

Computer Correction of Real-word Spelling Errors
in Dyslexic Text

Jennifer Pedler

Birkbeck, London University

2007

Thesis submitted in fulfilment of requirements for degree of PhD

The copyright of this thesis rests with the author and no quotation from it
or information derived from it may be published without the prior written
consent of the author

 2

Abstract

This thesis describes the development, implementation and testing of a program to detect and

correct real-word spelling errors made by dyslexics. These errors − which occur when a user

mistakenly types a correctly spelled word when another was intended − cannot be detected without

the use of context and so are largely ignored by spellcheckers which rely on isolated-word

dictionary look-up.

The method used here to detect and correct real-word errors is to identify sets (often pairs) of words

that are likely to be confused, such as loose and lose, and then, when encountering one of the words

(say loose) in the text being checked, to determine whether the other one (lose) would be more

appropriate in the context.

The first stage of the program uses an extended part-of-speech tagger to consider words that differ

in their parts-of-speech. This required, among other things, the substantial enhancement of an on-

line dictionary. Decisions for words that have the same parts-of-speech are left for the second stage

which uses semantic associations derived from WordNet. Much previous research using the

confusion set approach has been limited to a small number of 'commonly confused' words and has

used artificial test data. In contrast, the work presented in this thesis uses several thousand sets of

confusable words and a large corpus of actual errors produced by dyslexics.

 3

Contents

Abstract... 2

Contents .. 3

List of Tables .. 7

List of Figures... 10

Declaration.. 11

Acknowledgements... 12

Introduction.. 13

Chapter 1: Computer Spellcheckers and Dyslexic Misspellings 16
1.1 Spellchecking techniques...16
1.2 Spellcheckers and dyslexic spelling errors...18

1.2.1 Samples of dyslexic text ..18
1.2.2 Types of error...20
1.2.3 Spellchecker Performance..21
1.2.4 Dictionaries and false alarms ...25
1.2.5 Suggestion lists ..26

1.3 Conclusion ..27

Chapter 2: Real-word Error Detection and Correction... 28
2.1 A hierarchy of errors ...28
2.2 Syntax-based approaches to error detection ...29

2.2.1 Error detection using part-of-speech tagging...30
2.2.2 Error detection using parsing ...32

2.3 Using confusion sets to detect and correct errors ...33
2.3.1 Simple error correction using word trigrams ...33
2.3.2 Machine learning techniques ...35

2.4 Using semantics to detect errors ...39
2.5 Conclusion ..41

Chapter 3: A Corpus of Dyslexic Real-word Errors .. 43

 4

3.1 Collecting samples of dyslexic text ...44
3.1.1 Dyslexic student...44
3.1.2 Dyslexic typing experiment ...44
3.1.3 Internet sources ..45
3.1.4 My daughter (again)...45
3.1.5 Non- and real-word errors..46

3.2 A corpus of real-word errors ..47
3.2.1 Composition...47
3.2.2 Error frequency ..48
3.2.3 Types of error...51
3.2.4 Syntactic comparison ...54
3.2.5 Error patterns ...56
3.2.6 Proximity of errors ...57

3.3 Conclusion ..58

Chapter 4: A Spellchecking Dictionary ... 59
4.1 Dictionaries and spellchecking..60

4.1.1 Word lists and non-word error detection ...60
4.1.2 Additional dictionary information ...61

4.2 Updating the dictionary...62
4.2.1 Counting words ..62
4.2.2 Ranking the words ...65
4.2.3 Creating the tagsets ..67
4.2.4 Adding Entries ...69

4.3 Conclusion ..72

Chapter 5: Creating Confusion Sets .. 74
5.1 Creating the sets ...74

5.1.1 Listing confusable pairs ...75
5.1.2 From pairs to sets ...77

5.2 Appropriateness for the task...79
5.3 Using the sets for spellchecking ..82
5.4 Conclusion ..84

Chapter 6: Preparing the Text for Spellchecking... 86
6.1 Automatic text segmentation...86

6.1.1 Words...87
6.1.2 Sentences..90

6.2 Implementation ..91
6.2.1 Requirements ...92
6.2.2 Sentence segmentation...93
6.2.3 Word storage..94
6.2.4 A tokenisation example..98
6.2.5 Sentence splitting evaluated...100

 5

6.3 Conclusion ..102

Chapter 7: A Frequency-only Spellchecker as a Baseline...................................... 103
7.1 Expectations..103
7.2 Test data..104
7.3 Establishing a baseline...105
7.4 Conclusion ..108

Chapter 8: A Syntax-based Spellchecker .. 109
8.1 Assigning tags to words ...109
8.2 Calculating the tag bigram probabilities ...112

8.2.1 Tag pair frequency ...112
8.2.2 Conditional tag probabilities ..113
8.2.3 Smoothing ..114

8.3 The tagging algorithm ...118
8.3.1 Calculating tag sequence probabilities...118
8.3.2 A tagging example ...119
8.3.3 Calculating the sequence probability ...121
8.3.4 Tagger assessment ...126

8.4 The Confusion Tagger ...128
8.4.1 Implementation ..128
8.4.2 Performance ...129

8.5 Conclusion ..135

Chapter 9: Using Semantic Associations ... 136
9.1 The proposed approach...137
9.2 Semantic confusable listing ...138

9.2.1 Word pairs..138
9.2.2 Tagged-word pairs ...139
9.2.3 Inflected forms ...140
9.2.4 Low frequency confusables ...141
9.2.5 The final list ...141

9.3 Noun co-occurrence listing..142
9.4 Co-occurrence grouping ..142

9.4.1 WordNet relationships ...142
9.4.2 Creating hypernym trees ..144
9.4.3 Merging the hypernym trees ..147

9.5 Checking text..152
9.5.1 Selecting co-occurring nouns...152
9.5.2 Creating the merged trees ..152
9.5.3 Retrieving WordNet senses and hypernyms for co-occurring nouns...........................153
9.5.4 Scoring the confusables ...154
9.5.5 An example ..156

 6

9.6 Testing...158
9.7 Conclusion ..161

Chapter 10: Evaluation ... 163
10.1 Error corpora ...164

10.1.1 Errors and confusable words in the corpora...166
10.2 Spellchecker performance...169

10.2.1 Error correction ..169
10.2.2 Overall improvement ...172
10.2.3 Recall and precision ...173
10.2.4 Comparative recall and precision...175
10.2.5 Prediction accuracy ..178
10.2.6 Performance measures compared...180

10.3 Non-correctable errors ..180
10.3.1 Inflection errors..181
10.3.2 Other errors not included in confusion sets..182

10.4 Confusion sets assessed..184
10.5 Syntactic and semantic approaches compared..185
10.6 The trade-off between accuracy and coverage ..186
10.7 Future development ...187
10.8 Contribution ...188

References ... 190

Appendix A: Documentation to accompany CUVPlus ... 193

Appendix B: Code for Simple Good-Turing Frequency Estimator 208

Appendix C : Sample sentence splitting... 216

Appendix D: LOB Tagset .. 223

Appendix E: Mapping between BNC and LOB tagsets.. 229

Appendix F: Comparative Tagger output ... 232

Appendix G: Results of tagger assessment .. 238

 7

List of Tables

Table 1.1: Proportions of types of error in the initial samples...21
Table 1.2: Spellchecker performance on initial samples ..22
Table 3.1: Composition of the entire corpus (* indicates data described in Chapter 1)46
Table 3.2: Composition of the real word error sub-corpus ..48
Table 3.3: Frequencies of error types in the corpus ...49
Table 3.4: Errors occurring 10 or more times in the corpus ..49
Table 3.5: Frequency of error|target pairs in the corpus ..50
Table 3.6: Ten most frequent error|target pairs in corpus ..50
Table 3.7: Symmetric pairs included in the ten most frequent pairs..51
Table 3.8: Homophone pairs occurring more than twice in the corpus. ..53
Table 3.9: Proportions of simple error pairs in the corpus...53
Table 3.10: Count of errors by tagset type...54
Table 3.11: Comparison of word class for error and target ...55
Table 3.12: Comparative positions of first wrong letter for real- and non-word errors.....................57
Table 3.13: Proportion of real-word errors with another error in the immediate context..................58
Table 4.1: Decreasing difference in frequency with increase in ranking...66
Table 4.2: Top ten new entries...70
Table 5.1 Confusion set sizes...78
Table 5.2: Three largest confusion sets..79
Table 5.3: Coverage of corpus errors...80
Table 5.4: Errors occurring more than once in the corpus but not included in confusion set listing.82
Table 5.5: Tagset types for confusable pairs..83
Table 5.6: Part-of-speech tags for far and its associated confusion set ...83
Table 6.1: Initial attributes for text tokens...93
Table 6.2: Attributes for lexical tokens..95
Table 6.3: Additional attributes for text tokens ...98
Table 6.4: Text tokens created for example sentence ..98
Table 6.5: Lexical tokens created for example fragment ...100
Table 7.1: Count of words and confusables in test data...104
Table 7.2: Frequencies for correct and error usage of confusable words in the test data106
Table 7.3: Initial performance of select-the-most-frequent spellchecker ..107
Table 7.4: Performance of the ‘select the most frequent’ checker with differing levels of confidence

...108

 8

Table 8.1: Frequency of frequency counts for tag pairs...115
Table 8.2: Adjusted frequency r* ...116
Table 8.3: First five lines of output from Simple Good-Turing frequency estimator117
Table 8.4: Comparison of MLE and SGT probability estimates ...118
Table 8.5: Calculating the probability for can following PNP ..121
Table 8.6: Heap storing probabilities for tags of can following PNP ..123
Table 8.7: Calculating the probabilities for each tag of fly following VM0123
Table 8.8: Heap after storing probabilities for each tag of fly following VM0 (new elements added

to heap shown in bold) ...124
Table 8.9: The final heap showing the maximum path through the sequence in top position125
Table 8.10: Heap with probabilities for A occurring at the start of a sentence125
Table 8.11: Calculation of the probability of each of the tags of can following AT0126
Table 8.12: Calculations for probability of each tag for wood and confusables following PNP129
Table 8.13: Heap storing probability of each <word, tag> pair occurring after PNP129
Table 8.14: Syntax checker performance with different weightings ...132
Table 9.1 Number of lexemes for each word class ..142
Table 9.2: Calculation of relative likelihood scores for {carve, crave} hypernyms........................149
Table 9.3: Scores for matching senses of wood in the {carve, crave} hypernym tree157
Table 9.4: Final scores for each co-occurring noun...158
Table 9.5: Types of confusables in the error corpus for possible consideration by semantic checker

...159
Table 9.6: Number of confusables in the error corpus flagged for consideration by the semantic

checker ...159
Table 9.7: Results of running semantic checker on error corpus...160
Table 10.1: Summary of possible decisions for real-word errors ..164
Table 10.2: Composition of error corpora ...166
Table 10.3: Detectable and correctable errors in error corpora..166
Table 10.4: Correct and error usage of confusables in error corpora...167
Table 10.5: Type:token ratio for confusables and errors in error corpora168
Table 10.6: Error correction - dyslexic error corpus..170
Table 10.7: Error correction - students ..170
Table 10.8: Error correction - compositions ..171
Table 10.9: Errors corrected as a proportion of all errors, detectable errors and correctable errors,

compared to proportion of false alarms (Handicapped score) ...172
Table 10.10: Overall improvement (Handicapped score) ..173
Table 10.11: Recall and precision..175

 9

Table 10.12: Detectable and correctable errors in Lancaster corpus ...176
Table 10.13: Comparative recall and precision scores for Lancaster corpus...................................178
Table 10.14: Prediction accuracy (handicapped scores) ..179
Table 10.15: Performance measures summarised (handicapped scores) ...180
Table 10.16: Proportions of uncorrectable errors in the corpora ...181
Table 10.17: Inflection errors as proportion of uncorrectable errors ...182
Table 10.18: Ratio of types to tokens for non-inflection undetectable errors..................................182

 10

List of Figures

Fig. 8.1: Performance of syntax checker with different levels of handicap.....................................134
Fig. 9-1: Hypernym grouping of materials that can be carved ..143
Fig. 9-2: Section of WordNet tree for stone#2...144
Fig. 9-3: Section of WordNet tree for {stone, pit, endocarp} ..144
Fig. 9-4: Summed word counts and hypernym probabilities for section of carve tree147
Fig. 9-5: Section of merged {carve, crave} tree...151
Fig. 9-6: Performance of semantic checker with different levels of handicap.................................162

 11

Declaration

This thesis it the result of my own work, except where explicitly acknowledged in the text.

Signed ..

Jennifer Pedler, May 2007

 12

Acknowledgements

My greatest thanks go to my supervisor, Dr Roger Mitton, for his patience, meticulous eye for detail

and keen interest in my work − and also for not giving up on me, even in the darkest hours. Without

his encouragement I would never have started, let alone finished. I would also like to thank my

second supervisor, Dr Trevor Fenner, for his insightful comments on the algorithmic and

mathematical aspects of this work.

Other colleagues have also encouraged and supported me along the way, in particular Dr Jason

Crampton who reviewed Chapters 8 and 9 and Janet Billinge who thoroughly proofread the early

chapters.

Thanks also to all contributors to the error corpus and to George Mitton for .keying in additional

dictionary entries and marking-up the errors in the corpus used for the final evaluation of my

program.

All my family and friends will no doubt be relieved that I have finished at last. I’ll be able to see

more of you all now and we’ll have to find something else to talk about! Particular thanks to my

daughter Jade who kindled my initial interest in computer spellchecking and to .Jasmine for all her

advice, encouragement and great meals.

 13

Introduction

Most word processors have a built-in spellchecker that highlights misspelled words in some way

and offers the facility to correct these misspellings by selecting an alternative from a list. To detect

these misspellings in the first place, most spellcheckers take each word in a text in isolation and

check it against the words stored in a dictionary. If the word is found in this dictionary it is

accepted as correct without regard to its context. Although this approach is adequate for detecting

the majority of typos, there are many errors that cannot be detected in this way. These are referred

to as real-word errors − correctly spelled English words that are not the word the user intended.

Take, for example, the following extract from a rhyme that has appeared in many variations −

almost every word is misspelled but since they are real-word errors, none is highlighted by the

spellchecker.

I halve a spelling chequer

It cam with my pea see

Eye now I’ve gut the spilling rite

Its plane fore al too sea

...

Its latter prefect awl the weigh

My chequer tolled mi sew.

Dyslexia is estimated to affect about 10% of the population in some form, about 4% severely,

according to research reported on by the British Dyslexia Association (BDA). It is not just a

problem with spelling, nor is it simply a difficulty with learning to read. The BDA definition is:

“Dyslexia is a combination of abilities and difficulties which affect the learning

process in one or more of reading, spelling and writing. Accompanying

weaknesses may be identified in areas of speed of processing, short term memory,

 14

organisation, sequencing, spoken language and motor skills. There may be

difficulties with auditory and / or visual perception. It is particularly related to

mastering and using written language, which may include alphabetic, numeric and

musical notation.”

(Tresman, 2006)

Dyslexia cannot be ‘cured’, nor is it something that children ‘grow out of’. It is a lifelong disability

but there are strategies and aids that can help to mitigate the difficulties. Among these aids is the

computer spellchecker.

Until my dyslexic daughter began to use a word processor, her written work was often illegible as

well as being poorly spelled. Word processing improved the legibility but spelling was still a

problem; even after using the spellchecker a large amount of manual intervention was required to

get it right. Although non-word errors were detected, they were often not corrected; in some cases

the spellchecker simply made no suggestions whereas at other times it produced a long list of

words, none of which were the word intended. This latter case often resulted in the introduction of

real-word errors − for example, she was writing about a room that was uninhabitable (which, not

surprisingly, she misspelled); the computer suggested, and she accepted, inedible. In addition to

these real-word errors that were introduced through the correction process, there were others that

had occurred when her misspelling of a word resulted in another dictionary word such as (with the

intended word in parentheses) fowling (following), mad (made) and quit (quite). Errors such as

these were simply ignored by the spellchecker. It was this experience that led me to develop my

interest in computer spellcheckers, in particular how they could be improved to meet the needs of

dyslexic users. Earlier research (Pedler, 1996, Pedler 2001a) showed that a large proportion of the

errors that went uncorrected by commercial spellcheckers were real-word spelling errors. This is

the problem that I have addressed in this research.

 15

Since the 1980’s, when my daughter was assessed, moves toward widening participation in

education and a greater emphasis on accessibility and inclusivity have led to a wider acceptance of

dyslexia as a disability – despite a recent report that at least one LEA still refuses to use the term

dyslexia (Hill, 2005). Improving facilities for disabled users often has the effect of making an

improvement for all users (as demonstrated in work to make library signage more appropriate to the

needs of dyslexics (Nancholas, 2005), for example). Similarly, improvements in the handling of

real-word errors are likely to benefit word-processor users in general.

The focus of the research presented in this thesis is the engineering of a spelling checker/corrector

to deal with real-word spelling errors in text written by dyslexics. Therefore it does not cover the

educational literature in this field. The thesis addresses the problem in the context of previous

research into the detection and correction of real-word spelling errors in text corpora and does not

examine more general error detection/correction literature in computer science and its application to

such tasks as optical character recognition or machine translation.

 16

Chapter 1:
Computer Spellcheckers and Dyslexic Misspellings

Real-word spelling errors are errors that occur when a user mistakenly types a correctly spelled

word when another was intended. Errors of this type generally go unnoticed by most spellcheckers

as they deal with words in isolation, accepting them as correct if they are found in the dictionary

and flagging them as errors if they are not. This approach would be sufficient to detect the non-

word error peice in “I’d like a peice of cake” but not the real-word error peace in “I’d like a peace

of cake.” To detect the latter, the spellchecker needs to make use of the surrounding context such

as, in this case, to recognise that piece is more likely to occur than peace in the context of cake.

Such real-word errors are a nuisance to everyone who uses a spellchecker but they present a

particular problem for dyslexics who make more and worse errors than the average user (Mitton,

1987) and also have poorer proof-reading skills.

Kukich (1992), in a comprehensive survey of spellchecking techniques, claimed that "Developing

context-based correction techniques has become the foremost challenge for ... error correction in

text". The fact that her paper remains the definitive survey is perhaps indicative of the small

amount of progress that has been made in the last decade or so. The research described in this

thesis takes up this challenge. It considers both syntactic and semantic approaches to the problem

and assesses their performance when applied to real-word errors produced by dyslexics. This

chapter sets the problem in context. It looks at the development of spellchecking technology from

its origins in the 1960s and then examines the shortcomings of currently available commercial

spellcheckers when run over samples of dyslexic text.

1.1 Spellchecking techniques
Word-processors are now widely used by the general population whose spelling abilities range over

a continuum from excellent to poor. For those at the lower end of this spectrum, many of whom

may be dyslexic, the spellchecker has become an essential tool. However, although user

Computer Spellcheckers and Dyslexic Misspellings

 17

requirements have evolved, the technology has done little to keep pace; today's spellcheckers still

rely heavily on findings from research dating back to the 1960s.

Before examining the ways in which these early techniques are integrated into current

spellcheckers, it is useful to consider the spellchecking process: The term 'computer spellchecker' is

now widely taken to encompass both error detection and error correction although, strictly

speaking, a checker is a program that detects errors which are then passed to a corrector that

produces a list of suggestions. For some applications it may be sufficient for the program to flag

potential errors which can then be manually corrected by the user, but today we generally expect a

spellchecker not only to tell us that we have made a mistake but also to suggest how we can correct

it. Spellcheckers that (attempt to) perform both tasks are incorporated into all widely used

wordprocessors and today often built in to many other text entry programs such as email software.

For non-word errors the detection phase initially appears to be a simple matter of looking up each

word in a word-list or dictionary and flagging any that are not found as potential misspellings. But

this is not as straightforward as it seems at first. Its efficiency depends largely on the dictionary

being used; if this includes too few words many correctly spelled but less common words will be

questioned; if it contains too many words the real-word error problem will be exacerbated as

misspellings of common words which happen to result in a rare word included in the computer's

dictionary will go undetected. Spellchecker dictionaries are discussed further, briefly in section

 1.2.4 below and in more detail in Chapter 4. Since most spellcheckers use isolated word look-up to

detect errors, real-word errors are largely ignored as shown in the next section.

After a potential error is spotted the spellchecker's next task is to produce a list of proposed

corrections. How should it go about this? Intuitively we would expect the error to be similar in

some way to the intended word and this is confirmed by early studies of, mostly, typing errors,

which found that over 80% of misspellings contain just one error − a wrong, missing or extra letter

or a single transposition (Damerau, 1964; Pollock & Zamora, 1984). The method for correcting this

Computer Spellcheckers and Dyslexic Misspellings

 18

type of error (described in detail by Peterson, 1980) is straightforward to implement and has

underpinned much subsequent development.

Another useful early finding was that the first letter of a misspelling is correct in the majority of

cases. (Yannakoudakis & Fawthrop, 1983; Pollock & Zamora, 1984.) Making this assumption

greatly reduces the number of words that have to be considered as possible candidates for

correction.

These methods are the basic techniques used by early spellcheckers which were designed for

specific applications, such as the correction of errors in scientific databases. They were also

adequate when word-processing moved into the office and spellcheckers began to be used to correct

less restricted text. It is more accurate to describe their purpose in this context as the correction of

mistypings rather than misspellings as the majority of typos produced by a reasonably accurate

speller are likely to be one of the simple error types introduced above. Dyslexic misspellings are

not so easy to categorise. Although they do generally bear at least some resemblance to the intended

word, the exact relationship may sometimes be rather obscure as can be seen from some of the

examples in the next section.

1.2 Spellcheckers and dyslexic spelling errors
To assess the performance of currently available commercial spellcheckers on ‘dyslexic’ text, I ran

four spellcheckers1 over three samples of text chosen as representative of the types of spelling error

made by dyslexics (Pedler, 2001a). This section summarises the findings presented in that paper.

1.2.1 Samples of dyslexic text
The samples used for this initial research comprised a total of 3134 words including 636 spelling

errors. Some of these errors occurred more than once but as the spellcheckers dealt with them in

the same way on each occasion they were only counted once. Removing these duplicates left a base

1 Three wordprocessors - MS Word, Corel Word Perfect, Lotus WordPro - and a dedicated spellchecker
aimed at dyslexics - TextHelp Read & Write.

Computer Spellcheckers and Dyslexic Misspellings

 19

total of 577 distinct errors. This text formed the initial contribution to the dyslexic error corpus

which is described in detail in Chapter 3.

Here is a short passage from each of the samples:

I think I did well becoser I got of to a good stare and I

have almost finsder my booklet and I have done a fuwe

peturs on the computer and now I am doing a couver. My

book is on submaren. I have had to do a pituwer of how a

submaren works. I havent done alot of good work but I

think I have done well.

Sample 1.

The cat working in the mill spys a moues feeding on corn.

The cat scillfully creps up behind a sack and all of a suden

his musirls are tens he spring and a little squick from the

mouse I herd as the cats clors sunck deep into the mouse

the cat quilly ete it and then cerled up on a sack to slip.

Sample 2.

There seams to be some confusetion. Althrow he rembers

the situartion, he is not clear on detailes. With regard to

deleteing parts, could you advice me of the excat nature of

the promblem and I will investgate it imeaditly.

Sample3.

Sample 1 is a collection of word-processed homework (saved before it was spellchecked) produced

by my dyslexic daughter when she was in her third year of secondary school. Roger Mitton

supplied me with the other two samples which he used for a comparative test of spellcheckers

described in Mitton (1996). Sample 2 is made up of short passages of creative writing produced by

secondary school children of low academic ability in the 1960s. These were originally taken from

English for the Rejected (Holbrook, 1964). Dyslexia was not widely recognised at this time but it is

likely that many of these poorer spellers would be classed as dyslexic given today's assessment

Computer Spellcheckers and Dyslexic Misspellings

 20

procedures. Sample 3 consists of a number of misspellings from office documents (all produced by

the same person).

1.2.2 Types of error
A simple error (Damerau, 1964) differs from the intended word by only a single letter. The four

possibilities can be seen in the passages above: substitution – cerled (curled), insertion - couver

(cover), omission - investgate (investigate) and transposition - excat (exact). Damerau found 80%

of misspellings in the samples used for his research fell into one of these four simple error

categories.

The errors in my initial samples present a different picture. Only 53% are simple errors. More than

a third (39%) differ in more than one letter; I refer to these as multi-errors. Some errors, such as

submaren (submarine), closely resemble the intended word while others, such as pituwer (picture),

are not so obvious. The remaining 8% are word boundary infractions (run-ons and split words),

which are special cases of omission and insertion errors. A run-on is the result of omitting a space,

such as alot (a lot). A split word occurs when a space is inserted in the middle of a word, such as

sub marine. These cause problems for a spellchecker because it treats spaces as word delimiters so

a run-on will be treated as one word while a split word will be treated as two.

Misspellings that result in another dictionary word, real-word errors, are an additional complication.

These may often be simple errors, such as stare (start) and seams (seems) from the examples above,

but because the spellchecker will find them in its dictionary they will not be flagged as errors.

Some real-word multi-errors in the samples, such as no (know) and witch (which), are homophones

and could be the result of confusion over the correct spelling; others, like fowling (following) or

petal (petrol), seem more like an unlucky coincidence. Some split words in the samples (like sub

marine) resulted in two valid words but all the run-ons produced non-words.

The first letter was correct for 95% of the errors in my samples. This confirms the findings of

Yannakoudakis & Fawthrop (1983) and Pollock & Zamora (1984) mentioned above. Several of the

Computer Spellcheckers and Dyslexic Misspellings

 21

misspellings where the first letter was incorrect show confusion over vowel sounds e.g. ete (ate)

and silent letters, e.g. no (know).

The proportion of errors falling into each type in these samples is shown in Table 1.1

Total words 3134

Total errors 636

Distinct errors 577

Simple errors 307 53%

Multi errors 223 39%

Word boundary errors 47 8%

 577 100%

Real-word errors 100 17%

Non-word errors 477 83%

 577 100%

First letter errors 30 5%

Table 1.1: Proportions of types of error in the initial samples

1.2.3 Spellchecker Performance
The error detection stage is the first point at which a spellchecker can fail. Spellcheckers, as

discussed above, generally detect errors by looking the words up in a dictionary; words that are

found in the dictionary are assumed to be correct and not flagged as errors with the result that

misspellings that turn into another word are ignored. Words that are not found in the dictionary are

assumed to be errors and passed to the checking process. The spellchecker can fail at this next

point by not including the intended word in its list of suggestions. This means that there are three

possible outcomes when a spellchecker is run over text containing errors. I have classed these as:

• Corrected − the error was flagged and the intended word was in the spellchecker’s list.

• Detected − the error was flagged but the intended word was not in the list of suggestions.

Computer Spellcheckers and Dyslexic Misspellings

 22

• Not detected − the error was not found by the spellchecker.

Table 1.2 summarises the performance of the spellcheckers, when run over the initial samples. Each

column of the table shows the proportion of errors falling into each of the categories above (as a

range from the worst to the best spellchecker).

Column a shows that overall only about half of the errors were corrected and just over a quarter

were detected (meaning that the user was at least alerted to the potential error) but the remainder

(around 20%) went undetected. This correction rate falls approximately mid-way between the

range of correction rates (30 - 73%) for spellcheckers (many specially designed for dyslexics) tested

in work carried out at the University of Edinburgh (Nisbet et al. (1999)).

 a b c d e f

 All errors Simple
errors

Multi-
errors

Run-ons Split
words

First letter
errors

Corrected 49 - 55% 73 - 79% 27 - 37% 0 - 58% 0% 27 - 40%

Detected 24 - 28% 2 - 4% 46 - 57% 42 - 100% 39 - 50% 27 - 37%

Not detected 19 - 20% 19 - 23% 17 - 19% 0% 50 - 61% 33 - 37%

Total errors
(100%)

577 307 223 19 28 30

Table 1.2: Spellchecker performance on initial samples

Simple errors

In contrast to Damerau’s finding (mentioned above) that 80% of the errors in his corpus were

simple errors – a single insertion, omission, substitution or transposition - only slightly over half of

the errors in my samples were of this type. Unsurprisingly, since most spellcheckers rely heavily on

Damerau’s findings, all the spellcheckers I tested performed best for errors of this type with a

correction rate between 73% and 79% (column b). In general, with simple errors, if an error was

detected, it was corrected; the failures were almost all in the ‘not detected’ category. As might be

expected, the majority of these were real-word errors such as: of (off), stare (start), tens (tense) and

seams (seems.) - all words that we would expect to find in the dictionary.

Computer Spellcheckers and Dyslexic Misspellings

 23

Multi-errors

Almost 40% of the errors in my samples contained more than one wrong letter. All the

spellcheckers performed poorly for these multi-errors, correcting only around a quarter to a third of

them. The main difficulty was not in detecting the errors in the first place but in correcting them

once they had been detected. Around half were detected but not corrected but although there were

differences between the spellcheckers, a large proportion of these multi-errors were not corrected by

any of them. Some, such as vrnegest (varnished), might reasonably be considered uncorrectable.

Others look correctable - such as futcher (future) - but none of the spellcheckers managed to correct

them. In some cases, such as poticular (particular) and unforchanely (unfortunately), they made no

suggestions at all. Although it seems surprising that they did not attempt corrections for errors such

as these, this is perhaps preferable to producing a long list that does not contain the correct word.

Often the errors were phonetically similar to the intended word and a homophone of the correct

word was suggested. For example, two of the spellcheckers managed to suggest mussels as a

correction for musirls but failed to come up with the intended word – muscles. All the

spellcheckers suggested problem as a correction for probley (probably.) This is a similar error to

rembers (remembers.) Both errors show a common dyslexic tendency to omit repeated syllables in

the middle of a word.

Word boundary errors

The small proportion of word boundary infractions (run-ons and split words) caused a lot of

difficulty for the spellcheckers.

Word did not manage to correct any of the run-ons although the other spellcheckers managed 42 -

58% of them. In just over half of the run-ons the only error was an omitted space (e.g. afew,

allthat). TextHelp (the spellchecker designed specifically for dyslexics) corrected all of these but at

the expense of making some very odd suggestions for some of the other errors (such as suggesting

Computer Spellcheckers and Dyslexic Misspellings

 24

cu ms as a correction for cums (comes)). Word stores a large number of run-ons in its AutoCorrect

feature, which is separate from the spellchecker and intended merely to correct common typos. If

you type alot, and AutoCorrect is switched on, it will automatically and silently be replaced by a

lot. This might explain the spellchecker’s failure to correct any of the run-ons in the samples; the

designers perhaps decided that AutoCorrect would already have dealt with these and so the

spellchecker need not attempt any of them.

None of the split words was corrected by any of the spellcheckers. Those where both halves

resulted in a dictionary word were not flagged as errors, as might be expected. In some cases the

only error was the inserted space (e.g. sub marine, some one.) In others there were additional

changes, e.g. throw out (throughout), where ever (wherever). Word corrected the latter but only in

a roundabout way; its grammar checker flagged it as a compound word and suggested correcting it

to whereever. Accepting this replacement resulted in the word being flagged by the spellchecker

which then gave wherever as its first suggestion.

The rest of the split words resulted in a non-word for one or both parts, e.g. in adequacis

(inadequacies), rey mebber (remember.) The non-word parts were flagged (and in some cases

‘corrected’ e.g. re was suggested for rey and member for mebber) but, as a single-word correction

was not produced, I classed these as not corrected.

First letter errors

About a quarter of the misspellings with an incorrect first letter were capitalisation errors; some

were otherwise correctly spelled, e.g. edith (Edith), others had additional errors, e.g. engleish

(English.) Most of these were corrected by the spellcheckers. One, icoud (I could) was also a run-

on and not corrected by any.

Computer Spellcheckers and Dyslexic Misspellings

 25

A similar number were real-word errors and were not flagged by the spellcheckers, e.g. are (our),

bark (park), every (very.). Word's grammar checker, which does make some attempt to correct real-

word errors (as discussed further below), successfully corrected new (knew).

Real-word errors

Undetected errors made up 19%-20% of all the errors (Table 1.2) and most of these were real-word

errors. Even though real-word errors contribute only a minority of errors, they are a problem which

needs addressing if spellcheckers are to achieve a reasonable correction rate. In some cases the

proportion could be even higher than in my samples. Mitton (1996) estimates that real-word errors

account for about a quarter to a third of all spelling errors, a high proportion of them occurring on

function words (words like the and of).

Word’s grammar checker provides some facility for detection and correction of real-word errors.

One of its features is a list of 90 commonly confused words (mainly homophone pairs) which are

questioned when they seem to be used in the wrong context. Although it successfully corrected new

(knew), as mentioned above, it was not always successful. For example, it did not question the use

of advice in error for advise in the phrase “... could you advice me ...” although advice/advise are

included in its list of confusable words. It can also produce some strange suggestions as illustrated

by the phrase “...dumps witch are wrong.” Witch/which is not included in the commonly confused

words list but, using another rule, the grammar checker suggests that this is a subject/verb

disagreement and should be corrected to witch is or witches are!

1.2.4 Dictionaries and false alarms
Rare words or specialist terms are a frequent cause of false alarms - correctly spelled words that are

flagged as errors. An example from my samples (flagged by all the spellcheckers) is in this

passage:

Computer Spellcheckers and Dyslexic Misspellings

 26

When you go scrumping and when you get caught it is

worth taking the chance of getting some gascoyne's scarlet

apples.

Although scrumping is probably familiar to most native English speakers, it should be classed as a

rare or obscure word as it would never be used other than in this context. It is not included in the

Shorter Oxford Dictionary (nor, incidentally, in the Oxford Dictionary of Modern Slang.)

Supplementary dictionaries are often supplied for applications, such as medicine, that use a lot of

them. Spellchecker dictionaries are considered in detail in Chapter 4.

1.2.5 Suggestion lists
In the preceding sections a word has been counted as corrected if the target word was found

somewhere in the list of suggestions offered for correction, but long lists of often obscure words

may not be helpful to a poor speller, even if the required word is among them.

How many suggestions should a spellchecker include in its list? Five or six would seem to be an

acceptable maximum. All the spellcheckers produced lists longer than this. Word Perfect had the

longest. It made 23 suggestions for the correction of moter (motor) (mother was the first and the

correct word was eighth) and frequently gave 22 suggestions.

Do long lists improve the chances of the correct word being suggested? My survey suggests not.

The spellcheckers that generally had shorter lists achieved the best overall correction rates. If they

had been restricted to their first suggestion the correction rate would have dropped to between 27%

and 41%. But if they were restricted to five, only between 1% and 4% of the corrections would be

missed. This suggests that they could usefully reduce the number of words in their suggestion lists.

How does a spellchecker decide which word to offer as its first suggestion? Ideally this should be

its ‘best guess’ given the context and the syntax. In practice, with the spellcheckers tested, little

consideration seems to be given to the order in which the words are presented. Often the correct

word appeared second in the list after an obscure first suggestion.

Computer Spellcheckers and Dyslexic Misspellings

 27

1.3 Conclusion
The spellcheckers' performance in the survey discussed in this chapter demonstrates their reliance

on the early techniques described in Section 1.1. The correct word is almost always included in the

suggestion list for simple, non-word errors (albeit sometimes buried in a long list). These are the

types of error that the simple error algorithm (Damerau, 1964) is designed to deal with so, despite

its age, it still seems to be doing its job. It is not, however, designed to deal with multi-errors:

around half of those that the spellcheckers found were not corrected. In cases such as the

suggestion to correct probley (probably) to problem, the bias towards simple errors is clear. Work

needs to be done to develop techniques to deal with more complex spelling errors.

Although context is not required to detect non-word errors, it could be useful at the correction stage

in improving the spellcheckers' suggestion lists.

The survey confirms findings by Mitton (1987) that real-word errors are a significant problem. The

research described in this thesis is concerned with investigating methods to detect and correct them.

Unlike non-word errors, which can be detected by dictionary look-up, real-word error detection

requires use of context. The next chapter surveys approaches which have been taken to this

problem.

Although the samples used in my survey were sufficient to give a flavour of the types of errors

produced by dyslexics and the shortcomings of current spellchecking technology in dealing with

them, a larger corpus was required before a comprehensive analysis could be made. The

compilation of such a corpus is described in Chapter 3.

This chapter has also introduced questions about the type of dictionary a spellchecker needs.

Chapter 4 discusses this in more detail and describes the update of an existing electronic dictionary

to make it more suitable for the purpose.

 28

Chapter 2: Real-word Error Detection and Correction

The previous chapter showed that the majority of undetected errors are real-word errors where the

word produced is in the computer’s dictionary but is not the word the user intended. This type of

error is largely ignored by most computer spellcheckers as they rely on isolated word look-up to

detect misspellings. The detection of real-word errors, on the other hand, requires the spellchecker

to make some use of the surrounding context. This chapter examines previous experimental

approaches to the problem and the way in which they have informed the direction taken in this

research.

2.1 A hierarchy of errors
Kukich (1992) proposes a five-level hierarchy of errors, each of increasing difficulty for a computer

spellchecker. At the first level are lexical errors. These are the non-word errors that are by and

large detected and at least to some extent corrected by most current spellcheckers. Although there

are improvements to be made, this type of error is not dealt with further in this research.

Next come syntactic errors − errors that result in ungrammatical text. Some of these are apparent

from the immediate context such as, "could you advice (advise) me ..." whereas others, such as

"The only weakness (weaknesses) that I think I had were [x and y]..." cannot be detected without

using a wider context window. A spellchecker can make use of syntactic information such as that

produced by part-of-speech taggers or parsers to detect errors of this type.

Semantic errors − the next level in the hierarchy − cannot be detected by a syntax-based

spellchecker as they do not give rise to a syntactic anomaly. However, as the following example

(taken from my error corpus) shows, the error word often appears incongruous with the surrounding

context.

The cat ... curled up on a sack to slip (sleep).

Real-word Error Detection and Correction

 29

To correct this type of error a spellchecker would need some knowledge of word-association − that

curling up is more likely to be associated with sleeping than slipping, in this case.

These syntactic and semantic errors are the types of real-word spelling error I am aiming to correct

in this research. The final two levels in Kukich's hierarchy − "discourse structure" errors and

"pragmatic" errors − although they are mistakes in the text − cannot be classed as spelling errors.

Discourse structure errors give rise to ambiguity in the text. For example, "There were four types of

fruit in the salad: oranges, apples and bananas." There is clearly an error somewhere here − we are

led to expect a list of four items but are only given three − but what is the mistake? Is it the number

(four produced when three was intended) or is there something missing from the list − strawberries,

for example? However, although this is difficult to correct, a computer might be able to make some

attempt to detect this type of error.

Pragmatic errors, the top level of the hierarchy, represent an error of communication and are not

detectable without wider knowledge than that contained in the text. For example, if I gave

directions to my office as being at the end of the corridor on the left (when it is actually on the

right) unless the reader knew where my office was they would not recognise the error.

2.2 Syntax-based approaches to error detection
Applications such as part-of-speech taggers or parsers, which are an essential pre-processing stage

for many other natural language tasks, often use statistical measures to assign a likelihood to a

particular part of speech or grammatical construct in a text. The intuition when such methods are

applied to spellchecking is that if there is a low probability for all possible syntactic interpretations

of a particular tag sequence or sentence construction this may be indicative of an error. Although

these syntax-based methods offer the possibility to detect errors, the correction process needs to be

implemented separately. However, detecting real-word errors presents a greater challenge to a

computer spellchecker than their subsequent correction. Methods for the correction of non-word

Real-word Error Detection and Correction

 30

errors can be applied to real-word errors once they have been detected and, indeed, are likely to be

enhanced by the use of the additional syntactic information available from the detection stage.

2.2.1 Error detection using part-of-speech tagging
The CLAWS part-of-speech tagger, developed at Lancaster in the 1980s and subsequently used for

the tagging of the hundred-million word British National Corpus − BNC − (Burnard, 2000), uses

bigram part-of-speech tag probabilities to assign the most likely tag in cases where a word has more

than one possible part-of-speech (Garside, 1987; Marshall, 1987). Atwell and Elliott (1987)

developed an extended version of this tagger, designed to detect real-word spelling errors.

Based on the observation that ‘unusual’ tag sequences often occurred in the presence of an error,

they developed a series of techniques, of decreasing computational complexity, to detect unusual

tag pairs. The first of these drew on the findings that the large majority of spelling errors result

from one of the four simple error types (Damerau, 1964) introduced in the previous chapter and the

application of these rules to the creation of a suggestion list for non-word error correctors (Peterson,

1980; Yannakoudakis & Fawthrop, 1983). To adapt these rules to correct real-word errors, they

applied these single-letter transformations to each word in their text at run-time to generate a

‘cohort’ of similar words. Each word in the cohort was scored by combining the tag probabilities

output by CLAWS with a number of other factors: preference for the word that appeared in the text

over its alternative cohort members, a high weighting for commonly used words and a low

weighting for rare ones, collocational and domain preference. The cohort member achieving the

highest score was assumed to be the intended word and, if it differed from the word that had

appeared in the text, it was proposed as a correction.

They rejected this approach as impractical to implement for realistic use at the time. The large

number of dictionary lookups required to generate the cohorts and the subsequent evaluation of a

complex likelihood function proved too computationally expensive, and existing corpora (such as

the million-word LOB (Johansson et al., 1986) did not provide sufficient data for accurate measures

Real-word Error Detection and Correction

 31

of collocation and domain preferences. However, faster processors, increased memory and disk

capacity and the availability of larger corpora subsequently overcame many of these limitations and

several aspects of this method have been incorporated into later research.

The first technique required the program to generate a cohort for each word in the text at run-time.

The number of dictionary lookups associated with this could be reduced by storing the cohorts with

each dictionary entry. To avoid the large increase in dictionary size that this would entail, their next

approach stored just the part-of-speech tags rather than the actual words. Each word in their

lexicon, in addition to its own set of tags was assigned a set of ‘error’ tags - tags that differed from

its own tags but belonged to words that might possibly appear in error for it. Using this method,

cohorts only needed to be generated if one of these error tags achieved a higher score than that of

the word's own tags. They were able to test this on a limited sample of artificial error data using a

small prototype lexicon but again concluded that it could not be implemented in a realistic way

within the limitations of the existing technology; the large number of alternative tag combinations

to consider was still too computationally expensive.

Their final technique used just the likelihoods for the word's own tags. If any of these fell below a

predefined threshold (they experimented with different levels for this) the program flagged the word

as a potential error. Although this was found to be less accurate than the error tag method − without

the error tags, the program sometimes found a plausible tag sequence by mistagging the word

following the error − it had the advantage of being able to be to run over a reasonable sized sample

of text. In contrast to much of the later research into real-word error checking that used artificially

generated errors, Atwell and Elliott compiled a 13,500 word corpus containing just over 500 errors

as test data for their program. Their results showed that this method was capable of detecting a

useful proportion of the errors and suggested that its performance might be further improved once a

practical way to incorporate other factors, such as those in their initial proposal, could be developed.

Real-word Error Detection and Correction

 32

Stephen Elliott kindly gave me a copy of this Lancaster error corpus and I discuss it further in

relation to my own research in Chapter 10.

2.2.2 Error detection using parsing
Atwell and Elliott noted that their tag-bigram based method was only able to detect syntactic errors

that were recognisable within a narrow context. Errors that did not meet these criteria were

removed from the corpus and stored in a separate 'hard' file. In some cases these were errors that

had the same part-of-speech as the target and so would not be detectable by syntactic means, such

as:

...a pope (pipe) cleaner can be used when necessary.

In other cases although they were syntactic errors they could not be detected without a wider

context, such as:

...it was unfortunate that a garden party at the home of our

chairman and his wife has (had) to be cancelled due to...

Detection of errors of this second type would only be possible using a more detailed syntactic

analysis such as that output by a parser.

The CRITIQUE system (Richardson, 1985), originally known as EPISTLE (Heidorn et al. 1982),

was a comprehensive grammar and style checking system, based on a natural language parser,

developed at IBM during the 1980's. Its grammar checker was designed to alert the user to such

problems as subject-verb disagreement and use of incorrect forms of verbs and pronouns. When

run over 350 test sentences, some of which contained errors of this type, the program was found to

provide "correct or useful information for 84% of the sentences in the sample". Although this

experiment was not aimed specifically at real-word error detection it demonstrates that the program

had some facility to detect this type of error. However, this approach to real-word error detection

does not appear to have been developed further.

Real-word Error Detection and Correction

 33

2.3 Using confusion sets to detect and correct errors
The main drawback of a purely syntactic approach to the real-word error problem is that it is limited

to errors that cause a syntactic anomaly in the text and so cannot detect errors such as the pope/pipe

example from Atwell and Elliott's corpus above.

An alternative method, which can be used both to detect and to correct errors and is appropriate for

both syntactic and semantic errors, is that of confusion sets. A spellchecker using this approach

stores predefined sets of words that are considered to be confusable, such as {their, there, they're}.

Each time it encounters one of the words in the set it uses rules to decide whether one of the other

members of the set would be more appropriate in the context. The rules can make use of any aspect

of the text, syntactic or semantic, or any information about the language, such as word frequency.

A key question is how the sets of confusable words should be defined.

2.3.1 Simple error correction using word trigrams
One method of creating confusion sets, as used by Mays et al. (1991), is to group together words

that differ from each other by a single letter (insertion, omission, substitution or transposition) − this

is the method used by Atwell and Elliott (1987) to generate their 'cohorts', described above. The

main difference between Atwell and Elliott's cohorts and Mays et al.'s confusion sets is that the

latter were created in advance rather than dynamically at run time.

Mays et al. created confusion sets of this type for each word in their 20,000 word vocabulary. The

sets varied in size − short words are likely to generate more confusables − up to a maximum of 30

words. To capture semantic as well as syntactic context they used word trigram probabilities − the

conditional probability of a word occurring given the two preceding words − derived from a large

body of text.

