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Abstract 

This thesis describes the development, implementation and testing of a program to detect and 

correct real-word spelling errors made by dyslexics. These errors − which occur when a user 

mistakenly types a correctly spelled word when another was intended − cannot be detected without 

the use of context and so are largely ignored by spellcheckers which rely on isolated-word 

dictionary look-up. 

The method used here to detect and correct real-word errors is to identify sets (often pairs) of words 

that are likely to be confused, such as loose and lose, and then, when encountering one of the words 

(say loose) in the text being checked, to determine whether the other one (lose) would be more 

appropriate in the context.  

The first stage of the program uses an extended part-of-speech tagger to consider words that differ 

in their parts-of-speech. This required, among other things, the substantial enhancement of an on-

line dictionary. Decisions for words that have the same parts-of-speech are left for the second stage 

which uses semantic associations derived from WordNet. Much previous research using the 

confusion set approach has been limited to a small number of 'commonly confused' words and has 

used artificial test data. In contrast, the work presented in this thesis uses several thousand sets of 

confusable words and a large corpus of actual errors produced by dyslexics. 
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Introduction 

Most word processors have a built-in spellchecker that highlights misspelled words in some way 

and offers the facility to correct these misspellings by selecting an alternative from a list.  To detect 

these misspellings in the first place, most spellcheckers take each word in a text in isolation and 

check it against the words stored in a dictionary.  If the word is found in this dictionary it is 

accepted as correct without regard to its context.  Although this approach is adequate for detecting 

the majority of typos, there are many errors that cannot be detected in this way.  These are referred 

to as real-word errors − correctly spelled English words that are not the word the user intended.  

Take, for example, the following extract from a rhyme that has appeared in many variations − 

almost every word is misspelled but since they are real-word errors, none is highlighted by the 

spellchecker. 

I halve a spelling chequer 

It cam with my pea see 

Eye now I’ve gut the spilling rite 

Its plane fore al too sea 

... 

Its latter prefect awl the weigh  

My chequer tolled mi sew.  

 

Dyslexia is estimated to affect about 10% of the population in some form, about 4% severely, 

according to research reported on by the British Dyslexia Association (BDA).  It is not just a 

problem with spelling, nor is it simply a difficulty with learning to read.  The BDA definition is: 

“Dyslexia is a combination of abilities and difficulties which affect the learning 

process in one or more of reading, spelling and writing.  Accompanying 

weaknesses may be identified in areas of speed of processing, short term memory, 
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organisation, sequencing, spoken language and motor skills.  There may be 

difficulties with auditory and / or visual perception.  It is particularly related to 

mastering and using written language, which may include alphabetic, numeric and 

musical notation.” 

(Tresman, 2006) 
 

Dyslexia cannot be ‘cured’, nor is it something that children ‘grow out of’.  It is a lifelong disability 

but there are strategies and aids that can help to mitigate the difficulties.  Among these aids is the 

computer spellchecker.   

Until my dyslexic daughter began to use a word processor, her written work was often illegible as 

well as being poorly spelled.  Word processing improved the legibility but spelling was still a 

problem; even after using the spellchecker a large amount of manual intervention was required to 

get it right.  Although non-word errors were detected, they were often not corrected; in some cases 

the spellchecker simply made no suggestions whereas at other times it produced a long list of 

words, none of which were the word intended.  This latter case often resulted in the introduction of 

real-word errors − for example, she was writing about a room that was uninhabitable (which, not 

surprisingly, she misspelled); the computer suggested, and she accepted, inedible.  In addition to 

these real-word errors that were introduced through the correction process, there were others that 

had occurred when her misspelling of a word resulted in another dictionary word such as (with the 

intended word in parentheses) fowling (following), mad (made) and quit (quite).  Errors such as 

these were simply ignored by the spellchecker.  It was this experience that led me to develop my 

interest in computer spellcheckers, in particular how they could be improved to meet the needs of 

dyslexic users.  Earlier research (Pedler, 1996, Pedler 2001a) showed that a large proportion of the 

errors that went uncorrected by commercial spellcheckers were real-word spelling errors.  This is 

the problem that I have addressed in this research. 
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Since the 1980’s, when my daughter was assessed, moves toward widening participation in 

education and a greater emphasis on accessibility and inclusivity have led to a wider acceptance of 

dyslexia as a disability – despite a recent report that at least one LEA still refuses to use the term 

dyslexia (Hill, 2005).  Improving facilities for disabled users often has the effect of making an 

improvement for all users (as demonstrated in work to make library signage more appropriate to the 

needs of dyslexics (Nancholas, 2005), for example).  Similarly, improvements in the handling of 

real-word errors are likely to benefit word-processor users in general. 

The focus of the research presented in this thesis is the engineering of a spelling checker/corrector 

to deal with real-word spelling errors in text written by dyslexics.  Therefore it does not cover the 

educational literature in this field.  The thesis addresses the problem in the context of previous 

research into the detection and correction of real-word spelling errors in text corpora and does not 

examine more general error detection/correction literature in computer science and its application to 

such tasks as optical character recognition or machine translation. 
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Chapter 1:  
Computer Spellcheckers and Dyslexic Misspellings 

Real-word spelling errors are errors that occur when a user mistakenly types a correctly spelled 

word when another was intended.  Errors of this type generally go unnoticed by most spellcheckers 

as they deal with words in isolation, accepting them as correct if they are found in the dictionary 

and flagging them as errors if they are not.  This approach would be sufficient to detect the non-

word error peice in “I’d like a peice of cake” but not the real-word error peace in “I’d like a peace 

of cake.”  To detect the latter, the spellchecker needs to make use of the surrounding context such 

as, in this case, to recognise that piece is more likely to occur than peace in the context of cake.  

Such real-word errors are a nuisance to everyone who uses a spellchecker but they present a 

particular problem for dyslexics who make more and worse errors than the average user (Mitton, 

1987) and also have poorer proof-reading skills.   

Kukich (1992), in a comprehensive survey of spellchecking techniques, claimed that "Developing 

context-based correction techniques has become the foremost challenge for ... error correction in 

text".  The fact that her paper remains the definitive survey is perhaps indicative of the small 

amount of progress that has been made in the last decade or so.  The research described in this 

thesis takes up this challenge.  It considers both syntactic and semantic approaches to the problem 

and assesses their performance when applied to real-word errors produced by dyslexics.  This 

chapter sets the problem in context.  It looks at the development of spellchecking technology from 

its origins in the 1960s and then examines the shortcomings of currently available commercial 

spellcheckers when run over samples of dyslexic text. 

1.1 Spellchecking techniques 
Word-processors are now widely used by the general population whose spelling abilities range over 

a continuum from excellent to poor.  For those at the lower end of this spectrum, many of whom 

may be dyslexic, the spellchecker has become an essential tool.  However, although user 
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requirements have evolved, the technology has done little to keep pace; today's spellcheckers still 

rely heavily on findings from research dating back to the 1960s. 

Before examining the ways in which these early techniques are integrated into current 

spellcheckers, it is useful to consider the spellchecking process:  The term 'computer spellchecker' is 

now widely taken to encompass both error detection and error correction although, strictly 

speaking, a checker is a program that detects errors which are then passed to a corrector that 

produces a list of suggestions.  For some applications it may be sufficient for the program to flag 

potential errors which can then be manually corrected by the user, but today we generally expect a 

spellchecker not only to tell us that we have made a mistake but also to suggest how we can correct 

it.  Spellcheckers that (attempt to) perform both tasks are incorporated into all widely used 

wordprocessors and today often built in to many other text entry programs such as email software.   

For non-word errors the detection phase initially appears to be a simple matter of looking up each 

word in a word-list or dictionary and flagging any that are not found as potential misspellings.  But 

this is not as straightforward as it seems at first. Its efficiency depends largely on the dictionary 

being used; if this includes too few words many correctly spelled but less common words will be 

questioned; if it contains too many words the real-word error problem will be exacerbated as 

misspellings of common words which happen to result in a rare word included in the computer's 

dictionary will go undetected.  Spellchecker dictionaries are discussed further, briefly in section 

 1.2.4 below and in more detail in Chapter 4.  Since most spellcheckers use isolated word look-up to 

detect errors, real-word errors are largely ignored as shown in the next section. 

After a potential error is spotted the spellchecker's next task is to produce a list of proposed 

corrections.  How should it go about this?  Intuitively we would expect the error to be similar in 

some way to the intended word and this is confirmed by early studies of, mostly, typing errors, 

which found that over 80% of misspellings contain just one error − a wrong, missing or extra letter 

or a single transposition (Damerau, 1964; Pollock & Zamora, 1984).  The method for correcting this 
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type of error (described in detail by Peterson, 1980) is straightforward to implement and has 

underpinned much subsequent development.   

Another useful early finding was that the first letter of a misspelling is correct in the majority of 

cases.  (Yannakoudakis & Fawthrop, 1983; Pollock & Zamora, 1984.)  Making this assumption 

greatly reduces the number of words that have to be considered as possible candidates for 

correction. 

These methods are the basic techniques used by early spellcheckers which were designed for 

specific applications, such as the correction of errors in scientific databases.  They were also 

adequate when word-processing moved into the office and spellcheckers began to be used to correct 

less restricted text.  It is more accurate to describe their purpose in this context as the correction of 

mistypings rather than misspellings as the majority of typos produced by a reasonably accurate 

speller are likely to be one of the simple error types introduced above.  Dyslexic misspellings are 

not so easy to categorise. Although they do generally bear at least some resemblance to the intended 

word, the exact relationship may sometimes be rather obscure as can be seen from some of the 

examples in the next section.   

1.2 Spellcheckers and dyslexic spelling errors 
To assess the performance of currently available commercial spellcheckers on ‘dyslexic’ text, I ran 

four spellcheckers1  over three samples of text chosen as representative of the types of spelling error 

made by dyslexics (Pedler, 2001a).  This section summarises the findings presented in that paper. 

1.2.1 Samples of dyslexic text 
The samples used for this initial research comprised a total of 3134 words including 636 spelling 

errors.  Some of these errors occurred more than once but as the spellcheckers dealt with them in 

the same way on each occasion they were only counted once.  Removing these duplicates left a base 

                                                      
1 Three wordprocessors - MS Word, Corel Word Perfect, Lotus WordPro - and a dedicated spellchecker 
aimed at dyslexics - TextHelp Read & Write. 
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total of 577 distinct errors.  This text formed the initial contribution to the dyslexic error corpus 

which is described in detail in Chapter 3. 

Here is a short passage from each of the samples:  

I think I did well becoser I got of to a good stare and I 

have almost finsder my booklet and I have done a fuwe 

peturs on the computer and now I am doing a couver.  My 

book is on submaren.  I have had to do a pituwer of how a 

submaren works.  I havent done alot of good work but I 

think I have done well. 

Sample 1. 

The cat working in the mill spys a moues feeding on corn.  

The cat scillfully creps up behind a sack and all of a suden 

his musirls are tens he spring and a little squick from the 

mouse I herd as the cats clors sunck deep into the mouse 

the cat quilly ete it and then cerled up on a sack to slip. 

Sample 2. 

There seams to be some confusetion.  Althrow he rembers 

the situartion, he is not clear on detailes.  With regard to 

deleteing parts, could you advice me of the excat nature of 

the promblem and I will investgate it imeaditly. 

Sample3. 

Sample 1 is a collection of word-processed homework (saved before it was spellchecked) produced 

by my dyslexic daughter when she was in her third year of secondary school.  Roger Mitton 

supplied me with the other two samples which he used for a comparative test of spellcheckers 

described in Mitton (1996).  Sample 2 is made up of short passages of creative writing produced by 

secondary school children of low academic ability in the 1960s.  These were originally taken from 

English for the Rejected (Holbrook, 1964).  Dyslexia was not widely recognised at this time but it is 

likely that many of these poorer spellers would be classed as dyslexic given today's assessment 
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procedures.  Sample 3 consists of a number of misspellings from office documents (all produced by 

the same person). 

1.2.2 Types of error 
A simple error (Damerau, 1964) differs from the intended word by only a single letter.  The four 

possibilities can be seen in the passages above: substitution – cerled (curled), insertion - couver 

(cover), omission - investgate (investigate) and transposition - excat (exact).  Damerau found 80% 

of misspellings in the samples used for his research fell into one of these four simple error 

categories. 

The errors in my initial samples present a different picture.  Only 53% are simple errors.  More than 

a third (39%) differ in more than one letter; I refer to these as multi-errors.  Some errors, such as 

submaren (submarine), closely resemble the intended word while others, such as pituwer (picture), 

are not so obvious.  The remaining 8% are word boundary infractions (run-ons and split words), 

which are special cases of omission and insertion errors.  A run-on is the result of omitting a space, 

such as alot (a lot).  A split word occurs when a space is inserted in the middle of a word, such as 

sub marine.  These cause problems for a spellchecker because it treats spaces as word delimiters so 

a run-on will be treated as one word while a split word will be treated as two.   

Misspellings that result in another dictionary word, real-word errors, are an additional complication.  

These may often be simple errors, such as stare (start) and seams (seems) from the examples above, 

but because the spellchecker will find them in its dictionary they will not be flagged as errors.  

Some real-word multi-errors in the samples, such as no (know) and witch (which), are homophones 

and could be the result of confusion over the correct spelling; others, like fowling (following) or 

petal (petrol), seem more like an unlucky coincidence.  Some split words in the samples (like sub 

marine) resulted in two valid words but all the run-ons produced non-words.   

The first letter was correct for 95% of the errors in my samples.  This confirms the findings of 

Yannakoudakis & Fawthrop (1983) and Pollock & Zamora (1984) mentioned above.  Several of the 
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misspellings where the first letter was incorrect show confusion over vowel sounds e.g.  ete (ate) 

and silent letters, e.g.  no (know).   

The proportion of errors falling into each type in these samples is shown in Table  1.1 

Total words 3134

Total errors 636

Distinct errors 577

 

Simple errors 307 53%

Multi errors 223 39%

Word boundary errors 47 8%

 577 100%

 

Real-word errors 100 17%

Non-word errors 477 83%

 577 100%

 

First letter errors 30 5%

Table  1.1: Proportions of types of error in the initial samples  

1.2.3 Spellchecker Performance 
The error detection stage is the first point at which a spellchecker can fail.  Spellcheckers, as 

discussed above, generally detect errors by looking the words up in a dictionary; words that are 

found in the dictionary are assumed to be correct and not flagged as errors with the result that 

misspellings that turn into another word are ignored.  Words that are not found in the dictionary are 

assumed to be errors and passed to the checking process.  The spellchecker can fail at this next 

point by not including the intended word in its list of suggestions.  This means that there are three 

possible outcomes when a spellchecker is run over text containing errors.  I have classed these as: 

• Corrected − the error was flagged and the intended word was in the spellchecker’s list. 

• Detected − the error was flagged but the intended word was not in the list of suggestions. 
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• Not detected − the error was not found by the spellchecker. 

Table  1.2 summarises the performance of the spellcheckers, when run over the initial samples. Each 

column of the table shows the proportion of errors falling into each of the categories above (as a 

range from the worst to the best spellchecker). 

Column a shows that overall only about half of the errors were corrected and just over a quarter 

were detected (meaning that the user was at least alerted to the potential error) but the remainder 

(around 20%) went undetected.  This correction rate falls approximately mid-way between the 

range of correction rates (30 - 73%) for spellcheckers (many specially designed for dyslexics) tested 

in work carried out at the University of Edinburgh (Nisbet et al. (1999)). 

 a b c d e f 

 All errors Simple 
errors 

Multi-
errors 

Run-ons Split 
words 

First letter 
errors 

Corrected 49 - 55% 73 - 79% 27 - 37% 0 - 58% 0% 27 - 40%

Detected 24 - 28% 2 - 4% 46 - 57% 42 - 100% 39 - 50% 27 - 37%

Not detected 19 - 20% 19 - 23% 17 - 19% 0% 50 - 61% 33 - 37%

Total errors 
(100%) 

577 307 223 19 28 30

Table  1.2: Spellchecker performance on  initial samples  

Simple errors 

In contrast to Damerau’s finding (mentioned above) that 80% of the errors in his corpus were 

simple errors – a single insertion, omission, substitution or transposition - only slightly over half of 

the errors in my samples were of this type.  Unsurprisingly, since most spellcheckers rely heavily on 

Damerau’s findings, all the spellcheckers I tested performed best for errors of this type with a 

correction rate between 73% and 79% (column b).  In general, with simple errors, if an error was 

detected, it was corrected; the failures were almost all in the ‘not detected’ category.  As might be 

expected, the majority of these were real-word errors such as: of (off), stare (start), tens (tense) and 

seams (seems.) - all words that we would expect to find in the dictionary. 
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Multi-errors 

Almost 40% of the errors in my samples contained more than one wrong letter.  All the 

spellcheckers performed poorly for these multi-errors, correcting only around a quarter to a third of 

them.  The main difficulty was not in detecting the errors in the first place but in correcting them 

once they had been detected.  Around half were detected but not corrected but although there were 

differences between the spellcheckers, a large proportion of these multi-errors were not corrected by 

any of them.  Some, such as vrnegest (varnished), might reasonably be considered uncorrectable.  

Others look correctable - such as futcher (future) - but none of the spellcheckers managed to correct 

them.  In some cases, such as poticular (particular) and unforchanely (unfortunately), they made no 

suggestions at all.  Although it seems surprising that they did not attempt corrections for errors such 

as these, this is perhaps preferable to producing a long list that does not contain the correct word.   

Often the errors were phonetically similar to the intended word and a homophone of the correct 

word was suggested.  For example, two of the spellcheckers managed to suggest mussels as a 

correction for musirls but failed to come up with the intended word – muscles.  All the 

spellcheckers suggested problem as a correction for probley (probably.) This is a similar error to 

rembers (remembers.) Both errors show a common dyslexic tendency to omit repeated syllables in 

the middle of a word. 

Word boundary errors 

The small proportion of word boundary infractions (run-ons and split words) caused a lot of 

difficulty for the spellcheckers.   

Word did not manage to correct any of the run-ons although the other spellcheckers managed 42 - 

58% of them.  In just over half of the run-ons the only error was an omitted space (e.g.  afew, 

allthat).  TextHelp (the spellchecker designed specifically for dyslexics) corrected all of these but at 

the expense of making some very odd suggestions for some of the other errors (such as suggesting 
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cu ms as a correction for cums (comes)).  Word stores a large number of run-ons in its AutoCorrect 

feature, which is separate from the spellchecker and intended merely to correct common typos.  If 

you type alot, and AutoCorrect is switched on, it will automatically and silently be replaced by a 

lot.  This might explain the spellchecker’s failure to correct any of the run-ons in the samples; the 

designers perhaps decided that AutoCorrect would already have dealt with these and so the 

spellchecker need not attempt any of them. 

None of the split words was corrected by any of the spellcheckers.  Those where both halves 

resulted in a dictionary word were not flagged as errors, as might be expected.  In some cases the 

only error was the inserted space (e.g.  sub marine, some one.) In others there were additional 

changes, e.g.  throw out (throughout), where ever (wherever).  Word corrected the latter but only in 

a roundabout way; its grammar checker flagged it as a compound word and suggested correcting it 

to whereever.  Accepting this replacement resulted in the word being flagged by the spellchecker 

which then gave wherever as its first suggestion.   

The rest of the split words resulted in a non-word for one or both parts, e.g. in adequacis 

(inadequacies), rey mebber (remember.) The non-word parts were flagged (and in some cases 

‘corrected’ e.g. re was suggested for rey and member for mebber) but, as a single-word correction 

was not produced, I classed these as not corrected. 

First letter errors 

About a quarter of the misspellings with an incorrect first letter were capitalisation errors; some 

were otherwise correctly spelled, e.g.  edith (Edith), others had additional errors, e.g.  engleish 

(English.) Most of these were corrected by the spellcheckers.  One, icoud (I could) was also a run-

on and not corrected by any.   
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A similar number were real-word errors and were not flagged by the spellcheckers, e.g.  are (our), 

bark (park), every (very.).  Word's grammar checker, which does make some attempt to correct real-

word errors (as discussed further below), successfully corrected new (knew). 

Real-word errors 

Undetected errors made up 19%-20% of all the errors (Table  1.2) and most of these were real-word 

errors.  Even though real-word errors contribute only a minority of errors, they are a problem which 

needs addressing if spellcheckers are to achieve a reasonable correction rate.  In some cases the 

proportion could be even higher than in my samples.  Mitton (1996) estimates that real-word errors 

account for about a quarter to a third of all spelling errors, a high proportion of them occurring on 

function words (words like the and of). 

Word’s grammar checker provides some facility for detection and correction of real-word errors.  

One of its features is a list of 90 commonly confused words (mainly homophone pairs) which are 

questioned when they seem to be used in the wrong context.  Although it successfully corrected new 

(knew), as mentioned above, it was not always successful.  For example, it did not question the use 

of advice in error for advise in the phrase “... could you advice me ...” although advice/advise are 

included in its list of confusable words.  It can also produce some strange suggestions as illustrated 

by the phrase “...dumps witch are wrong.” Witch/which is not included in the commonly confused 

words list but, using another rule, the grammar checker suggests that this is a subject/verb 

disagreement and should be corrected to witch is or witches are!  

1.2.4 Dictionaries and false alarms 
Rare words or specialist terms are a frequent cause of false alarms - correctly spelled words that are 

flagged as errors.  An example from my samples (flagged by all the spellcheckers) is in this 

passage: 
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When you go scrumping and when you get caught it is 

worth taking the chance of getting some gascoyne's scarlet 

apples. 

Although scrumping is probably familiar to most native English speakers, it should be classed as a 

rare or obscure word as it would never be used other than in this context.  It is not included in the 

Shorter Oxford Dictionary (nor, incidentally, in the Oxford Dictionary of Modern Slang.)  

Supplementary dictionaries are often supplied for applications, such as medicine, that use a lot of 

them.  Spellchecker dictionaries are considered in detail in Chapter 4. 

1.2.5 Suggestion lists 
In the preceding sections a word has been counted as corrected if the target word was found 

somewhere in the list of suggestions offered for correction, but long lists of often obscure words 

may not be helpful to a poor speller, even if the required word is among them. 

How many suggestions should a spellchecker include in its list? Five or six would seem to be an 

acceptable maximum.  All the spellcheckers produced lists longer than this.  Word Perfect had the 

longest.  It made 23 suggestions for the correction of moter (motor) (mother was the first and the 

correct word was eighth) and frequently gave 22 suggestions. 

Do long lists improve the chances of the correct word being suggested? My survey suggests not.  

The spellcheckers that generally had shorter lists achieved the best overall correction rates.  If they 

had been restricted to their first suggestion the correction rate would have dropped to between 27% 

and 41%.  But if they were restricted to five, only between 1% and 4% of the corrections would be 

missed.  This suggests that they could usefully reduce the number of words in their suggestion lists.  

How does a spellchecker decide which word to offer as its first suggestion? Ideally this should be 

its ‘best guess’ given the context and the syntax.  In practice, with the spellcheckers tested, little 

consideration seems to be given to the order in which the words are presented.  Often the correct 

word appeared second in the list after an obscure first suggestion. 
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1.3 Conclusion 
The spellcheckers' performance in the survey discussed in this chapter demonstrates their reliance 

on the early techniques described in Section  1.1.  The correct word is almost always included in the 

suggestion list for simple, non-word errors (albeit sometimes buried in a long list).  These are the 

types of error that the simple error algorithm (Damerau, 1964) is designed to deal with so, despite 

its age, it still seems to be doing its job.  It is not, however, designed to deal with multi-errors: 

around half of those that the spellcheckers found were not corrected.  In cases such as the 

suggestion to correct probley (probably) to problem, the bias towards simple errors is clear.  Work 

needs to be done to develop techniques to deal with more complex spelling errors. 

Although context is not required to detect non-word errors, it could be useful at the correction stage 

in improving the spellcheckers' suggestion lists. 

The survey confirms findings by Mitton (1987) that real-word errors are a significant problem.  The 

research described in this thesis is concerned with investigating methods to detect and correct them.  

Unlike non-word errors, which can be detected by dictionary look-up, real-word error detection 

requires use of context.  The next chapter surveys approaches which have been taken to this 

problem. 

Although the samples used in my survey were sufficient to give a flavour of the types of errors 

produced by dyslexics and the shortcomings of current spellchecking technology in dealing with 

them, a larger corpus was required before a comprehensive analysis could be made.  The 

compilation of such a corpus is described in Chapter 3. 

This chapter has also introduced questions about the type of dictionary a spellchecker needs.  

Chapter 4 discusses this in more detail and describes the update of an existing electronic dictionary 

to make it more suitable for the purpose.   
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Chapter 2: Real-word Error Detection and Correction 

The previous chapter showed that the majority of undetected errors are real-word errors where the 

word produced is in the computer’s dictionary but is not the word the user intended.  This type of 

error is largely ignored by most computer spellcheckers as they rely on isolated word look-up to 

detect misspellings.  The detection of real-word errors, on the other hand, requires the spellchecker 

to make some use of the surrounding context.  This chapter examines previous experimental 

approaches to the problem and the way in which they have informed the direction taken in this 

research. 

2.1 A hierarchy of errors 
Kukich (1992) proposes a five-level hierarchy of errors, each of increasing difficulty for a computer 

spellchecker.  At the first level are lexical errors.  These are the non-word errors that are by and 

large detected and at least to some extent corrected by most current spellcheckers.  Although there 

are improvements to be made, this type of error is not dealt with further in this research. 

Next come syntactic errors − errors that result in ungrammatical text.  Some of these are apparent 

from the immediate context such as, "could you advice (advise) me ..." whereas others, such as 

"The only weakness (weaknesses) that I think I had were [x and y]..." cannot be detected without 

using a wider context window.  A spellchecker can make use of syntactic information such as that 

produced by part-of-speech taggers or parsers to detect errors of this type. 

Semantic errors − the next level in the hierarchy − cannot be detected by a syntax-based 

spellchecker as they do not give rise to a syntactic anomaly.  However, as the following example 

(taken from my error corpus) shows, the error word often appears incongruous with the surrounding 

context. 

The cat ... curled up on a sack to slip (sleep). 
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To correct this type of error a spellchecker would need some knowledge of word-association − that 

curling up is more likely to be associated with sleeping than slipping, in this case. 

These syntactic and semantic errors are the types of real-word spelling error I am aiming to correct 

in this research.  The final two levels in Kukich's hierarchy − "discourse structure" errors and 

"pragmatic" errors − although they are mistakes in the text − cannot be classed as spelling errors. 

Discourse structure errors give rise to ambiguity in the text.  For example, "There were four types of 

fruit in the salad: oranges, apples and bananas."  There is clearly an error somewhere here − we are 

led to expect a list of four items but are only given three − but what is the mistake? Is it the number 

(four produced when three was intended) or is there something missing from the list − strawberries, 

for example? However, although this is difficult to correct, a computer might be able to make some 

attempt to detect this type of error. 

Pragmatic errors, the top level of the hierarchy, represent an error of communication and are not 

detectable without wider knowledge than that contained in the text.  For example, if I gave 

directions to my office as being at the end of the corridor on the left (when it is actually on the 

right) unless the reader knew where my office was they would not recognise the error.   

2.2 Syntax-based approaches to error detection 
Applications such as part-of-speech taggers or parsers, which are an essential pre-processing stage 

for many other natural language tasks, often use statistical measures to assign a likelihood to a 

particular part of speech or grammatical construct in a text.  The intuition when such methods are 

applied to spellchecking is that if there is a low probability for all possible syntactic interpretations 

of a particular tag sequence or sentence construction this may be indicative of an error.  Although 

these syntax-based methods offer the possibility to detect errors, the correction process needs to be 

implemented separately.  However, detecting real-word errors presents a greater challenge to a 

computer spellchecker than their subsequent correction.  Methods for the correction of non-word 
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errors can be applied to real-word errors once they have been detected and, indeed, are likely to be 

enhanced by the use of the additional syntactic information available from the detection stage.   

2.2.1 Error detection using part-of-speech tagging 
The CLAWS part-of-speech tagger, developed at Lancaster in the 1980s and subsequently used for 

the tagging of the hundred-million word British National Corpus − BNC − (Burnard, 2000), uses 

bigram part-of-speech tag probabilities to assign the most likely tag in cases where a word has more 

than one possible part-of-speech (Garside, 1987; Marshall, 1987).  Atwell and Elliott (1987) 

developed an extended version of this tagger, designed to detect real-word spelling errors.   

Based on the observation that ‘unusual’ tag sequences often occurred in the presence of an error, 

they developed a series of techniques, of decreasing computational complexity, to detect unusual 

tag pairs.  The first of these drew on the findings that the large majority of spelling errors result 

from one of the four simple error types (Damerau, 1964) introduced in the previous chapter and the 

application of these rules to the creation of a suggestion list for non-word error correctors (Peterson, 

1980; Yannakoudakis & Fawthrop, 1983).  To adapt these rules to correct real-word errors, they 

applied these single-letter transformations to each word in their text at run-time to generate a 

‘cohort’ of similar words.  Each word in the cohort was scored by combining the tag probabilities 

output by CLAWS with a number of other factors: preference for the word that appeared in the text 

over its alternative cohort members, a high weighting for commonly used words and a low 

weighting for rare ones, collocational and domain preference.  The cohort member achieving the 

highest score was assumed to be the intended word and, if it differed from the word that had 

appeared in the text, it was proposed as a correction. 

They rejected this approach as impractical to implement for realistic use at the time.  The large 

number of dictionary lookups required to generate the cohorts and the subsequent evaluation of a 

complex likelihood function proved too computationally expensive, and existing corpora (such as 

the million-word LOB (Johansson et al., 1986) did not provide sufficient data for accurate measures 
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of collocation and domain preferences.  However, faster processors, increased memory and disk 

capacity and the availability of larger corpora subsequently overcame many of these limitations and 

several aspects of this method have been incorporated into later research. 

The first technique required the program to generate a cohort for each word in the text at run-time.  

The number of dictionary lookups associated with this could be reduced by storing the cohorts with 

each dictionary entry.  To avoid the large increase in dictionary size that this would entail, their next 

approach stored just the part-of-speech tags rather than the actual words.  Each word in their 

lexicon, in addition to its own set of tags was assigned a set of ‘error’ tags - tags that differed from 

its own tags but belonged to words that might possibly appear in error for it.  Using this method, 

cohorts only needed to be generated if one of these error tags achieved a higher score than that of 

the word's own tags.  They were able to test this on a limited sample of artificial error data using a 

small prototype lexicon but again concluded that it could not be implemented in a realistic way 

within the limitations of the existing technology; the large number of alternative tag combinations 

to consider was still too computationally expensive. 

Their final technique used just the likelihoods for the word's own tags.  If any of these fell below a 

predefined threshold (they experimented with different levels for this) the program flagged the word 

as a potential error.  Although this was found to be less accurate than the error tag method − without 

the error tags, the program sometimes found a plausible tag sequence by mistagging the word 

following the error − it had the advantage of being able to be to run over a reasonable sized sample 

of text.  In contrast to much of the later research into real-word error checking that used artificially 

generated errors, Atwell and Elliott compiled a 13,500 word corpus containing just over 500 errors 

as test data for their program.  Their results showed that this method was capable of detecting a 

useful proportion of the errors and suggested that its performance might be further improved once a 

practical way to incorporate other factors, such as those in their initial proposal, could be developed.  
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Stephen Elliott kindly gave me a copy of this Lancaster error corpus and I discuss it further in 

relation to my own research in Chapter 10. 

2.2.2 Error detection using parsing 
Atwell and Elliott noted that their tag-bigram based method was only able to detect syntactic errors 

that were recognisable within a narrow context.  Errors that did not meet these criteria were 

removed from the corpus and stored in a separate 'hard' file.  In some cases these were errors that 

had the same part-of-speech as the target and so would not be detectable by syntactic means, such 

as: 

...a pope (pipe) cleaner can be used when necessary. 

In other cases although they were syntactic errors they could not be detected without a wider 

context, such as: 

...it was unfortunate that a garden party at the home of our 

chairman and his wife has (had) to be cancelled due to... 

Detection of errors of this second type would only be possible using a more detailed syntactic 

analysis such as that output by a parser. 

The CRITIQUE system (Richardson, 1985), originally known as EPISTLE (Heidorn et al. 1982), 

was a comprehensive grammar and style checking system, based on a natural language parser, 

developed at IBM during the 1980's.  Its grammar checker was designed to alert the user to such 

problems as subject-verb disagreement and use of incorrect forms of verbs and pronouns.  When 

run over 350 test sentences, some of which contained errors of this type, the program was found to 

provide "correct or useful information for 84% of the sentences in the sample".  Although this 

experiment was not aimed specifically at real-word error detection it demonstrates that the program 

had some facility to detect this type of error.  However, this approach to real-word error detection 

does not appear to have been developed further.   
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2.3 Using confusion sets to detect and correct errors 
The main drawback of a purely syntactic approach to the real-word error problem is that it is limited 

to errors that cause a syntactic anomaly in the text and so cannot detect errors such as the pope/pipe 

example from Atwell and Elliott's corpus above.  

An alternative method, which can be used both to detect and to correct errors and is appropriate for 

both syntactic and semantic errors, is that of confusion sets.  A spellchecker using this approach 

stores predefined sets of words that are considered to be confusable, such as {their, there, they're}.  

Each time it encounters one of the words in the set it uses rules to decide whether one of the other 

members of the set would be more appropriate in the context.  The rules can make use of any aspect 

of the text, syntactic or semantic, or any information about the language, such as word frequency.  

A key question is how the sets of confusable words should be defined.   

2.3.1 Simple error correction using word trigrams 
One method of creating confusion sets, as used by Mays et al. (1991), is to group together words 

that differ from each other by a single letter (insertion, omission, substitution or transposition) − this 

is the method used by Atwell and Elliott (1987) to generate their 'cohorts', described above.  The 

main difference between Atwell and Elliott's cohorts and Mays et al.'s confusion sets is that the 

latter were created in advance rather than dynamically at run time. 

Mays et al. created confusion sets of this type for each word in their 20,000 word vocabulary.  The 

sets varied in size − short words are likely to generate more confusables − up to a maximum of 30 

words.  To capture semantic as well as syntactic context they used word trigram probabilities − the 

conditional probability of a word occurring given the two preceding words − derived from a large 

body of text. 

To simulate error correction, they took 100 sentences of correctly spelled text (containing only 

words in their vocabulary) and from these generated just over eight thousand misspelled sentences 

by successively replacing each word with each member of its associated confusion set.  Each of 
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these misspelled sentences contained just one error.  So, using their example, the sentence 

beginning “I submit that...” would be transformed to “a submit that...”, “I summit that...”, among 

other things, but not “a summit that...”. 

They ran their program over these test sentences and used the stored probabilities to score each 

sentence and each of its single error alternatives.  For the correctly spelled sentences the program 

could make one of two decisions: accept the sentence as correct or suggest changing it to some 

other sentence (false alarm).  For the error sentences there were three alternatives: flag the sentence 

as incorrect and propose the correct sentence as an alternative (correct the error), flag the sentence 

as incorrect but propose some other incorrect sentence as an alternative (detect but not correct the 

error) or accept the sentence as correct (ignore the error).  The words actually appearing in the 

sentence were given a higher proportion of the overall probability than their alternative confusion 

set members to represent the expectation that words are more likely to appear correctly spelled than 

they are to be misspelled.  By varying the weighting given to the word seen in the text they were 

able to detect 76% of the errors and correct 73% at the expense of just one false alarm and were still 

able to detect 63% and correct 61% while reducing the false alarms to zero. 

This suggests that the method of using word trigrams is a potentially useful approach to detecting 

and correcting real-word spelling errors.  However, there are several considerations to be borne in 

mind: the scalability of the approach, the appropriateness of the confusion sets and the relationship 

between artificially generated errors and errors that are made by real people. 

The number of word trigrams required, even for a 20,000 word vocabulary is enormous − almost 

eight trillion; assuming that all words in the trigram are distinct this is calculated as 20,000 * 19,999 

* 19,998 = 7.9988E+12.  For a larger vocabulary − the 72,000 words in the dictionary I am using 

for this research, for example − the number of trigrams becomes unmanageable.  Sparse data is also 

a problem; even in a large body of text many acceptable combinations of words will not be seen and 

so will be assigned smoothed rather than actual probabilities which are likely to reduce the 
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program's accuracy.  This method would thus seem best suited to specific, high frequency 

collocations but not practical for all word combinations. 

Simple errors, involving the single-letter transformations used to create the confusion sets for this 

experiment, have been reported to account for 80% of all errors (Damerau, 1964; Damerau and 

Mays, 1989).  However, subsequent research by Mitton (1987), confirmed by my dyslexic error 

corpus, suggested that the proportion of this type of error in text produced by poor spellers is lower 

than this; simple-error confusion sets appear to be less appropriate for the type of errors I am aiming 

to correct.   

In the test data used for Mays et al.’s experiment, there was a maximum of one error in each 

sentence and in each case the intended word was a member of its confusion set.  This will not 

always be the case with real text; users may make more than one error in a sentence, produce 

misspellings not in our confusion sets and so on.   

However, the ability of confusion sets to correct as well as detect errors has made them attractive to 

many subsequent researchers. 

2.3.2 Machine learning techniques 
Several machine learning methods that have proved successful for other natural language 

processing tasks − such as part-of-speech tagging − have been applied to context sensitive spelling 

correction.  Here the problem is regarded as a lexical disambiguation task and confusion sets are 

used to model the ambiguity between words.  Given an occurrence of one of its confusion set 

members, the spellchecker's job is to predict which member of that confusion set is the most 

appropriate in the context. 

Golding (1995) compared the performance of decision lists and Bayesian classifiers.  The latter was 

found to give better performance and was then improved further by combining it with a trigram 

part-of-speech method (Golding and Schabes, 1996).  Following this Golding and Roth applied a 

Winnow multiplicative weight-updating algorithm to the same problem with a considerable 
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improvement in accuracy (Golding and Roth, 1996; Golding and Roth, 1999).  This led to the 

development of the SNoW (Sparse Network of Winnows) architecture.  Carlson et al. (2001) report 

achieving a high level of accuracy when applying this method to 256 confusion sets.  In contrast to 

these statistical techniques, Mangu and Brill's (1997) transformation-based learning approach used 

far fewer parameters although it achieved comparable performance. 

Apart from the work by Carlson and Roth (2001), all this research used a small collection of around 

18 confusion sets largely taken from a list of commonly confused words in the Random House 

Dictionary (Flexner, 1983).  There are some slight differences between the sets reported on in the 

different pieces of work but the 'core' sets remain the same.  With the exception of {their, there, 

they're} (which should perhaps be regarded as the classic confusion set) and {cite, sight, site} these 

sets are all pairs of words.  They include homophones, such as {peace, piece}, words whose usage 

is often confused, such as {accept, except} and potential typos, such as {begin, being}.   

A notable feature of these confusion sets is that they are symmetric; each word in a set is considered 

to be confusable with every other word in that set and there is no overlap between the sets − each 

confusable word belongs to just one set.  This is in contrast to the sets generated by Mays et al. 

where, although each member of the confusion set is considered confusable with the headword, the 

members of the set are not necessarily considered to be confusable with each other and a word may 

appear as a member of several different sets.  This symmetry plays an important part in both the 

training and testing phases of these machine-learning methods as the sets are both trained and tested 

as a unit.   

During the training phase the program uses a large body of correctly spelled text to learn a set of 

features − such as patterns of words or part-of-speech tags − that surround the words in its 

confusion sets.  An occurrence of a particular feature in the vicinity of one set member is taken as a 

positive example for that member and a negative example for the other members of the set.  The 

spellchecker uses these stored features to choose between the confusion set members.  At run-time, 
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any occurrence of a confusion set member in the text is regarded as a 'place marker' for a slot that 

could be filled with any member of its confusion set.  The spellchecker then scores each confusable 

based on how well the features in the surrounding text fit with the features that were associated with 

it during the training phase.  The one with the highest score is assumed to be the intended word and, 

if it differs from the word that originally appeared in the text, a correction can be proposed. 

If the program is deciding simply whether word x or word y is more likely to fill a particular slot in 

the text, the program will make the same decision whether the word currently filling the slot is the 

intended word or an error.  In this case there will be no difference in the program's decision when 

the program is tested on correct text to that made when it is tested on text containing (artificial) 

errors.  In other words, if an error is generated by replacing a confusable that is correctly used (and 

accepted as such by the program) by one of the alternatives in its confusion set, the program must 

propose the correct word as a replacement.  Much of the work referred to above reports results 

obtained from running the program over correctly spelled text with the assumption that this also 

indicates its potential performance when used with error data.  This performance is measured as 

prediction accuracy − the proportion of correct decisions out of all decisions made for a confusion 

set.  Many of the programs achieve an accuracy of over 90% while highly developed applications 

such as SNoW achieve over 95% on average (Carlson et al., 2001). 

Golding and Schabes (1996) compared the performance of their Tribayes program with Microsoft 

Word's grammar checker.  For this they used two versions of their text − correct and 'corrupted'.  

The corrupted text was produced by replacing each word in a confusion set in turn with each other 

word in its confusion set.  For the correct text they measured the number of times each program 

accepted the word and for the corrupted text how often each program proposed the intended word as 

a correction.  They noted that Tribayes sometimes expressed very little preference for any member 

of a confusion set as the scores were almost identical.  Since it was set to select the word achieving 

the highest score, no matter how small the margin between the score for the word appearing in the 
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text and the scores for its alternatives, this, on occasion, caused it to propose false corrections when 

run on the correct version of their text.  Word, on the other hand, is programmed to suppress its 

weaker suggestions so it raised fewer false alarms.  In order to compare more fairly between the two 

programs, they introduced a confidence threshold; Tribayes was set to propose a correction only if 

the ratio of the probability of the suggested word to the probability of the word that had appeared in 

the text was above this threshold.  Although this had the desired effect of reducing the false alarms 

in the correct text it also, obviously, reduced the number of errors corrected in the corrupted text.  

By experimenting with different levels for this threshold they were able to set it at a level that 

achieved a reasonable balance between these two conflicting outcomes. 

Once a confidence threshold is introduced, prediction accuracy can no longer be used alone as a 

measure of program performance since, in cases where it does not have enough confidence in its 

decision, the program simply does not make a prediction at all.  To factor this in, Carlson et al.  

(2001) introduce the notion of 'willingness' − the proportion of all occurrences of confusion set 

members for which the program was confident enough to make a prediction.  By implementing a 

confidence threshold they were able to improve the performance of their program from an average 

of 95% (with no threshold, hence 100% willingness) to 99% with a willingness of 85% for their 256 

confusion sets.   

Initially these machine-learning approaches used only a small number of confusion sets, typically 

about twenty.  Carlson et al. address several of the issues involved in scaling-up these methods for 

use in a practical system by extending the number of confusion sets to 256.  However, as they state, 

this is only a first step as a realistic system would require a coverage of many thousands of words.  

One of the limitations to achieving this level with these systems is the requirement for symmetric 

sets with no overlap between the sets.  Take, for example, our classic confusion set {their, there, 

they're} on which all the above methods achieve a good level of performance.  Suppose we now 

want to allow for the possibility of three being produced in error for there (or vice-versa).  Where 
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do we put it?  It doesn't fit in the existing confusion set for there as it seems unlikely to appear when 

their or they're is the intended word but if we create the set {there, three} we now have overlapping 

sets. 

2.4 Using semantics to detect errors 
In contrast to Atwell and Elliott's tag-bigram method which detected syntactic anomalies, the 

'semantic relationship' approach first proposed by Hirst and St-Onge (1998) and later developed by 

Hirst and Budanitsky (2005), detected semantic anomalies but was similarly not restricted to 

checking words from predefined confusion sets.  This approach was based on the observation that 

the words that a writer intends are generally semantically related to their surrounding words 

whereas some types of real-word spelling errors are not, such as (using Hirst and Budanitsky's 

example), "It is my sincere hole (hope) that you will recover swiftly."  Such "malapropisms" cause 

"a perturbation of the cohesion (and coherence) of a text."  

