Annotated Suffix Trees for Text Modelling and

Classification

Rajesh M. Pampapathi
January 2008

A Dissertation Submitted to
Birkbeck College, University of London
in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

School of Computer Science & Information Systems
Birkbeck College

University of London



Abstract

Suffix trees are compact and versatile data structures inhwiths from the root to nodes represent
substrings of the encoded text. By annotating such a tréethétfrequencies of substrings, it is possible
to construct a compact model of text that captures its sa@eature. This thesis investigates the use
of such a model in the representation and classificatiornxof te

The basic approach in this thesis is to use an Annotated Suéex(AST) to represent a pre-specified
collection of texts (“class”). A document, represented agriag or another (“auxiliary”) suffix tree, is
matched to the AST to allow, firstly, the scoring of matchdsveen the document and the AST and, sec-
ondly, the identification of a number of substrings (“feati) that maximally contribute to the matching
score. Based on this, methods are proposed for the interdemoblems of: (i) classification of text
against several, possibly overlapping, classes, (ii)llggting the features in a text which are most
relevant to a particular class (this problem, to our knogkcdhas never before been computationally
addressed).

The developed methods are applied to well-establishedatedi/sis problems such as e-mail spam
filtering and document classification, with three aims in dnii) to adjust parameters of the scoring
function and assess the effect on performance, (ii) to kestrtethod on benchmark and newly devel-
oped test sets, and (iii) to generate human-readable ¢walsaf classification features within query
documents.

Experiments show that the AST method is competitive witteotturrent approaches and in some
cases, such as spam filtering, achieves higher classificatimuracy; the method also allows the tackling
of problems not typically addressed by current alternatiethods. The AST method is therefore a

useful addition to the arsenal of available classificati@ihmds.
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Chapter 1

Introduction

The aim of this thesis is to develop an approach to automatdcclassification which can address a
number of weakness that exist in traditional approachestragitional’ | mean methods that are based
on the ‘bag-of-words’ vector space model which goes bacg&adtlas far as early solutions to problems
in Information Retrieval [3, 50]. In such a traditional mbdine context in which a word appears is
considered irrelevant to the classification task, whichéntaccomplished purely on the basis of words
counts. We attempt to weaken this strong assumption of watejdendence by taking as features not
independent words, but variable length sequences of weodss to retain something of their context.

Text is a sequence of both words and characters (indeed) ieeaeen as a sequence of even larger
units such as clauses, sentences and paragraphs) andtsgq@pmproaches to text can model text in
either way; we attempt in this thesis to develop a uniformraggh to both ‘levels’ or ‘term-bases’ of
text modelling and analysis. As such, the approach destiibthis thesis is agnostic as to whether the
smallest unit of consideration is a word or a character, até we will often refer simply to ‘terms’
as a way of referring to whatever is the smallest unit of teat is being considered. In other words,
throughout this thesis we are generally concerned withsegh as a sequence of terms, whatever those
terms may be.

We will argue that text should be seen at whatever level is@pfate to the specific task, domain
or data set that the classifier is being applied to. Hence, Wes@e that in domains such as spam

emalil filtering (Chapter 4), the classifier may benefit gse&itbm a character-based treatment of the

16



CHAPTER 1. INTRODUCTION 17

text; while on the other hand, when it is applied to a dataseh s Reuters (Chapter 5), a word-based
treatment may be adequate and/or desirable. That said, Weirther argue and show that character-
based approaches can compete well with word-based apg®oacan when applied to data sets such as
Reuters, which is normally seen as the bastion of the latter.

To accomplish such modelling of text, we utilise a well knoatal structure called a suffix tree
(or trie) (Chapter 2). The suffix tree is central to this woskd much of the approach we develop is
couched in tree representations of the term-sequences#katup text. However, itis certainly possible
to represent the term-sequences in text without recourseftix trees or, indeed, any other graphical
representation - for example, see Cavnar and Trenkle [74,wsle a hash-table to represent n-grams (of
characters) of variable order (i.e. for varying valuespénd their frequencies. Also, see Guthrie '94
[21] for an analysis of n-gram approaches. But framing tteblam, and the solution, in the context
of suffix trees allows us to present class profiles, query ah@eis, and scoring functions in simple and
elegant ways (see Chapters 2 and 3).

Although the sulffix tree is central to this work, we do not ddesits properties in detail. There is a
great deal of good work on suffix trees that provide betteluskee focus for the interested reader. We
provide references to recommended material that addresg issues regarding suffix tree in Chapters
2 and 3.

Other researchers have also attempted to address the \8sakrie traditional approaches to text
modelling and classification, and many, like us, attemptaeetbp methods which better model the
sequential nature of text; we will address these alteraapproaches in Chapter 5.

Additionally, this thesis attempts to address a weaknegsgsmot widely addressed in the literature:
that classification methods typically offer little in the yvaf justification for the classification decisions
that are made. Hence, the user of a method may obtain a classafrclasses from a classifier, but may
be left with little notion of which features in a text led ts @llocation to the subset of classes returned
by the classifier. Hence, in Chapter 6, we attempt to provideuser with some ‘visualisation’ of the
features that were highly significant in the classificationcess.

Having developed the method we demonstrate its viabilityekgyerimentation on benchmark and
in-house (which we have now made publicly available) data.s®ur results are compared against

those reported in the literature. Chapter 4 concentratesmtrspam email filtering as a special case of
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text classification in which character-level analysis ipafticular benefit. Chapter 5 then broadens the
application to more general text classification, utilisthg Reuters benchmark data set, and analyses
both word-level and character-level text models and diassi Reuters is chosen as a challenging
test for character-based approaches exactly becauseeitésajly considered to be highly amenable to
word-based analysis.
We begin, in Chapters 2 and 3, by developing the theoretiwdérpinnings of the annotated suffix

tree approach to text classification. Then in Chapters 4d%amwe apply the methods to experimental
data sets, present the results and compare them to restiits literature. Chapter 7 concludes and

describes some possible future directions to this work.



Chapter 2

Annotated Suffix Trees (ASTS)

A suffix tree is a rooted directed tree in which the paths frberbot to leaf nodes represent the suffixes
of the string it encodes. The data structure is a powerfuldneh can be used to compactly store a great
deal of information regarding the strings it encodes. Itl@sn studied for over 30 years, with linear-
time construction algorithms proposed in the ‘70s [58, 3%] again in ‘97 [56]. In recent years, it has
been used in fields such as computational biology on apgitain DNA sequence matching [4, 34], but
its use in natural language modelling is limited. Zamir anzidhi [61] proposed a clustering algorithm
based on the suffix tree and applied it to the organisationedf search results based on the snippets
returned by internet search engines; and more recentlyn @hd Deng [9] have proposed an alternative
clustering algorithm for similar purposes. However, to &nowledge, the suffix tree has never been
been utilised more generally in natural language text ifleggon until we proposed it and developed
the methods presented in this thesis. Researchers haves other hand, suggested the use of substring
kernels in support vector machines [33] and suffix trees ayeoa basis for such an approach; indeed,
the application of the methods presented in this thesisgpat vector machine kernels would be a very
natural branch.

Although the suffix tree is a very powerful data structurea @sncept it is in essence a very simple
one. In the context of statistical language processing &ssification, it can be seen as simply mov-
ing from a bag-of-words model, in which all individual wordge independent of each other, to one

which maintains information about the context of words gsinfinite, but variable, memory length.

19



CHAPTER 2. ANNOTATED SUFFIX TREES (ASTS) 20

Such models of text are generally referred tomasgram models [24]; and suffix trees are an efficient
representation for such features [25]. Hence, such an appiis certainly not new, but previous work
typically considers — gramsfor a particular value of (that is, for a particular lengtim, of characters
or words), but the suffix tree allows us to considergramsfor varying values oh simultaneously and
with little extra effort, thus making an — gram approach more versatile. This effectively makes the
suffix tree approach we describe, an "all-n-gram” approach.

Indeed, our attention in this thesis is focused more on salgstthan suffixes and we are thereby
able to loosen a little our definition and implementation wffig trees. A strict definition of a suffix

tree, taken from Gusfield 97 [20], would be as follows.

Definition 1. A suffix tree T of a string s of length m is a rooted directed txéth exactly m leaves

labelled 1 to n. Each internal node, other than the root, hae br more children and each edge is
labelled with a nonempty substring of s. No two edges out afde rtan have edge-labels beginning
with the same character. The concatenation of the edgdddtmn the root to any node i spells out a

suffix of s beginning at th&'icharacter.

To ensure that the number of leaves is indagd terminal character, which appears nowhere else
in s, is added to the end &f Typically, the dollar sign, '$’, is used to represent thigsial character.
Without it, there would be the possibility that some suffixsa$ equivalent to the prefix of some other
suffix of s, which would mean that the path it formed in the tree woulderat at a leaf node, but part
way along an edge.

In this thesis, we implement suffix trees that differ from gtandard one in Definition 1 because
we are primarily interested in substrings and their freqies) rather than, for example, the location
of suffixes in the training corpus. Therefore, there is nadnfee each leaf node to be labelled with a
number which provides us the indexsmat which the associated suffix begins.

In the next sections we take a closer look at suffix trees asaheimplemented and used in this

thesis.
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Figure 2.1: A Suffix Tree after the insertion of “meet”.
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Level 2
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Level 4

Figure 2.2: A Suffix Tree after insertions of strings “meettdfeet”.

2.1 Constructing Tree Profiles

We provide a brief introduction to suffix tree constructidfor a more detailed treatment, along with
algorithms to improve computational efficiency, the reddelirected to Gusfield 97 [20]. As we have

said, our representation of a suffix tree differs from theréiture, and it does so in two ways that are
specific to our task: first, we label nodes and not edges, aswhdewe do not use a special terminal
character. The former has little impact on the theory anohallus to associate frequencies directly

with characters and substrings. The later is simply becausimterest is actually focused on substrings
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rather than suffixes; the inclusion of a terminal characteula therefore not aid our algorithms, and
its absence does not hinder them. Furthermore, our treedepth limited, and so the inclusion of a
terminal character would be meaningless in most situations

Suppose we want to construct a suffix tree from the st8rg; meet. The string has four suffixes:
s(1) = “meet, s(2) =“eet, s(3) ="“et’, ands(4) = “t".

We begin at the root of the tree and create a child node for thiecfiaracter of the suffig(1). We
then move down the tree to the newly created node and creae ahild for the next character in the
suffix, repeating this process for each of the charactetsisrsuffix. We then take the next suffis(2),
and, starting at the root, repeat the process as with théopeguffix. At any node, we only create a
new child node if none of the existing children represenésdharacter we are concerned with at that
point. When we have entered each of the suffixes, the resut@egooks like that in Figure 1. Each
node is labelled with the character it represents and itpugacy. The node’s position also represents
the position of the character in the suffix, such that we cam Isgveral nodes labelled with the same
character, but each child of each node (including the rodt)carry a character label which is unique
among its siblings. We refer to the path from the root to theéenas thecontextof the node.

If we then enter the string,= “ feet’, into the tree in Figure 2.1, we obtain the tree in Figure 2.2
The new tree is almost identical in structure to the previmus because the suffixes of the two strings
are all the same but fdf1) = “ feef, and as we said before, we need only create a new node when
an appropriate node does not already exist, otherwise, wé aply increment the frequency count.
We refer to the trees that result from this process Agnbtated Suffix Tree¢ASTs) because they
essentially resemble structures normally referred tosaffix tree% but carry at each node additional
term-sequence frequency annotations.

As we continue to add more strings to this AST, the number désancreases only if the new string
contains substrings which have not previously been eneoeuit It follows that given a fixed alphabet
and a limit to the length of substrings we consider, therelimi to the size of the tree. Practically,
we would expect that, for any collection of strings, as we strithgs from the collection to an AST, the
tree will increase in size at a decreasing rate, and willegiikely stabilise. We would conjecture that
the size of a stable tree reflects the complexity of the cotlef strings it encodes; and we use this

intuition in Chapter 4 to devise some normalisation coedffits for use when scoring classes (which
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we view simply as collections of strings). When a single ASEaafes a collection of strings which all
belong to one class, we will often refer to it aslass tregsee Section 2.2, where we take a closer look
at class trees); we also think of a class tre@radiling the class it represents, so we will often refer to
these af\ST profiles of a classr AST class profiles

As we have said, in practice, it is not possible to build suffees as deep as documents are long and
so we limit the depth of the tree to some degth

Strictly, the graphs in Figures 2.1 and 2.2 are referred ta &sie”: definitions of a suffix tree
require that each internal node has at least two childrely gl so, any node with just one child is
concatenated with that child to form a single node, therdiigining the compressed “tree”. However,
the methods we describe in this thesis are not generallyndigpe on the specific characteristics of one
or the other structure and any description in this thesisrdfars to one framework may be reformulated
(with some effort) to apply to the other, so we make no disiimchere and refer only todhnotated
suffix trees”, in which we allow nodes that have only one chilék look at the particular characteristics

of ASTs that are relevant to us in the next section.

2.2 Class Trees

For any strings let us designate thd' character ok by s the suffix ofs beginning at thé!" character
by s(i); and the substring from thé&' to the j'" character inclusively bg(i, j).

Any node,n, labelled with a charactec, is uniquely identified by the path from theot to n.
For example, consider the tree in Figure 2.2. There are akenedes labelled with at™, but we can
distinguish between node= (“t” given “meé) = (t{jmeg andp = (“t” given “e€) = (t|ee); these
nodes are labelledandpin Figure 2.2. We say that the pathofs Bn ="“meé, and the path op is
Bp = “ed; furthermore, the frequency af is 1, whereas the frequency pfis 2; and saying has a
frequency of 1, is equivalent to saying the frequencytbdfiiven “meé is 1, and similarly forp.

If we say that theoot node,r, is at level zero in the tree, then all the childrerr @fre at level one.
More generally, we can say that the level of any node in theig@ne plus the number of letters in its
path. For exampldevel(n) = 4 andlevel(p) = 3. Levels correspond to depth: so a tree of maximum
depth 1 consists only of level 1 nodes.

The set of letters forming the first level of a tree is Hiphabet = - meaning that all the nodes of
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the tree are labelled with one of these letters. For exanaplesidering again the tree in Figure 2.2, its
first level letters are the sef,= {m,e,t, f}, and all the nodes of the tree are labelled by one of these.
Suppose we consider a clags,containing two strings (which we might consider as docusjen
s="meet andt = “feef'. Then we can refer to the tree in Figure 2.2 asdlass treeof C, or theAST
profile of C; which we denote bylc.
The size of the tre€Tc|, is the number of nodes it has, not counting the root node jtamak as

many nodes a8 has unique substrings. For instance, in the case of thertigigire 2.2:

meetmeemem, eet ee e et t,
UC = uniqueSubstrings(C) = tmegme e
feet fee fe, f

|UC| = |uniqueSubstrings(C)| = 13

|Tc| = number0fNodes(Tc) = 13

This is clearly not the same as the total number of substim@s

meetmeeme m, eet ee e et, g,t,
AC = allSubstrings(C) =
feet fee fe f,eeteee et et

|AC| = |A11Substrings(C)| = 20

As an example, note that the four “e”s in the set are in facsthsstrings s(1,1), s(2,2), t(1,1) and
t(2,2).
Furthermore, as each node in the trég, represents one of the substringdJg, the size of the

class,AC, is equal to the sum of the frequencies of nodes in theTiee

|AC| = |allSubstrings(C)| = sumOfFrequencies(T¢) = 20

In a similar way, the annotated suffix tree allows us to redaibier frequencies very quickly and
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easily. For example, if we want to know the number of characie the clasC, we can sum the
frequencies of the nodes on the first level of the tree; anckifwant to know the number of substrings
of length 2, we can sum the frequencies of the level two naalesso on.

This also allows us to very easily estimate probabilitiesudistrings of any length (up to the depth
of the tree), or of any nodes in the tree. For example, we cgrfrean the tree in Figure 2.2, that
the probability of a substringy, of length two, having the valuey = “e€’, given the clas<, is the
frequency,f, of the noden = (ele), divided by the sum of the frequencies of all the level twoem®ih

the tre€eTc:

f
estimatedLevelProbability(u) = Pr(ully) = z(uf>(|) (2.2)
iely

wherel,, is the level ofu; andL, is the set of all nodes at the same levelias

Similarly one can estimate the conditional probabilityucds the frequency af divided by the sum of

the frequencies of all the children of parent:

f
estimatedConditionalProbability(u) = Pr(u\ﬁu) = z(uf)(l) (2.2)
ieny

wheren, is the set of all children afi's parent. Or the probability of the particular substringresented

by u against all the possible substrings given the tree:

estimatedTotalProbability(u) = Pr(u) = zf(L:‘)(l) (2.3)
ieT

The sumySicp, (i), in the denominator of Equation 2.2 is equal to the frequericys parent minus
the number of terminations that occurrediatparent. As our trees are depth limited to a degdthyhich
is typically small compared to the size of documents, suahmitetion will be rare and the sum over
sibling frequencies will generally be approximated welltbhg frequency of the parent of the siblings. It
is arguable that taking the frequency of the parent as therderator value for Equation 2.2 would give

a better indication of the probability of child nodes, besmterminations should be included as part of
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the sample space. However, for practical purposes, the@p@eguency will be approximately equal to
the sum of the sibling frequencies and so we use this appedgiamfrom now on - hence, we assume

that:

z f(i) = frequencyparentu)) = f(Yy) (2.4)

ieny

whereY,, indicates the parent af.

2.3 Multi-Class Trees

We can tackle the multi-class case in two ways. Either wetcoctsa separate class tree for each class or
we construct one suffix tree which represents all the eneoedtcharacter sequences and annotate each
node with a set of classes indicating in which classes th&péar substring/node has been encountered
and a corresponding set of frequencies indicating how dftemode was encountered in each class.

In such a scenario, we would now distinguish between theiregy of a node given a clasgu|c);
and the frequency of the node independent of cl&as), If the context is not clear, we will specify the
tree from which frequencies are being read - é@||T,c) or f(u|T¢), andf(u|T), respectively. If for a
certain classg;, the substring represented by nadeas not occurred, thef(u|c;), the class dependant
frequency foru givenc;, would be zero. The class independent frequenaywbuld be the sum of all

the class dependent frequenciesiof (u) = S ¢ f(u/C).

2.3.1 Class Frequencies

For any given class, we can think of at least three different frequency distiins over all the strings

encountered and represented in the suffix tree:
e Class dependent frequencf/ulc)
e Class independent frequendi(u) = S ccc f(ulc)

o Negative class Frequency(u|c) = f(u) — f(u|c)
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2.3.2 Class Probabilities

From these three frequency distributions, we can deriveesponding probability distributions. We
can do this with conditional probabilities, level probdislk, or with total probabilities as we did in
Section 2.2. However, for the sake of brevity, let us consiady the conditional probabilities; corre-
spondingevelandtotal probabilities may also be defined.

The class dependent conditional (i.e. path dependentppiiity (CDCP) is given by:

— f
CDCP(u,c) = Pr(u/Pyc) = % (2.5)

f(ulc)
f(vulo)

; whereN is the set of nodes which are the childrerutsfparent - i.eu and its siblings.

The class independent conditional (path dependent) pilaigd€INDCP) is given by:

= f
CINDCP(u) = Pr(u/P,) = —ZnieNZCi<:C)f<ni|ci)
_ f(u)
T Imen f(ni) (2.6)
_  f

- )

; where, againN is the set of nodes which are the childrerutsfparent.

And finally, the negative class dependent conditional podibtya (NCDCP) is given by:

=4 f(u—f
NCDCP(u,C) = Pr(uP.c = %
@2.7)
f(u)—f(ulc)
V)

; where, againN is the set of nodes which are the childrerutsfparent.
Throughout this thesis, we mainly make use of these thredittonal probabilities. However, we
use them primarily as weights indicating the significanctheffeature represented by the node, rather

than as strict probabilities.



Chapter 3

Classification using ASTs

Researchers have tackled the problem of the constructientext classifier in a variety of different

ways, but it is popular to approach the problem as one thatissof two parts:

1. The definition of a functionCS : D — R, whereD is the set of all documents; such that, given
a particular document, the function returns aategory scordor the class. The score is often
normalised to ensure that it falls in the regiffy1], but this is not strictly necessary, particu-
larly if one intends, as we do, simply to take as the classigtied the highest scoring class (see
Section 3.2 below). The interpretation of the meaning offtlrection, CS depends on the ap-
proach adopted. For example, in naive Bayes (Section@3}l), is interpreted as probability;
whereas in other approaches such as Rocchio @R]) is interpreted as distanceor similarity

measure between two vectors.

2. Adecision mechanism (or rule) which determines a clasdiption from a set of class scores. For
example, the highest scoring class might be taken as theeredlassPC = argmax,;cc{CS(d)}.
Alternatively, if CSd) is interpreted as a value with definite range, such as a pilipathe de-
cision may be based on a threshdli,such that the predicted class is takergi$é CSj(d) > th,

and as not;j otherwise.

Lewis et al. [31] and Duda and Hart [14] refer to probabitistiodels such as naive Bayes as para-

metric classifiers because they attempt to use the trairtagtd estimate the parameters of a probability

28
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distribution, and assume that the estimated distribusozoirect. Non-parametric, geometric models,
such as Rocchio [48], instead attempt to produce a profilemnsary of the training data and use this
profile to query new documents to decide their class.

It is possible to approach the construction of a suffix treesgfier in either of these two ways
and indeed a probability-based approach has been devetbypBdjerano and Gill [4] for use in gene
sequence matching. However, Bejerano and Gill [4] did nat five suffix tree entirely convenient for
developing a probabilistic framework and instead devedogp@robabilistic analogue to the suffix tree
and used this modified data structure to develop probabitisatching algorithms.

In this thesis, the original structure of the sulffix tree imireed and we focus on the development of
a geometricapproach, in which a match between a document and an anhataftex tree profile of a
class is a set of coinciding substrings each of which mustbeed individually so that the total score
is the sum of individual scores. This is analogous to theripneduct between a document vector and
class profile vector in the Rocchio algorithm [48].

We did experiment with probabilistic models, and found tha&s possible to construct one without
altering the structure of the suffix tree, but found perfonceawas better using scoring functions which
simply approximated probabilistic models (see Sectiof. 3.1

With regard to the second issue in classifier constructidvatdf a decision mechanism —we develop
different decisions mechanisms for each approach andrirésam in Section 3.2. First, we develop an

approach to scoring.

3.1 Scoring: The Overlap Mass Score

We found that an additive scoring algorithm, which we novereb as theoverlap mass scor@OMS)

performed better than others we experimented with. The adathgoverned by three heuristics:

H1 Each substring(i) that a strings has in common with a clask indicates a degree of similarity

betweersandT, and the longer the common substrings the greater the sityiflaey indicate.

H2 The more diverdea classT, the less significant is the existence of a particular comsutstring

(i, j) between a stringand the clas3 .

IDiversityis here an intuitive notion which the scoring method attemptiefine and represent in a number of different ways.
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H3 The more diversely a string, occurs across all classes, the less significant is thesexistof a

particular common substrirgji, j) = mbetween a string and the clasg .

We present two forms of the overlap mass scoring (OMS) dlyorbased on these three heuristics.
The first treats queries as strings and the second treatsabesuffix trees. In essence these two ap-
proaches are analogues of each other and generally havalkequaievaluations. However it is useful to
present the query-as-string method first because it isllyith more natural way in which to approach

the problem and is then easily extended to the query-asytoekel.

