
Flexible Querying of Graph-Structured

Data

Petra Selmer

July 2017

A thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science and Information Systems

Birkbeck, University of London

Declaration

This thesis is the result of my own work, except where explicitly acknowledged in

the text.

Petra Selmer

July 23, 2017

Abstract

Given the heterogeneity of complex graph data on the web, such as RDF linked

data, it is likely that a user wishing to query such data will lack full knowledge of

the structure of the data and of its irregularities. Hence, providing flexible querying

capabilities that assist users in formulating their information-seeking requirements

is highly desirable.

The query language we adopt in this thesis comprises conjunctions of regular

path queries, thus encompassing recent extensions to SPARQL to allow for querying

paths in graphs using regular expressions (SPARQL 1.1). To this language we add

three operators: APPROX, supporting standard notions of query approximation

based on edit distance; RELAX, which performs query relaxation based on RDFS

inference rules; and FLEX, which simultaneously applies both approximation and

relaxation to a query conjunct, providing even greater flexibility for users.

We undertake a detailed theoretical investigation of query approximation, query

relaxation, and their combination. We show how these notions can be integrated

into a single theoretical framework and we provide incremental evaluation algorithms

that run in polynomial time in the size of the query and the data — provided the

queries are acyclic and contain a fixed number of head variables — returning answers

in ranked order of their ‘distance’ from the original query.

We motivate and describe the development of a prototype system, called Approx-

Relax, that provides users with a graphical facility for incrementally constructing

3

4

their queries and that supports both query approximation and query relaxation. Re-

stricting our focus to the user-facing features of ApproxRelax, we present a qualita-

tive case study showing how ApproxRelax overcomes problems in a previous system

in the same application domain of lifelong learning.

We then describe our techniques for implementing the extended language in the

Omega system, our final implementation of query approximation and query relax-

ation, in which we discuss the system architecture, the data structures, data model,

API and query evaluation algorithms. Subsequently, we present a performance study

undertaken on two real-world datasets. Our baseline implementation performs com-

petitively with other automaton-based approaches, and we demonstrate empirically

how various optimisations can decrease execution times of queries containing AP-

PROX and RELAX, sometimes by orders of magnitude.

Publications

1. Alexandra Poulovassilis, Petra Selmer and Peter T. Wood. Flexible Query-

ing of Lifelong Learner Metadata. IEEE Transactions on Learning Tech-

nologies (2012), Volume 5 Issue No. 2, pp. 117 – 129

Chapter 5

2. Petra Selmer, Alexandra Poulovassilis and Peter T. Wood. Implementing

Flexible Operators for Regular Path Queries. In Proceedings of the 18th

Joint International Conferences on Extending Database Technology/Database

Theory Workshops (EDBT/ICDT 2015), pp. 149–156

Chapters 6 and 7

3. Alexandra Poulovassilis, Petra Selmer and Peter T. Wood. Approximation

and Relaxation of Semantic Web Path Queries. Journal of Web Seman-

tics: Science, Services and Agents on the World Wide Web (2016), Volume

40, pp. 1 – 21

Chapters 3, 4 and 8

5

Acknowledgements

I should like especially to thank my two wonderful supervisors, Professor Alexandra

Poulovassilis and Professor Peter Wood, for their unfailing patience, wisdom, and

guidance over the past few years. Your counsel and support have been invaluable,

and I have learnt so much from you.

My sincere thanks go to Neo Technology, and my friends and colleagues there,

who have over the past two years gone out of their way to support me in this en-

deavour.

I am grateful to Sparsity Technologies for their provision of a research licence for

Sparksee for the duration of my PhD.

I owe a huge debt of thanks to my parents for instilling in me a love of learning,

and, in particular, a passion for science.

Finally, I should like to thank my husband, André, without whose support, en-

couragement, and unending cups of tea, this thesis would never have been completed.

6

Contents

Abstract 3

Publications 5

Acknowledgements 6

Contents 7

List of Algorithms 11

List of Figures 12

List of Tables 14

1 Introduction 15

1.1 Background and motivation . 15

1.2 Thesis contributions . 21

1.3 Thesis outline . 23

2 Literature Review 25

2.1 Graph-modelled data and graph query languages 25

2.1.1 Graph models . 26

2.1.2 Graph query languages . 28

7

CONTENTS 8

2.1.3 SPARQL . 30

2.1.4 Linked and distributed data 31

2.2 Keyword-based querying . 32

2.3 Query relaxation . 34

2.4 Query approximation . 38

2.5 Subgraph matching . 40

2.6 Discussion . 42

3 Theoretical Preliminaries 44

3.1 The data model . 45

3.2 The query language . 47

3.3 Single-conjunct queries . 49

3.4 Query approximation . 52

3.4.1 Approximate matching of single-conjunct queries 52

3.4.2 Incremental evaluation of APPROX conjuncts 60

3.5 Query relaxation . 62

3.5.1 Ontology-based relaxation of single-conjunct queries 62

3.5.2 Computing the relaxed answer 68

3.5.3 Incremental evaluation of RELAX conjuncts 71

3.6 Multi-conjunct queries . 71

3.7 Summary . 72

4 Correctness and Complexity Results 74

4.1 Approximation of single-conjunct queries 75

4.2 Incremental evaluation . 82

4.3 Relaxation of single-conjunct queries 85

4.4 Concluding remarks . 92

5 The ApproxRelax System and a Case Study 93

5.1 Case study: Lifelong Learning . 94

5.2 The ApproxRelax system . 97

5.3 Comparison with L4All ’s “What Next” 108

5.4 Concluding remarks . 111

CONTENTS 9

6 The Omega System 112

6.1 System architecture . 113

6.2 The C5 Generic Collection library . 115

6.3 The Sparksee Data Model and API 116

6.4 Creating data graphs in Omega . 117

6.5 Conjunct initialisation . 118

6.5.1 Construction of the automaton 118

6.5.2 Initialisation . 119

6.6 Query conjunct evaluation . 123

6.6.1 The GetNext function . 124

6.6.2 The NextStates function . 125

6.6.3 The Succ function . 127

6.7 Other implementations . 128

6.8 Concluding remarks . 130

7 Query Performance Analysis 131

7.1 The L4All evaluation . 132

7.1.1 Data . 134

7.1.2 Queries . 134

7.1.3 Baseline experimental results 136

7.1.4 Analysis . 138

7.2 The YAGO evaluation . 142

7.2.1 Data . 142

7.2.2 Queries . 143

7.2.3 Baseline experimental results 143

7.2.4 Analysis . 146

7.3 Performance comparison . 147

7.4 Approximated Regular Path Query Optimisation 149

7.4.1 Path indexes . 149

7.4.2 Approach and methodology 150

7.4.3 Experimental results . 152

7.4.4 Further work . 154

7.5 Concluding remarks . 154

CONTENTS 10

8 The FLEX Operator 156

8.1 Evaluation of single-conjunct FLEX queries 157

8.2 Multi-conjunct FLEX queries and comparison with APPROX/RELAX166

8.3 Concluding remarks . 168

9 Conclusions and future work 169

9.1 Thesis summary . 169

9.2 Contributions . 171

9.3 Directions for future work . 172

Bibliography 175

List of Algorithms

- Function Succ(s, n,AQ, G) . 60

- Function GetNext(X,R, Y,AQ, G) . 62

- Procedure Open . 121

- Function GetNext(X,R, Y) . 126

- Function NextStates(s) . 127

- Function Succ(s, n) . 128

11

List of Figures

1.1 A graph of a company, consisting of employees, departments they

work in, and projects they worked on. 18

3.1 Example data graph G showing flight insurance data. 46

3.2 Example ontology K from the flight insurance domain. 47

3.3 Query automaton MQ for conjunct (‘FL56’, fn1 · pn−1 , X). 57

3.4 Fragment of approximate automaton AQ for conjunct (‘FL56’, fn1 ·
pn−1 , X). 57

3.5 A subautomaton of the product automaton H of AQ and G. 59

3.6 RDFS Inference Rules. 63

3.7 Closure of graph G in Figure 3.1 with respect to the ontology K in

Figure 3.2. 64

3.8 Additional rules used to compute the extended reduction of an RDFS

ontology. 65

3.9 Relaxed automaton MK
Q for conjunct (Y, pn−1 .type, P1). 70

3.10 A subautomaton of the product automaton H. 71

4.1 Automaton for the deletion of the label b in Tpk (b is not the last label). 78

5.1 A fragment of Dan’s timeline data and metadata. 98

5.2 A fragment of Liz’s timeline data and metadata. 99

12

LIST OF FIGURES 13

5.3 A fragment of Al’s timeline data and metadata. 100

5.4 ApproxRelax query set-up. 102

5.5 Constructing an Educational episode query template. 103

5.6 Constructing an Occupational episode query template. 105

5.7 Viewing episode query templates. 106

5.8 Viewing the query results. 107

6.1 System architecture. 113

7.1 The L4All data graph sizes (using the closure of the data graph). . . 135

7.2 Execution time (ms) – exact L4All queries. 138

7.3 Execution time (ms) – APPROX L4All queries. 141

7.4 Execution time (ms) – RELAX L4All queries. 141

7.5 Execution times (ms), YAGO data graph. 146

8.1 Automaton for conjunct (‘FL56’, fn1.ppn1.pn
−
1 , Y). 159

8.2 Automaton for conjunct (Y, n1.type, N1). 159

8.3 Automaton for (X, e.type, ‘c’). 161

List of Tables

5.1 Evaluation of the query . 109

7.1 Characteristics of the class hierarchies in the L4All data graphs. . . . 133

7.2 Properties in the L4All data graphs other than ‘type’. 133

7.3 Characteristics of the L4All data graphs. 135

7.4 The L4All query set: Q1 - Q3 and Q8 - Q12. 137

7.5 Results for each query and L4All data graph. 139

7.6 Total initialisation and execution times (ms) for each query run over

the L4All data graphs (initialisation time in italics). 140

7.7 The YAGO query set: Q1 - Q6 and Q9. 144

7.8 The number of results per query for the YAGO data graph. 145

7.9 Total initialisation and execution times (ms) for each query run over

the YAGO data graph (initialisation time in italics). 145

7.10 Results of using the statistics to simulate the running of Q1 and Q2

as approximated queries. 153

14

CHAPTER 1

Introduction

1.1 Background and motivation

Graph-structured data is becoming increasingly prevalent and gaining in impor-

tance. For example, the volume of graph-structured data on the web continues to

grow, most recently in the form of RDF Linked Data1 [10]. At the time of writ-

ing, there were 570 publicly-accessible large linked datasets, spanning a variety of

domains, such as the life sciences, geographical and government domains2.

Over the past few years, graph databases [84, 119] such as Neo4j3, Sparksee4 and

OrientDB5 have become more pervasive in both academia and industry. They have

been used in areas as diverse as social network analysis [87]; fraud detection [103];

bioinformatics [85, 86, 106]; recommendations, geospatial data, master data manage-

ment, network and data centre management, authorisation and access control [119];

and, most recently, in the Panama Papers investigation6.

Storing graph-structured data in graph databases confers several advantages [110],

1http://linkeddata.org/
2http://lod-cloud.net
3http://neo4j.com/
4http://sparsity-technologies.com
5http://orientdb.com/
6http://neo4j.com/blog/icij-neo4j-unravel-panama-papers/

15

http://linkeddata.org/
http://lod-cloud.net
http://neo4j.com/
http://sparsity-technologies.com
http://orientdb.com/
http://neo4j.com/blog/icij-neo4j-unravel-panama-papers/

1.1. BACKGROUND AND MOTIVATION 16

including: direct and intuitive support for graph data modelling; the provision of

powerful and expressive graph query languages, examples of which are Cypher7,

Gremlin8 and SPARQL [122]; native graph storage and indexing for fast traversals,

such as in Neo4j, Sparksee, GRAIL [139], SCARAB [70] and SAINT-DB [109]; and

inbuilt support for core graph algorithms (for example, subgraph matching) and

graph programming APIs [119].

Another factor giving the management of graph-structured data more impetus is

the ever-increasing need to integrate heterogeneous data from differing data sources

in order to allow different institutions and organisations to collaborate more effec-

tively as a result of having access to shared data. For example, the authors of [83]

describe the Austrian Grid project which enables Austrian research institutions to

share and access graph-structured data. High-volume RDF and graph-based data

repositories, such as DBPedia [11], YAGO [75, 134], Bio4j9 and others, have been

established, thanks largely to the advances in automatic data extraction from hith-

erto disparate data sources [33]. Indeed, the success of this endeavour is exemplified

by the development of YAGO2 [61] which, drawing on data derived from Wikipedia,

GeoNames10, and WordNet [38], extends the original YAGO system with spatial

and temporal extensions.

Graph-structured data comprises nodes, representing entities of interest, and

edges, denoting the relationships between the entities; the relationships may be as

important as the entities themselves. Graph data models allow for flexible and in-

tuitive modelling of complex data, and, owing to the fact that they do not require

a schema, they are well-suited for use with heterogeneous data. In the graph data

model we consider in this thesis, an edge connects two nodes to each other and is

labelled with the type of relationship between the entities it connects. For example,

using data from a company domain, entities (nodes) may represent employees, de-

partments and projects. The relationships (edges) between these entities could then

comprise isManagerOf (denoting one person managing another), worksIn (indicat-

ing that an employee works in a particular department), workedOn (indicating that

a person worked on a particular project), and partOf (denoting that one project

7http://neo4j.com/docs/developer-manual/current/cypher/
8https://github.com/tinkerpop/gremlin/wiki/
9http://bio4j.com/

10http://geonames.org

http://neo4j.com/docs/developer-manual/current/cypher/
https://github.com/tinkerpop/gremlin/wiki/
http://bio4j.com/
http://geonames.org

1.1. BACKGROUND AND MOTIVATION 17

was part of a larger project) and so on. This graph data model allows for the

modelling — and, subsequently, querying — of complex, changing data, as it easily

accommodates the addition of more entities and relationships as the data domain

becomes richer and more complex over time. Using our example of the company

domain, entities such as ‘network’ can be added, along with new relationship types,

such as which department uses which network. Additionally, the older data may

be enriched over time by storing new types of relationships of interest between any

two employees, such as the fact that one person mentored another, and whether two

employees ought not to work in the same department.

Based on our company domain, Figure 1.1 shows an example of a graph G,

containing nodes denoting the names of employees, departments and projects, and

edges, which denote relationships between the nodes. The latter include the worksIn

relationship between employees and departments, the isManagerOf relationship be-

tween two employees, the workedOn and managed relationships between employees

and projects (the former relationship indicates that an employee worked on a project

in some capacity, whereas the latter indicates that an employee had a managerial

role within the project), and the partOf relationship between projects, indicating

that one project is part of another, larger project. A sequence of edges — called

a path — between two nodes denotes an indirect relationship, such as the one be-

tween ‘Jane’ and ‘Chronos’, representing the fact that ‘Jane’ workedOn the ‘Zephyr’

project which is partOf the ‘Chronos’ project.

Our research in this thesis focuses on flexible querying of conjunctive regular

path queries over graph data. We assume that the graphs are directed, and an edge

labelled e from a node labelled a to a node labelled b is represented by a triple

(a, e, b). Referring to the data graph G in Figure 1.1, the following conjunctive

query, Q1, consisting of two conjuncts, requests all employees who have worked on

‘Chronos’ and work in the ‘Finance’ department:

ans(x) ← (x,workedOn, ‘Chronos’), (x,worksIn, ‘Finance’)

In this query, x is interpreted as a node variable to which the answers — a set of

nodes corresponding to the relevant employees — will be bound, while workedOn,

worksIn, ‘Chronos’ and ‘Finance’ are constants. A single answer, ‘Paul’, is returned.

A regular path query (RPQ) is a query in which pairs (x, y) of nodes may be found

1.1. BACKGROUND AND MOTIVATION 18

IT Operations Finance

Tom Jane Anne Paul John

Zephyr Chronos

worksIn
worksIn

worksInworksIn worksIn

isManagerOf

workedOn workedOn

managedworkedOn

partOf

Figure 1.1: A graph of a company, consisting of employees, departments they work
in, and projects they worked on.

such that there is a path from x to y whose sequence of labels matches some pattern,

specified using a regular expression defined over the alphabet of edge labels [100].

Once again referring to Figure 1.1, the following RPQ, Q2, asks for (x, y) pairs,

where x is an employee and y is a project, such that x is either the managerOf an

employee who has workedOn a project or has workedOn the project directly (the ‘?’

operator denotes zero or one occurrence of the preceding label, and the ‘.’ operator

denotes a sequence of labels):

ans(x, y) ← (x, (isManagerOf? · workedOn), y)

Q2 will return the answers (Tom, Zephyr), (Jane, Zephyr), (Anne, Chronos) and

(Paul, Chronos).

RPQs can be combined to form conjunctive RPQs (CRPQs), as exemplified by

the following query, Q3:

ans(x, y) ← (x,worksIn, ‘Finance’), (x, (isManagerOf? · workedOn), y)

1.1. BACKGROUND AND MOTIVATION 19

Q3 will return the answer (Paul, Chronos).

Owing to the complexity, heterogeneity and evolution of both the data and the

structure of data graphs in graph-modelled application domains and in integrated

data sources such as RDF linked data, it is becoming increasingly unrealistic to

expect users to be familiar with the data and its structure, and, therefore, to formu-

late queries that precisely match these. Indeed, a user querying such a data graph

may find themselves in a position in which they are not able to obtain meaningful

answers (or indeed, any answers) from the data. Moreover, the user may wish to

begin from a set of initial query answers and thence proceed to further explore the

data. Yet another scenario which may arise is that of posing queries that aim to

discover how two (or more) data items are linked; for example, in the bioinformat-

ics domain, querying the data graph in order to discover the relationships between

various proteins.

Thus, the requirement that data graphs can be queried in a flexible fashion is

becoming more compelling [31, 116, 140]. This means that answers that exactly

match a user’s query are no longer enough: it is also desirable to return answers

which are in some sense similar to the exact answers.

There is also increasing awareness that keyword-based search alone often does not

provide enough semantics or contextual structure within a query to return useful

answers. For example, this has led to the recent inception of the Google Knowl-

edge Graph [123]. The Google Knowledge Graph applies semantic search informa-

tion garnered from Google’s knowledge base to enhance the search results returned

by Google’s search engine, thus providing the user with more useful information.

Two other systems seeking to combine keyword-based searching with semantic and

structural information to enhance the relevance of results are QUICK [116] and

XSEarch [20]; we discuss these in more detail in Chapter 2.

Moreover, the increasing recognition of the benefits and usefulness of ontologies

for specific data domains is further driving the need for more sophisticated means

of data querying that automatically take the semantics of the data into account, for

example, query relaxation and approximation, as well as ranking of query results [15,

102, 125].

Flexible query answering through query relaxation and approximation techniques

allows users both to explore the data meaningfully without necessarily being familiar

1.1. BACKGROUND AND MOTIVATION 20

with the data and its underlying structure and also possibly to discover hitherto

unknown relationships between entities; it has the potential to be beneficial in,

among others, the scientific, medical and educational domains where there are large

volumes of complex, heterogeneous data.

Query approximation when applied to RPQs extends the idea of regular expres-

sion matching by including a set of edit operations that may be applied to the labels

making up the language of the regular expression; these include the insertion, dele-

tion, and substitution of labels [115]. Each edit operation has an associated cost

which can be configured by the user. Each application of an edit operation to a se-

quence of labels in the language of the regular expression within the query conjunct

increases the ‘distance’ from the original sequence by the cost configured for the

edit operation (we refer to this distance as the ‘edit distance’). Answers obtained at

greater distances are ranked lower than ones exactly matching the query conjunct,

as well as those obtained at a smaller distance. The approximated form of a query

conjunct may return quite different answers compared to the exact query conjunct.

For example, referring to Figure 1.1 and the example queries from earlier in

this section, an approximated form of the query conjunct (x, (isManagerOf? ·
workedOn), y) is expressed as APPROX(x, (isManagerOf? ·workedOn), y). This

would first return all (x, y) pairs whose sequence of edge labels conforms to the

regular expression (isManagerOf? · workedOn) at distance 0; i.e. these are the

exact answers, which include (Tom, Zephyr), (Jane, Zephyr), (Anne, Chronos) and

(Paul, Chronos). Substituting the edge label workedOn by, respectively, the edge

label managed, worksIn or partOf would return all (x, y) pairs whose sequences of

edge labels conform to one of the regular expressions (isManagerOf? ·managed),

(isManagerOf?·worksIn) or (isManagerOf?, ·partOf). Thus, the answers (John,

Chronos), (Tom, IT), (Jane, IT), (Anne, Operations), (Paul, Finance), (John, Fi-

nance) and (Zephyr, Chronos) would all be returned at the distance equivalent to

substituting one edge label for another. Deleting the edge label workedOn to obtain

the regular expression (isManagerOf?) would return the answer (Tom, Jane) at

the distance equivalent to deleting an edge label. By inserting either the edge la-

bel worksIn− or workedOn− to obtain, respectively, (worksIn− · isManagerOf? ·
workedOn) and (workedOn− · isManagerOf? · workedOn) (‘−’ following an edge

label denotes that the traversal of the edge is reversed), the answers returned would

1.2. THESIS CONTRIBUTIONS 21

be (IT, Zephyr), (Operations, Chronos), (Finance, Chronos), (Zephyr, Zephyr) and

(Chronos, Chronos) at the distance equivalent to inserting an edge label.

Query relaxation in the context of RPQs is achieved by applying logical relax-

ation of a query conjunct using ontological knowledge relating to the data [115]. It

has the effect of making the relaxed version of a query conjunct return progressively

more general answers, with the latter being returned at an increasing ‘distance’ from

the exact version of the query conjunct (we refer to this distance as the ‘relaxation

distance’).

To illustrate, suppose that the data in Figure 1.1 has an associated ontology in

which both workedOn and managed are subproperties of a property projectActivity.

Then, a relaxed query conjunct RELAX(x,managed, Chronos) would match one

node at distance 0, namely, ‘John’, and also the nodes ‘Paul’ and ‘Anne’ at a relax-

ation distance equivalent to the cost of relaxing the property managed to its parent

property projectActivity.

1.2 Thesis contributions

Our research in this thesis investigates a flexible querying mechanism for the eval-

uation of conjunctive regular path queries (CRPQs), in which query approximation

and query relaxation are combined within a single framework, with results being re-

turned incrementally to the user in order of increasing combined edit and relaxation

distance from the original query. This research has the potential to benefit users

by assisting them in formulating queries over complex graph-structured data with

which they may not be fully familiar. It provides additional opportunities to users to

retrieve results that are of relevance to them by, for example, returning potentially

the correct answers (in cases where the original query was incorrectly formulated)

or additional related answers, enabling sophisticated data discovery and insights to

be made.

In this thesis, we consider a graph data model comprising a directed graph con-

sisting of nodes and edges. This is supplemented by an ontology that represents

subclass relationships between class nodes, subproperty relationships between prop-

erty nodes, and domain and range relationships between property nodes and class

nodes. The query language that we adopt is that of CRPQs.

1.2. THESIS CONTRIBUTIONS 22

Our research builds on and extends in a number of ways the work in [115], which

proposed for the first time a single framework encompassing both query relaxation

and query approximation for conjunctive regular path queries. Specifically, the

contributions of this thesis are as follows:

• We allow each edit and relaxation operation to have a different associated

cost by modifying the construction of the data structures required for the

evaluation of the queries, and specifying in more detail the algorithms used

for the incremental evaluation of approximated and relaxed query conjuncts.

• We provide full proofs of correctness for the constructs and algorithms used to

evaluate approximated and relaxed RPQs. We show formally how the approx-

imate answer to an RPQ can be computed in time that is polynomial in the

size of the query and the data graph, with answers being returned in ranked

order of their ‘distance’ from the original query. We also establish that the

relaxed answer to an RPQ can be computed in time that is polynomial in the

size of the query, the data graph and the ontology graph, again with answers

being returned in ranked order.

• We present a prototype system called ApproxRelax and, focusing on its user-

facing features, we present a qualitative case study in the domain of lifelong

learning, showing how ApproxRelax overcomes problems of an earlier system

by providing more flexible querying capabilities, resulting in answers of greater

relevance being returned to the user. ApproxRelax implements, for the first

time, ontology-based relaxation of regular path queries, as well as combined

support for approximation and relaxation of CRPQs.

• We show by means of an empirical evaluation with our final system, Omega,

how an automaton-based approach built on top of existing technology can be

used to implement efficient evaluation of exact RPQs, as well as approximated

and relaxed RPQs that mostly execute within a reasonable amount of time.

• We demonstrate how the use of simple graph statistics has the potential to

improve the run-times of approximated queries.

1.3. THESIS OUTLINE 23

• Finally, we introduce and motivate an additional FLEX operator that com-

bines both query approximation and query relaxation into a single operator.

We show that FLEX allows additional answers to be returned that cannot be

obtained by applying approximation or relaxation alone. We establish that

the evaluation of each RPQ whose conjunct has FLEX applied to it can be

undertaken using a combination of the techniques used for approximation and

relaxation, in time that is polynomial in the size of the query, the data graph

and the ontology graph.

1.3 Thesis outline

This thesis is structured as follows.

In Chapter 2, we review related work on graph data models and query lan-

guages, keyword-based querying, query relaxation and approximation and subgraph

matching. We conclude with a discussion comparing these works to our research.

We provide the necessary background to our research in Chapter 3, introducing

the graph data model and the query language, i.e. conjunctive regular path queries

(CRPQs). We illustrate approximation and relaxation of query conjuncts by means

of examples, provide a formal definition of CRPQs, discuss exact matching of RPQs,

and give formal definitions of approximate matching and relaxation of such queries.

Finally, we discuss the evaluation of multi-conjunct CRPQs, each of whose conjuncts

may be approximated or relaxed, and the complexity of query answering.

In Chapter 4, we provide formal correctness proofs for the constructs and al-

gorithms introduced in Chapter 3. We explore the time complexity for computing

the approximated and the relaxed answers to an RPQ, and show that in both cases

answers can be returned in ranked order of their ‘distance’ from the original query

in time that is polynomial in the size of the query, the data graph, and, in the case

of relaxed answers, the ontology graph.

In Chapter 5, we present the ApproxRelax prototype system. Restricting our

focus to the user-facing features of ApproxRelax, we detail a qualitative case study

showing how ApproxRelax overcomes problems in a previous system in the same

application domain of lifelong learning through its support for approximation and

relaxation of CRPQs.

1.3. THESIS OUTLINE 24

Chapter 6 describes the implementation details of the Omega system, our final

implementation of query approximation and query relaxation, which supersedes the

ApproxRelax system. We discuss the system architecture, data structures, data

model and API, describe how data graphs are created in Omega, and present the

query evaluation algorithms. We conclude with a review of other implementations

of regular path query evaluation on graph-structured data.

In Chapter 7, we present a performance study conducted with two contrasting

real-world data graphs. We establish that our baseline performance of exact RPQs

is comparable to that of state-of-the-art systems, and show that, in most cases, our

APPROX and RELAX queries exhibit reasonable performance. For the few queries

that perform poorly, we examine the causal factors. We illustrate by means of an

empirical evaluation how the availability of simple statistics relating to paths in the

data graph can be used to improve the run-times of a selection of poorly-performing

approximated queries.

In Chapter 8 we discuss the application of both approximation and relaxation

to an individual query conjunct using one query operator, FLEX, thus providing

additional flexibility for users by not requiring them to select either approximation

or relaxation for a query conjunct. We describe how RPQs that have FLEX applied

to them can be evaluated, providing formal proofs of correctness. Query evaluation

is again accomplished in time that is polynomial in the size of the query, the data

graph and the ontology graph, with answers being returned in ranked order. We

also discuss the characteristics of multi-conjunct CRPQs in which conjuncts can

have FLEX applied to them, considering query evaluation, complexity, and expres-

siveness.

Finally, Chapter 9 summarises the contributions of the thesis, giving our con-

cluding remarks and directions for further work.

CHAPTER 2

Literature Review

We begin this chapter with setting the context for our research by reviewing lit-

erature regarding graph data models and graph query languages in Section 2.1.

Keyword-based querying allows for a form of flexible querying and is discussed in

Section 2.2. As query relaxation and query approximation are fundamental to our

work, previous work in these areas is presented in Section 2.3 and Section 2.4, re-

spectively.

Subgraph matching is also related to our research, i.e. retrieving a graph match-

ing certain query conditions from a larger graph, with the former being defined as

a subgraph. We discuss research in this area in Section 2.5.

We end with a discussion in Section 2.6 comparing our work with the approaches

taken by the research reviewed.

2.1 Graph-modelled data and graph query lan-

guages

We begin by reviewing research undertaken on graph data models and query lan-

guages over the past few decades, after which we proceed to discussing more recent

work.

25

2.1. GRAPH-MODELLED DATA AND GRAPH QUERY LANGUAGES 26

2.1.1 Graph models

Since the 1990s, much work has been undertaken in the development of graph models

and we briefly summarise some of these here; we note that a comprehensive survey

of graph data models is presented by Angles and Gutierrez [7]. We begin with

general graph data models and the hypergraph model, followed by semi-structured

data models and RDF, and end with a summary of attributed graphs.

The GOOD (Graph Object-Oriented Data) [54] proposal by Gyssens et al. mod-

els the database schema and the data instances as directed labelled graphs, in which

transformations of the graph are used to manipulate the data. GDM (Graph Data

Model) by Hidders [59, 60] extends this work through the addition of inheritance and

complex values, along with n-ary symmetric relationships. Based on GOOD, An-

dries et al. [6] propose GMOD (Graph-Oriented Object Manipulation) which models

object database entities as graph-oriented user interface entities. The schema con-

tains nodes representing abstract objects (class names) and basic types (primitive

objects), with edges representing properties of the abstract objects. Both the schema

and the data are represented as labelled, directed graphs, and, in contrast to GOOD,

GMOD uses graph pattern matching when querying and mutating data. Güting [53]

presents GraphDB, in which graphs are modelled in an object-oriented environment

so that objects may be dealt with as nodes, edges and explicit paths within the

graph; the original application of this model was for spatial networks. Amann and

Scholl present Gram [4], a model for hypertext data consisting of a directed graph

with labelled nodes and edges. In contrast to GOOD, both GraphDB and Gram

allow for path queries. The GGL (Graph Database System for Genomics) model by

Graves [49], arising from the biological community, takes advantage of the benefits

of graph models to store and query genome maps as directed, labelled graphs, with

the additional ability to model hierarchies by allowing the nodes to contain graphs.

Turning now to the hypergraph data model, Levene and Poulovassilis discuss

GROOVY (Graphically Represented Object-Oriented data model with Values) [90],

which uses a hypergraph model to represent an object-oriented model. Edges in

a hypergraph, called hyperedges, may connect two or more nodes. This model

inspired, among others, the hypernode model [88, 89, 112] which is based on a

nested graph structure (this is a directed graph whose nodes may be graphs) and

2.1. GRAPH-MODELLED DATA AND GRAPH QUERY LANGUAGES 27

can be used to typify simple, hierarchical and composite objects in order to model

complex information. HyperGraphDB1 [69] is an implementation of the hypergraph

data model, such as that described above for the GROOVY model.

We now briefly discuss OEM (Object Exchange Model), XML (eXtended Markup

Language) and Lore (Lightweight Object Repository), as these exemplify semi-

structured data models and are thus more closely related to graph-structured mod-

els than are structured data models, such as relational and object-oriented data.

OEM [104], motivated by the challenges of integrating heterogeneous, evolving data

sources, allows for the flexible modelling of schemaless, complex entities using con-

cepts — such as nesting — from object-oriented models. XML [12] introduces a

standard mechanism by which data can be exchanged between Web applications. In

contrast to graph models, XML has a tree-like structure. The data is self-describing

and can provide for richer semantics when combined with a schema. Lore [1] is a pro-

totype database management system allowing for the storage, updating and query-

ing of semi-structured data. It includes (i) a data guide, encapsulating by means

of edge labels the structure of the graph, thus acting as a structural summary of

the database, and (ii) external objects, allowing Lore to integrate information from

external data sources.

RDF (Resource Description Framework) [78] is a W3C recommendation intro-

duced to represent metadata in a graph-structured way by describing resources and

their interconnections in a flexible, extensible manner. RDF is composed of triples,

each of which contains a subject describing the resource, a predicate which is a prop-

erty of the resource, and an object, which is the value of the property. A triple is a

statement of the relationship between the subject and the object, and a set of triples

can be represented as a graph, with the subjects and objects being nodes, and the

predicates being the edges connecting them. Triple stores — also known as RDF

stores — store RDF graphs in subject-predicate-object form and are exemplified by

systems such as Virtuoso2. Allegrograph3 is an example of an RDF database used

to build Semantic Web applications, and stores both the data and schema as triples

(RDF, and RDF/S, respectively).

Attributed graphs, also widely known as property graphs [119], are becoming

1http://www.hypergraphdb.org/
2http://virtuoso.openlinksw.com/
3http://franz.com/agraph/allegrograph/

http://www.hypergraphdb.org/
http://virtuoso.openlinksw.com/
http://franz.com/agraph/allegrograph/

2.1. GRAPH-MODELLED DATA AND GRAPH QUERY LANGUAGES 28

increasingly popular in industry and academia. Such graphs allow for any number

of attributes — i.e. key-value pairs — to be associated with the nodes and edges.

Neo4j4 [119] is the most popular property graph database5. It stores graphs na-

tively on disk and provides a framework for traversing graphs and executing graph

operations, as well as a declarative query language, Cypher, which is discussed in

the next section. Sparksee (formerly known as DEX) [98], another property graph

database, provides APIs for different programming languages allowing for the stor-

age and manipulation of graphs. We have used Sparksee for our implementation6,

and further details are provided in Chapter 6.

2.1.2 Graph query languages

Along with graph data models, graph query languages also have a history spanning

several decades.

The languages G [24], its successor G+ [23, 99, 100] by Cruz, Mendelzon and

Wood, and GraphLog [21] by Consens and Mendelzon are all based on conjunctive

regular path queries (CRPQs), using a labelled, directed graph model. G matches

simple paths in the graph, and G+ includes aggregation operators, such as count,

sum, min and max, which allow for, among others, the computation of graph char-

acteristics such as node degree and distances between pairs of nodes. GraphLog

extends G+ through the addition of edge inversion and negation, and translates the

regular path expressions within the query to Datalog for evaluation.

The query languages for GraphDB [53] and Gram [4] permit regular expressions

to be defined over alternating node and edge type sequences, starting and ending

with a node type. Additionally, GraphDB includes operations such as the compu-

tation of the shortest path between a pair of nodes.

GGL (Graph Database System for Genomics) [49], intended for use in the bio-

logical community, introduces a genome graph language and operators in [50] using

graph matching and path matching techniques. GMOD (Graph-Oriented Object

Manipulation) [6] also uses graph pattern matching techniques to both query and

4http://neo4j.com/
5http://db-engines.com/en/ranking/graph+dbms (June 2016)
6The choice to use Sparksee was made for purely pragmatic reasons, most notably because of

their provision of a C# API.

http://neo4j.com/
http://db-engines.com/en/ranking/graph+dbms

2.1. GRAPH-MODELLED DATA AND GRAPH QUERY LANGUAGES 29

manipulate the data.

The querying mechanism in GOOD (Graph Object-Oriented Data) [54] is based

on graph transformation operations, such as additions and deletions of nodes and

edges, along with a construct by which objects can be grouped according to their

properties and a method to define sequences of operations. A successor to GOOD is

the query language G-Log [105], operating on the GMOD [6] model. G-Log retrieves

matching subgraphs by using graph-based rules specifying transformations to the

schema and data along with patterns using predicates in the edges.

HML (Hypergraph Manipulation Language) is used to query and update labelled

hypergraphs in the GROOVY [90] model. There are eight operators allowing for

the creation and deletion of hyperedges and hypergraphs, as well as two operators

allowing the hypergraph to be queried. This was extended by Poulovassilis et al. in

Hyperlog [111, 112], a rule-based query language supporting querying and database

browsing along with the ability to perform database updates.

The functional query language UnQL by Buneman et al. [14] uses regular expres-

sions for querying semi-structured data. UnQL makes use of a top-down, recursive

function, thus allowing for structural recursion. Remaining within the area of semi-

structured data, the language Lorel by Abiteboul et al. [1] uses regular expressions

for querying data in the Lore data model, as does the system described by Fernández

et al. [39]. Moreover, Lore also allows for path variables to be used, where a path

– denoted by a regular expression – can be bound to a variable. Goldman and

Widom [43] use automata to evaluate regular path queries for semi-structured data,

a method that we too adopt in our approach.

More recently, CRPQs are used in SPARQLeR [79], PSPARQL [3], nSPARQL [107],

SPARQL 1.1 [122] and NAGA [75] — these query languages are discussed in more

detail in Sections 2.1.3 and 2.1.4.

Approaches proposed for evaluating (exact) CRPQs include automaton-based

approaches [43, 82], translation into Datalog or recursive SQL [22, 28, 57, 135],

search-based processing [36, 82] and reachability indexing [51].

Fan et al. [36] discuss adding regular expressions as edge constraints on the graph

patterns to be matched. The authors discuss a class of reachability queries and a

class of graph patterns. For the latter, a path consisting of a restricted form of

regular expression is used, which can be evaluated in cubic time.

2.1. GRAPH-MODELLED DATA AND GRAPH QUERY LANGUAGES 30

Cypher7, inspired by SQL, XPath and SPARQL, is a declarative, pattern-matching

graph query language used by the Neo4j [119] property graph database, and it al-

lows a restricted form of regular path queries to be expressed: the concatenation and

disjunction of single edge types, as well as variable length paths, in which optional

upper and lower bounds may be set. Additionally, paths are able to be returned by

a Cypher query.

None of the above languages allows for query approximation or relaxation.

2.1.3 SPARQL

In recent years, SPARQL [122] has emerged as the de-facto standard for querying

RDF data [78]. It has an SQL-like syntax and at the most elemental level the queries

are based on graph patterns, using graph pattern matching to find solutions.

Kochut and Janik [79] introduce SPARQLeR, which extends SPARQL by using

regular expressions (with various filters and conditions applied) to query the data,

discover pathways in the data graph, and return paths as output; only simple (i.e.

acyclic) paths are considered.

Anyanwu et al. [8] introduce SPARQ2L, which allows for path extraction queries

from RDF data sources, by using path variables and path variable constraint ex-

pressions. Alkhateeb et al. [3] present an extension for regular expression patterns

within SPARQL, entitled PSPARQL. Users are able to search paths within RDF

graphs by using regular expression patterns (regular expressions with variables) as

well as to query RDF through the use of a triple pattern. In addition, PSPARQL

is not limited to finding only simple paths.

Motivated by the path-based navigational constructs within SPARQLer, SPARQ2L

and PSPARQL, the most recent version of the SPARQL standard, SPARQL 1.1, in-

troduces property paths, which allow paths between any two nodes to be expressed

by regular expressions [9, 122].

Pérez et al. present nSPARQL, which adds nested regular expressions to SPARQL,

and show that these are necessary to answer queries using the semantics of the RDFS

vocabulary by directly traversing the RDF graph, without materialising the closure

of the graph [107].

7http://neo4j.com/docs/developer-manual/current/cypher/

http://neo4j.com/docs/developer-manual/current/cypher/

2.1. GRAPH-MODELLED DATA AND GRAPH QUERY LANGUAGES 31

Using the concept of nested regular expressions from nSPARQL and XPath’s

ability to express nested predicates on paths, Zauner et al. [141] discuss RPL (RDF

Path Language), which allows conditional regular expressions to be expressed over

the nodes and edges appearing on paths within RDF data.

In contrast to our work, there is no query relaxation or approximation in any of

the above languages.

2.1.4 Linked and distributed data

SPARQL is used widely to query linked data, and this is potentially another means

by which data on the web may be accessed and queried. Hartig et al. [55] present

concepts and algorithms to facilitate this efficiently, based on traversing RDF links

in order to detect during query execution what data may be relevant to the query.

Langegger et al. [83] present a system providing SPARQL access to distributed

data sources, the main motivating factor for the system being one of allowing scien-

tific communities to share data. A significant component of this system is concerned

with the automated registration and integration of different data sources, as well as

executing federated queries across these data sources. Features of SPARQL such as

graph pattern matching (including optional and alternative pattern matching) and

filters have been implemented.

Kasneci et al. [75, 134] introduce the idea of integrating linked data and in-

formation retrieval methods to extract or infer useful, hitherto unknown relation-

ships between data sources. The system, called YAGO, integrates information from

Wikipedia and WordNet (a lexical database of English8). A query language sup-

porting CRPQs for YAGO — called NAGA [76] — adopts concepts from SPARQL,

but also extensions such as more expressive pattern matching and ranking. The

ranking in NAGA uses statistical methods and can only rank exact matches to a

given query.

