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Abstract 
A Quantitative Structure-Activity Relationship (QSAR) study is an attempt to model 

some biological activity over a collection of chemical compounds in terms of their 

structural properties. A QSAR model may be constructed through (typically linear) 

multivariate regression analysis of the biological activity data against a number of 

features or ‘descriptors’ of chemical structure. As with any regression model, there 

are a number of issues emerging in real applications, including (a) domain of 

applicability of the model, (b) validation of the model within its domain of 

applicability, and (c) possible non-linearity of the QSAR. Unfortunately the existing 

methods commonly used in QSAR for overcoming these issues all suffer from 

problems such as computational inefficiency and poor treatment of non-linearity. In 

practice this often results in the omission of proper analysis of them altogether. 

In this thesis we develop methods for tackling the issues listed above using K-means 

clustering. Specifically, we model the shape of a dataset in terms of intelligent K-

means clustering results and use this to develop a non-parametric estimate for the 

domain of applicability of a QSAR model. Next we propose a ‘hybrid’ variant of K-

means, incorporating a regression-wise element, which engenders a technique for 

non-linear QSAR modelling. Finally we demonstrate how to partition a dataset into 

training and testing subsets, using the K-means clustering to ensure that the 

partitioning respects the overall distribution. Our experiments involving real QSAR 

data confirm the effectiveness of the methods developed in the project. 
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1. Introduction 
A Quantitative Structure-Activity Relationship (QSAR) is a study of the dependence 

upon chemical structure of some observable property or ‘activity’ over a collection of 

chemical compounds. Modelling this dependence enables predictions to be made 

about the activity of previously unseen chemical compounds. 

Biological activities that have been studied in a QSAR context range from 

toxicological effects upon an organism [Benigni 2003, Aptula et al 2005, Toropov et 

al 2007] to inhibitory effects on the biochemical activity of certain enzymes [Senese 

& Hopfinger 2003, Zernov et al 2003, Samanta et al 2006]. Physical properties of 

chemical compounds have also been studied, in particular aqueous solubility [Butina 

& Gola 2003, Yan & Gasteiger 2003], the acid dissociation coefficient pKa [Xing et al 

2003], and the octanol partition coefficient logP [Mannhold & van de Waterbeemd 

2001, Roy et al 2007]. 

A compound’s chemical structure refers to the physical constitution of a molecule of 

the compound. This molecular structure is represented, in the first instance, by its 

molecular graph – a graph in the mathematical sense comprising a collection of 

vertices (denoting atoms in the molecule) connected by edges (chemical bonds 

between the atoms), capturing the topological structure of the molecule. 

In a QSAR study, modelling the dependence of activity upon chemical structure 

typically involves some form of regression analysis. A ‘training collection’ of 

chemical compounds (whose activity values are known) is the principal input into the 

modelling process, which proceeds by extracting its trends in the relationship between 

chemical structure and activity. The aspiration is for these trends to generalise to other 

chemical compounds beyond those occurring in the training set, thereby allowing 

predictions to be made about the activity of new (as yet unmeasured) chemical 

compounds based solely on knowledge of their chemical structure. 

This QSAR modelling approach is underpinned by the so-called ‘Fundamental 

Assumption of QSAR’, that chemical compounds with similar chemical structures 

will have similar activities [McKinney et al 2000]. This assumption is a prerequisite 

both for the meaningful description of trends within the training set, and for the 

interpolation of those trends to encompass other compounds. 
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A precise application of this Fundamental Assumption – and indeed any consideration 

of a ‘trend’ involving chemical structures – requires that the notion of similarity of 

chemical structures be made precise. Formulating this measure of structural similarity 

is itself intimately bound with how the chemical structure is numerically represented 

from a point of view of isolating the trends. Although there do exist structural 

similarity measures that operate directly on the molecular graph, this thesis will be 

concerned only with descriptor-based QSAR, in which chemical structure is further 

represented by a collection of chemical descriptors – quantitative features calculated 

in terms of the molecular graph [Diudea 2000]. For the purposes of the ensuing 

regression analysis, chemical structure is thereby characterised as a point in chemical 

descriptor space – the linear feature space spanned by a collection of descriptors 

suitably chosen for the QSAR dataset under consideration. 

The necessity of the Fundamental Assumption of QSAR for regression analysis to be 

valid leads to a related observation: a model based on regression analysis can only be 

expected to make valid predictions for chemical compounds whose structure is similar 

to some of those in the training set. (This is precisely the well-known problem of 

extrapolation in regression.) For example, if a QSAR model is trained using only 

chemical compounds from one homologous series (say, the saturated alkanes), then 

one would have no grounds for confidence in predictions it makes about compounds 

not in that group (unsaturated compounds, for example). 

Given this lack of global applicability of a QSAR model, one is led to ask: for which 

chemical structures does the model apply, without having to extrapolate away from its 

training data? The region of chemical structure space, within which a QSAR model 

applies is called the domain of applicability of the model [Jaworska et al 2005]. In the 

context of a QSAR model based on regression analysis of a training set, this domain 

of applicability comprises those regions of chemical structure space that are 

adequately represented by training compounds of similar structure, such that the 

regression model can make its prediction by interpolation rather than extrapolation. 

The domain of applicability must be considered a crucial and integral part of any 

QSAR model, for a model cannot be used with confidence without knowledge of 

whether its prior conditions for use are being met. Unfortunately, this aspect of QSAR 

modelling has often been overlooked, prompting specific attention to the matter from 
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regulatory authorities responsible for acceptance of QSARs for environmental and 

medical applications [Jaworska et al 2003, Gramatica 2007]. 

Although necessary for regression analysis to build predictive models, the 

Fundamental Assumption of QSAR is not in itself sufficient for this purpose, because 

such modelling also relies on the recovery of genuine trends from the training data. 

An overzealous attempt by the regression algorithm to find trends in the training data 

runs the risks of mistaking any artefact in the data for a trend. This situation, in which 

the model describes the noise rather than the genuine underlying trends, is called 

overfitting, while parsimony denotes the absence of overfitting [Hawkins 2004]. The 

predictive power of an overfitted model is compromised because prediction will 

attempt to interpolate fictitious trends, based only on noise in the data, that are not 

borne out by any underlying structure-activity relationship. 

Notwithstanding some well-known heuristics (for example, the number parameters in 

the model approaching or exceeding the number of training entities), it is not 

straightforward to determine reliably a priori whether a regression analysis will result 

in an overfitted model. Following training, the model must therefore be validated to 

ascertain its parsimony [Tropsha et al 2003]. 

The most pragmatic test of a regression model’s parsimony rests with its predictive 

power. To this end, it is considered good practice to perform external validation on a 

newly trained QSAR model. This consists of applying the model to an external test set 

of compounds whose activity values are known, and checking how well the 

predictions agree with these known values [Gramatica 2007]. 

There are a number of reasons, however, why external validation may not be 

appropriate. There may simply be no external test set available. On the other hand, an 

external test set may have been obtained at considerable expense, in which case there 

may be a stronger case for allowing it to contribute directly to the model by including 

its contents in the training set, rather than sidelining it to the validation phase. Yet 

another contraindication may be that an external test set has been provided, but 

(wholly or partially) lies outside the model’s domain of applicability, and so would 

not constitute a fair test of the model’s predictive power within its domain. 
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As an alternative to external validation, and in response to the aforementioned 

limitations on its use, we shall in this thesis investigate the validation of a QSAR 

model using an internal test set. In lieu of the external provision of a test set 

completely separate from the training data, internal test set validation involves 

separating all the available structure/activity data into two complementary subsets – 

training and test set – at the outset of the modelling, taking care that each subset 

remain representative of the original whole. The test set is ‘held out’ while the 

regression is being performed on the remainder of the data, and is reintroduced later 

for the validation phase. 

A further active area of research in QSAR is the development of nonlinear modelling 

techniques. Traditionally descriptor-based QSAR has seen a prevalence of linear 

modelling through multivariate linear least-squares regression [Wold et al 2000] and 

related techniques such as “partial least squares” (PLS) [Xing et al 2003]. 

This prevalence of linear modelling methods is presumably due to their comparative 

simplicity, both from the point of view of implementation and in the form of the linear 

models they create. Indeed, the transparency of a linear model can allow it to admit a 

mechanistic interpretation: the linear model parameters amount to the contributions of 

each chemical descriptor to the activity. This is in contrast to a neural network model 

(for example), which can only be viewed as a ‘black box’ without offering insight into 

how an especially large or small activity may have arisen. 

However, there have been many QSAR studies in which the structure-activity 

relationship cannot be adequately described by a linear model, and one must look 

beyond the well-understood linear techniques. 

We have so far identified three open problems in QSAR: defining a QSAR model’s 

domain of applicability, extracting an internal test set, and modelling non-linear 

dependence upon chemical descriptors. A common thread emerges to unite these 

problems: each requires a way of describing the shape of a QSAR dataset without 

making prior assumptions on the form that the shape may take. In the case of the 

domain of applicability, we require a description of the dataset’s distribution in 

chemical descriptor space. In practice, QSAR datasets are not distributed in descriptor 

space according to simple distributions but tend to form rather irregular shapes, and so 

we shall seek a non-parametric representation of the shape. Furthermore, extraction of 
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an internal test set must reflect the distribution of the available data; the extraction 

will therefore also be guided by this description of the distribution. Finally, when 

modelling a non-linear structure-activity relationship, we shall once again seek a non-

parametric representation, but this time incorporating the activity into the description. 

In order to address the three problems described above, we shall investigate how K-

means clustering may be employed in the description of a QSAR dataset. We shall use 

the clustering to partition a large, diverse dataset into constituents that individually are 

sufficiently small and cohesive to be described by a simple parametric representation. 

Collectively, however, they will assume the flexibility to model a complex dataset. 

Working in chemical descriptor space for the domain of applicability investigation, 

each cluster will receive a simple spherical description, leading to the representation 

of a dataset’s domain of applicability as an amalgamation of hyperspheres. 

In order to model non-linearity in QSAR, we shall extend this segmented approach to 

incorporate activity values. Within each cluster we shall construct a separate simple 

linear model for the dependence of activity on the chemical descriptors. This will lead 

to the synthesis of a complete model with locally linear regions. Furthermore, we shall 

investigate how the activity variation in the training data can influence the location of 

the clusters, promoting their alignment with such local regions of linearity in the data. 

To this end we shall derive a new ‘hybrid’ variant of the K-means least-squares 

clustering criterion that incorporates a ‘regression-wise’ contribution alongside the 

conventional distance-wise formulation. 

Finally, the internal test set investigation will revisit the cluster description of the 

dataset’s shape in descriptor space, extracting the internal test set evenly amongst the 

clusters in order to preserve the overall data distribution. 

For each of the three problems under investigation, the new methods developed 

according to this cluster-based paradigm will be experimentally validated using 

publicly available QSAR datasets. Thereby, we shall not only assess their suitability 

on their own merits, but also determine whether they offer any improvements over the 

existing approaches to tackling these problems. 

The thesis will be structured as follows. In chapter 2 we shall conduct a review of the 

existing approaches to tackling the problems of domain of applicability, internal test 
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set extraction, and modelling non-linearity in QSAR. Chapter 3 will introduce K-

means clustering, and will develop the extensions and generalisations of K-means that 

will subsequently be employed in our own investigations into these QSAR problems. 

Chapter 4 will develop a measure of distance to domain of applicability, and analyse 

the efficacy of the model of domain of applicability that it induces. Chapter 5 will be 

concerned with the ‘hybrid’ variant of K-means clustering and its application to 

modelling non-linear relationships. In chapter 6, we shall investigate the use of K-

means clustering to guide the extraction of an internal test set, and analyse to what 

extent it can provide an even, representative sampling without detriment to the model 

training process. Chapter 7 will then conclude the thesis by pursuing a discussion of 

the methods developed in the course of this investigation, identifying their 

interrelationships and common threads, and identifying scope for further research. 
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2. Current Issues in QSAR and Existing Methods to 
Tackle Them 

2.1. Overview of QSAR 
Quantitative Structure-Activity Relationships (QSAR) are attempts to capture 

relationships between chemical structure and some observable ‘activity’ over a 

collection of chemical compounds, with a view to using models of these relationships 

to predict the activity of new compounds. The activity may be biological, for example 

toxicity [Aptula et al 2005] or carcinogenicity [Crettaz & Benigni 2005], or may be a 

physiochemical property, such as aqueous solubility [Yan & Gasteiger 2003, Lind & 

Maltseva 2003, Butina & Gola 2003] or the so-called ‘octanol partition coefficent’ 

logP [Ghose & Crippen 1986, Mannhold & van de Waterbeemd 2001, Roy et al 

2007]. 

QSAR models are built according to an inductive machine learning formulation. The 

modelling process begins with a ‘training set’ of chemical compounds whose 

chemical structure and biological activities are known, and proceeds by performing 

some sort of regression analysis to construct a predictive model of activity as a 

function of structure. 

QSAR studies are therefore underpinned by the assumption that chemical compounds 

with similar structures have similar activity values; we shall refer to this as the 

Fundamental Assumption of QSAR [McKinney et al 2000]. Quite how this 

Fundamental Assumption of QSAR is applied, however, depends on precisely how we 

judge what constitutes similarity of chemical structures. 

Indeed, one of the first decisions to be taken in a QSAR study is how to characterise 

the chemical structures quantitatively, to render them in a form suitable for regression 

analysis [Wold et al 2000]. This thesis will be concerned with descriptor-based 

QSAR models, in which chemical structure is measured using a number of chemical 

‘descriptors’ – quantities either calculated based on the topological structure of the 

chemical compound [Todeschini & Consonni 2002, Estrada & Uriarte 2001] or 

experimentally determined physical or chemical properties.  

In descriptor-based QSAR, each compound’s chemical structure is represented by its 

values of each of the descriptors in use. The modelling can then proceed by using 
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multivariate regression on the descriptor space – the linear feature space obtained by 

using the chemical descriptors as the features. Typically multivariate linear least-

squares regression is used (see for example [Aptula et al 2005, Huuskonen 2000, 

Vanyúr et al 2003]), although other linear and non-linear techniques such as support 

vector regression [Vapnik 1995] are also frequently used [Lind & Maltseva 2003, 

Zernov et al 2003]. 

2.2. Overview of the Domain of Applicability Problem 
As with any regression, a QSAR model cannot be expected to extrapolate well: it 

cannot be expected to give a reliable prediction for a chemical compound dissimilar in 

structure to those in the original dataset set that was used to train the model. 

The term ‘domain of applicability’ of a QSAR model denotes the region of chemical 

structure space on which the model can in principle be expected to give reliable 

predictions. In light of the inductive machine learning formulation of QSAR models, 

the domain of applicability may be taken to be the region of chemical space that is 

adequately represented by similar chemical structures in the training set – in other 

words, regions within which predictions will not suffer from the extrapolation 

problem. 

In order to be of practical use, it must be possible to determine whether or not a given 

chemical structure is inside or outside the domain of applicability [Gramatica 2007]. 

In the latter case, it is also desirable to be able to calculate how far outside the domain 

the structure is: the reliability of prediction will be only slightly impaired just outside 

the domain, while the prediction error is expected to worsen steadily as the distance 

from the domain increases. Indeed, different applications will have different 

tolerances for what constitutes adequate representation by chemical structures in the 

training set [Sheridan et al 2004]. 

