaps because developers provide functionality without 

considering the available classes (due to time and cost pressures). Alternatively, they may 

prefer to create classes without support or links with other classes in order to avoid 

dependency problems. 

 

 

 

 
 

Table 4.19: Percentage of inheriting and non-inheriting classes in each of the five Java systems 
 

All five Java systems have considerable numbers of protected attributes and methods, for 

the non-inheriting classes (Table 4.18); this may be because the developers’ intention was 

to incorporate these classes in the inheritance structure in a future development. 

 

With the purpose of claiming support for, or refutation of, Hypothesis four, the private, 

protected and public attributes and methods for classes at top levels of inheritance require 

re-assessment.  

 

Table 4.20 shows the number of the protected attributes of classes located at the top levels 

of inheritance and the total number of protected attributes of classes located at all levels of 

inheritance for the five Java systems. 

 
 

 

 

 
Table 4.20: The number of protected attributes at the top and all levels of inheritance for the five Java systems 
 

System Inheriting Non-inheriting 
GraphDraw 12.24% 87.76% 
BSF 23.73% 76.27% 
Libjava 55.56% 44.44% 
Barat 11.31% 88.69.% 
Swing 34.15% 65.85% 

System Protected attributes at the 
top levels of inheritance 

Total number of protected attributes 
at all levels of inheritance 

GraphDraw 0 0 
BSF 1 1 
Libjava 0 0 
Barat 23 25 
Swing 495 498 



 102

Table 4.21 shows the statistics of the one proportion test for the protected attributes of 

classes that are located at the top levels of inheritance (as opposed to those at bottom levels 

of inheritance) in the five Java systems. Statistics from Table 4.21 show that there is 

significant evidence (p-value < 0.01) for rejecting the corresponding null hypothesis (H04i) 

for Barat and Swing. For the remaining three systems (Graphdraw, BSF and Libjava), 

however, a conclusion cannot be drawn, in the case of GraphDraw and Libjava, because of 

the absence of protected attributes, and in the case of BSF support for the null hypothesis 

obtains. 

 
System Sample p 95% Lower bound Exact p-value 

GraphDraw n/a n/a n/a 
BSF 1.000 0.500 0.500 
Libjava n/a n/a n/a 
Barat 0.920 0.769 0.000 
Swing 0.661 0.642 0.000 

Table 4.21: Statistics of the one proportion test for protected attributes located at the top levels of inheritance 
vs. those at the bottom levels in the five Java systems 

 

Table 4.22 shows the number of the protected methods of classes that are located at the top 

levels of inheritance and the total number of protected methods of classes located at all 

levels of inheritance for the five Java systems. 

 

 

 

 
 
 
Table 4.22: The number of protected methods at the top and all levels of inheritance for the five Java systems 

 

Table 4.23 shows the statistics of the one proportion test for the protected methods of 

classes that are located at the top levels of inheritance (as opposed to those at bottom levels 

of inheritance) in the five Java systems. Statistics from Table 4.23 show that there is 

significant evidence (p-value < 0.01) for rejecting the corresponding null hypothesis (H04ii) 

for Barat and Swing; the null hypothesis (H04ii) is accepted for Libjava. For the remaining 

two systems (Graphdraw and BSF), however, a conclusion cannot be drawn because of the 

absence of protected methods. 

 

System Protected methods at the 
top levels of inheritance 

Total number of protected methods at 
all levels of inheritance 

GraphDraw 0 0 
BSF 0 0 
Libjava 2 2 
Barat 17 19 
Swing 996 1002 



 103

System Sample p 95% Lower bound Exact p-value 
GraphDraw n/a n/a n/a 
BSF n/a n/a n/a 
Libjava 1.000 0.224 0.250 
Barat 0.895 0.704 0.000 
Swing 0.994 0.988 0.000 

Table 4.23: Statistics of the one proportion test for protected methods located at the top levels of inheritance 
vs. those at the bottom levels in the five Java systems 

 

After some further scrutiny of Tables 4.21 and 4.23, we can see that alternative sub-

hypotheses HA4i and HA4ii are supported by two of the five Java systems (Barat and Swing). 

There is only limited support for the first and second sub-hypotheses of Hypothesis four; 

we thus neither accept nor reject Hypothesis four. Further investigations need to be carried 

out to determine whether to accept or refute these sub-hypotheses (H04i and H04ii). We 

conclude that the proportion of protected attributes for classes located at the top of the 

inheritance hierarchy is not always greater than the proportion of those located at the 

bottom of the inheritance hierarchy. Moreover, further investigations need to be carried out 

as to why a large number of the system classes, except in the case of Libjava, do not engage 

in inheritance. 

 

 

4.6 Discussion  
 

In any study of this nature, the caveats to its validity have to be considered. The first caveat 

which needs to be considered is that the five C++ systems investigated were all of similar 

type and size. This is counterpoised by the fact that the five C++ and the corresponding five 

Java systems were deliberately chosen to reflect a wide range of application domains and 

sizes (see Section 3.3.3). 

 

 The study could be criticised for only analysing the header files of the five C++ systems. 

However, it is unlikely, from a statistical point of view, that the results would differ had all 

the classes in each system been analysed.  

 

In terms of the analysis of friends in each of the five C++ systems, the study could be 

criticised for treating each friend declaration as the same. It is possible that friends are used 

(particularly in the library-based systems) for the purpose of operator overloading, and not 



 104

as a means of accessing the class features of the class they are declared in. However, 

treatment of this possibility would be a matter for future research. We further accept that 

use of friends in C++ software may be a necessary evil (neither Java nor Smalltalk have an 

equivalent of the ‘friends’ facility); we could therefore blame the designers of the C++ 

language for their use. This, however, does not invalidate the results from this study. 

 

Three themes, related to the five C++ systems, come across clearly from this chapter. The 

first theme is that there are significant amounts of protected class features in systems for 

classes which do not engage in inheritance. This can either be an encouraging sign (i.e., the 

developers deliberately made those features protected for future use), or a worrying sign, in 

the sense that those classes once participated in an inheritance hierarchy and no longer do; 

as such, their declarations should have been changed when it was established that they no 

longer participated in an inheritance hierarchy, for the benefit of future maintainers. 

 

The second theme relates to the consistent results for the ET++ framework, which showed 

itself to conform well to OO encapsulation design principles. It contained zero protected 

declarations for classes not engaging in inheritance (Tables 4.4 and 4.6). It also tended to 

use protected declarations in inheriting classes liberally and had the second lowest number 

of violations of encapsulation via the friends facility (see Table 4.8). The research herein 

might point to the use of frameworks as a means of ensuring some level of design and 

implementation (architectural) stability. The ET++ system compares favourably with the 

two library-based systems, GNU and LEDA. 

 

The third theme relates to the relatively high level of private methods in the two library-

based systems, which we attribute to fine-tuning of the classes in the respective systems. 

This would imply that declaring class features as private is largely achieved after careful 

thought has been given to the nature of the methods in a class. 

 

Correspondingly, two themes emerge clearly from studying the five Java systems in this 

chapter. The first theme is that the existence of protected features is limited in most of the 

Java systems, especially for inheriting classes. This may be a sign that developers find it 

easier to declare class features either as private or public instead. It also draws attention to 



 105

the need for solutions to these symptoms; that is, the existence of public attributes and the 

scarcity of protected ones. 

 

The second theme is the limited use of inheritance between concrete classes for non-

library-based systems (GraphDraw, BSF and Barat). The depth of the inheritance tree in 

these systems is less than that for the remaining two library-based systems. At the same 

time, the number of inheriting classes in GraphDraw, BSF and Barat is significantly less 

than the number of non-inheriting classes. These observations may be an indication that 

there is a need for some type of refactoring, especially related to tidying up the inheritance 

structure, such as pull up field/method, extract subclass, and extract superclass (Fowler 

2000). 

 

 

4.7 Summary 
 
In this chapter we have investigated encapsulation trends and the relationship between 

encapsulation and inheritance in ten real-life software systems. We examined the trends of 

declaring attributes and methods as private, protected or public in classes of five C++ and 

five Java systems. We found that, to an extent, encapsulation has not been properly used 

when inheritance is considered. Moreover, declaring attributes as public, which violates the 

principle of encapsulation, appears to exist in some of the investigated systems. 

 

The OO paradigm implements private, protected and public access specifiers as part of its 

syntax. As a fundamental OO concept, encapsulation was incorporated into programming 

languages to provide the developer with a means by which access to the private features of 

a class could be controlled (or encapsulated) and public features made available to all 

classes. The responsibility for enforcing these access mechanisms was thus devolved to the 

compiler and freed the developer from associated implementation and testing issues. 

 
The concept of inheritance is also a core feature of OO languages because it promotes the 

reuse of code and, in theory, reflects the way that we as humans structure and manipulate 

information. Proper use of inheritance requires the careful consideration of how class 

features should be encapsulated. While public features can be shared by any other class, the 



 106

protected keyword relates specifically to the use of inheritance by allowing only subclasses 

of a class X to access the protected class features of X.  

 

Of course, the friends facility (as a form of coupling) violates encapsulation because it 

allows access by a class, say Y, to the private parts of class X. Friends can thus be used 

within an inheritance hierarchy to take advantage of all superclass functionality, whether 

private, protected or public. While this is a convenient mechanism for developers, the 

encapsulation/inheritance semantics are completely subverted as a result. (We do accept 

that friends have a valid purpose when used for operator overloading, but in the context of 

the Thesis, we think of ‘friends’ usage in the former sense.) 

 

The use of friends stores up future maintenance difficulties, since we can no longer rely on 

the compiler to prevent side-effects. Frequent misuse of friends in this sense, together with 

other inappropriate use of encapsulation, thus leads to a spiral of poor maintenance, 

anomalies and ‘decay’ in code, which can only be addressed by techniques such as 

refactoring. In Chapters 5 and 6, we thus explore the possibilities and potential for 

remedying encapsulation and inheritance anomalies caused over time by poor developer 

maintenance practice. 

 

In the next chapter, we empirically investigate the potential for the ‘Encapsulate Field’ 

refactoring whose mechanics change an attribute defined as ‘public’ to that of ‘private’. 



 107

CHAPTER 5  Encapsulate Field Refactoring 
 

 

 

5.1 Introduction 
 

Encapsulation is a key principle of the OO paradigm (Snyder 1986). Equally, proper use of 

inheritance requires us to consider protected declarations as standard design practice. One 

of the techniques widely used to improve the structure and comprehension of software 

systems is refactoring. We found in the previous chapter that encapsulation had not been 

properly used when inheritance was considered and declaring attributes as public only 

appears to exist in some of the investigated systems.   

 

In this chapter, we empirically investigate the opportunities, benefits, and problems of 

refactoring related specifically to encapsulation. A sample of classes from each of the five 

Java systems, which are described in Chapter 3, was chosen and the ‘Encapsulate Field’ 

(EF) refactoring was then considered (Fowler 2000). The EF refactoring changes public 

attribute declarations to private thereby providing added encapsulation. Empirical results 

indicated several key reasons why this particular refactoring, while trivial in principle, can 

be either simple or difficult to implement in practice, depending on the features of the class 

and its role within the inheritance hierarchy. The problem of compound refactorings 

(requiring the application of more than one refactoring, e.g., ‘move method’) is in turn 

dependent on the ease of carrying out ‘pre-refactorings’. We support our analysis with 

reflection on Fowler’s original refactorings and empirical evidence from the five Java 

systems. 

 

This chapter is organised as follows: in the next section, motivation and related work is 

described, followed in Section 5.3 by a description of EF refactoring. Details of the 

empirical evaluation are described in Section 5.4. Section 5.5 provides the data analysis for 

the research. Finally, a summary of this chapter is given in Section 5.6. 

 



 108

We note that part of the research on which this chapter is based was first published in 

(Najjar et al. 2005). 

 

 

5.2 Motivation and Related Work 
 
A key motivation for the work described in this chapter relates to earlier work (Counsell et 

al. 2002), as presented in Chapter 4, where we empirically investigated the trends in 

encapsulation and inheritance from five C++ and five Java systems. It was found therein 

that only one system (a framework – ET++ (Weinand et al. 1988)) conformed to sound 

encapsulation principles in terms of the distribution of private, protected and public 

attributes and methods; in each of the remaining four C++ systems, protected attributes and 

methods in classes not using inheritance were found; this would suggest that over time, the 

declaration of attributes tends to deteriorate in many cases contrary to the fundamental 

principles of OO. Similarly, the existence of protected features is limited in most of the five 

Java systems, especially for inheriting classes; it seems that it was easier for developers to 

declare attributes as public instead of protected. 

 

Our study in this chapter draws attention to the importance of the inheritance hierarchy with 

reference to the five Java systems, and the subsequent need for refactoring in order to 

ameliorate the effects of encapsulation anomalies. In Snyder (Snyder 1986), the 

relationship between encapsulation and inheritance was studied; it was suggested that 

introduction of inheritance severely compromised the benefits that encapsulation offered. 

On a similar theme, an experiment, conducted by Skoglund (Skoglund 2003), used software 

engineers and their view of encapsulation issues. Some of the interviewed subjects stated 

that, because of time pressure and testing reasons, they often changed private declarations 

to public. This type of study also motivates the research described in this chapter, namely, 

in order to overcome encapsulation anomalies we change public declarations to private. 

 

In terms of refactoring research, work has been done on investigating the benefits (both 

empirically and theoretically) gained from applying the techniques of refactoring (Opdyke 

1992, Demeyer et al. 2000, Tokuda and Batory 2001, Mens and Tourwe 2004, O'Keeffe 



 109

and O'Cinne'ide 2006). In Najjar et al. (Najjar et al. 2003), the opportunities, benefits and 

problems of refactoring class constructors across a sample of classes from the same five 

Java systems as used herein were investigated. The refactoring ‘Replace Multiple 

Constructors with Creation Methods’ proposed by Kerievsky (Kerievsky 2004) was 

applied.  Benefits in terms of improved encapsulation and for potentially reduced numbers 

of comment lines were found. Potential improvement in class comprehension was also a 

feature of that refactoring.  

 

Finally, a key feature of our analysis is the use of metrics to quantitatively capture the 

features of the systems under investigation. Many metrics have been proposed and used for 

analysing OO software both theoretically and empirically (Chidamber and Kemerer 1994, 

Lorenz and Kidd 1994, Harrison et al. 1998b, Briand et al. 1999b, Cartwright and Shepperd 

2000). 

 

In this chapter, we use simple counts of the number of the class feature ‘number of 

attributes’. We also include counts of the distribution of classes in the inheritance 

hierarchies of the five Java systems. One feature of the systems studied is the set of 

dependent classes for a particular class. Each dependency could be seen as a coupling and 

some research has also addressed this area (Briand et al. 1997b, Harrison et al. 1998a); a 

sound SE tenet is that developers should aim to minimise coupling in their code (Pressman 

2000).  

 

 

5.3 Encapsulate Field Refactoring 
 

In this chapter, we empirically investigate the opportunities, benefits and problems 

associated with applying the EF refactoring, first proposed by Fowler in his seminal text 

(Fowler 2000). The EF refactoring changes the declaration of an attribute from public to 

private; accessors are then provided to offer access to this attribute to classes which had 

free access before. According to Fowler, a principal tenet of OO is that all data should be 

made private. When data is declared public however, other objects can access and modify 

that data without the owning object knowing. There are, therefore, implications for ease of 



 110

maintenance and program complexity, i.e., to maximise maintainability and minimise 

program complexity, the developer should take advantage of the in-built protective features 

offered by the Java language.  

 

In order to apply EF refactoring, according to Fowler (Fowler 2000), five steps should be 

followed: 

 

• Create getting and setting methods. 

• “Find all clients outside the class that reference the field. If the client uses the value, 

replace the reference with a call to the getting method. If the client changes the 

value, replace the reference with a call to the setting method. If the field is an object 

and the client invokes a modifier on the object, that is a use. Only use the setting 

method to replace an assignment.” (Fowler 2000). 

• Compile and test after each change. 

• When all references have been modified, change the attribute declaration to private. 

• Compile and test. 

 

After each step a rigorous test should be made to ensure that the external behaviour of the 

software system is preserved. For any type of refactoring, testing after each step in order to 

guarantee that the external behaviour of the software system has been preserved, is of 

paramount importance. We have chosen the class DPoint3 from GraphDraw as an example 

of EF refactoring.  

 

5.3.1 Example: the DPoint3 class 

The class DPoint3 has three public attributes which are used by two other classes 

(dependent classes) EdgePropertiesDialog and Node.  
 

public class DPoint3 
{ 

  … 
  public double x, y, z; 
  … 

} // end of DPoint3 class  
 



 111

Statement number 8 in the EdgePropertiesDialog class has direct access to the three public 

attributes, x, y and z. 
 
1. public class EdgePropertiesDialog extends Dialog 
2. { 
3. … 
4. public void setEdge(Edge edge_in, Graph graph_in) 
5.  { 
6.  … 
7.  DPoint3[] points = edge_.points(); 
8.  for(int i = 0; i < points.length; i++)points_string += 

  points[i].x + " " + points[i].y + " " + 
points[i].z + "\n"; 

9.  pointsText_.setText(points_string); 
10.  … 
11.  } 
12. … 
13. }//end of EdgePropertiesDialog class 
 
 
Also, in the Node class the two statements, 9 and 10, have direct access to the two public 
attributes, x and y. 
 