8http://wordnet.princeton.edu/

http://wordnet.princeton.edu/

2.2. KEYWORD-BASED QUERYING 32

2.2 Keyword-based querying

Keyword-based querying allows for a form of flexible querying. A keyword-based

query is one in which the structure of the data is not considered, i.e. any part of

the data matching the provided keyword causes the data entity to be returned (e.g.

a tuple if the data source is relational; an XML node or subtree if the data source

is XML; or a set of nodes if the data is graph-based). For example, if Harry Jones

is provided as the keyword in such a query, and the data source consists of records

pertaining to books, results in which Harry Jones appears as either author or book

title will be returned. Much work has been done on keyword querying for many

types of data (from structured to unstructured), which we briefly review here.

XML’s XPath and XQuery languages have both recently been extended with

full-text search capabilities9. This allows users to provide keywords — which may

be words or phrases — as part of their XPath or XQuery expression. The query

uses information retrieval techniques such as scoring and weighting, and is thus far

more extensive than, say, a simple ‘substring’ search query. This means that data

containing the exact keyword(s) as well as related terms will be returned.

Xu and Papakonstantinou [136] propose keyword search algorithms for XML

documents that return the set of all XML subtrees containing the keywords. The

trees are not ranked in any way.

Regarding keyword search in SPARQL, Elbassuoni et al. [33, 34] discuss the

extension of SPARQL with keyword search. Such a query allows a varied number of

keywords to be associated with one or more SPARQL query conjuncts when querying

an RDF data repository.

Querying data via a keyword-based search is, at first glance, a guaranteed way of

achieving flexibility. The lack of structural knowledge in such queries means that it

solves the challenges raised by the heterogeneous nature of the data and structures,

the ever-changing nature of the structures (caused by new data sources joining the

‘data pool’ on a regular basis) and the users’ lack of knowledge of the data structures

and relationships in the data.

However, one major flaw with this approach is that one is not able to apply the

notion of semantics or structure within the search, which means that the answers

9http://www.w3.org/TR/xquery-full-text/

http://www.w3.org/TR/xquery-full-text/

2.2. KEYWORD-BASED QUERYING 33

returned may not meet the user’s requirements. A simple example to illustrate this is

the following: using the keyword-based search technique, a user enters Harry Potter

into a large repository consisting of books and related publications, hoping to find

a book relating to feuding Scottish families in the sixteenth century (‘Harry Potter’

is the name of the author of a book entitled Blood Feud: The Murrays and Gordons

at War in the Age of Mary Queen of Scots). Obviously, the multitude of books

(and numerous editions thereof) relating to Harry Potter (the boy wizard) will be

returned and overwhelm the search results needlessly and irrelevantly, from the point

of the user. It is therefore clear that being able to provide some context within a

query would be very useful (either via semantics or by structure) in expressing the

end goal of the user’s query more effectively.

To this end, Dong and Halevy [31] discuss the provision of a querying mechanism

in which keywords along with structural requirements are combined in the query

(both are optional), in order to allow users to query data sources more flexibly

but also more meaningfully. The user is able to specify keywords and a structural

condition — an example being ‘a person with a name of Mary who was born in

London’ — or simply just a set of keywords. The motivation here is that the user is

able to provide the notion of structure if they know it (and, indeed, this will return

more meaningful answers), but, if not, they are able to revert to providing keywords

only. Answers returned also include entities related to the ones containing the actual

keyword(s), although these will be ranked lower. Ranking is achieved by a variety

of mostly statistically-based methods.

Cohen et al. [20] discuss a semantic search engine, entitled XSEarch, which can be

used to query XML data and rank results by integrating the notion of keywords and

semantics. Answers to XSEarch queries are returned based on whether they match

the keywords, whether they are semantically related, and whether the semantically-

related answers are relevant to the keywords. The answers are ranked using IR

techniques.

Pound et al. [116] recognise the problems inherent with keyword search whilst

still accepting its usefulness as a flexible querying paradigm. The authors propose a

solution consisting of a combination of the keyword-based technique with the more

targeted structure-based technique. Their QUICK system enables a user to define a

query consisting of an entity, which is described by a collection of keywords, and a

2.3. QUERY RELAXATION 34

description of all the entity’s relationships to other entities. The system then returns

answers ranked according to various statistically-based methods.

The above proposals [20, 31, 116] all provide an additional, albeit limited, ca-

pability for the user to provide additional contextual information to facilitate the

retrieval of more meaningful results. In contrast, the context of the data and its

structure are integral to our research.

2.3 Query relaxation

Query relaxation is a fundamental part of our research and we present here work

undertaken in this area in querying semi-structured and graph-structured data, fo-

cusing first on SPARQL and RDF, and ending with XML.

SPARQL itself allows for optional pattern matching10. To illustrate with an

example, a user may pose a SPARQL query requesting all names and email addresses

from an RDF graph, indicating that the email address is optional. This will return

all names having email addresses as well as those names where the email address is

not present.

User and domain preferences play an integral part in the query relaxation tech-

niques described by Dolog et al. [29, 30], in which aspects such as query rewriting

rules and user preferences are able to be configured and subsequently applied in

order to yield the best results according to what the user deems important within

a particular context. Relaxation is then carried out (making use of an ontology or

schema), where more generic terms or concepts are used in subsequent — i.e. more

relaxed — versions of the query. Regarding the ranking of results, their implemen-

tation uses a divide and conquer approach, whereby the best results of each possible

combination of query re-writings is returned (in a breadth-first search).

The work by Hurtado et al. [66] proposes techniques for query relaxation in the

setting of the RDF/S data model with respect to an RDFS vocabulary. The authors

show that query relaxation can be naturally formalised using RDFS entailment. The

entailment is characterised by derivation rules regarding subproperties, subclasses

and typing, grounded in the semantics developed by Gutierrez et al. [52, 56].

Several proposals have been made in which query relaxation is based on the use

10https://www.w3.org/TR/rdf-sparql-query/#OptionalMatching

https://www.w3.org/TR/rdf-sparql-query/#OptionalMatching

2.3. QUERY RELAXATION 35

of similarity measures to retrieve additional relevant answers. For example, Hogan

et al. [63] apply similarity functions to constants such as strings and numeric values,

and in [64, 65, 118] ontology-driven similarity measures are developed, using the

RDFS ontology to retrieve additional answers and assign a score to them. Elbassuoni

et al. [35] discuss undertaking query relaxation based on statistical language models

(the goal of such a model is to estimate as accurately as possible the probability

distribution of sequences of words in natural language processing) for RDF data

and queries. Flexible querying of RDF using SPARQL and preferences expressed as

fuzzy sets is investigated by Buche et al. [13].

Mochol et al. [102] propose query relaxation using ontologies within the HR

(Human Resources) domain to improve online recruitment applications for both

employers and employees. Query rewriting techniques are applied to user-defined

queries posed over RDF data, in which specific terms are replaced with more gen-

eral terms to obtain relaxed versions of the original query, by making use of the

subclass-superclass relationships within the ontology. Regarding ranking of the re-

sults, mention is made of employing semantic similarity functions to do this, but

this has yet to be implemented in the system. Our approach additionally uses the

subproperty, domain and range ontology constructs, and is applicable to any graph-

structured data application.

Meng et al. [101] explore query relaxation by utilising data relating to the per-

sonal preferences of the user to relax the numerical and categorical constraints of the

original query; for example, the original numerical range specified in a query may be

expanded. The contextual preferences of the user are obtained by using association-

rule mining on the database log of past queries. In contrast, our approach uses

ontological constructs to achieve query relaxation.

However, techniques and ideas from the approach of Meng et al. could be used

to enrich the relaxation operations we develop here. In particular, depending on

the user’s preferences, differing weights could be applied to the various ontological

constructs and the relationships within a particular ontology. For example, to denote

a biologically closer connection between all mammals, than, say, between a mammal

and a bird, the relationship between (the superclass) Mammal and all its immediate

subclasses, such as Cat and Dog, may be given greater weight than the relationship

between Mammal and all its immediate superclasses (such as Vertebrate).

2.3. QUERY RELAXATION 36

Elbassuoni et al. [33] discuss a proposed extension to SPARQL with keyword

search capabilities (which was discussed earlier in this section). However, the authors

also discuss the relaxation of triple patterns (RDF query conjuncts) by replacing

constants with variables. The larger the number of relaxations (which is dependent

on the number of keywords and constants in the original query), the lower the rank

of any answers arising from the (relaxed) query. The relaxation of the keywords is

achieved by employing the use of various IR-based techniques, which differs from

our ontology-based approach to query relaxation.

Cedeño and Candan [19] describe a framework for cost-aware querying of weighted

RDF data through predicates that express flexible paths between nodes. We discuss

this work in detail in Chapter 6.

Zhou et al. [144] explore the idea of achieving query relaxation on Entity-Relation-

ship data models by using malleable schemas, which contain multiple, overlapping

definitions of data structures and attributes, and may be extended at any time.

The resulting redundancies that arise are intended to capture more fully the diverse

semantics of a complex, heterogeneous domain; for instance, author and writer, or

paper and report are two examples where multiple terms have overlapping meanings

for a particular attribute. Duplicate terms in different datasets are used to calculate

correlations (and strengths thereof) between elements within the malleable schema;

these are then used to relax the queries and rank the results. This approach is thus

firmly grounded in a statistically-based model, in contrast to our work.

Turning now to research on query relaxation for XML data, work has been done

on relaxing tree pattern queries for XML, e.g. in [5], [125] and more recently in [91].

We discuss each of these below.

Theobald et al. [125] present TopX, a system designed to rank retrieved XML

documents without relying upon a schema (as it is very likely that, in the heteroge-

neous data context, many XML documents will not have accompanying schemas).

The system relaxes queries by expanding the query using information from an on-

tology or thesaurus. Various IR-style techniques are used to achieve this, as well as

to rank the answers.

Amer-Yahia et al. [5] discuss FleXPath, a system integrating both structural

and keyword-based XML querying, much like the work in [116] described earlier

2.3. QUERY RELAXATION 37

(although that work was not restricted to XML documents). The structural relax-

ation of the query is achieved by various methods which lead to the dropping of

conditions from the original expression (which is a query tree pattern), leaf node

deletion or subtree promotion — in effect, extending the search space through the

removal of conditions within the XPath expression. This is integrated with full-text

search capabilities. Ranking is achieved by the degree of similarity of the relaxed

expression’s structure to that of the original, as well as statistically-based scoring

methods. FleXPath therefore still requires the user to be familiar with the structure

of the XML to some extent, in order to formulate the original query.

Liu et al. [91] discuss relaxation of queries posed against heterogeneous XML

data sources. Each data source has its own schema (a DTD, in this case), and

the incoming query is relaxed based on the rules within this schema. This means

the original query is relaxed differently for each data source if the sources have

differing schemas. The ranking of results is achieved by ranking the relaxed queries

according to how much the relaxed query differs from the original. There is the

added flexibility of user configuration, whereby a user may specify weights on the

relationships expressed within the schema; these are then taken into account when

computing the ranking.

Yu and Jagadish [140] discuss a flexible query model aimed at XML and relational

data sources. The notion of a schema summary is defined, which is a condensed

description (containing only the most salient structures and relationships) of the

full database or XML document schema; the former is, from a user’s point of view,

easier to understand than the latter. The schema summary is used to construct a

new model called the Meaningful Summary Query (MSQ). Such a query requires the

user only to have knowledge of the schema summary. From there, the MSQ query

is evaluated by making use of schema-matching semantics. Ranking is mentioned,

but only briefly. The authors state that more research to develop the ideas further

is needed.

In this thesis, we build specifically on the query relaxation approach of Hurtado

et al. [66], and combine it with query approximation within one integrated flexible

querying system for CRPQs.

2.4. QUERY APPROXIMATION 38

2.4 Query approximation

The approximate matching aspect of our research is related to a large volume of other

work on query approximation for semi-structured and graph-structured data, and

we now review the major relevant related work. We begin by focusing on SPARQL

and RDF, followed by general graph-structured data, and then end with XML.

There have been several proposals for applying flexible querying to Semantic

Web data, mostly based on the use of similarity measures to retrieve additional

relevant answers. For example, similarity-based querying is the focus of Kiefer et

al. [77], with the introduction of iSPARQL, an extension of SPARQL that supports

customised similarity functions. One similarity measure used is that of edit distance

between strings. However, similarity is measured with respect to the resources

themselves rather than the paths connecting resources, i.e. using the edit distance

between the names of the resources. In contrast to [77], our research investigates

query approximation by applying a range of edit operations to the portion of the

query denoting the paths in the graph to be traversed, as well as query relaxation

by using the ontology associated with the data.

Turning now to approximate querying for graph-structured data, Kasneci et

al. [74] discuss the importance of finding relationships between nodes in a graph

where the nodes are connected by weighted edges. The authors present STAR, an

approximation algorithm for determining relationships over large graphs. STAR

returns approximations of the original (exact) query, by using the original query

as a template for an optimal Steiner tree (given a collection of nodes N within a

graph, a Steiner tree of N is a minimum-weight connected subgraph consisting of

all the nodes within N). In addition, any information pertaining to the taxonomy

associated with the graph data is exploited by the algorithm. This algorithm is used

as part of the NAGA system [75, 76].

Mandreoli et al. [95] discuss flexible query answering on graph data, with ranked

results. The authors present two modes of approximation. The first mode is termed

label approximation, which essentially replaces one edge label by another. The au-

thors suggest doing this by using linguistic information extracted from an external

source, such as WordNet, and computing the ‘distance’ between the terms based on

2.4. QUERY APPROXIMATION 39

various linguistic statistical formulae. The second mode is termed structural approx-

imation and involves the establishment of ‘semantic relatedness’ between any pair

of nodes – based on property relaxation, node connectivity, and domain and range

relationships – along with an associated cost.

Yang et al. [138] introduce SLQ, a framework which enables schemaless and

structureless querying of property graphs in which answers approximately matching

the query are returned in ranked order, by means of an automatically learnt ranking

model using generated training data. A set of transformation functions — com-

prising string (e.g. ‘Anne Smith’ → ‘Anne’), semantic (e.g. ‘lecturer’ → ‘teacher’),

numeric (e.g. ‘ 20 yrs’ → ‘22 yrs’) and edge to shortest path (e.g. ‘X’-‘Z’ → ‘X’

- ‘Y’ - ‘Z’) transformations — is applied to the attributes and values of nodes and

edges within the original query, resulting in multiple answers that are subsequently

ranked according to the ranking model.

Grahne and Thomo [46, 47] explore approximate matching of single-conjunct reg-

ular path queries using a weighted regular transducer to perform transformations to

regular path queries (but not CRPQs) for approximately matching semi-structured

data, with polynomial time complexity in the size of the query and the graph. Hur-

tado et al. [67] build on techniques from [46, 47, 68] to show that approximate

matching of CRPQs can be undertaken in polynomial time, subject to certain as-

sumptions which we discuss in Chapter 3. The query edit operations considered

are insertions, deletions and substitutions of edge labels, inversions of edge labels

(corresponding to reverse traversals of graph edges), and transpositions of adjacent

labels, each with an assumed edit cost. Query results are returned incrementally

to the user in order of their increasing edit distance from the original query. In

other work [48], Grahne and Thomo introduce preferential RPQs where users can

specify the relative importance of symbols appearing in the query by annotating

them with weights. Poulovassilis and Wood [115] extend [67] by proposing combin-

ing approximation and ontology-based relaxation for CRPQs. Either approximation

or relaxation can be applied to each conjunct of a CRPQ, although edge inversions

and transpositions are not considered within the set of edit operations. This thesis

builds on the work in [115] by allowing each edit and relaxation operation to have a

different associated cost, providing full proofs of the correctness for the constructs

and algorithms necessary to evaluate approximated and relaxed CRPQs, describing

2.5. SUBGRAPH MATCHING 40

a system implementation of the approximation and relaxation of CRPQs, presenting

a performance study of the system, and discussing optimisations for the evaluation

of such queries.

Early work on query approximation by Kanza and Sagiv [72] considered querying

semi-structured data using flexible matchings which allow paths whose edge labels

contain those appearing in the query to be matched. Such semantics can be captured

by transposition and insertion edit operations on edge labels in our framework.

We now briefly discuss research undertaken on query approximation for XML

data. Buratti and Montesi [15] discuss a system allowing approximate answers to

be returned from an XML document store, by approximation of the structure within

an XQuery FullText expression. The authors define the concept of a path edit dis-

tance, which is calculated to be the minimum number of edit operations required

in order to transform one path into another. These edit operations include inser-

tions, deletions and substitutions of path steps. Each of these has a pre-defined

cost, depending on where in the corresponding node tree the transformation is to

take place; so, if the transformation operation extends the search space, it is more

‘expensive’ than a transformation which narrows a search space (relative to the

original expression). The answers are then ranked according to a ‘satisfaction’ ra-

tio, which is computed using a statistical scoring method for numeric values and

similarity metrics calculated from an ontology for string values. By contrast, our

research considers any graph-structured data source, using regular path expressions

within conjunctive path queries instead of queries posed using XQuery FullText.

However, both approaches use the notion of an edit distance within the context of

query rewriting; [15] uses it to rewrite paths within the XQuery FullText expression,

whereas our approach uses it to approximate regular path queries.

2.5 Subgraph matching

Subgraph matching comprises the retrieval from a graph of subgraphs matching cer-

tain conditions. This area is relevant to our research since the algorithms proposed

could potentially be utilised for improved performance of flexible CRPQ evaluation.

Approximate subgraph matching has been extensively studied recently, e.g. [37,

93, 126, 143, 146], and we discuss each of these works below.

2.5. SUBGRAPH MATCHING 41

Zhang et al. [143] present the SAPPER model, which sets out to find all instances

of a query graph within a large graph database. The model developed uses an edge

edit distance to return exact subgraphs as well as approximated subgraphs matching

the original query but with possibly missing edges (provided the edge edit distance

does not exceed a certain threshold value).

Tian and Patel [126] present the TALE method, a heuristic algorithm in which

important nodes within the graph are matched first, after which the search is ex-

tended. This heuristic algorithm is not guaranteed to find all or even the best

matches, unlike [143] and our framework in which all answers at a particular dis-

tance will always be returned.

Fan et al. [37] discuss top-k graph pattern matching on social graphs, with the

eventual aim being to conduct graph pattern matching efficiently on large social

datasets by developing distributed algorithms on partitioned and distributed graphs.

The authors use relevance functions based on factors such as social impact and

distance to compute the top-k matches.

Ma et al. [93] present a set of criteria preserving the topology of massive graphs.

This approach rectifies problems caused by pattern matching on a data graph whose

structure differs greatly from the pattern, which may result in matches that are

difficult to comprehend and analyse.

Zou et al. [146] discuss the gStore system, in which SPARQL queries are trans-

formed into subgraph matching queries. The flexible querying aspect of this system

arises from the efficient and scalable provision of wildcard SPARQL queries — i.e.

making use of the ‘regex’ filtering construct in SPARQL.

Varadarajan et al. [131] propose a framework entitled GID (Graph Information

Discovery), whose aim is to facilitate user queries on hyperlinked data, and where

answers are ranked according to the user’s input criteria. The data model consists of

a data graph and a schema graph. GID allows users to pose a series of ‘filters’, which

may be combined. Briefly, a filter consists of various selection conditions comprising:

a Boolean keywords expression (such as keywords = ‘magnesium’ OR ‘sulphur’);

an attribute-value pair (such as title = ‘The history of oxygen’); a type; and,

lastly, a path expression (such as path = ‘OntoGene/PubMed’). In addition, there

is a flag to denote whether to apply ranking or not (if true, then the filter also

specifies which selection condition must be used as the ranking ‘pivot’, and ranking

2.6. DISCUSSION 42

is achieved by means of various statistically-based techniques). The query is thus a

series of user-defined filters, which, when executed, returns a subgraph. In contrast

to our research, this approach does not allow for approximations or relaxations of

query paths, and the user is required to have some knowledge regarding the data

structure from the outset.

2.6 Discussion

In order to provide the context in which our research is grounded, we began this

chapter by reviewing both historical and current graph data models, thence pro-

ceeding to graph query languages. We reviewed historical work, and continued by

discussing more current languages, such as Cypher and SPARQL. Recent work in

storing and querying linked data was presented, in which the benefits conferred by

flexible querying would be substantial; nonetheless, to date flexible querying has

mainly used statistically-based methods.

We subsequently reviewed work on keyword-based querying, showing that its

efficacy is impeded by a lack of context, as neither structure nor semantics are

encompassed. A number of papers [20, 31, 116] seek to address this shortcoming by

providing a limited user-defined ability to incorporate within the queries contextual

and structural information.

We then surveyed recent work on the relaxation of queries posed against RDF and

XML data. Hurtado et al. [66] propose techniques for queries posed against RDF

data to be relaxed with respect to an RDFS vocabulary (the ontology), showing

that query relaxation can be naturally formalised using RDFS entailment over the

ontology. However, only conjunctive queries — rather than conjunctive regular

path queries — are considered in [66]. Poulovassilis and Wood [115] extend [66] by

considering ontology-based query relaxation over CRPQs.

We then proceeded to review current work on query approximation. One query

approximation approach, complementary to our research, considered the application

of customised similarity functions in an extension to SPARQL [77].

The work in [95] presents two approaches on query approximation for graph

data: the replacement of edge labels using extracted information from an external

linguistic source, and the establishment of the degree of relationship between two

2.6. DISCUSSION 43

nodes. By contrast, our approach requires no prior establishment of the degree

of relationship (semantic or otherwise) between two nodes as this information is

obtained automatically from the accompanying ontology, and our model additionally

allows for the matching of paths with regular expressions.

Another query approximation approach for graph data considers a framework

based on an automatically learnt ranking model, providing a set of transformation

functions which may be applied to nodes and edges, as well as attributes thereof,

within property graphs [138]. Two approaches to query approximation for XML

data were discussed [15, 72], whose ideas are either captured or subsumed by our

approach.

Work on subgraph matching was reviewed, and two main strands arose from

this: general approximate subgraph matching using heuristics or edge edit distance,

and user-defined ranking being applied to queries on hyperlinked data. This work

is complementary to ours in that the techniques proposed could potentially be used

to optimise the performance of flexible CRPQ evaluation.

In contrast to all the research described in this chapter, [115] builds on earlier

work [66, 67] to propose a single framework encompassing both query relaxation and

query approximation for queries comprising conjunctions of regular path expressions,

as well as the ranking of results. This thesis extends that work by allowing each edit

and relaxation operation to have a different associated cost (rather than assigning

the same cost to a group of operations); modifying both the constructs and algo-

rithms required for query evaluation; providing the algorithms in full; presenting

formal proofs of the correctness and complexity of the constructs and algorithms;

describing the physical implementation of the algorithms, presenting a performance

analysis and discussing optimisations; and, finally, presenting an additional operator

combining both query approximation and query relaxation into a single operator,

along with formal proofs of correctness and complexity of the constructs used.

In the next chapter, we provide the necessary background to our research, intro-

ducing the graph-based data model, the query language, and query approximation

and relaxation, building upon and extending concepts from [115].

CHAPTER 3

Theoretical Preliminaries

We begin this chapter by introducing in Section 3.1 the graph-based data model

adopted in this thesis, which comprises a data graph and an ontology graph. This is

followed in Section 3.2 by the definition of the query language, which supports con-

junctive regular path queries (CRPQs). We illustrate approximation and relaxation

of query conjuncts by means of two examples.

In Section 3.3, we give a formal definition of CRPQs and discuss exact matching

of single-conjunct RPQs, providing more detailed definitions of concepts introduced

in [115].

Query approximation is discussed in Section 3.4, and we build on the work

in [115] by allowing each type of edit operation to have a different associated cost

(rather than assigning the same cost to all edit operation types), modifying the con-

struction of the elements required to evaluate approximated queries, and providing

full algorithms.

In Section 3.5 we discuss relaxation of single-conjunct RPQs based on informa-

tion from an ontology, showing how answers for a conjunct to which the RELAX

operator has been applied can be computed. This, too, builds on the work in [115],

but, as for query approximation, considers each type of relaxation operation to have

a different associated cost.

44

3.1. THE DATA MODEL 45

For both query approximation and query relaxation, we show how approximated

or relaxed answers can be returned to the user incrementally.

In Section 3.6, we discuss the evaluation of multi-conjunct CRPQs, each of whose

conjuncts may have APPROX or RELAX applied to them. Finally, in Section 3.7,

we summarise the main elements discussed in this chapter.

3.1 The data model

In this thesis we consider a general graph-structured data model comprising a di-

rected graph G = (VG, EG,Σ) and a separate ontology K = (VK , EK). The set VG

contains nodes, each representing either an entity instance or an entity class, which

we term entity nodes and class nodes, respectively. The set EG ⊆ VG×(Σ∪type)×VG
represents relationships between the members of VG. If e = (x, l, y) ∈ EG, then l is

called the label of edge e. Node x is the source of e, while y is its target. We assume

that the alphabet Σ is finite and that type /∈ Σ.

The set VK contains nodes, each representing either an entity class or a property;

in other words, VK is the disjoint union of two subsets VClass and VProp, the subset

of class nodes and the subset of property nodes, respectively.

The edges in EK capture subclass relationships between class nodes, subproperty

relationships between property nodes, and domain and range relationships between

property nodes and class nodes. Hence, EK ⊆ VK × {sc, sp, dom, range} × VK . We

assume that Σ∩{type, sc, sp, dom, range} = VProp∩{type, sc, sp, dom, range} = ∅,
and the set of class nodes of VG are contained in VClass.

Our graph model comprises a strict subset of the RDFS vocabulary: rdf:type,

rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range, which we ab-

breviate in this thesis by the symbols type, sc, sp, dom, range, respectively. We

observe that this general graph model encompasses RDF data, except that it does

not allow for the representation of RDF’s ‘blank’ nodes (which are indeed discour-

aged by some authors for linked data [58]), nor for containers and reification. These

and other aspects of RDF are beyond the scope of this thesis and we leave their

consideration as future work.

Example 3.1. (Drawn from [114]). We now present a data graph G and an

3.1. THE DATA MODEL 46

Lit F1 Lit P1 E1 N1

FL56 f1 1234 p1 e1 n1

type type type type type type

fn1 ppn1 pn1 ie1 n1

f2 6789 p2 n2

fn2
ppn1

pn2 n2

F2 Lit P2 N2

type type type type

Figure 3.1: Example data graph G showing flight insurance data.

ontology K which we will henceforth use in examples in the rest of this chap-

ter. Suppose two flight insurance companies agree to share some of their data

— which is heterogeneous — under a common ontology. Figure 3.1 shows part of

the merged data graph G that might arise, where F denotes Flight, P denotes

Person, E denotes Employee and N denotes NationalInsuranceNumber (which

is used in the administration of the UK National Social Security system). For

simplicity here, we assume that common concepts have the same name in both

the datasets and that the subscripts on the node and edge labels indicate the

dataset from which each was derived (dataset 1 or dataset 2). F1 and F2 are

classes, representing the Flight class in each of the datasets. Similarly, P1 and

P2 represent the Person class; E1 represents the Employee class — which is present

only in dataset 1; and N1 and N2 represent the class NationalInsuranceNumber.

Of the various edge labels in Figure 3.1, fn denotes flightNumber, ppn denotes

passengerPassportNumber, pn denotes passportNumber, ie denotes isEmployee

and n denotes hasNationalInsuranceNumber. We see from Figure 3.1 that there is

some overlap in the datasets, through the literals ‘FL56’ and ‘6789’ (‘Lit’ denotes a

‘Literal’). The first of these literals is a flight number while the second is a passport

number.

3.2. THE QUERY LANGUAGE 47

F P N

F1 P1 E1 N1

fn1 ppn1 pn1 ie1 n1

Lit F2 Lit P2 N2

fn2 pn2 n2

fn pn

sc

sc

sc sc

sc

sc

sp

sp sp

sp

d
d d

d
d

d

d d

r
r

r

r

r
r

rr

Figure 3.2: Example ontology K from the flight insurance domain.

The ontology K is given in Figure 3.2, which shows additional classes, proper-

ties, and relationships between them, that serve to integrate semantically the two

datasets. In this figure, d denotes dom, r denotes range, with all other symbols

having the same denotations as those given for Figure 3.1.

3.2 The query language

Our query language is that of conjunctive regular path queries (CRPQs) [17]. A

CRPQ over a graph G is of the form:

(Z1, . . . , Zm)← (X1, R1, Y1), . . . , (Xn, Rn, Yn) (3.1)

where each Xi and Yi, 1 ≤ i ≤ n, is a variable or constant, each Zi, 1 ≤ i ≤ m, is

a variable appearing in the body of the query, and each Ri, 1 ≤ i ≤ n, is a regular

expression over the alphabet of edge labels. We define regular expressions as used

in this thesis in Section 3.3.

3.2. THE QUERY LANGUAGE 48

Given a CRPQ Q and graph G, let θ be a mapping from {X1, . . . , Xn, Y1, . . . , Yn}
to VG such that (i) each constant is mapped to itself, and (ii) for each conjunct

(Xi, Ri, Yi), 1 ≤ i ≤ n, there is a path from θ(Xi) to θ(Yi) in G whose sequence of

edge labels is in the language denoted by Ri. Let Θ be the set of such mappings.

Then the (exact) answer of Q on G is {θ(Z1, . . . , Zm) | θ ∈ Θ}.
Let G = (VG, EG,Σ) be a graph as defined in Section 3.1. We support the notion

of a semipath [17] by allowing each edge e = (x, l, y) ∈ EG to be traversed both from

its source x to its target y and from its target y to its source x. In order to specify

the traversal from target to source, it is useful to define the inverse of an edge label

l, denoted by l−. Let Σ− = {l− | l ∈ Σ}. If l ∈ Σ ∪ Σ− ∪ {type, type−}, we use l−

to mean the inverse of l, that is, if l is a for some a ∈ Σ ∪ {type}, then l− is a−,

while if l is a− for some a ∈ Σ ∪ {type}, then l− is a.

We note that our language is orthogonal to SPARQL 1.0, and is subsumed by

SPARQL 1.1.

Example 3.2. (Drawn from [114]). Referring again to Figures 3.1 and 3.2, a user

familiar with the first dataset may pose the following CRPQ, Q1, in an attempt to

find the passport numbers of passengers on flight number ‘FL56’:

Y ← (‘FL56’, fn1, Y), (Y, pn−1 .type, P1)

This query however returns no answers because of errors in the first conjunct

(‘FL56’, fn1, Y). The edge label ought to be fn−1 instead of fn1, indicating an

incoming, rather than an outgoing, relationship from the node denoting the flight

number to the adjacent node. Moreover, the edge label ppn1 is missing. Using the

query approximation techniques that we explore in this thesis, the user may pose

instead the following query, Q2, which allows the first conjunct to be approximated

by including the operator APPROX:

Y ← APPROX(‘FL56’, fn1, Y), (Y, pn−1 .type, P1)

By replacing fn1 by fn−1 and inserting ppn1 after fn−1 , the result ‘1234’ can now be

returned (at a cost of 2α, say, assuming a cost α for each of the edit operations).

3.3. SINGLE-CONJUNCT QUERIES 49

Example 3.3. (Drawn from [114]). Continuing with the query in the previous

example, suppose the user now poses the following query, Q3, which allows the

first conjunct to be approximated and the second conjunct to be relaxed, using the

operator RELAX that we explore in this thesis:

Y ← APPROX(‘FL56’, fn1, Y), RELAX(Y, pn−1 .type, P1)

By relaxing property pn1 to its superproperty pn and class P1 to its superclass P —

there is a ‘subproperty’ edge between pn1 and pn, and a ‘subclass’ edge between P1

and P in Figure 3.2 — at a cost of 2β, say, assuming a cost β for each relaxation

operation, an additional relevant result ‘6789’ is returned at an overall cost of 2(α+

β).

3.3 Single-conjunct queries

Definition 3.1. A single-conjunct regular path query Q over a graphG = (VG, EG,Σ)

has the form:

vars← (X,R, Y) (3.2)

where X and Y are constants or variables, R is a regular expression over Σ ∪Σ− ∪
{type, type−} (see Definition 3.2 below), and vars is the subset of {X, Y } that are

variables. If X or Y is a constant, then that constant must appear in VG if Q is to

return a non-empty answer on G (see Definition 3.3 below).

Definition 3.2. A regular expression R over Σ ∪ Σ− ∪ {type, type−} is defined as

follows:

R := ε | a | a− | | (R1 ·R2) | (R1|R2) | R∗ | R+

where ε is the empty sequence, a is any label in Σ ∪ {type} and “ ” denotes the

disjunction of all constants in Σ ∪ {type}. “(R1 ·R2)” denotes that R1 is concate-

nated with R2, “(R1|R2)” denotes the occurrence of either R1 or R2, “R∗” denotes

zero or more occurrences of R and “R+” denotes at least one occurrence of R.

3.3. SINGLE-CONJUNCT QUERIES 50

Definition 3.3. A semipath [17] p in G = (VG, EG,Σ) from x ∈ VG to y ∈ VG is a

sequence (v1, l1, v2, l2, v3, . . . , vn, ln, vn+1), where n ≥ 0, v1 = x, vn+1 = y and for each

vi, li, vi+1 either (vi, li, vi+1) ∈ EG or (vi+1, l
−
i , vi) ∈ EG. A semipath p conforms to

a regular expression R if the sequence of labels l1 · · · ln is in the language recognised

by R, L(R).

Given a single-conjunct regular path query Q and graph G, let θ be a mapping

from {X, Y } to VG that maps each constant to itself. We term a mapping such as

θ a (Q,G)-matching. A tuple θ(vars) satisfies Q on G if there is a semipath in G

from θ(X) to θ(Y) which conforms to R. The exact answer of Q on G is the set of

tuples which satisfy Q on G.

The following result on the complexity of exact query answering follows from

Lemma 1 in [100].

Proposition 3.1. Given single-conjunct regular path query Q and graph G, the

exact answer of Q on G can be found in time which is polynomial in the size of Q

and G.

We now define the triple form of both a semipath in a graph and a sequence of

labels in L(R). The definition uses the notion of a triple pattern, which is a triple

each of whose components may be either a constant or a variable. We use triple

forms as a uniform syntax to which we can apply approximation and relaxation.

Definition 3.4. Let p be a semipath (v1, l1, v2, l2, v3, . . . , vn, ln, vn+1), n ≥ 1, in G.

A triple form of p is a sequence of triple patterns

(v1, l1,W1), (W1, l2,W2), . . . , (Wn−1, ln, vn+1)

where W1, . . . ,Wn−1 are distinct variables. If p is of length zero, i.e. n = 0, then we

define p to be (v, ε, v) and hence the only triple form of p is (v, ε, v).

Definition 3.5. Given a query Q with single conjunct (X,R, Y), let q = l1l2 · · · ln,

n ≥ 1, be a sequence of labels in L(R). A triple form of (Q, q) is a sequence of triple

3.3. SINGLE-CONJUNCT QUERIES 51

patterns

(X, l1,W1), (W1, l2,W2), . . . , (Wn−1, ln, Y)

where W1, . . . ,Wn−1 are distinct variables not appearing in Q. If q = ε, then the

triple form of (Q, q) is (X, ε, Y).

Definition 3.6. Let T be a sequence of triple patterns

(W0, l1,W1), (W1, l2,W2), . . . , (Wn−1, ln,Wn)

such that n ≥ 1, W1, . . . ,Wn−1 are variables, and W0 and Wn are variables or

constants. Any triple pattern (Wi−1, li,Wi) in which li ∈ Σ− ∪ {type−} is said to

be inverted; otherwise the triple pattern is non-inverted. The normalised form of an

inverted triple pattern (Wi−1, li,Wi) is (Wi, l
−
i ,Wi−1), while the normalised form of

a non-inverted triple pattern is the triple pattern itself. The normalised form of T

comprises the normalised form of each triple pattern in T .

Example 3.4. (Drawn from [114]). Assume we have G as described in Example 3.1

and shown in Figure 3.1, and a query Q comprising the single conjunct (‘FL56’, fn−1 ·
ppn1, X), where ‘FL56’ is a constant, X and W1 are distinct variables, and q =

fn−1 · ppn1. The following is a triple form of (Q, q):

(‘FL56’, fn−1 ,W1), (W1, ppn1, X)

and its normalised form is:

(W1, fn1, ‘FL56’), (W1, ppn1, X)

3.4. QUERY APPROXIMATION 52

3.4 Query approximation

In Section 3.4.1, we provide formal definitions for approximate matching of single-

conjunct queries as performed by the APPROX operator. In Section 3.4.2 we de-

scribe how approximate answers can be returned to the user incrementally.

3.4.1 Approximate matching of single-conjunct queries

Approximate matching of a single-conjunct query Q against a graph G is achieved

by applying edit operations to a sequence of labels in L(R), where R is the regular

expression used in Q. Let q be a sequence of labels in L(R) and l be an arbitrary

label in Σ ∪ Σ− ∪ {type, type−}.
An edit operation on q is one of the following:

(i) the insertion of label l into q,

(ii) the deletion of label l from q,

(iii) the substitution of some label other than l by l in q,

Each edit operation has a cost, which is a positive integer ci, cd, cs, respectively;

the costs may be different for different edit operations. We assume throughout that

the cost of substitution is less than the combined cost of insertion and deletion

(otherwise the substitution operation would be redundant, as it would be no more

costly to achieve such an edit through an insertion and a deletion operation).

In [67], two additional edit operations were defined: (i) the inversion of a label

in q and (ii) the transposition of a pair of adjacent labels in q. We note that both

these operations can be subsumed semantically by the edit operations given above;

inversion is subsumed by substitution in which some label l ∈ Σ is replaced by l−,

and transposition is achieved by either applying substitution to the pair of labels to

be transposed or by a combination of insertion and deletion of labels.

Definition 3.7. The application of an edit operation to a sequence of triple patterns

T of the form

(X, l1,W1), (W1, l2,W2), . . . , (Wn−1, ln, Y),

where n ≥ 1, X and Y are variables or constants, and W1, . . . ,Wn−1 are distinct

new variables, is defined as follows:

3.4. QUERY APPROXIMATION 53

The result of a substitution on T is a sequence of triple patterns

(X, l′1,W1), (W1, l
′
2,W2), . . . , (Wn−1, l

′
n, Y)

such that there must be some 1 ≤ j ≤ n where lj 6= l′j (l′j has been substituted for

lj) and li = l′i, for each i 6= j, 1 ≤ i ≤ n.

The result of an insertion into T is a sequence of triple patterns

(X, l′1,W1), (W1, l
′
2,W2), . . . , (Wn, l

′
n+1, Y)

such that there is a 1 ≤ j ≤ n + 1 for which li = l′i, for each 1 ≤ i ≤ j − 1, and

li = l′i+1, for each j + 1 ≤ i ≤ n (l′j is the inserted label).

If n > 1, the result of a deletion from T is a sequence of triple patterns

(X, l′1,W1), (W1, l
′
2,W2), . . . , (Wn−2, l

′
n−1, Y)

such that there is a 1 ≤ j ≤ n for which li = l′i, for each 1 ≤ i ≤ j− 1, and li+1 = l′i,

for each j ≤ i ≤ n − 1 (lj is the deleted label). If n = 1, the result of a deletion

from T is (X, ε, Y) (where l1 is the deleted label).

If T is of the form (X, ε, Y), then only the insertion operation applies, the result

of which is (X, l′, Y), where l′ is the inserted label.

Definition 3.8. Given graph G, semipath p in G, query Q with single conjunct

(X,R, Y), (Q,G)-matching θ, sequence of labels q ∈ L(R), triple form Tq for

(θ(Q), q), and triple form Tp for p:

• we write Tq �A Tp, if Tq can be transformed to Tp (up to variable renaming)

by a sequence of edit operations. The cost of the sequence of edit operations

on Tq is the sum of the costs of each operation;

• the approximation distance from p to (θ(Q), q) is the minimum cost of any

sequence of edit operations which yields Tp from Tq. The cost of the empty

sequence of edit operations (so Tq is already a triple form of p) is zero. If Tq

cannot be transformed to Tp, then the approximation distance is infinity;

3.4. QUERY APPROXIMATION 54

• the approximation distance from p to θ(Q) is the minimum approximation

distance from p to (θ(Q), q) for any sequence of labels q ∈ L(R);

• the approximation distance of θ(Q), denoted adist(θ,Q), is the minimum ap-

proximation distance to θ(Q) from any semipath p in G;

• the approximate answer of Q on G, denoted QA(G), is a list of pairs (θ(vars),

adist(θ,Q)), where θ is a (Q,G)-matching, ranked in order of non-decreasing

approximation distance;

• the approximate top-k answer of Q on G is a list containing the first k tuples

in QA(G).