Using their method, malapropism detection is implemented as a two-stage process.  In the first stage 

the program scans the text for likely suspects − words that seem semantically unrelated to other 

words in the text.  Any word not regarded as a suspect at this stage is accepted as correct and not 

considered further.  The second stage then generates a list of possible alternatives for each suspect; 

if one of these is found to be a better semantic fit than the suspect word, the suspect is flagged as an 

error and the alternative proposed as a correction.   

The semantic relationships between the words in a text are represented using the noun portion of 

WordNet (Miller et al., 1990).  Nouns in WordNet are organised as a lexical hierarchy with each 

node of the hierarchy representing a synset or grouping of synonymous words.  The main 

organisational principle is hyponymy/hypernymy or the ISA relation.  After comparing several 

methods of measuring the semantic relatedness of words based on traversals of this hierarchy 

(Budanitsky, 1999; Budanitsky and Hirst, 2005) they concluded that the approach developed by 
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Jiang and Conrath (1997), combining semantic distance in WordNet with corpus-derived statistical 

data, offered the best performance for the detection of malapropisms. 

The process of offering a list of possible alternatives for suspect words is, as Hirst and Budanitsky 

note, akin to that of proposing candidate corrections for non-word errors and a spellchecker might 

well use the same mechanism for both.  However, for their experiment they only considered simple 

error transformations − the type used by Mays et al. to create their confusion sets (described above). 

As test data they used 500 Wall Street Journal articles into which they introduced errors at the rate 

of one every two hundred words, giving around a thousand errors with an average of just under 

three errors per article.  Text produced by dyslexics is likely to contain a higher proportion of errors 

than this (Pedler, 2001a).  As with other artificial error data discussed above, each of the errors 

introduced was potentially correctable by their system.  Again, this will not always be the case with 

actual error data. 

They report recall (the number of errors flagged as a proportion of all errors) and precision (the 

number of errors flagged as a proportion of the total suspects flagged) for their system, using 

varying sizes of context, ranging from a single paragraph to the entire text.  Larger context size 

improved precision − more of the words flagged actually were errors − but reduced recall − fewer 

errors overall were detected.  The best balance between the two was achieved with the smallest 

amount of context − a single paragraph − with recall of 50% and precision almost 20%.  This, they 

suggest, indicates that their system "approaches practical usability for malapropism detection and 

correction".  However, malapropisms themselves represent only a small proportion of all real-word 

errors meaning this method would need to be combined with other approaches for realistic use by a 

spellchecker.  Even then their assessment seems somewhat over-optimistic; the rate of false alarms 

is high in comparison to the number of errors corrected.  Atwell and Elliott (above) report an 

average 40% recall and 33% precision for their program but are more conservative in their 
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evaluation, rating their results as "reasonably promising".  (Although it should be noted that these 

results are only comparable in a very general sense.)  

2.5 Conclusion 
This chapter has considered previous experimental approaches to the detection and correction of 

real-word spelling errors.  Syntactic errors, as Kukich (1992) suggested, proved the most tractable 

since existing natural language applications, such as taggers and parsers, could be adapted to detect 

them.  Correction, if required, could then be implemented using the same method as that used by the 

spellchecker to produce candidate corrections for non-word errors.  Although these methods are 

limited to correcting errors that result in a syntactic anomaly they have the advantage of not needing 

to be trained for individual words; new words entering the vocabulary are likely to be covered by 

existing rules.   

Confusion sets can be regarded as predefined suggestion lists.  These were originally proposed by 

Atwell and Elliott (1987) and only rejected as impractical due to the limitations of computing speed 

and memory at that time. They became a key feature of much subsequent research.  They offer the 

possibility of both detecting and correcting errors but a large number of sets is required if they are 

to be used for general-purpose spellchecking and they also need to be representative of the types of 

error actually made by users.  In addition to simple errors, as used by Mays et al. to create their 

confusion sets, they should include other common errors such as homophone confusions.  The 

Random House sets used for the machine learning experiments represent a wider variety of errors 

but do not cover a large vocabulary and are generally confined to pairs of words (with a few triples 

as noted above). 

A notable feature of the research presented in this chapter is that none of it, apart from the work by 

Atwell and Elliott, has used real error data; several drawbacks of this have been discussed above.  

Not only are artificial errors always potentially correctable, there is also no indication that they are 

representative of the patterns and frequency of errors occurring in unrestricted text. 
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Several different measures of performance were used to assess the programs: recall and precision 

(Atwell and Elliott, 1987; Budanitsky and Hirst, 2005); proportion of errors corrected versus 

number of false alarms (Mays et al. 1991); prediction accuracy (Carlson et al., 2001 etc.).  These are 

discussed further in conjunction with the evaluation of my program (Chapter 10).  A common 

concern when assessing the performance of these programs is the trade-off between accuracy and 

coverage.  A reduction in the number of false alarms means that a greater proportion of the words 

flagged as errors actually are errors − an increase in accuracy − but this generally has the effect of 

reducing the number of errors detected − a decrease in coverage.  The general consensus seems to 

be that accuracy is the more important of these considerations.  Richardson (1985) suggests that 

false alarms are likely to "...undermine the faith of users in the system".  Carlson et al. claim that 

users' confidence will be increased if the number of false negatives is reduced.  To reduce false 

alarms most programs have factored in the general expectation that the word appearing in the text 

was more likely be correctly spelled than it was to be an error. 

Most previous research into real-word error correction has started with a technique and then applied 

it to the problem.  In this research I start by defining the problem and then investigate techniques 

suitable for its solution.  In order to define the problem, I required a corpus of errors.  The 

compilation of this is described in the next chapter. 
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Chapter 3: A Corpus of Dyslexic Real-word Errors  

The small sample of errors discussed in Chapter 1 gave an indication of the extent of the real-word 

error problem in text produced by dyslexics but it did not provide enough data for a realistic 

assessment of a program designed to correct this type of error.   

Apart from the work by Atwell and Elliott (1987), discussed in the previous chapter, most research 

into detecting and correcting real-word errors has been tested on artificial data, produced by 

introducing errors into correct text and then attempting to correct them, rather than on actual errors 

made by people.  One of the reasons for this is the shortage of actual data.  Publicly available error 

corpora such as the Birkbeck Error Corpus (Mitton, 1985) or the Wikipedia (2003) list of common 

misspellings are largely lists of pairs of <error, target> words and so not suitable for testing a 

spellchecking program that requires the use of context.  The Birkbeck corpus contains a mix of both 

non- and real-word errors while the Wikipedia lists contain only non-word errors.  One way to 

simulate real errors would be to substitute errors from these corpora into otherwise correctly spelled 

text.  To be 'realistic' this process would also need to simulate the frequency with which users 

tended to make particular errors (which can be obtained from the Wikipedia lists).  Even then, 

randomly substituting misspellings for a correctly spelled counterpart, still might not reflect how 

actual users make errors.  To accurately simulate that, we need to know whether the errors are more 

likely to occur at certain points in a sentence, whether they ever appear in groups of two or more 

and so on.  Questions such as these cannot be answered without knowing the original context in 

which the error appeared. 

To develop a program designed to correct actual errors made by dyslexics, I needed a corpus; since 

none existed, I needed to create one.  As well as providing data to develop and test my program, 

such a corpus would also enable me to obtain a picture of the pattern and types of error in actual 

dyslexic text which could help to inform the direction of my research.  This chapter describes how 
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my initial corpus2 was compiled, followed by an analysis of the errors it contains and a 

consideration of possible methods for their correction. 

3.1 Collecting samples of dyslexic text 
The samples described in Chapter 1 provided the initial input to my corpus.  I then needed to find 

additional data; obtaining this was harder than I had initially anticipated.  I contacted several college 

disability officers, spoke with various people who worked with dyslexics and posted to a number of 

bulletin boards and mailing lists.  Many people were interested to learn about my research and 

wanted to know more about its findings; several commented on the difficulty of obtaining this type 

of data and the usefulness of a resource such as the one I was trying to create but only a few 

supplied me with actual examples.  From these I assembled a corpus of around 12,000 words 

containing just over 800 real-word errors.  These additional sources, with examples from each, are 

described below. 

3.1.1 Dyslexic student 
A dyslexic student on our MSc Computing Science course responded to a request on my college 

home page and supplied me with a number of essays (literature, psychology and sociology) he had 

produced as an undergraduate.   

The country possessed a capable naval and military force 

as well as advanced industrial homebase which arised  

form the industrial revolution. 

Undergraduate essays 

3.1.2 Dyslexic typing experiment 
In response to an enquiry to a dyslexic mailing list - http://www.jiscmail.ac.uk/lists/dyslexia.html - 

Roger Spooner gave me the data from an online typing experiment which he had conducted while 

researching spellchecking for dyslexics for his PhD (Spooner, 1998).  Part of the experiment 

involved typing dictated sentences.  I did not use this as it consisted of multiple misspellings of the 

                                                      
2 Additional error data assembled for the final testing of my program is described in Chapter 10 
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same word and did not necessarily represent words that people would actually use.  The final part of 

the experiment involved free writing where the participants were asked to write about their work, 

interesting people they had met recently, assess their spelling and writing and comment on the 

experiment.  I used the responses to these questions in the corpus.  Two examples are given below:  

I fund out thaty I have a half sister how I know little abouy 

except that she has two childern and like out doo activtes.   

I have written team papers and a artcile that was publish. 

Typing experiment 

3.1.3 Internet sources 
I also included some samples from dyslexic bulletin boards and mailing lists and stories written by a 

dyslexic child which were published on the Internet. 

i still dint kow wat was worng with me.  no one reelly  new 

how bad my  writig was 

Bulletin Board 

He was a tiger and he shard the poeple and it was a lot of 

fun to do. 

Child's stories 

3.1.4 My daughter (again) 
Although I did not to want to overweight the corpus with examples of my daughter's misspellings, 

she was now four or five years older than she had been when I collected the homework samples and 

at college studying for an IT NVQ, so it seemed reasonable to include some of her later work, 

especially as there was a noticeable difference in her spelling ability as shown below. 
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The only weakness3 that I think I had were the martial on 

each slide could have been a bit better and I could have 

improved the length of the presentation. 

IT NVQ 

3.1.5 Non- and real-word errors 
The samples collected contained a mix of non- and real-word errors and a small proportion of word-

boundary errors − split words and run-ons as described in Chapter 1.  Table  3.1 summarises the 

content of this corpus, showing the number of words and sentences in each source and the types of 

error they contain.   

Source Sentences Words Non-
word 

errors

Word-
boundary 

errors 

Real-
word 

errors 

Total 
errors

Homework* 67 974 205 28 44 278

Compositions* 61 845 103 8 50 161

Office 
documents* 

67 720 161 6 26 193

IT NVQ 48 732 20 18 51 89

Undergraduate 
essays 

341 6382 421 8 128 557

Typing 
experiment 

61 694 86 7 39 132

Child's stories 11 126 7 0 14 21

Bulletin boards 739 11051 678 77 468 1223

Totals 1395 21524 1681 152 820 2654

Table  3.1: Composition of the entire corpus (* indicates data described in Chapter 1) 

I could not be sure to what extent the text that I collected had already been spellchecked and, if 

checked, whether some of the real-word errors it contained had been generated by the spellchecker 

− as is likely to happen when poor spellers are presented with long suggestion lists.  With a long 

                                                      
3 This is a type of discourse structure error - the fourth level in Kukich's (1992) hierarchy discussed in Chapter 
2.  Sophisticated processing would be required to correct it.  Even if the subject-verb disagreement weakness.  
.  were was detected, it would not be possible to decide whether it should be corrected to weaknesses .  .  were 
or weakness .  .  was (both grammatically acceptable) without also detecting that the writer continues to 
describe two weaknesses.   
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list, even if the intended word is included, it may be buried beneath a long list of obscure words.  

This is no help at all to a dyslexic, or anyone else, who didn't know how to spell the word in the 

first place.  To stop the spellchecker complaining, they may simply resort to selecting the first word 

in the list, which can result in the transformation of a non-word error into a real-word error.  The 

varying proportion of non-word errors in the different sources suggests that there has been some 

attempt at error correction in some of them.  Non-word errors occur more frequently in the typing 

experiment than they do in the NVQ and essay examples.  The essays were almost certainly 

spellchecked whereas no spellchecker was available to the participants in the typing experiment and 

although the bulletin board includes a spellchecking facility, users are likely to pay less attention to 

spelling when using a bulletin board than they would when writing an essay.  However, since this 

research is only concerned with correction of the real-word errors, I am making the assumption that 

there would be two phases to the spellchecking process: the first dealing with the non-word errors4 

and the second attempting to detect and correct any real-word errors using the now correctly spelled 

text.  Whether or not real-word errors are introduced by the first phase, it will at least remove the 

non-word errors so the real-word error checker is left to deal with a passage of correctly spelled text 

in which the majority of the words are those that the user intended. 

3.2 A corpus of real-word errors 
3.2.1 Composition 
I first marked-up all the errors in the format illustrated below: 

The only <ERR targ=weaknesses> weakness </ERR> that I 

think I had were the <ERR targ=material> martial </ERR> 

on each slide. 

Once this had been done it was a simple matter for a program using Perl regular expressions to 

extract the errors and their corresponding target word from the corpus.  It also enables my 

                                                      
4 MS Word adequately corrects the majority of those appearing in the examples above. 
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spellchecker to ignore the target words when checking the text but at the same time to store them 

for later use to check against its output.   

Although including the non-word errors gives the text a distinctive dyslexic flavour, they are just a 

distraction for a real-word error checker so I next created a sub-corpus, containing only real-word 

errors, to use for developing and testing my program.  To do this I removed any sentences that 

contained only non-word errors and replaced all non-word errors in the remaining sentences with 

the intended word − this could be regarded as a simulation of the first stage of the spellchecking 

process discussed above.   

The sub-corpus contained around 12,500 words with a total of 820 real-word errors.  Although the 

majority of these error words occurred just once as errors, a minority occurred repeatedly so that the 

number of distinct error types was approximately half the number of error tokens.  The word 

occurring most frequently as an error was there with 37 instances of incorrect usage, followed by to 

with 25 instances.  As a single error word can appear as an error for several different targets − for 

example, quit appears as a misspelling of both quiet and quite − the total number of distinct <error, 

target> pairs is higher than the total number of error types.  This is summarised in Table  3.2.   

Sentences 614 

Words 11810 

Total errors (tokens) 820 

Distinct errors (types) 429 

Distinct target|error pairs 493 

Table  3.2: Composition of the real word error sub-corpus 

3.2.2 Error frequency 
The discussion above suggests that users have a tendency to produce certain misspellings 

consistently.  My experience also confirms this; I often catch myself typing form when I mean from, 

my daughter regularly produces theses in mistake for these.  Table  3.3 shows the frequency with 
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which the error words occurred in the real-word error sub-corpus; although the majority occur only 

once, a minority occur repeatedly. 

N.  Occurrences N.  Errors

>10 10

6-10 9

4 or 5 17

3 25

2 47

1 321

Total error types 429

Table  3.3: Frequencies of error types in the corpus 

Error words that occur 10 or more times in the corpus are listed in Table  3.4.  Many of these appear 

as an error for more than one target and so contribute to several of the distinct <error, target> pairs.  

Several of the short, high-frequency words in this list − to, an, is, − appear as errors for four or more 

different targets which confirms Mitton (1996)'s finding that a high proportion of real-word errors 

involve this type of word. 

Error Frequency N.  targets 

there 37 3 

to 25 4 

a 20 3 

form 19 1 

their 18 1 

its 17 1 

your 17 2 

an 13 5 

weather 11 1 

were 11 2 

cant 10 1 

is 10 4 

Table  3.4: Errors occurring 10 or more times in the corpus 
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Table  3.5 shows the frequency with which the distinct <error, target> pairs occurred.  Again, 

although most of the pairs occur just once, a minority occur repeatedly.  In contrast to the findings 

for individual errors (Table  3.3), which showed that some words were often produced as a 

misspelling of several other words, this shows that there are some words which regularly appear as 

a misspelling of one other word in particular.  Pairs such as these are likely to be good candidates 

for confusion sets; the ten most frequent are listed in Table  3.6 

N.  Occurrences N.  Pairs

>10 8

6-10 7

4 or 5 13

3 21

2 57

1 387

Total error pairs 493

Table  3.5: Frequency of error|target pairs in the corpus 

Error|target pair Frequency

there|their 32 

form|from 19 

to|too 19 

their|there 18 

a|an 17 

its|it's 17 

your|you're 15 

weather|whether 11 

cant|can't 10 

collage|college 9 

Table  3.6: Ten most frequent error|target pairs in corpus 

Many of these top ten pairs also feature in the small list of sets of 'commonly confused' words used 

in much of the research discussed in Chapter 2.  This confirms that, although the small number of 
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these sets limits their usefulness for a comprehensive effort at real-word error correction, they do at 

least include some of the errors that users actually make.   

Another feature of these 'commonly confused' sets is that they are symmetric − each word in the set 

is considered confusable with each of the other words.  This is true for some, but not all of the most 

frequent errors listed above, which suggests that symmetric confusion sets may not be the best 

approach for all sets of confusable words.  Table  3.7 lists the pairs from this list in which each word 

occurs both as an error and as a target and shows that, in all cases, one member of the pair appears 

as an error significantly more times than the other. 

Error|target pair Count a|b Count b|a 

there|their 32 18 

form|from 19 1 

to|too 19 3 

a|an 17 4 

its|it's 17 4 

Table  3.7: Symmetric pairs included in the ten most frequent pairs 

Three of the errors in Table  3.7 − to, a and its − are omission errors which is consistent with my 

earlier finding that this is the most common type of simple error made by dyslexics.  For the other 

two pairs, it is the less frequent word that appears more often as an error.  This is more notable for 

the pair <form, from>, where the former is much less common overall, than it is for the pair <there, 

their> where both have a similar high frequency.   

3.2.3 Types of error 
Homophones 

Homophones are often used as the basis of confusion sets.  They feature prominently in the sets of 

commonly confused words used by many researchers and also make up almost all of the 90 pairs of 

confusable words used by Word's grammar checker.  TextHelp Read and Write, a spellchecker 

designed for dyslexics and included in the survey discussed in Chapter 1 (Pedler, 2001a), 
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incorporates a ‘Homophone Support’ feature.  With this switched on, homophones are highlighted 

in a different colour to the spelling errors when a piece of text is spellchecked.  For example, in the 

following extract (from the Office Documents section of my corpus) it marks the italicised words as 

homophones and the underlined words as errors.   

No action has been taken on dumps witch are wrong but if 

they which to change the approch, we will need more 

comlecated plans for suchg occurancs. 

Clicking on one of the homophones produces a list of words which have similar pronunciation from 

the program's database of commonly confused words.  Although this usefully identifies potential 

word confusion, it is not particularly helpful in terms of real-word error correction as it requires the 

user to consider a large number of words, many of which are correctly spelled.  Additionally, in 

some cases where the word is an error, the correct word may not be one of its homophones.  Of the 

eight words flagged as homophones in the passage above, only two (witch and which) are used 

incorrectly.  The list produced for both of these is the same − which and witch.  Although this would 

allow the correct alternative to be selected for the first, it is no help for the second which should be 

wish (not a homophone of which.)  

Nevertheless, homophone confusion is certainly something that a dyslexic real-word error checker 

needs to take into account.  Six of the most frequent <error, target> pairs listed in Table  3.6 are 

homophones, suggesting that words of this type do cause particular problems for dyslexics.  In total, 

73 (15%) of the distinct error pairs in my corpus are homophones; those that appear more than 

twice are listed in Table  3.8. 
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Homophone set N. Occs

there, their, they're 53

to, too, two 26

its, it's 17

your, you're 15

weather, whether 11

herd, heard 5

witch, which 4

wile, while 3

Table  3.8: Homophone pairs occurring more than twice in the corpus. 

Simple errors 

Mays et al. (1991) created confusion sets for each word in their dictionary by listing all the other 

words that differed from it by a single letter insertion, omission, substitution or transposition.  An 

examination of the types of error in my corpus showed that over half of them were simple errors, 

that is they differed from the correct word in just one of these ways (Table  3.9).  This suggests that 

simple error types could also be useful candidates for a dyslexic real-word error checker to consider 

although we might want to use fewer words and smaller sets than in the Mays et al. (1991) 

experiment. 

Error Type N.Errors Percentage 
Errors  

Omission 144 29% 

Substitution 105 21% 

Insertion 56 11% 

Transposition 11 2% 

All simple 316 64% 

All error pairs 493 100% 

Table  3.9: Proportions of simple error pairs in the corpus 
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3.2.4 Syntactic comparison 
Tagset types 

A real-word error sometimes gives rise to a syntactic anomaly, and this can be the basis of error 

detection.  For this to be the case the error and the target must differ in their parts of speech.  There 

are three possibilities to consider:   

• Distinct tagsets − Words that have no part of speech tags in common. 

• Overlapping tagsets − Words with some but not all not all part-of-speech tags in common. 

• Matching tagsets − Words with all part-of-speech tags in common 

Table  3.10 shows the number of pairs falling into each group.  A syntax-based spellchecker could 

be expected to perform reasonably with errors falling into the first group and to have some impact 

on the second although it would clearly not be appropriate for words in the third group which have 

the same parts-of-speech. 

Tagsets N.Errors Percentage 
Errors 

Distinct 324 66% 

Overlapping 118 24% 

Matching 51 10% 

Total error pairs 493 100% 

Table  3.10: Count of errors by tagset type 

Word class comparison 

We have already seen that many of the most frequently occurring error pairs in the corpus (Table 

 3.6) involve short, high-frequency words.  I investigated which particular classes of word were the 

most problematic by comparing the word class of the error with the word class of the target.  For 

this purpose I grouped the words into five groups: nouns, verbs, adjectives, adverbs and other 

(function words − conjunctions, determiners, pronouns and so on).  Each error or target word may 

belong to more than one of these classes (28% of the words in the dictionary used have between two 
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and seven part-of-speech tags) which means that these counts are based on <word, class> pairs for 

each error and target rather than just on the words themselves.  For example, using the pair <form, 

from>, the error − form − is tagged as both a noun and a verb and the target − from − is tagged as a 

preposition so this pair would be counted twice; both as <noun, other> and <verb, other>.  

Expanding each of the <error, target> pairs in this way gives a total of 1244 <error|class, 

target|class> pairs.  Counts for these pairs are given in Table  3.11. 

  Target 

  verb noun adjective adverb other Error 
Total

verb 181 110 57 34 27 409

noun 153 146 51 37 40 428

adjective 43 40 24 24 22 153

adverb 22 19 8 15 29 93

other 28 20 16 29 68 161

E
rr

or
 

Target 
Total 

427 336 156 139 186 1244

Table  3.11: Comparison of word class for error and target 

Inflection Errors 

Further investigation of the noun-noun/verb-verb confusions (Table  3.11) found that a large number 

of these were inflection errors.  This corroborates Mitton's (1996) finding that, in a corpus of school 

leavers' compositions (not those included in my corpus), many errors involved inflected forms. 

About a third of the noun targets where the error was also a noun were number errors, almost 

exclusively a singular noun used in mistake for a plural.  Many of these cases were simple omission 

errors (Table  3.9) resulting from the -s being left off the end of the word.  Others (such as virus for 

viruses or story for stories) have a slightly more complicated plural form, but again the difference 

between the error and the intended word occurs right at the end.  (The position of the error in the 

word is considered further in section  3.2.5 below.) 
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Half of the verb targets where the error was also a verb involved a wrongly inflected form of the 

verb.  Many of these were regular verbs5 where the error involved the base form with an omitted -s 

(third person singular), -ed (past tense, past participle) or -ing (present participle).   

The remaining verb inflection errors were for irregular verbs.  Some of these are completely 

irregular, such as be, while others, such as tell are irregular in the particular inflection involved (in 

this case told).  Predominantly, however, the irregular inflection errors involved producing the base 

form of the verb instead of the past tense or past participle.  There were three pairs which were both 

written mistakenly for each other is/are, has/have and was/were.  These findings suggest that it 

might be helpful for a spellchecker to include a method aimed at correcting inflection errors.  

3.2.5 Error patterns 
Position of  first letter error in word 

A characteristic of inflection errors is that, even if they are not simple errors, a large proportion of 

them differ only in the word-ending.  I looked at the position at which the first error in the word 

occurred, using a system described by Wing and Baddeley (1980) − section 1 is the beginning part 

of the word, 2 left of centre, 3 centre, 4 right of centre and 5 the end part of the word.   Following 

Mitton (1996), I have subdivided the first section into 1A (first letter errors) and 1B (other errors in 

the early part of the word).  Table  3.12 shows the proportion of errors falling into each section for 

the real-word errors compared to the non-word errors in the corpus.  Over half of the real-word 

errors differ in the last section of the word whereas for non-word errors the position of the first 

wrong letter is fairly evenly distributed between the middle sections of the word.  Conversely, the 

real-word errors also appear more likely to have an incorrect first letter.  Silent first letters - know, 

now and the like - are a likely contributory factor here. 

                                                      
5 Or at least the inflection involved was regular, for example take/takes. 
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Section Percentage errors 

 Real-word Non-word 

1A 11% 4% 

1B 1% 5% 

2 11% 21% 

3 10% 30% 

4 16% 21% 

5 51% 19% 

Total = 100% 499 499 

Table  3.12: Comparative positions of first wrong letter for real- and non-word errors 

Position of error words in sentences 

To find out whether errors are more likely to occur in a particular part of the sentence I divided each 

sentence into sections (in the same way as for words described above) and counted the number of 

errors occurring in each.  This showed the errors to be fairly evenly distributed throughout the 

sentences with a slight tendency for more to occur towards the beginning so position in sentence is 

unlikely to be of any particular value to a spellchecker.   

 

3.2.6 Proximity of errors 
Real-word error checkers must use context in some way.  Syntactic anomaly approaches to error 

detection, such as those described in the previous chapter, generally use word or part-of speech 

bigrams or trigrams; one or two words on each side are used to determine the probability of a given 

word appearing in that context.  This will run into difficulty if these words are themselves errors.  

To assess the extent of this problem in my corpus I looked at the surrounding context for each real-

word error.  Table  3.13 shows the proportion of the real-word errors with another error (either non- 

or real-word) within one or two words on each side and suggests that the problem of another error 

occurring in proximity to a real-word error is one that is likely to cause difficulties for any context-

based method of error detection.  For a quarter of the real-word errors in the corpus at least one 

other error occurs within two words to the left or right.  In some cases this is another real-word error 
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which compounds the problem.  A non-word error will be detected by dictionary look-up and the 

checker may be able to make an attempt at correcting it and at the very least will be aware that the 

context that it is considering is unreliable. 

 Left Right Left & Right Total

1 word each side 6% 7% 2% 15%

2 words each side 8% 12% 5% 25%

 errors = 100% 840

Table  3.13: Proportion of real-word errors with another error in the immediate context 

3.3 Conclusion 
At the end of this phase of my research I had produced a corpus suitable for the testing and 

development of the dyslexic real-word error checker I was aiming to produce.  I also hope it will be 

of use to other researchers at a later date. Resources of this type seem to be scarce and require a fair 

amount of effort to produce as all the errors need to be manually detected and marked up − if there 

was a way of reliably automating this process, the problem I am investigating would already have 

been solved!  

As well as providing data for the subsequent development and testing of my program, the corpus 

gave me a clearer picture of the types of error made by dyslexics which could inform the approach I 

would take.  The large proportion of errors with distinct or overlapping parts-of-speech suggested 

that a syntax-based approach could be expected to have some degree of success.  The confusion set 

approach remained attractive as it simplifies the process of error detection and provides a ready-

made suggestion list.  Although this method can be used with both syntactic and semantic rules, it 

does not seem applicable to inflection errors which, as the foregoing discussion showed, comprised 

a large number of the errors in my corpus.  This is considered further in Chapter 10.  Additionally, 

since the confusion set method is limited to correcting words predefined as being potential errors, a 

large number of sets would be required if it was to make a realistic impact on the problem.  Chapter 

5 describes how the collection of sets was created. 
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Chapter 4: A Spellchecking Dictionary  

The dictionary used at the start of my research was CUV2 (Mitton, 1986)6 − a 'computer-usable' 

dictionary based on the third edition of the Oxford Advanced Learners' Dictionary of Current 

English (Hornby, 1974).  Its seventy-thousand or so entries had provided adequate coverage for my 

previous (non-word error) spellchecking work although it would occasionally produce unexpected 

false alarms − flagging as errors words that were actually correctly spelled.  These false alarms 

largely reflected changes in the language since 1974 when the OALDCE was compiled.  For 

example, database, a word in fairly common modern usage not included in CUV2, would have been 

a specialised term thirty years ago.  But CUV2 contained enough words for my purpose and is in 

text file format so more words can easily be added. 

A dictionary containing just words is adequate for non-word error detection but to enable a 

spellchecker to detect real-word errors other information such as pronunciation, part-of-speech tags 

and word frequency needs to be included for each entry. 

Each entry in CUV2 includes a set of one or more part-of-speech tags each of which is assigned one 

of three broad frequency categories − very common, ordinary or rare.  This is adequate to 

distinguish between different usages for some words, such as can which is far more common as a 

verb than a noun, but for others the distinction is not clear.  For example both noun and verb are 

marked as common for form although it is used far more frequently as a noun.  A preliminary 

investigation, using a small number of confusion sets derived from my corpus (Pedler, 2003a) 

showed that more precise word frequency information would enable the spellchecker to make a 

more accurate decision on the correct word for a particular context. 

                                                      
6 This dictionary and its accompanying documentation (Mitton, 1992) can be downloaded from the Oxford 
Text Archive: http://www.ota.ahds.ac.uk/ 
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To update the frequency information in the dictionary I used word/tag frequency counts obtained 

from the written section of the British National Corpus (World Edition), (Burnard, 2000).  The BNC 

is a hundred-million word corpus, compiled between 1991 and 1994, designed to represent a broad 

range of British English usage in the late twentieth century.  The written part, which makes up 90% 

of the corpus, consists of samples from published texts such as newspapers, academic books and 

popular fiction, and less formal writing such as essays, letters and memoranda.  In addition to 

obtaining frequency counts for the existing words in the dictionary, I also listed words that occurred 

in the BNC but were not included in the dictionary.  Those occurring frequently were considered for 

possible inclusion in the updated dictionary (discussed in Section  4.2.4). 

Since the C5 tagset used for the tagging of the BNC does not correspond to the tagset used in 

CUV2, I created a new tagset for each dictionary entry using the C5 tagset.  In this chapter I will 

first consider the requirements of a dictionary for computer spellchecking and then I will describe 

the dictionary update. 

 

4.1 Dictionaries and spellchecking 
4.1.1 Word lists and non-word error detection 
The most straightforward and widely used method for a computer spellchecker to detect non-word 

errors is dictionary look-up (Mitton 1996).  For a simple implementation the dictionary need be no 

more than a word list.  The spellchecker then looks up each word in the text to be checked in its list 

and flags as misspelled any that are not found.  The question to be answered at this stage is how 

many and which words should be included in the list. If there are too few the spellchecker will 

produce a large number of false alarms − flagging as errors words that are actually correctly spelled.  

On the other hand, adding words to the dictionary increases the chance of accepting a misspelling.  

Wether is the classic example; a spellchecker with wether in its dictionary would correctly accept 

the wether ewe but would fail to get the errors in wether the wether be fine.  However, a study by 
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Damerau & Mays (1989) found that when a rare word occurred it was more often the intended word 

correctly spelled than a misspelling of some other word, which suggests that decreasing the 

dictionary size disproportionately increases the number of false alarms.  Mitton (1996) agrees that a 

large dictionary is best but suggests some possible exceptions which might need special treatment 

(such as cant and wont which are common misspellings of can't and won't) and points out the 

danger of including highly obscure words.  

Unless space is at a premium it is best to store all inflected forms of a word (for example, consider, 

considers, considered, considering).  However, dictionary size can be reduced by 'affix-stripping' 

where only the stem, consider in this case, needs to be stored.  The spellchecker then uses rules to 

remove the suffixes before looking up the word.  Prefixes (such as reconsider) can also be dealt 

with in this way.  Although this process has the advantage that it will accept words that may not be 

in the dictionary, such as resale, care must be taken not to accept non-words such as unconsider.  

The spellchecker's task is simplified if the dictionary contains all words in full.   

4.1.2 Additional dictionary information 
A simple wordlist is adequate for non-word error detection (flag any word not in the list as a 

potential error) and can also be used to produce suggestions for correction by finding words that 

closely resemble the misspelling (Damerau, 1964, Peterson, 1980, Pollock & Zamora 1984).  

Suggestion lists for real-word errors (once they have been detected) can be produced in the same 

way.  However, such lists are likely to be long and include many unlikely or inappropriate words; 

additional information, stored with each dictionary entry, is needed in order to prune such lists. 

Word frequency and part-of-speech information can be utilised to promote common words and 

remove syntactically inappropriate ones.  In the latter case the spellchecker also needs to be 

supplied with a part-of-speech tag table showing how often each tag is followed by each other tag; 

words resulting in an unrecognized tag combination are then removed from the suggestion list.  

Mitton (1996) describes a spellchecker that incorporates this process.  It is also able to detect a 
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small number of real-word errors but is not as effective as a spellchecker that incorporates full part-

of-speech tagging (Atwell and Elliott, 1987).   

In addition to homophone errors discussed in the previous chapter, the errors made by poor spellers 

are often phonetically similar to the intended word, for example, the initial samples used in my 

survey of spellcheckers (Pedler 2001a) contained musirls as a misspelling of muscles and one of the 

spellcheckers suggested mussels as a correction.  If it had used pronunciation information to 

incorporate homophones, the intended word − muscles − might also have been included in the 

suggestion list. 

As well as tag and pronunciation information, CUV2 includes a syllable count for each word.  I am 

not currently making use of this but it could be of use in correcting errors resulting from the 

omission of a repeated syllable in the middle of a word - probably spelt as probley or remembers 

spelt as rembers for example - which is a common dyslexic tendency. 

The updated dictionary that I produced - CUVPlus7 - retains the spelling, pronunciation, part-of-

speech tags and syllable count from CUV2 and in addition includes the C5 tags with word counts 

from the BNC for each entry.  The next section describes the process of producing this update. 

4.2 Updating the dictionary 
This section expands the presentation given in Pedler (2003b).   

4.2.1 Counting words 
The update to the dictionary was based on data obtained from the written section of the BNC 

(World Edition).  The first stage was to count occurrences and part-of-speech tags for each word in 

CUV2.  On the face of it this was a straightforward task.  Look up each word in the BNC in CUV2; 

if the word is found store the part-of-speech and increment the word count.  However, although 

generally word tokens (w-units) in the BNC correspond to orthographic words (Leech & Smith, 

                                                      
7 Also available from the Oxford Text Archive 
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2000), there are several cases that need to be given special consideration − hyphenated words, 

enclitics, multi-word units, proper nouns and abbreviations.   

Hyphenation 

As there are no fixed rules for hyphenation in English the use of hyphens to form compound words 

is inconsistent.  There are over 5,000 hyphenated entries in CUV2 and around 70 entries for 

common prefixes, such as multi-, re- and un-.   The BNC treats hyphenated words as a single unit 

and gives them an appropriate tag, for example, rose-bed is tagged as a noun, half-hearted as an 

adjective.  Both of these words (and many of the other hyphenated entries in CUV2) also appear in 

their 'solid' form - rosebed, halfhearted - in the BNC but are not listed as such in CUV2.  

Conversely, compound words such as keyring are entered in 'solid' but not hyphenated form in 

CUV2 while appearing in both forms in the BNC.  The question of how compound words should be 

entered in a dictionary is discussed further below but at this stage they were simply counted in the 

form in which they appeared in CUV2.   

Enclitic forms 

In general a w-unit in the BNC is a sequence of characters delimited by white space.  However over 

sixty contracted forms are broken into their component parts, each of which receives its own tag 

such as can't (ca+n't), 'twas ('t+was).  These are all shortened forms apart from cannot (can+not).  

There are also seven trailing enclitics that can be attached to nouns or pronouns, for example 'd (e.g. 

I'd) and 'll (e.g. they'll).  Leech & Smith (2000) give a complete list.  This approach allows the part-

of-speech tagger to assign a tag to each grammatical item in the text but it is useful for a dictionary 

to include common enclitics as entries in their own right.  For example, there is often confusion 

over the spelling of they're, their and there (Pedler 2001b) and the shortened form they're is 

included in CUV2.  Contracted forms in the BNC that had entries in CUV2 were recombined and 

given a compound tag such as PNP+VBB (personal pronoun + present tense of BE) for they're, 

VM0+XX0 (modal auxiliary + negative particle) for can't. 
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Multi-words 

In contrast to the enclitic forms where a single orthographic unit is split into two or more w-units, 

multi-words are combinations of words that logically form a single unit − adverbial phrases such as 

a bit, in addition to, complex prepositions such as in need of, save for and naturalised foreign 

phrases such as a posteriori, chilli con carne.  Leech & Smith (2000) list almost 700 such 

combinations which are tagged as a single w-unit in the BNC.  Those that also had entries in CUV2 

(mainly foreign phrases) were counted and those that didn't were ignored.  Over a third of CUV2's 

multi-word entries do not correspond to the BNC list.  A large number of these are place names, 

discussed further below. 

Proper nouns 

Words tagged as proper nouns in CUV2 are common forenames and place names.  Many of the 

latter are multi-word entries.  Use of the NP0 (proper noun) tag in the BNC is largely confined to 

personal and geographical names but no proper nouns are processed as multi-word units.  This 

means that a place name such as Cape Town, which has its own entry in CUV2, is split into two 

units in the BNC − <w NP0>Cape <w NP0>Town.  Multi-word proper nouns such as this could 

not be matched with their occurrences in the BNC unless each w-unit with an NP0 tag was 

processed as a special case.  If it matched the start of a CUV2 multi-word proper noun the following 

word would then need to be checked to see if it completed the word.  Although this would not have 

been impossible it seemed an unnecessary complication and would have considerably lengthened 

processing time.  Thus no frequency counts were obtained for the multi-word proper noun entries in 

the dictionary.  An additional consequence was that a large number of words in the dictionary that 

are not proper nouns in their own right (such as cape and town from the example above) were 

recorded as having an NP0 tag which needed to be removed when the tagsets were created.   
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Abbreviations 

The BNC tags abbreviations as if they were written in full with no indication that the word is a 

shortened form.  CUV2 uses a separate abbreviation tag indicating that the word is an abbreviation 

together with the part-of-speech of its full form.  This is useful for text processing programs that 

need to be able to distinguish between the use of a full-stop as a sentence delimiter and its use as an 

abbreviation marker.  As the updated tagsets use the BNC tags this distinction is no longer made.  

However, since the CUV2 tags are retained this information can still be retrieved. 

Tagging ambiguity 

The majority of the w-units in the BNC are given a single part-of-speech tag but in cases where the 

tagger could not reliably decide between two possible tags for a word an ambiguity tag was 

assigned.  This consists of the two tags in question with a hyphen between them, the first of the two 

being the preferred tag.  For example, a tag AJ0-NN1 indicates an ambiguity between adjective and 

noun with the preference being for an adjective whereas a tag NN1-AJ0 indicates that the preferred 

assignment is noun.  Such tags have their place in a corpus but are not relevant for a dictionary.  In 

all such cases the first tag was used for the frequency counts. 

4.2.2 Ranking the words 
After obtaining counts for each word in the dictionary, the list was sorted in descending order of 

frequency.  Not surprisingly, the, with over 5.6 million occurrences, was in first place, followed by 

of (2.7 million), and (2.3 million) and a (1.9 million).  As might be expected, a comparison of the 

first twenty words in my listing corresponds (with slight differences in ranking) to the rank 

frequency list for the written section of the BNC in (Leech et al., 2001).  The counts cannot be 

directly compared for several reasons; differences in the later version of the BNC used for this 

work, differences in the treatment of the special cases outlined above, and the combination of some 

parts-of-speech (such as past participle and past tense) in Leech et al.'s (2001) lists. 
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Ranking the words by raw frequency may make sense for the first few very common words where 

there is a clear difference in the number of occurrences but, as Kilgarriff (1997) demonstrates, 

counts for words beyond the few thousand most frequent are highly dependent on the corpus used.  

Table  4.1 shows how the difference in frequency between adjacent words decreases as we go down 

the list of the top 500 words.  For the most frequent words the difference is in millions, after 100 

words the difference is in thousands, after 200 in hundreds, dropping to less than ten after the 500th 

ranked word.  Rather than include these absolute counts as the frequency information in the 

dictionary I used the rounded frequency per million figures shown in the fourth column of the table.  

These retain the differentiation between the first few hundred common words while grouping 

together words with similar frequencies such as turned and held.  

Ranking Word Count Frequency 
per million 

1 the 5,617,462 64,569 

2 of 2,728,483 31,362 

3 and 2,350,004 27,012 

... 

99 did 71,130 818 

100 one 66,564 765 

101 over 65,543 753 

... 

199 men 34,618 398 

200 given 34,480 396 

201 high 34,302 394 

... 

499 former 16,346 188 

500 turned 16,300 187 

501 held 16,291 187 

Table  4.1: Decreasing difference in frequency with increase in ranking 
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Rare words 

Around 7,000 of the words in CUV were not found in the BNC (over half of these were already 

tagged as rare); about 10,000 <word, tag> pairs occurred just once and about 6,000 twice only.  

There is really little difference in the rarity of these words.  Some of those not found in the BNC 

might well occur in another corpus while that corpus might not contain words found in the BNC.  

They were all given a frequency of -1 to differentiate them from the other words that occurred less 

than once per million which received a frequency value of 0. 

4.2.3 Creating the tagsets 
An initial tagset was created for each word by grouping together all tags recorded for the word, 

together with their frequency.  Several stages of refinement were then required before the 

completed tagsets could be added to the dictionary.  The tagging accuracy of the BNC is estimated 

to be just over 98% (Leech et al., 2001) but even this low level of mistagging resulted in a large 

number of inappropriate <word, tag> combinations being recorded.  For example there, which 

should have two tags − EX0 (existential there) and AV0 (adverb) − initially had 12 additional tags 

assigned to it, including noun, personal pronoun and modal auxiliary verb.  The counts for these 

superfluous tags were insignificant compared to those for the 'genuine' tags so, for all words that 

had more than one tag, any tag that accounted for less than 1% of the total occurrences was 

removed.   

Although the parts-of-speech used in CUV2's tagsets do not correspond exactly to those used in the 

BNC it is possible to map reasonably accurately between the two.8  The majority of the BNC tags 

that did not have a corresponding tag in CUV2 were removed.  Some exceptions to this were verb 

participles which are commonly used adjectively (such as massed and matching which are both 

tagged more frequently as an adjective than a verb in the BNC but are only tagged as a verb in 

                                                      
8 A detailed consideration of the differences between the two tagsets is given in the CUVPlus dictionary 
documentation , Appendix A. 
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CUV2) and nouns that can also function as adjectives (such as amateur which only has a noun tag 

in CUV2 but is more commonly tagged as an adjective in the BNC). 

This process resulted in the removal of all tags for some entries.  Many of these were rare words 

that were presumably not in the 50,000-word lexicon used by the tagger and so had been tagged by 

other rules.  For example, nouns ending in -er such as lounger and kroner had been tagged as 

comparative adjectives, adjectives ending in -ed (e.g. unprecedented) as verb past tense or 

participle, plural nouns (e.g. intangibles) as -s forms of verbs and so on.  These were given C5 tags 

corresponding to the CUV2 tags with a frequency of -1.  Many common nouns also function as 

proper nouns in some contexts, such as: surnames (bush, gable, thatcher); titles (aunt, detective, 

friar); parts of place names (canyon, valley, ocean); company names (dell, sharp) and so on.  Proper 

noun tags were removed from such entries.  