To simulate error correction, they took 100 sentences of correctly spelled text (containing only

words in their vocabulary) and from these generated just over eight thousand misspelled sentences

by successively replacing each word with each member of its associated confusion set. Each of

Real-word Error Detection and Correction

 34

these misspelled sentences contained just one error. So, using their example, the sentence

beginning “I submit that...” would be transformed to “a submit that...”, “I summit that...”, among

other things, but not “a summit that...”.

They ran their program over these test sentences and used the stored probabilities to score each

sentence and each of its single error alternatives. For the correctly spelled sentences the program

could make one of two decisions: accept the sentence as correct or suggest changing it to some

other sentence (false alarm). For the error sentences there were three alternatives: flag the sentence

as incorrect and propose the correct sentence as an alternative (correct the error), flag the sentence

as incorrect but propose some other incorrect sentence as an alternative (detect but not correct the

error) or accept the sentence as correct (ignore the error). The words actually appearing in the

sentence were given a higher proportion of the overall probability than their alternative confusion

set members to represent the expectation that words are more likely to appear correctly spelled than

they are to be misspelled. By varying the weighting given to the word seen in the text they were

able to detect 76% of the errors and correct 73% at the expense of just one false alarm and were still

able to detect 63% and correct 61% while reducing the false alarms to zero.

This suggests that the method of using word trigrams is a potentially useful approach to detecting

and correcting real-word spelling errors. However, there are several considerations to be borne in

mind: the scalability of the approach, the appropriateness of the confusion sets and the relationship

between artificially generated errors and errors that are made by real people.

The number of word trigrams required, even for a 20,000 word vocabulary is enormous − almost

eight trillion; assuming that all words in the trigram are distinct this is calculated as 20,000 * 19,999

* 19,998 = 7.9988E+12. For a larger vocabulary − the 72,000 words in the dictionary I am using

for this research, for example − the number of trigrams becomes unmanageable. Sparse data is also

a problem; even in a large body of text many acceptable combinations of words will not be seen and

so will be assigned smoothed rather than actual probabilities which are likely to reduce the

Real-word Error Detection and Correction

 35

program's accuracy. This method would thus seem best suited to specific, high frequency

collocations but not practical for all word combinations.

Simple errors, involving the single-letter transformations used to create the confusion sets for this

experiment, have been reported to account for 80% of all errors (Damerau, 1964; Damerau and

Mays, 1989). However, subsequent research by Mitton (1987), confirmed by my dyslexic error

corpus, suggested that the proportion of this type of error in text produced by poor spellers is lower

than this; simple-error confusion sets appear to be less appropriate for the type of errors I am aiming

to correct.

In the test data used for Mays et al.’s experiment, there was a maximum of one error in each

sentence and in each case the intended word was a member of its confusion set. This will not

always be the case with real text; users may make more than one error in a sentence, produce

misspellings not in our confusion sets and so on.

However, the ability of confusion sets to correct as well as detect errors has made them attractive to

many subsequent researchers.

2.3.2 Machine learning techniques
Several machine learning methods that have proved successful for other natural language

processing tasks − such as part-of-speech tagging − have been applied to context sensitive spelling

correction. Here the problem is regarded as a lexical disambiguation task and confusion sets are

used to model the ambiguity between words. Given an occurrence of one of its confusion set

members, the spellchecker's job is to predict which member of that confusion set is the most

appropriate in the context.

Golding (1995) compared the performance of decision lists and Bayesian classifiers. The latter was

found to give better performance and was then improved further by combining it with a trigram

part-of-speech method (Golding and Schabes, 1996). Following this Golding and Roth applied a

Winnow multiplicative weight-updating algorithm to the same problem with a considerable

Real-word Error Detection and Correction

 36

improvement in accuracy (Golding and Roth, 1996; Golding and Roth, 1999). This led to the

development of the SNoW (Sparse Network of Winnows) architecture. Carlson et al. (2001) report

achieving a high level of accuracy when applying this method to 256 confusion sets. In contrast to

these statistical techniques, Mangu and Brill's (1997) transformation-based learning approach used

far fewer parameters although it achieved comparable performance.

Apart from the work by Carlson and Roth (2001), all this research used a small collection of around

18 confusion sets largely taken from a list of commonly confused words in the Random House

Dictionary (Flexner, 1983). There are some slight differences between the sets reported on in the

different pieces of work but the 'core' sets remain the same. With the exception of {their, there,

they're} (which should perhaps be regarded as the classic confusion set) and {cite, sight, site} these

sets are all pairs of words. They include homophones, such as {peace, piece}, words whose usage

is often confused, such as {accept, except} and potential typos, such as {begin, being}.

A notable feature of these confusion sets is that they are symmetric; each word in a set is considered

to be confusable with every other word in that set and there is no overlap between the sets − each

confusable word belongs to just one set. This is in contrast to the sets generated by Mays et al.

where, although each member of the confusion set is considered confusable with the headword, the

members of the set are not necessarily considered to be confusable with each other and a word may

appear as a member of several different sets. This symmetry plays an important part in both the

training and testing phases of these machine-learning methods as the sets are both trained and tested

as a unit.

During the training phase the program uses a large body of correctly spelled text to learn a set of

features − such as patterns of words or part-of-speech tags − that surround the words in its

confusion sets. An occurrence of a particular feature in the vicinity of one set member is taken as a

positive example for that member and a negative example for the other members of the set. The

spellchecker uses these stored features to choose between the confusion set members. At run-time,

Real-word Error Detection and Correction

 37

any occurrence of a confusion set member in the text is regarded as a 'place marker' for a slot that

could be filled with any member of its confusion set. The spellchecker then scores each confusable

based on how well the features in the surrounding text fit with the features that were associated with

it during the training phase. The one with the highest score is assumed to be the intended word and,

if it differs from the word that originally appeared in the text, a correction can be proposed.

If the program is deciding simply whether word x or word y is more likely to fill a particular slot in

the text, the program will make the same decision whether the word currently filling the slot is the

intended word or an error. In this case there will be no difference in the program's decision when

the program is tested on correct text to that made when it is tested on text containing (artificial)

errors. In other words, if an error is generated by replacing a confusable that is correctly used (and

accepted as such by the program) by one of the alternatives in its confusion set, the program must

propose the correct word as a replacement. Much of the work referred to above reports results

obtained from running the program over correctly spelled text with the assumption that this also

indicates its potential performance when used with error data. This performance is measured as

prediction accuracy − the proportion of correct decisions out of all decisions made for a confusion

set. Many of the programs achieve an accuracy of over 90% while highly developed applications

such as SNoW achieve over 95% on average (Carlson et al., 2001).

Golding and Schabes (1996) compared the performance of their Tribayes program with Microsoft

Word's grammar checker. For this they used two versions of their text − correct and 'corrupted'.

The corrupted text was produced by replacing each word in a confusion set in turn with each other

word in its confusion set. For the correct text they measured the number of times each program

accepted the word and for the corrupted text how often each program proposed the intended word as

a correction. They noted that Tribayes sometimes expressed very little preference for any member

of a confusion set as the scores were almost identical. Since it was set to select the word achieving

the highest score, no matter how small the margin between the score for the word appearing in the

Real-word Error Detection and Correction

 38

text and the scores for its alternatives, this, on occasion, caused it to propose false corrections when

run on the correct version of their text. Word, on the other hand, is programmed to suppress its

weaker suggestions so it raised fewer false alarms. In order to compare more fairly between the two

programs, they introduced a confidence threshold; Tribayes was set to propose a correction only if

the ratio of the probability of the suggested word to the probability of the word that had appeared in

the text was above this threshold. Although this had the desired effect of reducing the false alarms

in the correct text it also, obviously, reduced the number of errors corrected in the corrupted text.

By experimenting with different levels for this threshold they were able to set it at a level that

achieved a reasonable balance between these two conflicting outcomes.

Once a confidence threshold is introduced, prediction accuracy can no longer be used alone as a

measure of program performance since, in cases where it does not have enough confidence in its

decision, the program simply does not make a prediction at all. To factor this in, Carlson et al.

(2001) introduce the notion of 'willingness' − the proportion of all occurrences of confusion set

members for which the program was confident enough to make a prediction. By implementing a

confidence threshold they were able to improve the performance of their program from an average

of 95% (with no threshold, hence 100% willingness) to 99% with a willingness of 85% for their 256

confusion sets.

Initially these machine-learning approaches used only a small number of confusion sets, typically

about twenty. Carlson et al. address several of the issues involved in scaling-up these methods for

use in a practical system by extending the number of confusion sets to 256. However, as they state,

this is only a first step as a realistic system would require a coverage of many thousands of words.

One of the limitations to achieving this level with these systems is the requirement for symmetric

sets with no overlap between the sets. Take, for example, our classic confusion set {their, there,

they're} on which all the above methods achieve a good level of performance. Suppose we now

want to allow for the possibility of three being produced in error for there (or vice-versa). Where

Real-word Error Detection and Correction

 39

do we put it? It doesn't fit in the existing confusion set for there as it seems unlikely to appear when

their or they're is the intended word but if we create the set {there, three} we now have overlapping

sets.

2.4 Using semantics to detect errors
In contrast to Atwell and Elliott's tag-bigram method which detected syntactic anomalies, the

'semantic relationship' approach first proposed by Hirst and St-Onge (1998) and later developed by

Hirst and Budanitsky (2005), detected semantic anomalies but was similarly not restricted to

checking words from predefined confusion sets. This approach was based on the observation that

the words that a writer intends are generally semantically related to their surrounding words

whereas some types of real-word spelling errors are not, such as (using Hirst and Budanitsky's

example), "It is my sincere hole (hope) that you will recover swiftly." Such "malapropisms" cause

"a perturbation of the cohesion (and coherence) of a text."

Using their method, malapropism detection is implemented as a two-stage process. In the first stage

the program scans the text for likely suspects − words that seem semantically unrelated to other

words in the text. Any word not regarded as a suspect at this stage is accepted as correct and not

considered further. The second stage then generates a list of possible alternatives for each suspect;

if one of these is found to be a better semantic fit than the suspect word, the suspect is flagged as an

error and the alternative proposed as a correction.

The semantic relationships between the words in a text are represented using the noun portion of

WordNet (Miller et al., 1990). Nouns in WordNet are organised as a lexical hierarchy with each

node of the hierarchy representing a synset or grouping of synonymous words. The main

organisational principle is hyponymy/hypernymy or the ISA relation. After comparing several

methods of measuring the semantic relatedness of words based on traversals of this hierarchy

(Budanitsky, 1999; Budanitsky and Hirst, 2005) they concluded that the approach developed by

Real-word Error Detection and Correction

 40

Jiang and Conrath (1997), combining semantic distance in WordNet with corpus-derived statistical

data, offered the best performance for the detection of malapropisms.

The process of offering a list of possible alternatives for suspect words is, as Hirst and Budanitsky

note, akin to that of proposing candidate corrections for non-word errors and a spellchecker might

well use the same mechanism for both. However, for their experiment they only considered simple

error transformations − the type used by Mays et al. to create their confusion sets (described above).

As test data they used 500 Wall Street Journal articles into which they introduced errors at the rate

of one every two hundred words, giving around a thousand errors with an average of just under

three errors per article. Text produced by dyslexics is likely to contain a higher proportion of errors

than this (Pedler, 2001a). As with other artificial error data discussed above, each of the errors

introduced was potentially correctable by their system. Again, this will not always be the case with

actual error data.

They report recall (the number of errors flagged as a proportion of all errors) and precision (the

number of errors flagged as a proportion of the total suspects flagged) for their system, using

varying sizes of context, ranging from a single paragraph to the entire text. Larger context size

improved precision − more of the words flagged actually were errors − but reduced recall − fewer

errors overall were detected. The best balance between the two was achieved with the smallest

amount of context − a single paragraph − with recall of 50% and precision almost 20%. This, they

suggest, indicates that their system "approaches practical usability for malapropism detection and

correction". However, malapropisms themselves represent only a small proportion of all real-word

errors meaning this method would need to be combined with other approaches for realistic use by a

spellchecker. Even then their assessment seems somewhat over-optimistic; the rate of false alarms

is high in comparison to the number of errors corrected. Atwell and Elliott (above) report an

average 40% recall and 33% precision for their program but are more conservative in their

Real-word Error Detection and Correction

 41

evaluation, rating their results as "reasonably promising". (Although it should be noted that these

results are only comparable in a very general sense.)

2.5 Conclusion
This chapter has considered previous experimental approaches to the detection and correction of

real-word spelling errors. Syntactic errors, as Kukich (1992) suggested, proved the most tractable

since existing natural language applications, such as taggers and parsers, could be adapted to detect

them. Correction, if required, could then be implemented using the same method as that used by the

spellchecker to produce candidate corrections for non-word errors. Although these methods are

limited to correcting errors that result in a syntactic anomaly they have the advantage of not needing

to be trained for individual words; new words entering the vocabulary are likely to be covered by

existing rules.

Confusion sets can be regarded as predefined suggestion lists. These were originally proposed by

Atwell and Elliott (1987) and only rejected as impractical due to the limitations of computing speed

and memory at that time. They became a key feature of much subsequent research. They offer the

possibility of both detecting and correcting errors but a large number of sets is required if they are

to be used for general-purpose spellchecking and they also need to be representative of the types of

error actually made by users. In addition to simple errors, as used by Mays et al. to create their

confusion sets, they should include other common errors such as homophone confusions. The

Random House sets used for the machine learning experiments represent a wider variety of errors

but do not cover a large vocabulary and are generally confined to pairs of words (with a few triples

as noted above).

A notable feature of the research presented in this chapter is that none of it, apart from the work by

Atwell and Elliott, has used real error data; several drawbacks of this have been discussed above.

Not only are artificial errors always potentially correctable, there is also no indication that they are

representative of the patterns and frequency of errors occurring in unrestricted text.

Real-word Error Detection and Correction

 42

Several different measures of performance were used to assess the programs: recall and precision

(Atwell and Elliott, 1987; Budanitsky and Hirst, 2005); proportion of errors corrected versus

number of false alarms (Mays et al. 1991); prediction accuracy (Carlson et al., 2001 etc.). These are

discussed further in conjunction with the evaluation of my program (Chapter 10). A common

concern when assessing the performance of these programs is the trade-off between accuracy and

coverage. A reduction in the number of false alarms means that a greater proportion of the words

flagged as errors actually are errors − an increase in accuracy − but this generally has the effect of

reducing the number of errors detected − a decrease in coverage. The general consensus seems to

be that accuracy is the more important of these considerations. Richardson (1985) suggests that

false alarms are likely to "...undermine the faith of users in the system". Carlson et al. claim that

users' confidence will be increased if the number of false negatives is reduced. To reduce false

alarms most programs have factored in the general expectation that the word appearing in the text

was more likely be correctly spelled than it was to be an error.

Most previous research into real-word error correction has started with a technique and then applied

it to the problem. In this research I start by defining the problem and then investigate techniques

suitable for its solution. In order to define the problem, I required a corpus of errors. The

compilation of this is described in the next chapter.

 43

Chapter 3: A Corpus of Dyslexic Real-word Errors

The small sample of errors discussed in Chapter 1 gave an indication of the extent of the real-word

error problem in text produced by dyslexics but it did not provide enough data for a realistic

assessment of a program designed to correct this type of error.

Apart from the work by Atwell and Elliott (1987), discussed in the previous chapter, most research

into detecting and correcting real-word errors has been tested on artificial data, produced by

introducing errors into correct text and then attempting to correct them, rather than on actual errors

made by people. One of the reasons for this is the shortage of actual data. Publicly available error

corpora such as the Birkbeck Error Corpus (Mitton, 1985) or the Wikipedia (2003) list of common

misspellings are largely lists of pairs of <error, target> words and so not suitable for testing a

spellchecking program that requires the use of context. The Birkbeck corpus contains a mix of both

non- and real-word errors while the Wikipedia lists contain only non-word errors. One way to

simulate real errors would be to substitute errors from these corpora into otherwise correctly spelled

text. To be 'realistic' this process would also need to simulate the frequency with which users

tended to make particular errors (which can be obtained from the Wikipedia lists). Even then,

randomly substituting misspellings for a correctly spelled counterpart, still might not reflect how

actual users make errors. To accurately simulate that, we need to know whether the errors are more

likely to occur at certain points in a sentence, whether they ever appear in groups of two or more

and so on. Questions such as these cannot be answered without knowing the original context in

which the error appeared.

To develop a program designed to correct actual errors made by dyslexics, I needed a corpus; since

none existed, I needed to create one. As well as providing data to develop and test my program,

such a corpus would also enable me to obtain a picture of the pattern and types of error in actual

dyslexic text which could help to inform the direction of my research. This chapter describes how

A Corpus of Dyslexic Real-word Errors

 44

my initial corpus2 was compiled, followed by an analysis of the errors it contains and a

consideration of possible methods for their correction.

3.1 Collecting samples of dyslexic text
The samples described in Chapter 1 provided the initial input to my corpus. I then needed to find

additional data; obtaining this was harder than I had initially anticipated. I contacted several college

disability officers, spoke with various people who worked with dyslexics and posted to a number of

bulletin boards and mailing lists. Many people were interested to learn about my research and

wanted to know more about its findings; several commented on the difficulty of obtaining this type

of data and the usefulness of a resource such as the one I was trying to create but only a few

supplied me with actual examples. From these I assembled a corpus of around 12,000 words

containing just over 800 real-word errors. These additional sources, with examples from each, are

described below.

3.1.1 Dyslexic student
A dyslexic student on our MSc Computing Science course responded to a request on my college

home page and supplied me with a number of essays (literature, psychology and sociology) he had

produced as an undergraduate.

The country possessed a capable naval and military force

as well as advanced industrial homebase which arised

form the industrial revolution.

Undergraduate essays

3.1.2 Dyslexic typing experiment
In response to an enquiry to a dyslexic mailing list - http://www.jiscmail.ac.uk/lists/dyslexia.html -

Roger Spooner gave me the data from an online typing experiment which he had conducted while

researching spellchecking for dyslexics for his PhD (Spooner, 1998). Part of the experiment

involved typing dictated sentences. I did not use this as it consisted of multiple misspellings of the

2 Additional error data assembled for the final testing of my program is described in Chapter 10

A Corpus of Dyslexic Real-word Errors

 45

same word and did not necessarily represent words that people would actually use. The final part of

the experiment involved free writing where the participants were asked to write about their work,

interesting people they had met recently, assess their spelling and writing and comment on the

experiment. I used the responses to these questions in the corpus. Two examples are given below:

I fund out thaty I have a half sister how I know little abouy

except that she has two childern and like out doo activtes.

I have written team papers and a artcile that was publish.

Typing experiment

3.1.3 Internet sources
I also included some samples from dyslexic bulletin boards and mailing lists and stories written by a

dyslexic child which were published on the Internet.

i still dint kow wat was worng with me. no one reelly new

how bad my writig was

Bulletin Board

He was a tiger and he shard the poeple and it was a lot of

fun to do.

Child's stories

3.1.4 My daughter (again)
Although I did not to want to overweight the corpus with examples of my daughter's misspellings,

she was now four or five years older than she had been when I collected the homework samples and

at college studying for an IT NVQ, so it seemed reasonable to include some of her later work,

especially as there was a noticeable difference in her spelling ability as shown below.

A Corpus of Dyslexic Real-word Errors

 46

The only weakness3 that I think I had were the martial on

each slide could have been a bit better and I could have

improved the length of the presentation.

IT NVQ

3.1.5 Non- and real-word errors
The samples collected contained a mix of non- and real-word errors and a small proportion of word-

boundary errors − split words and run-ons as described in Chapter 1. Table 3.1 summarises the

content of this corpus, showing the number of words and sentences in each source and the types of

error they contain.

Source Sentences Words Non-
word

errors

Word-
boundary

errors

Real-
word

errors

Total
errors

Homework* 67 974 205 28 44 278

Compositions* 61 845 103 8 50 161

Office
documents*

67 720 161 6 26 193

IT NVQ 48 732 20 18 51 89

Undergraduate
essays

341 6382 421 8 128 557

Typing
experiment

61 694 86 7 39 132

Child's stories 11 126 7 0 14 21

Bulletin boards 739 11051 678 77 468 1223

Totals 1395 21524 1681 152 820 2654

Table 3.1: Composition of the entire corpus (* indicates data described in Chapter 1)

I could not be sure to what extent the text that I collected had already been spellchecked and, if

checked, whether some of the real-word errors it contained had been generated by the spellchecker

− as is likely to happen when poor spellers are presented with long suggestion lists. With a long

3 This is a type of discourse structure error - the fourth level in Kukich's (1992) hierarchy discussed in Chapter
2. Sophisticated processing would be required to correct it. Even if the subject-verb disagreement weakness.
. were was detected, it would not be possible to decide whether it should be corrected to weaknesses . . were
or weakness . . was (both grammatically acceptable) without also detecting that the writer continues to
describe two weaknesses.

A Corpus of Dyslexic Real-word Errors

 47

list, even if the intended word is included, it may be buried beneath a long list of obscure words.

This is no help at all to a dyslexic, or anyone else, who didn't know how to spell the word in the

first place. To stop the spellchecker complaining, they may simply resort to selecting the first word

in the list, which can result in the transformation of a non-word error into a real-word error. The

varying proportion of non-word errors in the different sources suggests that there has been some

attempt at error correction in some of them. Non-word errors occur more frequently in the typing

experiment than they do in the NVQ and essay examples. The essays were almost certainly

spellchecked whereas no spellchecker was available to the participants in the typing experiment and

although the bulletin board includes a spellchecking facility, users are likely to pay less attention to

spelling when using a bulletin board than they would when writing an essay. However, since this

research is only concerned with correction of the real-word errors, I am making the assumption that

there would be two phases to the spellchecking process: the first dealing with the non-word errors4

and the second attempting to detect and correct any real-word errors using the now correctly spelled

text. Whether or not real-word errors are introduced by the first phase, it will at least remove the

non-word errors so the real-word error checker is left to deal with a passage of correctly spelled text

in which the majority of the words are those that the user intended.

3.2 A corpus of real-word errors
3.2.1 Composition
I first marked-up all the errors in the format illustrated below:

The only <ERR targ=weaknesses> weakness </ERR> that I

think I had were the <ERR targ=material> martial </ERR>

on each slide.

Once this had been done it was a simple matter for a program using Perl regular expressions to

extract the errors and their corresponding target word from the corpus. It also enables my

4 MS Word adequately corrects the majority of those appearing in the examples above.

A Corpus of Dyslexic Real-word Errors

 48

spellchecker to ignore the target words when checking the text but at the same time to store them

for later use to check against its output.

Although including the non-word errors gives the text a distinctive dyslexic flavour, they are just a

distraction for a real-word error checker so I next created a sub-corpus, containing only real-word

errors, to use for developing and testing my program. To do this I removed any sentences that

contained only non-word errors and replaced all non-word errors in the remaining sentences with

the intended word − this could be regarded as a simulation of the first stage of the spellchecking

process discussed above.

The sub-corpus contained around 12,500 words with a total of 820 real-word errors. Although the

majority of these error words occurred just once as errors, a minority occurred repeatedly so that the

number of distinct error types was approximately half the number of error tokens. The word

occurring most frequently as an error was there with 37 instances of incorrect usage, followed by to

with 25 instances. As a single error word can appear as an error for several different targets − for

example, quit appears as a misspelling of both quiet and quite − the total number of distinct <error,

target> pairs is higher than the total number of error types. This is summarised in Table 3.2.

Sentences 614

Words 11810

Total errors (tokens) 820

Distinct errors (types) 429

Distinct target|error pairs 493

Table 3.2: Composition of the real word error sub-corpus

3.2.2 Error frequency
The discussion above suggests that users have a tendency to produce certain misspellings

consistently. My experience also confirms this; I often catch myself typing form when I mean from,

my daughter regularly produces theses in mistake for these. Table 3.3 shows the frequency with

A Corpus of Dyslexic Real-word Errors

 49

which the error words occurred in the real-word error sub-corpus; although the majority occur only

once, a minority occur repeatedly.

N. Occurrences N. Errors

>10 10

6-10 9

4 or 5 17

3 25

2 47

1 321

Total error types 429

Table 3.3: Frequencies of error types in the corpus

Error words that occur 10 or more times in the corpus are listed in Table 3.4. Many of these appear

as an error for more than one target and so contribute to several of the distinct <error, target> pairs.

Several of the short, high-frequency words in this list − to, an, is, − appear as errors for four or more

different targets which confirms Mitton (1996)'s finding that a high proportion of real-word errors

involve this type of word.

Error Frequency N. targets

there 37 3

to 25 4

a 20 3

form 19 1

their 18 1

its 17 1

your 17 2

an 13 5

weather 11 1

were 11 2

cant 10 1

is 10 4

Table 3.4: Errors occurring 10 or more times in the corpus

A Corpus of Dyslexic Real-word Errors

 50

Table 3.5 shows the frequency with which the distinct <error, target> pairs occurred. Again,

although most of the pairs occur just once, a minority occur repeatedly. In contrast to the findings

for individual errors (Table 3.3), which showed that some words were often produced as a

misspelling of several other words, this shows that there are some words which regularly appear as

a misspelling of one other word in particular. Pairs such as these are likely to be good candidates

for confusion sets; the ten most frequent are listed in Table 3.6

N. Occurrences N. Pairs

>10 8

6-10 7

4 or 5 13

3 21

2 57

1 387

Total error pairs 493

Table 3.5: Frequency of error|target pairs in the corpus

Error|target pair Frequency

there|their 32

form|from 19

to|too 19

their|there 18

a|an 17

its|it's 17

your|you're 15

weather|whether 11

cant|can't 10

collage|college 9

Table 3.6: Ten most frequent error|target pairs in corpus

Many of these top ten pairs also feature in the small list of sets of 'commonly confused' words used

in much of the research discussed in Chapter 2. This confirms that, although the small number of

A Corpus of Dyslexic Real-word Errors

 51

these sets limits their usefulness for a comprehensive effort at real-word error correction, they do at

least include some of the errors that users actually make.

Another feature of these 'commonly confused' sets is that they are symmetric − each word in the set

is considered confusable with each of the other words. This is true for some, but not all of the most

frequent errors listed above, which suggests that symmetric confusion sets may not be the best

approach for all sets of confusable words. Table 3.7 lists the pairs from this list in which each word

occurs both as an error and as a target and shows that, in all cases, one member of the pair appears

as an error significantly more times than the other.

Error|target pair Count a|b Count b|a

there|their 32 18

form|from 19 1

to|too 19 3

a|an 17 4

its|it's 17 4

Table 3.7: Symmetric pairs included in the ten most frequent pairs

Three of the errors in Table 3.7 − to, a and its − are omission errors which is consistent with my

earlier finding that this is the most common type of simple error made by dyslexics. For the other

two pairs, it is the less frequent word that appears more often as an error. This is more notable for

the pair <form, from>, where the former is much less common overall, than it is for the pair <there,

their> where both have a similar high frequency.

3.2.3 Types of error
Homophones

Homophones are often used as the basis of confusion sets. They feature prominently in the sets of

commonly confused words used by many researchers and also make up almost all of the 90 pairs of

confusable words used by Word's grammar checker. TextHelp Read and Write, a spellchecker

designed for dyslexics and included in the survey discussed in Chapter 1 (Pedler, 2001a),

A Corpus of Dyslexic Real-word Errors

 52

incorporates a ‘Homophone Support’ feature. With this switched on, homophones are highlighted

in a different colour to the spelling errors when a piece of text is spellchecked. For example, in the

following extract (from the Office Documents section of my corpus) it marks the italicised words as

homophones and the underlined words as errors.

No action has been taken on dumps witch are wrong but if

they which to change the approch, we will need more

comlecated plans for suchg occurancs.

Clicking on one of the homophones produces a list of words which have similar pronunciation from

the program's database of commonly confused words. Although this usefully identifies potential

word confusion, it is not particularly helpful in terms of real-word error correction as it requires the

user to consider a large number of words, many of which are correctly spelled. Additionally, in

some cases where the word is an error, the correct word may not be one of its homophones. Of the

eight words flagged as homophones in the passage above, only two (witch and which) are used

incorrectly. The list produced for both of these is the same − which and witch. Although this would

allow the correct alternative to be selected for the first, it is no help for the second which should be

wish (not a homophone of which.)

Nevertheless, homophone confusion is certainly something that a dyslexic real-word error checker

needs to take into account. Six of the most frequent <error, target> pairs listed in Table 3.6 are

homophones, suggesting that words of this type do cause particular problems for dyslexics. In total,

73 (15%) of the distinct error pairs in my corpus are homophones; those that appear more than

twice are listed in Table 3.8.

A Corpus of Dyslexic Real-word Errors

 53

Homophone set N. Occs

there, their, they're 53

to, too, two 26

its, it's 17

your, you're 15

weather, whether 11

herd, heard 5

witch, which 4

wile, while 3

Table 3.8: Homophone pairs occurring more than twice in the corpus.

Simple errors

Mays et al. (1991) created confusion sets for each word in their dictionary by listing all the other

words that differed from it by a single letter insertion, omission, substitution or transposition. An

examination of the types of error in my corpus showed that over half of them were simple errors,

that is they differed from the correct word in just one of these ways (Table 3.9). This suggests that

simple error types could also be useful candidates for a dyslexic real-word error checker to consider

although we might want to use fewer words and smaller sets than in the Mays et al. (1991)

experiment.

Error Type N.Errors Percentage
Errors

Omission 144 29%

Substitution 105 21%

Insertion 56 11%

Transposition 11 2%

All simple 316 64%

All error pairs 493 100%

Table 3.9: Proportions of simple error pairs in the corpus

A Corpus of Dyslexic Real-word Errors

 54

3.2.4 Syntactic comparison
Tagset types

A real-word error sometimes gives rise to a syntactic anomaly, and this can be the basis of error

detection. For this to be the case the error and the target must differ in their parts of speech. There

are three possibilities to consider:

• Distinct tagsets − Words that have no part of speech tags in common.

• Overlapping tagsets − Words with some but not all not all part-of-speech tags in common.

• Matching tagsets − Words with all part-of-speech tags in common

Table 3.10 shows the number of pairs falling into each group. A syntax-based spellchecker could

be expected to perform reasonably with errors falling into the first group and to have some impact

on the second although it would clearly not be appropriate for words in the third group which have

the same parts-of-speech.

Tagsets N.Errors Percentage
Errors

Distinct 324 66%

Overlapping 118 24%

Matching 51 10%

Total error pairs 493 100%

Table 3.10: Count of errors by tagset type

Word class comparison

We have already seen that many of the most frequently occurring error pairs in the corpus (Table

 3.6) involve short, high-frequency words. I investigated which particular classes of word were the

most problematic by comparing the word class of the error with the word class of the target. For

this purpose I grouped the words into five groups: nouns, verbs, adjectives, adverbs and other

(function words − conjunctions, determiners, pronouns and so on). Each error or target word may

belong to more than one of these classes (28% of the words in the dictionary used have between two

A Corpus of Dyslexic Real-word Errors

 55

and seven part-of-speech tags) which means that these counts are based on <word, class> pairs for

each error and target rather than just on the words themselves. For example, using the pair <form,

from>, the error − form − is tagged as both a noun and a verb and the target − from − is tagged as a

preposition so this pair would be counted twice; both as <noun, other> and <verb, other>.

Expanding each of the <error, target> pairs in this way gives a total of 1244 <error|class,

target|class> pairs. Counts for these pairs are given in Table 3.11.

 Target

 verb noun adjective adverb other Error
Total

verb 181 110 57 34 27 409

noun 153 146 51 37 40 428

adjective 43 40 24 24 22 153

adverb 22 19 8 15 29 93

other 28 20 16 29 68 161

E
rr

or

Target
Total

427 336 156 139 186 1244

Table 3.11: Comparison of word class for error and target

Inflection Errors

Further investigation of the noun-noun/verb-verb confusions (Table 3.11) found that a large number

of these were inflection errors. This corroborates Mitton's (1996) finding that, in a corpus of school

leavers' compositions (not those included in my corpus), many errors involved inflected forms.

About a third of the noun targets where the error was also a noun were number errors, almost

exclusively a singular noun used in mistake for a plural. Many of these cases were simple omission

errors (Table 3.9) resulting from the -s being left off the end of the word. Others (such as virus for

viruses or story for stories) have a slightly more complicated plural form, but again the difference

between the error and the intended word occurs right at the end. (The position of the error in the

word is considered further in section 3.2.5 below.)

A Corpus of Dyslexic Real-word Errors

 56

Half of the verb targets where the error was also a verb involved a wrongly inflected form of the

verb. Many of these were regular verbs5 where the error involved the base form with an omitted -s

(third person singular), -ed (past tense, past participle) or -ing (present participle).

The remaining verb inflection errors were for irregular verbs. Some of these are completely

irregular, such as be, while others, such as tell are irregular in the particular inflection involved (in

this case told). Predominantly, however, the irregular inflection errors involved producing the base

form of the verb instead of the past tense or past participle. There were three pairs which were both

written mistakenly for each other is/are, has/have and was/were. These findings suggest that it

might be helpful for a spellchecker to include a method aimed at correcting inflection errors.

3.2.5 Error patterns
Position of first letter error in word

A characteristic of inflection errors is that, even if they are not simple errors, a large proportion of

them differ only in the word-ending. I looked at the position at which the first error in the word

occurred, using a system described by Wing and Baddeley (1980) − section 1 is the beginning part

of the word, 2 left of centre, 3 centre, 4 right of centre and 5 the end part of the word. Following

Mitton (1996), I have subdivided the first section into 1A (first letter errors) and 1B (other errors in

the early part of the word). Table 3.12 shows the proportion of errors falling into each section for

the real-word errors compared to the non-word errors in the corpus. Over half of the real-word

errors differ in the last section of the word whereas for non-word errors the position of the first

wrong letter is fairly evenly distributed between the middle sections of the word. Conversely, the

real-word errors also appear more likely to have an incorrect first letter. Silent first letters - know,

now and the like - are a likely contributory factor here.

5 Or at least the inflection involved was regular, for example take/takes.

A Corpus of Dyslexic Real-word Errors

 57

Section Percentage errors

 Real-word Non-word

1A 11% 4%

1B 1% 5%

2 11% 21%

3 10% 30%

4 16% 21%

5 51% 19%

Total = 100% 499 499

Table 3.12: Comparative positions of first wrong letter for real- and non-word errors

Position of error words in sentences

To find out whether errors are more likely to occur in a particular part of the sentence I divided each

sentence into sections (in the same way as for words described above) and counted the number of

errors occurring in each. This showed the errors to be fairly evenly distributed throughout the

sentences with a slight tendency for more to occur towards the beginning so position in sentence is

unlikely to be of any particular value to a spellchecker.

3.2.6 Proximity of errors
Real-word error checkers must use context in some way. Syntactic anomaly approaches to error

detection, such as those described in the previous chapter, generally use word or part-of speech

bigrams or trigrams; one or two words on each side are used to determine the probability of a given

word appearing in that context. This will run into difficulty if these words are themselves errors.

To assess the extent of this problem in my corpus I looked at the surrounding context for each real-

word error. Table 3.13 shows the proportion of the real-word errors with another error (either non-

or real-word) within one or two words on each side and suggests that the problem of another error

occurring in proximity to a real-word error is one that is likely to cause difficulties for any context-

based method of error detection. For a quarter of the real-word errors in the corpus at least one

other error occurs within two words to the left or right. In some cases this is another real-word error

A Corpus of Dyslexic Real-word Errors

 58

which compounds the problem. A non-word error will be detected by dictionary look-up and the

checker may be able to make an attempt at correcting it and at the very least will be aware that the

context that it is considering is unreliable.

 Left Right Left & Right Total

1 word each side 6% 7% 2% 15%

2 words each side 8% 12% 5% 25%

 errors = 100% 840

Table 3.13: Proportion of real-word errors with another error in the immediate context

3.3 Conclusion
At the end of this phase of my research I had produced a corpus suitable for the testing and

development of the dyslexic real-word error checker I was aiming to produce. I also hope it will be

of use to other researchers at a later date. Resources of this type seem to be scarce and require a fair

amount of effort to produce as all the errors need to be manually detected and marked up − if there

was a way of reliably automating this process, the problem I am investigating would already have

been solved!

As well as providing data for the subsequent development and testing of my program, the corpus

gave me a clearer picture of the types of error made by dyslexics which could inform the approach I

would take. The large proportion of errors with distinct or overlapping parts-of-speech suggested

that a syntax-based approach could be expected to have some degree of success. The confusion set

approach remained attractive as it simplifies the process of error detection and provides a ready-

made suggestion list. Although this method can be used with both syntactic and semantic rules, it

does not seem applicable to inflection errors which, as the foregoing discussion showed, comprised

a large number of the errors in my corpus. This is considered further in Chapter 10. Additionally,

since the confusion set method is limited to correcting words predefined as being potential errors, a

large number of sets would be required if it was to make a realistic impact on the problem. Chapter

5 describes how the collection of sets was created.

A Spellchecking Dictionary

 59

Chapter 4: A Spellchecking Dictionary

The dictionary used at the start of my research was CUV2 (Mitton, 1986)6 − a 'computer-usable'

dictionary based on the third edition of the Oxford Advanced Learners' Dictionary of Current

English (Hornby, 1974). Its seventy-thousand or so entries had provided adequate coverage for my

previous (non-word error) spellchecking work although it would occasionally produce unexpected

false alarms − flagging as errors words that were actually correctly spelled. These false alarms

largely reflected changes in the language since 1974 when the OALDCE was compiled. For

example, database, a word in fairly common modern usage not included in CUV2, would have been

a specialised term thirty years ago. But CUV2 contained enough words for my purpose and is in

text file format so more words can easily be added.

A dictionary containing just words is adequate for non-word error detection but to enable a

spellchecker to detect real-word errors other information such as pronunciation, part-of-speech tags

and word frequency needs to be included for each entry.

Each entry in CUV2 includes a set of one or more part-of-speech tags each of which is assigned one

of three broad frequency categories − very common, ordinary or rare. This is adequate to

distinguish between different usages for some words, such as can which is far more common as a

verb than a noun, but for others the distinction is not clear. For example both noun and verb are

marked as common for form although it is used far more frequently as a noun. A preliminary

investigation, using a small number of confusion sets derived from my corpus (Pedler, 2003a)

showed that more precise word frequency information would enable the spellchecker to make a

more accurate decision on the correct word for a particular context.

6 This dictionary and its accompanying documentation (Mitton, 1992) can be downloaded from the Oxford
Text Archive: http://www.ota.ahds.ac.uk/

A Spellchecking Dictionary

 60

To update the frequency information in the dictionary I used word/tag frequency counts obtained

from the written section of the British National Corpus (World Edition), (Burnard, 2000). The BNC

is a hundred-million word corpus, compiled between 1991 and 1994, designed to represent a broad

range of British English usage in the late twentieth century. The written part, which makes up 90%

of the corpus, consists of samples from published texts such as newspapers, academic books and

popular fiction, and less formal writing such as essays, letters and memoranda. In addition to

obtaining frequency counts for the existing words in the dictionary, I also listed words that occurred

in the BNC but were not included in the dictionary. Those occurring frequently were considered for

possible inclusion in the updated dictionary (discussed in Section 4.2.4).

Since the C5 tagset used for the tagging of the BNC does not correspond to the tagset used in

CUV2, I created a new tagset for each dictionary entry using the C5 tagset. In this chapter I will

first consider the requirements of a dictionary for computer spellchecking and then I will describe

the dictionary update.

4.1 Dictionaries and spellchecking
4.1.1 Word lists and non-word error detection
The most straightforward and widely used method for a computer spellchecker to detect non-word

errors is dictionary look-up (Mitton 1996). For a simple implementation the dictionary need be no

more than a word list. The spellchecker then looks up each word in the text to be checked in its list

and flags as misspelled any that are not found. The question to be answered at this stage is how

many and which words should be included in the list. If there are too few the spellchecker will

produce a large number of false alarms − flagging as errors words that are actually correctly spelled.

On the other hand, adding words to the dictionary increases the chance of accepting a misspelling.

Wether is the classic example; a spellchecker with wether in its dictionary would correctly accept

the wether ewe but would fail to get the errors in wether the wether be fine. However, a study by

A Spellchecking Dictionary

 61

Damerau & Mays (1989) found that when a rare word occurred it was more often the intended word

correctly spelled than a misspelling of some other word, which suggests that decreasing the

dictionary size disproportionately increases the number of false alarms. Mitton (1996) agrees that a

large dictionary is best but suggests some possible exceptions which might need special treatment

(such as cant and wont which are common misspellings of can't and won't) and points out the

danger of including highly obscure words.

Unless space is at a premium it is best to store all inflected forms of a word (for example, consider,

considers, considered, considering). However, dictionary size can be reduced by 'affix-stripping'

where only the stem, consider in this case, needs to be stored. The spellchecker then uses rules to

remove the suffixes before looking up the word. Prefixes (such as reconsider) can also be dealt

with in this way. Although this process has the advantage that it will accept words that may not be

in the dictionary, such as resale, care must be taken not to accept non-words such as unconsider.

The spellchecker's task is simplified if the dictionary contains all words in full.

4.1.2 Additional dictionary information
A simple wordlist is adequate for non-word error detection (flag any word not in the list as a

potential error) and can also be used to produce suggestions for correction by finding words that

closely resemble the misspelling (Damerau, 1964, Peterson, 1980, Pollock & Zamora 1984).

Suggestion lists for real-word errors (once they have been detected) can be produced in the same

way. However, such lists are likely to be long and include many unlikely or inappropriate words;

additional information, stored with each dictionary entry, is needed in order to prune such lists.

Word frequency and part-of-speech information can be utilised to promote common words and

remove syntactically inappropriate ones. In the latter case the spellchecker also needs to be

supplied with a part-of-speech tag table showing how often each tag is followed by each other tag;

words resulting in an unrecognized tag combination are then removed from the suggestion list.

Mitton (1996) describes a spellchecker that incorporates this process. It is also able to detect a

A Spellchecking Dictionary

 62

small number of real-word errors but is not as effective as a spellchecker that incorporates full part-

of-speech tagging (Atwell and Elliott, 1987).

In addition to homophone errors discussed in the previous chapter, the errors made by poor spellers

are often phonetically similar to the intended word, for example, the initial samples used in my

survey of spellcheckers (Pedler 2001a) contained musirls as a misspelling of muscles and one of the

spellcheckers suggested mussels as a correction. If it had used pronunciation information to

incorporate homophones, the intended word − muscles − might also have been included in the

suggestion list.

As well as tag and pronunciation information, CUV2 includes a syllable count for each word. I am

not currently making use of this but it could be of use in correcting errors resulting from the

omission of a repeated syllable in the middle of a word - probably spelt as probley or remembers

spelt as rembers for example - which is a common dyslexic tendency.

The updated dictionary that I produced - CUVPlus7 - retains the spelling, pronunciation, part-of-

speech tags and syllable count from CUV2 and in addition includes the C5 tags with word counts

from the BNC for each entry. The next section describes the process of producing this update.

4.2 Updating the dictionary
This section expands the presentation given in Pedler (2003b).

4.2.1 Counting words
The update to the dictionary was based on data obtained from the written section of the BNC

(World Edition). The first stage was to count occurrences and part-of-speech tags for each word in

CUV2. On the face of it this was a straightforward task. Look up each word in the BNC in CUV2;

if the word is found store the part-of-speech and increment the word count. However, although

generally word tokens (w-units) in the BNC correspond to orthographic words (Leech & Smith,

7 Also available from the Oxford Text Archive

A Spellchecking Dictionary

 63

2000), there are several cases that need to be given special consideration − hyphenated words,

enclitics, multi-word units, proper nouns and abbreviations.

Hyphenation

As there are no fixed rules for hyphenation in English the use of hyphens to form compound words

is inconsistent. There are over 5,000 hyphenated entries in CUV2 and around 70 entries for

common prefixes, such as multi-, re- and un-. The BNC treats hyphenated words as a single unit

and gives them an appropriate tag, for example, rose-bed is tagged as a noun, half-hearted as an

adjective. Both of these words (and many of the other hyphenated entries in CUV2) also appear in

their 'solid' form - rosebed, halfhearted - in the BNC but are not listed as such in CUV2.

Conversely, compound words such as keyring are entered in 'solid' but not hyphenated form in

CUV2 while appearing in both forms in the BNC. The question of how compound words should be

entered in a dictionary is discussed further below but at this stage they were simply counted in the

form in which they appeared in CUV2.

Enclitic forms

In general a w-unit in the BNC is a sequence of characters delimited by white space. However over

sixty contracted forms are broken into their component parts, each of which receives its own tag

such as can't (ca+n't), 'twas ('t+was). These are all shortened forms apart from cannot (can+not).

There are also seven trailing enclitics that can be attached to nouns or pronouns, for example 'd (e.g.

I'd) and 'll (e.g. they'll). Leech & Smith (2000) give a complete list. This approach allows the part-

of-speech tagger to assign a tag to each grammatical item in the text but it is useful for a dictionary

to include common enclitics as entries in their own right. For example, there is often confusion

over the spelling of they're, their and there (Pedler 2001b) and the shortened form they're is

included in CUV2. Contracted forms in the BNC that had entries in CUV2 were recombined and

given a compound tag such as PNP+VBB (personal pronoun + present tense of BE) for they're,

VM0+XX0 (modal auxiliary + negative particle) for can't.

A Spellchecking Dictionary

 64

Multi-words

In contrast to the enclitic forms where a single orthographic unit is split into two or more w-units,

multi-words are combinations of words that logically form a single unit − adverbial phrases such as

a bit, in addition to, complex prepositions such as in need of, save for and naturalised foreign

phrases such as a posteriori, chilli con carne. Leech & Smith (2000) list almost 700 such

combinations which are tagged as a single w-unit in the BNC. Those that also had entries in CUV2

(mainly foreign phrases) were counted and those that didn't were ignored. Over a third of CUV2's

multi-word entries do not correspond to the BNC list. A large number of these are place names,

discussed further below.