3.1.1 Scoring Queries as Strings

Treating a query as a string is quite natural. The query mag ket of key-words, a phrase or a
document. In the context of a classification task, the quetypically a document, the class of which
we wish to establish. The document is taken as a single sgimdnich is itself a sequence of terms (be
they words or characters):

S=$9%...5N-

From the strings we may obtain a set of its suffixes:

suf fixegs) = {s(1),5(2),s(3)...s(N)}

As our tree will be depth limited to some depthconsidering each suffix is practically equivalent to
considering a set of substrings:

substringss,d) = {s(1,d+1),5(2,d+2)...sS(N—d,N),s(N—d — 1,N)...s(N,N)}

For each suffix (or substring of length) s(i) we may identify a matcin; between it and the AST
profile tree, where a match is defined as the longest pref pivhich corresponds to a rooted path in
the profile tree. Hence, froms{i), we may obtain the matchy:

m = s(i, j) = MMpmg...Mj = §S 1S +2...Sj
such thatj —i < d.

Thus, for any query strings, there will be a possibly empty set of matchbk, between it and the
profile tree,T, which represents aaverlapbetweens andT. Each item,m; € M, is a sequence of
terms that occurs in both the profile tree (as a path from thg emd the query string (as a substring).
Furthermore, itd < |, then it is possible that for any two matches,c M andm, € M, thatm, = m,.

In fact, asd is typically small compared t(s|, it will generally be possible to group the matchedvin
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into equivalence set@ which all matches are constituted by the same sequeneem$talthough each
sequence in such an equivalence set will be derived fromferelift location in the query string. We
take advantage of this fact when we develop further the apestoring method in Section 3.1.2.

The process of scoring the query strisgpoils down to the evaluation of the e, which itself
boils down to the evaluation of its membensc M, which in turn boils down to the evaluation of each
of the terms in the sequence that constitute$\Ve refer to thestevelsof evaluation aslocument-level
match-levebndterm-leve] respectively.

In the next three sections we present the OMS approach tmgaireach of these levels (document,
match and term) before we consider them together and el@bonathe underlying motivation for the
scoring framework. Section 3.1.2 then presents an aligenaiy of describing the overlap skt and
the OMS method.

Conceptually dividing the scoring into these three levéitsas us to introduce and experiment with
levels of normalisationterm-level reflecting information about single termmatch-level reflecting
information about strings; antee-leve] reflecting information about the class as a whole. We experi
mented with normalisation at each of these three level amadd@ach of them to be useful under certain
conditions, as we will see in Chapter 4. However, the OMS woetitself does not hinge on any such
normalisation.

Throughout this thesis, we will use two differeterm-bases charactersandwords Hence, the
term-level will often be referred to aharacter-levebr word-leveldepending on whether our analysis
is done on aharacter-baseor aword-base Similarly, depending on theerm-basethe classifier we

construct will often be referred to asharacter-basear word-basedlassifier.

Scoring a document

In practice the scoring is done by evaluating each suffix efdtring in turn to discover the longest
match between it and the profile tree. As we iterate througtstting, we sum over all the individual
match scores and hence the total overlap mass score (OM&}faery string (or document) will be the

sum of the individual match scores (MS):

OMSs,T) = 'i}MS(S(i)’T) (3.1)
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; where the functionMS(s(i), T), searches for a matcin, between suffix(i) and tre€T, and if one
is found, scores it according to Equation 3.2 below.

We experimented with a number of approaches to tree-levehalsation of the sum in Equa-
tion 3.1, motivated by heuristic H2 and based on tree pr@sesiich asize as a direct reflection of
the diversity of the clasgjensity(defined as the average number of children over all interodes),
as an implicit reflection of the diversity; and total and ag@ frequencie®f nodes as an indication of
the size of the clagsbut found none of our attempts to be generally helpful toggormance of the

classifier.

Scoring a match

The scoring of a match is itself nothing more than the norsealisum of the scores for each term.
Hence, the scoré\iS(m), for a matchm = mpmymy...my,, has two parts, firstly, the scoring of each
term (and thereby, each substring), with respect to its conditional probability, usingsgnificance
function of probability,@[f], defined below, and secondly, the adjustment (normalisptiqm|T), of

the score for the whole match with respect to its probabititthe tree:
n
MSm,T) = v(m[T) Zofp[lﬁ(m Tl 3.2)
1=
We experimentally investigate definitions of match-lewvaimalisation in Chapter 4.

The Significance Function

The key to the OMS method is tisggnificance functionHow we define it can have a strong effect on
the behaviour and performance of the classifier. The simgkfmition actually ignores the probability

of the character altogether; we call this@nstantsignificance function:

@lp(m)] =1 (3.3)

If the scoring method were used in this form to score the sintyl between two strings, it would

simply count the number of substrings that the two string&ia common. For example, suppose we

2Class size is defined as the total number of substrings in thendents of the class, and tree size as the number of nodes in
the tree, that is, the number of unique substrings in the ¢&@ssSection 2.1).
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have a string = “abcd’. If we were to apply this scoring function to assessing tinglarity thatt has
with itself, we would obtain a result of 11, because this estiamber of unique substrings that exist in
t. If we then score the similarity betweérmandt® = “Xbcd’, we obtain a score of 6, because the two
strings share 6 unique substrings; similarly, a sttig “aXcd would score 4.

Another way of viewing this is to think of each substringtafs representing a feature in the class
thatt represents. The scoring method then weights each of thekeafdkey are present in a query
string and 0 otherwise, in a way that is analogous to the sstbrm of weighting in algorithms such
as Rocchio [48].

Once seen in this way, alternative definitions of the sigaifee function may be viewed as different
approaches to deciding how significant each common suf@ssjror in other words, deciding how to
weight each class feature — in much the same as with otheiparametriclassifier algorithms.

Hence, the significance function addresses the issue of bi@valuate the importance of a term
as it appears in a certain position in the match. Moving beytbe binary weighting of Equation 3.3,
an obvious weighting to employ would be the probability (afirted in one of the ways described in

Section 2.3.2) of the terms; that is, we defip{@(m)] as follows:

@[p(m)] = p(m) (3.4)

wherep(m) is the conditional probability ofry.

Using the conditional probability rather than the totalewdl probability has the benefit of support-
ing heuristic H1: as we go deeper down the tree, each nodedenmil to have fewer children and so
the conditional probability will be likely to increase; o@rsely, there will generally be an increasing
number of nodes at each level and so the total probabilitypafrdcular node will decrease. Indeed we
did experiment with the total probability and found thatfpemance was significantly decreased.

Furthermore, by using the conditional probability we alstyaconsider the independent parts of
features when deriving scores. So for examplen it “abc’, by the time we are scoring the feature
represented bydbc’, we have already scored the featus®, so we need only scorec” given “ab’.

But we need not adhere to suclireear function of the probability. A non-linear approach can help
make the classifier more sensitive to specific probabilitges, which may be useful in certain domains

- as we will show in Chapter 4.
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As a final example, we may also choose a significance functliohwapproximates log-likelihood

approaches by specifying:

@[p(mi)] = log[p(m)] (3.5)

but this leaves unaddressed the problenmwf probabilities — i.e. what to do with terms or term
sequences that have not been encountered during trainththareby have a frequency of zero in the
data generated model. Typically, the problem is addresgelebuse of smoothing methods [62]. For
example, Bejerano and Gill [4] address the problem by religing the frequencies at each node in
the suffix tree across the whole alphabet, thereby effdgti@wing the suffix tree so that all possible
outcomes (i.e. the alphabet of possible outcomes) has aniatl probability at each node.

For efficiency reasons, the OMS method aims to only evalubhtesverlap between the query and
the profile, thereby ignoring any term or term sequenceshéat not been previously encountered and
are therefore not recorded in the profile tree; however, witlappropriate definition of the significance
function, the OMS method can still adequately address tobl@m of nulls. We explore this issue in
the next section, which develops the OMS method further Ioygusn AST representation of queries.

The AST model as so far described — using a string repregamtait queries — was developed and

published in two papers [43, 42]. We present experimentalltg using this framework in Chapter 4.

3.1.2 Scoring Queries as Suffix Trees

We now develop the method by first taking the query docunsgand constructing from it an auxiliary
AST, which we call a query tre&). We then identify rooted paths in the query tree which haveeeo
sponding rooted paths in the profile tr@e, This collection of corresponding nodes defineswaearlap
suffix tree,R; and the paths from the root & to its leaf nodes will trace character sequences which
correspond with the matches in the Befrom Section 3.1.1.

As an illustration of the overlap treR between a query tre€, and profile treeT, consider Fig-
ure 3.1, which shows the query tree for the query strifgel’, with those nodes that overlap with the
profile class tree in Figure 2.2 shown as square nodes anddn Baure 3.2 shows the profile tree
again with those nodes that overlap wis nodes now shown as square.

Viewed in this way, the scoring of a query document againshalclass profiles is transformed into
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Figure 3.1: A query tree for the query string€el’. Those nodes/paths whiabverlapwith the
earlier class profile are shown in a square shape and in bold.
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Figure 3.2: A Suffix Tree after insertion of stringsiéet and “feet..
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assessing the similarity between two trees, or in other svev@luating the overlap tréewith respect
to each class.

Let us consideR in relation to the query tre&, and the the profile tred,. ThenR s structurally
similar to a sub-tree d®, which we denote a®*, and to a sub-tree af, which we denote as . The
frequency indicated by nodes @ give us the number of times the sequence of terms mapped out by
the path fromR’s root to a noder € R, has been encountered in the query string. In other words, it
represents the size of the ma®fuivalence setsee Section 3.1.1) iM. Two matches from the same
equivalence set are scored identically using the freqesnmi probabilities indicated by the nodes in
T, so we can in fact calculate the score associated with a matie ioverlap tree once and multiply by
the size of the equivalence set, which is given by the coomeding node in the overlap sub-treg? .

It is helpful at this point to introduce some notation so we say all this more formally. We do this

next, before considering the form of the overlap mass fondis a tree similarity measure.

Notation

We define a tree, T, as a set of nodes, T, each of which is uniquely associated with a pﬁ(,t),
from the root of the tree tb In our case, the tre€ is a suffix tree, and so with each node is associated
a term,w(t), and a frequency (t); the pathB(t) is therefore a sequence of such terms. We define the
weight,W, of a tree as the sum of the frequencies of all the nodes ingleeW (T) = S f(t).

Now consider two treeg, andQ, such thafl is a class profile tree ar@a ‘query’ constructed from

a document we wish to classify in one of a set of clasSes,

e For any two trees such dsandQ there exists an ‘overlap’ sefgT:

Vor = {(a,t):qe Qte T, P(q) = P(1)}.

— Note thatVoT # QN T because we want to maintain a distinction between nodeswiigie
long toQ and nodes which belong T so that we can distinguish between their independent

frequenciesf (t) and f(q). We will drop the sub-scriptQT’, when the context is clear.

¢ We then have a set of nodes fr@which are represented in the 8¢fr:
Q" ={g:qeQteT,(qt) eV}
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¢ And we have a set of nodes @which are not represented in the ¥gf:

Q™ =Q/Q"
— Note thatQ~ is the relative complement @ wrt T.

— Where there is potential confusion, we specify the relatateas a superscrip® .

e Similar, symmetric sets exist far.

We have defined a set of pailéT, so that we can understand the difference betwie) as the
frequency of a node ifi; and f (q), the frequency of a node Q. However, we obtain a similar result if
we use the definition of the overlap sub-tr€e,, and distinguish between the frequencyaf Q™ given
the profile treeT, f(q|5>q,T); and the frequency af € Q" given the query treeQ), f(q\ﬁq, Q). Under
this scheme, for any node,c Q—, we can say that (q|3q,T) = 0. Finally, if we ignore frequency

counts for a moment, we can say:
e QF=T*=R
e Q =Q/Q"=Q/R

e And, T+ =T/T-=T/R

Tree Similarity Version of OMS

We are now in a position to give expression to the overlap nsasse (OMS) as a measure of the
significance of the overlap between two suffix trees - or ireptlvords, a measure of trgmilarity
between two trees. The evaluation is done over th¥gesuch that the for each pail,t) € Vgor, such
that f(q) tells us how many times the sequence (match) representedhéay occurred ang(t) tells us

the significance of the sequence (or match). Hence, we camadgahe OMS between a quefyand

profile treeT as:

OMSQT)= 3 flavt)e) (3.6)

(0, t)EVQr
whereg(t) is the a significance function on the nade T and f(q) is the frequency of nodg € Q. We

might also express this using our alternative notation:
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OMSQ,T)= 5 f(dQv(qT)e(alT) 3.7

aeQ”

These formulas are not a direct copy of the double sum appro@@sented in the previous section.
This is because a matche M is represented in the overlap tieas a path from the root to a leaf node.
However, in Equations 3.6 and 3.7, the match normalisagom is applied to each node, whether it is
internal or external.

Notice also, that we have broadened the definition ofsigeificance functiorso that it is now a
function oft directly, rather than a function of the probabilitytofDoing this results in more generality
by giving greater flexibility to our definition ao.

This doesn’t mean that we need change the basic definitiopsasfd indeed, as we will see in later
chapters, some simple definitions work very well. But thigengeneral formulation of the significance
function does allow us to experiments with, for example, sthed probabilistic scoring functions.

In the following sections we will use only the notational regentation of Equation 3.7.

Smoothed Probabilistic Scoring Functions

As we have said, probabilistic models suffer from the probéd null probabilities. These arise when a
term is encountered in the query document which has not bhemuatered during training (i.e. during
the construction of the model). The probability of such anseehterm would, under the model, be
zerg and thereby make the document impossible to evaluate. di@ome this problem it is common
to use some sort of smoothing method that specially dealsteitns in the query that are previously
unseen. Two common approaches to smoothing are, (a) tariledie the probability mass over all pos-
sible outcomes, not only those encountered; and (b) to usdistributions, one for seen terms and one
for unseen terms. Laplace smoothing — which we take a closérdt below — and the previously men-
tioned approach of Bejerano and Gill [4], which we do not diéschere, fall into group (a). Approaches
falling into group (b) are generally referred torascture model$35]. However, the two approaches are

highly related, as we will see below.
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Laplace Smoothing

Laplace smoothing simply adds a count to each possible mgcso that outcomes which originally
have a count oferg then have a count aine This also increases the total probability mass by the
size of the sample space. Hence, given a dictionary contaMiterms, the probability of a ternd,
which previously has a frequency given byd;), given the class;, would under Laplace smoothing be
assigned a probability given by:

1+ f(di|c)

Pr(dilc) = MISY fddo) ST T (ckl0) (3.8)

wheref (d|c) is the frequency, given the classof thek!" term in the dictionary.
We will see the smoothing shown in Equation 3.8 in Chapter ¢wive compare the suffix tree
classification performance to naive Bayes classificatiorandlating Equation 3.8 into a suffix tree

framework, we get:

14 f(q[Pq To)

3.9
21+ (Yo To) (3.9)

Pr(q|Qa TC) =

Using such a smoothed probability of a node along with theiulsly false) assumption that all

nodes are independent, we can calculate the log likelihbadjaery as:

1+ f(q[Pq.To) } (3.10)

logPr(QT) = 5 f<qQ>log{ ST

We can then separate Equation 3.10 into two summations:hat@valuates the nodes@which

belong toQ™ and nodes which belong @~ ; noting that for nodesj€ Q—, f(q|3q, Tc) =0, we obtain:

1+ f(qTe)

log[Pr(Q|Tc)] = g f(qQ)IOg{Z|+f(qul'c)} +; f(q|Q)|Og{|Z|—f—f1(\f(1|Tc)} (3.11)

+

The first summation on the right hand side of Equation 3.13isvalent to the overlap mass score
with the significance function defined to be thog term. The second summation is the smoothing
function which addresses any null probabilities.

Equation 3.11 is however unsatisfactory as a probabilstaring function because the parent of
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a nodeq € Q—, may also be a member @~ - that is to say:Yy € Q~; in which case, we have:
f(Ygy|T,c) = 0. But then théog term of the second summation will reduce {1 which means that the
conditional probabilistic score associated with the akifdof an unmatched term may be higher than
the probabilistic score with some matched terms and wiliabelly be higher than the score associated
with the the first unmatched term. Such a result runs couateteuristic H1 in that we would like to

have an increasing penalty for longer unmatched sequeatiess than a decreasing penalty.

Mixture Model Smoothing

An alternative smoothing method is to use two differentrdistions —i.e. to use a mixture model — one
for matched terms and one for unmatched terms. For exampleyay assume that the distribution of
terms we observe in a query is generated byclaes modebn the one hand and tle®rpus modebn

the other. For matched terms we use the class model and fatohed terms we use the corpus model:

f(aQion{ ey }+ 3 flaiion {0} (312)
C Q-

whereT represents the merged profile trees of all classes and Hi¢qde) is the sum of the frequencies

Pr(Q[Te) = g

-+

of g over all classes.

If we add and subtract from Equation 3.12 the sum &@erof the logged corpus probabilities:

3 flaoa{ s 313

and rearrange, we obtain:

. f(alTe) f(YG/T) f(T)
0gPr(QT) = 3 f(aQoa | Fytiey i |+ 3 Qoo gy} @39

As the the second of these summations is the same for alkeslassl we want nothing more than a
probabilistic ranking of the classes, we need only evaltradirst of these summations. Hence, if we

define the significance function of the overlap mass score as:
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(3.15)

®(qQ,T) = Iog{ f(alTe) f(YalT) }

f(YqlTe) f(qT)

We can obtain an OMS ranking of the classes that is similattteresmoothed probabilistic methods
used widely in the language modelling literature. OMS defimethis way cannot be considered as a
true probability because the nodes in the suffix tree aremgdendent, but the significance function in
Equation 3.15 has the advantage that it balances the ckgseincies using the corpus frequencies so
that nodes (and the term sequences they represent) witlefieps above the average frequency of the
corpus are given greater significance, while retaining ffieiency of evaluation over only the overlap
tree betwee® andT.

We experiment with Equation 3.15 in Chapter 5. For a moreiléetanalysis, the reader is directed
to Zhai and Lafferty 2001 [62], who show how such probabdishodels are analogous to heuristic
scoring methods such as TF-IDF, which is a popular methotvetkfrom the information retrieval
literature [3].

Despite the advantages of this ‘probabilistic’ scoringdtion, we often found, as we will show in

later chapters, that far simpler significance functionqagtheoot significance functian

o(t) = \/Pr(t|Py,c) (3.16)

can perform extremely well in certain domains.
Taking the root of the probability makes the classifier maresgtive to variations in lower prob-
abilities which allows it to discern classes with sparseursadistributions, which is often the case in

natural language classification tasks.

3.2 Decision Mechanisms

Scoring a query against all the classes in the set of claSsgsies us a ranking (by score) of the classes.
If we know that the query document belongs in only one of ttdasses, the decision may be made in
the relatively straight forward way of simply assigning e tclass which ranks the highest. However,
we may also want to bias the decision mechanism — to allow dinieg, for example.

In a two class case, such as that investigated in Chapter Mmayetake a ratio of the two scores;
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classifying the query document into one class if it is abotierashold A, and in the other class if it is

below:
OMSQaTC]_) > /\ = Cl

L nai 3.17
OMSQT) | - A g (3.17)

which is equivalent to the Bayesian decision rule commomslyduin machine learning [14]. With
more classes, we may employ a threshold for each class, lherscore above the class specific

threshold would place the query document in the class, thawiag multiple class assignment.

OMSQ,Tg) > A —¢ci:ceC (3.18)

Or we may even employ a single threshold for all classes.
Another common method is to look for a decision boundary betwthe query belonging to the

particular class in question or not belonging to it. We askgame question for each class. Hence:

m > Ag — G (3.19)
which is equivalent to Equation 3.17 in the two class case.

Such thresholds are commonly used in machine learning amdlgssification. However, we ad-
ditionally develop an alternative method whereby we takedidered scores for each class and cluster
the classes, by score, into a positive and negative clusiethose classes in the positive cluster are

suggested classes for the query document and all those imetsive cluster are not. This method is

explained in more detail and investigated in Chapter 5.

3.3 Evaluating Classification Features

Much of the research effort on text analysis and classitioas focused on accuracy and performance.
Much less effort is focused on providing a potential usehwitme degree of provenance or justification
for the classification decisions made. We attempt to addhésgap using a method which highlights
the key terms and term sequences in a document which cotettiilboost to the classification decision.

We refer to this method @3ocument-to-Class Highlighting
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Search engines such@sogle offer some ‘justification’ for the documents they return ligtiight-
ing the query terms as they occur in the returned documentsuch offerings are limited.

Our overall approach is to take a document and compare it tass,cwhich we will often refer
to as therelative class and highlight those terms and term sequences in the doduimanare most
significant to that class as indicated by its AST class profile

Because we wish to obtain an evaluation of each term in thardent and not the document as
a whole, we use the method described in Section 3.1.1, rdtharusing thescoring queries as trees
method of Section 3.1.2. Hence we iterate through each soffite document and evaluate each in
turn. The evaluation of each suffix is broken down into thdwation of each term in the context of that
suffix. And each term then gains a contribution to its totaredrom each of the suffixes it is a part of;
the sum of all the scores the term receives is its total sedngh is then taken as the indication of its

significance. The details are shown in Algorithm 3.1 below.

3.1: Document-to-Class Term Significance Algorithm

Input : Class treeT; document; a scoring methodscore(aj|A), which scores thgth term, g;
in the stringA.

Output: Array, G, of word significance scores.

Requirements: sp14t(d) to split a document d into words.

1. Array of words A < split(Q).

2.d <« maxDepth(T).

3.n« length(A)

4. Declarescorearray,G, of lengthn.

5. Foreach suffi¥y of A, fori =[0,n—1]

6. Foreach wor@; in A, for j = [0,d]

7. Gli+j]=Gli+]] +score(aj|A)  (lp(aj|A))

8 End Foreach

9. End Foreach

The output arrayG, of the Document-to-Class Term Significance algorithm jgles a significance
score for each word in the document. The scores are paddiamo a number of score groups and
words are highlighted according to which partition theiorgchelongs and the highlighting policy we
adopt. For example, if we highlight by two different colo@rsd for important, black for not important),
we partition the scores at the median score and all thosestermich scored above the median are
highlighted in red and all those below are left at their arédi(usually black) font colour. Alternatively,

we might highlight by font size, such that the higher the igart a term belongs to, the larger its font
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size. We are of course free to choose any arbitrary numbeartifipns, and we need not highlight all
of them; so for example, we could divide the scores in foutifi@ns, but only the highlighted in red
the highest scoring partition (or in this case, quartilehe umber of partitions and the highlighting
policy itself is not a matter we address in the paper, bueastve present some examples using font

size highlighting in Chapter 6.



Chapter 4

Application to Spam Filtering

This chapter describes the initial work we did to investgtite viability of using the suffix tree text
model in classification tasks. We investigate the effectlansifier performance of altering parameters
in the scoring method (Section 4.3; and in the experimergblup (Section 4.4.1. Performance is
compared to the well known and extensively studied naiveeB#NB) classifier — Section 4.2. Where
possible, the comparison of results is done against respteted in the literature. However, we also
include results from experiments on data sets which we ajpeciollected during our research and for
this reason we construct an in-house NB classifier in ordéesbhow the performance of NB fairs
against the suffix tree in these newly collect data sets.

The termspamrefers to unsolicited emails. Such emails are well known iipyoae with an email
account, but we give some examples of types of spam in Sedtibin order to draw the reader’s
attention to specific characteristics which are useful toasgument; however, the examples are by no
means comprehensive nor exhaustive.

Spam filtering represents a two-class problem with chariatitss which may specifically benefit
from the kind of analysis that may be performed using the ttfixstree text model. The key benefit
lies in the suffix trees ability to make partial string matshigence we are able to compare not only single
words, as in most current approaches, but substrings oftdinaay length. Comparisons of substrings
(at the level of characters) has particular benefits in thealo of spam classification because of the

methods spammers use to evade filters. For example, they isgyigk the nature of their messages

45
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by interpolating them with meaningless characters, thefebling filters based on keyword features
into considering the words, sprinkled with random chanactes completely new and unencountered. If
we instead treat the words as character strings, we aralsidlto recognise the substrings, even if the
words are broken.