There are several existing methods in use for approximating a QSAR model’s domain 

of applicability, and for measuring the distance to that domain [Jaworska et al 2005, 

Stanforth et al 2005, Stanforth et al 2007a]. Those methods include the bounding box 

and convex hull models of dataset shape; the Euclidean, Mahalanobis, and city-block 

(Manhatten) distances; and the non-parametric methods of k nearest neighbours and 

probability density estimation by Parzen’s window. These will be described in turn. 
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2.2.1. Bounding Box 

The bounding box method [Sheridan et al 2004, Jaworska et al 2005] is conceptually 

 

 

Figure 2.1: Contour Plot of the Distance to Bounding Box 

The 258 points plotted here relate to chemical compounds originating from Huuskonen’s dataset 

for investigating aqueous solubility [Huuskonen 2000]. For or ease of visualisation, the chemical 

structures are plotted using only two descriptors: molecular weight rendered horizontally, and 

Todeschini’s Hydrophilicity index Hy [Todeschini & Consonni 2002] rendered vertically. 

The innermost contour in the above diagram, surrounding the central red region, portrays the 

bounding box. It is constructed in alignment with the descriptor axes, as the region of points for 

which each descriptor value lies within the 5th to 95th percentile interval for that descriptor over 

the whole dataset. In other words, the bounding box is the region in which both descriptors have 

absolute value less than unity, assuming that each descriptor has been normalised (rescaled) to 

take −1 as its 5th percentile and +1 as its 95th percentile (over the dataset). Successive heavy 

contours correspond to the regions in which both normalised descriptors have squared absolute 

value less than 2, 3, etc. 
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the simplest, and computationally the fastest, of all the approaches considered here. 

The domain of applicability is taken to be the smallest axis-aligned hypercuboid in 

descriptor space that contains the whole training set. In other words, a chemical 

structure is deemed to be inside the domain if and only if, for each descriptor, the 

descriptor value for that structure is in the range of values taken by that descriptor 

over the whole training set. Alternatively, in order to overcome sensitivity to outliers, 

each descriptor range may be based on a quantile range of that descriptor over the 

training set (instead of the entire range of the descriptor over the training set); see 

Figure 2.1. 

The bounding box method ensures that there is no extrapolation with respect to any 

individual descriptor. However, modelling the training set as a rectangular box is too 

crude to avoid extrapolation in multivariate descriptor space. In the absence of careful 

experimental design to ensure statistical independence of the descriptors, using the 

bounding box method to estimate domain of applicability will typically result in 

substantial regions of false positives in which chemical structures are erroneously 

deemed to be inside the domain even if they differ from it in essential features. 

If principal components analysis (PCA) is applied as a preprocessing step, then the 

results of the bounding box method can be improved [Jaworska et al 2005]. The 

resulting principal components will be uncorrelated with one another over the training 

set and, moreover, in the (admittedly unlikely in practice) scenario that the training 

data is drawn from a multivariate normal distribution in descriptor space then the 

principal components will satisfy the stronger condition of statistical independence 

assumed by the bounding-box method. However, this uncorrelated nature of the 

principal components (as directions in descriptor space) is questionable as a sufficient 

assumption for applying the bounding-box method: PCA implicitly aggregates all 

descriptors into a single descriptor space, and therefore the domain of applicability 

should logically be expressed isotropically as a coherent region of descriptor space 

rather than as the conjunction of artificial ranges. (The most dramatic manifestation of 

this problem comes with a training set whose distribution in descriptor space is 

perfectly spherical. The choice of principal components is then arbitrary, and so any 

choice of mean-centred hypercube could equally well arise as the domain of 

applicability, resulting in substantial ambiguity.) 
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2.2.2. Convex Hull 

The convex hull method [Preparata & Shamos 1985, Jaworska et al 2005, Fernández-

Pierna et al 2002] improves on the bounding box approach by taking the domain of 

applicability to be the smallest convex region of descriptor space containing the whole 

training set. This ensures that the domain is restricted to consist of precisely those 

points at which the model can be applied without extrapolation. 

There are still problems with the convex hull method, however. If the training set 

covers a non-convex region of descriptor space then false positives may still occur in 

regions of concavity: in such interior regions unrepresented by the training set, 

interpolation can suffer the same problems as extrapolation, so they are not 

necessarily part of the domain. Furthermore, the computational complexity of the 

convex hull method is prohibitive both in time and in storage as the number of 

dimensions rises to the order of 10 or 20, as typically occurs in QSAR studies. 

2.2.3. City-Block (Manhattan) Distance 

All distance-based methods for estimating domain of applicability involve some 

measure of distance from a chosen ‘centre’ of the dataset. A choice therefore has to be 

made over each of the following [Jaworska et al 2005]: 

• Measure of distance (norm) between points in descriptor space 

• Centre point 

• Scale of the measure (or, equivalently, a threshold value defining the 

applicability domain’s boundary) 

The city-block or ‘Manhattan’ distance (or l1 norm) between two points is the 

summary absolute difference between descriptor values: 

(x, y)  =  Σ d1 v |xv − yv| 
(2.1) 

where the subscript v indexes the descriptors. (The name arises because the city-block 

distance is the length of the shortest path between the two points if the path is 

constrained to consist of segments lying parallel to descriptor axes, analogously to 

plotting a route between two points in New York.) 
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The centre point within descriptor space is generally chosen on a per-descriptor basis. 

For the city-block distance, one usually uses median values, inter-quartile midpoints, 

or other inter-quantile midpoints. Descriptor values should also be scaled so that they 

have a common range (e.g. inter-quartile or other inter-quantile range). 

The city-block distance can be viewed as improving over the bounding-box method 

by penalising points that simultaneously take extreme values (only just in range) with 

respect to several descriptors. However, for a typical dataset this penalty is too harsh, 

with the resulting applicability domain (a diagonally aligned square in two dimensions 

or a multidimensional analogue of an octahedron in higher dimensions) overestimated 

along the descriptor axes and underestimated in directions involving several 

descriptors (the reverse of the situation with the bounding-box method). 

This distance method may be valid for studies involving descriptors that take 

regularly-spaced discrete values (for example counts of occurrence of certain 

chemical structural features), but even then the training set must be carefully 

constructed to ensure full coverage of the domain. 

2.2.4. Euclidean Distance 

Euclidean distance (or l2 norm) is the standard ‘geometric’ distance between two 

points in descriptor space, and is computed from the summary squared distance 

between descriptor values as per Pythagoras’ theorem: 

(x, y)²  =  ||x − y||²  =  Σ d2 v (xv − yv)² 
(2.2) 

where the subscript v indexes the descriptors. It gives rise to a spherical applicability 

domain. 

The grand mean (centre of gravity) of the training set is usually taken as the centre 

point, although this is not required to be the case. It makes sense to scale the 

descriptors during preprocessing so that they have a common variance. 

The characteristic property of the Euclidean distance is that it is isotropic: it is 

unchanged if expressed with respect to a different set of orthogonal axes. For this 

reason it is well suited to methods that aggregate the descriptors into a single 

descriptor space, including PCA preprocessing. 
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Applicability domain estimates based on Euclidean distance are valid provided that 

the training set is isotropically distributed about the centre point: the attenuation of 

training set density must be the same regardless of choice of direction in descriptor 

space. The standardised (full-dimensional) multivariate normal distribution would 

satisfy this assumption, as would uniform distribution within a (full-dimensional) 

sphere. 

2.2.5. Mahalanobis Distance or Leverage 

Another distance-based method is based on the concept of ‘leverage’ or ‘Mahalanobis 

distance’ h of a test compound’s chemical structure: 

 

 

Figure 2.2: Contour Plot of Mahalanobis Distance 

This plot portrays the 258 chemical compounds of the Huuskonen dataset using two descriptors 

(molecular weight and Todeschini hydrophilicity index Hy [Todeschini & Consonni 2002], 

aligned with the page). The concentric ellipses (also aligned with the principal components) are 

contours of equal leverage or Mahalanobis distance from the dataset’s grand mean. 
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 h(x) = N−1 + xT(XT −1x X)
(2.3) 

where the vector x represents the test compound’s structure in centred descriptor 

space and X is the training data matrix whose N rows represent the training 

compounds’ structures in the centred descriptor space [Sheridan et al 2004, Jaworska 

et al 2005, Eriksson et al 2003, Tropsha et al 2003]. (As with Euclidean distance, 

‘centred’ in this context means that the grand mean of the training data is taken as the 

origin of descriptor space. Note that XT denotes the transpose of the matrix X.) In the 

context of linear least squares regression models, the leverage of an entity is a 

measure related to the statistical error of its prediction, and can be viewed as a 

measure of extrapolation and of influence of that entity on the linear model. (Addition 

of the N−1 term in (2.3) accounts for the statistical error arising from estimation of the 

linear model’s constant.) 

The leverage is the Euclidean distance applied to data that has been preprocessed 

using principal components analysis (PCA), and normalising the principal 

components to have equal variance. Doing so neatly skirts the problems of the 

Euclidean distance as the principal components are guaranteed to be uncorrelated. 

Indeed, a training set that is distributed with concentric ellipsoidal contours (e.g. 

multivariate normally distributed) thus transformed will become isotropic as required. 

Although there is a sound mathematical footing underlying the interpretation of 

leverage as the statistical error in prediction, it relies on the assumption that there is an 

underlying linear model applicable globally – both inside and outside the domain, 

with unreliability of prediction arising purely from statistical error in the least squares 

estimation of the model parameters rather than from limitations in the applicability of 

the underlying model. Not unrelated is the observation that leverage would provide 

only a crude estimate of the shape of the domain of applicability: contours of h(x) are 

always ellipsoids in descriptor space. 

2.2.6. Nearest Neighbour Methods 

An altogether different approach is taken by the ‘nearest neighbour’ methods, most 

notably ‘k nearest neighbours’ (k-NN) [Sheridan et al 2004, Tropsha et al 2003, Xu & 

Agrafiotis 2003]. In this approach a distance measure is constructed by taking the 

average distances from the test compound’s chemical structure to the k nearest 
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chemical structures in the training set; see Figure 2.3. More sophisticated variants 

include probability density estimation [Jaworska et al 2005], in which a ‘membership-

of-domain’ value is estimated via Parzen’s Window as the average over all training 

compounds of a narrow Gaussian distribution centred at each training structure in 

descriptor space [Parzen 1962]. 

These methods both give appealing results [Jaworska et al 2005, Golbraikh & 

 

 

Figure 2.3: Contour Plot of Average Distance to Ten Nearest Neighbours 

This plot revisits the 258 chemical compounds of the Huuskonen dataset using two descriptors, 

molecular weight and Todeschini’s hydrophilicity index Hy [Todeschini & Consonni 2002], 

aligned with the page. The contours illustrate the “k nearest neighbour” distance to this dataset, 

with k = 10. The innermost heavy contour, surrounding the central red region, has been chosen to 

contain 95% of the dataset, and as such may nominally be taken as the boundary of the dataset’s 

domain. Successive heavy contours encompass points for which the mean squared distance (to 

the point’s 10 nearest neighbours) is within 2, 3, 4, etc. times that of the points on the innermost 

contour. 
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Tropsha 2002a], but, in much the same way as the convex hull method, their 

dependence on every single training compound gives rise to substantial time and 

storage requirements. Indeed, for both methods, the whole training set (which may 

number several thousand structures [Butina & Gola 2003, Clark et al 2003]) must be 

stored with the model, and in general must be processed in its entirety every time a 

distance-to-domain calculation is performed (although efficient representations such 

as kD trees [Murtagh 2000] can significantly reduce this computation time in the case 

of k nearest neighbours). This is in contrast to both the bounding box and the 

leverage-based methods. In the former, the set of ranges over all dimensions provides 

an easy-to-store and easy-to-use representation of the estimated domain. In the latter, 

once the covariance matrix (XT −1X)  in (2.3) has been calculated up front it can be 

reused for all subsequent distance-to-domain calculations without knowledge of the 

individual chemical structures in the training set. 

Table 2.1 summarises the restrictions of the existing methods for determining the 

domain of applicability of a QSAR model [Kolossov & Stanforth 2007]. As can be 

seen in the table, every existing method for assessing the domain of applicability 

suffers either from unwieldy computational and storage issues or from undesirably 

stringent restrictions on the dataset. 

It is worth noting that, in general, ‘inverting’ the calculation of QSAR descriptors is 

an impractical task: given a set of descriptor values there is not in general an 

algorithm for recovering the chemical structure that induced them. This makes any 

requirements on the distribution of a dataset in descriptor space particularly awkward 

for QSAR studies, as it is not practical to undertake an experimental design that will 

produce training structures at prescribed locations in descriptor space. 

2.3. Overview of Automatic Extraction of a Test Set 
An essential part of the QSAR modelling process (and indeed of any inductive 

machine learning endeavour) is that of validation of the model [Tropsha et al 2003, 

Gramatica 2007] against a test set of entities (chemical compounds) whose activity 

values are known, but which do not contribute to the construction of the QSAR model 

per se. This amounts to the practical verification that the trained model does indeed 

generalise to chemical compounds not in the training set. Successful validation is 

therefore a prerequisite to having confidence in the accuracy of predictions made by 
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Method Assumptions on 
Dataset 

Comments Computational Issues 

Bounding Box descriptors statistically 
independent 

 none 

seldom satisfied: 
principal components 
statistically independent 

Bounding Box with 
PCA 

mathematically 
sound, but the 
assumptions are 
seldom genuinely 
satisfied 

requirement to store the 
principal components 
(latent variables) 

Convex Hull uniformly distributed 
within a convex region of 
descriptor space 

 number of facets can grow 
(in the worst case) expo-
nentially with number of 
descriptors, leading to 
substantial complexity for 
creating, storing, and 
membership testing even 
with 10-20 descriptors 

none City-Block 
(Manhattan) 
Distance 

mathematically 
sound, especially 
for count-based 
descriptors 

uniformly distributed 
within ‘hyper-
octahedron’ 

 none Euclidean Distance spherical distribution in 
descriptor space 

OR 

descriptors statistically 
independent 

requirement to store either 
the principal components 
(latent variables) or the 
entire covariance matrix  

equivalent to 
Euclidean Distance 
with PCA 

Mahalanobis 
Distance (Leverage) 

ellipsoidal distribution in 
descriptor space 

OR (seldom satisfied) 

principal components 
statistically independent 

k-nearest-neighbours requirement to store all 
training structures 

none applicability 
domain can be 
‘overfitted’ 

none  requirement to store all 
training structures, and to 
process them all for every 
prediction 

Probability Density 
Estimation (Parzen’s 
Window) 

Table 2.1: Comparison of Existing Measures for Determining Domain of 

Applicability 

 25 
 



the model, and is an important component in the assurance of a QSAR model’s 

quality [Kolossov & Stanforth 2007]. 

Indeed, recent regulatory requirements from the Organisation for Economic Co-

operation and Development (OECD) mandate that such validation be carried out 

before the QSAR model may be used in an environmental or medical situation 

[Jaworska et al 2003]. 