Letters of the alphabet were among the most prolifically tagged entries.  In CUV2 they are tagged 

as singular (e.g.  f) or plural (e.g.  f's) nouns.  The default tag for alphabetic symbols in the BNC is 

ZZ0 but they are also assigned other tags if more appropriate in the context, Leech & Smith (2000) 

give several examples.  In the updated dictionary I have assigned the ZZ0 tag to all singular letters 

of the alphabet, apart from those that also function as other parts-of-speech such as I (personal 

pronoun) and a (article) which have both tags.  Plural letters in the BNC are also often tagged ZZ0 

(although sometimes the enclitic is tagged separately).  To retain the differentiation between the two 

forms I decided to use a ZZ2 tag for these (as in the UCREL C6 tagset) which is in keeping with the 

way plural nouns are tagged (NN2). 

Tagsets were created for words in the dictionary that had not occurred in the corpus by mapping the 

existing CUV2 tags to their corresponding BNC tag.  As hyphenated forms in the BNC are always 

tagged as single units there is no need for a prefix tag but as prefixes have their own entries in 

CUV2 I created an additional tag − PRE − for these.  The completed tagsets were cross-checked 
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with the original CUV2 tags to make sure that all relevant parts-of-speech had been included for 

each entry. 

4.2.4 Adding Entries 
Although CUV2 provides an adequate level of coverage for most general-purpose spellchecking 

tasks, the age of the dictionary means that some fairly common words in modern usage are not 

included.  As well as storing tag frequency counts for all the words included in CUV2, I also stored 

<word, tag> pairs from the BNC that were not found in the dictionary, together with a count of the 

number of times they occurred.  This enabled me to check for any notable omissions and create new 

entries for them.   

The task of producing a list of words that might usefully be added to the dictionary was potentially 

enormous.  However, not all w-units correspond to words in the lexicographic sense so several 

types could be excluded from consideration: strings containing digits; units tagged UNC 

(unclassified); those tagged CRD (cardinal number e.g.  ii, twenty-one) or ORD (ordinal number 

e.g. nth, twenty-first); capitalised strings (often abbreviations or acronyms).  Enclitic and 

hyphenated forms were also ignored because of the ambiguities discussed above.  Proper nouns and 

multi-words were considered separately.  For the remaining words I considered only those that 

occurred more than ten times in the BNC which left around 2,000 to inspect.  In some ways this 

choice of frequency was fairly arbitrary but it reduced the list to manageable proportions given the 

time available and seemed adequate to pinpoint any major omissions.   

This shortlist was manually checked to remove unsuitable entries.  A non-word − emailinc (with 

969 occurrences) − was second in the list.  This appears as part of an email header and, despite its 

high frequency, its use is restricted to just seven documents (around 200,000 words in total) 

consisting of contributions to the Leeds United Football Club mailing list.  This demonstrates the 

way in which a high incidence of use of an unusual word in a restricted domain can skew the 

overall frequency count.  Other entries that would be inappropriate for a spellchecker's dictionary 
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were also removed, for example (with frequency counts in parentheses): misspellings (e.g. 

faithfullly (31)); American-English spellings (e.g. judgment (348)); interjections (e.g. huh (175), 

hmm (156)); specialist terms (e.g. unix (222)); medical terms (e.g. mucosa (197), pancreatitis (76)); 

slang (e.g. caf (84), dosh (23)); abbreviations (e.g. plc (228), mins (227)).   

A large number of 'solid' compound words in the list (e.g. ceasefire (107), holidaymaker (12), 

turnout (27)) were already in CUV2 in hyphenated form.  As discussed earlier, it is difficult to 

make a consistent decision about how such words should appear in a dictionary but it seems 

unnecessary to include both.  In general hyphenated forms are probably more useful for a 

spellchecker as it is easier to remove a hyphen than it is to insert it.  However, this question was not 

considered further at this stage.  Counts for the hyphenated frequencies of the examples above − 

cease-fire (51), holiday-maker (19), turn-out (70) − give no clear evidence as to which form is more 

commonly used.  Further investigation might well reveal that it is simply a matter of individual 

style or preference.  Compound words in the list (such as goodnight or lifestyle) could equally 

acceptably be hyphenated but have been entered in their solid form. 

After this pruning stage 506 words remained in the list.  Table  4.2 lists the top ten. 

Word/Tag N. Occurrences 

organisation (NN1) 1201 

organisations (NN2) 733 

database (NN1) 403 

goodnight (ITJ) 316 

workforce (NN1) 291 

lifestyle (NN1) 260 

wildlife (NN1) 234 

accountability (NN1) 210 

profitability (NN1) 210 

databases (NN2) 205 

Table  4.2: Top ten new entries 
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The top two words - organisation and organisations - are accompanied by the rest of their 'family' 

lower down the list − organised (127), organiser (120), organisers (72) organise (24) and 

organising (12).  This highlighted a general problem with the groups of words that can take an -ise 

or -ize suffix.  CUV2 only includes -ize forms although (as Appendix 3 of the OALDCE remarks) 

the -ise form is equally acceptable.  Overall 80 of the words in the list were of this type with several 

others appearing near to the top − realised (163), recognised (194), and privatisation (181).  Similar 

words, such as formalize, legalize, have entries in CUV2 but do not appear in their -ise form in my 

BNC list.  Altogether there are 200 such groups of words in CUV2.  As it would be inconsistent to 

add entries for some and not others, these were dealt with as a special case and -ise entries created 

for them all.  In all cases, apart from equaliser (possibly another football-influenced entry), -ise 

forms were less frequently used in the BNC. 

Database would have been a specialised term in 1974 when the OALDCE was compiled.  Other 

words in the list are also associated with our move into the information age: camcorder (16), fax 

(NN1: 178, VVB: 72), modem (32), modems (18), workstation (137), workstations (136).  It is also 

interesting to note the inclusion of gender-neutral words, which these days are regarded as more 

'politically correct' −  for example, chairperson (17) headteacher (21) − although they are still 

outnumbered in the BNC by their gender-specific counterparts (already in CUV2): chairman 

(9379), headmaster (1067) and headmistress (225).   

Proper nouns 

Around 400 proper nouns not in CUV2 occurred more than 80 times in the BNC.  The majority of 

these were surnames, the most frequent being Jones (492) and Wilson (393), which are not 

appropriate in a dictionary.  Forty proper nouns were added to the dictionary.  Two of these Asia 

(427) and Birmingham (375) were surprisingly omitted from CUV2.  Others are places that were 

not nation states when the previous dictionary was produced − Bosnia (249), Croatia (149) and 

Serbia (97).   
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Multi-words 

The majority of multi-word entries in CUV2 are place names and naturalised foreign phrases.  

There were thus no matches for a large number of the BNC multi-words discussed above.  Although 

a spellchecker that uses white space as a word delimiter will process such entries as two words 

during the detection stage, the corrector may make use of the multi-words, for example it will 

process "Hong Kang" as two words but may propose "Hong Kong" as a correction.  It may also use 

these multi-words to correct errors on short function words that are often mistakenly run together 

(such as alot where a lot was intended (Mitton, 1996)).  Thirty-five such entries were added to the 

dictionary. 

In total 1669 new entries were added to CUVPlus.  Pronunciation and CUV2 tags have been added 

to each of these.  For the -ise entries these are identical to the existing -ize entries.  Pronunciations 

for the multi-word entries are a combination of the pronunciation for the individual words and they 

have been given CUV2 tags corresponding to their definition in the BNC (for example, at all is 

tagged as an adverb, out of as a preposition).  For all other entries these fields were created 

manually. 

4.3 Conclusion 
The task of updating the dictionary highlighted many of the problems involved in reverse 

engineering a dictionary from a corpus.  There are still improvements that could be made, in 

particular taking a consistent approach to the compound word entries, the tagging of abbreviations 

and a more detailed consideration of proper noun entries.  However, the end product was an 

enhanced dictionary with accurate word frequency information and a well-known tagset.  The 

additional entries have improved the coverage of the dictionary but the fact that less than a hundred 

of the words added had a frequency of more than one per million in the BNC suggests that existing 

coverage of CUV2, despite its age, is still fairly comprehensive. 
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Although it took some time and effort to produce, the enhanced version of the dictionary, CUVPlus, 

is a useful resource which should have lasting value.  As well as providing me with the tag 

frequency information required by my spellchecker, it has also been uploaded to the Oxford Text 

Archive and has already proved useful in other research − for example, in the development of a text 

expansion system for disabled users (Willis et al., 2005).  Full details of the dictionary, together 

with the tagsets used, can be found in its accompanying documentation (included as Appendix A). 
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Chapter 5: Creating Confusion Sets 

One of the main attractions of the confusion set approach to real-word error checking is that it 

offers the possibility of both detecting and correcting the error; once the spellchecker decides that a 

word is incorrect there is a ready-made suggestion list available.  The converse of this is, of course, 

that it will only detect errors that occur for predefined words and that it can only suggest corrections 

from a predefined list of possible confusables.  Many early experiments used around twenty sets 

(mainly pairs) of confusable words taken from the Random House list of commonly confused words 

(Flexner, 1983).  Although these sets were adequate to develop and test the proposed methods, they 

obviously provide insufficient coverage for general purpose spellchecking.  Golding and Roth 

(1996) acknowledge this limitation and comment that "Acquiring confusion sets is an interesting 

problem in its own right..."  Subsequently Carlson et al. (2001) scaled up their approach to use 265 

confusion sets containing just over 500 words.  They describe this as a first step toward creating a 

"practical system" which, they suggest, would need "a coverage of thousands of words".  This 

chapter describes the process of creating a collection of almost six thousand confusion sets for use 

by my spellchecker. 

5.1 Creating the sets  

How can we create confusion sets that represent the types of error that people actually make? One 

approach is to derive them from a corpus of errors (Pedler, 2003a).  This is not a particularly 

productive approach for more than a few sets.  (I only used eight for my preliminary experiments.)  

Real-word error data is sparse and difficult to obtain and, beyond a handful of common confusables 

frequently used in experiments − {their, there, they're}, {to, too, two}, {your, you're} and the like − 

the majority of the errors occur just once and many do not seem to be suitable candidates for 

confusion sets − fowling as a misspelling of following or petal as a misspelling of petrol, to take two 

examples from my corpus. 
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An alternative is to find a method to automatically generate sets and then use the error corpus as a 

reference to check how far they are applicable to the types of error we are aiming to correct.  This is 

the approach adopted here. 

5.1.1 Listing confusable pairs 
Roger Mitton's spellchecker (Mitton, 1996) ranks its suggestion lists using a string to string edit-

distance algorithm based on a directed network - often referred to as the Viterbi algorithm in the 

NLP literature.  This assigns a cost to each insertion, deletion or substitution operation required to 

transform one string into another; the lower the total cost, the more similar the strings.  The network 

has been tuned, using a large collection of non-word errors, to assign a lower score to the type of 

mistakes that users are likely to make than to those that would be considered unlikely.  For instance, 

using Mitton (1996)'s example, inserting the missing c in sissors (scissors) would have a lower cost 

than it would in satter (scatter) on the grounds that people are more likely to omit the c from 

scissors than the c from scatter.  To produce an initial list of possible confusables, this program was 

run over the dictionary, comparing each word with every other word and storing the pairs which 

scored less than a predefined threshold. 

The resulting list contained just over six thousand pairs of words.  These were in the form of <a,b> 

word pairs with each pair listed once; thus, for example, the list included the pair <bad, bade> but 

not the pair <bade, bad>.  Although the pairs were unique each individual word could occur more 

than once either as word a or as word b.  Bad, for example, appears five times as a word a; it is also 

paired with bard, bawd, bed and bid; write is a word b in the pair <writ, write> and a word a in the 

pair <write, writhe>.  The order in which the words appear in these pairs and whether they appear as 

word a or word b is simply a function of the ordering of the words in the dictionary.  At each 

iteration the program only compares words coming later in the dictionary.  Take the write example 

given above, writ appears before write in the dictionary so the program produces the pair <writ, 

write>.  It doesn't find any other suitable confusables for writ so moves on to consider the next word 
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in the dictionary − write.  It only checks words coming after write in the dictionary so finds the pair 

<write, writhe>.   

A number of pairs in this initial list were unsuitable for inclusion in confusion sets – proper nouns, 

prefixes, abbreviations and variant spellings (e.g. <mama, mamma>, <whisky, whiskey>).  Such 

pairs, together with those such as <fain, faun> and <groat, grot> where both members are rare, 

were removed programmatically.  The list also included some pairs of words which are almost 

synonymous, such as <artist, artiste>, <babes, babies>, <waggle, wiggle>.  Although one of the 

members of such pairs might be considered more appropriate in a particular context, a computer 

spellchecker would be unlikely to be able to discriminate between the two.  As there was no way of 

identifying such pairs automatically, they were removed by manually pruning the list.   

There were also some notable omissions from the list.  Some of these were commonly confused 

pairs such as <from, form> (presumably omitted because of the relatively high cost assigned to 

transpositions), <cant, can't> and <were, we’re> (apostrophes had not been considered by the list 

generation program).  Additionally, words differing in their first letter had not been considered as 

possible candidates for the initial list as the first letter of a misspelling is generally correct 

(Yannakoudakis & Fawthrop, 1983; Pollock & Zamora, 1984).  However, although this is a 

reasonable assumption in general, it does not hold true for words beginning with silent k's or w's, − 

<knight, night>, <know, now>, <wholly, holly>, <write, rite> and so on − which often cause 

problems for poor spellers.  Words such as these were manually added to the list to rectify these 

omissions. 

After several iterations of pruning and addition I rewrote the list with each pair appearing twice, 

both as an <a, b> pair and a <b, a> pair - both <rite, write> and <write, rite> were included in this 

list, for example.  This was easier to use since each word was in its alphabetical position as a word 

a.  At this point there were around nine thousand pairs in the list. 
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5.1.2 From pairs to sets 
To create the confusion sets from the pairs, each word a was taken as a headword and all the word 

b's with which it was paired became its confusion set; the number of times each word appears as a 

word a represents the number of members in its confusion set; so, for example, write, which is 

listed five times as a word a would end up with five members in its confusion set − {right, rite, writ, 

wright, writhe}.  When the spellchecker encounters write in a text it will attempt to decide whether 

write or one of these other words was actually what the user intended.  A point to note is that, 

although write is considered to be confusable with each member of its set, the members of the set 

are not necessarily confusable with each other.  So, for example, if the spellchecker encounters writ 

we don't necessarily want it to check whether right might be the intended word (in fact in this case 

we would probably not want it to as it seems an unlikely confusion − writ's confusion set contains 

just one word - write).  Here it is the headword that triggers the spellchecking routine and its 

confusion set defines the alternative words to be considered when this particular headword appears 

in the text.  When one of the confusables itself appears it will be considered in conjunction with its 

own confusion set.   

Unlike the sets used by Carlson et al. (2001) and the earlier work which it extends (Golding and 

Roth (1996); Golding and Roth (1999)), sets of this type are not symmetric; they are more akin to 

the type of sets used by Mays et al. (1990).  This 'headword: confusion set' structure seems to be 

more flexible when a large number of words are to be considered.  Using symmetric set 

construction the words in a confusion set are all considered to be confusable with each other and the 

appearance of any one of them in the text means that all other set members are considered to be 

possible alternatives.  If we used the write set discussed above in this way, we would consider all 

the words right, rite, writ, write, wright, writhe, whenever any one of them appeared in the text, but 

this is not necessarily what we want to do. 



Creating Confusion Sets  

  

  78 

Another feature of non-symmetric sets is that a word can appear as a headword but not as a 

confusable or vice-versa.  This is useful when the confusion is between a highly frequent word and 

a relatively rare one − <your, yore> or <world, wold>, for example.  In such cases we will give the 

spellchecker a lot of (largely unnecessary) work, and also increase the possibility of it making 

mistakes, if we check whether the rare word was intended every time we encounter the more 

frequent one.  In other words, we would like to check whether your was intended when we come 

across yore but not check every occurrence of your to see whether yore would be more appropriate.  

To achieve this, I removed all pairs where the word a had a per-million frequency <= 1 and the 

word b a per-million frequency of >= 100. 

I took a similar approach with confusables containing apostrophes − Mitton (1996) notes that these 

are commonly omitted but less often inserted.  Pairs where word a was a contracted form (e.g. 

aren’t, he’ll, who’re) were also removed.  So, for example the final list contained the pairs <aunt, 

aren’t>, <hell, he’ll> and <whore, who’re> but not the pairs <aren’t, aunt>, <he’ll, hell> or 

<who’re, whore>.  Two exceptions to this were the commonly confused pairs <its, it’s> and <your, 

you’re> that were included both as <a ,b> and <b, a> pairs.   

These two stages removed just over a thousand pairs leaving a total of 7876 pairs.  Creating sets 

from these pairs resulted in a total of 5942 headwords with between one and five words in their 

confusion sets as shown in Table  5.1. 

Set size N.  sets Percentage 

1 4461 75%  

2 1063 18% 

3 386 6.5% 

4 29 0.49% 

5 3 0.05% 

Total Sets 5942 100% 

Table  5.1: Confusion set sizes 



Creating Confusion Sets  

  

  79 

The three largest of these sets are shown in Table  5.2 below.  (Note that write, which originally had 

five words in its confusion set now only has three as <write, wright> and <write, writhe> were 

among the <frequent, rare> pairs removed in the process described above − thus it does not appear 

in the list below.)  

Headword Confusion set 

sit sat, set, shit, site, suit 

ware war, wear, were, where, wire 

were ware, we're, where, wire, wore 

Table  5.2: Three largest confusion sets 

Once the list of sets was finalised, each set was appended to the appropriate dictionary entry as 

shown below: 

write|0|raIt|J5%|VVI:63,VVB:35|1|right,rite,writ 

 

The process of creating sets used here may be similar to the method used by Carlson et al. (2001) 

which they describe as "using simple edit distance in both the character space and the phoneme 

space".  The majority of their 265 confusion sets were pairs but 20 contained three words and one 

contained four.  Their complete list is not available so I have been unable to compare it to mine.  

However, their paper gives detailed consideration to 19 of the sets and the majority of these also 

appear in my list.  Those that don't are grammatical/word confusion errors which are not of the type 

I am aiming to correct - <among, between>, <fewer, less>, for example.  The notable difference 

between their sets and mine is that theirs are symmetric. 

5.2 Appropriateness for the task 

To assess how applicable these confusion sets might be for correcting the types of error made by 

dyslexics, I compared the generated list with the errors from the dyslexic error corpus.  As 

described in Chapter 3, the corpus contains 493 distinct <error, target> pairs, several of which occur 

frequently, giving a total of 820 errors overall (Table  3.2).  Around 20% of these errors were noun 
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or verb inflection errors which are not suitable candidates for inclusion in confusion sets.  This 

gives three possibilities for the error pairs in the corpus:  

• both error and target are members of one of the spellchecker’s confusion sets − the 

spellchecker could be expected to have some success with correcting these errors; 

• the error is the headword of a confusion set but the target is not one of the set members − 

the spellchecker may spot an error here but it will not be able to suggest the correct 

replacement;  

• the error is not a confusion set headword (although the target may be either a headword or 

a member of another confusion set) − the spellchecker will simply ignore such errors.   

A subset of each of the last two groups is where the members of the pair are different inflected 

forms of the same noun or verb and therefore do not figure in a confusion set, though they could be 

considered by an inflection checker.  

Table  5.3 shows the proportion of the errors in the corpus falling into each of these categories for 

both error types (considering each error pair once) and error tokens (the overall number of error 

pairs appearing in the corpus).  Overall, almost eighty percent of the error tokens in the corpus 

would be considered by the spellchecker, although it would only be able to propose the correct 

replacement for around three-quarters of these errors.   

 Types Tokens 

In confusion set 44% 58% 

Target not in confusion set 27% 20% 

 (Inflection error  10%  8%) 

Error not headword 29% 22% 

 (Inflection error  13%  9%) 

Total (100%) 493 820 

Table  5.3: Coverage of corpus errors 
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The majority of the pairs that the spellchecker could not correct by the methods proposed above 

occur just once in the corpus.  Those occurring more frequently are listed in Table  5.4.  The striking 

thing about this list is the number of short function words it contains and the number of different 

permutations in which they occur, which again confirms earlier findings that these words are 

particularly problematic.  However the confusion set approach does not seem appropriate for such 

errors.  The most frequently occurring of these pairs - <a, an> - is an exception to this since the 

appropriate choice between them depends solely on whether the following word starts with a vowel 

or a consonant.  The, the most frequent word in the language appears in second place with four 

occurrences as a misspelling of they.  It also appears among the once-only pairs as a misspelling of 

that and there, suggesting that users have a tendency to produce the in place of other th- function 

words.  Attempting to apply the confusion set approach to this collection of words would clearly not 

be productive.  Correct usages of the must overwhelmingly outnumber the error usages and to check 

every occurrence as a potential error would be more likely to raise false alarms than to produce 

corrections.  Function words in general do not seem amenable to the approaches I am proposing. 

It is debatable whether some of the words in the list should be considered as spelling errors at all − 

producing i for it is clearly a slip; u for your could be considered 'shorthand' of the type that is used 

in text messages; cause is probably intended as a colloquial version of because.   

This leaves just three pairs that seem possible candidates for future inclusion in the list of 

confusables - <easy, easily>, <mouths, months> and <no, know>.   
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Error not confusable 
headword 

Target not in confusion set 

Pair Frequency Pair Frequency 

a, an  17 an, a 4 

the, they  4 cause, because 3 

is, his  2 as, has 2 

is, it  2 easy, easily 2 

i, it  2 for, from 2 

u, your  2 in, is 2 

  mouths, months 2 

  none, non 2 

  no, know 2 

Table  5.4: Errors occurring more than once in the corpus but not included in confusion set 
listing 

5.3 Using the sets for spellchecking 

At runtime, when the spellchecker finds one of the headwords in the text, it will retrieve the 

associated confusion set from the dictionary and use some process to decide whether one of these 

confusables is more likely to be the word the user intended.  As noted previously, this process can 

be based on syntax, semantics or any other aspect of the surrounding text.  Although syntax-based 

methods are only able to make a decision when the headword and confusable differ in their parts of 

speech, they are the most straightforward to implement and have been shown to have good 

performance in cases where the error causes a syntactic anomaly (Atwell and Elliott, 1987; Golding 

and Schabes, 1996).   

Previous analysis of the errors in my corpus had shown that a high proportion of them were likely to 

be amenable to a syntax-based approach; 66% of the <error, target> pairs had distinct part-of-

speech tagsets and a further 24% differed in some but not all parts-of-speech, leaving just 10% with 

identical tagsets that would be indistinguishable syntactically (Table 3.10).  A similar comparison 

of the tagsets of the generated confusable pairs shows that a far smaller proportion (just under a 

third) have distinct tagsets while almost half have some but not all part-of-speech tags in common 
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and about a quarter have matching tagsets (Table  5.5).  These different proportions can largely be 

accounted for by the number of inflection errors in the corpus which would have contributed to the 

high count for the distinct tagsets in the corpus error pairs but did not feature in the generated sets, 

as inflection errors were not considered as candidates for the confusion sets.   However, a syntax-

based approach would still be appropriate to distinguish between three-quarters of the confusable 

pairs. 

Tagset type N.  Pairs Percentage 

Distinct 2330 30% 

Overlap 3606 46% 

Match 1940 24% 

Total Pairs 7876 100% 

Table  5.5: Tagset types for confusable pairs 

The distinction between matching, overlapping and distinct tagets becomes slightly more 

complicated when there are two or more words in the confusion set.  In this case, sets can only be 

considered distinct if the headword differs in its parts-of-speech from each of the words in its 

confusion set and each of the words in the set are distinct from each other.  In general, the larger the 

set, the less likely this is to apply.9 Consider the tags for far and its associated confusion set {fair, 

fare, fear, fur}, illustrated in Table  5.6, for example.   

Confusable AJ0 AV0 NN1 VVB/VVI 

far     

fair     

fare     

fear     

fur     

Table  5.6: Part-of-speech tags for far and its associated confusion set 

                                                      
9 An exception is the five member set for were, listed above, where all tagsets are distinct.  This is largely 
because were itself has just one tag - VBD, past tense of BE - which only belongs to one other word - was - 
and also because the contracted form we're has a combination tag - PNP+VBB. 
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If we pair far with each of its confusables individually there are three distinct pairs <far, fare>, 

<far, fear> and <far, fur> and one overlapping pair − <far, fair> which suggests that syntax might 

help with making a decision.  However, two of the confusables − fare and fear − have matching 

tagsets − both noun and verb − and the noun tags for the other two − fair and fur − overlap these.  A 

syntax checker alone would be unable select between them.  If it came across far in the text and 

decided that a noun or verb tag was more probable than an adverb or adjective, the best it could do 

would be to flag far as an error and propose a list of possible corrections − four if it preferred a 

noun or two if it preferred a verb.  On the other hand, even if it selected one of far's tags − adverb or 

adjective − it could not accept far as correct since fair would be equally grammatically acceptable.   

The foregoing discussion has not considered how the syntax checker might arrive at its decision.  

For instance, if frequency was factored in it would prefer far (319) to fair (20) as an adverb 

although the distinction is less clear for an adjective − far (62), fair (78).  However, this is not the 

place for a detailed consideration of the syntax checking process − that will be discussed in Chapter 

8.  This example is simply intended to illustrate some of the problems that can occur with larger 

confusion sets.  It also demonstrates that even though a syntax checker might not be able to make a 

final decision for a set such as this, it could at least reduce the number of words left for 

consideration by some other means.  On this basis I planned to implement a two-stage checking 

process using syntax followed by semantics.   

5.4 Conclusion 

I had now produced several thousand confusion sets and stored them in the dictionary ready for use 

by the spellchecker.  The method used to create the sets was based on an algorithm tailored to 

produce accurate suggestions for non-word error correction which therefore might be expected to 

simulate the types of error that users actually make.  Comparison with the corpus showed that they 

covered around three-fifths of the errors.  How appropriate they would prove for their correction 
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could only be assessed once they were used for spellchecking.  Before I could do that I needed to 

prepare the text as described in the next chapter. 
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Chapter 6: Preparing the Text for Spellchecking 

Text tokenisation − the process of splitting a text up into its constituent parts − is an essential pre-

processing stage for all natural language applications.  At a basic level, English words consist of 

sequences of characters delimited by white space and sentences are made up of sequences of words 

starting with an initial capital and ending with a full-stop, exclamation mark or question mark.  

Applying simple rules such as these is adequate to identify the majority − over 90% − of words and 

sentences in a text; but dealing accurately with the remainder is a non-trivial task.  The accuracy 

achieved will have an impact on further stages of processing but some tasks are more tolerant of 

error than others; incorrect identification of sentence breaks will make little difference to the 

performance of an isolated, non-word error checker but is likely to have an adverse effect on a real-

word error checker that needs to consider each word in the context of the sentence in which it 

occurs. 

This chapter first discusses some of the difficulties involved in automatically segmenting text into 

words and sentences and then describes the way in which my spellchecker implements this process.   

6.1 Automatic text segmentation  
Text tokenisation is fraught with ambiguity and so difficult to achieve automatically.  It is thus not 

surprising that the tokeniser for the AMALGAM multi-tagger (Atwell et al., 2000) comes with the 

caveat that this is a task "which really ought to be done by hand − or at the very least the tokenised 

output should be verified by a human reader." However, although this may be practical, and even 

desirable, for a small corpus which is to be stored in tokenised format for later processing, it is not 

an option for a spellchecker that needs to integrate tokenisation into its checking routine.  The main 

areas of ambiguity are full-stops, abbreviations and capital letters (Booth, 1987; Mitton, 1996) 

which cause difficulties with both word and sentence segmentation. 
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6.1.1 Words 
Each space-delimited string can be regarded as a 'word' in the text.  Some of these will be numeric 

or alphanumeric strings and a few may be odd sequences of non-alphanumeric characters but the 

majority will be lexical words.  A tokeniser can generally remove punctuation characters attached to 

the start or end of each word and store them as separate text tokens but full-stops and apostrophes 

need special treatment.  Full-stops, although they are more frequently used as sentence terminators, 

also function as abbreviation markers while apostrophes, in addition to their more frequent usage as 

an opening single quote, also mark the start of contractions − such as 'em or 'twas.  In these cases, 

the tokeniser's task is to distinguish between these two usages and decide whether the punctuation 

mark should be stripped or left attached.   

Words can also contain embedded punctuation.  Apostrophes are used to indicate contracted forms 

− can't, they're, she's − and the 's can also be a possessive marker.  Plural possessives − the students' 

essays − have a trailing apostrophe which needs to be distinguished from a closing single quote.  A 

tokeniser will often split word forms such as these into separate syntactic units − ca + n't or they + 

're  for example − which means that each part can be assigned its own part-of-speech tag.  However, 

common contracted forms such as these can often be a source of spelling errors and so words such 

as can't and they're should be included as words in their own right in a spellchecking dictionary, as 

they are in mine.  If the spellchecker is to attempt correction of such errors these contracted forms 

need to be left intact by the tokeniser.  On the other hand, enclitic forms may also appear in 

combinations not found in the dictionary − "I could've been a contender", "Chance'd be a fine 

thing" or "Jim'll fix it".  In such cases, the tokeniser should split the string so that the spellchecker 

can check each part separately.  When an 's is appended to a word it may indicate possession, as in 

"mum's work is never done", or be a contraction of is or has - "mum's working hard" or "mum's 

gone out".  The BNC tokeniser strips the 's in both cases and assigns a POS (possessive) tag to the 

first and a VBZ to the second whereas the AMALGAM tokeniser splits the contracted is or has but 
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regards the possessive as part of the word and leaves it attached - although the documentation notes 

that this is a distinction which can be difficult to make.  Although a tokeniser can use rules to deal 

successfully with many contracted forms there will still be unrecognised slang or dialect usages, 

particularly in direct speech, which will simply have to be left as a single form.  The BNC takes this 

approach to ain't, tagging the whole word as unclassified as no suitable tag could be found for ai. 

Full-stops, as well as marking the end of abbreviations, can be embedded within them − U.K., i.e., 

for example.  Identifying abbreviations is particularly problematic for a tagger and one of the main 

causes of misclassified sentence boundaries (discussed further below).  An abbreviation list is a 

partial solution − CUVPlus includes over 300 although acronym and abbreviation dictionaries 

available on the Internet − such as http://www.acronymfinder.com/ − list more than three million! It 

would be impractical for a tokeniser to use such a large list and, even if it could, however large the 

list, it would be unlikely to account for all possibilities.  The best approach would seem to be to use 

a small list of the most common abbreviations combined with morphological rules to attempt to 

recognise the rest.   

The problems here are that for almost every rule we can easily find an exception and that the same 

abbreviation may appear written in several different ways − N.A.T.O., NATO and Nato all seem 

acceptable, for example.  As acronyms such as this are generally pronounced as a word − "nay-toe" 

− rather than being spelled out, there is a tendency to omit the internal periods, and in some cases 

the acronym may become a word in the language in its own right - such as radar (which, as few 

people now remember, was originally an acronym for radio detection and ranging).  Nevertheless, 

in most cases acronyms will appear as a sequence of uppercase letters, optionally including internal 

or trailing periods so this might suffice for an initial definition.  However, many acronyms coincide 

with common words − AIDS, for example − and a distinction needs to be made between the 

acronym and an uppercase usage of the word - for emphasis or as part of a heading, for instance.  In 

addition, several common abbreviations − in.  (inch) or no.  (number), for example − are also high 
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frequency dictionary words in their own right and are likely to cause problems if they occur at the 

end of a sentence. 

Because of the difficulty of defining rules to recognise abbreviations it may be more productive to 

dynamically infer them from the text as proposed by Mikheev (2002).  A useful feature here is that, 

at least in fairly formal writing, less common acronyms are generally defined the first time they are 

used.  For example, the acronym PAP which appears frequently in the first file of the FLOB corpus 

(Hundt et al., 1998, discussed further in Section  6.2.5 below) − largely made up of news articles − is 

written in full the first time it is used − " Singapore's ruling People's Action Party (PAP)...".  Future 

use of PAP can now be assumed to be the acronym rather than an upper-case usage of the common 

noun pap.  (In practice, the program would assign a probability to this based on whether the word 

also occurred in its lower-case form in the corpus.)  Although such methods have been shown to 

increase the number of abbreviations correctly identified in large corpora they are likely to be of 

less use for a spellchecker when it is checking a relatively short document. 

Tokenisers may also convert the first word of a sentence to lower-case, unless it is marked as a 

proper noun in the dictionary although, as the AMALGAM documentation notes, "This rule is not 

failsafe."  Many common nouns are also names − Bush, Thatcher, Gates and so on, as I had noted 

when updating the dictionary − and so should not be treated in this way.  Mikheev (2002) suggests 

that this problem can be dealt with in a similar way to that for abbreviations described above.  

Common nouns that appear with an initial capital in mid-sentence can be assumed to be functioning 

as proper nouns, the proportion of capitalised to non-capitalised mid-sentence usage in the corpus 

can then be used to assign a common/proper noun probability to such words when they appear at 

the start of a sentence.  Again, this is likely to be of more use when processing a corpus than it is for 

spellchecking. 

The question of hyphenated words was considered while updating the dictionary (Chapter 4).  

However, although these may cause difficulties for a spellchecker or part-of-speech tagger, they are 
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not a problem for most tokenisers which simply accept the hyphen as an integral part of the word 

and store the hyphenated form as a single token. 

The discussion above suggests that there are three main ambiguities to be resolved:  

• the use of the apostrophe to mark possessives, contractions and single quoted expressions; 

• identification of abbreviations;  

• initial capitalisation of words at the start of a sentence.   

Incorrect recognition of the role of an apostrophe is liable to cause difficulties for a tagger or 

spellchecker when it comes to process the tokenised text but it does not affect the tokeniser's ability 

to segment the text into sentences.  On the other hand, decisions about abbreviations and 

capitalisation have a direct impact on this, so much so that Mikheev's application treats them as an 

integral part of the sentence boundary recognition task. 

6.1.2 Sentences 
Once the tokeniser has split the text into words, it needs to group these words into sentences.  The 

most basic method of doing this is to treat all full-stops, exclamation marks, or question marks (and 

possibly also colons and semi-colons as the AMALGAM tokeniser does) as sentence delimiters 

when they are followed by white space and an upper case letter.  Although this “period-space-

capital letter” rule will apply in the majority of cases, Mikheev reports that 5 - 6 % of the sentence 

breaks in two large corpora were incorrectly identified using this method.   

The main cause of error is, unsurprisingly, the ambiguity of the full-stop, as discussed above, but, as 

Mikheev notes, exclamation marks and question marks can also be integral parts of words as in 

Yahoo! (the search engine) and Which? (the consumer magazine).  A method to automatically infer 

these from the text being tokenised could help with recognition.  But although such cases may cause 

problems, in general it is full-stops that the tokeniser needs to disambiguate.  Once it has recognised 

that a word is an abbreviation (using some combination of the methods discussed above) it needs to 

decide whether the abbreviation itself is also the last word in the sentence, in which case the full-
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stop also indicates a sentence boundary, or whether the words following it are a continuation of the 

same sentence.  In most cases it can make this decision based on whether the next word has an 

initial capital − insert a sentence break if it does, otherwise continue the sentence.  However, we 

need to include an exception to this rule for titles − Mr., Dr. and the like − which are almost always 

followed by a proper noun and would not be expected to occur as the last word of a sentence, and 

we should probably also include i.e. and e.g. in the list of non-sentence breaking abbreviations. 

As the considerations introduced above show, the sentence boundary/initial capital is, as Mikheev 

comments, a "chicken and egg problem".  If we know that a word with an initial capital following a 

full-stop is a common noun, we can conclude that the full-stop is a sentence terminal.  If we know 

that the full-stop is not sentence terminal, we can conclude that the following word is a proper noun 

and that the word preceding it is an abbreviation.  Although such situations only occur for a small 

number of sentences, a tokeniser needs to be prepared to deal with them if it is to segment the text 

accurately into sentences.  Developing methods to do this robustly is time-consuming and labour-

intensive.  Palmer and Hearst (1997) report work (by Mark Wasson and colleagues, unpublished) on 

the development of a system to recognise special terms and sentence boundaries which took nine 

staff-months to complete.  Although this achieved impressive performance (an error rate of between 

0.3% and 1.8% on their test data) the small number of errors remaining suggests that this may well 

be a problem that cannot be solved with 100% accuracy without human intervention.  Nevertheless, 

I needed to develop a tokeniser that would run automatically and be adequate for the requirements 

of my spellchecker.  The next section describes its implementation. 

6.2 Implementation 
Dyslexic writing is often poorly punctuated as well as badly spelled; lack of sentence terminal 

punctuation and unreliable capitalisation means that a tokeniser is likely to have difficulty in 

accurately recognising all of the sentence breaks.  However, as Atwell and Elliot (1987) comment 

"no system can be expected to cope with highly garbled English input" and I have not attempted to 
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address this problem; if there is no punctuation to indicate the end of a sentence, my program 

simply assumes that the word it is checking belongs to the current sentence.  This does not cause 

problems with the processing of the real-word error sub-corpus as each sentence extracted from the 

dyslexic error corpus is stored on a separate line and capital letters and full-stops have been inserted 

if they were missing.   

6.2.1 Requirements 
The real-word error checker that I have developed considers each word in the context of the 

sentence in which it occurs.  Thus the first requirement of the tokeniser is that it segments the text 

into sentences.  Each sentence needs to be stored as a sequence of tokens, each representing a word 

in the sentence.  The majority of these will be lexical words but a few will be numeric, 

alphanumeric or some sequence of non-alphanumeric characters; the tokeniser needs to note this 

distinction.  It also needs to strip and store any leading or trailing punctuation attached to the word.  

In this implementation, such punctuation is stored as an attribute of the token for the word to which 

it was attached.  This means that it is easier for the semantic checker (Chapter 9) to consider words 

in a specified window width without including the punctuation in the window although the 

punctuation is available for use if required. 

In addition to creating tokens for the words in the text, the tokeniser needs to recognise marked up 

errors in the format <ERR targ=targetword> errorword </ERR>, as described in Chapter 3, and 

store the target as well as the error in the token.  The spellchecker will ignore the target words when 

it is checking the text but the program will use them to assess the correctness of its suggestions. 

The spellchecker requires dictionary information for each word.  In particular, it needs to know 

whether the word has a confusion set associated with it as this signals that the word is a potential 

real-word error.  It also needs the set of part-of-speech tags and frequencies that will be used by the 

syntax checker (Chapter 8).  Many of the words, particularly short function words, will occur 

several times in a text − the real word error corpus contains almost twelve thousand word tokens but 
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only around five thousand word types.  To avoid the inefficiency and extra memory overhead of 

including the dictionary information for each word token, the tokeniser stores this in a 'lexical 

token' for each word type.  Thus, at the end of the tokenising phase, each word has two tokens 

associated with it − a 'text token' stored with the sentence in which it occurred and a related 'lexical 

token' containing its dictionary information. 

6.2.2 Sentence segmentation 
The program starts by reading the file up to the next new-line character.  This input line may be a 

single sentence, a fragment of a sentence or several sentences, depending on the formatting of the 

file.  Although in the majority of cases a new-line character will signal the end of a sentence, the 

tokeniser does not make this assumption as this will not be the case if the input file has fixed-length 

lines or if the user has inserted line breaks to control the length of the line (as many inexperienced 

users of word-processors do).   

The tokeniser splits the input line into a sequence of space-delimited strings and/or error tags.  It 

then creates a text token for each 'word' with the attributes shown in Table  6.1. 

type: word, numeric, alphanumeric or unclassified 

textStr: the word as it appeared in the text 

targ: the target spelling if the word was marked as an error 

leadPun: any leading punctuation which was attached to the word 

trailPun: any trailing punctuation which was attached to the word 

Table  6.1: Initial attributes for text tokens 

The type and textStr attributes will be stored for each token − the other attributes may be empty 

for many of the tokens.  The tokeniser does not look up the words in the dictionary at this stage.  It 

simply checks whether a string could correspond to a dictionary word; embedded full-stops, 

apostrophes and hyphens are considered to be part of the word. 
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In addition to punctuation characters that legitimately form part of a word, punctuation can 

mistakenly become embedded if the user omits to type a space after the punctuation mark.  Rather 

than leaving such strings as a single word, the tokeniser splits such strings and stores the 

punctuation character in the trailing punctuation attribute of the first string.  To avoid splitting 

abbreviations, it only splits on a full-stop if there are more than two letters preceding it. 

Once the text token has been created it is stored either as part of the current sentence or as the start 

of a new sentence.  If the last token stored does not end in sentence delimiting punctuation − 

defined as full-stop, exclamation mark or question mark − the token is stored as part of the current 

sentence.  If the preceding token ends with an exclamation mark or question mark, the token is 

assumed to be the start of a new sentence if the word has an initial uppercase character, otherwise it 

is assumed to continue the current sentence.  If the preceding token ends in a full-stop and the 

current word starts with a capital letter, the current token will be stored as the first word of a new 

sentence unless the previous word was a non-sentence-breaking abbreviation, defined as a title − 

Mr., Mrs.  and so on − or e.g./ i.e.  For all other abbreviations, the program assumes that the full-

stop is serving both as an abbreviation marker and sentence terminal.  If the current word starts with 

a lowercase letter and the preceding token ends with a full-stop but is not included in the dictionary, 

the preceding token is assumed to be an unknown abbreviation and the current token is stored with 

the current sentence.   

At the end of this stage of processing, each word in the text has been stored in a text token in the 

format described above and the sequences of text tokens have been segmented into sentences.   

6.2.3 Word storage 
The tokeniser next creates a lexical token containing the dictionary information for each word type 

in the text and for any confusable words associated with it.  Each of these tokens has the attributes 

shown in Table  6.2. 
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tags: the set of part-of-speech tags from the dictionary with their associated frequencies 

capFlag: the capitalisation flag from the dictionary or assigned by the tokeniser for words not 

found in the dictionary 

abbrev: a flag indicating whether or not the word is an abbreviation 

indict: a flag indicating whether or not the word was found in the dictionary 

count: the number of times the word occurred in the text being checked.  (This will be zero 

for confusion set members that do not appear in the text.) 

confSet: a list of confusables (if any) associated with the word.   

Table  6.2: Attributes for lexical tokens 

To create these tokens the tokeniser checks each word text token.  There are four possibilities:  

• the word has already been stored;  

• the word is found in the dictionary in the same format as it appeared in the text;  

• the word is found in the dictionary but the dictionary format does not match the format of 

the word in the text;  

• the word is not found in the dictionary. 

In the simplest case, when the word is already stored, the tokeniser increments the word-count for 

the existing lexical token and, if the count was zero (indicating that the lexical token had been 

created for a confusable rather than a word that had previously been seen in the text) checks 

whether there is an associated confusion set and, if so, stores a list of the confusables in the word's 

lexical token as well as creating a lexical token with a zero word-count for any confusable that had 

not previously appeared in the text.  The case where the text word matches the dictionary format is 

also straightforward − create a new lexical token for the word and lexical tokens for any of its 

confusables that do not already have lexical tokens. 
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As all words in the dictionary are stored with a lower-case initial letter and abbreviations are stored 

without embedded punctuation, sentence initial words (assuming they start with a capital letter), 

proper nouns and abbreviations will appear in the text in a format that does not match the way in 

which they are stored in the dictionary.  The dictionary lookup function converts words into 

'dictionary format' (by converting the initial letter to lower case and removing internal periods) 

before checking them and returns the word in the form in which it has been found in the dictionary.  