1. public class Node implements Cloneable, ImageObserver 
2. { 
3. … 
4. public void draw(Component comp, Graphics graphics, Matrix44  
  transform, int quality) 
5.  { 
6.  … 
7.  DPoint3 position = new DPoint3(x_, y_, z_); 
8.  position.transform(transform); 
9.  int x = (int)position.x; 
10.  int y = (int)position.y; 
11.  … 
12.  } 
13. … 
14. }//end of Node class 
 
 

The dependent classes, EdgePropertiesDialog and Node, no longer have direct access to the 

public attributes, x, y and z, of DPoint3. To restore direct access set and get methods will 

be used for each of the DPoint3 public attributes. 

 

First we have to create the set and get methods for the public attributes of the DPoint3 class 

(x, y and z), namely 
 

public void setx(double d) { return (x = d);} 
public void sety(double d) { return (y = d);} 
public void setz(double d) { return (z = d);} 



 112

public double getx() {return x;} 
public double gety() {return y;} 
public double getz() {return z;} 

 

In the EdgePropertiesDialog class, statement 8 will be replaced by the statement 

 
 points_string += points[i].getx() + " " +   
 points[i].gety()+” " + points[i].getz() + "\n"; 
  
       

while in the Node class statements 9 and 10 will be replaced by 
 
 int x = (int)position.getx(); 
 int y = (int)position.gety(); 
 

 

After each of the changes, we have to compile and test to ensure that the external behaviour 

of the classes has been preserved. 

 
In order to investigate the EF refactoring, samples of classes were chosen from the five 

Java systems and the potential for applying the mechanics of this refactoring were 

investigated. Results showed certain potential for applying the refactoring per se. In other 

words, no shortage of opportunities was found for applying the refactoring (public 

attributes were found in a number of classes in each system). However, three features were 

exhibited by the five Java systems that suggest applying the EF refactoring is not as 

straightforward or applicable as it first seems. Firstly, the number of dependent classes 

requiring changes as a result of applying the EF refactoring may prohibit the refactoring, 

secondly, the large number of classes with zero attributes would seem to render this 

refactoring almost redundant.  

 

A final finding was the practical trade-off and applicability of the EF refactoring when 

considering different application domains. Some of the systems studied were found to be 

more amenable to the EF refactoring than others. This chapter also raises a number of 

current issues in the refactoring field; these are considered in Sections 5.5.1 and 5.5.2. 

 



 113

5.4 Empirical Investigation 
 

The empirical investigation is divided into two parts. Firstly, we present the salient features 

of data collection. Secondly, we provide the analysis of the data in terms of dependent 

classes and zero attributes in the context of inheritance. 

  

5.4.1 Data collected 

A software tool was developed (see Appendix B) to automatically collect the required data 

from the five Java systems; the following data was then collected: 

 

1. The total number of attributes (private, protected and public) declared in each class. 

2. For each class in the sample, the number of classes that ‘used’ those public attributes. 

Such classes are termed ‘dependent classes’. 

 

For the latter category of data collected, we interpret ‘used’ as all those classes which 

reference and/or modify any attributes under consideration. Part of the mechanics of the EF 

refactoring proposed by Fowler (Fowler 2000) is to “find all clients outside the class that 

reference the field” and then provide getting and/or setting methods to provide access to 

those clients. Fowler also states that, as part of the mechanics of the EF refactoring,  

 

“If the field is an object and the client invokes a modifier on the object, that 

is a ‘use’. Only use the setting method to replace an assignment”. 

 

The mechanics of the EF refactoring can therefore become even more involved if the type 

of an attribute being considered is an object rather than a primitive type such as ‘int’ or 

‘boolean’. Herein, we consider a ‘use’ as any occurrence of an outside object accessing 

and/or changing an attribute of the class being considered.  

 

In addition to the metrics collected, we also considered, for each class, its position in the 

inheritance hierarchy, where Object is at the root of the entire hierarchy. Note that we did 

not include interfaces or abstract classes in our study. Interfaces were excluded because 



 114

they make all of their defined attributes and methods automatically public. On the other 

hand, we did consider abstract classes as a special type of class some of whose methods 

may be left unimplemented - they are different to other classes in this respect.    

 

 

5.5 Data Analysis 
 

Our analysis of the five systems revealed, in each case, a number of anomalies associated 

with the EF refactoring. The first of these relates to the dependencies of other classes (i.e., 

clients) when implementing the EF refactoring. In other words, the occurrence of ‘uses’ by 

objects of the set of attributes being considered. 

 

Table 5.1 presents the total number of classes and the numbers of sample classes which 

were taken as a basis for our investigation in this chapter (see Section 3.3.3.1). 

 

System Total Classes (more than 
two attributes) Sample Size 

GraphDraw 49 41 9 
BSF 59 19 4 
Libjava 81 19 4 
Barat 221 64 13 
Swing 1043 312 63 

Table 5.1: Number of classes with two or more attributes for the five Java systems 
 

 

5.5.1 Dependent classes 

We observe that dependencies between classes present ‘coupling’. We view any coupling, 

particularly dependencies which, in some sense violate sound OO practice, as an overhead. 

Having to establish which classes ‘use’ the public attributes of another class is a heavily 

time-consuming and computationally costly activity. Table 5.2 shows the sample of the 

nine classes taken from GraphDraw. It is clear that for the five classes with public 

attributes, on three occasions (Classes 5, 6 and 9) at least one other class uses at least one of 

the public attributes. As such, each of those three classes would have to be modified in 

some way to preserve access to the public attribute(s) which would now have become 

private.  



 115

 
 
 
 
 
 
 
 
 

 
 

Table 5.2: Attributes and dependent classes for GraphDraw 
 
 
Additionally, the classes containing attributes whose declaration had been changed from 

public to private also need to provide accessors (i.e., setters and getters) for each attribute. 

The EF refactoring is thus problematic for these three classes. 

 

We note that the n/a entry in the table appears when there are no public attributes in the 

class (and hence no dependent classes). Furthermore, we note that the number of protected 

attributes in the class can be derived by subtracting the sum of private and public attributes 

from the total number of attributes. 

 

Table 5.3 shows the same data for the BSF system. Only one class has potential for 

applying the EF refactoring, but five classes need to be modified in this instance. This 

highlights a controversial yet interesting aspect of refactoring, generally. The time required 

to modify and test those six classes (that includes the class with the attribute being 

modified) presents an opportunity cost. In other words, other refactorings may be perceived 

as more viable, more beneficial and may require less time and effort. Equally, it may be 

more worthwhile choosing classes whose dependencies are fewer, if only limited resources 

for refactoring and testing time are available to the developer. One of the reasons that 

Fowler (Fowler 2000) states for developers not doing refactoring as much as they should is 

simply lack of time.  

 

 
 

 

 
 
 

Table 5.3: Attributes and dependent classes for BSF 

GraphDraw System 

Class Attributes Private Public Dependent Classes 
1 2 2 0 n/a 
2 3 0 3 0 
3 4 4 0 n/a 
4 6 6 0 n/a 
5 12 0 12 1 
6 13 3 6 4 
7 20 13 2 0 
8 30 30 0 n/a 
9 66 57 9 1 

BSF System 

Class Attributes Private Public Dependent Classes 

1 2 2 0 n/a 
2 3 0 3 5 
3 7 7 0 n/a 
4 25 25 0 n/a 



 116

This limited opportunity for the EF refactoring comes as no surprise, since in previous 

work using the same five Java systems, BSF consistently showed itself to conform best to 

OO design principles (Najjar et al. 2003). Thus we would have expected to find little 

opportunity for the EF refactoring in BSF.               

 

Interestingly, Table 5.3 also shows the classes chosen to contain zero protected attributes, 

where as mentioned earlier the number of protected attributes can be obtained by 

subtracting the sum of private and public attributes from the total number of attributes; this 

would seem to make sense for a framework-based system such as BSF where design 

decisions are left to the developer. Yet more interesting is why it is there are any public 

attributes if the generally accepted tenet is for attributes to be declared private? Again, we 

can only hypothesise that it is left to the developer to tailor the particular attributes to their 

own requirements and the developers of BSF were judging the likely role that the attributes 

would play when they are used as part of an application.   

 

Table 5.4 shows the analogous data for Libjava. Most remarkably, no classes from the 

sample chosen have any dependencies; this would suggest that an EF refactoring would be 

considerably more easily achievable than for the previous two systems. Again, this 

highlights another current refactoring issue; specific refactorings may be more appropriate 

to different types of application domain. The Libjava library-based system appears to be a 

system amenable to the EF refactoring and every class in the sample is a candidate for 

refactoring.   

 
 

  

 

 
Table 5.4: Attributes and dependent classes for Libjava 

 

Table 5.5 shows the corresponding data for the Barat system. Four of the classes have 

public attributes and are hence candidates for the EF refactoring. However, only two of the 

four classes have zero dependencies. These two classes provide scope for refactoring. 

 

Libjava System 

Class Attributes Private Public Dependent Classes 

1 4 1 3 0 
2 5 4 1 0 
3 8 2 6 0 
4 112 110 2 0 



 117

Barat System 

Class Attributes Private Public Dependent Classes 
1 2 2 0 n/a 
2 2 2 0 n/a 
3 2 2 0 n/a 
4 2 1 0 n/a 
5 3 3 0 n/a 
6 3 0 0 n/a 
7 4 4 0 n/a 
8 4 0 0 n/a 
9 5 3 2 2 
10 6 0 0 n/a 
11 8 0 8 3 
12 14 8 4 0 
13 21 5 2 0 

Table 5.5: Attributes and dependent classes for Barat 
 

The largest data sample was that for the Swing system. Table 5.6 shows the data for the 

Swing system. Despite the relatively large sample size of the system, the number of 

candidate classes for EF refactoring is small; only 11 classes have public attributes from a 

sample size of 63; the minimum of public attributes is 1 and the maximum 80. We also note 

that 13 classes have zero private and public attributes. The number of class dependencies in 

this system is relatively small, namely, 11. Out of these only 4 are most appropriate for the 

EF refactoring, namely, those that have an entry of zero under the column ‘Dependent 

Classes’. 

 

An interesting feature in Swing is the existence of a small set of classes with large numbers 

of public attributes. We would consider these classes as key classes (Counsell et al. 2000). 

We view a key class as one with large numbers of attributes and methods. As such, their 

existence is of importance to the overall functioning of the system (many classes may 

depend on key classes). 

 

Inspection of the samples of classes chosen revealed the Libjava system to comprise a 

class, called ‘StrictMath’, with 112 attributes and 38 methods. Equally, GraphDraw has a 

class, called ‘GraphCanvas’, with 66 attributes and 63 methods. We suggest that it is not 

always true that these types of classes are obvious classes for refactoring. In many cases, 

the classes have large numbers of attributes and methods for a valid reason. 

 

 

 



 118

Swing System 
Class Attributes Private Public Dependent Classes 
1 2 2 0 n/a 
2 2 0 0 n/a 
3 2 0 0 n/a 
4 2 0 0 n/a 
5 2 0 0 n/a 
6 2 2 0 n/a 
7 2 2 0 n/a 
8 2 2 0 n/a 
9 2 2 0 n/a 
10 2 1 1 3 
11 2 0 0 n/a 
12 2 2 0 n/a 
13 2 2 0 n/a 
14 2 2 0 n/a 
15 3 3 0 n/a 
16 3 2 0 n/a 
17 3 3 0 n/a 
18 3 0 0 n/a 
19 3 0 0 n/a 
20 3 3 0 n/a 
21 3 3 0 n/a 
22 3 3 0 n/a 
23 3 1 0 n/a 
24 3 3 0 n/a 
25 3 3 0 n/a 
26 4 0 0 n/a 
27 4 0 0 n/a 
28 4 1 0 n/a 
29 4 4 0 n/a 
30 4 4 0 n/a 
31 4 0 0 n/a 
32 4 0 0 n/a 
33 4 4 0 n/a 
34 5 0 2 4 
35 5 3 0 n/a 
36 5 5 0 n/a 
37 5 0 0 n/a 
38 5 5 0 n/a 
39 5 5 0 n/a 
40 6 6 0 n/a 
41 6 0 6 1 
42 7 0 2 5 
43 7 7 0 n/a 
44 7 5 0 n/a 
45 8 2 0 n/a 
46 8 8 0 n/a 
47 9 8 0 n/a 
48 9 0 9 0 
49 10 0 0 n/a 
50 10 10 0 n/a 
51 11 1 0 n/a 
52 12 6 1 1 
53 13 11 0 n/a 
54 13 12 0 n/a 
55 15 8 0 n/a 
56 17 2 4 0 
57 20 20 0 n/a 
58 23 4 0 n/a 
59 28 26 2 0 
60 31 5 0 n/a 
61 40 9 16 0 
62 53 23 29 2 
63 81 1 80 14 
Table 5.6: Attributes and dependent classes for Swing 

 



 119

In the next section, we consider another feature of the five Java systems studied which 

renders EF refactoring inapplicable, namely, that of classes with zero attributes and the role 

that the inheritance hierarchy plays in this instance.  

  

5.5.2 Zero attributes and inheritance 

The purpose of EF refactoring is to modify the declaration of attributes from public to 

private. EF thus assumes that the classes do indeed have attributes. Table 5.7 represents the 

number of classes in each system with zero attributes; it also shows the total number of 

classes in each system and the percentage of that total which classes with zero attributes 

represents. Clearly, a high percentage of classes with zero attributes renders the EF 

refactoring inapplicable in these cases. For the BSF, Libjava and Swing systems, over fifty 

percent of classes fall into this category and well over a third of classes in the Barat system. 

This feature raises another interesting issue in refactoring. The lack of opportunity for 

carrying out this refactoring might at first seem to be a disadvantage. However, the opposite 

is really the case. Other refactorings such as the ‘Move Method’ (MM) (Fowler 2000), 

where one method is moved to a class more in line with its coupling links, can be applied 

without any requirement on the part of the developer to look for and preserve dependencies 

if there are zero attributes. In fact, Fowler states that 

 

“Once I’ve done Encapsulate Field I look for methods that use the new methods to see 

whether they fancy packing their bags and moving to the new object with a quick Move 

Method.” 

 

In other words, the absence of any opportunity to carry out the EF refactoring makes it 

easier to undertake certain other types of refactoring. Earlier work by Counsell et al. 

(Counsell et al. 2003) has shown empirically that manipulating methods is one of the most 

common refactorings over different versions of the same software. The lack of opportunity 

for one refactoring may thus pave the way for other refactorings to be applied.  

 

Another interesting feature of Table 5.7 is the high percentage of zero classes for the two 

library-based systems, namely, Libjava and Swing. One explanation for these high 

percentages might be that the classes with zero attributes inherit the data they require from 



 120

superclasses and do not need attributes and methods of their own. They do not therefore 

tend to have many attributes of their own. 

 

System Total 
Classes (with zero 

attributes) 
Percentage 

GraphDraw 49 5 10.20 
BSF 59 34 57.62 
Libjava 81 52 64.20 
Barat 221 76 33.93 
Swing 1043 604 57.14 

Table 5.7: Number of classes with zero attributes in each system 
 

Table 5.8 illustrates a further interesting feature of the five Java systems. It shows how few 

classes with zero attributes are located in the middle of the inheritance hierarchy, when they 

are expressed as a percentage of the total number of Classes with Zero Attributes (CZA).  

 

System 
Classes located in ‘middle’ 

of inheritance hierarchy 

Percentage 

of CZA 

Leaf 

classes 

Percentage 

of CZA 

GraphDraw 0 n/c 5 100 
BSF 0 n/c 34 100 
Libjava 8 15.38 44 84.62 
Barat 3 3.95 73 96.05 
Swing 27 4.47 577 95.53 

Table 5.8: Pattern in distribution of classes in the inheritance hierarchy 
 

Here, we define a class in the middle of the inheritance hierarchy as one which is neither a 

root nor a leaf class. We define a root class as one extending directly or indirectly the 

universal class ‘Object’. It also shows that the vast majority of classes with zero attributes 

are leaf classes, i.e., classes with no descendants. In other words, those classes are more 

likely to inherit (i.e., to extend other classes) than be inherited (extended) themselves by 

other classes. 

 

From a refactoring perspective, it thus becomes easier to carry out MM refactoring if the 

class being considered has no other classes inheriting from it, since we have fewer 

dependencies to check. On the other hand, if the inheriting class makes use of features in a 

superclass, then the MM refactoring is more problematic. 

 

Table 5.8 also shows the percentage of CZA that the number of leaf classes represents. We 

remark that the percentages are exceptionally high for all systems. Frustratingly, we can 



 121

offer no explanation for the very low numbers of classes in the middle of the inheritance 

hierarchy and view this as an investigation and potential avenue for future research. It may 

well be symptomatic of the emphasis placed on inheritance in Java. 