In an ideal situation, validation is performed against an external test set that is 

supplied along with the training set at the outset of the modelling process. There are 

potentially two problems with this, however. Firstly, there is no a priori guarantee 

that the chemical structures of the compounds in the test set actually lie within the 

domain of applicability of the model [Kolossov & Stanforth 2007]. Because the model 

cannot be expected to make accurate predictions for structures to which it is 

inapplicable, such compounds would therefore not constitute a fair test: any poor 

performance that they may highlight would relate to regions of chemical descriptor 

space in which the model laid no claim to be able to make predictions. (There is, 

similarly, no guarantee that an external test set would provide full coverage of the 

model’s applicability domain.) In the absence of assurance provided by successful 

distance-to-domain calculations, an external test set experiment has to be viewed as an 

investigation into where the model happens to be applicable, rather than into whether 

it is valid. 

The second problem with the provision of an external test set is that, since it contains 

(by assumption) accurately known activity values for a whole collection of chemical 

compounds, it is hard to justify leaving it out of the training data. There is the 

tantalising possibility that, by combining the training and external test sets and then 

extracting from that amalgam a new test set according to some more intelligent 

design, a better model with broader applicability may be trained. 

This thesis will therefore investigate the intelligent, algorithmic generation of an 

internal test set: a test set comprising chemical compounds chosen from the complete 

original dataset. Such an algorithm will extract a test set that, by design, will afford a 

fair yet thorough test of the model’s predictive power, while leaving behind a residual 

training set that remains sufficiently representative to be able to generate a model that 

makes the most of the original data. 
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We shall now review in turn a number of existing algorithms for extracting such a 

representative test set: random selection, sampling based on activity value, cell-based 

partitioning, sphere exclusion, D-optimal design, and optimisable K-dissimilarity. As 

was the case with existing methods for estimating a model’s domain of applicability 

(§2.2), most of these algorithms are either rather crude or present forbidding 

computational requirements. 

2.3.1. Random Selection 

In the absence of better methods to hand, it is quite common to select a prescribed 

number of test compounds at random from the training set. 

Since there is absolutely no design to this method of selection, however, there is no 

guarantee of high test coverage. 

Reproducibility is a highly desirable property. Note, however, that the random 

selection method, and indeed any other method involving a random element, can be 

made to be reproducible. We simply stipulate the random number generator to use, 

and reset its seed to a fixed initial value every time the method is executed. 

2.3.2. Selection Based on Dependent Variable (Activity) 

In this method, a test set accounting for 25%, say, of the original dataset is extracted 

by ranking the training data points (chemical compounds) in order of their dependent 

variable (activity) and moving every fourth data point to the test set [Golbraikh & 

Tropsha 2002b]. 

The improvement of this method over random selection is dubious. In a one-

dimensional independent variable (descriptor) space, if there is a model describing the 

training data well, then good coverage with respect to the dependent variable 

corresponds to good coverage with respect to the independent variable. However, the 

situation is different in multidimensional descriptor space. Although the assumption 

underpinning QSAR studies (and regression analysis in general) is that points nearby 

in descriptor space have similar activity values, the converse is not true: even in the 

presence of a model perfectly fitting the data, entire hypersurfaces of points in 

descriptor space will have equal activity values. Distribution of the test set in 

descriptor space, at least in directions orthogonal to the gradient of fitted activity, may 

as well be random. 
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2.3.3. Cell-Based Partitioning of Feature (Descriptor) Space 

In this method, descriptor-space is partitioned into axis-aligned cuboid cells. Random 

selection occurs within each cell. 

The difficulty with this method lies in how to select the cells. If too few cells are used 

then there will be an undesirably high degree of random selection. At the other 

extreme, if too many cells are considered then many of them will contain just one data 

point (or so few points that moving just one point to the test set would render that cell 

over-represented by test points), and the problem of how to select which cells to over-

represent becomes an issue of a similar nature to the test set extraction problem itself. 

It is difficult to know a priori how fine a cellular resolution to use with respect to each 

descriptor. 

2.3.4. Sphere Exclusion in Feature (Descriptor) Space 

Sphere-exclusion [Kovatcheva et al 2004, Golbraikh & Tropsha 2002b] denotes a 

class of algorithms working to the principle that once a point has been designated as 

belonging to the test set, any other data points within a certain distance from it (i.e. 

within its sphere of exclusion) should be kept in the training set. 

The main disadvantage of this method is its computational complexity. 

2.3.5. D-Optimal Design in Feature (Descriptor) Space 

In D-optimal design [Galil & Kiefer 1980, Hawkins et al 2003], a prescribed number 

of test compounds are extracted to maximise the determinant of their 

variance/covariance matrix in descriptor space. 

Roughly speaking, this will tend to maximise the volume inside the convex hull of the 

test points in descriptor space. Unfortunately, it results in sparse test coverage near the 

centroid of the dataset, and can also result in outlying regions losing too many points 

to the test set for the residual training set to be representative. 

As is the case with K-means clustering, a greedy algorithm is generally employed and 

we settle for a test set that is locally (but not necessarily globally) D-optimal. 
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2.3.6. Optimisable K-Dissimilarity Selection 

Optimisable K-dissimilarity selection [Clark 1997, Clark et al 2003] is an algorithm 

for extracting a diverse, representative subset of a dataset of chemical compounds. 

The algorithm proceeds by iteratively adding a compound to the diverse subset until 

the desired target size is reached. At each iteration, a shortlist of K compounds (e.g. 

K = 5) is randomly chosen out of those compounds in the dataset whose chemical 

structures differ from all the previous shortlists’ structures by a prescribed threshold 

distance in chemical descriptor space. From this shortlist, the compound that is most 

dissimilar in structure to all those included so far is selected, and added to the diverse 

subset. 

This algorithm is successful at finding a structurally diverse subset of the dataset, but 

fares less well on the criterion of representation, especially for large subsets. In order 

to maximise the diversity, structures from the fringes of the dataset in chemical 

descriptor space will typically be chosen more often than structures from the ‘core’ of 

the dataset. 

2.4. Overview of Modelling Activity in the Absence of an 
Adequate Linear Relationship 

Multivariate linear regression has always been amongst the most popular modelling 

techniques within QSAR. In particular, certain physical properties including aqueous 

solubility and the octanol partition coefficient logP have been successfully described 

using simple linear QSAR models, even on large diverse datasets [Yan & Gasteiger 

2003, Mannhold & van de Waterbeemd 2001]. 

However, it is not always possible to find a linear model for the dependence of a 

biological activity on chemical structures that is applicable across the entirety of a 

diverse dataset. There may be several reasons for this. For example, the diversity of 

the dataset may mean that it encompasses a number of substantially different classes 

of chemical structure, such that the activity arises through entirely distinct biological 

mechanisms in different classes. In such cases one would not expect a single linear 

structure-activity relationship to be globally applicable; rather, each distinct biological 

mechanism may individually admit a linear relationship applicable only to the region 

of chemical space within which that mechanism occurs. 

 29 
 



Piecewise linear regression methods have been employed to try to model in the 

presence of several distinct mechanisms of activity. For example, the IDBS 

PredictionBase software [IDBS 2007] supports a two stage modelling paradigm in 

which the various mechanisms of activity are first specified (by the modeller) as 

corresponding to ranges of values of the activity. A separate multivariate linear least-

squares regression model is then trained based on those chemical structures associated 

with each mechanism. Quantitative prediction for a new chemical compound then 

proceeds as follows: 

Classification: determine, through a pattern matching algorithm, which mechanism of 

activity is most likely to apply to the chemical structure. 

Evaluation: apply the linear regression model associated with this mechanism of 

activity to predict the quantitative activity for this chemical compound. 

A second possible reason for the absence of a globally applicable linear relationship is 

that the underlying dependence of activity on chemical structure, assuming that it 

exists, may simply be non-linear despite arising from a single mechanism. 

Some attempts have been made to fit non-linear models to such scenarios in QSAR; 

for example, support vector regression with a carefully tailored non-linear kernel has 

been used in the modelling of aqueous solubility [Lind & Maltseva 2003], and 

artificial neural networks have been applied in a recent study of antibacterial activity 

[Cherkasov 2005]. The parameter-free technique of k-nearest-neighbour regression, in 

which quantitative predictions are derived by averaging the known activity values of 

nearby chemical structures in the training set, has also been used [Cedeño & 

Agrafiotis 2004]. 

A piecewise multivariate linear regression approach can be applied even when the 

individual models’ domains are not interpreted as regions of distinct mechanism of 

activity. In such cases, the piecewise regression constitutes another parameter-free 

method of accommodating an underlying dependence that is not necessarily linear. 

This method has been successfully applied in modelling aqueous solubility [Butina & 

Gola 2003]. 
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2.5. Existing Applications of Clustering in QSAR 
Clustering enjoys widespread use in QSAR, in various forms. One of its most 

common applications in QSAR relates to the taming of a large dataset that, considered 

in its entirety, would be too diverse to be amenable to QSAR modelling. Clustering 

can isolate a collection of chemically homogeneous subsets of the dataset, each of 

which is more likely to admit a predictive model applicable to its surrounding region 

of chemical space [Senese & Hopfinger 2003]. 

Clustering by K-means has also been used in the automatic extraction of a test set for 

QSAR models. In order to ensure even sampling of the available data by the test set, 

the original dataset is clustered by K-means, and then either a single chemical 

compound [Burden & Winkler 1999] or a proportion [González et al 2004, Samanta 

et al 2006] is selected at random from each cluster. A refinement of this approach will 

be developed and studied in detail in chapter 6. 

Clustering was applied in a novel fashion in a recent QSAR study [Senese & 

Hopfinger 2003] of a class of chemical compounds associated with the inhibition of 

the activity of ‘HIV-1 protease’ – an enzyme involved in the replication of the HIV 

virus. The study developed a large number of models using a single method but 

varying the method’s parameters, with a view to improving predictivity by being able 

to combine the predictions from several distinct models instead of relying solely on a 

single model. It was observed that few of these models were genuinely unique: almost 

all of the models were very similar to several of the others. Therefore, instead of 

clustering the chemical compounds, the models themselves were clustered according 

to the similarity of their residual training errors. Selecting one model from each of the 

best clusters (as opposed to, say, the best five models overall) ensured that predictions 

would be drawn from genuinely diverse models. 

An implementation of the K-means algorithm that is suitable for QSAR datasets has 

been proposed [Smellie 2004], achieving substantial time savings by sacrificing the 

requirement for a ‘perfect’ K-means clustering. The resulting ‘lossy’ clustering, while 

only approximately satisfying the K-means criterion, is judged to be quite adequate 

for the purposes of determining a representative subset of a QSAR dataset. 

Some QSAR studies have also employed fuzzy clustering, including the ‘fuzzy c-

means’ algorithm, which is the fuzzy version of the K-means algorithm. In fuzzy 
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clustering, the assignment of entities to clusters is not discrete (as is the case with 

conventional, ‘crisp’ or ‘hard’ clustering); instead, each entity is permitted to share its 

membership amongst two or more, or even all, of the clusters. One such QSAR study 

[Feher & Schmidt 2003] uses fuzzy clustering to model the dependence of a 

biological activity on a biochemical compound’s conformation: its physical three-

dimensional shape (as opposed to merely its abstract topological structure) as 

determined by, for example, the actual orientation of its chemical bonds. It was found 

that the possible conformations of the compounds under consideration were not 

amenable to crisp clustering because they formed a continuum lacking in natural 

groupings or divisions. The fuzzy approach, however, allowed the successful 

generation of fuzzy clusters (and hence diverse representative conformations) that 

effectively overlap in their coverage of the dataset, without the requirement for an 

underlying cluster structure as discrete clusters. 
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3. K-Means Clustering and Its Extensions 

3.1. Introduction to K-Means 

3.1.1. Representation by Clusters 

A cluster representation of a collection of entities in a dataset describes the dataset as 

consisting of a number of clusters, with each entity a member of one cluster. 

Formally, a cluster representation comprises the following elements, for each cluster: 

Content: which entities are members of the cluster 

Intent: aggregate description of the cluster including, for example, cardinality, 

location and size in feature space, and most representative member 

Disregarding the ‘contents’ and retaining only the ‘intents’ of a cluster representation 

leads to a synoptic model of the dataset. This simplified model captures the broad 

trends of the dataset, as emerges from its clusters, without retaining any information 

on individual entities. 

Such a synoptic model of the dataset will inevitably lose some information: an 

aggregate description is substituted for the full enumeration of each cluster. We may 

therefore consider this cluster-based model to be a simplified approximation to the 

dataset. The natural next step is to quantify the accuracy of this approximation, or, 

equivalently, the degree of information loss or retention. 

One advantage of considering a cluster’s ‘intent’ as distinct from its ‘content’ is that it 

assists in the classification of new points: entities not in the dataset and not 

contributing to the development of the clustering. In principle, a new point can be 

assessed with reference to the intent-based description of each cluster, thence 

determining the cluster in which it best fits. Taken to its extreme, the entire feature 

space can be systematically classified in this way to partition it into regions each 

associated with one cluster. 

3.1.2. The K-Means Loss Function 

In the case of K-means clustering, the dataset is assumed to consist of entities drawn 

from some M-dimensional feature space. The ‘intent’ of a K-means cluster k is 

captured by its cardinality and a ‘prototype’ – a suitably chosen representative point in 

feature space [MacQueen 1967, Lloyd 1982, Bock 2007]. 
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In what follows, we consider a dataset of N entities xn that, according to a partition 

function π(n), are each assigned membership of one of K clusters, which have sizes Nk 

and representative points ck. We write (π, [ck]) for this cluster representation. 

The characteristic property of K-means clustering arises from the way in which we 

measure the accuracy of the cluster-based synoptic model it induces of the dataset. 

This model is visualised according to K-means clustering as containing, in place of 

each cluster, an equivalent number of points concentrated at the cluster’s 

representative point. The approximation that this involves may therefore be further 

considered at the level of individual points, via an approximation of each point by its 

cluster’s representative point. This inspires the following ‘sum of squares error’ 

information loss function [Steinley 2006]: 

 L([x ]; π, [c  ||x  − c])  =  Σn k n n π(n)||² 
(3.1) 

for entities x  represented by the K-means clustering (π, [cn k]). In the above, ||x − y||² 

denotes the squared Euclidean distance between points x and y in the feature space. 

This use of Euclidean distance in feature space immediately introduces dependence on 

the features’ scales (and a requirement that they be expressed in the same units) 

[Hartigan 1975, Jain & Dubes 1988, Mirkin 2005]. Before using K-means clustering, 

conscious thought must therefore be given to how the features are normalised, in the 

absence of a prior common unit. A later section will discuss this in more detail (§4.3). 

We may readily deduce from the K-means loss function (3.1) the choice (for each 

cluster k) of representative point ck that minimises it (with the cluster contents fixed). 

Indeed, equation (3.1) separates additively both over clusters and over features: using 

superscripts to select feature components we are led to choose cv
k to minimise 

Σ v v
n:π(n)=k (x  − cn k)², which is shown by elementary calculus to yield a minimum at 

N v v
k c k = Σn:π(n)=k x n. The information loss function is therefore minimised by selecting 

cluster centroids (i.e. feature-wise means) as the representative points. 