When this does not match the format of the word in the text the tokeniser first checks the 

capitalisation flag in the dictionary to see whether the word would normally be written with an 

upper case initial letter.  In this case a lexical token is created for the word in dictionary format (i.e. 

with a lowercase initial letter).  If the word would not normally be expected to have an uppercase 

initial, the program checks whether it is the first word of a sentence.  In this case, the program 

makes the assumption that this is the reason for the capitalisation and creates a lexical token for the 

lowercase version as above.  This will deal incorrectly with surnames such as Bush or Smith, which 

are tagged as common nouns in the dictionary, when they appear as the first word of a sentence.  

However, although such occurrences are fairly frequent in newswire text (which was used for 

testing the tokenisers discussed in section  6.1 above), they are relatively infrequent in more general 

text so I have not incorporated a method for disambiguating such occurrences in the program.  

Conversely, non-function words with an initial capital in mid-sentence are assumed to be proper 

nouns and are stored with an uppercase initial in the lexical token. 

The final category of words is those that are not found in the dictionary at all − hyphens, 

apostrophes and capitalised words are particularly problematic.  Almost any pair (or sequence) of 

words can be hyphenated and, as discussed in Chapter 4, the use of the hyphen to form compound 

words is inconsistent.  Any hyphenated word in the text which is not found in the dictionary is split 

on the hyphen(s) and each word is then checked.  If all the words are found, the complete word is 

assigned the tag of the final part.  If any part is not found, an unclassified tag is assigned.   
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Shortened forms − 'em, 'twas and so on − are stored in the dictionary with a leading apostrophe but 

the token retrieved from the text will have had its apostrophe removed by the punctuation stripper.  

If a token has an apostrophe stored in its leadPunct attribute, the word is rechecked in the 

dictionary with the apostrophe reattached.  If it is found, a lexical token is created for the shortened 

form and the text token modified to include the apostrophe with the word.  If the word is not one of 

the shortened forms included in the dictionary, a lexical token is created for the plain word and it is 

assigned an unclassified tag. 

Although many common shortened forms − can't, they're and so on − are stored in the dictionary, 

trailing enclitics − 'd, 'll etc.− can also be attached to other words, as discussed above.  In such 

cases, the enclitic is stripped and the word rechecked.  If it is found in the dictionary, it will be 

stored in the lexical token without the trailing enclitic and the text token will be modified to store 

the enclitic in a contract attribute and the plain word in the textStr attribute.  When the syntax 

checker tags the text, it will assign a combination tag to such tokens in the same format as the 

combination tags stored in the dictionary. 

Words written entirely in uppercase may be capitalised out of convention, such as in a header, or for 

emphasis and in this case will often appear in the dictionary in their lowercase form.  However, as 

noted above, many acronyms which are not listed in the dictionary are themselves dictionary words.  

Rather than attempt to distinguish such uses, the program simply regards all uppercase words as 

unknown abbreviations and creates a lexical token for the capitalised form.  Words beginning with 

an uppercase letter are assumed to be unknown proper nouns and stored in the lexical token in this 

form with a proper noun tag. 

During this stage of tokenisation, two additional attributes are stored with each text token as shown 

in Table  6.3. 
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lexStr: the word in dictionary format (or the format in which it has been stored in its 

corresponding lexical token as detailed above). 

contract: trailing enclitics stripped from shortened forms not stored in the dictionary 

Table  6.3: Additional attributes for text tokens 

At the end of the tokenisation phase, the program has split the text into sentences and words.  It has 

also stored dictionary information required by the spellchecker.  Any words not found in the 

dictionary and not classified by any of the rules outlined above could be flagged as potential errors 

by a non-word error checker.  However, as I am making the assumption that non-word errors have 

already been corrected (as they have been in the sub-corpus), my program makes no attempt to deal 

with these and simply tags them as unclassified strings. 

6.2.4 A tokenisation example 
The array of text tokens created to store the following sentence (assuming it to be the first sentence 

in a file) is shown in Table  6.4: 

Mum’s <ERR targ=not> note </ERR> here! 

1 2 3 

1 

type: W 

textStr: Mum 

lexStr: mum 

contract: ‘s 

type: W 

textStr: note 

targ: not 

lexStr: note 

type: W 

textStr: here 

trailPun: ! 

lexStr: here 

Table  6.4: Text tokens created for example sentence 

The sentence is initially split into a sequence of space-delimited strings with error tokens being 

treated as a single string.  Each string is stored as a text token in the sentence array with the 

attributes listed in Table  6.1 and Table  6.3.  Some attributes will not have a value for all tokens and 

will be set to undef. Such attributes have not been included in the table.   
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The majority of strings (all in this example) will correspond to lexical words and have their type 

attribute set to ‘W’.  Numeric strings (1952), alphanumeric strings (P40), or unclassified strings 

($%!) will be assigned a type of N, AN or U respectively.  Any leading and/or trailing punctuation 

(the exclamation mark attached to here! in this example) is then stripped from each string and 

stored in the leadPun or trailPun attribute.  Contractions attached to the end of non-word strings 

will be removed and stored in the contract attribute.  However, for word strings the contraction 

will only be removed if the contracted form does not appear in the dictionary.  In this example the ‘s 

is removed from Mum’s but if the first word of the sentence was changed to She’s the ‘s would not 

be stripped as the contracted form - she’s has its own entry in the dictionary. 

After the punctuation and contractions have been stripped the remaining string, in the format it 

appeared in the text, is stored in the textStr attribute; by recombining this with the contract 

and leadPun/trailPun attributes the program is able to reproduce the text in its original format if 

required.  The lexStr attribute stores the word as it appears in the dictionary and matches the key 

for the corresponding lexical token (described further below and illustrated in Table  6.5 ).  Both 

attributes have the same value for all words in this example apart from Mum which is stored with its 

upper case initial in the textStr but with a lowercase initial in the lexStr.    

If a word is marked-up as an error − note in this example − the targ attribute will be set to the 

intended word − not.  This allows the program to check the correctness of its suggestions when run 

over the error corpus.   

Each text token that contains a lexical word (type = W) has an associated lexical token stored in a 

hash.  Whereas text tokens are created for each word token in the text, lexical tokens are created just 

once for each word type.  The lexStr attribute of each text token provides the key for lookup in 

the lexical token hash to enable the program to retrieve the associated dictionary information for 

each word in the text. 
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The lexical tokens created for the example sentence above are shown in Table  6.5.  All the elements 

have the same value for capFlag (0), abbrev (N), indict (Y), so these have not been included in 

the table:.  The confSet attribute will be undef for words that do not have a confusion set 

associated with them, and this also is not included in the table.  Lexical tokens are also created for 

each member of the confusion set but the count for these will be set to zero (or not incremented if 

the confusable has previously been seen in the text and already has a lexical token).  Confusion sets 

are not stored for the confusables themselves unless they also appear in the text in their own right. 

Key Attributes 

hear tags: PRP:4374 

count: 0 

here tags: AV0:563 

count: 1 

confSet: hear 

mum tags: NN1:44,AJ0:0,ITJ:0 

count: 1 
not tags: NN1:287,VVI:52,VVB:34 

count: 0 

note Tags:NN1:59,VVB:32,VVI:18 

count: 1 

confSet: not 

Table  6.5: Lexical tokens created for example fragment 

6.2.5 Sentence splitting evaluated 
I used the million-word FLOB corpus (Hundt et al. 1998) to test the sentence splitter.  This corpus, 

created at Freiburg University, contains a mixture of newspaper articles, book extracts and 

miscellaneous publications covering a broad range of written British English from 1991 and 1992.  

It was designed to parallel the earlier LOB corpus (discussed in Section  8.3.4 below).  The version 

of the corpus included in the ICAME corpus CD (ICAME, 1999) is stored in fixed-length lines with 

some textual mark-up such as paragraph and quotation start and end tags.  I had previously re-
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written this as continuous text with no mark-up and used this ‘plain’ version to test the sentence 

segmentation program. 

After checking several files from the corpus, a few problems came to light.  When names were 

preceded by initials − G.A. Henty, for example − the program split the sentence after the second 

initial.  It would be possible to avoid this by defining a sequence of uppercase characters separated 

by periods and followed by a non-dictionary word as an initial/name combination that should not be 

split.  However, as noted previously, many surnames also appear as common nouns in the 

dictionary so this rule would not apply to, for example, G.W. Bush.  Additionally, as for many text 

tokenization rules, it is easy to think of a counter-example where the sentence should be split such 

as: 

They met in downtown L.A.  Kerouac had described… 

An attempt to deal accurately with such ambiguities would seem to require two passes through the 

text; the first to mark potentially ambiguous sentence breaks and the second to disambiguate them 

using, for example, a list of mid-sentence capitalised words that could be assumed to be proper 

nouns or a more detailed syntactic analysis.  However, examples such as these occurred 

infrequently in the FLOB texts.  

As the program was set to check for sentence breaks when it encountered sentence terminal 

punctuation followed by a word with an initial capital it did not insert a sentence break for ill-

formed sentences such as this example (from FLOB): 

The result of this clever charade was that for two years my 

rates were assessed on the basis of seven feet, eight inches 

square of living space.  another name.   

However, using only sentence terminal punctuation as the basis for sentence segmentation results in 

an incorrect split after Rehab. in this fragment from my error corpus: 

The Dept. of Rehab. is going to pay... 
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A second pass through the text to flag potential sentence initial capitalisation errors could be used to 

deal with such cases but the current implementation is restricted to a single pass and so runs 

sentences together if the first word does not start with a capital. 

In most running text, line breaks correspond to the end of a paragraph and so will also mark a 

sentence boundary (although the paragraph itself may contain several sentences).  However, as 

discussed above, I had decided to allow for the possibility of mid-sentence line breaks.  This caused 

the two utterances in the following extract from FLOB to be run together into a single sentence as 

the first does not end with one of my predefined set of sentence terminals: 

"That is as may be, ma'am," Jake responded, "but I would 

rather know the circumstances so that − "  

"So that you may try to order my life as they have done," 

Clementina finished for him.   

This suggests either that it might be better always to regard a line break as indicating the end of a 

sentence or that additional rules are required to deal with direct speech.  Such issues have not been 

considered in the current implementation. 

Apart from a few cases as outlined above, the majority of the sentences in the FLOB files that I 

checked were split correctly.  In FLOB_J, mainly academic writing, there were no errors apparent 

in the first two thousand or so sentences − a sample illustrating the segmentation of the first 50 

sentences of this file is included as Appendix C. 

6.3 Conclusion 
Tokenisation, although it is an essential pre-processing phase for all natural language processing 

applications, seems to be a task that is difficult to perform accurately without human intervention.  

However, the spellchecker has to do this automatically.  The method described above should deal 

adequately with most of its requirements.  Modifications can be made at a later stage if inaccuracies 

in the tokenisation seem to cause particular problems for the spellchecker. 
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Chapter 7: A Frequency-only Spellchecker as a Baseline  

We now have everything in place to begin spellchecking − a dictionary with reasonably accurate 

word frequencies, a large number of confusion sets, a method for splitting the text into words and a 

corpus containing real-word spelling errors made by dyslexic writers.  This chapter considers ways 

in which to assess the performance of the spellchecking methods described in the next two chapters.  

It also sets a baseline against which further developments can be compared. 

7.1 Expectations 
In the detection phase, the desirable outcomes for a spellchecker are: 

• Accept correctly spelled words 

• Flag incorrectly spelled words as errors 

The undesirable outcomes are: 

• Flag correctly spelled words as errors 

• Accept incorrectly spelled words as correct 

Flagging correctly spelled words produces a false alarm which is annoying for the user and can 

result in errors being introduced into the text if the program's suggestion is accepted.  The task of 

the spellchecker, therefore, is to minimise these false alarms while at the same time maximising 

error detection. 

Once an error has been detected, the spellchecker needs to produce a list of suggested corrections, 

ideally with the intended word in first position.  One of the attractions of the confusion set approach 

is that it can combine these two tasks of detection and correction; it decides that a word is an error if 

one of the alternative words in its confusion set appears to be more likely in the context and then 

proposes that alternative as a correction.  This means that it only suggests one word but, as there are 

at most five words in the confusion sets, even if it used the whole set, ordered by likelihood, as its 
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suggestion list, it would produce a short list which would likely be more useful than many of the 

lists discussed in Chapter 1. 

However, when a confusable word is an error, the intended word is not necessarily another member 

of the confusion set and, if the spellchecker is limited to making suggestions from the associated 

confusion set (which is generally the way in which the confusion set method is implemented), it 

will not be able to correct the error in such cases.  Take, for example, a sequence from my error 

corpus − “the lose of...”.  Here lose is mistakenly produced for loss but the confusion set for lose − 

{loos, loose, louse} - does not include loss.  A syntax-based checker (such as the implementation I 

will describe in Chapter 8), if it is restricted to suggestions from the confusion set, will find that 

loose, is a better syntactic fit than lose and so suggest loose as a correction; although it flags the 

error it proposes an incorrect replacement.  This should also be regarded as an undesirable outcome 

as, if the spellchecker’s suggestion is accepted, as it often will be by dyslexic users, it simply 

replaces one misspelling with another. 

7.2 Test data  
During the development phase, detailed in the next two chapters, I used the real-word error corpus, 

described in Chapter 3, to test and refine the program.  An additional corpus of errors was created 

for the final testing - described in Chapter 10. 

Table  7.1 shows the number of confusables in the corpus.  As can be seen, around half of the total 

words in the corpus are confusables, but the vast majority of them (89%) are correctly used.   

 N.  Tokens N.  Types 

Total words 11809 4856 

Total confusables  5838 758 

Correct usage 5207 595 

Error usage  631 294 

Table  7.1: Count of words and confusables in test data 
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7.3 Establishing a baseline 
A convenient way to set a baseline against which to compare the performance of subsequent 

developments is to establish how often the spellchecker would make the correct decision if it was 

simply set to select the more frequent confusable.  (This will actually be the most frequent 

confusable in a set with more than two members but the spellchecker will always be making a 

decision between a pair of words − the word it has encountered in the text and the highest frequency 

word of its associated confusion set.)  In other words, in this mode, the spellchecker is simply 

guessing which confusable to select based on the dictionary frequencies − which for my dictionary 

represent how often the word occurred in the BNC. 

For a pair of words such as <college, collage> with dictionary frequencies of 107 and 2 

respectively, it has a high probability of making the correct selection − college accounts for 98% of 

the overall occurrences of this pair of words.  On the other hand, for a high frequency pair such as 

<their, there> where the frequencies are very close − 2772 and 2646 respectively − we would only 

expect it to be correct about half of the time.  Other pairs of words, such as <from (4374), form 

(288)> and <whether (362), weather (58)>, fall between these two extremes.   

This "guesses based on the priors" method is used by Golding and Schabes (1996) to set the 

baseline for assessment of their Tribayes spellchecker.  Their program, like much of the other 

research previously discussed, was tested on correct data and "corrupted" data − data in which a 

correctly spelled confusable was changed to another member of its set.  When errors are artificially 

introduced in this way the correct word will always be a member of the confusion set, which is not 

always the case with real errors as the lose/loss example discussed above shows.   

In the case of lose/loss, the error will be ignored (loss has a higher frequency than lose but it is not 

in the confusion set).  In another example from my corpus, "he shard the people...", where scared is 

the intended word, the error will be flagged as the single word in the confusion set for shard is 

shared.  Shared has the higher frequency but is an incorrect replacement.  There are a number of 
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other similar errors in the corpus.  Many of these are inflection errors − apple in mistake for apples 

for example; others are typos such as bet mistakenly typed for get.  Thus, for real data, we have a 

third possibility which does not occur with artificial errors − that of detecting the error but not 

correcting it.  This can also occur when the confusion set consists of more than two words and one 

of the less frequent words is produced in error for another of the less frequent.  For instance, they're 

is also a member of the {their, there} confusion set.  So, if the spellchecker encountered the 

sentence "There going swimming", where there is an error for they're, it would flag there as an error 

but propose their (the most frequent member of the set) as a correction.   

Apart from the set {their, there, they're}, all of the 18 sets used in the Golding and Schabes (1996) 

experiment (which are similar to the sets used in many of the other experiments previously 

discussed) are pairs of words so the possibility discussed above will never occur. 

A ‘dumb’ spellchecker, simply set to select the highest frequency word whenever it encounters a 

confusion set member in the text, will raise a false alarm for correct usages of less frequent words 

and fail to detect errors when a more frequent word is produced as an error for one of its less 

frequent counterparts.  Despite this, it will make the correct decision in the majority of cases since, 

as Table  7.2 shows, a high proportion (84%) of the correct usages are more frequent confusables 

while the majority of the errors (62%) occur when a less frequent word is produced in error for a 

more frequent.   

 Correct usage Error usage 

More frequent word 4392 84% 242 38% 

Less frequent word 815 16% 398 62% 

Total  5207 100% 631 100% 

Table  7.2: Frequencies for correct and error usage of confusable words in the test data 

However, correctly used confusables form a larger overall proportion of all confusables occurring in 

the text meaning that the number of false alarms raised (815) will outnumber the errors detected 

(398).  In addition, as discussed above, even when the dumb checker does detect an error it will not 
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always manage to correct it.  Table  7.3 shows its performance on the error corpus taking into 

account the three possible outcomes for errors - flag and correct the error, flag but not correct the 

error or ignore the error.  As can be seen, there are 815 false alarms as opposed to 278 errors 

corrected.  This means that if the spellchecker’s suggestion was accepted each time, the text would 

end up containing more errors than it had done to start with which is clearly not helpful. 

Correct usage Error usage 

Accept False 
alarm

Flag & 
correct

Flag not 
correct

Ignore 

4392 815 278 111 242 

Table  7.3: Initial performance of select-the-most-frequent spellchecker 

For the initial run the spellchecker was set to simply select the most frequent word, regardless of 

how much more frequent it was.  However, as we saw earlier, the relative difference in frequencies 

is much greater for some pairs of words than others.  This relative difference in frequency can be 

used to set a confidence level for the spellchecker.  A confidence level of 0.5 is equivalent to simply 

selecting the more frequent word − a word must occur more than 50% of the time if it is more 

frequent than the other member of its pair.  Setting a confidence level of 0.6 would mean that the 

program would not suggest changing the word unless it occurred for more than 60% of the total 

occurrences of the pair, 0.7 would increase this to 70% and so on.   

Successively increasing the confidence level in this way reduces the false alarms but also, of course, 

reduces the number of errors that are corrected.  Table  7.4 shows the effect of increasing the 

confidence level from 0.5 (the default which simply selects the member of the pair with the highest 

frequency in the dictionary) to 0.99.  Even at the maximum level there are still eight false alarms 

and only 12 of the errors are corrected − this small gain in overall 'correctness' is hardly worth 

considering.  Up to the 0.9 level, the false alarms outnumber the errors corrected.   
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 Correct usage Error usage 

Confidence 
Level 

Accept False 
alarm

Flag & 
correct

Flag not 
correct 

Ignore 

0.5 4392 815 278 111 242 

0.6 4638 569 231 96 304 

0.7 4809 398 205 82 344 

0.8 4952 255 182 52 397 

0.9 5057 150 145 32 454 

0.99 5199 8 44 12 575 

Table  7.4: Performance of the ‘select the most frequent’ checker with differing levels of 
confidence 

Although in general the ‘select the most frequent’ method is not an effective way of correcting real-

word errors, it may be appropriate for some pairs where one of the words occurs almost all of the 

time − such as <your, yore> for example. 

7.4 Conclusion 
This chapter has demonstrated that word frequency alone is insufficient for a real-word error 

checker although it is a factor which needs to be included in the spellchecker's overall decision.  

However, measuring performance based on word frequency alone provides a useful baseline against 

which the approaches discussed in the next two chapters can be compared. 
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Chapter 8: A Syntax-based Spellchecker 

Although the confusion set approach is not restricted to correcting syntactic errors, syntax is a 

useful starting point.  A syntax-based method could be expected to have reasonable performance for 

confusable pairs with distinct syntactic tags − {advice, advise} or {from, form}, for example; these 

make up 30% of the pairs in my confusion sets.  It might also have some success where the tagsets 

overlap, such as {loose, lose} where both are verbs but only loose is also an adjective; these account 

for a further 46% of the pairs.  This leaves just 24% that would have to be dealt with in some other 

way. 

It appears that an effective approach may be to use a syntax checker first followed by semantic or 

other processing for the cases where it is unable to make a decision and this is borne out by research 

by Golding and Schabes (1996) which shows that a part-of-speech trigram tag approach 

outperforms their feature-based approach for confusion sets which differ in their parts-of-speech. 

This chapter describes the development of a ‘confusion tagger’ which, in addition to assigning a 

part-of-speech tag to each word in the text, uses the tagging algorithm to select the confusion set 

member with the best syntactic fit.  I will first describe the method used to tag the text and then 

show how this is extended to check confusable words. 

8.1 Assigning tags to words 
For words, such as and or wood, which only have a single part of speech (CJC and NN1 

respectively), the tagging task is trivial − retrieve the tag from the dictionary.  This is the case for 

72% of the 72,000 words in cuvPlus.  The remaining 28% have between two and seven tags each.  

In most cases these multi-tagged words more commonly belong to one word class than another.  

This preference for a particular part-of-speech tag is particularly notable for high frequency words.  

Take can for example.  It occurs far and away most commonly as a modal auxiliary verb (VM0) 

with a dictionary frequency of 1992 per million while occurring only eight times per million as a 
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noun (NN1) and less than once per million with its two verb tags − VVI and VVB.  Short, common 

words such as this − go and do are other examples − are an extreme but the bias is also apparent in 

medium frequency words.  Form, for example, is used more frequently as a noun (281) than as a 

verb (VVI:52, VVB: 34).  How should a part-of-speech tagger decide which tag to assign in these 

cases? 

One approach which has been demonstrated to have a surprisingly high degree of success (Atwell, 

1987) is simply to assign the most frequent tag.  Charniak et al (1993) found that the correct tag was 

selected just over 90% of the time by this method.  However, this is less remarkable than it seems at 

first when we consider that the proportion of times many commonly used words are used with their 

most frequent tag is often higher than this.  From the frequencies given above, for example, we can 

see that can is tagged VM0 99% of the time so choosing VM0 for can will be right nearly all the 

time, but it will clearly fail for a good many ordinary sentences.  It would not, for example, assign a 

noun tag in the sequence “a can of beans” or a verb tag in “to can the fruit”.   

To make a more informed decision the tagger needs to combine the tag information from the 

dictionary with knowledge about the likelihood of particular sequences of tags occurring.  For 

instance, given the information that nouns frequently follow an article it could correctly tag can as a 

noun in the first example above.  Following the approach taken to obtain the tag transition matrix 

used by the CLAWS tagger (Garside (1987); Marshall (1987)), this tag sequence information can be 

captured as tag bigram probabilities derived from a large corpus.  When faced with a choice 

between several tags for a word, the tagger can then use these probabilities to find out how likely 

each tag is to follow the tag of the preceding word and combine this with the probability of the 

word itself occurring with each tag to find which tag is most likely to occur in the context.   

Although just over three-quarters of the words in my dictionary (CUVPlus, Chapter 4) have just one 

tag in their tagset, the proportion of words in running text that have a single tag is much smaller 

than this as many commonly used words have more than one tag.  For example, these single-tag 
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words make up just 44% of the 85,000 words in the first file10 from the FLOB corpus and so can be 

unambiguously tagged.  Of the multi-tagged words, 18% occur sandwiched between two single-tag 

words, 36% in sequences of between two and five multi-tagged words, while the remainder appear 

in sequences of up to 16 multi-tagged words in length.  The longest of these is shown below, 

together with the tagset for each of the words with the tags listed in descending order of frequency. 

...<VBD>was <AJ0,AV0,NN1>deep <NN1,VVI,VVB>concern 
<CJT,DT0,AJ0,AV0>that <AT0,AV0>the <AJ0,AV0>new <NN1,VVB,VVI>plan 
<VM0,NP0,NN1>may <NN1,VVI,VVB>face <AT0,AV0>the <DT0,AJ0,AV0>same 
<NN1,VVB,VVI>fate <CJS,PRP,AV0>as <AV0,AJC>earlier <NN2,VVZ>attempts 
<TO0,PRP,AV0>to <VVI,VVB>bring <NN1>peace... 
 

It should be noted that one of the causes of the exceptional length of this sequence is the inclusion 

of the adverb (AV0) tag for the.  This usage is confined to comparative adjective or adverb phrases 

such as “the more the merrier” and since in the overwhelming majority of cases the functions as an 

article, a tagger will make very few mistakes if it simply assigns an AT0 tag in all cases.  This will 

also reduce the length of the multi-tag sequences and is the approach I have adopted with the tagger 

implemented in this research.  Adverbial usage could then be dealt with as a special ‘idiom tag’ 

although I have not implemented this.   

The tags shown in the sequence above, and used in the rest of this chapter, are from the C5 tagset 

(used for the tagging of the BNC and incorporated into my dictionary as described in Chapter 4).  

For the most part they are fairly mnemonic but for the reader who is unfamiliar with these tags and 

wishes to distinguish accurately between them a complete listing is included in the dictionary 

documentation (Appendix A). 

To decide which tag should be assigned to a word, the tagger needs to find the most likely tag path 

through a multi-tag sequence using the single-tag words as anchors.  For a multi-tag word that 

occurs immediately after one single-tag word and immediately before another, this is a fairly 

                                                      
10 FLOB_A.TXT 
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straightforward process as the number of possibilities to consider is the same as the number of tags 

for the word.  However, longer sequences have many possible paths − for example, there are over 

five million tag paths through the 16 word sequence given above. 

I first explain how the tag bigram probabilities were obtained, and then I describe the tagging 

algorithm in detail. 

8.2 Calculating the tag bigram probabilities 
To calculate the bigram probabilities needed by the tagger, I counted the number of occurrences of 

each tag pair in the written section of the BNC (World Edition).  In this section I describe how these 

counts were used to calculate the conditional probability of each tag occurring given the preceding 

tag and how the resulting probabilities were then smoothed to remove zero values which could 

cause problems for the tagger. 

8.2.1 Tag pair frequency 
There are 61 part-of-speech tags in the C5 tagset used in the BNC, including five punctuation tags 

and the UNC tag assigned to “words that are not properly considered part of the English lexicon.” 

Two sentence delimiter markers − BOS and EOS − were added to these to mark the beginning and 

end of sentences.  Combining these gives a total of 3843 pairs (BOS can only occur as the first 

element and EOS as the last).   

The most frequent pair was <AT0, NN1> (article followed by singular noun) with over four million 

occurrences.  Twelve tags were followed at least once by every other tag but 279 pairs (7% of the 

total possible combinations) did not occur.  The majority of these are grammatically unacceptable − 

for example, auxiliary verb combinations such as VHD (had) followed by VDI (do).   

We can assign a probability estimate to each tag pair by calculating the relative frequency with 

which it occurred in the BNC − the count of each tag pair divided by the total count of tag pairs.  

This is known as the Maximum Likelihood Estimate (MLE) as it maximises the probability 
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weightings given to the tag pairs that did appear in the BNC while assigning a zero weighting to 

those that didn’t.  The PMLE values for the tag pairs are calculated as follows: 

Given 

N  Total count of tag pairs in BNC 

C(ti,tj)  Count of occurrences of tag pair ti,tj 

PMLE(ti,tj) = 
N

ttC ji ),(
 

8.2.2 Conditional tag probabilities 
The probability estimates calculated above tell us how likely a particular pair of tags is to occur (in 

the BNC) - P(ti,tj) - but what the tagger needs to know, in order to assign a tag to a multi-tag word, 

is the likelihood of a particular tag occurring following another tag - P(tj|ti).  This conditional 

probability is calculated by dividing the total occurrences of the pair, C(ti,tj), by the count of 

occurrences for the first tag, C(ti), as follows: 

PMLE (tj|ti) = 
)(

),(

i

ji

tC
ttC

   

Again this is a Maximum Likelihood Estimate so for pairs that did not occur in the BNC the PMLE 

value will be zero.  It would seem reasonable, in a large corpus, to expect that superfluous tag 

combinations would be seen rather than acceptable ones being unseen so we could simply retain the 

zero values, assuming that such sequences would never occur in text or that if they did they were an 

error.  However, this has the potential to cause problems for the tagger as it uses the product of the 

conditional tag pair probabilities to calculate the most likely tag sequence for a sequence of multi-

tag words so retaining these zero frequencies would mean that any tag sequence containing an 

unseen pair would have an overall value of zero.  The solution adopted by the CLAWS tagger is to 
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arrange that “a small positive value is associated with any transition that fails to occur in the 

sample” (Marshall, 1987). 

8.2.3 Smoothing 
There are several smoothing methods that enable us to assign such a small but non-zero value to the 

unseen pairs in such a way that the overall probability for all the tag pairs (seen and unseen) still 

sums to one.  

One simple method is just to add one to all the counts − in other words to pretend that we saw each 

of the pairs once more than we actually did.  This results in the zero count pairs now having a value 

of 1 and we can proceed to calculate the conditional probabilities as above.  As Gale and Church 

(1994) demonstrate, this results in overweighting the unseen pairs.  In a detailed comparison of 

several smoothing methods, Chen and Goodman (1996) suggest that the Good-Turing (Good, 1953) 

smoothing algorithm gives the best results.   

The first stage in Good-Turing smoothing is to group the items (tag pairs in this case) in the dataset 

by frequency r and count the number of items Nr that occurred with each frequency.  For the tag-

pair dataset, N1 = 128 as 128 of the tag pairs occurred just once, N2 = 75 as 75 pairs occurred twice 

and so on.  Table  8.1 shows the first eight and last two of these ‘frequency of frequency’ counts for 

the tag pairs together with the count for the unseen tag pairs, N0 = 279. 

The total number of tag pairs that were seen, N, is calculated as N = Σ rNr.  For this dataset, N = 

104479260. 

Using this notation, the probability for a tag pair occurring with frequency r can be calculated as 

N
rN

rp r=)(  but this is the MLE that was rejected above as it results in p(0) = 0 which is what we 

are trying to avoid.  To overcome this problem, and assign some (small) probability to the unseen 

tag pairs, the Good-Turing process calculates the total probability for unseen objects as N1/N (the 

count of things seen once divided by the total number of things seen).  For this dataset this is 
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calculated as 128/104479260 = 1.225e-06.  This probability ‘mass’ is shared between the 279 

unseen tag pairs as described further below. 

Frequency

r

Frequency of 
frequency

Nr

0 279

1 128

2 75

3 57

4 56

5 42

6 28

7 22

8 48

... ...

4158079 1

4302215 1

Table  8.1: Frequency of frequency counts for tag pairs 

By making this adjustment to the probability of the unseen items we are, in effect, increasing the 

frequency with which we expect them to occur in the future from zero to 0.000001225.  In other 

words, although we don’t expect that we will see these particular tag pairs very often, we are not 

altogether ruling out the possibility of them occurring.  To compensate for this, we also need to 

adjust the frequencies for the tag pairs that were seen by replacing the frequency r with an adjusted 

frequency r*. 

The Turing Estimator, which underlies the Good-Turing smoothing method, calculates r* as: 

r

r

N
Nrr 1)1(* +

+=   where r ≥ 1 

For r = 1, in this dataset, this gives us: 
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1* = 17.1
128
150

128
75x2 ==  

The adjusted r* frequencies calculated in this way for the first eight frequencies r (shown in Table 

 8.1) are given in Table  8.2.   

Frequency

r

Frequency of 
frequency

Nr

Adjusted 
frequency

r* 

1 128 1.17 

2 75 2.28 

3 57 3.93 

4 56 3.75 

5 42 4.00 

6 28 5.50 

7 22 17.45 

8 48 3.94 

Table  8.2: Adjusted frequency r*  

As can be seen from Table  8.2, using the Turing Estimator to calculate r* for small values of r 

seems reasonable (1* and 2* above, for example), but it becomes less reliable as r increases (notably 

7* has a much larger value than we would expect and even 3* seems rather high).  This is because 

although in general as r increases Nr decreases, this relationship does not hold true for all values of r 

− the frequency for N8 is more than double that for N7 in this dataset, for example. In addition, for 

high values of r, many of the Nr are zero meaning that r* calculated in this way would also end up 

with a value of zero (as can be seen from Table  8.1. Nr for all the frequencies 4158080 to 4302214 

is zero in this dataset).  To overcome this limitation, Good proposed using smoothed (r, Nr) values 

for the calculation of r*. 

A simplified version of Good’s rather complex algorithm − Simple Good-Turing − was developed 

by William Gale (Gale and Sampson, 1995).  Code for this is available in a number of programming 



A Syntax-based Spellchecker  

  

  117 

languages from Geoffrey Sampson’s resources on the web (Sampson, 2007).  I used the C program 

downloaded from this website (and reproduced in Appendix B) to smooth the tag pair counts.   

The input to this program is the frequency of frequency counts as shown above (Table  8.1) and the 

output is an estimate of the probability of each of the items (tag pairs) that occurred just once, then 

each that occurred twice, then three times, and so on, as in Table  8.3. 

Frequency Probability 

1 8.977e-09 

2 1.844e-08 

3 2.796e-08 

4 3.75e-08 

5 4.706e-08  

Table  8.3: First five lines of output from Simple Good-Turing frequency estimator 

The smoothing program also gives the estimate of the total probability for the pairs that did not 

occur at all.  This is simply N1/N as described above (1.225e-06 for this dataset).  The smoothing 

algorithm does not suggest how this probability mass should be divided between the non-occurring 

items but I decided simply to divide it equally between the 279 unseen tag pairs.  This seemed a 

reasonable decision as all of them were considered equally unlikely. 

The frequency probabilities output by the program were then assigned to each of the tag pairs that 

had been seen − tag pairs occurring once were assigned the probability 8.977e-09, those occurring 

twice 1.844e-08 and so on.  These smoothed PSGT(ti,tj) probabilities were then used to calculate the 

conditional SGT tag probabilities as follows:  

)(
),(

)|(
iSGT

jiSGT
ijSGT tP

ttP
ttP = .   

Note that although all the zero frequency pairs were initially assigned the same probability value, 

their conditional probability will differ depending on the P(ti) value; unseen pairs where the first 

member of the pair is less frequent overall will have a higher conditional probability than those 
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where the first member is more frequent.  A comparison of the SGT conditional probabilities with 

the MLE estimates for a small sample of tag pairs is shown in Table  8.4. 

Tag pair Count MLE SGT

AT0,NN1 4302215 0.536180264218224 0.536166713869756 

NN2,PNI 995 0.000198174444897446 0.00019815823595266 

VDD,PNQ 1 9.88943610435333e-06 9.27499044105613e-06 

VDB,VDN 0 0 3.89703034634343e-06 

CJS,VDI 0 0 3.85237264879899e-07 

Table  8.4: Comparison of MLE and SGT probability estimates  

As previously described, the Turing Estimator that forms the basis of the smoothing method 

employed here, calculates r* as: 
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Using this formula the value of 1* for this dataset is calculated as 1.17 (Table  8.2).  Using the 

Turing Estimator, the sign of a closed class is 1* > 1 (Gale and Sampson, 1995).  As 1* for this 

dataset is > 1, this suggests that the class of tag pairs is closed, meaning that all allowable pairs have 

been seen and that any unseen tag pairs that do occur are likely to be ungrammatical.  Thus, 

although it is undesirable for them to be assigned a zero probability, a less complex smoothing 

method might have served us just as well.  However, the tagger described in the next section uses 

the SGT smoothed tag-pair probabilities, calculated as described above. 

8.3 The tagging algorithm 
8.3.1 Calculating tag sequence probabilities  
The tagger initially assigns the tag retrieved from the dictionary to all single-tag words.  These will 

form the start and end points of sequences of one or more multi-tag words.  To assign tags to the 

multi-tag words, the tagger selects the tags on the maximum probability path through the sequence.  

To calculate the probability of a given tag for a word on a particular tag path it retrieves the 
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conditional tag bigram probability for that tag occurring following the tag assigned to the previous 

word on that path and multiplies it by the probability of the word occurring with that tag.  The 

product of these probabilities gives the overall probability for the complete path.  This is calculated 

as follows: 

 T(w1,n) = )|()|( 1
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maxarg
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twtt iii
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The point to note in this equation is the way in which the tag probability for each word is calculated 

(the final term of the equation).  Initially it might seem that we should condition the tag on the word 

by calculating the relative frequency of each of its tags − in other words, to ask, “Now that we’ve 

come across this particular word in the text, what is the likelihood of each of its tags occurring?”  In 

this case the final term of the equation would be P(ti|wi) which is the value that has been used by 

some taggers.  But the equation above uses P(wi|ti).  In a comparison of the two approaches, 

Charniak et al. (1993) report better performance using the equation given above which they 

describe as “more theoretically pure” (assuming tagging is regarded as a Markov process).  In this 

case we are conditioning the word on the tag by asking, “If we assign this particular tag, what is the 

likelihood of this word occurring with it?”  This method also seems more appropriate when, in 

addition to assigning tags, we want the tagger to decide between words, as we later shall (Section 

 8.4).  The P(wi|ti) values are calculated as: 
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where C(wi,ti) is the count of the number of times word wi occurred with tag ti 

 and C(ti) is the total occurrences of the tag ti with any word. 

8.3.2 A tagging example 
The tagging process is easiest to understand if we use an example. Take the three word sentence: 
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They can fly. 

 

The tagger has already assigned tags to the single-tag words and as the first word in this sentence − 

They − has just one tag − PNP − this becomes the anchor tag at the start of the multi-tag sequence 

can fly.  As the sentence ends with a multi-tag word, the anchor tag at the end of the sequence is the 

EOS tag that is appended to the end of each sentence. 

The tagger now retrieves the entry for can from the dictionary together with the frequencies for 

each of its tags − VM0, NN1, VVB, VVI.  The VVB and VVI tags for can occurred less than once 

per million in the BNC and since frequencies are stored in the dictionary as occurrences per million, 

this means that the tag frequency recorded in the dictionary for these tags is zero.  These zero 

values, along with the minus-one frequencies which were assigned to the words which occurred 

once, twice or not at all in the BNC, create problems when it comes to calculating the word-tag 

probabilities.  A useful modification to the dictionary would be to make these values more fine-

grained at lower frequencies and possibly to use a smoothing algorithm to assign a value to the 

unseen words or, alternatively, just to store the raw frequencies.  However, this is a task to put on 

the dictionary wish-list and for the moment the program has to cope somehow with these 0 and -1 

values.  The solution adopted was to assign values of 0.5 and 0.01 to them respectively at run-time. 

After adjusting the tag frequencies in this way, the program continues to consider which of the four 

tags for can is most likely to occur following a PNP tag.  It first calculates the P(can|tag) values for 

each tag.  These values are then scaled by dividing by the total of the P(can|tag) values.  Although 

this step is not strictly necessary mathematically, we are interested in proportions rather than actual 

values at this point and this has the advantage of making the numbers larger and easier to check 

visually. 
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The program next retrieves the bigram frequencies which give the likelihood of each tag following 

the preceding tag.  Multiplying these by the word-tag probabilities calculated above gives the 

probability value for each tag occurring in this context.   

A final stage calculates the overall probability of the sequence up to this point by multiplying this 

value by the overall probability for the sequence of tags that preceded it − this will be 1 for the first 

tag in the sequence.  The complete calculation (illustrated in Table  8.5) for each of the tags of can 

following the PNP tag at the start of the sequence is thus:  

P(can|tag) * P(tag|PNP) * 1.   

Tag Count 
(tag,can) 

Count(tag) P(can|tag) Scaled 

P(can|tag)

P 
(tag|PNP) 

P(tag|PNP) * 
P(can|tag)

VM0 1992 12410 0.1605 0.999 0.1223 0.1222 

NN1 8 158095 5.0602e-005 0.0003 0.0021 6.6729e-007 

VVB 0 (0.5) 13447 3.7183e-005 0.0002 0.0785 1.8172e-005 

VVI 0 (0.5) 24925 2.0060e-005 0.0001 0.0183 2.2861e-006 

Table  8.5: Calculating the probability for can following PNP 

8.3.3 Calculating the sequence probability 
At this point the tagger could fairly confidently assign a VM0 tag to can but since it wants to find 

the most likely path through the complete sequence of multi-tag words it will not make a final 

decision until it has reached the end of the sequence.  With a short sequence, such as the one we are 

considering here which has 16 possible paths (four tags for can followed by four tags for fly), it 

would be possible to calculate the probabilities for each sequence and then select the one with the 

maximum value.  However, as noted previously, many sequences will be much longer than this and 

have many more possible paths.  What the tagger needs to do is consider the continuation of the 

most likely sequence at each point while at the same time having the possibility to backtrack to the 

previous word should that sequence seem unproductive. 
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As it progresses through the sequence, the tagger stores the path probabilities it has calculated and 

selects the maximum it has seen so far.  It calculates the probabilities for each tag of the succeeding 

word continuing this path (as described above) and also stores them.  If the probability for one of 

these new paths is greater than the probability of any of the other paths previously stored, the tagger 

will continue that path, otherwise it will select the most likely of the previously stored paths for 

continuation.  Thus at each stage the program needs to do two things: select the most likely path so 

far and store the newly calculated probabilities for its continuation.  It would be possible to do this 

by storing the path probabilities in a sorted array but this would require a large sorting overhead 

each time new paths were added and would not be practical for long sequences.  However, provided 

we have a mechanism for ensuring that the most likely sequence is always in first place, we are not 

concerned what order the other paths are stored in.  What is required is a priority queue, and this 

can be implemented efficiently using a binary heap (Knuth, 1973).  This functions in a similar way 

to an ordered binary tree except that the only ordering requirement for the heap is that each parent 

node has a higher value than each of its child nodes but no order is specified between siblings.  It 

can thus be stored simply in a one-dimensional array and each element's array index value can be 

used to find the position of its parent or child nodes as shown below: 

parent node = (i -1) /2 

left child = 2 * i + 1 

right child = 2 * i + 2 

Thus the children of the first element in the array (index 0) are at indices 1 and 2, the children of the 

element at index 1 are 3 and 4 and so on.   

The array is maintained in heap order by moving elements up or down as necessary.  When the 

element with the maximum value is to be extracted from the top of the heap, it cannot simply be 

removed as its largest child may not be the maximum value on the heap.  To maintain the array in 
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heap order when the first element is removed, it is replaced with the tail element which is then 

moved downwards into its correct position.  When new elements are added they are pushed on to 

the end of the array and then moved upwards if they have a greater probability than their parent 

node. 

The tagger stores the sequence probabilities on a heap as described above.  It continues to remove 

the maximum path so far and store the probabilities for paths continuing from that point until it 

reaches the end of the sequence for one possible path and this sequence has the highest value on the 

heap.  At this point the tagger terminates and assigns the tags on this path to the words in the 

sequence.  This is easiest to understand if we continue with our example. 

To tag the complete sentence “They can fly”, the program first stores the values calculated above on 

the heap as shown in Table  8.6 

Heap element Probability 

<PNP>they <VM0>can 0.1222 

<PNP>they <VVB>can 1.8173e-005 

<PNP>they <NN1>can 6.6729e-007 

<PNP>they <VVI>can 2.2861e-006 

Table  8.6: Heap storing probabilities for tags of can following PNP 

It next calculates the probability for each tag of the next word − fly − following a VM0 tag.  These 

calculations are given in Table  8.7. 

Tag Count 
(tag|fly) 

Count 
(tag)

P(fly|tag) Normalised 

P(fly|tag) 

P(tag|VM0) P(tag|VM0) 
* P(fly|tag) 

VVI 22 24925 0.0008 0.5726 0.3760 0.2153 

NN1 9 158095 5.6928e-005 0.0369 0.0017 6.4668e-005 

VVB 8 13446 0.0006 0.3859 2.4648e-05 9.5126e-006 

AJ0 0 (0.5) 71416 7.0012e-006 0.0045 0.0007 3.1918e-006 

Table  8.7: Calculating the probabilities for each tag of fly following VM0 
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The tag probabilities calculated above are then combined with the previously calculated probability 

for the sequence ending with the VM0 tag (0.1222) and the new sequence probabilities stored on 

the heap as shown in Table  8.8. 