This chapter is divided in the following way. Section 4.1agvexamples of some of the methods
spammers use to evade detection which make it useful todemsharacter level features. Section 4.2
gives a brief explanation of the naive Bayes method of texgsification as an example of a conventional
approach. Section 4.4 describes our experiments, the desingters and details of the data sets we
used. Section 4.5 presents the results of the experimedtgramides a comparison with results in the

literature. Section 4.6 concludes this chapter.

4.1 Examples of Spam

Spam messages typically advertise a variety of productemicgs ranging from prescription drugs
or cosmetic surgery to sun glasses or holidays. But regesdi€éwhat is being advertised, one can
distinguish between the methods used by the spammer to dedeletion. These methods have evolved
with the filters which attempt to intercept them, so there ggeaerational aspect to them, with later
generations becoming gradually more common and earlies aging out; as this happens, earlier
generations of filters become less effective.

We present four examples of spam messages, the first of whistrates undisguised spam while

the other three illustrate one or more methods of evasion.

1. Undisguised messageThe example contains no obfuscation. The content of the agess
easily identified by filters, and words like “Viagra” allow tib be recognised as spam. Such

messages are very likely to be caught by the simplest wosdebBayesian classifiers.
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Buy cheap medications online, no prescription needed.

We have Viagra, Pherentermine, Levitra, Soma, Ambien, adiohand
many more products.

No embarrasing trips to the doctor, get it delivered disetilyour door.
Experienced reliable service.

Most trusted name brands.

Your solution is here: http://www.webrx-doctor.com/2rd00

2. Intra-word characters.

Get the low.est pri.ce for gen.eric medica.tions!
Xa.n.ax - only $100

Vi.cod.in - only $99

Ci.al.is - only $2 per do.se

Le.vit.ra - only $73

Li.pit.or - only $99

Pr.opec.ia - only $79

Vi.agr.a - only $4 per do.se

Zo.co.r - only $99

Your Sav.ings 40% compared Average Internet Pr.ice!

No Consult.ation Fe.es! No Pr.ior Prescrip.tions Requirétb Ap-
poi.ntments! No Wait.ing Room! No Embarra.ssment! Priatd Con-
fid.ential! Disc.reet Packa.ging!

che cknowx<http://priorlearndiplomas.com/r3/7d=getanon>

The example above shows the use of intra-word charactershwiay be non-alpha-numeric or
whitespace. Here the word, “Viagra” has become “Vi.agwatijle the word “medications” has

become “medica.tions”. To a simple word-based Bayesiassiflar, these are completely new
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words, which might have occurred rarely, or not at all, invimas examples. Obviously, there
are a large number of variations on this theme which wouldh ¢iage create an effectively new
word which would not be recognised as spam content. How#wee approach this email at the
character level, we can still recognise strings such as itaéds indicative of spam, regardless of
the character that follows, and furthermore, though we daleal with this in the current paper,
we might implement a look-ahead window which attempts tp ¢far example) non-alphabetic

characters when searching for spammy features.

Certainly, one way of countering such techniques of evasida map the obfuscated words to
genuine words during a pre-processing stage, and doingvitiselp not only word-level filters,

but also character-level filters because an entire wordhmaither as a single unit, or a string
of characters, is better than a partial word match. The stibfespam de-obfuscation has been

addressed in a recent paper by Lee and Ng 2005 [28].

However, some other methods may not be evaded so easily sgathe way, with each requiring

its own special treatment; we give two more examples belowlwiiustrate the point.

3. Word salad.

Buy meds online and get it shipped to your door Find out morre he

<http://www.gowebrx.com/?rid=1001>

a publications website accepted definition. known are canr@ons the
be definition. Commons UK great public principal work PreeBat but
an can Majesty’s many contains statements statements(gtigncludes
have website. health, these Committee Select undertalsenilded may

publications

The example shows the use of what is sometimes calledrd salad- meaning a random se-
lection of words. The first two lines of the message are itsageatent; the paragraph below is
a paragraph of words taken randomly from what might have laegavernment budget report.

The idea is that these words are likely to occur in ham, anddvead a traditional algorithm to
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classify this email as such. Again, approaching this at tregacter level can help. For example,
say we consider strings of length 8, strings such as “are @ad™an can”, are unlikely to occur
in ham, but the words “an”, “are” and “can” may occur quitegiuently. Of course, in most 'bag-
of-words’ implementations, words such as these are pruned the feature set, but the argument

still holds for other bigrams.

4. Embedded message (also contains a word/letter salad)See example overleaf) The example
below shows armbeddednessage. Inspection of it will reveal that it is actuallyeoiifg pre-
scription drugs. However, there are no easily recognisedsy@xcept those that form the word
salad, this time taken from what appear to be dictionaryientmnder 'z’. The value of substring
searching is highly apparent in this case as it allows usdogeise words such as “approved”,
“Viagra” and “Tablets”, which would otherwise be lost amathg characters pressed up against

them.

These examples are only a sample of all the types of spam i} #or an excellent and often
updated list of examples and categories, see [19, 11]. Uhdarategories suggested in Wittel and Wu
2004 [60], example 2 and 4 would count as 'Tokenisation’ anbfuscation’, while examples 2 and
3 would count as ’Statistical’.

We look next at a bag-of-words approach, naive Bayes, befamsidering the suffix tree approach.
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zygotes zoogenous zoometric zygosphene zygotactic zygaichettos
zymolysis zoopathy zygophyllaceous zoophytologist zygtooauric-
ular zoogeologist zymoid zoophytish zoospores zygomisioporal
Z0ogonous zygotenes zoogony zymosis zuza zoomorphs zyth
zoonitic zyzzyva zoophobes zygotactic zoogenous zomlmegrpahy
zoneless zoonic zoom zoosporic zoolatrous zoophilous tgelly

zymosterol

FreeHYSHKRODMonthQGYIHOCSupply.IHIBUMDSTIPLIBJT

* GetJIIXOLDViagraPWXJXFDUUTabletsNXZXVRCBX

<http://healthygrow.biz/index.php?id=2>

zonally zooidal zoospermia zoning zoonosology zooplamkmochem-

ical zoogloeal zoological zoologist zooid zoosphere zeadical

& Safezoonal andNGASXHBPnatural

& TestedQLOLNYQandEAVMGFCapproved

zonelike zoophytes zoroastrians zonular zoogloeic zoyigoghore
zoograft zoophiles zonulas zygotic zymograms zygotendonaical
zymes zoodendrium zygomata zoometries zoographist zygiph
zoosporangium zygotes zumatic zygomaticus zorillas zoentizoox-
anthella zyzzyvas zoophobia zygodactylism zygotenes ahopogical

noZFYFEPBmaghttp://healthygrow.biz/remove.php>

um

50
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4.2 Naive Bayesian Classification

Naive Bayesian (NB) email filters currently attract a lot e§earch and commercial interest, and have
proved highly successful at the task; Sahami et al. 1998448]Androutsopoulos et al. 2000 [1] are
both excellent studies of this approach to email filteringe &é not give detailed attention to NB; for
a general discussion of NB see Lewis 1998 [30], for more caritetext categorisation see Sebastiani
2002 [52], and for an extension of NB to the classificationtafictured data, see Flach and Lachiche
2005 [17]. However, an NB classifier is useful in our inveatign of the suffix tree classifier, and in
particular, our own implementation of NB is necessary testigate experimental conditions which
have not been explored in the literature. We therefore prgésent it here.

We begin with a set of training examples with each examplaioh@nt assigned to one of a fixed
set of possible classe€, = {c1, ¢, c3,... G}. An NB classifier uses this training data to generate a
probabilistic model of each class; and then, given a new mecu to classify, it uses the class models
and Bayes’ rule to estimate the likelihood with which eachsslgenerated the new document. The
document is then assigned to the most likely class. Therestor parameters, of the model are usu-
ally individual words; and it is 'naive’ because of the siifyghg assumption that, given a class, each
parameter is independent of the others.

McCallum and Nigam 1998 [36] distinguish between two typeprobabilistic models which are
commonly used in NB classifiers: tmaulti-variate Bernoullievent model and thenultinomial event
model. We adopt the latter, under which a document is seesexses of word events and the probability
of the event given a class is estimated from the frequendyatfword in the training data of the class.

Hence, given a documedt= {d;d,ds...d, }, we use Bayes’ theorem to estimate the probability of

aclassg;j:
. _ P(cj)P(d]cj)
Assuming that words are independent given the categosylehds to:
Ak e
P(c; | o) — D s Pd ) (4.2)

P(d)
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We estimate P(¢ as:

P(C=cj) = % (4.3)
and P(d| ;) as:
5 1+ N;
P(di | cj) = m (4.4)

whereN is the total number of training document, is the total number of training documents belong-
ing to classj, N;j is the number of times wordoccurs in clasg (similarly for Nx;) andM is the total
number of words considered.

To classify a document we calculate two scores, for spam amd, land take the ratidysr =

Sh‘fgpnss"ggfe and classify the document as ham if it is above a threslth|dand as spam if it is below

(see Section 4.4.1).

4.3 Annotated Suffix Tree Classification

We experiment with two scoring parameters: match norntadisaand the significance function; we

deal with these below in the next section.

4.3.1 Match Normalisation

For match normalisation, we experiment here with threeiipatons ofv(m|T):

1 match unnormalised
vimT) = — 1T match permutation normalised
Yie(meT) F[T)
f(mT)

Sicm F0TT) match length normalised

wherem* is the set of all the strings i formed by the permutations of the lettersnmandn is the
set of all strings inT of length equal to the length of.
Match permutation normalisation (MPN) is motivated by figtic H2. The more diverse a class

(meaning that it is represented by a relatively large seubksing features), the more combinations
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of characters we would expect to find, and so finding the pdaianatchm is less significant than if
the class were very narrow (meaning that it is fully représetioy a relatively small set of substring
features). Reflecting this, the MPN parameter will tend talsd. if the class is less diverse and towards
0 if the class is more diverse.

Match length normalisation (MLN) is motivated by examplesnfi standard linear classifiers
(see Lewis et al. 1996 [31] for an overview), where lengthnmalisation of feature weights is not
uncommon. However, MLN actually runs counter to heuristichhé¢cause it will tend towards 0 as the
match length increases. We would therefore expect MLN tacedhe performance of the classifier;

thus MLN may serve as a test of the intuitions governing rstigrH1.

4.3.2 Significance Function

Recall that in theoverlap mass scorea function of probability,p[f], is employed as aignificance
functionbecause it is not always the most frequently occurring temssrings which are most indicative
of a class. For example, this is the reason that conventmeagbrocessing removes all stop words, and
the most and least frequently occurring terms; howeverehyoving them completely we give them no
significance at all, when we might instead include them, &dtice their significance in the classification
decision. Functions on the probability can help to do thépeeially in the absence of all pre-processing,
but that still leaves the question bbwto weight the probabilities, the answer to which will depemd
the class.

In the spam domain, some strings will occur very infrequeftbnsider some of the strings
resulting from intra-word characters in the examples ofispaSection 4.1 above) in either the spam or
ham classes, and it is because they are so infrequent tlyathéndicative of spam. Therefore, under
such an argument, rather than remove such terms or strirgshould actuallyncreasetheir weighting.

Consideration such as these led us to experiment on sparmltesing the following definitions of

the significance function: :
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o[p:
1 constant
p linear
p? square
[P =
VP root

In(p) —In(1—p) logit

1

Tren=p) sigmoid

The first three functions after the constant are variatidrtielinear (linear, sub-linear and super-
linear). The last two are variations on the S-curve; we ghava the simplest forms of the functions,
but in fact, they must be adjusted to fit in the range [0,1].

Although in this chapter we are not aiming to investigate @pbilistic scoring method, note that
the logistic significance function may be considered an @gpration of such an approach since we
generally have a large alphabet and therefore a large nuoflolildren at each node, and so for most

practical purposes (A — ) ~ 0.

4.4 Experimental Setup

All experiments were conducted under ten-fold cross vétida We accept the point made by Meyer
and Whateley 2004 [38] that such a method does not reflect thelassifiers are used in practice, but
the method is widely used and serves as a thorough initiabfeew approaches.

We follow convention by considering as true positives (T$Jam messages which are correctly
classified as spam; false positives (FP) are then ham mess&igh are incorrectly classified as spam;
false negatives (FN) are spam incorrectly classified as ham; negatives (TN) are ham messages

correctly classified as ham. See Section 4.4.3 for more opdHfermance measurements we use.

4.4.1 Experimental Parameters

In addition to the various flavours of the scoring functior, experiment with the following experimen-

tal parameters.



CHAPTER 4. APPLICATION TO SPAM FILTERING 55

Spam to Ham Ratios

From some initial tests we found that success was to somatexdatingent on the proportion of spam
to ham in our data set — a point which is identified, but notesysttically investigated in other work
[38] — and this therefore became part of our investigatiome differing results further prompted us to
introduce forms of normalisation, even though we had iijtiexpected the probabilities to take care of
differences in the scale and mix of the data. Our experimesgs three different ratios of spam to ham:
1:1, 4:6, 1:5. The first and second of these (1:1 and 4:6) weween to reflect some of the estimates
made in the literature of the actual proportions of spam imesu global email traffic. The last of these
(1:5) was chosen as the minimum proportion of spam includecperiments detailed in the literature,

for example in Androutsopoulos et al. 2000 [1].

Tree Depth

It is too computationally expensive to build trees as deegnaails are long. Furthermore, the marginal
performance gain from increasing the depth of a tree, ancfibie the length of the substrings we
consider, may be negative. Certainly, our experiments shdiminishing marginal improvement (see
Section 4.5.2), which would suggest a maximal performaaeel] which may not have been reached

by any of our trials. We experimented with depths of lengtR,0f, 6, and 8.

Threshold

From initial trials, we observed that the choice of thregh@llue in the classification criterion can have
a significant, and even critical, effect on performance,smphtroduced it as an important experimental
parameter. We used a range of threshold values betweend17&mwith increments of 0.1, with a view
to probing the behaviour of the scoring system.

Varying the threshold is equivalent to associating highmsts with either false positives or false

negatives because checking thay 3) >t is equivalent to checking that > t3.
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4.4.2 Data

Text Corpora

Three corpora were used to create the training and testiag se

1. The Ling-Spam corpud.S)

This is available fromhttp: //www.aueb.gr/users/ion/data/lingspam public.tar.gz.
The corpus is that used in Androutsopoulos et al. 2000 [1¢ Sgam messages of the corpus were
collected by the authors from emails they received. The hassages are taken from postings
on a public online linguist bulletin board for professiasiahe list was moderated, so does not
contain any spam. Such a source may at first seem biased,ebatithors claim that this is not
the case. There are a total of 481 spam messages and 2412 Issages with each message

consisting of a subject and body.

When comparing our results against those of Androutsopailak 2000 [1] in Section 4.5.1 we
use the complete data set, but in further experiments, wéwaraim was to probe the properties
of the suffix tree approach and investigate the effect ofediffit proportions of spam to ham
messages, we use a random subset of the messages so thegdtandiratios of the experimental
data sets derived from this source are the same as data sg¢supaf messages from other

sources (see Table 4.1 below).

2. Spam Assassin public corp(8A)

This is available fromhttp://spamassassin.org/publiccorpus. The corpus was collected
from direct donations and from public forums over two pesidnl 2002 and 2003, of which we
use only the later. The set from 2003 comprise a total of 60B8sages, approximately 31%
of which are spam. The ham messages are split into 'easy Ha#@&)(and 'hard ham’ (SAh),
the former being again split into two groups (SAe-G1 and &%: the spam is similarly split
into two groups (SAs-G1 and SAs-G2), but there is no distincbetween hard and easy. The
compilers of the corpus describe hard ham as being closeany mespects to typical spam: use

of HTML, unusual HTML markup, coloured text, “spammish-sding” phrases etc..

In our experiments we use ham from the hard group and the dezasy group (SAe-G2); for

spam we use only examples from the second group (SAs-G2helfard ham there are only 251
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emails, but for some of our experiments we required more pl@nso whenever necessary we
padded out the set with randomly selected examples frompgBRiof the easy ham (SAe-G2);
see Table 4.1. The SA corpus reproduces all header infaymatifull, but for our purposes, we
extracted the subjects and bodies of each; the versions &ckare available atttp://dcs.

bbk.ac.uk/~rajesh/spamcorpora/spamassassin03.zip

3. The BBKSpamO04 corpy8KS)

This is available athttp://dcs.bbk.ac.uk/~rajesh/spamcorpora/bbkspam04.zip. This
corpus consists of the subjects and bodies of 600 spam nesssaeived by the authors during
2004. The Birkbeck School of Computer Science and InforomaBystems uses an installation
of the SpamAssassin filter [2] with default settings, soladl spam messages in this corpus have
initially evaded that filter. The corpus is further filteregltiat no two emails share more than half
their substrings with others in the corpus. Almost all thessages in this collection contain some

kind of obfuscation, and so more accurately reflect the ottexel of evolution in spam.

One experimentamail data se(EDS) consisted of a set of spam and a set of ham. Using message
from these three corpora, we created the EDSs shown in TahléT#Ae final two numbers in the code
for each email data set indicate the mix of spam to ham; thigesmvere used: 1:1, 4.6, and 1:5. The
letters at the start of the code indicate the source corptigedaet’'s spam and ham, respectively; hence
the grouping. For example, EDS SAe-46 is comprised of 40fhspails taken from the group SAs-G2
and 600 ham mails from the group SAe-G2, and EDS BKS-SAelsoimprised of 200 spam mails
from the BKS data set and 1000 ham mails made up of 800 maitstiie SAe-G2 group and 200 mails
from the SAh group.

Pre-processing

For the suffix tree classifier, no pre-processing is dones llkely that some pre-processing of the data

may improve the performance of an ST classifier, but we do daditesss this issue in the current paper.
For the the naive Bayesian classifier, we use the followiagdsrd three pre-processing procedures:
1. Remove all punctuation.

2. Remove all stop-words.
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EDS Code Spam Source Ham Source
(number from source (number from source)
LS-FULL LS (481) LS (2412)

LS-11 LS (400) LS (400)

LS-46 LS (400) LS (600)

LS-15 LS (200) LS (1000)
SAe-11 SAs-G2 (400) SAe-G2 (400)
SAe-46 SAs-G2 (400) SAe-G2 (600)
SAe-15 SAs-G2 (200) SAe-G2 (1000)
SAeh-11 SAs-G2 (400) SAe-G2 (200) + SAh (200
SAeh-46 SAs-G2 (400) SAe-G2 (400) + SAh (200
SAeh-15 SAs-G2 (200) SAe-G2 (800) + SAh (200

BKS-LS-11 BKS (400) LS (400)

BKS-LS-46 BKS (400) LS (600)

BKS-LS-15 BKS (200) LS (1000)
BKS-SAe-11 BKS (400) SAe-G2 (400)
BKS-SAe-46 BKS (400) SAe-G2 (600)
BKS-SAe-15 BKS (200) SAe-G2 (1000)
BKS-SAeh-11 BKS (400) SAe-G2 (200) + SAh (200
BKS-SAeh-46 BKS (400) SAe-G2 (400) + SAh (200
BKS-SAeh-15 BKS (200) SAe-G2 (800) + SAh (200

Table 4.1: Composition of Email Data Sets (EDSs) used in xpem@ments.

3. Stem all remaining words.

Words are taken as strings of characters separated fromgithngys by one or more whitespace
characters (spaces, tabs, newlines). Punctuation is emhfgt in the hope that many of the
intra-word characters which spammers use to confuse a Baw#ter will be removed. Our stop-word
list consisted of the 57 of the most frequent prepositionsnpuns, articles and conjunctives.
Stemming was done using an implementation of Porter’s 18g8frithm [45], more recently reprinted

in [46]. All words less than three characters long are igdoF®r more general information on these

and other approaches to pre-processing, the reader isedirec[35, 59].
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4.4.3 Performance Measurement

There are generally two sets of measures used in the literdtere we introduce both in order that our
results may be more easily compared with previous work.

Following Sahami et al. [49], Androutsopoulos et al. [1]darthers, the first set of measurement
parameters we use arecall andprecisionfor both spam and ham. For spam (and similarly for ham)

these measurements are defined as follows:
Spam Recall(SR = s£3;; . Spam Precision(SP) = &7

; whereXY means the number of items of classassigned to clasg; with Sstanding for spam and
for ham.

Spam recall measures the proportion of all spam messageh were identified as spam and spam
precision measures the proportion of all messages clakasgispam which truly are spam; and similarly
for ham.

However, it is now more popular to measure performance imgesftrue positive(TP) andfalse

positive(FP) rates:

TPR= SSi—SH ) FPR= HH+HS

The TPR is then the proportion of spam correctly classifiedpasn and the FPR is the proportion of
ham incorrectly classified as spam. Using these measureplotven Section 4.5 what are generally
referred to as receiver operator curves (ROC) [16] to oles#re behaviour of the classifier at a range
of thresholds.

To precisely see performance rates for particular threlshele also found it useful to plot, against

threshold, false positive rates (FPR) and false negattes (&NR):

FNR=1-TPR

Effectively, FPR measures errors in the classification ofiaad FNR measures errors in the classi-

fication of spam.
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Pre-processing No. of | th SR(%) | SP(%)
attrib.

NB | (a) bare 50 1.0 | 81.10 | 96.85
(b) stop-list 50 1.0 | 82.35| 97.13
(c) lemmatizer 100 1.0 | 82.35 | 99.02
(d) lemmatizer + stop-lisf 100 1.0 | 82.78 | 99.49
(a) bare 200 0.1 76.94 | 99.46
(b) stop-list 200 0.1 | 76.11 | 99.47
(c) lemmatizer 100 0.1 77.57 | 99.45
(d) lemmatizer + stop-list 100 0.1 78.41 | 99.47
(a) bare 200 | 0.001| 73.82 | 99.43
(b) stop-list 200 | 0.001| 73.40 | 99.43
(c) lemmatizer 300 | 0.001| 63.67 | 100.00
(d) lemmatizer + stop-lisf 300 | 0.001| 63.05 | 100.00

ST | bare N/A 1.00 | 97.50 | 99.79
bare N/A 0.98 | 96.04 | 100.00

Table 4.2: Results of (Androutsopoulos et al., 2000) on thgdiSpam corpus. In the pre-
processing column: ‘bare’ indicates no pre-processinge gblumn labelled ‘No. of attrib.’
indicates the number of word features which the authorsnedaas indicators of class. (An-
droutsopoulos et al. 2000) quote a ‘cost value’, which weehaanverted into equivalent values
comparable to our threshold; these converted values aseme, in theth’ column, in a rounded
format. Results are shown at the bottom of the table from &3sification using a linear signifi-
cance function and no normalisation; for the ST classifierperformed no pre-processing and no
feature selection.

45 Results

We begin in Section 4.5.1 by comparing the results of thexsuiffie (ST) approach to the reported results
for a naive Bayesian (NB) classifier on the the Ling Spam carpbe then extend the investigation of
the suffix tree to other data sets to examine its behavioueifferent conditions and configurations.
To maintain a comparative element on the further data setsnpkemented an NB classifier which
proved to be competitive with the classifier performanceegsirted in Androutsopoulos et al. [1] and
others. In this way we look at each experimental parameterinand its effect on the performance of

the classifier under various configurations.