Proper nouns

Words tagged as proper nouns in CUV2 are common forenames and place names. Many of the

latter are multi-word entries. Use of the NP0 (proper noun) tag in the BNC is largely confined to

personal and geographical names but no proper nouns are processed as multi-word units. This

means that a place name such as Cape Town, which has its own entry in CUV2, is split into two

units in the BNC − <w NP0>Cape <w NP0>Town. Multi-word proper nouns such as this could

not be matched with their occurrences in the BNC unless each w-unit with an NP0 tag was

processed as a special case. If it matched the start of a CUV2 multi-word proper noun the following

word would then need to be checked to see if it completed the word. Although this would not have

been impossible it seemed an unnecessary complication and would have considerably lengthened

processing time. Thus no frequency counts were obtained for the multi-word proper noun entries in

the dictionary. An additional consequence was that a large number of words in the dictionary that

are not proper nouns in their own right (such as cape and town from the example above) were

recorded as having an NP0 tag which needed to be removed when the tagsets were created.

A Spellchecking Dictionary

 65

Abbreviations

The BNC tags abbreviations as if they were written in full with no indication that the word is a

shortened form. CUV2 uses a separate abbreviation tag indicating that the word is an abbreviation

together with the part-of-speech of its full form. This is useful for text processing programs that

need to be able to distinguish between the use of a full-stop as a sentence delimiter and its use as an

abbreviation marker. As the updated tagsets use the BNC tags this distinction is no longer made.

However, since the CUV2 tags are retained this information can still be retrieved.

Tagging ambiguity

The majority of the w-units in the BNC are given a single part-of-speech tag but in cases where the

tagger could not reliably decide between two possible tags for a word an ambiguity tag was

assigned. This consists of the two tags in question with a hyphen between them, the first of the two

being the preferred tag. For example, a tag AJ0-NN1 indicates an ambiguity between adjective and

noun with the preference being for an adjective whereas a tag NN1-AJ0 indicates that the preferred

assignment is noun. Such tags have their place in a corpus but are not relevant for a dictionary. In

all such cases the first tag was used for the frequency counts.

4.2.2 Ranking the words
After obtaining counts for each word in the dictionary, the list was sorted in descending order of

frequency. Not surprisingly, the, with over 5.6 million occurrences, was in first place, followed by

of (2.7 million), and (2.3 million) and a (1.9 million). As might be expected, a comparison of the

first twenty words in my listing corresponds (with slight differences in ranking) to the rank

frequency list for the written section of the BNC in (Leech et al., 2001). The counts cannot be

directly compared for several reasons; differences in the later version of the BNC used for this

work, differences in the treatment of the special cases outlined above, and the combination of some

parts-of-speech (such as past participle and past tense) in Leech et al.'s (2001) lists.

A Spellchecking Dictionary

 66

Ranking the words by raw frequency may make sense for the first few very common words where

there is a clear difference in the number of occurrences but, as Kilgarriff (1997) demonstrates,

counts for words beyond the few thousand most frequent are highly dependent on the corpus used.

Table 4.1 shows how the difference in frequency between adjacent words decreases as we go down

the list of the top 500 words. For the most frequent words the difference is in millions, after 100

words the difference is in thousands, after 200 in hundreds, dropping to less than ten after the 500th

ranked word. Rather than include these absolute counts as the frequency information in the

dictionary I used the rounded frequency per million figures shown in the fourth column of the table.

These retain the differentiation between the first few hundred common words while grouping

together words with similar frequencies such as turned and held.

Ranking Word Count Frequency
per million

1 the 5,617,462 64,569

2 of 2,728,483 31,362

3 and 2,350,004 27,012

...

99 did 71,130 818

100 one 66,564 765

101 over 65,543 753

...

199 men 34,618 398

200 given 34,480 396

201 high 34,302 394

...

499 former 16,346 188

500 turned 16,300 187

501 held 16,291 187

Table 4.1: Decreasing difference in frequency with increase in ranking

A Spellchecking Dictionary

 67

Rare words

Around 7,000 of the words in CUV were not found in the BNC (over half of these were already

tagged as rare); about 10,000 <word, tag> pairs occurred just once and about 6,000 twice only.

There is really little difference in the rarity of these words. Some of those not found in the BNC

might well occur in another corpus while that corpus might not contain words found in the BNC.

They were all given a frequency of -1 to differentiate them from the other words that occurred less

than once per million which received a frequency value of 0.

4.2.3 Creating the tagsets
An initial tagset was created for each word by grouping together all tags recorded for the word,

together with their frequency. Several stages of refinement were then required before the

completed tagsets could be added to the dictionary. The tagging accuracy of the BNC is estimated

to be just over 98% (Leech et al., 2001) but even this low level of mistagging resulted in a large

number of inappropriate <word, tag> combinations being recorded. For example there, which

should have two tags − EX0 (existential there) and AV0 (adverb) − initially had 12 additional tags

assigned to it, including noun, personal pronoun and modal auxiliary verb. The counts for these

superfluous tags were insignificant compared to those for the 'genuine' tags so, for all words that

had more than one tag, any tag that accounted for less than 1% of the total occurrences was

removed.

Although the parts-of-speech used in CUV2's tagsets do not correspond exactly to those used in the

BNC it is possible to map reasonably accurately between the two.8 The majority of the BNC tags

that did not have a corresponding tag in CUV2 were removed. Some exceptions to this were verb

participles which are commonly used adjectively (such as massed and matching which are both

tagged more frequently as an adjective than a verb in the BNC but are only tagged as a verb in

8 A detailed consideration of the differences between the two tagsets is given in the CUVPlus dictionary
documentation , Appendix A.

A Spellchecking Dictionary

 68

CUV2) and nouns that can also function as adjectives (such as amateur which only has a noun tag

in CUV2 but is more commonly tagged as an adjective in the BNC).

This process resulted in the removal of all tags for some entries. Many of these were rare words

that were presumably not in the 50,000-word lexicon used by the tagger and so had been tagged by

other rules. For example, nouns ending in -er such as lounger and kroner had been tagged as

comparative adjectives, adjectives ending in -ed (e.g. unprecedented) as verb past tense or

participle, plural nouns (e.g. intangibles) as -s forms of verbs and so on. These were given C5 tags

corresponding to the CUV2 tags with a frequency of -1. Many common nouns also function as

proper nouns in some contexts, such as: surnames (bush, gable, thatcher); titles (aunt, detective,

friar); parts of place names (canyon, valley, ocean); company names (dell, sharp) and so on. Proper

noun tags were removed from such entries.

Letters of the alphabet were among the most prolifically tagged entries. In CUV2 they are tagged

as singular (e.g. f) or plural (e.g. f's) nouns. The default tag for alphabetic symbols in the BNC is

ZZ0 but they are also assigned other tags if more appropriate in the context, Leech & Smith (2000)

give several examples. In the updated dictionary I have assigned the ZZ0 tag to all singular letters

of the alphabet, apart from those that also function as other parts-of-speech such as I (personal

pronoun) and a (article) which have both tags. Plural letters in the BNC are also often tagged ZZ0

(although sometimes the enclitic is tagged separately). To retain the differentiation between the two

forms I decided to use a ZZ2 tag for these (as in the UCREL C6 tagset) which is in keeping with the

way plural nouns are tagged (NN2).

Tagsets were created for words in the dictionary that had not occurred in the corpus by mapping the

existing CUV2 tags to their corresponding BNC tag. As hyphenated forms in the BNC are always

tagged as single units there is no need for a prefix tag but as prefixes have their own entries in

CUV2 I created an additional tag − PRE − for these. The completed tagsets were cross-checked

A Spellchecking Dictionary

 69

with the original CUV2 tags to make sure that all relevant parts-of-speech had been included for

each entry.

4.2.4 Adding Entries
Although CUV2 provides an adequate level of coverage for most general-purpose spellchecking

tasks, the age of the dictionary means that some fairly common words in modern usage are not

included. As well as storing tag frequency counts for all the words included in CUV2, I also stored

<word, tag> pairs from the BNC that were not found in the dictionary, together with a count of the

number of times they occurred. This enabled me to check for any notable omissions and create new

entries for them.

The task of producing a list of words that might usefully be added to the dictionary was potentially

enormous. However, not all w-units correspond to words in the lexicographic sense so several

types could be excluded from consideration: strings containing digits; units tagged UNC

(unclassified); those tagged CRD (cardinal number e.g. ii, twenty-one) or ORD (ordinal number

e.g. nth, twenty-first); capitalised strings (often abbreviations or acronyms). Enclitic and

hyphenated forms were also ignored because of the ambiguities discussed above. Proper nouns and

multi-words were considered separately. For the remaining words I considered only those that

occurred more than ten times in the BNC which left around 2,000 to inspect. In some ways this

choice of frequency was fairly arbitrary but it reduced the list to manageable proportions given the

time available and seemed adequate to pinpoint any major omissions.

This shortlist was manually checked to remove unsuitable entries. A non-word − emailinc (with

969 occurrences) − was second in the list. This appears as part of an email header and, despite its

high frequency, its use is restricted to just seven documents (around 200,000 words in total)

consisting of contributions to the Leeds United Football Club mailing list. This demonstrates the

way in which a high incidence of use of an unusual word in a restricted domain can skew the

overall frequency count. Other entries that would be inappropriate for a spellchecker's dictionary

A Spellchecking Dictionary

 70

were also removed, for example (with frequency counts in parentheses): misspellings (e.g.

faithfullly (31)); American-English spellings (e.g. judgment (348)); interjections (e.g. huh (175),

hmm (156)); specialist terms (e.g. unix (222)); medical terms (e.g. mucosa (197), pancreatitis (76));

slang (e.g. caf (84), dosh (23)); abbreviations (e.g. plc (228), mins (227)).

A large number of 'solid' compound words in the list (e.g. ceasefire (107), holidaymaker (12),

turnout (27)) were already in CUV2 in hyphenated form. As discussed earlier, it is difficult to

make a consistent decision about how such words should appear in a dictionary but it seems

unnecessary to include both. In general hyphenated forms are probably more useful for a

spellchecker as it is easier to remove a hyphen than it is to insert it. However, this question was not

considered further at this stage. Counts for the hyphenated frequencies of the examples above −

cease-fire (51), holiday-maker (19), turn-out (70) − give no clear evidence as to which form is more

commonly used. Further investigation might well reveal that it is simply a matter of individual

style or preference. Compound words in the list (such as goodnight or lifestyle) could equally

acceptably be hyphenated but have been entered in their solid form.

After this pruning stage 506 words remained in the list. Table 4.2 lists the top ten.

Word/Tag N. Occurrences

organisation (NN1) 1201

organisations (NN2) 733

database (NN1) 403

goodnight (ITJ) 316

workforce (NN1) 291

lifestyle (NN1) 260

wildlife (NN1) 234

accountability (NN1) 210

profitability (NN1) 210

databases (NN2) 205

Table 4.2: Top ten new entries

A Spellchecking Dictionary

 71

The top two words - organisation and organisations - are accompanied by the rest of their 'family'

lower down the list − organised (127), organiser (120), organisers (72) organise (24) and

organising (12). This highlighted a general problem with the groups of words that can take an -ise

or -ize suffix. CUV2 only includes -ize forms although (as Appendix 3 of the OALDCE remarks)

the -ise form is equally acceptable. Overall 80 of the words in the list were of this type with several

others appearing near to the top − realised (163), recognised (194), and privatisation (181). Similar

words, such as formalize, legalize, have entries in CUV2 but do not appear in their -ise form in my

BNC list. Altogether there are 200 such groups of words in CUV2. As it would be inconsistent to

add entries for some and not others, these were dealt with as a special case and -ise entries created

for them all. In all cases, apart from equaliser (possibly another football-influenced entry), -ise

forms were less frequently used in the BNC.

Database would have been a specialised term in 1974 when the OALDCE was compiled. Other

words in the list are also associated with our move into the information age: camcorder (16), fax

(NN1: 178, VVB: 72), modem (32), modems (18), workstation (137), workstations (136). It is also

interesting to note the inclusion of gender-neutral words, which these days are regarded as more

'politically correct' − for example, chairperson (17) headteacher (21) − although they are still

outnumbered in the BNC by their gender-specific counterparts (already in CUV2): chairman

(9379), headmaster (1067) and headmistress (225).

Proper nouns

Around 400 proper nouns not in CUV2 occurred more than 80 times in the BNC. The majority of

these were surnames, the most frequent being Jones (492) and Wilson (393), which are not

appropriate in a dictionary. Forty proper nouns were added to the dictionary. Two of these Asia

(427) and Birmingham (375) were surprisingly omitted from CUV2. Others are places that were

not nation states when the previous dictionary was produced − Bosnia (249), Croatia (149) and

Serbia (97).

A Spellchecking Dictionary

 72

Multi-words

The majority of multi-word entries in CUV2 are place names and naturalised foreign phrases.

There were thus no matches for a large number of the BNC multi-words discussed above. Although

a spellchecker that uses white space as a word delimiter will process such entries as two words

during the detection stage, the corrector may make use of the multi-words, for example it will

process "Hong Kang" as two words but may propose "Hong Kong" as a correction. It may also use

these multi-words to correct errors on short function words that are often mistakenly run together

(such as alot where a lot was intended (Mitton, 1996)). Thirty-five such entries were added to the

dictionary.

In total 1669 new entries were added to CUVPlus. Pronunciation and CUV2 tags have been added

to each of these. For the -ise entries these are identical to the existing -ize entries. Pronunciations

for the multi-word entries are a combination of the pronunciation for the individual words and they

have been given CUV2 tags corresponding to their definition in the BNC (for example, at all is

tagged as an adverb, out of as a preposition). For all other entries these fields were created

manually.

4.3 Conclusion
The task of updating the dictionary highlighted many of the problems involved in reverse

engineering a dictionary from a corpus. There are still improvements that could be made, in

particular taking a consistent approach to the compound word entries, the tagging of abbreviations

and a more detailed consideration of proper noun entries. However, the end product was an

enhanced dictionary with accurate word frequency information and a well-known tagset. The

additional entries have improved the coverage of the dictionary but the fact that less than a hundred

of the words added had a frequency of more than one per million in the BNC suggests that existing

coverage of CUV2, despite its age, is still fairly comprehensive.

A Spellchecking Dictionary

 73

Although it took some time and effort to produce, the enhanced version of the dictionary, CUVPlus,

is a useful resource which should have lasting value. As well as providing me with the tag

frequency information required by my spellchecker, it has also been uploaded to the Oxford Text

Archive and has already proved useful in other research − for example, in the development of a text

expansion system for disabled users (Willis et al., 2005). Full details of the dictionary, together

with the tagsets used, can be found in its accompanying documentation (included as Appendix A).

 74

Chapter 5: Creating Confusion Sets

One of the main attractions of the confusion set approach to real-word error checking is that it

offers the possibility of both detecting and correcting the error; once the spellchecker decides that a

word is incorrect there is a ready-made suggestion list available. The converse of this is, of course,

that it will only detect errors that occur for predefined words and that it can only suggest corrections

from a predefined list of possible confusables. Many early experiments used around twenty sets

(mainly pairs) of confusable words taken from the Random House list of commonly confused words

(Flexner, 1983). Although these sets were adequate to develop and test the proposed methods, they

obviously provide insufficient coverage for general purpose spellchecking. Golding and Roth

(1996) acknowledge this limitation and comment that "Acquiring confusion sets is an interesting

problem in its own right..." Subsequently Carlson et al. (2001) scaled up their approach to use 265

confusion sets containing just over 500 words. They describe this as a first step toward creating a

"practical system" which, they suggest, would need "a coverage of thousands of words". This

chapter describes the process of creating a collection of almost six thousand confusion sets for use

by my spellchecker.

5.1 Creating the sets

How can we create confusion sets that represent the types of error that people actually make? One

approach is to derive them from a corpus of errors (Pedler, 2003a). This is not a particularly

productive approach for more than a few sets. (I only used eight for my preliminary experiments.)

Real-word error data is sparse and difficult to obtain and, beyond a handful of common confusables

frequently used in experiments − {their, there, they're}, {to, too, two}, {your, you're} and the like −

the majority of the errors occur just once and many do not seem to be suitable candidates for

confusion sets − fowling as a misspelling of following or petal as a misspelling of petrol, to take two

examples from my corpus.

Creating Confusion Sets

 75

An alternative is to find a method to automatically generate sets and then use the error corpus as a

reference to check how far they are applicable to the types of error we are aiming to correct. This is

the approach adopted here.

5.1.1 Listing confusable pairs
Roger Mitton's spellchecker (Mitton, 1996) ranks its suggestion lists using a string to string edit-

distance algorithm based on a directed network - often referred to as the Viterbi algorithm in the

NLP literature. This assigns a cost to each insertion, deletion or substitution operation required to

transform one string into another; the lower the total cost, the more similar the strings. The network

has been tuned, using a large collection of non-word errors, to assign a lower score to the type of

mistakes that users are likely to make than to those that would be considered unlikely. For instance,

using Mitton (1996)'s example, inserting the missing c in sissors (scissors) would have a lower cost

than it would in satter (scatter) on the grounds that people are more likely to omit the c from

scissors than the c from scatter. To produce an initial list of possible confusables, this program was

run over the dictionary, comparing each word with every other word and storing the pairs which

scored less than a predefined threshold.

The resulting list contained just over six thousand pairs of words. These were in the form of <a,b>

word pairs with each pair listed once; thus, for example, the list included the pair <bad, bade> but

not the pair <bade, bad>. Although the pairs were unique each individual word could occur more

than once either as word a or as word b. Bad, for example, appears five times as a word a; it is also

paired with bard, bawd, bed and bid; write is a word b in the pair <writ, write> and a word a in the

pair <write, writhe>. The order in which the words appear in these pairs and whether they appear as

word a or word b is simply a function of the ordering of the words in the dictionary. At each

iteration the program only compares words coming later in the dictionary. Take the write example

given above, writ appears before write in the dictionary so the program produces the pair <writ,

write>. It doesn't find any other suitable confusables for writ so moves on to consider the next word

Creating Confusion Sets

 76

in the dictionary − write. It only checks words coming after write in the dictionary so finds the pair

<write, writhe>.

A number of pairs in this initial list were unsuitable for inclusion in confusion sets – proper nouns,

prefixes, abbreviations and variant spellings (e.g. <mama, mamma>, <whisky, whiskey>). Such

pairs, together with those such as <fain, faun> and <groat, grot> where both members are rare,

were removed programmatically. The list also included some pairs of words which are almost

synonymous, such as <artist, artiste>, <babes, babies>, <waggle, wiggle>. Although one of the

members of such pairs might be considered more appropriate in a particular context, a computer

spellchecker would be unlikely to be able to discriminate between the two. As there was no way of

identifying such pairs automatically, they were removed by manually pruning the list.

There were also some notable omissions from the list. Some of these were commonly confused

pairs such as <from, form> (presumably omitted because of the relatively high cost assigned to

transpositions), <cant, can't> and <were, we’re> (apostrophes had not been considered by the list

generation program). Additionally, words differing in their first letter had not been considered as

possible candidates for the initial list as the first letter of a misspelling is generally correct

(Yannakoudakis & Fawthrop, 1983; Pollock & Zamora, 1984). However, although this is a

reasonable assumption in general, it does not hold true for words beginning with silent k's or w's, −

<knight, night>, <know, now>, <wholly, holly>, <write, rite> and so on − which often cause

problems for poor spellers. Words such as these were manually added to the list to rectify these

omissions.

After several iterations of pruning and addition I rewrote the list with each pair appearing twice,

both as an <a, b> pair and a <b, a> pair - both <rite, write> and <write, rite> were included in this

list, for example. This was easier to use since each word was in its alphabetical position as a word

a. At this point there were around nine thousand pairs in the list.

Creating Confusion Sets

 77

5.1.2 From pairs to sets
To create the confusion sets from the pairs, each word a was taken as a headword and all the word

b's with which it was paired became its confusion set; the number of times each word appears as a

word a represents the number of members in its confusion set; so, for example, write, which is

listed five times as a word a would end up with five members in its confusion set − {right, rite, writ,

wright, writhe}. When the spellchecker encounters write in a text it will attempt to decide whether

write or one of these other words was actually what the user intended. A point to note is that,

although write is considered to be confusable with each member of its set, the members of the set

are not necessarily confusable with each other. So, for example, if the spellchecker encounters writ

we don't necessarily want it to check whether right might be the intended word (in fact in this case

we would probably not want it to as it seems an unlikely confusion − writ's confusion set contains

just one word - write). Here it is the headword that triggers the spellchecking routine and its

confusion set defines the alternative words to be considered when this particular headword appears

in the text. When one of the confusables itself appears it will be considered in conjunction with its

own confusion set.

Unlike the sets used by Carlson et al. (2001) and the earlier work which it extends (Golding and

Roth (1996); Golding and Roth (1999)), sets of this type are not symmetric; they are more akin to

the type of sets used by Mays et al. (1990). This 'headword: confusion set' structure seems to be

more flexible when a large number of words are to be considered. Using symmetric set

construction the words in a confusion set are all considered to be confusable with each other and the

appearance of any one of them in the text means that all other set members are considered to be

possible alternatives. If we used the write set discussed above in this way, we would consider all

the words right, rite, writ, write, wright, writhe, whenever any one of them appeared in the text, but

this is not necessarily what we want to do.

Creating Confusion Sets

 78

Another feature of non-symmetric sets is that a word can appear as a headword but not as a

confusable or vice-versa. This is useful when the confusion is between a highly frequent word and

a relatively rare one − <your, yore> or <world, wold>, for example. In such cases we will give the

spellchecker a lot of (largely unnecessary) work, and also increase the possibility of it making

mistakes, if we check whether the rare word was intended every time we encounter the more

frequent one. In other words, we would like to check whether your was intended when we come

across yore but not check every occurrence of your to see whether yore would be more appropriate.

To achieve this, I removed all pairs where the word a had a per-million frequency <= 1 and the

word b a per-million frequency of >= 100.

I took a similar approach with confusables containing apostrophes − Mitton (1996) notes that these

are commonly omitted but less often inserted. Pairs where word a was a contracted form (e.g.

aren’t, he’ll, who’re) were also removed. So, for example the final list contained the pairs <aunt,

aren’t>, <hell, he’ll> and <whore, who’re> but not the pairs <aren’t, aunt>, <he’ll, hell> or

<who’re, whore>. Two exceptions to this were the commonly confused pairs <its, it’s> and <your,

you’re> that were included both as <a ,b> and <b, a> pairs.

These two stages removed just over a thousand pairs leaving a total of 7876 pairs. Creating sets

from these pairs resulted in a total of 5942 headwords with between one and five words in their

confusion sets as shown in Table 5.1.

Set size N. sets Percentage

1 4461 75%

2 1063 18%

3 386 6.5%

4 29 0.49%

5 3 0.05%

Total Sets 5942 100%

Table 5.1: Confusion set sizes

Creating Confusion Sets

 79

The three largest of these sets are shown in Table 5.2 below. (Note that write, which originally had

five words in its confusion set now only has three as <write, wright> and <write, writhe> were

among the <frequent, rare> pairs removed in the process described above − thus it does not appear

in the list below.)

Headword Confusion set

sit sat, set, shit, site, suit

ware war, wear, were, where, wire

were ware, we're, where, wire, wore

Table 5.2: Three largest confusion sets

Once the list of sets was finalised, each set was appended to the appropriate dictionary entry as

shown below:

write|0|raIt|J5%|VVI:63,VVB:35|1|right,rite,writ

The process of creating sets used here may be similar to the method used by Carlson et al. (2001)

which they describe as "using simple edit distance in both the character space and the phoneme

space". The majority of their 265 confusion sets were pairs but 20 contained three words and one

contained four. Their complete list is not available so I have been unable to compare it to mine.

However, their paper gives detailed consideration to 19 of the sets and the majority of these also

appear in my list. Those that don't are grammatical/word confusion errors which are not of the type

I am aiming to correct - <among, between>, <fewer, less>, for example. The notable difference

between their sets and mine is that theirs are symmetric.

5.2 Appropriateness for the task

To assess how applicable these confusion sets might be for correcting the types of error made by

dyslexics, I compared the generated list with the errors from the dyslexic error corpus. As

described in Chapter 3, the corpus contains 493 distinct <error, target> pairs, several of which occur

frequently, giving a total of 820 errors overall (Table 3.2). Around 20% of these errors were noun

Creating Confusion Sets

 80

or verb inflection errors which are not suitable candidates for inclusion in confusion sets. This

gives three possibilities for the error pairs in the corpus:

• both error and target are members of one of the spellchecker’s confusion sets − the

spellchecker could be expected to have some success with correcting these errors;

• the error is the headword of a confusion set but the target is not one of the set members −

the spellchecker may spot an error here but it will not be able to suggest the correct

replacement;

• the error is not a confusion set headword (although the target may be either a headword or

a member of another confusion set) − the spellchecker will simply ignore such errors.

A subset of each of the last two groups is where the members of the pair are different inflected

forms of the same noun or verb and therefore do not figure in a confusion set, though they could be

considered by an inflection checker.

Table 5.3 shows the proportion of the errors in the corpus falling into each of these categories for

both error types (considering each error pair once) and error tokens (the overall number of error

pairs appearing in the corpus). Overall, almost eighty percent of the error tokens in the corpus

would be considered by the spellchecker, although it would only be able to propose the correct

replacement for around three-quarters of these errors.

 Types Tokens

In confusion set 44% 58%

Target not in confusion set 27% 20%

 (Inflection error 10% 8%)

Error not headword 29% 22%

 (Inflection error 13% 9%)

Total (100%) 493 820

Table 5.3: Coverage of corpus errors

Creating Confusion Sets

 81

The majority of the pairs that the spellchecker could not correct by the methods proposed above

occur just once in the corpus. Those occurring more frequently are listed in Table 5.4. The striking

thing about this list is the number of short function words it contains and the number of different

permutations in which they occur, which again confirms earlier findings that these words are

particularly problematic. However the confusion set approach does not seem appropriate for such

errors. The most frequently occurring of these pairs - <a, an> - is an exception to this since the

appropriate choice between them depends solely on whether the following word starts with a vowel

or a consonant. The, the most frequent word in the language appears in second place with four

occurrences as a misspelling of they. It also appears among the once-only pairs as a misspelling of

that and there, suggesting that users have a tendency to produce the in place of other th- function

words. Attempting to apply the confusion set approach to this collection of words would clearly not

be productive. Correct usages of the must overwhelmingly outnumber the error usages and to check

every occurrence as a potential error would be more likely to raise false alarms than to produce

corrections. Function words in general do not seem amenable to the approaches I am proposing.

It is debatable whether some of the words in the list should be considered as spelling errors at all −

producing i for it is clearly a slip; u for your could be considered 'shorthand' of the type that is used

in text messages; cause is probably intended as a colloquial version of because.

This leaves just three pairs that seem possible candidates for future inclusion in the list of

confusables - <easy, easily>, <mouths, months> and <no, know>.

Creating Confusion Sets

 82

Error not confusable
headword

Target not in confusion set

Pair Frequency Pair Frequency

a, an 17 an, a 4

the, they 4 cause, because 3

is, his 2 as, has 2

is, it 2 easy, easily 2

i, it 2 for, from 2

u, your 2 in, is 2

 mouths, months 2

 none, non 2

 no, know 2

Table 5.4: Errors occurring more than once in the corpus but not included in confusion set
listing

5.3 Using the sets for spellchecking

At runtime, when the spellchecker finds one of the headwords in the text, it will retrieve the

associated confusion set from the dictionary and use some process to decide whether one of these

confusables is more likely to be the word the user intended. As noted previously, this process can

be based on syntax, semantics or any other aspect of the surrounding text. Although syntax-based

methods are only able to make a decision when the headword and confusable differ in their parts of

speech, they are the most straightforward to implement and have been shown to have good

performance in cases where the error causes a syntactic anomaly (Atwell and Elliott, 1987; Golding

and Schabes, 1996).

Previous analysis of the errors in my corpus had shown that a high proportion of them were likely to

be amenable to a syntax-based approach; 66% of the <error, target> pairs had distinct part-of-

speech tagsets and a further 24% differed in some but not all parts-of-speech, leaving just 10% with

identical tagsets that would be indistinguishable syntactically (Table 3.10). A similar comparison

of the tagsets of the generated confusable pairs shows that a far smaller proportion (just under a

third) have distinct tagsets while almost half have some but not all part-of-speech tags in common

Creating Confusion Sets

 83

and about a quarter have matching tagsets (Table 5.5). These different proportions can largely be

accounted for by the number of inflection errors in the corpus which would have contributed to the

high count for the distinct tagsets in the corpus error pairs but did not feature in the generated sets,

as inflection errors were not considered as candidates for the confusion sets. However, a syntax-

based approach would still be appropriate to distinguish between three-quarters of the confusable

pairs.

Tagset type N. Pairs Percentage

Distinct 2330 30%

Overlap 3606 46%

Match 1940 24%

Total Pairs 7876 100%

Table 5.5: Tagset types for confusable pairs

The distinction between matching, overlapping and distinct tagets becomes slightly more

complicated when there are two or more words in the confusion set. In this case, sets can only be

considered distinct if the headword differs in its parts-of-speech from each of the words in its

confusion set and each of the words in the set are distinct from each other. In general, the larger the

set, the less likely this is to apply.9 Consider the tags for far and its associated confusion set {fair,

fare, fear, fur}, illustrated in Table 5.6, for example.

Confusable AJ0 AV0 NN1 VVB/VVI

far

fair

fare

fear

fur

Table 5.6: Part-of-speech tags for far and its associated confusion set

9 An exception is the five member set for were, listed above, where all tagsets are distinct. This is largely
because were itself has just one tag - VBD, past tense of BE - which only belongs to one other word - was -
and also because the contracted form we're has a combination tag - PNP+VBB.

Creating Confusion Sets

 84

If we pair far with each of its confusables individually there are three distinct pairs <far, fare>,

<far, fear> and <far, fur> and one overlapping pair − <far, fair> which suggests that syntax might

help with making a decision. However, two of the confusables − fare and fear − have matching

tagsets − both noun and verb − and the noun tags for the other two − fair and fur − overlap these. A

syntax checker alone would be unable select between them. If it came across far in the text and

decided that a noun or verb tag was more probable than an adverb or adjective, the best it could do

would be to flag far as an error and propose a list of possible corrections − four if it preferred a

noun or two if it preferred a verb. On the other hand, even if it selected one of far's tags − adverb or

adjective − it could not accept far as correct since fair would be equally grammatically acceptable.

The foregoing discussion has not considered how the syntax checker might arrive at its decision.

For instance, if frequency was factored in it would prefer far (319) to fair (20) as an adverb

although the distinction is less clear for an adjective − far (62), fair (78). However, this is not the

place for a detailed consideration of the syntax checking process − that will be discussed in Chapter

8. This example is simply intended to illustrate some of the problems that can occur with larger

confusion sets. It also demonstrates that even though a syntax checker might not be able to make a

final decision for a set such as this, it could at least reduce the number of words left for

consideration by some other means. On this basis I planned to implement a two-stage checking

process using syntax followed by semantics.

5.4 Conclusion

I had now produced several thousand confusion sets and stored them in the dictionary ready for use

by the spellchecker. The method used to create the sets was based on an algorithm tailored to

produce accurate suggestions for non-word error correction which therefore might be expected to

simulate the types of error that users actually make. Comparison with the corpus showed that they

covered around three-fifths of the errors. How appropriate they would prove for their correction

Creating Confusion Sets

 85

could only be assessed once they were used for spellchecking. Before I could do that I needed to

prepare the text as described in the next chapter.

 86

Chapter 6: Preparing the Text for Spellchecking

Text tokenisation − the process of splitting a text up into its constituent parts − is an essential pre-

processing stage for all natural language applications. At a basic level, English words consist of

sequences of characters delimited by white space and sentences are made up of sequences of words

starting with an initial capital and ending with a full-stop, exclamation mark or question mark.

Applying simple rules such as these is adequate to identify the majority − over 90% − of words and

sentences in a text; but dealing accurately with the remainder is a non-trivial task. The accuracy

achieved will have an impact on further stages of processing but some tasks are more tolerant of

error than others; incorrect identification of sentence breaks will make little difference to the

performance of an isolated, non-word error checker but is likely to have an adverse effect on a real-

word error checker that needs to consider each word in the context of the sentence in which it

occurs.

This chapter first discusses some of the difficulties involved in automatically segmenting text into

words and sentences and then describes the way in which my spellchecker implements this process.

6.1 Automatic text segmentation
Text tokenisation is fraught with ambiguity and so difficult to achieve automatically. It is thus not

surprising that the tokeniser for the AMALGAM multi-tagger (Atwell et al., 2000) comes with the

caveat that this is a task "which really ought to be done by hand − or at the very least the tokenised

output should be verified by a human reader." However, although this may be practical, and even

desirable, for a small corpus which is to be stored in tokenised format for later processing, it is not

an option for a spellchecker that needs to integrate tokenisation into its checking routine. The main

areas of ambiguity are full-stops, abbreviations and capital letters (Booth, 1987; Mitton, 1996)

which cause difficulties with both word and sentence segmentation.

Preparing the Text for Spellchecking

 87

6.1.1 Words
Each space-delimited string can be regarded as a 'word' in the text. Some of these will be numeric

or alphanumeric strings and a few may be odd sequences of non-alphanumeric characters but the

majority will be lexical words. A tokeniser can generally remove punctuation characters attached to

the start or end of each word and store them as separate text tokens but full-stops and apostrophes

need special treatment. Full-stops, although they are more frequently used as sentence terminators,

also function as abbreviation markers while apostrophes, in addition to their more frequent usage as

an opening single quote, also mark the start of contractions − such as 'em or 'twas. In these cases,

the tokeniser's task is to distinguish between these two usages and decide whether the punctuation

mark should be stripped or left attached.

Words can also contain embedded punctuation. Apostrophes are used to indicate contracted forms

− can't, they're, she's − and the 's can also be a possessive marker. Plural possessives − the students'

essays − have a trailing apostrophe which needs to be distinguished from a closing single quote. A

tokeniser will often split word forms such as these into separate syntactic units − ca + n't or they +

're for example − which means that each part can be assigned its own part-of-speech tag. However,

common contracted forms such as these can often be a source of spelling errors and so words such

as can't and they're should be included as words in their own right in a spellchecking dictionary, as

they are in mine. If the spellchecker is to attempt correction of such errors these contracted forms

need to be left intact by the tokeniser. On the other hand, enclitic forms may also appear in

combinations not found in the dictionary − "I could've been a contender", "Chance'd be a fine

thing" or "Jim'll fix it". In such cases, the tokeniser should split the string so that the spellchecker

can check each part separately. When an 's is appended to a word it may indicate possession, as in

"mum's work is never done", or be a contraction of is or has - "mum's working hard" or "mum's

gone out". The BNC tokeniser strips the 's in both cases and assigns a POS (possessive) tag to the

first and a VBZ to the second whereas the AMALGAM tokeniser splits the contracted is or has but

Preparing the Text for Spellchecking

 88

regards the possessive as part of the word and leaves it attached - although the documentation notes

that this is a distinction which can be difficult to make. Although a tokeniser can use rules to deal

successfully with many contracted forms there will still be unrecognised slang or dialect usages,

particularly in direct speech, which will simply have to be left as a single form. The BNC takes this

approach to ain't, tagging the whole word as unclassified as no suitable tag could be found for ai.

Full-stops, as well as marking the end of abbreviations, can be embedded within them − U.K., i.e.,

for example. Identifying abbreviations is particularly problematic for a tagger and one of the main

causes of misclassified sentence boundaries (discussed further below). An abbreviation list is a

partial solution − CUVPlus includes over 300 although acronym and abbreviation dictionaries

available on the Internet − such as http://www.acronymfinder.com/ − list more than three million! It

would be impractical for a tokeniser to use such a large list and, even if it could, however large the

list, it would be unlikely to account for all possibilities. The best approach would seem to be to use

a small list of the most common abbreviations combined with morphological rules to attempt to

recognise the rest.

The problems here are that for almost every rule we can easily find an exception and that the same

abbreviation may appear written in several different ways − N.A.T.O., NATO and Nato all seem

acceptable, for example. As acronyms such as this are generally pronounced as a word − "nay-toe"

− rather than being spelled out, there is a tendency to omit the internal periods, and in some cases

the acronym may become a word in the language in its own right - such as radar (which, as few

people now remember, was originally an acronym for radio detection and ranging). Nevertheless,

in most cases acronyms will appear as a sequence of uppercase letters, optionally including internal

or trailing periods so this might suffice for an initial definition. However, many acronyms coincide

with common words − AIDS, for example − and a distinction needs to be made between the

acronym and an uppercase usage of the word - for emphasis or as part of a heading, for instance. In

addition, several common abbreviations − in. (inch) or no. (number), for example − are also high

Preparing the Text for Spellchecking

 89

frequency dictionary words in their own right and are likely to cause problems if they occur at the

end of a sentence.

Because of the difficulty of defining rules to recognise abbreviations it may be more productive to

dynamically infer them from the text as proposed by Mikheev (2002). A useful feature here is that,

at least in fairly formal writing, less common acronyms are generally defined the first time they are

used. For example, the acronym PAP which appears frequently in the first file of the FLOB corpus

(Hundt et al., 1998, discussed further in Section 6.2.5 below) − largely made up of news articles − is

written in full the first time it is used − " Singapore's ruling People's Action Party (PAP)...". Future

use of PAP can now be assumed to be the acronym rather than an upper-case usage of the common

noun pap. (In practice, the program would assign a probability to this based on whether the word

also occurred in its lower-case form in the corpus.) Although such methods have been shown to

increase the number of abbreviations correctly identified in large corpora they are likely to be of

less use for a spellchecker when it is checking a relatively short document.

Tokenisers may also convert the first word of a sentence to lower-case, unless it is marked as a

proper noun in the dictionary although, as the AMALGAM documentation notes, "This rule is not

failsafe." Many common nouns are also names − Bush, Thatcher, Gates and so on, as I had noted

when updating the dictionary − and so should not be treated in this way. Mikheev (2002) suggests

that this problem can be dealt with in a similar way to that for abbreviations described above.

Common nouns that appear with an initial capital in mid-sentence can be assumed to be functioning

as proper nouns, the proportion of capitalised to non-capitalised mid-sentence usage in the corpus

can then be used to assign a common/proper noun probability to such words when they appear at

the start of a sentence. Again, this is likely to be of more use when processing a corpus than it is for

spellchecking.

The question of hyphenated words was considered while updating the dictionary (Chapter 4).

However, although these may cause difficulties for a spellchecker or part-of-speech tagger, they are

Preparing the Text for Spellchecking

 90

not a problem for most tokenisers which simply accept the hyphen as an integral part of the word

and store the hyphenated form as a single token.

The discussion above suggests that there are three main ambiguities to be resolved:

• the use of the apostrophe to mark possessives, contractions and single quoted expressions;

• identification of abbreviations;

• initial capitalisation of words at the start of a sentence.

Incorrect recognition of the role of an apostrophe is liable to cause difficulties for a tagger or

spellchecker when it comes to process the tokenised text but it does not affect the tokeniser's ability

to segment the text into sentences. On the other hand, decisions about abbreviations and

capitalisation have a direct impact on this, so much so that Mikheev's application treats them as an

integral part of the sentence boundary recognition task.

6.1.2 Sentences
Once the tokeniser has split the text into words, it needs to group these words into sentences. The

most basic method of doing this is to treat all full-stops, exclamation marks, or question marks (and

possibly also colons and semi-colons as the AMALGAM tokeniser does) as sentence delimiters

when they are followed by white space and an upper case letter. Although this “period-space-

capital letter” rule will apply in the majority of cases, Mikheev reports that 5 - 6 % of the sentence

breaks in two large corpora were incorrectly identified using this method.

The main cause of error is, unsurprisingly, the ambiguity of the full-stop, as discussed above, but, as

Mikheev notes, exclamation marks and question marks can also be integral parts of words as in

Yahoo! (the search engine) and Which? (the consumer magazine). A method to automatically infer

these from the text being tokenised could help with recognition. But although such cases may cause

problems, in general it is full-stops that the tokeniser needs to disambiguate. Once it has recognised

that a word is an abbreviation (using some combination of the methods discussed above) it needs to

decide whether the abbreviation itself is also the last word in the sentence, in which case the full-

Preparing the Text for Spellchecking

 91

stop also indicates a sentence boundary, or whether the words following it are a continuation of the

same sentence. In most cases it can make this decision based on whether the next word has an

initial capital − insert a sentence break if it does, otherwise continue the sentence. However, we

need to include an exception to this rule for titles − Mr., Dr. and the like − which are almost always

followed by a proper noun and would not be expected to occur as the last word of a sentence, and

we should probably also include i.e. and e.g. in the list of non-sentence breaking abbreviations.

As the considerations introduced above show, the sentence boundary/initial capital is, as Mikheev

comments, a "chicken and egg problem". If we know that a word with an initial capital following a

full-stop is a common noun, we can conclude that the full-stop is a sentence terminal. If we know

that the full-stop is not sentence terminal, we can conclude that the following word is a proper noun

and that the word preceding it is an abbreviation. Although such situations only occur for a small

number of sentences, a tokeniser needs to be prepared to deal with them if it is to segment the text

accurately into sentences. Developing methods to do this robustly is time-consuming and labour-

intensive. Palmer and Hearst (1997) report work (by Mark Wasson and colleagues, unpublished) on

the development of a system to recognise special terms and sentence boundaries which took nine

staff-months to complete. Although this achieved impressive performance (an error rate of between

0.3% and 1.8% on their test data) the small number of errors remaining suggests that this may well

be a problem that cannot be solved with 100% accuracy without human intervention. Nevertheless,

I needed to develop a tokeniser that would run automatically and be adequate for the requirements

of my spellchecker. The next section describes its implementation.

6.2 Implementation
Dyslexic writing is often poorly punctuated as well as badly spelled; lack of sentence terminal

punctuation and unreliable capitalisation means that a tokeniser is likely to have difficulty in

accurately recognising all of the sentence breaks. However, as Atwell and Elliot (1987) comment

"no system can be expected to cope with highly garbled English input" and I have not attempted to

Preparing the Text for Spellchecking

 92

address this problem; if there is no punctuation to indicate the end of a sentence, my program

simply assumes that the word it is checking belongs to the current sentence. This does not cause

problems with the processing of the real-word error sub-corpus as each sentence extracted from the

dyslexic error corpus is stored on a separate line and capital letters and full-stops have been inserted

if they were missing.

6.2.1 Requirements
The real-word error checker that I have developed considers each word in the context of the

sentence in which it occurs. Thus the first requirement of the tokeniser is that it segments the text

into sentences. Each sentence needs to be stored as a sequence of tokens, each representing a word

in the sentence. The majority of these will be lexical words but a few will be numeric,

alphanumeric or some sequence of non-alphanumeric characters; the tokeniser needs to note this

distinction. It also needs to strip and store any leading or trailing punctuation attached to the word.

In this implementation, such punctuation is stored as an attribute of the token for the word to which

it was attached. This means that it is easier for the semantic checker (Chapter 9) to consider words

in a specified window width without including the punctuation in the window although the

punctuation is available for use if required.

In addition to creating tokens for the words in the text, the tokeniser needs to recognise marked up

errors in the format <ERR targ=targetword> errorword </ERR>, as described in Chapter 3, and

store the target as well as the error in the token. The spellchecker will ignore the target words when

it is checking the text but the program will use them to assess the correctness of its suggestions.

The spellchecker requires dictionary information for each word. In particular, it needs to know

whether the word has a confusion set associated with it as this signals that the word is a potential

real-word error. It also needs the set of part-of-speech tags and frequencies that will be used by the

syntax checker (Chapter 8). Many of the words, particularly short function words, will occur

several times in a text − the real word error corpus contains almost twelve thousand word tokens but

Preparing the Text for Spellchecking

 93

only around five thousand word types. To avoid the inefficiency and extra memory overhead of

including the dictionary information for each word token, the tokeniser stores this in a 'lexical

token' for each word type. Thus, at the end of the tokenising phase, each word has two tokens

associated with it − a 'text token' stored with the sentence in which it occurred and a related 'lexical

token' containing its dictionary information.

6.2.2 Sentence segmentation
The program starts by reading the file up to the next new-line character. This input line may be a

single sentence, a fragment of a sentence or several sentences, depending on the formatting of the

file. Although in the majority of cases a new-line character will signal the end of a sentence, the

tokeniser does not make this assumption as this will not be the case if the input file has fixed-length

lines or if the user has inserted line breaks to control the length of the line (as many inexperienced

users of word-processors do).

The tokeniser splits the input line into a sequence of space-delimited strings and/or error tags. It

then creates a text token for each 'word' with the attributes shown in Table 6.1.

type: word, numeric, alphanumeric or unclassified

textStr: the word as it appeared in the text

targ: the target spelling if the word was marked as an error

leadPun: any leading punctuation which was attached to the word

trailPun: any trailing punctuation which was attached to the word

Table 6.1: Initial attributes for text tokens

The type and textStr attributes will be stored for each token − the other attributes may be empty

for many of the tokens. The tokeniser does not look up the words in the dictionary at this stage. It

simply checks whether a string could correspond to a dictionary word; embedded full-stops,

apostrophes and hyphens are considered to be part of the word.

Preparing the Text for Spellchecking

 94

In addition to punctuation characters that legitimately form part of a word, punctuation can

mistakenly become embedded if the user omits to type a space after the punctuation mark. Rather

than leaving such strings as a single word, the tokeniser splits such strings and stores the

punctuation character in the trailing punctuation attribute of the first string. To avoid splitting

abbreviations, it only splits on a full-stop if there are more than two letters preceding it.