Heap element Probability 

<PNP>they <VM0>can <VVI>fly 0.0263 

<PNP>they <VVI>can 2.2861e-006 

<PNP>they <VVB>can 1.8173e-005 

<PNP>they <VM0>can <AJ0>fly 3.9009e-007 

<PNP>they <VM0>can <VVB>fly 1.1626e-006 

<PNP>they <NN1>can 6.6729e-007 

<PNP>they <VM0>can <NN1>fly 7.9035e-006 

Table  8.8: Heap after storing probabilities for each tag of fly following VM0  
(new elements added to heap shown in bold) 

Although the top element of the heap now contains the complete sentence, because the last word − 

fly − was multi-tag the program appends the EOS tag to the end of the sequence and retrieves the 

P(EOS|VVI) − (0.0016) − bigram probability.  It then calculates the probability of EOS following 

VVI, multiplies this by the probability of the sequence ending in VVI and stores this on the heap.  

As shown in Table  8.9, this probability is still higher than the other sequence probabilities already 

on the heap so this is the final sequence with the maximum path and is used to assign the tags.  As 

the final heap in Table  8.9 shows, only seven of the total 16 possible sequences were ever 

considered. 

One of the features of calculating sequence probabilities in this way is that the overall probability 

decreases with the length of the sequence.  Because the sequence considered above was short (and 

also partly because the VM0 probability at the start was so high) we have been able to reach the end 

without having to consider many of the sequences that were assigned a low probability at the outset.  

With longer sequences these less favoured initial sequences will gradually work their way to the top 

as their probability becomes greater than that for the longer sequences that have already been 
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considered.  To reduce the overhead involved in considering sequences that were unlikely to be 

productive, I stored the maximum position reached in the sequence in any expansion and discarded 

the element at the top of the heap if it was more than one word behind. 

Heap element Probability 

<PNP>they <VM0>can <VVI>fly <EOS> 4.1678e-005 

<PNP>they <VVI>can 2.2861e-006 

<PNP>they <VVB>can 1.8173e-005 

<PNP>they <VM0>can <AJ0>fly 3.9009e-007 

<PNP>they <VM0>can <VVB>fly 1.1626e-006 

<PNP>they <NN1>can 6.6729e-007 

<PNP>they <VM0>can <NN1>fly 7.9035e-006 

Table  8.9: The final heap showing the maximum path through the sequence in top position 

In the example above, the tagger correctly assigns a VM0 tag to can but we have gone to a lot of 

effort to achieve the same result that the simple ‘select the most frequent tag’ method would have 

given us.  To assess whether this is worthwhile we need to know whether it correctly assigns an 

NN1 tag to can in “a can of beans”.  The extracts from the tagging process shown below 

demonstrate that this is the case.  As all the letters of the alphabet have entries in the dictionary 

there are two possibilities for the tagging of A at the start of the sequence, ZZ0 (singular letter) or 

AT0 (article).  Table  8.10 shows the heap after calculation of the probability for each of these tags 

occurring at the start of a sentence.  As would be expected, AT0 is the preferred tag. 

Heap element Probability 

<BOS>  <AT0>A  0.0175 

<BOS>  <ZZ0>A 0.0016 

Table  8.10: Heap with probabilities for A occurring at the start of a sentence 

The tagger now calculates the likelihood of each of the tags of can following AT0.  This is shown in 

Table  8.11.  (The calculation of the P(can|tag) values is the same as that given above and so has 

been omitted from this table.)  This time we see that, despite the high probability initially assigned 
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to the VM0 tag for can, the high probability of a noun occurring after an article makes NN1 the 

preferred tag in this context.  However, in this case, the overall probability for the two word 

sequence (as shown in the last column of Table  8.11) is lower than for the initial sequence starting 

with the ZZ0 tag.  This is now extracted and the tagger has to go through several more iterations 

before finally assigning the NN1 tag to can. 

Tag Normalised

P(can|tag) 

P(tag|AT0) P(tag|AT0) 
* P(can|tag) 

* P(sequence) 

VM0 0.999 1.7811e-05 1.7799e-005 1.272.e-006 

NN1 0.0003 0.5362 0.0002 1.2087e-005 

VVB 0.0002 0.0003 6.7970e-008 4.8638e-009 

VVI 0.0001 2.4009e-07 2.9985e-011 2.1457e-012 

Table  8.11: Calculation of the probability of each of the tags of can following AT0 

8.3.4 Tagger assessment 
The tagger implemented in this program is relatively unsophisticated; tagging is a more exact 

science than the preceding description might imply.  But although the aim of this research was to 

correct spelling rather than to produce a state-of-the-art tagger, I needed to check that it was fit for 

the purpose before proceeding further.  

The initial impression, from a visual examination of tagged text output by my tagger, suggested that 

the tags it assigned were reasonable but I needed to assess its adequacy more formally before 

extending it to incorporate checking for syntactic real-word errors (as described in the next section).  

It should be noted, at this point, that this assessment was intended simply to confirm (or otherwise) 

the tagger’s suitability for use by my spellchecker, not to enable me to make claims as to its tagging 

accuracy. 

Although it would have been a relatively straightforward matter to run the tagger over a portion of 

the BNC and compare the tags output by my tagger with those assigned to words in the corpus, this 

would not have been a very realistic test as, since the tag bigram probabilities used by the tagger 
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were derived from the BNC, it would have amounted to testing on the training data.  To avoid this 

circularity, I used the tagged version of the LOB corpus (Johansson et al. 1986), included on the 

ICAME (1999) CD, to test the tagger.  This corpus was compiled by researchers from the 

University of Lancaster, the University of Oslo and the Norwegian Computing Centre for the 

Humanities, Bergen in the early 1980s.  It contains approximately a million words made up of 500 

text samples, representing a broad range of British English from 1961. 

The tagset used in the LOB corpus (Appendix D) differs from the BNC tagset; not only are the tags 

themselves different but there are also more tags – excluding punctuation tags there are 139 part-of-

speech tags in the LOB tagset compared to just 56 in the C5 tagset used in the BNC.  Despite these 

differences, it was possible to produce a mapping between the two tagsets that was adequate to 

compare the tagged output from my tagger with the tags in the original corpus. 

I ran the tagger over a LOB file (LOBTH_A.TXT), containing approximately eighty-seven 

thousand words, and compared the tag it assigned to each word to the tag recorded for that word in 

the corpus.  (As the LOB corpus has been manually post-edited to correct errors made by the 

automatic tagger, it is reasonable to assume that the tags it contains are correct.)  Appendix E shows 

a comparative listing, in vertical format, of the first ten sentences in this file comparing the tags 

output by my tagger with the LOB tags and Appendix F shows the number of words in the file that 

were assigned each tag, the number of correct assignments and the number of discrepancies.  As the 

table shows, the tags selected by my program mapped to the corresponding LOB tag for just over 

94% of the words in the file.  Around a quarter of the discrepancies were proper nouns or single 

letters, possibly caused by the text segmenter making an incorrect decision for words with initial 

capitals, and a small proportion may be due to mismatches between the tagsets or inaccuracies in 

the mapping between them (the distinction between pronouns and determiners, for example).  

Others appeared to be incorrect tagging decisions.  These were often cases where a tagger might be 
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expected to encounter difficulties − incorrectly selecting between nouns and adjectives or past tense 

and past participle, for example. 

Although this small experiment suggested that some refinement might improve the efficiency of the 

tagger, the performance level seemed reasonable enough for me to continue to the next stage of 

development. 

8.4 The Confusion Tagger 
8.4.1 Implementation 
The ‘confusion tagger’ is an extension of the part-of-speech tagger described above, but this time, if 

it encounters a confusable word in the text, the program decides on the most likely tag at that point 

based on the tags for the word it has seen together with the tags for its associated confusion set 

words.  If the tag selected is more likely to belong to one of the other confusion set members, the 

word is flagged as an error and the preferred member proposed as a correction. 

For example, if it encounters the sequence “...he wood rather...” (where wood is a misspelling of 

would) it finds that wood has an associated confusion set containing would and wooed.  If the 

program was just tagging, wood would be regarded as unambiguous since it only has one tag − NN1 

− and the program would simply assign PNP, NN1 and AV0 to each of the words respectively.  

However, the confusion tagger will consider whether one of wood’s confusables is a better syntactic 

fit.  To do this it proceeds in much the same way as the tagger described above except that it 

calculates the P(word|tag) probabilities for each <word, tag> pair in the confusion set and scales by 

the overall probability for the confusion set.  Table  8.12 shows these calculations. 
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<Word,Tag> Count 
(tag|word) 

Count(tag) P(word|tag) Scaled 

P(word|tag)

P(tag|PNP) P(tag|PNP) 
* 
P(word|tag)

wood NN1 52 158095 0.0003 0.0017 0.0021 3.7185e-006 

would VM0 2320 12410 0.1869 0.9978 0.1223 0.1220 

would VVD 0.5 23440 2.1330e-005 0.0001 0.1717 1.9549e-008 

wooed VVN 1 25744 3.8843e-005 0.0002 0.0024 5.0656e-007 

wooed VVD 0.5 23440 2.1330e-005 0.0001 0.1717 1.9549e-005 

Table  8.12: Calculations for probability of each tag for wood and confusables following PNP 

The probability values in the last column of Table  8.12 are now stored on the heap as shown in 

Table  8.13.  This shows that a VM0 tag is much more likely than an NN1 to occur following a PNP 

tag.  The sequence <PNP>He <VM0>would with its associated probability of 0.1220 is extracted 

from the top of the heap and the probability of an AV0 tag (the single tag for rather) is calculated.  

The bigram probability P(AV0|VM0) is 0.1036.  This gives a probability of 0.0126 for the sequence 

<PNP>He <VM0>would <AV0>rather.  Since this is higher than any of the other sequences 

previously stored on the heap it will appear in the top position again and the confusion tagger will 

conclude that the word intended in this context is would rather than wood and offer this as a 

suggested correction. 

Heap element Probability 

<PNP>He <VM0>would 0.1220 

<PNP>He <VVD>wooed 1.9549e-005 

<PNP>He <NN1>wood 3.7185e-006 

<PNP>He <VVD>would 1.9549e-008 

<PNP>He <VVN>wooed 5.0656e-007 

Table  8.13: Heap storing probability of each <word, tag> pair occurring after PNP 

8.4.2 Performance 
Although a syntax-based approach can generally be expected to make a decision only when the 

confusables differ in their parts-of-speech, the confusion tagger will sometimes make a choice 

between two same-tag confusables. This is because the confusion tagger is conditioning the word 
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on the tag so it will pick the word in the set that occurs most frequently with its selected part-of-

speech.  This means, for example, that it would correct planed to planned in this fragment from the 

error corpus. Both are past participles but planned has a higher past participle frequency (36) than 

planed (0). 

“...a rewrite of the monitor was planed.” 

 

This is fortuitous rather than intentional and the poor performance of the ‘select the most frequent’ 

method discussed in the previous chapter suggests that it is unlikely to be a particularly useful 

feature.  Both planed and planned can also be tagged as past tense verbs and adjectives but planned 

is used most frequently in all cases so the confusion tagger will make the same selection as 'select 

the most frequent' for this pair of words, whichever tag it assigns.  The situation is slightly different 

for words with overlapping tagsets such as the {loose, lose} example given at the start of this 

chapter.  Lose has a higher overall frequency and so 'select the most frequent' will always prefer it - 

changing all correct usages of loose to lose and ignoring all error usages of lose.  The confusion 

tagger will also prefer lose when it wants to assign a verb tag − it will correct the error usage of 

loose in "to loose speed" but raise a false alarm for a correct usage such as "to loose them off".  

(Both the preceding examples are taken from the BNC.)  However, if its selected tag is adjective, 

adverb or noun it will prefer loose since these tags are unique to loose.  Thus if it came across "a 

lose fit" it would propose loose as a correction rather than ignoring the error as the 'select the most 

frequent' method would do.  Conversely, if the usage was correct − "a loose fit" − the confusion 

tagger would accept it rather than raising a false alarm.   

On balance, it would seem best to set the confusion tagger so that it only suggests a correction when 

its selected tag is not in the tagset of the word appearing in the text.  Decisions for words with 

matching tags can be left to the semantic checker (described in the next chapter).  Thus for the 

planed/planned example above, where the tagsets are identical, the error would simply be ignored 



A Syntax-based Spellchecker  

  

  131 

by the syntax checker (and a correct usage of planed in for example, “the wood was planed”, would 

be accepted if it happened to occur in the corpus). 

The possible outcomes from the syntax checking stage for correctly used confusables are:  

• accept the word as correct;  

• flag it as an error (thus raising a false alarm).  

The possible outcomes for errors are:  

• flag and correct the error;  

• flag but not correct the error;  

• ignore the error.   

Table  8.14 shows the number of correct and error usages of the confusables falling into each of the 

categories above when the syntax checker (set to ignore syntactically matching confusables as 

described above) was run over the dyslexic error corpus.  The initial run of the program, shown in 

the first row of the table assigned the full probability value to all <word, tag> combinations in the 

confusion set.  This means that if one of the confusables was judged to have a higher probability 

than the word in the original text, even if only fractionally higher, it was proposed as a correction.  

Although this corrected around half of the errors (column c) while raising a false alarm for just 7% 

of the correctly used confusables (column b), the overall effect was negative, since the correct 

usages greatly outnumber the errors.  Eighty-nine percent of all occurrences of the confusables in 

the error corpus are correct usages (Table 7.1) so the number of false alarms outnumbers the errors 

corrected meaning that, if the spellchecker’s suggestion was accepted each time, there would be an 

overall increase in the number of errors in the text.  Column f shows the number of errors remaining 

in the text − the sum of the false alarms, the ignored errors and the errors that were flagged but 

miscorrected.  Subtracting this from the total of errors that were in the text to start with (644 in this 

case) gives us a figure for the reduction in the total number of errors in the text (column g).  For the 

initial run with the full weighting for each word in a confusion set, this figure is negative indicating 
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that the text now contains 46 more errors than it had done to start with.  Column h shows the 

percentage ‘improvement’ in the text − the errors remaining as a proportion of the original errors.  

This shows that after the initial run there was a 7% decrease in the accuracy of the text. 

Words appearing in the text are much more likely to be correctly spelled than they are to be errors, 

and we can factor in this general expectation by handicapping the alternative confusion set members 

by reducing the weighting given to the words not appearing in the text.  The remaining rows of the 

table show the results of successively reducing this weighting from 50% down to 0.01%.  This is 

also shown graphically in Fig.  8.1. 

 Correct Usage 

(5209) 

Error Usage 

(644) 

Improvement 

Handicap 
level 

Accept 
 
 

a 

False 
alarm

b

Flag & 
correct

c

Flag not 
correct

d

Ignore

e

Errors 
remaining 

(b+d+e) 

f 

Error 
reduction
(644 – f) 

g

Imprvt 
% 
 

h

1 4843 366 320 63 261 690 -46 -7%

0.5 4956 253 313 51 280 584 60 9%

0.1 5100 109 281 35 328 472 172 27%

0.05 5135 74 267 32 345 451 193 30%

0.01 5189 20 218 24 402 446 198 31%

0.005 5198 11 195 18 431 460 184 29%

0.001 5206 3 139 10 495 508 136 21%

Table  8.14: Syntax checker performance with different weightings  

Reducing the weighting in this way means that the program is more likely to accept the word 

appearing in the text as correct.  Although this will have the desired effect of reducing the number 

of false alarms, it will, of course, also reduce the number of errors corrected.  However, as Table 

 8.14 shows, the rate of decrease for the false alarms is greater than that for the errors corrected.  

With the level of handicap set at 0.5 there is a small overall improvement in the text but the number 

of false alarms (253) is still unacceptably high.  At the maximum level of handicap (0.001) there are 

just three false alarms and 22% of the errors are corrected.  However, the greatest overall 
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improvement in the text is achieved with the handicap set at 0.01 with 34% of the errors corrected 

at the expense of 20 false alarms (0.4% of the correctly used confusables).  This level thus seems to 

offer the best balance between maximizing error correction while reducing false alarms. 
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Fig.  8.1: Performance of syntax checker with different levels of handicap 
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8.5 Conclusion 
This chapter has described the implementation of a syntax-based spellchecker that is able to correct 

errors where the error and target differ in their part-of-speech.  With a reduced weighting given to 

the alternative words − effectively confining the spellchecker to proposing a correction only when it 

was confident about it − the program was able to correct around a third of the errors appearing in 

the dyslexic error corpus while producing few false alarms.  Experimenting with different levels of 

‘handicap’ suggested that 0.01 was the optimum level to achieve a balance between maximizing 

error correction and minimizing false alarms to obtain the best overall improvement in the 

‘correctness’ of the text. 

The syntax checker described in this chapter was set to ignore confusables where the alternative 

word(s) had the same part-of-speech as the word appearing in the text; such words were simply 

flagged for later consideration by the semantic checker, described in the next chapter.  The effect of 

this is that correctly used ‘semantic’ confusables are accepted by the syntax checker, thus 

contributing to the total of correct usages accepted (column a, Table  8.14), while error usages are 

ignored, thus contributing to the total of ignored errors (column e, Table  8.14).  In addition to 

flagging the semantic confusables for which it is unable to make a decision, the syntax checker also 

assigns a part-of-speech tag to each word in the text.  These tagged sentences are then passed to the 

semantic checker, described in the next chapter.   
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Chapter 9: Using Semantic Associations 

After the syntax checker has run over the text, all the words have been assigned a part of speech and 

some errors have been corrected.  The confusion tagger, as described in the previous chapter, 

considers not only the part-of-speech tags associated with the word it has encountered in the text but 

also the tags of any words that are considered confusable with it.  If the most likely tag in the 

context belongs to one of these alternative words and not to the word that was seen in the text, it 

will propose a correction.  On the other hand, if the selected tag belongs to the word that was seen 

in the text, the syntax checker can only accept the word as correct if the tag does not also belong to 

one of its confusables.  If the word and one or more of its confusables have the tag in common, the 

syntax checker can either be set to select the word that occurs most frequently with that part-of-

speech or to make no decision at all.  The first of these approaches may be appropriate where the 

decision is between a word that is rare and one that is highly common, such as the pair {wold, 

world}, but, as shown in Chapter 7, it will result in an unacceptable number of false alarms in cases 

where both confusables are relatively common.  The second approach is simply to flag such cases 

as confusable and leave them for consideration by a later stage of processing.  This is the approach 

taken here. 

At the end of the syntax checking stage, confusables with distinct tagsets have either been accepted 

as correct or flagged as errors and will not be considered further.  Confusables with overlapping 

tagsets, such as {loose, lose}, will also have been checked.  However, in this case the syntax 

checker will only have made a decision if its selected part-of-speech is unique to one of the words; 

if the words have the tag in common, the final decision will be left to the semantic checker.  Thus, 

for example, in the sequence "a lose fit", the confusion tagger would consider all the tags for both 

lose and loose and assign an adjective tag.  Since this is not in the tagset for lose, it would at the 

same time correct lose to loose; there would be no need for the semantic checker to consider the 

pair further.  On the other hand, the confusion tagger would select a verb tag in the sequence "to 
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loose speed" and leave it up to the semantic checker to decide whether loose or lose was the more 

appropriate verb in the context.  Confusables with matching tagsets are dealt with in a similar way; 

the confusion tagger assigns a tag based on the word seen in the text and leaves the semantic 

checker to decide whether this word or one of its confusables is the intended word.  So, for example 

in the sentence "She wrote the appointment in her dairy," the confusion tagger would find that dairy 

was confusable with diary but as both are nouns it would simply assign a noun tag and flag the 

possible confusion for later consideration by the semantic checker. 

In this example, both the verb − write − and the noun − appointment − suggest to a human reader 

that diary rather than dairy is the intended word.  How can we capture these semantic clues in a way 

that can be used by the spellchecker?  This chapter describes an approach using noun co-

occurrence. 

9.1 The proposed approach 
A listing of the nouns that co-occur frequently in the vicinity of a confusable in a large corpus will 

generally demonstrate a distinct semantic ‘flavour’.  To illustrate using {dairy, diary}, nouns 

occurring frequently in the BNC near to dairy include product, farmer, cow whereas those 

occurring near to diary include entry, appointment, engagement.  However, lists such as these can 

not in themselves be used by a spellchecker to differentiate between the confusables; the lists will 

be very long and many of the nouns will occur infrequently.  Just over 450 different nouns occur 

within two words of diary in the BNC; only 18 of these occur ten or more times while appointment 

and engagement occur just five and six times respectively.  Over 280 of the nouns occur just once 

and, although many of them have no particular relationship to diary, some of these once-only co-

occurrences, such as chronicle, meeting, schedule, have a distinctly diary feel to them.  In contrast, 

some words that seem to fit naturally into this category, such as rota, do not appear at all.  We need 

to capture this similarity by grouping the nouns and giving an overall score for the group to indicate 

that a word belonging to it is more likely to appear in the vicinity of diary than dairy.  Armed with 



Using Semantic Associations  

  

  138 

this information, when the spellchecker checks a text and encounters say dairy it can assess whether 

the nouns that occur in the vicinity belong in the dairy or diary group.  If they clearly fit in the 

latter, it can propose a correction. 

The approach developed in this research uses WordNet to create such groups for the members of 

my confusion sets using the nouns that occur in the vicinity of each confusable in the written 

section of the BNC.  This means that in the diary example above, the program would make its 

decision between dairy and diary based on the co-occurring noun appointment although, as noted, 

the verb write might also be helpful in making this decision.  However, the WordNet hierarchy for 

verbs is much broader and shallower than it is for nouns and so does not easily lend itself to 

creating co-occurrence groupings in the way described below for nouns.  For this reason the current 

semantic checker was developed using just noun co-occurrence.  

At run-time, when it encounters one of the confusables, the spellchecker retrieves the nouns from 

the surrounding text, uses WordNet to ascertain which grouping they belong to and then assigns a 

score to each member of the confusion set indicating how closely it associates with these groupings.  

It then decides which member it prefers based on this score.   

9.2 Semantic confusable listing 
Results from an initial experiment (Pedler, 2005), using noun co-occurrence for 20 pairs of 

confusables that were either tagged only as nouns, such as {dairy, diary}, or only as verbs, such as 

{carve, crave}, were reasonably promising. The approach was now scaled-up to deal with a larger 

number of semantic confusables.   

9.2.1 Word pairs 
There were potentially over five thousand pairs of words that could be checked by the semantic 

checker − the confusable listings (discussed in Chapter 5) included 1940 pairs of words with 

matching tagsets and 3606 pairs with some but not all tags in common (Table  5.5).  Although the 

majority of these pairs were nouns or verbs, the list also included a few hundred adjective pairs and 
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around fifty adverb pairs.  Adverbs, by definition, are more closely allied to verbs than nouns and 

although many of them seemed to be the type of error we would like to correct − <sorely, surely>, 

<warily, wearily> for example − they did not seem suitable candidates for the noun co-occurrence 

approach and so were removed from the list. 

9.2.2 Tagged-word pairs 
In contrast to the pairs used for the initial experiment which belonged to a single word class − either 

noun or verb − around a third of the remaining pairs of confusables belonged to more than one word 

class (‘word class’ here being noun, verb or adjective).  The majority of these were both nouns and 

verbs − such as {plan, plane}, about three hundred were both adjectives and verbs − such as {hated, 

heated}, and a few were both adjectives and nouns − such as {patent, patient}.  (In this last example 

the tagsets overlap as patent is also a verb but this possibility will be considered by the syntax 

checker and if it selects a verb tag the pair will not be passed to the semantic checker.)  In addition 

to these pairs with two classes in common there were also three pairs such as {bust, burst} that 

belonged to all three classes − adjective, noun and verb. 

When a word belongs to more than one word class the context and frequency with which it appears 

may differ depending on its class.  Take the pair {plan, plane} for instance, both of which can be 

either a noun or a verb.  Although there is some relationship between the verb plane and the noun 

plane when it refers to a woodworking tool, this is not the case when the noun is used in the 'means 

of transport' sense so we would expect that some nouns that co-occurred with the noun plane would 

not co-occur with the verb.  Additionally, although plane is relatively common as a noun (with a 

dictionary frequency of 36 per million), it has a dictionary frequency of zero for its verb usage.  (A 

dictionary frequency of zero actually means that the word occurred less than 90 times in the BNC as 

the frequencies are per million, as previously described.)  In such a case, combining the noun and 

verb usage would overweight the probability for the verb.   
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Thus rather than simply considering confusable pairs of words, the semantic checker needs to 

consider pairs of tagged-words and store the nouns co-occurring with, for example, {plan(N), 

plane(N)}, separately from those co-occurring with {plan(V), plane(V)}. To enable it to do this, the 

list of confusable pairs was expanded into a list of tagged-word pairs.  

9.2.3 Inflected forms 
Many of the tagged-word pairs were confusable inflected forms. For example, in addition to the 

pairs {spill(N), spell(N)} and {spill(V), spell(V)} the list also included {spills(N), spells(N)}, 

{spills(V), spells(V)}, {spilled(V), spelled(V)} and {spilling(V), spelling(V)}.  When the base form 

of a word is confusable, its inflected forms are also often similarly confusable and likely to produce 

similar spelling errors.  For example, someone who mistakenly records appointments in a dairy 

instead of a diary might also suggest that colleagues consult their dairies. Such inflected forms will 

often occur in similar contexts; for example, we can carve stone and stone is carved; we might eat 

lentil soup or make soup with lentils. 

Based on this observation, such inflected forms of a particular tagged-word pair can be grouped 

together under their base form as a single 'lexeme' pair; the lexeme pair {spill(V), spell(V)}, for 

example, includes the pairs {spills(V), spells(V)}, {spilled(V), spelled(V)} and {spilling(V), 

spelling(V)}.  Nouns co-occurring in the BNC with any of these forms can be stored together as co-

occurrences for the lexeme.  At runtime, when the spellchecker encounters an inflected confusable 

it will use the lexeme co-occurrences to decide which word is the most appropriate in the context 

and choose the corresponding inflected form as the intended word.  So, for example, if it was 

checking “She spelled the water”, it would retrieve the noun co-occurrences associated with the 

lexemes spill(V) and spell(V) and (hopefully) find that water was more likely to co-occur with spill 

than it was with spell and so propose spilled as a correction.  This approach increases the number of 

noun co-occurrences for each confusable and also reduces the number of co-occurrence trees 

required by the spellchecker (Section  9.4.2 below). 
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9.2.4 Low frequency confusables 
The initial experiment had suggested that the proposed approach was unsuitable for low frequency 

confusables.  For example, the pair {wold, world} was considered for inclusion in the initial 

experiment.  However, wold makes up just 0.4% of the total occurrences of the pair {wold, world} 

in the BNC and only 47 nouns co-occur with it.  Some, such as flower and path, seem to relate to 

the dictionary definition of wold as an “(area of) open uncultivated country; down or moor” but 

others, such as bet and rice, seem more puzzling.  Further investigation showed that, in fact, many 

of the occurrences of wold in the BNC are real-word errors as the examples below show:  

“...variety of wold flowers...”  

“...the best bet wold be...”  

“...brown and wold rice...”  

“...my wold as I see it...”  

This suggests that a spellchecker would do best if it always flagged wold as an error.  Indeed, this is 

what MS Word does, suggesting would, world and wild (which would correct the above errors) 

along with weld and wood, as replacements.  Similarly, for the pair {rooster, roster} (also 

considered for the initial experiment) where there are only 25 occurrences for rooster in the BNC 

and just eight co-occurring nouns, there was simply not enough data to generalise from.  These pairs 

were thus excluded from the initial experiment and similar low frequency lexeme pairs which were 

unlikely to be suitable for the semantic association approach were also not considered further.  

9.2.5 The final list 
There were just over two thousand lexemes in the final list (Table  9.1).  Initially it might appear that 

verbs are under-represented as there are over three times as many nouns as there are verbs in this 

final listing.  However, this is to be expected as the base form of each verb can have three inflected 

forms associated with it whereas each noun has only one (plural) inflection.   
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Word class N. lexemes

Noun 1471

Verb 453

Adjective 128

Total  2052

Table  9.1: Number of lexemes for each word class 

9.3 Noun co-occurrence listing 
I now listed all nouns occurring within two words before or after each lexeme in the written section 

of the BNC.  In the majority of cases a human reader presented with the resulting lists would have 

little difficulty in distinguishing between the confusables or in spotting the similarities between 

their respective sets of co-occurring nouns.  For example, the top three co-occurring nouns for carve 

are stone, wood (both materials that can be carved) and knife (a tool that is used for carving).  

Nouns appearing with a lesser frequency further down the list are clearly related (oak, walnut, 

marble, granite, tool, chisel).  The top three for crave are man (both craving and being craved), food 

and success which again bear the same affinity to crave as other words in the list such as people, 

chocolate and attention and are also clearly different from those co-occurring with carve. 

9.4 Co-occurrence grouping 
9.4.1 WordNet relationships 
Nouns in WordNet (Miller et al., 1990) are organised as a lexical hierarchy.  The main 

organisational principle is hyponymy/hypernymy or the ISA relation.  For example, using the co-

occurrences for carve discussed above, oak is a hyponym of wood and granite is a hyponym of 

stone, both wood and stone are hyponyms of material.  Thus both oak and granite are linked 

through their common hypernym material, as illustrated in Fig.  9-1. 
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Fig.  9-1: Hypernym grouping of materials that can be carved 

However, the WordNet hierarchy represents the relationship between word meanings rather than 

word forms, with each node of the hierarchy representing a synset or grouping of synonymous 

words.  A word may be part of several synsets, each representing a different sense in which it can 

be used.  There are a total of 12 senses stored for stone.  Five of these are proper names (e.g. Oliver 

Stone the film-maker) and can be discounted.  The remaining seven are listed below. 

stone, rock (countable, as in “he threw a stone at me”) 

stone, rock (uncountable, as in “stone is abundant in New England”) 

stone (building material) 

gem, gemstone, stone 

stone, pit, endocarp (e.g. cherry stone) 

stone (unit used to measure ... weight) 

stone (lack of feeling...) 

The sense illustrated in Fig.  9-1 is part of the second {stone, rock} synset and appears the most 

likely to occur in the context of carve although all of the first four seem to fit.  However, the 

remaining three do not seem relevant. 

The inclusion of slang and informal usage also presents a problem.  Resnik (1995) reports obtaining 

a high similarity rating for the words horse and tobacco.  On investigating this apparent anomaly he 

found that this had occurred as one of the senses recorded for horse is its slang usage for heroin, 

which means that both words can be used in the sense of narcotics.   

material  

stone  wood 

marble  granite oak  walnut  
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9.4.2 Creating hypernym trees 
We now have lists of words from the BNC that co-occur with, say, carve.  Next we want to identify 

a subtree from WordNet’s main trees where these words tend to cluster.  A subtree in WordNet is a 

group of synsets that have a common hypernym.  Since a word can have several senses and 

therefore appear in several places in WordNet, and since it was not possible to know in advance 

which senses best related to their co-occurring confusable, I retained all senses (apart from proper 

nouns or slang) of the co-occurring nouns in the initial hypernym trees.  The assumption was that 

the most relevant ones would gather together while the others would appear in sparsely populated 

sections of the tree and could later be removed. Fig.  9-2 and Fig.  9-3 show the final sections of the 

tree for two of the senses of stone discussed above.   

Fig.  9-2 shows that not only did the word stone itself occur with carve in the BNC, but so did 

sandstone, granite, marble and limestone, all hyponym senses of one sense of stone, similarly oak, 

walnut etc. are all hyponym senses of one sense of wood.  The material node is included since it is 

the hypernym of both stone and wood and therefore of a subtree of WordNet that seems to go with 

Fig.  9-2: Section of WordNet tree for stone#2 

Fig.  9-3: Section of WordNet tree for {stone, pit, endocarp} 
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carve.  (The word material itself does not actually occur with carve in the BNC, though it obviously 

could do.)  

By contrast, no words related to the cherry-stone meaning of stone co-occurred with carve − neither 

words in the same synset (pit, endocarp) nor words in the synsets of any of its hypernyms (pericarp 

etc.) − so this meaning of stone was left as a leaf node at the end of a long branch of isolated 

hypernyms (Fig.  9-3).  This branch of the WordNet tree does not appear to go with carve and can 

now be pruned from the carve tree. 

Continuing with the stone example, we have discarded three senses − those of cherry stone, weight 

and feeling − leaving four which seem likely co-occurrences − two types of rock, building material 

and gemstone.  The word stone occurred 74 times in the vicinity of carve in the BNC.  We do not 

know which of the remaining four senses of stone was involved in each of these occurrences, so we 

divide the 74 by four giving each of these nodes a ‘word count’ of 19 (rounded to the nearest whole 

number). 

For a hypernym node however, we want its count to represent how often any of the words in its 

subtree occurred with the confusable.  I therefore summed all the ‘word counts’ (i.e. the counts 

adjusted in the way just described) for all the words in the subtree and added these to the word 

count for the hypernym node itself. 

Hypernym nodes at higher levels of the tree tend to represent generalised concepts.  The node for 

entity, for example, is retained in the carve tree not because the word entity itself occurred with 

carve but because many of the words in its subtree did.  For this reason the initial word count for 

such nodes will often be zero but as the word counts are propagated up the tree they will accumulate 

the word counts of all their hyponym nodes.   

The final stage in creating a hypernym tree was to convert each of the adjusted word counts to a 

probability.  The probability of each hypernym occurring in the vicinity of a particular confusable is 
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calculated by dividing its word count by the total word count for the tree − i.e. the count stored in 

the root node of the tree (1714 in the case of carve). 

Fig.  9-4 illustrates this process for the material section of the carve tree.  Each node shows the 

initial word count for the hypernym with the summed word counts (rounded to the nearest whole 

number) in parentheses together with the resulting probability.  For example, stone (sense 2) has its 

own word count of 19; to this is added the word counts of granite, marble etc., giving 39.  Divided 

by the 1714 co-occurrences for carve, this gives a probability of 0.02.  As can be seen, the 

hypernyms material, substance and entity start with an initial word count of zero and then 

accumulate the word counts of all their hyponym nodes.  (These word counts cannot be extrapolated 

directly from the diagram as not all the hyponym nodes are shown.)  As would be expected, the 

number of co-occurrences (and correspondingly the likelihood of encountering the hypernym or one 

of its hyponyms) increases as the concepts represented become more general at the higher levels of 

the tree. 

What these figures tell us, in general terms, is that there is a certain probability of encountering, say, 

granite, close to carve, a higher one of encountering any sort of stone, a yet higher one of 

encountering some kind of material, and so on.  The nodes at the higher levels of the tree are too 

generalised to capture the similarity between the nouns co-occurring with a particular confusable: 

substance, for example, is a hypernym of both stone (which is often carved) and food (which is 

often craved) and so unlikely to be helpful in making a distinction between carve and crave.  

Conversely, nodes at the lower levels are too specific; although many different types of stone co-

occurred with carve in the BNC (Fig.  9-2) there may be others that could equally well be carved but 

did not appear in the BNC.  We are more interested in the frequency with which the some type of 

stone co-occurred with carve than the frequency with which specific types of stone occurred. To 

capture the level of generality that seemed most useful for the spellchecker, the branches of the 
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hypernym trees stored for use at run-time were truncated at level 4. Thus for the tree illustrated in 

Fig.  9-4, stone and wood become leaf nodes. 

Fig.  9-4: Summed word counts and hypernym probabilities for section of carve tree 

The hypernym trees created for each individual lexeme were written to file.  The program then uses 

an index to this file to retrieve the trees it requires at run-time. 

9.4.3  Merging the hypernym trees 
When the spellchecker comes across a confusable word, it needs to decide whether the word it has 

seen is more likely in the context than one of the other members of its confusion set.  For example, 

given the confusable pair {carve, crave}, when it encounters carve, it needs to decide whether this 

is indeed the word the user intended or whether crave would be a more appropriate choice.   

The ‘lexeme’ trees described above tell us how likely it is that a particular hypernym will occur in 

the vicinity of a particular confusable.  For instance from the carve tree (Fig.  9-4) we see that, given 

that some word in the hypernym tree for carve does occur in the vicinity of carve, there is a 2% 

probability of that word being stone or one of its hyponyms a 5% probability of it being some type 
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of material and so on.  The crave tree gives the corresponding probabilities for a given hypernym 

co-occurring with crave.   

The probabilities stored in these trees tell us the probability of finding, say, stone, near carve , or, 

more generally, the probability of a particular hypernym occurring in the vicinity of a given 

confusable.  But what the spellchecker needs to know, when it encounters either carve or crave in 

the text, is which of the two confusables is more likely to occur in the context of stone.  In other 

words, it needs to know the probability of a particular confusable occurring in the vicinity of a 

given hypernym.  To calculate this ‘lexeme-given-hypernym’ probability we need to weight each of 

the ‘hypernym-given-lexeme’ probabilities in the lexeme trees by the relative frequency with which 

each hypernym-lexeme pair for the confusion set − {carve, crave} in this case − occurred with the 

confusable in the BNC.  We can then divide these ‘weighted probabilities’ by the overall probability 

for the hypernym occurring with either confusable to obtain a ‘relative likelihood’ score for each 

confusable lexeme − this will be a value between 0 and 1 for each confusable such that the sum of 

the scores is 1.  Equation 1 below is used to calculate the weighted probablilities followed by 

equation 2 to calculate the final relative likelihood scores.  
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Given: 

W a set of words (confusables) 

H a set of hypernyms 

pn(h,w) the WordNet probability for hypernym h co-occurring with word w  

fb(h,w) the frequency of the hypernym h co-occurring with word w in the BNC 

pw(w,h) weighted probability for word w co-occurring with hypernym h 

pr(w,h) relative likelihood score for confusable w occurring with hypernym h  
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Table  9.2 shows these calculations for three hypernyms from the {carve, crave} lexeme trees. 

 a b c d e f

 pn(h,w) fb(h,w) Σ fb(h,w) pw(w,h) Σ pw(w,h) pr(w,h) 

w, h a*b/c  d/e

carve, stone 0.02 39 1 1

crave, stone 0 0
39

0
1 

0

carve, substance 0.2 342 0.174 0.87

crave, substance 0.2 51
393

0.026
0.2 

0.13

carve, foodstuff 0.002 3.4 0.0012 0.21

crave, foodstuff 0.01 2.6
6

0.0043
0.0055 

0.79

Table  9.2: Calculation of relative likelihood scores for {carve, crave} hypernyms 

The stone (sense 2: stone, rock (uncountable)) hypernym included in the section of the carve tree 

shown in Fig.  9-4, does not appear at all in the crave tree, suggesting that the spellchecker should 

always prefer carve when it sees stone or one of its hyponyms in the vicinity of either carve or 
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crave.  In a trivial case such as this, it is actually not necessary to calculate the scores at all − the 

program can simply assign scores of 1 and 0 directly for hypernyms appearing in one tree but not in 

the other − but, as the table shows, this is also the result we would get if we did do the calculation. 

I will now describe in detail the process of calculating the scores for the other examples in Table  9.2 

where the hypernym node occurs in both lexeme trees. 

Two of the hypernyms for stone included in the section of the carve tree illustrated in Fig.  9-4 − 

material and substance − also appear in the crave tree.  For the substance node (shown in Table  9.2) 

the probability is almost the same in both trees − 0.1995 for carve and 0.1992 for crave, rounded to 

0.2 in Fig.  9-4 and Table  9.2.  This might initially suggest that we are as likely to crave a substance 

as we are to carve it.  But, as carve is much the more frequent member of the pair (carve makes up 

84% of the total occurrences for the pair {carve, crave} in the BNC), it has a larger overall co-

occurrence count (1714 compared to just 256 for crave), meaning that many more substance-related 

nouns have co-occurred with carve (342) than they have with crave (51), (column b).  Clearly we 

have to factor this in.  We do this by multiplying each hypernym-lexeme probability (column a) by 

the relative frequency with which the hypernym-lexeme pair occurred in the BNC (column b / 

column c).  This gives us the weighted probability scores (column d), which show us that, as we 

would expect from the discussion above, carve is more likely to occur than crave in the vicinity of 

substance or one of its hyponyms.  In fact, because the hypernym probability (column a) is the same 

in each tree, in this case, it simply acts as a ‘scaling constant’ in the calculation of the weighted 

probabilities (d) and the final relative likelihood scores (column f) are identical to the relative 

frequencies of each hypernym-lexeme pair in the BNC − dividing the frequency for each pair (b) by 

the total occurrences for the pair (c) gives us 342/393 = 0.87 for carve and 51/393 = 0.13 for crave. 

However, this is not the case when the initial hypernym probabilities differ. The more specific 

substance hyponym foodstuff (the final example in Table  9.2) also appears in both the carve and the 
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crave trees (although its branch is not included in Fig.  9-4) and the overall co-occurrence count 

(column b) is still greater for carve (3.4) than it is for crave (2.6).  But, unlike the substance 

example where the hypernym probabilities were the same for each confusable, foodstuff has a far 

greater probability of occurring with crave (0.01) than it does with carve (0.002).  When this is 

factored in we now find that there is a 0.78 probability for crave co-occurring with some type of 

foodstuff as opposed to just a 0.22 probability for carve; although it is certainly possible to carve 

food − such as the Sunday roast − it seems we are more likely to crave it. 

The spellchecker calculates these relative likelihood scores at run-time and stores them in a merged 

lexeme tree which it uses to select between the confusion set members as described in Section  9.5.2 

below. 

Fig.  9-5 shows the section of the merged tree for the {carve, crave} hypernyms discussed above.  

From it we can see that when the spellchecker comes across a specific kind of substance in the 

vicinity of carve or crave, it will prefer carve if the co-occurrence is a type of material whereas it 

will prefer crave if it is a type of food which is in general what we would want to happen. 

Fig.  9-5: Section of merged {carve, crave} tree 

entity 

carve 0.96 crave 0.04 

substance 

carve 0.87 crave 0.13 

material 

carve 0.99 crave 0.01 

foodstuff 

carve 0.21 crave 0.79 

stone 

carve 1.0 crave 0.0 
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9.5 Checking text 
9.5.1 Selecting co-occurring nouns 
When the program encounters one of the semantic confusables in the text, it first checks for co-

occurring nouns (words that had been assigned a noun tag by the syntax checker).  If there are none 

it will be unable to make a decision and so will simply continue through the text until it finds 

another semantic confusable.  The hypernym trees were based on nouns that had co-occurred in a 

window size of +/- 2 words from the corresponding confusable in the BNC, but a large proportion 

of the confusables to be checked may not have a co-occurring noun in this vicinity.  For instance, 

only 41% of the confusables in the FLOB corpus used for testing the initial program had a co-

occurring noun within +/- 2 words.  Increasing the size of the window that the spellchecker uses to 

retrieve co-occurring nouns means that it is able to check a larger number of confusables; there 

were noun co-occurrences for 97% of the confusables in the FLOB corpus when the window size 

was increased to +/- 10.  Based on this finding, to maximize the number of confusable occurrences 

that the program could attempt to correct, the program has been set to check for co-occurring nouns 

within a window of ten words each side of a confusable (unless it encounters a sentence boundary 

first).  However, the further away a noun is, the less likely it is to be related to the confusable so the 

scores retrieved for each noun are reduced as their distance from the confusable increases. (The 

scoring process is described in detail in Section  9.5.4 below.) 

Occasionally, even when there is a co-occurring noun within the specified window, that noun will 

not be included in WordNet so the program will be unable to use it to calculate scores for the 

confusables.  If this is the case for all co-occurring nouns within the ten-word window either side of 

a confusable, the program again simply makes no decision and continues through the text as 

described above.  

9.5.2 Creating the merged trees 
Once the program has found one or more co-occurring nouns that are included in WordNet, it 

retrieves the confusion set for the confusable from the dictionary and reads the hypernym trees 
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(Section  9.4.2) for each confusable lexeme from the file.  It then creates a merged tree (Section 

 9.4.3) and uses this to score the confusables.  So, for example, if the word to check is pit (Noun) 

with the confusion set {pat, pet, pith} the program will merge the hypernym trees for pit, pat, pet 

and pith.  