In principle, we note that the edit operations could be applied ad infinitum.

However, the semantics defined mean that answers at a minimum cost will be re-

turned.

Example 3.5. Consider the data graph G as described in Example 3.1 and shown

in Figure 3.1, and an approximated query Q:

X ← APPROX(‘FL56’, fn1 · pn−1 , X)

where ‘FL56’ is a constant and X is a variable. A normalised triple form T of (Q, q),

where q = fn1 · pn−1 , is:

(‘FL56’, fn1,W1), (X, pn1,W1)

The result of substituting fn1 by fn−1 is the normalised triple form T ′:

(W1, fn1, ‘FL56’), (X, pn1,W1)

The result of inserting ppn1 between fn−1 and pn−1 is the normalised triple form T ′′:

(W1, fn1, ‘FL56’), (W1, ppn1,W2), (X, pn1,W2)

3.4. QUERY APPROXIMATION 55

Thus, the answer ‘p1’ would be returned at a cost of cs + ci, where cs and ci are the

costs of the substitution and insertion operations, respectively.

We now describe how QA(G) can be computed in time polynomial in the size

of Q and G. A similar process was described in [67], but that paper included only

sketch proofs of the theoretical results. Broadly, the steps are as follows: (1) con-

struct a weighted query automaton MQ recognising the language denoted by R using

Thompson’s construction (which makes use of ε-transitions) [2], (2) construct an ap-

proximate automaton AQ, (3) construct the product automaton H of AQ and G, and

(4) perform shortest path traversals of H in order to find the approximate answer

of Q on G. Each of the terms introduced above are defined next.

Definition 3.9. A weighted non-deterministic finite state automaton (NFA) M is

a tuple (S,A, δ, S0, Sf , ξ), where: S is a set of states; A is an alphabet of labels;

δ ⊆ S×A×N×S is the transition relation; S0 ⊆ S is the set of start states; Sf ⊆ S

is the set of final states; and ξ is a final weight function mapping each state in Sf to

a non-negative integer [32]. Given a transition (s, a, c, t) ∈ δ, we sometimes say that

the transition is from s to t and call a the label and c the cost of the transition.

We call a sequence of transitions from an initial to a final state of M a run.

Given a sequence of labels p, a run for p is a sequence of transitions of the form

(s1, a1, w1, s2), . . . , (sn−1, an−1, wn−1, sn), where s1 is an initial state, sn is a final

state, and p = a1 · · · an−1. The cost of the run is w1 + · · · + wn−1 + ξ(sn). We

sometimes say that the run is from s1 to sn.

Definition 3.10. Let R be a regular expression defined over alphabet Σ ∪ Σ− ∪
{type, type−}. A weighted non-deterministic finite state automaton (NFA) MR

recognising L(R) can be constructed in the same way as a normal NFA recognising

L(R), except that each transition and each final state has a zero weight associated

with it. Formally, MR = (S,Σ∪Σ− ∪{type, type−}, δ, {s0}, {sf}, ξ), where there is

only one initial state s0 and one final state sf , and ξ maps sf to zero.

Let Q be a single-conjunct query with conjunct (X,R, Y). The query automaton

MQ for Q is the same as MR but with annotations on the initial and final states. In

particular, if X (or, respectively, Y) in Q is a constant c, then s0 (sf) is annotated

3.4. QUERY APPROXIMATION 56

with c; otherwise s0 (sf) is annotated with the wildcard symbol ∗ which matches

any constant.

Definition 3.11. Let Q be a single-conjunct query with conjunct (X,R, Y), and

MR = (S,Σ ∪ Σ− ∪ {type, type−}, δ, {s0}, {sf}, ξ) be the weighted NFA for R. We

construct the approximate automaton AQ for Q by first constructing an approximate

automaton AR from MR. The approximate automaton AR is constructed in a number

of steps:

• First the automaton A1
R with deletions is constructed from MR. Automaton

A1
R is the same as MR except that the set of transitions δ′ includes all those in

δ along with the set {(s, ε, cd, t) | (s, a, 0, t) ∈ δ ∧ s 6= t}, where cd is the cost

of deletion.

• Next an automaton A2
R without ε-transitions is constructed from A1

R, using

the method of [32]. Briefly, this method first computes the ε-closure of A1
R,

which is the set of pairs of states connected by a sequence of ε-transitions

along with the minimum summed weight for each such pair. Then A2
R =

(S,Σ∪Σ−∪{type, type−}, δ′′, {s0}, S, ξ′), where the transitions in δ′′ comprise

the non-epsilon transitions in δ′ along with each transition (s, b, w, u) such that

pair (s, t) with weight w is in the ε-closure and transition (t, b, 0, u) ∈ δ′ (b 6= ε).

Because every transition in δ′ of automaton A1
R between two distinct states

has an associated ε-transition, all states will be final. The final state function

ξ′ is defined as follows. For final state sf , ξ
′(sf) = ξ(sf) = 0. For each state

s 6= sf , ξ
′(s) is the minimum weight of the pairs (s, sf) in the ε-closure.

• Thirdly, an automaton A3
R with substitutions is constructed from A2

R. Au-

tomaton A3
R is the same as A2

R except that the transitions of A3
R comprise

those of A2
R along with transitions of the form (s, b, w + cs, t), where cs is the

cost of substitution, for each transition (s, a, w, t) ∈ δ′′, such that s 6= t, and

label b ∈ Σ ∪ Σ− ∪ {type, type−} (b 6= a).

• Finally, the approximate automaton AR is constructed from A3
R by including

insertions. Automaton AR is the same as A3
R except that the transitions of AR

3.4. QUERY APPROXIMATION 57

s0 s1 sf
fn1, 0 pn−1 , 0FL56 ∗, 0

Figure 3.3: Query automaton MQ for conjunct (‘FL56’, fn1 · pn−1 , X).

s0 s1 sf
fn1, 0 pn−1 , 0

fn−1 , cs ppn1, ci

FL56 ∗, 0

Figure 3.4: Fragment of approximate automaton AQ for conjunct (‘FL56’, fn1 ·
pn−1 , X).

comprise those of A3
R along with transitions of the form (s, a, ci, s), where ci is

the cost of insertion, for each state s ∈ S and label a ∈ Σ∪Σ−∪{type, type−}.

The approximate automaton AQ for Q is formed from AR by annotating the

initial and final states in AR with the annotations from the initial and final states,

respectively, in MQ.

Example 3.6. (Drawn from [114]). Consider once again the data graph G shown

in Figure 3.1, and the following approximated query Q:

X ← APPROX(‘FL56’, fn1 · pn−1 , X)

The query automaton MQ for Q is shown in Figure 3.3. We see that MQ is

comprised of two transitions, each labelled with a cost of zero; the initial state, s0,

is annotated with the constant ‘FL56’; and the final state, sf , is annotated with the

wildcard symbol ∗, and has a weight of zero.

A fragment of the approximate automaton AQ for Q is shown in Figure 3.4. Two

transitions — represented by the dashed lines — appear in AQ but not in MQ. The

transition (s0, fn
−
1 , cs, s1) indicates that the label fn1 has been substituted by fn−1 ,

and the transition (s1, ppn1, ci, s1) indicates that the label ppn1 has been inserted

before pn−1 ; cs and ci denote the cost of these edit operations, respectively.

3.4. QUERY APPROXIMATION 58

In Chapter 4, Lemma 4.1 shows that using automaton AR is sufficient to find

all sequences of labels generated by edit operations at an arbitrary approximation

distance from a given query.

Definition 3.12. Let AQ = (S,Σ∪Σ− ∪{type, type−}, δ, {s0}, S, ξ) be an approx-

imate automaton and G = (VG, EG,Σ) a graph. We can view G as an automaton

with set of states VG, alphabet Σ, set of initial states VG, and set of final states VG.

There is a transition from state s to state t labelled a in the automaton if and only if

there is an edge (s, a, t) ∈ EG. We can then form the product automaton, H, of AQ

and G. Formally, H is the weighted automaton (T,Σ∪Σ−∪{type, type−}, σ, I, T, ξ),
where I ⊆ T is a set of initial states and all states in T are final. The set of states T

is given by {(s, n) | s ∈ S ∧ n ∈ VG}. The set of transitions σ consists of transitions

of the form

• ((s, n), a, c, (s′, n′)) if (s, a, c, s′) ∈ δ and (n, a, n′) ∈ EG,

• ((s, n), a−, c, (s′, n′)) if (s, a−, c, s′) ∈ δ and (n′, a, n) ∈ EG.

The set of initial states I is given by {(s0, n) | n ∈ VG}. We overload the use of ξ as

the final weight function, carrying over the weights from final states in AQ to those

in H. The annotations on initial and final states in H are also carried over from the

corresponding initial and final states in AQ.

H can be viewed either as an automaton or as a graph, whichever is appropriate

in a given context. When H is viewed as an automaton, we will use the terms states,

transitions and runs; when viewed as a graph, we will use the terms nodes, edges

and paths.

We can now define how QA(G), the approximate answer of Q on G, can be

computed:

(i) We construct the weighted NFA MR from R, using Thompson’s construc-

tion [2], and then the query automaton MQ from MR.

(ii) We construct the approximate automaton AQ from MQ.

(iii) We form the product automaton, H, of AQ with G.

3.4. QUERY APPROXIMATION 59

s0,FL56 s1, f1 s1, 1234 sf , p1
fn−1 , cs ppn1, ci pn−1 , 0

Figure 3.5: A subautomaton of the product automaton H of AQ and G.

(iv) Let the conjunct of Q be (X,R, Y). Assume first that X is a constant u.

Assume also that u ∈ VG, for otherwise QA(G) is empty. We perform a shortest

path traversal of H starting from the initial state (s0, u), incrementing the total

cost of the path by the cost of each transition. Whenever we reach a final state

(sf , v) in H we output v, provided v matches the annotation on (sf , v), along

with the cost of the path. Recall that if Y is a constant the annotation on sf

will be that constant, and if Y is a variable the annotation will be the wildcard

symbol ∗. Node v matches the annotation if and only if the annotation is v

or ∗. Now assume X is a variable. In this case, we perform a shortest path

traversal of H, outputting nodes as above, starting from state (s0, u) for each

node u ∈ VG.

Example 3.7. Consider once again the data graph G shown in Figure 3.1, the

approximated query Q and the approximate automaton AQ from Example 3.6:

X ← APPROX(‘FL56’, fn1 · pn−1 , X)

A subautomaton of the product automaton H of AQ (shown in Figure 3.4) and

G is shown in Figure 3.5.

For a matching θ that maps X to ‘p1’, it is easy to see that there is one run in

H from the initial state (s0,FL56) to the final state (sf , p1), with a cost of cs + ci.

Hence the approximation distance of the answer ‘p1’ is cs + ci.

In Chapter 4, Lemma 4.2 shows that if there is a semipath from v0 to vn in G, the

cost of a traversal from (s0, v0) to (sf , vn) in the product automaton H corresponds

to the cost of a run from s0 to sf in AQ. Lemma 4.3 shows that the approximation

distance from a semipath in a graph G to the matchings for a single-conjunct query

Q is equal to the minimum cost of a corresponding run in H.

3.4. QUERY APPROXIMATION 60

3.4.2 Incremental evaluation of APPROX conjuncts

The evaluation of APPROX single-conjunct queries can be accomplished ‘on-demand’

by incrementally constructing the edges of H as required, thus avoiding precompu-

tation and materialisation of the entire product automaton H. This is performed

by calling a function Succ with a node (s, n) of H. The function returns a set of

transitions
d→ (p,m), such that there is an edge in H from (s, n) to (p,m) with cost

d.

We list function Succ below, where the function NextStates(AQ, s, a) returns

the set of states in AQ that can be reached from state s on reading input a, along

with the cost of reaching each (the function NextStates is defined in Section 6.6.2).

Function Succ(s, n,AQ, G)

Input: state s of AQ and node n of G
Output: set of transitions which are successors of (s, n) in H

(1) W ← ∅
(2) for (n, a,m) ∈ EG and (p, d) ∈ NextStates(AQ, s, a) do

(3) add the transition
d→ (p,m) to W

(4) return W

Lemma 3.1. The transition
d→ (p,m) is returned by Succ(s, n,AQ, G) iff (s, n)

a,d→
(p,m) is in H = AQ ×G for some a ∈ (Σ ∪ Σ− ∪ {type ∪ type−}).

Proof. By the definition of Succ, the transition
d→ (p,m) is added to W if and only

if a ∈ (Σ∪Σ−∪{type∪type−}), (n, a,m) ∈ EG and (p, d) ∈ NextStates(AQ, s, a).

By the definition of H, the presence of an edge labelled a from n to m in G and of

a transition labelled a from s to p in AQ results in an edge (s, n)
a,d→ (p,m) in H.

For incremental evaluation, a global set visitedR is maintained, storing tuples of

the form (v, n, s), representing the fact that node n of G was visited in state s of AQ

having started the traversal from node v. Also maintained is a global priority queue

queueR containing tuples of the form (v, n, s, d, f), ordered by increasing values of

d, where d is the approximation distance associated with visiting node n in state

s having started from node v, and f is a flag denoting whether the tuple is final

3.4. QUERY APPROXIMATION 61

or non-final, with the latter being the initial value for f . A ‘final’ tuple is one

corresponding to a completed run in the product automaton H and thus will, when

dequeued, be an answer, whereas a ‘non-final’ tuple is still in the process of being

evaluated.

Recalling that Q has the form (X,R, Y), we begin by enqueueing the initial tuple

(v, v, s0, 0, f), if X is some node v, or enqueueing a set of initial tuples otherwise, one

for each node v of G. We maintain a global list answersR containing tuples of the

form (v, n, d), where d is the smallest approximation distance of this answer tuple

to Q and ordered by non-decreasing value of d. This list is used to avoid returning

as an answer (v, n, d′) for any d′ ≥ d. It is initialised to the empty list.

We then call function GetNext shown below to return the next query answer, in

order of non-decreasing approximation distance from Q. We see that GetNext re-

peatedly dequeues the first tuple of queueR, (v, n, s, d, f), adding (v, n, s) to visitedR

if the tuple is not final, until queueR is empty.

After dequeueing a tuple (v, n, s, d, f), we check to see whether the tuple is a final

one; if not, we enqueue (v,m, s′, d+ d′, f) for each transition
d′→ (s′,m) returned by

Succ(s, n,AQ, G) such that (v,m, s′) 6∈ visitedR. If s is a final state, its annotation

matches n, and the answer (v, n, d′) has not been generated before for some d′, then

we add the final weight function for s to d, mark the tuple as final, and enqueue the

tuple.

On the other hand, if a dequeued tuple is a final one and the answer (v, n, d′)

has not been generated before for some d′, the triple (v, n, d) is returned after being

added to answersR.

We note that the maximum size of each of visitedR and queueR is 2|R||VG|2,

and that the size of answersR will never exceed |VG|2. For queueR this result follows

from the fact that, as in Dijkstra’s shortest path algorithm, we assume that, for each

combination of nodes v and n and state s, at most one tuple (v, n, s, d, f) is enqueued

by using the priority queue’s ‘decrease key’ operation.

Theorem 4.1 in Chapter 4 shows that our incremental evaluation algorithm,

GetNext, is correct: that is, given a single-conjunct query Q and a graph G, it

returns the approximate answer of Q on G.

3.5. QUERY RELAXATION 62

Function GetNext(X,R, Y,AQ, G)

Input: query conjunct (X,R, Y)
Output: triple (v, n, d), where v and n are instantiations of X and Y

(1) while nonempty(queueR) do
(2) (v, n, s, d, f)← dequeue(queueR)
(3) if f 6= ‘final’ then
(4) add (v, n, s) to visitedR

(5) foreach
d′→ (s′,m) ∈ Succ(s, n,AQ, G) s.t. (v,m, s′) 6∈ visitedR do

(6) enqueue(queueR, (v,m, s
′, d+ d′, f))

(7) if s is a final state sf and its annotation matches n and
6 ∃d′.(v, n, d′) ∈ answersR then

(8) enqueue(queueR, (v, n, s, d+ ξ[s],‘final’))

(9) else
(10) if 6 ∃d′.(v, n, d′) ∈ answersR then
(11) append (v, n, d) to answersR
(12) return (v, n, d)

(13) return null

3.5 Query relaxation

In Section 3.5.1, we provide formal definitions for relaxation of single-conjunct

queries based on information from an ontology as performed by the RELAX op-

erator. In Section 3.5.2, we describe how relaxed answers can be returned to the

user incrementally.

3.5.1 Ontology-based relaxation of single-conjunct queries

The work in [66] considered ontology-based relaxation of conjunctive queries in

the setting of the RDF/S data model (but not conjunctive regular path queries)

and showed that query relaxation can be naturally formalised using RDFS en-

tailment. The entailment was characterised by the derivation rules given in Fig-

ure 3.6, grounded in the semantics developed in [52, 56]. The work in [115] extended

ontology-based relaxation to CRPQs, using an automaton-based approach. Here,

we revisit the work of [115], giving full details and formally proving the correct-

ness of the construction and traversal of the product automaton H of the relaxed

3.5. QUERY RELAXATION 63

(Subproperty) (1)
(a, sp, b) (b, sp, c)

(a, sp, c)
(2)

(a, sp, b) (X, a, Y)

(X, b, Y)

(Subclass) (3)
(a, sc, b) (b, sc, c)

(a, sc, c)
(4)

(a, sc, b) (X, type, a)

(X, type, b)

(Typing) (5)
(a, dom, c) (X, a, Y)

(X, type, c)
(6)

(a, range, c) (X, a, Y)

(Y, type, c)

Figure 3.6: RDFS Inference Rules.

automaton and the data graph.

For RDF/S graphs G1 and G2, [66] states that G1 |=rule G2 if G2 can be derived

from G1 by iteratively applying the rules of Figure 3.6. The closure [56] of an RDF/S

graph G under these rules is denoted by cl(G).

In the formalisation of RDF [56], infinite sets I of IRIs and L of RDF literals are

assumed. The elements in I ∪ L are called RDF terms. Given a set of variables V

disjoint from I and L, a triple pattern is a triple (v1, v2, v3) ∈ (I ∪ V) × (I ∪ V) ×
(I ∪ V ∪ L).

As described in Section 3.1, in this thesis we assume that the data graph G and

the ontology K are separate graphs, such that the nodes representing classes in VG

also appear as nodes in VK . We also assume that query evaluation takes place on the

graph given by restricting cl(G∪K) to the nodes of VG ∪ VK and the edges labelled

with labels from Σ∪{type}∪VProp. We call this the closure of the data graph G with

respect to the ontology K and denote it by closureK(G). For example, the closure of

the data graph of Figure 3.1 with respect to the ontology in Figure 3.2 is illustrated

in Figure 3.7, where F denotes Flight, P denotes Person, E denotes Employee,

N denotes NationalInsurancenumber, fn denotes flightNumber, ppn denotes

passengerPassportNumber, pn denotes passportNumber, ie denotes isEmployee

and n denotes nationalInsuranceNumber.

Terminology Note: We use the term ‘closure of the data graph G’ to mean

‘closure of the data graph G with respect to the ontology K’ if the ontology K can

be inferred from the context.

As in [115], we assume that the subgraphs of the ontology K induced by edges

labelled sc and sp are acyclic, and that K is equal to its extended reduction [66].

3.5. QUERY RELAXATION 64

Lit F1 Lit P1 E1 N1

FL56 f1 1234 p1 e1 n1

type type type type type typefn1

fn

ppn1

pn1

pn
ie1 n1

F P N

f2 6789 p2 n2

fn2

fn

ppn1

pn2

pn
n2

F2 Lit P2 N2

type type type

type type type

type type type type

Figure 3.7: Closure of graph G in Figure 3.1 with respect to the ontology K in
Figure 3.2.

These restrictions are necessary for associating an unambiguous cost with queries,

so that query answers can be returned to users in order of increasing cost (see more

details below).

The extended reduction of an ontology K is denoted by extRed(K) and is com-

puted as follows:

(i) compute cl(K);

(ii) apply the rules of Figure 3.8 in reverse until no more rules can be applied

(applying a rule ‘in reverse’ means deleting a triple that can be deduced by

the rule);

(iii) apply rules 1 and 3 of Figure 3.6 in reverse until no more rules can be applied.1

Using the extended reduction allows us to perform what were termed direct

relaxations in [66], which correspond to the “smallest” relaxation steps. This is

1 In order to generate a unique extended reduction, we alter the procedure in [66] as described
in [114]: let D be the set of triples in cl(K) that can be derived using rules (1) or (3) in Figure 3.6,
or rules (e1), (e2), (e3) or (e4) in Figure 3.8; then extRed(K) is given by cl(K) − D. Because
cl(K) is closed with respect to the edge labels sp and sc, and also the subgraphs induced by each
of sp and sc are acyclic, the set D is uniquely defined.

3.5. QUERY RELAXATION 65

(e1)
(b, dom, c) (a, sp, b)

(a, dom, c)
(e2)

(b, range, c) (a, sp, b)

(a, range, c)

(e3)
(a, dom, b) (b, sc, c)

(a, dom, c)
(e4)

(a, range, b) (b, sc, c)

(a, range, c)

Figure 3.8: Additional rules used to compute the extended reduction of an RDFS
ontology.

necessary for associating an unambiguous cost to query answers, so that they can

be returned incrementally in order of increasing relaxation cost. In particular, we

consider the cost of applying rule 2, 4, 5, or 6 of Figure 3.6 to be, respectively, cr2,

cr4, cr5 or cr6, each of which is a positive integer. (Since queries and data graphs

cannot contain sc and sp, rules 1 and 3 are inapplicable to them, although of course

they are used in computing cl(G ∪K).)

The set of variables mentioned in a triple pattern t is denoted by var(t). Let t1

and t2 be normalised triple patterns (see Definition 3.6) such that t1, t2 6∈ cl(G∪K),

and var(t2) = var(t1). Then t1 relaxes to t2, denoted t1 ≤ t2, 2 if ({t1}∪G∪K) |=rule

t2. Note that when applying the rules of Figure 3.6 to triple patterns, rather than

(ground) triples, a, b and c must be instantiated to RDF terms, while X and Y can

be instantiated to either RDF terms or variables.

Given data graph G, ontology K and triple patterns t1 and t2, let G1 and G2 be

the sets of triples in the closure of G that are ‘matched’ by t1 and t2, respectively.

Then it can be shown that t1 ≤ t2 if and only if (G1 ∪K) |=rule G2. From now on

in this section we assume that all triple patterns have been normalised, and likewise

all triple forms of queries and paths.

A graph pattern P is a set of triple patterns. The set of variables mentioned in P

is denoted by var(P). Let P1 and P2 be graph patterns such that var(P2) = var(P1)

and for all t1 ∈ P1 and t2 ∈ P2, t1, t2 6∈ cl(G ∪K). Then P1 relaxes to P2, denoted

P1 ≤ P2, if for all t1 ∈ P1 there is a t2 ∈ P2 such that t1 ≤ t2 and for all t2 ∈ P2 there

is a t1 ∈ P1 such that t1 ≤ t2. The relaxation relation is reflexive and transitive.

2For notational simplicity we assume that the parameters G and K are implicit.

3.5. QUERY RELAXATION 66

Example 3.8. (Drawn from [114]). Consider the ontology K described in Ex-

ample 3.1 and shown in Figure 3.2. Let query Q comprise the single conjunct

(X,R, ‘FL56’), where X is a variable, ‘FL56’ is a constant, and R = (ppn−1 · fn1).

Recall that K contains the triples (fn1, dom, F1) and (F1, sc, F). There is only a

single q ∈ L(R), namely q = ppn−1 fn1. Recalling the definition of a ‘triple form’ in

Section 3.3, consider the following normalised triple form T of (Q, q):

(W1, ppn1, X), (W1, fn1, ‘FL56’)

Notice that a triple form of (Q, q) is a graph pattern. Let P be the following graph

pattern:

(W1, ppn1, X), (W1, type, F)

Then T relaxes to P since (W1, fn1, ‘FL56’) ≤ (W1, type, F1) by rule 5, and (W1, type,

F1) ≤ (W1, type, F) by rule 4.

Note that, because of the requirement that variables be preserved when per-

forming relaxation, rules 4, 5 and 6 can only be applied to the first or last triple

pattern of a triple form of a sequence of labels, and even then only when a constant

is present (as above). So, for example, (ppn1, range, Lit) ∈ K but we cannot apply

rule 6 to the triple pattern (W1, ppn1, X) to relax it to (X, type, Lit) because vari-

able W1 is lost in the process; similarly, we cannot apply rule 5 using (ppn1, dom, F1)

to the triple pattern (W1, ppn1, X) to relax it to (W1, type, F1). We make use of this

restriction in our algorithm for computing relaxed answers in Section 3.5.2 below.

We previously defined the exact semantics of single-conjunct regular path queries

in Section 3.3. We now define the relaxed semantics of such queries.

Definition 3.13. Given a query Q with single conjunct (X,R, Y) and the closure

of a data graph G with respect to an ontology K, closureK(G), let θ be a (Q,G)-

matching. We use the notation θ(Q) to denote (θ(X), R, θ(Y)). A semipath p in

closureK(G) r-conforms to θ(Q) if there is a q ∈ L(R), a triple form Tq of (θ(Q), q)

and a triple form Tp of p such that Tq ≤ Tp.

Note that a path in closureK(G) can r-conform to a query on the basis of a triple

3.5. QUERY RELAXATION 67

pattern t relaxing to a triple pattern t′ such that the constants in t and t′ differ, due

to applications of rules 5 and 6 (for example, the triple patterns (W1, fn1, ‘FL56’)

and (W1, type, F) in the previous example).

Example 3.9. (Drawn from [114].) Consider the query Q3 from Example 3.3, the

graph G of Figure 3.1 and the ontology K of Figure 3.2. Suppose that the second

conjunct is used in a single-conjunct query Q4 as follows:

Y ← RELAX(Y, pn−1 .type, P1)

Using matching θ1 that matches Y to ‘1234’, semipath (‘1234’, pn−1 , p1, type, P1)

r-conforms to θ1(Q4) since it matches the query exactly. Using matching θ2 that

matches Y to ‘6789’, semipath (‘6789’, pn−2 , p2, type, P2) r-conforms to θ2(Q4) be-

cause the normalised triple form (W, pn1, ‘6789’), (W, type, P1) for θ2(Q4) relaxes to

the triple form (W, pn, ‘6789’), (W, type, P) which is a triple form for the semipath

(‘6789’, pn−, p2, type, P) in closureK(G).

We now consider the cost of applying relaxations in order to be able to return

answers ordered by increasing cost. For this we need the notion of direct relax-

ation [66]. The direct relaxation relation, which we denote here by �R, was defined

in [66] to be the reflexive, transitive reduction of the relaxation relation ≤3. The

direct relaxations of a triple pattern t (i.e., the triple patterns t′ such that t �R t′)
are the result of the smallest steps of relaxation (and the indirect relaxations of a

triple pattern t are the triples t′ such that t ≤ t′ and t 6�R t′).
It is shown in [66] that a single application of each of the rules 2, 4, 5, 6 of Fig-

ure 3.6 to a triple pattern t and a triple o ∈ extRed(K) yields precisely the direct

relaxations of t with respect to K. We now extend this to graph patterns:

Given graph patterns P1 and P2, we say that P1 directly relaxes to P2, denoted

P1 �R P2, if P1 = {t1} ∪ P and P2 = {t2} ∪ P , for some (possibly empty) graph

pattern P , and t1 �R t2. The cost of the direct relaxation is the cost of applying

the rule that derives t2 from t1. The cost of a sequence of direct relaxations is the

sum of the costs of each relaxation in the sequence.

3Once again for notational simplicity, we view the parameters G and K as being implicit.

3.5. QUERY RELAXATION 68

Definition 3.14. Given ontology K = extRed(K), graph G = closureK(G), semi-

path p in G, query Q with single conjunct (X,R, Y), sequence of labels q ∈ L(R),

(Q,G)-matching θ, triple form Tq for (θ(Q), q), and triple form Tp for p such that

Tq ≤ Tp:

• the relaxation distance from p to (θ(Q), q) is the minimum cost of any sequence

of direct relaxations which yields Tp from Tq; the cost of the empty sequence

of direct relaxations (so that Tq is already a triple form of p) is zero;

• the relaxation distance from p to θ(Q) is the minimum relaxation distance

from p to (θ(Q), q) for any sequence of labels q ∈ L(R);

• the relaxation distance of θ(Q), denoted rdist(θ,Q), is the minimum relaxation

distance to θ(Q) from any semipath p that r-conforms to θ(Q);

• the relaxed answer of Q on G is a list of pairs (θ(vars), rdist(θ,Q)), such

that there is a semipath in G that r-conforms to θ(Q), ranked in order of

non-decreasing relaxation distance;

• the relaxed top-k answer of Q on G is a list containing the first k tuples in the

relaxed answer of Q on G.

3.5.2 Computing the relaxed answer

We now describe how the relaxed answer can be computed, starting from the

weighted NFA MR that recognises L(R) which was described in Section 3.4.1.

Given a query Q with single conjunct (X,R, Y), a weighted automaton MR =

(S,Σ ∪Σ− ∪ {type, type−}, δ, s0, Sf , ξ) that does not contain ε-transitions, and on-

tology K such that K = extRed(K), we construct as described below the automaton

MK
R = (S ′,Σ∪Σ−∪{type, type−}, τ, S0, S

′
f , ξ
′) of MR with respect to K. The set of

states S ′ includes the states in S as well as any new states defined below. S0 and S ′f

are sets of initial and final states, respectively, with S0 including the initial state s0

of MR, S ′f including all final states Sf of MR, and both possibly including additional

states as defined below. We obtain the relaxed automaton MK
Q by annotating each

3.5. QUERY RELAXATION 69

state in S0 and S ′f either with a constant or with the wildcard symbol ∗, depending

on whether X and Y in Q are constants or variables. We recall that ξ (and initially

ξ′) is the final weight function mapping each state in Sf to a non-negative integer.

The transition relation τ includes the transitions in δ as well as any transitions

specified by the rules defined below. The rules below are applied repeatedly until no

new transitions or states arise. The process terminates because of our assumption

that the subgraphs of K induced by edges labelled sc and sp are acyclic:

• (rule 2) For each transition (s, a, d, t) ∈ τ (respectively (s, a−, d, t) ∈ τ) and

triple (a, sp, b) ∈ K, there is a transition (s, b, d+cr2, t) (resp. (s, b−, d+cr2, t))

in τ .

• (rule 4 (i)) If there is a transition (s, type, d, t) ∈ τ where t ∈ S ′f and

(c, sc, c′) ∈ K such that t is annotated with c, there is a final state t′ an-

notated with c′ in S ′. State t′ has the same set of outgoing transitions as t.

For each transition (s, type, d, t) ∈ τ , there is a transition (s, type, d+ cr4, t
′)

in τ .

• (rule 4 (ii)) If there is a transition (s, type−, d, t) ∈ τ where s ∈ S0 and

(c, sc, c′) ∈ K such that s is annotated with c, there is an initial state s′

annotated with c′ in S ′. State s′ has the same set of incoming transitions as s.

For each transition (s, type−, d, t) ∈ τ , there is a transition (s′, type−, d+cr4, t)

in τ .

• (rule 5) If there is a transition (s, a, d, t) ∈ τ (resp. (s, a−, d, t) ∈ τ) where

t ∈ S ′f (resp. s ∈ S0) and (a, dom, c) ∈ K, there is a final state t′ (resp.

initial state s′) annotated with c in S ′. State t′ has the same set of outgoing

transitions as t (resp. s′ has the same set of incoming transitions as s). For

each transition (s, a, d, t) ∈ τ (resp. (s, a−, d, t) ∈ τ), there is a transition

(s, type, d+ cr5, t
′) (resp. (s′, type−, d+ cr5, t)) in τ .

• (rule 6) If there is a transition (s, a, d, t) ∈ τ (resp. (s, a−, d, t) ∈ τ) where

s ∈ S0 (resp. t ∈ S ′f) and (a, range, c) ∈ K, there is an initial state s′ (resp.

final state t′) annotated with c in S ′. State s′ has the same set of incoming

transitions as s (resp. t′ has the same set of outgoing transitions as t). For

3.5. QUERY RELAXATION 70

s0 s1

sf

s′fpn−, cr2

pn−1 , 0

type, cr4

type, 0

∗

P1

P

Figure 3.9: Relaxed automaton MK
Q for conjunct (Y, pn−1 .type, P1).

each transition (s, a, d, t) ∈ τ (resp. (s, a−, d, t) ∈ τ), there is a transition

(s′, type−, d+ cr6, t) (resp. (s, type, d+ cr6, t
′)) in τ .

We call the initial and final states specified by rules 4, 5 and 6 cloned states.

Example 3.10. (Drawn from [114]). Consider once again the ontology K shown in

Figure 3.2 and the query Q4 from Example 3.9:

Y ← RELAX(Y, pn−1 .type, P1)

The relaxed automaton MK
Q initially comprises the states {s0, s1, sf} and two transi-

tions labelled with cost zero between them, as shown in the lower part of Figure 3.9.

From Figure 3.2, we see that K contains the triples (pn1, sp, pn) and (P1, sc, P).

If we apply the transformation for rule 2 to the transition labelled pn−1 , 0 and the

triple (pn1, sp, pn) ∈ K, then we add the transition labelled pn−, cr2 from s0 to s1.

If we now apply the transformation for rule 4 to the transition labelled type, 0 and

the triple (P1, sc, P) ∈ K, then a new final state s′f , annotated with P is added, as

is the transition labelled type, cr4 from s1 to s′f .

Now consider the closure of the graph G shown in Figure 3.7 with respect to the

ontology K shown in Figure 3.2. A subautomaton of the product automaton H of

MK
Q and closureK(G) is shown in Figure 3.10.

For a matching θ1 that maps Y to ‘1234’, it is easy to see that there are four

runs in H from the initial state (s0, 1234) to a final state, with costs 0, cr2, cr4 and

cr2 + cr4. Hence the relaxation distance of the answer ‘1234’ is 0. For a matching θ2

that maps Y to ‘6789’, there is only one run in H from (s0, 6789) to a final state,

with cost cr2 + cr4, so the relaxation distance of the answer ‘6789’ is cr2 + cr4.

3.6. MULTI-CONJUNCT QUERIES 71

s0, 1234 s1, p1 sf , P1

s′f , Ps0, 6789 s1, p2

pn−, cr2

pn−1 , 0

type, cr4

type, 0

pn−, cr2 type, cr4

Figure 3.10: A subautomaton of the product automaton H.

In Chapter 4, Proposition 4.2 shows firstly the correctness of the construction

and traversal of the product automaton H; and secondly that the relaxation distance

from a semipath in a graph G to the matchings for a single-conjunct query Q is equal

to the minimum cost of a run in H.

3.5.3 Incremental evaluation of RELAX conjuncts

In order to compute the relaxed answers to a single-conjunct regular path query

incrementally, we can use the GetNext function from Section 3.4.2 along with the

same initialisations of the algorithm’s variables. The only difference is that the Succ

function now uses the automaton MK
Q rather than the automaton AQ.

3.6 Multi-conjunct queries

We recall the general form of a CRPQ Q from Section 3.2:

(Z1, . . . , Zm)← (X1, R1, Y1), . . . , (Xn, Rn, Yn)

where any of the conjuncts may have the APPROX or RELAX operator applied to

them. Let θ be a (Q,G)-matching. If conjuncts i1, . . . , ij, j ≤ n, have APPROX or

RELAX applied to them, the distance from θ to Q, dist(θ,Q), is defined as

dist(θ, (Xi1 , Ri1 , Yi1)) + · · ·+ dist(θ, (Xij , Rij , Yij))

3.7. SUMMARY 72

where dist(θ, (Xik , Rik , Yik)) is the approximation distance if conjunct ik has AP-

PROX applied to it and is the relaxation distance if ik has RELAX applied to it.

Let θ(Z1, . . . , Zm) = (a1, . . . , am). θ is a minimum-distance matching if for all

(Q,G)-matchings φ such that φ(Z1, . . . , Zm) = (a1, . . . , am), dist(θ,Q) ≤ dist(φ,Q).

The answer of Q on G is the list of pairs (θ(Z1, . . . , Zm), dist(θ,Q)), for some

minimum-distance matching θ, ranked in order of non-decreasing distance. The

top-k answer of Q on G comprises the first k tuples in the answer of Q on G.

The query Q can be evaluated by joining the answers arising from the evaluation

of each of its conjuncts. For each conjunct with APPROX or RELAX applied to it

we can use the techniques described in previous sections to incrementally compute

a relation ri with scheme (Xi, Yi, Distance). A query evaluation tree can be con-

structed for Q, consisting of nodes denoting join operators and nodes representing

conjuncts of Q. Since the answers for single conjuncts are ordered by non-decreasing

distance, pipelined execution of any rank-join operator (see e.g. [40]) can be used

to output the answers to Q in order of non-decreasing distance. If the conjuncts

of Q are acyclic, the evaluation can be accomplished in polynomial time [45], since

there are a fixed number of head variables in Q and we process leaf nodes (denot-

ing conjuncts) in a bottom-up manner (beginning at the leaf nodes) by executing a

sequence of joins.

3.7 Summary

We began this chapter by introducing the graph-based data model adopted in this

thesis, comprising a data graph and an ontology graph. We continued by presenting

the query language we adopt, based upon conjunctive regular path queries (CRPQs),

providing a formal definition of CRPQs and discussing exact matching of single-

conjunct RPQs.

We provided details of the algorithms for the evaluation of single-conjunct queries,

along with a formal presentation of approximate matching as denoted by the AP-

PROX operator, and we described how approximate answers can be returned to the

user incrementally.

We next discussed the relaxation of single-conjunct RPQs based on information

from an ontology, as well as how answers for a conjunct to which the RELAX

3.7. SUMMARY 73

operator has been applied can be computed. We also described how relaxed answers

can be returned to the user incrementally.

We ended by describing the evaluation of multi-conjunct CRPQs, each of whose

conjuncts may have APPROX or RELAX applied to them.

In the next chapter, we provide full proofs of correctness for the constructs and

algorithms introduced in this chapter.

CHAPTER 4

Correctness and Complexity Results

In this chapter, we consider the correctness and complexity of the constructs and

algorithms introduced in Chapter 3.

Section 4.1 presents proofs regarding the constructs defined in Section 3.4.1. We

establish the correctness of both the construction of the approximate automaton

and the traversal of the product automaton, as well as the fact that the minimum

cost of a run in the product automaton corresponds to the approximation distance

from a semipath in a graph to the matchings for a single-conjunct query. We prove

that the approximate automaton can be constructed in time that is polynomial in

the size of the query, and finally establish that the approximate answer to a single-

conjunct RPQ can be computed in time that is polynomial in the size of the query

and the graph. In Section 4.2 we show the correctness of our incremental evaluation

algorithm introduced in Section 3.4.2.

Section 4.3 contains proofs relating to the constructs defined in Section 3.5.2. We

show the correctness of the construction and traversal of the product automaton,

and also that the relaxation distance from a semipath in a graph to the matchings

for a single-conjunct query is equal to the minimum cost of a run in the product

automaton. We also establish an upper bound for the size of the relaxed automaton,

and prove that the relaxed answer of a single-conjunct query on the closure of a graph

74

4.1. APPROXIMATION OF SINGLE-CONJUNCT QUERIES 75

can be computed in time that is polynomial in the size of the query, the graph and

the ontology. We end the chapter with some concluding remarks in Section 4.4.

For all the complexity-related proofs in this thesis, we make the assumption

that any occurrence of “ ” in a regular expression — denoting the disjunction of

all constants in Σ ∪ {type} — has been rewritten to a1|a2|...|an|type where Σ =

{a1, . . . , an}.

4.1 Approximation of single-conjunct queries

All the proofs in this section relate to the constructs presented in Section 3.4.1.

We begin by showing that using the automaton AR, formally given by AR =

(S,Σ∪Σ−∪{type, type−}, δ, {s0}, {sf}, ξ), is sufficient to find all sequences of labels

generated by edit operations at an approximation distance k from a given query. To

do so, we make use of the concept of a trace of edit operations, introduced in [132].

A trace is essentially a sequence of edit operations in which order is unimportant

and redundancy is not present. More specifically, edit operations are applied only

to labels in the original sequence, and redundant operations (such as the insertion

of some previously-deleted label) are not performed.

In the following example, an edit sequence S transforms a string A into a string

B. The sequence S might be given by: delete x, insert r after y, insert s after r,

substitute w by u, and delete t.