Once the text token has been created it is stored either as part of the current sentence or as the start

of a new sentence. If the last token stored does not end in sentence delimiting punctuation −

defined as full-stop, exclamation mark or question mark − the token is stored as part of the current

sentence. If the preceding token ends with an exclamation mark or question mark, the token is

assumed to be the start of a new sentence if the word has an initial uppercase character, otherwise it

is assumed to continue the current sentence. If the preceding token ends in a full-stop and the

current word starts with a capital letter, the current token will be stored as the first word of a new

sentence unless the previous word was a non-sentence-breaking abbreviation, defined as a title −

Mr., Mrs. and so on − or e.g./ i.e. For all other abbreviations, the program assumes that the full-

stop is serving both as an abbreviation marker and sentence terminal. If the current word starts with

a lowercase letter and the preceding token ends with a full-stop but is not included in the dictionary,

the preceding token is assumed to be an unknown abbreviation and the current token is stored with

the current sentence.

At the end of this stage of processing, each word in the text has been stored in a text token in the

format described above and the sequences of text tokens have been segmented into sentences.

6.2.3 Word storage
The tokeniser next creates a lexical token containing the dictionary information for each word type

in the text and for any confusable words associated with it. Each of these tokens has the attributes

shown in Table 6.2.

Preparing the Text for Spellchecking

 95

tags: the set of part-of-speech tags from the dictionary with their associated frequencies

capFlag: the capitalisation flag from the dictionary or assigned by the tokeniser for words not

found in the dictionary

abbrev: a flag indicating whether or not the word is an abbreviation

indict: a flag indicating whether or not the word was found in the dictionary

count: the number of times the word occurred in the text being checked. (This will be zero

for confusion set members that do not appear in the text.)

confSet: a list of confusables (if any) associated with the word.

Table 6.2: Attributes for lexical tokens

To create these tokens the tokeniser checks each word text token. There are four possibilities:

• the word has already been stored;

• the word is found in the dictionary in the same format as it appeared in the text;

• the word is found in the dictionary but the dictionary format does not match the format of

the word in the text;

• the word is not found in the dictionary.

In the simplest case, when the word is already stored, the tokeniser increments the word-count for

the existing lexical token and, if the count was zero (indicating that the lexical token had been

created for a confusable rather than a word that had previously been seen in the text) checks

whether there is an associated confusion set and, if so, stores a list of the confusables in the word's

lexical token as well as creating a lexical token with a zero word-count for any confusable that had

not previously appeared in the text. The case where the text word matches the dictionary format is

also straightforward − create a new lexical token for the word and lexical tokens for any of its

confusables that do not already have lexical tokens.

Preparing the Text for Spellchecking

 96

As all words in the dictionary are stored with a lower-case initial letter and abbreviations are stored

without embedded punctuation, sentence initial words (assuming they start with a capital letter),

proper nouns and abbreviations will appear in the text in a format that does not match the way in

which they are stored in the dictionary. The dictionary lookup function converts words into

'dictionary format' (by converting the initial letter to lower case and removing internal periods)

before checking them and returns the word in the form in which it has been found in the dictionary.

When this does not match the format of the word in the text the tokeniser first checks the

capitalisation flag in the dictionary to see whether the word would normally be written with an

upper case initial letter. In this case a lexical token is created for the word in dictionary format (i.e.

with a lowercase initial letter). If the word would not normally be expected to have an uppercase

initial, the program checks whether it is the first word of a sentence. In this case, the program

makes the assumption that this is the reason for the capitalisation and creates a lexical token for the

lowercase version as above. This will deal incorrectly with surnames such as Bush or Smith, which

are tagged as common nouns in the dictionary, when they appear as the first word of a sentence.

However, although such occurrences are fairly frequent in newswire text (which was used for

testing the tokenisers discussed in section 6.1 above), they are relatively infrequent in more general

text so I have not incorporated a method for disambiguating such occurrences in the program.

Conversely, non-function words with an initial capital in mid-sentence are assumed to be proper

nouns and are stored with an uppercase initial in the lexical token.

The final category of words is those that are not found in the dictionary at all − hyphens,

apostrophes and capitalised words are particularly problematic. Almost any pair (or sequence) of

words can be hyphenated and, as discussed in Chapter 4, the use of the hyphen to form compound

words is inconsistent. Any hyphenated word in the text which is not found in the dictionary is split

on the hyphen(s) and each word is then checked. If all the words are found, the complete word is

assigned the tag of the final part. If any part is not found, an unclassified tag is assigned.

Preparing the Text for Spellchecking

 97

Shortened forms − 'em, 'twas and so on − are stored in the dictionary with a leading apostrophe but

the token retrieved from the text will have had its apostrophe removed by the punctuation stripper.

If a token has an apostrophe stored in its leadPunct attribute, the word is rechecked in the

dictionary with the apostrophe reattached. If it is found, a lexical token is created for the shortened

form and the text token modified to include the apostrophe with the word. If the word is not one of

the shortened forms included in the dictionary, a lexical token is created for the plain word and it is

assigned an unclassified tag.

Although many common shortened forms − can't, they're and so on − are stored in the dictionary,

trailing enclitics − 'd, 'll etc.− can also be attached to other words, as discussed above. In such

cases, the enclitic is stripped and the word rechecked. If it is found in the dictionary, it will be

stored in the lexical token without the trailing enclitic and the text token will be modified to store

the enclitic in a contract attribute and the plain word in the textStr attribute. When the syntax

checker tags the text, it will assign a combination tag to such tokens in the same format as the

combination tags stored in the dictionary.

Words written entirely in uppercase may be capitalised out of convention, such as in a header, or for

emphasis and in this case will often appear in the dictionary in their lowercase form. However, as

noted above, many acronyms which are not listed in the dictionary are themselves dictionary words.

Rather than attempt to distinguish such uses, the program simply regards all uppercase words as

unknown abbreviations and creates a lexical token for the capitalised form. Words beginning with

an uppercase letter are assumed to be unknown proper nouns and stored in the lexical token in this

form with a proper noun tag.

During this stage of tokenisation, two additional attributes are stored with each text token as shown

in Table 6.3.

Preparing the Text for Spellchecking

 98

lexStr: the word in dictionary format (or the format in which it has been stored in its

corresponding lexical token as detailed above).

contract: trailing enclitics stripped from shortened forms not stored in the dictionary

Table 6.3: Additional attributes for text tokens

At the end of the tokenisation phase, the program has split the text into sentences and words. It has

also stored dictionary information required by the spellchecker. Any words not found in the

dictionary and not classified by any of the rules outlined above could be flagged as potential errors

by a non-word error checker. However, as I am making the assumption that non-word errors have

already been corrected (as they have been in the sub-corpus), my program makes no attempt to deal

with these and simply tags them as unclassified strings.

6.2.4 A tokenisation example
The array of text tokens created to store the following sentence (assuming it to be the first sentence

in a file) is shown in Table 6.4:

Mum’s <ERR targ=not> note </ERR> here!

1 2 3

1

type: W

textStr: Mum

lexStr: mum

contract: ‘s

type: W

textStr: note

targ: not

lexStr: note

type: W

textStr: here

trailPun: !

lexStr: here

Table 6.4: Text tokens created for example sentence

The sentence is initially split into a sequence of space-delimited strings with error tokens being

treated as a single string. Each string is stored as a text token in the sentence array with the

attributes listed in Table 6.1 and Table 6.3. Some attributes will not have a value for all tokens and

will be set to undef. Such attributes have not been included in the table.

Preparing the Text for Spellchecking

 99

The majority of strings (all in this example) will correspond to lexical words and have their type

attribute set to ‘W’. Numeric strings (1952), alphanumeric strings (P40), or unclassified strings

($%!) will be assigned a type of N, AN or U respectively. Any leading and/or trailing punctuation

(the exclamation mark attached to here! in this example) is then stripped from each string and

stored in the leadPun or trailPun attribute. Contractions attached to the end of non-word strings

will be removed and stored in the contract attribute. However, for word strings the contraction

will only be removed if the contracted form does not appear in the dictionary. In this example the ‘s

is removed from Mum’s but if the first word of the sentence was changed to She’s the ‘s would not

be stripped as the contracted form - she’s has its own entry in the dictionary.

After the punctuation and contractions have been stripped the remaining string, in the format it

appeared in the text, is stored in the textStr attribute; by recombining this with the contract

and leadPun/trailPun attributes the program is able to reproduce the text in its original format if

required. The lexStr attribute stores the word as it appears in the dictionary and matches the key

for the corresponding lexical token (described further below and illustrated in Table 6.5). Both

attributes have the same value for all words in this example apart from Mum which is stored with its

upper case initial in the textStr but with a lowercase initial in the lexStr.

If a word is marked-up as an error − note in this example − the targ attribute will be set to the

intended word − not. This allows the program to check the correctness of its suggestions when run

over the error corpus.

Each text token that contains a lexical word (type = W) has an associated lexical token stored in a

hash. Whereas text tokens are created for each word token in the text, lexical tokens are created just

once for each word type. The lexStr attribute of each text token provides the key for lookup in

the lexical token hash to enable the program to retrieve the associated dictionary information for

each word in the text.

Preparing the Text for Spellchecking

 100

The lexical tokens created for the example sentence above are shown in Table 6.5. All the elements

have the same value for capFlag (0), abbrev (N), indict (Y), so these have not been included in

the table:. The confSet attribute will be undef for words that do not have a confusion set

associated with them, and this also is not included in the table. Lexical tokens are also created for

each member of the confusion set but the count for these will be set to zero (or not incremented if

the confusable has previously been seen in the text and already has a lexical token). Confusion sets

are not stored for the confusables themselves unless they also appear in the text in their own right.

Key Attributes

hear tags: PRP:4374

count: 0

here tags: AV0:563

count: 1

confSet: hear

mum tags: NN1:44,AJ0:0,ITJ:0

count: 1
not tags: NN1:287,VVI:52,VVB:34

count: 0

note Tags:NN1:59,VVB:32,VVI:18

count: 1

confSet: not

Table 6.5: Lexical tokens created for example fragment

6.2.5 Sentence splitting evaluated
I used the million-word FLOB corpus (Hundt et al. 1998) to test the sentence splitter. This corpus,

created at Freiburg University, contains a mixture of newspaper articles, book extracts and

miscellaneous publications covering a broad range of written British English from 1991 and 1992.

It was designed to parallel the earlier LOB corpus (discussed in Section 8.3.4 below). The version

of the corpus included in the ICAME corpus CD (ICAME, 1999) is stored in fixed-length lines with

some textual mark-up such as paragraph and quotation start and end tags. I had previously re-

Preparing the Text for Spellchecking

 101

written this as continuous text with no mark-up and used this ‘plain’ version to test the sentence

segmentation program.

After checking several files from the corpus, a few problems came to light. When names were

preceded by initials − G.A. Henty, for example − the program split the sentence after the second

initial. It would be possible to avoid this by defining a sequence of uppercase characters separated

by periods and followed by a non-dictionary word as an initial/name combination that should not be

split. However, as noted previously, many surnames also appear as common nouns in the

dictionary so this rule would not apply to, for example, G.W. Bush. Additionally, as for many text

tokenization rules, it is easy to think of a counter-example where the sentence should be split such

as:

They met in downtown L.A. Kerouac had described…

An attempt to deal accurately with such ambiguities would seem to require two passes through the

text; the first to mark potentially ambiguous sentence breaks and the second to disambiguate them

using, for example, a list of mid-sentence capitalised words that could be assumed to be proper

nouns or a more detailed syntactic analysis. However, examples such as these occurred

infrequently in the FLOB texts.

As the program was set to check for sentence breaks when it encountered sentence terminal

punctuation followed by a word with an initial capital it did not insert a sentence break for ill-

formed sentences such as this example (from FLOB):

The result of this clever charade was that for two years my

rates were assessed on the basis of seven feet, eight inches

square of living space. another name.

However, using only sentence terminal punctuation as the basis for sentence segmentation results in

an incorrect split after Rehab. in this fragment from my error corpus:

The Dept. of Rehab. is going to pay...

Preparing the Text for Spellchecking

 102

A second pass through the text to flag potential sentence initial capitalisation errors could be used to

deal with such cases but the current implementation is restricted to a single pass and so runs

sentences together if the first word does not start with a capital.

In most running text, line breaks correspond to the end of a paragraph and so will also mark a

sentence boundary (although the paragraph itself may contain several sentences). However, as

discussed above, I had decided to allow for the possibility of mid-sentence line breaks. This caused

the two utterances in the following extract from FLOB to be run together into a single sentence as

the first does not end with one of my predefined set of sentence terminals:

"That is as may be, ma'am," Jake responded, "but I would

rather know the circumstances so that − "

"So that you may try to order my life as they have done,"

Clementina finished for him.

This suggests either that it might be better always to regard a line break as indicating the end of a

sentence or that additional rules are required to deal with direct speech. Such issues have not been

considered in the current implementation.

Apart from a few cases as outlined above, the majority of the sentences in the FLOB files that I

checked were split correctly. In FLOB_J, mainly academic writing, there were no errors apparent

in the first two thousand or so sentences − a sample illustrating the segmentation of the first 50

sentences of this file is included as Appendix C.

6.3 Conclusion
Tokenisation, although it is an essential pre-processing phase for all natural language processing

applications, seems to be a task that is difficult to perform accurately without human intervention.

However, the spellchecker has to do this automatically. The method described above should deal

adequately with most of its requirements. Modifications can be made at a later stage if inaccuracies

in the tokenisation seem to cause particular problems for the spellchecker.

 103

Chapter 7: A Frequency-only Spellchecker as a Baseline

We now have everything in place to begin spellchecking − a dictionary with reasonably accurate

word frequencies, a large number of confusion sets, a method for splitting the text into words and a

corpus containing real-word spelling errors made by dyslexic writers. This chapter considers ways

in which to assess the performance of the spellchecking methods described in the next two chapters.

It also sets a baseline against which further developments can be compared.

7.1 Expectations
In the detection phase, the desirable outcomes for a spellchecker are:

• Accept correctly spelled words

• Flag incorrectly spelled words as errors

The undesirable outcomes are:

• Flag correctly spelled words as errors

• Accept incorrectly spelled words as correct

Flagging correctly spelled words produces a false alarm which is annoying for the user and can

result in errors being introduced into the text if the program's suggestion is accepted. The task of

the spellchecker, therefore, is to minimise these false alarms while at the same time maximising

error detection.

Once an error has been detected, the spellchecker needs to produce a list of suggested corrections,

ideally with the intended word in first position. One of the attractions of the confusion set approach

is that it can combine these two tasks of detection and correction; it decides that a word is an error if

one of the alternative words in its confusion set appears to be more likely in the context and then

proposes that alternative as a correction. This means that it only suggests one word but, as there are

at most five words in the confusion sets, even if it used the whole set, ordered by likelihood, as its

A Frequency-only Spellchecker as a Baseline

 104

suggestion list, it would produce a short list which would likely be more useful than many of the

lists discussed in Chapter 1.

However, when a confusable word is an error, the intended word is not necessarily another member

of the confusion set and, if the spellchecker is limited to making suggestions from the associated

confusion set (which is generally the way in which the confusion set method is implemented), it

will not be able to correct the error in such cases. Take, for example, a sequence from my error

corpus − “the lose of...”. Here lose is mistakenly produced for loss but the confusion set for lose −

{loos, loose, louse} - does not include loss. A syntax-based checker (such as the implementation I

will describe in Chapter 8), if it is restricted to suggestions from the confusion set, will find that

loose, is a better syntactic fit than lose and so suggest loose as a correction; although it flags the

error it proposes an incorrect replacement. This should also be regarded as an undesirable outcome

as, if the spellchecker’s suggestion is accepted, as it often will be by dyslexic users, it simply

replaces one misspelling with another.

7.2 Test data
During the development phase, detailed in the next two chapters, I used the real-word error corpus,

described in Chapter 3, to test and refine the program. An additional corpus of errors was created

for the final testing - described in Chapter 10.

Table 7.1 shows the number of confusables in the corpus. As can be seen, around half of the total

words in the corpus are confusables, but the vast majority of them (89%) are correctly used.

 N. Tokens N. Types

Total words 11809 4856

Total confusables 5838 758

Correct usage 5207 595

Error usage 631 294

Table 7.1: Count of words and confusables in test data

A Frequency-only Spellchecker as a Baseline

 105

7.3 Establishing a baseline
A convenient way to set a baseline against which to compare the performance of subsequent

developments is to establish how often the spellchecker would make the correct decision if it was

simply set to select the more frequent confusable. (This will actually be the most frequent

confusable in a set with more than two members but the spellchecker will always be making a

decision between a pair of words − the word it has encountered in the text and the highest frequency

word of its associated confusion set.) In other words, in this mode, the spellchecker is simply

guessing which confusable to select based on the dictionary frequencies − which for my dictionary

represent how often the word occurred in the BNC.

For a pair of words such as <college, collage> with dictionary frequencies of 107 and 2

respectively, it has a high probability of making the correct selection − college accounts for 98% of

the overall occurrences of this pair of words. On the other hand, for a high frequency pair such as

<their, there> where the frequencies are very close − 2772 and 2646 respectively − we would only

expect it to be correct about half of the time. Other pairs of words, such as <from (4374), form

(288)> and <whether (362), weather (58)>, fall between these two extremes.

This "guesses based on the priors" method is used by Golding and Schabes (1996) to set the

baseline for assessment of their Tribayes spellchecker. Their program, like much of the other

research previously discussed, was tested on correct data and "corrupted" data − data in which a

correctly spelled confusable was changed to another member of its set. When errors are artificially

introduced in this way the correct word will always be a member of the confusion set, which is not

always the case with real errors as the lose/loss example discussed above shows.

In the case of lose/loss, the error will be ignored (loss has a higher frequency than lose but it is not

in the confusion set). In another example from my corpus, "he shard the people...", where scared is

the intended word, the error will be flagged as the single word in the confusion set for shard is

shared. Shared has the higher frequency but is an incorrect replacement. There are a number of

A Frequency-only Spellchecker as a Baseline

 106

other similar errors in the corpus. Many of these are inflection errors − apple in mistake for apples

for example; others are typos such as bet mistakenly typed for get. Thus, for real data, we have a

third possibility which does not occur with artificial errors − that of detecting the error but not

correcting it. This can also occur when the confusion set consists of more than two words and one

of the less frequent words is produced in error for another of the less frequent. For instance, they're

is also a member of the {their, there} confusion set. So, if the spellchecker encountered the

sentence "There going swimming", where there is an error for they're, it would flag there as an error

but propose their (the most frequent member of the set) as a correction.

Apart from the set {their, there, they're}, all of the 18 sets used in the Golding and Schabes (1996)

experiment (which are similar to the sets used in many of the other experiments previously

discussed) are pairs of words so the possibility discussed above will never occur.

A ‘dumb’ spellchecker, simply set to select the highest frequency word whenever it encounters a

confusion set member in the text, will raise a false alarm for correct usages of less frequent words

and fail to detect errors when a more frequent word is produced as an error for one of its less

frequent counterparts. Despite this, it will make the correct decision in the majority of cases since,

as Table 7.2 shows, a high proportion (84%) of the correct usages are more frequent confusables

while the majority of the errors (62%) occur when a less frequent word is produced in error for a

more frequent.

 Correct usage Error usage

More frequent word 4392 84% 242 38%

Less frequent word 815 16% 398 62%

Total 5207 100% 631 100%

Table 7.2: Frequencies for correct and error usage of confusable words in the test data

However, correctly used confusables form a larger overall proportion of all confusables occurring in

the text meaning that the number of false alarms raised (815) will outnumber the errors detected

(398). In addition, as discussed above, even when the dumb checker does detect an error it will not

A Frequency-only Spellchecker as a Baseline

 107

always manage to correct it. Table 7.3 shows its performance on the error corpus taking into

account the three possible outcomes for errors - flag and correct the error, flag but not correct the

error or ignore the error. As can be seen, there are 815 false alarms as opposed to 278 errors

corrected. This means that if the spellchecker’s suggestion was accepted each time, the text would

end up containing more errors than it had done to start with which is clearly not helpful.

Correct usage Error usage

Accept False
alarm

Flag &
correct

Flag not
correct

Ignore

4392 815 278 111 242

Table 7.3: Initial performance of select-the-most-frequent spellchecker

For the initial run the spellchecker was set to simply select the most frequent word, regardless of

how much more frequent it was. However, as we saw earlier, the relative difference in frequencies

is much greater for some pairs of words than others. This relative difference in frequency can be

used to set a confidence level for the spellchecker. A confidence level of 0.5 is equivalent to simply

selecting the more frequent word − a word must occur more than 50% of the time if it is more

frequent than the other member of its pair. Setting a confidence level of 0.6 would mean that the

program would not suggest changing the word unless it occurred for more than 60% of the total

occurrences of the pair, 0.7 would increase this to 70% and so on.

Successively increasing the confidence level in this way reduces the false alarms but also, of course,

reduces the number of errors that are corrected. Table 7.4 shows the effect of increasing the

confidence level from 0.5 (the default which simply selects the member of the pair with the highest

frequency in the dictionary) to 0.99. Even at the maximum level there are still eight false alarms

and only 12 of the errors are corrected − this small gain in overall 'correctness' is hardly worth

considering. Up to the 0.9 level, the false alarms outnumber the errors corrected.

A Frequency-only Spellchecker as a Baseline

 108

 Correct usage Error usage

Confidence
Level

Accept False
alarm

Flag &
correct

Flag not
correct

Ignore

0.5 4392 815 278 111 242

0.6 4638 569 231 96 304

0.7 4809 398 205 82 344

0.8 4952 255 182 52 397

0.9 5057 150 145 32 454

0.99 5199 8 44 12 575

Table 7.4: Performance of the ‘select the most frequent’ checker with differing levels of
confidence

Although in general the ‘select the most frequent’ method is not an effective way of correcting real-

word errors, it may be appropriate for some pairs where one of the words occurs almost all of the

time − such as <your, yore> for example.

7.4 Conclusion
This chapter has demonstrated that word frequency alone is insufficient for a real-word error

checker although it is a factor which needs to be included in the spellchecker's overall decision.

However, measuring performance based on word frequency alone provides a useful baseline against

which the approaches discussed in the next two chapters can be compared.

 109

Chapter 8: A Syntax-based Spellchecker

Although the confusion set approach is not restricted to correcting syntactic errors, syntax is a

useful starting point. A syntax-based method could be expected to have reasonable performance for

confusable pairs with distinct syntactic tags − {advice, advise} or {from, form}, for example; these

make up 30% of the pairs in my confusion sets. It might also have some success where the tagsets

overlap, such as {loose, lose} where both are verbs but only loose is also an adjective; these account

for a further 46% of the pairs. This leaves just 24% that would have to be dealt with in some other

way.

It appears that an effective approach may be to use a syntax checker first followed by semantic or

other processing for the cases where it is unable to make a decision and this is borne out by research

by Golding and Schabes (1996) which shows that a part-of-speech trigram tag approach

outperforms their feature-based approach for confusion sets which differ in their parts-of-speech.

This chapter describes the development of a ‘confusion tagger’ which, in addition to assigning a

part-of-speech tag to each word in the text, uses the tagging algorithm to select the confusion set

member with the best syntactic fit. I will first describe the method used to tag the text and then

show how this is extended to check confusable words.

8.1 Assigning tags to words
For words, such as and or wood, which only have a single part of speech (CJC and NN1

respectively), the tagging task is trivial − retrieve the tag from the dictionary. This is the case for

72% of the 72,000 words in cuvPlus. The remaining 28% have between two and seven tags each.

In most cases these multi-tagged words more commonly belong to one word class than another.

This preference for a particular part-of-speech tag is particularly notable for high frequency words.

Take can for example. It occurs far and away most commonly as a modal auxiliary verb (VM0)

with a dictionary frequency of 1992 per million while occurring only eight times per million as a

A Syntax-based Spellchecker

 110

noun (NN1) and less than once per million with its two verb tags − VVI and VVB. Short, common

words such as this − go and do are other examples − are an extreme but the bias is also apparent in

medium frequency words. Form, for example, is used more frequently as a noun (281) than as a

verb (VVI:52, VVB: 34). How should a part-of-speech tagger decide which tag to assign in these

cases?

One approach which has been demonstrated to have a surprisingly high degree of success (Atwell,

1987) is simply to assign the most frequent tag. Charniak et al (1993) found that the correct tag was

selected just over 90% of the time by this method. However, this is less remarkable than it seems at

first when we consider that the proportion of times many commonly used words are used with their

most frequent tag is often higher than this. From the frequencies given above, for example, we can

see that can is tagged VM0 99% of the time so choosing VM0 for can will be right nearly all the

time, but it will clearly fail for a good many ordinary sentences. It would not, for example, assign a

noun tag in the sequence “a can of beans” or a verb tag in “to can the fruit”.

To make a more informed decision the tagger needs to combine the tag information from the

dictionary with knowledge about the likelihood of particular sequences of tags occurring. For

instance, given the information that nouns frequently follow an article it could correctly tag can as a

noun in the first example above. Following the approach taken to obtain the tag transition matrix

used by the CLAWS tagger (Garside (1987); Marshall (1987)), this tag sequence information can be

captured as tag bigram probabilities derived from a large corpus. When faced with a choice

between several tags for a word, the tagger can then use these probabilities to find out how likely

each tag is to follow the tag of the preceding word and combine this with the probability of the

word itself occurring with each tag to find which tag is most likely to occur in the context.

Although just over three-quarters of the words in my dictionary (CUVPlus, Chapter 4) have just one

tag in their tagset, the proportion of words in running text that have a single tag is much smaller

than this as many commonly used words have more than one tag. For example, these single-tag

A Syntax-based Spellchecker

 111

words make up just 44% of the 85,000 words in the first file10 from the FLOB corpus and so can be

unambiguously tagged. Of the multi-tagged words, 18% occur sandwiched between two single-tag

words, 36% in sequences of between two and five multi-tagged words, while the remainder appear

in sequences of up to 16 multi-tagged words in length. The longest of these is shown below,

together with the tagset for each of the words with the tags listed in descending order of frequency.

...<VBD>was <AJ0,AV0,NN1>deep <NN1,VVI,VVB>concern
<CJT,DT0,AJ0,AV0>that <AT0,AV0>the <AJ0,AV0>new <NN1,VVB,VVI>plan
<VM0,NP0,NN1>may <NN1,VVI,VVB>face <AT0,AV0>the <DT0,AJ0,AV0>same
<NN1,VVB,VVI>fate <CJS,PRP,AV0>as <AV0,AJC>earlier <NN2,VVZ>attempts
<TO0,PRP,AV0>to <VVI,VVB>bring <NN1>peace...

It should be noted that one of the causes of the exceptional length of this sequence is the inclusion

of the adverb (AV0) tag for the. This usage is confined to comparative adjective or adverb phrases

such as “the more the merrier” and since in the overwhelming majority of cases the functions as an

article, a tagger will make very few mistakes if it simply assigns an AT0 tag in all cases. This will

also reduce the length of the multi-tag sequences and is the approach I have adopted with the tagger

implemented in this research. Adverbial usage could then be dealt with as a special ‘idiom tag’

although I have not implemented this.

The tags shown in the sequence above, and used in the rest of this chapter, are from the C5 tagset

(used for the tagging of the BNC and incorporated into my dictionary as described in Chapter 4).

For the most part they are fairly mnemonic but for the reader who is unfamiliar with these tags and

wishes to distinguish accurately between them a complete listing is included in the dictionary

documentation (Appendix A).

To decide which tag should be assigned to a word, the tagger needs to find the most likely tag path

through a multi-tag sequence using the single-tag words as anchors. For a multi-tag word that

occurs immediately after one single-tag word and immediately before another, this is a fairly

10 FLOB_A.TXT

A Syntax-based Spellchecker

 112

straightforward process as the number of possibilities to consider is the same as the number of tags

for the word. However, longer sequences have many possible paths − for example, there are over

five million tag paths through the 16 word sequence given above.

I first explain how the tag bigram probabilities were obtained, and then I describe the tagging

algorithm in detail.

8.2 Calculating the tag bigram probabilities
To calculate the bigram probabilities needed by the tagger, I counted the number of occurrences of

each tag pair in the written section of the BNC (World Edition). In this section I describe how these

counts were used to calculate the conditional probability of each tag occurring given the preceding

tag and how the resulting probabilities were then smoothed to remove zero values which could

cause problems for the tagger.

8.2.1 Tag pair frequency
There are 61 part-of-speech tags in the C5 tagset used in the BNC, including five punctuation tags

and the UNC tag assigned to “words that are not properly considered part of the English lexicon.”

Two sentence delimiter markers − BOS and EOS − were added to these to mark the beginning and

end of sentences. Combining these gives a total of 3843 pairs (BOS can only occur as the first

element and EOS as the last).

The most frequent pair was <AT0, NN1> (article followed by singular noun) with over four million

occurrences. Twelve tags were followed at least once by every other tag but 279 pairs (7% of the

total possible combinations) did not occur. The majority of these are grammatically unacceptable −

for example, auxiliary verb combinations such as VHD (had) followed by VDI (do).

We can assign a probability estimate to each tag pair by calculating the relative frequency with

which it occurred in the BNC − the count of each tag pair divided by the total count of tag pairs.

This is known as the Maximum Likelihood Estimate (MLE) as it maximises the probability

A Syntax-based Spellchecker

 113

weightings given to the tag pairs that did appear in the BNC while assigning a zero weighting to

those that didn’t. The PMLE values for the tag pairs are calculated as follows:

Given

N Total count of tag pairs in BNC

C(ti,tj) Count of occurrences of tag pair ti,tj

PMLE(ti,tj) =
N

ttC ji),(

8.2.2 Conditional tag probabilities
The probability estimates calculated above tell us how likely a particular pair of tags is to occur (in

the BNC) - P(ti,tj) - but what the tagger needs to know, in order to assign a tag to a multi-tag word,

is the likelihood of a particular tag occurring following another tag - P(tj|ti). This conditional

probability is calculated by dividing the total occurrences of the pair, C(ti,tj), by the count of

occurrences for the first tag, C(ti), as follows:

PMLE (tj|ti) =
)(

),(

i

ji

tC
ttC

Again this is a Maximum Likelihood Estimate so for pairs that did not occur in the BNC the PMLE

value will be zero. It would seem reasonable, in a large corpus, to expect that superfluous tag

combinations would be seen rather than acceptable ones being unseen so we could simply retain the

zero values, assuming that such sequences would never occur in text or that if they did they were an

error. However, this has the potential to cause problems for the tagger as it uses the product of the

conditional tag pair probabilities to calculate the most likely tag sequence for a sequence of multi-

tag words so retaining these zero frequencies would mean that any tag sequence containing an

unseen pair would have an overall value of zero. The solution adopted by the CLAWS tagger is to

A Syntax-based Spellchecker

 114

arrange that “a small positive value is associated with any transition that fails to occur in the

sample” (Marshall, 1987).

8.2.3 Smoothing
There are several smoothing methods that enable us to assign such a small but non-zero value to the

unseen pairs in such a way that the overall probability for all the tag pairs (seen and unseen) still

sums to one.

One simple method is just to add one to all the counts − in other words to pretend that we saw each

of the pairs once more than we actually did. This results in the zero count pairs now having a value

of 1 and we can proceed to calculate the conditional probabilities as above. As Gale and Church

(1994) demonstrate, this results in overweighting the unseen pairs. In a detailed comparison of

several smoothing methods, Chen and Goodman (1996) suggest that the Good-Turing (Good, 1953)

smoothing algorithm gives the best results.

The first stage in Good-Turing smoothing is to group the items (tag pairs in this case) in the dataset

by frequency r and count the number of items Nr that occurred with each frequency. For the tag-

pair dataset, N1 = 128 as 128 of the tag pairs occurred just once, N2 = 75 as 75 pairs occurred twice

and so on. Table 8.1 shows the first eight and last two of these ‘frequency of frequency’ counts for

the tag pairs together with the count for the unseen tag pairs, N0 = 279.

The total number of tag pairs that were seen, N, is calculated as N = Σ rNr. For this dataset, N =

104479260.

Using this notation, the probability for a tag pair occurring with frequency r can be calculated as

N
rN

rp r=)(but this is the MLE that was rejected above as it results in p(0) = 0 which is what we

are trying to avoid. To overcome this problem, and assign some (small) probability to the unseen

tag pairs, the Good-Turing process calculates the total probability for unseen objects as N1/N (the

count of things seen once divided by the total number of things seen). For this dataset this is

A Syntax-based Spellchecker

 115

calculated as 128/104479260 = 1.225e-06. This probability ‘mass’ is shared between the 279

unseen tag pairs as described further below.

Frequency

r

Frequency of
frequency

Nr

0 279

1 128

2 75

3 57

4 56

5 42

6 28

7 22

8 48

... ...

4158079 1

4302215 1

Table 8.1: Frequency of frequency counts for tag pairs

By making this adjustment to the probability of the unseen items we are, in effect, increasing the

frequency with which we expect them to occur in the future from zero to 0.000001225. In other

words, although we don’t expect that we will see these particular tag pairs very often, we are not

altogether ruling out the possibility of them occurring. To compensate for this, we also need to

adjust the frequencies for the tag pairs that were seen by replacing the frequency r with an adjusted

frequency r*.

The Turing Estimator, which underlies the Good-Turing smoothing method, calculates r* as:

r

r

N
Nrr 1)1(* +

+= where r ≥ 1

For r = 1, in this dataset, this gives us:

A Syntax-based Spellchecker

 116

1* = 17.1
128
150

128
75x2 ==

The adjusted r* frequencies calculated in this way for the first eight frequencies r (shown in Table

 8.1) are given in Table 8.2.

Frequency

r

Frequency of
frequency

Nr

Adjusted
frequency

r*

1 128 1.17

2 75 2.28

3 57 3.93

4 56 3.75

5 42 4.00

6 28 5.50

7 22 17.45

8 48 3.94

Table 8.2: Adjusted frequency r*

As can be seen from Table 8.2, using the Turing Estimator to calculate r* for small values of r

seems reasonable (1* and 2* above, for example), but it becomes less reliable as r increases (notably

7* has a much larger value than we would expect and even 3* seems rather high). This is because

although in general as r increases Nr decreases, this relationship does not hold true for all values of r

− the frequency for N8 is more than double that for N7 in this dataset, for example. In addition, for

high values of r, many of the Nr are zero meaning that r* calculated in this way would also end up

with a value of zero (as can be seen from Table 8.1. Nr for all the frequencies 4158080 to 4302214

is zero in this dataset). To overcome this limitation, Good proposed using smoothed (r, Nr) values

for the calculation of r*.

A simplified version of Good’s rather complex algorithm − Simple Good-Turing − was developed

by William Gale (Gale and Sampson, 1995). Code for this is available in a number of programming

A Syntax-based Spellchecker

 117

languages from Geoffrey Sampson’s resources on the web (Sampson, 2007). I used the C program

downloaded from this website (and reproduced in Appendix B) to smooth the tag pair counts.

The input to this program is the frequency of frequency counts as shown above (Table 8.1) and the

output is an estimate of the probability of each of the items (tag pairs) that occurred just once, then

each that occurred twice, then three times, and so on, as in Table 8.3.

Frequency Probability

1 8.977e-09

2 1.844e-08

3 2.796e-08

4 3.75e-08

5 4.706e-08

Table 8.3: First five lines of output from Simple Good-Turing frequency estimator

The smoothing program also gives the estimate of the total probability for the pairs that did not

occur at all. This is simply N1/N as described above (1.225e-06 for this dataset). The smoothing

algorithm does not suggest how this probability mass should be divided between the non-occurring

items but I decided simply to divide it equally between the 279 unseen tag pairs. This seemed a

reasonable decision as all of them were considered equally unlikely.

The frequency probabilities output by the program were then assigned to each of the tag pairs that

had been seen − tag pairs occurring once were assigned the probability 8.977e-09, those occurring

twice 1.844e-08 and so on. These smoothed PSGT(ti,tj) probabilities were then used to calculate the

conditional SGT tag probabilities as follows:

)(
),(

)|(
iSGT

jiSGT
ijSGT tP

ttP
ttP = .

Note that although all the zero frequency pairs were initially assigned the same probability value,

their conditional probability will differ depending on the P(ti) value; unseen pairs where the first

member of the pair is less frequent overall will have a higher conditional probability than those

A Syntax-based Spellchecker

 118

where the first member is more frequent. A comparison of the SGT conditional probabilities with

the MLE estimates for a small sample of tag pairs is shown in Table 8.4.

Tag pair Count MLE SGT

AT0,NN1 4302215 0.536180264218224 0.536166713869756

NN2,PNI 995 0.000198174444897446 0.00019815823595266

VDD,PNQ 1 9.88943610435333e-06 9.27499044105613e-06

VDB,VDN 0 0 3.89703034634343e-06

CJS,VDI 0 0 3.85237264879899e-07

Table 8.4: Comparison of MLE and SGT probability estimates

As previously described, the Turing Estimator that forms the basis of the smoothing method

employed here, calculates r* as:

r

r

N
N

rr
1

)1(* +
+= where r ≥ 1

Using this formula the value of 1* for this dataset is calculated as 1.17 (Table 8.2). Using the

Turing Estimator, the sign of a closed class is 1* > 1 (Gale and Sampson, 1995). As 1* for this

dataset is > 1, this suggests that the class of tag pairs is closed, meaning that all allowable pairs have

been seen and that any unseen tag pairs that do occur are likely to be ungrammatical. Thus,

although it is undesirable for them to be assigned a zero probability, a less complex smoothing

method might have served us just as well. However, the tagger described in the next section uses

the SGT smoothed tag-pair probabilities, calculated as described above.

8.3 The tagging algorithm
8.3.1 Calculating tag sequence probabilities
The tagger initially assigns the tag retrieved from the dictionary to all single-tag words. These will

form the start and end points of sequences of one or more multi-tag words. To assign tags to the

multi-tag words, the tagger selects the tags on the maximum probability path through the sequence.

To calculate the probability of a given tag for a word on a particular tag path it retrieves the

A Syntax-based Spellchecker

 119

conditional tag bigram probability for that tag occurring following the tag assigned to the previous

word on that path and multiplies it by the probability of the word occurring with that tag. The

product of these probabilities gives the overall probability for the complete path. This is calculated

as follows:

 T(w1,n) =)|()|(1
1

maxarg
,1

twtt iii

n

i
i PP

t n
−

=
∏

The point to note in this equation is the way in which the tag probability for each word is calculated

(the final term of the equation). Initially it might seem that we should condition the tag on the word

by calculating the relative frequency of each of its tags − in other words, to ask, “Now that we’ve

come across this particular word in the text, what is the likelihood of each of its tags occurring?” In

this case the final term of the equation would be P(ti|wi) which is the value that has been used by

some taggers. But the equation above uses P(wi|ti). In a comparison of the two approaches,

Charniak et al. (1993) report better performance using the equation given above which they

describe as “more theoretically pure” (assuming tagging is regarded as a Markov process). In this

case we are conditioning the word on the tag by asking, “If we assign this particular tag, what is the

likelihood of this word occurring with it?” This method also seems more appropriate when, in

addition to assigning tags, we want the tagger to decide between words, as we later shall (Section

 8.4). The P(wi|ti) values are calculated as:

)(
),()|(

i

ii
ii tC

twCP tw =

where C(wi,ti) is the count of the number of times word wi occurred with tag ti

 and C(ti) is the total occurrences of the tag ti with any word.

8.3.2 A tagging example
The tagging process is easiest to understand if we use an example. Take the three word sentence:

A Syntax-based Spellchecker

 120

They can fly.

The tagger has already assigned tags to the single-tag words and as the first word in this sentence −

They − has just one tag − PNP − this becomes the anchor tag at the start of the multi-tag sequence

can fly. As the sentence ends with a multi-tag word, the anchor tag at the end of the sequence is the

EOS tag that is appended to the end of each sentence.

The tagger now retrieves the entry for can from the dictionary together with the frequencies for

each of its tags − VM0, NN1, VVB, VVI. The VVB and VVI tags for can occurred less than once

per million in the BNC and since frequencies are stored in the dictionary as occurrences per million,

this means that the tag frequency recorded in the dictionary for these tags is zero. These zero

values, along with the minus-one frequencies which were assigned to the words which occurred

once, twice or not at all in the BNC, create problems when it comes to calculating the word-tag

probabilities. A useful modification to the dictionary would be to make these values more fine-

grained at lower frequencies and possibly to use a smoothing algorithm to assign a value to the

unseen words or, alternatively, just to store the raw frequencies. However, this is a task to put on

the dictionary wish-list and for the moment the program has to cope somehow with these 0 and -1

values. The solution adopted was to assign values of 0.5 and 0.01 to them respectively at run-time.

After adjusting the tag frequencies in this way, the program continues to consider which of the four

tags for can is most likely to occur following a PNP tag. It first calculates the P(can|tag) values for

each tag. These values are then scaled by dividing by the total of the P(can|tag) values. Although

this step is not strictly necessary mathematically, we are interested in proportions rather than actual

values at this point and this has the advantage of making the numbers larger and easier to check

visually.

A Syntax-based Spellchecker

 121

The program next retrieves the bigram frequencies which give the likelihood of each tag following

the preceding tag. Multiplying these by the word-tag probabilities calculated above gives the

probability value for each tag occurring in this context.

A final stage calculates the overall probability of the sequence up to this point by multiplying this

value by the overall probability for the sequence of tags that preceded it − this will be 1 for the first

tag in the sequence. The complete calculation (illustrated in Table 8.5) for each of the tags of can

following the PNP tag at the start of the sequence is thus:

P(can|tag) * P(tag|PNP) * 1.

Tag Count
(tag,can)

Count(tag) P(can|tag) Scaled

P(can|tag)

P
(tag|PNP)

P(tag|PNP) *
P(can|tag)

VM0 1992 12410 0.1605 0.999 0.1223 0.1222

NN1 8 158095 5.0602e-005 0.0003 0.0021 6.6729e-007

VVB 0 (0.5) 13447 3.7183e-005 0.0002 0.0785 1.8172e-005

VVI 0 (0.5) 24925 2.0060e-005 0.0001 0.0183 2.2861e-006

Table 8.5: Calculating the probability for can following PNP

8.3.3 Calculating the sequence probability
At this point the tagger could fairly confidently assign a VM0 tag to can but since it wants to find

the most likely path through the complete sequence of multi-tag words it will not make a final

decision until it has reached the end of the sequence. With a short sequence, such as the one we are

considering here which has 16 possible paths (four tags for can followed by four tags for fly), it

would be possible to calculate the probabilities for each sequence and then select the one with the

maximum value. However, as noted previously, many sequences will be much longer than this and

have many more possible paths. What the tagger needs to do is consider the continuation of the

most likely sequence at each point while at the same time having the possibility to backtrack to the

previous word should that sequence seem unproductive.

A Syntax-based Spellchecker

 122

As it progresses through the sequence, the tagger stores the path probabilities it has calculated and

selects the maximum it has seen so far. It calculates the probabilities for each tag of the succeeding

word continuing this path (as described above) and also stores them. If the probability for one of

these new paths is greater than the probability of any of the other paths previously stored, the tagger

will continue that path, otherwise it will select the most likely of the previously stored paths for

continuation. Thus at each stage the program needs to do two things: select the most likely path so

far and store the newly calculated probabilities for its continuation. It would be possible to do this

by storing the path probabilities in a sorted array but this would require a large sorting overhead

each time new paths were added and would not be practical for long sequences. However, provided

we have a mechanism for ensuring that the most likely sequence is always in first place, we are not

concerned what order the other paths are stored in. What is required is a priority queue, and this

can be implemented efficiently using a binary heap (Knuth, 1973). This functions in a similar way

to an ordered binary tree except that the only ordering requirement for the heap is that each parent

node has a higher value than each of its child nodes but no order is specified between siblings. It

can thus be stored simply in a one-dimensional array and each element's array index value can be

used to find the position of its parent or child nodes as shown below:

parent node = (i -1) /2

left child = 2 * i + 1

right child = 2 * i + 2

Thus the children of the first element in the array (index 0) are at indices 1 and 2, the children of the

element at index 1 are 3 and 4 and so on.

The array is maintained in heap order by moving elements up or down as necessary. When the

element with the maximum value is to be extracted from the top of the heap, it cannot simply be

removed as its largest child may not be the maximum value on the heap. To maintain the array in

A Syntax-based Spellchecker

 123

heap order when the first element is removed, it is replaced with the tail element which is then

moved downwards into its correct position. When new elements are added they are pushed on to

the end of the array and then moved upwards if they have a greater probability than their parent

node.

The tagger stores the sequence probabilities on a heap as described above. It continues to remove

the maximum path so far and store the probabilities for paths continuing from that point until it

reaches the end of the sequence for one possible path and this sequence has the highest value on the

heap. At this point the tagger terminates and assigns the tags on this path to the words in the

sequence. This is easiest to understand if we continue with our example.

To tag the complete sentence “They can fly”, the program first stores the values calculated above on

the heap as shown in Table 8.6

Heap element Probability

<PNP>they <VM0>can 0.1222

<PNP>they <VVB>can 1.8173e-005

<PNP>they <NN1>can 6.6729e-007

<PNP>they <VVI>can 2.2861e-006

Table 8.6: Heap storing probabilities for tags of can following PNP

It next calculates the probability for each tag of the next word − fly − following a VM0 tag. These

calculations are given in Table 8.7.