 

 

5.6 Summary 
 

In this chapter, we have empirically investigated the potential for applying the EF 

refactoring (Fowler 2000). The main conclusion of this study is that applying the EF 

refactoring is often problematic because of the dependencies of other classes on those 

attributes whose declaration is changed from public to private; it is also inapplicable in 

many cases due to lack of public attributes. Finally, and paradoxically, the traits in the 

inheritance hierarchy make it easier to perform the MM refactoring. Failure to find and 

apply some refactorings is actually an advantage in terms of what it allows the refactorer to 

achieve. 

 

In the next chapter we pursue further the empirical investigation of refactoring whereby we 

replace multiple constructors with creation methods. 



 122

CHAPTER 6 Refactoring Class Constructors 

 

 

 
Constructors play an essential role in OO languages as a means of object creation. Yet, 

very little empirical evidence exists on constructors, trends in their composition and how 

they impact comprehension and encapsulation of OO classes. 

 

In Chapter 5 we presented an empirical study describing the benefits, problems and 

opportunities associated with the EF refactoring, originally introduced by Fowler (Fowler 

2000). In this chapter, we empirically investigate the opportunities, benefits and problems 

of refactoring class constructors across a sample of classes from the same five Java 

systems. The refactoring used, namely, RMCCM, was applied to each of a set of classes 

containing three or more constructors. Empirical results showed benefits in terms of 

removed (duplicated) lines of code across the majority of systems. They also showed the 

potential for improved class comprehension by the creation of non-constructor methods (as 

a replacement for constructors) and improved encapsulation of class features through use of 

a private catchall constructor. 

 

In terms of problems encountered, frequent and inconsistent use of the super construct 

made refactoring prohibitively difficult in some cases; the existence of Java interfaces also 

meant a lack of scope for constructor refactoring. We also investigated the role that 

inheritance played in the choice of classes to refactor as well as patterns in comment lines 

among the constructors studied. Results overall indicate a clear and tangible benefit to be 

gained from investigation and implementation of refactoring techniques in Java, but with 

caution being exercised in certain cases. Refactoring of constructors in practice is not as 

straightforward as the theory might suggest and a number of factors need to be considered 

before such refactoring is undertaken. 

 

We note that part of the research on which this chapter is based was first published in 

(Najjar et al. 2003). 



 123

6.1 Introduction 
  

In the OO paradigm, constructors are functions which assign and validate the initial values 

of the class features of the object being created. Constructors differ in many respects from 

ordinary functions; they do not have a return type, they share the same name of the class in 

which they are defined and they cannot be inherited when they are part of an inheritance 

hierarchy. In a language like C (Kernighan and Ritchie 1978), faults may arise because a 

developer forgets to initialise a variable (Ostrand et al. 2004). This problem is partially 

averted in OO languages, but the trade-off in a class with multiple constructors is that it is 

often difficult to tell the purpose of each constructor when they differ in only minor 

respects. 

 

In this chapter, we investigate the opportunities, potential benefits and problems from 

refactoring classes with a large number of constructors. The five Java systems described in 

Chapter 3 were empirically investigated with respect to the RMCCM refactoring  

(Kerievsky 2004). The underlying principle of this refactoring is that transformation of 

constructors into normal methods improves the developer's ability to understand the class 

(under consideration) as a whole, saves lines of code duplicated across multiple 

constructors and aids encapsulation by the creation of a single private catchall constructor 

(where previously the constructors were all defined as public).  

 

Results from our empirical study showed that in terms of removed (duplicated) lines of 

code, there are clear benefits to be gained. The potential for improved class comprehension 

by the creation of non-constructor methods should, in theory, make the task of developers 

easier, because they do not necessarily need to understand what each of a set of 

constructors does. Since non-constructor methods created from the corresponding 

constructors will usually be named according to their function, it should be much easier for 

the developer to identify the appropriate method which invokes the constructor. The 

empirical findings were not all supportive of the refactoring process. In certain cases, 

inconsistent use of the super construct for invoking the superclass constructor caused 

problems with assessing the opportunity for the refactoring process. On the other hand, the 

position of candidate classes (for the said refactoring) in the inheritance hierarchy and the 



 124

habits of developers in terms of comment lines may be influential and/or supportive factors 

in deciding when to carry out this type of refactoring.  

 

The layout of this chapter is as follows. In the following section, motivation and related 

work are presented. In Section 6.3 we give details of the refactoring and the data collected 

from the sample of classes in each Java system. In Section 6.4 we present the results of our 

empirical study. We then show, in Section 6.5, how nuances of the Java language can cause 

problems during this type of refactoring, followed by details of the roles that inheritance 

and comment lines play in carrying out a refactoring, based around constructors, in Section 

6.6. A discussion of the issues arising from this research is given in Section 6.7 and, finally, 

summary and conclusions are presented in Section 6.8.  

 

 

6.2 Motivation and Related Work  

 
The motivation for the study in this chapter stems from a number of issues. Firstly, there 

has been a large amount of interest in the criteria for carrying out refactoring. In other 

words, the decision as to when certain types of refactoring should be undertaken. Yet very 

little empirical data exists to support the question of how widespread refactoring is in 

practice. The results herein support earlier findings from an empirical study of a set of 

library classes (Counsell et al. 2003). Therein  the ‘substitute algorithm’ refactoring 

(Fowler 2000) (i.e., modification of the body of a method to improve the way it functions) 

was found to be the most popular type of change identified. The work in this chapter is 

partially based on an earlier study (Najjar et al. 2003), where empirical results of 

transforming the constructors into creation methods were described; this work was 

extended to an analysis of the role that inheritance plays in the refactoring process and the 

potential for reduction of comment lines as a result.  

 

Several benefits were obtained from investigating the refactoring of constructors, one of 

which was improved encapsulation through making the catchall constructor private. It was 

also found during the course of this research that the Java framework (BSF) contained very 

little opportunity for refactoring of its constructors. The stability of frameworks in terms of 



 125

encapsulation trends is also highlighted in Chapter 4 (see Sections 4.5.2 and 4.5.3) (cf. 

Counsell et al. 2002), where it was shown that out of five industrial-sized systems 

empirically studied, only one system (a framework) conformed to sound encapsulation 

principles in terms of distribution of private, protected and public attributes and methods; 

one feature of the four remaining systems was the existence of protected attributes and 

methods in classes with no inheritance links. We would thus expect a framework system to 

require less refactoring because of its architectural stability and, where it is needed, for it to 

be a relatively easy task. The work in this chapter therefore reinforces earlier results in 

terms of system stability and evolution. 

 

In terms of seminal refactoring literature, the Ph.D. work of Opdyke (Opdyke 1992) 

presents a number of refactorings which should be applied to software. This Thesis 

spawned a large amount of research in the subject. Johnson and Opdyke (Opdyke and 

Johnson 1993) describe a study in which they illustrate how to create abstract superclasses 

from other classes via refactoring. They decompose the operation of creating superclasses 

from other classes into a set of refactoring steps, and provide examples. They also discuss a 

technique that can automate these steps making the process of refactoring much easier. In 

Johnson and Opdyke (Johnson and Opdyke 1993), some common refactorings based on 

aggregation, including how to convert from inheritance to aggregation, and how to 

reorganise an aggregate/component hierarchy are reported. They also describe how to 

refine aggregations by moving variables and functions between aggregate and component 

classes, and how to move variables and functions within inheritance hierarchies. The 

seminal text by Fowler (Fowler 2000) describes seventy-two types of refactoring and 

illustrates each type with examples using the notation of UML (Rumbaugh et al. 1998). 

Included therein are a number of refactorings related to constructors including pull-up 

constructor body and remove setting method.  

 

Recent empirical work in the refactoring area and its automation is found in Tokuda and 

Batory (Tokuda and Batory 2001), where fourteen thousand lines of code were transformed 

automatically which would otherwise have had to be carried out by hand. Moreover, the 

principles of refactoring are not limited to OO languages; other languages, such as Visual 

Basic, have also been the subject of refactoring effort (Arsenovski 2005). The problems and 



 126

pitfalls of undertaking a simple refactoring are described in (Najjar et al. 2005). The 

possibility that refactorings are linked in a composite form is also described in (O'Cinne'ide 

and Nixon 2000). Issues associated with poor architectural design and the implication this 

has for refactoring are discussed widely in Brown et al. (Brown et al. 1998). 

 

Several papers have recognised constructors as a confusing factor in the definition of OO 

metrics. In the OO metrics community, Briand et al. (Briand et al. 1998) identified 

constructors as a contributing factor to the problems of measuring cohesion and in Bansiya 

et al. (Bansiya et al. 1999), cohesion metrics, based on class definitions, were empirically 

evaluated with and without constructors because of the effect they had on metrics values. 

Developing heuristics for undertaking refactorings based on system change data has also 

been investigated by Demeyer et al. (Demeyer et al. 2000).  

 

Finally, recent work by Advani et al. (Advani et al. 2005) describes the results of an 

empirical study of the trends across multiple versions of open source Java software. A 

specially developed software tool extracted data related to each of fifteen refactorings from 

multiple versions of seven Java systems according to specific criteria. Results showed that, 

firstly, the large majority of refactorings identified in each system were the simpler, less 

complex refactorings, for example the renaming of class features. Very few refactorings 

related to structural change, involving an inheritance relationship, were found. Secondly, 

and surprisingly, no pattern in terms of refactorings across different versions of the 

software was found. Results thus suggest that developers do simple ‘core’ refactorings at 

the method and field level, but not as part of larger structural changes to the code (i.e., at 

the class level).  

 

In the next section, we detail the empirical investigation of refactoring constructors in the 

five Java systems referred to in Chapter 3.  

 
 



 127

6.3 Empirical Investigation 
 

Numerous metrics have been proposed for the analysis of software; more recently the focus 

has been on OO software (Briand et al. 2001). Coupling and cohesion in OO systems are 

two areas which have received a particularly large amount of empirical attention 

(Henderson-Sellers et al. 1996, Briand et al. 1997b, Briand et al. 1998, Harrison et al. 

1998a). A number of research papers have also tried to show how, in practice, OO systems 

are not exhibiting the features we expected of them. The research described in (El Emam et 

al. 2001) is one such example, using a C++ telecommunications framework as a basis of the 

study.  

 

Many studies were and are still being carried out for the purpose of exploring the OO 

paradigm and gaining more understanding of how developers use the OO paradigm 

principles in practice (Prechelt et al. 2003, Stein et al. 2004, Mair et al. 2005, Trifu and 

Marinescu 2005). In fact, refactoring has recently become one of the hottest topics in the 

SE community for its effective role in improving the quality of software systems in order to 

facilitate future adaptations and extensions (Counsell et al. 2003, Kerievsky 2004, Mens 

and Tourwe 2004, Advani et al. 2005, Counsell et al. 2006). 

 

6.3.1 Refactoring constructors  

The refactoring investigated in this chapter was proposed by Kerievsky (Kerievsky 2004), 

and is included in the list of refactorings found at www.refactoring.com. Herein, we 

employed two refactorings: chain constructors and replace multiple constructors with 

creation methods. 

 

We note that the RMCCM refactoring first requires the constructors of a class to be 

chained, so the two said refactorings are linked. According to Kerievsky (Kerievsky 2004), 

motivation for refactoring constructors stems from the fact that constructors do not 

communicate developer intention efficiently or effectively. In addition, duplicated code in a 

constructor obscures the real intention of the constructor since it becomes more difficult to 

spot any differences. Mature software systems are filled with dead constructor code, 



 128

because it is easier to add another constructor to the class than to invest time finding out 

invocations to specific constructors. Code bloat (unnecessary addition of code) (Kerievsky 

2004) is a direct result of this programming practice and poses a danger in terms of 

software comprehension and maintenance.  

 

6.3.2 Chain constructor and creation methods 

The following is a variation of an example taken from (Kerievsky 2004) of a chain 

constructor refactoring followed by the replacement of multiple constructors with creation 

methods. We begin with an original class containing three constructors for a Loan class; the 

constructors, emphasising different types of loans, differ in only minor ways. The 

refactoring requires us to, firstly, introduce a catchall constructor and then replace the 

redundant constructors with creation methods. The original class definition is as follows:  
 
public class Loan{  

public Loan(float notional, float outstanding,  
int rating, Date expiry){  

  this.notional = notional; 
  this.outstanding = outstanding;  
  this.rating = rating;  
  this.expiry = expiry;  

 }  
 public Loan(float notional, float outstanding,  
 int rating, Date expiry, Date maturity){ 
 this.notional = notional;  
 this.outstanding = outstanding;  
 this.rating = rating;  
 this.expiry = expiry;  
 this.maturity = maturity;  
 }  
 public Loan(CapitalStrategy strategy,  
   float notional, float outstanding, int rating, 
   Date expiry, Date maturity){  
 this.strategy = strategy;  
 this.notional = notional;  
 this.outstanding = outstanding;  
 this.rating = rating;  
 this.expiry = expiry;  
 this.maturity = maturity;  
 }  
}  
 
 

The above class contains duplicated lines of code. Four lines of code are common to all 

constructors, namely:  
 
 



 129

 this.notional = notional;  
 this.outstanding = outstanding;  
 this.rating = rating;  
 this.expiry = expiry;  
 
The chain constructor refactoring requires constructors with significant levels of 

duplication to be amalgamated to form a single constructor. After applying the chain 

constructors refactoring to the above class and carrying out the required testing to ensure 

no side-effects emerge thereafter, the Loan class becomes:  

 
public class Loan{  
 public Loan(float notional, float outstanding,  
 int rating, Date expiry){  
 this(null, notional, outstanding,rating, expiry, null);  
 }  
 
 public Loan(float notional, float outstanding,  
 int rating, Date expiry, Date maturity){  
 this(null, notional, outstanding, rating, expiry, maturity);  
 }  
 public Loan(CapitalStrategy strategy, float notional,  
 float outstanding, int rating, Date expiry, Date maturity){  
 this.strategy = strategy;  
 this.notional = notional;  
 this.outstanding = outstanding;  
 this.rating = rating;  
 this.expiry = expiry;  
 this.maturity = maturity;  
 }  
}  

 
The last constructor is called the catchall constructor, since it incorporates all the 

parameters and assignments of the set of constructors. By definition, it will have at least as 

many parameters as the largest constructor, since its signature is the set of all constructor 

parameters and is called from within each of the other constructors. After chaining the 

constructors together, the next step of the refactoring is to replace the existing constructors 

with creation methods (non-constructor methods), which call the single catchall constructor 

with appropriate parameters and null parameters whenever necessary. This gives us the 

following class definition:  

 
public class Loan{  
// catchall constructor 
  private Loan(CapitalStrategy strategy, float notional,  

 float outstanding, int rating, Date expiry, Date maturity){  
 this.strategy = strategy;  
 this.notional = notional;  



 130

 this.outstanding = outstanding;  
 this.rating = rating;  
 this.expiry = expiry;  
 this.maturity = maturity;  
 }  
// creation methods 
  
 public static Loan NoStratOrMat(float notional,  
  float outstanding, int rating, Date expiry){  
 return new Loan(null, notional, outstanding,  
       rating, expiry, null);  
 }  
 
 public static Loan MatNoStrat(float notional,  
   float outstanding, int rating, Date expiry, Date maturity){  
 return new Loan(null, notional, outstanding,  
           rating, expiry, maturity);  
 } 
 public static Loan MatandStrat(CapitalStrategy strategy,  
  float notional, float outstanding, int rating, 
     Date expiry, Date maturity){  
 return new Loan(strategy, notional, outstanding,  
           rating, expiry, maturity);  
 }  
  
}  
 
The catchall constructor has been declared as private, thereby aiding encapsulation by only 

being accessible from the creation methods. We note that in the case where the Loan class 

has subclasses, the constructor should be declared as protected. Having carried out these 

steps, in theory programmers or developers would be less likely to get confused when 

creating an object. By reducing the duplication where possible, developers only have to use 

the methods specific to that object and those methods should be more easily identifiable. 

There are also quantifiable benefits to be obtained as a result of the process described. 

 

In the ensuing subsection, the types of data upon which we quantifiably investigated this 

refactoring are presented.  

 

 

6.3.3 Data collection  

The following data item was collected automatically for each of the five Java systems:  

1. The number of classes containing three or more constructors. We collected classes 

with three or more constructors (if we were to consider two constructors, one might 

be the ‘default’, in which case the collection of data would be almost meaningless) to 



 131

ensure that the classes still had at least two constructors. The minimum number of 

constructors for a refactoring of this type is three. 

 

The following data items were collected manually for each of the five Java systems:  

2. The number of common Lines Of Code (LOC) between each pair of constructors in 

each class. This data was collected in order to assess the potential for the removal of 

duplicated lines of code. The underlying supposition is that duplicated lines of code 

between any two constructors are largely unnecessary; they are the result of poor 

maintenance and should be removed with an appropriate refactoring technique.  

3. The number of comment lines surrounding each of the constructors in classes where 

there were three or more constructors. To our knowledge, very little work has been 

done on the potential for eliminating comment lines as part of a refactoring. Yet, 

comment line bloat may be as great an impediment to effective refactoring as poorly 

written code leading to the code bloat phenomenon (Fowler 2000). In the presence of 

continuous maintenance, a comment may become inaccurate; a developer may forget 

to change the appropriate comment after changing the code. 