451 Assessment

Table 4.2 shows the results reported in Androutsopouloks Et]Jafrom the application of their NB clas-

sifier on the LS-FULL data set, and the results of the ST diassusing a linear significance function
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Pre-processing No. of th | SR(%) | SP(%)
attrib.
NB* | lemmatizer + stop-list unlimited | 1.0 | 99.16 | 97.14
lemmatizer + stop-list unlimited | 0.94 | 89.58 | 100.00

Table 4.3: Results of in-house nave Bayes on the LS-FULL datawith stop-words removed
and all remaining words lemmatized. The number of attribwt@s unlimited, but, for the LS-

FULL data set, in practice the spam vocabulary was appraeimna2,000, and the ham vocabulary
approximately 56,000, with 7,000 words appearing in botissés.

with no normalisation, on the same data set.

As can be seen, the performance levels for precision are @@ble, but the suffix tree simultane-
ously achieves much better results for recall.

Androutsopoulos et al. [1] test a number of threshottls §nd found that their NB filter achieves
a 100% spam precision (SP) at a threshold of 0.001. We signtléed a number of thresholds for the
ST classifier, as previously explained (see Section 4.4rid,found that 100% SP was achieved at a
threshold of 0.98. Achieving high SP comes at the inevitabkt of a lower spam recall (SR), but we
found that our ST can achieve the 100% in SP with less costimstef SR, as can be seen in the table.

As stated in the table (and previously: see Section 4.4.2)Jid no pre-processing and no feature
selection for the suffix tree. However, both of these may \mefirove performance, and we intend to
investigate this in future work.

As we mentioned earlier (and in Section 4.2), we use our owrcldBsifier in our further investiga-
tion of the performance of our ST classifier. We therefordrbby presenting in Table 4.3 the results of
this classifier (NB*) on the LS-FULL data set. As the tablewhpwe found our results were, at least in
some cases, better than those reported in Androutsopdudbs[&]. This is an interesting result which
we do not have space to investigate fully in this paper, keretlare a number of differences in our naive
Bayes method which may account for this.

Firstly, Androutsopoulos et al. [1] use a maximum of 300ibittes, which may not have been
enough for this domain or data set, whereas we go to the ofitiemaee of not limiting our number of
attributes, which would normally be expected to ultimatedguce performance, but only against an
optimal number, which is not necessarily the number usedrmréutsopoulos et al. [1]. Indeed, some

researchers [32, 64] have found NB does not always benefit feature limitation, while others have
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Classifier| Spam (%)| Ham (%)
NB’ 96.47 99.34
NB* 94.96 98.82

ST 98.75 99.75

62

Table 4.4: Precision-recall breakeven points on the LS{FUata set.

found the optimal number of features to be in the thousandsrs of thousands [51, 36]. Secondly,
there may be significant differences in our pre-processingh as a more effective stop-word list and
removal of punctuation; and thirdly, we estimate the prdfgtof word features using Laplace smooth-

ing (see formula 4.4), which is more robust than the estichptebability quoted by Androutsopoulos

etal. [1].

There may indeed be further reasons, but it is not our inbensere to analyse the NB approach to
text classification, but only to use it as a comparative aiouninvestigation of the performance of the
ST approach under various conditions. Indeed, other relseer have extensively investigated NB and
for us to conduct the same depth of investigation would megaidedicated paper.

Furthermore, both our NB* and ST classifiers appear to be etitiye with quoted results from
other approaches using the same data set. For example iri@ehB003 [51], the author experiments
on the Ling-Spam data set with different models of NB andedéht methods of feature selection, and
achieves results approximately similar to ours. SchndiiEf quotes breakeveh points, defined as
the “highest recall for which recall equaled precision bmth spam and ham; Table 4.4 shows the
results achieved by the author’s best performing naive Bagafiguration (which we label as ‘NB
alongside our naive Bayes (NB*) and the suffix tree (ST) usirimear significance function and no
normalisation. As can be seen, NB* achieves slightly woesailts than the NBwhile ST achieves
slightly better results; but all are clearly competitivenddas a final example, Surkov 2004 [55] applies
developments and extensions of support vector machineithligs [57] to the Ling-Spam data set,
albeit in a different experimental context, and achievesid@mum sum of errors of 6.42%; which is
slightly worse than the results achieved by our NB* and S¥sifeers.

Thus, let us proceed on the assumption that both our (NB* anal&ssifiers are at least competitive
enough for the task at hand: to investigate how their perémecevariesunder experimental conditions

for which results are not available in the literature.
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Depth || FPR(%) | FNR(%)
2 58.75 | 11.75
4 0.25 4.00
6 0.50 2.50
8 0.75 1.50

Table 4.5: Classification errors by depth using a constgnifsance function, with no normalisa-
tion, and a threhsold of 1 on the LS-11 email data set.

4.5.2 Analysis

In the following tables, we group email data sets (EDSs)ndsble 4.1, Section 4.4.2, by their source
corpora, so that each of the EDSs in one group differ from e#twér only in the proportion of spam to

ham they contain.

Effect of Depth Variation

For illustrative purposes, Table 4.5 shows the resultsgusiaconstantsignificance function, with no
normalisation using the LS-11 data set. Depths of 2, 4, 6 Saaw@ shown.

The table demonstrates a characteristic which is commolh torsidered combinations of signifi-
cance and normalisation functions: performance improseb@depth increases. Therefore, in further
examples, we consider only our maximum depth of 8. Notice #ie decreasing marginal improve-
ment as depth increases, which suggests that there mayaexsximal performance level, which was

not necessarily achieved by our trials.

Effect of Significance Function

We found that all the significance functions we tested worlaggt well, and all of them performed better
than our naive Bayes. Figure 4.1 shows the ROC curves prdduceach significance function (with
no normalisation) for what proved to be one of the most diffidata sets (SAeh-11: see Section 4.4.2).
We found little difference between the performance of eddh@functions across all the data sets
we experimented with, as can be seen from the summary résiitible 4.6, which shows the minimum
sum of errors (FPR+FNR) achieved at a threshold of 1.0 by sigglificance function on each data set.
The constant function looks marginally the worst perforiaued the logit and root functions marginally

the best, but this difference is partly due to differencesgtimal threshold (see Section 4.4.1) for each
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All Significance Functions - no normalisation, SAeh-11
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Figure 4.1: ROC curves for all significance functions on tAel$-11 data set.

function: those that perform less well at a threshold of 1ay merform better at other thresholds.
Table 4.7 presents the minimum sum of errors achieved by feedtion at its individual optimal

threshold. In this table there is even less difference betvtiee functions, but still the root is marginally

better than the others in that it achieves the lowest avesageof errors over all data sets. And so, for

the sake of brevity we favour this function in much of our éeling analysis.

Effect of Threshold Variation

We generally found that there was an optimal threshold (ogeeof thresholds) which maximised the
success of the classifier. As can be seen from the four exayragbdis shown in Figure 4.2, the optimal
threshold varies depending on the significance functiortla@dnix of ham and spam in the training and
testing sets, but it tends to always be close to 1.

Obviously, it may not be possible to know the optimal thréglio advance, but we expect, though
have not shown, that the optimal threshold can be estalliditieéng a secondary stage of training where

only examples with scores close to the threshold are usetilasito what Meyer and Whateley 2004
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Sum of Errors (%) ath=1
for specifications ofp[f]
EDS Code || constant| linear | square| root | logit | sigmoid

LS-11 15 2.25 25 | 175|175 1.75
LS-46 1.33 142 | 192 | 1.08| 1.58 1.42
LS-15 1.33 1.33 | 155 | 1.33| 1.55 1.89
SAe-11 0.25 0.5 0.5 05 ]025| 0.75
SAe-46 0.5 0.75 0.5 05 ]025| 0.75
SAe-15 1.00 1.50 1.8 15| 11 2.00
SAeh-11 7.00 700 | 750 | 6.75]| 549 | 6.50
SAeh-46 4.33 458 | 492 | 5.00| 442 | 4.92
SAeh-15 9.3 7.5 800 | 7.7 | 7.6 8.6
BKS-LS-11 0 0 0 0 0 0
BKS-LS-46 0 0 0 0 0 0
BKS-LS-15 0 15 15 | 100 O 15

BKS-SAe-11 4.75 1.75 15 15| 15 1.75
BKS-SAe-46 4.5 175 | 200 | 1.75| 1.5 2.75
BKS-SAe-15 9.5 6.00 | 6.00 | 5.50| 5.50 8.5

BKS-SAeh-11 9.25 575 | 7.25 | 5.00| 5.75| 7.25
BKS-SAeh-46|| 10.25 | 525 | 7.00 | 4.25| 5.00| 7.25
BKS-SAeh-15 155 9.5 9.5 95 | 95 145

Table 4.6: Sum of errors (FPR+FNR) values at a conventidmakhold of 1 for all significance
functions under match permutation normalisation (seei@e@.2.4). The best scores for each
emalil data set are highlighted in bold.

[38] call “non-edge training”.

In any case, the main reason for using a threshold is to allpetential user to decide the level
of false positive risk they are willing to take: reducing thigk carries with it an inevitable rise in
false negatives. Thus we may consider the lowering of thestiold as attributing a greater cost to
miss-classified ham (false positives) than to miss-classdpam; a threshold of 1.0 attributes equal
importance to the the two.

Figure 4.2 Graphs (a-c) show three different combinatidnsignificance function and data set,
the shapes of which are representative of all combinatidriee performance of a particular scoring

configuration is reflected not only by the minimums achievedgimal thresholds but also by the
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Sum of Errors (%) at optimah
for specifications ofp[f]

EDS Code || constant| linear | square| root | logit | sigmoid
LS-11 1.25 1.00 | 1.00 | 1.00| 1.00| 1.00
LS-46 1.08 1.08 | 1.00 | 1.08| 1.08| 0.83
LS-15 1.33 133 | 133 | 1.33| 1.33| 1.33
SAe-11 0.25 0 0 0 0 0.25
SAe-46 0.42 0.33 | 0.33 | 0.25| 0.25 0.5
SAe-15 1.00 13 1.4 11 | 11 1.2

SAeh-11 7.00 6.50 | 6.00 | 6.25| 6.25| 6.50
SAeh-46 4.00 458 | 492 | 442|433 | 4.92
SAeh-15 6.50 6.60 | 6.70 | 6.50| 6.60 | 6.30

BKS-LS-11 0 0 0 0 0 0

BKS-LS-46 0 0 0 0 0 0

BKS-LS-15 0 0 0 0 0 0

BKS-SAe-11 0 0 0 0 0 0
BKS-SAe-46 0 0 0 0 0 0
BKS-SAe-15 0.2 0 0 0 0.2 0.50
BKS-SAeh-11|| 2.75 175 | 2.00 | 1.75| 2.00| 2.00
BKS-SAeh-46 1.33 1.17 150 | 1.17| 1.00 1.33
BKS-SAeh-15 1.1 1.2 200 | 1.30| 11 21

Table 4.7: Sum of error (FPR+FNR) values at individual optitnresholds for all significance
functions under match permutation normalisation (seei@e6t2.4). The best scores for each data
set are highlighted in bold.

steepness (or shallowness) of the curves: the steeperrtaep@more rapidly errors rise at sub-optimal
levels, making it harder to achieve zero false positivehouit a considerable rise in false negatives.

Graph (d) shows that our NB classifier is the most unstableigréspect.

Effect of Normalisation

We found that there was a consistent advantage to usatgh permutatiomormalisation, which was
able to improve overall performance as well as making the &$sifier more stable under varying
thresholds. Figure 4.3 shows the ROC curves produced byahstant significance function under

match permutation normalisation (MPN); match length ndisaion (MLN) reduced performance so
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b) Error Rates - ¢(p) = square(p),
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Figure 4.2: Effect of threshold variation. Graphs (a-c)vglsaffix tree false positive (FP) and false
negative (FN) rates for three specificationgpdp) under no normalisation; graph (d) shows naive

Bayes FP and FN rates.

much that the resulting curve does not even appear in theerahthe graph. The stabilising effect

of match permutation normalisation is reflected in ROC csitwe an increase in the number of points

along the curve, but may be better seen in Figure 4.4 as asliradl of the FPR and FNR curves. The

negative effect of MLN concurs with our heuristics from Sewt3.1, as we conjectured it would in

Section 4.3.1. These effects of MPN and MLN were observed, goeater or lesser degree, for all

significance functions and data sets.
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Effect of Match Normalisation - ¢(p) = 1, SAeh-11
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Figure 4.3: ROC curves for the constant significance functioder no match normalisation
(MUN), match permutation normalisation (MPN) and matchgkannormalisation (MLN), on the
SAeh-11 data set. MLN has such a detrimental effect on padoce that its ROC curve is off the

scale of the graph.
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rates using a constant significance function on the LS-11.ED&ph (a) shows the false positive
(FP) and false negative (FN) rates under no normalisatiohgaaph (b) shows FP and FN rates

under match permutation normalisation.
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Effect of Spam to Ham Ratios

We initially found that the mix of spam to ham in the data setsld have some effect on performance,
with the degree of difference in performance depending enddita set and the significance function
used; however, with further investigation we found that matthe variation was due to differences in
the optimal threshold. This can be seen by first examininglifierences in performance for different
spam:ham ratios shown in Table 4.6, in which a 1:5 ratio agteaesult in lower performance than the
more balanced ratios of 4:6 and 1:1; then examining thetegrdsented in Table 4.7, where differences
are far less apparent. These observations are reinforcdelgraphs shown in Figure 4.5. In graph (a)
which shows the ROC curves produced by the constant sigmifecaunction with no normalisation on
the SAeh data sets, we can see that the curves produced bsediffatios appear to achieve slightly
different maximal performance levels but roughly followetthe same pattern. Graphs (b-d) further
show that the maximal levels of performance are achievedffareht threshold for each ratio. The
difference between Graph (b) and Graph (c) is not great adiffezence between the ratios (1:1 and
4:6) is not great; however, the curves shift slightly to tight. The shift is more apparent in Graph (d)

because there is a greater change in the ratio (from 1:1Jo 1:5

Overall Performance Across Email Data Sets

Table 4.8 summarises the results for both the ST and NB Gikssiat a threshold of 1.0 and Ta-
ble 4.9 summarises results at the individual optimal thoshwhich minimise the sum of the errors
(FPR+FNR).

We found that the performance of the NB is in some cases dieatigtimproved at its optimal
threshold, for example in the case of the BKS-LS data setsaBaoth a threshold of 1.0 and at optimal
thresholds, the NB classifier behaves very much as expest@gorting our initial assumptions as to
the difficulty of the data sets. This can be clearly seen ine€rd: on the SAeh data sets which
contain ham with 'spammy’ features, the NB classifier's dgp®sitive rate increases, meaning that a
greater proportion of ham has been incorrectly classifiedpasn; and on the BKS-SAeh data sets
which additionally contain spam which is disguised to apeassham, the NB classifier's false negative

rate increases, meaning that a greater proportion of sparden misclassified as ham.
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a) Effect of Spam:Ham ratios - ¢(p) = 1,
unnormalised
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Figure 4.5: Effect of varying ratios of spam:ham on the SAatadising a constant significance
function with no normalisation. Graph (a) shows the ROC esrmproduced for each ratio; while
graphs (b-d) show the FP and FN rates separately for ratibslpfi:6 and 1:5 respectively.

The performance of the ST classifier also improves at itshnwgdtthresholds, though not so dra-
matically, which is to be expected considering our undediteg of how it responds to changes in the
threshold (see Section 4.5.2). The ST also shows improvedrpence on data sets involving BKS
data. This may be because the character level analysis stiffie tree approach is able to treat the at-
tempted obfuscations as further positive distinguishaajudres, which do not exist in the more standard
examples of spam which constitute the LS data sets. In adlscascept on the SAeh data, the ST is
able to keep the sum of errors close to or below 1.0, and in s@®es, it is able to achieve a zero sum
of errors. Furthermore, the suffix tree’s optimal perforg®is often achieved at a range of thresholds,

supporting our earlier observation of greater stabilitit';classification success.
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Naive Bayes Suffix Tree
EDS Code || FPR (%)| FNR (%) | FPR (%) | FNR (%)

Ls-11 1.25 0.50 1.00 1.75
LS-46 0.67 1.25 0.83 0.25
LS-15 1.00 1.00 0.22 0.13
SAe-11 0 2.75 0 0.50
SAe-46 0.17 2.00 0 0.50
SAe-15 0.30 3.50 0 1.50
SAeh-11 10.50 1.50 3.50 3.25
SAeh-46 5.67 2.00 2.00 3.00
SAeh-15 4.10 7.00 0.70 7.00

BKS-LS-11 0 12.25 0 0

BKS-LS-46 0.17 13.75 0 0
BKS-LS-15 0.20 30.00 0 1.00
BKS-SAe-11 0 9.00 0 1.50
BKS-SAe-46 0 8.25 0 1.75
BKS-SAe-15 1.00 15.00 0 5.5
BKS-SAeh-11|| 16.50 0.50 0 5.00
BKS-SAeh-46| 8.17 0.50 0 4.25
BKS-SAeh-15|| 8.10 5.50 0 9.50

Table 4.8: Classification errors at threshold of 1, for NaBayes (NB) and a Suffix Tree (ST)
using a root significance function and match permutatiomadisation.

Computational Performance

For illustrative purposes, in this section we provide sontkdation of the time and space requirements
of the annotated suffix tree (AST) classifier using a tree pthie = 8. However, it should be stressed
that in our implementation of the AST classifiers (ASTCs) wade no attempts to optimise our algo-
rithms as performance was not one of our concerns in thisrp@pe figures quoted here may therefore
be taken as indicators of worst-case performance levels.

Table 4.10 summarises the time and space requirements ASHE on four of our email data sets.
The AST approach clearly and unsurprisingly has high resodemands, far above the demands of a

naive Bayes classifier which on the same machine typicaklg m® more than 40MB of memory and
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Naive Bayes Suffix Tree
EDS Code OtpTh FPR (%) | FNR (%) | OptTh FPR (%) | FNR (%)
LS-11 1.0 1.25 0.50 0.96 0 1.00
LS-46 1.02 1.00 0.67 0.96 0.33 0.75
LS-15 1.00 1.00 1.00 0.98-1.00| 0.22 1.11
SAe-11 1.06 0.25 0 1.10 0 0
SAe-46 1.04 0.33 0.25 1.02 0 0.25
SAe-15 1.02 2.30 1.50 1.02 0.1 1.00
SAeh-11 0.98 10.50 1.50 0.98 2.75 3.50
SAeh-46 1.00 5.67 2.00 0.98 1.16 3.25
SAeh-15 1.02 7.60 1.50 1.10 3.50 3.00
BKS-LS-11 1.04 0.75 2.25 0.78-1.22 0 0
BKS-LS-46 1.06 2.50 1.25 0.78-1.16 0 0
BKS-LS-15 1.10 5.50 1.50 1.02-1.22 0 0
BKS-SAe-11 || 1.04 - 1.06 0 0.25 1.04-1.28 0 0
BKS-SAe-46 1.06 0.50 0.25 1.18-1.28 0 0
BKS-SAe-15 1.04 6.90 0 1.20 0 0
BKS-SAeh-11 0.98 8.00 2.00 1.06 0 1.75
BKS-SAeh-46 0.98 4.00 3.75 1.14-1.16 0.67 0.5
BKS-SAeh-15 1.00 8.10 5.50 1.24-1.26| 0.80 0.50

Table 4.9: Classification Errors at optimal thresholds (wtke sum of the errors is minimised) for
Naive Bayes (NB) and a Suffix Tree (ST) using a root signifiegiaaction and match permutation
normalisation.

EDS Code (size) Training | AvSpam | AvHam | AvPeakMem

LS-FULL (7.40MB) 63s 843ms | 659ms 765MB
LS-11 (1.48MB) 36s 221ms | 206ms 259MB
SAeh-11 (5.16MB) 155s 504ms | 2528ms 544MB

BKS-LS-11 (1.12MB) 41s 161ms | 222ms 345MB

Table 4.10: Computational performance of suffix tree cfasdion on four bare (no pre-
processing) data sets. Experiments were run on a pentiunGIMz3Windows XP laptop with
1GB of RAM. Averages are taken over all ten folds of crosselaion.
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takes approximately 10 milliseconds (ms) to make a classific decision.

The difference in performance across the data sets is, lewwexactly as we would expect consid-
ering our assumptions regarding them. The first point to iotieat the mapping from data set size to
tree size is non-linear. For example, the LS-FULL EDS is ®8rfarger than the LS-11 EDS but results
in a tree only 2.95 times larger. This illustrates the lagpanic growth of the tree as more information
is added: the tree only grows to reflect the diversity (or clexify) of the training data it encounters
and not the actual size of the data. Hence, though the BKS4LEDS is in fact approximately 25%
smaller than the LS-11 data set, it results in a tree thates 89% larger. We would therefore expect to
eventually reach a stable maximal size once most of the adtplof the profiled class is encoded.

The current space and time requirements are viable, thoegtadding, in the context of modern
computing power, but a practical implementation would olrgi benefit from optimisation of the algo-
rithms?.

Time could certainly be reduced very simply by implementifay example, a binary search over
the children of each node; the search is currently donerdiyneaer an alphabet of approximately 170
characters (upper- and lower- case characters are distiregly and all numerals and special characters
are considered; the exact size of the alphabet depends @peldic content of the training set). And
there are several other similarly simple optimisationsoltdould be implemented.

However, even with a fully optimised algorithm, the usualde-off between resources and per-
formance will apply. With regard to this, an important obsgion is that resource demands increase
exponentially with depth, whereas performance increasgwithmically. Hence an important factor in

any practical implementation will be the choice of the degiftthe suffix tree profiles of classes.

4.6 Conclusion

Clearly, the non-parametric ASTC performs universallylvaeross all the email data sets we experi-
mented with, but there is still room for improvement: whergasome cases, the approach is able to
achieve perfect classification accuracy, this is not coasily maintained. Performance may be im-
proved by introducing some pre-processing of the data or-pasessing of the AST profile and it

would be worthwhile investigating the possibility of imping performance on the current data sets,

1The literature on suffix trees deals extensively with impngvireducing) the resource demands of suffix trees [56, 18, 26]
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but there is also the question of whether this method canfbetiwkly applied in a broader text classi-
fication context. We investigate this possibility in the helxapters.

What we have so far argued and experimentally demonstratbdtiat least in the domain of email
filtering, the character-level approach to text modelliag te highly effective, particularly because it
works to counter the character-level obfuscations fretiyeitilised in spam messages. Hence, we have
confined our investigations exclusively to character-lasedels, using results from the literature to
compare against more traditional word-based approacted, We would now like to see if a character-
level approach can still be effective when there are no sbiisgations. In fact, we would like to know
how well a character-level approach performs in domainsevh@rd-based approaches have a natural
advantage; and we do this in the next chapter when we experiwith the Reuters data set, a well
know corpus that is normally thought to be particularly edito word-based approaches. Hence, in
what follows we experiment with word-based suffix trees teestigate (by contrast) just how useful
this character-level approach is.

In the current chapter, we have further experimented witluralver of simple, non-probabilistic
significance functions and found that the root function @enis marginally better than others, though
the difference is small. This is explicable in the domainrogd filtering because the probabilities (taken
as weights) associated with a particular character-segutends to be quite small and a root significance
function makes the classifier more sensitive to lower proibals. In the next chapters we explore and
compare this simple non-probabilistic significance fumttivith the probabilistic significance function
we developed in Section 3.1.2.

However, we have seen that the choice of significance fumdsidhe least important factor in the
success of the AST approach because all of them performegtaddy well. Different functions will
perform better on different data sets, but the root funcéippeared to perform marginally more consis-
tently well on all the email data sets we experimented with.

Match permutation normalisation was found to be the mostcéffe method of normalisation and
was able to improve the performance of all significance fionst In particular it was able to improve
the success of the filter at all threshold values. Howevkerahethods of normalisation were not always
so effective, with some of them making things drasticallyseo

The threshold was found to be a very important factor in tleesss of the filter. So much so, that the
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differences in the performances of particular configuretiof the filter were often attributable more to
differences in their corresponding optimal thresholdsitttathe configurations themselves. However,
as a cautionary note, variations in the optimal thresholg bedue to peculiarities of the data sets
involved, and this could be investigated further.