Taking cluster centroids as the representative points ck, the operation of 

approximating each point by its cluster’s centroid assumes the form of a linear 

idempotent (projection) operator Pπ on the dataset: 
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]  =  [
1

 Nπ(n)
])  =  [c Pπ ([xn π(n)  Σm:π(m)=π(n) xm] 

(3.2) 

This projection operator allows us to derive the well-known decomposition of data 

scatter into ‘explained’ and ‘unexplained’ contributions [Mirkin 2005]. The overall 

data scatter resolves into a component within the projection – the ‘explained’ (or 

‘between-cluster’) data scatter of the approximated (projected) data points – plus a 

residual component along the projection – the ‘unexplained’ (or ‘within-cluster’) data 

scatter comprising the summary distance between original and approximated 

(projected) data points. This latter, residual, component is of course none other than 

the K-means loss function: 

 unexplained scatter  =  total scatter  −  explained scatter 
  L([x ]; π, [c  ||x  ||c])  =  Σ ||²  −  Σ ||² n k n n n π(n)

(3.3) 

3.2. K-Means Optimisation 

3.2.1. Local Optimality Criterion for K-Means 

A K-means clustering (π, [ck]) of a dataset [xn] is said to be (locally) ‘K-means-

optimal’ if each point is closer to its own cluster’s centroid than to any other cluster’s 

centroid. (‘Closeness’ is judged in terms of Euclidean distance within the dataset’s 

feature space.) 

Analysis of this local K-means-optimality condition resolves it into two important 

components: 

Optimality of Cluster Membership (optimal Content, for given Intent): 

Each point is a member of the cluster to whose representative point it is 

closest. 

Optimality of Representative Points (optimal Intent, for given Content): 

Each cluster’s representative point is the centroid of its member points. 

These mutually interdependent conditions have an elegant interpretation in terms of 

the K-means loss function L (3.1). Firstly, given the choice of representative points 

[ck], the required partitioning π (which assigns each point membership of the cluster 

whose representative point is closest) is immediately seen to be that which minimises 
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L. Secondly, given the partitioning π, the specified choice of representative points [ck] 

(as cluster centroids) was shown in §3.1.2 also to be that which minimises L.  

The concept of ‘Optimality of Cluster Membership’ can be extrapolated to apply to 

new entities, not necessarily in the original dataset: any such point in feature space is 

considered a member of the cluster to whose representative point it is closest. This 

classification of the entire feature space into cluster-associated regions, according to 

nearest representative point, results in the familiar Voronoi tessellation [Voronoi 

1908, Preparata & Shamos 1985] popularly associated with K-means clustering [Duda 

& Hart 1973, Hartigan 1975]. 

3.2.2. Alternating Optimisation Algorithm 

The alternating optimisation (AO) algorithm (also referred to as the expectation 

maximisation (EM) algorithm) for K-means clustering is a greedy algorithm for 

finding a locally K-means-optimal clustering, by alternately updating the partitioning 

to minimise L (leaving cluster representatives fixed) and updating the cluster 

representatives to minimise L (leaving the partitioning fixed). When no more updates 

are possible, both halves of the local K-means-optimality condition will be satisfied. 

The full Alternating Optimisation algorithm is as follows: 

Algorithm 3.1: Alternating Optimisation for K-Means Clustering 

Inputs: 

• dataset of N points x  in M-dimensional feature space n

• number of clusters K 

• initial partitioning π of {1, …, N} into K clusters 

Procedure: 

1. Flag all clusters as being ‘dirty’. 

2. Repeat, all the while there are any ‘dirty’ clusters: 

a. Optimise Representative Points 

For each ‘dirty’ cluster k: 

i. Calculate the centroid ck based on the current membership of 

cluster k according to π. 
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ii. Calculate the squared Euclidean distance dn k  =  ||x  − cn k||² from 

each point x  to centroid cn k. 

iii. Remove the ‘dirty’ flag from cluster k. 

b. Optimise Cluster Membership 

For each data point n: 

i. Determine the cluster k for which dn k is smallest. 

ii. If π(n) is not already equal to k, then flag clusters π(n) and k as 

‘dirty’. 

iii. Update π(n) to be equal to k. 

Outputs: 

• final partitioning π of {1, …, N} into K clusters 

• representative point (centroid) ck of each cluster k 

The ‘dirty’ flags in this algorithm, set whenever a cluster’s content changes, serve a 

dual purpose. Firstly, they prevent wasteful recalculation of the centroid (and the 

distances to it) of any cluster that is unchanged since the previous iteration. 

Secondly, and more importantly, the ‘dirty’ flags form the stopping condition for the 

algorithm. At the end of step 2b, the cluster memberships (according to π) are optimal 

for the current representative points ck. In general, however, the representative points 

are only optimal according to the previous iteration’s cluster memberships. For any 

‘dirty’ cluster k (i.e. that has gained or lost a point), ck cannot be assumed to be equal 

to the centroid of its updated content. The clustering is therefore not necessarily 

locally K-means-optimal and the greedy algorithm may profitably proceed with 

further iterations. 

If, on the other hand, there are no ‘dirty’ clusters at the end of step 2b, then the 

partitioning π was not changed at all during this iteration. In other words, the previous 

iteration’s cluster memberships are still in effect – as, therefore, is the optimality of 

the representative points achieved by step 2a. The greedy algorithm terminates at this 

invariant point having found a (locally) optimal K-means clustering.  

At any point during this algorithm, the value of the loss function may be obtained as 

L = Σ  d . n n π(n)
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The alternating optimisation algorithm is guaranteed to terminate because: 

1. In each iteration, step 2b will either make no change (resulting in termination) 

or will effect a strict decrease in the loss function. 

2. Step 2a never causes the loss function to increase. 

3. At the end of step 2a, the value of the loss function is wholly dependent on the 

partition function (i.e. cluster memberships). 

4. Because of the strict decreases to the loss function, each iteration has a distinct 

configuration of the partition function. 

5. Since there are only finitely many configurations of the partition function, the 

algorithm can only proceed for finitely many iterations. 

This argument places an extremely large bound (KN) on the number of iterations that 

may be followed before termination. In practice, the number of iterations is much 

smaller than this [Duda & Hart 1973], and was empirically found to be around 

O( N), although this also depends heavily on the distribution of the data to be 

clustered [Jain & Dubes 1988]. 

The most time-consuming part of the algorithm is step 2a(ii), in which the point-to-

centroid distances are updated. Each distance calculation has complexity O(M) (where 

M is the dimension of the feature space), leading to a complexity of O(KMN) per 

iteration [Manning et al 2008], and an estimated overall complexity of O(KMN N). 

Further methods exist for reducing the computation time; for example, a static binary 

tree decomposition of the dataset allows many of the candidate clusters in step 2b(i) 

(for each point xn) to be ruled out, avoiding the need to calculate the distances dn k to 

those clusters’ centroids [Kanungo et al 2000]. 

It is worth discussing one corner case here: although highly unlikely to occur, its 

analysis will have some bearing on variants of K-means considered later. At step 

), there is a small chance that the cluster C2a(i k is empty, either because it was empty 

in the initial partitioning or as a result of the previous iteration transferring all its 

members to other clusters. Since is not possible to compute its centroid ck in this case, 

we leave ck formally undefined, and in step 2b(i) (for this and all subsequent 

iterations) exclude ck from the available centroids in the search for the nearest 

centroid to each data point xn. 
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This issue of clusters becoming empty can be resolved by using the ‘Exchange 

Algorithm’ [Späth 1985, Bock 2007] instead of Alternating Optimisation, as an 

alternative way of achieving a locally K-means-optimal clustering. In the Exchange 

Algorithm, each iteration only considers a single data point (chosen in a round-robin 

fashion), instead of simultaneously reconsidering all data points’ cluster assignment 

as in AO. The data point xn, assumed to be in cluster k, is moved to the new cluster l 

that maximises: 

 
Nk

 Nk−1 ||xn − ck||²  −  
Nl

 Nl+1 ||x  − c ||² n l

(3.4) 

(where Nk is the current number of members of cluster k) provided that there is a 

cluster l (other then k itself) for which this expression is positive [Steinley 2006]. The 

expression in (3.4) is derived from the decrease in the loss function L (see (3.1)) 

resulting from moving point xn out of cluster k and into cluster l, taking into account 

the updated location of their centroids ck and c . In the singular case in which Nl k = 1 

(i.e. x  is the only member of cluster k and thus coincides with cn k), the first term of 

(3.4) is taken to be zero; this effectively ensures that no cluster can ever become 

empty. One possible minor disadvantage of this method is that it introduces 

dependence upon the order in which the points in the dataset are presented. 

3.2.3. Initialisation with Anomalous Pattern Clustering 

So far we have discussed in detail iteration and termination of the alternating 

optimisation algorithm. However, the initial partitioning into clusters (including the 

value of K) was specified as an external input to the algorithm instead of being 

performed as an integral part of it. Alternating optimisation is therefore incomplete as 

an ab initio K-means algorithm; to merit that status it will require a preprocessing step 

to generate the initial partitioning. 

The Intelligent K-means Algorithm [Mirkin 2005] uses so-called Anomalous Pattern 

Clustering (APC) to procure the initial partitioning required by alternating 

optimisation. APC is a procedure to extract from the dataset a coherent subset that is 

in some sense deviant from the bulk of the (original) dataset. Applied iteratively, APC 

results in a sequence of clusters, each on the periphery of the remainder of the dataset, 
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that are suitable for use as the initial partitioning in the alternating optimisation 

algorithm. 

An attractive feature of Anomalous Pattern Clustering is that it provides greater 

resolution at the centre of the dataset in feature space, a region that is typically denser 

in data points than the periphery. 

Anomalous Pattern Clustering uses a constrained form of 2-means clustering to 

determine where to place the boundary between the new ‘anomalous pattern’ cluster 

and the remainder of the dataset. The full Intelligent K-means Algorithm is presented 

below: 

Algorithm 3.2: Intelligent K-Means 

Inputs: 

• dataset of N points x  in M-dimensional feature space n

Procedure: 

1. Calculate the centroid (feature-wise mean) g of the entire dataset. 

2. For each point xn, calculate its deviance dn as the squared Euclidean 

distance ||x  − g||² from g to xn n. 

3. Anomalous Pattern Clustering 

a. Initialise K = 0. 

b. Flag each point in the dataset as being ‘available’. 

c. Repeat, until there are no ‘available’ points remaining: 

i. Increase K by 1. 

ii. Determine the most deviant ‘available’ point, i.e. the ‘available’ 

point x  for which dp p is greatest. 

iii. Prepare a partitioning function ρ of the ‘available’ points in the 

dataset into 2 clusters: the ‘anomalous’ cluster, containing the 

single point xp, and the ‘remaining’ cluster, containing all other 

‘available’ points. In other words, set ρ(p) = 2, and ρ(n) = 1 for 

all other ‘available’ points (with n ≠ p). 

iv. Invoke the Alternating Optimisation algorithm, applied only to 

the ‘available’ points in the dataset, to optimise the partitioning 
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ρ. However, during this AO invocation, constrain the 

representative point c1 of the ‘remaining’ cluster to be equal to 

g at all times. 

v. For each ‘available’ point xn in the ‘anomalous’ cluster (i.e. for 

which ρ(n) = 2) according to the final partitioning ρ resulting 

from the AO invocation in step (iv), set π(n) = K and remove its 

‘available’ flag. 

4. Alternating Optimisation 

Invoke the Alternating Optimisation algorithm on the full dataset, initialised 

with (and updating) the current partitioning π into K clusters. 

Outputs: 

• final partitioning π 

• representative point (centroid) ck of each cluster k 

The invocation of Alternating Optimisation in step 3c(iv) is guaranteed to terminate, 

by exactly the same arguments as were given in §3.2.2, in spite of the stipulation that 

the ‘remaining’ cluster’s representative point c1 is constrained to be fixed at g. 

Whether c  is optimised or fixed, step 2a of Alternating Optimisation (see 1 Algorithm 

3.1) never allows the remaining cluster’s contribution to the loss function to increase. 

It can also be seen that the Alternating Optimisation invocation in step 3c(iv) never 

results in an empty ‘anomalous’ cluster (and therefore the loop at step 3c will 

eventually terminate). At each 2-means AO iteration, step 2b of Algorithm 3.1 assigns 

to (or keeps in) the ‘anomalous’ cluster any point that is closer to c2 than to g. 

However, because c2 is at this stage the centroid of the ‘anomalous’ cluster’s previous 

members, considering their orthogonal projection onto the straight line through g and 

c2 demonstrates that at least some of them must lie beyond c2 and so will be kept in 

the ‘anomalous’ cluster. (The special case in which c2 = g can be easily overcome by 

specifying that ties are resolved in favour of the ‘anomalous’ cluster in step 2b(i).) 

This Intelligent K-Means Algorithm provides scope for parametric control of the 

number of clusters in the initial partitioning. At the end of the APC step (step 3), 

vestigial clusters that are not sufficiently ‘significant’ may be ‘dissolved’: their points 

n are left unclustered with π(n) formally undefined, not contributing to any centroid in 
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step 2a of the first iteration of Alternating Optimisation, and first assigned in step 2b 

of that iteration. (The labelling of the clusters is then compacted, and their number K 

reduced, accordingly.) Example criteria for ‘significance’ of a proposed initial cluster 

are: 

• Accept unconditionally: 

iterate APC as above 

• Reject if K exceeds a threshold: 

parameter explicitly specifies (maximum) number of clusters 

• Accept only if the size (cardinality) of the cluster exceeds a threshold 

• Accept only if the contribution of the cluster to the ‘explained’ data scatter 

(see (3.3)) exceeds a threshold proportion of the dataset’s ‘total’ scatter 

centred about g. 

• Reject if the cumulative contribution of all previously extracted clusters to the 

‘explained’ data scatter has exceeded a threshold proportion of the dataset’s 

‘total’ data scatter about g: 

parameter dictates (target) initial value of loss function 

It is important to recognise that, although the alternating optimisation algorithm 

guarantees existence of a K-means-optimal clustering, such a clustering is not in 

general unique. The K-means-optimality condition is a form of local optimality, in the 

sense that it requires that (a certain class of) adjustments to the clustering cannot 

reduce the loss function any further. However, it does not guarantee global minimality 

of the loss function: there may be other K-means clusterings with a lower loss value, 

leading (via the K-means algorithm) to other (locally) K-means-optimal clusterings 

with lower loss values still. 

A criticism commonly levelled against K-means is this failure to guarantee finding a 

global minimum of the loss function [Jain & Dubes 1988]. However, this is mitigated 

by the use of a deterministic method such as Anomalous Pattern Clustering to 

initialise the partitioning. Whilst still not guaranteeing an absolute global minimum, 

APC does provide a considered starting point leading to a sensible, reproducible 

locally optimal clustering. 
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3.3. Fuzzy Extensions to K-Means 

3.3.1. Crisp and Fuzzy Clustering 

Traditionally, a partitioning of a dataset into clusters is a ‘crisp’ arrangement: each 

point in the dataset (or in the space in which it is embedded) is classified as a member 

of one, and only one, cluster. 