The set of hypernym trees that need to be combined will depend on the word that has appeared in 

the text.  If the word to be checked was the plural noun pits, the spellchecker could not use the same 

merged tree as for the singular noun pit since the confusion set for pits contains just one word − pets 

− so in this case it would merge just the pit and pet hypernym trees.  (Although pats is included as a 

plural noun in the dictionary, it was excluded from consideration by the semantic checker because 

of its low frequency. Pith, the other member of pit’s confusion set is an uncountable noun and so 

does not have a plural form.)  Similarly, although each word in a confusion set is considered 

confusable with the headword − pat, pet and pith are all confusable with pit − the members of a 

confusion set are not necessarily all confusable with each other. The confusion set for pet, for 

example, does not include pith, whereas the confusion set for pith contains path in addition to pit.  

9.5.3 Retrieving WordNet senses and hypernyms for co-occurring nouns 
The program next lists the WordNet senses and their associated hypernyms for each co-occurring 

noun.  The initial experiment (Pedler, 2005) retrieved these directly from WordNet using the Perl 

QueryData module (Rennie, 2000) − also used to create the initial hypernym trees (Section  9.4.2 

above).  This module, once it has been initialised at the start of the program (which takes about ten 

to fifteen seconds) provides fast and efficient WordNet lookup; the documentation claims that 

“thousands of queries can be completed every second”.  However, although the overhead involved 

in accessing WordNet was not a particular problem in itself, this approach meant that the 

spellchecker could only be run on a machine that had WordNet installed.  To overcome this 

limitation, and enable the spellchecker to run independently of WordNet, I decided to use 

QueryData to list each sense and its associated hypernyms (to level four, the deepest level stored in 
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the trees) for each noun in my dictionary that was also included in WordNet.  I then wrote these to 

file and added an index into the file to the dictionary entry for each of the corresponding nouns to 

enable the program to retrieve the senses/hypernyms it required from this file rather than needing to 

access WordNet at run-time. 

9.5.4 Scoring the confusables 
The program has now created a merged lexeme tree (Fig.  9-5) containing the relative likelihood 

scores for the semantic confusable it encountered in the text and each member of its associated 

confusion set, and retrieved one or more WordNet senses and their associated hypernyms for each 

noun that occurred in its immediate context (ten words either side).  Using this information, the 

program now scores each of the confusables with each of the co-occurring nouns and combines 

these scores to give an overall score for each member of the confusion set.  Based on these scores, 

the program either accepts the confusable it has seen as a correct spelling or flags it as an error.  The 

scores are calculated as follows with explanatory notes for each numbered stage below: 

Given: 

C{c1,....cn} Set of confusables 

N{n1,....nm} Set of co-occurring nouns 

{s1,....sp} Set of senses 

{h1,....h4} Set of hypernyms 

d(ci, nj) distance of co-occurring noun nj from confusable ci 

l(<nj,sk,hl >) hypernym level for hypernym hl for sense sk of noun ni  

lw(<nj ,sk>) weighting for sense sk of noun nj  

sm(nj) proportional count of matching senses for nj 

nm(ci ) proportional count of nouns co-occurring with confusable ci 

dw(<ci,nj>) distance weighting for noun nj co-occurring with confusable ci 
  

(1)  l(<nj,sk,hl >) = max(l) where <ci,hl> = <nj,sk,hl> 

(2) lw(<nj ,sk>) = l(<nj,sk,hl >)/4 

(3) P(ci|<nj,sk>) = P(ci,hl)lw(<nj,sk>) where <ci,hl> = <nj,sk,hl> 

(4) sm(nj) = ),(
1∑ =

><
p

k kj snlw  
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(5) dw(<ci,nj>) =(11 - d(ci, nj))/10 

(6) P(ci|nj) = ),))(/),(),|((
1

><><><∑ = jijjikj
p

k i ncdwnsmnclwsncP  

(7) nm(ci ) = ),(
1

><∑ = j
m

j i ncdw  

(8) P(ci|{ n1,....nm}) = )(/)|(
1 ij

m

j i cnmncP∑ =
  

(9) cselect  = max(P(C|N)) 
 

 (1) The program lists all the WordNet senses {s1,....sp} for each co-occurring noun {n1,....nm} and 

retrieves the hypernyms {h1....h4} for each sense from WordNet..  For each sense it compares these 

with the hypernyms stored in the tree for the confusion set {c1,....cn} to find the deepest level l 

match for that sense.  Some senses will not match at all and are discarded at this point. For those 

that do match, l is assigned a value between 1 and 4, where 4 represents the more specific senses 

that match at the deepest level of the tree and 1 represents senses that match only at the more 

general root node. 

(2) Although the senses at the root node are more general and thus less likely to be useful for 

distinguishing between the members of the confusion set, they have a higher probability of 

occurring than the more specific senses at lower levels of the tree (Fig.  9-4).  As the lower level 

scores are of more value to the program in making its decisions, level weighting  lw is calculated as 

l/4 for each matching sense.  This will then assign the full value of the score to hypernyms matching 

at level 4, 75% of the value to those matching at level 3 and so on.  (Hypernyms are stored to a 

depth of 4 in the tree so 4 is the deepest level match.) 

(3) Each hypernym node in the merged tree stores the probability value for each member of the 

confusion set occurring given a noun with that hypernym sense (Fig.  9-5).  We define the 

probability of a particular confusable, ci occurring given sense sk of noun nj as the probability stored 

for confusable ci in the hypernym node hl corresponding to deepest level hypernym match of sense 

sk of noun nj, adjusted by the level weighting lw(<nj,sk>)for that sense.  
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(4) The number of matching senses sm for noun nj  is calculated as the sum of the level weightings 

for the matching senses of nj as senses were matched proportionally as described in (2, 3). 

(5) The scores for each noun are weighted according to their distance d(ci, nj) from the confusable in 

the text.  This weighting dw is calculated as 11- d(ci, nj)/10. (For a window size of 10 as used in the 

current implementation.)  This thus assigns the full score to collocates ((11-1)/10) = 1), 0.9 of the 

score to nouns occurring two words away and so on. 

(6) The probability of confusable ci occurring given co-occurring noun nj is sum of the scores 

calculated in (3), normalised by the ‘sense count’ calculated in (4) and weighted by the distance 

weighting dw calculated in (5).  

(7) The number of nouns co-occurring with confusable ci is calculated as the sum of the distance 

weightings dw for nouns co-occurring with ci, since each noun was matched proportionally 

according to its distance from the confusable. (This is similar to the calculation of the sense counts 

in (4)). 

(8) The probability of confusable ci occurring given all nouns {n1,....nm} that co-occurred with it is 

the sum of the probability for ci occurring with each noun as calculated in (6) normalised by the 

number of nouns matched, nm, calculated in (7). 

(9) The program selects the confusable with the highest score as its preferred word in the context.  

If the word that originally appeared in the text matches the confusable with the highest score, the 

program accepts it as a correct spelling; if the word in the text is different from the confusable with 

the highest score, it is flagged as an error and the highest scoring confusable is proposed as a 

correction. 

9.5.5 An example 
I will illustrate the scoring process with the following example from the FLOB Corpus used for the 

initial experiment: 
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Seventeenth century dolls carved from wood fetch very high prices... 

The program works outwards from the confusable carved to identify the nouns doll, century, wood 

and price.  It then retrieves all the WordNet senses for each of these − two for doll, eight for wood, 

two for century and seven for price − and lists their hypernyms.  It finds a match in the carve/crave 

tree for both senses of doll, four for wood, one for century and six for price.   

More than one of the matched senses may map to the same hypernym, as can be seen from Table 

 9.3 which shows the senses retrieved for wood and their matching hypernyms.  All the matched 

senses score highly for carve but the least relevant sense in this case, that of wood as forest, only 

matches at a more general level so only 50% of its score (shown in parentheses in the table) will 

contribute to the final value assigned for wood.  Combining the scores and normalising by the 

number of senses matched (which is the sum of the weighting given to each hypernym match as 

only a proportion of the sense score has been given to hypernyms at higher levels of the tree) gives 

a final score of 0.990 for carve and 0.010 for crave co-occurring with wood.   

Sense Hypernym 
match 

Level Weight Score 

    carve crave 

wood (hard fibrous substance) plant material 4 1 0.993 0.007

forest, wood, woods collection 2 0.5 0.976 

(0.488)

0.024 

(0.011)

woodwind, woodwind instrument, 
wood 

instrumentality 4 1 0.992 0.008

wood (golf club) instrumentality 4 1 0.992 0.008

Sum of scores  3.5 3.465 0.034

Normalised scores    0.990 0.010

Table  9.3: Scores for matching senses of wood in the {carve, crave} hypernym tree 

The program calculates scores in the same way for each of the other co-occurring nouns and 

weights the score for each according to its distance from the confusable − it gives the full score to 

any nouns that occurred next to it, 0.9 of the score to those that were two words away and so on.  



Using Semantic Associations  

  

  158 

Table  9.4 shows the final scores for each co-occurring noun in this example with the distance-

weighted values in parentheses.  These scores are then summed and normalised by the number of 

nouns matched (the sum of the distance weightings) to give a final score, in this case, of 0.776 for 

carve and 0.224 for crave, correctly preferring carve. 

   Score 

Co-occurrence Distance Distance 
weight 

carve crave 

doll 1 1 0.899  0.101

century 2 0.9 0.432 (0.388) 0.568 (0.512)

wood 2 0.9 0.990 (0.891) 0.010 (0.009)

price 6 0.5 0.768 (0.384) 0.232 (0.116)

Sum of scores 3.3 2.562 0.738

Normalised 
scores 

 0.776 0.224

Table  9.4: Final scores for each co-occurring noun 

9.6 Testing 
The dyslexic error corpus (Chapter 3) was used to test the program.  There are almost two thousand 

confusables in this corpus that have some or all part-of-speech tags in common with one or more 

members of their associated confusion set and which therefore might be passed to the semantic 

checker - Table  9.5.  However, not all of them will in fact be passed on.  In the majority of cases the 

tagsets overlap which means that, if the syntax checker selects a tag that is unique to one of the 

words, they will not be considered further by the semantic checker.  In addition, even when the 

syntax checker has assigned a tag that one or more of the confusables have in common, the 

confusables will only be passed to the semantic checker if there is an associated hypernym tree.   
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Overlapping 1626

Matching 246

Both overlapping and matching 56

Total 1928

Table  9.5: Types of confusables in the error corpus for possible consideration by semantic 
checker 

After the syntax checker had been run over the error corpus (with the handicap for the words not 

appearing in the text set at 0.01 as described in the previous chapter) there were just over 600 

confusables flagged for consideration by the semantic checker.  The majority of these words were 

correctly used as might be expected.  Although all these words were flagged for consideration, the 

semantic checker was unable to make a decision in around 10% of cases as there were no co-

occurring nouns within the +/- 10 word window used by the program.  Table  9.6 shows the number 

of words flagged for consideration by the semantic checker and the number of these that would 

actually be checked by the program as there were co-occurring nouns associated with them.   

 All No 
co-occurring 

nouns

Checked 

Correctly used 529 50 479 

Errors 115 14 101 

Table  9.6: Number of confusables in the error corpus flagged for consideration by the 
semantic checker 

The program was initially set to select the word with the highest score and then run at varying 

'confidence levels'.  The confidence level was implemented as a 'handicap' in the same way as for 

the syntax checker by successively reducing the weighting given to the score for the alternative 

word from 1 down to 0.01.  Table  9.7 shows the results of running the semantic checker over the 

dyslexic error corpus using these varying levels of handicap.  As noted above, there were no co-

occurring nouns for about 10% of the confusables flagged for consideration.  In these cases, if the 

word was correctly used it would be accepted and if it was an error it would be ignored.  Thus these 

words, although they are not actually considered at all will contribute to the proportion of words for 
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which the checker performs 'correctly' for correct usages and 'incorrectly' for error usages.  Since 

this figure is a constant at each handicap level it has not been included in the counts given in Table 

 9.7 below. 

 Correct Usage 

(479) 

Error Usage 

(101) 

Improvement 

Hcap 
level 

Accept 
 
 

a 

False 
alarm 

 

b 

Flag & 
correct

c

Flag not 
correct

d

Ignore

e

Errors 
remaining 

(b+d+e) 

f 

Error 
reduction
(101 – f) 

g

Imprvt 
% 
 

h

1 412 67 44 13 44 124 -23 -23%

0.5 445 34 42 9 50 93 8 8%

0.2 465 14 38 4 59 77 24 24%

0.1 469 10 36 4 61 75 26 26%

0.05 474 5 26 2 73 80 21 21%

0.01 479 0 12 0 89 89 12 12%

Table  9.7: Results of running semantic checker on error corpus 

The table shows the number of correct and error usages considered by the semantic checker falling 

into each of the categories as described for the syntax checker in the previous chapter.  As with the 

syntax checker, although the largest proportion of errors is corrected when the full weighting is 

given to all the words being considered, this results in an unacceptable level of false alarms and an 

overall increase in the number of errors in the text.  Reducing the weighting given to the alternative 

words to 0.5 gives a small overall improvement in the text but the greatest overall improvement is 

achieved when this is set to 0.1.  It is possible, with the handicap set at 0.01, to reduce the false 

alarms to zero and still correct a small proportion of the errors (a total of 12 corrections) but it 

seems better to accept a small number of false alarms while at the same time correcting a larger 

proportion of the errors.  This is illustrated graphically in Fig.  9-6.  

Although setting the handicap to 0.1 maximizes the improvement made by the program for this 

corpus, the improvement is only slightly reduced at 0.2 which achieves a better rate of error 
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correction at the expense of a small increase in false alarms.  This makes it tempting to try a further 

level of handicap, such as 0.15, set somewhere between these two levels.  However, far fewer errors 

were considered by the semantic checker than by the syntax checker and optimizing the 

performance of the semantic checker for this corpus is likely to have the effect of over-fitting the 

program to this data rather than suggesting an optimal level to set for unseen text.  Based on these 

considerations, I opted to select 0.2 as the handicap level for the semantic checker in the evaluation 

described in the next chapter.  

9.7 Conclusion 
There are almost two thousand words with matching or overlapping part-of-speech tagsets in the 

dyslexic error corpus (Table  9.5).  Around a third of these were flagged by the syntax checker for 

further consideration by the semantic checker; the syntax checker will already have made a decision 

for many of the overlapping sets and only passes words to the semantic checker if they have an 

associated hypernym tree.  For these reasons, the semantic checker is only applicable for about 12% 

of the total errors in the corpus.  However, it managed to correct 38% of these, which represents a 

modest but useful contribution. 
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Fig.  9-6: Performance of semantic checker with different levels of handicap 
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Chapter 10: Evaluation 

The spellchecker developed in this research relies on its built-in confusion sets both to detect and to 

correct errors.  Thus it will only consider a word as a potential error if it has a confusion set 

associated with its dictionary entry and it can only suggest the intended word as a correction for an 

error if that word is a member of its confusion set.  Because of this inherent limitation of the 

confusion set approach, a large number of confusion sets are required if it is to be used for general 

purpose spellchecking; this spellchecker uses almost six thousand.  However, even when using a 

large collection such as this, there will be errors that remain undetected or that are miscorrected 

either because the error itself has not been defined as confusable or because, although the error has 

a confusion set associated with it, the intended word is not among its members.   

Most previous work using confusion sets has focused on developing techniques for selecting the 

correct word in a given context using a limited number of confusion sets (generally pairs).  Carlson 

et al. (2001) address the issue of scaling up the approach and use 265 confusion sets (over 500 

confusable words) but, by their own admission, this still falls far short of the number of confusion 

sets needed to make a realistic impact on the problem.  In addition to using only a small number of 

sets, these previous experiments have not attempted to correct real errors; they have been tested 

either on correctly spelled text or on text into which errors have been artificially introduced.   

However, when a spellchecker is tested on text containing real errors − such as the error corpora 

used for the experiment reported in this chapter − the errors cannot be so neatly controlled.  In this 

situation there are two factors that influence the program's correction rate − its ability to detect 

errors in the first place (which depends on the confusion sets) and its ability to propose the correct 

word once it has identified a potential error (which depends both on the confusion sets and on the 

efficiency of its decision-making mechanism).  Some errors will remain undetected simply because 

the word involved is not included among the program's confusion sets and so they will not even be 
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considered as potential errors.  Errors that do have a confusion set associated with them will at least 

be considered but will also go undetected by the program if it decides that the error is more likely to 

be the correct word in the context than any of the alternative members of the confusion set.  In both 

cases the program’s error detection rate is reduced but the cause of the failure is different for each.  

The first case demonstrates a limitation of the confusion set approach; short of defining every word 

in the dictionary as potentially confusable with every other word (which is clearly impractical) it is 

impossible to ensure that all possible errors are included in a program’s confusion sets.  

Additionally some errors, such as inflection errors, do not seem to be suitable candidates for 

inclusion in confusion sets.  The second case, where the program is alerted to the possibility of an 

error but wrongly accepts the word as correct, can be either a deficiency in the confusion sets − the 

intended word is not included and the error is more likely in the context than any of the alternatives 

offered - or a shortcoming of the scoring mechanism used by the spellchecker.  This is summarized 

in Table  10.1. 

 Ignore Detect but 
miscorrect 

Correct 

Error not in confusion set    

Error in confusion set but target not    

Error and target in confusion set    

Table  10.1: Summary of possible decisions for real-word errors 

In this chapter I consider both the performance of the spellchecker that I have implemented in this 

research and the overall effectiveness of the confusion set approach to spellchecking. 

10.1 Error corpora 
The main aim of this research was to develop a spellchecker that would correct real errors in actual 

text produced by dyslexics.  A realistic assessment of its ability to perform this task required real 

error data; my efforts to produce the dyslexic error corpus described in Chapter 3 demonstrated the 

difficulties of acquiring this.  The sub-corpus of real-word errors that has been used throughout the 
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development of the program described in previous chapters was derived by selecting sentences 

containing real-word errors from the initial corpus.  Although this corpus could not in the strict 

sense be regarded as training data, as the tag bigram and word co-occurrence data used by the 

spellchecker was derived from the BNC, it was used during program development − for example to 

assess the relevance of the confusion sets and to set the handicap level for the words not appearing 

in the text − which must, inevitably, have introduced a bias toward correcting the errors it contains.  

Therefore, for the final assessment of the program presented in this chapter, in addition to assessing 

the overall performance on the original dyslexic error corpus, I also report results obtained from two 

additional, unseen error corpora.   

The collection of real-word error samples has been an on-going task throughout the course of this 

research.  I gathered sentences containing real-word errors from assignments submitted by my 

students and also from work that my daughter gave me to proofread.  This resulted in a corpus 

containing almost three thousand words and just under 200 real-word errors.  Although I had no 

way of knowing whether the students were dyslexic, undoubtedly a number of them were and the 

errors collected appear to be of a similar nature to the errors in the original corpus.  In addition to 

this, Roger Mitton supplied me with a large corpus of school leavers' compositions (not including 

those incorporated into the original corpus).  These compositions were written by pupils of varying 

ability; in some the overall level of spelling is poor, suggesting that the writer may well have been 

dyslexic, whereas in others the spelling is generally good with just the occasional error.  However, 

as it was not possible to make an accurate judgement as to which (if any) of the writers were 

dyslexic, I simply extracted any sentences that contained real-word errors and included them in the 

Compositions error corpus.  Another difference between these two corpora is that the students' work 

was originally word-processed whereas the compositions were transcribed from handwritten 

originals.  Some common types of dyslexic error, such as writing b for d (for example, bark for 

dark) are probably less likely to occur when the text is typed. 
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Table  10.2 gives a breakdown for each of these error corpora.  The Compositions corpus is the 

largest of these with almost twenty thousand words and over one thousand errors.  However, since 

all the compositions are about the same subject − memories of primary school − the vocabulary is 

rather restricted and repetitive. 

 Dyslexic Students Compositions 

Sentences 614 192 852 

Words 11810 2661 19179 

Real-word errors 830 199 1049  

Table  10.2: Composition of error corpora 

10.1.1 Errors and confusable words in the corpora 
Table  10.3 shows the proportion of real-word errors that the program can be expected to correct in 

each corpus.  The detectable errors are the proportion of all real-word errors that will be considered 

by the program (the error is the headword of a confusion set) and the correctable errors the 

proportion of all real-word errors that can be corrected (the error is the headword of a confusion set 

and the intended word is a member of its associated confusion set).  As this table shows, a rather 

high proportion (between a quarter and a third) of the errors are undetectable even with over 6000 

confusion sets. 

 Dyslexic  Students Compositions 

 N % N % N %

Detectable errors 644 78% 136 68% 738 70%

Correctable errors 481 58% 94 47% 380 36%

Real-word errors  830 100% 199 100% 1049 100%

Table  10.3: Detectable and correctable errors in error corpora 

Although the occurrence of a confusable is the cue for the spellchecker to investigate, most 

occurrences of the confusables are correct (even in these sentences selected because they contain at 

least one real-word error).  Table  10.4 shows the proportions of correct and error usage of these 

confusables in each corpus. 
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 Dyslexic error Students Compositions 

 N % N % N %

Correct usage 5210 89% 1055 89% 9449 93%

Error usage 644 11% 136 11% 738 7%

All confusables  5854 100% 1191 100% 10187 100%

Table  10.4: Correct and error usage of confusables in error corpora 

Table  10.3 shows the number of errors in each corpus that we would like the spellchecker to correct 

and the proportion of these that it can be expected to correct using our confusion sets.  Table  10.4 

shows the number of confusion set headwords − appearing either correctly used or as errors − that 

the spellchecker will consider as potential errors. In both cases, these are counts of word tokens. 

However, since many of the words occur more than once, the count of word types is lower than this. 

The ratio of types to tokens (Table  10.5) gives us a ‘variety index’ for the text; a higher ratio 

indicates more variation in the vocabulary used, whereas a lower one indicates that many words 

were repeated. 

The table shows this ratio for the correctly used confusables and for the errors appearing in each 

corpus. The errors are further broken down into non-confusable errors (words that do not have a 

confusion set associated with them), non-correctable (the error is a confusion set headword but the 

target not in its confusion set) and correctable (the error is a confusion set headword and the target 

is a member of its confusion set). 
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 Dyslexic error Students Compositions 

 Tok Type % Tok Type % Tok Type %

Correct Usage 5210 607 12% 1055 229 22% 9449 677 7%

Error usage 
All 830 493 59% 199 148 74% 1049 540 51%

Non-
confusable 186 145 78% 62 57 92% 311 207 67%

Non- 
correctable 163 131 80% 43 38 88% 358 183 51%

 
Correctable 481 217 45% 94 53 56% 380 150 39%

Table  10.5: Type:token ratio for confusables and errors in error corpora 

The low type:token ratio for the correctly used confusables in the Compositions corpus is 

unsurprising in the light of earlier observations about the repetitive nature of this corpus.  However, 

this ratio is also significantly lower for the correctly used confusables than it is for the errors in each 

of the corpora whereas if the errors were purely random we would expect it to be about the same.  

The reason for this is that there are a number of very common words among the confusables and, as 

a word is more likely to be correctly spelled than it is to be an error, these words appear many more 

times as correct usages than they do as errors − were, for example, occurs 162 times in the 

Compositions corpus and only 26 of these occurrences are errors. 

If we were considering the performance of a non-word error checker that was dealing with each 

word in isolation, we would only be interested in error types as each occurrence of a particular error 

would be dealt with in the same way.  However, a real-word error checker is dealing with each 

word in the context in which it occurs and so may make a different decision for the same confusable 

word appearing in a different context.  For this reason, the results reported below use token rather 

than type counts. 
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10.2 Spellchecker performance 
10.2.1 Error correction 
Table  10.6, Table  10.7 and Table  10.8 show the results obtained from running the spellchecker over 

each of the error corpora described above.  The first row of each table (Select most frequent) gives 

the results obtained from the baseline select-the-most-frequent method described in Chapter 7.  This 

is included as a baseline performance measure against which to compare the performance of the 

confusion-set checker.  The combined syntax and semantic checker was then run over each corpus 

both with and without a handicap applied to the alternative word(s) in the confusion set.  The 

second row (Non-handicapped score) gives the results when all words in the confusion set are 

considered equally likely and the program makes its selection based on the one achieving the 

highest overall score.  The third row (Handicapped score) gives the results when the expectation 

that the word seen in the text will be correct is factored in by handicapping the scores of the 

alternative words.  The handicaps used were those assessed to be optimum during the development 

phase − 0.01 for the syntax checker and 0.2 for the semantic checker. 

There are just two possibilities for the correctly used confusables:  

• Correctly accepted;  

• Erroneously flagged (false alarm).   

For the errors there are four:  

• Correct error − the program flagged the error and proposed the intended word as a 

replacement;  

• Flag but miscorrect − the program flagged the error but the proposed correction was not 

the intended word;  

• Accept error − the error was considered by the program but wrongly accepted as correct;  

• Ignore error − the error was not considered by the program as it did not have an associated 

confusion set.   
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Since the ignored errors are never considered by the program their number remains constant for 

each scoring method.  From an end-user's perspective the accepted and ignored errors amount to the 

same thing − errors that remain silently uncorrected.  However, to enable us to assess the program's 

performance both for all errors and for the errors that it has been designed to correct we need to 

consider them separately. 

 Correct usage (5210) Errors (830) 

Scoring method Accept 
correct

False 
alarm

Correct 
error

Flag but 
miscorrect

Accept 
error 

Ignore 
error

Select most 
frequent 

4406 804 292 107 245 186 

Non- handicapped 
score 

4781 429 359 70 215 186 

Handicapped 
score 

5177 33 256 28 360 186 

Table  10.6: Error correction − dyslexic error corpus. 

 Correct usage (1055) Errors (199) 

Scoring method Accept 
correct

False 
alarm

Correct 
error

Flag but 
miscorrect

Accept 
error 

Ignore 
error

Select most 
frequent 

904 151 63 24 49 63

Non- handicapped 
score 

956 99 71 16 49 63

Handicapped 
score 

1046 9 38 7 91 63

Table  10.7: Error correction − students  
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 Correct usage (9449) Errors (1049) 

Scoring method Accept 
correct

False 
alarm

Correct 
error

Flag but 
miscorrect 

Accept 
error 

Ignore 
error

Select most 
frequent 

8211 1238 186 114 438 311

Non- handicapped 
score 

8800 649 248 127 363 311

Handicapped 
score 

9398 51 135 38 565 311

Table  10.8: Error correction − compositions 

As the results above show, using the confusion sets, even with the non-handicapped scores, both 

reduces the false alarms and increases the number of errors corrected compared to the baseline 

select-the-most-frequent algorithm.  However, without the handicapping, the false alarms still 

outnumber the errors corrected which is clearly unacceptable.  Introducing the handicap reduces the 

number of false alarms while at the same time correcting a proportion of the errors.   

Table  10.9 shows total errors corrected as a proportion of all errors (the overall performance as it 

would appear to an end-user), of the detectable errors (the errors that are considered by the 

spellchecker) and of the correctable errors (the errors that can be corrected using the confusion 

sets). 

Although the program corrects almost a third of all errors in the original dyslexic error corpus, this 

proportion drops to 19% and 13% respectively in the Students and Compositions corpora.  This 

would be expected as the proportion of correctable errors is lower in these corpora (Table  10.3).  

For the errors that it has been designed to correct the program performs reasonably well, correcting 

between around a third to half of all correctable errors.  Performance on the correctly used 

confusables also seems acceptable with less than 1% false alarms.  However, these figures in 

themselves are not an adequate measure of the spellchecker's performance. 
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 Dyslexic Students Compositions 

Total corrected 

out of: 

256 38 135 

All errors  830 31% 199 19% 1049 13%

Detectable errors 644 40% 136 28% 738 18%

Correctable errors 481 53% 94 40% 380 36%

False alarms 

out of: 

33 9 51 

Correctly used 
confusables 

5210 0.6% 1055 0.8% 9449 0.5%

Table  10.9: Errors corrected as a proportion of all errors, detectable errors and correctable 
errors, compared to proportion of false alarms (Handicapped score) 

10.2.2 Overall improvement 
If the program's decision is incorrect even for just a small proportion of the correctly used 

confusables there will be a large number of false alarms.  However, provided the program corrects 

more errors than it raises false alarms, there will be a net improvement in the 'correctness' of the 

text.  This suggests that the key measure of spellchecker performance is the overall improvement in 

the text after the program has run over it.  This choice of measure seems particularly relevant for 

dyslexics who are likely to accept most of the spellchecker’s suggestions.  

If we assume that the spellchecker's suggestion is always accepted, then subtracting the corrected 

errors from the number of original errors and adding the false alarms gives us the number of errors 

remaining in the text after it has been spellchecked.  The difference between this and the number of 

errors originally in the text gives the decrease in the total number of errors.  Taking this 'error 

decrease' as a proportion of the number of original errors gives us the percentage improvement in 

the text.  (Note that this counts the flagged but miscorrected errors as no better than the ignored, 

which might be a bit hard on the spellchecker.)  These figures are given for each of the error 

corpora in Table  10.10.  The table shows this improvement percentage both as a proportion of all 

errors in the text and as a proportion of the detectable errors.   
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 Dyslexic Students Compositions

Original errors (all) 830 199 1049

Original errors (detectable) 644 136 738

Errors corrected 256 38 135

False alarms 33 9 51

Errors remaining 421 107 654

Error decrease 223 29 84

Overall improvement (%) (All errors) 27% 15% 8%

Overall improvement (%) (Detectable errors) 35% 21% 11%

Table  10.10: Overall improvement (Handicapped score) 

Estimating the overall improvement in the correctness of the text after the spellchecker has been run 

over it can be regarded as a practical measure of the usefulness of the spellchecker.  Although it is 

obviously a useful yardstick of spellchecker performance, it does not appear to have been used to 

assess other work.  This is presumably because most of the previous context sensitive text 

correction work using confusion sets has been tested on correctly spelled text (where, on the 

assumption that the text is 100% correct, any incorrect decisions made by the program would result 

in an overall worsening of the text).  Evaluation in this previous work has focused on the ability of 

the program to make correct decisions rather than on its practical use as a spellchecker.   

10.2.3 Recall and precision 
Recall and precision, which has its origins in the field of information retrieval, is a commonly used 

metric for the evaluation of natural language processing tasks. 

Recall measures the 'completeness' of retrieval.  In terms of spellchecking this tells us the 

proportion of the errors in the text that were detected, calculated by dividing the number of errors 

detected by the total number of errors in the text.  For example, if there were 100 errors in a text and 

a program detected 90 of them it would have a recall of 90/100 = 90%.  The recall value is not 

affected by the number of false alarms that are produced; a program that flagged every word in a 

text as an error would achieve a recall of 100%.   
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Precision measures the accuracy of retrieval.  For a spellchecker this represents the proportion of 

words flagged as errors that actually were errors, calculated by dividing the number of errors 

detected by the total of words flagged.  In this case, using the same 100 error example, if, in 

addition to correctly detecting 90 of the 100 errors in the text the program had also produced 30 

false alarms the total of words flagged would be 120 and the program's precision would be 

calculated as 90/120 = 75%.  The precision value is not affected by the number of errors remaining 

undetected; a program that only detected a small number of the total errors but never raised any 

false alarms would achieve a precision of 100%. 

The two measures need to be taken together for an overall assessment of a spellchecker.  High recall 

coupled with low precision indicates that although a large proportion of the errors were detected, 

there were also a large number of false alarms whereas low recall coupled with high precision 

indicates that although the program was generally correct when it flagged an error, a large number 

of errors went undetected.  Ideally we would like a program to achieve a high score for both recall 

and precision indicating that a large proportion of the errors were detected at the expense of very 

few false alarms.  However, this is an ideal situation as there is a trade-off between recall and 

precision.  To improve recall we need to relax the rules used by the program thus making it more 

willing to flag a word as an error.  This is likely to cause it to raise more false alarms.  To improve 

precision we need to tighten the rules, making the program less willing to flag a word as an error.  

This means that the words it flags are more likely to be errors but that fewer of the errors overall 

will be flagged. 

Dyslexics have little confidence in their ability to spell and make a large number of mistakes; if the 

spellchecker flags a word as an error they are likely to assume that the spellchecker is right, even 

when this is not the case.  This will result in correctly spelled words turning into real-word errors 

and an overall worsening of the text.  Thus for a spellchecker designed for use by dyslexics, it is 

better to make an accurate decision for a small but useful proportion of the errors and produce few 
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false alarms than it is for it to flag a large proportion of the errors at the expense of a large number 

of false alarms.  This means sacrificing some recall in order to achieve greater precision which is 

the effect of the handicap used by my program (and the various confidence threshold measures used 

by others). 

Recall and precision scores for my spellchecker when run over each corpus (using the handicapped 

scores) are given in Table  10.11.  Recall has been calculated both as a proportion of all errors in the 

corpus and as a proportion of the detectable errors.  The first of these shows the program's overall 

efficiency at detecting errors while the second shows how effective it is at detecting the errors 

included in its confusion sets.  Precision has been calculated both for detection (the proportion of 

words flagged that were errors) and correction (the proportion of words flagged that were errors and 

for which the intended word was proposed as a correction). 

 Dyslexic Students Compositions 

Total errors 830 199 1049 

N.  Detectable errors 644 136 738 

N.  Words flagged 317 54 224 

N.  errors detected 284 45 173 

N.  errors corrected 256 38 135 

Recall (all) 34.2% 22.6% 16.5% 

Recall (detectable) 44.1% 33.1% 23.4% 

Precision (detection) 89.5% 83.3% 77.2% 

Precision (correction) 80.7% 70.3% 60.3% 

Table  10.11: Recall and precision  

10.2.4 Comparative recall and precision 
The only previous research that has made a realistic attempt to correct actual errors is that of Atwell 

and Elliott (1987).  They compiled a corpus of around 13,500 words containing just over 500 errors.  

This Lancaster corpus was derived from four sources: a collection of word-processed documents 

from ICL's Knowledge Engineering Group; the Gill Corpus, compiled by Dr Gill of Warwick 

University to test an automatic brailling machine − they obtained this from the Oxford Text Archive 



Evaluation  

  

  176 

though it seems no longer to be available there; the Manual of Information for the LOB corpus that 

lists all the errors found in the original texts (some but not all of these were subsequently corrected 

in the electronic version); a collection of business-style documents that had been typed by ITEC 

trainees on work experience.  Stephen Elliott kindly made a copy of this corpus available to me 

which has enabled me to make some comparison between the recall and precision scores reported in 

their work with that achieved by my spellchecker when run over the same corpus.  However, there 

are several difficulties in making a comparison between these two pieces of work.  

Almost a quarter of the errors in the Lancaster corpus involve an omitted possessive apostrophe − 

boys in error for boy's, for example − and a number of these occur for proper nouns, including over 

30 occurrences of Croziers in error for Crozier's in the Gill corpus sample.  Apart from the six 

occurrences of it's as an error for its (or vice-versa), none of these errors can be detected by my 

program and although we would like a program to be able to correct errors of this type they are 

more akin to grammar errors than real-word spelling errors and not natural candidates for a 

confusion-set approach.  A further 19% of the errors in the Lancaster corpus are inflection errors 

which again are not amenable to the confusion-set approach.  As the proportions of detectable and 

correctable errors in this corpus (Table  10.12) show, my program would be expected to perform 

poorly on this corpus; only half of the errors in this corpus are included in my confusion sets and 

less than half of these are actually correctable. 

 N %

Detectable errors 221 44%

Correctable errors 89 18%

Real-word errors  502 100%

Table  10.12: Detectable and correctable errors in Lancaster corpus 

Not only are many of the errors in the Lancaster corpus of a different nature to those that my 

program was designed to correct, they also make up a smaller proportion of the total words in the 

corpus − 4% compared to between 5% and 7% in my corpora (Table  10.2).  This suggests that, in a 
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sense, their corpus represents the types of error made by relatively good spellers rather than the 

errors of poor spellers which constitute the bulk of my corpora. 

In addition to the differences in the corpora, there are also differences of implementation to take 

into account.  Atwell and Elliott's spellchecker was not limited to correcting predefined confusable 

words although, since it used tag-bigram probabilities to detect errors, it was confined to syntactic 

errors that were recognisable within a narrow context.  Errors that did not meet these criteria were 

removed from the corpus and stored in a separate 'hard' file.  For example, the error in this fragment 

has the same part-of-speech as the target: 

...a pope (pipe) cleaner can be used when necessary. 

and in this a wide context is needed to detect the error:  

...it was unfortunate that a garden party at the home of our 

chairman and his wife has (had) to be cancelled due to... 

In order to detect errors, their program used the likelihood of the occurrence of a particular tag pair.  

If the tag pair probability returned by the CLAWS tagger fell below a predefined threshold, the 

word was flagged as an error.  They experimented with two threshold levels; increasing the level 

improved precision but reduced recall (as would be expected from the discussion above).  They 

report recall and precision scores for a lower and higher threshold (the exact measure for each of 

these is not important here) for each component of their corpus, excluding the 'hard' errors and also 

for the hard errors which, as they comment, would only be detected by chance factors.  In their 

research they give scores for each component of their corpus separately.  However, for comparison 

with my program, the scores have been aggregated.  This means that the lower recall and precision 

scores for the hard (as compared to the non-hard) errors reduces the overall scores achieved by 

Atwell and Elliott’s program.  On the other hand, the recall and precision scores achieved by my 

program are reduced by the high proportion of errors that are undetectable using my confusion sets 
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(Table  10.12).  Therefore it seems that including all errors in the results achieved by both programs 

allows the most direct comparison between the two pieces of work. 

Table  10.13 compares the recall and precision scores achieved by both programs for error detection 

of all errors in the Lancaster corpus using Atwell and Elliott’s higher threshold and the handicapped 

scores for my program.  In each case these are the scores that optimise the precision level achieved 

by the program thus reducing the number of false alarms produced. 

 Atwell & 
Elliott (higher) 

Pedler 
(handicap) 

N.Errors 502 502 

Total flags 608 51 

Errors flagged 202 44 

Recall 40% 9% 

Precision 33% 72% 

Table  10.13: Comparative recall and precision scores for Lancaster corpus 

As the table shows, Atwell and Elliott’s program flags far more of the words and so achieves a 

higher recall but my program achieves a higher accuracy (better precision). 

10.2.5 Prediction accuracy 
Prediction accuracy is a measure of the program's ability to select the correct word from a set of 

alternatives in a given context expressed as the proportion of correct decisions out of all decisions 

made for confusable words in a text.  This is the method used to evaluate the performance of most 

of the previous experiments with confusion sets described in Chapter 2, many of which achieve an 

accuracy level above 90%.  However, although this is a fairly high level of performance, Carlson et 

al (2001) observe that a level of 98 - 99% is required for a practical system and report achieving this 

level on average for the confusion sets used in their experiment. 

Table  10.14 shows the prediction accuracy achieved by my spellchecker (using the handicapped 

scores) for each corpus calculated as the proportion of correct decisions (correct words accepted 
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plus errors corrected) out of all decisions made (the total number of confusable words in each 

corpus). 

 Dyslexic Students Compositions 

Accept correct 5177 1046 9398 

Correct Error 256 38 135 

Total correct  5433 1084 9533 

All decisions (100%) 5854 1191 10187 

Prediction accuracy 93% 91% 94% 

Table  10.14: Prediction accuracy (handicapped scores) 

Initially this seems to be a respectable figure although it falls short of the suggested threshold 

proposed by Carlson et al., mentioned above.  However, although prediction accuracy can be used 

to measure a program's ability to select the correct word from a group of alternatives in a given 

context (which is the way in which it has been applied in the other confusion set experiments 

discussed previously) it does not tell us much about its ability to correct errors.  For example, a 

program with a prediction accuracy of 95% would make five incorrect decisions for 100 

confusables encountered.  If these 100 confusables also happened to contain five errors the program 

could never actually make any improvement to the overall correctness of the text; if it corrected all 

the errors it would have to make an incorrect decision for five of the correctly spelled words thus 

negating the effect of correcting the errors by introducing an equal number of false alarms.  

Conversely, if it accepted all the correctly spelled words it would have to make an incorrect 

decision for all the errors and leave them uncorrected.  If however, there were a larger number of 

errors in the text (say 10) the errors corrected would always outnumber the false alarms if the 

program had a 95% prediction accuracy. 

Thus the prediction accuracy of a spellchecking program must be higher than the proportion of 

correctly spelled confusables in the text it is checking if it is to make any impact on the errors.  For 

instance, text containing no errors is 100% correct.  In order not to introduce errors the spellchecker 
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would also need to have a prediction accuracy of 100%.  However, if the text was only 90% correct 

a prediction accuracy of over 90% must result in some errors being corrected.  Since in all cases the 

prediction accuracy of my program is higher than the 'correctness value' of the corpora (Table  10.4) 

it corrects more errors than it introduces false alarms.   

10.2.6 Performance measures compared 
The performance measures discussed above are summarised in Table  10.15.  This table uses the 

recall and precision figures for the errors corrected since these provide a better comparison with the 

prediction accuracy and improvement figures both of which reflect the proportion of errors 

corrected. 

 Dyslexic Students Compositions

Prediction accuracy 93% 91% 94%

Recall (correction) 40% 28% 18%

Precision (correction) 81% 70% 78%

Improvement (%) 37% 21% 11%

Table  10.15: Performance measures summarised (handicapped scores) 

The program achieves a prediction accuracy of over 90% for each corpus and by this measure 

performs best on the Compositions corpus.  However, it actually makes a much smaller 

improvement for this corpus than for the other two.  This suggests that, when derived from real 

error data, prediction accuracy is not in fact a very useful statistic.  None of the experiments that use 

this as a measure of performance have used real error data; they have either been run over correctly 

spelled text or text where errors have been artificially introduced by replacing a correct word with 

one of the members of its confusion set.   

10.3 Non-correctable errors 
Around a half of the errors in the corpora used for this evaluation cannot be corrected using the 

collection of confusion sets created for this research (Table  10.16).  These can be subdivided into: 
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• Undetectable − errors that do not have a confusion set associated with them and so will not 

even be considered by the spellchecker as potential errors. 

• Uncorrectable − errors that, although they have a confusion set associated with them and 

may be flagged as errors by the spellchecker, cannot be corrected as the intended word is 

not a member of the confusion set. 

These non-correctable errors demonstrate a shortcoming of using confusion sets for general-purpose 

spellchecking.  Most previous experimental confusion set work has been evaluated using correct 

text or artificial error data created by replacing a correctly spelled confusable with one of the 

members of its confusion set, and therefore has not needed to address the problem of non-

correctable errors as any errors that were introduced into the text would, by definition, be 

correctable.   

 Dyslexic Students Compositions All 

 N % N % N % N %

Non-correctable (all) 
 

349 42% 105 53% 669 63% 1123 54%

Undetectable 
 

186 22% 62 31% 311 30% 559 27%

Uncorrectable 
 

163 20% 43 22% 358 34% 564 27%

All errors 830 100% 199 100% 1049 100% 2078 100%

Table  10.16: Proportions of non-correctable errors in the corpora 

This section considers possible approaches that might be applicable to detecting and correcting 

these non-correctable errors. 

10.3.1 Inflection errors 
Over a third of the undetectable or uncorrectable errors are inflection errors (Table  10.17).  The 

majority of verb inflection errors involve the base form of a verb appearing as an error for one of its 

inflected forms (seem instead of seemed, move instead of moving, for example) but some also occur 

for other forms (e.g. remained in error for remaining, requires for required).  Similarly most, but 
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not all, of the noun inflection errors occur when the singular form of a noun is used where the plural 

form was intended.  