 

6.3.4 Counting identical lines between constructors 

Counting LOC is a process normally fraught with difficulty (Rosenberg 1997). However, in 

order to assess the benefits of the constructor refactoring, LOC would seem to be a good 

indicator of the inefficiencies found in constructors, particularly as constructors tend to 

comprise simple assignment statements whose comparison with other statements is 

relatively easy. However, we still need to be clear on, firstly, what a line of code is and, 

more importantly, what a duplicated line of code is. We consider two lines of code as 

common if they are syntactically identical. (We have already seen an example of a 

duplicated line of code in Section 6.3.2 with four duplicated lines between all constructors.) 

We also insist that the types of the parameters being assigned in a constructor must also be 

identical for two lines to be considered identical. We finally note that in the case of if 

conditions within constructors, only each line of the if condition is considered for a match 

with other constructors (i.e., not the entire ‘if’).  

 

In the next section, we analyse the data extracted from the five Java systems.  



 132

6.4 Data Analysis 
 

In this section, “Cons” stands for “constructors” and “Max” for the “maximum” value in 

the sample. Table 6.1 gives the breakdown of maximum, mean, and median number of 

constructors found for classes with three or more constructors (here ‘nc’ stands for not 

computable).  

 

In the context of this section ‘Size’ stands for the number of classes with three or more 

constructors. For example, Swing has 1248 classes altogether (see Section 3.3.3.2) but only 

73 classes with three or more constructors. 

 

 

Table 6.1: Number of classes with three or more constructors for the five Java systems 

 
From Table 6.1 it follows that the Swing and the Barat systems contain the highest number 

of classes with three or more constructors. However, in terms of the proportion of classes of 

each system as a whole, Barat contains the higher percentage (19.05%) compared with 

Swing (6.34%). We note that the Barat system also contained the highest proportion of 

abstract classes (31) amongst the 252 investigated for this system. This compares with 109 

for Swing, 1 for GraphDraw, 1 for BSF and 4 for Libjava, thus emphasising the high 

proportion of classes with three or more constructors in the Barat system. Interestingly, the 

BSF system (framework) contained the least proportion of such constructors. This might 

suggest that either as systems evolve (and get larger) more constructors are added to classes 

through maintenance, or that large systems have inherently large numbers of constructors.  
 
Table 6.2 shows the frequencies for each of the constructors in classes that have three or 

more constructors. For example, the Swing system contains 18 classes which have four 

constructors and the Barat system contains 39 classes with 3 constructors. The Libjava 

system is the only system containing a class with 11 constructors. From this distribution, it 

would appear that in both Swing and Barat, the potential for refactoring is greater than the 

other three systems. However, we cannot claim this until the number of duplicate lines 

System  Size Total No Cons Max Mean Median 
GraphDraw 6 19 4 3.17 3 
BSF 2 7 4 3.50 nc 
Libjava 9 40 11 4.44 3 
Barat 48 158 7 3.29 3 
Swing 73 333 9 4.56 4 



 133

found in the constructors has been determined, since removal of duplicated lines of code is 

a key motivation of this refactoring.  
 
 

 

Table 6.2: Frequencies for each of the constructors in classes with three or more constructors 

  

Table 6.3 gives the breakdown in terms of the number of duplicate lines of code found for 

each pair of constructors in each class. For example, in the Swing system, one line of 

common code was found between pairs of class constructors 39 times; two lines of 

common code were found to exist between pairs of constructors 22 times, etc.  

 

LOC GraphDraw BSF Libjava Barat Swing 
One  1 0 1 54 39 
Two  4 0 0 3 22 
Three  3 0 0 7 3 
Four  3 0 0 5 5 
Five  1 0 0 4 0 
Six  0 0 0 5 1 
Seven  0 0 0 2 0 
Eight  0 0 0 1 0 
Ten  0 0 0 2 0 
Eleven  0 0 0 1 0 
Eighteen 0 0 0 1 0 

Table 6.3: Frequency of duplicated lines of code in each Java system 
 

From Table 6.3, it can also be seen that the Swing and Barat systems contain the widest 

spread in terms of duplicated code (as well as having the largest number of classes with 

three or more constructors as stated). However, it is the Barat system which provides the 

greatest opportunity for refactoring. The Swing system, although containing large numbers 

of classes with three or more constructors, tends to have relatively low numbers of 

duplicated LOC. In terms of refactoring theory, the Barat system in particular would seem 

to have evolved with code bloat to its constructors. One class, called AUserTypeImpl (see 

Appendix A), in the Barat system has 18 lines of duplicated code between two of its 

constructors. 

 

No. of Cons. GraphDraw BSF Libjava Barat Swing 
3 5 1 7 39 26 
4 1 1 0 7 18 
5 0 0 0 0 9 
6 0 0 0 1 10 
7 0 0 0 1 4 
8 0 0 1 0 4 
9 0 0 0 0 2 
11 0 0 1 0 0 



 134

In practical terms, after refactoring these constructors using the chain constructor and then 

the creation methods template, we would save 222 lines of code from the Barat system, 118 

lines of code from the Swing system, 35 lines from GraphDraw, just a single line from 

Libjava and no lines from BSF. Once again, the BSF system appears to be the system 

where evolution (however long) has not caused deterioration in its constructors such that 

they need refactoring (Perry 2002). The same can be said (to a lesser extent) for the Libjava 

and GraphDraw systems.  

 

In terms of the Barat and Swing systems, while this might not seem a huge reduction in 

lines of code, it does represent code removed from the class constructor definitions, where 

faults can easily be unknowingly seeded if the code is written clumsily, or is allowed to 

grow improperly. We also have the benefit of possible improved comprehension given by 

the re-naming of the constructors to creation methods and improved encapsulation by 

changing the declaration of the constructor from public to private. Another positive side-

effect of replacing constructors with creation methods is the possible reduction in the 

number of comment lines in the class definition due to the removal of those constructors. 

While we condone the use of comments as good practice, comments associated with code 

bloat should be eliminated at the same time. In our empirical investigation, significant 

amounts of comment lines were observed in classes surrounding the constructors and we 

explore this issue in Section 6.6.2. 

 

In the following section, we present the obstacles encountered in carrying out the 

refactoring undertaken in this study. 

 

 

6.5 Obstacles to Java Refactoring  

 
At the outset of this empirical study, it seemed that refactoring of constructors would be an 

easy task to accomplish and that most classes would conform to the refactoring as stated in 

theory (Fowler 2000). However, there were a few notable obstacles encountered during our 

empirical investigation that would seem to make the process of refactoring difficult. The 

first of these is the varying formats which constructors can take.  



 135

6.5.1 Alternative constructor formats  

The first problem relates to the tendency for Java classes to call the constructor of their 

superclasses using super with the appropriate parameter list (rather than explicitly declare a 

constructor of their own). Table 6.4 shows the breakdown of classes in each system which 

contained a call to at least one super construct and the number of classes with no calls to 

super.  

 
System  Size With super Without 
GraphDraw 6 0 6 
BSF 2 2 0 
Libjava 9 4 5 
Barat 48 44 4 
Swing 73 34 39 

Table 6.4: Number of classes with and without at least one super constructor 
 

It is clear from Table 6.4 that the super feature is a frequently used construct in Java 

constructors (about half of the classes considered in Swing and nearly all in Barat). Within 

the category of classes containing a super construct, we have two cases to consider. The 

first case is where classes all call the same superclass constructor. In this case, it is clear 

that there is no problem in terms of refactoring and identifying the catchall constructor. The 

second case is where classes call different superclass constructors. In this case, we have to 

look for the constructor that has the (super) constructor call with the longest parameter list. 

The following example illustrates this feature and is taken from the Swing system:  

 
 public JFrame() {  
   super();  
   frameInit();  
 }  
 public JFrame(GraphicsConfiguration gc) {  
   super(gc);  
   frameInit();  
 }  
 public JFrame(String title) {  
   super(title);  
   frameInit();  
 }  
 public JFrame(String title,  
  GraphicsConfiguration gc) {  
   super(title, gc);  
   frameInit(); 
 }  
 
 



 136

From the above constructors we consider the last constructor as the catchall that can be 

called from the others. The following are the constructors after refactoring:  

 
public class JFrame extends Frame implements  
   WindowConstants, Accessible,  
   RootPaneContainer  
   {  
 public JFrame() {  
   this(null, null);  
 }  
 public JFrame(GraphicsConfiguration gc) {  
   this(null, gc);  
 }  
 public JFrame(String title) {  
   this(title, null);  
 }  
 public JFrame(String title,  
  GraphicsConfiguration gc) {  
   super(title, gc);  
   frameInit();  
 } 
 … 
   }  
 
Another difficulty that might be encountered by developers in refactoring is the case when 

we have a call to a superclass constructor, which contains conditions, as the following 

example illustrates (again, this example is taken from the Swing system):  
 
 
 public JWindow(Frame owner) {  
   super(owner == null?  
   SwingUtilities.getSharedOwnerFrame() : owner);  
   windowInit();  
 }  
 
This last example would make the construction of a catchall constructor difficult. The 

mechanics of splitting the condition into two is relatively complex and may also detract 

from the overall comprehensibility of the class - a major motivation for the refactoring 

being considered in the first place. Finally, there is the case of declaring an anonymous 

class in a constructor, again making the search for a catchall constructor difficult.  

 
The results from the five Java systems show potential for refactoring as long as caution is 

exercised in certain cases. Another obstacle which may inhibit the potential for refactoring 

is the number of interfaces in each of the five Java systems investigated. 

 



 137

6.5.2 Number of interfaces 

As well as variations in the style of constructors, another feature of some of the Java 

systems analysed was the number of interface definitions (as opposed to class definitions). 

Interfaces have no constructors, and their functionality is implemented by classes. Table 6.5 

shows the number of interfaces and classes in each of the five Java systems studied.  
 

 

Table 6.5: Number of interfaces in each of the five Java systems 

 
Table 6.5 shows the largest proportion of interfaces to be in the Barat system, where there 

are nearly as many interfaces as there are classes. One suggestion for the large number of 

interfaces for this system may be that the nature of a compiler is such that there are 

methods which multiple classes are expected to implement (i.e., functionality which has a 

similar use across a number of classes). An example of this might be a data structure 

definition/manipulation interface used by a range of classes. As well as containing the most 

interfaces it is interesting to note that it was the Barat system which contained the widest 

spread of duplicated lines of code and also contained the largest number of classes with at 

least one occurrence of the super construct. The key point from the data in Table 6.5 is that 

no opportunity exists for refactoring interfaces since, by definition, interfaces have no 

constructors. In contrast, in the following section we describe features of the five Java 

systems which from a practical perspective provide for the use of constructor refactoring. 

 
 
6.6 Further Practicalities 
 

While the mechanics of the RMCCM refactoring (Kerievsky 2004) are relatively 

straightforward, we have demonstrated a number of reasons why in practice the refactoring 

of constructors is problematic. However, the features of the Java language and the way they 

are used can sometimes help the refactoring process. Hereafter, we focus on the role that 

inheritance and the distribution of comment lines play in refactoring.   

 

System  Interfaces Classes 
GraphDraw 2 50 
BSF 5 60 
Libjava 4 85 
Barat  155 252 
Swing 96 1152 



 138

A key issue with many Java refactorings is whether the class(es) in question has(ve) 

subclasses or not. The dependencies due to inheritance can complicate the mechanics of the 

refactoring of constructors; a class with few or zero subclasses can thus simplify those 

mechanics (Harrison et al. 2000). Equally, the presence of comment lines is useful for 

software maintainers. However, code bloat (Kerievsky 2004) causes comment line bloat 

(developers are likely to add comment lines when they add or change a constructor) and 

this could cause the opposite effect to the desired one. In other words, too many comment 

lines are not necessarily beneficial in terms of readability and comprehensibility of the code 

(and comments).  

 

6.6.1 Inheritance 

Table 6.6 shows the frequencies of subclasses for the classes that have three or more 

constructors. For example, the Swing system has 17 classes each of which has one subclass, 

and in total those 17 classes have 77 constructors. On the other hand, 45 classes have no 

subclasses. In the Barat system, there are two classes with one subclass each, and 42 classes 

with no subclasses.  

 
No 

subclasses GraphDraw Total No 
Cons Barat Total No 

Cons Swing Total No 
Cons 

0 5 16 42 135 45 207 
1 1 3 2 10 17 77 
2 0 0 3 9 3 14 
3 0 0 1 4 3 12 
4 0 0 0 0 2 10 
5 0 0 0 0 1 4 
8 0 0 0 0 1 6 

65 0 0 0 0 1 3 
Table 6.6: Frequencies of classes with three or more constructors in three Java systems 

 

From Table 6.6, it can be seen that both Barat and Swing have the widest spread in terms of 

number of subclasses of a class, whereas the GraphDraw system has only one class with 

one subclass. The general pattern observable from Table 6.6 is that most of the candidate 

classes have no subclasses. In the Swing system, 61.6% of the classes fall into this category 

and for Barat 87.5% of classes have no subclasses. The other two systems, BSF and 

Libjava, have two and nine classes, respectively, with three or more constructors. None of 

those classes had any subclasses.  

 



 139

The large number of the classes without subclasses simplifies the process of refactoring 

according to the constructor refactoring described in this chapter, since complications 

associated with subclasses are eliminated. If a class has a large number of subclasses, every 

change made to that class is likely to cause a ripple effect on its subclass(es). Refactoring 

the constructors of classes towards the root of the inheritance hierarchy is thus more 

problematic because of the potential for higher numbers of dependent subclasses.  

 

The conclusion we can draw is that for the five Java systems studied, there is plenty of 

opportunity for applying the constructor refactoring. The mechanics of the RMCCM are 

simplified (in terms of effort and time spent) if the class under consideration has no 

subclasses.  

 

6.6.2 Comment lines 

When any refactoring is undertaken, it is likely that some reduction in, or modification of, 

comment lines is possible. According to Fowler (Fowler 2000), large numbers of comments 

around code suggest that the code is bad. Fowler also suggests that comments are often 

superfluous after a refactoring has taken place. As part of our study, the number of 

comment lines associated with constructors was collected. The following hypothesis is set 

to test if there is a difference in the trends of comment lines among the different Java 

systems under consideration. 

  

H0:  There is no variation in the number of comment lines that surrounded, or were 

embedded within, constructors in Java software systems. 

HA:  There is variation in the number of comment lines that surrounded, or were 

embedded within, constructors in Java software systems. 

 

The non-parametric Kruskal-Wallis test (Field 2006) is used for testing differences between 

the five Java systems. This test analyses the ranked data. Table 6.7 shows a summary of 

these ranked data, the median and the mean rank values of the comment lines in each 

system. The test statistic is a function of these ranks (see Section 3.3.7.1.5). 

 



 140

System 
(Group)  

Size 
(N) 

Median 
(Number of 

comment lines) 

Mean 
Rank 

Graphdraw (1) 6 2.50 50.3 
BSF (2) 2 8.00 52.3 
Libjava (3) 9 11 73.3 
Barat (4) 48 0 35.4 
Swing (5) 73 29 93.5 

Table 6.7: The mean rank values of the comment lines for constructors in the five Java systems 
 

Table 6.8 shows the Kruskal-Wallis statistic H and its associated degrees of freedom (in 

this case we have 5 groups, so 5 − 1 degrees of freedom (df)), and the significance (see 

Section 3.3.7.1.5). From this table we can conclude that the Java software systems under 

consideration significantly vary (p-value is 0.00 < 0.05) in terms of the number of comment 

lines that surrounded, or were embedded within, constructors. Therefore, we accept the 

alternative hypothesis. That is, developers do not tend to follow any particular strategy in 

writing comment lines related to constructors, and there are varying patterns in the number 

of comment lines for each system under consideration. 

 
 Comment lines 
H 65.20 
df 4 
p-value 0.00 

Table 6.8: The Kruskal-Wallis test statistic for the comment lines of constructors in the five Java systems 
 

In terms of the refactoring described in this chapter (replacing constructors with creation 

methods), an opportunity arises for removing the number of comment lines when a 

constructor is replaced by a creation method. The basis of this claim is that the new factory 

method should be self-explanatory and not need as many (if any) comment lines. The only 

comment lines which would remain would be those surrounding the catchall constructor.  

 
Other things remaining equal, allowing comment lines for the catchall constructor and for 

each of the factory methods, we would expect to eliminate the majority of the 2469 

comment lines found across the five Java systems. Thus the constructor refactoring 

employed in this empirical study would provide us with the opportunity to reduce both 

lines of code and comment lines. 

 

In the next section, we discuss some of the issues raised by this study.  

 

 



 141

6.7 Discussion 

 
For a study of this type, a number of caveats to its validity have to be considered. The first 

caveat is that we chose five Java systems of largely differing application domains; systems 

of identical application domains may have provided more relevant results. As a riposte to 

this criticism, we would claim that for the results described in this chapter to be 

generalised, we would want systems of different application domains. The second caveat is 

that we chose only classes with three or more constructors to consider for this type of 

constructor refactoring. We accept that a class with two constructors may be appropriate for 

refactoring effort. However, on the basis that the two constructors might include a default 

constructor, we feel it inappropriate to consider for refactoring any class with less than 

three constructors. Finally, we feel that the study is repeatable for other Java systems and 

for other languages, for example C++. This to some extent alleviates the caveat that this 

empirical study is a one-off.  