String A: x y z w t

/ \ \

String B: y r s z u

A line joining the character at position i in A to position j in B denotes that B[j]

is derived from A[i], where i, j ≥ 0. Thus, A[1] (y) and A[2] (z) remain unchanged

by S — meaning that B[0] (y) and B[3] (z) are derived directly from A — and B[4]

(u) is derived from A[3] (w) by the application of a single substitution by S to A.

Similarly, the characters x and t have been deleted from A by S, and the characters

r and s have been inserted into A by S.

Using a result from [132], we can assume, without loss of generality, that in our

edit sequences, all deletions come first, followed by all substitutions which are then

4.1. APPROXIMATION OF SINGLE-CONJUNCT QUERIES 76

followed by all insertions. Any ε-transitions in AR will have been removed before

the application of substitution and insertion operations.

Lemma 4.1. Let Q be a single-conjunct RPQ of the form (X,R, Y). Let AR be

the automaton constructed for R as described in Definition 3.11 of Section 3.4.1, q

be a string in L(R), and p be a sequence of labels in (Σ ∪ Σ− ∪ {type ∪ type−})∗

corresponding to a semipath in graph G. The approximation distance from p to q is

equal to the minimum cost of a run for p in AR.

Proof. Given graph G and (Q,G)-matching θ, let Tq be a triple form of (θ(Q), q),

and Tp be a triple form for p. The approximation distance from p to q is defined

as the minimum cost of any sequence of edit operations which yields Tp from Tq.

The proof proceeds by induction on the number of edit operations used in any such

minimum-cost edit sequence.

Basis: If no edit operations are used, then, by definition, the cost of the edit

sequence is 0, and Tq is already a triple form of p. Thus, there is a run of cost 0 in

AR. Clearly, this run is of minimum cost.

Induction: For the inductive step, assume that there is an n ≥ 0 such that, for

all m ≤ n, if m edit operations are used in a minimum-cost edit sequence of cost c

which yields Tp from Tq, then the minimum cost of a run for p in AR is c.

Now consider a sequence of labels p which requires n + 1 edit operations in a

minimum-cost edit sequence to produce Tp from Tq. Let this edit sequence be given

by S = P0 �A P1 �A · · · �A Pn �A Pn+1, where P0 = Tq and Pn+1 = Tp. Let the

cost of a deletion, substitution and insertion be denoted by cd, cs and ci, respectively.

The cost of the sequence S is k = ndcd + nscs + nici, where nd, ns and ni are the

number of deletions, substitutions and insertions, respectively, used in S for some

nd ≥ 0, ns ≥ 0 and ni ≥ 0, and nd + ns + ni = n+ 1.

Using a result from [132], we can assume that in edit sequence S all deletions

appear first, followed by all substitutions, and then all insertions. Let opE denote the

edit operation applied to Pn to yield Pn+1 = Tp. The proof proceeds by considering

the possible alternatives for opE:

(1) opE is a deletion: There are two cases to consider, depending on whether or

not the deleted triple pattern is the last in Pn.

(i) We first consider the case in which the deleted triple pattern is not the last in

4.1. APPROXIMATION OF SINGLE-CONJUNCT QUERIES 77

Pn. So assume that opE deletes the triple pattern (Wm−1, b,Wm) in Pn to produce

Pn+1 = Tp, thus transforming the pair of triple patterns t′f = (Wm−1, b,Wm), (Wm, g,

Wm+1) in Pn into tf = (Wm−1, g,Wm) in Pn+1. Let the subsequence of sequence S

up to Pn be denoted by S ′. By definition, sequence S ′ uses n edit operations and has

cost k−cd. By the inductive hypothesis, there is a minimum cost run r of cost k−cd
in AR for the sequence corresponding to triple form Pn. Suppose that in run r the

subsequence t′f in Pn is matched by the transitions (s1, b, d1, s2) and (s2, g, d2, s3) in

AR. We will show that there is a minimum cost run of cost k in AR which matches

Tp.

Suppose that, prior to the removal of ε-transitions, t′f corresponds to the sequence

of transitions in AR given by s′ = Γ, (s4, b, 0, s2),∆, (s5, g, 0, s3), where Γ and ∆

represent sequences of ε-transitions. Sequence Γ represents the presence of x1 ε-

transitions which include y1 ε-transitions each of cost cd, representing the deletion

of labels in Tq prior to b in some triple form prior to Pn in S, where x1 ≥ 0, y1 ≤ x1,

and s1 = s4 if x1 = 0. Sequence ∆ represents the presence of x2 ε-transitions which

include y2 ε-transitions each of cost cd, representing the deletion of labels from Tq

between b and g in some triple form prior to Pn in S, where x2 ≥ 0, y2 ≤ x2, and

s2 = s5 if x2 = 0.

After the removal of ε-transitions, s′ is transformed to t′ = (s1, b, d1, s2), (s2, g, d2,

s3) in run r, where d1 = y1cd and d2 = y2cd, as shown in Figure 4.1. Thus, the cost

of run r is k− cd = d1 + d2 + e, where e is the cost of the remaining transitions in r.

By construction, the transition (s4, ε, cd, s2) representing the deletion of b is present

in AR, as shown in Figure 4.1.

There is a sequence of ε-transitions from s1 to s4 of cost d1. Along with the

ε-transition from s4 to s2, this means there is a sequence of ε-transitions from s1 to

s2 of cost d1 + cd.

There is a sequence of ε-transitions from s2 to s5 of cost d2. Therefore there is a

path of ε-transitions from s1 via s4 and s2 to s5 of cost d1 + cd + d2. As there is a

transition of cost 0 labelled with g from s5 to s3, a transition labelled with g from

s1 to s3 of cost d1 + cd + d2 would have been added to AR during the removal of

ε-transitions (see Figure 4.1). Therefore, there is a minimum cost run of cost k in

AR which matches Tp.

(ii) We now consider the case where the deleted triple pattern is the last in

4.1. APPROXIMATION OF SINGLE-CONJUNCT QUERIES 78

s1

s4

s2

s5

s3

b, d1 g, d2

g, d1 + cd + d2

ε, cd

b, 0

ε, cd

g, 0
Γ, (ε, d1) ∆, (ε, d2)

Figure 4.1: Automaton for the deletion of the label b in Tpk (b is not the last label).

Pn. Assume that opE deletes the triple pattern (Wm, g,Wm+1) in Pn, transforming

triple form t′f = (Wm−1, b,Wm), (Wm, g,Wm+1) in Pn into tf = (Wm−1, b, Wm) in

Pn+1 = Tp. As in case (i), we know by the inductive hypothesis that there is a

minimum cost run r of cost k−cd in AR for the sequence corresponding to triple form

Pn. Suppose that in run r the subsequence t′f in Pn is matched by the transitions

(s1, b, d1, s2) and (s2, g, d2, s3) in AR. We will show that there is a minimum cost

run of cost k in AR which matches Tp.

Suppose that prior to the removal of ε-transitions, t′f is matched in AR by the

partial sequence of transitions given by s′, as defined previously. After the removal

of ε-transitions, s′ is transformed to t′, also as given previously. Using the same

reasoning as in the case for when the deleted label is not the last in Pn, we note that

d2 = y2cd, representing the deletion of y2 ε-transitions, succeeding b and preceding

g in Tq, in some sequence prior to Pn.

If there were m ε-transitions succeeding g in Tq, these would all have been deleted

prior to Pn in sequence S ′. As g is the last label, then, from the inductive hypothesis,

we have that ξ(s3) = d3, where d3 = mcd. Thus, the cost of run r is k − cd =

d1 + d2 + d3 + e where e is the cost of the remaining transitions in r.

By construction, the transition (s5, ε, cd, s3) representing the deletion of g is

present in AR. There is a sequence of ε-transitions from s2 to s5 of cost d2, and,

along with the ε-transition from s5 to s3 of cost cd, this means there is a sequence

of ε-transitions from s2 to s3 via s5 of cost d2 + cd. Thus ξ(s2) is set to d2 + cd + d3.

Thus, there is a minimum cost run of cost k which matches Tp.

4.1. APPROXIMATION OF SINGLE-CONJUNCT QUERIES 79

(2) opE is a substitution: Suppose opE replaces some triple t′ = (Wm−1, a, Wm)

in Pn by t = (Wm−1, b,Wm) in Pn+1 = Tp. Hence the subsequence of sequence S

up to Pn uses n edit operations and has cost k − cs. By the inductive hypothesis,

there is a minimum cost run r of cost k − cs in AR for the sequence corresponding

to triple form Pn.

Suppose that in run r triple t′ is matched by the transition f ′ = (s1, a, d, s2).

Then, by construction, AR has a transition f = (s1, b, d + cs, s2) matching t. Sub-

stituting f ′ in r by f yields a run r′ in AR with cost k which matches Tp.

(3) opE is an insertion: Suppose opE inserts a triple pattern t = (Wm−1, a, Wm)

after another triple pattern t′ = (Wm−2, h,Wm−1) in Pn to produce Pn+1 = Tp.

Hence the subsequence of sequence S up to Pn uses n edit operations and has cost

k − ci. By the inductive hypothesis, there is a minimum cost run r of cost k − ci in

AR for the sequence corresponding to triple form Pn.

Assume that in run r triple t′ is matched by the transition f ′ = (s1, h, d, s2),

where d ≥ 0. By construction there is a transition (s2, a, ci, s2) in AR, and hence a

sequence (s1, h, d, s2), (s2, a, ci, s2) matching t′ and t. Using this sequence instead of

(s1, h, d, s2) in r yields a run of cost k in AR. The case for inserting a triple pattern

before another triple pattern is analogous.

The next two lemmas show firstly the correctness of the traversal of the product

automaton, H — formally given by (T,Σ∪Σ−∪{type, type−}, σ, I, T, ξ) — formed

from the approximate automaton AQ = (S,Σ ∪ Σ− ∪ {type, type−}, δ, {s0}, S, ξ)
and a graph G = (VG, EG,Σ) (as described in Definition 3.11, and in Definition 3.12

onwards in Section 3.4.1); and secondly that the approximation distance from a

semipath in the graph G, to the matchings for a single-conjunct query Q is equal to

the minimum cost of a corresponding run in H.

Lemma 4.2. There is a run in H from (s0, v0) to (sf , vn) of cost k if and only if

there is a semipath from v0 to vn in G and a run of cost k from s0 to sf in AQ, for

some initial state s0 and some final state sf in AQ.

Proof. There are two types of transition in H, as given in the definition of its

construction. The first type of transition, ((s, n), a, c, (s′, n′)), is in H if and only if

there is an edge labelled a from n to n′ in G and a transition labelled a from s to s′

4.1. APPROXIMATION OF SINGLE-CONJUNCT QUERIES 80

with a cost of c in AQ. The second type of transition, ((s, n), a−, c, (s′, n′)), is added

to H if and only if there is an edge labelled a from n′ to n in G and a transition

labelled a− from s to s′ with a cost of c in AQ.

Given the above, it is straightforward to show (by induction, for example) that

there is a sequence of transitions of the form ((s0, v0), a1, c1, (s1, v1)), . . . , ((sj−1, vj−1),

aj−1, cj−1, (sf , vj)) in H of cost k = c1 +· · ·+cj−1 +ξ[sf] if and only if there is a semi-

path from v0 to vj in G and a sequence of transitions of the form (s0, a1, c1, s1), . . . ,

(sj−1, aj−1, cj−1, sf) of cost k in AQ.

Lemma 4.3. Let θ be a matching from a query Q with single conjunct (X,R, Y)

to a graph G = (VG, EG,Σ), where θ(X) = v0 and θ(Y) = vn for some v0, vn ∈ VG.

Let p be a semipath from v0 to vn in G, and H be the product automaton of AQ and

G. The approximation distance from p to θ(Q) is k if and only if k is the minimum

cost of a run for the sequence of labels comprising p from (s0, v0) to (sf , vn) in H,

for some initial state s0 and some final state sf in AQ.

Proof. (⇒) We know, by definition, that if the approximation distance from p to

θ(Q) is k, then k is the minimum approximation distance from p to (θ(Q), q) for any

sequence of labels q ∈ L(R). For any such q ∈ L(R), we also know, by definition,

that if the approximation distance from p to (θ(Q), q) is k, then k is the minimum

cost of any sequence of edit operations which yields triple form Tp from triple form

Tq.

From Lemma 4.1, we know that if p has approximation distance k from q, the

minimum cost of a run from s0 to sf for p in AR, and hence AQ, is k. From

Lemma 4.2, we know that there is a run of cost k for p from (s0, v0) to (sf , vn) in

H. There can be no run of cost less than k for p in H since this would contradict

the fact that p is of approximation distance k from θ(Q).

(⇐) Suppose that the minimum cost of a run for the sequence of labels comprising

p from (s0, v0) to (sf , vn) in H, for some initial state s0 and some final state sf in

AQ, is k. This means that, by Lemma 4.2, AQ has a minimum cost of k for a run

for p. Hence, the minimum cost of edit operations needed to obtain Tp from Tq, for

any q ∈ L(R), must be k. Therefore the approximation distance from p to θ(Q) is

k.

4.1. APPROXIMATION OF SINGLE-CONJUNCT QUERIES 81

We next consider the complexity of approximate matching. We first prove in

Lemma 4.4 that the automaton AQ can be constructed in time polynomial in the

size of the query, and then show in Proposition 4.1 that the approximate answer to

a single-conjunct RPQ can be computed in time that is polynomial in the size of

the query and the graph. We subsequently show that the data and query complex-

ity is polynomial in the size of the graph and the regular expression of the query

respectively, and that the space complexity is dominated by the space required by

the product automaton.

Lemma 4.4. AQ has at most 2|R| states and 4|R|2|Σ| transitions, and can be con-

structed in O(|R|3|Σ|) time.

Proof. From [2], we have that MR contains at most 2|R| states and 4|R| transitions.

Deletions add at most |R|more transitions, giving 5|R| transitions in total. The sub-

sequent removal of ε-transitions may result in AQ having at most 25|R|2 transitions.

Insertions add at most 2|R||Σ| transitions, and substitutions add at most 25|R|2|Σ|
transitions. However, since a directed, labelled multi-graph with 2|R| nodes and

|Σ| distinct labels can have at most 4|R|2|Σ| edges, this is also the bound for the

number of transitions in AQ. From [32], we have that the construction of AQ can

be performed in O(|R|3|Σ|) time.

Proposition 4.1. Let G = (VG, EG,Σ) be a graph and Q be a single-conjunct query

using regular expression R over alphabet Σ∪{type}. The approximate answer of Q

on G can be found in time O(|R|2|VG|(|R||Σ||EG|+ |VG| log(|R||VG|))).

Proof. Let AQ be the approximate automaton constructed from R, and H be the

product graph constructed from AQ and G. Lemma 4.3 shows that traversing H

correctly yields all approximate answers of Q. Lemma 4.4 tells us that AQ has at

most 2|R| states and 4|R|2|Σ| transitions. Therefore H has at most 2|R||VG| nodes

and 4|R|2|EG||Σ| edges. If we assume that H is sparse (which is highly likely),

then running Dijkstra’s algorithm on each node of a graph with node set N and

edge set A can be done in time O(|N ||A| + |N |2 log |N |). So, for graph H, the

combined time complexity is O(|R|3|VG||EG||Σ| + |R|2|VG|2 log(|R||VG|)) which is

4.2. INCREMENTAL EVALUATION 82

equal to O(|R|2|VG|(|R||Σ||EG|+ |VG| log(|R||VG|))).

As a corollary, it is easy to see that the data complexity is O(|VG||Σ||EG| +
|VG|2 log(|VG|)) and the query complexity is O(|R|3). The space complexity is dom-

inated by the space requirements of H given in the proof above.

Further, we observe that the data complexity results are consistent with the

results in our empirical evaluation, which is discussed in detail in our chapter on

query performance analysis, in Section 7.1.4.

4.2 Incremental evaluation

The following theorem shows that our incremental evaluation algorithm, represented

by GetNext — introduced in Section 3.4.2 — is correct: that is, given a single-

conjunct query Q and a graph G, it returns the approximate answer of Q on G.

Theorem 4.1. Let Q be a query with single conjunct (X,R, Y), and G a graph. Let

visitedR, queueR and answersR be initialised as described in Section 3.4.2 and

GetNext be called repeatedly until it returns null. When GetNext returns null, then

(1) (v, n, d) ∈ answersR if and only if (v, n, d) is in the approximate answer of Q on

G, and (2) if answersR[i] = (v, n, d) and answersR[j] = (v′, n′, d′), for non-negative

integers i and j with i < j, then d ≤ d′.

Proof. Throughout, we define H as being the product automaton of the graph G

and the approximate automaton AQ constructed for Q; and s0 and sf indicate an

initial state and final state in AQ, respectively.

Part (1): (⇐) By Lemma 4.3, we need to show that if the minimum cost of any

run from (s0, v) to (sf , n) is d, for some v, n ∈ VG, then (v, n, d) ∈ answersR.

We first show that if the minimum cost of any run in H from (s0, v) to (s, n)

(where s may or may not be a final state) is d, then tuple (v, n, s, d, f) is added

to queueR before any tuple (v, n′, s′, d′, f), where d′ > d, is dequeued from queueR.

Assume that r is a minimum cost run in H from (s0, v) to (s, n). The proof proceeds

by induction on the number of transitions in r having non-zero cost.

Basis: For the base case, there are no transitions with non-zero cost in r, so

the cost of r is zero. By definition we have that the tuple (v, v, s0, 0, f), possibly as

4.2. INCREMENTAL EVALUATION 83

one of a set of initial tuples, is enqueued in queueR. When one of these zero-cost

tuples is dequeued at line (2), we can see, by Lemma 3.1 and the invocation of

Succ(s0, v, AQ, G) at line (5), that all tuples representing the successive transitions

in H will be enqueued in queueR at line (6); each of these tuples subsequently

undergoes the same process. Because run r ends with (s, n), the tuple (v, n, s, 0, f),

where f is ‘non-final’, will be added to queueR.

Now assume that, at some point, (v, n′, s′, d′, f), where d′ > 0 and f is ‘non-final’,

is added to queueR. As queueR is a priority queue ordered by non-decreasing values

of cost, it is straightforward to see that (v, n′, s′, d′, f) will not be dequeued before

tuple (v, n, s, 0, f) is enqueued.

Induction: For the inductive step, suppose that there is an n ≥ 0 such that,

for all m ≤ n, if a minimum cost run in H of cost k from (s0, v) to (u,w), say, has

m transitions of non-zero cost, then tuple (v, w, u, k, f) will be placed on queueR

before any tuple (v, w′, u′, k′, f), k′ > k, is dequeued from queueR.

Now consider a minimum-cost run r of cost k which contains n + 1 transitions

with non-zero cost. Let run r be from (s0, v) to (s, n), and let transition t be the last

transition in r labelled with a cost c > 0. Hence, r can be viewed as run r′ ·r′′, where

t is the first transition on r′′. Clearly, the number of transitions with a non-zero cost

in r′ is n, and the cost of r′ is k − c. Let (u,w) be the state in H at which r′ ends

and r′′ starts. By the induction hypothesis, we know that the tuple (v, w, u, k−c, f)

will have been placed on queueR before any tuple (v, w′, u′, k′ − c, f), where k′ > k,

is dequeued from queueR .

Suppose, in the worst case, that there is already a tuple (v, n′, s′, k′, f), k′ > k,

on queueR. Since k − c < k′, tuple (v, w, u, k − c, f) will be dequeued before

(v, n′, s′, k′, f). Suppose that transition t is form (u,w) to (x, y) in H. When the

tuple (v, w, u, k − c, f) is dequeued at line (2), we know from Lemma 3.1 that in-

voking Succ(u,w,AQ, G) at line (5), will, at line (6), enqueue all tuples representing

successive transitions in H, including the tuple (v, y, x, k, f).

If y = n and x = s, the proof is complete. If not, tuple (v, y, x, k, f) will be

dequeued before (v, n′, s′, k′, f) since k < k′ and queueR is a priority queue. Because

the remaining transitions on r′′ are of cost zero, it is easy to see that (v, n, s, k, f)

will be added to queueR before any (v, n′, s′, k′, f) is dequeued.

So for a minimum cost run of cost d from (s0, v) to (sf , n), where sf is a final

4.2. INCREMENTAL EVALUATION 84

state, we know that tuple (v, n, sf , k, f) will also be dequeued from queueR before

any tuple (v, n′, s′, d′, f), d′ > d, is dequeued (because queueR is a priority queue).

The (v, n, s) triple is then added to visitedR at line (4), enqueued as a ‘final’ tuple

at line (8), and once again dequeued before any tuple at greater cost. This time the

dequeued tuple results in the tuple (v, n, d) being added to answersR at line (11).

(⇒) We show that if (v, n, d) ∈ answersR, then the minimum cost of any run

in H from (s0, v) to (sf , n), for some final state sf , is d. The result then follows by

Lemma 4.3. The proof is by contradiction.

Suppose that a triple (v, n, d) ∈ answersR but that the minimum cost of a run

in H from (s0, v) to (sf , n) is d′ < d. As (v, n, d) was added to answersR at line

(11), we know, by line (7), that the triple (v, n, d′) was not added to answersR prior

to the tuple (v, n, s, d, f) being dequeued from queueR at line (2). There are only

two possibilities which could give rise to this state.

The first possibility is that the tuple (v,m, s, d, f) was dequeued before the tuple

(v,m, s, d′, f) was enqueued in queueR. However, as we have seen in (⇐) above,

(v,m, s, d, f) cannot be dequeued before (v,m, s, d′, f) is enqueued. Thus, we have

a contradiction.

The second possibility is that, at line (5), the invocation of Succ(si, vi, AQ, G),

for some state si and some node vi, did not return a transition
d′′→ (sf , n), for some

cost d′′, where d′′ ≤ d′, and hence the tuple (v,m, s, d′, f) was never enqueued at

line (6). But we know, from Lemma 3.1, that Succ returns all and only transitions

that occur in H. Thus, we have a contradiction.

Therefore, either (v, n, d) /∈ answersR or the minimum cost of any run in H from

(s0, v) to (sf , n) is d.

Part (2): From Part (1), we have that the tuple (v, n, s, d, f) — representing the

minimum cost run in H from (s0, v) to (s, n) — is dequeued from queueR before

any tuple (v, n′, s′, d′, f), where d < d′, is dequeued.

Suppose we have two runs, r and r′; suppose run r is from (sr0, vr) to (srf , nr) of

minimum cost dr and run r′ from (s′r0, v
′
r) to (s′rf , n

′
r) of minimum cost d′r, where srf

and s′rf are final states. It is then straightforward to see that if the triple (vr, nr, dr)

had been added as the ith item in answersR as a result of completely traversing run

r, and the triple (v′r, n
′
r, d
′
r) had been added as the jth item in answersR as a result

of completely traversing run r′, for some i < j, then dr ≤ d′r.

4.3. RELAXATION OF SINGLE-CONJUNCT QUERIES 85

4.3 Relaxation of single-conjunct queries

All the proofs in this section relate to the constructs introduced in Section 3.5.2.

The following proposition shows firstly the correctness of the construction and

traversal of the product automaton, H, constructed as described in Section 3.5.2;

and secondly that the relaxation distance from a semipath in a graph G to the

matchings for a single-conjunct query Q is equal to the minimum cost of a run in

H.

Proposition 4.2. Let Q be a query comprising a single conjunct (X,R, Y). Let

MK
Q = (S ′,Σ ∪ Σ− ∪ {type, type−}, τ, S0, Sf , ξ) be the relaxed automaton for query

Q and ontology K = extRed(K), where the ε-transitions have been removed from

MK
Q . Let G = closureK(G) be a graph and H be the product automaton of MK

Q and

G. Let θ be a (Q,G)-matching such that θ(X) = v0 and θ(Y) = vn. (1) There is

a semipath p = (v0, l1, . . . , ln, vn) in G that r-conforms to θ(Q) if and only if there

is a run r = ((s0, v0), l1, c1, (s1, v1)), . . . , ((sn−1, vn−1), ln, cn, (sn, vn)) in H, where

s0 ∈ S0 and sn ∈ Sf . (2) The relaxation distance of θ(Q) is given by c1 + · · · + cn

if and only if r is of minimum cost over all runs from (s0, v0) to (sn, vn) for any

s0 ∈ S0 and sn ∈ Sf .

Proof. Part (1): (⇒) Let p be a semipath (v0, l1, . . . , ln, vn) in G that r-conforms to

θ(Q). Hence there is a q ∈ L(R), a triple form Tq of (θ(Q), q) and a triple form Tp of p

such that Tq ≤ Tp. Since q ∈ L(R), we know that there is a run in MR corresponding

to Tq. We therefore need to show that there is a run in MK
Q corresponding to Tp.

The proof proceeds by induction on the number of direct relaxations required to

yield Tp from Tq.

Basis: When the number of direct relaxations applied to Tq is zero, Tq = P0 =

Tp. Thus, there is a run for Tp in MK
Q , which corresponds to a run in MR.

Induction: For the inductive step, assume that there is an n ≥ 0 such that, for

all m ≤ n, if m direct relaxations are used in a relaxation sequence which yields Tp

from Tq, there is a corresponding run in MK
Q .

4.3. RELAXATION OF SINGLE-CONJUNCT QUERIES 86

Now assume that n + 1 direct relaxations are required to produce Tp from Tq.

Let such a sequence be given by S = P0 �R · · · �R Pn �R Pn+1, where P0 = Tq

and Pn+1 = Tp. From the induction hypothesis, we know that there is a run rn

in MK
Q corresponding to the sequence of direct relaxations given by the sequence

S ′ = P0 �R P1 �R · · · �R Pn.

We consider in turn each type of direct relaxation operation induced by the rules

given in Figure 3.6 which can be used to produce Pn+1 from Pn. We show that,

corresponding to each such operation, is a transition in MK
Q which, when traversed,

gives rise to a run for Tp in MK
Q . In all cases below, d denotes the cost of the

transition.

Rule 2: Suppose that Pn+1 is produced by applying rule 2 to the triple (a, sp, b) ∈
K and the triple pattern f = (Wm−1, a,Wm) in Pn which results in f being replaced

by (Wm−1, b,Wm) in Pn+1, where Wm−1 and Wm are variables or constants. Suppose

that f is matched by the transition (h, a, d, s) in rn. By construction, MK
Q has a

transition (h, b, d + cr2, s) and hence replacing (h, a, d, s) by (h, b, d + cr2, s) in rn

yields a run for Pn+1.

On the other hand, if Pn+1 is produced by applying rule 2 to (Wm, a,Wm−1) in

Pn, where the matching transition in rn is (h, a−, d, s), then (Wm, b,Wm−1) is in Pn+1

and there is a transition (h, b−, d+ cr2, s) in MK
Q .

Rule 4: Suppose that Pn+1 is produced by applying rule 4 to the triple (c, sc, c′) ∈
K and the triple pattern f = (Wm, type, c) in Pn which results in f being replaced

by (Wm, type, c
′) in Pn+1, where Wm is a variable. Suppose that f is matched by

the transition (h, type, d, s) in rn, where s is annotated with c. By the induction

hypothesis and the fact that f is the last triple pattern in Pn, s must be a final

state. By construction, MK
Q has a transition (h, type, d+ cr4, s

′) where s′ ∈ Sf and

is annotated with c′, and hence replacing (h, type, d, s) by (h, type, d+ cr4, s
′) in rn

yields a run for Pn+1.

On the other hand, if Pn+1 is produced by applying rule 4 to f = (c, type,Wm) in

Pn, whereWm is a variable and where the matching transition in rn is (s0, type
−, d, h)

(where, by the induction hypothesis and the fact that f must be the first triple pat-

tern in Pn, we have that s0 must be an initial state), then (c′, type,Wm) is in Pn+1

and there is a transition (s′0, type
−, d+cr4, h), where s′0 is annotated with c′, in MK

Q .

Rule 5: Suppose that Pn+1 is produced by applying rule 5 to the triple (a, dom, c) ∈

4.3. RELAXATION OF SINGLE-CONJUNCT QUERIES 87

K and the triple pattern f in Pn. Because applying relaxation requires that the vari-

ables between pairs of triple patterns remain the same, it must be the case that f is of

the form (W,a, z), where z = θ(Y) or z = vn (respectively z = θ(X) or z = v0), and

W is a variable. Hence, f must be matched by a transition t which leads to a final

state (respectively starts from an initial state) in rn; thus we have t = (h, a, d, s) (re-

spectively (s0, a
−, d, h)) where s ∈ Sf (respectively s0 ∈ S0). From the application

of rule 5, we also have that f is replaced by (W, type, c) in Pn+1. By construction,

MK
Q has a transition (h, type, d+ cr5, s

′) (respectively (s′0, type
−, d+ cr5, h)) where

s′ ∈ Sf (respectively s′0 ∈ S0) and is annotated with c, and hence replacing (h, a, d, s)

(respectively (s0, a
−, d, h)) by (h, type, d+cr5, s

′) (respectively (s′0, type
−, d+cr5, h))

in rn yields a run for Pn+1.

Rule 6: Suppose that Pn+1 is produced by applying rule 6 to the triple (a, range, c)

∈ K and the triple pattern f in Pn. Because applying relaxation requires that the

variables between pairs of triple patterns remain the same, it must be the case

that f is of the form (z, a,W), where z = θ(X) or z = v0 (respectively z = θ(Y)

or z = vn), and W is a variable. Hence, f must be matched by a transition t

which starts from an initial state (respectively leads to a final state) in rn; thus we

have t = (s0, a, d, h) (respectively (h, a−, d, s)) where s0 ∈ S0 (respectively s ∈ Sf).
From the application of rule 6, we also have that f is replaced by (W, type, c) in

Pn+1. By construction, MK
Q has a transition (s′0, type

−, d + cr6, h) (respectively

h, type, d + cr6, s
′) where s′0 ∈ S0 (respectively s′ ∈ Sf) and is annotated with c,

and hence replacing (s0, a, d, h) (respectively (h, a−, d, s)) by (s′0, type
−, d + cr6, h)

(respectively h, type, d+ cr6, s
′) in rn yields a run for Pn+1.

Thus, we have shown that, in all cases, there is a run in MK
Q corresponding to

Tp. By the construction of H from MK
Q and G, if we have the run (s0, l1, c1, s1)

, . . . , (sn−1, ln, cn, sn) in MK
Q and the semipath p = (v0, l1, . . . , ln, vn) in G, we have a

run r = ((s0, v0), l1, c1, (s1, v1)), . . . , ((sn−1, vn−1), ln, cn, (sn, vn)) in H, where s0 ∈ S0

and sn ∈ Sf .
(⇐) Let r be a run ((s0, v0), l1, c1, (s1, v1)), . . . , ((sn−1, vn−1), ln, cn, (sn, vn)) in H,

where s0 ∈ S0 and sn ∈ Sf . By the construction of H from MK
Q and G, there must be

a semipath p = (v0, l1, . . . , ln, vn) in G and a run (s0, l1, c1, s1), . . . , (sn−1, ln, cn, sn)

in MK
Q . Let Tp be a triple form of p.

We know that there is a run from s0 ∈ S0 to sn ∈ Sf in MK
Q corresponding to

4.3. RELAXATION OF SINGLE-CONJUNCT QUERIES 88

Tp. By the construction of MK
Q , we also know that the transitions added to the

transition relation τ correspond to the relaxation operations induced by the rules

in Figure 3.6. Thus, each transition in any run in MK
Q corresponds to either a

transition in MR or a relaxation of one of the transitions in MR. By definition, we

also know that every run in MR corresponds to an acceptance of a sequence of labels

q ∈ L(R).

We therefore need to show that every run in MK
Q corresponds to a sequence of

direct relaxations of the triple form of some sequence of labels q ∈ L(R); i.e. that a

run in MK
Q corresponds to Tp.

For the purposes of the proof, we assume that each transition in MK
Q is assigned

a derivation number. Each transition in MR is assigned a derivation number of

zero. Then, each application of rule 2, 4, 5 or 6 will result in a new transition

t′, derived from an existing transition t, where the derivation number of t′ is the

derivation number of t plus one. The derivation length of a run r is then the sum

of the derivation numbers of the transitions comprising r. The proof proceeds by

induction on the derivation length of a run.

Basis: For the base case, we consider runs having a derivation length of zero;

i.e. runs only containing transitions with a derivation number of zero, which are

present in MR. Thus, Tq = P0 = Tp (no relaxation has occurred), and every run in

MR corresponds to Tq, as in Definition 3.10.

Induction: For the inductive step, assume that there is an n ≥ 0 such that, for

all m ≤ n, if m is the derivation length of a run r in MK
Q , then r corresponds to a

sequence of m direct relaxations which yields Tp from Tq.

Now let rn+1 be a run in MK
Q with derivation length n+1. We need to show how

rn+1 corresponds to a triple form representing a sequence of n+1 direct relaxations,

given by Tq = P0 �R P1 �R · · · �R Pn �R Pn+1 = Tp.

Since rn+1 has derivation length n+ 1, there must be a transition t in rn+1 with

a non-zero derivation number λ. Below, we consider each rule that may have given

rise to t in MK
Q . In all cases, d indicates the cost of the transition.

Rule 2: Suppose that t = (h, b, d, s). Because t was added using rule 2, there

must be a transition t′ = (h, a, d − cr2, s) in MK
Q for some (a, sp, b) ∈ K, with a

derivation number of λ − 1. Replacing t in rn+1 by t′ gives rise to a run rn with a

derivation length of n. From the induction hypothesis, there is a sequence of n direct

4.3. RELAXATION OF SINGLE-CONJUNCT QUERIES 89

relaxations P0 �R P1 �R · · · �R Pn and a triple pattern f = (Wm−1, a,Wm) in Pn

matched by t′. Applying rule 2 to f will give rise to a triple form Pn+1 corresponding

to a sequence of n+ 1 direct relaxations having been applied to q.

By an analogous process where t = (h, b−, d, s), we can show that its matching

triple pattern (Wm, b,Wm−1) is in Pn+1.

Rule 4: Suppose that t = (h, type, d, s′n) where s′n ∈ Sf and is annotated with c′.

Because t was added using rule 4, there must be a transition t′ = (h, type, d−cr4, sn)

in MK
Q for some (c, sc, c′) ∈ K, with a derivation number of λ − 1, and where

sn ∈ Sf and is annotated with c. Replacing t in rn+1 by t′ gives rise to a run rn

with a derivation length of n. From the induction hypothesis, there is a sequence of

n direct relaxations P0 �R P1 �R · · · �R Pn and a triple pattern f = (Wm, type, c)

in Pn matched by t′. Applying rule 4 to f will give rise to a triple form Pn+1

corresponding to a sequence of n+ 1 direct relaxations having been applied to q.

By an analogous process where t = (s′0, type
−, d, h), and s′0 ∈ S0 and is annotated

with c′, we can show that its matching triple pattern (c′, type,Wm), where Wm is a

constant, is in Pn+1.

Rule 5: Suppose that t = (h, type, d, s′n) (respectively (s′0, type
−, d, h)) where

s′n ∈ Sf (respectively s′0 ∈ S0). Because t was added using rule 5, there must be

a transition t′ = (h, a, d − cr5, sn) (respectively (s0, a
−, d − cr5, h)) in MK

Q for some

(a, dom, c) ∈ K, with a derivation number of λ− 1, and where sn ∈ Sf (respectively

s0 ∈ S0). Replacing t in rn+1 by t′ gives rise to a run rn with a derivation length

of n. From the induction hypothesis, there is a sequence of n direct relaxations

P0 �R P1 �R · · · �R Pn and a triple pattern f in Pn matched by t′. Because ap-

plying relaxation requires that the variables between pairs of triple patterns remain

the same, and from the fact that f is matched by t′ which leads to a final state

(respectively starts from an initial state), it must be the case that f is of the form

(W,a, z), where z = θ(Y) or z = vn (respectively z = θ(X) or z = v0), and W is a

variable. Applying rule 5 to f will give rise to a triple form Pn+1 corresponding to

a sequence of n+ 1 direct relaxations having been applied to q.

Rule 6: Suppose that t = (s′0, type
−, d, h) (respectively (h, type, d, s′n)) where

s′0 ∈ S0 (respectively s′n ∈ Sf). Because t was added using rule 6, there must

be a transition t′ = (s0, a, d − cr6, h) (respectively (h, a−, d − cr6, sn)) in MK
Q for

some (a, range, c) ∈ K, with a derivation number of λ − 1, and where s0 ∈ S0

4.3. RELAXATION OF SINGLE-CONJUNCT QUERIES 90

(respectively sn ∈ Sf). Replacing t in rn+1 by t′ gives rise to a run rn with a

derivation length of n. From the induction hypothesis, there is a sequence of n

direct relaxations P0 �R P1 �R · · · �R Pn and a triple pattern f in Pn matched by

t′. Because applying relaxation requires that the variables between pairs of triple

patterns remain the same, and from the fact that f is matched by t′ which starts

from an initial state (respectively leads to a final state), it must be the case that

f is of the form (z, a,W), where z = θ(X) or z = v0 (respectively z = θ(Y) or

z = vn), and W is a variable. Applying rule 6 to f will give rise to a triple form

Pn+1 corresponding to a sequence of n+ 1 direct relaxations having been applied to

q.

Part (2): (⇒) Let θ be a matching mapping X to v0 and Y to vn in G, r be

a run ((s0, v0), l1, c1, (s1, v1)), . . . , ((sn−1, vn−1), ln, cn, (sn, vn)) in H, where s0 ∈ S0

and sn ∈ Sf , and let the relaxation distance of θ(Q) be given by c1 + · · · + cn. By

definition, we know that the relaxation distance of θ(Q) is the minimum relaxation

distance to θ(Q) from any semipath p that r-conforms to θ(Q). By the construction

of H from MK
Q and G, there is a semipath p = (v0, l1, . . . , ln, vn) in G and a run

(s0, l1, c1, s1), . . . , (sn−1, ln, cn, sn) in MK
Q . From Part (1), we know that p r-conforms

to θ(Q). Thus, we have that c1 + · · · + cn is the minimum relaxation distance to

θ(Q) from p.

Also by definition, we have that c1 + · · ·+ cn is the minimum relaxation distance

from p to (θ(Q), q) for any sequence of labels q ∈ L(R) and that, for any such q,

c1 + · · · + cn is the minimum cost of any sequence of direct relaxation operations

which yields p from q. Thus, there can be no run of cost less than c1 + · · ·+ cn for

p in H as this would contradict the fact that p is of relaxation distance c1 + · · ·+ cn

from θ(Q). Hence, r is a minimum cost run over all runs from (s0, v0) to (sn, vn).

(⇐) We assume that r is a minimum cost run in H over all runs from some

(s0, v0) to some (sn, vn), where s0 ∈ S0 and sn ∈ Sf . This means, by construction,

that the minimum cost of any run is c1 + · · · + cn. Also by the construction of

H, there is a semipath p = (v0, l1, . . . , ln, vn) in G. But Part (1) shows us that p

r-conforms to θ(Q). Thus, the relaxation distance of θ(Q) is c1 + · · ·+ cn.

For the rest of this section, we consider the complexity of returning relaxed an-

swers. Proposition 4.3 shows the upper bound for the size of the relaxed automaton,

4.3. RELAXATION OF SINGLE-CONJUNCT QUERIES 91

MK
Q , and Proposition 4.4 shows that the relaxed answer of a single-conjunct query

Q on the closure of a graph G can be computed in time that is polynomial in the size

of Q, G and the ontology K. We subsequently show that the data and query com-

plexity is polynomial in the size of G and the regular expression of Q respectively,

and that the space complexity is dominated by the space required by the product

graph.

Proposition 4.3. Let Q be a query comprising a single conjunct (X,R, Y), MK
Q =

(S ′,Σ∪Σ−∪{type, type−}, τ, S0, Sf , ξ) be the relaxed automaton for Q and ontology

K = extRed(K), where K = (VK , EK). MK
Q has at most 2|R|(|VK | + 1) states and

2|R|2(|EK ||VK |+ 8|EK |+ 8) transitions.

Proof. From [2] and [32], we have that MR = (S,Σ ∪ {type}, δ, s0, Sf , ξ) contains

at most 2|R| states and 4|R| transitions. The subsequent removal of ε-transitions

as described in [32] may result in at most 16|R|2 transitions. We recall that MK
Q

initially consists of all states S in MR and all these transitions.

We know that each node in the set VK is either a class node or a property node

in K. From the construction of MK
Q — in particular, by the application of rules

4, 5 and 6 — we can see that, for each class node in VK , at most one new state,

corresponding to the class node, is added for any existing state s, provided that

s ∈ S0 or s ∈ Sf . Hence, we can see that no more than |VK | new states may be

added for each of the original states in S, which results in at most 2|R||VK | new

states in total. Thus, MK
Q has at most 2|R|(|VK |+ 1) states.