We also found that the false positive rate (FPR) and falsathegrate (FNR) curves created by
varying the threshold, were in all cases relatively shatiofer our AST classifier than those for our NB
classifier, indicating that the former always performstreddy better at non-optimal thresholds, thereby
making it easier to minimise one error without a significasgtdn terms of the other error.

Finally, any advantages in terms of accuracy in using the @&¥filter emails, must be balanced
against higher computational demands. In this paper, we g&en little attention to minimising this
factor, but even though available computational power setiodincrease dramatically, cost will nev-
ertheless be important when considering the developmetiteomethod into a viable email filtering
application, and this is clearly a viable line of furtherastigation. However, the computational de-
mands of the approach are not intractable, and an ASTC maglbable in situations where accuracy

is the primary concern.



Chapter 5

Application to Document

Classification

In the previous chapter (Chapter 4) we investigated a nurmbaspects of the general classification
methods described in Chapters 2-3 and established thathtraater-level suffix tree classifier can
offer particular benefits over the traditional bag-of-wdased approaches, such as naive Bayes, in the
domain of email filtering.

We now continue to develop and investigate aspects and coafigns of the classifier framework
and further extend the testing into a more general textifiestion domain involving multiple, possi-
bly overlapping classes. Decision mechanisms to handéenthilti-class case are introduced and the
probabilistic significance function 3.1.1 is tested agaiies root function.

We further extend the scope of the classifier framework ttugte word-based class analysis and
document classification. We show that the annotated suffexdfassification model we have described
can be used effectively, not only as a character-basedf@asbut also as a word-based classifier, in
which each node represents a word and each path represatsense of words. We show that such
a model can in many contexts outperform many of the other waskd approaches reported in the
literature.

We do not, however, leave the character-based model béhiadhow that the annotated suffix tree

character-based model can in certain cases outperform masiyng substring approaches described

76
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in the literature as well as compete with and outperform sam@l-based approaches, even in a more
general text classification context.
Overall then, our aims in this chapter will be to investigdte following configurations and devel-

opments:

e Development of multi-class decision mechanisms.

e Comparison of probabilistic suffix tree classifiers, usihg probabilistic significance function,

(Section 3.1.2) against a simpler root significance fumc{®ection 4.3.2).

e The difference in performance of a word-level and a chardetel| suffix tree classifier, each at

varying depths.

To investigate each of these issues, we utilise the Reul&s3corpus of news articles — arguably
the most popular benchmark text classification data setdie wsage. We take a closer look at this data

set in the next section.

5.1 The Reuters Collection

The Reuters collection is a set of news stories assembleihdeded by personnel at Reuters Ltd in
1987, which were originally made available for researctppsees in 1990. We use a version of this,
the Reuters-21578 collection, which was further formatiad error corrected in 1991 and 1992; for
full details see Lewis’ distribution site [29]. We use thealed “Modified Apte (ModApte) Split” of
the data set which temporally separates the stories int® 8&hing examples which were written and
indexed before the 3299 testing examples. There are a fotdlBoclasses in the ‘TOPIC’ set and each
story may belong to one or many of these classes.

The number of example documents in each class varies coablgewith some of the the smallest
classes containing just one training example and no testiagples, while the the largest clasarn
contains 2877 training and 1087 testing examples. Aroufdd &Dthe documents belong to multiple
classes and in many cases, the class(es) of a document magdieted by the occurrence of a small,
well-defined set of keywords [8, 23], which makes this datdnighly suited to word-based classifiers.

In addition to class variation, individual stories can alaoy greatly in their characteristics. Some

are very long, with over 1000 words in the body of the storyjlevbthers may simply be headline
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<REUTERS NEWID=15860>
<TOPICS>
<D>grain</D>
<D>corn</D>
<D>wheat</D>
</TOPICS>
<Title>USDA DETAILS FREE GRAIN STOCKS UNDER LOAN</Title>
<Body>The U.S. Agriculture Department gave projected
carryover free stocks of feedgrains, corn and wheat under
loans, with comparisons, as follows, in mln bushels, except
feedgrains, which is in mln tonnes --
1986/87 1985/86
04/09/87 03/09/87 04/09/87 03/09/87
Under Regular Nine Month Loan --

WHEAT 225 300 678 678
FEEDGRAINS 52.1 68.1 75.7 75.7
CORN 1,800 2,400 2,589 2,589
Special Producer Storage Loan Program --
WHEAT 165 150 163 163
FEEDGRAINS 7.0 6.7 5.3 5.3
CORN 200 200 147 147
</Body>

Figure 5.1: Example Reuters News Story (top) belongingeddghain’, ‘corn’ and ‘wheat’ classes.

stories consisting of only a title and no body. The formattof stories can vary greatly too. For
example, Figure 5.1 shows a story belonging to the ‘gracoyn’ and ‘wheat’ classes which reports
grain stocks in tabular form. Similar tabular formats alsewr frequently in other classes such as
‘earn’, in which company earnings are often reported. Tamutar form is in contrast to stories with
the more standard format demonstrated by the format of trg shown in Figure 5.2, which belongs
to the ‘acq’ (acquisition) class. Such formatting can pdevimportant clues to classification; and the
character-based classifier, without pre-processing {legegremoval of punctuation), can make good use
of these clues.

The Reuters data set is a particularly good one to use forwuermt investigation exactly because it
is generally considered to be a data set that is particuanignable to word-based analysis [8], in stark
contrast to the spam data sets we used in the previous chapteso provides the character-based AST

classifier with a challenging task.
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<REUTERS NEWID=15161>
<TOPICS>

<D>acq</D>
</TOPICS>
<Title>U.K. GEC DECLINES COMMENT ON U.S. PURCHASE RUMOUR</Title>
<Body>General Electric Co Plc <GECL.L> (GEC) declined comment on
rumours on the London stock market that it is planning another
purchase in the U.S. Medical equipment field, in addition to its
existing U.S. Subsidiary <Picker International Inc>.

A GEC spokesman said that it is company policy not to comment
on acquisition rumours.

Stock Exchange traders said the rumour helped GEC’s share
price to rise 5p, to a final 206p from yesterday’s closing price
of 201p.
</Body>

Figure 5.2: Example Reuters News Story (top) belongingeéddhq’ class.

The data set is a well studied one with many researchersghirtdj results using various classifica-
tion techniques, and so we do not, as we did in the previoystehamplement any of our own versions
of alternative techniques in order to compare the perfonaafthe AST classifier, but simply compare
its performance against that reported in the literature dééribe this alternative work and compare it

to ours in Section 5.5.

5.2 Extensions of AST Classifier Parameters

In the previous chapter (Chapter 4) we developed and igagsti some classifier configurations and pa-
rameters to see the effectiveness of each and found thatightdifferences between the configurations
was marginal, that the root significance function performeny well in a number of settings. However,
we have not investigated all the configurations we introduceChapter 3, in particular, word-based
ASTs and the probabilistic significance function which weealeped in Section 3.1.2; the investigation
of these will be the two main thrusts of this chapter.

Hence, in Section 5.2.2, we retain the root significancetfanc- as the best performing function
from the previous chapter — and compare its performancesighie probabilistic significance function.
And in Section 5.2.3, we investigate the difference in panfance that results from character-level

versus word-level modelling of the classes.
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However, we begin by considering effective and appropdateEsion mechanisms that may be used

to map individual class scores onto a set of predicted cdasgzdiscuss this in the next section.

5.2.1 Decision Mechanisms For the Multi-Class Case

In the previous chapter, we dealt with a two class case. Weelblgehad a straight forward decision
mechanism based on the ratio of the scores for each of thelassas, and hence, we simply used the
mechanism described in Section 3.2, Equation 3.17.

In the multi-class case, if each document is associatedexilctly one class, we may simply rank
the classes by their score and assign the document to theshiginking class. However, in many text
classification tasks, and in particularly, our current casiocument may belong to one or more classes.
We can of course mimic the two class case by taking for easss thee ratio (as given in Equation 3.19) of
the document score relative to the class against the dodwwoeme relative to all other classes combined;
thereby asking of each class whether or not the document@®lim it. Such an approach effectively
turns the multi-class decision into a series of binarysldscisions; a technique that is widely used
in the literature and often referred to agveo-way ensembler the one-vs-restechnique. But this
technique still leaves us the sometimes difficult task dfegiestablishing a decision threshold, for
each of the classes,, or using a single threshold for all classes and carefullynadising the scores for
each document so that they fall consistently and reliabtiriwia given range.

We experimented with both of these techniques, but alsololeeé and tested another method that
allowed us to mainly avoid the concerns over normalisatioth eass-specific thresholds. Under this
method, we score all classes according the OMS functiom, ¢chester them, by their OMS value, into
positive and negative clusters, taking the former as thefgatedicted classes. A singtduster biasis
used to adjusted and optimise the overall accuracy of thesiler, such that the distanag,between a

classgci, and the positive clustef ', is calculated as:

d(c;,C") = bias* (centroid C") — scor€(c;)) (5.1)

The clustering algorithm we use is generally referred to -aselans clustering [40] — see Algo-

rithm 5.1 below. In this case, we det 2, meaning that we divide the classes into two groups: pesiti
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and negative. The positive group initially contains onlg thighest scoring individual class, with all

others placed in the negative group.

5.1: K-Means Clustering Algorithm

Step 1. Begin with a decision on the value of k = number of elsstin our current case, k = 2.

Step 2. Divide the individuals into k partitions - the diwisimay be done by random or
systematically, according to some rule(s). In our case,on@ the positive partition (group)
using only the most highly scoring class; with the remaindfagses forming the negative
partition (group).

Step 3. For each partition calculate its centroid (or mean).

Step 4. Take each class in sequence and compute its distantée centroid of each of the
clusters (partitions). If a class is not currently in thestér with the closest centroid, switch it to
the closer cluster and update the centroid of both clusters.

Step 5. Repeat step 3 until convergence is achieved; thatilsan entire pass through the classes
causes no new assignments.

We show in Section 5.4 that the clustering of classes by sdsrhighly effective and makes the

classifier’s performance very stable under several diffieckassification parameter settings.

5.2.2 Choice of Significance Functions

In the previous chapter (Chapter 4) we experimented withnabrau of simple definitions of the signifi-
cance function and two methods of match normalisation. Wedahat there was little to separate the
performance, but some gains were achieved by using theigystisance function and match permuta-
tion normalisation. In this chapter, we will concern ouvsslless with normalisation and focus more on
only two approaches to scoring: we retain the root signifieaiunction and compare its performance
under various conditions against the probabilistic sigaifice function, as described in Section 3.1.2
(Equation 3.15).

When using the root significance function, we use a ratio nreashereby we calculate the score
for the classODMS Q| T¢), and the negative class conditional sc@®&) S Q|Te), and take the ratio of the
former over the latter, as described in Section 3.2, Eqnai@9; which is equivalent to the ratio we
took in Chapter 4, but is now applied in a multi-class settiByg taking such a ratio for each class, we
introduce a measure of the corpus frequencies, which asrwite not addressed in the root scoring
function. In contrast, when using the probabilistic sigr@fice function, which directly addresses corpus

frequencies, we calculate only the class scO&SQ|Te).



CHAPTER 5. APPLICATION TO DOCUMENT CLASSIFICATION 82

5.2.3 Character-Level vs Word-Level Classification

One of the aims of this chapter is to compare the performaottd®e word-based AST classifier and

character-based AST classifier. In the previous chapteromeantrated our attention on the character-
based AST classifier, arguing that it afforded a special midhege when handling the character-level
obfuscation employed in many spam messages; and the resufibtained supported this view. But

such an advantage does not exist in a more general textfrdatsn context, and, as we have said,
particularly so in the case of the Reuters data set.

In general text classification, the classifier will gengralbt encounter deliberate obfuscations, but
there may still be other advantages to character-basedlingdef the text. For example, character-
level modelling can capture information about sub-worduess such as punctuation, word-boundaries,
text formatting, or even domain specific meta-textual fezgisuch as HTML tags on web pages. All
such features can give clues to the class of a document, amel @@ relevant to our current target data
set, as we saw by comparing the stories shown in Figure 5.%.4nd

The classification methods we developed in Chapters 2 ané agostic as to whether we use
characters or words as the basic units for classificatiolufes. And as the Reuters data set is widely
considered to lend itself well to word-based classificatibmakes sense to experiment with word-based
AST classifiers and compare their performance against ctearbased AST classifiers.

Furthermore, itis certainly the case that context can beitapt in word-based classification, just as
it is crucial in character-based ones. Using word-base@amgnodels allows the classifier to distinguish
between word features that might occur is several classgexXample, the term “stock” may occur in
the ‘grain’ class, and in the ‘acq’ class, but in the formésimore likely to occur as “grain stock” and
in the latter as “stock market”.

In both the word- and character-based models, we use exhetbame method to evaluate the OMS,
except that in the former we perform some preprocessingénabves punctuation. For the character-
level classier, as before, we perform no preprocessingedftkt, but add the title and body of each news
storyas is In short, we argue that although this has the disadvantbigserting a great deal of noise
into the model, it has the advantage of retaining a greatafaszeful information such as the order of

terms and the inflection of words; as well as numerals anddting.
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5.2.4 Tree Depth

Utilising a different term base for our suffix trees raisesaiaghe question of depth - for both the
character- and the word- based AST classifiers (ASTC).

In the case of the character-based ASTC, we examined, int&hdpSection 4.4.1, the effect of
varying depth on the performance and found that it benefiteah fgreater depth, though by a dimin-
ishing marginal amount. We settled on using a charactethdap8, which is important when we are
dealing with spam classification because a greater depsefsiuvhen we are trying to jump over the
obfuscations that are common in spam messages; howeveveadepth may well be adequate in the
case of the Reuters collection, where there are no suchedatédobfuscations (though there may be,
and indeed are, numerous spelling mistakes).

In the case of the word-based ASTC, we have so far not exartieeeffect of depth variation. At a
word depth of 1, the methods we have developed approximadsia BF-IDF or naive Bayes algorithm
based on the vector space model and the term independeagedftwords’) assumption. Increasing
the depth beyond 1 introduces context sensitivity and thyeirecreases the power of the classifier, but it

unlikely we will need a depth as great as that for a chardzeed classifier.

5.3 Experimental Setup

All the experiments described in this chapter were condluote a subset of the Reuters 21578 data
set under the ModApte split; details of the subset we use igem gn Section 5.3.1 below. No cross-
validation experiments were done because the data setidediinto standardised training and testing
sets (see Section 5.1).

Performance was assessed using essentially similar nesaguthose introduced in the previous
chapter (Chapter 4), but suitably adapted to apply in theirolass context. We take a closer look at

these performance measures for the multi-class case iilnB&cB.2.

5.3.1 Reuters Subset

How researchers use the Reuters data set can vary con$yd&aime researchers [15] run experiments

on all 118 categories, but quote results from only the larj@swhile others [63] may use only the 12
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Class Total Total
Training | Testing
Earn 2877 1087
Acq 1650 719
Money-fx 538 179
Grain 433 149
Crude 389 189
Trade 369 117
Interest 347 131
Ship 197 89
Wheat 212 71
Corn 181 56

84

Table 5.1: The largest 10 classes in the Reuters-21578dfiohe

largest (most frequent) only. However, most often, redeascseem to prefer to concentrate on the 10
largest classes [6, 36, 44, 54]. We follow the latter and hedargest 10 classes, shown in Table 5.1.
Together, these classes account for more than 75% of albitumakents in the Reuters-21578 collection.
Table 5.1 shows the number of training and testing examplesach of the 10 largest classes arranged
in order of size.

Of course, which approach is used can undoubtedly have acteffi performance [12] and so in

some comparisons it should be kept in mind that it is not fes$d draw hard conclusions.

5.3.2 Performance Measures

We mainly follow the literature [15, 13, 63, 13] and use theigien measures of Precision (Pr), Recall
(Re), the F1 measure which combines the two, and the ‘break@oint where precision equals recall.
Additionally, when dealing with multiple classes, is it@ftuseful to consider an average over all the
classes. This is typically done in two ways: ljcroaveragingand bymacroaveragingRecollect from
Section 4.4.3 the terms: true positives (TP), false pastiFP) and false negatives (FN). The meaning
in the multi-class case are very similar, but we think in teiwha document belonging either to a class
cortoc. Hence, a TP is a documentS, belonging toc which is correctly classified as a FN isd°®
incorrectly classified asand a FP is a document, belonging tcc; incorrectly classified as We then

define the two methods of averaging as follows:
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TR
MicroAveragedPrecisioa- mPr= _ JecclR 5.2
J ZCeC(TPtﬁL FPC) ( )
TR
MicroAveragedRecal mRe= _ el 5.3
I EceC(TPC"‘ FNC) ( )
.. 1
MacroAveragedPrecisions MPr = 6( ;Prc) (5.4)
cel
1
MacroAveragedRecak- MRe= =('§ Re) (5.5)
C ce

And from these definitions, we can define macro- and micro-gihgueither macro- or micro-

averaged precision and recall as before:

2(Pr«Re)

Fl1=
Pr+Re

(5.6)

In the two-class case of Chapter 4, we additionally madenskte use of ROC graphs (as discussed
in Section 4.4.3) to demonstrate the performance of thesifi@sover a range of thresholds, but such
graphs are difficult (though possible [27]) to define in a iirciiss case and so we use instead, precision-
recall (PR) curves [47, 35]. The two curves are closely eeldfl0] and give similar insights into the
performance of the classifier under varying conditions, durve in opposite directions such that an
optimal classifier would achieve a point on a PR curve at theight of the graph space, whereas for

an ROC curve it would achieve a point on the top left.

5.4 Results

The classifier parameters allow for a large number of posgblmutations, but we avoid presenting
results from each of these. Instead, we begin, in Sectiod bylusing only theharacter-based AST

classifier(ASTC-C) to show that the score clustering decision medmmixhibits a distinct advantage.
We obtained similar results for thveord-based AST classifiéASTC-W), but do not present them here.

We then examine the effect of depth on the ASTC-C in Sectidr2mnd establish an effective depth
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Class th | Pr(%) | Re (%) | F1 (%)
earn 1.10| 94.80 | 95.68 | 95.24
acq 1.09| 93.94 | 96.94 | 95.41

money-fx || 1.09 | 63.30 | 94.41 | 75.78
grain 1.08| 67.91 | 85.23 | 75.60
crude 1.09| 73.30 | 85.71 | 79.02
trade 1.09| 53.67 | 81.20 | 64.63
interest 1.11| 58.33 | 69.47 | 63.41
wheat 1.09| 32.80 | 85.92 | 47.47
ship 1.10| 51.18 | 73.03 | 60.19
corn 1.11| 29.79 | 50.00 | 37.33

Macro-Av. n/a | 61.90 | 81.76 | 70.46

Micro-Av. nfa | 77.90 | 90.96 | 83.93

Table 5.2: Precision (Pr), Recall (Re) and F1 rates for an@8fldepth 8 using a root significance
function (rASTC-C8) and individual class-thresholds (th)

to use in the context of more general text classificationstaklaving established an effective depth for
the ASTC-C, we move on to use it as a comparator for studyiag#rformance of the ASTC-W in
Section 5.4.3.

Comparisons between the root and probabilistic signifiednactions are made throughout.

5.4.1 Decision Mechanisms for Predicting Multiple Classes

When predicting several possible classes, a typical decimgchanism that is used in text classification
and machine learning is to introducehaesholdscore for each class. As before, the query is scored
against each class, but this time we select all the classieb whin scores above their individual thresh-
old. The threshold may be established for each class in atgising phase using a sample of the
training data, but they may also be adjusted by users of thteisy

Table 5.2 presents the results for a character-based ASBICAC) of depth 8 using theoot
significance function and the individual class thresholtigctv produce the highest F1 accuracy. From
a classification accuracy point of view, the results are agtitipe with some existing methods but fall
below the results of others [63, 15]. The largest classesn’@nd ‘acq’, have high precision and recall,
but the smallest classes tend to have very low precision.

The performance of the probabilistic significance functimaer otherwise identical parameter set-

tings is much worse. Table 5.3 shows the results from a ctearhased ASTC of depth 8 using the
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Class th | Pr(%) | Re (%) | F1 (%)
acq 0.00| 30.55| 99.86 | 46.79
corn 0.26| 2.20 | 100.00| 4.31
crude 0.00| 10.82 | 100.00| 19.53
earn 0.00 | 43.46 | 100.00| 60.59
grain 0.00| 11.84 | 77.85 | 20.55
interest || 0.00| 9.39 93.13 | 17.06
money-fx || 0.00 | 10.45 | 95.53 | 18.83
ship 0.00| 7.50 | 96.63 | 13.93
trade 0.00| 6.73 99.15 | 12.61
wheat 0.22| 2.79 | 100.00| 5.43
Macro-Av nfa | 13.57 | 96.21 | 23.79
Micro-Av n/a | 14.79 | 98.03 | 25.70

Table 5.3: Precision (Pr), Recall (Re) and F1 rates for elmasing a character-based AST classifier
of depth 9 (pPASTC-C8) using probabilistic significance fiime (pSF) with individual thresholds
(th) on the largest 10 classes in the Reuters-21578 Callecti

probabilistic significance function (pASTC) and the individual thresholghich provide the highest
F1 accuracy. Recall is generally very high, but this coroesis with a very low precision. We look at

the reasons for this in the next section.

Predicting multiple classes using clustering

One of the difficulties with a single threshold for each clasthat in practice, the range of scores that
one query receives over all the classes may differ conditiefeom the range of scores achieved by
another query; so much so that the lowest class score for@nement may be higher than the highest
class score for another document. Such variation makespiv$sible to find a single class threshold
which will accurately identify all true positive classescdges are, of course, normalised (at the very
least by the length of the query) to maintain some consigtener different queries, but this is not
always effective enough.

An alternative approach is to look at the distribution ofresoand group the classes into positive
and negative clusters regardless of the absolute scoreébr. €lo illustrate why such an approach is
effective consider the examples shown in Figures 5.4, 5d35a;, each shows a numbered news story
from the test set of the ModApt split. Each example belongshéo'acq’ class and the third belongs
additionally to the ‘crude’ class. The range of scores forysfil5542 (Figure 5.3) is from 0.94 (for the

‘trade’ class) to 1.65 (for the ‘acq’ class); while the ramgscores for story 15161 (Figures 5.4) is from
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1.03 (for the ‘trade’ class) to 1.09 (for the ‘aqc’ class).eTacq’ class attains a lower score for the latter
story than the ‘corn’, ‘crude’, ‘earn’, ‘grain’, ‘interesand ‘wheat’ classes attain for the former. Hence
any ‘acq’ class threshold that includes both these artadeisue positives would also include all these
other classes as false positives. As such, it would be iniiest® use a threshold for the ‘acq’ class
which would correctly classify both these documents.

If, instead, we consider the distribution of the scores initheir own range, we see that the true
classes are usually distinct from the other classes. TBlsagn in the charts that accompany each story
in Figures 5.4, 5.3 and 5.5. In the first example, the truesol@sq’) scores over 1.6, well above all
the other classes which are grouped around a score of 1.%.isThuite a high range of scores for all
the classes, which is arguably due to the 'story’ being onheadline: journalistic headlines tend to
concentrate many significance terms into short term-semseand hence the length normalised scores
tend to be high. The second example shows a complete newswgtere the range of scores is much
lower. The true class, ‘acq’, now scores less than 1.1, bstillsclearly separated from all the other
classes whose scores are grouped around 1.04. The final kexsinogvs a story belonging to the ‘acq’
and ‘crude’ classes, which are now grouped together arowsuie of 1.1, while all other classes are
grouped around the much lower 1.025 mark.