 
The key refactoring of Java classes described in this chapter replaced all constructors with 

creation methods after, firstly, introducing a catchall constructor to handle all object 

creation calls. In Kerievsky (Kerievsky 2004), on which this refactoring is based, it was 

accepted that a compromise could be reached in certain circumstances where there is an 

overwhelming number of constructors; the developer is at liberty to be selective in their 

choice of which constructors should be transformed into creation methods. In such 

circumstances, it is also suggested that the creation methods themselves should be subject 

to parameterisation, i.e., amalgamating the parameter lists of certain methods where there is 

ample potential for this. In this sense, selective refactoring is more appropriate.  

 
In his refactoring text, Fowler (Fowler 2000) does suggest a number of reasons why 

developers do not tend to refactor. One suggestion is that they do not have the time. We 

therefore accept that refactoring everything in sight is not always feasible or desirable. In 

certain circumstances we have suggested that refactoring of constructors is a more difficult 

process than theory suggests. This related specifically to situations where the super 

construct was called inconsistently. We are not suggesting that these constructors should be 

ignored; however, because they do not fit in with the template for refactoring suggested in 



 142

(Kerievsky 2004), extra time and resources should be allocated for refactoring classes with 

this format of constructor call if appropriate.  

 

The overriding point that we would like to put forward is that not all refactorings are simple 

in practice when real systems are being analysed. Equally, the way that certain Java 

features are used by developers (i.e., inheritance and use of comment lines) can influence 

the decision as to what to refactor. We also make the point that any refactoring will take 

time and resources, both of which are in short supply in general. It is clear that size has an 

influence on the potential number of classes with three or more constructors in a system. 

What is not clear is whether classes with high numbers of constructors have acquired them 

over time, or had that many constructors from the start; this is a topic for further work. 

 

 

6.8 Summary  
 

In this chapter we have described the results of an empirical study regarding the role that 

constructors can play in the context of refactoring. The five Java systems that are described 

in Chapter 3 were used as a basis of this study. Making constructors intelligible and easy to 

comprehend is the key to easy maintenance of class definitions. We have shown that 

refactoring of constructors according to specific principles described in Section 6.3 is 

feasible, capable of saving lines of duplicated code and bringing possible benefits in terms 

of comprehension and encapsulation through use of a private constructor. It does, however, 

have its difficulties, not least with the use of the super construct, embedded conditions in 

signatures and the existence of interfaces all of which make identification of the refactoring 

elements problematic.  

 
Equally, the role that inheritance plays in determining which of candidate classes to choose 

is an important consideration. We have shown that where a large number of classes have 

zero subclasses, a refactoring of class constructors can be made relatively easy. Finally, a 

by-product of removing constructors and replacing them with creation methods provides 

potential for removal of comment lines around those constructors. Savings in class size, in 



 143

terms of LOC, can be made by identifying comment lines which, as a result of the 

refactoring, have become redundant.  



 144

CHAPTER 7 Conclusions and Future Work 
 

 

 

In this chapter we describe the achievements of the research presented in this Thesis from 

three aspects. In Section 7.1 we re-visit the two stated objectives in Chapter 1 and describe 

how these two objectives were achieved in the Thesis on a Chapter by Chapter basis. In 

Section 7.2 we describe achievements on a personal level from undertaking the research 

and, finally, we discuss related future work in Section 7.3. 

 

 

7.1 Thesis Objectives Re-visited 
 

The objectives of this Thesis stated in Chapter One were:  

 

1. To obtain a greater understanding of C++ and Java systems from an encapsulation 

perspective; this is complemented by the study of how inheritance figures in those 

encapsulation trends for each type of system considered.   

2. To assess the quantitative and qualitative benefits of applying refactorings related 

specifically to the concepts of encapsulation and inheritance in Java systems. In 

particular, to investigate those refactorings where both encapsulation and 

inheritance have a strong influence.  

 

We state how we addressed each of those objectives in turn and how the structure of the 

Thesis assisted in knitting the research threads together.  

 

The foundations for satisfying Objective 1 were laid in Chapter 2 where we described 

pertinent literature relating to encapsulation and inheritance. Chapter 3 played an important 

part in establishing the assumptions and caveats on which our empirical investigations in 

future chapters (and which we now describe) were to be based. In Chapter 4, we 

empirically evaluated five C++ and five Java systems; we statistically analysed the trends 

in the make-up of attribute types and method types and how that make-up was composed 



 145

and could be decomposed when inheritance was taken into consideration. For example, we 

explored the relationship between public and private attributes for classes inside and 

outside an inheritance hierarchy. The same study gave interesting insights into how those 

systems had possibly evolved, highlighted inconsistencies and nuances of the use of 

inheritance and its strong relationship with encapsulation.     

 

Chapters 5 and 6 described two further empirical studies and helped to satisfy Objective 2. 

The first study investigated the EF refactoring (Fowler 1999) and the opportunities for 

applying that refactoring in Java systems. The EF is a basic refactoring that could be 

considered a low-level refactoring since its mechanics are relatively simple. We identified 

the potential for applying that refactoring as well as the many factors that may adversely 

affect a developer when considering the EF refactoring. EF seems inapplicable in many 

cases due to lack of (public) attributes; however, application of such a refactoring paves the 

way for the application of other refactorings. 

 

In Chapter 6, we investigated a more complex (or high-level) refactoring, again related to 

encapsulation and inheritance. The RMCCM refactoring (Kerievsky 2004) demonstrated 

that such high-level refactorings can provide both quantitative and qualitative benefits. The 

RMCCM was capable of saving lines of duplicated code; it also provided the potential for 

removal of some comment lines around those constructors, thus bringing possible benefits 

in terms of comprehension and encapsulation through use of a private constructor. It is not, 

however, a straightforward task and just like EF presents many challenges in terms of its 

mechanics.   

 

We thus feel both of the Objectives stated in Chapter 1 have been satisfied. Essential 

features of OO such as encapsulation and inheritance are inextricably linked in the context 

of refactoring and the basic building-blocks of the OO paradigm present interesting 

characteristics when combined in non-trivial OO systems.  

 

The Thesis thus informs our empirical understanding of encapsulation and refactoring 

issues in OO software systems. 



 146

7.2 Contribution  
 

As described in Chapter 1, the contribution of the Thesis can be seen in light of two research 

strands. The first relates to the fact that very few prior studies have empirically investigated 

the role that encapsulation plays in OO systems and the extent to which it is used or abused 

in those systems, yet encapsulation is a fundamental part of the OO paradigm. Equally, the 

interplay between encapsulation and inheritance in an empirical sense has not received a 

significant amount of research attention. The distribution of different data access specifiers 

(whether private, protected or public) in both Java and C++ languages play a key role in 

helping the developer and maintainer provide code visibility where appropriate, and deny 

class feature access visibility where inappropriate.  

 

The Thesis made a contribution to our understanding and knowledge in this area, in 

particular to the anomalies that arose with systems that had undergone regular change. The 

findings of Chapter 4 suggested that encapsulation was often inappropriately used; for 

example evidence was found of declaration of attributes as public and use of protected 

features in C++ classes that did not inherit from any other classes. This contravenes 

accepted ‘good’ practice. In Chapter 4 we also found that when inheritance was specifically 

considered from an encapsulation perspective in C++ and Java, similar anomalies were 

encountered – namely a proliferation of publicly defined attributes and a distinct lack of 

protected features. These findings were both unexpected and surprising.      

 

Finally, from a refactoring perspective, few studies have empirically explored the potential 

for applying refactorings in which encapsulation and inheritance play a central part. The 

Thesis contributed to our understanding and knowledge of the empirical opportunities, 

pitfalls and practicalities of undertaking refactorings with strong ties to encapsulation and 

inheritance and the derived qualitative and quantitative benefits and trade-offs. Chapter 5 

looked at possibilities and potential for applying the Encapsulate Field (EF) refactoring 

which converts a field from public to private. It was found that the number of dependent 

classes requiring changes as a result of applying the EF refactoring prohibited the 

refactoring, and the large number of classes with zero attributes rendered the same 

refactoring almost redundant. Moreover, some of the systems analysed were found to be 



 147

more amenable to the EF refactoring than others. In Chapter 6 we examined the refactoring 

of class constructors and showed the potential for improved class comprehension by the 

creation of non-constructor methods (as a replacement for constructors) and improved 

encapsulation of class features through use of a private catchall constructor. However, 

nuances of the Java language made this refactoring problematic. In Chapter 6, we also 

investigated the role that inheritance played in the choice of classes to refactor as well as 

patterns in comment lines among the same constructors. Again, while certain benefits in 

terms of reduced numbers of comment lines (for example) were achieved, nuances of the 

Java language again made this refactoring task problematic.   

 

 

7.3 Personal Achievement 
 

There are many things which have been learnt in terms of research practice over the course 

of the period of research. Firstly, research is not an easy thing to do – and we can attribute 

that to many things. Research is usually done under time pressure, so time management is 

extremely important. Secondly, it is often necessary to follow leads which may or may not 

be fruitful in terms of immediate results. One tenet of any empirical research is that 

negative results are often as interesting as positive results, so although it may be 

disappointing when things do not emerge from empirical research as we would like, there is 

always a positive side. 

  

It is also important to be consistent in the way that research is undertaken; for example, 

with the application of appropriate statistical techniques. It is also important that data is 

kept properly.  

 

Research is also about choosing a small area in Computer Science and investigating that 

area thoroughly, rather than tackling a wider area inadequately. Part of the PhD process is 

to be aware of, and be able to critically assess, the literature in the chosen area. 

 

Throughout the past few years, I have learnt that completing a PhD Thesis is no more than 

the first step on the road to scholarly research. I believe that researchers can be more 



 148

productive after they have passed this challenging yet satisfying stage. However, it is the 

enriching experience that is gained through being involved in scientific research that 

ultimately matters. Despite the enormous stress and the ups and downs of this process, the 

academic and personal experience is quite rewarding and fulfilling. The skills of work 

organisation and setting plans and deadlines are something that is part of the learning 

process. 

 

  

7.4 Future Work 
 

There are some open issues for future research. These can be divided into two themes, 

issues related to data collection and software metrics, and those related to refactoring from 

the perspective of SE in general. 

 

In terms of data collection and software metrics future work, in Chapter 3 we discussed the 

extent to which manual data collection for Java software compares with its automatic 

counterpart for the same data. Future work in this particular area would be, firstly, to 

expand the study to other Java and C++ systems, so enabling a comparison across those 

two languages from a data collection perspective. Secondly, to increase the number of 

metrics collected as a first step to identifying those which are inappropriate for automatic 

collection and thus would have to be collected manually (taking into consideration the 

complexity of the metrics concerned). Finally, to analyse the effect that the age of a system 

has on its deterioration in more detail; the results herein would suggest that software 

evolution, i.e., the degradation of system quality (Petrenko et al. 2007), contributes towards 

the issues raised regarding the differences between automatic and manual data collection. 

 

In terms of refactoring, we plan to carry out an empirical study of fifteen common 

refactorings, including that of EF across a larger sample of systems to refute or support the 

findings in Chapter 5, and to inform our understanding of the relationships between 

refactorings; in particular, compound refactorings of the type described in the same chapter. 

Another avenue of future research is to examine trends in ‘inner classes’, i.e., nested 

classes, which feature heavily in the systems we studied, but were not considered explicitly 



 149

in our analysis. For example, we may find explanations for the lack of classes in the middle 

of the inheritance hierarchy as a result (see Chapter 5, Section 5.5.2).   

 

Another future area of research will be to carry out experiments, supported by statistical 

analyses, to determine if refactoring, in general, does actually make classes easier to 

understand. It is clear that size has an influence on the potential number of classes with 

three or more constructors in a system. A further piece of future research, allied to this, will 

be to monitor the maintenance of systems from the time they are developed to observe the 

changing patterns in constructor trends. 

 

Another area of future work could be on replicating the study described in Chapter 4 on a 

number of framework-based C++ and Java systems in order to ascertain whether we would 

get the same results as our findings; that is, framework-based systems adhere more closely 

to OO principles compared to the remaining types of system under study. In addition, more 

can be done on investigating the specific area of the usage of the friends facility in C++ 

systems (particularly in library-based systems); in particular, whether it is used for the 

purpose of operator overloading, and not as a means of accessing the class features of the 

class they are declared in. Consequently, lessons can be used from delving into these issues; 

such lessons can be utilised to avoid similar problems in the future.  

 

Correspondingly, we could also investigate the more abstract concept of package 

encapsulation and the trends in Java systems that such a concept induces (Mubarak et al. 

2007). 



 150

Glossary of Software Engineering Terms 

 

 

The terms in this glossary are widely used in the SE community. The purpose of this 

glossary is to make explicit what we mean by those terms so that no ambiguity can arise in 

the mind of the reader. It is not a comprehensive list of the terminology employed in the 

Thesis. 

 

 

Abstraction 

The concept of abstraction from the perspective of OO SE is a process that involves 

identifying only crucial aspects of a problem and ignoring the non-essential information 

and details. 

 

Abstract Class 

An abstract class is a class that can not be instantiated. It contains both attributes and 

methods, and serves as a base class from which other classes can be derived. 

 

Aggregation 

An aggregation represents the concept of whole-part and comprises a composed class and a 

set of component classes. The composed class is often called "whole" and the component 

classes are often called "parts" (Pressman 2000). For example, the relationship between the 

class BankStatment and the class Transaction is aggregation because the 

BankStatement contains all the details of each Transaction. 

 

Attributes 

Attributes are the data fields that are defined within a class and exposed by the class 

directly to the clients or hidden to be accessed by class members and other inherited classes 

from the class itself. 

 



 151

Bad Smells  

Bad smells in code are strong indicators of problems somewhere in the code that offer 

opportunities for refactoring. For example, a Duplicated Code bad smell (Fowler 2000) 

appears when a block of code can be detected in more than one place. This type of bad 

smell suggests a number of refactorings such as: extract method or pull up field. 

 

Base Class 

A base class is a class that serves as the ancestor (parent) for an inherited class, and usually 

means the direct ancestor (superclass). The base class at the top of the inheritance hierarchy 

is often referred to as the root class. 

 

Class 

A class is the fundamental unit of code reuse. It is a blueprint for an object and defines the 

collection of attributes and methods thereof. 

 

Class Members (Class Features) 

Class members are the attributes (data fields) and methods that make up a class definition. 

 

Cohesion 

In the context of the OO paradigm, cohesion is a measure of how well the components of a 

class work together to perform a single, precise task. Classes with high cohesion are 

desirable because they can be easier to understand, reuse, and modify. 

 

Constructor 

In C++ and Java, as well as in other OO languages, constructors are special methods that 

have no return type and have the same name as their class. The role of constructors is to 

initialise newly created objects. 

 

Coupling 

The term coupling is a measure of the extent to which an OO class depends on other classes 

to accomplish its mission. High coupling indicates strong dependencies (between classes), 



 152

and low coupling indicates weak dependencies, thus allowing more flexibility in software 

systems.  

 

C++ Header File 

A header file, in the C++ language, referenced to in the Thesis, is a file with *.h extension.  

 

Dependent Classes 

A class x is dependent on class y if there is coupling between them. 

 

Depth of Inheritance Tree 

The depth of inheritance of a class is the length of the path from the class node to the root 

of the tree (root class). 

 

Design Patterns 

Design patterns are recurring solutions to software design problems that are observed or 

discovered repeatedly in real-world application development environments (Gamma et al. 

1995). 

 

Encapsulation 

Encapsulation is one of the seminal principles of OO, and is sometimes known as 

information hiding. It is the process of separating the elements of an object into visible and 

invisible elements. The label public refers to the external aspects, i.e., the 

attributes/methods that a class offers to the outside world (the other classes in the system). 

In other words, everything under the label public is accessible from any other class in the 

system. The label private refers to the internal aspects, i.e., the features of the class which 

should be shielded from the outside world. The keyword protected is also found in a 

typical OO language, but relates specifically to inheritance.  

 

Fan-in Metric 

Fan-in metric is the number of functions that call a particular function. A function with a 

high Fan-in means that many other functions use this function, (it could also mean that the 



 153

function is implementing a number of functionalities). If the specifications of a function 

with large Fan-in are changed then all the calling functions that use it have to be modified. 

 

Fan-out Metric 

Fan-out metric is the number of functions a function calls. Modifying a function can cause 

side-effects in the functions that are called by the modified function. A maintainer of this 

module has to understand many other functions, thus rendering software maintenance 

harder and time-consuming. Functions with a large Fan-out will be more expensive to 

maintain. 

 

The Fan-in and Fan-out metrics are used to estimate the complexity of maintaining software. 

 

Framework 

A framework can be defined as a set of classes closely related in terms of functions and 

data, and which form an independent and reusable software artifact. 

 

Inheritance 

Inheritance is one of the key differences between conventional and OO systems. It lies at 

the heart of the OO paradigm. Inheritance is the ability to define a new class using existing 

classes as a basis. The new class inherits the attributes and behaviour of the classes of 

which it is a subclass, and can also have attributes and methods that are specific to it. In 

other words, inheritance is an abstraction for sharing similarities among data structures 

while preserving their differences. 