Since there are at most |EK | edges in K with label sp, rule 2 adds at most

16|R|2|EK | transitions to MK
Q . Rules 4, 5 and 6 can collectively be applied no more

than |EK | times. Each application results, in the worst case, in |R| transitions

being added for each of the 2|R||VK | new, cloned states, giving rise to at most

2|R|2|VK ||EK | transitions. Thus, overall MK
Q has at most 2|R|2(|EK ||VK |+8|EK |+8)

transitions.

Proposition 4.4. Let K = (VK , EK) be an ontology such that k = extRed(K),

G = (VG, EG,Σ) be a graph such that G = closureK(G), and Q be a single-conjunct

query using regular expression R over alphabet Σ ∪ Σ− ∪ {type, type−}. The

4.4. CONCLUDING REMARKS 92

relaxed answer of Q on G can be found in time O(|R|2|VK |2|VG|(|R||EK ||EG| +

|VG| log(|R||VK ||VG|))).

Proof. Let MK
Q be the relaxed automaton constructed from R and K, and H be

the product automaton constructed from MK
Q and G. Proposition 4.2 shows that

traversing H yields all relaxed answers to Q. Proposition 4.3 tells us that MK
Q has

at most 2|R|(|VK | + 1) states and 2|R|2(|EK ||VK | + 8|EK | + 8) transitions. There-

fore H has at most 2|R||VG|(|VK | + 1) nodes and 2|R|2|EG|(|EK ||VK | + 8|EK | + 8)

edges. If we assume that H is sparse (which is highly likely), then running Dijk-

stra’s algorithm on each node of a graph with node set N and edge set A can be

done in time O(|N ||A| + |N |2 log |N |). So, for graph H, the combined time com-

plexity is O(|R|3|EK ||VK |2|VG||EG|+ |R|2|VK |2|VG|2 log(|R||VK ||VG|)) which is equal

to O(|R|2|VK |2|VG|(|R||EK ||EG|+ |VG| log(|R||VK ||VG|))).

As a corollary, it is easy to see that the data complexity is O(|VK |2|VG|(|EK |
|EG| + |VG| log(|VK ||VG|))) and the query complexity is O(|R|3). The space com-

plexity is dominated by the space requirements of H given in the proof above.

Further, we observe that the data complexity results are consistent with the

results in our empirical evaluation, which is discussed in detail in our chapter on

query performance analysis, in Section 7.1.4.

4.4 Concluding remarks

In this chapter, we provided proofs of correctness and complexity for the constructs

and algorithms introduced in Chapter 3.

In the next chapter, we describe a prototype system, called ApproxRelax, which

is an implementation of query approximation and query relaxation, and present a

qualitative case study demonstrating the application of query approximation and

query relaxation in the domain of lifelong learning.

CHAPTER 5

The ApproxRelax System and a Case Study

In the previous two chapters, we presented the theoretical background comprising

the data model and query language underlying this research, and provided detailed

descriptions and full proofs of correctness for the constructs and algorithms required

to evaluate approximated and relaxed queries.

In this chapter, we discuss our first implementation of approximated and relaxed

querying in the form of a prototype system called ApproxRelax, which we have pre-

sented previously in [113]. ApproxRelax is a precursor to our final implementation,

called Omega, and full details of the latter are described in Chapter 6. Here, we re-

strict our focus to the user-facing features of ApproxRelax, and present a qualitative

case study showing how ApproxRelax overcomes problems in a previous system in

the domain of lifelong learning, entitled L4All, by providing more flexible querying

capabilities, resulting in answers of greater relevance being returned to the user.

The rest of this chapter is structured as follows: Section 5.1 presents the L4All

system, which aims to support lifelong learners in planning and reflecting on their

learning. As part of its functionality, it allows users to search over information

relating to the educational and work experiences of other members of their lifelong

learning network. In Section 5.2 we describe ApproxRelax by initially providing

some contextual example data and queries, and then proceeding on to describing,

93

5.1. CASE STUDY: LIFELONG LEARNING 94

from a user-interface perspective, how exact, approximated and relaxed queries may

be posed and evaluated, and how answers are displayed to the user. We compare the

ApproxRelax and L4All systems in Section 5.3, and present the conclusions of an

evaluation undertaken with two lifelong learning practitioners. We end the chapter

with some concluding remarks in Section 5.4.

5.1 Case study: Lifelong Learning

Assisting and understanding the requirements of lifelong learners has resulted in

research into the role played by online support systems for providing careers guid-

ance [25] and learner-oriented models of the delivery of learning capabilities [80, 81].

The L4All (“LifeLong Learning in London for All”) system aims to support

lifelong learners in exploring learning opportunities and in planning and reflecting

on their learning [26, 27] by providing a full record encompassing their entire adult

learning career, as opposed to focussing solely on a single educational period.

The L4All system allows users to create and maintain a chronological record of

their learning, work and personal episodes — their timelines. Users’ timelines are

stored in the form of RDF/S, through the Jena framework. The system’s interface

provides screens for the user to enter their personal details, to create and maintain

their timeline, and to search over the timelines of other users, based on a variety of

search criteria. This sharing of timelines exposes future learning and work possibili-

ties that may otherwise not have been considered, positioning successful learners as

role models to inspire confidence and a sense of opportunity.

There are some 20 types of episode supported by the system, each belonging to

one of four categories: Educational, Occupational, Personal or Other. These classi-

fications are drawn from standard U.K. occupational and educational taxonomies.

In particular, all Educational episodes are classified by a subject from the Labour

Force Survey Subject of Degree (SBJ) classification and a qualification level from

the National Qualifications Framework (NQF). All work and voluntary Occupa-

tional episodes are classified by an industry sector from the Standard Industrial

Classification (SIC) and an occupation/position from the Standard Occupational

Classification (SOC). We refer the reader to the Labour Force Survey User Guide

5.1. CASE STUDY: LIFELONG LEARNING 95

for details of these standards1.

A key aim of the L4All system is to allow learners to search over the timeline

data, and to identify possible choices for their own future learning and professional

development by seeing what others with a similar background have gone on to do. In

particular, [128, 130] describe a facility that is provided by the system for searching

for “People like me”. This facility allows the user to specify which parts of their

own timeline should be matched with other users’ timelines, by selecting which types

of episodes should be matched, as well as the similarity metric to be applied (one

of Jaccard Similarity, Dice Similarity, Euclidean Distance, and Needleman-Wunsch

Distance).

In order for the system to be able apply these similarity metrics, the users’

timelines are encoded as token-based strings. In particular, each episode is encoded

as a single token comprising a 2-letter unique identifier denoting the category of the

episode, followed by up to two 4-digit codes classifying the episode according to the

four levels of the taxonomies relevant for this type of episode (which may be 0, 1

or 2 taxonomies). The information about episodes’ start and end dates is ignored

and only the relative position of episodes is captured. Filters are applied to the

string of tokens to remove those types of episode that should not be considered in

the current search, and for limiting the depth of their classification to be considered

in the matching process. We refer the reader to [130] for more details of the timeline

encoding and for a detailed comparison of the different similarity metrics considered

for incorporation within the system.

Once the user’s definition of “People like me” has been specified, the system

returns a list of all the candidate timelines, ranked by their normalised similarity.

The user can then select one of these timelines to visualise in detail. Episodes within

the selected timeline are visible, and the user can click on any of these to expose its

details and to explore it further.

An evaluation study conducted on the “People like me” facility identified the

need for a more contextualised usage of timeline similarity matching, which explicitly

identifies possible future learning and professional possibilities for the user (see [128,

129]). Follow-on work explored a more contextualised usage of timeline similarity

1http://www.ons.gov.uk/ons/guide-method/method-quality/specific/

labour-market/labour-market-statistics/volume-3-2015.pdf

http://www.ons.gov.uk/ons/guide-method/method-quality/specific/labour-market/labour-market-statistics/volume-3-2015.pdf
http://www.ons.gov.uk/ons/guide-method/method-quality/specific/labour-market/labour-market-statistics/volume-3-2015.pdf

5.1. CASE STUDY: LIFELONG LEARNING 96

matching which uses just one similarity metric (hence removing this element of

choice, and potential difficulty, for the user) and which explicitly shows the episodes

of the selected timeline that have no match within the user’s timeline and thus

represent episodes the user may be inspired to explore further for their own learning

and career development [129].

This new facility was termed “What Next” and it uses just the Needleman-

Wunsch similarity metric. Using this metric, the “What Next” facility considers the

distance between two strings of tokens x and y to be the minimum cost of trans-

forming x to y by a series of insert or delete operations (substitution operations are

not considered). The system builds a cost matrix incrementally by constructing a

cost value for each pair of tokens xi and yj from each string. A summary of the

relevant timelines as found by the system is presented to the user in the form of

a list, ordered by their similarity to the user’s timeline with respect to the speci-

fied parameters and summarised by the name and age of their owners and a short

description.

Magoulas, Poulovassilis and van Labeke [129] report on the results of two evalua-

tion sessions that were held with mature learners at Birkbeck, University of London

and at the College of North East London assessing the L4All system. Although the

learners found the system very useful, three issues were identified, centred around

the way in which users specify their search queries and with the ranking of the search

results:

• The top-ranked timelines in the list returned by “What Next” will be timelines

that are most similar to the user’s own timeline. These timelines may in

practice offer few suggestions of episodes for the user’s future development.

• The level of detail that should be used in episode classification for the purpose

of applying the similarity metric: selection of different classification levels by

the user will give rise to different similarity values, and therefore different

possible timeline alignments.

• Using the distance matrix computed by the Needleman-Wunsch algorithm

to generate the episode alignments may generate several possible alignments

between two timelines. Determining the ‘best’ one in a given context is not

easy, as subjective factors relating to the user’s own definition of ‘relevance’

5.2. THE APPROXRELAX SYSTEM 97

have to be taken into account. The current implementation in L4All always

makes the same default choice of alignment, whereby the “common ground”

of matching episodes in the two timelines is selected to be as late as possible

within the user’s timeline.

The above problems arise because the “What Next” facility is rather rigid: it

uses the whole of the user’s timeline; it offers just one similarity metric over the

timeline data; it allows just a single level of detail to be applied to the classifications

of the selected categories of episode for the similarity matching; and the similarity

matching is applied to all episodes of these categories in the user’s timeline. Thus,

there is limited flexibility for users to formulate their precise requirements for the

timeline search and to explore alternative formulations of selected parts of their

query.

These observations motivated the development of the ApproxRelax prototype,

that implements our query approximation and query relaxation techniques and sup-

ports more flexible user querying of timeline data.

5.2 The ApproxRelax system

The ApproxRelax prototype system is a web application that supports flexible query-

ing — through the provision of query approximation and query relaxation — over

timeline data.

For example, Figures 5.1, 5.2 and 5.3 illustrate fragments of data and metadata

relating to three users’ timelines (Dan, Liz and Al). There are several types of

episode, e.g. UniversityEpisode and WorkEpisode. Associated with each type of

episode are several properties e.g. qualif[ication] and job. Episodes are ordered

according to their start date — as indicated by edges labelled next (for simplicity,

the episodes’ start and end dates are not shown). If two episodes have the same start

date, the one that ends earlier is considered to precede the other. If two episodes

have identical start and end dates, an arbitrary one is chosen as being the earlier

one. An edge labelled prereq from one episode to another is an annotation created

by the timeline’s owner indicating that they consider that undertaking an earlier

episode was necessary in order for them to be able to proceed to or achieve a later

episode.

5.2. THE APPROXRELAX SYSTEM 98

Occupation

Subject Science & Technology Associate Professionals

Mathematical & Computer Sciences IT Service Delivery

Information Systems IT Operations Technicians IT User Support Technicians

sc

sc sc

sc

sc

sc

FdIT
System/Network
Engineer

System/Support
Engineer

Data Centre
Team Leader

type typetype type

dan1 dan2 dan3 dan4

next next
next

prereq

qualif
job job job

University Episode Work Episode Work Episode Work Episode

type type type type

Figure 5.1: A fragment of Dan’s timeline data and metadata.

5.2. THE APPROXRELAX SYSTEM 99

Occupation

OccupationProfessional Occupations

Subject Science & Technology Subject
Professional
Occupations

Mathematical
& Computer
Sciences

Information &
Communication
Technology

Mathematical
& Computer
Sciences

Teaching &
Research

Information Systems Software Professionals Computer Science Research Professionals

sc

sc sc

sc sc

sc

sc

sc

sc

sc

sc

FdIT
Data
Manager

Knowledge
Engineer

MSc CS Researcher

type type typetype type

liz1 liz2 liz3 liz4 liz5

next next next next

prereq

qualif job job qualif job

University Episode Work Episode Work Episode University Episode Work Episode

type type type type type

Figure 5.2: A fragment of Liz’s timeline data and metadata.

5.2. THE APPROXRELAX SYSTEM 100

Occupation

Professional Occupations Managers & Senior Officials

Subject Science & Technology Corporate Managers

Mathematical &
Computer Sciences

Information & Communication
Technology

Functional Managers

Information Systems IT Strategy & Planning
Information & Communication
Technology Managers

sc

sc sc

sc

sc

sc

sc

sc

sc

sc

sc

FdIT
Website Project
Manager

Senior Project
Manager

type type type

al1 al2 al3

next next

prereq

qualif job job

University Episode Work Episode Work Episode

type type type

Figure 5.3: A fragment of Al’s timeline data and metadata.

5.2. THE APPROXRELAX SYSTEM 101

ApproxRelax supports query approximation by allowing edge labels to be inserted

or deleted only (thus, there is no provision for the substitution of edge labels),

each with the same configurable cost. Query relaxation is supported by allowing a

class label to be replaced by that of a superclass or a property label by that of a

superproperty, also each with the same configurable cost. For the remainder of this

chapter, we assume that the system has been configured to only allow the insertion

of an edge label, setting its cost to be 1, and the replacement of a class by its

superclass, at a cost of 2.

The ApproxRelax prototype provides users with a graphical user interface through

which they can formulate their queries. In order to facilitate ease of use, the more

complex parts of the user interface are explained to the user by means of ‘tooltips’

and hover-over text (indicated by boxes containing a ‘?’).

We now illustrate how ApproxRelax might be used by a fictitious student, whose

profile corresponds to that of the users we envision using the system. Suppose

Gaby is studying on the Foundation Degree in Information Technology (FdIT) at

Birkbeck, University of London and she wishes to find out what possible future

career choices there may be for her by seeing what other people with qualifications

in Information Systems have gone on to do in their careers. Gaby opens up her

browser and proceeds to the screen shown in Figure 5.4. This screen allows the user

to start formulating a query by creating a query template for matching educational

episodes or occupational episodes.

Gaby clicks the ‘Create an educational episode’ image and is presented with the

screen shown in Figure 5.5. From the ‘Type’ drop-down menu she is able to make

a choice from the Educational episode types, and she selects ‘University Episode’.

From the ‘Subject’ drop-down menu she is able to make a choice from different sub-

ject areas (as sourced from the SBJ taxonomy mentioned in Section 5.1). She selects

‘Information Systems’ and ticks the ‘Fetch similar or related subjects?’ checkbox.

As she has not yet finished constructing her query, she clicks the ‘Next’ button.

At this point the system generates internally these query conjuncts:

(?A,type,UniversityEpisode) [C1]

RELAX(?A,qualif.type,InformationSystems) [C2]

Conjunct C1 is generated from Gaby’s selection of ‘University Episode’ in the ‘Type’

5.2. THE APPROXRELAX SYSTEM 102

Figure 5.4: ApproxRelax query set-up.

drop-down. The fact that Gaby designated this episode as an educational episode

and selected ‘Information Systems’ from the ‘Subject’ drop-down gives rise to con-

junct C2. Because she ticked the ‘Fetch similar or related subjects?’ checkbox, this

conjunct additionally has the ‘RELAX’ keyword applied to it by the system.

Having clicked ‘Next’, Gaby is presented again with the screen in Figure 5.4.

Gaby now clicks the ‘Create an occupational episode’ image and is presented with

the screen shown in Figure 5.6. As this is not the first episode of the query, there

is a ‘Link from previous episode’ drop-down, which allows the user to specify the

way in which the previously specified episode is related to the one currently being

specified. The possible choices here (in the current prototype) are next, next+,

prereq and prereq+, which are displayed in the drop-down using more user-friendly

descriptions: ‘next episode’, ‘next or subsequent episode’, ‘direct prerequisite’, and

‘direct or indirect prerequisite’.

Gaby selects the ‘next episode’ option and ticks the ‘Flexible matching of the link

between this episode and the previous one?’ checkbox. From the ‘Type’ drop-down

menu she is able to make a choice from the Occupational episode types, and she

5.2. THE APPROXRELAX SYSTEM 103

Figure 5.5: Constructing an Educational episode query template.

5.2. THE APPROXRELAX SYSTEM 104

selects ‘Work Episode’. From the ‘Job’ drop-down menu she is able to make a choice

from different jobs (as sourced from the SOC taxonomy mentioned in Section 5.1).

Gaby selects ‘Software Professionals’ and ticks the ‘Fetch similar or related occupa-

tions?’ checkbox. She has now finished constructing her query and clicks the ‘Done’

button. At this point the system generates internally the following query conjuncts:

APPROX(?A,next,?B) [C3]

(?B,type,WorkEpisode) [C4]

RELAX(?B,job.type,SoftwareProfessionals) [C5]

Conjunct C3 links the query episode set up previously (denoted by ?A) to this sec-

ond episode (denoted by ?B). It contains the selection made by Gaby in the ‘Link

from previous episode’ drop-down. Additionally, as Gaby has ticked the ‘Flexible

matching . . . ’ checkbox, C3 has the ‘APPROX’ keyword applied to it. Conjunct

C4 is generated from Gaby’s selection of ‘Work Episode’ in the ‘Type’ drop-down.

The fact that Gaby designated this episode as an occupational episode, and selected

‘Software Professionals’ from the ‘Job’ drop-down gives rise to conjunct C5. Since

Gaby ticked the ‘Fetch similar or related occupations?’ checkbox, C5 additionally

has the ‘RELAX’ keyword applied it. The system provides the facility for the user

to view the details of previously-constructed query templates, as may be seen on

the right-hand side of Figure 5.6; more about this facility is detailed in the next

paragraph.

The next screen that Gaby is presented with is shown in Figure 5.7. It allows

the user to view at a glance the episode query templates making up their query (this

is identical to the facility seen on the right-hand side of Figure 5.6) and allows the

user to view previously-constructed query templates whilst in the process of creating

their query. The type of each episode (educational or occupational) is immediately

clear, as denoted by the image. In Figure 5.7, the second image has been clicked

(its number is highlighted in red) and the information pertaining to Gaby’s second

query template is displayed, namely, that the link from the previous episode is via

the ‘next episode’ link and has been approximated, that it is a ‘Work Episode’ and

that the job is ‘Software Professionals’, which has been relaxed. Gaby can now click

on the ‘cog’ image (which has the relevant tooltip) to execute her query.

Gaby is now presented with the screen shown in Figure 5.8, which displays

5.2. THE APPROXRELAX SYSTEM 105

Figure 5.6: Constructing an Occupational episode query template.

query results ranked in order of increasing distance from the non-approximated,

non-relaxed version of her query.

The query results are derived incrementally and one screenful at a time is dis-

played to the user, on their request. For each result, an avatar representing the

timeline’s owner is displayed, as well as their name, the episode in their timeline

which matches the last episode query template of the user’s query, the distance at

which this result has been retrieved, and an automatically generated summary of

the timeline’s owner and contents of their timeline. The latter description is dis-

played to give the user an overview of the matching timeline so that they can decide

whether they wish to explore it in more detail.

At present, this is as far as the ApproxRelax prototype goes in terms of displaying

query results. Missing from the current ApproxRelax prototype are abilities for

querying additional classifications according to the NQF (for Educational episodes)

and SIC (for Occupational episodes) taxonomies mentioned in Section 5.1, and for

formulating query templates for Personal and Other episode types; this could be

5.2. THE APPROXRELAX SYSTEM 106

Figure 5.7: Viewing episode query templates.

5.2. THE APPROXRELAX SYSTEM 107

Figure 5.8: Viewing the query results.

5.3. COMPARISON WITH L4ALL’S “WHAT NEXT” 108

part of future work.

The query answers underlying the GUI view of Figure 5.8 are shown in Table 5.1,

where the answers produced for each individual conjunct are shown in the first five

columns. We recall that the query is as follows:

(?A,?B) <-

(?A,type,UniversityEpisode), [C1]

RELAX(?A,qualif.type,InformationSystems), [C2]

APPROX(?A,next,?B), [C3]

(?B,type,WorkEpisode), [C4]

RELAX(?B,job.type,SoftwareProfessionals) [C5]

In the second, third and fifth columns of Table 5.1, the edit or relaxation distance of

the answers is shown as the value of the attribute ‘D’. The final column shows the

overall query answers, in order of non-decreasing total distance. The conjunct answer

tuples that contribute to the final answer tuples are italicised and are subscripted

with the ordering of the final answer tuple (i.e. subscript i denotes the ith final

answer tuple).

5.3 Comparison with L4All ’s “What Next”

A fundamental difference between L4All ’s “What Next” facilities and the Approx-

Relax prototype is that with ApproxRelax users can pose search queries that are

different from their own timeline, e.g. where some episodes in their timeline are

not included in the search query, or if included they need not be approximated, or

where there are episodes in the search query not related to their own timeline. The

problem of the top-ranked timelines in L4All being very similar to the user’s own

timeline is avoided by not requiring that all of a user’s timeline is matched against

the timeline data.

Relaxation in ApproxRelax is also more flexible than in L4All : in L4All the

information about each episode is encoded as a single token and the same depth of

classification is applied to all types of episodes for similarity matching, whereas in

ApproxRelax each episode query template results in several query conjuncts each of

which can be individually approximated or relaxed.

5.3. COMPARISON WITH L4ALL’S “WHAT NEXT” 109

?A ?A, D ?A, ?B, D ?B ?B, D ?A, ?B, D

dan1579 dan1, 0579 dan1, dan2, 05 dan25 liz2, 01 liz1, liz2, 0
liz1126 liz1, 0126 dan2, dan3, 0 dan37 liz3, 02 liz1, liz3, 1
liz44 al1, 038 dan3, dan4,0 dan49 al2, 23 al1, al2, 2
al138 liz4, 24 liz1, liz2, 01 liz21 liz5, 646 liz4, liz5, 8

liz2, liz3 ,0 liz32 al3, 88 dan1, dan2, 8
liz3, liz4, 0 liz546 dan2, 85 liz1, liz5, 9
liz4, liz5, 04 al23 dan3, 87 dan1, dan3, 9
al1, al2, 03 al38 dan4, 89 al1, al3, 9
al2, al3, 0 dan1, dan4, 10
dan1, dan3, 17

dan2, dan4, 1
liz1, liz3, 12

liz2, liz4, 1
liz3, liz5, 1
al1, al3, 18

dan1, dan4, 29

liz1, liz4, 2
liz2, liz5, 2
liz1, liz5, 36

Table 5.1: Evaluation of the query

5.3. COMPARISON WITH L4ALL’S “WHAT NEXT” 110

As demonstrated in the example of the previous section, each episode in Approx-

Relax is encoded within a query by a conjunct for the type of the episode and up to

two conjuncts for episode classification. A consequence of this finer level of repre-

sentation is that each classification can be relaxed independently, and that answers

resulting from fewer relaxations will automatically be ranked higher by the system.

For example, if the depth of episode classification is set to 2 in L4All, then all clas-

sification taxonomies are relaxed to that level and all answers are considered to be

equally relevant to the user (modulo the similarity matching). This corresponds to

answers in ApproxRelax of distance up to 4 times the cost of applying the relax-

ation operations (configured in the evaluation to be 2) from the original query. In

contrast, ApproxRelax will return answers ranked by their distance, so that answers

resulting from fewer relaxations will be ranked higher than those using more.

An evaluation of ApproxRelax compared with L4All was undertaken with two

lifelong learning practitioners (see [113] for details). These two practitioners reported

that they found it “much more useful” to be able to explicitly set up a search query

in ApproxRelax rather than using the built-in similarity matching of L4All based on

the user’s whole timeline. They also found it helpful that ApproxRelax allows users

to specify what kind of episode they are looking for, for inspiration; for example, as

in conjunct C5 above.

Returning to the other issues identified at the end of Section 5.1, the problem

of the user having to decide on the level of classification for episode comparisons is

avoided in ApproxRelax because relaxation of episode types is performed automati-

cally by the system, with timelines containing episodes matching the user’s query in

more detail being ranked higher than those matching at higher levels of classification

(everything else being equal). Thus, there is no need for the user to have detailed

knowledge of the classification hierarchy and to make a choice of which level should

be applied for episode comparisons.

The problem of finding the ‘best’ alignment will remain difficult. However, be-

cause each episode query template is represented by several query conjuncts in Ap-

proxRelax, rather than as a single token in L4All, similarity is more finely measured.

Furthermore, the user can specify in ApproxRelax whether or not they would like

particular episodes to be matched exactly.

5.4. CONCLUDING REMARKS 111

5.4 Concluding remarks

Facilitating the collaborative formulation of learning goals and career aspirations has

the potential to enhance learners’ engagement with the lifelong learning process [25,

80, 81]. The L4All system offers similarity matching over learners’ timelines in order

to identify possible choices for future learning and professional development. Here,

we have explored how supporting query approximation and query relaxation can

provide greater flexibility in users’ querying of heterogeneous timeline data.

We have described a prototype system encompassing query approximation and

query relaxation called ApproxRelax which provides users with a graphical facility for

incrementally constructing search queries over learners’ timelines. We have described

how the system can be used to construct conjunctive regular path queries over

timeline data and metadata, and to allow approximation or relaxation to be applied

to selected parts of the user’s query, showing how the system is able to return results

in ranked order of their distance from the original query.

In a small evaluation (see [113]), ApproxRelax returned more results deemed

relevant by two lifelong learning practitioners than L4All. As a result, there may be

an opportunity for further work in this area, such as the extension of the ApproxRelax

system by undertaking engineering enhancements to render it usable in a multi-user

environment under heavy transactional loads, as well as the addition of features such

as the ability for users to create timelines, query additional classifications according

to the NQF (for Educational episodes) and SIC (for Occupational episodes), and to

visualise the timelines returned.

In the next chapter, we discuss our final implementation of query approximation

and relaxation, in a generic application setting, describing the system architecture,

data structures and query processing algorithms.

CHAPTER 6

The Omega System

In the previous chapter, we described our initial implementation of approximated

and relaxed querying within the ApproxRelax prototype system, restricting our focus

to the user-facing features of ApproxRelax. We also presented a qualitative case

study showing how ApproxRelax overcame problems in a previous system in the

domain of lifelong learning.

In this chapter we present Omega, an implementation of approximation and re-

laxation of conjunctive regular path queries. We present our system architecture

in Section 6.1, followed in Section 6.2 with an introduction to the collections li-

brary used in Omega. In Section 6.3 we provide an overview of Sparksee, which

we use as our data store, along with the main API methods used in our implemen-

tation. This is followed with a description of how we create our data graphs in

Section 6.4. Section 6.5 describes the initialisation of a query conjunct, encompass-

ing both the construction of the associated automaton and the initialisation of the

query conjunct’s data structures. This is followed in Section 6.6 by a description of

the algorithms used in the evaluation of a query conjunct. In Section 6.7 we discuss

approaches followed by other implementations of regular path queries, and end the

chapter with some concluding remarks in Section 6.8.

112

6.1. SYSTEM ARCHITECTURE 113

6.1 System architecture

Figure 6.1 illustrates the architecture of the Omega system. Sparksee1 (formerly

known as DEX) is used as the data store. The development was undertaken using

the Microsoft .NET framework. The system is comprised of four components: (i)

the console layer, in which queries are submitted, and which displays the results;

(ii) the system layer in which query plans are constructed and executed; (iii) the

Sparksee API (C#) which provides an interface for invoking the required data access

methods to the data store; and (iv) the data store itself.

Figure 6.1: System architecture.

Query evaluation commences when Query submitter invokes Query manager,

1http://sparsity-technologies.com

http://sparsity-technologies.com

6.1. SYSTEM ARCHITECTURE 114

passing it a query that is to be evaluated. Query manager invokes Query Tree builder

to construct the query tree, comprising inner nodes representing join operators and

leaf nodes representing individual query conjuncts. The query tree is constructed

using standard methods [127].

Query Tree builder calls Conjunct builder to construct each leaf node of the query

tree. Query manager next passes the query tree to Query Tree initialiser, which

traverses the query tree in a top-down manner, beginning at the root. Whenever

Query Tree initialiser encounters a leaf node in the query tree, it invokes Conjunct

initialiser on that conjunct. This in turn invokes NFA builder to construct the

automaton, MR, corresponding to the conjunct’s regular expression. If the conjunct

is approximated or relaxed, then NFA manager is invoked to produce an approximate

or relaxed automaton (AQ or MK
Q respectively), with the relevant edit or relaxation

operators applied; this is discussed further in Section 6.5.1. For the construction of

a relaxed automaton, NFA manager interacts with Ontology manager, which stores

the extended reduction of the ontology2.

Query manager then invokes Query Tree evaluator. Query Tree evaluator tra-

verses the query tree. If the current query tree node is a leaf, the ranked answers

for the query conjunct are computed by invoking Conjunct evaluator. This module

constructs the weighted product automaton, H, of the conjunct’s automaton with

the closure of the data graph, G. APPROX queries in Omega will use the closure

of G as the latter is materialised.

The construction of H is incremental, with Conjunct evaluator invoking Sparksee

manager to retrieve only those nodes and edges of G that are required in order to

compute the next batch of k results (for some predefined value of k, default 100).

If the current query tree node is a join, Query Tree evaluator works in conjunc-

tion with Join manager to perform a ranked join of the answers returned thus far by

its two child nodes. The join algorithm used is that described in [67], itself adapted

from [68], and we provide here a brief overview. The query tree supports an Iterator

interface, implementing the Open procedure and the GetNext function. The evalu-

ation of the query commences by invoking the query tree’s Open procedure, which

initialises the internal structures needed for each inner node and each leaf node.

2The primary motivation for basing our implementation on an NFA-oriented approach is to
be able to execute uniformly both APPROX and RELAX queries. Additionally, this aligns the
implementation closely with our theoretical NFA-based approach presented in Chapters 3 and 4.

6.2. THE C5 GENERIC COLLECTION LIBRARY 115

Evaluation of the query commences by the invocation of GetNext on the root node.

GetNext cascades further down the tree until a conjunct node is reached. GetNext

on a conjunct node computes the answers for the conjunct in order of non-decreasing

distance. The query tree is thus traversed depth-first, with GetNext invoked down

the tree, and results returned on the way up. During this process, the answers from

each conjunct undergo a natural join operation with the answers of their sibling

conjunct node upon invocation of their parent node’s GetNext function. For each

pair of tuples that are joined, their individual distance values are added to obtain

the distance value of the resulting tuple. The results from this join operation are

then pipelined upwards, providing input for the next level’s join operation and so

on, until the root of the tree is reached. Once the root of the query tree has been

reached, the processing terminates and the list of answers now holds the next k

results, ranked by increasing distance. Query manager passes this list to Result

manager which displays the results in ranked order.

6.2 The C5 Generic Collection library

The importance of using optimised data structures with regard to our required access

patterns is crucial in terms of performance. The early version of Omega used data

structures that came as part of the .NET framework (version 4.0). According to the

language specification, most of the native .NET data structures re-allocate items in

an array by copying them into a new, larger array, which leads to a performance

penalty when executing our algorithms; these are detailed later on in this chapter.

The Omega implementation makes extensive use of data structures provided

by the C5 Generic Collection library3. This library was written by researchers

at the IT University of Copenhagen, and provides optimised collection-based data

structures for C#. The comprehensive manual lists the time complexity for every

data structure and method. Below, we detail the structures used in Omega and

their time complexity:

• HashSet: This collection is a set of items (of some type T) using a hash

table with linear chaining. Both the expected time for lookups and expected

3http://www.itu.dk/research/c5/

http://www.itu.dk/research/c5/

6.3. THE SPARKSEE DATA MODEL AND API 116

amortised time for updates is O(1). Adding an item returns a boolean value

indicating whether or not the insertion was successful; attempting to add a

duplicate value returns false; we make use of this feature in Section 6.6.1.

• HashedLinkedList: This collection corresponds to an ordinary linked list but

additionally maintains a hash table in order to optimise item lookups within

the list (thus, lookups by item value are O(1)). Items are of some type T , and

are added to the end of the list in O(1) time and removed from the end in

O(1) time. Additionally, this collection does not allow duplicate values to be

stored.

• HashDictionary: This collection is a hash table of typed (key,value) pairs;

the key is of some type T , and the value is of some type T ′, where T and T ′

may or may not be the same type. Accessing an entry by key, entry insertion

and deleting an entry by key all take expected time O(1).

6.3 The Sparksee Data Model and API

For our data store, we use Sparksee4, which supports a labelled directed attributed

graph data model. The two main structures used in our implementation are nodes

and edges, each of which has a pre-created type — this is a label, of string data type

— and a unique object identifier, oid, of long data type, which is used to identify

uniquely the node or edge. Edge types may be defined to be directed or undirected

when they are first created. Associated with each node and edge are zero or more

attributes, which are key-value pairs; the value may be of any primitive data type.

The main Sparksee API functions used in Omega are as follows:

• Neighbors: takes as arguments a node n and edge type t, and returns the set

of nodes connected to n via an edge of type t. The direction of the edge may

optionally also be specified, so that only outgoing or incoming neighbouring

nodes of n are returned.

• Heads: takes a set of edges E, and returns the set of nodes which are the

target of an edge in E.

4http://sparsity-technologies.com

http://sparsity-technologies.com

6.4. CREATING DATA GRAPHS IN OMEGA 117

• Tails: is analogous to Heads, except that nodes which are sources of edges in

E are returned.

• TailsAndHeads: returns the union of Heads and Tails.

To store the data, Sparksee uses a combination of inverted indices and bitmap

vectors [96]. Inverted indices are used either to provide a fast access path to the

type of the node or edge given by the oid, or to the nodes connected to the edge

represented by the oid, or the attribute value on the node or edge represented by

the oid. The latter are then linked to bitmap vectors which are used to store oids

representing respectively in each case, either all the nodes and edges in the graph

of the given type, or all the edges connected to the node, or all the nodes and edges

in the graph having the attribute value. The bitmap vectors are compressed by

grouping the bits into 32-bit clusters and then storing only those clusters with at

least one bit set, and, additionally, compressing long sequences of zeroes. The maps

— the inverted indices — use a B+ tree implementation.

To improve the performance of the Neighbors function, an indexing option may

be set when creating an edge type t, resulting in the creation of an index entry

whenever an edge of type t is created between any two nodes. Although there is

a small performance penalty incurred when creating such edges, this is more than

compensated for when executing the Neighbors function, in our experience, as we

are optimising for applications where reads greatly dominate writes.

Additionally, both node- and edge-level attributes may also be configured to

be indexed when they are created (the index stores all oids associated with the

attribute’s value); this improves performance when retrieving a node or an edge by

an associated attribute.

Full details regarding Sparksee may be found in [96, 97] and the User Manual.5

6.4 Creating data graphs in Omega

As it is mandatory in Sparksee for each node to have a type, and as our graph data

model does not assume that nodes are typed, we create all of our nodes to be of the

same Sparksee type, ‘node’. All of our nodes have one Sparksee attribute, of string

5http://www.sparsity-technologies.com/downloads/UserManual.pdf

http://www.sparsity-technologies.com/downloads/UserManual.pdf

6.5. CONJUNCT INITIALISATION 118

data type, representing the node label (which is unique in the data graph G). This

attribute is created with indexing enabled.

We create multiple Sparksee edge types, all of which are defined to be directed

edge types with indexing enabled. Specifically, for each edge in G having label l ∈ Σ,

two Sparksee edges are created: (i) one having type l, and (ii) one having type ‘edge’

with an associated indexed string-valued attribute corresponding to l.

We introduce the generic ‘edge’ type to counter a limitation of the Neighbors

function, which requires the type of the edge to be provided as an argument, in order

to allow us easily to retrieve multiple types of edges simultaneously. For instance,

in Figure 5.2 there is a ‘next’ edge from the node ‘liz2’ to the node ‘liz3’, and thus

both a ‘next’ edge type and the generic ‘edge’ type with an attribute ‘next’ would

be created between these nodes.

On the other hand, for each edge in G having the type label, only one Sparksee

edge is created, whose type is ‘type’. As the purpose of the type label is very

specific (expressing class membership) in contrast to all the labels in Σ, this is

done to distinguish the former from the latter, enabling us to test the effects of, for

example, excluding the type label from approximation operations. In cases which

require the retrieval of all types of edges adjacent to a node, we retrieve all ‘edge’

edges, followed by all type edges.

6.5 Conjunct initialisation

The initialisation of a query conjunct (X,R, Y) is comprised of two main elements:

the construction of the associated automaton (one of MR, AQ or MK
Q), and the

initialisation of its data structures prior to the evaluation of the conjunct. We

discuss each in detail here.

6.5.1 Construction of the automaton

We remind the reader that we described the automata, MR, AQ and MK
Q , in detail

in Chapter 3. For all conjuncts, an automaton (NFA) MR is first constructed from

regular expression R using standard techniques. Then, if the conjunct is prefixed

by APPROX or RELAX in the query, additional transitions and states are added,

6.5. CONJUNCT INITIALISATION 119

along with the removal of ε-transitions, to form AQ or MK
Q respectively. As the

automaton is weighted, the removal of ε-transitions may result in final states having

an additional, positive weight. For state s, we denote this weight by weight(s). We

note that in this thesis, weight is synonymous with cost.

The NFA is represented as a set of transitions (s, a, c, t), where s is the ‘from’

state, t is the ‘to’ state, a is the label, and c is the cost. To implement the automaton,

we use the HashDictionary data structure introduced in Section 6.2, where the key

is an integer representing a ‘from’ state s, and the value is a HashedLinkedList

of tuples representing the transitions outgoing from s. Each tuple comprises an

integer representing the ‘to’ state t, a string representing the label a, and an integer

representing the cost c. The tuples in a HashedLinkedList are stored in order of

ascending cost, and there are no duplicate transitions; i.e. transitions with the same

‘to’ state and label.

If the conjunct is in APPROX form and either the insertion or substitution

edit operation has been applied, this will result in many transitions in the NFA

for each such operation, one transition for each label in Σ ∪ Σ− ∪ {type,type-}.
Thus, in order to render our automaton more compact, we represent the insertion

or substitution of all the labels as a single transition, represented by the ‘wildcard’

label ∗.
If X (respectively, Y) is a constant c, we annotate the initial (resp. final) state

with c; otherwise we annotate the initial (resp. final) state with the wildcard symbol

matching any constant.

6.5.2 Initialisation

Pseudocode for the initialisation of a conjunct first appeared in [67]. However, in

practice, its performance when applied to larger graphs proved to be inefficient,

owing to having to enqueue every node in a graph G. We therefore present here

an amended version (the Open procedure), which incorporates several modifications

to address the problem of needing to enqueue every node in G; we discuss the

modifications under the paragraphs Cases 1 - 3 below.

After constructing the appropriate automaton, the Open procedure evaluates the

conjunct by traversing the automaton and the data graph G simultaneously.

6.5. CONJUNCT INITIALISATION 120

The main data structure used in the evaluation of the query conjunct is a global

dictionary DR. For implementing DR, we use the HashDictionary introduced in Sec-

tion 6.2. Each key is a pair (d, f) of values, where d represents an integer distance

and f represents a boolean flag denoting the final or non-final tuples at that dis-

tance. The value associated with each key, implemented using a HashedLinkedList,

comprises tuples of the form (v, n, s, d, f), where d is the distance associated with

visiting node n in state s having started from node v, and f is a flag denoting

whether the tuple is ‘final’ or ‘non-final’, with the latter being the initial value for

f 6. More details regarding the usage of ‘final’ and ‘non-final’ tuples are discussed in

Section 6.6.1, but, briefly, a ‘final’ tuple is one corresponding to a completed run in

the product automaton H (owing to having reached a final state in the automaton),

and thus will, when dequeued, be an answer, whereas a ‘non-final’ tuple is still in

the process of being evaluated.

Tuples are always added to, and removed from, the head of the linked list. From

Section 6.2, adding any tuple to DR takes O(1) and removing it takes O(n), where

n is the number of keys in DR (at most twice the number of distances in DR), as all

the keys need to be scanned to determine the current minimum distance.

We maintain a global list answersR containing tuples of the form (v, n, d), where

d is the smallest approximation distance of this answer tuple to the query and

ordered by non-decreasing value of d. This list is used to avoid returning again

(v, n, d′) for any d′ ≥ d. A global set visitedR is also maintained, storing tuples of

the form (v, n, s) representing the fact that node n of G was visited in state s having

started the traversal from node v. Both answersR and visitedR are initialised to

the empty list.