Examining such charts strongly suggests the method ofeclngt classes based on their scores
and such an approach was used to obtain the results showble 34, which proved to be the most
successful of those we tested. The table shows the resuhe &ias which results in the highest F1
accuracy. The results show a marked improvement in all dsgarith no anomalously low performances
and a mean performance of 83.59% for all measures. Thisrpeaiftce can be improved by application
of the ik-means algorithm [41], which fixes the positive aegative cluster means; the approach raises
the F1 score to 84.85%. The results using fixed positive agdtive cluster means is shown in Table 5.5.
The approach of fixing positive and negative cluster measghmasignificant additional advantage of
faster execution times because recalculation of the meaotisecessary and the clustering algorithm
will complete in linear (to the number of classes) time .

The argument so far has taken examples of documents scaregdthe additive root significance
function (rSF), but a similar argument applies to the prdlsiie significance function (pSF), which

actually shows a much more dramatic improvement, indigatiat the variation in the range of scores
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<REUTERS NEWID=15542> <TOPICS>
<D>acq</D>
</TOPICS>

<Title>E.F. HUTTON LBO INC SAID TENDER OFFER BY PC ACQUISITTION
FOR PUROLATOR COURIER EXPIRED </Title>

<Body />
SCORE:s for News Story 15542
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Figure 5.3: Example Reuters News Story (top) belongingéddhq’ class; and the scores against
each of the largest 10 classes (bottom)

across documents is far greater than that for the root signiéie function (rSF). The results for variable
and fixed positive and negative cluster means for the prébadsignificance function (pSF) are shown
in Tables 5.6 and 5.7.

The probabilistic significance function shows a small inveroent from ik-mean clustering, as can
be seen by comparing the macro- and micro averages in Taliemn#l 5.7, but, as with the rSF, the
difference is small.

Moreover, there seems to be little to separate the two sgduinctions, though the rSF achieves

a marginally better performance. However, this is only a particular cluster bias. If we look at
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<REUTERS NEWID=15161>
<TOPICS>

<D>acq</D>
</TOPICS>

<Title>U.K. GEC DECLINES COMMENT ON U.S. PURCHASE RUMOUR</Title>

<Body>General Electric Co Plc <GECL.L> (GEC) declined comment on
rumours on the London stock market that it is planning another
purchase in the U.S. Medical equipment field, in addition to its
existing U.S. Subsidiary <Picker International Inc>.

A GEC spokesman said that it is company policy not to comment
on acquisition rumours.

Stock Exchange traders said the rumour helped GEC’s share
price to rise 5p, to a final 206p from yesterday’s closing price
of 201p. </Body>

SCOREs for News Story 15161

1.1 ' : : : : ' ' ' ' '
1.09 1 -
1.08 1 -
1.07 A -
1.06 - . -
1.05 - -
1.04 * -
1.03 - . -
1.02 .
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>

Classes

Figure 5.4: Example Reuters News Story (top) belongingéddbq’ class; and the scores against
each of the largest 10 classes (bottom)
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<REUTERS NEWID=16007> <TOPICS>
<D>acq</D>

<D>crude</D>

</TOPICS>

<Tit1le>NERCI <NER> UNIT CLOSES OIL/GAS ACQUISITION</Title>

<Body> Nerco Inc said its oil and gas unit closed the acquisition
of a 47 pct working interest in the Broussard oil and gas field
from <Davis 0il Co> for about 22.5 mln dlrs in cash.

Nerco said it estimates the field’s total proved developed and
undeveloped reserves at 24 billion cubic feet, or equivalent, of
natural gas, which more than doubles the company’s previous

reserves.
The field is located in southern Louisiana.
</Body>
SCORE:s for News Story 16007
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Figure 5.5: Example Reuters News Story (top) belonging éo'dleq’ and ‘crude’ class; and the
scores against each of the largest 10 classes (bottom)
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Class bias | Pr (%) | Re (%) | F1 (%)
acq 411 | 96.00 | 97.18 | 96.59
corn 411 | 59.26 | 85.71 | 70.07

crude 411 | 93.17 | 79.37 | 85.71
earn 411 | 97.28 | 98.53 | 97.90
grain 411 | 98.80 | 55.03 | 70.69

interest || 4.11| 83.46 | 80.92 | 82.17
money-fx || 4.11 | 82.81 | 88.83 | 85.71

ship 411 | 85.19 | 76.67 | 80.70
trade 411 | 73.65| 92.37 | 81.95

wheat 4.11| 6591 | 81.69 | 72.96

Macro-Av n/a | 83.55| 83.63 | 83.59
Micro-Av nfa | 91.59 | 91.65 | 91.62

Table 5.4: Precision (Pr), Recall (Re) and F1 rates for elssing a character-based ASTC of
depth 8, theoot significance function (rSF) and the clustering approacltiass allocation on the
largest 10 classes in the Reuters-21578 Collection.

Class bias | Pr (%) | Re (%) | F1 (%)
acq 3.43| 9535 | 97.35 | 96.34
corn 3.43| 5455 | 87.50 | 67.20
crude 3.43| 90.91 | 82.42 | 86.46
earn 3.43| 97.11 | 98.99 | 98.04
grain 3.43| 99.04 | 74.10 | 84.77
interest || 3.43| 85.04 | 83.72 | 84.38
money-fx || 3.43 | 80.98 | 89.76 | 85.14
ship 3.43| 84.42 | 77.38 | 80.75
trade 3.43| 72.34 | 91.89 | 80.95
wheat 3.43| 67.44 | 87.88 | 76.32
Macro-Av n/a | 82.72 | 87.10 | 84.85
Micro-Av nfa | 91.07 | 93.47 | 92.25

Table 5.5: Precision (Pr), Recall (Re) and F1 rates for elssing a character-based ASTC of
depth 8, theroot significance function (rSF) and the clustering selectiopraach using fixed
positive and negative cluster means on the largest 10 slassiee Reuters-21578 Collection.

the performance of each of these significance function gtingucluster bias values, there are further
differences in their behaviour.

Figure 5.6 compares the micro-averaged precision vs naicevaged recall performance of the root
and probabilistic (prob) significance functions for a ramjecluster bias values. The probabilistic
significance function (pSF) now appears to clearly outparfthe root significance function (rSF) for

most cluster bias values and has a much more evenly conves cimdicating that it is a more stable
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ClassPath|| th Pr Re F1
acq 3.56 | 95.52 | 97.77| 96.63
corn 3.56 | 50.49 | 92.86| 65.41
crude 3.56 | 83.70 | 81.48| 82.57
earn 3.56 | 99.06 | 97.33| 98.19
grain 3.56 | 91.27| 77.18| 83.64
interest || 3.56 | 75.82 | 88.55| 81.69
money-fx || 3.56 | 82.47 | 89.39| 85.79
ship 3.56 | 71.68| 91.01| 80.20
trade 3.56 | 72.55| 94.07| 81.92
wheat 3.56 | 57.52| 91.55| 70.65
Macro-Av n/a | 78.01| 90.12 | 83.63
Micro-Av n/a | 88.85| 93.79| 91.26

Table 5.6: micro-Precision (Pr), micro-Recall (Re) and Bfes for classes using a character-
based ASTC of depth 8, therobabilistic significance function using clustering approach for class
allocation on the largest 10 classes in the Reuters-21518dfion.

ClassPath|| th Pr Re F1
acq 3.02 | 95.79| 97.55| 96.66
corn 3.02 | 57.47| 89.29| 69.93
crude 3.02 | 90.48 | 80.42| 85.15
earn 3.02 | 96.76 | 98.90| 97.82
grain 3.02| 98.99| 65.77| 79.03

interest || 3.02 | 80.88| 83.97| 82.40

money-fx || 3.02 | 80.50 | 89.94 | 84.96
ship 3.02| 81.40| 77.78| 79.55
trade 3.02| 71.71| 92.37| 80.74
wheat 3.02 | 66.33| 91.55| 76.92

Macro-Av n/a | 82.03| 86.75| 84.33

Micro-Av n/a | 90.50| 93.07 | 91.77

Table 5.7: micro-Precision (Pr), micro-Recall (Re) and &&s for classes using a character-based
ASTC of depth 8, theprobabilistic significance function using clustering selection approaith
fixed positive and negative means on the largest 10 classes iretltefR-21578 Collection.

classifier which has made a better separation between tbseslaHowever, towards the top left of the
curves, the curve of the rSF rises above the pSF curve anthérésthat the F1 values are maximised
for both, which is why the rSF appears to perform better if wepdy examine the tables of results at
F1-maximising bias values. All that said, it is also cleattthere is very little overall difference in the

performance of each significance function.

Low cluster bias values yield the points at the bottom righihe curves - which are associated with
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Micro-Averaged Precision-Recall Curves; Reuters-21578
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Figure 5.6: Micro-Averaged Recall against Micro-Averagredcision results on the Reuters-21578
data set using the root and probabilistic (prob) signifiediunctions.

a high recall and low precision. This is because low biasesake it easier for classes to be placed
into the positive cluster, as can be seen by consideringtiegqua.1. A bias of 1 achieves a recall of
approximately 98%, and so is represented on the graph bytimad (rSF) or third (pSF) point on their
respective curves. The marginal improvement with eachement of the bias value is initially large
(toward the bottom right of the curves), reflected in the esrvy well spaced points, but eventually, the
marginal improvement diminishes until there is almost nange in performance from each increment
of the bias - this is reflected in the curves by a concentraifcdhe points at the top right of the graph.
This observation is useful in the practical use of the cfesdbecause it means we can safely utilise a
high bias that will ensure a position on the curve where thitop@ance has stabilised, without worrying
too much about ‘over-shooting’ the maximal performancellev

A similar story may be seen in the macro-averaged precisoall curves shown in Figure 5.7.
Here there is a more demarcated crossing of the two curvessaqting the performance of rSF and
pSF. Again, the highest F1 accuracy is reached at the topfl¢fte graph where the rSF curve rises
above pSF curve, but that the latter offers a more stablsitirswith a better separation between the

classes can be seen clearly from the more evenly concave.curv
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Macro-Averaged Precision-Recall Curves; Reuters-21578
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Figure 5.7: Macro-Averaged Recall against Micro-Averadrrdcision results on the Reuters-
21578 data set using the root and probabilistic (prob) Sgamce functions.

5.4.2 Effect of Depth Variation on Character-Based ASTCs

All the analysis so far has been done using character-basedaged suffix tree classifiers (ASTC-Cs)
of depth 8, which is a depth we established as effective irdtimaain of spam filtering (Chapter 4).
However, as we have said, such a large depth may not be necé@ssabroader text classification
domain. Hence, let us now consider how performance chahgesreduce the depth of the tree.
Figure 5.8 shows the micro-averaged precision-recallesifer a ASTC-C of depths 2 to 8 using
the rSF. Clearly, by the time we have reached a depth of 4e tilsdittle to separate the performances
of greater depths (i.e. from depth of 4 to 8). There is a littlere separation between the depths
if we consider the macro-averaged precision-recall cufeeghe same set of classifiers, as shown in
Figure 5.9. Here we can see that at a depth of 8 (shown by liglouced triangles), the classifier
performance has already begun to decline. We can see thaugl the differences are small, the
classifier performance seems to peak at a depth of 5 (showarkysduares). But separating the curves
is only possible for lower cluster bias values i.e. towatds lottom right of the curves. Towards the
top left of the curves (corresponding with a high clusteshiaurves for depths greater than 4 tend to

merge. This region is also where the classifiers tend to eelhie highest F1 accuracy.
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Micro-Averaged Precision-Recall Curves; Reuters-21578
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Figure 5.8: Micro-Averaged Precision-Recall curves forharacter-based annotated suffix tree
classifier (ASTC-C) using a root significance function (r&#)tree depths 2 to 8.

Macro-Averaged Precision-Recall Curves; Reuters-21578
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Figure 5.9: Macro-Averaged Precision-Recall curves foharacter-based annotated suffix tree
classifier (ASTC-C) using a root significance function (r&#)tree depths 2 to 8.
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Micro-Averaged Precision-Recall Curves; pSF; C-STC; Reuters-21578
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Figure 5.10: Micro-Averaged Precision-Recall curves faharacter-based annotated suffix tree
classifier (ASTC-C) using a probabilistic significance fiioic (pSF) for tree depths 2 to 8.
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Figure 5.11: Macro-Averaged Precision-Recall curves foharacter-based annotated suffix tree
classifier (ASTC-C) using a probabilistic significance ftioic (pSF) for tree depths 2 to 8.
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Micro Precision-Recall curves; pSF(d=8), rSF(d=5); C=STC; Reuters-21578
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Figure 5.12: Micro-Averaged Precision-Recall curves carmg an rSF classifier of depth 5 with
a pSF classifier of depth 8.

In the case of the C-ASTC using the pSF, there is a much moferamperformance for the different
depths. Figure 5.10 shows the micro-averaged precisicalteurves and Figure 5.10 shows the macro-
averaged curves. For depths of 5 and above, there are nordibée differences in performance, but
interestingly, there is also no decline in performance aedtassifier's performance seems to stablise.

Notice that this means that the comparisons made in Figubestal 5.7 are not fair to the rSF based
classifer because they compare performance at a depth die3eas the rSF achieves its best perfor-
mance at depth 5. Figures 5.12 shows that at a depth of 5, arlaS#tfier matches the performance of
a pSF classifier of depth 8 in terms of micro-averaged F1 acguand Figure 5.13 shows that an rSF
classifier of depth 5 can very closely match the performamneaaSF classifier of depth 8 in terms of
macro-averaged F1 accuracy.

Overall, we can interpret these graphs as indicating tisattiee depth is needed for data sets such
as Reuters compared to the spam data sets we used in Chaphés . very understandable because, as
we have said, the Reuters data does not contain any of theedske obfuscations such as those which
generally characterise spam email.

We can also see that the choice of significance function doeseem to be crucial to performance;

differences may be smoothed out by altering the depth oteribgas.
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Macro Precision-Recall curves; pSF(d=8), rSF(d=5); C=STC; Reuters-21578
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Figure 5.13: Macro-Averaged Precision-Recall curves @nng an rSF classifier of depth 5 with
a pSF classifier of depth 8.

5.4.3 Character-Based vs Word-Based Classification

In contrast to the character-based classifier, we foundithtite case of word-based classifiers, the
choice of significance function and depth can have a largeedn performance.

We begin by considering word- and character-based classdfethe same depth - specifically, a
depth of 8. However, such a high depth is unlikely to be nergsso in Section 5.4.3, we look at the
effect of altering depth.

Figure 5.14 shows that, surprisingly, the rSF performamogpsl dramatically when applied to a
word-based AST classifier: both precision and recall arg v and there is a linear trade-off between
them. The results are very different with a pSF, for whichf@@nance improves when applied to a
word-based ASTC, as shown in Fig 5.15. As we would expectfeReuters data set, the word-based
classifier outperforms the character-based classifienaisdlall cluster bias values.

Why the root significance function (rSF) performs so badly amdsbased ASTCs is not clear, but
we can make some observations. As we argued in Chapter 4dvhatage of the rSF is that it is more
sensitive to low probabilities (more sensitive than a limg&gnificance function would be). This would

make it better at distinguishing classes which are sepa@blthe basis of many features which have
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Micro-Averaged Precision-Recall Curves; rSF; Reuters-21578
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Figure 5.14: Micro-Averaged Recall against Micro-Averdderecision results on the Reuters-
21578 data set using the root significance function (rSF) ordvbased and character-based clas-
sifiers.

low frequencies, as in the case of the spam filtering domaint. Ruters is characterised by classes
which are highly separable based on a few frequently ocuyitarms.

It is also the case that the probabilistic significance fiomc{pSF) takes account of the relative
frequency of terms in the same way that TF-IDF methods do -eashewed in Section 3.1.2. The rSF
method only takes account of relative frequencies acr@ssesk in an indirect way through the score
ratio which is used in the decision process, but this ratiaken only after the whole document has
been evaluated and not on a term-by-term basis.

However, these suggestions are fairly speculative antiduitivestigation would be needed to es-
tablish exactly why the rSF performs so badly when used witvoed-based ASTC (ASTC-W). For
now, let us conclude only that this experiment demonstrdtasuse of the probabilistic significance

function seems to lead to a more robust classifier.

Effect of Depth Variation on Word-Based ASTCs

Experiments varying the depth of the profiles trees also hggrising results. Figure 5.16 shows how

the precision-recall curves for a word-based classifieregtlls 1 to 8 (Figures (a) to (h)) using the
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Micro-Averaged Precision-Recall Curves; pSF; Reuters-21578
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Figure 5.15: Micro-Averaged Recall against Micro-Averdderecision results on the Reuters-
21578 data set using the probabilistic significance func{SF) on word-based and character-
based classifiers.

pSF change relative to a character-based classifier of @gjpiko using the pSF. We have already seen
Figure 5.16h in the previous section, but now we can see higvetinve emerges as the depth increases.
Atadepth of 1, the word-based classifier performs signiflgamorse than the character-based classifier
at all cluster bias values. The PR curve of the ASTC-W is at#cas smooth or uniformly concave as
the ASTC-C, but the curves tend to move closer together tsvtire top left, which is a region of
the graph that coincides with the maximum F1 scores for ifilessof both term-bases. And this is a
characteristic of the two curves at for all word depths.

Increasing the ASTC-W depth to 2 (Figure (b)), removes tfferdince in performance almost com-
pletely and the two PR curves follow almost exactly the saime dver the entire graph. Increasing
the depth further leads to the ASTC-W marginally outperfogrthe ASTC-C, but the ASTC-W curve
looses its smoothness and exhibits areas of local conveéXityve increase the word-depth further, the
actual overall performance of the ASTC-W does not improvetmat all, but its PR curve becomes far
more smooth and more uniformly convex such that by the timéawe increased the word-depth to 7,
the PR curve for the ASTC-W traces a uniform line above the &Recfor the ASTC-C of depth 8.

A very different picture is apparent in the case of the woadda classifier using the rSF: as depth
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Figure 5.16: Word-based classifiers for depths 1-8 showimsiga character-based classifier of
depth 8 using a probabilistic significance function.
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Figure 5.17: Word-based classifiers for depths 1-8 showimsiga character-based classifier of

depth 8 using a root significance function.
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increases, the performance actually moves in the opposietidn. Indeed ASTC-W using a rSF
performs best at a word depth of just one. Such a result is verg to explain and further work is

needed to investigate this matter.

5.5 Assessment: Related Work

Text classification in general and the Reuters data set iticptar have been tackled by researchers
using a variety of methods. The majority of methods are waasled [23, 15, 6], but some recent work
has attempted to tackle the problem using character-baassifeers [33, 54].

Results in the literature are also reported in differentsvagither using macro- and micro-F1 scores
or using precision-recall break-even points. We calcdlatethese values from our experiments so that
they were comparable with all those reported in the litamtlihe comparisons are made below against

both word- and character-based approaches.

5.5.1 Word-Based Classifiers

Traditionally, text classifiers adopt tiheag-of-wordsmodel of text [30, 15, 52] and these approaches can
be highly effective, despite the obviously false assunmptbterm independence which the methods
adopt. In recent years however there have been a numbeeofgt to move beyond the bag-of-words

model to ones which retain some dependencies between the f@r44].

Comparison with bag-of-words Models

Table 5.8 shows the results reported in Joachims 1998 [28paced to the results we obtained using
the annotated suffix tree method. Joachims [23] experimgitibsfour traditional classifiers and two
versions of the now popular support vector machine (SVMpa#ied on dag-of-wordsmodel. The
traditional methods used are: Naive Bayes [30], Rocchi d8learest Neighbours [14], and Decision
Trees [14]. For the SVM, two different kernels are uspdtynomialandradial basis function¢RBF).
Joachims [23] experiments with a number of degrees of thgnpahial kernel and number of different

variances of the RBFs, but we consider only the best perfagrakamples for brevity.
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Bayes| Rocchio| C4.5 | k-NN | SVM | SVM | pASTC | rASTC
(poly) | (rbf) | (Wd=7) | (Wd=1)
earn 95.9 96.1 96.1 | 97.3 | 98.4 | 98,5 | 98.30 95.49
acq 91.5 92.1 85.3 92 95.2 | 95.3 | 96.74 88.46
money-fx || 62.9 67.6 69.4 | 782 | 749 | 754 | 84.01 76.41
grain 72.5 79.5 89.1 | 822 | 91.3 | 91.9 | 87.89 86.08
crude 81 81.5 75.5 | 85.7 | 88.9 89 90.56 84.96
trade 50 77.4 59.2 | 77.4 | 77.3 78 81.72 71.91
interest 58 72.5 49.1 74 73.1 75 81.73 80.30
ship 78.7 83.1 809 | 79.2 | 865 | 86.5 | 82.28 84.10
wheat 60.6 79.4 855 | 76.6 | 859 | 859 | 72.60 59.15
corn 47.3 62.2 87.7 | 77.9 85.7 85.7 69.11 55.94

MacroAv || 69.84 | 79.14 | 77.78| 82.05| 85.72 | 86.12| 84.49 78.28
MicroAv 72 79.9 79.4 | 823 | 86.2 | 86.5 | 9221 83.28

Table 5.8: Results of word-based Annotated Suffix Tree @lassising the probabilistic signif-
icance function with depth 7 (pASTC, Wd=7) and the root sigaifice function with depth 1
(rASTC, Wd=1) compared against the results from Joachim8 199

The results are quoted in [23] as micro-averaged precigoall breakeven points; and we addition-
ally calculate the macro-averaged breakeven scores fthreilucomparison. The annotated suffix tree
classifier using a probabilistic significance function (FAS has the best micro-averaged performance,
with 92.21%, several points ahead of the the next best prefigithe SVM using radial basis functions.
The annotated suffix tree classifier using the root signifiedunction (rASTC) performs worse than
both versions of SVM, but performs better than all the tiad#l classifiers in terms of micro-averaged
breakeven points. In terms of macro-averaged results, Vewie ASTCs do not perform so well: the
pASTC is outperformed by both versions of SVM and the rASTGutperformed by all but the naive
Bayes and C4.5.

We can understand these results by looking at the individlaesls scores which are arranged in
descending order of class size. In the case of pASTC, theithdil class performance correlates much
better with the size of the class (in terms of number of trajréxamples) than in the case of any of the
other classifiers. Such individual class performance willdt to translate into a higher micro-averaged
score relative to macro-averaged score. The reason pASTGrme badly on the smaller classes,
relative to its performance on the larger classes is beatuseepth of 7, suffix trees become naturally
sparse, and with few training examples, and so the frequemayts are not large enough to give reliable

probability estimates. Conversely, the quoted rASTC tesuk at a depth of just 1 (making it equivalent
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to the bag-of-words model), and as can be seen, there isdasdation between the size of a class and

performance; which in turn translates into macro- and mgmores which are much closer together.

Comparison with Word-Sequence Models

Authors in the literature mean different things by a ‘wosdygences’. The more typical definition of
it is followed by Peng et al. 2003 [44], in which a word-seqeeiis a sequence of contiguous words
of some lengthp; such a word-sequence is typically referred to asiangram However, Cancedda
et al. 2003 [6], define a word-sequence as a sequenpessibly non-contiguouterms. Hence the
contiguous sequence becomes a special case of the moralgeoet-sequence. Our ASTC models
described so far all assume contiguous word- (and charpsézuences, but it would be straightforward
to encompass non-contiguous sequences within our clagsfidramework (see Section 7).

Peng et al. [44] employ what they refer to as a Chain AugmeNi&ide (CAN) Bayes Classifier,
which extends the Bayesian framework we have already ememe (Section 4.2) to allow for the
calculation of Baysian probabilities ovar— gramsby considering them as Markov chains [14] [5] of
degreen. They achieve their best performance using bi-grams @) for which they quote a micro-
averaged F1 score of 81.52%. This greatly improves on therizayes results quoted in, for example,
Joachims [23], but falls well below the results achieved biyAST classifier and also the results quoted
in Cancedda [6] (see below).