 

Inner Class 

In Java an inner class is a class whose definition is placed within another class definition or 

a method block for use in implementing an interface or to restrict access to it. Inner classes 

have access to their enclosing class members. 

 



 154

Interface 

An interface is a well defined collection of members (methods) along with their signatures 

but not their implementations. Interfaces cannot be instantiated. 

 

Lines of Code (LOC) 

LOC is a metric that represents the count of "non-blank, non-comment lines" in the text of 

a program's source code. LOC count represents the software program size. 

 

Localisation 

Localisation is a characteristic of software that refers to gathering and placing related data 

and processes close to each other within the boundaries of a class or object; since the basic 

unit of an OO system is class, localization is based on objects. 

 

Method 

A method is a named block of code within a class that can accept arguments and might 

return a value. Methods determine what sort of functionality a class has, how it modifies its 

data fields, and provides the overall class behaviour. 

 

Get Method 

It is known sometimes as getter method or accessor. It is a method that is used to access the 

values of an instance variable to ensure that the instance variable can only be accessed but 

not modified. 

 

Set Method 

It is known sometimes as mutator method or setter. It is a method that is used to modify the 

value of an instance variable, giving the class more control on how its variables are being 

modified. 

 



 155

Multiple Inheritance 

In C++ multiple inheritance can be defined as the mechanism by which a subclass inherits 

from more than one immediate superclass. Java does not support multiple inheritance in 

terms of class structure but does allow it in the case of interfaces. 

 

Non-primitive Class Feature 

A class feature can be described as non-primitive if its type is defined as a class. 

 

Number of Children (NOC) 

Number of children metric is the number of immediate subclasses subordinate to a class in 

the class hierarchy; NOC measures how many subclasses are going to inherit the superclass 

features. The greater the number of children, the greater the potential for reuse since 

inheritance is a form of reuse.  

 

Operator Overloading 

Operator overloading is the mechanism that allows us to pass different variable types to the 

same function and produce different results.  

 

Pull-up Constructor Body (PUCB) Refactoring  

PUCB refactoring (Fowler 2000) is applicable when a number of constructors are available 

on subclasses with mostly identical bodies. The mechanics of this refactoring consist of 

creating a superclass constructor and moving the common code of the subclasses 

constructors to the superclass constructor, and then calling the superclass constructor as the 

first step in the subclass constructor, with appropriate testing and compilation. 

 

Java Packages  

Packages in Java are used to organise class files. This can be done by putting all related 

class files in the same directory, giving the directory a name that relates to the purpose of 

the classes; the directory name is itself the name of the package where the class files reside. 

 



 156

Package Access 

In Java, the default access is called package access, which facilitates access to all the 

classes defined within the same package. 

 

Refactoring 

Refactoring is a technique of making small steps of changes to a software system in order 

to improve the internal structure while preserving the external behaviour. 

 

Rename Method (RM) Refactoring 

RM refactoring (Fowler 2000) changes the name of a method when its name does not 

reveal the purpose of the method. 

 

Ripple Effect Change 

The situation in which one makes a change in order to remove some defect and this 

necessitates many other changes (Bilal and Black 2006). 

 

Software Metrics 

Software metrics include all types of metrics for software productes, software processes 

and software resources. 

 

Size-related Metrics 

Size-related metrics are the most traditional measures used to quantify software complexity. 

They are simple and easy to count, such as the LOC, number of attributes and/or methods, 

number of system classes, etc. 

 

Substitute Algorithm (SA) Refactoring  

SA refactoring (Fowler 2000) can be applied for the purpose of replacing a complex 

algorithm with one that is less complex. 

 

Superclass  

Superclass is the class that a class inherits from. 

 



 157

Superclass Constructor 

In the Java language, the keyword super refers to the superclass that the current class has 

been inherited from. When the superclass constructor needs to be called the keyword super 

should be used explicitly with appropriate arguments. 



 158

Appendix A: Some Details of Specific Classes from the Five Java Systems 

 

 

Table A.1 provides some details on the classes that are used in this Thesis as examples, and 

which chapter and section they are mentioned in.  

 

Class Name From System 
Mentioned in 

Chapter  
(Section) 

Class Details 

Object JDK Ch. 4 (4.5.5) 
Class Object is the root of the class hierarchy. Every class has 
Object as a superclass. All objects, including arrays, implement 
the methods of this class 

UnicodeBlock Libjava (Java) Ch. 4 
(4.5.4&4.5.5) 

A family of character subsets in the Unicode specification. A 
character is in at most one of these blocks. It is an inner class 
of Character and has 85 public attributes 

Character Libjava (Java) Ch. 4 (4.5.4) Wrapper class for the primitive char data type. It has 55 public 
attributes and contains UnicodeBlock  as an inner class 

SecurityManager Libjava (Java) Ch. 4 (4.5.4) 
SecurityManager is a class you can extend to create your own 
Java security policy. It has 1 protected attribute and 7 protected 
methods 

EventAdapterImpl BSF 
(Java) Ch. 4(4.5.5) This class is the root for other 13 classes 

Graph GraphDraw 
(Java) Ch. 4 (4.5.5) 

A class for representing a graph abstractly. It has 5 private 
attributes and 45 methods (of which 6 are private and 39 
public) 

EdgePropertiesDialog GraphDraw 
(Java) Ch. 5 (5.3.1) 

A dialog class for changing the properties of an edge. It has 13 
private attributes and 4 methods (1 private and 3 public). It has 
access to (uses) all the  public attributes of class DPoint3 

Node GraphDraw 
(Java) Ch. 5 (5.3.1) A Node class for use in a graph, and for display.  It has access 

to (uses) two public attributes of class DPoint3 

GraphCanvas GraphDraw 
(Java) Ch. 5 (5.5.1) A window class for editing and displaying graphs. It has 66 

attributes and 63 methods 

StrictMath   Libjava (Java)  Ch. 5 (5.5.1) Helper class containing useful mathematical functions and 
constants.  It has 112 attributes and 38 methods 

DPoint3 Graphdraw 
(Java) Ch. 5 (5.3.1) A class for holding a real 3D position. It has 3 public attributes 

used directly by other two classes 

Loan Kerievsky’s 
example Ch. 6 (6.3.2) 

See “Refactoring to Patterns” Kerievsky’s book or 
http://www.industriallogic.com/xp/refactoring/ 
chainConstructors.html 

AUserTypeImpl Barat (Java) Ch. 6 (6.4) It has 3 public constructors and there are 18 lines of duplicated 
code between two of its constructors 

JFrame  Swing (Java) Ch. 6 (6.5.1) It has 4 constructors and each one of them has a call to the 
same superclass constructor 

JWindow Swing (Java) Ch. 6 (6.5.1) It has 5 constructors; one of them has a call to a superclass 
constructor which contains conditions 

Table A.1: Some details of specific classes 



 159

Appendix B: Java Tool Software Source Code 

 

/************************************************************************ 

**Parsing the classes is implemented in the class **ClassParser using 

**java.util.StreamTokenizer class where the input stream of each Java 

**class is parsed into tokens.  

**The data collected for each class or interface in a file included:  

**Number of inner classes 

**Number of implemented interfaces and/or abstract classes 

**Number of extended classes 

**For class methods: 

**Method name 

**Total number of public, protected, private, abstract, **static, native 

**methods separately 

**Number of primitive and non-primitive methods 

**Number of class constructors  

**For class attributes: 

**Total number of primitive and non-primitive attributes 

************************************************************************/ 

import java.io.*; 
import java.lang.*; 
import java.util.*; 
 
public class ClassParser { 
 

public ClassParser(){}; 
private StreamTokenizer in; 
public  boolean Clas  = false; 
public  boolean Pub           = false; 
public  boolean Pro           = false; 
public  boolean Pri           = false; 
public  boolean Abstract       = false; 
public  boolean Native = false; 
public  boolean Interface  = false; 
public  boolean Static  = false; 
public  boolean Extend  = false; 
public  boolean Implement  = false; 
public  boolean Primitive = false; 
public  boolean abstractClass = false; 
public  String  methodName  = ""; 
public  String  previousString = "anything"; 
public  static  ArrayList classes = new ArrayList(); 
private String[] spicialKeyWords  = {"synchronized", "transient",  
     “final"}; 
 
private String  primitiveTypes[] = {"int", "int[]", "long", "long[]",  



 160

     "float", "float[]","double", 
     "short", "short[]","double[]",  
     "char", "char[]", "byte","byte[]",  
     "boolean", "boolean[]", "void"}; 

 
/***********************************************************************/ 
//This class has all the arrays that contain all the information about 
//the scanned class  
 
 class classContent { 
 public  int StaticMethods        = 0; 

 public  int StaticAttributes     = 0; 
 public  int Extend               = 0; 
 public  int numOfImplementation  = 0; 

 public  boolean BeginingOfClass  = false; 
 public  boolean EndOfClass       = false; 

 public  int[]   attPrim          = new int[4]; 
 public  int[]   attObj           = new int[4]; 

 public  int[]   methodStatic     = new int[1]; 
 public  int[]   attStatic        = new int[1]; 

 public  ArrayList   Extends      = new ArrayList(); 
 public  ArrayList   Implements   = new ArrayList(); 
 public  ArrayList[] methodPrim   = new ArrayList[4]; 
 public  ArrayList[] methodObj    = new ArrayList[4];  
 public  ArrayList[] Constructors = new ArrayList[4]; 

 public  String    className; 
 public  String    TYPE; 
 

 private classContent(String s, String str){ 
     className=s; 
     TYPE=str; 

   } 
  
 public void addConstructor(int i, Object element){ 
   if(Constructors[i]==null)  
   Constructors[i]= new ArrayList(); 
   } 
 

 public void addPrimMethod(int i,Object element){ 
    if(methodPrim[i]==null) 
    methodPrim[i]= new ArrayList(); 
    methodPrim[i].add (element); 
   } 
 
 public void addObjMethod( int i,Object element){ 
     if(methodObj[i]==null)  
       methodObj[i]= new ArrayList(); 
    methodObj[i].add (element); 
   } 
 
 public void addExtends(String s ){ 
     Extends.add(s);  
   } 
 
 public void addImplements(String s){ 
     Implements.add(s); 
   } 
  }// end of classContent class 



 161

/*********************************************************************/ 
/*******************ClassParser methods and constructors**************/ 

  
private void reinitializeAccessSpecyfiers(){ 
 Pub =Pro =Pri= Static= Primitive= Abstract= false; 
 Native=false; 
 } 
 
private boolean checkTheClassName(String s){ 
 if(!classes.isEmpty()){ 
  for(int i=0; i < classes.size(); i++){ 
  String st=((classContent) 
   classes.get(i)).className; 
     if(st.equals(s)) return true; 
    } 
   } 
    return false; 
 } 

 
public void addNewClass(String s){ 
   if(Interface==true){ 
     classes.add(new classContent(s,"interface")); 
     Interface=false; 
    } 
   else  
    if(abstractClass==true){ 

  classes.add(new classContent(s,"abstractClass")); 
  abstractClass=false; 
 } 
 else classes.add(new classContent(s,"class")); 
 } 

 
public void printElements(){ 
 Iterator e; 
 int j,k; 
 if(!classes.isEmpty()) 
  System.out.println("ClassNum;Type; 
   className;extends;implements;StaticAtts; 
   StaticMethods;Private Primitive Atts;Private 
   Non-Primitive Atts;Private Constructors;Private 
   Primitive Methods;Private Non-Primitive Methods; 

   Protected Primitive Atts;Protected Non- Primitive 
   Atts;Protected Constructors;Protected Primitive 
   Methods;Protected Non-Primitive Methods;Public 
   Primitive Atts;Public Non- Primitive Atts;Public 
   Constructors;Public Primitive Methods;Public Non- 
   Primitive Methods; Package Primitive Atts;Package 
   Non-Primitive Atts;Package Constructors;Package 
   Primitive Methods;Package Non-Primitive Methods; 
   numOfConstructors"); 
  
 for(int i=0; i<classes.size();i++){ 
 k=i+1; 
 classContent cc = (classContent)  classes.get(i); 
 int sum=0; 
 if(cc.Constructors[0]!=null) sum = cc.Constructors[0].size 

 if(cc.Constructors[1]!=null) sum = sum +  
    cc.Constructors[1].size(); 



 162

 if(cc.Constructors[2]!=null) sum = sum +    
    cc.Constructors[2].size(); 
 if(cc.Constructors[3]!=null) sum = sum+   
    cc.Constructors[3].size(); 
 System.out.print( k+"; "+sum+";"+cc.TYPE + 
    ";"+cc.className+";"); 
 if(cc.Extends.size() >0){ 
 for(int l=0;l< cc.Extends.size();l++) 
  System.out.print(cc.Extends.get(l)+","); 
  System.out.print(";"); 
 } 

  else System.out.print("0;"); 
  if(cc.Implements.size()>0){ 
            for(int p=0;p< cc.Implements.size();p++) 
   System.out.print(cc.Implements.get(p)+","); 
    System.out.print(";"); 
   } 
  else System.out.print("0;"); 

     System.out.print(cc.StaticAttributes+ ";"+  
      cc.StaticMethods+";"); 

 for(j=0; j<4;j++){ 
  System.out.print(cc.attPrim[j]+ ";"+ cc.attObj[j]+ ";"); 
  if(cc.Constructors[j]==null) System.out.print("0"+";"); 
   else System.out.print(cc.Constructors[j].size()+ ";"); 
   if(cc.methodPrim[j]==null) System.out.print("0"+";"); 
   else System.out.print(cc.methodPrim[j]. size()+";"); 
  if(cc.methodObj[j]==null) System.out.print("0"+";"); 
 else System.out.print(cc.methodObj[j].size()+";"); 
  } 
 System.out.println(); 
 } 
  } 
 
private boolean detectClass(){ 
 if(previousString.equals("class")){ 
  Clas=true; 
 return true; 
  } 
 else return false; 
 } 
 
private boolean detectInterface(){ 

if(previousString.equals("interface")){ 
 Interface=true; 
 return true; 
 } 
 else return false; 
 } 

 
private boolean detectAbstractClass(String s){ 
 if(previousString.equals("abstract")) 
   if(s.equals("class")) return true; 
   return false; 
 } 

 
private boolean detectAbstract(String s){ 
 return(s.equals("abstract")); 
 } 



 163

 
private boolean detectPublic(String s){ 
 return(s.equals("public")); 
 } 

 
private boolean detectProtected(String s){ 
 return(s.equals("protected")); 
 } 
 
private boolean detectPrivate(String s){ 
 return("private".equals(s)); 
 } 
 
private boolean detectNative(String s){ 
 return("native".equals(s)); 
 } 
 
private boolean detectStatic(String s){ 
 return("static".equals(s)); 
 } 

 
public boolean detectSpecialKeyWords(String s){ 
 int i=0; 
 boolean result=false; 
 for(i=0;i<specialKeyWords.length;i++){  
 result = (s.equals(specialKeyWords[i])); 
 if(result) return result; 
  } 
 return result; 
 } 

 
private boolean detectPrimitiveTypes(String s){ 
 int i=0; 
 for(i=0;i<primitiveTypes.length;i++) 
   if(s.equals(primitiveTypes[i])) return true; 
 return false; 
 } 
 
private void howManyClassesImplemented() throws IOException { 

 classContent CC=getLastItemInClassesList(); 
while(in.nextToken()!= StreamTokenizer.TT_EOF){  
 if(in.ttype == '{' || (in.ttype ==  

  StreamTokenizer.TT_WORD && in.sval.equals("extends"))){ 
   in.pushBack(); 
   break; 
    } 
  if(in.ttype == '/') eatComments(); 
  if(in.ttype == StreamTokenizer.TT_WORD)  
   CC.addImplements(new String(in.sval)); 

 }//while end 
 } 
 
private void isExtended()throws IOException{ 
 classContent CC=getLastItemInClassesList(); 
   while(in.nextToken()!= StreamTokenizer.TT_EOF){ 
  if(in.ttype== '{' ||(in.ttype == StreamTokenizer.TT_WORD && 
    in.sval.equals("implements"))){ 
      in.pushBack(); 



 164

 break; 
 } 
 if(in.ttype == '/') eatComments(); 
 if(in.ttype==StreamTokenizer.TT_WORD) 
    CC.addExtends(new String(in.sval)); 
 }//while end 
 } 

 
public void parse(String str){ 
 if(detectClass()|| detectInterface()){ 
  addNewClass(str); 
  reinitializeAccessSpecyfiers(); 
  return; 
  } 
   if(detectAbstractClass(str)){ 
  abstractClass=true; 
      return; 
   } 
  if(detectPublic(str)){ 
      Pub=true; 
      return; 
   } 
    if(detectAbstract(str)){ 
      Abstract=true; 
  return; 
     } 
    if(detectProtected(str)){ 
     Pro=true; 
 return; 
     } 
    if(detectPrivate(str)){ 
      Pri=true; 
  return; 
     } 
    if(detectStatic(str)){ 
      Static=true; 
  return; 
     } 
    if(detectPrimitiveTypes(str)){ 
     Primitive =true; 
  return; 
    } 
   if(detectNative(str)){ 
      Native= true; 
  return; 
     } 
 if (detectSpicialKeyWords(str)) return; 
  } 