Tag Count
(tag|fly)

Count
(tag)

P(fly|tag) Normalised

P(fly|tag)

P(tag|VM0) P(tag|VM0)
* P(fly|tag)

VVI 22 24925 0.0008 0.5726 0.3760 0.2153

NN1 9 158095 5.6928e-005 0.0369 0.0017 6.4668e-005

VVB 8 13446 0.0006 0.3859 2.4648e-05 9.5126e-006

AJ0 0 (0.5) 71416 7.0012e-006 0.0045 0.0007 3.1918e-006

Table 8.7: Calculating the probabilities for each tag of fly following VM0

A Syntax-based Spellchecker

 124

The tag probabilities calculated above are then combined with the previously calculated probability

for the sequence ending with the VM0 tag (0.1222) and the new sequence probabilities stored on

the heap as shown in Table 8.8.

Heap element Probability

<PNP>they <VM0>can <VVI>fly 0.0263

<PNP>they <VVI>can 2.2861e-006

<PNP>they <VVB>can 1.8173e-005

<PNP>they <VM0>can <AJ0>fly 3.9009e-007

<PNP>they <VM0>can <VVB>fly 1.1626e-006

<PNP>they <NN1>can 6.6729e-007

<PNP>they <VM0>can <NN1>fly 7.9035e-006

Table 8.8: Heap after storing probabilities for each tag of fly following VM0
(new elements added to heap shown in bold)

Although the top element of the heap now contains the complete sentence, because the last word −

fly − was multi-tag the program appends the EOS tag to the end of the sequence and retrieves the

P(EOS|VVI) − (0.0016) − bigram probability. It then calculates the probability of EOS following

VVI, multiplies this by the probability of the sequence ending in VVI and stores this on the heap.

As shown in Table 8.9, this probability is still higher than the other sequence probabilities already

on the heap so this is the final sequence with the maximum path and is used to assign the tags. As

the final heap in Table 8.9 shows, only seven of the total 16 possible sequences were ever

considered.

One of the features of calculating sequence probabilities in this way is that the overall probability

decreases with the length of the sequence. Because the sequence considered above was short (and

also partly because the VM0 probability at the start was so high) we have been able to reach the end

without having to consider many of the sequences that were assigned a low probability at the outset.

With longer sequences these less favoured initial sequences will gradually work their way to the top

as their probability becomes greater than that for the longer sequences that have already been

A Syntax-based Spellchecker

 125

considered. To reduce the overhead involved in considering sequences that were unlikely to be

productive, I stored the maximum position reached in the sequence in any expansion and discarded

the element at the top of the heap if it was more than one word behind.

Heap element Probability

<PNP>they <VM0>can <VVI>fly <EOS> 4.1678e-005

<PNP>they <VVI>can 2.2861e-006

<PNP>they <VVB>can 1.8173e-005

<PNP>they <VM0>can <AJ0>fly 3.9009e-007

<PNP>they <VM0>can <VVB>fly 1.1626e-006

<PNP>they <NN1>can 6.6729e-007

<PNP>they <VM0>can <NN1>fly 7.9035e-006

Table 8.9: The final heap showing the maximum path through the sequence in top position

In the example above, the tagger correctly assigns a VM0 tag to can but we have gone to a lot of

effort to achieve the same result that the simple ‘select the most frequent tag’ method would have

given us. To assess whether this is worthwhile we need to know whether it correctly assigns an

NN1 tag to can in “a can of beans”. The extracts from the tagging process shown below

demonstrate that this is the case. As all the letters of the alphabet have entries in the dictionary

there are two possibilities for the tagging of A at the start of the sequence, ZZ0 (singular letter) or

AT0 (article). Table 8.10 shows the heap after calculation of the probability for each of these tags

occurring at the start of a sentence. As would be expected, AT0 is the preferred tag.

Heap element Probability

<BOS> <AT0>A 0.0175

<BOS> <ZZ0>A 0.0016

Table 8.10: Heap with probabilities for A occurring at the start of a sentence

The tagger now calculates the likelihood of each of the tags of can following AT0. This is shown in

Table 8.11. (The calculation of the P(can|tag) values is the same as that given above and so has

been omitted from this table.) This time we see that, despite the high probability initially assigned

A Syntax-based Spellchecker

 126

to the VM0 tag for can, the high probability of a noun occurring after an article makes NN1 the

preferred tag in this context. However, in this case, the overall probability for the two word

sequence (as shown in the last column of Table 8.11) is lower than for the initial sequence starting

with the ZZ0 tag. This is now extracted and the tagger has to go through several more iterations

before finally assigning the NN1 tag to can.

Tag Normalised

P(can|tag)

P(tag|AT0) P(tag|AT0)
* P(can|tag)

* P(sequence)

VM0 0.999 1.7811e-05 1.7799e-005 1.272.e-006

NN1 0.0003 0.5362 0.0002 1.2087e-005

VVB 0.0002 0.0003 6.7970e-008 4.8638e-009

VVI 0.0001 2.4009e-07 2.9985e-011 2.1457e-012

Table 8.11: Calculation of the probability of each of the tags of can following AT0

8.3.4 Tagger assessment
The tagger implemented in this program is relatively unsophisticated; tagging is a more exact

science than the preceding description might imply. But although the aim of this research was to

correct spelling rather than to produce a state-of-the-art tagger, I needed to check that it was fit for

the purpose before proceeding further.

The initial impression, from a visual examination of tagged text output by my tagger, suggested that

the tags it assigned were reasonable but I needed to assess its adequacy more formally before

extending it to incorporate checking for syntactic real-word errors (as described in the next section).

It should be noted, at this point, that this assessment was intended simply to confirm (or otherwise)

the tagger’s suitability for use by my spellchecker, not to enable me to make claims as to its tagging

accuracy.

Although it would have been a relatively straightforward matter to run the tagger over a portion of

the BNC and compare the tags output by my tagger with those assigned to words in the corpus, this

would not have been a very realistic test as, since the tag bigram probabilities used by the tagger

A Syntax-based Spellchecker

 127

were derived from the BNC, it would have amounted to testing on the training data. To avoid this

circularity, I used the tagged version of the LOB corpus (Johansson et al. 1986), included on the

ICAME (1999) CD, to test the tagger. This corpus was compiled by researchers from the

University of Lancaster, the University of Oslo and the Norwegian Computing Centre for the

Humanities, Bergen in the early 1980s. It contains approximately a million words made up of 500

text samples, representing a broad range of British English from 1961.

The tagset used in the LOB corpus (Appendix D) differs from the BNC tagset; not only are the tags

themselves different but there are also more tags – excluding punctuation tags there are 139 part-of-

speech tags in the LOB tagset compared to just 56 in the C5 tagset used in the BNC. Despite these

differences, it was possible to produce a mapping between the two tagsets that was adequate to

compare the tagged output from my tagger with the tags in the original corpus.

I ran the tagger over a LOB file (LOBTH_A.TXT), containing approximately eighty-seven

thousand words, and compared the tag it assigned to each word to the tag recorded for that word in

the corpus. (As the LOB corpus has been manually post-edited to correct errors made by the

automatic tagger, it is reasonable to assume that the tags it contains are correct.) Appendix E shows

a comparative listing, in vertical format, of the first ten sentences in this file comparing the tags

output by my tagger with the LOB tags and Appendix F shows the number of words in the file that

were assigned each tag, the number of correct assignments and the number of discrepancies. As the

table shows, the tags selected by my program mapped to the corresponding LOB tag for just over

94% of the words in the file. Around a quarter of the discrepancies were proper nouns or single

letters, possibly caused by the text segmenter making an incorrect decision for words with initial

capitals, and a small proportion may be due to mismatches between the tagsets or inaccuracies in

the mapping between them (the distinction between pronouns and determiners, for example).

Others appeared to be incorrect tagging decisions. These were often cases where a tagger might be

A Syntax-based Spellchecker

 128

expected to encounter difficulties − incorrectly selecting between nouns and adjectives or past tense

and past participle, for example.

Although this small experiment suggested that some refinement might improve the efficiency of the

tagger, the performance level seemed reasonable enough for me to continue to the next stage of

development.

8.4 The Confusion Tagger
8.4.1 Implementation
The ‘confusion tagger’ is an extension of the part-of-speech tagger described above, but this time, if

it encounters a confusable word in the text, the program decides on the most likely tag at that point

based on the tags for the word it has seen together with the tags for its associated confusion set

words. If the tag selected is more likely to belong to one of the other confusion set members, the

word is flagged as an error and the preferred member proposed as a correction.

For example, if it encounters the sequence “...he wood rather...” (where wood is a misspelling of

would) it finds that wood has an associated confusion set containing would and wooed. If the

program was just tagging, wood would be regarded as unambiguous since it only has one tag − NN1

− and the program would simply assign PNP, NN1 and AV0 to each of the words respectively.

However, the confusion tagger will consider whether one of wood’s confusables is a better syntactic

fit. To do this it proceeds in much the same way as the tagger described above except that it

calculates the P(word|tag) probabilities for each <word, tag> pair in the confusion set and scales by

the overall probability for the confusion set. Table 8.12 shows these calculations.

A Syntax-based Spellchecker

 129

<Word,Tag> Count
(tag|word)

Count(tag) P(word|tag) Scaled

P(word|tag)

P(tag|PNP) P(tag|PNP)
*
P(word|tag)

wood NN1 52 158095 0.0003 0.0017 0.0021 3.7185e-006

would VM0 2320 12410 0.1869 0.9978 0.1223 0.1220

would VVD 0.5 23440 2.1330e-005 0.0001 0.1717 1.9549e-008

wooed VVN 1 25744 3.8843e-005 0.0002 0.0024 5.0656e-007

wooed VVD 0.5 23440 2.1330e-005 0.0001 0.1717 1.9549e-005

Table 8.12: Calculations for probability of each tag for wood and confusables following PNP

The probability values in the last column of Table 8.12 are now stored on the heap as shown in

Table 8.13. This shows that a VM0 tag is much more likely than an NN1 to occur following a PNP

tag. The sequence <PNP>He <VM0>would with its associated probability of 0.1220 is extracted

from the top of the heap and the probability of an AV0 tag (the single tag for rather) is calculated.

The bigram probability P(AV0|VM0) is 0.1036. This gives a probability of 0.0126 for the sequence

<PNP>He <VM0>would <AV0>rather. Since this is higher than any of the other sequences

previously stored on the heap it will appear in the top position again and the confusion tagger will

conclude that the word intended in this context is would rather than wood and offer this as a

suggested correction.

Heap element Probability

<PNP>He <VM0>would 0.1220

<PNP>He <VVD>wooed 1.9549e-005

<PNP>He <NN1>wood 3.7185e-006

<PNP>He <VVD>would 1.9549e-008

<PNP>He <VVN>wooed 5.0656e-007

Table 8.13: Heap storing probability of each <word, tag> pair occurring after PNP

8.4.2 Performance
Although a syntax-based approach can generally be expected to make a decision only when the

confusables differ in their parts-of-speech, the confusion tagger will sometimes make a choice

between two same-tag confusables. This is because the confusion tagger is conditioning the word

A Syntax-based Spellchecker

 130

on the tag so it will pick the word in the set that occurs most frequently with its selected part-of-

speech. This means, for example, that it would correct planed to planned in this fragment from the

error corpus. Both are past participles but planned has a higher past participle frequency (36) than

planed (0).

“...a rewrite of the monitor was planed.”

This is fortuitous rather than intentional and the poor performance of the ‘select the most frequent’

method discussed in the previous chapter suggests that it is unlikely to be a particularly useful

feature. Both planed and planned can also be tagged as past tense verbs and adjectives but planned

is used most frequently in all cases so the confusion tagger will make the same selection as 'select

the most frequent' for this pair of words, whichever tag it assigns. The situation is slightly different

for words with overlapping tagsets such as the {loose, lose} example given at the start of this

chapter. Lose has a higher overall frequency and so 'select the most frequent' will always prefer it -

changing all correct usages of loose to lose and ignoring all error usages of lose. The confusion

tagger will also prefer lose when it wants to assign a verb tag − it will correct the error usage of

loose in "to loose speed" but raise a false alarm for a correct usage such as "to loose them off".

(Both the preceding examples are taken from the BNC.) However, if its selected tag is adjective,

adverb or noun it will prefer loose since these tags are unique to loose. Thus if it came across "a

lose fit" it would propose loose as a correction rather than ignoring the error as the 'select the most

frequent' method would do. Conversely, if the usage was correct − "a loose fit" − the confusion

tagger would accept it rather than raising a false alarm.

On balance, it would seem best to set the confusion tagger so that it only suggests a correction when

its selected tag is not in the tagset of the word appearing in the text. Decisions for words with

matching tags can be left to the semantic checker (described in the next chapter). Thus for the

planed/planned example above, where the tagsets are identical, the error would simply be ignored

A Syntax-based Spellchecker

 131

by the syntax checker (and a correct usage of planed in for example, “the wood was planed”, would

be accepted if it happened to occur in the corpus).

The possible outcomes from the syntax checking stage for correctly used confusables are:

• accept the word as correct;

• flag it as an error (thus raising a false alarm).

The possible outcomes for errors are:

• flag and correct the error;

• flag but not correct the error;

• ignore the error.

Table 8.14 shows the number of correct and error usages of the confusables falling into each of the

categories above when the syntax checker (set to ignore syntactically matching confusables as

described above) was run over the dyslexic error corpus. The initial run of the program, shown in

the first row of the table assigned the full probability value to all <word, tag> combinations in the

confusion set. This means that if one of the confusables was judged to have a higher probability

than the word in the original text, even if only fractionally higher, it was proposed as a correction.

Although this corrected around half of the errors (column c) while raising a false alarm for just 7%

of the correctly used confusables (column b), the overall effect was negative, since the correct

usages greatly outnumber the errors. Eighty-nine percent of all occurrences of the confusables in

the error corpus are correct usages (Table 7.1) so the number of false alarms outnumbers the errors

corrected meaning that, if the spellchecker’s suggestion was accepted each time, there would be an

overall increase in the number of errors in the text. Column f shows the number of errors remaining

in the text − the sum of the false alarms, the ignored errors and the errors that were flagged but

miscorrected. Subtracting this from the total of errors that were in the text to start with (644 in this

case) gives us a figure for the reduction in the total number of errors in the text (column g). For the

initial run with the full weighting for each word in a confusion set, this figure is negative indicating

A Syntax-based Spellchecker

 132

that the text now contains 46 more errors than it had done to start with. Column h shows the

percentage ‘improvement’ in the text − the errors remaining as a proportion of the original errors.

This shows that after the initial run there was a 7% decrease in the accuracy of the text.

Words appearing in the text are much more likely to be correctly spelled than they are to be errors,

and we can factor in this general expectation by handicapping the alternative confusion set members

by reducing the weighting given to the words not appearing in the text. The remaining rows of the

table show the results of successively reducing this weighting from 50% down to 0.01%. This is

also shown graphically in Fig. 8.1.

 Correct Usage

(5209)

Error Usage

(644)

Improvement

Handicap
level

Accept

a

False
alarm

b

Flag &
correct

c

Flag not
correct

d

Ignore

e

Errors
remaining

(b+d+e)

f

Error
reduction
(644 – f)

g

Imprvt
%

h

1 4843 366 320 63 261 690 -46 -7%

0.5 4956 253 313 51 280 584 60 9%

0.1 5100 109 281 35 328 472 172 27%

0.05 5135 74 267 32 345 451 193 30%

0.01 5189 20 218 24 402 446 198 31%

0.005 5198 11 195 18 431 460 184 29%

0.001 5206 3 139 10 495 508 136 21%

Table 8.14: Syntax checker performance with different weightings

Reducing the weighting in this way means that the program is more likely to accept the word

appearing in the text as correct. Although this will have the desired effect of reducing the number

of false alarms, it will, of course, also reduce the number of errors corrected. However, as Table

 8.14 shows, the rate of decrease for the false alarms is greater than that for the errors corrected.

With the level of handicap set at 0.5 there is a small overall improvement in the text but the number

of false alarms (253) is still unacceptably high. At the maximum level of handicap (0.001) there are

just three false alarms and 22% of the errors are corrected. However, the greatest overall

A Syntax-based Spellchecker

 133

improvement in the text is achieved with the handicap set at 0.01 with 34% of the errors corrected

at the expense of 20 false alarms (0.4% of the correctly used confusables). This level thus seems to

offer the best balance between maximizing error correction while reducing false alarms.

A Syntax-based Spellchecker

 134

Fig. 8.1: Performance of syntax checker with different levels of handicap

4800

4850

4900

4950

5000

5050

5100

5150

5200

5250

Accept correct

0

50

100

150

200

250

300

350

400

450

500

1 0.5 0.1 0.05 0.01 0.005 0.001

Handicap

False Alarm

Flag & correct

Flag not correct

N
 W

or
ds

Ignore error

A Syntax-based Spellchecker

 135

8.5 Conclusion
This chapter has described the implementation of a syntax-based spellchecker that is able to correct

errors where the error and target differ in their part-of-speech. With a reduced weighting given to

the alternative words − effectively confining the spellchecker to proposing a correction only when it

was confident about it − the program was able to correct around a third of the errors appearing in

the dyslexic error corpus while producing few false alarms. Experimenting with different levels of

‘handicap’ suggested that 0.01 was the optimum level to achieve a balance between maximizing

error correction and minimizing false alarms to obtain the best overall improvement in the

‘correctness’ of the text.

The syntax checker described in this chapter was set to ignore confusables where the alternative

word(s) had the same part-of-speech as the word appearing in the text; such words were simply

flagged for later consideration by the semantic checker, described in the next chapter. The effect of

this is that correctly used ‘semantic’ confusables are accepted by the syntax checker, thus

contributing to the total of correct usages accepted (column a, Table 8.14), while error usages are

ignored, thus contributing to the total of ignored errors (column e, Table 8.14). In addition to

flagging the semantic confusables for which it is unable to make a decision, the syntax checker also

assigns a part-of-speech tag to each word in the text. These tagged sentences are then passed to the

semantic checker, described in the next chapter.

Using Semantic Associations

 136

Chapter 9: Using Semantic Associations

After the syntax checker has run over the text, all the words have been assigned a part of speech and

some errors have been corrected. The confusion tagger, as described in the previous chapter,

considers not only the part-of-speech tags associated with the word it has encountered in the text but

also the tags of any words that are considered confusable with it. If the most likely tag in the

context belongs to one of these alternative words and not to the word that was seen in the text, it

will propose a correction. On the other hand, if the selected tag belongs to the word that was seen

in the text, the syntax checker can only accept the word as correct if the tag does not also belong to

one of its confusables. If the word and one or more of its confusables have the tag in common, the

syntax checker can either be set to select the word that occurs most frequently with that part-of-

speech or to make no decision at all. The first of these approaches may be appropriate where the

decision is between a word that is rare and one that is highly common, such as the pair {wold,

world}, but, as shown in Chapter 7, it will result in an unacceptable number of false alarms in cases

where both confusables are relatively common. The second approach is simply to flag such cases

as confusable and leave them for consideration by a later stage of processing. This is the approach

taken here.

At the end of the syntax checking stage, confusables with distinct tagsets have either been accepted

as correct or flagged as errors and will not be considered further. Confusables with overlapping

tagsets, such as {loose, lose}, will also have been checked. However, in this case the syntax

checker will only have made a decision if its selected part-of-speech is unique to one of the words;

if the words have the tag in common, the final decision will be left to the semantic checker. Thus,

for example, in the sequence "a lose fit", the confusion tagger would consider all the tags for both

lose and loose and assign an adjective tag. Since this is not in the tagset for lose, it would at the

same time correct lose to loose; there would be no need for the semantic checker to consider the

pair further. On the other hand, the confusion tagger would select a verb tag in the sequence "to

Using Semantic Associations

 137

loose speed" and leave it up to the semantic checker to decide whether loose or lose was the more

appropriate verb in the context. Confusables with matching tagsets are dealt with in a similar way;

the confusion tagger assigns a tag based on the word seen in the text and leaves the semantic

checker to decide whether this word or one of its confusables is the intended word. So, for example

in the sentence "She wrote the appointment in her dairy," the confusion tagger would find that dairy

was confusable with diary but as both are nouns it would simply assign a noun tag and flag the

possible confusion for later consideration by the semantic checker.

In this example, both the verb − write − and the noun − appointment − suggest to a human reader

that diary rather than dairy is the intended word. How can we capture these semantic clues in a way

that can be used by the spellchecker? This chapter describes an approach using noun co-

occurrence.

9.1 The proposed approach
A listing of the nouns that co-occur frequently in the vicinity of a confusable in a large corpus will

generally demonstrate a distinct semantic ‘flavour’. To illustrate using {dairy, diary}, nouns

occurring frequently in the BNC near to dairy include product, farmer, cow whereas those

occurring near to diary include entry, appointment, engagement. However, lists such as these can

not in themselves be used by a spellchecker to differentiate between the confusables; the lists will

be very long and many of the nouns will occur infrequently. Just over 450 different nouns occur

within two words of diary in the BNC; only 18 of these occur ten or more times while appointment

and engagement occur just five and six times respectively. Over 280 of the nouns occur just once

and, although many of them have no particular relationship to diary, some of these once-only co-

occurrences, such as chronicle, meeting, schedule, have a distinctly diary feel to them. In contrast,

some words that seem to fit naturally into this category, such as rota, do not appear at all. We need

to capture this similarity by grouping the nouns and giving an overall score for the group to indicate

that a word belonging to it is more likely to appear in the vicinity of diary than dairy. Armed with

Using Semantic Associations

 138

this information, when the spellchecker checks a text and encounters say dairy it can assess whether

the nouns that occur in the vicinity belong in the dairy or diary group. If they clearly fit in the

latter, it can propose a correction.

The approach developed in this research uses WordNet to create such groups for the members of

my confusion sets using the nouns that occur in the vicinity of each confusable in the written

section of the BNC. This means that in the diary example above, the program would make its

decision between dairy and diary based on the co-occurring noun appointment although, as noted,

the verb write might also be helpful in making this decision. However, the WordNet hierarchy for

verbs is much broader and shallower than it is for nouns and so does not easily lend itself to

creating co-occurrence groupings in the way described below for nouns. For this reason the current

semantic checker was developed using just noun co-occurrence.

At run-time, when it encounters one of the confusables, the spellchecker retrieves the nouns from

the surrounding text, uses WordNet to ascertain which grouping they belong to and then assigns a

score to each member of the confusion set indicating how closely it associates with these groupings.

It then decides which member it prefers based on this score.

9.2 Semantic confusable listing
Results from an initial experiment (Pedler, 2005), using noun co-occurrence for 20 pairs of

confusables that were either tagged only as nouns, such as {dairy, diary}, or only as verbs, such as

{carve, crave}, were reasonably promising. The approach was now scaled-up to deal with a larger

number of semantic confusables.

9.2.1 Word pairs
There were potentially over five thousand pairs of words that could be checked by the semantic

checker − the confusable listings (discussed in Chapter 5) included 1940 pairs of words with

matching tagsets and 3606 pairs with some but not all tags in common (Table 5.5). Although the

majority of these pairs were nouns or verbs, the list also included a few hundred adjective pairs and

Using Semantic Associations

 139

around fifty adverb pairs. Adverbs, by definition, are more closely allied to verbs than nouns and

although many of them seemed to be the type of error we would like to correct − <sorely, surely>,

<warily, wearily> for example − they did not seem suitable candidates for the noun co-occurrence

approach and so were removed from the list.

9.2.2 Tagged-word pairs
In contrast to the pairs used for the initial experiment which belonged to a single word class − either

noun or verb − around a third of the remaining pairs of confusables belonged to more than one word

class (‘word class’ here being noun, verb or adjective). The majority of these were both nouns and

verbs − such as {plan, plane}, about three hundred were both adjectives and verbs − such as {hated,

heated}, and a few were both adjectives and nouns − such as {patent, patient}. (In this last example

the tagsets overlap as patent is also a verb but this possibility will be considered by the syntax

checker and if it selects a verb tag the pair will not be passed to the semantic checker.) In addition

to these pairs with two classes in common there were also three pairs such as {bust, burst} that

belonged to all three classes − adjective, noun and verb.

When a word belongs to more than one word class the context and frequency with which it appears

may differ depending on its class. Take the pair {plan, plane} for instance, both of which can be

either a noun or a verb. Although there is some relationship between the verb plane and the noun

plane when it refers to a woodworking tool, this is not the case when the noun is used in the 'means

of transport' sense so we would expect that some nouns that co-occurred with the noun plane would

not co-occur with the verb. Additionally, although plane is relatively common as a noun (with a

dictionary frequency of 36 per million), it has a dictionary frequency of zero for its verb usage. (A

dictionary frequency of zero actually means that the word occurred less than 90 times in the BNC as

the frequencies are per million, as previously described.) In such a case, combining the noun and

verb usage would overweight the probability for the verb.

Using Semantic Associations

 140

Thus rather than simply considering confusable pairs of words, the semantic checker needs to

consider pairs of tagged-words and store the nouns co-occurring with, for example, {plan(N),

plane(N)}, separately from those co-occurring with {plan(V), plane(V)}. To enable it to do this, the

list of confusable pairs was expanded into a list of tagged-word pairs.

9.2.3 Inflected forms
Many of the tagged-word pairs were confusable inflected forms. For example, in addition to the

pairs {spill(N), spell(N)} and {spill(V), spell(V)} the list also included {spills(N), spells(N)},

{spills(V), spells(V)}, {spilled(V), spelled(V)} and {spilling(V), spelling(V)}. When the base form

of a word is confusable, its inflected forms are also often similarly confusable and likely to produce

similar spelling errors. For example, someone who mistakenly records appointments in a dairy

instead of a diary might also suggest that colleagues consult their dairies. Such inflected forms will

often occur in similar contexts; for example, we can carve stone and stone is carved; we might eat

lentil soup or make soup with lentils.

Based on this observation, such inflected forms of a particular tagged-word pair can be grouped

together under their base form as a single 'lexeme' pair; the lexeme pair {spill(V), spell(V)}, for

example, includes the pairs {spills(V), spells(V)}, {spilled(V), spelled(V)} and {spilling(V),

spelling(V)}. Nouns co-occurring in the BNC with any of these forms can be stored together as co-

occurrences for the lexeme. At runtime, when the spellchecker encounters an inflected confusable

it will use the lexeme co-occurrences to decide which word is the most appropriate in the context

and choose the corresponding inflected form as the intended word. So, for example, if it was

checking “She spelled the water”, it would retrieve the noun co-occurrences associated with the

lexemes spill(V) and spell(V) and (hopefully) find that water was more likely to co-occur with spill

than it was with spell and so propose spilled as a correction. This approach increases the number of

noun co-occurrences for each confusable and also reduces the number of co-occurrence trees

required by the spellchecker (Section 9.4.2 below).

Using Semantic Associations

 141

9.2.4 Low frequency confusables
The initial experiment had suggested that the proposed approach was unsuitable for low frequency

confusables. For example, the pair {wold, world} was considered for inclusion in the initial

experiment. However, wold makes up just 0.4% of the total occurrences of the pair {wold, world}

in the BNC and only 47 nouns co-occur with it. Some, such as flower and path, seem to relate to

the dictionary definition of wold as an “(area of) open uncultivated country; down or moor” but

others, such as bet and rice, seem more puzzling. Further investigation showed that, in fact, many

of the occurrences of wold in the BNC are real-word errors as the examples below show:

“...variety of wold flowers...”

“...the best bet wold be...”

“...brown and wold rice...”

“...my wold as I see it...”

This suggests that a spellchecker would do best if it always flagged wold as an error. Indeed, this is

what MS Word does, suggesting would, world and wild (which would correct the above errors)

along with weld and wood, as replacements. Similarly, for the pair {rooster, roster} (also

considered for the initial experiment) where there are only 25 occurrences for rooster in the BNC

and just eight co-occurring nouns, there was simply not enough data to generalise from. These pairs

were thus excluded from the initial experiment and similar low frequency lexeme pairs which were

unlikely to be suitable for the semantic association approach were also not considered further.

9.2.5 The final list
There were just over two thousand lexemes in the final list (Table 9.1). Initially it might appear that

verbs are under-represented as there are over three times as many nouns as there are verbs in this

final listing. However, this is to be expected as the base form of each verb can have three inflected

forms associated with it whereas each noun has only one (plural) inflection.

Using Semantic Associations

 142

Word class N. lexemes

Noun 1471

Verb 453

Adjective 128

Total 2052

Table 9.1: Number of lexemes for each word class

9.3 Noun co-occurrence listing
I now listed all nouns occurring within two words before or after each lexeme in the written section

of the BNC. In the majority of cases a human reader presented with the resulting lists would have

little difficulty in distinguishing between the confusables or in spotting the similarities between

their respective sets of co-occurring nouns. For example, the top three co-occurring nouns for carve

are stone, wood (both materials that can be carved) and knife (a tool that is used for carving).

Nouns appearing with a lesser frequency further down the list are clearly related (oak, walnut,

marble, granite, tool, chisel). The top three for crave are man (both craving and being craved), food

and success which again bear the same affinity to crave as other words in the list such as people,

chocolate and attention and are also clearly different from those co-occurring with carve.

9.4 Co-occurrence grouping
9.4.1 WordNet relationships
Nouns in WordNet (Miller et al., 1990) are organised as a lexical hierarchy. The main

organisational principle is hyponymy/hypernymy or the ISA relation. For example, using the co-

occurrences for carve discussed above, oak is a hyponym of wood and granite is a hyponym of

stone, both wood and stone are hyponyms of material. Thus both oak and granite are linked

through their common hypernym material, as illustrated in Fig. 9-1.

Using Semantic Associations

 143

Fig. 9-1: Hypernym grouping of materials that can be carved

However, the WordNet hierarchy represents the relationship between word meanings rather than

word forms, with each node of the hierarchy representing a synset or grouping of synonymous

words. A word may be part of several synsets, each representing a different sense in which it can

be used. There are a total of 12 senses stored for stone. Five of these are proper names (e.g. Oliver

Stone the film-maker) and can be discounted. The remaining seven are listed below.

stone, rock (countable, as in “he threw a stone at me”)

stone, rock (uncountable, as in “stone is abundant in New England”)

stone (building material)

gem, gemstone, stone

stone, pit, endocarp (e.g. cherry stone)

stone (unit used to measure ... weight)

stone (lack of feeling...)

The sense illustrated in Fig. 9-1 is part of the second {stone, rock} synset and appears the most

likely to occur in the context of carve although all of the first four seem to fit. However, the

remaining three do not seem relevant.

The inclusion of slang and informal usage also presents a problem. Resnik (1995) reports obtaining

a high similarity rating for the words horse and tobacco. On investigating this apparent anomaly he

found that this had occurred as one of the senses recorded for horse is its slang usage for heroin,

which means that both words can be used in the sense of narcotics.

material

stone wood

marble granite oak walnut

Using Semantic Associations

 144

9.4.2 Creating hypernym trees
We now have lists of words from the BNC that co-occur with, say, carve. Next we want to identify

a subtree from WordNet’s main trees where these words tend to cluster. A subtree in WordNet is a

group of synsets that have a common hypernym. Since a word can have several senses and

therefore appear in several places in WordNet, and since it was not possible to know in advance

which senses best related to their co-occurring confusable, I retained all senses (apart from proper

nouns or slang) of the co-occurring nouns in the initial hypernym trees. The assumption was that

the most relevant ones would gather together while the others would appear in sparsely populated

sections of the tree and could later be removed. Fig. 9-2 and Fig. 9-3 show the final sections of the

tree for two of the senses of stone discussed above.

Fig. 9-2 shows that not only did the word stone itself occur with carve in the BNC, but so did

sandstone, granite, marble and limestone, all hyponym senses of one sense of stone, similarly oak,

walnut etc. are all hyponym senses of one sense of wood. The material node is included since it is

the hypernym of both stone and wood and therefore of a subtree of WordNet that seems to go with

Fig. 9-2: Section of WordNet tree for stone#2

Fig. 9-3: Section of WordNet tree for {stone, pit, endocarp}

material

stone

sandstone granite limestonemarble

wood

oak walnut beech ash

stone

pericarp

covering

Using Semantic Associations

 145

carve. (The word material itself does not actually occur with carve in the BNC, though it obviously

could do.)

By contrast, no words related to the cherry-stone meaning of stone co-occurred with carve − neither

words in the same synset (pit, endocarp) nor words in the synsets of any of its hypernyms (pericarp

etc.) − so this meaning of stone was left as a leaf node at the end of a long branch of isolated

hypernyms (Fig. 9-3). This branch of the WordNet tree does not appear to go with carve and can

now be pruned from the carve tree.

Continuing with the stone example, we have discarded three senses − those of cherry stone, weight

and feeling − leaving four which seem likely co-occurrences − two types of rock, building material

and gemstone. The word stone occurred 74 times in the vicinity of carve in the BNC. We do not

know which of the remaining four senses of stone was involved in each of these occurrences, so we

divide the 74 by four giving each of these nodes a ‘word count’ of 19 (rounded to the nearest whole

number).

For a hypernym node however, we want its count to represent how often any of the words in its

subtree occurred with the confusable. I therefore summed all the ‘word counts’ (i.e. the counts

adjusted in the way just described) for all the words in the subtree and added these to the word

count for the hypernym node itself.

Hypernym nodes at higher levels of the tree tend to represent generalised concepts. The node for

entity, for example, is retained in the carve tree not because the word entity itself occurred with

carve but because many of the words in its subtree did. For this reason the initial word count for

such nodes will often be zero but as the word counts are propagated up the tree they will accumulate

the word counts of all their hyponym nodes.

The final stage in creating a hypernym tree was to convert each of the adjusted word counts to a

probability. The probability of each hypernym occurring in the vicinity of a particular confusable is

Using Semantic Associations

 146

calculated by dividing its word count by the total word count for the tree − i.e. the count stored in

the root node of the tree (1714 in the case of carve).

Fig. 9-4 illustrates this process for the material section of the carve tree. Each node shows the

initial word count for the hypernym with the summed word counts (rounded to the nearest whole

number) in parentheses together with the resulting probability. For example, stone (sense 2) has its

own word count of 19; to this is added the word counts of granite, marble etc., giving 39. Divided

by the 1714 co-occurrences for carve, this gives a probability of 0.02. As can be seen, the

hypernyms material, substance and entity start with an initial word count of zero and then

accumulate the word counts of all their hyponym nodes. (These word counts cannot be extrapolated

directly from the diagram as not all the hyponym nodes are shown.) As would be expected, the

number of co-occurrences (and correspondingly the likelihood of encountering the hypernym or one

of its hyponyms) increases as the concepts represented become more general at the higher levels of

the tree.

What these figures tell us, in general terms, is that there is a certain probability of encountering, say,

granite, close to carve, a higher one of encountering any sort of stone, a yet higher one of

encountering some kind of material, and so on. The nodes at the higher levels of the tree are too

generalised to capture the similarity between the nouns co-occurring with a particular confusable:

substance, for example, is a hypernym of both stone (which is often carved) and food (which is

often craved) and so unlikely to be helpful in making a distinction between carve and crave.

Conversely, nodes at the lower levels are too specific; although many different types of stone co-

occurred with carve in the BNC (Fig. 9-2) there may be others that could equally well be carved but

did not appear in the BNC. We are more interested in the frequency with which the some type of

stone co-occurred with carve than the frequency with which specific types of stone occurred. To

capture the level of generality that seemed most useful for the spellchecker, the branches of the

Using Semantic Associations

 147

hypernym trees stored for use at run-time were truncated at level 4. Thus for the tree illustrated in

Fig. 9-4, stone and wood become leaf nodes.

Fig. 9-4: Summed word counts and hypernym probabilities for section of carve tree

The hypernym trees created for each individual lexeme were written to file. The program then uses

an index to this file to retrieve the trees it requires at run-time.

9.4.3 Merging the hypernym trees
When the spellchecker comes across a confusable word, it needs to decide whether the word it has

seen is more likely in the context than one of the other members of its confusion set. For example,

given the confusable pair {carve, crave}, when it encounters carve, it needs to decide whether this

is indeed the word the user intended or whether crave would be a more appropriate choice.

The ‘lexeme’ trees described above tell us how likely it is that a particular hypernym will occur in

the vicinity of a particular confusable. For instance from the carve tree (Fig. 9-4) we see that, given

that some word in the hypernym tree for carve does occur in the vicinity of carve, there is a 2%

probability of that word being stone or one of its hyponyms a 5% probability of it being some type

material

0 (91) P 0.05

stone

19 (39) P 0.02

granite

4 P 0.002

marble

12 P 0.007

wood

10 (52) P 0.03

substance

0 (342) P 0.2

entity

0 (1028) P 0.6

Using Semantic Associations

 148

of material and so on. The crave tree gives the corresponding probabilities for a given hypernym

co-occurring with crave.

The probabilities stored in these trees tell us the probability of finding, say, stone, near carve , or,

more generally, the probability of a particular hypernym occurring in the vicinity of a given

confusable. But what the spellchecker needs to know, when it encounters either carve or crave in

the text, is which of the two confusables is more likely to occur in the context of stone. In other

words, it needs to know the probability of a particular confusable occurring in the vicinity of a

given hypernym. To calculate this ‘lexeme-given-hypernym’ probability we need to weight each of

the ‘hypernym-given-lexeme’ probabilities in the lexeme trees by the relative frequency with which

each hypernym-lexeme pair for the confusion set − {carve, crave} in this case − occurred with the

confusable in the BNC. We can then divide these ‘weighted probabilities’ by the overall probability

for the hypernym occurring with either confusable to obtain a ‘relative likelihood’ score for each

confusable lexeme − this will be a value between 0 and 1 for each confusable such that the sum of

the scores is 1. Equation 1 below is used to calculate the weighted probablilities followed by

equation 2 to calculate the final relative likelihood scores.

Using Semantic Associations

 149

Given:

W a set of words (confusables)

H a set of hypernyms

pn(h,w) the WordNet probability for hypernym h co-occurring with word w

fb(h,w) the frequency of the hypernym h co-occurring with word w in the BNC

pw(w,h) weighted probability for word w co-occurring with hypernym h

pr(w,h) relative likelihood score for confusable w occurring with hypernym h

1)
∑ ∈

=
Ww b

bn
w whf

whfwhp
hwp

),(
),(*),(

),(

2)
∑

=
),(

),(
),(

hwp
hwp

hwp
w

w
r

Table 9.2 shows these calculations for three hypernyms from the {carve, crave} lexeme trees.

 a b c d e f

 pn(h,w) fb(h,w) Σ fb(h,w) pw(w,h) Σ pw(w,h) pr(w,h)

w, h a*b/c d/e

carve, stone 0.02 39 1 1

crave, stone 0 0
39

0
1

0

carve, substance 0.2 342 0.174 0.87

crave, substance 0.2 51
393

0.026
0.2

0.13

carve, foodstuff 0.002 3.4 0.0012 0.21

crave, foodstuff 0.01 2.6
6

0.0043
0.0055

0.79

Table 9.2: Calculation of relative likelihood scores for {carve, crave} hypernyms

The stone (sense 2: stone, rock (uncountable)) hypernym included in the section of the carve tree

shown in Fig. 9-4, does not appear at all in the crave tree, suggesting that the spellchecker should

always prefer carve when it sees stone or one of its hyponyms in the vicinity of either carve or

Using Semantic Associations

 150

crave. In a trivial case such as this, it is actually not necessary to calculate the scores at all − the

program can simply assign scores of 1 and 0 directly for hypernyms appearing in one tree but not in

the other − but, as the table shows, this is also the result we would get if we did do the calculation.

I will now describe in detail the process of calculating the scores for the other examples in Table 9.2

where the hypernym node occurs in both lexeme trees.

Two of the hypernyms for stone included in the section of the carve tree illustrated in Fig. 9-4 −

material and substance − also appear in the crave tree. For the substance node (shown in Table 9.2)

the probability is almost the same in both trees − 0.1995 for carve and 0.1992 for crave, rounded to

0.2 in Fig. 9-4 and Table 9.2. This might initially suggest that we are as likely to crave a substance

as we are to carve it. But, as carve is much the more frequent member of the pair (carve makes up

84% of the total occurrences for the pair {carve, crave} in the BNC), it has a larger overall co-

occurrence count (1714 compared to just 256 for crave), meaning that many more substance-related

nouns have co-occurred with carve (342) than they have with crave (51), (column b). Clearly we

have to factor this in. We do this by multiplying each hypernym-lexeme probability (column a) by

the relative frequency with which the hypernym-lexeme pair occurred in the BNC (column b /

column c). This gives us the weighted probability scores (column d), which show us that, as we

would expect from the discussion above, carve is more likely to occur than crave in the vicinity of

substance or one of its hyponyms. In fact, because the hypernym probability (column a) is the same

in each tree, in this case, it simply acts as a ‘scaling constant’ in the calculation of the weighted

probabilities (d) and the final relative likelihood scores (column f) are identical to the relative

frequencies of each hypernym-lexeme pair in the BNC − dividing the frequency for each pair (b) by

the total occurrences for the pair (c) gives us 342/393 = 0.87 for carve and 51/393 = 0.13 for crave.

However, this is not the case when the initial hypernym probabilities differ. The more specific

substance hyponym foodstuff (the final example in Table 9.2) also appears in both the carve and the

Using Semantic Associations

 151

crave trees (although its branch is not included in Fig. 9-4) and the overall co-occurrence count

(column b) is still greater for carve (3.4) than it is for crave (2.6). But, unlike the substance

example where the hypernym probabilities were the same for each confusable, foodstuff has a far

greater probability of occurring with crave (0.01) than it does with carve (0.002). When this is

factored in we now find that there is a 0.78 probability for crave co-occurring with some type of

foodstuff as opposed to just a 0.22 probability for carve; although it is certainly possible to carve

food − such as the Sunday roast − it seems we are more likely to crave it.

The spellchecker calculates these relative likelihood scores at run-time and stores them in a merged

lexeme tree which it uses to select between the confusion set members as described in Section 9.5.2

below.

Fig. 9-5 shows the section of the merged tree for the {carve, crave} hypernyms discussed above.

From it we can see that when the spellchecker comes across a specific kind of substance in the

vicinity of carve or crave, it will prefer carve if the co-occurrence is a type of material whereas it

will prefer crave if it is a type of food which is in general what we would want to happen.

Fig. 9-5: Section of merged {carve, crave} tree

entity

carve 0.96 crave 0.04

substance

carve 0.87 crave 0.13

material

carve 0.99 crave 0.01

foodstuff

carve 0.21 crave 0.79

stone

carve 1.0 crave 0.0

Using Semantic Associations

 152

9.5 Checking text
9.5.1 Selecting co-occurring nouns
When the program encounters one of the semantic confusables in the text, it first checks for co-

occurring nouns (words that had been assigned a noun tag by the syntax checker). If there are none

it will be unable to make a decision and so will simply continue through the text until it finds

another semantic confusable. The hypernym trees were based on nouns that had co-occurred in a

window size of +/- 2 words from the corresponding confusable in the BNC, but a large proportion

of the confusables to be checked may not have a co-occurring noun in this vicinity. For instance,

only 41% of the confusables in the FLOB corpus used for testing the initial program had a co-

occurring noun within +/- 2 words. Increasing the size of the window that the spellchecker uses to

retrieve co-occurring nouns means that it is able to check a larger number of confusables; there

were noun co-occurrences for 97% of the confusables in the FLOB corpus when the window size

was increased to +/- 10. Based on this finding, to maximize the number of confusable occurrences

that the program could attempt to correct, the program has been set to check for co-occurring nouns

within a window of ten words each side of a confusable (unless it encounters a sentence boundary

first). However, the further away a noun is, the less likely it is to be related to the confusable so the

scores retrieved for each noun are reduced as their distance from the confusable increases. (The

scoring process is described in detail in Section 9.5.4 below.)

Occasionally, even when there is a co-occurring noun within the specified window, that noun will

not be included in WordNet so the program will be unable to use it to calculate scores for the

confusables. If this is the case for all co-occurring nouns within the ten-word window either side of

a confusable, the program again simply makes no decision and continues through the text as

described above.

9.5.2 Creating the merged trees
Once the program has found one or more co-occurring nouns that are included in WordNet, it

retrieves the confusion set for the confusable from the dictionary and reads the hypernym trees

Using Semantic Associations

 153

(Section 9.4.2) for each confusable lexeme from the file. It then creates a merged tree (Section

 9.4.3) and uses this to score the confusables. So, for example, if the word to check is pit (Noun)

with the confusion set {pat, pet, pith} the program will merge the hypernym trees for pit, pat, pet

and pith.

The set of hypernym trees that need to be combined will depend on the word that has appeared in

the text. If the word to be checked was the plural noun pits, the spellchecker could not use the same

merged tree as for the singular noun pit since the confusion set for pits contains just one word − pets

− so in this case it would merge just the pit and pet hypernym trees. (Although pats is included as a

plural noun in the dictionary, it was excluded from consideration by the semantic checker because

of its low frequency. Pith, the other member of pit’s confusion set is an uncountable noun and so

does not have a plural form.) Similarly, although each word in a confusion set is considered

confusable with the headword − pat, pet and pith are all confusable with pit − the members of a

confusion set are not necessarily all confusable with each other. The confusion set for pet, for

example, does not include pith, whereas the confusion set for pith contains path in addition to pit.

9.5.3 Retrieving WordNet senses and hypernyms for co-occurring nouns
The program next lists the WordNet senses and their associated hypernyms for each co-occurring

noun. The initial experiment (Pedler, 2005) retrieved these directly from WordNet using the Perl

QueryData module (Rennie, 2000) − also used to create the initial hypernym trees (Section 9.4.2

above). This module, once it has been initialised at the start of the program (which takes about ten

to fifteen seconds) provides fast and efficient WordNet lookup; the documentation claims that

“thousands of queries can be completed every second”. However, although the overhead involved

in accessing WordNet was not a particular problem in itself, this approach meant that the

spellchecker could only be run on a machine that had WordNet installed. To overcome this

limitation, and enable the spellchecker to run independently of WordNet, I decided to use

QueryData to list each sense and its associated hypernyms (to level four, the deepest level stored in

Using Semantic Associations

 154

the trees) for each noun in my dictionary that was also included in WordNet. I then wrote these to

file and added an index into the file to the dictionary entry for each of the corresponding nouns to

enable the program to retrieve the senses/hypernyms it required from this file rather than needing to

access WordNet at run-time.