We distinguish between three cases in the Open procedure:

(Case 1) If the conjunct is of the form (C,R, ?Y) where C is a constant, we

begin the traversal at the node in G having the attribute value C.

(Case 2) If the conjunct is of the form (?X,R,C), the conjunct is transformed to

(C,R−, ?X). In R− each symbol in R is inverted. This can be done by constructing

initially the NFA for R, and then reversing it to recognise R− as follows (see [145]):

(i) add a new state s, and, for each final state f , add a new ε-transition from f to

6The distance and the flag are stored in both the key and the tuple associated with the key as
this is useful for implementation-specific reasons.

6.5. CONJUNCT INITIALISATION 121

Procedure Open

Input: query conjunct (X,R, Y)
(1) construct NFA MR for R; initial state is s0

(2) transform MR into AQ (APPROX) or MK
Q (RELAX) if necessary

(3) visitedR ← ∅
(4) answersR ← ∅
(5) if conjunct is of the form (C,R, ?X) then

/* Let n be the node in G corresponding to C */

(6) if RELAX is being applied and C is a class node then
(7) foreach node m ∈ GetAncestors(n) do
(8) add(DR, (m,m, s0, 0, false))

(9) else
(10) add(DR, (n, n, s0, 0, false))

(11) else
/* the conjunct is of the form (?X,R, ?Y) */

(12) if s0 is final then
(13) if weight(s0) = 0 then
(14) foreach node n ∈ G do
(15) add(DR, (n, n, s0, 0, true))

(16) else
(17) foreach n ∈ GetAllNodesByLabel(s0) do
(18) add(DR, (n, n, s0, 0, false))

(19) else
(20) foreach n ∈ GetAllStartNodesByLabel(s0) do
(21) add(DR, (n, n, s0, 0, false))

6.5. CONJUNCT INITIALISATION 122

s; (ii) convert each final state f into a non-final state; (ii) change the initial state s0

to a final state; (iv) convert s into a final state; and (v) reverse the direction of all

transitions and invert all the labels. This reversal can be accomplished in linear time

starting from the NFA for R [145]. Thereafter, any additional states and transitions

due to the application of APPROX or RELAX are added. Thus, Case 2 reverts to

Case 1.

If the RELAX operator has been applied to the conjunct and C is a class node,

we also add to DR every node returned by the function GetAncestors (line 7). This

function returns all superclasses of C in order of increasing specificity so that they

are added to the value component (the HashedLinkedList containing the tuples)

of DR in that order. We want to process more specific classes first, given that nodes

representing more general classes will have larger degree (owing to transitive clo-

sure) and will lead to answers of greater cost; indeed, the higher-degree nodes may

never even get to be added to DR if the lower-degree nodes yield all the answers

needed. For example, using the second conjunct (C2) from the example given in

Section 5.2, RELAX(?A,qualif.type,InformationSystems), and referring to Dan’s

timeline graph in Figure 5.1 in Chapter 5, GetAncestors returns the nodes repre-

senting ‘Subject’, ‘Mathematical & Computer Sciences’ and ‘Information Systems’.

(Case 3) For a conjunct of the form (?X,R, ?Y), lines 12 to 21 are invoked in

order to limit the number of nodes in G added to DR. If the initial state s0 of the

NFA is not also a final state, the objective is to limit the nodes added to DR to those

from which there will be matching edges. The function GetAllStartNodesByLabel

(line 20), returning a set of nodes in G, takes as input a list of all labels on transitions

whose ‘from’ state is the initial state s0. Each label in the list is processed as follows

(the list of labels is in order of increasing cost):

• The directionality of the label is determined — i.e. whether it is an incoming or

an outgoing edge, or whether both incoming and outgoing edges are required

(as for the *-labelled transitions, introduced above).

• The set of object identifiers (oids) for the nodes having the relevant edge and

directionality (as determined above) are retrieved using the Sparksee functions

Heads, Tails and TailsAndHeads (introduced in Section 6.3) which provide

access methods by edge type and direction.

6.6. QUERY CONJUNCT EVALUATION 123

• Sparksee set operations are used to maintain a distinct set of nodes, which

means that the same node is not re-added to DR at a higher cost (this can

occur with the ‘*’ label).

Each node returned by GetAllStartNodesByLabel is subsequently added to DR

in line 21. We note that as the nodes are returned — and enqueued in DR — in order

of increasing cost, the nodes reached by transitions of lower cost will be evaluated

before those reached by transitions of higher cost.

If the initial state s0 of the NFA is also a final state, the weight(s0) variable

referred to in line 13 denotes the value of the final weight introduced in Section 6.5.1.

If weight(s0) = 0, then all nodes are answers at distance 0, which means that all the

nodes need to be enqueued (line 14). If, on the other hand, weight(s0) > 0, then

the function GetAllNodesByLabel (line 17) is invoked instead. This is identical to

GetAllStartNodesByLabel, except that it additionally returns all the remaining

nodes in the graph G. This is because these nodes may contribute to the list of

answers at a cost equivalent to the deletion of all edge labels in the path given by

R.

We have implemented the above two functions and the function for retrieving

all nodes in G (line 14) as coroutines in conjunction with the GetNext function

(discussed in Section 6.6.1), incrementally obtaining nodes in batches (the default

is 100 nodes at a time). We found that, as a result, the execution time of some

queries was reduced by half, since nodes not required to answer the user’s query are

not added to DR.

6.6 Query conjunct evaluation

The two functions concerned with the evaluation of a single query conjunct are

GetNext and Succ, which have previously been presented in [67, 115] and in Chap-

ter 3. We present here updated versions of both these functions, taking into account

optimisations, as well as presenting for the first time the detail of the NextStates

function. Additionally, we describe our physical implementation of these functions.

6.6. QUERY CONJUNCT EVALUATION 124

6.6.1 The GetNext function

The function GetNext returns the next query answer, in order of non-decreasing dis-

tance from the original query Q, by repeatedly removing the first tuple (v, n, s, d, f)

from the distance d list of DR until DR is empty (lines 1 and 2). If the removed

tuple is final (f is true) and the answer (v, n, d′) has not been generated before

for some d′, the triple (v, n, d) is returned (line 6) after being added to answersR

(line 5). If the tuple is not final, we add (v, n, s) to visitedR (line 9), and add

(v,m, s′, d + d′, false) to DR (line 11) for each transition
d′→ (s′,m) returned by the

function Succ(s, n) (invoked in line 10) such that (v,m, s′) 6∈ visitedR. If s is a

final state, its annotation matches n, and the answer (v, n, d′) has not been gener-

ated before for some d′, then we add the weight of s to d, mark the tuple as final,

and add the tuple to DR (line 13).

We now list some implementation aspects of GetNext.

• In lines 14 to 16, we incrementally add the next batch of initial nodes by

utilising a coroutine for (?X,R, ?Y) conjuncts, as introduced in Section 6.5.2.

If DR no longer contains any tuples at distance 0, we retrieve and add the next

batch of nodes from lines 15, 18 or 21 in the Open procedure. We refer to these

nodes as initial nodes on line 14 in GetNext.

• For the list visitedR, we use a HashSet structure, introduced in Section 6.2,

thus taking advantage of the O(1) lookup time. Lines 8 and 9 in practice are

executed as a single step, and the logic in lines 10 to 13 is only executed if the

item was added. This means that we never re-process a previously-processed

(v, n, s) triple; this situation may arise when (v, n, s) triples of monotonically-

increasing distances are created and added at lines 11 and 13 (we therefore

never process ‘duplicate’ tuples at a higher distance). When we used a struc-

ture with bag rather than set semantics in earlier versions of Omega, some

queries — in particular, those consisting of more complex paths and/or pro-

cessing large numbers of nodes with many matching edges resulting in many

intermediate tuples — failed to terminate owing to millions of duplicate tuples

being placed on DR.

• For the dictionary DR, we need a fast way to dequeue tuples. We recall that

6.6. QUERY CONJUNCT EVALUATION 125

dequeuing a tuple takes O(n), where n is the number of keys (this is at most

twice the total number of distances currently in DR) in the dictionary, as we

scan the keys of DR to find the current minimum distance. We note that

by keeping track of the current minimum distance, the complexity could be

reduced from O(n) to O(1). However, this is not necessary as, in practice, n

is small (never exceeding single digits in our experiments). We introduce the

notion of final and non-final tuples in order always to prioritise the dequeueing

of the ‘final’ tuples (rather than the ‘non-final’ ones) at the minimum distance

(if any exist), so that the answers may be returned earlier. Including this

refinement improved performance, and also ensured that some queries, which

had previously failed by running out of memory, completed.

• The list of answers (answersR), which both stores the answers and in which we

perform lookups to ensure answers are not duplicated, uses a HashDictionary

structure. The key of this structure is the string representation of the answer

— not including the cost — and the triple itself, containing the distance, is

the value.

• During the execution of a query, we only ever retrieve, process and store the

object identifier of a node (this is an oid, which is a long data type) in memory,

as opposed to its string name.

• In order to consume less memory, we use strings rather than objects to store all

the tuples — i.e. (v, n, s, d, ‘final′), (v, n, d) and (v, n, s) — decomposing and

recomposing the constituent components of any tuple when required. When

objects were used, some of the queries which resulted in many intermediate

tuples being found and enqueued either ran slowly or ran out of memory owing

to objects consuming more memory and extra logic being required for checking

equality of objects.

6.6.2 The NextStates function

The function NextStates(s) returns the set of states in the automaton reachable

from state s, along with the associated input a and cost c for each state in the

6.6. QUERY CONJUNCT EVALUATION 126

Function GetNext(X,R, Y)

Input: query conjunct (X,R, Y)
Output: triple (v, n, d), where v and n are instantiations of X and Y

(1) while nonempty(DR) do
(2) (v, n, s, d, final)← remove(DR)
(3) if final then
(4) if 6 ∃d′.(v, n, d′) ∈ answersR then
(5) append (v, n, d) to answersR
(6) return (v, n, d)

(7) else
(8) if (v, n, s) 6∈ visitedR then
(9) add (v, n, s) to visitedR

(10) foreach
d′→ (s′,m) ∈ Succ(s, n) s.t. (v,m, s′) 6∈ visitedR do

(11) add(DR, (v,m, s
′, d+ d′, false))

(12) if s is a final state and its annotation matches n and
6 ∃d′.(v, n, d′) ∈ answersR then

(13) add(DR, (v, n, s, d+ weight(s), true))

(14) if no distance 0 tuples in DR and more initial nodes available then
(15) foreach initial node n′ do
(16) add(DR, (n

′, n′, s0, 0, false));

(17) return null

set. In NextStates, we recall from Section 6.5.1 that the automaton is encoded as

a dictionary (using HashDictionary) containing the from state as the key, and a

hashed linked list as the value (using HashedLinkedList). The variable successors

is the hashed linked list (using HashedLinkedList) retrieved from the dictionary

where the key is the state s. We then add (line 4) the to state, label a and cost c,

all of which are obtained from the tuples within the linked list, to the nextstates

variable. The final operation, represented by the function OrderStates in line 5, is

to order nextstates first by ascending cost, and then by label in descending order

(so that the ‘*’ label is last in its cost group). This means the costliest labels are

processed last by Succ.

In an earlier version of the system, ε-transitions were not removed from the

automaton. However, this resulted in NextStates needing repeatedly to follow ε-

transitions until a non-ε-transition was found, whilst summing up the costs of the

6.6. QUERY CONJUNCT EVALUATION 127

intermediate ε-transitions. However, we found that the fastest performance was

achieved by removing ε-transitions [32], which is done as part of the creation of the

automaton.

Function NextStates(s)

Input: state s of NFA
Output: set of states in NFA that can be reached from state s, along with

the input a and cost c of reading a
(1) nextstates← ∅
(2) successors← NFA(s)
(3) foreach (s′, a, c) ∈ successors do
(4) add (a, s′, c) to nextstates

(5) return OrderStates(nextstates)

6.6.3 The Succ function

The Succ function was presented in [115] and in Chapter 3; briefly, this took as input

a node (s, n) of the weighted product automaton H and returned a set of transitions
a,d→ (p,m), such that there was an edge in H from (s, n) to (p,m) with label a and

cost d, where the function NextStates(s) (discussed in Section 6.6.2) returned the

set of states that could be reached from state s, along with the associated input a

and cost c for each state in the set.

In our updated Succ function, we explicitly only request those edges for node n

in G whose label corresponds to one of those returned by NextStates(s), thereby

using the transitions in the automaton to guide the selection of neighbouring nodes

in G. As it is possible for NextStates to return identical labels consecutively (for

example, label a at cost 0 for states si and sj), we also store the results of the

NeighboursByEdge function in U , so that an identical call to NeighboursByEdge

can be avoided.

The function NeighboursByEdge takes as input the oid of a node n from G and

a label, and returns a list of neighbouring node oids. If the label is not ‘*’, we invoke

the Sparksee function Neighbors to retrieve all neighbouring nodes for n connected

by an edge labelled with label, taking directionality into account. If, on the other

hand, the label is the ‘*’ label (we recall these are added to the automaton if either

6.7. OTHER IMPLEMENTATIONS 128

the insertion or substitution edit operation was included in the APPROX operator),

we first retrieve, using the Sparksee function Neighbors, all the edges labelled ‘edge’

for node n. Thus, in one call, we obtain all the non-type neighbouring nodes. We

then subsequently invoke Neighbors to retrieve all the edges labelled type. We do

this for both directions, in both cases. In each case, we iterate over the neighbouring

nodes, adding their oid to W (lines 6 and 7).

Function Succ(s, n)

Input: state s of NFA and node n of G
Output: set of transitions from (s, n) in H

(1) W ← ∅; U ← ∅
(2) prevlabel← null
(3) foreach (currlabel, successor, cost) ∈ NextStates(s) do
(4) if currlabel 6= prevlabel then
(5) U ← NeighboursByEdge(n, currlabel)

(6) foreach node m ∈ U do

(7) add the transition
cost→ (successor,m) to W

(8) prevlabel← currlabel

(9) return W

6.7 Other implementations

We now discuss the approaches taken by other implementations of regular path

queries, and contrast these with our work.

To our knowledge, the earliest implementation of regular path queries is DataGui-

des, presented by Goldman and Widom [43] and based on Lorel [1] by Abiteboul et

al., which uses an automaton-based approach. The NFA representing the graph is

converted to a DFA which is then minimised and subsequently used as an index. The

size of this index may become prohibitively large and, to mitigate this, Goldman and

Widom [44] present heuristics by which the index size may be reduced by merging

paths either with matching last labels or containing more than one instance of the

same label.

Zauner et al. [141] present RPL, a regular path language allowing conditional

predicates to be expressed over the nodes, edges, or nodes and edges appearing on

6.7. OTHER IMPLEMENTATIONS 129

paths within RDF data. The implementation, like ours, uses an automaton-based

approach.

The work undertaken by Koschmieder and Leser [82] resembles our work in terms

of the evaluation of regular path queries over large graph-structured data. The au-

thors introduce a technique taking advantage of labels that occur infrequently in a

graph. They present an algorithm which, when given a regular path query contain-

ing one or more instances of one of these infrequent labels, breaks down the original

query into a sequence of sub-queries so that each sub-query either begins or ends

with one of the infrequent labels. This has the effect of accelerating the query exe-

cution as a whole by exploiting the notion of high selectivity. The authors compare

their method — which uses a bi-directional search utilising indexes storing the num-

ber of occurrences of each edge label in the data graph — to the automata-based

methods, and present a comprehensive description of their implementation, with

results showing that their method is faster and benefits from being parallelizable.

In comparison with our work, their system only caters for exact queries, and relies

upon the presence of rare labels. However, a direction of future research could be

to incorporate into Omega the notion of query rewriting based on any rare labels in

a graph.

Cedeño and Candan [19] present a framework, R2DF , allowing weighted RDF

data to be queried in a cost-aware manner, and returning results ranked according to

cost; the motivation for this is to be able to query data in which factors such as trust

or validity play an integral part. This is accomplished by (i) the introduction of a

ranked RDF specification allowing triples to be augmented with a weight (or cost);

and (ii) a proposed extension to the SPARQL specification, SPARankQL, which

provides novel predicates expressing flexible paths between nodes and the capacity

to define ranked queries (in which the weights are used). Additionally, AR2Q, a

query processing engine supporting SPARankQL is introduced, which is constructed

over the ARQ implementation incorporated within the Jena framework. This work

bears some similarity with ours in that SPARankQL allows a flexible path to be

expressed. However, whereas our work allows the path to be expressed by a regular

expression which may then be mutated by a series of edit operations, SPARankQL

can only be used either to express no restrictions on paths from a node (so that all

edges from the node are matched) or to express restrictions on specified label/s of

6.8. CONCLUDING REMARKS 130

the path along with weights specifying an upper and lower bound.

Another implementation approach is described by Dey at al. [28], in which (ex-

act) RPQs are converted into either Datalog queries or recursive SQL. The imple-

mentation is able to imbue the answers with additional provenance-related informa-

tion.

An implementation exemplifying the reachability indexing approach for exact

CRPQs is described by Gubichev et al. [51].

At the end of Chapter 7, we compare the performance of Omega with the im-

plementations discussed in this section.

6.8 Concluding remarks

In this chapter, we presented in detail our Omega system, describing the system

architecture, how data graphs are created, the internal data structures used, and

how a query conjunct is initialised and thence evaluated, as well as describing in full

the algorithms used. We also discussed alternative implementations of regular path

queries, comparing these with our approach.

In the next chapter, we present performance results and analyses on two sets

of queries evaluated on two data graphs using Omega, and, additionally, provide a

performance comparison between Omega and the implementations discussed in this

section, along with optimisations designed to improve further the performance of

some of the poorly-performing queries.

CHAPTER 7

Query Performance Analysis

In this chapter, we present performance results from two evaluations using the

Omega system described in the previous chapter, each of which is concerned with a

different domain: (i) lifelong learners’ data derived from the L4All system (hence-

forth referred to as L4All data); and (ii) YAGO data, derived from DBPedia and

WordNet. These two datasets are used owing to the contrast between them in data

characteristics: the L4All data is sparse in that there are comparatively few con-

nections relative to its size, whereas YAGO is more densely-linked, yielding more

heterogeneous and semantically rich data, especially when combined with its ontol-

ogy. Moreover, the two ontologies also exhibit contrasting characteristics. We addi-

tionally describe an optimisation approach designed to improve the performance of

poorly-performing approximation queries.

In Sections 7.1 and 7.2, we present the L4All evaluation and YAGO evaluation,

respectively. In each section, we describe in detail the data graph, the associated

ontology and the queries used, concluding by presenting and discussing the experi-

mental results. We continue by providing a performance comparison in Section 7.3

between Omega and the implementations discussed in Section 6.7.

In Section 7.4, we describe by means of an empirical evaluation how the avail-

ability of simple statistics relating to paths in the data graph can be used to improve

131

7.1. THE L4ALL EVALUATION 132

the run-times of some of the poorly-performing queries from the performance evalu-

ations of the two datasets, before ending this chapter with some concluding remarks

in Section 7.5.

For both evaluations, the focus is on the performance of single-conjunct queries.

Multi-conjunct queries are not considered as we assume that a standard rank-join

method [68] is used for these, as detailed in [67]. However, detailed performance

evaluations of multi-conjunct queries will form part of future work.

All experiments were run on an Intel Core i7-950 (3.07-3.65GHz) with 6GB

memory, running Windows 7 (64 bit).

7.1 The L4All evaluation

Our first evaluation uses data from the L4All system, introduced in Chapter 5.

We remind the reader that the L4All system aimed to support lifelong learners in

exploring learning opportunities and in planning and reflecting on their learning.

The system allows users to create and maintain a chronological record — a timeline

— of their learning and work episodes. Each episode is (i) linked to a category by an

edge labelled type, (ii) linked to other episodes by either a next or a prereq edge

(indicating whether the later episode simply followed chronologically or whether the

the earlier episode was necessary in order for them to be able to proceed to or achieve

the later episode) and (iii) either linked to an occupational or an educational event,

respectively by means of a job or qualif edge, which in turn is classified in terms

of Educational Qualification Level or Industry Sector.

Table 7.1 shows the class hierarchies used in the ontology accompanying the

L4All data; the depth is the length of the longest path from the root to the leaf

nodes, and the average fan-out is the average number of children of each non-leaf

class. There is only one property hierarchy: the super-property isEpisodeLink has

next and prereq as subproperties. All the non-type properties in the data are

shown in Table 7.2.

7.1. THE L4ALL EVALUATION 133

Class hierarchy Depth Average fan-out

Episode 2 2.67

Subject 2 8

Occupation 4 4.08

Education Qualification Level 2 3.89

Industry Sector 1 21

Table 7.1: Characteristics of the class hierarchies in the L4All data graphs.

Property Domain Range

next Episode Episode

prereq Episode Episode

qualif Episode SBJ

level SBJ NQF

job Episode SOC

sector SOC SIC

Table 7.2: Properties in the L4All data graphs other than ‘type’.

7.1. THE L4ALL EVALUATION 134

7.1.1 Data

Our initial L4All data comprised five detailed timelines from real users. Each of

these timelines consisted of a mixture of educational and occupational episodes, and

varied in terms of the number of episodes contained within them, as well as the

classification of each episode.

We then scaled this data graph up by creating synthetic versions of the five real

timelines in order to obtain four data graphs of increasing size, called L1, L2, L3

and L4, containing, respectively, 143, 1,201, 5,221, and 11,416 timelines. Table 7.3

shows the characteristics of each data graph. All of the data, including the closure of

the graph, is materialised to disk. Included are all the nodes and edges of the graphs,

along with the edges induced by applying the transitive closure of the type edges,

as detailed in Chapter 3. Materialising the closure of the graph results in a 25 to 30

percent increase in the size of the data stored to disk. Both query approximation

and query relaxation are applied to the closure of the data graph. The non-type

properties shown in Table 7.2 also have defined domains and ranges, but as these

are not used in the our performance study, we do not discuss them further. A future

direction of research is to investigate an in-memory computation of the closure of

the data graph, thereby only storing the data graph itself on disk.

The synthetic timelines were generated by duplicating a real timeline and using

the ontology to alter the classification of each episode to be a ‘sibling’ class of its

original class, for as many sibling classes as are present. Each duplicated timeline re-

mained identical to the original in terms of the number of episodes, whether the type

of the episode was educational or occupational, and the manner in which episodes

were linked to each other. Thus, as the closure of the data graph increases in size,

the degree of the class nodes (i.e. the nodes with incoming type edges) increases

linearly. We see in Figure 7.1 that, as the size of the closure of the data graph

increases, the number of edges increases linearly with the number of nodes.

7.1.2 Queries

We executed 12 single-conjunct queries on the L4All data sets in order to evaluate

the performance of our APPROX and RELAX operators. Each query was first run

in ‘exact’ mode — i.e. neither APPROX nor RELAX is used — followed by versions

7.1. THE L4ALL EVALUATION 135

L1 L2 L3 L4

Nodes 2,691 15,188 68,544 240,519

Edges (data only) 10,724 63,979 300,523 1,009,051

Edges (closure) 19,856 118,088 558,972 1,861,959

Size (data only) 2.37 MB 11.1 MB 49.53 MB 169.9 MB

Size (closure) 2.99 MB 14.18 MB 64.51 MB 220.8 MB

Percentage increase (closure) 26.2% 27.8% 30.2% 29.96%

Table 7.3: Characteristics of the L4All data graphs.

Figure 7.1: The L4All data graph sizes (using the closure of the data graph).

7.1. THE L4ALL EVALUATION 136

of the same query containing either the APPROX or the RELAX operator. We

therefore ran 36 queries in total. We exclude queries 4, 5, 6 and 7 from further

discussion as running the exact form of these queries on even the smallest data

graph returned well over 100 results (for three of these, over 3,800 results were

found). Owing to the large number of exact results being returned for these queries,

neither the APPROX nor the RELAX operator was applied to them1. Table 7.4

lists the remaining 8 queries that we focus on here. Queries 1, 2 and 3 are derived

from the L4All case study detailed in Chapter 5, while queries 8 - 12 were additional

queries designed to stress-test our implementation.

7.1.3 Baseline experimental results

We used a cost of 1 for each approximation operation (insertion, substitution and

deletion). For RELAX, we applied rules 2 and 4 from Figure 3.6, also at a cost

of 1. We ran each query five times, discarding the first run as the cache warm-up.

After initialisation, each exact query was run to completion, in which all results

are obtained. On the other hand, each APPROX and RELAX run comprises the

following sequence: initialisation; obtain results 1–10 (‘batch 1’); obtain results 11–

20 (‘batch 2’); . . . ; obtain results 91–100 (batch 10)2. For exact queries, the average

time to return all answers was taken across runs 2 to 5. For APPROX and RELAX

queries, we took the average of each of the 10 batches across runs 2 to 5 to obtain

an average for each batch. We then computed the average over all batches. Some

of these queries yielded fewer than 100 results.

We show the number of results obtained per data graph for each query in Ta-

ble 7.5. For APPROX and RELAX queries yielding non-exact answers, we also

show in Table 7.5 the distances of the non-exact answers, as well as the number of

the answers at each non-zero distance in brackets (with the number of exact an-

swers comprising the difference). The letters ‘E’, ‘A’ and ‘R’ after the name of the

data graph in each row refer to the exact, approximated and relaxed versions of the

query denoted in the corresponding column. For example, query Q9/APPROX on

1As there is no cardinality estimation in Omega, it is not possible to predict the number of
exact results without executing the query.

2We envisage APPROX and RELAX queries being used to retrieve the top k results in an
incremental manner, hence our selection of ‘100’ as the maximum number of answers to retrieve.

7.1. THE L4ALL EVALUATION 137

Query Details

(Work Episode,type−,?X)

Q1 This query finds all episodes of type Work Episode.

(Information Systems,type−.qualif−,?X)

Q2 This query finds all episodes relating to qualifications of type Information Systems.

(Software Professionals,type−.job−,?X)

Q3 This query finds all episodes relating to jobs of type Software Professionals.

(Mathematical and Computer Sciences,type.prereq+,?X)

Q8
The intention of this query is to find all episodes of which educational episodes
of type Mathematical and Computer Sciences are a prerequisite. However, this
will not return any results as no such path exists (because the type label should
be type− and there should also be a label qualif− following it in the regular
expression; thus, this query tests the case for when there is an error in R to
exemplify the value of our APPROX and RELAX operators.

(Alumni 4 Episode 1 1,prereq*.next+.prereq,?X)

Q9
This query finds episodes that are linked to Alumni 4 Episode 1 1 through 0 or
more prereq edges, followed by one or more next edges, followed by one prereq

edge. This query tests the effects of having a lengthier R, starting from a node
of small degree, and where the user wishes to begin traversing from a particular
episode, which we assume would be a common goal.

(Librarians,type−,?X)

Q10 The intention of this query is to find all episodes relating to jobs of type
Librarians. However, the label job− is missing from the regular expression. This
query tests the effects of having a missing label in R, and once again exemplifies
the use of our APPROX and RELAX operators.

(Librarians,type−.job−.next,?X)

Q11 All episodes that follow episodes representing jobs of type Librarians are returned
as answers. This query exemplifies the use of the RELAX operator, as there are
relatively few episodes relating to jobs of type Librarians.

(BTEC Introductory Diploma and Certificate,level−.qualif−.prereq,?X)

Q12 The intention of this query is to find episodes for which having a BTEC

Introductory Diploma and Certificate qualification is a prerequisite. How-
ever, this will not return any results as all episodes denoting the qualification only
have chronological successors (and thus are not prerequisites for any episode), ex-
emplifying the use of the APPROX operator; the query also demonstrates the use
of the RELAX operator, as there are relatively few episodes relating to qualifica-
tions of type BTEC Introductory Diploma and Certificate.

Table 7.4: The L4All query set: Q1 - Q3 and Q8 - Q12.

7.1. THE L4ALL EVALUATION 138

data graph L2 (looking at row ‘L2-A’ and column ‘Q9’) returns 1 exact answer

(100-(32+67)), 32 answers at distance 1 and 67 answers at distance 2.

7.1.4 Analysis

Figures 7.2, 7.3 and 7.4, all of which use a logarithmic scale, show the average execu-

tion times for the exact, APPROX and RELAX versions, respectively, of queries 3,

8, 9, 10, 11 and 12 over the data graphs L1–L4. Queries 1 and 2 showed similar per-

formance to query 3. For completeness, we show in Table 7.6 the total initialisation

time and the total execution time (i.e. the sum of batches 1-10 for the APPROX and

RELAX versions) for these queries; the total initialisation time and total execution

time is computed as an average across runs 2 to 5.

Figure 7.2: Execution time (ms) – exact L4All queries.

For the exact queries shown in Figure 7.2, we see that queries 8 and 9 take

constant time for all the data graphs since at most a single answer is returned. The

sharp increase in execution time from L2 to L3 for queries 10 and 11 is caused by

the large increase in the number of answers (from 1 and 2 answers to 1,024 and

2,048 answers, respectively). Query 3 shows a more gradual increase in execution

time from L1 to L2 and L3, corresponding to the increasing number of answers

returned (returning 58, 1,090 and 3,104 answers, respectively). Query 12 shows a

steep increase owing to the manner in which the synthetic timelines were generated,

7.1. THE L4ALL EVALUATION 139

Q1 Q2 Q3 Q8 Q9 Q10 Q11 Q12

L1: E 873 136 58 0 1 1 2 0

L1: A 100 100 100 100 100 100 100 100

1 (42) 2 (100) 1 (32) 1 (7) 1 (12) 1 (100)

2 (67) 2 (92) 2 (86)

L1: R 100 100 100 0 12 100 100 59

1 (42) 1 (11) 1 (20) 1 (40) 1 (59)

2 (20) 2 (40)

3 (59) 3 (18)

L2: E 5,052 425 1,090 0 1 1 2 0

L2: A 100 100 100 100 100 100 100 100

2 (100) 1 (32) 1 (7) 1 (12) 1 (100)

2 (67) 2 (92) 2 (86)

L2: R 100 100 100 0 12 100 100 59

1 (11) 1 (20) 1 (40) 1 (59)

2 (20) 2 (40)

3 (59) 3 (18)

L3: E 21,168 1,964 3,104 0 1 1,024 2,048 0

L3: A 100 100 100 100 100 100 100 100

2 (100) 1 (32) 1 (100)

2 (67)

L3: R 100 100 100 0 12 100 100 59

1 (11) 1 (59)

L4: E 83,298 5,272 3,104 0 1 1,024 2,048 0

L4: A 100 100 100 100 100 100 100 100

2 (100) 1 (32) 1 (100)

2 (67)

L4: R 100 100 100 0 12 100 100 100

1 (11) 1 (100)

Table 7.5: Results for each query and L4All data graph.

7.1. THE L4ALL EVALUATION 140

Q3 Q8 Q9 Q10 Q11 Q12

L1: E 0.09 0.13 0.16 0.08 0.11 0.11

2.08 0.04 0.28 0.07 0.13 1.41

L1: A 0.12 0.18 0.24 0.09 0.15 0.15

7.29 27.78 361.25 11.21 34.94 12.59

L1: R 0.97 0.14 0.18 0.96 1.00 0.11

6.37 0.10 1.53 4.47 6.95 3.83

L2: E 0.10 0.13 0.16 0.09 0.10 0.11

39.39 0.04 0.28 0.07 0.12 1.41

L2: A 0.12 0.18 0.24 0.10 0.17 0.15

16.40 362.82 2,132.76 62.44 252.78 12.70

L2: R 0.97 0.14 0.18 0.96 0.99 0.12

5.94 0.10 1.42 18.78 20.98 3.81

L3: E 0.10 0.13 0.16 0.09 0.11 0.11

121.42 0.04 0.29 24.52 79.39 1.47

L3: A 0.13 0.19 0.24 0.10 0.15 0.15

30.90 1,092.57 13,138.05 9.92 18.47 12.68

L3: R 0.97 0.14 0.18 0.97 0.99 0.12

8.43 0.10 1.43 4.24 6.36 3.85

L4: E 0.10 0.14 0.17 0.09 0.11 0.11

122.94 0.04 0.29 24.80 80.37 162.57

L4: A 0.13 0.19 0.26 0.10 0.16 0.18

30.74 3,320.73 50,668.37 10.08 18.79 977.61

L4: R 1.00 0.15 0.19 0.99 1.02 0.12

8.41 0.10 1.48 4.26 6.50 254.72

Table 7.6: Total initialisation and execution times (ms) for each query run over the
L4All data graphs (initialisation time in italics).

7.1. THE L4ALL EVALUATION 141

Figure 7.3: Execution time (ms) – APPROX L4All queries.

Figure 7.4: Execution time (ms) – RELAX L4All queries.

whereby some nodes in the larger data graphs had far more edges than in the smaller

data graphs leading to more nodes being traversed and tuples being processed.

For the APPROX queries shown in Figure 7.3, queries 10 and 11 show a decrease

in the time taken for L3 and L4 compared with L2 which is caused by the fast

processing of sufficient exact results for the larger two data graphs; query 3 shows a

very minor increase of a few milliseconds in execution time. However, the APPROX

7.2. THE YAGO EVALUATION 142

versions of queries 8, 9 and 12 exhibit a sharp increase in the time taken to retrieve

the top 100 results. This is caused by a large number of intermediate results being

generated (due to the Succ function returning a large number of transitions which

are then converted into tuples in function GetNext and added to DR). We see that

in some cases, such as query 9, the query becomes an order of magnitude slower

when moving from one data graph to the next, even though the increase in the size

of each successive data graph is at most a factor of 6. This is caused by changes in

the connectivity patterns within the data, where the connections between nodes get

progressively more dense.

The RELAX queries 3, 8, 9, 10 and 11 shown in Figure 7.4 all exhibit a fairly

constant execution time across the data graphs. Query 12 shows an increase from

L3 to L4 for similar reasons to its APPROX version.

We note that these results are consistent with the data complexity results shown

in Proposition 4.1 for APPROX queries, and in Proposition 4.4 for RELAX queries,

which are detailed in Chapter 4, in that we can observe a sharp increase in the

execution time of some of the queries as the size of the data graph grows.

7.2 The YAGO evaluation

For our second evaluation, we used data from YAGO, the well-known semantic

knowledge base [75]. We selected this data graph on account of the presence of

differing connectivity patterns when compared with the L4All data — which is more

‘linear’ in structure owing to the timelines — in order to provide a contrasting basis

on which to evaluate the performance of our queries. Additionally, the associated

ontology differs from the L4All one in terms of breadth and depth.

7.2.1 Data

We downloaded the simpler taxonomy and core data facts from the YAGO website

(the SIMPLETAX and CORE portions) and imported these into our system.3

The resulting data graph consists of 3,110,056 nodes and 14,406,857 (17,043,938)

edges and consumes 1.57 GB (1.76 GB) of disk space, where the figures in brackets

3http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/

research/yago-naga/yago/downloads/

http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/downloads/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/downloads/

7.2. THE YAGO EVALUATION 143

denote the value for the closure of the graph (an increase of just over 12%). As for

L4All, the closure of the data graph is materialised to disk.

There is only one classification hierarchy in the YAGO data graph. The depth

(the length of the longest path from the root to the leaf nodes) is 2, and the average

fan-out (the average number of children of each non-leaf class) is 933.43.

Including the type property, YAGO uses 38 properties. There are two property

hierarchies, containing 2 and 6 subproperties respectively. The properties also have

domains and ranges defined, but since these are not used in the processing of the

queries, we do not discuss them further.

7.2.2 Queries

We executed 9 queries on the YAGO data in order to evaluate the performance

of our operators, APPROX and RELAX, just as we did for the L4All data. The

exact, APPROX and RELAX versions therefore give rise to 27 queries, for which

we calculated the timings as described in Section 7.1, with the edit and relaxation

costs the same as those used for the L4All evaluation. We exclude queries 7 and

8 from further discussion as running the exact form of these queries returned well

over 100 results. Owing to the large number of results, neither the APPROX nor

the RELAX operator was applied to them. Table 7.7 shows the remaining seven

queries.

7.2.3 Baseline experimental results

The number of results obtained for the queries over the YAGO data graph are shown

in Table 7.8. For each query, the exact version was run to completion, and the

APPROX and RELAX versions were run until the top 100 answers were retrieved.

The ‘?’ indicates instances where the system ran out of memory and hence failed

without returning any answers. For APPROX and RELAX queries yielding non-

exact answers, we additionally show the distances of the answers followed by the

number of answers in brackets.

7.2. THE YAGO EVALUATION 144

Query Details

(Halle, Saxony-Anhalt,bornIn−.marriedTo.hasChild,?X)

Q1 All people who are the children of people married to someone born in Halle,

Saxony-Anhalt are returned as answers. This query motivates the use of the
APPROX and RELAX, as extra answers are returned.

(Li Peng,hasChild.graduatedFrom.graduatedFrom−.hasWonPrize,?X)

Q2 The prizes won by people who graduated from the same institution as one of Li

Peng’s children are returned as answers. This query motivates the use of APPROX
as extra answers are returned, and also uses a more complex R.

(wordnet ziggurat,type−.locatedIn−,?X)

Q3 All entities located in a structure of type wordnet ziggurat are returned as an-
swers. This query motivates the use of APPROX and RELAX, as extra answers
are returned; in particular, RELAX as applied to the wordnet ziggurat subclass
is demonstrated as being very useful owing to wordnet ziggurat having a very
low type degree (3).

(?X,directed.married.married+.playsFor,?Y)

Q4 The purpose of this query is to find all pairs of people having some relationship
governed by a path expressing at least two marriages, preceded by a notion of
directing, and, finally, of playing for some sports team. There is an error in
R (something which is directed cannot itself be married to someone) and this
motivates the use of the APPROX operator. Furthermore, R itself describes a
long path. Also, as this query contains no constants, this query additionally tests
the effects of having to cater for the initialisation of a significant portion of the
nodes in G (there are 41,811 directed edges).

(?X,isConnectedTo.wasBornIn,?Y)

Q5 The purpose of this query is to find all entity-people pairs where the entity is
connected to some location in which the person was born. There is thus an er-
ror in R, which therefore motivates the use for APPROX and RELAX. As this
query contains no constants, this query also tests the effects of having to cater
for the initialisation of a significant portion of the nodes in G (there are 33,834
isConnectedTo edges).

(?X,imports.exports−,?Y)

Q6 This query finds all country pairs, where the first country imports something that
the second country exports. As this query contains no constants, this query tests
the effects of having to cater for the initialisation of a portion of the nodes in G;
this time, fewer than in previous queries, as there are only 391 imports edges.

(United Kingdom,(livesIn−.hasCurrency)|(locatedIn−.graduatedFrom),?X)

Q9 The query has an error in R: the hasCurrency label is incorrect in the context
of the query (as there is nothing that lives in the United Kingdom and has a cur-
rency); and the graduatedFrom label’s direction is incorrect (as there is nothing
located in the United Kingdom which has also graduated from some institution).
This query once again exemplifies the use of our APPROX and RELAX operators,
with R consisting of a disjunction.

Table 7.7: The YAGO query set: Q1 - Q6 and Q9.

7.2. THE YAGO EVALUATION 145

Q1 Q2 Q3 Q4 Q5 Q6 Q9

E 13 2 0 0 0 3,459 0

A 100 100 100 ? ? 100 100

1 (87) 1 (98) 1 (5) 1 (100)

2 (95)

R 15 2 100 0 100 100 100

1 (2) 1 (100) 1 (100) 1 (100)

Table 7.8: The number of results per query for the YAGO data graph.

Q1 Q2 Q3 Q4 Q5 Q6 Q9

E 0.12 0.13 0.10 50.20 38.37 0.55 0.16

1.06 0.39 0.09 656.06 445.89 102.20 94.40

A 0.19 0.23 0.15 ? ? 0.58 0.21

13,284.15 25,614.40 1,965.80 ? ? 758.13 1,012.32

R 0.12 0.14 2.96 49.66 38.66 0.55 0.16

2.06 0.65 310.19 8,240.47 683.41 3.66 142.24

Table 7.9: Total initialisation and execution times (ms) for each query run over the
YAGO data graph (initialisation time in italics).

7.2. THE YAGO EVALUATION 146

Figure 7.5: Execution times (ms), YAGO data graph.

7.2.4 Analysis

Figure 7.5 shows the average execution times for queries 2, 3, 4, 5 and 9. Query

1 showed a similar performance to query 2; query 6 is similar to queries 4 and

5 in terms of query structure, but its APPROX form terminated, unlike these.