One of the weakness of the CAN Bayes classifier is identifietheyauthors themselves as lying in
a uniformprior. But neither does our AST classifiers employ a prior (whickgsivalent to a uniform
prior in terms of class rankings), though the frameworkvaesidor the use of priors if, for example,
we think of priors as normalisation coefficients (Sectioh)3We did experiment with such a set up,
but found that the use of (non-uniform) priors was detrirabtd performance and have therefore not
focussed on their use in this chapter. Furthermore, Perig[dddplace emphasis on methods to handle
null probabilities, whereas our approach is to focus onlttenoverlap between the query document
and the class. The smoothing we perform is based on corpggedineies and is built into the scoring
mechanism as an adjustment to the importance we place orogadhp term (see Section 3.1). The
result is that we do not in fact perform smoothing at all in ¥esy that Peng et al. [44] approach it.

Instead we focus entirely anatchederms.
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] \ microAv \ macroAv\

SVM (contiguous) 91.60 84.23
SVM (non-contiguous) 91.75 84.50
pASTC (Wd=7) 92.21 84.49
rASTC (Wd=1) 83.28 78.28

Table 5.9: Micro- and Macro-Averaged Precision/Recallakeyen point comparisons between
ASTC and SVM with contiguous and non-contiguous word-saqaeernels

Cancedda et al. 2003 [6] have a completely different appréathat of Peng et al. [44], but in many
ways closer to ours because their method focuses entirdlysooverlapping term-sequences — thereby
circumventing the issue of smoothing. They apply the SVMhudtusing atring kernel[53] originally
developed in Lodhi et al. 2002 [33] for use in character-datassification (see Section 5.5.2); Table 5.9
shows their results compared against our two versions cA8IE classifier. Cancedda et al. [6] quote
precision/recall breakeven points because, they argiseatbids confusion over the decision function
thresholds, which can have a significant effect on perfoomamo make our work comparable to theirs,
we do the same.

The word-sequences considered by Cancedda et al. [6] ar@bleingth 2, where as our pASTC is
taken at a depth of 7 (though, as we have seen, depths gteate2 teturn only modest improvements).
Cancedda et al. [6] found that their performance diministivbén using word-sequences of length
greater than 2, but as we have seen in Section 5.4.3, thel &etigtion in performance with depth
(or word-sequence length) can also depend on factors suttte ageighting mechanism, and indeed,
the decision function or its threshold. Cancedda et al. & either a binary weighting or an IDF
(inverse document frequency) [3] weighting scheme, whigeusle a more sophisticated method which
gives a better reflection of the significance of a particulardvsequence match between the query
document and the class; and it may be this that accounts flghalyg better performance from our
method. Nevertheless, the results reported in Cancedda [€] are very good; there are strengths to
their approach which are so far not modelled in ours. For @@nuespite their more basic weighting
mechanism, their method employs a more general matchiregrseim that it considers non-contiguous
words. Such an approach is able to ignore possibly noisystamd identify only those that are key to the
classification of a document. Furthermore, SVMs performrenfof internal feature selection (as part

of the training process, they retain only the features wipicly the more important role in separating
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classes) and this too may help eliminate noisy terms whighatteerwise confuse classification. Indeed,
a promising line of development would be an integration efélative strengths of their methods and

the methods described in this thesis (see Chapter 7).

5.5.2 Character-Based Classifiers

Character-based text classifiers are not as common in #ratlire as word-based approaches, and
are even less commonly applied to the Reuters corpus bedagsgenerally considered to be more
amenable to word-based analysis.

However, in recent years, there are growing efforts at apglgharacter-based models to text clas-
sification and indeed to Reuters. Unfortunately, methodetan the bag-of-words model cannot be
effectively applied to character-based analysis, but pdshased on word-sequences can.

Hence Peng et al. 2003 [44] apply the same method, which wesgsed in the previous section, to
character-sequences, again with emphasis on smoothingigees. For their best performing method
they quote a micro-averaged F1 measure of 80.32%, whichais aignificantly outperformed by our
ASTC, with either a root significance function (at 92.25%)qgorobabilistic significance function (at
91.77%).

Similar results are achieved by Lodhi et al. 2002 [33], thginators of the approach later applied
to word-sequences by Cancedda et al. [6] (Section 5.5.19mwilie discussed in the previous section.
Lodhi et al. [33] apply the SVM framework to a kernel define@iopossibly non-contiguous character
sequences in the same way as in Cancedda et al. [6]. So, likleaysconsider overlapping sequences
of characters, but unlike us, use a constant weight for emeHapping feature. This results in a best-
case macro-averaged F1 score of 77.3% over the largest teéarRelasses while using (possibly non-
contiguous) character sequences of length 4. This resuligll below our best macro-averaged F1
scores of 84.33% for a probabilistic significance functidake 5.7) and 84.86% for a root significance
function (Table 5.5). Interestingly, Lodhi et al. [33] alsoplemented their own word kernel SVM for
comparison purposes and found that it significantly outeréd their own character sequence kernel.
It may be explanatorily important to note that they use a DF-Weighting scheme on their word kernel
and consequently achieve a macro-averaged F1 of 85.29%hwsislightly better than any macro-

averaged F1 score we achieved; unfortunately they do ndaegumicro-averaged score, and therefore
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we cannot fully compare our work to theirs.

Finally, we would like to draw attention to Slonim et al. 20[&l], whose work can be seen as
parallel to ours because it is also based on the suffix treestiatcture. They use smoothing techniques
based on work by Bejerano and Gill 2001 [4] to derive what tbaly a Prediction Suffix Tree (PST)
which associates a probability with every possible charasgquence. This PST is used to evaluate the
probability of each character in a document given a clasg;uming Bayes’ rule they calculate from
this the probability of a class. The focus of Slonim et al.][84on pruning the tree so that the shortest
possible preceding sequence is used to evaluate the pligbaba character, resulting in a suffix tree
model which holds only a minimal set of relevant suffixes. phecess they use is equivalent to feature
selection using mutual information, but using probalgtconditioned not only on classes but also on
the sequences preceding a particular character featuralsd/experimented with entropy based feature
selection methods in similar ways, but with an aim to setectull (maximum possible) length branches
in the profile tree which were most indicative of classes,ii@po prune away noise in the model, but
found most of our attempts tended to reduce performance.i$iot to say that feature selection is not
possible, but only that we did not achieve a successful @gbror he important point is that our position
is opposite to that of Slonim et al. because we seek the lbpgssible matches between documents
and classes rather than seeking the shortest possibleiprediequence.

Slonim et al. experiment on the largest ten classes fromdRguas we do, and quote a micro-
averaged precision and recall of 95% and 87% respectively) Which they impute a likely break-even
point of 87% or above. These precision and recall valuegicdytequate to micro-averaged F1 score

of 90.82%, which is slightly lower than our results.

5.6 Conclusion

This chapter has extended the annotated suffix tree methgehteral text classification and has shown
that its performance competes well with state-of-theeatihiques and outperforms most other methods
reported in the literature.

We have shown that the method presented in this thesis issagras to whether it is applied at
the level of characters or words; what matters more is theaitoomder consideration, the consequent

properties of the data, and the appropriate choice of stgmifie function. Hence we have seen that
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for data sets such as Reuters, which is highly amenable td-based analysis, the word-based ASTC
performs better than the character-based ASTC - exactlymaswould expect. But in other domains,
such as spam email, character-based analysis is more appepand one of the great strengths of the
ASTC method is that it can present a uniform solution in batbes.

That said, it is also interesting that with data sets such etd®s, the word-based ASTC only
slightly outperforms its character-based equivalent. &mecharacter-based ASTC outperforms many
alternative word-based classifiers. Hence the charaemgebh ASTC is arguably preferable in most
situation because the slight loss in performance is sigmiflg outweighed by the benefits of a uniform
approach, which would reduce the need for domain- or langnspgcific preprocessing of the data, such
as the compilation of stop-word lists and the employmentahsning or lemmatisation algorithms.

We have also seen that in recent years other researcherdbgua to see the advantages that
character-level treatment of text may afford. That suchpam@ach can be highly effective and competes
successfully with the more traditional word-based appneads reflected not only by the successes of
our method but also in the relative success of all the mettadsave reviewed in this chapter.

Regarding alternative approaches, there is certainlylavdretween our approach and those of
Lodhi al [33], Cancedda et al [6] and Slonim et al. [54]. Thenfer two evaluate a set of sequences
which overlap between the document and the class, just a®vand the latter, like us, use a variant of
the suffix tree data structure — evaluating the smoothedgibty of all characters in a query document.

One of the key differences between our approach is the qverkss score (OMS) method which,
along with the appropriate significance function is ablaietinto account aspects of the significance of
a term which are ignored by the approaches of the othersr&emthis is, of course, our interpretation
of the suffix tree because it allows us to efficiently evaluaterlaps and conditional probabilities over
all sequences and all classes and hence allows the coimtroftthese significance functions in the
straight forward ways that we demonstrated in Chapters Zand

The clustering method for selecting class membership @ ialgortant to the success of our ap-
proach for the reasons already given in Section 5.2.1. Hewevweakness of the clustering decision
method is that it always selects at least one class, evem# nbthe classes are in fact the true class.
This weakness may certainly be addressed, though we hadenetso here. For example, one may use

a set of negative examples which belong to none of the corglddasses (such a ‘negative class’ in fact
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exists in the Reuters data set); if this negative class istiyemember of the positive cluster, then we
could conclude that the document does not belong to any dafl#sses. An alternative approach is to
utilise a combination of the class-specific threshold amdclhstering decision function so that a class
must be a member of the positive cluséed score above a certain threshold. However, in many cases,
such issues will not be a concern, and there will often be $iseraption that a document must belong
to at least one the training classes.

Regarding the clustering decision method itself, an ingarand useful result is that we found that
there seems to be a maximal cluster bias value above whiadjimahimprovement in performance was
close to zero or negative. This value, of approximately was applicable for all the flavours of the
ASTC we experimented with and may provide a good rule-ofthwhen using an ASTC in a real-
world context. It would mean that such a bias could be usedla$zalt value without needing extensive
investigation of the particular data and domain.

As we expected, we found that we needed less depth in thertvélep in order to obtain a maximal
performance. Indeed, whereas we did not, in the spam donegich a maximal performance depth, we
have seen in this chapter that our conjecture (in Sectio2)that such a depth would be reached was
true. We saw in Figure 5.9 that performance, for the chardx@eed ASTC using the root significance
function, peeked at a depth of 5 and then began to fall; whiée gerformance of the probabilistic
significance function, though it did not fall, began to skiakiat a maximal performance level at around
a depth of 5.

The most surprising and inexplicable result was the podopaance of the root significance func-
tion when applied to word-based ASTCs. Not only was perforceavell below its own character-based
equivalent but also against the performance of both typesatifabilistic ASTCs. Unfortunately, we are

unable to adequately explain this result at present.



Chapter 6

Classification Feature Evaluation and

Visualisation

In this chapter we present examples of the application obtlifx tree text model to document high-
lighting using the approach described in detail in Chapt8eé&tion 3.3.

The effectiveness of document highlighting cannot be assks the same quantitative way that
class prediction is assessed. User studies may be conduactigtermine the usefulness of certain
approaches, but we do not pursue such a study here. Insteagent examples of results and point to
certain advantages that are afforded by using the ASTC nfodslch tasks.

The main motivation for document highlighting is to providauser with some justification for a
particular classification decision by providing a visuafisn of the importance of each term in the
document relative to a particular class, which we will réteas theelative class

Such a facility has particular benefit in certain domainsr &@mple, the sponsors of the work
presented in this thesis envisioned its use in expertisitmt, where each expert is represented as a
class. The process of seeking an expert begins with a dodforesimply a typed query) which contains
material that an expert seeker requires help in understgndihe method first ‘classifies’ this document
(or query) into one or more classes (i.e. experts) and theesé® thereby presented with a short-list
of possible candidate experts. The role of document highihg would then be to allow the seeker to

compare the document to each short-listed expert (i.es)clasorder to obtain a visualisation of the
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reasons for the inclusion of that expert in the short-listhé highlighted terms are those that the seeker
is in fact interested in, there is then good justificationdatect that expert.

In a broader context, the facility may be used to gain insigtd the most significant terms in a
particular class and the terms in the document which plagrafgant role in any classification decision.
To some degree we can also use the technique to visualisatsification process because we are able
to see the way in which different parameter settings of thsdifier effect its performance. However, this
latter function is limited because it is difficult to perfomtomprehensive comparison of all documents
against all classes. Rather, the method can simply give me stues about certain significant terms
which may be used to guide further investigation.

Thus, our concern in this chapter is not to investigate aldfiects of parameter settings or even
to experiment with all possible highlighting policies, baif which are too numerous, but to use the
method to point to specific characteristics of the classifieich are evident under certain parameter
settings.

All the examples in this chapter use the same highlightifgrypathe terms in the document are each
evaluated relative to a particular class and then split byesmto 10 partitions, with the top 4 partitions
‘highlighted’ by ascending order of text size. Hence thenewhich are in the top partition (effectively
the top 10% of term scores for this document when comparddstghe relative class) have the largest
font size and those below the'8@ercentile are left in the original font size.

For character-based classifiers, we additionally perfemoothingwithin word boundaries to assist
visual assessment of the results of highlighting. This isedloy simply assigning to each word the sum
of the scores received by each of its characters.

The results bear some resemblance to “Tag Clouds” or “Woodidd”, which emerged outside the
academic literature and became popularised with the aadfesttcial networking sites; and have more
recently attracted some academic interest [22]. Tag Clatslsertainly similar in that they extract from
a body of text — be it a single web page or an entire web site -+ af the most frequently occurring
terms and present them as indicative of the content of thteatax highlight them by size or colour
according to their frequency. Some more sophisticatechiqalks may use methods other than simple
frequency counts, but all of them are effectively aiming valeate the body of text as distinct (from

any other body of text). By contrast, the motivation of oucdment-to-class highlighting method is
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<REUTERS NEWSID=15161">
<TOPICS>
<D>acq</D>
</TOPICS>

<Title> U.K. GEC DECLINES COMMENT onu.s. PURCHASE
RUMOUR </Title>

<Body> General Electric CO Plc <GECL.L> (GEC)

declined COMMENt on rumours on the London StOCK market that it
is planning another PUrchase in the u.s. Medical equipment
field, in addition to its €XIStiNg U.S. Subsidiary <ricker
International [NC>.

A GEC spokesman said that it is company policy Nnotto
comment on acquisition rumours.

Stock Exchange traders said the rumour helped GEC's share

price to rise 5p, to a final 206p from yesterday's ClOSINg
price of 201p.

</Body>
</REUTERS>

Figure 6.1: Reuters document belonging to ‘acq’ class fghked against the ‘acq’ class using a
word-based probabilistic ASTC of depth 4 using the prolistiiil scoring function (pASTC-W4).

completely different in that it aims to provide an evaluataf a body of text as it is comparedjainst a
particular class
The next three sections look at the highlighting that resfutim using character-based and word-

based classifiers of different depths and against differdative classes.

6.1 Effect of Varying the Relative Class

Our first example, presented in Figure 6.1, shows the same stewy as that shown in Figure 5.2, taken
from the ‘acq’ class of the ModApte test set. The story is hgdited against the ‘acq’ class using a
word-based probabilistic AST classifier of depth 4 (pASTCI)W4

The first point to note is that the importance of a term is a fiencnot only of it, but also of its
context. For example, though the term ‘rumours’ occurs égcond line of the first paragraph of the

body of the text and in the second line of the second paragriibte body, it is highlighted only in the
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<REUTERS NEWSID=15161">
<TOPICS>
<D>acq</D>
</TOPICS>

<Title>U.K. GEC DECLINES COMMENT On u.s. PURCHASE
RUMOUR <ritle>
<Body> Genelal Electlic Co Plc <GeCL.L> GEC)
deciined COMment On rUMOurs On the London StOCK market that it
is planning another PUrchase in the U.s. Medical eQuipment
fieid, in @ddition to its eXiSting u.s. SUbsidiary <Plcker
Internationar Inc>.

A GEC spokesman said that It is COmpany policy Not to
colMMent On acquisition rUMOurs.

stOCk Exchange tradel's said the tUMOur helped GEC's Share
price to rise Sp, tO A fiNal 206p from yeSterday's c|03ing
price Of 201.

</Body>
</REUTERS>

Figure 6.2: Reuters document belonging to ‘acq’ class fghked against the ‘acq’ class using a
character-based ASTC of depth 8 using the probabilistidrsgdunction (pASTC-C8); characters
are split into 10 partitions with the top 4 highlighted in fascending text sizes.

first case. Such context sensitivity would be impossibleaftraditional bag-of-words model of text.

Secondly, the significance of certain terms such as ‘puethe®d ‘acquisition’ is not surprising
considering that all the stories in this class are about ongany acquiring another, but terms such as
‘medical’ and ‘subsidiary’ are more surprising. A quick @stigation motivated by this finding shows
that in fact both these latter two terms are quite highlygative of the ‘acq’ class: ‘subsidiary’ occurs
425 times in the training data of which 63% are in documenteriggng to the ‘acq’ class; while
‘medical’ occurs 93 times, of which 60% are in ‘acq’.

Figure 6.2 shows the highlighting of the same document usicigaracter-based probabilistic clas-
sifier of depth 8 (pPASTC-C8). To make it easier for us to seetughaappening and compare it against
the word-based highlighting, Figure 6.3 shows the sameligtging, but nowsmoothedso that each

word is given the sum of the scores of its individual chanacte
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<REUTERS NEWSID=15161">
<TOPICS>
<D>acq</D>
</TOPICS>

<Title> U.K. GEC pecLines COMMENT ONus. PURCHASE
RUMOUR «</Title>
<Body> General Electric CO Plc <GECL.L> (GEC)
declined COMMENt on TUMOUTS 0N the London StOCK market that It
is planning another pUrchase in the u.s. Medical equipment
field, in addition to its €XIStiNG U.s. Subsidiary <Picker
International INC>,
A GEC spokesman said that it is company policy NOt to

comment on aCqUISItion rumours.
Stock Exchange traders said the rumour helped GEC's share

price to rise 5p, to A final 206p from yesterday's ClOSing
price Of 201p.

</Body>
</REUTERS>

Figure 6.3: Reuters document belonging to ‘acq’ class fghked against the ‘acq’ class using a
character-based ASTC of depth 8 using the probabilistidrsgéunction () ASTC-C8). Characters
are scored and then the scores are smoothed within word Boaaduch that each word is assigned
the sum of the score for its individual characters. The tagyivord scores are then split into 10
partitions with the top 4 highlighted in four ascending tsizies.

We can now see more easily the similarities and differendbearhighlighting that results from the
use of character-based and word-based classifiers. Matmg dfriportant terms turn out to be exactly
the same - such as ‘purchase’, ‘medical’, ‘subsidiary’ amchjuisition’. But the term ‘rumour’ is now
highly significant whereas before it was much less so. Theoredor this demonstrates one of the
strengths of the character-based approach. The word-bagedach fails to pick up the importance of
this term to the ‘acq’ class because it occurs only 16 timéisériraining data out of which only 4 are in
the ‘acq’ class, whereas the term ‘rumor’ (the American lamggl occurs 102 times in the training data,
of which well over 50% are in the ‘acq’ class.

With this in mind, if we look back to Figure 6.2, we can see tlmatthe occurrence of the term

‘rumour’ it is mainly the character sequence, ‘uma’, in thieldhe of the term which lends weight to the
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<REUTERS NEWSID=15860>
<TOPICS>
<D>grain</D>
<D>corn</D>
<D>wheat</D>
</TOPICS>

<Tite> USDA DETAILS FREE GRAIN STOCKS UNDER LOAN
<ITitle>

<Body> The U.S. Agriculture Department gave
projected carryover free stocks of feedgrains, corn and Wheat
under loans, with COMPArisons, as follows, in min bushels,

except feedgrains, which isin min tonnes --

1986/87 1985/86
04/09/87 03/09/87 0409/87 03/09/87
Under Regular Nine Month Loan --

WHEAT 225 300 678 678
FEEDGRAINS 521 681 757 757
CORN 1,800 2,400 2,589 2,589
Special producer Storage Loan Program --
WHEAT 165 150 163 163
FEEDGRAINS 7.0 67 53 53
CORN 200 200 147 147

</Body>
</REUTERS >

Figure 6.4: Reuters document belonging to the ‘grain’, i¢@nd ‘wheat’ classes highlighted
against the ‘grain’ class using a word-based ASTC of deptsidguthe probabilistic scoring func-
tion (pASTC-W4); terms are split into 10 partitions with thept4 highlighted in four ascending
text sizes.

term’s overall score.

Of course, certain pre-processing techniqgues commonly¢ with word-based classifiers, such as
stemming, would be able to handle such variations in text,oblers, such as spelling mistakes are
not so readily addressed. Moreover, a character-basedagpcannot only function well without the
need for pre-processing such as stemming and punctuatiwoves, but in many cases is able to benefit
from such indicators as formatting and punctuation, whigghibe removed by pre-processing - a

point we have previously argued, but are now able to viseak®r example, compare the highlighting
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<REUTERS NEWSID=15860">
<TOPICS>
<D>grain</D>
<D>corn</D>
<D>wheat</D>
</TOPICS>

<Title> USDA DETAILS FREE GRAIN sToCcKS UNDER LOAN </Title>
<Body> The U.S. Agriculture Department gave
projected Carryover free stocks Of feedgrains, corn and Wheat
under loans, with comparisons, as follows, in min bushels,

except feedgrains, which isinmin tonnes --

1986/87 1985/86
04/09/87 03/09/87 04/09/87 03/09/87

Under Regular Nine Month Loan ==

WHEAT 225 300 678 678
FEEDGRAINS 521 681 757 757

CORN 1800 2400 2589 2589
Special Producer Storage Loan Program --

WHEAT 165 150 163 163
FEEDGRAINS 70 6.7 53 53

CORN 200 200 147 147

</Body>
</REUTERS >

Figure 6.5: Reuters document belonging to the ‘grain’, i¢@nd ‘wheat’ classes highlighted
against the ‘grain’ class using a character-based ASTC jthd® using the probabilistic scoring
function (pPASTC-C8). Character scores are smoothed witlird boundaries and are then split
into 10 partitions with the top 4 highlighted in four ascamgltext sizes.

that results from the word- and character-based classd®shown in Figures 6.4 and 6.5 (again the
character-based highlighting is smoothed for easier coisgg. Both examples show a news story we
have seen before in Figure 5.1 belonging to the ‘corn’, fgrand ‘wheat’ classes. The document is
now highlighted against the ‘grain’ class.

We can see that both classifiers are identifying very sinddems as significant and indeed, all the
ones which we would expect them to identify - such as ‘grdagriculture’ etc.. But additionally, the
character-based approach is able to identify formattingkenauch as the double dash (‘— =) which

is commonly used to arrange the tabulated information ®atiy appearing in the ‘corn’, ‘grain’ and
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<REUTERS NEWSID=15860>
<TOPICS>
<D>grain</D>
<D>corn</D>
<D>wheat</D>
</TOPICS>

<Tite>USDA DETAILS FREE GRAIN sTOoCKS UNDER LOAN

</Title>

<Body> The U.S. Agriculture Department gave
projected carryover free stocks of feedgrains, corn and Wheat
under loans, with COMparisons, as follows, in min bushels,

except feedgrains, which is in min tonnes --

1986/87 1985/86
04/09/87 03/09/87 04/09/87 0309/87
Under Regular Nine Month Loan --

WHEAT 225 300 678 678

FEEDGRAINS 52.1 68.1 75.7 75.7
CORN 1,800 2,400 2,589 2,589

Special producer Storage Loan Program --
WHEAT 165 150 163 163

FEEDGRAINS 7.0 67 53 53
CORN 200 200 147 147

</Body>
</REUTERS >

Figure 6.6: Reuters document belonging to the ‘grain’, i¢@nd ‘wheat’ classes highlighted
against the 'wheat’ class using a word-based ASTC of deptlsidguthe probabilistic scoring
function (pASTC-W4); terms are split into 10 partitions wiitle top 4 highlighted in four ascending

text sizes.