Such crisp cluster membership may be described in terms of an indicator function zk 

for each cluster k. 

 zk(x)  =  1 if x is in cluster k 
 zk(x)  =  0 otherwise 

(3.5) 

The fact that the collection of K clusters provides a disjoint cover of feature space, i.e. 

with each point in feature space belonging to precisely one cluster, can be stated as 

follows: 

 Σk zk(x)  =  1 
(3.6) 

This identifies the cluster membership (for a point x in feature space) as a distribution 

over the K clusters. Of course, the membership distribution is constrained at this stage 

to be atomic: unanimously concentrated on one cluster. 

This formulation is amenable to substitution of fuzzy sets for crisp clusters. In such a 

so-called fuzzy clustering, the distribution of membership (for a single point x) over 

the K clusters is no longer constrained to be unanimous, but is free to be shared 

amongst several or all clusters to varying degrees. The cluster memberships zk(x) are 

now fuzzy indicator functions: they take values in range [0, 1] with 1 denoting full 

exclusive membership of cluster k, 0 denoting no membership of cluster k, and values 

in between representing degrees of partial membership [Ruspini 1969]. 

3.3.2. Optimising Fuzzy Cluster Membership 

During the K-means alternating optimisation algorithm, and during subsequent 

classification of new entities, a point x in feature space is assigned membership of 

(crisp) clusters on the basis of nearest centroid. In other words, full membership is 

awarded to the cluster k that minimises dk(x)  =  ||x − ck||². 
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A fuzzy generalisation of this cluster assignment, that is still dependent only on 

distance-to-cluster measures dk, can be formulated as an optimisation problem 

[Bezdek 1973, Bezdek 1981, Bezdek & Pal 1992]: 

 Fuzzy Cluster Membership Optimisation 
 minimise:  f([zk]) = Σk zk

α dk 
 with respect to: zk  (k = 1, 2, …, K) 
 subject to:  zk ≥ 0 
    Σk zk  =  1 

(3.7) 

This is solved for any given point x to obtain fuzzy memberships zk(x) of the clusters 

k. The parameter α ≥ 1 controls the degree of fuzziness of the resulting cluster 

membership distribution, with α = 1 reproducing the crisp nearest-centroid (minimal 

dk) cluster assignment employed in traditional K-means. In the limit as α increases to 

infinity, the membership functions converge (pointwise, whenever all dk are non-zero) 

to the common fixed value K−1: the clusters have been blurred to the extreme that 

there is no distinction between them. The value α = 2 is often taken for computational 

expedience [Mirkin 2005]. 

For α > 1, a Lagrange multiplier may be used to obtain an expression for the optimal 

membership assignment, applicable wherever all dk(x) are non-zero: 

 zk(x)  =  
dk(x)−1/(α−1)

Σl dl(x)−1/(α−1) 

(3.8) 

For any valid value of α, if any dk(x) is zero, then optimal membership for x is 

achieved by sharing it in an arbitrary fashion amongst those clusters k for which dk(x) 

is zero. Assuming that there is only ever one such cluster, this is consistent with (3.8) 

in preserving the continuity (and indeed smoothness) of the membership functions. 

3.3.3. Fuzzy Membership in K-Means Clustering 

The K-means loss function was presented earlier (3.1) in terms of a partition function 

π. The partitioning into clusters may equivalently be described in terms of cluster 

memberships exactly as in (3.5), as follows: 
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 zn k  =  1 if π(n) = k 
 zn k  =  0 otherwise 

(3.9) 

It is worth explicitly stating the following constraints on such membership functions – 

constraints which are necessary and sufficient for their correspondence with 

partitioning functions: 

 Unity:  Σk zn k = 1 
 Atomicity: zn k ∈ {0, 1} 

(3.10) 

The equivalent formulation of the loss function in terms of cluster memberships is as 

follows: 

 L([xn]; [zn k], [ck])  =  Σn Σk zn k ||xn − ck||² 
(3.11) 

This immediately identifies the ‘Cluster Membership’ aspect of K-means-optimisation 

(for each point, given fixed centroids) as an instance of fuzzy cluster membership 

optimisation (3.7) with α = 1. Of the two constraints (3.10) implicitly imposed by 

crisp K-means, the ‘unity’ constraint occurs verbatim in (3.7), and the ‘atomicity’ 

constraint has already been noted in §3.3.2 as a consequence of fuzzy cluster 

membership optimisation with α = 1. 

Working by analogy, we can construct a loss function in the spirit of K-means for 

fuzzy clustering [Dunn 1973, Nascimento et al 2003, Nascimento 2005]: 

 L([xn]; [zn k], [ck])  =  Σn Σk zn k
α ||xn − ck||² 

(3.12) 

The fuzzy cluster membership optimisation in (3.7) and (3.8) demonstrates how to 

obtain those cluster memberships that minimise this new loss function, given 

representative points ck. Conversely, given fuzzy cluster memberships, it is easily 

verified that the loss function is minimised using the following ‘fuzzy centroids’ for 

the clusters’ representative points [Bezdek 1981, Nascimento et al 2003]: 

 ck  =  
Σn zn k

α xn

Σn zn k
α  

(3.13) 

Fuzzy clustering according to this loss function is called ‘fuzzy c-means’. 
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The Alternating Optimisation algorithm can be readily adapted to optimise fuzzy c-

means [Dunn 1973]. With reference to the formulation in Algorithm 3.1, the ‘optimise 

memberships’ step 2b is modified to update all fuzzy cluster memberships zn k. The 

concept of ‘dirty’ clusters becomes redundant simply because all clusters are dirtied 

as a result of the fuzzy cluster membership updates; this, together with the fact that 

the fuzzy cluster memberships can now take on an infinite continuum of 

configurations, means that AO applied to fuzzy c-means will not in general converge 

in finitely many iterations. Implementations of the algorithm must be arranged to 

terminate when, for example, the per-iteration decrease in the loss function falls 

below some tolerance threshold. 

As an alternative to using full-blown fuzzy c-means, it is possible to obtain a 

clustering of a dataset using crisp K-means, but then use fuzzy cluster membership to 

classify new entities in feature space. This trade-off offers a compromise, 

incorporating the discrete Alternating Optimisation algorithm to generate the 

clustering in the first instance (without having to worry about stopping conditions), 

alongside the smoothly varying fuzzy cluster memberships in feature space (based on 

the original crisp clusters’ centroids). 

3.3.4. Significance of Objective Function 

In Bezdek’s original formulation of fuzzy membership, the objective function 

f([zk]; x) = Σk zk
α dk(x) was used purely as a tool to guide the fuzzy cluster 

memberships towards a suitable optimum. However, we consider here a deeper 

interpretation of f as an aggregate measure of distance from x to the dataset (modelled 

as a collection of clusters). Informally speaking, f is an average distance-to-cluster 

measure weighted according to the fuzzy cluster memberships in consideration, with 

these weights transformed by the power of α to attenuate the reported distance 

according to their degree of fuzziness. Fuzzy membership for x is distributed over the 

clusters in such a way as to minimise this distance to dataset – in other words, to 

maximise its belongingness to or affinity with the dataset. 

With α = 1 (crisp clustering), the optimal value of the objective function f is simply 

the smallest value of dk: the distance to the nearest cluster. For α > 1, the optimal 

objective value is determined by substitution of (3.8): 
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−1/(α−1) f([zk(x)])  =  Σk zk(x)α dk(x)  =  [Σk dk(x) ]−(α−1)

(3.14) 

It is illustrative to compare this expression with a similar average distance-to-cluster, 

weighted according to the fuzzy cluster memberships in their original form (i.e. not 

transformed by power of α): 

 Σk zk(x) dk(x)  =  
Σk dk(x)(α−2)/(α−1)

Σk dk(x)−1/(α−1)  

(3.15) 

Comparing these expressions reveals a remarkable significance to the value α = 2: 

−1 f([zk(x)])  =  Σk zk(x)² dk(x)  =  [Σk dk(x) ]−1 
 Σk zk(x) dk(x)  =  K [Σk dk(x)−1]−1

(3.16) 

In other words, apart from a constant multiple K, these expressions (where α = 2) are 

equal to one another, and to the harmonic mean of the distance-to-cluster measures. 

3.4. Variations of the K-Means Criterion 

3.4.1. Kernel-Based K-Means 

Crisp K-means clustering, and the Alternating Optimisation algorithm for generating 

it, can be generalised by substituting different ‘cluster intent’ representations along 

with corresponding entity-to-cluster distance measures. 

Let us consider a dataset of N points xn in M-dimensional feature space U, clustered 

according to the partition function π(n) into K crisp clusters. Now suppose that the 

‘intent’ ck of a cluster k is described by a vector in some associated M'-dimensional 

property space P. A general class of K-means-related clustering formulations can be 

isolated by using expressions of the following form to measure the distance from a 

point x in feature space to a cluster characterised by the vector c in property space: 

 d(x, c)  =  D([x; c], [x; c]) 
(3.17) 

where D is a symmetric ‘kernel’ function acting upon the combined M+M'-

dimensional space W=U×P of [point in feature space, vector in property space] pairs. 

The induced loss function for the clustering is: 
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 LD([x ]; π, [c  D([x ; cn k])  =  Σn n π(n)], [x ; cn π(n)]) 
(3.18) 

In addition, we require D to satisfy Mercer’s condition [Mercer 1909, Courant & 

Hilbert 1962], a form of positive semi-definiteness, which may be equivalently stated 

as the existence of a (non necessarily finite-dimensional) inner product space VD and a 

measurable (but not necessarily computable – efficiently or indeed at all) function 

GD : W → VD such that D(u , u1 2) = GD(u1)⋅GD(u ). 2

Kernel functions are ‘additive’, in the sense that a linear combination with positive 

coefficients of kernel functions will itself be a kernel function satisfying Mercer’s 

condition. (This is immediately verified by considering, for example, 

VD1+D2 = VD1 × VD2, GD1+D2 : W → VD1+D2, and GD1+D2(w) = [G (w), GD1 D2(w)].) 

One interesting class of kernels, in which the property space P (of which c is a 

member) is the same space as the feature space U, is those of the following form: 

 D([x ; c1 1], [x ; c ])  =  K(x2 2 1, x ) − K(x , c ) − K(c , x2 1 2 1 2) + K(c , c1 2) 
(3.19) 

where K is itself a kernel on U satisfying Mercer’s condition, say with GK : U → VK 

and K(u , u (u (u1 2) = GK 1)⋅GK 2). Then D([x ; c1 1], [x ; c2 2]) = GD([x ; c ([x ; c])⋅GD1 1 2 2]) 

with VD = VK, GD : W → VD, and GD([x; c]) = G (x) − G (c). K K

Traditional ‘distance-wise’ K-means, as we shall hereafter refer to the variety of K-

means introduced in §3.1.2, can be identified as a particular instance of this 

formulation by taking V  to be the feature space U itself and GK K to be the identity 

function: 

 ddist(x, c)  =  Ddist([x; c], [x; c])  =  x⋅x − 2 x⋅c + c⋅c  =  ||x − c||² 
(3.20) 

Using in this fashion a non-trivial kernel function K satisfying Mercer’s condition is a 

way of effectively introducing non-linearity into the K-means clustering [Dhillon et al 

2004]. This is an application of the well-known ‘kernel trick’, applicable to any data 

mining algorithm that can be formulated within the feature space in terms of an inner 

product alone, without requiring the implementation to perform addition or scalar 

multiplication within the feature space directly. Such an algorithm performed with 
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respect to such a kernel will be equivalent to the original algorithm being performed 

on the transformed dataset [G (x )] in the space V . K n K

One of the most common applications of this ‘kernel trick’ is in Support Vector 

Machines (SVM) [Vapnik 1995]; other applications include principal components 

analysis (PCA) [Schölkopf et al 1998]. In the case of a K-means-optimal clustering, 

the flat boundaries of the Voronoi tessellation of the clustering in VK correspond to (in 

general) curved boundaries in the original feature space. 

In these cases – in which the property space (of which c is a member) is the same 

space as the feature space and the kernel is of the form in equation (3.19) – the 

formulation of K-means retains the interpretation of the centroid ck of a cluster k as a 

representative point for that cluster. All that has changed is that distances are 

effectively calculated within the transformed feature space GK(U) (embedded in the 

space V ). Note that ‘centroids’ are constrained to lie in the image GK K(U) of the 

feature space: they must be associated with some point in the original feature space U. 

Because of this, and because the transformation function GK is not necessarily 

available for efficient computation, calculation of the centroid ck for a cluster k must 

be performed in U in a fashion specific to the particular kernel in use, by solving the 

minimisation of equation (3.19) summed over all members of the cluster. 

Other classes of kernels have also been investigated, in which the property space (of 

allowable values of c) is not the same as the feature space. One specific case is 

regression-wise K-means, in which each cluster is represented by a multivariate linear 

regression model [Späth 1979, Diday et al 1979, Diday et al 1989, Hathaway & 

Bezdek 1993] . This case is of particular interest to us, and is discussed in detail in the 

following section. For a further example, Diday has also studied the representation of 

each cluster by a ‘core’ or ‘multi-centre’ – a sample of representative elements of the 

cluster – rather than a single centroid c [Diday 1974]. 

3.4.2. Regression-Wise K-Means 

Let us consider a dataset of N entities [xn] in some M-dimensional feature space U, 

and suppose that with each entity x  there is associated some numerical measure yn n of 

an observable behaviour or ‘activity’ of the entity. We treat y as an ‘output’ variable, 

in that we hypothesise that it approximately depends through some underlying 

mechanism on the feature variables x. 
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On such a dataset, or indeed on any subset of it, we may perform a multivariate 

regression analysis to model the variation of y against the ‘input’ variables x. 

Clustering in which the ‘intent’ of a cluster is portrayed by its regression model of y 

against x on the cluster is called regression-wise clustering.  

Focusing on K-means clustering with linear regression models representing the 

cluster intents leads to a kernel-based formulation, as follows. We extend the feature 

space U to include activity values as U+ = U × R; within this M+1-dimensional 

extended feature space points in the dataset are expressed as [x , yn n]. On the other 

hand, the property space P = U* × R = {[a, b]} is the M+1-dimensional space of 

gradient vectors a with constants b representing the linear models y ≈ a⋅x + b. 

The underlying approximation in regression-wise clustering is the approximation of a 

point’s ‘activity’ value by the value ‘read off’ from its cluster’s linear regression 

model. Using a least square error criterion for the regression, we arrive at the 

following measure of distance from point to cluster [Späth 1979]: 

 dregr([x, y], [a, b])  =  (y − (a⋅x + b))² 
(3.21) 

This is consistent as an instance of equation (3.17) in which the kernel is as follows: 

 Dregr([x ; a1, y1 1, b1], [x ; a  − (a ⋅x  − (a ⋅x, y , b ])  =  (y  + b2 2 2 2 1 1 1 1)) (y2 2 2 + b )) 2
(3.22) 

Thus Mercer’s condition can be seen to be satisfied for Dregr via the transformed space 

Vregr = R and the transformation Gregr into Vregr given by 

Gregr([x, y; a, b]) = y − (a⋅x + b). 