 Dyslexic Students Compositions All 

 N % N % N % N %

Inflection errors 
 

144 41% 27 26% 293 44% 464 41%

Non-correctable (all) 349 100% 105 100% 669 100% 1123 100%

Table  10.17: Inflection errors as proportion of non-correctable errors 

The high proportion of inflection errors suggests that a method to detect and correct this type of 

error would be useful. Although inflection errors do not seem to be appropriate candidates for 

confusion sets, it might be possible to treat them as a type of ‘meta confusion set’ by creating a 

confusion set containing all inflected forms each time a noun or verb appeared in the text.  As the 

majority of the inflection errors occur when a base form is produced in error for an inflected form, it 

might be sufficient to implement this only when a singular noun or the base form of a verb was 

encountered.  This could run either as a separate stage of the spellchecking process or be combined 

with the confusion tagger.  Some handling of inflection errors is an obvious line of future 

development. 

10.3.2 Other errors not included in confusion sets 
The majority of the non-inflection undetectable errors occurred once only although there were more 

repeated errors in the Compositions corpus as illustrated by the type:token ratios shown in Table 

 10.18.  

 Dyslexic Students Compositions All 

N. Tokens 205 78 376 659 

N. Types 159 70 257 486 

%Types 78% 90% 68% 74% 

Table  10.18: Ratio of types to tokens for non-inflection undetectable errors 
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The assessment of the confusion set coverage in Section 5.2 discussed the undetectable errors 

occurring in the Dyslexic error corpus.  The undetectable errors in the Student and Compositions 

corpora follow a similar pattern.  Again, many errors occur on short function words.  In the 

Compositions corpus a appears 24 times as a misspelling, occurring for five different targets – at 

(7), an (6), and (4), as (4), I (3) − and the occurs 14 times for seven different targets − to (5), them 

(2), then (2), they (2), he (1), she (1), there (1).  Errors of this type seem particularly problematic 

because of the high frequencies of the words involved and the wide variety of intended targets.  

The most frequently repeated undetectable error is use as an error for used, occurring 83 times in 

the Compositions corpus.  The high incidence of this is presumably largely because of the subject 

matter of the corpus.  It is easy to imagine poor spellers (or even reasonably good spellers who 

weren’t paying attention) producing use to when writing about what they used to do in primary 

school.  It also suggests that perhaps some types of inflection error should be considered for 

inclusion as confusion sets. 

Some once-only errors in the Students corpus seem puzzling and may well be errors introduced by 

the user making an incorrect selection from a spellchecker selection list for the correction of a non-

word error, for example: 

diapers (disappears) 

guesses (guests) 

prepuce (purpose) 

recurred (required) 

 

There are others that seem similar to the types of error already included in the confusion sets such 

as: 

find (fine) 

luck (lack) 
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meter (matter) 

throw (through) (the confusion set for through contains threw but not throw) 

 

Although adding such words to the existing confusion sets simply because they occurred once in a 

corpus of errors does not seem to be a particularly productive approach, further analysis of the type 

and patterns of the uncorrectable errors in these corpora could help with refining and developing the 

confusion sets for future versions of the spellchecker.  

10.4 Confusion sets assessed 
The non-correctable errors demonstrate some drawbacks with the confusion set approach: the 

spellchecker is only able to correct errors for words included in its confusion sets and confusion sets 

themselves do not seem to be appropriate for some types of error, such as inflected forms of the 

same word or short function words.  A more generalised syntax-based approach would seem to be 

required in such cases. 

Other types of non-correctable errors might be considered for inclusion in the spellchecker’s set of 

confusion sets.  Take this miscorrected sequence from my error corpus for example, “the lose of...”. 

Here lose is mistakenly produced for loss but the confusion set for lose − {loos, loose, louse} − does 

not include loss.  The syntax checker finds that a noun tag is more appropriate than a verb tag in this 

context and selects loose (the highest frequency noun − as in “on the loose”) as a being a better 

syntactic fit.  As loos and louse are also nouns, this selection results in a possible semantic 

confusion so {loose, loos, louse} are flagged for further consideration by the semantic checker.  At 

the end of this process, loose is still the preferred word; although the spellchecker has flagged the 

error it has proposed an incorrect replacement. 

A simple solution could be to add loss to lose's confusion set.  The facility to add confusables to the 

spellchecker's previously defined sets seems somewhat akin to that of adding words to a custom 

dictionary which is a feature of most spellchecking applications.  A disadvantage of this scheme is 
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that the confusion sets would tend to grow large and large sets are a nuisance at the detection stage. 

Even when confusables are correctly used, as they generally are (Table  10.4), the spellchecker 

needs to consider all alternatives before accepting them; the larger the sets, the more work it has to 

do. 

An alternative approach might simply be to treat the confusion sets as a detection mechanism.  If 

the spellchecker decided that another member of the confusion set fitted better than the word it had 

encountered in the text, it would invoke its ordinary correction routine (the same one as it would use 

for the correction of non-word errors) to produce an ordered list of candidate corrections (which 

would probably, though not necessarily, include the confusable which triggered the correction 

routine in the first place). 

If a confusion set simply functions as a signal to the spellchecker that the word it is considering is 

possibly an error, we don't need to try to include every potential misspelling in the set.  In fact, 

rather than increasing the set sizes we can probably reduce them.  As well as decreasing the 

processing required for correctly spelled words, this might also improve the correction rate − for 

instance, if loose was the only word in the confusion set for lose this would be sufficient to detect 

the error in "the lose of...".  The corrector might well include loss (as well as loose, loos and louse) 

among its suggestions and the spellchecker would thus at least have a chance of proposing the 

correct replacement.  

This approach seems to have some potential for future development of the spellchecker. 

10.5 Syntactic and semantic approaches compared 
The spellchecker developed in this research uses both syntactic and semantic information to make 

its decisions.  The syntax checker is the first phase and, in addition to correcting some of the errors, 

assigns part-of-speech tags to each word in the text and flags potential semantic errors for 

consideration by the semantic checker.   
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One advantage of a syntactic approach is that it can be implemented using a minimal amount of 

linguistic information; the version I have developed requires only tag bigram probabilities (derived 

from the BNC) and the <word, tag> frequencies from the dictionary. This means that new confusion 

sets, provided their tagsets differ, can be incorporated without the need for additional training.  

Conversely, the semantic approach implemented here requires considerable effort both to store and 

group the co-occurring nouns for each confusable during the training phase and to retrieve and 

merge the hypernym probabilities at run-time.  It is also only appropriate for words that occur fairly 

frequently in the BNC; for words that occur less than around a hundred times there are insufficient 

noun co-occurrences to generalise from as discussed in Chapter 9.  In addition to this, even when a 

word does have a hypernym tree associated with it, there may be no co-occurring nouns when it 

appears in text being checked in which case the semantic checker will be unable to make a decision. 

Although the hypernym co-occurrence approach implemented here shows some promise as a way 

of capturing the differences between words by grouping their co-occurring nouns and makes some 

impact on the errors at run-time by contributing about 14% of the total errors corrected, 

considerable refinement is required before it could be implemented as part of a practical 

spellchecking application. 

10.6 The trade-off between accuracy and coverage  
From an end-user's perspective, a spellchecker performs well if it corrects the majority of the errors 

while at the same time producing a minimum number of false alarms.  However, it is difficult to 

achieve this ideal.  In common with other research discussed in Chapter 2, my spellchecker factors 

in the expectation that the word appearing in the text is more likely to be correctly spelled than it is 

to be an error by handicapping the alternative words.  This has the effect of reducing the number of 

false alarms but also, inevitably, reduces the number of errors corrected.  

For the evaluation reported on in this chapter, I have set this handicap at the levels assessed to be 

optimum − 0.01 for the syntax checker (Chapter 8) and 0.2 for the semantic checker (Chapter 9).  
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This minimizes the false alarms while still correcting a useful proportion of the errors and achieves 

a reasonable level of improvement in the overall accuracy of the text, which is the preferred 

measure of spellchecker performance for this evaluation (discussed in Section  10.2.2). 

The consensus of opinion (as discussed in Section 2.5) is that users will have more confidence in a 

spellchecker that, although it may ignore many errors, produces few false alarms than in one that 

flags the majority of the errors but also flags a large number of the correctly spelled words as errors.  

For a spellchecker developed for dyslexic users this is probably the best approach. They expect to 

make a large number of errors and are likely to accept the spellchecker’s suggestion in the majority 

of cases. If there are a large number of false alarms this will result in an overall worsening of the 

text.  However, as Carlson et al. (2001) and others have suggested, the confidence level can be set at 

runtime according to the user’s preference.  A user who wanted to be sure that the majority of the 

errors in the text had been flagged and who was confident enough to ignore the false alarms could 

achieve this by reducing the handicap set for the alternative words. 

10.7 Future development 
Although the spellchecker developed in this research has achieved some measure of success in 

detecting and correcting the real-word errors in the corpora used for this evaluation (Table  10.15), it 

has also suggested several lines of future development. 

Inflection and function word errors, neither of which seems appropriate for a confusion-set 

approach, form the greatest proportion of the errors that are not dealt with by the current 

spellchecker.  Since these are generally syntax errors, developing the syntax checker to incorporate 

them seems to be the most productive next stage.   

Using confusion sets for detection rather than correction might reduce the proportion of ‘detected 

but not corrected’ errors as we would no longer be restricting the spellchecker to making 

suggestions from a predefined list. 
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Improving the syntax checker could be expected to improve the overall performance of the 

spellchecker but would not deal with errors that have matching parts-of-speech.  Although the 

current hypernym tree implementation is too slow and laborious, using WordNet senses to capture 

semantic context still seems an attractive approach that might usefully be developed further to deal 

with errors of this type. 

10.8 Contribution 
This research has produced the following original contributions, including several resources of 

value to the wider research community:  

• An updated electronic dictionary – CUVPlus.  This dictionary, which has been uploaded to 

the Oxford Text Archive, is freely available for use for research purposes and is already 

being used by other researchers.  The inclusion of more precise part-of-speech tag 

frequencies, based on word frequency in the BNC, represents a significant improvement on 

the previous version in which part-of-speech tag frequency for each word was simply 

classed as rare, ordinary or common, with the majority being ordinary.  The addition of the 

C5 tagset, as used in the BNC, means that the dictionary now also uses a widely recognised 

tagset which is familiar to the research community. 

• An annotated corpus of dyslexic real-word spelling errors.  Although this corpus is still 

relatively small, containing just over 12,000 words, no resource of this type was previously 

available.  I plan to continue with the development of this resource.  The corpus should be 

of use for both educational and linguistic research and I intend to make it more widely 

available in the near future.  

• A large collection of confusion sets.  Much research into real-word error correction relies 

on sets of confusable words but there is no general consensus as to the most effective way 

to produce these.  The almost six thousand sets of confusable words that I used for this 

research were produced using a distance measure tuned on real error data and represent a 
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significant increase on the 256 sets used by the largest-scale implementation of this method 

to date (Carlson et al., 2001).  As well as being a larger collection, these sets are also non-

symmetric which makes them more flexible for large-scale use. 

• The use of real error data for the development and testing of the program.  This enabled me 

to address the problems of correcting actual errors made by dyslexic writers which are less 

predictable than the artificial errors introduced into the text used for the assessment of much 

of the other research in this area. 

• The semantic error correction algorithm.  Although the current implementation is rather 

slow and cumbersome, it demonstrates that semantic association, using WordNet, has 

potential for the correction of errors of this type. 

• The ‘overall improvement’ measure used for the evaluation.  This has not been used 

previously to assess spellchecker performance.  It is shown to be a more practical measure 

of the effectiveness of the spellchecker than other previously used measures to which it is 

compared. 
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Appendix A: Documentation to accompany CUVPlus 

This appendix is a reproduction of the dictionary documentation available for download from the 

Oxford Text Archive. 

Jennifer Pedler 
School of Computer Science and Information Systems,  
Birkbeck College, Malet St, London WC1E 7HX, UK. 
jenny@dcs.bbk.ac.uk 

October 2002 

1. Introduction 
In 1992 Roger Mitton produced an updated version of a 'computer usable' dictionary called CUV2 
(Mitton, 1992), itself derived from CUVOALD (Mitton, 1986) his version of the Oxford Advanced 
Learner's Dictionary of Current English (OALDCE) (Hornby, 1974). CUVPlus is an enhanced 
version of CUV2. 

Main enhancements: 

• More precise, corpus-based, word frequency information 

• An additional part-of-speech tagset using tags from UCREL C5 tagset (as used in the BNC 
World Edition).  

• Over 1,600 new entries giving increased coverage.  

The main motivation behind the update was the inclusion of more accurate frequency information. 
CUV2 assigns one of three broad frequency categories - very common, ordinary or rare - to each 
part-of-speech. This is adequate to distinguish between different usages for some words, such as 
can, which is marked 'very common' as a verb and 'ordinary' as a noun, but for others the difference 
is not clear. For example both noun and verb are marked as common for form although it is used far 
more frequently as a noun. My research into computer spellchecking showed that it would be useful 
if this type of distinction could be made. To obtain frequency counts for the words in CUV2 I used 
the written section of the BNC (World Edition), which comprises approximately 80 million words 
tagged with their part-of-speech. The tagset used in CUV2 does not correspond exactly to the 
UCREL C5 tagset used in the BNC, for example CUV2 tags nouns as countable and uncountable 
whereas the C5 tagset does not make this distinction. Conversely, the C5 tagset has three tags for 
conjunctions - subordinating, co-ordinating and the subordinating conjunction that - while CUV2 
has just one. For this reason a new tagset was created for each entry in CUVPlus using the C5 tags. 
This also has the advantage of making the dictionary compatible with the BNC. 
CUV2's 70646 entries have provided adequate coverage for most of my spellchecking work. 
However, it occasionally produces unexpected false alarms - flagging as errors words that are 
actually correctly spelled. This largely reflects changes in the language since 1974 when the 
OALDCE was compiled. For example database, a word in fairly common modern usage not 
included in CUV2, would have been a specialised term thirty years ago. To improve the coverage of 
the dictionary additional entries were created for words occurring frequently in the BNC but not 
found in CUV2. 

This document describes the differences between CUVPlus and CUV2. CUV2 is available from the 
Oxford Text Archive and full details can be found in its accompanying documentation (Mitton, 
1992). 
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2. Format of entries 
CUVPlus contains 72060 ASCII ordered entries, one per line in text format. Each entry comprises 
six pipe-separated fields: 

spelling | capitalisation flag | pronunciation | CUV2 tags | C5 tags+frequency | syllable count 

Example lines are shown below: 
bourne|2|bU@n|K6$|NN1:0|1 

 

india|1|'IndI@|Nm%|NP0:50|3 

there|0|De@R|Pu*,W-%|EX0:2166,AV0:480,ITJ:0|1 

The spelling, pronunciation, CUV2 tags and syllable count remain unchanged since CUV2. Full 
details of these fields can be found in (Mitton, 1992). The CUV2 tagset is also included as an 
appendix to this document. The CUV2 tags were retained in CUVPlus as they often provide 
information about the word not available from the C5 tags. (See summary of differences between 
CUV2 and C5 tagsets in Section 8.) 

3. Frequency information 
The frequency information added to each of the part-of-speech tags in CUVPlus is the rounded 
frequency per million based on counts obtained from the written section of the BNC. These counts 
roughly correspond to the listing for the written section of the BNC in (Leech et al., 2001) but they 
cannot be directly compared for several reasons; differences in the later version of the BNC used for 
this work, differences in the treatment of special cases such as hyphenated forms, enclitics and 
multi-word units, and the combination of some parts-of-speech (such as past participle and past 
tense) in Leech et al.'s (2001) lists. Using these counts rather than the raw frequency retains the 
differentiation between the first few hundred common words while grouping together lower-ranked 
words which are little different in either frequency or usage. 
Around 7,000 of the words in CUV2 were not found in the BNC (over half of these were already 
tagged as rare); about 10,000 word/tag pairs occurred just once and about 6,000 twice only. There is 
really little difference in the rarity of these words. Some of those not found in the BNC might well 
occur in another corpus while that corpus might not contain words found in the BNC. They have all 
been given a frequency of -1 to differentiate them from the other words that occurred less than once 
per million which have a frequency value of 0. 
4. Part-of-Speech tags 
An initial tagset was created for each word in CUV2 that had occurred in the BNC by grouping 
together all tags recorded for the word, together with their frequency count. These included a large 
number of mistaggings that had to be removed before the completed tagsets could be added to the 
dictionary. For example there, which should have two tags - EX0 (existential there) and AV0 
(adverb) - initially had 12 additional tags assigned to it, including noun, personal pronoun and 
modal auxiliary verb. The tagsets were then cross-checked with the original CUV2 tags to make 
sure that any rare usages that had not occurred in the BNC were accounted for. By and large BNC 
tags that did not have a corresponding tag in CUV2 were removed. Some exceptions to this were 
verb participles which are commonly used adjectively (such as massed and matching which are both 
tagged more frequently as an adjective than a verb in the BNC but are only tagged as a verb in 
CUV2) and nouns that can also function as adjectives (such as amateur which only has a noun tag 
in CUV2 but is more commonly tagged as an adjective in the BNC). In such cases although the C5 
tagset records both usages, the CUV2 tagset has not been updated to reflect this as shown below: 

massed|0|m&st|Jc%,Jd%|AJ0:2,VVN:1,VVD:0|1 

matching|0|'m&tSIN|Jb%|AJ0:8,VVG:4,NN1:3|2 
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amateur|0|'&m@t@R|K6%|AJ0:13,NN1:4|3 

CUV2 includes entries for prefixes such as multi- and un- which have their own prefix tag. The C5 
tagset does not include a prefix tag and as hyphenated forms in the BNC are always tagged as single 
units there is no need for prefixes to be tagged in their own right. In CUVPlus these have been 
assigned a PRE tag and currently have no frequency information as shown below: 

multi-|0|'mVltI-|U-%|PRE:-|2 

un-|0|Vn-|U-%|PRE:-|1 

In the BNC inflected forms are broken into their component parts each of which receives its own 
tag. For example they're is tagged <w PNP> they<w VBB>'re. CUVPlus includes entries for 
common enclitics such as this and they have been assigned combined tags as shown below: 

they're|0|De@R|Gf%|PNP+VBB:108|1 

 

Letters of the alphabet are assigned a singular or plural noun tag in CUV2. The C5 tagset uses the 
tag ZZ0 for alphabetical symbols. In the BNC plural letters (e.g. f's) are sometimes tagged as a 
single unit with the ZZ0 tag and at other times broken into two separate units as for the enclitic 
forms described above. In CUVPlus the ZZ2 tag (as used in the UCREL C6 tagset) has been 
assigned to such entries. This is illustrated below:  

f|4|ef|Ki$|ZZ0:30|1 

f's|4|efs|Kj$|ZZ2:0|1 

Tagsets were created for words in the dictionary that had not occurred in the corpus by mapping the 
existing CUV2 tags to their corresponding BNC tag. These were assigned the frequency value -1. 

5. Additional entries 
Initial candidates for new entries were words occurring more than ten times in the BNC excluding: 
strings containing digits; units tagged UNC (unclassified); those tagged CRD (cardinal number e.g. 
ii, twenty-one) or ORD (ordinal number e.g. nth, twenty-first); capitalised strings (often 
abbreviations or acronyms); enclitic and hyphenated forms. Proper nouns and multi-words were 
considered separately. This resulted in a shortlist of around 2000 words. This was manually checked 
to remove unsuitable entries: non-words (e.g. emailinc (969); misspellings (e.g. faithfullly (31)); 
American English spellings (e.g. judgment (348)); interjections (e.g. huh (175), hmm (156)); 
specialist terms (e.g. unix (222)); medical terms (e.g. mucosa (197), pancreatitis (76)); slang (e.g. 
caf (84), dosh (23)); abbreviations (e.g. plc (228), mins (227)). A large number of 'solid' compound 
words in the list (e.g. ceasefire (107), holidaymaker (12), turnout (27)) were already in CUV2 in 
hyphenated form. These were also removed from the list. New entries were created for other 
compounds (such as goodnight and lifestyle) in 'solid' form although they could just as well be 
hyphenated. The question of how compound words should be entered in a dictionary is considered 
further in Section 7 below. 

After this pruning just over 500 words were left in the list. The ten highest ranked are listed below: 

Word/Tag N. Occurrences 

organisation (NN1) 1201 

organisations (NN2) 733 

database (NN1) 403 

goodnight (ITJ) 316 
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workforce (NN1) 291 

lifestyle (NN1) 260 

wildlife (NN1) 234 

accountability (NN1) 210 

profitability (NN1) 210 

databases (NN2) 205 

 

The top two words - organisation and organisations - highlighted a general problem with the 
groups of words that can take an -ise or -ize suffix. CUV2 only includes -ize forms although (as 
Appendix 3 of the OALDCE remarks) the -ise form is equally acceptable. Overall 80 of the words 
in the list were of this type. There are 200 such groups of words in CUV2. Many, such as formalize, 
legalize, did not appear in their -ise form in my BNC list. To maintain consistency -ise entries were 
created for all of these resulting in just over a thousand new entries.  
Many nouns appeared in the list in either singular or plural form but not both (such as deckchairs 
(12) and stockmarket (23)). In such cases additional entries have been included for the lower 
frequency form as well (deckchair (7), stockmarkets (4)). Some of the plural nouns in the list 
already had singular entries in CUV2 that were tagged as taking no plural (for example: 
determinations, sediments). In such cases the CUV2 tags have been updated to indicate that a plural 
is acceptable. 
CUV2 contains around 2,500 proper noun entries - forenames, countries, cities and so on. Although 
there are a great many more that could be included I did not have time to consider this in detail. 
From a list of around 400 proper nouns not in CUV2 which occurred with a frequency of more than 
one per million in the BNC forty were added to the dictionary. Two of these Asia (427) and 
Birmingham (375) were surprisingly omitted from CUV2. Others are places that were not 
independent states when the previous dictionary was produced such as Bosnia (249), Croatia (149) 
and Serbia (97). The majority of the others were surnames, which are not appropriate in a 
dictionary.  
There are just over 400 entries in CUV2 that consist of more than one word, the majority of these 
are place names and naturalised foreign phrases (such as New York, hors d'oeuvres). The BNC 
treats many combinations of words that logically form a single unit - adverbial phrases such as a bit, 
in addition to, complex prepositions such as in need of, save for and naturalised foreign phrases 
such as a posteriori, chilli con carne - as multi-word units and assigns a single tag to the complete 
phrase. For a complete list of multi-word units in the BNC see the BNC tagging manual (Leech & 
Smith, 2000). Many of these occur with high frequency in the BNC (the most frequent being per 
cent (already in the dictionary in 'solid' form) and as well which occur over 5,000 times each). As 
text-processing programs that use white space as a word delimiter will often not make use of such 
entries I was dubious whether these would be useful additions. Again, I did not have time for 
detailed consideration but decided to include 35 of the most common, consisting of short function 
words that are often mistakenly run together (such as alot where a lot was intended (Mitton, 1996)) 
that would be useful for spellchecking purposes.  
In total 1669 new entries have been included in CUVPlus. Pronunciation and CUV2 tags have been 
added to each of these. For the -ise entries these are identical to the existing -ize entries. 
Pronunciations for the multi-word entries are a combination of the pronunciation for the individual 
words and they have been given CUV2 tags corresponding to their definition in the BNC (for 
example, at all is tagged as an adverb, out of as a preposition). For all other entries these fields were 
created manually. 
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6. Other changes from CUV2 

6.1. Capitalisation 
As upper-case come before lower-case letters in ASCII ordering, entries for words such as Nice (the 
place name) and nice (the adjective) are widely separated in CUV2 although in a paper dictionary 
they would appear together. To overcome this problem all initial letters have been converted to 
lower-case in CUVPlus and a code, indicating whether or not the word should start with a capital, 
inserted as the second field in the line. 

This code can have one of four values as shown in the following examples: 

0 initial letter always lower-case 
person|0|'p3sn|K6%|NN1:254|2 

1 initial letter always upper-case 
fred|1|fred|Nl%|NP0:19|1 

2 initial lower-case but there is also an upper-case entry with the same spelling but different 
pronunciation 

job|2|dZ0b|J4$,K6*|NN1:209,VVB:0,VVI:0|1 

3 initial upper-case but there is also a lower-case entry with the same spelling but different 
pronunciation 

job|3|dZ@Ub|Nl$|NP0:0|1 

4 initial letter upper or lower-case depending on usage but pronunciation the same in both 
cases. 

kitty|4|'kItI|K8%,Nl%|NP0:2,NN1:1|2 

kitty can be either a common or a proper noun. Initial capitalisation will depend on the 
sense in which it is being used. 

Many abbreviations consist entirely of upper case letters (e.g. AGM, GMT). For words such as these 
only the initial letter has been converted to lower case, which results in some rather odd-looking 
entries as shown below. It also means that they do not appear in their absolute alphabetical position. 
This is perhaps not the best way of dealing with this type of entry but it maintains consistency with 
the other entries.  

aGM|1|,eIdZI'em|Y>%|NN1:3|2 

gMT|1|,dZi,em'ti|Y~%|AV0:8|3 

It is useful to note at this point that the code in this field only deals with capitalisation, it does not 
explicitly mark spellings that appear more than once in the dictionary. Homographs, if both would 
normally be written with an initial lower-case letter will have two entries, both with the code 0 in 
the second field as, for example: 

wind|0|waInd|J5%,K6%|NN1:73,VVI:3,VVB:2|1 

wind|0|wInd|H0%,M6%|NN1:73,VVI:3,VVB:2|1 

 

6.2. Diacritics 
In CUV2 diacritic characters - acute, grave, umlaut, cedilla, circumflex and tilde - precede the letter 
that they mark. This presents several problems. They do not appear in their correct alphabetical 
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position - this is particularly extreme for words beginning with a diacritic which all appear grouped 
together at the beginning of the dictionary. More importantly, they never appear written in this way 
in normal text and so cannot be looked up automatically (by a spellchecker, for example). Finally, 
in many cases, as these foreign words become naturalised into English they are often written 
without the diacritics and are thus more appropriately entered into the dictionary in their unaccented 
form. On balance, if they were to be included at all it seemed more useful to enter them without 
diacritics so these have been removed from all entries in CUVPlus. Some examples are shown 
below: 

CUV2 CUVPlus 

_eclair eclair 

t^ete-`a-t^ete tete-a-tete 

f"uhrer fuhrer 

fa<cade facade 

se~nor senor 

6.3. Verb pattern fields 
Entries for verbs in the OALDCE include verb pattern fields designed to show the learner of 
English how to form correct sentences. These were retained in the entries for CUV2 as the fourth 
field in the line. For entries other than verbs this field was left blank as shown in the two examples 
below: 

CUV2 form|fOm|J0*,M6*|2A,2C,6A,14,15A|1 

CUV2 cat|k&t|K6%||1 

I decided to omit this field from CUVPlus, partly because I have never found a use for it but largely 
for consistency reasons. There is now no need for empty fields in some entries and the time 
consuming task of creating verb patterns for new entries was avoided. The examples below show 
the above two entries as they appear in CUVPlus. 

CUVPlus form|0|fOm|J0*,M6*|NN1:287,VVI:52,VVB:34|1 
CUVPlus cat|0|k&t|K6%|NN1:36|1 

7. Further considerations 
This update has achieved its main aim of adding more accurate frequency information to the 
dictionary. The new entries have increased the coverage which should lead to fewer false alarms 
when it is used for spellchecking (although the fact that less than a hundred of the words added had 
a frequency of more than one per million in the BNC suggests that existing coverage of CUV2 was 
fairly comprehensive). However, there were several issues, some of which arose during the course 
of the work, which I did not have time to consider in detail. In particular: 
• Compound word entries 

In the current version some of these are entered in hyphenated form and others in 'solid' form. 
In use they are often written in both ways although there is possibly an increasing tendency to 
omit the hyphen. There seems little point in a dictionary including both forms but it would be 
best to take a consistent approach. In general hyphenated forms are probably more useful for a 
spellchecker (or any other text-processing program) as it is easier to remove a hyphen than it is 
to insert it. 

• Abbreviations 
In the current version abbreviations have had their initial capital converted to lower-case in the 
same way as all other entries. This is possibly not the right approach when subsequent letters 
are also upper-case. Additionally, as the C5 tagset does not include a specific abbreviation tag it 
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is necessary to use both sets of tags to determine whether a word is an abbreviation. This 
information is required to disambiguate between the use of a full stop as an abbreviation marker 
and a sentence delimiter.  

• Proper nouns 
Some proper noun entries have been added to the current version, rectifying some omissions 
from CUV2 and reflecting major geographical/political changes since that dictionary was 
produced. A more comprehensive approach requires a clear definition of the categories of 
proper noun to be included and, for cities, countries and the like, the use of a gazetteer rather 
than a general purpose corpus to obtain the data.  

• Multi-word units 
A rather ad hoc approach has been taken to these in the current version, largely because they are 
not particularly useful when the dictionary is used by a spellchecker. A clear idea of the ways in 
which they might be used would help to define clearer criteria for inclusion.  

• Prefixes 
There is currently no frequency information included with these entries. It would be useful to 
include this as it would give an indication as to how commonly they were used to form other 
words. 

• Homophones and homographs  
It would be useful to add flags for these to indicate that there is another entry with the same 
pronunciation or spelling. 

Further details of the development of CUVPlus can be found in (Pedler, forthcoming). 
8. Summary of differences between CUV2 and C5 tagsets 
This section provides a summary of the differences between the two tagsets used in CUVPlus as an 
aid for users who wish to combine them to obtain further information about a word. Details of the 
C5 tagset as used in the BNC can be found in the BNC Users Reference Guide (Burnard, 2000). 
The CUV2 tagset is described in the documentation that accompanies the dictionary (Mitton, 1992). 
Both tagsets are also included as appendices to this document. 

8.1. Verbs 
Apart from be, do and have, which have their own sets of tags the BNC categorises verbs as either 
lexical or modal auxiliary. CUV2 divides verbs into four main groups - anomalous, transitive, 
intransitive, both transitive & intransitive. The anomalous verbs include the primary auxiliaries be, 
have and do, as well as the modal auxiliaries (e.g. can, may) and the semi-modals (e.g. dare, need). 
The other categories correspond to the lexical verbs in the C5 tagset. This means that additional 
information about the verb's usage - whether or not it takes an object is available from the CUV2 
tags. Both tagsets further divide the main verb categories into infinitive, third person present, past 
tense and so on but CUV2 also includes inflection information with the tag for the infinitive form. 
For the modal auxiliaries in the C5 tagset no differentiation is made between past and present forms 
of these verbs whereas the CUV2 tagset does make this distinction. For example can and could are 
both simply tagged as modal auxiliaries in the BNC whereas in CUV2 can is tagged anomalous 
irregular and could is tagged anomalous past tense. 

8.2. Nouns 
The C5 tagset has four noun tags - common noun neutral for number, singular common noun, plural 
common noun and proper noun. Apart from proper nouns these do not correspond to the four main 
tags used in CUV2 - countable, uncountable, both countable and uncountable and proper noun. In 
CUV2 these are further subdivided into singular and plural with additional information about the 
way the noun inflects. CUV2 also further subdivides proper nouns into forename, country, town and 
other whereas in the BNC they all use the same tag. 
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8.3. Adjectives 
Both tagsets make the distinction between general, comparative and superlative adjectives but in 
addition the CUV2 tags categorise them as predicative/attributive and indicate the way in which the 
inflections are formed. 

8.4. Adverbs 
The C5 tagset has 3 tags for adjectives - general adverb (not included in either of other two 
categories), adverb particle and wh- adverb. The CUV2 tagset has 4 -  not interrogative or relative, 
interrogative, relative and adverbial particle. Apart from the particles there is no general 
correspondence between these two sets of tags and as the majority of adverbs in CUV2 fall into the 
'not interrogative or relative' category little extra information is gained from using the CUV2 tags 
for these entries. 

8.5. Pronouns 
The C5 tagset splits these into determiner pronouns and pronouns using a total of seven tags - 
possessive determiner-pronoun, general determiner-pronoun, wh- determiner-pronoun, indefinite 
pronoun, personal pronoun, wh- pronoun and reflexive pronoun. This is far more fine-grained than 
the CUV2 tagset which classes pronouns as not interrogative or relative, interrogative, and relative 
with the majority of them falling into the first category. 

8.6. Articles 
The C5 tagset has one tag for all articles, definite and indefinite whereas CUV2 makes the 
distinction between definite and indefinite. 

8.7. Prepositions 
Both tagsets use a single tag for prepositions, apart from of which has its own unique tag in the C5 
tagset. However, there is often some discrepancy between words tagged as prepositions in the BNC 
and those tagged as such in CUV2. For example, out and post both appear tagged as prepositions in 
the BNC (and thus have a PRP tag in CUVPlus) but have no preposition tag in CUV2. Aslant and 
mid have a preposition tag in CUV2 but do not appear tagged as prepositions in the BNC. In 
CUVPlus these also have preposition tags mapped from the existing CUV2 tags. 

8.8. Conjunctions 
CUV2 has a single tag for all conjunctions whereas the C5 tagset divides them into three categories 
- co-ordinating conjunction, subordinating conjunction, and the subordinating conjunction that. 

8.9. Interjections 
Both tagsets use a single tag for interjections. 

8.10.  Infinitive marker to 
To, when used as the infinitive marker, has its own tag in the C5 tagset . It is the only word tagged 
as a particle in CUV2 thus the effect is the same in both tagsets. 

8.11.  Abbreviations 
Abbreviations in the BNC are tagged as if they were written as full forms whereas CUV2 explicitly 
tags abbreviations and further categorises them into the type of abbreviation - singular noun, plural 
noun, both singular and plural noun, uncountable noun, title, proper noun and other. To determine 
whether a word is an abbreviation it is essential to use the CUV2 tags. 
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Thanks to George Mitton for producing and keying in the pronunciations and CUV2 tags for the 
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Appendix 1 
CUV2 Tagset 
 

Word Class First Character Second Character 

VERBS G Anomolous 0 inflects like work 

 H Transitive 1  wish 

 I Intransitive 2  love 

 J Trans & Intrans 3  apply 

   4  abet 

   5 irregular 

   a 3rd pers sing pres tense 

   b present participle -ing 

   c past tense 

   d past participle 

   e other part of verb 

   f contraction pronoun + anom. verb 

   g contraction anom verb + not 

   h contraction anom vb, other 

NOUNS K countable 6 Plural like cat 

 L Uncountable 7  fox 

 M Count & uncount 8  pony 

 N Proper noun 9 Pl same as sing, like Salmon 

   @ No plural 

   i sing form 

   j plural form 

   k pl. but acts like sg. e.g. economics 

   l proper, forename e.g. Sandra 

   m proper, country etc. e.g. Scotland 

   n proper, town e.g. Scunthorpe 

   o other e.g. Saturn 

ADJECTIVES O  A no -er or -est form 

   B +r, +st, like subtle 

   C + er, +est, like light 
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   D y to ier, iest, like heavy 

   E irregular comp &/or sup 

   p predicative 

   q attributive 

   r comparative form 

   s superlative form 

   t can be attached by hyphen e.g. bellied 

ADVERBS P  u not interrogative or relative 

   v interrogative 

   w relative 

   + adverbial particle 

PRONOUNS Q  x not interrogative or relative 

   y interrogative 

   z relative 

OTHER R Definite article -  

 S Indefinite article -  

 T Preposition -  

 U Prefix -  

 V Conjunction -  

 W Interjection -  

 X Particle -  

 Y Abbreviation > sing noun 

   ) plural noun 

   ] both sing & plural 

   } uncountable noun 

   : title 

   = proper noun 

   ~ other abbreviation 

 Z Not classified -  

 

Frequency codes (third character) 

* very common 

% ordinary 

$ rare 
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Appendix 2 
C5 Tagset 
(Excluding punctuation tags)  

Tag Description 

  AJ0 Adjective (general or positive) (e.g. good, 
old, beautiful) 

  AJC Comparative adjective (e.g. better, older) 

  AJS Superlative adjective (e.g. best, oldest) 

  AT0 Article (e.g. the, a, an, no) 

  AV0 General adverb: an adverb not subclassified 
as AVP or AVQ (see below) (e.g. often, well, 
longer (adv.), furthest. 

  AVP Adverb particle (e.g. up, off, out) 

  AVQ Wh-adverb (e.g. when, where, how, why, 
wherever) 

  CJC Coordinating conjunction (e.g. and, or, but) 

  CJS Subordinating conjunction (e.g. although, 
when) 

  CJT The subordinating conjunction that 

  CRD Cardinal number (e.g. one, 3, fifty-five, 3609) 

  DPS Possessive determiner-pronoun (e.g. your, 
their, his) 

  DT0 General determiner-pronoun: i.e. a 
determiner-pronoun which is not a DTQ or 
an AT0 

  DTQ Wh-determiner-pronoun (e.g. which, what, 
whose, whichever)  

  EX0 Existential there, i.e. there occurring in the 
there is ... or there are ... construction 

  ITJ Interjection or other isolate (e.g. oh, yes, 
mhm, wow) 

  NN0 Common noun, neutral for number (e.g. 
aircraft, data, committee)  

  NN1 Singular common noun (e.g. pencil, goose, 
time, revelation) 

  NN2 Plural common noun (e.g. pencils, geese, 
times, revelations) 

  NP0 Proper noun (e.g. London, Michael, Mars, 
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IBM)  

  ORD Ordinal numeral (e.g. first, sixth, 77th, last) . 

 

  PNI Indefinite pronoun (e.g. none, everything, one 
[as pronoun], nobody) 

  PNP Personal pronoun (e.g. I, you, them, ours) 

  PNQ Wh-pronoun (e.g. who, whoever, whom) 

  PNX Reflexive pronoun (e.g. myself, yourself, 
itself, ourselves) 

  POS The possessive or genitive marker 's or ' 

  PRF The preposition of 

  PRP Preposition (except for of) (e.g. about, at, in, 
on, on behalf of, with) 

  TO0 Infinitive marker to  

  UNC Unclassified items which are not 
appropriately considered as items of the 
English lexicon 

  VBB The present tense forms of the verb BE, 
except for is, 's: i.e. am, are, 'm, 're and be  
[subjunctive or imperative] 

  VBD The past tense forms of the verb BE: was and 
were 

  VBG The -ing form of the verb BE: being 

  VBI The infinitive form of the verb BE: be 

  VBN The past participle form of the verb BE: been 

  VBZ The -s form of the verb BE: is, 's 

  VDB The finite base form of the verb DO: do 

  VDD The past tense form of the verb DO: did 

  VDG The -ing form of the verb DO: doing 

  VDI The infinitive form of the verb DO: do 

  VDN The past participle form of the verb DO: done

  VDZ The -s form of the verb DO: does, 's 

  VHB The finite base form of the verb HAVE: 
have, 've 

  VHD The past tense form of the verb HAVE: had, 
'd 

  VHG The -ing form of the verb HAVE: having 
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  VHI The infinitive form of the verb HAVE: have 

  VHN The past participle form of the verb HAVE: 
had 

  VHZ The -s form of the verb HAVE: has, 's 

  VM0 Modal auxiliary verb (e.g. will, would, can, 
could, 'll, 'd) 

  VVB The finite base form of lexical verbs (e.g. 
forget, send, live, return) [Including the 
imperative and present subjunctive] 

  VVD The past tense form of lexical verbs (e.g. 
forgot, sent, lived, returned) 

  VVG The -ing form of lexical verbs (e.g. 
forgetting, sending, living, returning) 

  VVI The infinitive form of lexical verbs (e.g. 
forget, send, live, return) 

  VVN The past participle form of lexical verbs (e.g. 
forgotten, sent, lived, returned) 

  VVZ The -s form of lexical verbs (e.g. forgets, 
sends, lives, returns) 

  XX0 The negative particle not or n't 

  ZZ0 Alphabetical symbols (e.g. A, a, B, b, c, d) 

 

Additional tags used in CUVPlus 

  PRE Prefix (e.g. multi-, un-) 

  ZZ2 Plural alphabetical symbol (e.g. f's, p's) 
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Appendix 3 

Pronunciation characters 
Vowels Consonants 

i ..........as in ..........bead        N  ........ as in  ........sing 

I .......... .................bid        T.......... ................. thin 

e .......... .................bed        D.......... ................. then 

& (ampsnd) ............bad        S.......... .................shed 

A .......... .................bard        Z.......... .................beige 

0 (zero) .................cod       tS ....... .................etch 

O (cap O) ...............cord       dZ ....... .................edge 

U .......... .................good  

u .......... .................food        p t k b d g 

V .......... .................bud        m n f v s z 

3 (three) ................bird        r l w h j 

@ .......... ................."a" in about  

Dipthongs  

eI........as in ..........day       

@U........ .................go       

aI........ ................. eye       

aU........ .................cow       

oI........ .................boy       

I@........ .................beer       

e@........ .................bare       

U@........ ................. tour       

R-linking (the sounding of a /r/ at the end of 
a word when it is followed by a vowel) is 
marked R 

eg fAR for "far" 

(compare "far away" with "far beyond" 

 

Primary stress: apostrophe e.g. @'baUt ("about") 

Secondary stress : comma e.g. ,&ntI'septIk 

Plus-sign as in "courtship" and "bookclub" 'kOt+Sip  'bUk+klVb 

Compound words 

When the spelling contains a space and/or a hyphen, the pronunciation has one also,  

e.g. above board  @,bVv 'bOd    air-raid  'e@-reId 
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Appendix B: Code for Simple Good-Turing Frequency 
Estimator 

 * 

 * 

 *      Simple Good-Turing Frequency Estimator 

 * 

 * 

 *      Geoffrey Sampson, with help from Miles Dennis 

 * 

 *      School of Cognitive and Computing Sciences 

 *      University of Sussex, England 

 * 

 *      http://www.grs.u-net.com/ 

 * 

 * 

 *      First release:  27 June 1995 

 *      Revised release:  24 July 2000 

 * 

 * 

 *      Takes a set of (frequency, frequency-of-frequency) pairs, and  

 *      applies the "Simple Good-Turing" technique for estimating  

 *      the probabilities corresponding to the observed frequencies,  

 *      and P.0, the joint probability of all unobserved species. 

 *      The Simple Good-Turing technique was devised by William A. Gale 

 *      of AT&T Bell Labs, and described in Gale & Sampson,  

 *      "Good-Turing Frequency Estimation Without Tears" (JOURNAL 

 *      OF QUANTITATIVE LINGUISTICS, vol. 2, pp. 217-37 -- reprinted in 

 *      Geoffrey Sampson, EMPIRICAL LINGUISTICS, Continuum, 2001). 

 * 

 *      Anyone is welcome to take copies of this program and use it 

 *      for any purpose, at his or her own risk.  If it is used in 

 *      connexion with published work, acknowledgment of Sampson and 

 *      the University of Sussex would be a welcome courtesy. 

 * 

 *      The program is written to take input from "stdin" and send output 

 *      to "stdout"; redirection can be used to take input from and 
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 *      send output to permanent files.  The code is in ANSI standard C. 

 * 

 *      The input file should be a series of lines separated by newline 

 *      characters, where all nonblank lines contain two positive 
integers 

 *      (an observed frequency, followed by the frequency of that 
frequency) 

 *      separated by whitespace.  (Blank lines are ignored.) 

 *      The lines should be in ascending order of frequency. 

 * 

 *      No checks are made for linearity; the program simply assumes that 
the  

 *      requirements for using the SGT estimator are met. 

 * 

 *      The output is a series of lines each containing an integer 
followed   

 *      by a probability (a real number between zero and one), separated 
by a  

 *      tab.  In the first line, the integer is 0 and the real number is 
the  

 *      estimate for P.0.  In subsequent lines, the integers are the   

 *      successive observed frequencies, and the reals are the estimated   

 *      probabilities corresponding to those frequencies. 

 * 

 *      The revised release cures a bug to which Martin Jansche of Ohio 

 *      State University kindly drew attention.  No warranty is given  

 *      as to absence of further bugs. 