For completeness, we show in Table 7.9 the total initialisation time and the total

execution time (i.e. the sum of batches 1-10 for the APPROX and RELAX versions)

for queries 1, 2, 3, 4, 5, 6 and 9; the total initialisation time and total execution

time is computed as an average across runs 2 to 5. We observe that the longer

initialisation time for queries 4 and 5 – both of the form (?X,R, ?Y) – are due to

the fact that large numbers of nodes need to be added to DR in the Open procedure.

Moreover, the APPROX versions of queries 4 and 5 failed to terminate; this is

elaborated upon later.

For the exact queries shown in Figure 7.5, queries 2 and 3 execute quickly.

Queries 4 and 5 take longer to execute because their conjuncts are of the form

(?X,R, ?Y). Hence processing is initiated from a large number of nodes (41,811 and

33,834 respectively), and further traversal leads to large numbers of intermediate

results (owing to the Succ function returning a large number of transitions which

are then converted into tuples in function GetNext and added to DR). Query 9

takes longer to execute owing to its more complex regular expression (an alternation

consisting of two concatenated labels).

Referring to Figure 7.5, APPROX queries 2 and 3 exhibit poor performance

owing to a large number of intermediate results, while the APPROX form of query

7.3. PERFORMANCE COMPARISON 147

9 takes the same time as the exact version. APPROX queries 4 and 5 failed to

terminate as the system ran out of memory; this, too, is due to a large number of

intermediate results. However, applying the APPROX — or RELAX — operator

to conjuncts of the form (?X,R, ?Y) resulting in the approximation (relaxation) of

the path between any two nodes in the data graph may be of limited practical use.

Rather, we anticipate a conjunct of this form only being used as part of a multi-

conjunct query, preceded and succeeded by conjuncts containing a constant, just

as in queries executed as part of the qualitative evaluation described in Chapter 5.

In these cases, standard techniques such as ‘sideways information passing’ may be

used [117].

Regarding Figure 7.5, RELAX queries 2, 3 and 9 performed competitively, re-

turning more results for the latter two than their exact counterparts. The time

taken for RELAX query 4 to execute was the same as for the exact version (with no

extra results). RELAX query 5 returned results and executed faster than the exact

version; this is due to 100 results being found (by the application of rules 2 and 4

from Figure 3.6) and execution terminating sooner.

7.3 Performance comparison

We now compare the performance of Omega to that of other systems whose im-

plementation approaches were presented in Section 6.7, with the observation that

the comparison is not strictly like-for-like, owing to the other systems having been

benchmarked on different datasets and different hardware. We note that the perfor-

mance of all the exact queries on the Omega system is competitive with the expected

behaviour of native NFA-based approaches to regular path query evaluation [82], as

discussed below.

The implementation of the DataGuides system [43] by Goldman and Widom —

using an automaton-based approach — is no longer supported, and Koschmieder and

Leser [82] have reported that it compared unfavourably with their implementation.

Zauner et al. [141] present RPL, a regular path language for RDF data, and pro-

vide an automaton-based implementation. However, according to Koschmieder and

Leser [82], who compared their system against RPL, RPL was only able to process

efficiently tiny graphs. Koschmieder and Leser [82] report that queries executed by

7.3. PERFORMANCE COMPARISON 148

RPL against graphs both smaller and more sparse than our L2 graph required 16

GB of main memory and returned results in a few seconds, and that all graphs larger

than this were not able to be processed.

The search-based processing system of Koschmieder and Leser [82] breaks down

a query so that each resulting sub-query either begins with or ends with a rare label.

They conducted a performance evaluation using two real-world graphs, consisting of

50K nodes (340K edges) and 80K nodes (1 million edges), which are slightly smaller,

respectively, than the sizes of our L3 and L4 graphs (with their second graph being

more dense than ours). Experiments were also conducted on a series of artificially-

created graphs, all of which were sparse compared with ours (the maximum node

to edge ratio was 1:4, in contrast to ours, which has a ratio of 1:7 on average), and

none of which was as large as our YAGO graph (the sizes of these ranged from 1K

to 1 million nodes). Our queries perform very favourably against the results in [82],

in most cases exhibiting faster execution times; their queries took between 500 and

800 milliseconds to execute over the two real-world graphs.

We previously described the TALE method for approximate subgraph match-

ing [126] in Section 2.5. The paper describes experimental results using graphs

smaller than our L1 graph, our smallest graph.

The R2DF framework, presented by Cedeño and Candan [19], allows weighted

RDF data to be queried in a cost-aware manner. The authors conduct a performance

study over AR2Q using two graphs that have, respectively, 9K nodes (24K edges)

and 10K nodes (25K edges), both of which are smaller and more sparse than our

L2 graph.

The implementation described by Dey at al. [28], in which RPQs are translated

into either Datalog queries or recursive SQL, uses graphs ranging between 1.1K and

430K nodes, with the number of edges being approximately twice the number of

nodes. Our queries perform favourably against the results in [28], in which queries

using regular expressions of the form (a|b)+ took a few seconds to execute.

The reachability indexing approach underpinning the implementation presented

by Gubichev et al. [51] for evaluating CRPQs uses an extended version of the YAGO

dataset, YAGO2S [62], containing 100 million triples. Their queries — using single-

hop paths and the closure operator — performed favourably, taking a few millisec-

onds to 300 milliseconds to execute.

7.4. APPROXIMATED REGULAR PATH QUERY OPTIMISATION 149

7.4 Approximated Regular Path Query Optimi-

sation

In the previous sections, we presented performance results conducted on two data

graphs. Although we showed a reasonable baseline performance of exact queries

when compared with that of other state-of-the-art implementations, some approxi-

mated queries — in particular — performed poorly. We describe in this section an

optimisation approach designed to improve the performance of such queries.

In Section 7.4.1 we introduce path indexes, the concept underpinning our optimi-

sation approach. This is followed in Section 7.4.2 by a description of our optimisation

approach, detailing the queries selected and what statistics are required. We discuss

the experimental results in Section 7.4.3, and conclude this section with directions

for future work in Section 7.4.4.

7.4.1 Path indexes

Recent work [41, 108, 124] has shown that the presence of path indexes greatly

improves the performance of path-based queries, including RPQs.

Assume a path p in a data graph G = (VG, EG,Σ∪type) is given by the sequence

of edge labels (l1, l2, . . . , , ln) where n ≥ 0 and for each li, drawn from (Σ ∪ type),

either li ∈ EG or l−i ∈ EG. A path index is a data structure in G which returns all

pairs of nodes (v, n), where v, n ∈ VG, such that p is a (semi)path from v to n in

G. The work in [41, 108] shows how regular expressions can be compiled into path

queries, i.e. sequences of edge labels, so that RPQs may be able to be evaluated

efficiently through the use of path indexes. In particular, the authors describe how

the Kleene operator ‘*’ in an RPQ can be replaced by bounded recursion through

the use of a lower and an upper bound, so that query plans comprise just a union

of path queries.

Sumrall [124] presents a simple path-oriented index designed and implemented

using a B+ tree. Empirical evaluation with respect to the property graph database

Neo4j4 shows that the performance of path queries improves by several orders of

magnitude when using the index.

4http://neo4j.com/

http://neo4j.com/

7.4. APPROXIMATED REGULAR PATH QUERY OPTIMISATION 150

7.4.2 Approach and methodology

Taking the research on path indexes as an inspiration, we aim to establish whether

using simple statistics that estimate the number of answers to RPQs arising from

query approximation in our framework would be a promising direction to explore. In

particular, we focus on RPQs of the form (?Y)← (C,R, ?Y), where C is a constant.

We can use the techniques of [41, 108] to determine the number of pairs of nodes

in a graph matching the triple pattern (?X,R, ?Y), the number of distinct bindings

for the variable ?X, and also the actual values for the bindings of ?X5. For any triple

pattern (C,R, ?Y), we compute all the rewritten versions of the regular expression R

at each distance greater than zero required to retrieve at least 100 answers6 for the

query. Then, the statistics we use in our optimisation approach described below are,

for each rewritten query (?X, ?Y) ← (?X,R′, ?Y) of the original query: the total

number of answers returned; the unique bindings for ?X; and the average number

of answers per binding. Moreover, only the rewritten queries that contain C in their

answer set are considered.

The worst-performing queries arising from our performance analysis, described

in Sections 7.1 and 7.2, are the APPROX queries. Thus, we do not consider RELAX

queries for the purposes of this evaluation, but note that similar techniques may be

applied to these queries.

We selected the worst-performing terminating APPROX query from both the

largest L4All data graph, L4, and the YAGO data graph to use in our optimisation

evaluation.

The query from the L4All data graph is given by Q1 below (we note that this is

Q9 in Section 7.1), which took on average 4,930ms per batch to return 100 answers

in 10 batches consisting of 10 answers each. Executing the query returned 1 exact

answer, 32 answers at distance 1 and 67 answers at distance 2.

(?X) <- (Alumni 4 Episode 1_1,prereq*.next+.prereq,?X)

5We do not at this time consider the cost of determining these numbers and we leave as future
work the investigation of the trade-offs between the costs and benefits of the query optimisation
process itself.

6Following the same process used in Sections 7.1 and 7.2, we select ‘100’ to be the maximum
number of answers to retrieve (we envisage APPROX and RELAX queries being used to retrieve
the top k results in an incremental manner).

7.4. APPROXIMATED REGULAR PATH QUERY OPTIMISATION 151

The query from the YAGO data graph is given by Q2 below (we note that this is

Q2 in Section 7.2), which took on average 2,508ms per batch to return 100 answers

in 10 batches consisting of 10 answers each. Executing the query returned 2 exact

answers and 98 answers at distance 1.

(?X) <- (Li_Peng,hasChild.graduatedFrom.graduatedFrom-.hasWonPrize,?X)

We recall that the closure of the L4 L4All data graph consists of 240,519 nodes

and 1,861,959 edges, and that the closure of the YAGO data graph consists of

3,110,056 nodes and 17,043,938 edges.

We now describe which statistics are computed for our experiments here7:

• For both Q1 and Q2, we compute all the rewritings of the regular expres-

sion R at each distance greater than zero required to retrieve at least 100

results for the query. To illustrate this process, we focus on Q1, so that

R = prereq ∗ .next + .prereq, G is the L4All data graph, and the set of

labels L = {prereq, next, qualif, level, job, sector, type}.

We compute all the rewritings of R at distance 1 by applying either one inser-

tion, one deletion or one substitution operation to R using a label drawn from

L, where each operation has a cost of 1. All these ‘distance 1’ rewritings of

R are given by the set R1(Q1) for Q1. For example, R1(Q1) contains, among

others, ‘prereq ∗ .next+ .prereq.qualif ’ (insertion of qualif), ‘prereq ∗ .next+’

(deletion of the second instance of prereq) and ‘prereq ∗ .next + .next’ (sub-

stitution of the second instance of prereq by next).

As the evaluation of Q1 gave answers at distance 2 in the top 100 results, the

same process as described above is used to compute all the rewritings of R at

distance 2. In this case, a single insertion, deletion or substitution is applied

to each item in R1(Q1), and the result is added to the set R2(Q1). Owing to

Q2 not having answers at distance 2 in the top 100 results, R2(Q2) does not

need to be constructed for this query.

• For each item r in R1(Q1), R1(Q2) and R2(Q1), we do the following:

We execute the exact version of the query using r, and with distinct variables

as the source and target nodes. For example, if r = prereq ∗ .next+, then the

7We recall that in reality these would form part of the graph database statistics.

7.4. APPROXIMATED REGULAR PATH QUERY OPTIMISATION 152

query (?A,?B) <- (?A,prereq*.next+,?B) is executed. This gives the set of

answers in G conforming to each r; we denote by A(r) this set of answers. This

also gives us the set of unique bindings for ?A which we denote by N(r). The

average number of answers for each binding for ?A is given by navg(r) = |A(r)|/
|N(r)|.

Finally, if the constant C of the original query is not contained in N(r), then r

is removed from R1(Q1), R1(Q2) and R2(Q1), yielding, respectively, R1,C(Q1),

R1,C(Q2) and R2,C(Q1). Clearly, these items are not going to yield answers to

our queries.

7.4.3 Experimental results

For Q1 (respectively Q2), we rewrote the original query by substituting the original

regular expression R in the query by each item in R1,C(Q1) (respectively R1,C(Q2)),

resulting in |R1,C(Q1)| (respectively |R1,C(Q2)|) new queries, each perturbed by one

edit operation from the original R. For Q1, the same process was repeated for each

item in R2,C(Q1).

Thus, |R1,C(Q1)|+|R2,C(Q1)| new queries associated with Q1 and |R1,C(Q2)| new

queries associated with Q2 were generated, with the list of queries in each case given

by W (Q1) and W (Q2), respectively. These lists are ordered by increasing distance

— i.e. all queries using the items in R1,C(Q1) are ordered before those generated

using the items in R2,C(Q1) — and within that in order of decreasing navg(r) value.

This ordering is used so that the queries most likely to return the most answers

are executed first, thus reaching the ‘top-k’ number (100, in this case) as soon as

possible.

We subsequently followed a very similar methodology to the one used for our

performance study in Sections 7.1 and 7.2. All experiments were run on an Intel

Core i7-950 (3.07-3.65GHz) with 6GB memory, running Windows 7 (64 bit).

Each query q in W (Q1) and W (Q2) was executed five times as an exact query,

with the first run being discarded as the cache warm-up. All five runs were executed

in 10 batches of 10 to simulate running APPROX to retrieve the top 100 results after

initialisation; i.e. obtain results 1–10 (‘batch 1’); obtain results 11–20 (‘batch 2’);

. . . ; obtain results 91–100 (batch 10). We executed each q in the order in which it

7.4. APPROXIMATED REGULAR PATH QUERY OPTIMISATION 153

Q1 Q2

Original time 50,668ms 25,614ms

tQi
29ms 10.4ms

|R1(Qi)| 124 679

|R1,C(Qi)| 22 31

|R2(Qi)| 8,075 N/A

|R2,C(Qi)| 257 N/A

No. q (|R1,C(Qi)|) 22 20

No. q (|R2,C(Qi)|) 1 N/A

Table 7.10: Results of using the statistics to simulate the running of Q1 and Q2 as
approximated queries.

appears in W (Q1) and W (Q2), and halted processing as soon as at least 100 results

were returned. The average of each of the 10 batches was taken across runs 2 to 5

to obtain an average for each batch. These 10 average batch times were then added

to yield the total time taken for each query q to execute, which is denoted by qt.

For Q1 and Q2, all the qt values are summed, and this total is then added to the

total time taken for the exact, original version of the query (i.e. with the original

R) to execute. This gives us the total time taken for Q1 and Q2 to execute, which

we’ll denote by tQ1 and tQ2 , respectively.

The results are shown in Table 7.10. The ‘Original time’ column shows the

total time taken for the the original, approximated version of Q1 and Q2 to execute,

which is computed in the same way as qt described above. The ‘No. q (|RiC(Qi)|)’

columns show the number of queries at each distance that needed to be run in order

to return at least 100 answers for Q1 and Q2.

We can see that the execution time for each of Q1 and Q2 has improved by

three orders of magnitude. This is caused by the Succ function returning fewer

transitions — compared to running the APPROX version of the query — leading

to correspondingly fewer tuples being enqueued on DR.

7.5. CONCLUDING REMARKS 154

7.4.4 Further work

For this preliminary investigation into the use of simple statistics as a means to op-

timise approximated queries, we selected the worst-performing (terminating) query

from both the largest L4All data graph and the YAGO data graph. However, this

is by no means an exhaustive evaluation, and future work includes conducting a

more extensive study into the execution performance of the remaining approximated

queries and all of the relaxed versions of the queries. Leading on from this, more

evaluations can be conducted using a wider range of approximated and relaxed

queries over different data graphs.

Another direction which requires further investigation is the performance of CR-

PQs rather than just single-conjunct queries that may be approximated or relaxed.

Future work could include making use of disk-resident data structures for queueR

to guarantee the termination of APPROX queries with large intermediate results.

Another promising direction is to use labels that are rare in the graph to split the

processing of a regular expression into smaller fragments such that either their first

or last label is a ‘rare’ label, as described in [82] (but not for approximated/relaxed

queries). Most recently, the Waveguide system [137] uses automata as part of a

cost-based optimiser for SPARQL regular path queries. This cost-based optimisation

approach may be applicable also to the approximated/relaxed evaluation of CRPQs,

and this would be an interesting area of further investigation.

7.5 Concluding remarks

In this chapter, we presented performance results conducted on two data graphs,

each sourced from a different domain and exhibiting dissimilar characteristics. A set

of queries was evaluated on each data graph, and the results of each were discussed.

We established that our baseline performance of exact queries is comparable to

that of other state-of-the-art system implementations, and that, in many cases, our

approximated and relaxed queries executed quickly. However, this was not the case

for some of the approximated queries, in particular. To address this, we presented

optimisations designed to improve further the performance of such queries, showing

that this was a promising and viable direction for future work.

7.5. CONCLUDING REMARKS 155

In the next chapter, we describe how it is possible to merge the APPROX and

RELAX operators into a single operator, called FLEX, which applies simultaneously

both approximation and relaxation to a query conjunct.

CHAPTER 8

The FLEX Operator

In Chapter 7, we presented performance results conducted on two data graphs, and

described an optimisation approach designed to improve further the performance of

some of the poorly-performing approximation queries.

In this chapter, we consider the merging of APPROX and RELAX operators

into one integrated FLEX operator that applies both approximation and relaxation

to a query conjunct.

In Section 8.1, we show there are answers returned by CRPQs using FLEX

semantics which cannot be returned by any CRPQ using APPROX/RELAX se-

mantics. We discuss how the evaluation of single-conjunct RPQs that have FLEX

applied to them can be undertaken using a combination of the techniques used for

approximation and relaxation of single-conjunct queries. The evaluation is again

accomplished in time that is polynomial in the size of the query, the data graph and

the ontology graph, with answers being returned in ranked order.

In Section 8.2, we discuss the characteristics of multi-conjunct RPQs in which

conjuncts can have FLEX applied to them, considering query evaluation, complexity,

and expressiveness, and we conclude the chapter with Section 8.3.

156

8.1. EVALUATION OF SINGLE-CONJUNCT FLEX QUERIES 157

8.1 Evaluation of single-conjunct FLEX queries

We now combine the use of both query approximation and query relaxation within

one integrated FLEX operator that applies both techniques at the same time. This

aims to allow greater ease of querying for users, in that they do not need to be aware

of the ontology structure and to identify explicitly which parts of their overall query

are amenable to relaxation and which to approximation. As we will see below, it also

allows answers to be returned that cannot be obtained by applying only APPROX

or RELAX to individual query conjuncts.

Definition 8.1. Let K = extRed(K) be an ontology and Σ be an alphabet of edge

labels. A flex operation is either an edit operation on a symbol in Σ∪Σ− or a direct

relaxation using K.1

Example 8.1. (Drawn from [114].) Referring to the data graph shown in Figure 3.1

and the ontology shown in Figure 3.2 in Section 3.1, the user may pose the follow-

ing query which uses the new FLEX operator to apply both approximation and

relaxation simultaneously to both conjuncts:

Y ← FLEX(‘FL56’, fn1.ppn1.pn
−
1 , Y), FLEX(Y, n1.type,N1)

By replacing fn1 by fn−1 and inserting ie1 after pn−1 (at a cost of cs + ci), the

result e1 is returned. By replacing fn1 by fn−1 , relaxing pn−1 to pn−, replacing

n1 by n2, and relaxing N1 to N , (at an overall cost of 2cs + cr2 + cr4), the result

p2 is returned; the paths in G matched by the two conjuncts are, respectively,

(‘FL56’, fn−1 , f1, ppn1, ‘6789’, pn−2 , p2) and (p2, n2, n2, type,N2). We note that result

p2 could not have been returned by applying only APPROX or RELAX to the two

conjuncts — it requires the FLEX operator in order to be returned.

Definition 8.2. (We refer the reader back to Definitions 3.3 - 3.5 for the definitions

1Edit operations on labels in {type, type−} are not allowed for FLEX because, as we will see
below, allowing such edits would require multiple rounds of approximation and relaxation to be
applied to yield a final automaton, rather than a simple two-step process that we describe below.
An investigation into reinstating type and type− for consideration of this aspect of FLEX is the
subject of future work in this area.

8.1. EVALUATION OF SINGLE-CONJUNCT FLEX QUERIES 158

of a semipath and a triple form, and Section 3.5.1 for the definitions of extRed(K)

and closureK(G).) Let K = extRed(K) be an ontology, G = closureK(G) a graph,

p a semipath in G, Q a query with single conjunct (X,R, Y), θ a (Q,G)-matching,

q ∈ L(R), Tq a triple form for (θ(Q), q), and Tp a triple form for p. We write

Tq � Tp, if Tq can be transformed to Tp (up to variable renaming) by a sequence of

flex operations. The cost of the sequence of flex operations is the sum of the costs

of each operation. The distance from p to (θ(Q), q) is the minimum cost of any

sequence of flex operations which yields Tp from Tq. The cost of the empty sequence

of flex operations (so Tq is already a triple form of p) is zero. The distance from p

to θ(Q) is the minimum distance from p to (θ(Q), q) for any string q ∈ L(R).

Definition 8.3. Given ontology K = extRed(K), graph G = closureK(G), single-

conjunct query Q to which FLEX has been applied, and (Q,G)-matching θ, the

distance of θ(Q), denoted dist(θ,Q), is the minimum distance to θ(Q) from any

semipath p in G. The answer of Q on G is a list of pairs (θ(vars), dist(θ,Q)),

where θ is a (Q,G)-matching, ranked in order of non-decreasing distance. The top-k

answer of Q on G is a list containing the first k tuples in the answer of Q on G.

Example 8.2. (Drawn from [114].) Consider the conjunct (‘FL56’, fn1.ppn1.pn
−
1 , Y)

of the query from Example 8.1. There is only one sequence q of labels denoted by

the regular expression of the conjunct, so a triple form of q is:

(‘FL56’, fn1, X1), (X1, ppn1, X2), (X2, pn
−
1 , Y)

Replacing fn1 by fn−1 and inserting ie1 after pn−1 gives rise to

(‘FL56’, fn−1 , X1), (X1, ppn1, X2), (X2, pn
−
1 , X3), (X3, ie1, Y)

with cost cs + ci. This will match the semipath p from ‘FL56’ to e1 in the graph

of Figure 3.1, thereby instantiating Y to e1. Since p cannot be matched by q with

fewer flex operations, the distance from p to q is cs + ci. For example, relaxing pn−1

to pn− will also instantiate Y to e1, but at a cost of cs + ci + cr2.

8.1. EVALUATION OF SINGLE-CONJUNCT FLEX QUERIES 159

fn1, 0

fn−1 , cs

ppn1, 0

pn−1 , 0

pn−, cr2

ie1, ci

FL56

Figure 8.1: Automaton for conjunct (‘FL56’, fn1.ppn1.pn
−
1 , Y).

n1, 0

n2, cs

type, 0

type, cr4

N1

N

Figure 8.2: Automaton for conjunct (Y, n1.type, N1).

The answer of a single-conjunct query Q to which FLEX has been applied on

a graph G can be computed by using an automaton AKQ constructed from the ap-

proximate automaton AQ and ontology K which captures both approximation and

relaxation with respect to K, as follows:

Step 1: We construct a weighted automaton MR from R (in which all weights

are zero), and then the approximate automaton AQ, using essentially the same

process as described in Section 3.4.1 (we describe the distinction after the following

example).

Step 2: We construct the relaxed automaton AKQ from AQ, applying relaxation

using rules 2, 4, 5 and 6 from Figure 3.6, following the same process as described in

Section 3.5.2.

Example 8.3. (Drawn from [114].) Figure 8.1 shows the automaton corresponding

to the conjunct (‘FL56’, fn1.ppn1.pn
−
1 .Y) of the query from Example 8.1 (only those

transitions that contribute to finding answers in the data graph are shown).

The transition with cost cs results from replacing fn1 with fn−1 and the transition

with cost ci results from inserting ie1. The transition with cost cr2 results from

applying rule (2) from Figure 3.6 to the transition for pn−1 and the triple (pn1, sp, pn)

in K.

8.1. EVALUATION OF SINGLE-CONJUNCT FLEX QUERIES 160

The automaton for conjunct (Y, n1.type, N1) is shown in Figure 8.2. In this case,

the type transition with cost cr4 has been added as a result of applying rule (4) to

the other type transition using triple (N1, sc, N) from K, which results in a cloned

final state annotated with N .

In this section, we focus on single-conjunct RPQs and consider CRPQs in Sec-

tion 8.2. The answer to a single-conjunct RPQ Q is obtained by constructing and

traversing the weighted product automaton, H, of AKQ with the closure of the data

graph G = (VG, EG,Σ), viewing each node in VG as both an initial and final state:

the process is the same as described in Section 3.4.1. To evaluate Q on G, if X

is a node v ∈ VG, a shortest path traversal of H is undertaken starting from each

state (s0, v) such that s0 ∈ S0. If X is a variable, these shortest path traversals are

undertaken for each v ∈ VG. In each case, the answers to Q on G are given by the

bindings for Y found from the final states reached during the traversal of H.

As stated earlier, the automaton AKQ is constructed by applying relaxation to the

approximate automaton AQ. However, in contrast to Definition 3.11 in Section 3.4.1,

the edit operations used in the construction of AQ are confined to those on labels in

Σ∪Σ−, i.e., we do not allow edits to the labels in {type, type−}. Henceforth in this

chapter, we make this assumption about the approximate automaton AQ. Allowing

edits to the labels in {type, type−} would require multiple rounds of approximation

and relaxation to be applied to yield a final automaton, rather than the simple

two-step process described above. Determining an upper bound for the number of

rounds of approximation/relaxation that would be needed for the construction of

the automaton to reach a fixed point is an open problem. This is illustrated in the

following example.

Example 8.4. Suppose we have the query Q with single conjunct (?X, e.type, c),

the labels a, b, e ∈ Σ, and the triples (c, sc, c′) ∈ K and (a, sp, b) ∈ K. The two

transitions with cost zero in Figure 8.3 arise from the original query Q. Approxima-

tion would add various transitions not shown in Figure 8.3. Then in the relaxation

phase, we apply rule 4(i) which creates a final state s′f , annotated with c′, and a

transition (s1, type, cr4, s
′
f). However, the presence of (s1, type, cr4, s

′
f) means we are

able to apply more edit operations to the automaton to produce, say, the transition

8.1. EVALUATION OF SINGLE-CONJUNCT FLEX QUERIES 161

s0 s1

sf

s′f

e, 0

b, cr4 + cs + cr4

a, cr4 + cs

type, cr4

type, 0

c

c′

Figure 8.3: Automaton for (X, e.type, ‘c’).

(s1, a, cr4 + cs, s
′
f) by replacing type with a. But, by once again applying relaxation

operations to the automaton, a new transition (s1, b, cr4 + cs + cr2, s
′
f) induced by

rule 2 would be created. The resulting automaton is shown in Figure 8.3 (only those

transitions and states explicitly mentioned are shown).

Thus, for the purposes of the FLEX operator, we do not allow edit operations

on type or type− labels.

In Theorem 8.1 below, we show that using automaton AKQ is sufficient to find all

sequences of labels generated by flex operations at distance k from a given query;

i.e. that applying a second approximation step after the relaxation step does not

(i) yield any additional answers, and (ii) yield any answers previously obtained at

cost k, at some cost j < k.

We first have the following lemma that shows that for semipath p, sequence of

labels q ∈ L(R), and (Q,G)-matching θ such that the distance from p to (θ(Q), q)

is k, there is a cost-k sequence of flex operations yielding triple form Tp from triple

form Tq in which all edit operations precede all relaxation operations.

Lemma 8.1. Let Q be a query comprising a single conjunct (X,R, Y), K = extRed(K)

be an ontology, G = (VG, EG,Σ) be the closure of a data graph with respect to K, p

be a semipath (v0, l1, . . . , ln, vn) in G, θ be a (Q,G)-matching such that θ(X) = v0

and θ(Y) = vn, and q ∈ L(R).

Let Tp be a triple form for p and Tq a triple form for (θ(Q), q) such that the

distance from p to (θ(Q), q) is k. There is a sequence of flex operations of cost k,

8.1. EVALUATION OF SINGLE-CONJUNCT FLEX QUERIES 162

yielding Tp from Tq, in which all the edit operations (applied to symbols in Σ ∪ Σ−)

precede all the relaxation operations.

Proof. Let the sequence of flex operations of cost k, yielding Tp from Tq, consist

of n flex operations, where n ≤ k. Let this sequence, flexn, be given by Tq =

P0 � P1 � · · · � Pn = Tp, in which the edit and relaxation operations have been

applied in an arbitrary order. We need to show that there is an alternative sequence

of flex operations, flex′n, also of cost k, yielding Tp from Tq, and comprising the

same operations as those in flexn, but where all edit operations (considering only

symbols in Σ ∪ Σ−) have been applied prior to all relaxation operations. That is,

flex′n is given by Tq = P0 �A · · · �A Pλ �R · · · �R Pn = Tp. The proof proceeds by

induction on the number of flex operations applied to Tq.

Basis: For the base case, we assume no flex operations have been applied; hence,

Tq = P0 = Tp and all edits precede all relaxations.

Induction: For the inductive step, suppose that there is an n ≥ 0 such that,

for all m ≤ n, any sequence of m flex operations of cost k yielding Tp from Tq can

be rewritten as a sequence (also yielding Tp from Tq at cost k) in which all edit

operations precede all relaxation operations.

Now consider sequence flexn+1 of n + 1 flex operations in which the last is

an edit operation. We show that this edit operation can be moved before all the

relaxations. If there are no relaxations in the sequence, this is trivial, so assume

there is at least one relaxation. By the induction hypothesis, the sequence up to Pn

can be rewritten so that relaxations follow edits. Hence flexn+1 can be rewritten

as ψ given by Tq = P0 � · · · �R Pn �A Pn+1 = Tp where n+ 1 flex operations have

been applied to the sequence and the n+1th operation is an edit operation, denoted

by opE.

First suppose opE is applied to a triple pattern present in Tq. Clearly, opE can

be applied to P0 and hence can precede relaxations.

Next suppose opE is applied to a triple pattern resulting from an edit operation.

As this operation precedes all relaxations, opE can follow it directly and hence it

too can precede all relaxations.

In the case where opE is an insertion operation, it is straightforward to see that

the result also follows, as insertion is not dependent on the presence of any triple

pattern and so can be placed before all relaxations.

8.1. EVALUATION OF SINGLE-CONJUNCT FLEX QUERIES 163

Thus, we now need to consider the cases in which opE is a substitution or deletion

operation applied to a triple pattern t of triple form Pn, such that t was the result

of having applied some relaxation operation opR to some triple pattern t′ in Pn−1.

We show below that in fact these are not possible, given that the distance from p

to (θ(Q), q) is k.

We note that t may only be in one of the following forms, depending on which

relaxation operation was applied: (i) (Wm−1, a,Wm), where Wm−1 and Wm are vari-

ables or constants, (ii) (W, type, c), or (iii) (c, type,W), where W is a variable and

c a constant. As edit operations are not applied to the type label, we only need

consider what happens when applying opE to Pn if t is of the form (Wm−1, a,Wm).

By definition, such a t could only have been produced as a result of applying the

relaxation operation induced by Rule 2 to t′ in Pn−1; thus, opR may only ever be a

Rule 2 relaxation operation.

Suppose that t′ = (Wm−1, b,Wm) and t = (Wm−1, a,Wm), where there is a triple

(b, sp, a) ∈ K. Let the cost of the sequence ψ be k = C + cr2 + ce, where cr2

denotes the cost of opR, ce denotes the cost of opE (and is thus either cs or cd) and

C is the cost of the remaining operators used in ψ. We now consider the following

possibilities for opE applied to t:

• Substitution: Suppose opE substitutes t in Pn by (Wm−1, e,Wm) in Pn+1, for

some e ∈ Σ. However, we could replace opR by a substitution of b by e in t′

in order to obtain (Wm−1, e,Wm) and hence Tp at a cost of C + cs < k. This

contradicts the assumption that the distance from p to (θ(Q), q) is k; hence,

opE cannot be substitution.

• Deletion: Suppose Pn is given by

· · · , (Wm−2, g,Wm−1), t = (Wm−1, a,Wm), (Wm, f,Wm+1), · · ·

and opE deletes t to obtain Pn+1, given by

· · · , (Wm−2, g,Wm−1), (Wm−1, f,Wm+1), · · ·

However, we could replace the application of opR on t′ (in Pn−1) by deleting

t′ instead, in order to obtain a sequence yielding Tp at cost C + cd < k. This

8.1. EVALUATION OF SINGLE-CONJUNCT FLEX QUERIES 164

contradicts the assumption that the distance from p to (θ(Q), q) is k; hence,

opE cannot be deletion.

Thus, we have shown that, for all allowable operations opE, the sequence ψ can

be rewritten to a sequence of the same cost in which all edit operations precede all

relaxation operations.

Theorem 8.1. Let Q be a query comprising a single conjunct (X,R, Y) and K =

extRed(K) be an ontology. Let AKQ be the automaton constructed for Q as described

above, where the ε-transitions have been removed. Let G = (VG, EG,Σ) be the closure

of a data graph with respect to K, H be the product automaton of G and AKQ , p be

a semipath (v0, l1, . . . , ln, vn) in G, and θ be a (Q,G)-matching such that θ(X) = v0

and θ(Y) = vn. The distance from p to θ(Q) is k if and only if k is the minimum

cost of a run for the sequence of labels comprising p from (s0, v0) to (sn, vn) in H,

where s0 is an initial state and sn a final state in AKQ .

Proof. (⇒) By Lemma 8.1, we know that if the distance from p to (θ(Q), q) is k,

for any q ∈ L(R), then k is the minimum cost of any sequence of flex operations

yielding the triple form Tp from the triple form Tq, where the flex operations have

been applied in an analogous manner to the construction of AKQ .

The result then follows from the construction of AKQ , and by Lemma 4.3 in Sec-

tion 4.1 (as AKQ contains AQ as a subautomaton) and Proposition 4.2 in Section 4.3

(as AKQ contains MK
Q as a subautomaton).

(⇐) Let r = ((s0, v0), l1, c1, (s1, v1)), . . . , ((sn−1, vn−1), ln, cn, (sn, vn)) be a mini-

mum cost run of cost k in H for the sequence of labels l1, . . . , ln of p, where s0 is an

initial state and sn a final state in AKQ . From the construction of H from AKQ and

G, there must be a semipath p = (v0, l1, . . . , ln, vn) in G and a minimum cost run

(s0, l1, c1, s1), . . . , (sn−1, ln, cn, sn) of cost k in AKQ , corresponding to Tp, a triple form

of p. From the construction of AKQ , we also know that the transitions added to those

transitions originally present in MR correspond to flex operations. By definition,

we also know that every run in MR corresponds to an acceptance of a sequence of

labels q ∈ L(R). Let the triple form of such a q be Tq.

But, by Lemma 4.3 (for edit operations) and Proposition 4.2 (for relaxation

operations), it follows that the minimum cost of any sequence of flex operations

8.1. EVALUATION OF SINGLE-CONJUNCT FLEX QUERIES 165

yielding Tp from Tq is k. The result then follows straightforwardly from Lemma 8.1.

The following proposition shows that if FLEX has been applied to a single-

conjunct query Q, the answers on the closure of a graph G can be computed in time

that is polynomial in the size of Q, G and the ontology K.

Proposition 8.1. Let K = extRed(K) be an ontology, where K = (VK , EK),

G = (VG, EG,Σ) be the closure of a data graph with respect to K, and Q be a single-

conjunct query using regular expression R over alphabet Σ ∪ Σ− ∪ {type, type−}.
If FLEX has been applied to Q, the answer of Q on G can be found in time

O(|R|3|VG||VK ||EG||EK |(|VK |+ |Σ|) + |R|2|VG|2|VK |2(log|R||VG||VK |)).

Proof. Let AKQ be the automaton constructed from Q and K which captures both

approximation and relaxation with respect to K, and H be the product graph

constructed from AKQ and G. Lemma 4.3 and Proposition 4.2 show that traversing

H correctly yields all answers to Q. Lemma 4.4 tells us that AQ has at most 2|R|
states and 4|R|2|Σ| transitions.

By the construction of AKQ from AQ, the application of rules 4, 5 and 6 results in

at most one new state for each class node in VK being added for any existing state

s, where s ∈ S0 or s ∈ Sf . Hence, we can see that no more than |VK | new states

may be added for each of the original states in AQ, resulting in at most 2|R||VK |
new states in total. Thus, AKQ has at most 2|R|(|VK |+ 1) states.

Since there are at most |EK | edges in K with label sp, rule 2 adds at most

4|R|2|Σ||EK | transitions to AKQ . Rules 4, 5 and 6 can collectively be applied no

more than |EK | times. Each application results, in the worst case, in |R| transitions

being added for each of the 2|R||VK | new, cloned states, giving rise to at most

2|R|2|VK ||EK | transitions. Thus, overall AKQ has at most 2|R|2(|EK ||VK | + 2|Σ| +
|Σ||EK |) transitions.

ThereforeH has at most 2|R||VG|(|VK |+1) nodes and 2|R|2|EG|(|EK ||VK |+2|Σ|+
|Σ||EK |) edges. If we assume that H is sparse (which is highly likely), then running

Dijkstra’s algorithm on each node of a graph with node set N and edge set A can be

done in time O(|N ||A|+ |N |2 log |N |). So, for graph H, the combined time complex-

ity is O(|R|3|VG||VK ||EG|(|VK ||EK |+|Σ|+|Σ||EK |)+|R|2|VG|2|VK |2 log(|R||VG||VK |))
which simplifies to O(|R|3|VG||VK ||EG||EK |(|VK | +|Σ|) + |R|2|VG|2|VK |2(log|R||VG|

8.2. MULTI-CONJUNCT FLEX QUERIES AND COMPARISON WITH
APPROX/RELAX 166

|VK |)).

As a corollary, it is easy to see that the data complexity is O(|VG||VK ||EG||EK |
(|VK | + |Σ|) + |VG|2|VK |2(log |VG||VK |)) and the query complexity is O(|R|3). The

space complexity is dominated by the space requirements of H given in the proof

above.

The above query evaluation can also be accomplished “on-demand” by incre-

mentally constructing the edges of H as required, thus avoiding precomputation

and materialisation of the entire graph H. The incremental evaluation process is

the same as described in Chapter 3 for the cases of approximation and relaxation,

considered separately.

It is easy to show that if the ontology K is empty and there are no type edges in

the data graph G, then FLEX semantics reduce to approximate matching of CRPQs,

as in Section 3.4.1. Similarly, if only ontology-based relaxation is permitted, and

the queries over G are limited to be simple conjunctive queries, then this reduces to

the query processing semantics with ontology relaxation presented in [66].

8.2 Multi-conjunct FLEX queries and compari-

son with APPROX/RELAX

A general FLEX query Q is of the form

(Z1, . . . , Zm)← (X1, R1, Y1), . . . , (Xn, Rn, Yn)

where any conjuncts may in addition have the FLEX operator applied to them. Let

θ be a (Q,G)-matching. If conjuncts i1, . . . , ij, j ≤ n, have FLEX applied to them,

then the distance from θ to Q, dist(θ,Q), is defined as

dist(θ, (Xi1 , Ri1 , Yi1)) + · · ·+ dist(θ, (Xij , Rij , Yij))

The definitions of minimum-distance matching, answer of Q on G, and top-k answer

of Q on G are as in Section 3.6 for multi-conjunct APPROX/RELAX queries.

8.2. MULTI-CONJUNCT FLEX QUERIES AND COMPARISON WITH
APPROX/RELAX 167

The evaluation of a multi-conjunct query FLEX Q can be undertaken incremen-

tally in the same way as described in Section 3.6 for multi-conjunct APPROX/RELAX

queries, joining the answers arising from the incremental evaluation of each of its

conjuncts using a rank-join algorithm.

Considering the complexity of FLEX queries compared to APPROX/RELAX

queries, Proposition 4.1, Proposition 4.4 and Proposition 8.1 state the relative com-

plexities of evaluating APPROX, RELAX and FLEX single-conjunct RPQs, from

which it can be observed that FLEX has higher complexity than both APPROX

and RELAX. This is to be expected as the automaton AKQ used to evaluate a FLEX

single-conjunct RPQ contains all the states and transitions that would appear in the

approximate automaton derived directly from MR for evaluating APPROX (limited

to labels in Σ∪Σ−) as well as all the states and transitions in the relaxed automaton

derived from MR, for evaluating RELAX.

Considering the expressiveness of FLEX queries compared to APPROX / RE-

LAX queries, it is easy to see that given any graph G, ontology K and CRPQ Q over

G that has APPROX or RELAX applied to any of its conjuncts (with APPROX

limited to labels in Σ ∪ Σ−) then any answer that is returned at distance k would

also be returned, at the same or a lower distance, by a query that has the same

conjuncts as Q but with FLEX in place of any occurrence of APPROX or RELAX.