 
/***********************************************************************/
//This is the main method of the ClassParser class, it calls most of the 
//remaining methods of the class  
/***********************************************************************/ 

 
public void scanListing(String fname) throws IOException { 
 System.out.println("Starting scanListing of :"+fname); 
 String s; 
  in = new StreamTokenizer(new BufferedReader( 



 165

     new FileReader(fname))); 
 in.ordinaryChar('/'); 
     in.ordinaryChar('*'); 
     in.ordinaryChar('('); 
     in.ordinaryChar(')'); 
     in.ordinaryChar('{'); 
     in.ordinaryChar('}'); 
     in.ordinaryChar(','); 
     in.ordinaryChar('\"'); 
     in.ordinaryChar('\''); 
     in.ordinaryChar(';'); 
     in.ordinaryChar('='); 
     in.wordChars(95,95); 
     in.ordinaryChar('>'); 
     in.ordinaryChar('<'); 
     in.eolIsSignificant(true); 
     while(in.nextToken() != StreamTokenizer.TT_EOF){ 
       if(in.ttype == '/'){ 
   System.out.print(in.ttype); 
   eatComments(); 
   } 
       else if(in.ttype == StreamTokenizer.TT_WORD){ 
       s = in.sval; 
       if(s.equals("import") || s.equals("package"))   
   discardLine(); 
       else{ 
   parse(s); 
   if(s.equals("extends")) isExtended(); 
   else if(s.equals("implements")) 
    howManyClassesImplemented(); 
              else previousString = s; 
              } //end of the internal else 
       }//end of the external else if  
       else if(in.ttype=='<'){ 
         while(in.nextToken()!= StreamTokenizer.TT_EOF 
      && in.ttype!='>') 
   continue; 
            } 
       else if(in.ttype == '('){ 
         if(checkTheClassName(previousString)){  
   addNewConstructor();       
    eatBlock(); 
   reinitializeAccessSpecyfiers(); 
   continue; 
  } 
           else{ 
               methodName= previousString; 
               addNewMethod(); 
               eatBlock(); 
               reinitializeAccessSpecyfiers(); 
               continue; 
             } 
          } 
  else if(in.ttype == ';'|| in.ttype == '=' ||  
     in.ttype == ','){ 
            addNewAttributes( eatAttributeDeclaration()); 
            continue; 
          } 



 166

       else if(detectStatic(previousString)&&in.ttype == '{'){ 
            eatStaticBlock(); 
              continue; 
            } 
 else if(in.ttype=='{'){ 
             classState('{'); 
            continue; 
            } 
       else if(in.ttype == '}') classState('}'); 
        }// end of While Loop 
 } 
 
private classContent getLastItemInClassesList(){ 
 classContent CC; 
 if(!classes.isEmpty())  
  return CC = (classContent) classes.get(classes.size()-1); 
 else return null; 
  } 

 
public void classState(char c){ 
 classContent CC; 
 if(!classes.isEmpty()){ 
  if(c=='{'){ 
   CC = getLastItemInClassesList(); 
   CC.BeginingOfClass=true; 
   CC.EndOfClass=false; 
   } 
   else if (c=='}') 
    for(int i =classes.size()-1; i>=0;i--){ 
       CC= (classContent) classes.get(i); 
       if(CC.EndOfClass==false){ 
         CC.BeginingOfClass=false; 
         CC.EndOfClass=true; 
         return; 
         } 
      } 
   } 
 } 
 
public classContent getCCClass(){ 
    classContent CC; 
 if(!classes.isEmpty()) 
   for(int i= classes.size()-1;i>=0;i--){ 
    CC= (classContent) classes.get(i); 
    if(CC.EndOfClass==false ) return  CC; 
    } 
 return null; 
 } 

 
/***********************************************************************/ 
//The addNewConstructor()adds number of constructors to the classContent 

 
void addNewConstructor(){ 
   classContent cc=this.getCCClass(); 
   if(Pri) cc.addConstructor(0,new String(cc.className)); 
   if(Pro) cc.addConstructor(1,new String(cc.className)); 
   if(Pub) cc.addConstructor(2,new String(cc.className)); 
  if(!Pub && !Pro && !Pri) 



 167

   cc.addConstructor(3,new String(cc.className)); 
 } 

 
/***********************************************************************/ 
//The addNewMethod() adds  method names to classContent 

 
void addNewMethod(){ 
   classContent cc= this.getCCClass(); 
   if(Static==true)  cc.StaticMethods++; 
   if(Primitive){ 
  if(Pri)cc.addPrimMethod(0,new String (methodName)); 
  if(Pro)cc.addPrimMethod(1,new String (methodName)); 
  if(Pub)cc.addPrimMethod(2,new String (methodName)); 
  if(!Pub && !Pro && !Pri)  
   cc.addPrimMethod(3,new String(methodName)); 
 
     } 
   else{ 
   if(Pri) cc.addObjMethod(0,new String (methodName)); 
 if(Pro) cc.addObjMethod(1,new String (methodName)); 
 if(Pub) cc.addObjMethod(2,new String (methodName)); 
 if(!Pub && !Pro && !Pri) 
  cc.addObjMethod(3,new String (methodName)); 
     } 
 } 
 
void addNewAttributes(int i){ 
   classContent cc=this.getCCClass(); 
   if(Static==true) cc.StaticAttributes += i; 
   if(Primitive){ 
   if(Pri) cc.attPrim[0]=cc.attPrim[0]+i; 
     if(Pro) cc.attPrim[1]=cc.attPrim[1]+i; 
     if(Pub) cc.attPrim[2]=cc.attPrim[2]+i; 
     if(!Pub && !Pro && !Pri) cc.attPrim[3]=cc.attPrim[3]+i; 
    } 
 else{ 
    if(Pri) cc.attObj[0]=cc.attObj[0]+i; 
  if(Pro) cc.attObj[1]=cc.attObj[1]+i; 
  if(Pub) cc.attObj[2]=cc.attObj[2]+i; 
  if(!Pub && !Pro && !Pri) cc.attObj[3]=cc.attObj[3]+i; 
    } 
 reinitializeAccessSpecyfiers(); 
 } 
 

/***********************************************************************/ 
//The eatAttributeDeclaration() discards an attribute declaration 
 

int eatAttributeDeclaration() throws IOException{ 
   int i=0, j=0,k=0; 
   if(in.ttype==';' || in.ttype == ',') i++; 
   if(in.ttype == ';')  return i; 
   else 
     while(in.nextToken() != StreamTokenizer.TT_EOF){ 
       if(in.ttype == ';') return  ++i; 
       if(in.ttype =='('){ 
       j=1; 
  while(in.nextToken() != StreamTokenizer.TT_EOF){ 
              if(in.ttype=='(') j++ ; 



 168

              if(in.ttype==')') k++; 
             if(j==k) {j=k=0; break;} 
             }//end internal While Loop 
      } 
  else if( in.ttype =='{'){ 
   j=1; 
          while(in.nextToken() != StreamTokenizer.TT_EOF){ 
                 if(in.ttype =='{')j++; 
                 if(in.ttype == '}') k++; 
                if(j==k) {j=k=0; break;} 
   } 
            } 
       else if(in.ttype=='<'){ 
          while(in.nextToken() != StreamTokenizer.TT_EOF  
      &&in.ttype!='>' ); 
           } 
      else if(in.ttype == ',') i++; 
      } 
    return i; 
  } 
 

/***********************************************************************/ 
//The discardLine() discards a comment line of type ‘//’ 

 
void discardLine() throws IOException { 
     while(in.nextToken() != StreamTokenizer.TT_EOF &&  
    in.ttype != StreamTokenizer.TT_EOL); 
 } 

 
/***********************************************************************/ 
//The eatBlock()discards a method block with consideration to its type 

 
private void eatBlock()throws IOException{ 
  int i=0; int j=0; int k=0; 
 classContent cc= this.getCCClass(); 
 if(Abstract==true || Native==true || cc.TYPE=="interface")  
   while(true ){ 
      if(in.ttype == ';' || in.nextToken() ==  
   StreamTokenizer.TT_EOF) break; 
       }  
 else{ 
 in.pushBack(); 
  while(true) { 
       if(in.nextToken() == StreamTokenizer.TT_EOF) break; 
       if(in.ttype == '{') i++; 
       if(in.ttype == '}') j++; 
       if( i!=0 && j!=0 && i==j) break; 
     } 
   } 
 } 

 
/***********************************************************************/ 
//The eatStaticBlock() discards a static block 
 

private void eatStaticBlock()throws IOException{ 
 int i=1; 
 int j=0; 
 int k=0; 



 169

 while(true){ 
 if(in.nextToken() == StreamTokenizer.TT_EOF  
     ||( i!=0 && i==j)){ 
  reinitializeAccessSpecyfiers(); 
  break; 
  } 
        k++; 
  if(in.ttype == '{') i++; 
  if(in.ttype == '}') j++; 
     } 
 } 

 
/***********************************************************************/ 
//The eatComments() discards comment lines until hit ‘*/’) 

 
private void eatComments() throws IOException { 
     if(in.nextToken() != StreamTokenizer.TT_EOF){ 
       if(in.ttype == '/') discardLine(); 
  else if(in.ttype != '*') in.pushBack(); 
  else{ 
         while(true){ 
            if(in.nextToken() ==  StreamTokenizer.TT_EOF )break; 
            if(in.ttype == '*'){ 
    if(in.nextToken() != StreamTokenizer.TT_EOF && 
       in.ttype =='/')  
    break; 

    }  
         else in.pushBack(); 
               } // while 
       } // else 
     }  
  } 
 
} 

}// end of ClassParser class 
 

 

In addition to classParser, the class ‘test1’, available online1, was also used to collect the 

required data in this Thesis. The ‘test1’ class includes a number of classes: javaFilter which 

implements FilenameFilter, MyFile and MyDir. These classes provide the means to 

traverse a file tree structure selecting Java files out of the tree. 

 

 

                                                   
1 http://javaboutique.internet.com/tutorials/Files_Directories/mydir.html 



 170

Appendix C: Publications 

 

 

2007  
1. Counsell, S., Loizou, G., Najjar, R. (2007) Quality of manual data collection in Java 

software: an empirical investigation. Empirical Software Engineering: An 

International Journal. 

 

2006 
2. Counsell, S., Hassoun, Y., Loizou, G., Najjar, R. (2006a) Common refactorings, a 

dependency graph and some code smells: an empirical study of Java OSS. 

Proceedings of the 5th ACM/IEEE International Symposium on Empirical Software 

Engineering (ISESE’06). Rio de Janeiro, Brazil, 288-296. 

 

3. Counsell, S., Hierons, R.M., Najjar, R., Loizou, G., Hassoun, Y. (2006b) The 

effectiveness of refactoring, based on a compatibility testing taxonomy and a 

dependency graph. Testing: Academic & Industrial conference - Practice And 

Research Techniques. Windsor, UK, 181-192. 

 

2005 
4. Najjar, R., Loizou, G., Counsell, S. (2005). Encapsulation and the vagaries of a 

simple refactoring: an empirical study. Proceedings of the International Conference 

on Software and Systems Engineering and their Applications (ICSSEA'05). Paris, 

France, 8 pages. 

 

2004  
5. Najjar, R., Counsell, S., Loizou, G., Hassoun, Y. (2004) The quality of automated 

and manual data collection processes in Java software: an empirical comparison. 

CAISE'04 Workshops in connection with The 16th Conference on Advanced 

Information Systems Engineering. Riga, Latvia, 101-112. 



 171

2003  
6. Najjar, R., Counsell, S., Loizou, G., Mannock, K. (2003) The role of constructors in 

the context of refactoring object-oriented software. Proceedings of the 7th 

European Conference on Software Maintenance and Reengineering (CSMR '03). 

Benevento, Italy, 111 – 120. 

 

7. Counsell, S., Liu, X., Najjar, R., Swift, S., Tucker, A. (2003) Applying intelligent 

data analysis to coupling relationships in object-oriented software. International 

Conference on Intelligent Data Analysis. Berlin, Germany, 440-450. 

 

2002 
8. Counsell, S., Loizou, G., Najjar, R., Mannock, K. (2002) On the inter-relationships 

between encapsulation, inheritance and friends in C++ software. Proceedings of the 

International Conference on Software Systems Engineering and its Applications 

(ICSSEA’02). Paris, France, 8 pages. 



 172

References 

 
Abreu, F., Carapuca, R. (1994) Object-oriented software engineering: measurement and 
controlling the development process. Revised version: Originally published in Proceedings 
of the 4th International Conference on Software Quality. McLean, VA, 8 pages. 

Advani, D., Hassoun, Y., Counsell, S. (2005). Refactoring trends across N versions of N 
Java open source systems: an empirical study. Technical Report BBKCS-05-03-01. 
Birkbeck, University of London: London, UK. 

Arsenovski, D. (2005). "Refactoring  elixir of youth for legacy VB code." Retrieved 
10/02/2005, from www.codeproject.com/vb/net/Refactoring_elixir.asp. 

Baker, P., Evans, D., Grabowski, J., Neukirchen, H., Zeiss, B. (2006) TRex - The 
refactoring and metrics tool for TTCN-3 test specifications. Proceedings of Testing: 
Academic & Industrial Conference - Practice and Research Techniques. Windsor, UK, 90-
94. 

Bansiya, J., Etzkorn, L., Davis, C., Li, W. (1999) A class cohesion metric for object-
oriented design. Journal of Object-Oriented Programming, 11(8):47-52. 

Basili, V.R., Briand, L.C., Melo, W.L. (1996) A validation of object-oriented design 
metrics as quality indicators. IEEE Transactions on Software Engineering, 22(10):751-761. 

Basili, V.R., Selby, R., Hutchens, H. (1986) Experimentation in software engineering. 
IEEE Transactions on Software Engineering, 12(7):733-743. 

Berard, E. (1995). "Metrics for object-oriented software engineering." Retrieved 
15/02/2006, from http://www.toa.com/pub/moose.htm. 

Bieman, J.M., Jain, D., Yang, H.J. (2001) OO design patterns, design structure, and 
program changes: an industrial case study. Proceedings of the 17th IEEE International 
Conference on Software Maintenance (ICSM'01). Florence, Italy, 580-590. 

Bieman, J.M., Straw, G., Wang, H., Munger, P.W., Alexander, R.T. (2003) Design patterns 
and change proneness: an examination of five evolving systems. Proceedings of the 9th 
International Software Metrics Symposium (METRICS’03). Sydney, Australia, 40-49. 

Bieman, J.M., Zhao, J.X. (1995) Reuse through inheritance: a quantitative study of C++ 
software. Proceedings of the ACM Symposium on Software Reusability. Seattle, WA, 47-
52. 

Bilal, H.Z., Black, S.E. (2006) Computing ripple effect for object-oriented software. 
Workshop on Quantitative Approaches in Object-Oriented Software Engineering 
(QAOOSE). Nantes, France, 51-61. 



 173

Bocco, M.G., Piattini, M., Calero, C. (2005) A survey of metrics for UML class diagrams. 
Journal of Object Technology, 4(9):59-92. 

Bourque, L.B., Clark, V.A. (1994) Processing Data: The Survey Example, in Research 
Practice, International handbooks of Quantitative Applications in the Social Sciences. M.S. 
Lewis-Beck (ed), Volume 6. Sage Publications, Thousand Oaks, CA. 

Briand, L., Bunse, C., Daly, J. (2001) A controlled experiment for evaluating quality 
guidelines on the maintainability of object-oriented designs. IEEE Transactions on 
Software Engineering, 27(6):513-530. 

Briand, L., Bunse, L., Daly, J., Differding, C. (1997a) An experimental comparison of the 
maintainability of object-oriented and structured design documents. Empirical Software 
Engineering-An International Journal, 2(3):291-312. 

Briand, L., Daly, J., Wust, J. (1998) A unified framework for cohesion measurement in 
object-oriented systems. Empirical Software Engineering-An International Journal, 
3(1):65-117. 

Briand, L.C., Arisholm, F., Counsell, S., Houdek, F., Thévenod-Fosse, P. (1999a) 
Empirical studies of object-oriented artifacts, methods, and processes: state of the art and 
future directions. Empirical Software Engineering-An International Journal, 4(4):387-404. 

Briand, L.C., Daly, J., Wust, J. (1999b) A unified framework for coupling measurement in 
object-oriented systems. IEEE Transactions on Software Engineering, 25(1):91-121. 

Briand, L.C., Devanbu, P., Melo, W.L. (1997b) An investigation into coupling measures 
for C++. Proceedings of the 19th International Conference on Software Engineering. 
Boston, MA, 412 - 421. 

Briand, L.C., Wust, J. (2002) Empirical studies of quality models in object-oriented 
systems. Advances in Computers, Val. 59. Academic Press, 97-166. 

Brown, W.J., Malveau, R.C., McCormick, H.W., Mowbray, T.J. (1998) AntiPatterns: 
Refactoring Software, Architectures, and Projects in Crisis. John Wiley & Sons, Inc., New 
York, NY. 