The resulting loss function for regression-wise K-means clustering is as follows: 

 Lregr([ [x ] ], π, [ [an, yn k, bk] ])  =  Σn (yn − (aπ(n)⋅x  + bn π(n)))² 
(3.23) 

As always for kernel-based K-means formulations, this loss function separates 

additively over the clusters. Standard calculus techniques lead to the following 

equations for the optimal linear regression model [ak, b ] for cluster k: k

T Σn:π(n)=k x x  an n k   +  Σn:π(n)=k xn bk   =  Σn:π(n)=k x yn n 
 Σ T

n:π(n)=k x  an k    +  Nk bk    =  Σn:π(n)=k yn
(3.24) 
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(In the above, uT denotes the transpose of, in this case, a column vector u into a row 

vector.) These are immediately recognisable as the so-called normal equations for the 

linear least-squares regression of yn onto xn over the contents of cluster k [Tabachnik 

& Fidell 2006]. 

Because calculating the solution of the normal equations (3.24) for a cluster k 

involves the inversion of an M×M matrix (the matrix of variances of and covariances 

between features xv over the cluster), special treatment must be given to the case in 

which the matrix is singular or ill-conditioned. This occurs when the cluster’s extent 

in feature space {xn : π(n)=k} is confined or approximately confined to a hyperplane 

(or even to a ‘plane’ of yet smaller rank), and will inevitably occur whenever a 

cluster’s size Nk falls below M+1. By analogy with the corresponding (although in that 

context much less likely) scenario in distance-wise K-means in which a cluster 

becomes empty, our strategy for dealing with this contingency is to leave the 

regression model [ak, bk] formally undefined, effectively dropping the cluster from the 

current and subsequent iterations of the alternating optimisation algorithm. 

An especially catastrophic instance of this ill-conditioning occurs when all clusters 

happen to become ill-conditioned in the same iteration of the alternating optimisation 

algorithm. In this case, the algorithm has no alternative but to stop in a ‘failure’ state. 

Although in general unlikely, note that this case will inevitably occur if the entire 

dataset’s extent in feature space is confined to a hyperplane. 

Finally, it is worth noting that the fuzzy K-means variation described in §3.3.3 can 

perfectly well be applied to regression-wise K-means, resulting in the following fuzzy 

regression-wise loss function [Hathaway & Bezdek 1993]: 

 Lregr([xn, yn]; [zn k], [ak, bk])  =  Σn Σk zn k
α (yn − (ak⋅x  − bk))² n

(3.25) 

Solving the linear least-squares regression on each fuzzy cluster k has the following 

normal equations: 

 Σn zn k
α xnxn

T ak   +  Σn zn k
α xn bk   =  Σn zn k

α x yn n 
 Σ T

n zn k
α xn  ak    +  Σn zn k

α bk  =  Σn zn k
α yn

(3.26) 
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These offer the immediate interpretation as a linear least-squares regression in which 

each entity, instead of having its influence on the model weighted equally over the 

whole dataset as in the traditional case, has its influence weighted in proportion with 

its fuzzy membership of cluster k. 

3.5. Conclusions 
In this chapter we have reviewed the theory behind the alternating optimisation (or 

expectation maximisation – EM) algorithm for K-means clustering, and studied 

extensions to it along three specific lines of development: initialisation, alternative 

notions of affinity of entity to cluster, and fuzzy formulations. 

Providing the K-means algorithm with an initial partitioning was identified as an 

essential step. Traditionally, the goal of this initialisation step has been to find a 

starting point from which the alternating optimisation algorithm is more likely to end 

up at (or near) the global optimum [Steinley 2006]. In this work, however, we are less 

anxious about finding this absolute global optimum, and are quite content with a 

reproducible initialisation method that leads to a reasonable local optimum. (Indeed, 

later sections will conclude that, for our applications, we are more concerned with the 

overall area covered by the clusters rather than with the details of their partitioning.) 

The Intelligent K-Means Algorithm described in §3.2.3 fits this bill precisely, by 

basing initial partitions on ‘Anomalous Patterns’ in the data. 

Fuzzy clustering was introduced, following Bezdek’s formulation as an optimisation 

problem [Bezdek 1973], leading to the well known Fuzzy c-Means algorithm [Dunn 

1973]. In addition, a deeper analysis in §3.3.4 led to a surprising new interpretation of 

this optimisation: the fuzzy membership values (for an entity) are those which, in a 

certain sense, maximise the entity’s overall belongingness to the clusters. 

Furthermore, particular significance was found to be attributable to the specific value 

of 2 for the ‘fuzziness’ parameter α (a value traditionally used purely for 

convenience). In this case, the maximal ‘belongingness’ attained by the optimal fuzzy 

membership for an entity is related to the harmonic mean of the distances from the 

entity to the cluster centroids. This interpretation will be pursued in chapter 4, where 

it will form the basis for the measurement of distance to dataset. 
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Finally, we considered different representations of clusters, and varying the 

measurement of distance from entity to cluster, in K-means clustering (§3.4). It was 

shown that a form of the ‘Kernel’ trick may be used to construct non-linear variants of 

the K-means clustering criterion, and a general framework was developed to 

encompass both this and least-squares regression-wise clustering. This framework 

will be applied in chapter 5 in the development of a form of model-based clustering 

amenable to the construction of piecewise linear models. 

It should be noted, however, that regression-wise clustering is just one example of the 

broader notion of ‘model-based clustering’, in which the various clusters are modelled 

as being drawn from some parameterised statistical distribution with some or all of the 

parameters varying amongst the clusters, and ‘optimisation’ of the clustering consists 

of recovering maximal likelihood estimators for these parameters. Even the ‘standard’ 

distance-wise K-means criterion itself emerges from a model-based formulation, 

modelling the clusters as spherical multivariate normal (Gaussian) distributions with 

common variance and parameterised by their centroids (means). Other succinct 

minimisation criteria can be derived, corresponding to, for example, allowing the 

clusters to follow ellipsoidal Gaussian distributions with varying orientations 

[Murtagh & Raftery 1984] and with varying sizes and shapes [Banfield & Raftery 

1993]. This issue of modelling an elongated part of a dataset arises in the study of 

extracting an representative test set in §6.2, and although we do not pursue these 

model-based methods there in this thesis, there may be some benefit in doing so in 

future work. 
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4. A Method for Estimating Domain of Applicability 

4.1. Clustering to Model Dataset Shape 
Clustering in general, including K-means, is traditionally used in data mining for 

classification. The emphasis has been on the isolation of separate clusters, such that 

within each cluster the data entities share some common characteristics, but between 

clusters different characteristics are exhibited. The synoptic cluster-based model 

described in §3.1.1, in which a cluster’s ‘intent’ captures the characteristics common 

to its ‘content’, may then be used subsequently to decide to which cluster a new data 

entity should belong. 

K-means clustering is amenable to an entirely different usage. Instead of classifying 

into separate, individually meaningful clusters, we use the aggregate collection of K-

means clusters of a dataset to model the dataset’s shape. Taken together, the K-means 

clusters collectively cover the region of feature space occupied by the dataset. 

This application of K-means further mitigates the criticisms of the Alternating 

Optimisation algorithm concerning its failure to find a global minimum of the K-

means loss function: see §3.2.3. Two distinct K-means clusterings may indeed both be 

(locally) K-means-optimal, and may have completely unrelated partitionings, leading 

to serious ambiguity and instability in their use as a classification tool. However, 

considered as models of the shape of the dataset, the two sets of clusters will, in spite 

of their differences, cover much the same region of feature space. 

Comparison of these two modi operandi of a K-means clustering – ‘classification into 

clusters’ versus ‘modelling shape of dataset’ – draws attention to the different kinds of 

dataset to which they are applicable. In the case of classification, a stable K-means 

representation can only be expected to be found if the dataset actually has an 

underlying structure comprising at least K isolated clusters, separated by empty or 

low-density ‘no-man’s-land’ regions. Notwithstanding the existence of contrived 

counterexamples, the Alternating Optimisation algorithm has empirically been found 

to be generally successful in recovering this underlying cluster structure of such 

datasets, with a greater degree of success the more pronounced the separation [Jain & 

Dubes 1988]. However, where such an underlying structure as separate clusters is 

absent, the Voronoi tessellation of the K-means clustering will be forced to have its 
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boundaries positioned somewhat arbitrarily. There is a risk of instability arising from 

this arbitrariness: a potentially quite different local K-means-optimum is yielded 

either by using a different initial partitioning [Jain & Dubes 1988], or by holding out a 

proportion of the dataset for an internal cross-validation experiment. 

In the case of using K-means clustering for modelling a dataset’s shape, on the other 

hand, no such constraints are placed on the underlying structure of the dataset. Indeed, 

the fact that the clusters abut without separation is a positive advantage in that it 

allows the set of clusters to form a cover of the region of feature space occupied by 

the dataset. The K-means clustering amounts to a parameter-free model of the dataset 

that places no prior assumptions on its shape, including its connectivity or convexity. 

4.2. Cluster-Based Distance-To-Domain 
When using a dataset as the training set for constructing a model by some machine 

learning method, the model’s ‘domain of applicability’ is nothing more than the 

region that the dataset occupies in feature space. A crisp K-means clustering for the 

dataset can therefore model the shape of this applicability domain as being the union 

of the regions covered by each cluster: an entity, characterised as a point in feature 

space, is a member of the applicability domain if, and only if, it is inside one of the 

clusters. Considering the boundary of this applicability domain, it becomes natural to 

measure the distance to domain (from a point outside the boundary) in terms of the 

point’s distance to the nearby clusters. 

There is still an element missing from the K-means cluster-based model of a dataset’s 

domain of applicability. The segment of feature space associated with a cluster k is a 

Voronoi cell – the cell containing the cluster’s centroid ck. However, because the 

Voronoi tessellation covers the entire feature space rather than just the vicinity of (the 

centroids of the clusters of) the dataset, it will inevitably be the case that at least some 

of the Voronoi cells are unbounded, extending to infinity in some directions in the 

feature space. To achieve a tiling of the domain of applicability only, it is necessary, 

for each such exterior Voronoi cell, to judge which part of it is occupied by entities in 

the dataset. 

In this assessment of the region of occupation of a cluster’s Voronoi cell, we make the 

assumption that the occupied region is approximately spherical, centred at the 
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corresponding cluster’s centroid. This was empirically found generally to be a fair 

approximation for a K-means-optimal clustering, and is a reasonable assumption to 

make in light of the fact that distance-wise K-means is based on the isotropic 

Euclidean distance in feature space [Hartigan 1975]. 

Although this assumption constrains a cluster’s occupied size in feature space to have 

little dependence on direction, it stops short of requiring the clusters to have the same 

size as each other. Indeed, it has been empirically observed that K-means clusters’ 

Voronoi cells tend to be smaller in the interior of high-density regions of a dataset. 

In making use of this spherical cluster approximation in the model of the shape of the 

dataset, it becomes necessary to augment a cluster’s ‘intent’ with a radius for its 

approximating sphere, expressing the size of its extent in feature space. A cluster k is 

therefore now described by the following elements: 

• Cardinality: Nk 

• Centroid: ck 

• Radius: Rk 

According to these cluster descriptions, the synoptic model of the dataset (of N points 

[xn] in an M-dimensional feature space) is now as a union of K clusters, with each 

cluster k consisting of Nk points occupying an M-dimensional sphere of (squared) 

radius Rk centred at ck in feature space. 

For the actual numerical value of the (squared) radius Rk of a cluster k, we shall adopt 

the 95th percentile of the (squared) distance to centroid dn k = ||x  − cn k||², over all 

members xn of the cluster k. This ensures that 95% of the members of the cluster are 

inside its approximating sphere. Most of the remaining 5% are typically only just 

outside it, but if there are any outlying points in this band at a vastly greater distance 

from the centroid then they will not unduly influence the estimation of cluster radius. 

For a point x in feature space lying outside (the approximating sphere of) a cluster k, 

we shall measure its (squared) distance to cluster dk(x) to be the (squared) distance 

from the centre of the approximating sphere, in multiples of the sphere’s radius: 

 dk(x)  =  
||x − ck||²

Rk
 

(4.1) 
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The contour dk(x) = 1 of this distance-to-cluster measure is precisely the boundary of 

the approximating sphere for cluster k. 

These distance-to-cluster measures suggest the following measure of distance-to-

domain, being simply the distance to the closest cluster (where distances and 

‘closeness’ are measured in cluster radii): 

 D(1)
c(x)  =  mink dk(x)  =  mink 

||x − ck||²
Rk

 

(4.2) 

We shall use the term ‘region of influence’ of cluster k to denote the region of feature 

space for which k is the cluster minimising dk. (This is not in general equal to the 

Voronoi cell for cluster k, because of the cluster-dependent Rk factor in dk. The 

boundaries of each region of influence are in general piecewise hyperspherical 

surfaces rather than piecewise hyperplanar.) 

The contour D(1)
c(x) = 1 may in the first instance be taken as defining the boundary of 

the domain of applicability. 

It can be seen from the contour plot of D(1)
c(x) (Figure 4.1) that, despite the attempt to 

use the clusters collectively to tile the applicability domain without undue emphasis 

on their individuality, there nevertheless remain artefacts wherever the domain’s 

boundary (or indeed any other contour of distance to domain) crosses from one 

cluster’s region of influence to that of an adjacent cluster. The contours remain 

continuous at such points but are no longer differentiable.  

As a means of restoring smoothness of the distance-to-domain contours at the 

boundaries between regions of influence, we seek to allow several nearby clusters to 

contribute to a point’s distance-to-domain, instead of the naïve ‘winner takes all’ 

approach of considering the nearest cluster only. This is analogous to the technique 

employed in the k-nearest-neighbours measure of distance to a dataset, in which the 

impact of the lack of smoothness is partially dispersed by considering the k nearest 

points instead of pinning sole dependence on the outright winner. 

Fully analytical smoothness, and an algebraically simpler expression for distance-to-

domain, can be achieved by following this through to the extreme of allowing all 
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clusters to contribute to the distance-to-domain measure, with each cluster being 

granted a proportionally greater influence the nearer it is to the point in question. 

Fuzzy cluster membership introduced in §3.3.2 provides precisely the tools required 

for this strategy: the fuzzy membership zk(x) for a point x of cluster k is ideally suited 

 

 

Figure 4.1: Contour Plot of Smallest Distance to Centroid 

This plot portrays the 258 chemical compounds of the Huuskonen dataset [Huuskonen 2000] as 

used for the plots in §2.2, using the same two descriptors (molecular weight and Todeschini’s 

hydrophilicity index Hy [Todeschini & Consonni 2002]). 

The Intelligent K-Means algorithm (Algorithm 3.1) was applied to cluster the dataset, resulting 

in eight clusters (excluding one singleton). This is indicated on the above plot by the colouring of 

the points, while the larger coloured glyphs mark the locations of the clusters’ centroids. 

The contours of D(1)
c(x) according to this clustering are drawn. These illustrate loci of points that 

share a common value of the minimum (over all clusters k) value of the distance to the centroid 

of k measured in multiples of cluster radius. The heavy contours in the plot occur where the 

square of this minimum cluster-radius-tempered distance takes integer values. 
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to control the degree to which that cluster should contribute to the distance-to-domain 

measure. Recall from §3.3.4 that the fuzzy cluster memberships zk(x) were chosen to 

maximise the affinity of x with the collection of clusters, and that, using the popular 

and mathematically significant fuzziness value α = 2, this optimal affinity (or, more 

correctly, the minimal non-affinity or distance) can be expressed as the harmonic 

mean of the distances to individual clusters (see equation (3.16)). Substituting the 

radius-tempered distance (equation ) for d(4.1) k in equation (3.16) gives the following 

measure of distance to dataset: 

  D(x)  =  Σk zk(x) 
||x − ck||²

Rk
  =  

K
Σk (Rk / ||x − ck||²)

 

(4.3) 

This expression is, as desired, a weighted average of distances to clusters, with the 

weights distributed according to the proprietary share that each cluster can claim over 

the point in question. 