9.5.4 Scoring the confusables
The program has now created a merged lexeme tree (Fig. 9-5) containing the relative likelihood

scores for the semantic confusable it encountered in the text and each member of its associated

confusion set, and retrieved one or more WordNet senses and their associated hypernyms for each

noun that occurred in its immediate context (ten words either side). Using this information, the

program now scores each of the confusables with each of the co-occurring nouns and combines

these scores to give an overall score for each member of the confusion set. Based on these scores,

the program either accepts the confusable it has seen as a correct spelling or flags it as an error. The

scores are calculated as follows with explanatory notes for each numbered stage below:

Given:

C{c1,....cn} Set of confusables

N{n1,....nm} Set of co-occurring nouns

{s1,....sp} Set of senses

{h1,....h4} Set of hypernyms

d(ci, nj) distance of co-occurring noun nj from confusable ci

l(<nj,sk,hl >) hypernym level for hypernym hl for sense sk of noun ni

lw(<nj ,sk>) weighting for sense sk of noun nj

sm(nj) proportional count of matching senses for nj

nm(ci) proportional count of nouns co-occurring with confusable ci

dw(<ci,nj>) distance weighting for noun nj co-occurring with confusable ci

(1) l(<nj,sk,hl >) = max(l) where <ci,hl> = <nj,sk,hl>

(2) lw(<nj ,sk>) = l(<nj,sk,hl >)/4

(3) P(ci|<nj,sk>) = P(ci,hl)lw(<nj,sk>) where <ci,hl> = <nj,sk,hl>

(4) sm(nj) =),(
1∑ =

><
p

k kj snlw

Using Semantic Associations

 155

(5) dw(<ci,nj>) =(11 - d(ci, nj))/10

(6) P(ci|nj) =),))(/),(),|((
1

><><><∑ = jijjikj
p

k i ncdwnsmnclwsncP

(7) nm(ci) =),(
1

><∑ = j
m

j i ncdw

(8) P(ci|{ n1,....nm}) =)(/)|(
1 ij

m

j i cnmncP∑ =

(9) cselect = max(P(C|N))

 (1) The program lists all the WordNet senses {s1,....sp} for each co-occurring noun {n1,....nm} and

retrieves the hypernyms {h1....h4} for each sense from WordNet.. For each sense it compares these

with the hypernyms stored in the tree for the confusion set {c1,....cn} to find the deepest level l

match for that sense. Some senses will not match at all and are discarded at this point. For those

that do match, l is assigned a value between 1 and 4, where 4 represents the more specific senses

that match at the deepest level of the tree and 1 represents senses that match only at the more

general root node.

(2) Although the senses at the root node are more general and thus less likely to be useful for

distinguishing between the members of the confusion set, they have a higher probability of

occurring than the more specific senses at lower levels of the tree (Fig. 9-4). As the lower level

scores are of more value to the program in making its decisions, level weighting lw is calculated as

l/4 for each matching sense. This will then assign the full value of the score to hypernyms matching

at level 4, 75% of the value to those matching at level 3 and so on. (Hypernyms are stored to a

depth of 4 in the tree so 4 is the deepest level match.)

(3) Each hypernym node in the merged tree stores the probability value for each member of the

confusion set occurring given a noun with that hypernym sense (Fig. 9-5). We define the

probability of a particular confusable, ci occurring given sense sk of noun nj as the probability stored

for confusable ci in the hypernym node hl corresponding to deepest level hypernym match of sense

sk of noun nj, adjusted by the level weighting lw(<nj,sk>)for that sense.

Using Semantic Associations

 156

(4) The number of matching senses sm for noun nj is calculated as the sum of the level weightings

for the matching senses of nj as senses were matched proportionally as described in (2, 3).

(5) The scores for each noun are weighted according to their distance d(ci, nj) from the confusable in

the text. This weighting dw is calculated as 11- d(ci, nj)/10. (For a window size of 10 as used in the

current implementation.) This thus assigns the full score to collocates ((11-1)/10) = 1), 0.9 of the

score to nouns occurring two words away and so on.

(6) The probability of confusable ci occurring given co-occurring noun nj is sum of the scores

calculated in (3), normalised by the ‘sense count’ calculated in (4) and weighted by the distance

weighting dw calculated in (5).

(7) The number of nouns co-occurring with confusable ci is calculated as the sum of the distance

weightings dw for nouns co-occurring with ci, since each noun was matched proportionally

according to its distance from the confusable. (This is similar to the calculation of the sense counts

in (4)).

(8) The probability of confusable ci occurring given all nouns {n1,....nm} that co-occurred with it is

the sum of the probability for ci occurring with each noun as calculated in (6) normalised by the

number of nouns matched, nm, calculated in (7).

(9) The program selects the confusable with the highest score as its preferred word in the context.

If the word that originally appeared in the text matches the confusable with the highest score, the

program accepts it as a correct spelling; if the word in the text is different from the confusable with

the highest score, it is flagged as an error and the highest scoring confusable is proposed as a

correction.

9.5.5 An example
I will illustrate the scoring process with the following example from the FLOB Corpus used for the

initial experiment:

Using Semantic Associations

 157

Seventeenth century dolls carved from wood fetch very high prices...

The program works outwards from the confusable carved to identify the nouns doll, century, wood

and price. It then retrieves all the WordNet senses for each of these − two for doll, eight for wood,

two for century and seven for price − and lists their hypernyms. It finds a match in the carve/crave

tree for both senses of doll, four for wood, one for century and six for price.

More than one of the matched senses may map to the same hypernym, as can be seen from Table

 9.3 which shows the senses retrieved for wood and their matching hypernyms. All the matched

senses score highly for carve but the least relevant sense in this case, that of wood as forest, only

matches at a more general level so only 50% of its score (shown in parentheses in the table) will

contribute to the final value assigned for wood. Combining the scores and normalising by the

number of senses matched (which is the sum of the weighting given to each hypernym match as

only a proportion of the sense score has been given to hypernyms at higher levels of the tree) gives

a final score of 0.990 for carve and 0.010 for crave co-occurring with wood.

Sense Hypernym
match

Level Weight Score

 carve crave

wood (hard fibrous substance) plant material 4 1 0.993 0.007

forest, wood, woods collection 2 0.5 0.976

(0.488)

0.024

(0.011)

woodwind, woodwind instrument,
wood

instrumentality 4 1 0.992 0.008

wood (golf club) instrumentality 4 1 0.992 0.008

Sum of scores 3.5 3.465 0.034

Normalised scores 0.990 0.010

Table 9.3: Scores for matching senses of wood in the {carve, crave} hypernym tree

The program calculates scores in the same way for each of the other co-occurring nouns and

weights the score for each according to its distance from the confusable − it gives the full score to

any nouns that occurred next to it, 0.9 of the score to those that were two words away and so on.

Using Semantic Associations

 158

Table 9.4 shows the final scores for each co-occurring noun in this example with the distance-

weighted values in parentheses. These scores are then summed and normalised by the number of

nouns matched (the sum of the distance weightings) to give a final score, in this case, of 0.776 for

carve and 0.224 for crave, correctly preferring carve.

 Score

Co-occurrence Distance Distance
weight

carve crave

doll 1 1 0.899 0.101

century 2 0.9 0.432 (0.388) 0.568 (0.512)

wood 2 0.9 0.990 (0.891) 0.010 (0.009)

price 6 0.5 0.768 (0.384) 0.232 (0.116)

Sum of scores 3.3 2.562 0.738

Normalised
scores

 0.776 0.224

Table 9.4: Final scores for each co-occurring noun

9.6 Testing
The dyslexic error corpus (Chapter 3) was used to test the program. There are almost two thousand

confusables in this corpus that have some or all part-of-speech tags in common with one or more

members of their associated confusion set and which therefore might be passed to the semantic

checker - Table 9.5. However, not all of them will in fact be passed on. In the majority of cases the

tagsets overlap which means that, if the syntax checker selects a tag that is unique to one of the

words, they will not be considered further by the semantic checker. In addition, even when the

syntax checker has assigned a tag that one or more of the confusables have in common, the

confusables will only be passed to the semantic checker if there is an associated hypernym tree.

Using Semantic Associations

 159

Overlapping 1626

Matching 246

Both overlapping and matching 56

Total 1928

Table 9.5: Types of confusables in the error corpus for possible consideration by semantic
checker

After the syntax checker had been run over the error corpus (with the handicap for the words not

appearing in the text set at 0.01 as described in the previous chapter) there were just over 600

confusables flagged for consideration by the semantic checker. The majority of these words were

correctly used as might be expected. Although all these words were flagged for consideration, the

semantic checker was unable to make a decision in around 10% of cases as there were no co-

occurring nouns within the +/- 10 word window used by the program. Table 9.6 shows the number

of words flagged for consideration by the semantic checker and the number of these that would

actually be checked by the program as there were co-occurring nouns associated with them.

 All No
co-occurring

nouns

Checked

Correctly used 529 50 479

Errors 115 14 101

Table 9.6: Number of confusables in the error corpus flagged for consideration by the
semantic checker

The program was initially set to select the word with the highest score and then run at varying

'confidence levels'. The confidence level was implemented as a 'handicap' in the same way as for

the syntax checker by successively reducing the weighting given to the score for the alternative

word from 1 down to 0.01. Table 9.7 shows the results of running the semantic checker over the

dyslexic error corpus using these varying levels of handicap. As noted above, there were no co-

occurring nouns for about 10% of the confusables flagged for consideration. In these cases, if the

word was correctly used it would be accepted and if it was an error it would be ignored. Thus these

words, although they are not actually considered at all will contribute to the proportion of words for

Using Semantic Associations

 160

which the checker performs 'correctly' for correct usages and 'incorrectly' for error usages. Since

this figure is a constant at each handicap level it has not been included in the counts given in Table

 9.7 below.

 Correct Usage

(479)

Error Usage

(101)

Improvement

Hcap
level

Accept

a

False
alarm

b

Flag &
correct

c

Flag not
correct

d

Ignore

e

Errors
remaining

(b+d+e)

f

Error
reduction
(101 – f)

g

Imprvt
%

h

1 412 67 44 13 44 124 -23 -23%

0.5 445 34 42 9 50 93 8 8%

0.2 465 14 38 4 59 77 24 24%

0.1 469 10 36 4 61 75 26 26%

0.05 474 5 26 2 73 80 21 21%

0.01 479 0 12 0 89 89 12 12%

Table 9.7: Results of running semantic checker on error corpus

The table shows the number of correct and error usages considered by the semantic checker falling

into each of the categories as described for the syntax checker in the previous chapter. As with the

syntax checker, although the largest proportion of errors is corrected when the full weighting is

given to all the words being considered, this results in an unacceptable level of false alarms and an

overall increase in the number of errors in the text. Reducing the weighting given to the alternative

words to 0.5 gives a small overall improvement in the text but the greatest overall improvement is

achieved when this is set to 0.1. It is possible, with the handicap set at 0.01, to reduce the false

alarms to zero and still correct a small proportion of the errors (a total of 12 corrections) but it

seems better to accept a small number of false alarms while at the same time correcting a larger

proportion of the errors. This is illustrated graphically in Fig. 9-6.

Although setting the handicap to 0.1 maximizes the improvement made by the program for this

corpus, the improvement is only slightly reduced at 0.2 which achieves a better rate of error

Using Semantic Associations

 161

correction at the expense of a small increase in false alarms. This makes it tempting to try a further

level of handicap, such as 0.15, set somewhere between these two levels. However, far fewer errors

were considered by the semantic checker than by the syntax checker and optimizing the

performance of the semantic checker for this corpus is likely to have the effect of over-fitting the

program to this data rather than suggesting an optimal level to set for unseen text. Based on these

considerations, I opted to select 0.2 as the handicap level for the semantic checker in the evaluation

described in the next chapter.

9.7 Conclusion
There are almost two thousand words with matching or overlapping part-of-speech tagsets in the

dyslexic error corpus (Table 9.5). Around a third of these were flagged by the syntax checker for

further consideration by the semantic checker; the syntax checker will already have made a decision

for many of the overlapping sets and only passes words to the semantic checker if they have an

associated hypernym tree. For these reasons, the semantic checker is only applicable for about 12%

of the total errors in the corpus. However, it managed to correct 38% of these, which represents a

modest but useful contribution.

Using Semantic Associations

 162

Fig. 9-6: Performance of semantic checker with different levels of handicap

400

410

420

430

440

450

460

470

480

490

0

10

20

30

40

50

60

70

80

90

100

1 0.5 0.2 0.1 0.05 0.01

Weighting

Accept correct

Ignore error

Flag & correct

Flag not correct

False Alarm

N
 W

or
ds

Handicap

 163

Chapter 10: Evaluation

The spellchecker developed in this research relies on its built-in confusion sets both to detect and to

correct errors. Thus it will only consider a word as a potential error if it has a confusion set

associated with its dictionary entry and it can only suggest the intended word as a correction for an

error if that word is a member of its confusion set. Because of this inherent limitation of the

confusion set approach, a large number of confusion sets are required if it is to be used for general

purpose spellchecking; this spellchecker uses almost six thousand. However, even when using a

large collection such as this, there will be errors that remain undetected or that are miscorrected

either because the error itself has not been defined as confusable or because, although the error has

a confusion set associated with it, the intended word is not among its members.

Most previous work using confusion sets has focused on developing techniques for selecting the

correct word in a given context using a limited number of confusion sets (generally pairs). Carlson

et al. (2001) address the issue of scaling up the approach and use 265 confusion sets (over 500

confusable words) but, by their own admission, this still falls far short of the number of confusion

sets needed to make a realistic impact on the problem. In addition to using only a small number of

sets, these previous experiments have not attempted to correct real errors; they have been tested

either on correctly spelled text or on text into which errors have been artificially introduced.

However, when a spellchecker is tested on text containing real errors − such as the error corpora

used for the experiment reported in this chapter − the errors cannot be so neatly controlled. In this

situation there are two factors that influence the program's correction rate − its ability to detect

errors in the first place (which depends on the confusion sets) and its ability to propose the correct

word once it has identified a potential error (which depends both on the confusion sets and on the

efficiency of its decision-making mechanism). Some errors will remain undetected simply because

the word involved is not included among the program's confusion sets and so they will not even be

Evaluation

 164

considered as potential errors. Errors that do have a confusion set associated with them will at least

be considered but will also go undetected by the program if it decides that the error is more likely to

be the correct word in the context than any of the alternative members of the confusion set. In both

cases the program’s error detection rate is reduced but the cause of the failure is different for each.

The first case demonstrates a limitation of the confusion set approach; short of defining every word

in the dictionary as potentially confusable with every other word (which is clearly impractical) it is

impossible to ensure that all possible errors are included in a program’s confusion sets.

Additionally some errors, such as inflection errors, do not seem to be suitable candidates for

inclusion in confusion sets. The second case, where the program is alerted to the possibility of an

error but wrongly accepts the word as correct, can be either a deficiency in the confusion sets − the

intended word is not included and the error is more likely in the context than any of the alternatives

offered - or a shortcoming of the scoring mechanism used by the spellchecker. This is summarized

in Table 10.1.

 Ignore Detect but
miscorrect

Correct

Error not in confusion set

Error in confusion set but target not

Error and target in confusion set

Table 10.1: Summary of possible decisions for real-word errors

In this chapter I consider both the performance of the spellchecker that I have implemented in this

research and the overall effectiveness of the confusion set approach to spellchecking.

10.1 Error corpora
The main aim of this research was to develop a spellchecker that would correct real errors in actual

text produced by dyslexics. A realistic assessment of its ability to perform this task required real

error data; my efforts to produce the dyslexic error corpus described in Chapter 3 demonstrated the

difficulties of acquiring this. The sub-corpus of real-word errors that has been used throughout the

Evaluation

 165

development of the program described in previous chapters was derived by selecting sentences

containing real-word errors from the initial corpus. Although this corpus could not in the strict

sense be regarded as training data, as the tag bigram and word co-occurrence data used by the

spellchecker was derived from the BNC, it was used during program development − for example to

assess the relevance of the confusion sets and to set the handicap level for the words not appearing

in the text − which must, inevitably, have introduced a bias toward correcting the errors it contains.

Therefore, for the final assessment of the program presented in this chapter, in addition to assessing

the overall performance on the original dyslexic error corpus, I also report results obtained from two

additional, unseen error corpora.

The collection of real-word error samples has been an on-going task throughout the course of this

research. I gathered sentences containing real-word errors from assignments submitted by my

students and also from work that my daughter gave me to proofread. This resulted in a corpus

containing almost three thousand words and just under 200 real-word errors. Although I had no

way of knowing whether the students were dyslexic, undoubtedly a number of them were and the

errors collected appear to be of a similar nature to the errors in the original corpus. In addition to

this, Roger Mitton supplied me with a large corpus of school leavers' compositions (not including

those incorporated into the original corpus). These compositions were written by pupils of varying

ability; in some the overall level of spelling is poor, suggesting that the writer may well have been

dyslexic, whereas in others the spelling is generally good with just the occasional error. However,

as it was not possible to make an accurate judgement as to which (if any) of the writers were

dyslexic, I simply extracted any sentences that contained real-word errors and included them in the

Compositions error corpus. Another difference between these two corpora is that the students' work

was originally word-processed whereas the compositions were transcribed from handwritten

originals. Some common types of dyslexic error, such as writing b for d (for example, bark for

dark) are probably less likely to occur when the text is typed.

Evaluation

 166

Table 10.2 gives a breakdown for each of these error corpora. The Compositions corpus is the

largest of these with almost twenty thousand words and over one thousand errors. However, since

all the compositions are about the same subject − memories of primary school − the vocabulary is

rather restricted and repetitive.

 Dyslexic Students Compositions

Sentences 614 192 852

Words 11810 2661 19179

Real-word errors 830 199 1049

Table 10.2: Composition of error corpora

10.1.1 Errors and confusable words in the corpora
Table 10.3 shows the proportion of real-word errors that the program can be expected to correct in

each corpus. The detectable errors are the proportion of all real-word errors that will be considered

by the program (the error is the headword of a confusion set) and the correctable errors the

proportion of all real-word errors that can be corrected (the error is the headword of a confusion set

and the intended word is a member of its associated confusion set). As this table shows, a rather

high proportion (between a quarter and a third) of the errors are undetectable even with over 6000

confusion sets.

 Dyslexic Students Compositions

 N % N % N %

Detectable errors 644 78% 136 68% 738 70%

Correctable errors 481 58% 94 47% 380 36%

Real-word errors 830 100% 199 100% 1049 100%

Table 10.3: Detectable and correctable errors in error corpora

Although the occurrence of a confusable is the cue for the spellchecker to investigate, most

occurrences of the confusables are correct (even in these sentences selected because they contain at

least one real-word error). Table 10.4 shows the proportions of correct and error usage of these

confusables in each corpus.

Evaluation

 167

 Dyslexic error Students Compositions

 N % N % N %

Correct usage 5210 89% 1055 89% 9449 93%

Error usage 644 11% 136 11% 738 7%

All confusables 5854 100% 1191 100% 10187 100%

Table 10.4: Correct and error usage of confusables in error corpora

Table 10.3 shows the number of errors in each corpus that we would like the spellchecker to correct

and the proportion of these that it can be expected to correct using our confusion sets. Table 10.4

shows the number of confusion set headwords − appearing either correctly used or as errors − that

the spellchecker will consider as potential errors. In both cases, these are counts of word tokens.

However, since many of the words occur more than once, the count of word types is lower than this.

The ratio of types to tokens (Table 10.5) gives us a ‘variety index’ for the text; a higher ratio

indicates more variation in the vocabulary used, whereas a lower one indicates that many words

were repeated.

The table shows this ratio for the correctly used confusables and for the errors appearing in each

corpus. The errors are further broken down into non-confusable errors (words that do not have a

confusion set associated with them), non-correctable (the error is a confusion set headword but the

target not in its confusion set) and correctable (the error is a confusion set headword and the target

is a member of its confusion set).

Evaluation

 168

 Dyslexic error Students Compositions

 Tok Type % Tok Type % Tok Type %

Correct Usage 5210 607 12% 1055 229 22% 9449 677 7%

Error usage
All 830 493 59% 199 148 74% 1049 540 51%

Non-
confusable 186 145 78% 62 57 92% 311 207 67%

Non-
correctable 163 131 80% 43 38 88% 358 183 51%

Correctable 481 217 45% 94 53 56% 380 150 39%

Table 10.5: Type:token ratio for confusables and errors in error corpora

The low type:token ratio for the correctly used confusables in the Compositions corpus is

unsurprising in the light of earlier observations about the repetitive nature of this corpus. However,

this ratio is also significantly lower for the correctly used confusables than it is for the errors in each

of the corpora whereas if the errors were purely random we would expect it to be about the same.

The reason for this is that there are a number of very common words among the confusables and, as

a word is more likely to be correctly spelled than it is to be an error, these words appear many more

times as correct usages than they do as errors − were, for example, occurs 162 times in the

Compositions corpus and only 26 of these occurrences are errors.

If we were considering the performance of a non-word error checker that was dealing with each

word in isolation, we would only be interested in error types as each occurrence of a particular error

would be dealt with in the same way. However, a real-word error checker is dealing with each

word in the context in which it occurs and so may make a different decision for the same confusable

word appearing in a different context. For this reason, the results reported below use token rather

than type counts.

Evaluation

 169

10.2 Spellchecker performance
10.2.1 Error correction
Table 10.6, Table 10.7 and Table 10.8 show the results obtained from running the spellchecker over

each of the error corpora described above. The first row of each table (Select most frequent) gives

the results obtained from the baseline select-the-most-frequent method described in Chapter 7. This

is included as a baseline performance measure against which to compare the performance of the

confusion-set checker. The combined syntax and semantic checker was then run over each corpus

both with and without a handicap applied to the alternative word(s) in the confusion set. The

second row (Non-handicapped score) gives the results when all words in the confusion set are

considered equally likely and the program makes its selection based on the one achieving the

highest overall score. The third row (Handicapped score) gives the results when the expectation

that the word seen in the text will be correct is factored in by handicapping the scores of the

alternative words. The handicaps used were those assessed to be optimum during the development

phase − 0.01 for the syntax checker and 0.2 for the semantic checker.

There are just two possibilities for the correctly used confusables:

• Correctly accepted;

• Erroneously flagged (false alarm).

For the errors there are four:

• Correct error − the program flagged the error and proposed the intended word as a

replacement;

• Flag but miscorrect − the program flagged the error but the proposed correction was not

the intended word;

• Accept error − the error was considered by the program but wrongly accepted as correct;

• Ignore error − the error was not considered by the program as it did not have an associated

confusion set.

Evaluation

 170

Since the ignored errors are never considered by the program their number remains constant for

each scoring method. From an end-user's perspective the accepted and ignored errors amount to the

same thing − errors that remain silently uncorrected. However, to enable us to assess the program's

performance both for all errors and for the errors that it has been designed to correct we need to

consider them separately.

 Correct usage (5210) Errors (830)

Scoring method Accept
correct

False
alarm

Correct
error

Flag but
miscorrect

Accept
error

Ignore
error

Select most
frequent

4406 804 292 107 245 186

Non- handicapped
score

4781 429 359 70 215 186

Handicapped
score

5177 33 256 28 360 186

Table 10.6: Error correction − dyslexic error corpus.

 Correct usage (1055) Errors (199)

Scoring method Accept
correct

False
alarm

Correct
error

Flag but
miscorrect

Accept
error

Ignore
error

Select most
frequent

904 151 63 24 49 63

Non- handicapped
score

956 99 71 16 49 63

Handicapped
score

1046 9 38 7 91 63

Table 10.7: Error correction − students

Evaluation

 171

 Correct usage (9449) Errors (1049)

Scoring method Accept
correct

False
alarm

Correct
error

Flag but
miscorrect

Accept
error

Ignore
error

Select most
frequent

8211 1238 186 114 438 311

Non- handicapped
score

8800 649 248 127 363 311

Handicapped
score

9398 51 135 38 565 311

Table 10.8: Error correction − compositions

As the results above show, using the confusion sets, even with the non-handicapped scores, both

reduces the false alarms and increases the number of errors corrected compared to the baseline

select-the-most-frequent algorithm. However, without the handicapping, the false alarms still

outnumber the errors corrected which is clearly unacceptable. Introducing the handicap reduces the

number of false alarms while at the same time correcting a proportion of the errors.

Table 10.9 shows total errors corrected as a proportion of all errors (the overall performance as it

would appear to an end-user), of the detectable errors (the errors that are considered by the

spellchecker) and of the correctable errors (the errors that can be corrected using the confusion

sets).

Although the program corrects almost a third of all errors in the original dyslexic error corpus, this

proportion drops to 19% and 13% respectively in the Students and Compositions corpora. This

would be expected as the proportion of correctable errors is lower in these corpora (Table 10.3).

For the errors that it has been designed to correct the program performs reasonably well, correcting

between around a third to half of all correctable errors. Performance on the correctly used

confusables also seems acceptable with less than 1% false alarms. However, these figures in

themselves are not an adequate measure of the spellchecker's performance.

Evaluation

 172

 Dyslexic Students Compositions

Total corrected

out of:

256 38 135

All errors 830 31% 199 19% 1049 13%

Detectable errors 644 40% 136 28% 738 18%

Correctable errors 481 53% 94 40% 380 36%

False alarms

out of:

33 9 51

Correctly used
confusables

5210 0.6% 1055 0.8% 9449 0.5%

Table 10.9: Errors corrected as a proportion of all errors, detectable errors and correctable
errors, compared to proportion of false alarms (Handicapped score)

10.2.2 Overall improvement
If the program's decision is incorrect even for just a small proportion of the correctly used

confusables there will be a large number of false alarms. However, provided the program corrects

more errors than it raises false alarms, there will be a net improvement in the 'correctness' of the

text. This suggests that the key measure of spellchecker performance is the overall improvement in

the text after the program has run over it. This choice of measure seems particularly relevant for

dyslexics who are likely to accept most of the spellchecker’s suggestions.

If we assume that the spellchecker's suggestion is always accepted, then subtracting the corrected

errors from the number of original errors and adding the false alarms gives us the number of errors

remaining in the text after it has been spellchecked. The difference between this and the number of

errors originally in the text gives the decrease in the total number of errors. Taking this 'error

decrease' as a proportion of the number of original errors gives us the percentage improvement in

the text. (Note that this counts the flagged but miscorrected errors as no better than the ignored,

which might be a bit hard on the spellchecker.) These figures are given for each of the error

corpora in Table 10.10. The table shows this improvement percentage both as a proportion of all

errors in the text and as a proportion of the detectable errors.

Evaluation

 173

 Dyslexic Students Compositions

Original errors (all) 830 199 1049

Original errors (detectable) 644 136 738

Errors corrected 256 38 135

False alarms 33 9 51

Errors remaining 421 107 654

Error decrease 223 29 84

Overall improvement (%) (All errors) 27% 15% 8%

Overall improvement (%) (Detectable errors) 35% 21% 11%

Table 10.10: Overall improvement (Handicapped score)

Estimating the overall improvement in the correctness of the text after the spellchecker has been run

over it can be regarded as a practical measure of the usefulness of the spellchecker. Although it is

obviously a useful yardstick of spellchecker performance, it does not appear to have been used to

assess other work. This is presumably because most of the previous context sensitive text

correction work using confusion sets has been tested on correctly spelled text (where, on the

assumption that the text is 100% correct, any incorrect decisions made by the program would result

in an overall worsening of the text). Evaluation in this previous work has focused on the ability of

the program to make correct decisions rather than on its practical use as a spellchecker.

10.2.3 Recall and precision
Recall and precision, which has its origins in the field of information retrieval, is a commonly used

metric for the evaluation of natural language processing tasks.

Recall measures the 'completeness' of retrieval. In terms of spellchecking this tells us the

proportion of the errors in the text that were detected, calculated by dividing the number of errors

detected by the total number of errors in the text. For example, if there were 100 errors in a text and

a program detected 90 of them it would have a recall of 90/100 = 90%. The recall value is not

affected by the number of false alarms that are produced; a program that flagged every word in a

text as an error would achieve a recall of 100%.

Evaluation

 174

Precision measures the accuracy of retrieval. For a spellchecker this represents the proportion of

words flagged as errors that actually were errors, calculated by dividing the number of errors

detected by the total of words flagged. In this case, using the same 100 error example, if, in

addition to correctly detecting 90 of the 100 errors in the text the program had also produced 30

false alarms the total of words flagged would be 120 and the program's precision would be

calculated as 90/120 = 75%. The precision value is not affected by the number of errors remaining

undetected; a program that only detected a small number of the total errors but never raised any

false alarms would achieve a precision of 100%.

The two measures need to be taken together for an overall assessment of a spellchecker. High recall

coupled with low precision indicates that although a large proportion of the errors were detected,

there were also a large number of false alarms whereas low recall coupled with high precision

indicates that although the program was generally correct when it flagged an error, a large number

of errors went undetected. Ideally we would like a program to achieve a high score for both recall

and precision indicating that a large proportion of the errors were detected at the expense of very

few false alarms. However, this is an ideal situation as there is a trade-off between recall and

precision. To improve recall we need to relax the rules used by the program thus making it more

willing to flag a word as an error. This is likely to cause it to raise more false alarms. To improve

precision we need to tighten the rules, making the program less willing to flag a word as an error.

This means that the words it flags are more likely to be errors but that fewer of the errors overall

will be flagged.

Dyslexics have little confidence in their ability to spell and make a large number of mistakes; if the

spellchecker flags a word as an error they are likely to assume that the spellchecker is right, even

when this is not the case. This will result in correctly spelled words turning into real-word errors

and an overall worsening of the text. Thus for a spellchecker designed for use by dyslexics, it is

better to make an accurate decision for a small but useful proportion of the errors and produce few

Evaluation

 175

false alarms than it is for it to flag a large proportion of the errors at the expense of a large number

of false alarms. This means sacrificing some recall in order to achieve greater precision which is

the effect of the handicap used by my program (and the various confidence threshold measures used

by others).

Recall and precision scores for my spellchecker when run over each corpus (using the handicapped

scores) are given in Table 10.11. Recall has been calculated both as a proportion of all errors in the

corpus and as a proportion of the detectable errors. The first of these shows the program's overall

efficiency at detecting errors while the second shows how effective it is at detecting the errors

included in its confusion sets. Precision has been calculated both for detection (the proportion of

words flagged that were errors) and correction (the proportion of words flagged that were errors and

for which the intended word was proposed as a correction).

 Dyslexic Students Compositions

Total errors 830 199 1049

N. Detectable errors 644 136 738

N. Words flagged 317 54 224

N. errors detected 284 45 173

N. errors corrected 256 38 135

Recall (all) 34.2% 22.6% 16.5%

Recall (detectable) 44.1% 33.1% 23.4%

Precision (detection) 89.5% 83.3% 77.2%

Precision (correction) 80.7% 70.3% 60.3%

Table 10.11: Recall and precision

10.2.4 Comparative recall and precision
The only previous research that has made a realistic attempt to correct actual errors is that of Atwell

and Elliott (1987). They compiled a corpus of around 13,500 words containing just over 500 errors.

This Lancaster corpus was derived from four sources: a collection of word-processed documents

from ICL's Knowledge Engineering Group; the Gill Corpus, compiled by Dr Gill of Warwick

University to test an automatic brailling machine − they obtained this from the Oxford Text Archive

Evaluation

 176

though it seems no longer to be available there; the Manual of Information for the LOB corpus that

lists all the errors found in the original texts (some but not all of these were subsequently corrected

in the electronic version); a collection of business-style documents that had been typed by ITEC

trainees on work experience. Stephen Elliott kindly made a copy of this corpus available to me

which has enabled me to make some comparison between the recall and precision scores reported in

their work with that achieved by my spellchecker when run over the same corpus. However, there

are several difficulties in making a comparison between these two pieces of work.

Almost a quarter of the errors in the Lancaster corpus involve an omitted possessive apostrophe −

boys in error for boy's, for example − and a number of these occur for proper nouns, including over

30 occurrences of Croziers in error for Crozier's in the Gill corpus sample. Apart from the six

occurrences of it's as an error for its (or vice-versa), none of these errors can be detected by my

program and although we would like a program to be able to correct errors of this type they are

more akin to grammar errors than real-word spelling errors and not natural candidates for a

confusion-set approach. A further 19% of the errors in the Lancaster corpus are inflection errors

which again are not amenable to the confusion-set approach. As the proportions of detectable and

correctable errors in this corpus (Table 10.12) show, my program would be expected to perform

poorly on this corpus; only half of the errors in this corpus are included in my confusion sets and

less than half of these are actually correctable.

 N %

Detectable errors 221 44%

Correctable errors 89 18%

Real-word errors 502 100%

Table 10.12: Detectable and correctable errors in Lancaster corpus

Not only are many of the errors in the Lancaster corpus of a different nature to those that my

program was designed to correct, they also make up a smaller proportion of the total words in the

corpus − 4% compared to between 5% and 7% in my corpora (Table 10.2). This suggests that, in a

Evaluation

 177

sense, their corpus represents the types of error made by relatively good spellers rather than the

errors of poor spellers which constitute the bulk of my corpora.

In addition to the differences in the corpora, there are also differences of implementation to take

into account. Atwell and Elliott's spellchecker was not limited to correcting predefined confusable

words although, since it used tag-bigram probabilities to detect errors, it was confined to syntactic

errors that were recognisable within a narrow context. Errors that did not meet these criteria were

removed from the corpus and stored in a separate 'hard' file. For example, the error in this fragment

has the same part-of-speech as the target:

...a pope (pipe) cleaner can be used when necessary.

and in this a wide context is needed to detect the error:

...it was unfortunate that a garden party at the home of our

chairman and his wife has (had) to be cancelled due to...

In order to detect errors, their program used the likelihood of the occurrence of a particular tag pair.

If the tag pair probability returned by the CLAWS tagger fell below a predefined threshold, the

word was flagged as an error. They experimented with two threshold levels; increasing the level

improved precision but reduced recall (as would be expected from the discussion above). They

report recall and precision scores for a lower and higher threshold (the exact measure for each of

these is not important here) for each component of their corpus, excluding the 'hard' errors and also

for the hard errors which, as they comment, would only be detected by chance factors. In their

research they give scores for each component of their corpus separately. However, for comparison

with my program, the scores have been aggregated. This means that the lower recall and precision

scores for the hard (as compared to the non-hard) errors reduces the overall scores achieved by

Atwell and Elliott’s program. On the other hand, the recall and precision scores achieved by my

program are reduced by the high proportion of errors that are undetectable using my confusion sets

Evaluation

 178

(Table 10.12). Therefore it seems that including all errors in the results achieved by both programs

allows the most direct comparison between the two pieces of work.

Table 10.13 compares the recall and precision scores achieved by both programs for error detection

of all errors in the Lancaster corpus using Atwell and Elliott’s higher threshold and the handicapped

scores for my program. In each case these are the scores that optimise the precision level achieved

by the program thus reducing the number of false alarms produced.

 Atwell &
Elliott (higher)

Pedler
(handicap)

N.Errors 502 502

Total flags 608 51

Errors flagged 202 44

Recall 40% 9%

Precision 33% 72%

Table 10.13: Comparative recall and precision scores for Lancaster corpus

As the table shows, Atwell and Elliott’s program flags far more of the words and so achieves a

higher recall but my program achieves a higher accuracy (better precision).

10.2.5 Prediction accuracy
Prediction accuracy is a measure of the program's ability to select the correct word from a set of

alternatives in a given context expressed as the proportion of correct decisions out of all decisions

made for confusable words in a text. This is the method used to evaluate the performance of most

of the previous experiments with confusion sets described in Chapter 2, many of which achieve an

accuracy level above 90%. However, although this is a fairly high level of performance, Carlson et

al (2001) observe that a level of 98 - 99% is required for a practical system and report achieving this

level on average for the confusion sets used in their experiment.

Table 10.14 shows the prediction accuracy achieved by my spellchecker (using the handicapped

scores) for each corpus calculated as the proportion of correct decisions (correct words accepted

Evaluation

 179

plus errors corrected) out of all decisions made (the total number of confusable words in each

corpus).

 Dyslexic Students Compositions

Accept correct 5177 1046 9398

Correct Error 256 38 135

Total correct 5433 1084 9533

All decisions (100%) 5854 1191 10187

Prediction accuracy 93% 91% 94%

Table 10.14: Prediction accuracy (handicapped scores)

Initially this seems to be a respectable figure although it falls short of the suggested threshold

proposed by Carlson et al., mentioned above. However, although prediction accuracy can be used

to measure a program's ability to select the correct word from a group of alternatives in a given

context (which is the way in which it has been applied in the other confusion set experiments

discussed previously) it does not tell us much about its ability to correct errors. For example, a

program with a prediction accuracy of 95% would make five incorrect decisions for 100

confusables encountered. If these 100 confusables also happened to contain five errors the program

could never actually make any improvement to the overall correctness of the text; if it corrected all

the errors it would have to make an incorrect decision for five of the correctly spelled words thus

negating the effect of correcting the errors by introducing an equal number of false alarms.

Conversely, if it accepted all the correctly spelled words it would have to make an incorrect

decision for all the errors and leave them uncorrected. If however, there were a larger number of

errors in the text (say 10) the errors corrected would always outnumber the false alarms if the

program had a 95% prediction accuracy.

Thus the prediction accuracy of a spellchecking program must be higher than the proportion of

correctly spelled confusables in the text it is checking if it is to make any impact on the errors. For

instance, text containing no errors is 100% correct. In order not to introduce errors the spellchecker

Evaluation

 180

would also need to have a prediction accuracy of 100%. However, if the text was only 90% correct

a prediction accuracy of over 90% must result in some errors being corrected. Since in all cases the

prediction accuracy of my program is higher than the 'correctness value' of the corpora (Table 10.4)

it corrects more errors than it introduces false alarms.

10.2.6 Performance measures compared
The performance measures discussed above are summarised in Table 10.15. This table uses the

recall and precision figures for the errors corrected since these provide a better comparison with the

prediction accuracy and improvement figures both of which reflect the proportion of errors

corrected.

 Dyslexic Students Compositions

Prediction accuracy 93% 91% 94%

Recall (correction) 40% 28% 18%

Precision (correction) 81% 70% 78%

Improvement (%) 37% 21% 11%

Table 10.15: Performance measures summarised (handicapped scores)

The program achieves a prediction accuracy of over 90% for each corpus and by this measure

performs best on the Compositions corpus. However, it actually makes a much smaller

improvement for this corpus than for the other two. This suggests that, when derived from real

error data, prediction accuracy is not in fact a very useful statistic. None of the experiments that use

this as a measure of performance have used real error data; they have either been run over correctly

spelled text or text where errors have been artificially introduced by replacing a correct word with

one of the members of its confusion set.

10.3 Non-correctable errors
Around a half of the errors in the corpora used for this evaluation cannot be corrected using the

collection of confusion sets created for this research (Table 10.16). These can be subdivided into:

Evaluation

 181

• Undetectable − errors that do not have a confusion set associated with them and so will not

even be considered by the spellchecker as potential errors.

• Uncorrectable − errors that, although they have a confusion set associated with them and

may be flagged as errors by the spellchecker, cannot be corrected as the intended word is

not a member of the confusion set.

These non-correctable errors demonstrate a shortcoming of using confusion sets for general-purpose

spellchecking. Most previous experimental confusion set work has been evaluated using correct

text or artificial error data created by replacing a correctly spelled confusable with one of the

members of its confusion set, and therefore has not needed to address the problem of non-

correctable errors as any errors that were introduced into the text would, by definition, be

correctable.

 Dyslexic Students Compositions All

 N % N % N % N %

Non-correctable (all)

349 42% 105 53% 669 63% 1123 54%

Undetectable

186 22% 62 31% 311 30% 559 27%

Uncorrectable

163 20% 43 22% 358 34% 564 27%

All errors 830 100% 199 100% 1049 100% 2078 100%

Table 10.16: Proportions of non-correctable errors in the corpora

This section considers possible approaches that might be applicable to detecting and correcting

these non-correctable errors.

10.3.1 Inflection errors
Over a third of the undetectable or uncorrectable errors are inflection errors (Table 10.17). The

majority of verb inflection errors involve the base form of a verb appearing as an error for one of its

inflected forms (seem instead of seemed, move instead of moving, for example) but some also occur

for other forms (e.g. remained in error for remaining, requires for required). Similarly most, but

Evaluation

 182

not all, of the noun inflection errors occur when the singular form of a noun is used where the plural

form was intended.

 Dyslexic Students Compositions All

 N % N % N % N %

Inflection errors

144 41% 27 26% 293 44% 464 41%

Non-correctable (all) 349 100% 105 100% 669 100% 1123 100%

Table 10.17: Inflection errors as proportion of non-correctable errors

The high proportion of inflection errors suggests that a method to detect and correct this type of

error would be useful. Although inflection errors do not seem to be appropriate candidates for

confusion sets, it might be possible to treat them as a type of ‘meta confusion set’ by creating a

confusion set containing all inflected forms each time a noun or verb appeared in the text. As the

majority of the inflection errors occur when a base form is produced in error for an inflected form, it

might be sufficient to implement this only when a singular noun or the base form of a verb was

encountered. This could run either as a separate stage of the spellchecking process or be combined

with the confusion tagger. Some handling of inflection errors is an obvious line of future

development.

10.3.2 Other errors not included in confusion sets
The majority of the non-inflection undetectable errors occurred once only although there were more

repeated errors in the Compositions corpus as illustrated by the type:token ratios shown in Table

 10.18.

 Dyslexic Students Compositions All

N. Tokens 205 78 376 659

N. Types 159 70 257 486

%Types 78% 90% 68% 74%

Table 10.18: Ratio of types to tokens for non-inflection undetectable errors

Evaluation

 183

The assessment of the confusion set coverage in Section 5.2 discussed the undetectable errors

occurring in the Dyslexic error corpus. The undetectable errors in the Student and Compositions

corpora follow a similar pattern. Again, many errors occur on short function words. In the

Compositions corpus a appears 24 times as a misspelling, occurring for five different targets – at

(7), an (6), and (4), as (4), I (3) − and the occurs 14 times for seven different targets − to (5), them

(2), then (2), they (2), he (1), she (1), there (1). Errors of this type seem particularly problematic

because of the high frequencies of the words involved and the wide variety of intended targets.

The most frequently repeated undetectable error is use as an error for used, occurring 83 times in

the Compositions corpus. The high incidence of this is presumably largely because of the subject

matter of the corpus. It is easy to imagine poor spellers (or even reasonably good spellers who

weren’t paying attention) producing use to when writing about what they used to do in primary

school. It also suggests that perhaps some types of inflection error should be considered for

inclusion as confusion sets.

Some once-only errors in the Students corpus seem puzzling and may well be errors introduced by

the user making an incorrect selection from a spellchecker selection list for the correction of a non-

word error, for example:

diapers (disappears)

guesses (guests)

prepuce (purpose)

recurred (required)

There are others that seem similar to the types of error already included in the confusion sets such

as:

find (fine)

luck (lack)

Evaluation

 184

meter (matter)

throw (through) (the confusion set for through contains threw but not throw)

Although adding such words to the existing confusion sets simply because they occurred once in a

corpus of errors does not seem to be a particularly productive approach, further analysis of the type

and patterns of the uncorrectable errors in these corpora could help with refining and developing the

confusion sets for future versions of the spellchecker.

10.4 Confusion sets assessed
The non-correctable errors demonstrate some drawbacks with the confusion set approach: the

spellchecker is only able to correct errors for words included in its confusion sets and confusion sets

themselves do not seem to be appropriate for some types of error, such as inflected forms of the

same word or short function words. A more generalised syntax-based approach would seem to be

required in such cases.

Other types of non-correctable errors might be considered for inclusion in the spellchecker’s set of

confusion sets. Take this miscorrected sequence from my error corpus for example, “the lose of...”.

Here lose is mistakenly produced for loss but the confusion set for lose − {loos, loose, louse} − does

not include loss. The syntax checker finds that a noun tag is more appropriate than a verb tag in this

context and selects loose (the highest frequency noun − as in “on the loose”) as a being a better

syntactic fit. As loos and louse are also nouns, this selection results in a possible semantic

confusion so {loose, loos, louse} are flagged for further consideration by the semantic checker. At

the end of this process, loose is still the preferred word; although the spellchecker has flagged the

error it has proposed an incorrect replacement.

A simple solution could be to add loss to lose's confusion set. The facility to add confusables to the

spellchecker's previously defined sets seems somewhat akin to that of adding words to a custom

dictionary which is a feature of most spellchecking applications. A disadvantage of this scheme is

Evaluation

 185

that the confusion sets would tend to grow large and large sets are a nuisance at the detection stage.

Even when confusables are correctly used, as they generally are (Table 10.4), the spellchecker

needs to consider all alternatives before accepting them; the larger the sets, the more work it has to

do.

An alternative approach might simply be to treat the confusion sets as a detection mechanism. If

the spellchecker decided that another member of the confusion set fitted better than the word it had

encountered in the text, it would invoke its ordinary correction routine (the same one as it would use

for the correction of non-word errors) to produce an ordered list of candidate corrections (which

would probably, though not necessarily, include the confusable which triggered the correction

routine in the first place).

If a confusion set simply functions as a signal to the spellchecker that the word it is considering is

possibly an error, we don't need to try to include every potential misspelling in the set. In fact,

rather than increasing the set sizes we can probably reduce them. As well as decreasing the

processing required for correctly spelled words, this might also improve the correction rate − for

instance, if loose was the only word in the confusion set for lose this would be sufficient to detect

the error in "the lose of...". The corrector might well include loss (as well as loose, loos and louse)

among its suggestions and the spellchecker would thus at least have a chance of proposing the

correct replacement.