Again, this is because any automaton AKQ contains all the states and transitions

that would appear in the approximate automaton derived from MR for evaluating

APPROX (limited to labels in Σ∪Σ−) as well as all the states and transitions that

appear in the relaxed automaton derived from MR. An answer that is returned using

FLEX semantics may be at a lower distance than the same answer returned using

APPROX/RELAX semantics if an APPROX were replaced by a FLEX in the query

and if cr2 were less than cs, because in this case a property relaxation (if applicable)

would be less costly than substitution.

Conversely, there exist CRPQs that return answers using FLEX semantics which

cannot be returned by any query under APPROX/RELAX semantics, as noted in

Example 8.1.

As a final remark, we would argue that the availability of FLEX does not render

APPROX and RELAX redundant. Firstly, FLEX does not apply edit operations

to labels in {type, type−}, whereas APPROX does. Secondly, the user may only

8.3. CONCLUDING REMARKS 168

want to consider in some given setting the application of (syntactic) edits — and

hence use APPROX, or the application of (semantic) relaxations — and hence use

RELAX.

8.3 Concluding remarks

In this chapter, we described how APPROX and RELAX operators can be merged

into a single, integrated FLEX operator, showing how answers may be returned

therefrom which cannot be returned by the application of APPROX or RELAX se-

mantics alone. We described also how single-conjunct queries with FLEX operators

can be evaluated, and discussed the FLEX operator in the context of multi-conjunct

CRPQs. Throughout, we provided the proofs for the correctness and complexity of

the constructs and algorithms.

We conclude this thesis in the next chapter.

CHAPTER 9

Conclusions and future work

In this thesis we considered approximation and relaxation of conjunctive regular path

queries (CRPQs), showing how these may be used and combined to support users

in flexible querying of complex graph-structured data. Users can specify approxi-

mations and relaxations using the APPROX and RELAX operators, respectively,

to be applied to selected conjuncts of their original query, and are able to configure

the relative costs of these. Furthermore, using the FLEX operator, users are able to

specify that both approximation and relaxation should be applied simultaneously

to a query conjunct. For all three operators — APPROX, RELAX and FLEX —

query answers are returned incrementally, in polynomial time, ranked in order of

increasing distance from the user’s original query.

We briefly summarise the thesis in Section 9.1, and then follow this by a discus-

sion of the contributions of this work in Section 9.2. We conclude with a discussion

of possible areas of future work in this area in Section 9.3.

9.1 Thesis summary

In Chapter 2, we reviewed related work on graph data models and query languages in

general, keyword-based querying, query relaxation and approximation and subgraph

169

9.1. THESIS SUMMARY 170

matching.

We provided the background underpinning our research in Chapter 3, in which we

introduced the graph data model and the query language (CRPQs). We provided

a formal definition of CRPQs and exact matching of single-conjunct RPQs, and

gave formal definitions of approximate matching and relaxation of such queries. We

concluded with a discussion of the evaluation of multi-conjunct RPQs, each of whose

conjuncts may be approximated or relaxed, and the complexity of query answering.

In Chapter 4, we provided formal correctness proofs for the constructs and al-

gorithms introduced in Chapter 3. We established that both the approximate and

relaxed answer to a single-conjunct RPQ can be computed in time that is polyno-

mial in the size of the query, the data graph and the ontology graph (in the case

of a relaxed query), with answers being returned in ranked order of their ‘distance’

from the original query.

We presented the ApproxRelax prototype system in Chapter 5, restricting our

focus to the user-facing features of the system. We subsequently presented a quali-

tative case study showing how ApproxRelax overcame problems in a previous system

in the same application domain of lifelong learning.

In Chapter 6, we described the implementation details of the Omega system, our

final implementation of query approximation and query relaxation, superseding the

ApproxRelax system. We discussed the system architecture, data structures, data

model, API and query evaluation algorithms, and concluded with a review of related

implementations in the area of regular path queries.

We presented a performance study conducted with two contrasting real-world

data graphs in Chapter 7, establishing that our baseline performance of exact queries

is comparable to that of state-of-the-art systems. We additionally showed that, in

most cases, our APPROX and RELAX queries exhibit reasonable performance, and

discussed causal factors for the poorly-performing queries. We subsequently illus-

trated by means of an empirical evaluation how the availability of simple statistics

relating to paths in the data graph can be used to improve the run-times of a selec-

tion of poorly-performing approximated queries.

We concluded the research undertaken in this thesis with Chapter 8, in which

we discussed the application of both approximation and relaxation to an individual

query conjunct using a single query operator, FLEX, which allows additional answers

9.2. CONTRIBUTIONS 171

to be returned that cannot be obtained by applying only approximation or relaxation

to a query conjunct. We described how single-conjunct RPQs that have FLEX

applied to them can be evaluated, providing formal proofs of correctness.

9.2 Contributions

This thesis makes the following contributions:

• Extending the work in [115], each edit and relaxation operation is now able

to have a different associated cost by modifying the construction of the data

structures required for the evaluation of the queries. We also provided a uni-

form framework for handling both query approximation and query relaxation

for CRPQs.

• We specified detailed algorithms for the initialisation and incremental evalua-

tion of approximated and relaxed query conjuncts.

• We provided full proofs of correctness for the constructs and algorithms neces-

sary to evaluate approximated and relaxed CRPQs. We showed formally how

both the approximate answer and relaxed answer to a single-conjunct RPQ

can be computed in time that is polynomial in the size of the query, the data

graph and the ontology graph (in the case of relaxation), with answers being

returned in ranked order of their ‘distance’ from the original query.

• We presented a prototype system called ApproxRelax and, focusing on its

user-facing features, we presented a qualitative case study in the domain of

lifelong learning. We showed how ApproxRelax improves on an earlier system

by supporting query approximation and query relaxation that provide greater

flexibility when querying heterogeneous timeline data, resulting in answers of

greater relevance being returned to the user. ApproxRelax implements, for

the first time, ontology-based relaxation of regular path queries, as well as

combined support for approximation and relaxation of CRPQs.

• We provided a description of the implementation details of the Omega system,

our final implementation of approximation and relaxation of CRPQs. We

9.3. DIRECTIONS FOR FUTURE WORK 172

discussed the system architecture and low-level data structures, describing

how data graphs are created in Omega, and we presented the query evaluation

algorithms, along with physical optimisations, both in terms of the interaction

with the graph store, Sparksee, and our query processing layer within Omega.

• We presented a comprehensive performance study of the Omega system con-

ducted with two large contrasting real-world data graphs, establishing that our

baseline performance of exact queries is comparable to that of state-of-the-art

system implementations. The benefits of our APPROX and RELAX opera-

tors have been shown in terms of additional answers being returned for queries

returning few or no answers for the exact version. Many of the APPROX and

RELAX queries executed quickly, but some either failed to terminate or did

not complete within a reasonable amount of time. We discussed the reasons

for this in each case.

• Building on this performance study, we established that simple graph statistics

may be used for optimising the evaluation of approximated queries.

• We introduced and motivated an additional operator combining both query

approximation and query relaxation into a single operator, FLEX. This allows

easier querying of complex heterogeneous datasets for users as they do not have

to be aware of the ontology structure and do not have to identify explicitly

which parts of their overall query may be amenable to relaxation. It may also

allow more query results to be returned, as there exist CRPQs that return

answers using FLEX semantics which cannot be returned by any CRPQ using

APPROX/RELAX semantics. We showed how the evaluation of CRPQs that

have FLEX applied to them can be undertaken using a combination of the

techniques used for approximation and relaxation, and provided theoretical

proofs of correctness and complexity of the constructs used.

9.3 Directions for future work

There are several directions for future work:

• It would be interesting to investigate the use of disk-bound data structures

9.3. DIRECTIONS FOR FUTURE WORK 173

to augment our current in-memory implementation approach, with the aim of

improving query performance and guaranteeing the termination of APPROX

queries with large intermediate results.

• An extended investigation of our preliminary work using graph statistics as

described in Chapter 7 is another area of future work. More extensive empirical

testing of the optimisation techniques presented in that chapter is required,

along with a greater corpus of queries and data.

• Other promising directions are query rewriting [16, 42], taking advantage of

rare labels as described in [82], and further research into optimisation tech-

niques for query evaluation, drawing for example from recent work in [18, 41,

73, 92, 133, 137].

• The FLEX operator is not yet supported by the Omega system, and extending

the implementation and the performance studies to include this operator is an

area of further work.

• Deeper investigation of the relationships between FLEX, APPROX and RE-

LAX is required, for example to determine if there are characteristics of a

multi-conjunct CRPQ query, data graph or ontology that mean that FLEX

will always return more results than any combination of APPROX or RELAX;

and to investigate further integration of the automaton-based query evaluation

approaches for APPROX, RELAX and FLEX that we have presented here,

into a higher-level abstract framework of which APPROX, RELAX and FLEX

are specific instances.

• The area of distributed graph data processing is increasing in importance, with

the aim of handling larger volumes of complex, irregular, graph-structured data

than can be handled on a single server and to achieve horizontal scalability,

for example, in systems such as Giraph1, Pegasus [71], Pregel [94], GPS [120]

Horton [121] and Trinity.RDF [142]. Using distributed graph query processing

techniques to enable flexible querying of larger volumes of complex, irregular

graph-structured data is an important area of future work.

1https://github.com/apache/giraph

https://github.com/apache/giraph

9.3. DIRECTIONS FOR FUTURE WORK 174

• The implementation and optimisation aspects of our flexible querying frame-

work may be applicable to other frameworks or future research, in the sense

that our results and methods may turn out to be of broader relevance. Exam-

ples are computational frameworks in which automata play an integral part,

and frameworks in which a ‘product graph’ (i.e. the product of two different

graph-based structures) is constructed and traversed.

• Finally, further work is required into developing a comprehensive system pro-

viding users with the flexible query processing capabilities proposed in this

thesis. For example, a graphical front-end could allow users to pose queries

using forms, keywords, or even natural language, which the system would then

translate into CRPQs. The user would select which approximation and relax-

ation operations, from the full range of operations supported by our framework,

should be applied by the system to parts of their queries in order to approx-

imate or to relax them. The user could select which parts of the ontology

should be used for the relaxation operations (rather than the whole ontology)

and which labels for the edit operations (rather than the full set of edge labels

in the data graph). For the substitution operation, it would be straightforward

to extend our framework to support finer-grained ranking of the substitution

of one property label by another, e.g. through the application of lexical or se-

mantic similarity measures on property labels (rather than assuming the same

cost for all substitutions). Finally, to help users interpret answers to their

queries, the system could provide a trace of the successive edits/relaxations

applied by the system to the original query, and the answers arising from each

modified query. Showing the sequence of changes by which the original query

was approximated or relaxed could help the user decide whether the answers

being returned are relevant to them.

Bibliography

[1] S. Abiteboul, D. Quass, J. Mchugh, J. Widom, and J. Wiener. The Lorel query

language for semistructured data. International Journal on Digital Libraries,

1:68–88, 1997.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, 1974.

[3] F. Alkhateeb, J.-F. Baget, and J. Euzenat. Extending SPARQL with regular

expression patterns (for querying RDF). J. Web Sem., 7(2):57–73, 2009.

[4] B. Amann and M. Scholl. Gram: A graph data model and query languages.

In Proc. ACM Conference on Hypertext, pages 201–211, 1992.

[5] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit. FleXPath: Flexible

structure and full-text querying for XML. In SIGMOD Conference, pages

83–94, 2004.

[6] M. Andries, M. Gemis, J. Paredaens, I. Thyssens, and J. V. d. Bussche. Con-

cepts for graph-oriented object manipulation. In Proc. 3rd Int. Conf. on Ex-

tending Database Technology: Advances in Database Technology, pages 21–38,

1992.

[7] R. Angles and C. Gutierrez. Survey of graph database models. ACM Comput.

Surv., 40(1):1:1–1:39, Feb. 2008.

175

BIBLIOGRAPHY 176

[8] K. Anyanwu, A. Maduko, and A. P. Sheth. SPARQ2L: Towards support for

subgraph extraction queries in RDF databases. In Proc. 16th Int. Conf. on

World Wide Web, pages 797–806, 2007.

[9] M. Arenas and J. Pérez. Federation and Navigation in SPARQL 1.1. In

Reasoning Web, volume 7487, pages 78–111, 2012.

[10] T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J. Hollenbach,

A. Lerer, and D. Sheets. Tabulator: Exploring and analyzing linked data on

the semantic web. In Proc. 3rd Int. Semantic Web User Interaction Workshop,

2006.

[11] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and

S. Hellmann. DBpedia - A Crystallization Point for the Web of Data. Web

Semantics, 7(3):154–165, 2009.

[12] T. Bray, J. Paoli, and C. Sperberg-McQueen. Extensible Markup Language

(XML) 1.0. Recommendation, World Wide Web Consortium (W3C), 1998.

See http://www.w3.org/TR/1998/REC-xml-19980210.

[13] P. Buche, J. Dibie-Barthélemy, and H. Chebil. Flexible SPARQL querying of

web data tables driven by an ontology. In Proc. 8th Int. Conf. on Flexible

Query Answering Systems, pages 345–357, 2009.

[14] P. Buneman, M. Fernandez, and D. Suciu. UnQL: a query language and

algebra for semistructured data based on structural recursion. The VLDB

Journal, 9(1):76–110, Mar. 2000.

[15] G. Buratti and D. Montesi. Ranking for approximated XQuery Full-Text

queries. In Proc. 25th British National Conf. on Databases, pages 165–176,

2008.

[16] A. Cal̀ı, R. Frosini, A. Poulovassilis, and P. T. Wood. Flexible querying for

SPARQL. In On the Move to Meaningful Internet Systems, pages 473–490,

2014.

http://www.w3.org/TR/1998/REC-xml-19980210

BIBLIOGRAPHY 177

[17] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi. Containment

of conjunctive regular path queries with inverse. In Proc. 7th Int. Conf. on

Principles of Knowledge Representation and Reasoning, pages 176–185, 2000.

[18] R. Castillo, C. Rothe, and U. Leser. RDFMatView: Indexing RDF data

using materialized SPARQL queries. In Proc. 6th Int. Workshop on Scalable

Semantic Web Knowledge Base Systems, 2010.

[19] J. P. Cedeño and K. S. Candan. R2DF framework for ranked path queries

over weighted RDF graphs. In Proc. of the Int. Conf. on Web Intelligence,

Mining and Semantics, pages 40:1–40:12, 2011.

[20] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: a semantic search

engine for XML. In Proc. 29th Int. Conf. on Very Large Data Bases, pages

45–56, 2003.

[21] M. P. Consens and A. O. Mendelzon. Expressing structural hypertext queries

in GraphLog. In Proc. 2nd Annual ACM Conference on Hypertext, pages

269–292, 1989.

[22] M. P. Consens and A. O. Mendelzon. Low-complexity Aggregation in

GraphLog and Datalog. Theoretical Computer Science, 116(1):95–116, 1993.

[23] I. Cruz, A. Mendelzon, and P. Wood. G+: Recursive Queries without Re-

cursion. In Proc. 2nd Expert Database Systems Conference, pages 645–666,

1989.

[24] I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A graphical query language

supporting recursion. In Proc. ACM SIGMOD, pages 323–330, 1987.

[25] L. Cych. ‘Social Networks’ in Emerging Technologies for Learning, Coventry.

Becta, pages 32–40, 2006.

[26] S. de Freitas, I. Harrison, G. Magoulas, A. Mee, F. Mohamad, M. Oliver,

G. Papamarkos, and A. Poulovassilis. The development of a system for

supporting the lifelong learner. British Journal of Educational Technology,

37(6):867–880, 2006.

BIBLIOGRAPHY 178

[27] S. de Freitas, I. Harrison, G. Magoulas, G. Papamarkos, A. Poulovassilis,

N. van Labeke, A. Mee, and M. Oliver. L4All: a web-service based system

for lifelong learners. In The Learning Grid Handbook: Concepts, Technologies

and Applications, Volume 2: The Future of Learning. IOS Press, 2008.

[28] S. Dey, V. Cuevas-Vicentt́ın, S. Köhler, E. Gribkoff, M. Wang, and

B. Ludäscher. On Implementing Provenance-aware Regular Path Queries with

Relational Query Engines. In Proc. 16th Int. Conf. on Extending Database

Technology, pages 214–223, 2013.

[29] P. Dolog, H. Stuckenschmidt, and H. Wache. Robust query processing for

personalized information access on the semantic web. In Proc. 7th Int. Conf.

on Flexible Query Answering Systems, pages 343–355, 2006.

[30] P. Dolog, H. Stuckenschmidt, H. Wache, and J. Diederich. Relaxing RDF

queries based on user and domain preferences. J. Intell. Inf. Syst., 33(3):239–

260, 2009.

[31] X. Dong and A. Halevy. Indexing dataspaces. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, pages 43–54, New York, NY, USA, 2007.

[32] M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata.

Springer Publishing Company, Incorporated, 1st edition, 2009.

[33] S. Elbassuoni, M. Ramanath, R. Schenkel, M. Sydow, and G. Weikum.

Language-model-based ranking for queries on RDF-graphs. In Proc. 18th ACM

Conf. on Information and Knowledge Management, pages 977–986, 2009.

[34] S. Elbassuoni, M. Ramanath, R. Schenkel, and G. Weikum. Searching RDF

graphs with SPARQL and keywords. IEEE Data Eng. Bull., 33(1):16–24,

2010.

[35] S. Elbassuoni, M. Ramanath, and G. Weikum. Query relaxation for entity-

relationship search. In Proc. 8th Extended Semantic Web Conference on The

Semanic Web, pages 62–76, 2011.

BIBLIOGRAPHY 179

[36] W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. Adding regular expressions to

graph reachability and pattern queries. In Proc. 27th International Conference

on Data Engineering, pages 39–50, 2011.

[37] W. Fan, X. Wang, and Y. Wu. Diversified top-k graph pattern matching.

Proc. VLDB Endow., 6(13):1510–1521, Aug. 2013.

[38] C. Fellbaum, editor. WordNet: an electronic lexical database. MIT Press,

1998.

[39] M. Fernández, D. Florescu, A. Levy, and D. Suciu. Declarative specification

of web sites with STRUDEL. The VLDB Journal, 9(1):38–55, Mar. 2000.

[40] J. Finger and N. Polyzotis. Robust and efficient algorithms for rank join

evaluation. In Proc. ACM SIGMOD, pages 415–428, 2009.

[41] G. H. Fletcher, J. Peters, and A. Poulovassilis. Efficient regular path query

evaluation using path indexes. In 19th Int. Conf. on Extending Database

Technology, pages 636–639, 2016.

[42] R. Frosini, A. Cal̀ı, A. Poulovassilis, and P. T. Wood. Flexible query processing

for SPARQL. Semantic Web Journal, In press, 2016.

[43] R. Goldman and J. Widom. Dataguides: Enabling query formulation and

optimization in semistructured databases. In Proc. 23rd Int. Conf. on Very

Large Data Bases, pages 436–445, 1997.

[44] R. Goldman and J. Widom. Approximate DataGuides. In Proc. of the Work-

shop on Query Processing for Semistructured Data and Non-Standard Data

Formats, pages 436–445, 1999.

[45] G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive

queries. J. ACM, 43(3):431–498, May 2001.

[46] G. Grahne and A. Thomo. Approximate reasoning in semi-structured

databases. In Proc. 8th Int. Workshop on Knowledge Representation meets

Databases, 2001.

BIBLIOGRAPHY 180

[47] G. Grahne and A. Thomo. Regular path queries under approximate semantics.

Ann. Math. Artif. Intell., 46(1-2):165–190, 2006.

[48] G. Grahne, A. Thomo, and W. W. Wadge. Preferentially annotated regular

path queries. In Proc. 11th Int. Conf. on Database Theory, pages 314–328,

2007.

[49] M. Graves. A graph-theoretic data model for genome mapping databases,

1995.

[50] M. Graves, E. Bergeman, and C. Lawrence. Querying a genome database using

graphs. In Proc. 3rd Int. Conf. on Bioinformatics and Genome Research, 1994.

[51] A. Gubichev, S. J. Bedathur, and S. Seufert. Sparqling Kleene: Fast property

paths in RDF-3X. In Proc. 1st Int. Workshop on Graph Data Management

Experiences and Systems, pages 14:1–14:7, 2013.

[52] C. Gutierrez, C. Hurtado, A. O. Mendelzon, and J. Perez. Foundations of

semantic web databases. J. Comput. Syst. Sci., 77(3):520–541, 2011.

[53] R. H. Güting. GraphDB: Modeling and querying graphs in databases. In Proc.

20th Int. Conf. on Very Large Data Bases, pages 297–308, 1994.

[54] M. Gyssens, J. Paredaens, J. V. den Bussche, and D. van Gucht. A graph-

oriented object database model. IEEE Transactions on Knowledge and Data

Engineering, 6(4):572–586, 1994.

[55] O. Hartig, C. Bizer, and J.-C. Freytag. Executing SPARQL queries over the

web of linked data. In Proc. 8th International Semantic Web Conference,

volume 5823, pages 293–309, Chantilly, Virginia, 2009.

[56] P. Hayes and P. F. Patel-Schneider, editors. RDF 1.1 Semantics, W3C Rec-

ommendation, February 2014.

[57] H. He and A. K. Singh. Graphs-at-a-time: query language and access methods

for graph databases. In Proc. ACM SIGMOD Int. Conf. on Management of

data, pages 405–418, 2008.

BIBLIOGRAPHY 181

[58] T. Heath, M. Hausenblas, C. Bizer, and R. Cyganiak. How to publish linked

data on the web (tutorial). In Proc. 7th Int. Semantic Web Conference, 2008.

[59] J. Hidders. A Graph-based Update Language for Object-Oriented Data Models.

PhD thesis, Eindhoven University of Technology, Eindhoven, the Netherlands,

2001. PhD-thesis.

[60] J. Hidders. Typing graph-manipulation operations. In Proc. 9th Int. Conf. on

Database Theory, pages 394–409, 2002.

[61] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. YAGO2: a spatially

and temporally enhanced knowledge base from Wikipedia. Research Report

MPI-I-2010-5-007, Max-Planck-Institut für Informatik, 2010.

[62] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. YAGO2: A Spa-

tially and Temporally Enhanced Knowledge Base from Wikipedia. Artificial

Intelligence, 194:28–61, 2013.

[63] A. Hogan, M. Mellotte, G. Powell, and D. Stampouli. Towards fuzzy query-

relaxation for RDF. In Proc. 9th Int. Conf. on The Semantic Web, pages

687–702, 2012.

[64] H. Huang and C. Liu. Query relaxation for star queries on RDF. In Proc. 11th

Int. Conf. on Web Information Systems Engineering, pages 376–389, 2010.

[65] H. Huang, C. Liu, and X. Zhou. Computing relaxed answers on RDF

databases. In Proc. 9th Int. Conf. on Web Information Systems Engineer-

ing, pages 163–175, 2008.

[66] C. A. Hurtado, A. Poulovassilis, and P. T. Wood. Query relaxation in RDF.

Journal on Data Semantics, X:31–61, 2008.

[67] C. A. Hurtado, A. Poulovassilis, and P. T. Wood. Ranking approximate an-

swers to semantic web queries. In Proc. 6th European Semantic Web Confer-

ence, pages 263–277, 2009.

[68] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting top-k join queries

in relational databases. The VLDB Journal, 13(3):207–221, 2004.

BIBLIOGRAPHY 182

[69] B. Iordanov. HyperGraphDB: A generalized graph database. In Proc. 11th

Int. Conf. on Web-age Information Management, volume 6185, pages 25–36,

2010.

[70] R. Jin, N. Ruan, S. Dey, and J. Y. Xu. SCARAB: scaling reachability com-

putation on large graphs. In Proc. ACM SIGMOD International Conference

on Management of Data, pages 169–180, 2012.

[71] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: A peta-scale graph

mining system implementation and observations. In Proc. 9th Int. Conf. on

Data Mining, pages 229–238, 2009.

[72] Y. Kanza and Y. Sagiv. Flexible queries over semistructured data. In Proc.

20th ACM Symposium on Principles of Database Systems, pages 40–51, 2001.

[73] Z. Kaoudi, K. Kyzirakos, and M. Koubarakis. SPARQL query optimization

on top of DHTs. In Proc. 9th Int. Semantic Web Conference, pages 418–435,

2010.

[74] G. Kasneci, M. Ramanath, M. Sozio, F. M. Suchanek, and G. Weikum. STAR:

Steiner-Tree approximation in relationship graphs. In Proc. 25th Int. Conf.

on Data Engineering, pages 868–879, 2009.

[75] G. Kasneci, M. Ramanath, F. Suchanek, and G. Weikum. The YAGO-NAGA

approach to knowledge discovery. SIGMOD Rec., 37(4):41–47, Mar. 2009.

[76] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, and G. Weikum. NAGA:

Searching and ranking knowledge. In Proc. 24th Int. Conf. on Data Engineer-

ing, pages 953–962, 2008.

[77] C. Kiefer, A. Bernstein, and M. Stocker. The fundamentals of iSPARQL: A

virtual triple approach for similarity-based semantic web tasks. In Proc. 6th

Int. Semantic Web Conference, pages 295–309, 2007.

[78] G. Klyne and J. J. Carroll. Resource description framework (RDF): Concepts

and abstract syntax, 2004.

BIBLIOGRAPHY 183

[79] K. Kochut and M. Janik. SPARQLeR: Extended SPARQL for semantic as-

sociation discovery. In Proc. 4th European Semantic Web Conference, pages

145–159, 2007.

[80] R. Koper, B. Giesbers, P. van Rosmalen, P. B. Sloep, J. van Bruggen, C. Tat-

tersall, H. Vogten, and F. Brouns. A design model for lifelong learning net-

works. Interactive Learning Environments, (1-2):71–92, 2005.

[81] R. Koper and C. Tattersall. New directions for lifelong learning using network

technologies. British Journal of Educational Technology, 35(6):689 –700, 2004.

[82] A. Koschmieder and U. Leser. Regular path queries on large graphs. In Proc. of

the 24th Int. Conf. on Scientific and Statistical Database Management, pages

177–194, 2012.

[83] A. Langegger, W. Wöß, and M. Blöchl. A semantic web middleware for virtual

data integration on the web. In Proc. 5th European Semantic Web Conference,

2008.

[84] J. Larriba-Pey, N. Mart́ınez-Bazan, and D. Domı́nguez-Sal. Introduction to

Graph Databases. In Proc. 10th International Summer School: Reasoning on

the Web in the Big Data Era, pages 171–194, 2014.

[85] U. Leser. A query language for biological networks. Bioinformatics, 21(2):33–

39, Jan. 2005.

[86] U. Leser and S. Trißl. Graph Management in the Life Sciences. In Encyclopedia

of Database Systems, pages 1266–1271. 2009.

[87] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical prop-

erties of community structure in large social and information networks. In

Proceedings of the 17th International Conference on World Wide Web, WWW

’08, pages 695–704, New York, NY, USA, 2008. ACM.

[88] M. Levene and G. Loizou. A graph-based data model and its ramifications.

IEEE Trans. on Knowl. and Data Eng., 7(5):809–823, Oct. 1995.

BIBLIOGRAPHY 184

[89] M. Levene and A. Poulovassilis. The Hypernode Model and Its Associated

Query Language. In Proc. 5th Jerusalem Conference on Information Technol-

ogy, pages 520–530, 1990.

[90] M. Levene and A. Poulovassilis. An object-oriented data model formalised

through hypergraphs. Data Knowl. Eng., 6(3):205–224, May 1991.

[91] C. Liu, J. Li, J. X. Yu, and R. Zhou. Adaptive relaxation for querying het-

erogeneous XML data sources. Information Systems, 35(6):688–707, 2010.

[92] A. Loizou and P. T. Groth. On the formulation of performant SPARQL

queries. CoRR, abs/1304.0567, 2013.

[93] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Strong simulation: Capturing

topology in graph pattern matching. ACM Trans. Database Syst., 39(1):4:1–

4:46, Jan. 2014.

[94] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and

G. Czajkowski. Pregel: a system for large-scale graph processing. In Proc.

2010 Int. Conf. on Management of data ACM SIGMOD, pages 135–146, 2010.

[95] F. Mandreoli, R. Martoglia, G. Villani, and W. Penzo. Flexible query an-

swering on graph-modeled data. In 12th Int. Conf. on Extending Database

Technology, pages 216–227, 2009.

[96] N. Mart́ınez-Bazan, M. A. Águila Lorente, V. Muntés-Mulero, D. Dominguez-

Sal, S. Gómez-Villamor, and J.-L. Larriba-Pey. Efficient graph management

based on bitmap indices. In Proc. 16th Int. Database Engineering, pages 110–

119, 2012.

[97] N. Mart́ınez-Bazan and D. Dominguez-Sal. Using semijoin programs to solve

traversal queries in graph databases. In Proc. Workshop on GRAph Data

Management Experiences and Systems, pages 6:1–6:6, 2014.

[98] N. Mart́ınez-Bazan, V. Muntés-Mulero, S. Gómez-Villamor, J. Nin, M.-A.

Sánchez-Mart́ınez, and J.-L. Larriba-Pey. DEX: High-Performance Explo-

ration on Large Graphs for Information Retrieval. In Proc. 16th ACM Con-

ference on Information and Knowledge Management, pages 573–582, 2007.

BIBLIOGRAPHY 185

[99] A. O. Mendelzon and P. T. Wood. Finding regular simple paths in graph

databases. In Proc. of the 15th Int. Conf. on Very Large Data Bases, pages

185–193, 1989.

[100] A. O. Mendelzon and P. T. Wood. Finding regular simple paths in graph

databases. SIAM J. Comput., 24(6):1235–1258, 1995.

[101] X. Meng, Z. M. Ma, and L. Yan. Providing flexible queries over web databases.

In Proc. 12th Int. Conf. on Knowledge-Based and Intelligent Information &

Engineering Systems, pages 601–606, 2008.

[102] M. Mochol, A. Jentzsch, and H. Wache. Suitable employees wanted? Find

them with semantic techniques. Paper presented at the Workshop on Making

Semantics Work For Business, 2007.

[103] S. Pandit, D. H. Chau, S. Wang, and C. Faloutsos. Netprobe: A fast and

scalable system for fraud detection in online auction networks. In Proc. 16th

Int. Conf. on World Wide Web, pages 201–210, 2007.

[104] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange

Across Heterogeneous Information Sources. In Proc. 11th Int. Conf. on Data

Engineering, pages 251–260, 1995.

[105] J. Paredaens, P. Peelman, and L. Tanca. G-log: A graph-based query language.

IEEE Trans. on Knowl. and Data Eng., 7(3):436–453, June 1995.

[106] P. Pareja-Tobes, R. Tobes, M. Manrique, E. Pareja, and E. Pareja-Tobes.

Bio4j: a high-performance cloud-enabled graph-based data platform. 2015.

[107] J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A navigational language

for RDF. In Proc. 7th Int. Semantic Web Conference, pages 66–81, 2008.

[108] J. Peters. Regular path query evaluation using path indexes. In Master’s

thesis, Eindhoven University of Technology, 2015.

[109] F. Picalausa, Y. Luo, G. H. L. Fletcher, J. Hidders, and S. Vansummeren.

A structural approach to indexing triples. In Proc. 9th Int. Conf. on The

Semantic Web, pages 406–421, 2012.

BIBLIOGRAPHY 186

[110] A. Poulovassilis. Database research challenges and opportunities of big graph

data. In Proceedings of the 29th British National Conference on Big Data,

pages 29–32, 2013.

[111] A. Poulovassilis and S. G. Hild. Hyperlog: A graph-based system for database

browsing, querying, and update. IEEE Trans. Knowl. Data Eng., 13(2):316–

333, 2001.

[112] A. Poulovassilis and M. Levene. A nested-graph model for the representation

and manipulation of complex objects. ACM Trans. Inf. Syst., 12(1):35–68,

Jan. 1994.

[113] A. Poulovassilis, P. Selmer, and P. T. Wood. Flexible Querying of Lifelong

Learner Metadata. IEEE Transactions on Learning Technologies, 5(2):117–

129, 2012.

[114] A. Poulovassilis, P. Selmer, and P. T. Wood. Approximation and Relaxation

of Semantic Web Path Queries. Journal of Web Semantics: Science, Services

and Agents on the World Wide Web, 40:1–21, 2016.

[115] A. Poulovassilis and P. T. Wood. Combining approximation and relaxation

in semantic web path queries. In Proc. 9th Int. Semantic Web Conf., pages

631–646, 2010.

[116] J. Pound, I. F. Ilyas, and G. E. Weddell. QUICK: Expressive and flexible

search over knowledge bases and text collections. PVLDB, 3(2):1573–1576,

2010.

[117] R. Ramakrishnan and J. Gehrke. Database Management Systems. 3rd edition,

2003.

[118] B. R. K. Reddy and P. S. Kumar. Efficient approximate SPARQL querying

of web of linked data. In Proc. 6th Int. Workshop on Uncertainty Reasoning

for the Semantic Web, volume 654, pages 37–48, 2010.

[119] I. Robinson, J. Webber, and E. Eifrem. Graph Databases. O’Reilly Media,

Inc., 2013.

BIBLIOGRAPHY 187

[120] S. Salihoglu and J. Widom. GPS: A Graph Processing System. In Scientific

and Statistical Database Management. Stanford InfoLab, July 2013.

[121] M. Sarwat, S. Elnikety, Y. He, and G. Kliot. Horton: Online query execu-

tion engine for large distributed graphs. In Proc. 28th Int. Conf. on Data

Engineering, pages 1289–1292, 2012.

[122] A. Seaborne and S. Harris(Editors). SPARQL 1.1 Query Language, W3C

Recommendation 21 march 2013.

[123] A. Singhal. ‘Introducing the Knowledge Graph: things, not strings’, Offi-

cial Google Blog, 2012. Available at https://googleblog.blogspot.co.uk/

2012/05/introducing-knowledge-graph-things-not.html.

[124] J. M. Sumrall. Path indexing for efficient path query processing in graph

databases. In Master’s thesis, Eindhoven University of Technology, 2015.

[125] M. Theobald, R. Schenkel, and G. Weikum. An efficient and versatile query

engine for TopX search. In Proc. 31st Int. Conf. on Very Large Data Bases,

pages 625–636, 2005.

[126] Y. Tian and J. M. Patel. TALE: A tool for approximate large graph matching.

In Proc. 24th Int. Conf. on Data Engineering, pages 963–972, 2008.

[127] J. D. Ullman. Principles of Database and Knowledge-Base Systems: Volume

II: The New Technologies. 1990.

[128] N. van Labeke, G. D. Magoulas, and A. Poulovassilis. Searching for “People

like me” in a Lifelong Learning System. In Proc. 4th European Conf. on

Technology Enhanced Learning, pages 106–111, 2009.

[129] N. van Labeke, G. D. Magoulas, and A. Poulovassilis. Personalised search

over lifelong learner’s timelines using string similarity measures. Technical

Report BBKCS-11-01, Birkbeck, 2011. Available at http://www.dcs.bbk.

ac.uk/research/techreps/2011/bbkcs-11-01.pdf.

[130] N. van Labeke, A. Poulovassilis, and G. D. Magoulas. Using similarity metrics

for matching lifelong learners. In Proc. 9th Int. Conf. on Intelligent Tutoring

Systems, pages 142–151, 2008.

https://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html
http://www.dcs.bbk.ac.uk/research/techreps/2011/bbkcs-11-01.pdf
http://www.dcs.bbk.ac.uk/research/techreps/2011/bbkcs-11-01.pdf

BIBLIOGRAPHY 188

[131] R. Varadarajan, V. Hristidis, L. Raschid, M. Vidal, L. D. Ibáñez, and

H. Rodŕıguez-Drumond. Flexible and efficient querying and ranking on hy-

perlinked data sources. In Proc. 12th Int. Conf. on Extending Database Tech-

nology, pages 553–564, 2009.

[132] R. A. Wagner and M. J. Fischer. The string-to-string correction problem. J.

ACM, 21(1):168–173, Jan. 1974.

[133] X. Wang, X. Ding, A. K. H. Tung, S. Ying, and H. Jin. An efficient graph

indexing method. In Proc. 28th Int. Conf. on Data Engineering, pages 210–

221, 2012.

[134] G. Weikum, G. Kasneci, M. Ramanath, and F. M. Suchanek. Database and

information-retrieval methods for knowledge discovery. Commun. ACM, 52(4),

2009.

[135] P. T. Wood. Query languages for graph databases. SIGMOD Rec., 41(1):50–

60, Apr. 2012.

[136] Y. Xu and Y. Papakonstantinou. Efficient keyword search for smallest LCAs

in XML databases. In Proc. SIGMOD Conference, pages 537–538, 2005.

[137] N. Yakovets, P. Godfrey, and J. Gryz. Query planning for evaluating SPARQL

property paths. In Proc. 2016 Int. Conf. on Management of Data, ACM

SIGMOD, pages 1875–1889, 2016.

[138] S. Yang, Y. Wu, H. Sun, and X. Yan. Schemaless and structureless graph

querying. Proc. VLDB Endow., 7(7):565–576, Mar. 2014.

[139] H. Yildirim, V. Chaoji, and M. J. Zaki. GRAIL: scalable reachability index

for large graphs. Proc. VLDB Endow., 3(1-2):276–284, Sept. 2010.

[140] C. Yu and H. V. Jagadish. Querying complex structured databases. In Proc.

33rd Int. Conf. on Very Large Data Bases, pages 1010–1021, 2007.

[141] H. Zauner, B. Linse, T. Furche, and F. Bry. A RPL through RDF: expressive

navigation in RDF graphs. In Proc. 4th Int. Conf. on Web Reasoning and

Rule Systems, pages 251–257, 2010.

BIBLIOGRAPHY 189

[142] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A distributed graph engine

for web scale RDF data. Proc. VLDB Endow., 6(4):265–276, 2013.

[143] S. Zhang, J. Yang, and W. Jin. SAPPER: Subgraph indexing and approximate

matching in large graphs. Proc. of the VLDB Endowment, 3(1):1185–1194,

2010.

[144] X. Zhou, J. Gaugaz, W.-T. Balke, and W. Nejdl. Query relaxation using

malleable schemas. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, pages 545–556, 2007.

[145] D. D. Zhu and K. I. Ko. Problem Solving in Automata, Languages, and Com-

plexity. 2004.

[146] L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao. gStore: Answering SPARQL

queries via subgraph matching. In Proc. Int. Conf. on Very Large Data Bases,

pages 482–493, 2011.

	Abstract
	Publications
	Acknowledgements
	Contents
	List of Algorithms
	List of Figures
	List of Tables
	Introduction
	Background and motivation
	Thesis contributions
	Thesis outline

	Literature Review
	Graph-modelled data and graph query languages
	Graph models
	Graph query languages
	SPARQL
	Linked and distributed data

	Keyword-based querying
	Query relaxation
	Query approximation
	Subgraph matching
	Discussion

	Theoretical Preliminaries
	The data model
	The query language
	Single-conjunct queries
	Query approximation
	Approximate matching of single-conjunct queries
	Incremental evaluation of APPROX conjuncts

	Query relaxation
	Ontology-based relaxation of single-conjunct queries
	Computing the relaxed answer
	Incremental evaluation of RELAX conjuncts

	Multi-conjunct queries
	Summary

	Correctness and Complexity Results
	Approximation of single-conjunct queries
	Incremental evaluation
	Relaxation of single-conjunct queries
	Concluding remarks

	The ApproxRelax System and a Case Study
	Case study: Lifelong Learning
	The ApproxRelax system
	Comparison with L4All's ``What Next''
	Concluding remarks

	The Omega System
	System architecture
	The C5 Generic Collection library
	The Sparksee Data Model and API
	Creating data graphs in Omega
	Conjunct initialisation
	Construction of the automaton
	Initialisation

	Query conjunct evaluation
	The GetNext function
	The NextStates function
	The Succ function

	Other implementations
	Concluding remarks

	Query Performance Analysis
	The L4All evaluation
	Data
	Queries
	Baseline experimental results
	Analysis

	The YAGO evaluation
	Data
	Queries
	Baseline experimental results
	Analysis

	Performance comparison
	Approximated Regular Path Query Optimisation
	Path indexes
	Approach and methodology
	Experimental results
	Further work

	Concluding remarks

	The FLEX Operator
	Evaluation of single-conjunct FLEX queries
	Multi-conjunct FLEX queries and comparison with APPROX/RELAX
	Concluding remarks

	Conclusions and future work
	Thesis summary
	Contributions
	Directions for future work

	Bibliography