‘wheat’ classes; also, we see that numerals are more reaskly as class indicators by the character-
based classifier.

The other main advantage of document highlighting is thatldws us to see term significance
relative to a particular class. The news story shown in EEdul belongs to three classes and we have
so far only seen it highlighted against one of these: ‘graifigure 6.6 shows the story highlighted
against the ‘wheat’ class, where we can now see that ternisasUfevheat’ become far more significant.
Hence, a user of the system who is more interested spegifinaltheat’ rather than in the more generic

‘grain’ would be able to judge that the ‘wheat’ class is makevant to their needs (obviously, in some
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<REUTERS NEWSID=15161">
<TOPICS>
<D>acq</D>
</TOPICS>

<Title> U.K. GEC DECLINES COMMENT on U.S. purcHase

RUMOUR </Title>
<Body> General Electric Co Plc <GECL.L> (GEC)

declined comment on FTUMOUT'S on the London stock market that it
IS planning another purchase in the U.S. Medical equipment

field, in addition tO its existing U.S. subsidiary <Picker
International Inc>.

A GEC spokesman said that it IS company policy not tO
comment on acquisition FTUMOUT'S.

Stock Exchange traders said the rumour helped GEC's share
price torise 5p, {0 a final 206D from yesterday's closing
price of 201p.

</Body>
</REUTERS >

Figure 6.7: Reuters document belonging to ‘acq’ class agtéd against the ‘corn’ class using a
character-based ASTC of depth 8 using the probabilistidsgdunction (pASTC-C8). Characters
are scored and then scores are smoothed within word boesdarch that each word is assigned
the sum of the score for its individual characters. The tegpivord scores are then split into 10
partitions with the top 4 highlighted in four ascending teizies.

domains, such as that of expertise location, the name ofdlss (i.e. the expert's name) may not always
so obviously indicate the subject most relevant to it!).

The other possible case is when the relative class is onehbadocument does not belong to.
Figure 6.7 shows our running example from the acquisiti@s<highlighted against the ‘corn’ class.
Against this class, terms such as ‘rumours’ and ‘commemthat highly significant in any context; and
overall, there is less in the document that is relevant tédbw’ class. However, the terms, “purchase”,
“stock market” and “Stock Exchange traders” are relevartidth classes, though less so in the case
of ‘corn’; and although “price” is equally relevant to botkasses, “closing price”, a concept that is
special to share markets, is much more significant to the @ass. All this generally concurs with our
knowledge of these two classes.

Comparing the document against a class such as ‘earn’, vatgchtends to focus on the stock
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<REUTERS NEWSID=15161">
<TOPICS>
<D>acq</D>
</TOPICS>

<Title> U.K. GEC DECLINES COMMENT ON U.S. PURcHASE RUMOUR
<Title>

<Body> General El@CLriC co PIc <GECL.L> (GEC)
declined comment on rumours on the London Stock market that It
is planning another purchase IN the U.S. Medical equipment

field, in addition to ItS existing U.S. Subsidiary <Picker

International Inc>.

A GEC spokesman said that It is company policy N0t to
comment on acquisition rumours.

Stock Exchange traders said the rumour helped GEC's share
price to rise 5p, to a final 206p from yesterday's closing
price of 201p.

</Body>
</REUTERS >
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Figure 6.8: Reuters document belonging to ‘acq’ class fghted against the ‘earn’ class using a
character-based ASTC of depth 8 using the probabilistidsgdunction (pASTC-C8). Characters
are scored and then scores are smoothed within word boesdarch that each word is assigned
the sum of the score for its individual characters. The tegpivord scores are then split into 10

partitions with the top 4 highlighted in four ascending teizies.

market, yields the different result shown in Figure 6.8.

Here, terms such as “stock market” and “closing price” ast §s important as they are for the ‘acq’
class, but terms such “rumours” and “purchase” are muchsigsdéficant. Such a result correlates well
with our understanding of the classes: in the reporting gliagitions, rumours may be important, but
they would be irrelevant to the reporting of a company’s amo@ment of its earnings, which would be

made publicly; hence, it would be unlikely that a company lddwave a policy of not commenting on

its earnings.
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<REUTERS NEWSID=15161">
<TOPICS>
<D>acq</D>
</TOPICS>

<Title> U.K. GEC DECLINES COMMENT onu.s. PURCHASE
RUMOUR </Title>

<Body> General Electric CO Plc <cecL.L> (GEC)
declined comment on rumours on the London StOCK market that it
is planning another purchase in e us. Medical equipment
field, in addition to its existing u.s. Subsidiary <picker
International INC>.
A GEC spokesman said that it is COMPany policy not to
comment on 2CQUISItiON rumours.
Stock Exchange traders said the rumour helped GEC's share
price to rise 5p, to a final 206p from yesterday's CIOSing
price of 201p.

</Body>
</REUTERS >

Figure 6.9: Reuters document belonging to ‘acq’ class fghked against the ‘acq’ class using a
word-based probabilistic ASTC of depth 1 using the prolistixl scoring function (pASTC-W1);
terms are split into 10 partitions with the top 4 highlightedour ascending text sizes.

6.2 Effect of Depth Variation

We can also use highlighting to observe the effect of chaimgése depth - for both word-based and
character-based classifiers. So far all stories have bgetidtited using word-based classifiers of depth
4 and character based classifiers of depth 8.

With word-based classifiers, the impact of depth variatoemall. Figure 6.9 shows our running
example story from the ‘acq’ class highlighted using a woaded classifier of depth 1. We can see now
that the effects of context are completely removed so theateétm ‘rumours’ gains the same weighting
regardless of where it appears. The same may be seen forrepieated terms such as ‘stock’, ‘com-
ment’ and ‘price’. Of course, this does not say anything alwuether such a change in weighting
results in better classification — that would be better aeiteed by systematic testing over a large num-

bers of stories — but it does show the change in the relatipetitance attached to certain terms as they
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<REUTERS NEWSID=15161">
<TOPICS>
<D>acq</D>
</TOPICS>

<Title> U.K. GEC DECLINES COMMENT on u.s. PURCHASE
RUMOUR </Title>

<Body> General Electric CO Plc <GECL.L> (GEC)

declined COMMeENt on rumours on the London STOCK market that it
is planning another pUrchase in the u.s. Medical equipment
field, in addition to its €XIStiNg U.S. Subsidiary <picker
International INC>.

A GEC spokesman said that it is company policy Nnotto
commenton acquisition rumours.

Stock Exchange traders said the rumour helped GEC's share

price to rise 5p, to a final 206p from yesterday's ClOSIiNg
price of 201p.

</Body>
</REUTERS >

Figure 6.10: Reuters document belonging to ‘acq’ classligigted against the ‘acq’ class using a
word-based probabilistic ASTC of depth 8 using the prolistixl scoring function (pASTC-W8);
terms are split into 10 partitions with the top 4 highlightedour ascending text sizes.

appear in the text.

Inspecting many such examples shows that, generally, sigpéater than 4 have very little impact
on the relative importance that the classifier places orexdul terms within the document. To demon-
strate this with our running example, we present in Figui® éhe story highlighted using a classifier
of depth 8. As can be seen, there is no difference in the lgigtiftig in this case and in the case of a
classifier of depth 4. Of course, this (lack of differencediidy so given our current highlighting pol-
icy (of dividing scores into 10 partitions and highlightittte top four in increasing order of text size);
any change in depth is quite likely to make at least somerdiffee, however small, to the final scores
achieved by each term in the document, but such a change ntay bmall (as it is in this case) to make
a difference to the highlighting or indeed to any classifaratiecision.

Character-based classifiers are more sensitive to deptigebaparticularly at low depths. Indeed

at a depth of 1, we would expect that the classifier will hatitelchance of identifying any features
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<REUTERS NEWSID=15161">
<TOPICS>
<D>acq</D>
</TOPICS>

<Title> u.k. GEC DECLINES COMMENT onuss.
PURCHASE ruMOUR </Title>

<Body> General Electric CO Plc <GECL.L> (cec)
declined comment on rumours on the LONAON stock market that it
is planning another purchase in the U.S. Medical equipment
field, IN addition to its existing U.S. Subsidiary <Picker
International INC>.

A GEC spokesman said that it is company policy not to
comment on acquisition rumours.
Stock Exchange traders said the rumour helped GEC'S share

price to rise 5p, to A final 206p from yesterday's closing
price of 201p

</Body>
</REUTERS >

Figure 6.11: Reuters document belonging to ‘acq’ classligigted against the ‘acq’ class using a
character-based ASTC of depth 1 using the probabilistidrsgdéunction () ASTC-C1). Characters
are scored and then scores are smoothed within word boesdarch that each word is assigned
the sum of the score for its individual characters. The tagyivord scores are then split into 10
partitions with the top 4 highlighted in four ascending teizies.

indicative of a class, but surprisingly, it does identifyreo— as shown in Figure 6.11. Key terms, such
as ‘acquisition’ and ‘purchase’ (in the title) are signifitlg highlighted — though the second occurrence
of purchase is missed, which may well suggest that much dfititfdighting in this document is subject
to a degree of randomness. Certainly, while some key terensighlighted, others, such as ‘subsidiary’
and ‘rumour’, are completely missed.

Increasing the depth to 2 has quite a dramatic effect (Figuk2). The highlighting already looks
quite close to the ones we have seen (at depths of 8), but teatnare harder to catch, such as ‘rumour’
have been missed and there seems to be no sensitivity toxtoftie example, both occurrences of
“stock” have been apportioned exactly the same weight.

However, a depth of 4 (Figure 6.13), is enough for the clasdidi identify terms such as ‘rumour’,
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<REUTERS NEWSID=15161">
<TOPICS>
<D>acqg</D>
</TOPICS>

<title> U.K. GEC pecLines COMMENT oNuss.
PURCHASE rumour <ritle>

<Body> General Electric CO Plc <GECL.L> (GEC)
declined cOmment 0N rumours 0N the London SEOCK market that It

iS planning another purchase in the u.s. Medical equipment
field, in addition to its existing U.s. Subsidiary <Picker

International INC>.

A GEC spokesman said that It is company policy not to
comment on aCquiSition rumours.

Stock Exchange traders Said the rumour helped GEC'S share
price to rise 5p, to a final 206p from yesterday's closing
price of 201p.

</Body>
</REUTERS >

Figure 6.12: Reuters document belonging to ‘acq’ classligigted against the ‘acq’ class using a
character-based ASTC of depth 2 using the probabilistidsgéunction () ASTC-C2). Characters
are scored and then scores are smoothed within word boesdarch that each word is assigned
the sum of the score for its individual characters. The tesulvord scores are then split into 10
partitions with the top 4 highlighted in four ascending tsizees.

but comparing it to the earlier example at a depth of 8 (Figudg, we can see that the deeper AST clas-

sifier is matching across terms much better and therebyiogtaidicative phrases such as ‘acquisition

rumours’.

6.3 Conclusion

This chapter has presented a method that aims at providengsér with a view into the innards of a
classification decision. This is done by highlighting thatéees of a document which contribute most
to its overall score against a particular class (what we talrelative clasp

The method allows the user to evaluate a document relatiggotuticular class to see which terms
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<REUTERS NEWSID=15161">
<TOPICS>
<D>acq</D>
</TOPICS>

<title> U.K. GEC pecLiNes COMMENT ON u.s. PURCHASE
RUMOUR <ritie>
<Body> General Electric CO PIC <GECL.L> (cGEC)
declined COMmMenNt on FUMOUTS on the London STOCK market that it
is planning another purchase in the u.s. Medical equipment
field, in addition to itS existing U.s. Subsidiary <picker
International INC>.
A GEC spokesman said that it is cOmpany policy N0t to
comment on aCQUiSition rumours.
Stock Exchange traders said the rumour helped GEC'S share
price to rise 5p, to A final 206p from yesterday's closing

price Of 201p

</Body>
</REUTERS >

Figure 6.13: Reuters document belonging to ‘acq’ classligigted against the ‘acq’ class using a
character-based ASTC of depth 4 using the probabilistidrsgdéunction () ASTC-C4). Characters
are scored and then scores are smoothed within word boesdarch that each word is assigned
the sum of the score for its individual characters. The tagyivord scores are then split into 10
partitions with the top 4 highlighted in four ascending teizies.

in the document are relevant to that class, regardless aheher not the class is one of the true classes
of the document. The intention of the method is that when tmeparison is made against a predicted
class, a user is able to see a visualisation of the contoibutiade by each of the terms towards the
classification decision, and thereby evaluate the deciditime classifier.

Using the technique, we can visualise the effect of changamtain classifier parameters such as the
term-base (i.e. characters or words) or the depth. We harethat both word-based and character-
based classifiers generally identify the same words as ths significant (once the character-based
significant terms are smoothed within word boundaries) thoait the character-based classifier demon-
strates more robustness because it is able to match partia fand make use of non-word features such

as punctuation and document formatting. These are poiatsath have throughout this thesis argued
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as an advantage of the character-based approach, but tmeguee of document-to-class highlighting
presented in this chapter is able to visualise this. In alaimay, we have seen that the AST model
of text is able to place emphasis on terms based on theirxddoyevarying the depth at which term
significance is assessed. At a depth of one, no context isdsred; and as we increase the depth,
context becomes more important. We have seen how the samtifierms change with increasing depth,
but eventually seem to stabalise at and above some maxipidd; dbis observation correlates well with
the classification results we obtained in earlier chapters.

We saw that the method is also able to give us certain cluest abions which may be relevant to
a particular class - as we saw in the case of the terms “rumma”“eumour”. This further allowed
to some extent the evaluation or discovery of terms thatrapoitant to a particular class. However,
this is not such an important aspect of the method becausetBings may be done better by using
more comprehensive methods which directly extract key definmm the class profile rather than by
observations made on a single document.

One aspect of scoring and classification we have not explaréds section is that of the effect of
the significance function on the highlighting of a documé@iite reason we have omitted this is that we
in fact found that, on the whole, the classifier marked roytjit same terms as significant regardless of
whether we used the probabilistic of root significance fioms for scoring. However, although we have
not explored it, the result is in fact an interesting onet bwh significance functions highlight the same
terms suggests that it is not the term scores against aydartidass that account for the inaccuracy of
the root significance function when applied to a word-basaskdier, but the term scores across all the
classes. In other words, it is not the ordering of the termsdaye which leads to different classifications
by different significance functions, but the total docurmsadre (which is nothing more than the sum of
all the term scores).

This last point highlights an important limitation of theaskification feature visualisation method
as presented in this chapter: the resulting highlightitig tes nothing about the overall score for the
document across all classes, it tells us only the importaftiee terms relative to each other and the
relative class. Hence the method can tell only which termthéndocument are most relevant to the
relative class and not which class the document is likelyetolbssified in.

However, the basic idea of highlighting terms can be extdimaenany different ways. For example,
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we might evaluate the terms against all classes then highligse terms relative to a particular class
only if they score above a threshold which is set acrossadlsels. In such a framework, we would high-
light only terms which scored highest over all the classektamce we would expect more highlighting
to be apparent when the class is compared against its trstblan when it is compared against a false
class. The disadvantage of such a method would be that wealweapkct to have very few terms high-
lighted when the document is compared against a class tdwithitoes not belong, whereas in some
domains, we may well wish to obtain some idea of which termth@document do pertain to class,
even if that class is not one of the true classes - as in theafaf@m example, expertise location: here
we may wish to see the terms that are relevant to a best aleadahdidate expert (class) even if that
person’s expertise is not ideal.

Overall, the document-to-class feature visualisationh@etwe have described has distinct advan-
tages in certain domains and was originally designed wetdibmain of expertise location in mind, but
it may also be valuable in other areas. For example, suppeseldssifier were used to automatically
file documents on behalf of a user within a large corporatertary. If the user were unsure about
where the document should be classified, the system wouldleet@ make a number of suggestion
and the user could then see the highlighting of the docunsdative to each of the suggested classes
before making a final decision or to ensure that the classifeer making the classification decision on
the correct terms in the document. Moreover, the methodddoelladapted and extended to serve other

similar purposes.



Chapter 7

Conclusion

This thesis has developed and presented a method for dassifi and feature visualisation based
around the suffix tree data structure.

We have argued that as a text classifier, the method has a naihbiengths. Firstly, it allows
the consideration of terms within a context and not simplisoiation; as such, it is able to treat text
as a sequence-of-terms rather than a bag-of-terms. Sgctimelmethod provides a uniform approach
to both character-level and word-level text modelling. rdllyi, by varying the depth of the suffix tree
we use, we are able to vary the complexity of the classifiert titndi complexity of the domain we are
attempting to model. Finally, the framework of the scoringthod — what we refer to as tloeerlap
mass score (OMS) — allows us to alter the way in which we interpret thengfigance of particular terms
and term sequences, thus adding to the flexibility of thestias framework. Each of these arguments
have been explored and defended on the basis of experintentdls using benchmark and specially
collected data sets, with the results being compared agatesnative state-of-the-art methods as they
are reported in the literature.

We have also argued that the character-based approach taesification can be just as effective
as word-based approaches and additionally affords distitheantages of its own. We have shown in
Chapter 4 that the character-based approach can circurthembfuscations used to disguise spam
email messages where many word-based methods might bel fodke have also shown in Chapter 5,

that the character-based method can compete with traditieord-based methods without the need for
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special pre-processing of the text; we have also arguedhbatharacter-based classifier can capitalise
on features such as formatting and punctuation, which afi@arily missed by a word-based classifier
and we have shown visualisations of this in Chapter 6.

It is also worth noting that the character-based AST willdtém have a constant branching factor,
limited by the alphabet size, whereas the branching factowbrd-based ATSs may be very large (up
to the size of the dictionary). Hence, it is usual that woaddd ASTs of a particular depth will consume
more resources than character-based ASTs of the same déyith;is, of course, balanced by the better
performance of word-based AST classifiers at lower depths.

We have demonstrated that the classification feature vésti@in method of document-to-class high-
lighting can give a user some indication of the featuresiwithdocument that contribute to its score
relative to a particular class and that such visualisatoamsprovide clues towards the key term features
of a particular class. We have argued that this can be ofcoéati use within certain domains such as
the domain of expertise location in which the sponsors afwork are interested.

The overlap mass scoring (OMS) method has been developed anthber of normalisation co-
efficients and significance functions have been developddested. In particular, we have developed
two significance functions which show demonstrable succHssroot significance function has shown
success when used in conjunction with a character-basssiftda on both spam data and on the Reuters
data set. However, we found that when applied to a word-belasdifier, performance dropped dramat-
ically; we have so far not been able to explain why this occansl as such, this would certainly be a
topic for future work. By contrast, the probabilistic sificince function has been shown to be highly
effective when used with both character- and word-bases$ifiers.

Unfortunately, we found that most of the methods of nornadilig that we tested were ineffective,
but that onematch permutation normalisatio(Section 4.3.1), was apparently able to stabilise the
classification performance. We did not continue this lineeéstigation, but further work may be able
to develop the intuitions which initially inspired thesepapaches to normalisation, so that the method
might achieve further improvements.

The suffix tree data structure is obviously central to thehomd$ developed in this thesis, but it is
not essential. In essence, the methods described in tsis tleealuate the importance, gignificance

of sequences of text (character or word) which are commowd®t a query text and a class. Such
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common ‘substrings’ may be evaluated without using a suffig,tas is done in other approaches such
as, for example, that of Lodhi et al. [33]. However, the suffee is well suited to the modelling of text
because it naturally models data of a sequential charadea.result we are better able to represent the
overlapbetween a text and a class and evaluate its significance piegirmore efficient ways than the
alternative methods reported in the literature. Indeedveasaw in Section 3.1.2, representing the task
and the solution in the framework of the annotated suffix ineelel of text greatly simplifies even our

own approach and in many ways inspires it. Hence the anmbsatéx tree is at the heart of this thesis.

7.1 Future Work

The work described in this thesis represents the initiadstigation of methods of classification based
around the annotated suffix tree model of text. The work cbaldeveloped further in two major ways:
firstly in the refinement and extension of the model, and sdlgan further testing of the model and the

broadening of its scope of application to other domains.

Feature Selection As we have previously noted, we experimented with a numbégaifire selection
methods but found none of them to improve the performancéetlassifier. However, we did find
some indication that the tree could be significantly prunét velatively little impact on performance.
That work is not part of the current thesis because it is nbiature enough to be published, but it
would certainly constitute a worthwhile ongoing line fortdre investigation. Pruning the tree would

obviously have benefits in terms of computational efficiebogh in terms of memory and speed.

Extensions to the model The annotations on the suffix tree model could carry inforomain addition
to frequency of occurrence. For example, part-of-speegh (for a word-based classifier) or end-
of-word markers (for a character-based classifier). Theagkens could then be used to adjust the

significance associated with a particular term-sequend¢ehma

Combinations with other methods As we have said, the methods described in this work have sim-
ilarities with the methods described in Lodhi et al. [33],omteveloped a substring kernel for use in

support vector machines. Certainly there is the possiliflintegrating some of the ideas motivating
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that work into our work. For example, non-contiguous subgtmatching could be modelled within the
annotated suffix tree model by adding to each node a reflexige;ehat is, a branch from each node
which loops round to the same node. Hence, a frequency, lpifitpaor weight could be associated
with the non-matching term; such a non-matching term cowdshearry a negative overlap mass score.
Of course, adding this feature to the topology of the anedtatiffix tree may have implications to the
scoring method which would need to be investigated. Fina#lyrying the amalgamation of these meth-
ods even further, the annotated suffix tree described irthikss could be used as the basis for a more

effective substring kernel for use in a support vector nraehi

Experimentation on further data sets. The method has been applied in two different domains and on
data sets with very different characteristics. There weeespam data sets, which favoured a character-
based approach and the Reuters data set which challengad there is room for testing on numerous

other data sets within the text classification domain.

Computational Requirements We have given some indication of the requirements of the atkih
Section 4.5.2, but we have not directly addressed how theiregents might be reduced. We have
explained that one important way of addressing the spaaéreggents is simply to limit the depth of
the tree. This has the dual effect of both reducing the spapgnements of the classifier and improving
the speed of computation (because smaller tree profiles are easily traversed). However, such a
reduction in the depth of the tree can have a negative effepedormance, so it is better to limit depth
only to ovoid overtraining.

Suffix trees are known to be a maximally efficient data stngcfar storing all the substrings in a
text, so if we want to store all substrings, we cannot redubednemory requirements. However, we
can write the suffix tree to permanent memory and retrieve i@ part of the profile tree that is needed
to evaluate the overlap with the query tree. We have not addckthis practical consideration at all in
this work, but if the methods described here are to be imphtaakin a real world solution, the task of
writing the profiles to memory must be tackled.

On the other hand, the speed requirements of the classifiecezéainly be reduced. We currently
implement a naive suffix tree construction algorithm, baththe profile trees and for the query trees.

Using one of the known linear construction time algorithnilg have a significant effect on the time
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performance of the classifier. Again, this is of primary cenmcif the classifier were to be implemented

into a time-critical real-world system.

Application to Other Domains. Whatever the theoretical developments of the method, it dvoet-
tainly be worthwhile testing the method experimentallyingeother data sets. Indeed it may be possible
to extend the method to domains other than text classifitatiotheory there is no reason that the meth-
ods described in this work could not be applied more broadllgny domain in which sequential events

need to be modelled. With this in mind, the possibilitiesfidure work are extensive.
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