This approach seems to have some potential for future development of the spellchecker.

10.5 Syntactic and semantic approaches compared
The spellchecker developed in this research uses both syntactic and semantic information to make

its decisions. The syntax checker is the first phase and, in addition to correcting some of the errors,

assigns part-of-speech tags to each word in the text and flags potential semantic errors for

consideration by the semantic checker.

Evaluation

 186

One advantage of a syntactic approach is that it can be implemented using a minimal amount of

linguistic information; the version I have developed requires only tag bigram probabilities (derived

from the BNC) and the <word, tag> frequencies from the dictionary. This means that new confusion

sets, provided their tagsets differ, can be incorporated without the need for additional training.

Conversely, the semantic approach implemented here requires considerable effort both to store and

group the co-occurring nouns for each confusable during the training phase and to retrieve and

merge the hypernym probabilities at run-time. It is also only appropriate for words that occur fairly

frequently in the BNC; for words that occur less than around a hundred times there are insufficient

noun co-occurrences to generalise from as discussed in Chapter 9. In addition to this, even when a

word does have a hypernym tree associated with it, there may be no co-occurring nouns when it

appears in text being checked in which case the semantic checker will be unable to make a decision.

Although the hypernym co-occurrence approach implemented here shows some promise as a way

of capturing the differences between words by grouping their co-occurring nouns and makes some

impact on the errors at run-time by contributing about 14% of the total errors corrected,

considerable refinement is required before it could be implemented as part of a practical

spellchecking application.

10.6 The trade-off between accuracy and coverage
From an end-user's perspective, a spellchecker performs well if it corrects the majority of the errors

while at the same time producing a minimum number of false alarms. However, it is difficult to

achieve this ideal. In common with other research discussed in Chapter 2, my spellchecker factors

in the expectation that the word appearing in the text is more likely to be correctly spelled than it is

to be an error by handicapping the alternative words. This has the effect of reducing the number of

false alarms but also, inevitably, reduces the number of errors corrected.

For the evaluation reported on in this chapter, I have set this handicap at the levels assessed to be

optimum − 0.01 for the syntax checker (Chapter 8) and 0.2 for the semantic checker (Chapter 9).

Evaluation

 187

This minimizes the false alarms while still correcting a useful proportion of the errors and achieves

a reasonable level of improvement in the overall accuracy of the text, which is the preferred

measure of spellchecker performance for this evaluation (discussed in Section 10.2.2).

The consensus of opinion (as discussed in Section 2.5) is that users will have more confidence in a

spellchecker that, although it may ignore many errors, produces few false alarms than in one that

flags the majority of the errors but also flags a large number of the correctly spelled words as errors.

For a spellchecker developed for dyslexic users this is probably the best approach. They expect to

make a large number of errors and are likely to accept the spellchecker’s suggestion in the majority

of cases. If there are a large number of false alarms this will result in an overall worsening of the

text. However, as Carlson et al. (2001) and others have suggested, the confidence level can be set at

runtime according to the user’s preference. A user who wanted to be sure that the majority of the

errors in the text had been flagged and who was confident enough to ignore the false alarms could

achieve this by reducing the handicap set for the alternative words.

10.7 Future development
Although the spellchecker developed in this research has achieved some measure of success in

detecting and correcting the real-word errors in the corpora used for this evaluation (Table 10.15), it

has also suggested several lines of future development.

Inflection and function word errors, neither of which seems appropriate for a confusion-set

approach, form the greatest proportion of the errors that are not dealt with by the current

spellchecker. Since these are generally syntax errors, developing the syntax checker to incorporate

them seems to be the most productive next stage.

Using confusion sets for detection rather than correction might reduce the proportion of ‘detected

but not corrected’ errors as we would no longer be restricting the spellchecker to making

suggestions from a predefined list.

Evaluation

 188

Improving the syntax checker could be expected to improve the overall performance of the

spellchecker but would not deal with errors that have matching parts-of-speech. Although the

current hypernym tree implementation is too slow and laborious, using WordNet senses to capture

semantic context still seems an attractive approach that might usefully be developed further to deal

with errors of this type.

10.8 Contribution
This research has produced the following original contributions, including several resources of

value to the wider research community:

• An updated electronic dictionary – CUVPlus. This dictionary, which has been uploaded to

the Oxford Text Archive, is freely available for use for research purposes and is already

being used by other researchers. The inclusion of more precise part-of-speech tag

frequencies, based on word frequency in the BNC, represents a significant improvement on

the previous version in which part-of-speech tag frequency for each word was simply

classed as rare, ordinary or common, with the majority being ordinary. The addition of the

C5 tagset, as used in the BNC, means that the dictionary now also uses a widely recognised

tagset which is familiar to the research community.

• An annotated corpus of dyslexic real-word spelling errors. Although this corpus is still

relatively small, containing just over 12,000 words, no resource of this type was previously

available. I plan to continue with the development of this resource. The corpus should be

of use for both educational and linguistic research and I intend to make it more widely

available in the near future.

• A large collection of confusion sets. Much research into real-word error correction relies

on sets of confusable words but there is no general consensus as to the most effective way

to produce these. The almost six thousand sets of confusable words that I used for this

research were produced using a distance measure tuned on real error data and represent a

Evaluation

 189

significant increase on the 256 sets used by the largest-scale implementation of this method

to date (Carlson et al., 2001). As well as being a larger collection, these sets are also non-

symmetric which makes them more flexible for large-scale use.

• The use of real error data for the development and testing of the program. This enabled me

to address the problems of correcting actual errors made by dyslexic writers which are less

predictable than the artificial errors introduced into the text used for the assessment of much

of the other research in this area.

• The semantic error correction algorithm. Although the current implementation is rather

slow and cumbersome, it demonstrates that semantic association, using WordNet, has

potential for the correction of errors of this type.

• The ‘overall improvement’ measure used for the evaluation. This has not been used

previously to assess spellchecker performance. It is shown to be a more practical measure

of the effectiveness of the spellchecker than other previously used measures to which it is

compared.

 190

References

Atwell, E. 1987 ‘Constituent-likelihood Grammar’. In R. Garside, G. Leech & G. Sampson (eds.), The
Computational Analysis of English. Longman, London, pp. 57-65.
Atwell, E. and Elliott, S. 1987 ‘Dealing with ill-formed English text’. In R. Garside, G. Leech & G.
Sampson (eds.), The Computational Analysis of English. Longman, London, pp. 120-138.
Atwell, E., Demetriou, G., Hughes, J., Schiffrin, A., Souter, C. and Wilcock, S. 2000 ‘A comparative
evaluation of modern English corpus grammatical annotation schemes’. ICAME Journal 24 pp. 7-23.
Booth, B. 1987 ‘Text input and preprocessing’. In R. Garside, G. Leech & G. Sampson, (eds.),The
Computational Analysis of English. Longman, London, pp. 97-109.
British Dyslexia Association <http://www.bdadyslexia.org.uk/research.html>
Budanitsky, A. 1999 Lexical semantic relationship and its application in natural language processing.
Technical Report CSRG390, University of Toronto <http://citeseer.ist.psu.edu/budanitsky99lexical.html>
Budanitsky, A. and Hirst, G. 2001 ‘Semantic distance in WordNet: An experimental, application-oriented
evaluation of five measures’. Workshop on WordNet and Other Lexical Resources, in the North American
Chapter of the Association for Computational Linguistics NAACL-2001, Pittsburgh, PA.
<http://citeseer.ist.psu.edu/budanitsky01semantic.html>
Burnard, L. 2000 Reference Guide for the British National Corpus (World edition)
<http://www.natcorp.ox.ac.uk/docs/userManual>
Carlson, A.J., Rosen, J. and Roth, D. 2001 ‘Scaling Up Context Sensitive Text Correction’. Proceedings
of the National Conference on Innovative Applications of Artificial Intelligence pp. 45 – 50.
<citeseer.ist.psu.edu/budanitsky01semantic.html>
Charniak, E., C. Hendrickson, N. Jacobson, and M. Perkowitz. 1993 ‘Equations for part-of-speech
tagging’. Proceedings of the eleventh national conference on artificial intelligence Washington, D.C.,
American Association for Artificial Intelligence, pp. 784--89.
<http://citeseer.ist.psu.edu/charniak93equations.html>
Chen, S.F. and Goodman, J. 1996 ‘An empirical study of smoothing techniques for natural language
modelling’.. ACL-96, Santa Cruz, CA. pp.310-318.
Damerau, F.J. 1964 'A Technique for Computer Detection and Correction of Spelling Errors'
Communications of the A.C.M. 7 pp. 171-6.
Damerau, F.J. and Mays, E. 1989 'An Examination of Undetected Typing Errors' Information Processing
and Management 25 (6):. 659-64.
Flexner, S.B. (ed.) 1983 Random House Unabridged Dictionary, Random House, New York. 2nd Edition.
Gale, William A. and Church, Kenneth W. 1994 ‘What’s Wrong with Adding One?’ In Oostdijk, N and
de Haan, P. (Eds.) Corpus-based Research into Language. pp. 189-198. Rodopi, Amsterdam.
Gale, William A. and Sampson, G. 1995 ‘Good-Turing Frequency Estimation Without Tears’ Journal of
Quantitative Linguistics 2: pp. 217-37.
Garside, R. 1987 ‘The CLAWS word-tagging system’ In The Computational Analysis of English. R.
Garside, G. Leech & G. Sampson, (Eds)., Longman, London, pp. 30-41.
Golding, A.R. 1995 ‘A Bayesian Hybrid Method for Context-sensitive Spelling Correction’. Proceedings of
the Third Workshop on Very Large Corpora, pp. 39-53.
Golding, A.R. and Roth, D. 1996 ‘Applying Winnow to Context-sensitive Spelling Correction’. Machine
Learning: Proceedings of the 13th International Conference, pp. 182-190.
Golding, A.R. and Roth, D. 1999 ‘A Winnow based approach to context-sensitive spelling correction’.
Machine Learning 34 (1-3) pp. 107-30
Golding, A.R. and Schabes, Y. 1996 Combining Trigram-based and Feature-based Methods for Context-
sensitive Spelling Correction. Proceedings of the 34th Annual Meeting of the Association for Computational
Linguistics, pp. 71-78.

References

 191

Good, I.J. 1953 ‘The population frequencies of species and the estimation of population parameters’.
Biometrika 40: 237-264.
Heidorn, G.E., Jensen, K., Miller, L.A., Byrd, R.J., Chodorow, M.S. 1982 The EPISTLE text-critiquing
system IBM Systems Journal 21:3 pp.305-326
Hill, A 2005 Scandal of secret school exclusions Observer 11December 2005,
<http://observer.guardian.co.uk/uk_news/story/0,6903,1664699,00.html>
Hirst, G and St-Onge, D. 1998 ‘Lexical chains as representations of context for the detection and correction
of malapropisms’.. In: Christiane Fellbaum (ed), WordNet: An electronic lexical database. The MIT Press,
Cambridge, MA. pp. 305-332.
Hirst, G and Budanitsky, A. 2005 ‘Correcting Real-Word Spelling Errors by Restoring Lexical Cohesion’
Natural Language Engineering, 11(1): 87-111.
Holbrook, D. 1964 . English for the Rejected. Cambridge University Press.
Hornby, A.S. 1974 Oxford Advanced Learner's Dictionary of Current English (3rd Edition). Oxford
University Press.
Hundt, D., Sand, A. and Siemund, R. 1998 Manual of Information to accompany the Friebug-LOB Corpus
(‘FLOB’) <http://knht.hit.uib.no/icame/manuals/flob>
ICAME 1999 The ICAME Corpus Collection on CD-ROM, version 2 <http://icame.uib.no/newcd.htm>
Jiang, J.J and Conrath, D.W. 1997 ‘Semantic similarity based on corpus statistics and lexical taxonomy’.
Proceedings of International Conference on Research in Computational Linguistics.
Johansson, S., Atwell, E., Garside, R. and Leech, G. 1986 The Tagged LOB Corpus Users’ Manual
<http://khnt.hit.uib.no/icame/manuals/lobman>
Kilgarriff, A. 1997 Putting Frequencies in the Dictionary. International Journal of Lexicography 10 (2). pp
135-155
Knuth, D.E. 1973 Sorting and Searching: The Art of Computer Programming Vol. 3. Addison-Wesley.
Kukich, K. 1992 ‘Techniques for Automatically Correcting Words in Text’. Computing Surveys 24 (4) 377-
439.
Leech, G. and Smith, N. 2000 Manual to accompany The British National Corpus (Version 2) with
Improved Word-class Tagging UCREL, Lancaster
Leech, G., Rayson, P. and Wilson, A. 2001 Word Frequencies in Written and Spoken English Longman,
London.
Mangu, L. and Brill, E. 1997 ‘Automatic Rule Acquisition for Spelling Correction’. Proceedings of the
14th International Conference on Machine Learning (ICML 97), pp. 187-194.
Marshall, I. 1987 ‘Tag selection using probabilistic measures’ In The Computational Analysis of English R.
Garside, G. Leech & G. Sampson, (Eds)., Longman, London, pp. 42-56.
Mays, E., Damerau, F.J. and Mercer, R.L. 1991 ‘Context Based Spelling Correction’.. Information
Processing and Management, 25 /5 pp. 517-22.
Mikheev, A. 2002 ‘Periods, Capitalized Words, etc’. Computational Linguistics 28(3): 289-318.
Miller, G., Beckwith, R., Fellbaum, C., Gross, D., and Miller, K. 1990 Five papers on WordNet. CSL
Report 43, Princeton University.
Mitton, R 1985 Birkbeck Spelling Error Corpus. <http://ota.ahds.ac.uk/texts/0643.html>
Mitton, R. 1987 ‘Spelling Checkers, Spelling Correctors and the Misspellings of Poor Spellers’. Information
Processing and Management 23 (5) 495-505.
Mitton, R. 1992 A description of a computer-usable dictionary file based on the Oxford Advanced Learner's
Dictionary of Current English. Oxford Text Archive.
Mitton, R. 1996 English Spelling and the Computer Longman, London.
Nancholas, J. 2005 Signage for an Inclusive Library. MA Dissertation, London Metropolitan University
Nisbet, P., Spooner, R., Arthur, A., Whittaker, P. and Wilson, A.. 1999 Supportive Writing Technology.
Call Centre, Edinburgh, University of Edinburgh.

References

 192

Palmer, D. D. and Hearst, M.A. 1997 ‘Adaptive Multilingual Sentence Boundary Disambiguation’.
Computational Linguistics, 23(2):241-269.
Pedler, J. 1996 Computer Correction of Dyslexic Spelling Errors. MSc Computing Science Report,
Birkbeck, London University.
Pedler, J. 2001a ‘Computer Spellcheckers and Dyslexics - a Performance Study’. The British Journal of
Educational Technology, 32/1, pp. 23-38.
Pedler, J. 2001b ‘The detection and correction of real-word spelling errors in dyslexic text’. Proceedings of
the 4th Annual CLUK Colloquium, pp.115-119.
Pedler, J. 2003a ‘The contribution of syntactic tag collocation to the correction of real-word spelling errors’.
Proceedings of the 6th Annual CLUK Colloquium.pp.129-133.
Pedler, J. 2003b ‘A corpus-based update of a 'computer-usable' dictionary’ Proceedings of the Eighth
International Symposium on Social Communication pp. 487-492.
Pedler, J. 2005 ‘Using semantic associations for the detection of real-word spelling errors’ In: Proceedings
from The Corpus Linguistics Conference Series, Vol. 1, no. 1 Corpus Linguistics 2005,
<http://www.corpus.bham.ac.uk/PCLC>.
Peterson, J.L. 1980 'Computer Programs for Detecting and Correcting Spelling Errors'. Communications of
the A.C.M. 23 (12): 676-87
Pollock, J.J. & Zamora, A. 1984 'Automatic Spelling Correction in Scientific and Scholarly Text’.
Communications of the A.C.M. 27 (4): 358-68.
Rennie, J. 2000 WordNet::QueryData: a {P}erl module for accessing the {W}ord{N}et database.
<http://people.csail.mit.edu/~jrennie/WordNet>
Resnik, P. 1995 ‘Using Information Content to Evaluate Semantic Similarity in a Taxonomy’. Proceedings
of the 14th International Joint Conference on Artificial Intelligence (IJCAI).
Richardson, S.D. 1985 Enhanced Text Critiquing using a Natural Language Parser. IBM, Research Report
RC 11332(#51041).
Sampson, G. 2007 Downloadable Research Resources. <www.grsampson.net/Resources.html>
Spooner, R 1998 A spelling aid for dyslexic writers. PhD thesis, University of York.
Tresman, S. and Cooke, A 2006 The Dyslexia Handbook 2006. British Dyslexia Foundation
Willis, T., Pain, H. and Trewin, S. 2005 ‘A Probabilistic Flexible Abbreviation System for Users with
Motor Disabilities’ Proceedings of Accessible Design in the Digital World.
<http://www.accessinthedigitalworld.org/2005>.
Wikipedia 2003 Lists of common misspellings
<http://en.wikipedia.org/wiki/Wikipedia:List_of_common_misspellings>
Wing, A.M. and Baddeley, A.D. 1980 ‘Spelling errors in handwriting: a corpus and distributional analysis’.
In Uta Frith (ed.) Cognitive Processes in Spelling, Academic Press pp. 251-85.
Yannakoudakis, E.J. & Fawthrop,D. 1983 'The Rules of Spelling Errors' Information Processing and
Management 19 (2): 87-99.

 193

Appendix A: Documentation to accompany CUVPlus

This appendix is a reproduction of the dictionary documentation available for download from the

Oxford Text Archive.

Jennifer Pedler
School of Computer Science and Information Systems,
Birkbeck College, Malet St, London WC1E 7HX, UK.
jenny@dcs.bbk.ac.uk

October 2002

1. Introduction
In 1992 Roger Mitton produced an updated version of a 'computer usable' dictionary called CUV2
(Mitton, 1992), itself derived from CUVOALD (Mitton, 1986) his version of the Oxford Advanced
Learner's Dictionary of Current English (OALDCE) (Hornby, 1974). CUVPlus is an enhanced
version of CUV2.

Main enhancements:

• More precise, corpus-based, word frequency information

• An additional part-of-speech tagset using tags from UCREL C5 tagset (as used in the BNC
World Edition).

• Over 1,600 new entries giving increased coverage.

The main motivation behind the update was the inclusion of more accurate frequency information.
CUV2 assigns one of three broad frequency categories - very common, ordinary or rare - to each
part-of-speech. This is adequate to distinguish between different usages for some words, such as
can, which is marked 'very common' as a verb and 'ordinary' as a noun, but for others the difference
is not clear. For example both noun and verb are marked as common for form although it is used far
more frequently as a noun. My research into computer spellchecking showed that it would be useful
if this type of distinction could be made. To obtain frequency counts for the words in CUV2 I used
the written section of the BNC (World Edition), which comprises approximately 80 million words
tagged with their part-of-speech. The tagset used in CUV2 does not correspond exactly to the
UCREL C5 tagset used in the BNC, for example CUV2 tags nouns as countable and uncountable
whereas the C5 tagset does not make this distinction. Conversely, the C5 tagset has three tags for
conjunctions - subordinating, co-ordinating and the subordinating conjunction that - while CUV2
has just one. For this reason a new tagset was created for each entry in CUVPlus using the C5 tags.
This also has the advantage of making the dictionary compatible with the BNC.
CUV2's 70646 entries have provided adequate coverage for most of my spellchecking work.
However, it occasionally produces unexpected false alarms - flagging as errors words that are
actually correctly spelled. This largely reflects changes in the language since 1974 when the
OALDCE was compiled. For example database, a word in fairly common modern usage not
included in CUV2, would have been a specialised term thirty years ago. To improve the coverage of
the dictionary additional entries were created for words occurring frequently in the BNC but not
found in CUV2.

This document describes the differences between CUVPlus and CUV2. CUV2 is available from the
Oxford Text Archive and full details can be found in its accompanying documentation (Mitton,
1992).

Appendix A: Dictionary documentation

 194

2. Format of entries
CUVPlus contains 72060 ASCII ordered entries, one per line in text format. Each entry comprises
six pipe-separated fields:

spelling | capitalisation flag | pronunciation | CUV2 tags | C5 tags+frequency | syllable count

Example lines are shown below:
bourne|2|bU@n|K6$|NN1:0|1

india|1|'IndI@|Nm%|NP0:50|3

there|0|De@R|Pu*,W-%|EX0:2166,AV0:480,ITJ:0|1

The spelling, pronunciation, CUV2 tags and syllable count remain unchanged since CUV2. Full
details of these fields can be found in (Mitton, 1992). The CUV2 tagset is also included as an
appendix to this document. The CUV2 tags were retained in CUVPlus as they often provide
information about the word not available from the C5 tags. (See summary of differences between
CUV2 and C5 tagsets in Section 8.)

3. Frequency information
The frequency information added to each of the part-of-speech tags in CUVPlus is the rounded
frequency per million based on counts obtained from the written section of the BNC. These counts
roughly correspond to the listing for the written section of the BNC in (Leech et al., 2001) but they
cannot be directly compared for several reasons; differences in the later version of the BNC used for
this work, differences in the treatment of special cases such as hyphenated forms, enclitics and
multi-word units, and the combination of some parts-of-speech (such as past participle and past
tense) in Leech et al.'s (2001) lists. Using these counts rather than the raw frequency retains the
differentiation between the first few hundred common words while grouping together lower-ranked
words which are little different in either frequency or usage.
Around 7,000 of the words in CUV2 were not found in the BNC (over half of these were already
tagged as rare); about 10,000 word/tag pairs occurred just once and about 6,000 twice only. There is
really little difference in the rarity of these words. Some of those not found in the BNC might well
occur in another corpus while that corpus might not contain words found in the BNC. They have all
been given a frequency of -1 to differentiate them from the other words that occurred less than once
per million which have a frequency value of 0.
4. Part-of-Speech tags
An initial tagset was created for each word in CUV2 that had occurred in the BNC by grouping
together all tags recorded for the word, together with their frequency count. These included a large
number of mistaggings that had to be removed before the completed tagsets could be added to the
dictionary. For example there, which should have two tags - EX0 (existential there) and AV0
(adverb) - initially had 12 additional tags assigned to it, including noun, personal pronoun and
modal auxiliary verb. The tagsets were then cross-checked with the original CUV2 tags to make
sure that any rare usages that had not occurred in the BNC were accounted for. By and large BNC
tags that did not have a corresponding tag in CUV2 were removed. Some exceptions to this were
verb participles which are commonly used adjectively (such as massed and matching which are both
tagged more frequently as an adjective than a verb in the BNC but are only tagged as a verb in
CUV2) and nouns that can also function as adjectives (such as amateur which only has a noun tag
in CUV2 but is more commonly tagged as an adjective in the BNC). In such cases although the C5
tagset records both usages, the CUV2 tagset has not been updated to reflect this as shown below:

massed|0|m&st|Jc%,Jd%|AJ0:2,VVN:1,VVD:0|1

matching|0|'m&tSIN|Jb%|AJ0:8,VVG:4,NN1:3|2

Appendix A: Dictionary documentation

 195

amateur|0|'&m@t@R|K6%|AJ0:13,NN1:4|3

CUV2 includes entries for prefixes such as multi- and un- which have their own prefix tag. The C5
tagset does not include a prefix tag and as hyphenated forms in the BNC are always tagged as single
units there is no need for prefixes to be tagged in their own right. In CUVPlus these have been
assigned a PRE tag and currently have no frequency information as shown below:

multi-|0|'mVltI-|U-%|PRE:-|2

un-|0|Vn-|U-%|PRE:-|1

In the BNC inflected forms are broken into their component parts each of which receives its own
tag. For example they're is tagged <w PNP> they<w VBB>'re. CUVPlus includes entries for
common enclitics such as this and they have been assigned combined tags as shown below:

they're|0|De@R|Gf%|PNP+VBB:108|1

Letters of the alphabet are assigned a singular or plural noun tag in CUV2. The C5 tagset uses the
tag ZZ0 for alphabetical symbols. In the BNC plural letters (e.g. f's) are sometimes tagged as a
single unit with the ZZ0 tag and at other times broken into two separate units as for the enclitic
forms described above. In CUVPlus the ZZ2 tag (as used in the UCREL C6 tagset) has been
assigned to such entries. This is illustrated below:

f|4|ef|Ki$|ZZ0:30|1

f's|4|efs|Kj$|ZZ2:0|1

Tagsets were created for words in the dictionary that had not occurred in the corpus by mapping the
existing CUV2 tags to their corresponding BNC tag. These were assigned the frequency value -1.

5. Additional entries
Initial candidates for new entries were words occurring more than ten times in the BNC excluding:
strings containing digits; units tagged UNC (unclassified); those tagged CRD (cardinal number e.g.
ii, twenty-one) or ORD (ordinal number e.g. nth, twenty-first); capitalised strings (often
abbreviations or acronyms); enclitic and hyphenated forms. Proper nouns and multi-words were
considered separately. This resulted in a shortlist of around 2000 words. This was manually checked
to remove unsuitable entries: non-words (e.g. emailinc (969); misspellings (e.g. faithfullly (31));
American English spellings (e.g. judgment (348)); interjections (e.g. huh (175), hmm (156));
specialist terms (e.g. unix (222)); medical terms (e.g. mucosa (197), pancreatitis (76)); slang (e.g.
caf (84), dosh (23)); abbreviations (e.g. plc (228), mins (227)). A large number of 'solid' compound
words in the list (e.g. ceasefire (107), holidaymaker (12), turnout (27)) were already in CUV2 in
hyphenated form. These were also removed from the list. New entries were created for other
compounds (such as goodnight and lifestyle) in 'solid' form although they could just as well be
hyphenated. The question of how compound words should be entered in a dictionary is considered
further in Section 7 below.

After this pruning just over 500 words were left in the list. The ten highest ranked are listed below:

Word/Tag N. Occurrences

organisation (NN1) 1201

organisations (NN2) 733

database (NN1) 403

goodnight (ITJ) 316

Appendix A: Dictionary documentation

 196

workforce (NN1) 291

lifestyle (NN1) 260

wildlife (NN1) 234

accountability (NN1) 210

profitability (NN1) 210

databases (NN2) 205

The top two words - organisation and organisations - highlighted a general problem with the
groups of words that can take an -ise or -ize suffix. CUV2 only includes -ize forms although (as
Appendix 3 of the OALDCE remarks) the -ise form is equally acceptable. Overall 80 of the words
in the list were of this type. There are 200 such groups of words in CUV2. Many, such as formalize,
legalize, did not appear in their -ise form in my BNC list. To maintain consistency -ise entries were
created for all of these resulting in just over a thousand new entries.
Many nouns appeared in the list in either singular or plural form but not both (such as deckchairs
(12) and stockmarket (23)). In such cases additional entries have been included for the lower
frequency form as well (deckchair (7), stockmarkets (4)). Some of the plural nouns in the list
already had singular entries in CUV2 that were tagged as taking no plural (for example:
determinations, sediments). In such cases the CUV2 tags have been updated to indicate that a plural
is acceptable.
CUV2 contains around 2,500 proper noun entries - forenames, countries, cities and so on. Although
there are a great many more that could be included I did not have time to consider this in detail.
From a list of around 400 proper nouns not in CUV2 which occurred with a frequency of more than
one per million in the BNC forty were added to the dictionary. Two of these Asia (427) and
Birmingham (375) were surprisingly omitted from CUV2. Others are places that were not
independent states when the previous dictionary was produced such as Bosnia (249), Croatia (149)
and Serbia (97). The majority of the others were surnames, which are not appropriate in a
dictionary.
There are just over 400 entries in CUV2 that consist of more than one word, the majority of these
are place names and naturalised foreign phrases (such as New York, hors d'oeuvres). The BNC
treats many combinations of words that logically form a single unit - adverbial phrases such as a bit,
in addition to, complex prepositions such as in need of, save for and naturalised foreign phrases
such as a posteriori, chilli con carne - as multi-word units and assigns a single tag to the complete
phrase. For a complete list of multi-word units in the BNC see the BNC tagging manual (Leech &
Smith, 2000). Many of these occur with high frequency in the BNC (the most frequent being per
cent (already in the dictionary in 'solid' form) and as well which occur over 5,000 times each). As
text-processing programs that use white space as a word delimiter will often not make use of such
entries I was dubious whether these would be useful additions. Again, I did not have time for
detailed consideration but decided to include 35 of the most common, consisting of short function
words that are often mistakenly run together (such as alot where a lot was intended (Mitton, 1996))
that would be useful for spellchecking purposes.
In total 1669 new entries have been included in CUVPlus. Pronunciation and CUV2 tags have been
added to each of these. For the -ise entries these are identical to the existing -ize entries.
Pronunciations for the multi-word entries are a combination of the pronunciation for the individual
words and they have been given CUV2 tags corresponding to their definition in the BNC (for
example, at all is tagged as an adverb, out of as a preposition). For all other entries these fields were
created manually.

Appendix A: Dictionary documentation

 197

6. Other changes from CUV2

6.1. Capitalisation
As upper-case come before lower-case letters in ASCII ordering, entries for words such as Nice (the
place name) and nice (the adjective) are widely separated in CUV2 although in a paper dictionary
they would appear together. To overcome this problem all initial letters have been converted to
lower-case in CUVPlus and a code, indicating whether or not the word should start with a capital,
inserted as the second field in the line.

This code can have one of four values as shown in the following examples:

0 initial letter always lower-case
person|0|'p3sn|K6%|NN1:254|2

1 initial letter always upper-case
fred|1|fred|Nl%|NP0:19|1

2 initial lower-case but there is also an upper-case entry with the same spelling but different
pronunciation

job|2|dZ0b|J4$,K6*|NN1:209,VVB:0,VVI:0|1

3 initial upper-case but there is also a lower-case entry with the same spelling but different
pronunciation

job|3|dZ@Ub|Nl$|NP0:0|1

4 initial letter upper or lower-case depending on usage but pronunciation the same in both
cases.

kitty|4|'kItI|K8%,Nl%|NP0:2,NN1:1|2

kitty can be either a common or a proper noun. Initial capitalisation will depend on the
sense in which it is being used.

Many abbreviations consist entirely of upper case letters (e.g. AGM, GMT). For words such as these
only the initial letter has been converted to lower case, which results in some rather odd-looking
entries as shown below. It also means that they do not appear in their absolute alphabetical position.
This is perhaps not the best way of dealing with this type of entry but it maintains consistency with
the other entries.

aGM|1|,eIdZI'em|Y>%|NN1:3|2

gMT|1|,dZi,em'ti|Y~%|AV0:8|3

It is useful to note at this point that the code in this field only deals with capitalisation, it does not
explicitly mark spellings that appear more than once in the dictionary. Homographs, if both would
normally be written with an initial lower-case letter will have two entries, both with the code 0 in
the second field as, for example:

wind|0|waInd|J5%,K6%|NN1:73,VVI:3,VVB:2|1

wind|0|wInd|H0%,M6%|NN1:73,VVI:3,VVB:2|1

6.2. Diacritics
In CUV2 diacritic characters - acute, grave, umlaut, cedilla, circumflex and tilde - precede the letter
that they mark. This presents several problems. They do not appear in their correct alphabetical

Appendix A: Dictionary documentation

 198

position - this is particularly extreme for words beginning with a diacritic which all appear grouped
together at the beginning of the dictionary. More importantly, they never appear written in this way
in normal text and so cannot be looked up automatically (by a spellchecker, for example). Finally,
in many cases, as these foreign words become naturalised into English they are often written
without the diacritics and are thus more appropriately entered into the dictionary in their unaccented
form. On balance, if they were to be included at all it seemed more useful to enter them without
diacritics so these have been removed from all entries in CUVPlus. Some examples are shown
below:

CUV2 CUVPlus

_eclair eclair

t^ete-`a-t^ete tete-a-tete

f"uhrer fuhrer

fa<cade facade

se~nor senor

6.3. Verb pattern fields
Entries for verbs in the OALDCE include verb pattern fields designed to show the learner of
English how to form correct sentences. These were retained in the entries for CUV2 as the fourth
field in the line. For entries other than verbs this field was left blank as shown in the two examples
below:

CUV2 form|fOm|J0*,M6*|2A,2C,6A,14,15A|1

CUV2 cat|k&t|K6%||1

I decided to omit this field from CUVPlus, partly because I have never found a use for it but largely
for consistency reasons. There is now no need for empty fields in some entries and the time
consuming task of creating verb patterns for new entries was avoided. The examples below show
the above two entries as they appear in CUVPlus.

CUVPlus form|0|fOm|J0*,M6*|NN1:287,VVI:52,VVB:34|1
CUVPlus cat|0|k&t|K6%|NN1:36|1

7. Further considerations
This update has achieved its main aim of adding more accurate frequency information to the
dictionary. The new entries have increased the coverage which should lead to fewer false alarms
when it is used for spellchecking (although the fact that less than a hundred of the words added had
a frequency of more than one per million in the BNC suggests that existing coverage of CUV2 was
fairly comprehensive). However, there were several issues, some of which arose during the course
of the work, which I did not have time to consider in detail. In particular:
• Compound word entries

In the current version some of these are entered in hyphenated form and others in 'solid' form.
In use they are often written in both ways although there is possibly an increasing tendency to
omit the hyphen. There seems little point in a dictionary including both forms but it would be
best to take a consistent approach. In general hyphenated forms are probably more useful for a
spellchecker (or any other text-processing program) as it is easier to remove a hyphen than it is
to insert it.

• Abbreviations
In the current version abbreviations have had their initial capital converted to lower-case in the
same way as all other entries. This is possibly not the right approach when subsequent letters
are also upper-case. Additionally, as the C5 tagset does not include a specific abbreviation tag it

Appendix A: Dictionary documentation

 199

is necessary to use both sets of tags to determine whether a word is an abbreviation. This
information is required to disambiguate between the use of a full stop as an abbreviation marker
and a sentence delimiter.

• Proper nouns
Some proper noun entries have been added to the current version, rectifying some omissions
from CUV2 and reflecting major geographical/political changes since that dictionary was
produced. A more comprehensive approach requires a clear definition of the categories of
proper noun to be included and, for cities, countries and the like, the use of a gazetteer rather
than a general purpose corpus to obtain the data.

• Multi-word units
A rather ad hoc approach has been taken to these in the current version, largely because they are
not particularly useful when the dictionary is used by a spellchecker. A clear idea of the ways in
which they might be used would help to define clearer criteria for inclusion.

• Prefixes
There is currently no frequency information included with these entries. It would be useful to
include this as it would give an indication as to how commonly they were used to form other
words.

• Homophones and homographs
It would be useful to add flags for these to indicate that there is another entry with the same
pronunciation or spelling.

Further details of the development of CUVPlus can be found in (Pedler, forthcoming).
8. Summary of differences between CUV2 and C5 tagsets
This section provides a summary of the differences between the two tagsets used in CUVPlus as an
aid for users who wish to combine them to obtain further information about a word. Details of the
C5 tagset as used in the BNC can be found in the BNC Users Reference Guide (Burnard, 2000).
The CUV2 tagset is described in the documentation that accompanies the dictionary (Mitton, 1992).
Both tagsets are also included as appendices to this document.

8.1. Verbs
Apart from be, do and have, which have their own sets of tags the BNC categorises verbs as either
lexical or modal auxiliary. CUV2 divides verbs into four main groups - anomalous, transitive,
intransitive, both transitive & intransitive. The anomalous verbs include the primary auxiliaries be,
have and do, as well as the modal auxiliaries (e.g. can, may) and the semi-modals (e.g. dare, need).
The other categories correspond to the lexical verbs in the C5 tagset. This means that additional
information about the verb's usage - whether or not it takes an object is available from the CUV2
tags. Both tagsets further divide the main verb categories into infinitive, third person present, past
tense and so on but CUV2 also includes inflection information with the tag for the infinitive form.
For the modal auxiliaries in the C5 tagset no differentiation is made between past and present forms
of these verbs whereas the CUV2 tagset does make this distinction. For example can and could are
both simply tagged as modal auxiliaries in the BNC whereas in CUV2 can is tagged anomalous
irregular and could is tagged anomalous past tense.

8.2. Nouns
The C5 tagset has four noun tags - common noun neutral for number, singular common noun, plural
common noun and proper noun. Apart from proper nouns these do not correspond to the four main
tags used in CUV2 - countable, uncountable, both countable and uncountable and proper noun. In
CUV2 these are further subdivided into singular and plural with additional information about the
way the noun inflects. CUV2 also further subdivides proper nouns into forename, country, town and
other whereas in the BNC they all use the same tag.

Appendix A: Dictionary documentation

 200

8.3. Adjectives
Both tagsets make the distinction between general, comparative and superlative adjectives but in
addition the CUV2 tags categorise them as predicative/attributive and indicate the way in which the
inflections are formed.

8.4. Adverbs
The C5 tagset has 3 tags for adjectives - general adverb (not included in either of other two
categories), adverb particle and wh- adverb. The CUV2 tagset has 4 - not interrogative or relative,
interrogative, relative and adverbial particle. Apart from the particles there is no general
correspondence between these two sets of tags and as the majority of adverbs in CUV2 fall into the
'not interrogative or relative' category little extra information is gained from using the CUV2 tags
for these entries.

8.5. Pronouns
The C5 tagset splits these into determiner pronouns and pronouns using a total of seven tags -
possessive determiner-pronoun, general determiner-pronoun, wh- determiner-pronoun, indefinite
pronoun, personal pronoun, wh- pronoun and reflexive pronoun. This is far more fine-grained than
the CUV2 tagset which classes pronouns as not interrogative or relative, interrogative, and relative
with the majority of them falling into the first category.

8.6. Articles
The C5 tagset has one tag for all articles, definite and indefinite whereas CUV2 makes the
distinction between definite and indefinite.

8.7. Prepositions
Both tagsets use a single tag for prepositions, apart from of which has its own unique tag in the C5
tagset. However, there is often some discrepancy between words tagged as prepositions in the BNC
and those tagged as such in CUV2. For example, out and post both appear tagged as prepositions in
the BNC (and thus have a PRP tag in CUVPlus) but have no preposition tag in CUV2. Aslant and
mid have a preposition tag in CUV2 but do not appear tagged as prepositions in the BNC. In
CUVPlus these also have preposition tags mapped from the existing CUV2 tags.

8.8. Conjunctions
CUV2 has a single tag for all conjunctions whereas the C5 tagset divides them into three categories
- co-ordinating conjunction, subordinating conjunction, and the subordinating conjunction that.

8.9. Interjections
Both tagsets use a single tag for interjections.

8.10. Infinitive marker to
To, when used as the infinitive marker, has its own tag in the C5 tagset . It is the only word tagged
as a particle in CUV2 thus the effect is the same in both tagsets.

8.11. Abbreviations
Abbreviations in the BNC are tagged as if they were written as full forms whereas CUV2 explicitly
tags abbreviations and further categorises them into the type of abbreviation - singular noun, plural
noun, both singular and plural noun, uncountable noun, title, proper noun and other. To determine
whether a word is an abbreviation it is essential to use the CUV2 tags.

Acknowledgements

Appendix A: Dictionary documentation

 201

Thanks to George Mitton for producing and keying in the pronunciations and CUV2 tags for the
new entries in CUVPlus.

References

Burnard, L. (Ed) (2000) The British National Corpus Users Reference Guide
Hornby, A.S. (1974) Oxford Advanced Learner's Dictionary of Current English (3rd Edition).
Oxford University Press, 1039 p.
Leech, G., Rayson, P. and Wilson, A. (2001) Word Frequencies in Written and Spoken English
Longman, London, 304 p.
Leech, G. and Smith, N. (2000) Manual to accompany The British National Corpus (Version 2)
with Improved Word-class Tagging UCREL, Lancaster
Mitton, R. (1986) 'A partial dictionary of English in computer-usable form'. Literary and Linguistic
Computing 1 (4) pp. 214-5
Mitton, R. (1992) A description of a computer-usable dictionary file based on the Oxford Advanced
Learner's Dictionary of Current English. Oxford Text Archive.
Mitton, R. (1996) English Spelling and the Computer Longman, London, 207 p.
Pedler, J.(forthcoming) 'A corpus-based update of a 'computer-usable' dictionary' To appear in
Proceedings of the Eighth International Symposium on Social Communication Jan 2003

Appendix A: Dictionary documentation

 202

Appendix 1
CUV2 Tagset

Word Class First Character Second Character

VERBS G Anomolous 0 inflects like work

 H Transitive 1 wish

 I Intransitive 2 love

 J Trans & Intrans 3 apply

 4 abet

 5 irregular

 a 3rd pers sing pres tense

 b present participle -ing

 c past tense

 d past participle

 e other part of verb

 f contraction pronoun + anom. verb

 g contraction anom verb + not

 h contraction anom vb, other

NOUNS K countable 6 Plural like cat

 L Uncountable 7 fox

 M Count & uncount 8 pony

 N Proper noun 9 Pl same as sing, like Salmon

 @ No plural

 i sing form

 j plural form

 k pl. but acts like sg. e.g. economics

 l proper, forename e.g. Sandra

 m proper, country etc. e.g. Scotland

 n proper, town e.g. Scunthorpe

 o other e.g. Saturn

ADJECTIVES O A no -er or -est form

 B +r, +st, like subtle

 C + er, +est, like light

Appendix A: Dictionary documentation

 203

 D y to ier, iest, like heavy

 E irregular comp &/or sup

 p predicative

 q attributive

 r comparative form

 s superlative form

 t can be attached by hyphen e.g. bellied

ADVERBS P u not interrogative or relative

 v interrogative

 w relative

 + adverbial particle

PRONOUNS Q x not interrogative or relative

 y interrogative

 z relative

OTHER R Definite article -

 S Indefinite article -

 T Preposition -

 U Prefix -

 V Conjunction -

 W Interjection -

 X Particle -

 Y Abbreviation > sing noun

) plural noun

] both sing & plural

 } uncountable noun

 : title

 = proper noun

 ~ other abbreviation

 Z Not classified -

Frequency codes (third character)

* very common

% ordinary

$ rare

Appendix A: Dictionary documentation

 204

Appendix 2
C5 Tagset
(Excluding punctuation tags)

Tag Description

 AJ0 Adjective (general or positive) (e.g. good,
old, beautiful)

 AJC Comparative adjective (e.g. better, older)

 AJS Superlative adjective (e.g. best, oldest)

 AT0 Article (e.g. the, a, an, no)

 AV0 General adverb: an adverb not subclassified
as AVP or AVQ (see below) (e.g. often, well,
longer (adv.), furthest.

 AVP Adverb particle (e.g. up, off, out)

 AVQ Wh-adverb (e.g. when, where, how, why,
wherever)

 CJC Coordinating conjunction (e.g. and, or, but)

 CJS Subordinating conjunction (e.g. although,
when)

 CJT The subordinating conjunction that

 CRD Cardinal number (e.g. one, 3, fifty-five, 3609)

 DPS Possessive determiner-pronoun (e.g. your,
their, his)

 DT0 General determiner-pronoun: i.e. a
determiner-pronoun which is not a DTQ or
an AT0

 DTQ Wh-determiner-pronoun (e.g. which, what,
whose, whichever)

 EX0 Existential there, i.e. there occurring in the
there is ... or there are ... construction

 ITJ Interjection or other isolate (e.g. oh, yes,
mhm, wow)

 NN0 Common noun, neutral for number (e.g.
aircraft, data, committee)

 NN1 Singular common noun (e.g. pencil, goose,
time, revelation)

 NN2 Plural common noun (e.g. pencils, geese,
times, revelations)

 NP0 Proper noun (e.g. London, Michael, Mars,

Appendix A: Dictionary documentation

 205

IBM)

 ORD Ordinal numeral (e.g. first, sixth, 77th, last) .