One impact of using fuzzy membership to apportion the influence of nearby clusters is 

that, because the influence is dispersed over clusters beyond just the nearest, the value 

D(x) yielded by (4.3) slightly overestimates the distance-to-domain. The dual 

perspective of this observation is that the domain of applicability is slightly 

underestimated by (4.3), as points (particularly those near the boundary of exterior 

clusters) must have a spread of proximity to several clusters in order to be accepted. 

Quantifying this overestimation of distance is hard: it depends (among other factors) 

on the surface area of the domain of applicability. In the interests of pragmatism it 

was decided to normalise the distance-to-domain measure empirically, by introducing 

a multiplicative constant factor chosen to render the 95th percentile of the distance-to-

domain measure (over the N entities in the dataset) equal to unity. 

The fully assembled distance-to-domain measure is as follows: 

  D(2)
c(x)  =  

A
Σk (Rk / ||x − ck||²)

 

(4.4) 

where A is the 5th percentile value of Σk (Rk / ||x − ck||²) over the original dataset. 

See Figure 4.2 for a contour plot of D(2)
c(x). In comparing this contour plot with the 

previous one for D(1)
c(x) (Figure 4.1), it is observed that, in addition to the contours 
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having been successfully smoothed out, their shape is also less rigidly bound to the 

partitioning into clusters. This suggests that D(2)
c(x) has greater stability, more 

robustly dealing with a different partitioning arising from an alternative initialisation 

method or from leave-group-out internal validation. 

It is illustrative at this stage to compare these distance-to-domain measures, based on 

distance to nearby cluster(s), to other existing measures. Firstly, a similarity with 

Nearest Neighbour (k-NN) measures, which are based on ‘distance to nearest 

 

 

Figure 4.2: Contour Plot of Fuzzy-Weighted Average Distance to Centroid 

As with the previous plot, this diagram illustrates the K-means clustering of 258 chemical 

compounds of the Huuskonen dataset using two descriptors: molecular weight and Todeschini’s 

hydrophilicity index Hy [Todeschini & Consonni 2002]. 

The contours illustrate the cluster-based distance to dataset measure D(2)
c(x). The innermost 

heavy contour is that for which D(2)
c(x) = 1, and the central red region that it surrounds contains 

(by choice of the A parameter) 95% of the points in the dataset. The successive heavy contours 

correspond to D(2) (x) = 2, 3, 4, etc. c
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point(s)’, has already been noted. From a point of view of modelling, however, the 

representation of the dataset used by Nearest Neighbour measures is not so much a 

model of the dataset as a full replica of it. 

This explicit dependence of a k-NN measure on each and every point in the original 

dataset has two problems. Firstly, the whole dataset must be published as part of the 

model purely to facilitate the distance-to-domain computations. Secondly, this 

detailed dependence on each individual data point is overkill in the sense that, instead 

of capturing the essential trends of the dataset’s distribution in feature space, it 

preserves the noise in the data. The fact that a few spurious points strongly impact the 

k-NN measure in their locality suggests that the additional computational burden 

serves only to reduce the stability of the measure. (This will be experimentally tested 

in a later section.) 

At the other extreme, these cluster-based measures have an element in common with 

Mahalanobis distances and ellipsoid approximation: specifically, Euclidean distance 

to centroid and sphere approximation are used in the individual distance-to-cluster 

measures. The cluster-based distance measures presented here are amalgams of 

individual cluster-specific Euclidean distance measures. Although approximation by 

hypersphere or ellipsoid is too crude for typical QSAR datasets, it is a suitable to 

make an approximation by hypersphere for such a dataset’s individual clusters, which 

collectively accommodate the irregularity of the shape of the dataset through their 

spatial arrangement rather than through their individual shapes. 

These observations locate the cluster-based distance-to-domain measures in the 

middle of a spectrum, with the overfitted k-NN measure at one extreme and the 

underfitted Euclidean and Mahalanobis distances at the other. 

4.3. Experimentation 
As observed in §3.1.2, the features must be normalised to have commensurate scales 

prior to applying K-means clustering. Although in principle any of the various 

methods commonly used in data mining for normalising features (and thereby 

rendering them dimensionless) may be used, we note that scaling to give unit variance 

is not necessarily the most appropriate for clustering. For a given scale (i.e. range of 

values), the variance will be greater the more platykurtic the distribution [Chissom 
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1970], and the greatest variance is attained when the distribution has two modes 

concentrated at the endpoints of the range [Mirkin 2005]. Dividing out by the variance 

will therefore penalise precisely the case in which the values taken by the feature are 

distributed in a fashion amenable to clustering. 

Instead, we shall normalise by applying an affine transformation that maps the 5th and 

95th percentiles to −1 and +1 respectively; this standardises the bulk of the range 

without introducing sensitivity to outliers. 

Two specific experiments were performed for assessment of the practical utility of the 

cluster-based distance-to-domain measure. (They were first presented, along with the 

basis for the following discussion, in [Stanforth et al 2005] and [Stanforth et al 

2007a].) Firstly, an ‘internal validation’ experiment was used to test whether 

retraining the distance-to-domain on a subset yields a comparable measure. Secondly, 

an ‘external validation’ experiment was performed to investigate correlation between 

distance to domain and prediction error in a multivariate regression model. 

Two QSAR datasets were used for the experimentation. Internal validation was based 

on a dataset, consisting of 13066 chemical compounds, compiled within IDBS for 

training a QSAR model of the octanol partition constant logP [Ghose & Crippen 

1986, Roy et al 2007]. The IDBS PredictionBase software [IDBS 2007] was used to 

identify chemical descriptors having high (individual) correlation with experimental 

logP, and having acceptable Shannon entropy values [Godden et al 2000], over that 

training set. On this basis, ten topological and information-content descriptors 

[Devillers & Balaban 1999] were selected. 

For the external validation, a model for toxicity of phenols described in [Aptula et al 

2005] was used. This was based on a training set of 185 chemical compounds and 12 

descriptors, with a further 50 compounds used to form the external validation set. 

Predicted activity values were derived from the model as trained using multivariate 

least-squares fitting in all 12 descriptors, yielding a coefficient of multiple correlation 

of r²=0.83. The IDBS PredictionBase software [IDBS 2007] was used to verify the 

suitability of this model in terms of stability and predictivity. Although the model is 

stable (with an average leave-one-out cross-validated coefficient of multiple 

correlation of q²=0.83), there is some variation in the quality of predictions over the 

external validation set: almost half of the validation compounds have predictions 
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correct to within a standard deviation of the model, but 10% yield prediction errors in 

excess of three standard deviations. (The root mean square prediction error over the 

whole validation set is 1.73 model standard deviations.) We shall investigate whether 

the poorer predictions are associated with a greater distance-to-domain. 

4.3.1. Internal Validation 

10-fold cross-validation [Tropsha et al 2003, Kohavi 1995] was used to assess the 

stability of the cluster-based distance-to-domain measure, retraining the measure on a 

subset of the original training set and recalculating distances-to-domain for the 

remaining points according to the retrained measure. The measures were then checked 

for concordance. 

Recall that we are interested in whether a chemical structure is outside the domain 

and, if so, by how far. However, we are less concerned with the quantitative distance-

to-domain value of a structure that is inside the domain. We reflect this in our 

validation by applying a ‘clamping’ function gt(d) = max { d, t } to the distance-to-

domain values d to force them to be at least as great as some minimum threshold 

value t, below which variation in distance-to-domain is considered irrelevant. A range 

of values of t from 0.7 to 1.3 was used to investigate the influence of the structures 

near the nominal boundary of D(x) = 1. 

Formally, the cross validation procedure can be described as follows: 

Algorithm 4.1: V-Fold Cross-Validation of Distance-to-Domain Measures 

Inputs: 

• dataset T of N points x  in M-dimensional feature space U n

• method for training a distance-to-domain measure D on U based on any given 

dataset in U 

• clamping threshold t, below which variation in distance-to-domain is 

considered irrelevant 

• number V of groups (or ‘folds’) 

Procedure: 

1. Train the distance-to-domain measure D on the entire dataset T. 

2. Record D(x ) for each point x  in T. i i
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3. Randomly partition T into V equal-sized groups T …TV. 1

4. For each of the V groups T : j

a. Retrain the distance-to-domain measure D(j) on the depleted dataset 

T\T  formed be leaving out group T . j j

b. Compute Δj, the root mean square value of the relative differences 

[ gt(D(j)(x (D(x (D(x)) − g )) ] / g )) over T. i t i t i

Outputs: 

 for each group j. • root mean square relative deviation Δj

This procedure was applied to the distance measure D(x)=D(2)
c(x) in equation (4.4), 

and to the following four additional distance-to-domain measures (in normalised 

descriptor space) for comparison: 

Bounding Box: variant in which the distance-to-domain is taken to be the maximum 

squared normalised descriptor value: 

D(x) = D([x1, …, x ]) = max {x ², …, x ²} M M1

Leverage: using normalised value N h(x) / 3(M+1) where M is the dimension of the 

feature (descriptor) space [Tropsha et al 2003] 

Nearest Neighbours k-NN: mean squared distance to nearest k=10 training points, 

normalised analogously to equation (4.4) such that 95th percentile value of this 

measure over the training set is 1 

Cluster-Based: exactly as derived in §4.2 except without taking cluster radius into 

account: i.e. taking Rk=1 in equation (4.3)

A training set of 13066 chemical structures and 10 descriptors was used. A value of 

V=10 was taken, and the same 10-fold partitioning was used in step 3 for each of the 

five measures. This yielded the results displayed in Table 4.1. 

Table 4.1 shows that the cluster-based distance-to-domain measures have stabilities 

that compare well with the existing measures. Indeed, outside the nominal boundary 

of D(x)=1, our cluster-based distance-to-domain measure D(2)
c(x) is the most stable of 

those analysed. The minor loss of instability inside that boundary is due to the fact 

that, close to a centroid, the cluster-based distance-to-domain measures start to 

approximate the distance to the nearest centroid, and therefore become sensitive to the 

details of the clustering. The k-NN method is unsurprisingly the least stable: its 
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dependence on each individual point in the training set understandably gives rise to 

significantly altered measures on a depleted training set. 

Although the Δ  values in step 4bj  were based on relative differences (chosen because 

they render Δj invariant under rescaling the distance-to-domain measure), similar 

qualitative results were obtained for four of the five methods when the experiment 

was rerun using absolute differences. The exception was the leverage method, which 

became noticeably less stable than the other methods. This can be attributed to near-

singularity of the variance/covariance matrix Σ T (x −μ)(x −μ)  in certain directions in i i i

 
 

Threshold 
distance t(c)

Bounding 
Box(a)

Leverage(a) k-NN(a) Cluster-
Based(a,b) 

(fixed radius) 

D(2) (a,b)
c(x)

0.70 0.0502 0.0388 0.0498 0.0491 0.0472 

0.75 0.0458 0.0366 0.0471 0.0454 0.0413 

0.80 0.0422 0.0346 0.0446 0.0423 0.0366 

0.85 0.0392 0.0329 0.0424 0.0395 0.0328 

0.90 0.0368 0.0313 0.0404 0.0371 0.0296 

0.95 0.0347 0.0299 0.0386 0.0351 0.0269 

1.00 0.0330 0.0287 0.0369 0.0333 0.0245 

1.05 0.0316 0.0275 0.0355 0.0316 0.0223 

1.10 0.0303 0.0265 0.0346 0.0301 0.0203 

1.15 0.0291 0.0255 0.0329 0.0288 0.0185 

1.20 0.0281 0.0246 0.0318 0.0275 0.0170 

1.25 0.0271 0.0237 0.0309 0.0264 0.0156 

1.30 0.0262 0.0229 0.0300 0.0254 0.0145 

Table 4.1: Internal Validation of Distance-to-Domain Measures 
(a) These figures relate to the IDBS logP dataset consisting of 13066 chemical compounds, 

described by 10 descriptors. 10-fold cross-validation was performed on this dataset: each 

distance measure was trained on the whole training set and compared with the same measure 

retrained on the remaining compounds. 
(b) Clustering this dataset resulted in 17 clusters being generated. 
(c) Each row tabulates root mean square relative deviations of distance-to-domain, subject to a 

minimum threshold distance, averaged over the 10 cross-validation iterations. 
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feature space giving rise to sensitivity to small changes; the corresponding absolute 

deviations in leverage along those directions will then grow quadratically with x. Still, 

with the relative differences, the leverage method fared the second best. 

4.3.2. External validation 

The original motivation for distance-to-domain analysis is to identify where reliability 

of a prediction may be compromised due to lack of similar chemical structures in the 

training set. In order to verify this relationship between domain of applicability and 

reliability of prediction, the distance-to-domain measure was applied to an extra 

 
 Bounding 

Box(c)
Leverage(c) k-NN(c) Cluster-

Based(b,c) 
(fixed radius) 

D(2) (b,c)
c(x)

Entire 
validation 

set
1.733  (50) 1.733  (50) 1.733  (50) 1.733  (50) 1.733  (50) 

(a)

in domain: 
D<0.8 1.018   (2)  1.701  (44) 1.667  (45) 1.646  (44) 1.667  (45) 

in domain: 
D<0.9 1.338   (8)  1.707  (47) 1.667  (45) 1.667  (45) 1.667  (45) 

in domain: 
D<1.0 1.754  (27) 1.707  (47) 1.667  (45) 1.657  (46) 1.657  (46) 

in domain: 
D<1.1 1.686  (40) 1.707  (47) 1.705  (47) 1.649  (47) 1.657  (46) 

in domain: 
D<1.2 1.669  (41) 1.707  (47) 1.705  (47) 1.649  (47) 1.657  (46) 

Table 4.2: External Validation of Distance-to-Domain Measures 

(a) The figures in this table are based on a toxicity model in 12 descriptors trained using 185 

chemical compounds and validated using 50 further compounds. The model has coefficient of 

multiple correlation r²=0.830. 
(b) Clustering this training set resulted in six clusters being generated. 
(c) The ‘prediction error’ statistics tabulated here are root mean squared prediction errors 

expressed as a multiple of the model’s standard deviation. They were calculated over the whole 

validation set (first row), and, for each distance-to-domain measure, over only those compounds 

inside the domain according to various thresholds of that measure (second and subsequent rows). 

In each case the number of validation compounds involved is displayed in parentheses. 
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validation set of chemical compounds with known biological activity values. The root 

mean square error in prediction over the whole validation set was compared with the 

corresponding value obtained by considering only those compounds inside the 

domain. 

The linear least squares fitting model of phenol toxicity [Aptula et al 2005] was used. 

The means of squared prediction errors were first calculated over the whole validation 

set. Then, for each distance-to-domain measure and for a number of threshold values, 

the mean squared errors were recalculated over those chemical structures with 

distance-to-domain less than the threshold. The results are shown in Table 4.2. 