Budd, T. (2002) An Introduction to Object-Oriented Programming. Addison Wesley, 
Reading, MA. 

Cartwright, M., Shepperd, M. (2000) An empirical investigation of an object-oriented 
software system. IEEE Transactions on Software Engineering, 26(8):786-796. 

Chidamber, S.R., Kemerer, C.F. (1994) A metrics suite for object-oriented design. IEEE 
Transactions on Software Engineering, 20(6):476-493. 

Chikofsky, E.J., Cross, J.H., II (1990) Reverse engineering and design recovery: A 
taxonomy. IEEE Software, 7(1):13-17. 



 174

Cohen, J. (1960) A coefficient of agreement for nominal scales. Educational and 
Psychological Measurement, 20(1):37-46. 

Cohen, J. (1968) Weighted kappa: nominal scale agreement with provision for scaled 
disagreement or partial credit. Psychological Bulletin, 70(4):213-219. 

Collett, D. (2003) Modelling Binary Data. Chapman & Hall, London, UK. 

Coolican, H. (1990) Research methods and statistics in psychology. Hodder & Stoughton, 
London, UK. 

Counsell, S., Hassoun, Y., Johnson, R., Mannock, K., Mendes, E. (2003) Trends in Java 
code changes: the key identification of refactorings. Proceedings of the 2nd International 
Conference on the Principles and Practice of Programming in Java. Kilkenny, Ireland, 45-
48. 

Counsell, S., Hassoun, Y., Loizou, G., Najjar, R. (2006) Common refactorings, a 
dependency graph and some code smells: an empirical study of Java OSS. Proceedings of 
the 2006 ACM/IEEE International Symposium on Empirical Software Engineering 
(ISESE'06). Rio de Janeiro, Brazil, 288-296. 

Counsell, S., Loizou, G., Najjar, R., Mannock, K. (2002) On the inter-relationships between 
encapsulation, inheritance and friends in C++ software. Proceedings of the International 
Conference on Software Systems Engineering and its Applications (ICSSEA’02). Paris, 
France, 8 pages. 

Counsell, S., Newson, P. (2000) Use of friends in C++ software. Journal of Systems and 
Software, 53(1):15-21. 

Counsell, S., Newson, P., Mendes, E. (2000) Architectural level hypothesis testing through 
reverse engineering of object-oriented software. International Workshop on Program 
Comprehension (IWPC 2000). Limerick, Ireland, 60-66. 

Cronbach, L.J. (1951) Coefficient alpha and the internal structure of tests. Psychometrika, 
16(3):297-334. 

Daly, J. "Replication and a multi-method approach to empirical software engineering 
research." Ph.D. Thesis, University of Strathclyde, 1996. 

Daly, J., Brooks, A., Miller, J., Roper, M., Wood, M. (1996) An empirical study evaluating 
depth of inheritance on the maintainability of object-oriented software. Empirical Software 
Engineering-An International Journal, 1(2):109-132. 

Darcy, D., Kemerer, C., Slaughter, S., Tomayko, J. (2005) The structural complexity of 
software: an experimental test. IEEE Transactions on Software Engineering, 31(11):982-
995. 

DeMarco, T. (1982) Controlling Software Projects. Yourdon Press, New York, NY. 



 175

Demeyer, S., Ducasse, S., Nierstrasz, O. (2000) Finding refactorings via change metrics. 
Proceedings of the ACM International Conference on Object-Oriented Programming, 
Systems, Languages, and Applications (OOPSLA). Minneapolis, MN, 166-177. 

DeVaus, D. (2002) Analyzing Social Science Data. Sage Publications, London, UK. 

Eckel, B. (2000) Thinking in Java. Prentice Hall, Upper Saddle River, NJ. 

El Emam, K., Benlarbi, S., Goel, N., Rai, S. (2001) The confounding effect of class size on 
the validity of object-oriented metrics. IEEE Transactions on Software Engineering, 
27(7):630-650. 

English, M., Buckley, J., Cahill, T., Lynch, K. (2005) Measuring the impact of friends on 
the internal attributes of software systems. Proceedings of the 5th IEEE International 
Workshop on Source Code Analysis and Manipulation (SCAM'05). Budapest, Hungary, 
151-160. 

Fenton, N.E., Pfleeger, S.L. (2002) Software Metrics: A Rigorous and Practical Approach. 
International Thomson Computer Press, London, UK. 

Field, A. (2006) Discovering Statistics Using SPSS. Sage Publications, London, UK. 

Fowler, M. (2000) Refactoring: Improving the Design of Existing Code. Addison Wesley, 
Boston, MA. 

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995) Design Patterns: Elements of 
Reusable Object-Oriented Software. Addison Wesley, Reading, MA. 

Gilb, T. (1976) Software Metrics. Chartwell-Bratt, Cambridge, MA. 

Hall, T., Fenton, N.E. (1997) Implementing effective software metrics programs. IEEE 
Software, 14(2):55-65. 

Hall, T., Rainer, A., Jagielska, D. (2005) Using software development progress data to 
understand threats to project outcomes. Proceedings of the 11th IEEE International 
Software Metrics Symposium (METRICS 2005). Como, Italy, 10 pages. 

Harrison, R., Counsell, S., Nithi, R. (1998a) Coupling metrics for OO design. Proceedings 
of the 5th IEEE International Software Metrics Symposium (METRICS 1998). Bethesda, 
MD, 150-157. 

Harrison, R., Counsell, S., Nithi, R. (1998b) An evaluation of the MOOD set of object-
oriented software metrics. IEEE Transactions on Software Engineering, 24(6):491-496. 

Harrison, R., Counsell, S., Nithi, R. (2000) Experimental assessment of the effect of 
inheritance on the maintainability of object-oriented systems. Journal of Systems and 
Software, 52(2-3):173-179. 



 176

Harrison, R., Counsell, S., Nithi, R. (1998c) An investigation into the applicability and 
validity of object-oriented design metrics. Empirical Software Engineering-An 
International Journal, 3(3):255-273. 

Henderson-Sellers, B., Constantine, L.L., Graham, M. (1996) Coupling and cohesion: 
towards a valid metrics suite for object-oriented analysis and design. Object-Oriented 
Systems, 3(3):143-158. 

Henry, S.M., Kafura, D.G. (1981) Software structure metrics based on information flow. 
IEEE Transactions on Software Engineering, 7(5):510-518. 

Jagdish, B., Davis, C.G. (2002) Hierarchical model for object-oriented design quality 
assessment. IEEE Transactions on Software Engineering, 28(1):4-17. 

Johnson, R.E., Foote, B. (1988) Designing reusable classes. Journal of Object-Oriented 
Programming, 1(2):22-35. 

Johnson, R.E., Opdyke, W.F. (1993) Refactoring and aggregation. Lecture Notes In 
Computer Science, Proceedings of the JSSST International Symposium on Object 
Technologies for Advanced Software. Springer-Verlag, London, UK, 742:264 - 278. 

Kanmani, S., Uthariaraj, V.R., Sankaranarayanan, V., Thambidurai, P. (2004) Investigation 
into the exploitation of object-oriented features. SIGSOFT Software Engineering Notes, 
29(2):1-9. 

Kerievsky, J. (2004) Refactoring to Patterns. Addison Wesley, Reading, MA. Also 
partially available online at: www.industriallogic.com, 2002. 

Kernighan, B., Ritchie, D. (1978) The C Programming Language. Prentice-Hall, 
Englewood Cliffs, NJ. 

Kitchenham, B.A., Hughes, R.T., Linkman, S.G. (2001) Modelling software measurement 
data. IEEE Transactions on Software Engineering, 27(9):788-804. 

Kitchenham, B.A., Pfleeger, S.L. (1996) Software quality: The elusive target. IEEE 
Software, 13(1):12-21. 

Kitchenham, B.A., Pfleeger, S.L., Fenton, N.E. (1995) Towards a framework for software 
measurement validation. IEEE Transactions on Software Engineering, 21(12):929-944. 

Kitchenham, B.A., Pfleeger, S.L., Pickard, L., Jones, P., Hoaglin, D., El Emam, K., 
Rosenberg, J. (2002) Preliminary guidelines for empirical research in software engineering. 
IEEE Transactions on Software Engineering, 28(8):721-734. 

Kramer, J. (2007) Is abstraction the key to computing? Communications of the ACM, 
50(4):37-42. 



 177

Laing, V., Coleman, C. (2006) Principal components of orthogonal object-oriented metrics. 
Software Assurance Technology Center (White Paper Analyzing Results of NASA Object-
Oriented Data), 323:8-14. 

Laplante, P.A., Neill, C.J. (2006) Antipatterns. CRC Press, Boca Raton, FL. 

Lewis, J., Henry, S., Kafura, D., Schulman, R. (1991) An empirical study of the object-
oriented paradigm and software reuse. Proceedings of the ACM International Conference 
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). 
Phoenix, AZ, 184-196. 

Liskov, B., Snyder, A., Atkinson, R.R., Schaffert, C. (1977) Abstraction mechanisms in 
CLU. Communications of the ACM, 20(8):564-576. 

Lorenz, M., Kidd, I. (1994) Object-Oriented Software Engineering Metrics. Prentice-Hall, 
Englewood Cliffs, NJ. 

MacDonell, S., Shepperd, M. (2003) Using prior-phase effort records for re-estimation 
during software projects. Proceedings of the 9th International Software Metrics Symposium 
(METRICS'03). Sydney, Australia, 73-86. 

Mair, C., Shepperd, M., Jørgensen, M. (2005) An analysis of data sets used to train and 
validate cost prediction systems. Proceedings of the 2005 Workshop on Predictor Models 
in Software Engineering (PROMISE’05). St. Louis, MI, 1-6. 

McCabe, T. (1976) A software complexity measure. IEEE Transactions on Software 
Engineering, 2(4):308-320. 

Mens, T., Tourwe, T. (2004) A survey of software refactoring. IEEE Transactions on 
Software Engineering, 30(2):126-139. 

Mubarak, A., Counsell, S., Hierons, R., Hassoun, Y. (2007) Package evolvability and its 
relationship with refactoring. Proceedings of the International ERCIM Symposium on 
Software Evolution. Paris, France, 11 pages. 

Najjar, R., Counsell, S., Loizou, G. (2005). Encapsulation and the vagaries of a simple 
refactoring: an empirical study. Technical Report BBKCS-05-03-02. Birkbeck, University 
of London: London, UK. 

Najjar, R., Counsell, S., Loizou, G., Hassoun, Y. (2004) The quality of automated and 
manual data collection processes in Java software: an empirical comparison. CAISE'04 
Workshops in connection with The 16th Conference on Advanced Information Systems 
Engineering. Riga, Latvia, 101-112. 

Najjar, R., Counsell, S., Loizou, G., Mannock, K. (2003) The role of constructors in the 
context of refactoring object-oriented software. Proceedings of the 7th European 
Conference on Software Maintenance and Reengineering (CSMR '03). Benevento, Italy, 
111 – 120. 



 178

O'Cinne'ide, M., Nixon, P. (2000) Composite refactorings for Java programs. Proceedings 
of the Workshop on Formal Techniques for Java Programs, European Conference on 
Object-Oriented Programming. Sophia Antipolis and Cannes, France, 6 pages. 

O'Keeffe, M., O'Cinne'ide, M. (2006) Search-based software maintenance. Proceedings of 
the Conference on Software Maintenance and Reengineering (CSMR’06). Los Alamitos, 
CA, 249-260. 

Opdyke, W. "Refactoring object-oriented frameworks." Ph.D. Thesis, University of Illinois, 
1992. 

Opdyke, W.F., Johnson, R.E. (1993) Creating abstract superclasses by refactoring. 
Proceedings of the ACM 1993 Computer Science Conference. Indianapolis, IN, 66-73               

Opdyke, W.F., Johnson, R.E. (1990) Refactoring: an aid in designing application 
frameworks and evolving object-oriented systems. Proceedings of the Symposium on 
Object-Oriented Programming, Emphasizing Practical Applications (SOOPPA '90). 
Poughkeepsie, NY, 145-161. 

Ostrand, T.J., Weyuker, E.J., Bell, R.M. (2004) Where the bugs are. Proceedings of ACM 
International Symposium on Software Testing and Analysis. Boston, MA, 86-96. 

Parnas, D.L. (1972) On the criteria to be used in decomposing systems into modules. 
Communications of the ACM, 5(12):1053-1058. 

Parsons, D. (1994) Object-Oriented Programming with C++. DP Publications Ltd, 
London, UK. 

Perry, D. (2002) Laws and principles of evolution. Proceedings of the International 
Conference on Software Maintenance. Montreal, Canada, 70-71. 

Perry, D., Porter, A., Votta, L. (2000) Empirical software engineering: A roadmap. 
Proceedings of the Conference on The Future of Software Engineering. Limerick, Ireland, 
345 - 355    

Petrenko, M., Poshyvanyk, D., Rajlich, V., Buchta, J. (2007) Teaching software evolution 
in open source. Computer, 40(11):25-31. 

Post, E. (2001) Advantages of using the object-oriented paradigm for designing and 
developing software. Applied Computing, Mathematics and Statistics Group, Applied 
Management and Computing Division. Lincoln, Canterbury, New Zealand. 

Prechelt, L., Unger, B., Philippsen, M., Tichy, W. (2003) A controlled experiment on 
inheritance depth as a cost factor for code maintenance. Journal of Systems and Software, 
65(2):115-126. 

Prechelt, L., Unger, B., Tichy, W., Brossler, P., Votta, L. (2001) A controlled experiment in 
maintenance comparing design patterns to simpler solutions. IEEE Transactions on 
Software Engineering, 27(12):1134-1144. 



 179

Pressman, R.S. (2000) Software Engineering: A Practitioner's Approach, Sixth Edition. 
McGraw Hill, Berkshire, England. 

Rosenberg, J. (1997) Some misconceptions about lines of code. Proceedings of the 4th 
International Software Metrics Symposium. Albuquerque, NM, 137-142. 

Rosenberg, L.H., Hyatt, L.E. (1997) Software quality metrics for object-oriented 
environments. Cross Talk-The Journal of Defense Software Engineering, 10(4):7 pages. 

Rumbaugh, J., Jacobson, I., Booch, G. (1998) The Unified Modelling Language Reference 
Manual. Addison Wesley, Reading, MA. 

Schärli, N., Black, A.P., Ducasse, S. (2004) Object-oriented encapsulation for dynamically 
typed languages. Proceedings of the ACM International Conference on Object-Oriented 
Programming, Systems, Languages, and Applications (OOPSLA). Vancouver, BC, Canada, 
130-149. 

Schneidwind, N.F. (1992) Methodology for validating software metrics. IEEE Transactions 
on Software Engineering, 18(5):410-422. 

Seaman, C. (1999) Qualitative methods in empirical studies of software engineering. IEEE 
Transactions on Software Engineering, 25(4):557-572. 

Shepperd, M., Ince, D. (1993) Derivation and Validation of Software Metrics. Clarendon 
Press, Oxford, UK. 

Shepperd, M.J. (1995) Foundations of Software Measurement. Prentice Hall International, 
Hertfordshire, UK. 

Sheskin, D.S. (2004) Handbook of Parametric and Nonparametric Statistical Procedures. 
CRC Press, Boca Raton, FL. 

Skoglund, M. (2003) Practical use of encapsulation in object-oriented programming. 
Proceedings of the 2003 International Conference on Software Engineering Research and 
Practice. Las Vegas, NV, 554-560. 

Snyder, N. (1986) Encapsulation and inheritance in object-oriented programming language. 
Proceedings of the ACM International Conference on Object-Oriented Programming, 
Systems, Languages, and Applications (OOPSLA). Portland, OR, 38-45. 

Stein, C., Etzkorn, L., Utley, D. (2004) Computing software metrics from design 
documents. Proceedings of the 42nd Annual Southeast Regional Conference. Huntsville, 
AL, 146-151. 

Stroustrup, B. (1991) The C++ Programming Language. Addison-Wesley, Reading, MA. 

Tokuda, L., Batory, D. (2001) Evolving object-oriented designs with refactorings. Journal 
of Automated Software Engineering, 8(1):89-120. 



 180

Trifu, A., Marinescu, R. (2005) Diagnosing design problems in object-oriented systems. 
Proceedings of the 12th Working Conference on Reverse Engineering (WCRE’05). 
Pittsburgh, PA, 155-164. 

Viera, A.J., Garrett, J.M. (2005) Understanding interobserver agreement: the kappa 
statistic. Family Medicine, 37(5):360-363. 

Weinand, A., Gamma, E., Marty, R. (1988) ET++: An object-oriented application 
framework in C++. Proceedings of the ACM International Conference on Object-Oriented 
Programming, Systems, Languages, and Applications (OOPSLA). San Diego, CA, 46-57. 

Zeiss, B., Neukirchen, H., Grabowski, J., Evans, D., Baker, P. (2006) Refactoring for 
TTCN-3 test suites. Proceedings of SAM'06: Fifth Workshop on System Analysis and 
Modeling. University of Kaiserslautern, Germany. 
 
 