 * 

 * 

 */ 

  

  

 #include <stdio.h> 

 #include <math.h> 

 #include <ctype.h> 

 #include <stdlib.h> 

 #include <string.h> 

  

 #define TRUE   1 
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 #define FALSE  0 

 #define MAX_LINE       100 

 #define MAX_ROWS       6215 

 #define MIN_INPUT      5 

  

 int r[MAX_ROWS], n[MAX_ROWS]; 

 double Z[MAX_ROWS], log_r[MAX_ROWS], log_Z[MAX_ROWS],  

                rStar[MAX_ROWS], p[MAX_ROWS]; 

 int rows, bigN; 

 double PZero, bigNprime, slope, intercept; 

  

 int main(void) 

        { 

        int readValidInput(void); 

        void analyseInput(void); 

         

        if ((rows = readValidInput()) >= 0) 

                { 

                if (rows < MIN_INPUT) 

                        printf("\nFewer than %d input value-pairs\n", 

                                        MIN_INPUT); 

                else 

                        analyseInput(); 

                } 

        return(TRUE); 

        } 

  

 double sq(double x) 

        { 

        return(x * x); 

        } 

  

 int readValidInput(void) 

        /* 

         *      returns number of rows if input file is valid, else -1 

         *      NB:  number of rows is one more than index of last row 

         * 
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         */ 

         

        { 

        char line[MAX_LINE]; 

        const char* whiteSpace = " \t\n\v\f\r"; 

        int lineNumber = 0; 

        int rowNumber = 0; 

        const int error = -1; 

 

        while (fgets(line, MAX_LINE, stdin) != NULL && rowNumber < 
MAX_ROWS) 

                { 

                char* ptr = line; 

                char* integer; 

                int i; 

 

                ++lineNumber; 

 

                while (isspace(*ptr))  

                        ++ptr;  /* skip white space at the start of a 
line */ 

                if (*ptr == '\0') 

                        continue; 

                if ((integer = strtok(ptr, whiteSpace)) == NULL ||  

                                (i = atoi(integer)) < 1) 

                        { 

                        fprintf(stderr, "Invalid field 1, line %d\n", 

                                        lineNumber); 

                        return(error); 

                        } 

                if (rowNumber > 0 && i <= r[rowNumber - 1]) 

                        { 

                        fprintf(stderr,  

                      "Frequency not in ascending order, line %d\n",  

                                        lineNumber); 

                        return(error); 

                        } 

                r[rowNumber] = i; 
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                if ((integer = strtok(NULL, whiteSpace)) == NULL ||  

                                (i = atoi(integer)) < 1) 

                        { 

                        fprintf(stderr, "Invalid field 2, line %d\n", 

                                        lineNumber); 

                        return(error); 

                        } 

                n[rowNumber] = i; 

                if (strtok(NULL, whiteSpace) != NULL) 

                        { 

                        fprintf(stderr, "Invalid extra field, line %d\n", 

                                        lineNumber); 

                        return(error); 

                        } 

                ++rowNumber; 

                } 

        if (rowNumber >= MAX_ROWS) 

                { 

                fprintf(stderr, "\nInsufficient memory reserved for 
input\ 

                        values\nYou need to change the definition of\ 

                        MAX_ROWS\n"); 

                return(error); 

                } 

        return(rowNumber); 

        } 

          

 void findBestFit(void) 

        { 

        double XYs, Xsquares, meanX, meanY; 

        double sq(double); 

        int i; 

         

        XYs = Xsquares = meanX = meanY = 0.0; 

        for (i = 0; i < rows; ++i) 

                { 

                meanX += log_r[i]; 

                meanY += log_Z[i]; 
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                } 

        meanX /= rows; 

        meanY /= rows; 

        for (i = 0; i < rows; ++i) 

                { 

                XYs += (log_r[i] - meanX) * (log_Z[i] - meanY); 

                Xsquares += sq(log_r[i] - meanX); 

                } 

        slope = XYs / Xsquares; 

        intercept = meanY - slope * meanX; 

        } 

         

 double smoothed(int i) 

        { 

        return(exp(intercept + slope * log(i))); 

        } 

         

 int row(int i) 

        { 

        int j = 0; 

         

        while (j < rows && r[j] < i) 

                ++j; 

        return((j < rows && r[j] == i) ? j : -1); 

        } 

         

 void showEstimates(void) 

        { 

        int i; 

         

        printf("0\t%.4g\n", PZero); 

        for (i = 0; i < rows; ++i) 

                printf("%d\t%.4g\n", r[i], p[i]); 

        } 

         

 void analyseInput(void) 

        { 
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        int i, j, next_n; 

        double k, x, y; 

        int indiffValsSeen = FALSE; 

        int row(int); 

        void findBestFit(void); 

        double smoothed(int); 

        double sq(double); 

        void showEstimates(void); 

         

        bigN = 0; 

        for (j = 0; j < rows; ++j) 

                bigN += r[j] * n[j]; 

        PZero = n[row(1)] / (double) bigN; 

        for (j = 0; j < rows; ++j) 

                { 

                i = (j == 0 ? 0 : r[j - 1]); 

                if (j == rows - 1) 

                        k = (double) (2 * r[j] - i); 

                else 

                        k = (double) r[j + 1]; 

                Z[j] = 2 * n[j] / (k - i); 

                log_r[j] = log(r[j]); 

                log_Z[j] = log(Z[j]); 

                } 

        findBestFit(); 

        for (j = 0; j < rows; ++j) 

                { 

                y = (r[j] + 1) * smoothed(r[j] + 1) / smoothed(r[j]); 

                if (row(r[j] + 1) < 0) 

                        indiffValsSeen = TRUE; 

                if (! indiffValsSeen) 

                        { 

                        x = (r[j] + 1) * (next_n = n[row(r[j] + 1)]) /  

                                        (double) n[j]; 

                        if (fabs(x - y) <= 1.96 * sqrt(sq(r[j] + 1.0) * 

                                        next_n / (sq((double) n[j])) *  

                                        (1 + next_n / (double) n[j]))) 
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                                indiffValsSeen = TRUE; 

                        else 

                                rStar[j] = x; 

                        } 

                if (indiffValsSeen) 

                        rStar[j] = y; 

                } 

        bigNprime = 0.0; 

        for (j = 0; j < rows; ++j) 

                bigNprime += n[j] * rStar[j]; 

        for (j = 0; j < rows; ++j) 

                p[j] = (1 - PZero) * rStar[j] / bigNprime; 

        showEstimates(); 

        } 
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Appendix C : Sample sentence splitting 

Input text from FLOB_J 

Having defined the quantities that are normally measured in a nuclear 
reaction we here outline the typical experimental procedures which are 
followed for studying the symbolic reaction A(a, b)B. No details are 
given of the apparatus other than to mention very briefly the underlying 
physical principles. Details of low energy nuclear physics apparatus are 
given, for example, in Burcham (1988) and of high energy elementary 
particle apparatus in a book in this series by Kenyon (1988). 

Referring to Fig. 5.3, charged ions of the particle a are produced in 
some form of accelerator (described later in this section) and, by use of 
bending magnets for example, will emerge with a particular energy. These 
ions then pass through a collimator in order to define their direction 
with some precision and strike a target containing the nuclei A. As the 
beam particles move through the target they will mainly lose energy by 
ionizing target atoms and so, if precise energy measurements are to be 
made, a thin target must be used. This, however, increases the difficulty 
of the experiment since few interactions will take place. Choice of 
target thickness is clearly a crucial decision in planning an experiment. 

 

The reaction product particles b move off in all directions and their 
angular distribution can be studied by detecting them after passage 
through another collimator set at a particular angle . Various types of 
detector are used (discussed later) - sometimes in combination - and 
these can determine the type of particle as well as its energy. But 
experimenters have to contend with many complications of interpretation, 
impurities in targets and, not least, the stability of their apparatus. 
In the end, detailed information becomes available about , d/d and their 
energy dependence for the reaction under study. 

Most important for nuclear reaction studies are Van de Graaff 
accelerators in which ions are accelerated in an evacuated tube by an 
electrostatic field maintained between a high voltage terminal and an 
earth terminal, charge being conveyed to the high voltage terminal by a 
rotating belt or chain. In early forms of this accelerator, positive ions 
from a gaseous discharge tube were accelerated from the high voltage 
terminal to earth. But, in modern 'tandem' accelerators, negative ions 
are accelerated from earth to the high voltage terminal where they are 
then stripped of some electrons and the resultant positive ions are 
further accelerated down to earth potential. The effective accelerating 
potential is thus twice the potential difference in the machine. High 
flux proton beams with energies up to around 30MeV can be produced in 
this way. The machines can also be used to accelerate heavy ions such as 
16O. 

At higher energies use is generally made of orbital accelerators in which 
charged particles are confined to move in circular orbits by a magnetic 
field. At non-relativistic energies the angular frequency of rotation , 
known as the cyclotron frequency, is constant depending only on the 
strength of the field. In a cyclotron, the particles rotate in a circular 
metallic box split into two halves, known as Ds, between which an 
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oscillating electric field is maintained. Its frequency matches  and so 
the particle is continually accelerated. In a fixed magnetic field the 
orbital radius increases as the energy increases and, at some maximum 
radius, the particles are extracted using an electrostatic deflecting 
field. However, as the energy becomes relativistic (remember ),  
decreases with energy and it becomes necessary to decrease steadily the 
frequency of the oscillating electric field with energy to preserve 
synchronization. 

Such a machine is known as a synchrocyclotron and protons with energies 
in the region of 100 MeV have been produced in this way. 

For energies higher than this gigantic magnets would be needed and so the 
approach is to accelerate bunches of particles in orbits of essentially 
constant radius using annular magnets producing magnetic fields which 
increase as the particle energy increases: This energy increase is 
provided by passing the particles through radio-frequency cavities whose 
frequency also changes slightly as the particles are accelerated to 
ensure synchronization. Such devices are called synchrotrons and can be 
physically very large. For example, the so-called Super Proton 
Synchrotron (SPS) at CERN (Geneva) has a circumference around 6 km and 
can produce protons with energies up to around 450 GeV. LEP (the Large 
Electron-Positron Collider) has a circumference of 27 km and accelerates 
electrons (and positrons in the opposite direction) to energies of 60 GeV 
or more. Finally, the Superconducting Super Collider (SCC), which uses 
superconducting magnets, and which is being built in the USA, has a 
circumference of 87 km and will produce proton and antiproton beams with 
energies 20 000 GeV! 

Electrons can also be accelerated in synchrotrons but, because of their 
small mass, large amounts of energy are radiated (synchrotron radiation) 
owing to the circular acceleration. At energies beyond a few GeV this 
loss becomes prohibitive and use has to be made of linear accelerators in 
which electrons are accelerated down a long evacuated tube by a 
travelling electromagnetic wave. The Stanford Linear Accelerator (SLAC) 
in the USA, for example, is around 3 km long and can produce pulses of 
electrons with energies up to 50 GeV. 

Although in the early days much use was made of ionization chambers, for 
example the Geiger counter (section 1.4), the detectors currently in use 
for nuclear physics experiments are usually either scintillation counters 
or semiconductor detectors or some combination. The former are 
developments of the approach of Rutherford, Geiger and Marsden (section 
1.3) using the scintillations produced in a ZnS screen to detect -
particles. Various scintillators are in current use such as NaI activated 
by an impurity (usually thallium for detection of -particles), or some 
organic material dissolved in a transparent plastic or liquid. The 
scintillations are detected by a photomultiplier tube producing a pulse 
of photo-electrons. The size of the pulse - the pulse height - gives a 
measure of the energy of the incident particle. 

Semiconductor detectors depend on an incident particle or photon exciting 
an electron from the valence band to the conduction band. The resultant 
increase in conductivity - a conduction pulse - then produces a signal 
which is processed electronically and which enables the energy of the 
incident radiation to be measured. 

In the field of very high energy physics, considerable use is made of 
bubble chambers and wire chambers. The former follows on from the Wilson 
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cloud chamber and consists essentially of a large chamber, possibly 
several metres in diameter, containing liquid (e.g. hydrogen, helium, 
propane, ...) near its boiling point. The chamber is expanded as charged 
particles pass through it, leading to the formation of bubbles, as a 
result of boiling, along the particle tracks which can be stereo flash 
photographed. The lengths of the tracks and their curvature in a magnetic 
field enable particle lifetimes, masses and energies to be deduced. 

Wire chambers consist of stacks of positively and negatively charged wire 
grids in a low pressure gas. An incident charged particle ionizes the gas 
and acceleration of the resultant electrons near the anode wires leads to 
further ionization and an electrical pulse. The physical location of the 
pulse can be determined electronically so that track measurements can be 
made. Using an applied magnetic field to bend the tracks again enables 
information to be obtained about the properties of the detected particle. 

In the previous chapter some understanding of nuclear structure has been 
achieved in terms of a nuclear model in which nucleons move around fairly 
independently in a potential well. To give some intuitive understanding 
of nuclear reaction processes we stay with this description of the 
nucleus and follow a very illuminating discussion given by Weisskopf 
(1957). 

 

Output from sentence splitter 
Snum 1 

Having defined the quantities that are normally measured in a nuclear 
reaction we here outline the typical experimental procedures which are 
followed for studying the symbolic reaction A(a, b)B.  

Snum 2 

No details are given of the apparatus other than to mention very briefly 
the underlying physical principles.  

Snum 3 

Details of low energy nuclear physics apparatus are given, for example, 
in Burcham (1988) and of high energy elementary particle apparatus in a 
book in this series by Kenyon (1988).  

Snum 4 

Referring to Fig. 5.3, charged ions of the particle a are produced in 
some form of accelerator (described later in this section) and, by use of 
bending magnets for example, will emerge with a particular energy.  

Snum 5 

These ions then pass through a collimator in order to define their 
direction with some precision and strike a target containing the nuclei 
A.  

Snum 6 

As the beam particles move through the target they will mainly lose 
energy by ionizing target atoms and so, if precise energy measurements 
are to be made, a thin target must be used.  

Snum 7 
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This, however, increases the difficulty of the experiment since few 
interactions will take place.  

Snum 8 

Choice of target thickness is clearly a crucial decision in planning an 
experiment.  

Snum 9 

The reaction product particles b move off in all directions and their 
angular distribution can be studied by detecting them after passage 
through another collimator set at a particular angle.  

Snum 10 

Various types of detector are used (discussed later) - sometimes in 
combination - and these can determine the type of particle as well as its 
energy.  

Snum 11 

But experimenters have to contend with many complications of 
interpretation, impurities in targets and, not least, the stability of 
their apparatus.  

Snum 12 

In the end, detailed information becomes available about, d/d and their 
energy dependence for the reaction under study.  

Snum 13 

Most important for nuclear reaction studies are Van de Graaff 
accelerators in which ions are accelerated in an evacuated tube by an 
electrostatic field maintained between a high voltage terminal and an 
earth terminal, charge being conveyed to the high voltage terminal by a 
rotating belt or chain.  

Snum 14 

In early forms of this accelerator, positive ions from a gaseous 
discharge tube were accelerated from the high voltage terminal to earth.  

Snum 15 

But, in modern 'tandem' accelerators, negative ions are accelerated from 
earth to the high voltage terminal where they are then stripped of some 
electrons and the resultant positive ions are further accelerated down to 
earth potential.  

Snum 16 

The effective accelerating potential is thus twice the potential 
difference in the machine.  

Snum 17 

High flux proton beams with energies up to around 30MeV can be produced 
in this way.  

Snum 18 

The machines can also be used to accelerate heavy ions such as 16O.  

Snum 19 
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At higher energies use is generally made of orbital accelerators in which 
charged particles are confined to move in circular orbits by a magnetic 
field.  

Snum 20 

At non-relativistic energies the angular frequency of rotation, known as 
the cyclotron frequency, is constant depending only on the strength of 
the field.  

Snum 21 

In a cyclotron, the particles rotate in a circular metallic box split 
into two halves, known as Ds, between which an oscillating electric field 
is maintained.  

Snum 22 

Its frequency matches and so the particle is continually accelerated.  

Snum 23 

In a fixed magnetic field the orbital radius increases as the energy 
increases and, at some maximum radius, the particles are extracted using 
an electrostatic deflecting field.  

Snum 24 

However, as the energy becomes relativistic (remember ), decreases with 
energy and it becomes necessary to decrease steadily the frequency of the 
oscillating electric field with energy to preserve synchronization.  

Snum 25 

Such a machine is known as a synchrocyclotron and protons with energies 
in the region of 100 MeV have been produced in this way.  

Snum 26 

For energies higher than this gigantic magnets would be needed and so the 
approach is to accelerate bunches of particles in orbits of essentially 
constant radius using annular magnets producing magnetic fields which 
increase as the particle energy increases: This energy increase is 
provided by passing the particles through radio-frequency cavities whose 
frequency also changes slightly as the particles are accelerated to 
ensure synchronization.  

Snum 27 

Such devices are called synchrotrons and can be physically very large.  

Snum 28 

For example, the so-called Super Proton Synchrotron (SPS) at CERN 
(Geneva) has a circumference around 6 km and can produce protons with 
energies up to around 450 GeV.  

Snum 29 

LEP (the Large Electron-Positron Collider) has a circumference of 27 km 
and accelerates electrons (and positrons in the opposite direction) to 
energies of 60 GeV or more.  

Snum 30 

Finally, the Superconducting Super Collider (SCC), which uses 
superconducting magnets, and which is being built in the USA, has a 
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circumference of 87 km and will produce proton and antiproton beams with 
energies 20 000 GeV!  

Snum 31 

Electrons can also be accelerated in synchrotrons but, because of their 
small mass, large amounts of energy are radiated (synchrotron radiation) 
owing to the circular acceleration.  

Snum 32 

At energies beyond a few GeV this loss becomes prohibitive and use has to 
be made of linear accelerators in which electrons are accelerated down a 
long evacuated tube by a travelling electromagnetic wave.  

Snum 33 

The Stanford Linear Accelerator (SLAC) in the USA, for example, is around 
3 km long and can produce pulses of electrons with energies up to 50 GeV.  

Snum 34 

Although in the early days much use was made of ionization chambers, for 
example the Geiger counter (section 1.4), the detectors currently in use 
for nuclear physics experiments are usually either scintillation counters 
or semiconductor detectors or some combination.  

Snum 35 

The former are developments of the approach of Rutherford, Geiger and 
Marsden (section 1.3) using the scintillations produced in a ZnS screen 
to detect -particles.  

Snum 36 

Various scintillators are in current use such as NaI activated by an 
impurity (usually thallium for detection of -particles), or some organic 
material dissolved in a transparent plastic or liquid.  

Snum 37 

The scintillations are detected by a photomultiplier tube producing a 
pulse of photo-electrons.  

Snum 38 

The size of the pulse - the pulse height - gives a measure of the energy 
of the incident particle.  

Snum 39 

Semiconductor detectors depend on an incident particle or photon exciting 
an electron from the valence band to the conduction band.  

Snum 40 

The resultant increase in conductivity - a conduction pulse - then 
produces a signal which is processed electronically and which enables the 
energy of the incident radiation to be measured.  

Snum 41 

In the field of very high energy physics, considerable use is made of 
bubble chambers and wire chambers.  

Snum 42 
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The former follows on from the Wilson cloud chamber and consists 
essentially of a large chamber, possibly several metres in diameter, 
containing liquid (e.g. hydrogen, helium, propane,...) near its boiling 
point.  

Snum 43 

The chamber is expanded as charged particles pass through it, leading to 
the formation of bubbles, as a result of boiling, along the particle 
tracks which can be stereo flash photographed.  

Snum 44 

The lengths of the tracks and their curvature in a magnetic field enable 
particle lifetimes, masses and energies to be deduced.  

Snum 45 

Wire chambers consist of stacks of positively and negatively charged wire 
grids in a low pressure gas.  

Snum 46 

An incident charged particle ionizes the gas and acceleration of the 
resultant electrons near the anode wires leads to further ionization and 
an electrical pulse.  

Snum 47 

The physical location of the pulse can be determined electronically so 
that track measurements can be made.  

Snum 48 

Using an applied magnetic field to bend the tracks again enables 
information to be obtained about the properties of the detected particle.  

Snum 49 

In the previous chapter some understanding of nuclear structure has been 
achieved in terms of a nuclear model in which nucleons move around fairly 
independently in a potential well.  

Snum 50 

To give some intuitive understanding of nuclear reaction processes we 
stay with this description of the nucleus and follow a very illuminating 
discussion given by Weisskopf (1957).  
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Appendix D: LOB Tagset 

Reproduced from LOB manual available at; 

http://khnt.hit.uib.no/icame/manuals/lobman/LOBAPP4.HTM 

Appendix 4: List of tags 

Definitions are followed by references to sections in the manual where the tags are discussed. The 
figures in the righthand column give the total frequency of the tags in the corpus. Ditto tags are 
given within parantheses; the first word in the examples carries an ordinary tag. For more examples 
of ditto-tagged sequences, see 7.2. 

! exclamation mark 1.030 

&FO formula 7.22 1.220 

&FW foreign word 7.21 3.111 

( left bracket: ( [ 2.903 

) right bracket ) ] 2.975 

*’ begin quote: *’ *" 2.6 10.191 

**’ end quote: **’ **" 2.6 9.976 

*_ dash 7.24 3.930 

, comma 7.24 54.548 

. full stop 7.24 50.288 

... ellipsis 665 

: colon 7.24 1.937 

; semicolon 7.24 2.514 

? question mark 2.584 

ABL pre-qualifier (quite, rather, such) 7.12 1.032 

ABN pre-quantifier (all, half) 7.12 2.833 

ABX pre-quantifier/double conjunction (both) 675 

AP post-determiner (few, fewer, former, last, latter, 
least, less, little, many, more, most, much, next, 
only, other, own, same, several, very) 7.12 

 
 

8.860 

(AP" a few, a little 448) 

AP$ other’s 21 

APS others 272 

APS$ others’ 2 
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AT singular article (a, an, every) 7.12 25.906 

ATI singular og plural article (the, no) 7.12 70.219 

BE be 7.5 7.187 

BED were 3.427 

BEDZ was 10.685 

BEG being 907 

BEM am, ‘m 636 

BEN been 3.116 

BER are, ‘re 4.856 

BEZ is, ‘s 12.165 

CC coordinating conjunction (and, and/or, but, nor, 
only, or, yet) 7.14 - 7.15 

 
36.919 

(CC" as well as 282) 

CD cardinal (2, 3, etc; two, three, etc; hundred, 
thousand, etc; dozen, zero) 7.17 

 
12.956 

CD$ cardinal + genitive 7 

CD-
CD 

hyphenated pair of cardinals 7.17 304 

CD1 one, 1 7.17 3.364 

CD1$ one’s 62 

CD1S ones 105 

CDS cardinal + plural (tens, millions, dozens) 263 

CS subordinating conjunction (after, although, etc) 18.583 

(CS" in that, so that, etc 850) 

DO do 7.5 2.005 

DOD did 1.174 

DOZ does 618 

DT singular determiner (another, each, that, this) 
7.12 

9.030 

DT$ singular determiner + genitive (another’s) 1 

DTI singular or plural determiner (any, enough, 
some) 

3.349 

DTS plural determiner (these, those) 2.462 

DTX determiner/double conjunction (either, neither) 
7.12 

 
376 

EX existensial there 7.10 2.794 
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HV have 7.5 4.998 

HVD had, ‘d 5.499 

HVG having 382 

HVN had (past participle) 284 

HVZ has, ‘s 2.916 

IN preposition (about, above, etc) 7.13, 7.15 123.440 

(IN" as to, in spite of, etc 1.216) 

JJ adjective 7.3 - 7.4, 7.8 - 7.9, 7.11 63.877 

(JJ"   25) 

JJB attribute-only adjective (chief, entire, main etc) 
7.8 

3.578 

(JJB"   6) 

JJR comparative adjective 7.9, 7.11 1.960 

(JJR"   1) 

JJT superlative adjective 7.9, 7.11 1.040 

(JJT"   1) 

JNP adjective with word-initial capital (English, 
German, etc) 

 
3.137 

MD modal auxiliary (‘ll, can, could, etc) 14.861 

NC cited word 7.23 370 

NN singular common noun 7.4, 7.6, 7.7 148.759 

(NN"   20) 

NN$ singular common noun + genitive 7.6 1.574 

NNP singular common noun with word-initial capital 
(Englishman, German, etc) 

 
532 

NNP$ singular common noun with word-initial capital 
+ genitive 

 
21 

NNPS plural common noun with word-initial capital 782 

NNPS$ plural common noun with word-initial capital + 
genitive 

 
7 

NNS plural common noun 7.6, 7.7 50.838 

(NNS"   2) 

NNS$ plural common noun + genitive 488 

NNU abbreviated unit of measurement unmarked for  
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number (\0hr, \0lb, etc) 7.19 2.625 

(NNU" per cent 386) 

NNUS abbreviated plural unit of measurement (\0gns, 
\0yds, etc) 

 
52 

NP singular proper noun 7.7 34.797 

NP$ singular proper noun + genitive 2.479 

NPL singular locative noun with wordinitial capital 
(Abbey, Bridge, etc) 7.7 

 
1.952 

NPL$ singular locative noun with word-initial capital 
+ genitive 

 
15 

NPLS plural locative noun with word-initial capital 102 

NPLS$ plural locative noun with word-initial capital + 
genitive 

 
1 

NPS plural proper noun 7.7 406 

NPS$ plural proper noun + genitive 28 

NPT singular titular noun with word-initial capital 
(Archbishop, Captain, etc) 7.7 

 
6.039 

(NPT"   2) 

NPT$ singular titular noun with word capital + 
genitive 

197 

NPTS plural titular noun with word-initial capital 215 

NPTS$ plural titular noun with word-initial capital + 
genitive 

 
4 

NR singular adverbial noun (January, February, 
etc; Sunday, Monday, etc; east, west, etc; today, 
tomorrow, tonight, downtown, home) 7.10 

 
 

2.916 

NR$ singular adverbial noun + genitive 48 

NRS plural adverbial noun 84 

NRS$ plural adverbial noun + genitive 0 

OD ordinal (1st, 2nd, etc; first, second, etc) 2.069 

OD$ ordinal + genitive 0 

PN nominal pronoun (anybody, anyone, anything; 
everybody, everyone, everything; nobody, none, 
nothing; somebody, someone, something; so) 
7.12, 7.14 

 
 
 

2.581 

(PN" no one, some one 120) 

PN$ nominal pronoun + genitive 10 
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(PN$   1) 

PP$ possessive determiner (my, your, etc) 7.12 17.004 

PP$$ possessive pronoun (mine, yours, etc) 204 

PP1A personal pronoun, 1st pers sing nom (I) 7.600 

PP1AS personal pronoun, 1st pers plur nom (we) 3.129 

PP1O personal pronoun, 1st pers sing acc (me) 1.555 

PP1OS personal pronoun, 1st pers plur acc (us, ‘s) 696 

PP2 personal pronoun, 2nd pers (you, thou, thee, ye) 4.137 

PP3 personal pronoun, 3rd pers sing nom+acc (it) 10.507 

PP3A personal pronoun, 3rd pers sing nom (he, she) 13.160 

PP3AS personal pronoun, 3rd pers plur nom (they) 3.685 

PP3O personal pronoun, 3rd pers plur acc (him, her) 3.784 

PP3OS personal pronoun, 3rd pers plur acc (them, ‘em) 1.715 

PPL singular reflexive pronoun 1.257 

PPLS plural reflexive pronoun, reciprocal pronoun 464 

(PPLS" each other, one another 140) 

QL qualifier (as, awfully, less, more, so, too very, 
etc) 

5.375 

QLP post-qualifier (enough, indeed) 283 

RB adverb 7.10 7.11 35.353 

(RB" at last, in general, etc 1.781) 

RB$ adverb + genitive (else’s) 6 

RBR comparative adverb 7.10 - 7.11 1.375 

RBT superlative adverb 7.10 - 7.11 103 

RI adverb (homograph of preposition: below, near, 
etc) 

 
571 

RN nominal adverb (here, now, there, then, etc) 4.332 

RP adverbial particle (back, down, off, etc) 7.10, 
7.13 

8.700 

TO infinitival to 7.13 15.842 

(TO" in order to, so as to 268 ) 

UH interjection 7.18 1.113 

VB base form of verb (uninflected present tense, 
imperative, infinitive) 7.5 

 
32.679 

(VB"   3) 
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VBD past tense of verb 7.3 24.679 

VBG present participle, gerund 7.4 12.979 

VBN past participle 7.3 27.031 

VBZ 3rd person singular of verb 6.918 

WDT WH-determiner (what, whatever, whatsoever, 
interrogative which, whichever, whichsoever) 
7.16 

 
2.118 

(WDT"   1) 

WDTR WH-determiner, relative (which) 7.16 4.405 

WP WH-pronoun, interrogative, nom+acc (who, 
whoever) 

 
149 

WP$ WH-pronoun, interrogative, gen (whose) 8 

WP$R WH-pronoun, relative, gen (whose) 293 

WPA WH-pronoun, nom (whosoever) 1 

WPO WH-pronoun, interrogative, acc (whom, 
whomsoever) 

 
6 

WPOR WH-pronoun, relative, acc (whom) 214 

WPR WH-pronoun, relative, nom+acc (that, relative 
who) 

3.448 

WRB WB-adverb (how, when, etc) 7.16 5.076 

XNOT not, n’t 5.3 7.454 

ZZ letter of the alphabet (e, pi, x, etc) 7.25 1.349 
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Appendix E: Mapping between BNC and LOB tagsets 

This is the mapping used for the evaluation of the tagger described in  Chapter 8:. 

Each of the  tags in the BNC (C5) tagset (apart from POS (possessive marker) and UNC 

(unclassified)) is mapped to one or more of the LOB tags.  Where more than one LOB tag matches, 

the tags are separated by | (pipe). 

As the LOB tagset is more fine-grained than the BNC tagset, a single BNC tag can subsume a 

‘family’ of LOB tags. For example, the DT0 (general determiner pronoun) BNC tag matches the 

three post/pre-quantifier tags ABL, ABN and ABX in the LOB tagset. In cases such as this where 

the first two letters are adequate to identify a match with the entire group, only these two letters are 

shown in the table. 

The descriptions, in the third column are those given for the BNC tags. 

BNC Tag LOB Tag Description (BNC tag) 

  AJ0 JJ|JNP Adjective (general or positive) (e.g. good, old, 
beautiful) 

  AJC JJR Comparative adjective (e.g. better, older) 

  AJS JJT Superlative adjective (e.g. best, oldest) 

  AT0 AT Article (e.g. the, a, an, no) 

  AV0 RB|ABL|NR|RN|QL General adverb: an adverb not subclassified as AVP or 
AVQ (see below) (e.g. often, well, longer (adv.), 
furthest. 

  AVP RP Adverb particle (e.g. up, off, out) 

  AVQ WRB Wh-adverb (e.g. when, where, how, why, wherever) 

  CJC CC Coordinating conjunction (e.g. and, or, but) 

  CJS CS Subordinating conjunction (e.g. although, when) 

  CJT CS The subordinating conjunction that 

  CRD CD Cardinal number (e.g. one, 3, fifty-five, 3609) 

  DPS PP Possessive determiner-pronoun (e.g. your, their, his) 

  DT0 DT|AB|AP General determiner-pronoun: i.e. a determiner-pronoun 
which is not a DTQ or an AT0 
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BNC Tag LOB Tag Description (BNC tag) 

  DTQ WD|WP Wh-determiner-pronoun (e.g. which, what, whose, 
whichever)  

  EX0 EX Existential there, i.e. there occurring in the there is ... or 
there are ... construction 

  ITJ UH Interjection or other isolate (e.g. oh, yes, mhm, wow) 

  NN0 NN Common noun, neutral for number (e.g. aircraft, data, 
committee)  

  NN1 NN|NNP|NPT|NR Singular common noun (e.g. pencil, goose, time, 
revelation) 

  NN2 NNS|NNPS Plural common noun (e.g. pencils, geese, times, 
revelations) 

  NP0 NP Proper noun (e.g. London, Michael, Mars, IBM)  

  ORD OD Ordinal numeral (e.g. first, sixth, 77th, last) . 

  PNI PN Indefinite pronoun (e.g. none, everything, one [as 
pronoun], nobody) 

  PNP PP Personal pronoun (e.g. I, you, them, ours) 

  PNQ WP Wh-pronoun (e.g. who, whoever, whom) 

  PNX PP Reflexive pronoun (e.g. myself, yourself, itself, 
ourselves) 

  POS Not matched The possessive or genitive marker 's or ' 

  PRF IN The preposition of 

  PRP IN Preposition (except for of) (e.g. about, at, in, on, on 
behalf of, with) 

  TO0 TO Infinitive marker to  

  UNC Not matched Unclassified items which are not appropriately 
considered as items of the English lexicon 

  VBB BEM|BER The present tense forms of the verb BE, except for is, 's: 
i.e. am, are, 'm, 're and be  [subjunctive or imperative] 

  VBD BED|BEDZ The past tense forms of the verb BE: was and were 

  VBG BEG The -ing form of the verb BE: being 

  VBI BE The infinitive form of the verb BE: be 

  VBN BEN The past participle form of the verb BE: been 

  VBZ BEZ The -s form of the verb BE: is, 's 

  VDB DO The finite base form of the verb DO: do 

  VDD DOD The past tense form of the verb DO: did 

  VDG VBG The -ing form of the verb DO: doing 
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BNC Tag LOB Tag Description (BNC tag) 

  VDI DO The infinitive form of the verb DO: do 

  VDN VBN The past participle form of the verb DO: done 

  VDZ DOZ The -s form of the verb DO: does, 's 

  VHB HV The finite base form of the verb HAVE: have, 've 

  VHD HVD The past tense form of the verb HAVE: had, 'd 

  VHG HVG The -ing form of the verb HAVE: having 

  VHI HV The infinitive form of the verb HAVE: have 

  VHN HVN The past participle form of the verb HAVE: had 

  VHZ HVZ The -s form of the verb HAVE: has, 's 

  VM0 MD Modal auxiliary verb (e.g. will, would, can, could, 'll, 'd) 

  VVB VB The finite base form of lexical verbs (e.g. forget, send, 
live, return) [Including the imperative and present 
subjunctive] 

  VVD VBD The past tense form of lexical verbs (e.g. forgot, sent, 
lived, returned) 

  VVG VBG The -ing form of lexical verbs (e.g. forgetting, sending, 
living, returning) 

  VVI VB The infinitive form of lexical verbs (e.g. forget, send, 
live, return) 

  VVN VBN The past participle form of lexical verbs (e.g. forgotten, 
sent, lived, returned) 

  VVZ VBZ The -s form of lexical verbs (e.g. forgets, sends, lives, 
returns) 

  XX0 XNOT The negative particle not or n't 

  ZZ0 ZZ Alphabetical symbols (e.g. A, a, B, b, c, d) 

  ZZ2 ZZ Plural alphabetical symbol (e.g. f's, p's) 
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Appendix F: Comparative Tagger output 

The table below gives a comparison of the tags output by my tagger and the tags assigned in the 

LOB corpus for the first ten sentences of the LOBTH_A.TXT file (Section  8.3.4). 

The Flag column contains ‘C’ where the tag assigned by my program matched the tag in the LOB 

file and ‘E’ where there was a discrepancy. 

 My Tag Lob Tag Flag 

Snum 1    

Stop NP0 VB E 

electing VVG VBG C 

life NN1 NN C 

peers NN2 NNS C 

Snum 2    

By PRP IN C 

Trevor NP0 NP C 

Williams NP0 NP C 

Snum 3    

A AT0 AT C 

move NN1 NN C 

to TO0 TO C 

stop VVI VB C 

Mr NP0 NPT C 

Gaitskell NP0 NP C 

from PRP IN C 

nominating VVG VBG C 

any DT0 DTI C 

more AV0 AP E 

labour AJ0 NN E 

life NN1 NN C 

peers NN2 NNS C 

is VBZ BEZ C 
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 My Tag Lob Tag Flag 

to TO0 TO C 

be VBI BE C 

made VVN VBN C 

at PRP IN C 

a AT0 AT C 

meeting NN1 NN C 

of PRF IN C 

labour AJ0 NN E 

MPs NP0 NPTS C 

tomorrow AV0 NR C 

Snum 4    

Mr NP0 NPT C 

Michael NP0 NP C 

Foot NP0 NP C 

has VHZ HVZ C 

put VVN VBN C 

down AVP RP C 

a AT0 AT C 

resolution NN1 NN C 

on PRP IN C 

the AT0 ATI C 

subject NN1 NN C 

and CJC CC C 

he PNP PP3A C 

is VBZ BEZ C 

to TO0 TO C 

be VBI BE C 

backed VVN VBN C 

by PRP IN C 

Mr NP0 NPT C 

Will VM0 NP E 

Griffiths NP0 NP C 
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 My Tag Lob Tag Flag 

MP NN1 NPT C 

for PRP IN C 

Manchester NP0 NP C 

Exchange NP0 NP C 

Snum 5    

Though CJS CS C 

they PNP PP3AS C 

may VM0 MD C 

gather VVI VB C 

some DT0 DTI C 

left-wing AJ0 JJB C 

support NN1 NN C 

a AT0 AT C 

large AJ0 JJ C 

majority NN1 NN C 

of PRF IN C 

labour AJ0 NN E 

MPs NP0 NPTS C 

are VBB BER C 

likely AJ0 JJ C 

to TO0 TO C 

turn VVI VB C 

down AVP RP C 

the AT0 ATI C 

Foot-Griffiths NP0 NP C 

resolution NN1 NN C 

Snum 6    

Abolish NP0 VB E 

Lords NP0 NPTS C 

Snum 7    

Mr NP0 NPT C 

Foot's NP0 NP$ C 
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 My Tag Lob Tag Flag 

line NN1 NN C 

will VM0 MD C 

be VBI BE C 

that CJT CS C 

as CJS CS C 

labour AJ0 NN E 

MPs NP0 NPTS C 

opposed VVD VBD C 

the AT0 ATI C 

government NN1 NN C 

bill NN1 NN C 

which DTQ WDTR C 

brought VVD VBD C 

life NN1 NN C 

peers NN2 NNS C 

into PRP IN C 

existence NN1 NN C 

they PNP PP3AS C 

should VM0 MD C 

not XX0 XNOT C 

now AV0 RN C 

put VVN VB E 

forward AV0 RB C 

nominees NN2 NNS C 

Snum 8    

He PNP PP3A C 

believes VVZ VBZ C 

that CJT CS C 

the AT0 ATI C 

House NP0 NPL C 

of PRF IN C 

Lords NP0 NPTS C 
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 My Tag Lob Tag Flag 

should VM0 MD C 

be VBI BE C 

abolished VVN VBN C 

and CJC CC C 

that DT0 CS E 

labour NN1 NN C 

should VM0 MD C 

not XX0 XNOT C 

take VVI VB C 

any DT0 DTI C 

steps NN2 NNS C 

which DTQ WDTR C 

would VM0 MD C 

appear VVI VB C 

to PRP TO E 

prop VVB VB C 

up AVP RP C 

an AT0 AT C 

out-dated AJ0 JJ C 

institution NN1 NN C 

Snum 9    

Since CJS IN E 

labour AJ0 NN E 

life NN1 NN C 

peers NN2 NNS C 

and CJC CC C 

peeresses NN2 NNS C 

have VHB HV C 

been VBN BEN C 

created VVN VBN C 

Snum 10    

Most AV0 AP E 
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 My Tag Lob Tag Flag 

labour AJ0 NN E 

sentiment NN1 NN C 

would VM0 MD C 

still AV0 RB C 

favour VVI VB C 

the AT0 ATI C 

abolition NN1 NN C 

of PRF IN C 

the AT0 ATI C 

House NP0 NPL C 

of PRF IN C 

Lords NP0 NPTS C 

but CJC CC C 

while CJS CS C 

it PNP PP3 C 

remains VVZ VBZ C 

labour NN1 NN C 

has VHZ HVZ C 

to TO0 TO C 

have VHI HV C 

an AT0 AT C 

adequate AJ0 JJ C 

number NN1 NN C 

of PRF IN C 

members NN2 NNS C 
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Appendix G: Results of tagger assessment 

For each tag in the C5 tagset, shown in column 1, the table shows the total number of words that 

were assigned that tag by my tagger (column 2), the number of those tags that matched the tags 

assigned in the LOB file LOBTH_A.TXT (column 3), the number where there was a discrepancy 

(column 4), the discrepancies as a .percentage of the total assignment of that tag (column 5) and the 

discrepancies for that tag as a percentage of the total tags (column 6). 

Tag 
Total 
tags Match

Non-
match

% Discrepancy 
tag

% Discrepancy 
non-matches 

AJ0 5762 5115 647 11.23% 11.22% 
AJC 163 127 36 22.09% 0.62% 
AJS 106 104 2 1.89% 0.03% 
AT0 8449 8385 64 0.76% 1.11% 
AV0 3284 2878 406 12.36% 7.04% 
AVP 628 583 45 7.17% 0.78% 
AVQ 114 110 4 3.51% 0.07% 
CJC 2719 2709 10 0.37% 0.17% 
CJS 1073 559 514 47.90% 8.91% 
CJT 732 630 102 13.93% 1.77% 
CRD 796 750 46 5.78% 0.80% 
DPS 1181 1181 0 0.00% 0.00% 
DT0 1531 1440 91 5.94% 1.58% 
DTQ 422 422 0 0.00% 0.00% 
EX0 197 197 0 0.00% 0.00% 
ITJ 11 9 2 18.18% 0.03% 
NN0 221 217 4 1.81% 0.07% 
NN1 13638 13206 432 3.17% 7.49% 
NN2 4437 4368 69 1.56% 1.20% 
NP0 9775 8591 1184 12.11% 20.53% 
ORD 453 189 264 58.28% 4.58% 
PNI 172 120 52 30.23% 0.90% 
PNP 3050 3048 2 0.07% 0.03% 
PNQ 259 259 0 0.00% 0.00% 
PNX 59 59 0 0.00% 0.00% 
PRF 2743 2721 22 0.80% 0.38% 
PRP 8227 7794 433 5.26% 7.51% 
TO0 1272 1260 12 0.94% 0.21% 
VBB 373 366 7 1.88% 0.12% 
VBD 1177 1177 0 0.00% 0.00% 
VBG 81 81 0 0.00% 0.00% 
VBI 603 603 0 0.00% 0.00% 
VBN 263 263 0 0.00% 0.00% 
VBZ 909 907 2 0.22% 0.03% 
VDB 68 68 0 0.00% 0.00% 
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Tag 
Total 
tags Match

Non-
match

% Discrepancy 
tag

% Discrepancy 
non-matches 

VDD 70 70 0 0.00% 0.00% 
VDG 14 14 0 0.00% 0.00% 
VDI 39 39 0 0.00% 0.00% 
VDN 29 28 1 3.45% 0.02% 
VDZ 24 24 0 0.00% 0.00% 
VHB 235 235 0 0.00% 0.00% 
VHD 346 345 1 0.29% 0.02% 
VHG 34 34 0 0.00% 0.00% 
VHI 154 154 0 0.00% 0.00% 
VHN 33 28 5 15.15% 0.09% 
VHZ 377 377 0 0.00% 0.00% 
VM0 1116 1114 2 0.18% 0.03% 
VVB 689 593 96 13.93% 1.66% 
VVD 2296 2123 173 7.53% 3.00% 
VVG 1137 995 142 12.49% 2.46% 
VVI 1707 1687 20 1.17% 0.35% 
VVN 2324 2067 257 11.06% 4.46% 
VVZ 621 565 56 9.02% 0.97% 
XX0 487 487 0 0.00% 0.00% 
ZZ0 571 9 562 98.42% 9.74% 
ZZ2 1 0 1 100.00% 0.02% 
Totals 87252 81484 5768 6.6%% 

 

 