 PNI Indefinite pronoun (e.g. none, everything, one
[as pronoun], nobody)

 PNP Personal pronoun (e.g. I, you, them, ours)

 PNQ Wh-pronoun (e.g. who, whoever, whom)

 PNX Reflexive pronoun (e.g. myself, yourself,
itself, ourselves)

 POS The possessive or genitive marker 's or '

 PRF The preposition of

 PRP Preposition (except for of) (e.g. about, at, in,
on, on behalf of, with)

 TO0 Infinitive marker to

 UNC Unclassified items which are not
appropriately considered as items of the
English lexicon

 VBB The present tense forms of the verb BE,
except for is, 's: i.e. am, are, 'm, 're and be
[subjunctive or imperative]

 VBD The past tense forms of the verb BE: was and
were

 VBG The -ing form of the verb BE: being

 VBI The infinitive form of the verb BE: be

 VBN The past participle form of the verb BE: been

 VBZ The -s form of the verb BE: is, 's

 VDB The finite base form of the verb DO: do

 VDD The past tense form of the verb DO: did

 VDG The -ing form of the verb DO: doing

 VDI The infinitive form of the verb DO: do

 VDN The past participle form of the verb DO: done

 VDZ The -s form of the verb DO: does, 's

 VHB The finite base form of the verb HAVE:
have, 've

 VHD The past tense form of the verb HAVE: had,
'd

 VHG The -ing form of the verb HAVE: having

Appendix A: Dictionary documentation

 206

 VHI The infinitive form of the verb HAVE: have

 VHN The past participle form of the verb HAVE:
had

 VHZ The -s form of the verb HAVE: has, 's

 VM0 Modal auxiliary verb (e.g. will, would, can,
could, 'll, 'd)

 VVB The finite base form of lexical verbs (e.g.
forget, send, live, return) [Including the
imperative and present subjunctive]

 VVD The past tense form of lexical verbs (e.g.
forgot, sent, lived, returned)

 VVG The -ing form of lexical verbs (e.g.
forgetting, sending, living, returning)

 VVI The infinitive form of lexical verbs (e.g.
forget, send, live, return)

 VVN The past participle form of lexical verbs (e.g.
forgotten, sent, lived, returned)

 VVZ The -s form of lexical verbs (e.g. forgets,
sends, lives, returns)

 XX0 The negative particle not or n't

 ZZ0 Alphabetical symbols (e.g. A, a, B, b, c, d)

Additional tags used in CUVPlus

 PRE Prefix (e.g. multi-, un-)

 ZZ2 Plural alphabetical symbol (e.g. f's, p's)

Appendix A: Dictionary documentation

 207

Appendix 3

Pronunciation characters
Vowels Consonants

ias inbead N as in sing

Ibid T.......... thin

ebed D.......... then

& (ampsnd)bad S..........shed

Abard Z..........beige

0 (zero)cod tSetch

O (cap O)cord dZedge

Ugood

ufood p t k b d g

Vbud m n f v s z

3 (three)bird r l w h j

@"a" in about

Dipthongs

eI........as inday

@U........go

aI........ eye

aU........cow

oI........boy

I@........beer

e@........bare

U@........ tour

R-linking (the sounding of a /r/ at the end of
a word when it is followed by a vowel) is
marked R

eg fAR for "far"

(compare "far away" with "far beyond"

Primary stress: apostrophe e.g. @'baUt ("about")

Secondary stress : comma e.g. ,&ntI'septIk

Plus-sign as in "courtship" and "bookclub" 'kOt+Sip 'bUk+klVb

Compound words

When the spelling contains a space and/or a hyphen, the pronunciation has one also,

e.g. above board @,bVv 'bOd air-raid 'e@-reId

 208

Appendix B: Code for Simple Good-Turing Frequency
Estimator

 *

 *

 * Simple Good-Turing Frequency Estimator

 *

 *

 * Geoffrey Sampson, with help from Miles Dennis

 *

 * School of Cognitive and Computing Sciences

 * University of Sussex, England

 *

 * http://www.grs.u-net.com/

 *

 *

 * First release: 27 June 1995

 * Revised release: 24 July 2000

 *

 *

 * Takes a set of (frequency, frequency-of-frequency) pairs, and

 * applies the "Simple Good-Turing" technique for estimating

 * the probabilities corresponding to the observed frequencies,

 * and P.0, the joint probability of all unobserved species.

 * The Simple Good-Turing technique was devised by William A. Gale

 * of AT&T Bell Labs, and described in Gale & Sampson,

 * "Good-Turing Frequency Estimation Without Tears" (JOURNAL

 * OF QUANTITATIVE LINGUISTICS, vol. 2, pp. 217-37 -- reprinted in

 * Geoffrey Sampson, EMPIRICAL LINGUISTICS, Continuum, 2001).

 *

 * Anyone is welcome to take copies of this program and use it

 * for any purpose, at his or her own risk. If it is used in

 * connexion with published work, acknowledgment of Sampson and

 * the University of Sussex would be a welcome courtesy.

 *

 * The program is written to take input from "stdin" and send output

 * to "stdout"; redirection can be used to take input from and

Appendix B: Code for SGT Frequency Estimator

 209

 * send output to permanent files. The code is in ANSI standard C.

 *

 * The input file should be a series of lines separated by newline

 * characters, where all nonblank lines contain two positive
integers

 * (an observed frequency, followed by the frequency of that
frequency)

 * separated by whitespace. (Blank lines are ignored.)

 * The lines should be in ascending order of frequency.

 *

 * No checks are made for linearity; the program simply assumes that
the

 * requirements for using the SGT estimator are met.

 *

 * The output is a series of lines each containing an integer
followed

 * by a probability (a real number between zero and one), separated
by a

 * tab. In the first line, the integer is 0 and the real number is
the

 * estimate for P.0. In subsequent lines, the integers are the

 * successive observed frequencies, and the reals are the estimated

 * probabilities corresponding to those frequencies.

 *

 * The revised release cures a bug to which Martin Jansche of Ohio

 * State University kindly drew attention. No warranty is given

 * as to absence of further bugs.

 *

 *

 */

 #include <stdio.h>

 #include <math.h>

 #include <ctype.h>

 #include <stdlib.h>

 #include <string.h>

 #define TRUE 1

Appendix B: Code for SGT Frequency Estimator

 210

 #define FALSE 0

 #define MAX_LINE 100

 #define MAX_ROWS 6215

 #define MIN_INPUT 5

 int r[MAX_ROWS], n[MAX_ROWS];

 double Z[MAX_ROWS], log_r[MAX_ROWS], log_Z[MAX_ROWS],

 rStar[MAX_ROWS], p[MAX_ROWS];

 int rows, bigN;

 double PZero, bigNprime, slope, intercept;

 int main(void)

 {

 int readValidInput(void);

 void analyseInput(void);

 if ((rows = readValidInput()) >= 0)

 {

 if (rows < MIN_INPUT)

 printf("\nFewer than %d input value-pairs\n",

 MIN_INPUT);

 else

 analyseInput();

 }

 return(TRUE);

 }

 double sq(double x)

 {

 return(x * x);

 }

 int readValidInput(void)

 /*

 * returns number of rows if input file is valid, else -1

 * NB: number of rows is one more than index of last row

 *

Appendix B: Code for SGT Frequency Estimator

 211

 */

 {

 char line[MAX_LINE];

 const char* whiteSpace = " \t\n\v\f\r";

 int lineNumber = 0;

 int rowNumber = 0;

 const int error = -1;

 while (fgets(line, MAX_LINE, stdin) != NULL && rowNumber <
MAX_ROWS)

 {

 char* ptr = line;

 char* integer;

 int i;

 ++lineNumber;

 while (isspace(*ptr))

 ++ptr; /* skip white space at the start of a
line */

 if (*ptr == '\0')

 continue;

 if ((integer = strtok(ptr, whiteSpace)) == NULL ||

 (i = atoi(integer)) < 1)

 {

 fprintf(stderr, "Invalid field 1, line %d\n",

 lineNumber);

 return(error);

 }

 if (rowNumber > 0 && i <= r[rowNumber - 1])

 {

 fprintf(stderr,

 "Frequency not in ascending order, line %d\n",

 lineNumber);

 return(error);

 }

 r[rowNumber] = i;

Appendix B: Code for SGT Frequency Estimator

 212

 if ((integer = strtok(NULL, whiteSpace)) == NULL ||

 (i = atoi(integer)) < 1)

 {

 fprintf(stderr, "Invalid field 2, line %d\n",

 lineNumber);

 return(error);

 }

 n[rowNumber] = i;

 if (strtok(NULL, whiteSpace) != NULL)

 {

 fprintf(stderr, "Invalid extra field, line %d\n",

 lineNumber);

 return(error);

 }

 ++rowNumber;

 }

 if (rowNumber >= MAX_ROWS)

 {

 fprintf(stderr, "\nInsufficient memory reserved for
input\

 values\nYou need to change the definition of\

 MAX_ROWS\n");

 return(error);

 }

 return(rowNumber);

 }

 void findBestFit(void)

 {

 double XYs, Xsquares, meanX, meanY;

 double sq(double);

 int i;

 XYs = Xsquares = meanX = meanY = 0.0;

 for (i = 0; i < rows; ++i)

 {

 meanX += log_r[i];

 meanY += log_Z[i];

Appendix B: Code for SGT Frequency Estimator

 213

 }

 meanX /= rows;

 meanY /= rows;

 for (i = 0; i < rows; ++i)

 {

 XYs += (log_r[i] - meanX) * (log_Z[i] - meanY);

 Xsquares += sq(log_r[i] - meanX);

 }

 slope = XYs / Xsquares;

 intercept = meanY - slope * meanX;

 }

 double smoothed(int i)

 {

 return(exp(intercept + slope * log(i)));

 }

 int row(int i)

 {

 int j = 0;

 while (j < rows && r[j] < i)

 ++j;

 return((j < rows && r[j] == i) ? j : -1);

 }

 void showEstimates(void)

 {

 int i;

 printf("0\t%.4g\n", PZero);

 for (i = 0; i < rows; ++i)

 printf("%d\t%.4g\n", r[i], p[i]);

 }

 void analyseInput(void)

 {

Appendix B: Code for SGT Frequency Estimator

 214

 int i, j, next_n;

 double k, x, y;

 int indiffValsSeen = FALSE;

 int row(int);

 void findBestFit(void);

 double smoothed(int);

 double sq(double);

 void showEstimates(void);

 bigN = 0;

 for (j = 0; j < rows; ++j)

 bigN += r[j] * n[j];

 PZero = n[row(1)] / (double) bigN;

 for (j = 0; j < rows; ++j)

 {

 i = (j == 0 ? 0 : r[j - 1]);

 if (j == rows - 1)

 k = (double) (2 * r[j] - i);

 else

 k = (double) r[j + 1];

 Z[j] = 2 * n[j] / (k - i);

 log_r[j] = log(r[j]);

 log_Z[j] = log(Z[j]);

 }

 findBestFit();

 for (j = 0; j < rows; ++j)

 {

 y = (r[j] + 1) * smoothed(r[j] + 1) / smoothed(r[j]);

 if (row(r[j] + 1) < 0)

 indiffValsSeen = TRUE;

 if (! indiffValsSeen)

 {

 x = (r[j] + 1) * (next_n = n[row(r[j] + 1)]) /

 (double) n[j];

 if (fabs(x - y) <= 1.96 * sqrt(sq(r[j] + 1.0) *

 next_n / (sq((double) n[j])) *

 (1 + next_n / (double) n[j])))

Appendix B: Code for SGT Frequency Estimator

 215

 indiffValsSeen = TRUE;

 else

 rStar[j] = x;

 }

 if (indiffValsSeen)

 rStar[j] = y;

 }

 bigNprime = 0.0;

 for (j = 0; j < rows; ++j)

 bigNprime += n[j] * rStar[j];

 for (j = 0; j < rows; ++j)

 p[j] = (1 - PZero) * rStar[j] / bigNprime;

 showEstimates();

 }

 216

Appendix C : Sample sentence splitting

Input text from FLOB_J

Having defined the quantities that are normally measured in a nuclear
reaction we here outline the typical experimental procedures which are
followed for studying the symbolic reaction A(a, b)B. No details are
given of the apparatus other than to mention very briefly the underlying
physical principles. Details of low energy nuclear physics apparatus are
given, for example, in Burcham (1988) and of high energy elementary
particle apparatus in a book in this series by Kenyon (1988).

Referring to Fig. 5.3, charged ions of the particle a are produced in
some form of accelerator (described later in this section) and, by use of
bending magnets for example, will emerge with a particular energy. These
ions then pass through a collimator in order to define their direction
with some precision and strike a target containing the nuclei A. As the
beam particles move through the target they will mainly lose energy by
ionizing target atoms and so, if precise energy measurements are to be
made, a thin target must be used. This, however, increases the difficulty
of the experiment since few interactions will take place. Choice of
target thickness is clearly a crucial decision in planning an experiment.

The reaction product particles b move off in all directions and their
angular distribution can be studied by detecting them after passage
through another collimator set at a particular angle . Various types of
detector are used (discussed later) - sometimes in combination - and
these can determine the type of particle as well as its energy. But
experimenters have to contend with many complications of interpretation,
impurities in targets and, not least, the stability of their apparatus.
In the end, detailed information becomes available about , d/d and their
energy dependence for the reaction under study.

Most important for nuclear reaction studies are Van de Graaff
accelerators in which ions are accelerated in an evacuated tube by an
electrostatic field maintained between a high voltage terminal and an
earth terminal, charge being conveyed to the high voltage terminal by a
rotating belt or chain. In early forms of this accelerator, positive ions
from a gaseous discharge tube were accelerated from the high voltage
terminal to earth. But, in modern 'tandem' accelerators, negative ions
are accelerated from earth to the high voltage terminal where they are
then stripped of some electrons and the resultant positive ions are
further accelerated down to earth potential. The effective accelerating
potential is thus twice the potential difference in the machine. High
flux proton beams with energies up to around 30MeV can be produced in
this way. The machines can also be used to accelerate heavy ions such as
16O.

At higher energies use is generally made of orbital accelerators in which
charged particles are confined to move in circular orbits by a magnetic
field. At non-relativistic energies the angular frequency of rotation ,
known as the cyclotron frequency, is constant depending only on the
strength of the field. In a cyclotron, the particles rotate in a circular
metallic box split into two halves, known as Ds, between which an

Appendix C: Sample Sentence Splitting

 217

oscillating electric field is maintained. Its frequency matches and so
the particle is continually accelerated. In a fixed magnetic field the
orbital radius increases as the energy increases and, at some maximum
radius, the particles are extracted using an electrostatic deflecting
field. However, as the energy becomes relativistic (remember),
decreases with energy and it becomes necessary to decrease steadily the
frequency of the oscillating electric field with energy to preserve
synchronization.

Such a machine is known as a synchrocyclotron and protons with energies
in the region of 100 MeV have been produced in this way.

For energies higher than this gigantic magnets would be needed and so the
approach is to accelerate bunches of particles in orbits of essentially
constant radius using annular magnets producing magnetic fields which
increase as the particle energy increases: This energy increase is
provided by passing the particles through radio-frequency cavities whose
frequency also changes slightly as the particles are accelerated to
ensure synchronization. Such devices are called synchrotrons and can be
physically very large. For example, the so-called Super Proton
Synchrotron (SPS) at CERN (Geneva) has a circumference around 6 km and
can produce protons with energies up to around 450 GeV. LEP (the Large
Electron-Positron Collider) has a circumference of 27 km and accelerates
electrons (and positrons in the opposite direction) to energies of 60 GeV
or more. Finally, the Superconducting Super Collider (SCC), which uses
superconducting magnets, and which is being built in the USA, has a
circumference of 87 km and will produce proton and antiproton beams with
energies 20 000 GeV!

Electrons can also be accelerated in synchrotrons but, because of their
small mass, large amounts of energy are radiated (synchrotron radiation)
owing to the circular acceleration. At energies beyond a few GeV this
loss becomes prohibitive and use has to be made of linear accelerators in
which electrons are accelerated down a long evacuated tube by a
travelling electromagnetic wave. The Stanford Linear Accelerator (SLAC)
in the USA, for example, is around 3 km long and can produce pulses of
electrons with energies up to 50 GeV.

Although in the early days much use was made of ionization chambers, for
example the Geiger counter (section 1.4), the detectors currently in use
for nuclear physics experiments are usually either scintillation counters
or semiconductor detectors or some combination. The former are
developments of the approach of Rutherford, Geiger and Marsden (section
1.3) using the scintillations produced in a ZnS screen to detect -
particles. Various scintillators are in current use such as NaI activated
by an impurity (usually thallium for detection of -particles), or some
organic material dissolved in a transparent plastic or liquid. The
scintillations are detected by a photomultiplier tube producing a pulse
of photo-electrons. The size of the pulse - the pulse height - gives a
measure of the energy of the incident particle.

Semiconductor detectors depend on an incident particle or photon exciting
an electron from the valence band to the conduction band. The resultant
increase in conductivity - a conduction pulse - then produces a signal
which is processed electronically and which enables the energy of the
incident radiation to be measured.

In the field of very high energy physics, considerable use is made of
bubble chambers and wire chambers. The former follows on from the Wilson

Appendix C: Sample Sentence Splitting

 218

cloud chamber and consists essentially of a large chamber, possibly
several metres in diameter, containing liquid (e.g. hydrogen, helium,
propane, ...) near its boiling point. The chamber is expanded as charged
particles pass through it, leading to the formation of bubbles, as a
result of boiling, along the particle tracks which can be stereo flash
photographed. The lengths of the tracks and their curvature in a magnetic
field enable particle lifetimes, masses and energies to be deduced.

Wire chambers consist of stacks of positively and negatively charged wire
grids in a low pressure gas. An incident charged particle ionizes the gas
and acceleration of the resultant electrons near the anode wires leads to
further ionization and an electrical pulse. The physical location of the
pulse can be determined electronically so that track measurements can be
made. Using an applied magnetic field to bend the tracks again enables
information to be obtained about the properties of the detected particle.

In the previous chapter some understanding of nuclear structure has been
achieved in terms of a nuclear model in which nucleons move around fairly
independently in a potential well. To give some intuitive understanding
of nuclear reaction processes we stay with this description of the
nucleus and follow a very illuminating discussion given by Weisskopf
(1957).

Output from sentence splitter
Snum 1

Having defined the quantities that are normally measured in a nuclear
reaction we here outline the typical experimental procedures which are
followed for studying the symbolic reaction A(a, b)B.

Snum 2

No details are given of the apparatus other than to mention very briefly
the underlying physical principles.

Snum 3

Details of low energy nuclear physics apparatus are given, for example,
in Burcham (1988) and of high energy elementary particle apparatus in a
book in this series by Kenyon (1988).

Snum 4

Referring to Fig. 5.3, charged ions of the particle a are produced in
some form of accelerator (described later in this section) and, by use of
bending magnets for example, will emerge with a particular energy.

Snum 5

These ions then pass through a collimator in order to define their
direction with some precision and strike a target containing the nuclei
A.

Snum 6

As the beam particles move through the target they will mainly lose
energy by ionizing target atoms and so, if precise energy measurements
are to be made, a thin target must be used.

Snum 7

Appendix C: Sample Sentence Splitting

 219

This, however, increases the difficulty of the experiment since few
interactions will take place.

Snum 8

Choice of target thickness is clearly a crucial decision in planning an
experiment.

Snum 9

The reaction product particles b move off in all directions and their
angular distribution can be studied by detecting them after passage
through another collimator set at a particular angle.

Snum 10

Various types of detector are used (discussed later) - sometimes in
combination - and these can determine the type of particle as well as its
energy.

Snum 11

But experimenters have to contend with many complications of
interpretation, impurities in targets and, not least, the stability of
their apparatus.

Snum 12

In the end, detailed information becomes available about, d/d and their
energy dependence for the reaction under study.

Snum 13

Most important for nuclear reaction studies are Van de Graaff
accelerators in which ions are accelerated in an evacuated tube by an
electrostatic field maintained between a high voltage terminal and an
earth terminal, charge being conveyed to the high voltage terminal by a
rotating belt or chain.

Snum 14

In early forms of this accelerator, positive ions from a gaseous
discharge tube were accelerated from the high voltage terminal to earth.

Snum 15

But, in modern 'tandem' accelerators, negative ions are accelerated from
earth to the high voltage terminal where they are then stripped of some
electrons and the resultant positive ions are further accelerated down to
earth potential.

Snum 16

The effective accelerating potential is thus twice the potential
difference in the machine.

Snum 17

High flux proton beams with energies up to around 30MeV can be produced
in this way.

Snum 18

The machines can also be used to accelerate heavy ions such as 16O.

Snum 19

Appendix C: Sample Sentence Splitting

 220

At higher energies use is generally made of orbital accelerators in which
charged particles are confined to move in circular orbits by a magnetic
field.

Snum 20

At non-relativistic energies the angular frequency of rotation, known as
the cyclotron frequency, is constant depending only on the strength of
the field.

Snum 21

In a cyclotron, the particles rotate in a circular metallic box split
into two halves, known as Ds, between which an oscillating electric field
is maintained.

Snum 22

Its frequency matches and so the particle is continually accelerated.

Snum 23

In a fixed magnetic field the orbital radius increases as the energy
increases and, at some maximum radius, the particles are extracted using
an electrostatic deflecting field.

Snum 24

However, as the energy becomes relativistic (remember), decreases with
energy and it becomes necessary to decrease steadily the frequency of the
oscillating electric field with energy to preserve synchronization.

Snum 25

Such a machine is known as a synchrocyclotron and protons with energies
in the region of 100 MeV have been produced in this way.

Snum 26

For energies higher than this gigantic magnets would be needed and so the
approach is to accelerate bunches of particles in orbits of essentially
constant radius using annular magnets producing magnetic fields which
increase as the particle energy increases: This energy increase is
provided by passing the particles through radio-frequency cavities whose
frequency also changes slightly as the particles are accelerated to
ensure synchronization.

Snum 27

Such devices are called synchrotrons and can be physically very large.

Snum 28

For example, the so-called Super Proton Synchrotron (SPS) at CERN
(Geneva) has a circumference around 6 km and can produce protons with
energies up to around 450 GeV.

Snum 29

LEP (the Large Electron-Positron Collider) has a circumference of 27 km
and accelerates electrons (and positrons in the opposite direction) to
energies of 60 GeV or more.

Snum 30

Finally, the Superconducting Super Collider (SCC), which uses
superconducting magnets, and which is being built in the USA, has a

Appendix C: Sample Sentence Splitting

 221

circumference of 87 km and will produce proton and antiproton beams with
energies 20 000 GeV!

Snum 31

Electrons can also be accelerated in synchrotrons but, because of their
small mass, large amounts of energy are radiated (synchrotron radiation)
owing to the circular acceleration.

Snum 32

At energies beyond a few GeV this loss becomes prohibitive and use has to
be made of linear accelerators in which electrons are accelerated down a
long evacuated tube by a travelling electromagnetic wave.

Snum 33

The Stanford Linear Accelerator (SLAC) in the USA, for example, is around
3 km long and can produce pulses of electrons with energies up to 50 GeV.

Snum 34

Although in the early days much use was made of ionization chambers, for
example the Geiger counter (section 1.4), the detectors currently in use
for nuclear physics experiments are usually either scintillation counters
or semiconductor detectors or some combination.

Snum 35

The former are developments of the approach of Rutherford, Geiger and
Marsden (section 1.3) using the scintillations produced in a ZnS screen
to detect -particles.

Snum 36

Various scintillators are in current use such as NaI activated by an
impurity (usually thallium for detection of -particles), or some organic
material dissolved in a transparent plastic or liquid.

Snum 37

The scintillations are detected by a photomultiplier tube producing a
pulse of photo-electrons.

Snum 38

The size of the pulse - the pulse height - gives a measure of the energy
of the incident particle.

Snum 39

Semiconductor detectors depend on an incident particle or photon exciting
an electron from the valence band to the conduction band.

Snum 40

The resultant increase in conductivity - a conduction pulse - then
produces a signal which is processed electronically and which enables the
energy of the incident radiation to be measured.

Snum 41

In the field of very high energy physics, considerable use is made of
bubble chambers and wire chambers.

Snum 42

Appendix C: Sample Sentence Splitting

 222

The former follows on from the Wilson cloud chamber and consists
essentially of a large chamber, possibly several metres in diameter,
containing liquid (e.g. hydrogen, helium, propane,...) near its boiling
point.

Snum 43

The chamber is expanded as charged particles pass through it, leading to
the formation of bubbles, as a result of boiling, along the particle
tracks which can be stereo flash photographed.

Snum 44

The lengths of the tracks and their curvature in a magnetic field enable
particle lifetimes, masses and energies to be deduced.

Snum 45

Wire chambers consist of stacks of positively and negatively charged wire
grids in a low pressure gas.

Snum 46

An incident charged particle ionizes the gas and acceleration of the
resultant electrons near the anode wires leads to further ionization and
an electrical pulse.

Snum 47

The physical location of the pulse can be determined electronically so
that track measurements can be made.

Snum 48

Using an applied magnetic field to bend the tracks again enables
information to be obtained about the properties of the detected particle.

Snum 49

In the previous chapter some understanding of nuclear structure has been
achieved in terms of a nuclear model in which nucleons move around fairly
independently in a potential well.

Snum 50

To give some intuitive understanding of nuclear reaction processes we
stay with this description of the nucleus and follow a very illuminating
discussion given by Weisskopf (1957).

 223

Appendix D: LOB Tagset

Reproduced from LOB manual available at;

http://khnt.hit.uib.no/icame/manuals/lobman/LOBAPP4.HTM

Appendix 4: List of tags

Definitions are followed by references to sections in the manual where the tags are discussed. The
figures in the righthand column give the total frequency of the tags in the corpus. Ditto tags are
given within parantheses; the first word in the examples carries an ordinary tag. For more examples
of ditto-tagged sequences, see 7.2.

! exclamation mark 1.030

&FO formula 7.22 1.220

&FW foreign word 7.21 3.111

(left bracket: ([2.903

) right bracket)] 2.975

*’ begin quote: *’ *" 2.6 10.191

**’ end quote: **’ **" 2.6 9.976

*_ dash 7.24 3.930

, comma 7.24 54.548

. full stop 7.24 50.288

... ellipsis 665

: colon 7.24 1.937

; semicolon 7.24 2.514

? question mark 2.584

ABL pre-qualifier (quite, rather, such) 7.12 1.032

ABN pre-quantifier (all, half) 7.12 2.833

ABX pre-quantifier/double conjunction (both) 675

AP post-determiner (few, fewer, former, last, latter,
least, less, little, many, more, most, much, next,
only, other, own, same, several, very) 7.12

8.860

(AP" a few, a little 448)

AP$ other’s 21

APS others 272

APS$ others’ 2

Appendix D: LOB Tagset

 224

AT singular article (a, an, every) 7.12 25.906

ATI singular og plural article (the, no) 7.12 70.219

BE be 7.5 7.187

BED were 3.427

BEDZ was 10.685

BEG being 907

BEM am, ‘m 636

BEN been 3.116

BER are, ‘re 4.856

BEZ is, ‘s 12.165

CC coordinating conjunction (and, and/or, but, nor,
only, or, yet) 7.14 - 7.15

36.919

(CC" as well as 282)

CD cardinal (2, 3, etc; two, three, etc; hundred,
thousand, etc; dozen, zero) 7.17

12.956

CD$ cardinal + genitive 7

CD-
CD

hyphenated pair of cardinals 7.17 304

CD1 one, 1 7.17 3.364

CD1$ one’s 62

CD1S ones 105

CDS cardinal + plural (tens, millions, dozens) 263

CS subordinating conjunction (after, although, etc) 18.583

(CS" in that, so that, etc 850)

DO do 7.5 2.005

DOD did 1.174

DOZ does 618

DT singular determiner (another, each, that, this)
7.12

9.030

DT$ singular determiner + genitive (another’s) 1

DTI singular or plural determiner (any, enough,
some)

3.349

DTS plural determiner (these, those) 2.462

DTX determiner/double conjunction (either, neither)
7.12

376

EX existensial there 7.10 2.794

Appendix D: LOB Tagset

 225

HV have 7.5 4.998

HVD had, ‘d 5.499

HVG having 382

HVN had (past participle) 284

HVZ has, ‘s 2.916

IN preposition (about, above, etc) 7.13, 7.15 123.440

(IN" as to, in spite of, etc 1.216)

JJ adjective 7.3 - 7.4, 7.8 - 7.9, 7.11 63.877

(JJ" 25)

JJB attribute-only adjective (chief, entire, main etc)
7.8

3.578

(JJB" 6)

JJR comparative adjective 7.9, 7.11 1.960

(JJR" 1)

JJT superlative adjective 7.9, 7.11 1.040

(JJT" 1)

JNP adjective with word-initial capital (English,
German, etc)

3.137

MD modal auxiliary (‘ll, can, could, etc) 14.861

NC cited word 7.23 370

NN singular common noun 7.4, 7.6, 7.7 148.759

(NN" 20)

NN$ singular common noun + genitive 7.6 1.574

NNP singular common noun with word-initial capital
(Englishman, German, etc)

532

NNP$ singular common noun with word-initial capital
+ genitive

21

NNPS plural common noun with word-initial capital 782

NNPS$ plural common noun with word-initial capital +
genitive

7

NNS plural common noun 7.6, 7.7 50.838

(NNS" 2)

NNS$ plural common noun + genitive 488

NNU abbreviated unit of measurement unmarked for

Appendix D: LOB Tagset

 226

number (\0hr, \0lb, etc) 7.19 2.625

(NNU" per cent 386)

NNUS abbreviated plural unit of measurement (\0gns,
\0yds, etc)

52

NP singular proper noun 7.7 34.797

NP$ singular proper noun + genitive 2.479

NPL singular locative noun with wordinitial capital
(Abbey, Bridge, etc) 7.7

1.952

NPL$ singular locative noun with word-initial capital
+ genitive

15

NPLS plural locative noun with word-initial capital 102

NPLS$ plural locative noun with word-initial capital +
genitive

1

NPS plural proper noun 7.7 406

NPS$ plural proper noun + genitive 28

NPT singular titular noun with word-initial capital
(Archbishop, Captain, etc) 7.7

6.039

(NPT" 2)

NPT$ singular titular noun with word capital +
genitive

197

NPTS plural titular noun with word-initial capital 215

NPTS$ plural titular noun with word-initial capital +
genitive

4

NR singular adverbial noun (January, February,
etc; Sunday, Monday, etc; east, west, etc; today,
tomorrow, tonight, downtown, home) 7.10

2.916

NR$ singular adverbial noun + genitive 48

NRS plural adverbial noun 84

NRS$ plural adverbial noun + genitive 0

OD ordinal (1st, 2nd, etc; first, second, etc) 2.069

OD$ ordinal + genitive 0

PN nominal pronoun (anybody, anyone, anything;
everybody, everyone, everything; nobody, none,
nothing; somebody, someone, something; so)
7.12, 7.14

2.581

(PN" no one, some one 120)

PN$ nominal pronoun + genitive 10

Appendix D: LOB Tagset

 227

(PN$ 1)

PP$ possessive determiner (my, your, etc) 7.12 17.004

PP$$ possessive pronoun (mine, yours, etc) 204

PP1A personal pronoun, 1st pers sing nom (I) 7.600

PP1AS personal pronoun, 1st pers plur nom (we) 3.129

PP1O personal pronoun, 1st pers sing acc (me) 1.555

PP1OS personal pronoun, 1st pers plur acc (us, ‘s) 696

PP2 personal pronoun, 2nd pers (you, thou, thee, ye) 4.137

PP3 personal pronoun, 3rd pers sing nom+acc (it) 10.507

PP3A personal pronoun, 3rd pers sing nom (he, she) 13.160

PP3AS personal pronoun, 3rd pers plur nom (they) 3.685

PP3O personal pronoun, 3rd pers plur acc (him, her) 3.784

PP3OS personal pronoun, 3rd pers plur acc (them, ‘em) 1.715

PPL singular reflexive pronoun 1.257

PPLS plural reflexive pronoun, reciprocal pronoun 464

(PPLS" each other, one another 140)

QL qualifier (as, awfully, less, more, so, too very,
etc)

5.375

QLP post-qualifier (enough, indeed) 283

RB adverb 7.10 7.11 35.353

(RB" at last, in general, etc 1.781)

RB$ adverb + genitive (else’s) 6

RBR comparative adverb 7.10 - 7.11 1.375

RBT superlative adverb 7.10 - 7.11 103

RI adverb (homograph of preposition: below, near,
etc)

571

RN nominal adverb (here, now, there, then, etc) 4.332

RP adverbial particle (back, down, off, etc) 7.10,
7.13

8.700

TO infinitival to 7.13 15.842

(TO" in order to, so as to 268)

UH interjection 7.18 1.113

VB base form of verb (uninflected present tense,
imperative, infinitive) 7.5

32.679

(VB" 3)

Appendix D: LOB Tagset

 228

VBD past tense of verb 7.3 24.679

VBG present participle, gerund 7.4 12.979

VBN past participle 7.3 27.031

VBZ 3rd person singular of verb 6.918

WDT WH-determiner (what, whatever, whatsoever,
interrogative which, whichever, whichsoever)
7.16

2.118

(WDT" 1)

WDTR WH-determiner, relative (which) 7.16 4.405

WP WH-pronoun, interrogative, nom+acc (who,
whoever)

149

WP$ WH-pronoun, interrogative, gen (whose) 8

WP$R WH-pronoun, relative, gen (whose) 293

WPA WH-pronoun, nom (whosoever) 1

WPO WH-pronoun, interrogative, acc (whom,
whomsoever)

6

WPOR WH-pronoun, relative, acc (whom) 214

WPR WH-pronoun, relative, nom+acc (that, relative
who)

3.448

WRB WB-adverb (how, when, etc) 7.16 5.076

XNOT not, n’t 5.3 7.454

ZZ letter of the alphabet (e, pi, x, etc) 7.25 1.349

 229

Appendix E: Mapping between BNC and LOB tagsets

This is the mapping used for the evaluation of the tagger described in Chapter 8:.

Each of the tags in the BNC (C5) tagset (apart from POS (possessive marker) and UNC

(unclassified)) is mapped to one or more of the LOB tags. Where more than one LOB tag matches,

the tags are separated by | (pipe).

As the LOB tagset is more fine-grained than the BNC tagset, a single BNC tag can subsume a

‘family’ of LOB tags. For example, the DT0 (general determiner pronoun) BNC tag matches the

three post/pre-quantifier tags ABL, ABN and ABX in the LOB tagset. In cases such as this where

the first two letters are adequate to identify a match with the entire group, only these two letters are

shown in the table.

The descriptions, in the third column are those given for the BNC tags.

BNC Tag LOB Tag Description (BNC tag)

 AJ0 JJ|JNP Adjective (general or positive) (e.g. good, old,
beautiful)

 AJC JJR Comparative adjective (e.g. better, older)

 AJS JJT Superlative adjective (e.g. best, oldest)

 AT0 AT Article (e.g. the, a, an, no)

 AV0 RB|ABL|NR|RN|QL General adverb: an adverb not subclassified as AVP or
AVQ (see below) (e.g. often, well, longer (adv.),
furthest.

 AVP RP Adverb particle (e.g. up, off, out)

 AVQ WRB Wh-adverb (e.g. when, where, how, why, wherever)

 CJC CC Coordinating conjunction (e.g. and, or, but)

 CJS CS Subordinating conjunction (e.g. although, when)

 CJT CS The subordinating conjunction that

 CRD CD Cardinal number (e.g. one, 3, fifty-five, 3609)

 DPS PP Possessive determiner-pronoun (e.g. your, their, his)

 DT0 DT|AB|AP General determiner-pronoun: i.e. a determiner-pronoun
which is not a DTQ or an AT0

Appendix E: Mapping between BNC and LOB Tagsets

 230

BNC Tag LOB Tag Description (BNC tag)

 DTQ WD|WP Wh-determiner-pronoun (e.g. which, what, whose,
whichever)

 EX0 EX Existential there, i.e. there occurring in the there is ... or
there are ... construction

 ITJ UH Interjection or other isolate (e.g. oh, yes, mhm, wow)

 NN0 NN Common noun, neutral for number (e.g. aircraft, data,
committee)

 NN1 NN|NNP|NPT|NR Singular common noun (e.g. pencil, goose, time,
revelation)

 NN2 NNS|NNPS Plural common noun (e.g. pencils, geese, times,
revelations)

 NP0 NP Proper noun (e.g. London, Michael, Mars, IBM)

 ORD OD Ordinal numeral (e.g. first, sixth, 77th, last) .

 PNI PN Indefinite pronoun (e.g. none, everything, one [as
pronoun], nobody)

 PNP PP Personal pronoun (e.g. I, you, them, ours)

 PNQ WP Wh-pronoun (e.g. who, whoever, whom)

 PNX PP Reflexive pronoun (e.g. myself, yourself, itself,
ourselves)

 POS Not matched The possessive or genitive marker 's or '

 PRF IN The preposition of

 PRP IN Preposition (except for of) (e.g. about, at, in, on, on
behalf of, with)

 TO0 TO Infinitive marker to

 UNC Not matched Unclassified items which are not appropriately
considered as items of the English lexicon

 VBB BEM|BER The present tense forms of the verb BE, except for is, 's:
i.e. am, are, 'm, 're and be [subjunctive or imperative]

 VBD BED|BEDZ The past tense forms of the verb BE: was and were

 VBG BEG The -ing form of the verb BE: being

 VBI BE The infinitive form of the verb BE: be

 VBN BEN The past participle form of the verb BE: been

 VBZ BEZ The -s form of the verb BE: is, 's

 VDB DO The finite base form of the verb DO: do

 VDD DOD The past tense form of the verb DO: did

 VDG VBG The -ing form of the verb DO: doing

Appendix E: Mapping between BNC and LOB Tagsets

 231

BNC Tag LOB Tag Description (BNC tag)

 VDI DO The infinitive form of the verb DO: do

 VDN VBN The past participle form of the verb DO: done

 VDZ DOZ The -s form of the verb DO: does, 's

 VHB HV The finite base form of the verb HAVE: have, 've

 VHD HVD The past tense form of the verb HAVE: had, 'd

 VHG HVG The -ing form of the verb HAVE: having

 VHI HV The infinitive form of the verb HAVE: have

 VHN HVN The past participle form of the verb HAVE: had

 VHZ HVZ The -s form of the verb HAVE: has, 's

 VM0 MD Modal auxiliary verb (e.g. will, would, can, could, 'll, 'd)

 VVB VB The finite base form of lexical verbs (e.g. forget, send,
live, return) [Including the imperative and present
subjunctive]

 VVD VBD The past tense form of lexical verbs (e.g. forgot, sent,
lived, returned)

 VVG VBG The -ing form of lexical verbs (e.g. forgetting, sending,
living, returning)

 VVI VB The infinitive form of lexical verbs (e.g. forget, send,
live, return)

 VVN VBN The past participle form of lexical verbs (e.g. forgotten,
sent, lived, returned)

 VVZ VBZ The -s form of lexical verbs (e.g. forgets, sends, lives,
returns)

 XX0 XNOT The negative particle not or n't

 ZZ0 ZZ Alphabetical symbols (e.g. A, a, B, b, c, d)

 ZZ2 ZZ Plural alphabetical symbol (e.g. f's, p's)

 232

Appendix F: Comparative Tagger output

The table below gives a comparison of the tags output by my tagger and the tags assigned in the

LOB corpus for the first ten sentences of the LOBTH_A.TXT file (Section 8.3.4).

The Flag column contains ‘C’ where the tag assigned by my program matched the tag in the LOB

file and ‘E’ where there was a discrepancy.

 My Tag Lob Tag Flag

Snum 1

Stop NP0 VB E

electing VVG VBG C

life NN1 NN C

peers NN2 NNS C

Snum 2

By PRP IN C

Trevor NP0 NP C

Williams NP0 NP C

Snum 3

A AT0 AT C

move NN1 NN C

to TO0 TO C

stop VVI VB C

Mr NP0 NPT C

Gaitskell NP0 NP C

from PRP IN C

nominating VVG VBG C

any DT0 DTI C

more AV0 AP E

labour AJ0 NN E

life NN1 NN C

peers NN2 NNS C

is VBZ BEZ C

Appendix F: Comparative Tagger Output

 233

 My Tag Lob Tag Flag

to TO0 TO C

be VBI BE C

made VVN VBN C

at PRP IN C

a AT0 AT C

meeting NN1 NN C

of PRF IN C

labour AJ0 NN E

MPs NP0 NPTS C

tomorrow AV0 NR C

Snum 4

Mr NP0 NPT C

Michael NP0 NP C

Foot NP0 NP C

has VHZ HVZ C

put VVN VBN C

down AVP RP C

a AT0 AT C

resolution NN1 NN C

on PRP IN C

the AT0 ATI C

subject NN1 NN C

and CJC CC C

he PNP PP3A C

is VBZ BEZ C

to TO0 TO C

be VBI BE C

backed VVN VBN C

by PRP IN C

Mr NP0 NPT C

Will VM0 NP E

Griffiths NP0 NP C

Appendix F: Comparative Tagger Output

 234

 My Tag Lob Tag Flag

MP NN1 NPT C

for PRP IN C

Manchester NP0 NP C

Exchange NP0 NP C

Snum 5

Though CJS CS C

they PNP PP3AS C

may VM0 MD C

gather VVI VB C

some DT0 DTI C

left-wing AJ0 JJB C

support NN1 NN C

a AT0 AT C

large AJ0 JJ C

majority NN1 NN C

of PRF IN C

labour AJ0 NN E

MPs NP0 NPTS C

are VBB BER C

likely AJ0 JJ C

to TO0 TO C

turn VVI VB C

down AVP RP C

the AT0 ATI C

Foot-Griffiths NP0 NP C

resolution NN1 NN C

Snum 6

Abolish NP0 VB E

Lords NP0 NPTS C

Snum 7

Mr NP0 NPT C

Foot's NP0 NP$ C

Appendix F: Comparative Tagger Output

 235

 My Tag Lob Tag Flag

line NN1 NN C

will VM0 MD C

be VBI BE C

that CJT CS C

as CJS CS C

labour AJ0 NN E

MPs NP0 NPTS C

opposed VVD VBD C

the AT0 ATI C

government NN1 NN C

bill NN1 NN C

which DTQ WDTR C

brought VVD VBD C

life NN1 NN C

peers NN2 NNS C

into PRP IN C

existence NN1 NN C

they PNP PP3AS C

should VM0 MD C

not XX0 XNOT C

now AV0 RN C

put VVN VB E

forward AV0 RB C

nominees NN2 NNS C

Snum 8

He PNP PP3A C

believes VVZ VBZ C

that CJT CS C

the AT0 ATI C

House NP0 NPL C

of PRF IN C

Lords NP0 NPTS C

Appendix F: Comparative Tagger Output

 236

 My Tag Lob Tag Flag

should VM0 MD C

be VBI BE C

abolished VVN VBN C

and CJC CC C

that DT0 CS E

labour NN1 NN C

should VM0 MD C

not XX0 XNOT C

take VVI VB C

any DT0 DTI C

steps NN2 NNS C

which DTQ WDTR C

would VM0 MD C

appear VVI VB C

to PRP TO E

prop VVB VB C

up AVP RP C

an AT0 AT C

out-dated AJ0 JJ C

institution NN1 NN C

Snum 9

Since CJS IN E

labour AJ0 NN E

life NN1 NN C

peers NN2 NNS C

and CJC CC C

peeresses NN2 NNS C

have VHB HV C

been VBN BEN C

created VVN VBN C

Snum 10

Most AV0 AP E

Appendix F: Comparative Tagger Output

 237

 My Tag Lob Tag Flag

labour AJ0 NN E

sentiment NN1 NN C

would VM0 MD C

still AV0 RB C

favour VVI VB C

the AT0 ATI C

abolition NN1 NN C

of PRF IN C

the AT0 ATI C

House NP0 NPL C

of PRF IN C

Lords NP0 NPTS C

but CJC CC C

while CJS CS C

it PNP PP3 C

remains VVZ VBZ C

labour NN1 NN C

has VHZ HVZ C

to TO0 TO C

have VHI HV C

an AT0 AT C

adequate AJ0 JJ C

number NN1 NN C

of PRF IN C

members NN2 NNS C

 238

Appendix G: Results of tagger assessment

For each tag in the C5 tagset, shown in column 1, the table shows the total number of words that

were assigned that tag by my tagger (column 2), the number of those tags that matched the tags

assigned in the LOB file LOBTH_A.TXT (column 3), the number where there was a discrepancy

(column 4), the discrepancies as a .percentage of the total assignment of that tag (column 5) and the

discrepancies for that tag as a percentage of the total tags (column 6).

Tag
Total
tags Match

Non-
match

% Discrepancy
tag

% Discrepancy
non-matches

AJ0 5762 5115 647 11.23% 11.22%
AJC 163 127 36 22.09% 0.62%
AJS 106 104 2 1.89% 0.03%
AT0 8449 8385 64 0.76% 1.11%
AV0 3284 2878 406 12.36% 7.04%
AVP 628 583 45 7.17% 0.78%
AVQ 114 110 4 3.51% 0.07%
CJC 2719 2709 10 0.37% 0.17%
CJS 1073 559 514 47.90% 8.91%
CJT 732 630 102 13.93% 1.77%
CRD 796 750 46 5.78% 0.80%
DPS 1181 1181 0 0.00% 0.00%
DT0 1531 1440 91 5.94% 1.58%
DTQ 422 422 0 0.00% 0.00%
EX0 197 197 0 0.00% 0.00%
ITJ 11 9 2 18.18% 0.03%
NN0 221 217 4 1.81% 0.07%
NN1 13638 13206 432 3.17% 7.49%
NN2 4437 4368 69 1.56% 1.20%
NP0 9775 8591 1184 12.11% 20.53%
ORD 453 189 264 58.28% 4.58%
PNI 172 120 52 30.23% 0.90%
PNP 3050 3048 2 0.07% 0.03%
PNQ 259 259 0 0.00% 0.00%
PNX 59 59 0 0.00% 0.00%
PRF 2743 2721 22 0.80% 0.38%
PRP 8227 7794 433 5.26% 7.51%
TO0 1272 1260 12 0.94% 0.21%
VBB 373 366 7 1.88% 0.12%
VBD 1177 1177 0 0.00% 0.00%
VBG 81 81 0 0.00% 0.00%
VBI 603 603 0 0.00% 0.00%
VBN 263 263 0 0.00% 0.00%
VBZ 909 907 2 0.22% 0.03%
VDB 68 68 0 0.00% 0.00%

Appendix G: Results of Tagger Assessment

 239

Tag
Total
tags Match

Non-
match

% Discrepancy
tag

% Discrepancy
non-matches

VDD 70 70 0 0.00% 0.00%
VDG 14 14 0 0.00% 0.00%
VDI 39 39 0 0.00% 0.00%
VDN 29 28 1 3.45% 0.02%
VDZ 24 24 0 0.00% 0.00%
VHB 235 235 0 0.00% 0.00%
VHD 346 345 1 0.29% 0.02%
VHG 34 34 0 0.00% 0.00%
VHI 154 154 0 0.00% 0.00%
VHN 33 28 5 15.15% 0.09%
VHZ 377 377 0 0.00% 0.00%
VM0 1116 1114 2 0.18% 0.03%
VVB 689 593 96 13.93% 1.66%
VVD 2296 2123 173 7.53% 3.00%
VVG 1137 995 142 12.49% 2.46%
VVI 1707 1687 20 1.17% 0.35%
VVN 2324 2067 257 11.06% 4.46%
VVZ 621 565 56 9.02% 0.97%
XX0 487 487 0 0.00% 0.00%
ZZ0 571 9 562 98.42% 9.74%
ZZ2 1 0 1 100.00% 0.02%
Totals 87252 81484 5768 6.6%%