Once again the results come out in favour of the new cluster-based methods derived in 

§4.2. Both these new methods are successful in defining domains with improved 

model predictivity, even slightly outperforming the k-NN method: it would appear 

that the extra degree to which k-NN produces a fine-grained model fitting the training 

data is not capturing any extra information on the domain from which the dataset is 

drawn as compared with the cluster-based model. 

Considering the ‘D<1.0’ row, we can form an F-statistic from the ratio of the mean-

square error 1.657² (of the 46 compounds inside the domain) to the corresponding 

mean-square error 2.444² of the 4 compounds outside the domain. This F-statistic of 

0.459 (with 46 and 4 degrees of freedom) is 91% significant, against the null 

hypothesis of prediction errors being independent of distance to domain. 

The leverage measure does not perform so well, with only a marginal enrichment in 

predictivity on disregarding the high-leverage validation structures. Its corresponding 

F-statistic for the ‘D<1.0’ case is only 78% significant. These results do not invalidate 

the statistical theory behind leverage, but rather highlight the different assumptions 

made. In deriving the cluster-based method we assume that an approximately linear 

model holds in the neighbourhood of the training data. The statistical analysis of 

leverage, on the other hand, assumes that some linear model is applicable globally, 

and that prediction errors far from the dataset arise solely from errors in estimating the 

model parameters. 
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4.4. Conclusions 
A review of the existing approaches to measuring the domain of applicability of a 

QSAR model showed that the existing methods are either too crude and therefore 

underfitted (e.g. Mahalanobis distance), or are excessively concerned with individual 

points and hence overfitted (e.g. k-NN distance and convex hull). 

By modelling the dataset (and hence the domain of applicability) as a collection of K-

means clusters, characterised by hyperspheres, we arrive at a compromise between 

these two extremes. The K-means clustering provides a non-parametric model of the 

dataset, capturing broad trends in the shape of the dataset, including non-convex and 

disconnected regions. 

The K-means clustering essentially stipulates the level of detail – the resolution or 

‘granularity’ – of this model of the dataset’s shape: within-cluster fluctuations are set 

aside, effectively removing the noise in the data scatter from the description. The 

information loss resulting from this removal is directly related to the objective 

minimised by the K-means algorithm. 

Having used the intelligent K-means algorithm to model the domain of applicability at 

an appropriate level of detail as a collection of hyperspheres, the distance to domain 

can then be assembled by aggregating the individual distances to each cluster. This 

aggregation is achieved using the well-established technique of fuzzy partitioning, and 

in doing so imbues it with a new interpretation: the optimal fuzzy partitioning is that 

which maximises each test point’s belongingness to, or affinity with, the domain of 

applicability. 

It was demonstrated that this use of fuzzy partitioning results in a smoother measure 

than a naïve ‘distance to nearest representative point’. It also reinforces the view of 

our distance-to-domain measure as an informed compromise between Mahalanobis 

distance and k-NN distance. 

Using K-means clustering for modelling the shape of the applicability domain (instead 

of for unsupervised classification of the dataset) is novel, although recent discussions 

in [Djorgovski et al 2002] suggest a similar paradigm for the cluster-based description 

of complex morphologies. It turns out that this usage circumvents a common 

difficulty with K-means: that of instability when the dataset lacks a pre-eminent 
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strong underlying cluster structure. In such cases, different initial partitionings and 

different subsamplings can lead to dramatically different clusterings. However, much 

the same region of feature space is collectively covered by the clusters’ hyperspheres, 

even in those unstable cases. The potential instability in partitioning therefore does 

not carry over to instability in distance measure. Indeed, the stability of the cluster-

based distance to domain measure was experimentally verified using 10-fold cross-

validation on a large QSAR dataset, wherein it fared better than existing measures 

including k-NN and Mahalanobis distance. 

The ultimate test of the efficacy of a distance-to-domain measure rests in its ability to 

identify when a prediction (using a model trained on the dataset) is at risk of being 

unreliable due to its lying outside the domain of the model. An experiment using an 

external test set for a QSAR model vindicated the cluster-based distance to domain 

measure by demonstrating the following: restricting attention to those chemical 

compounds in the test set that are inside the model’s domain of applicability gives a 

significant reduction in average prediction error. Moreover, this reduction was greater 

than that yielded by any of the existing methods. In other words, filtering using the 

cluster-based distance-to-domain measure provides the greatest enrichment in 

predictive ability. 
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5. A Segmentation Method for Local Modelling 

5.1. Overview 
In previous chapters, we have discussed the use of clustering to describe a dataset of 

entities in feature space alone, without any attempt to model or otherwise take account 

of their observable behaviour. In §4, for example, the cluster-based distance-to-

domain measure developed does not affect the construction of any model of 

observable activities in terms of the chemical structure. It merely contributes to the 

preconditions for such models, specifying in which regions of chemical descriptor 

(feature) space a QSAR model may be expected to apply. 

In this chapter we shall augment each entity with a numerical value measuring some 

aspect of the entity’s observable behaviour – in other words, an ‘output’ variable – 

with a view to modelling the dependence of the output variable on the feature 

variables. In the terminology of QSAR modelling, in which the entities are chemical 

compounds, the output variable is the activity under study; it may denote some 

biological response such as toxicity, or some physical property such as solubility. (In 

principle, several output variables could be considered simultaneously in this fashion: 

all the methods in this chapter will apply equally well to such cases. However, in 

practice, QSAR studies tend to consider only one observable activity at a time, partly 

to avoid having to make the assumption that the same modelling techniques will be 

equally applicable to all activities under consideration.) 

Even before we begin to use clusters to influence QSAR models, it is worth studying 

how knowledge of the entities’ observable activity values can help to improve the 

clustering in feature space. Although we use K-means clusters to tile feature space 

without requiring the clusters to exhibit any strong degree of separation, it is not 

unreasonable to expect that, if a dataset does actually have some form of underlying 

cluster structure, then recovering that underlying structure with the K-means clusters 

will lead to a better model of the dataset and hence distance-to-domain measure. If 

part of what distinguishes this underlying cluster structure is the way in which the 

activity values vary, then it will be of benefit to allow them to guide the clustering, 

even if it is ultimately treated as a clustering in feature space alone. 
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This approach of using activity values to guide a clustering in feature space is 

particularly appropriate when it is suspected that the observable activity depends on 

the chemical features via two or more biological mechanisms of activity. In this case, 

the quantitative dependence of the activity on the chemical features will vary over 

different parts of the feature space, according to which mechanism of activity has the 

upper hand in a given region. In guiding a clustering by trying to assimilate regions of 

feature space with consistent activity dependence, an individual cluster may take on a 

further interpretation as being a region in which one biological mechanism of 

dependence of activity on chemical structure is likely to be in effect. 

Interpreting the clusters as mechanisms of activity dependence inspires a means of 

proceeding to use the clustering to contribute directly to the construction of a model 

for activity. Within the segment of feature space in which each individual mechanism 

is effective, a model for that mechanism alone may be trained with the mechanism’s 

segment of effectiveness as its domain of applicability. These ‘elementary’ models, as 

we shall call them, may be aggregated into a single ‘composite’ model, with a domain 

of applicability that is itself a composition of the segments of effectiveness of the 

constituent mechanisms. 

The composite model makes predictions through a two-stage operation: 

Classification: determine the mechanism of activity in effect for this chemical 

compound. 

Evaluation: apply the elementary model for this mechanism of activity to predict the 

activity for this chemical compound. 

Translating from mechanisms of activity to clusters, this would suggest basing the 

segmentation directly on the clustering in this composite modelling approach. We 

construct an elementary model on each cluster’s locality in isolation, and use their 

composition as the full model. 

Regression-wise clustering provides the tools for both of these approaches: 

mechanism-oriented guidance of clustering in feature space, and segmentation-based 

composite modelling of activity. The ‘content’ of a regression-wise cluster dictates its 

extent in chemical space, corresponding to a region in feature space that is coherent in 

its activity dependence. The ‘intent’ of a regression-wise cluster immediately yields 

an elementary model applicable to that cluster’s segment of feature space. 
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In §4.2, it was observed that the cluster-based distance-to-dataset measures are a 

trade-off between the overfitted k-nearest-neighbour (k-NN) distances and the 

underfitted measure given by Mahalanobis distance. Similarly, local modelling based 

on regression-wise clustering occupies a middle ground in an analogous spectrum for 

regression models of activity in terms of chemical descriptors. A k-NN regression 

model makes a prediction by averaging the known activity values of the nearest k 

training points. This strongly non-parametric approach shares with the k-NN distance 

measure the burdensome requirement that all training chemical structures must be 

known at prediction time, yielding a ‘model’ (of activity dependence in the vicinity of 

the training structures) that is simply an augmentation of the training data with an 

interpolation rule, rather than an attempt to distil the training set down to its essential 

trends. 

At the other end of the spectrum, a global linear regression model is rigid in its 

assumption that the activity depends on the chemical structure according to a single 

linear relation on the chemical descriptors. This is not always a valid assumption for 

an entire dataset, but may hold (to an acceptable degree of accuracy) on individual 

clusters; this is especially so on regression-wise clusters, which are guided with that 

assumption in mind. 

Extending the analogy, we shall use weighted averaging based on fuzzy cluster 

membership to blend the elementary models together smoothly, exactly as was done 

with the distance-to-domain measure in (4.4). 

5.2. Methodology for Local Modelling 

5.2.1. Hybrid K-Means Clustering 

Recall from §3.4.2 that (in QSAR terminology) regression-wise K-means clustering 

represents each cluster by a linear regression model for activity against the chemical 

descriptors, and classifies a chemical compound according to the cluster whose 

regression model provides the closest approximation to the compound’s activity 

value. 

Prediction of a cluster-based composite model then entails the following two-stage 

(classification, evaluation) algorithm: 
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Algorithm 5.1: Composite Model Prediction 

Inputs: 

• Partitioning of feature space into K clusters 

• Elementary models: one predictive model applicable on each cluster 

• Chemical structure, characterised in chemical descriptor space by x 

Procedure: 

1. Classification 

Determine the cluster k to which x belongs. 

2. Evaluation 

Predict the activity y for x according to the elementary model on cluster k. 

Outputs: 

• Predicted activity y 

In order to use the model to make predictions about the activity of a chemical 

compound, it is necessary first to know the cluster to which it belongs. Determining 

the regression-wise cluster of a previously unseen chemical compound presents a 

problem: the ‘classification’ step above requires knowledge of the compound’s 

activity value, but this value is unknown, and indeed is not even estimated until the 

subsequent ‘evaluation’ step. 

This inherent circularity means that regression-wise K-means clustering is not, in its 

pure form, suitable for segment-based composite modelling. The regression-wise 

clusters are focused principally on the entities’ activity values, to the detriment of 

their ability to evoke a locality in chemical space. When we do examine a regression-

wise cluster’s extent projected onto chemical space, we find that the clusters may 

overlap substantially: the activity dimension is pivotal in the hard separation of 

regression-wise clusters. 

This issue of overlapping clusters is partially dependent on the quality of the dataset, 

and in particular the degree to which some (not necessarily linear) relation between 

activity and feature values is exhibited. If chemical compounds that are structurally 

similar (in terms of their chemical descriptor values) do indeed have similar activities 

– the Fundamental Assumption of QSAR – then there is little scope for clusters to 
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have overlapping projections in chemical space. Compounds in the overlap are 

constrained by the assumption to have nearby activity values. On the other hand, if a 

poor quality dataset contains compounds with similar chemical structures but 

significantly different activity values, then such compounds would tend to be placed 

into different regression-wise clusters as the only way to account for their activity 

variation. 

The additivity property of kernels described in §3.4.1 allows us to remedy the 

situation. Including a predominant contribution of the conventional (distance-wise) K-

means criterion (3.19) (solely in chemical descriptor space) in the kernel causes a 

distance-wise element to be retained in the clustering, promoting separation of the 

clusters in chemical space alone. The result is a ‘hybrid’ K-means formulation in 

which a cluster’s intent is represented by a centroid c and a linear model [a, b]. 

Membership of a ‘hybrid’ K-means cluster is governed by the composite 

approximation x ≈ c AND y ≈ a⋅x + b, as can be seen from its measure of distance 

from point to cluster as follows: 

([x, y], [c, a, b])  =  (1−p) d dhydrid; p dist(x, c)  +  p dregr([x, y], [a, b]) 
  =  (1−p) ||x − c||²  +  p (y − (a⋅x + b))² 

(5.1) 

The dimensionless parameter p specifies the proportion by which the regression-wise 

element contributes to the distance-to-cluster measure and loss function. 

The hybrid kernel from which the hybrid distance-to-cluster measure results (via 

equation (3.17)) is stated explicitly thus: 

([x Dhybrid; p 1, y1; c1, a ], [x ; c1, b1 2, y2 2, a , b2 2]) 
  =  (1−p) Ddist([x ; c ], [x ; c1 1 2 2])  +  p Dregr([x ; a1, y1 1, b1], [x ; a, y2 2 2, b2]) 
  =  (1−p) (x  − c1 1)⋅(x  − c  − (a2 2)  +  p (y1 1⋅x  − (a ⋅x + b1 1)) (y  + b2 2 2 2)) 

(5.2) 

It satisfies Mercer’s condition via, in the notation of §3.4.1, a transformed space 

V  = U × R, which is mapped into by the transformation G  given by: hybrid; p hybrid; p

 Ghybrid; p([x, y; c, a, b])  =  [ 1−p Gdist([x; c]), p Gregr([x, y; a, b])] 
  =  [ 1−p (x − c), p (y − (a⋅x + b))] 

(5.3) 
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The corresponding hybrid K-means loss function, as applies to a dataset of N chemical 

compounds [x , yn n] in some M-dimensional chemical descriptor space U augmented 

with a scalar activity dimension, is as follows: 

([ [x Lhybrid; p n, yn] ], π, [ [ck, ak, bk] ]) 
  =  (1−p) Ldist([x ], π, [cn k])  +  p Lregr([ [x ] ], π, [ [a, yn k, bkn ] ]) 
  =  (1−p) Σ  ||x  − c  − (an n π(n)||²  +  p Σn (yn π(n)⋅x  + bn π(n)))² 

(5.4) 

There is a slight issue of dimension in the above equations. In (5.1), for example, the 

distance-wise term (with coefficient 1−p) has units of chemical descriptor (squared), 

while the regression-wise term (with coefficient p) has units of activity (squared). 

Prior to feature (descriptor) normalisation, this unit mismatch also occurred within the 

Euclidean distances ||x − c||², which involve adding a contribution from each feature. 

It was for the benefit of such distance calculations, and to allow a sensible 

interpretation of ‘isotropic’ within feature space, that it was necessary to normalise the 

features to comparable scales. Now, in order to make sense of the hybrid expressions 

in this section, it is also necessary to normalise the activity values in the same way, 

effectively removing their units. 

It is clear from equation (5.4) that the hybrid K-means loss function separates into a 

centroid-dependent (distance-wise) component and a linear-model-dependent 

(regression-wise) component, implying that the optimal [centroid, linear model] 

representation of a cluster consists simply of its traditional distance-wise centroid and 

its pure regression-wise linear model. 

5.2.2. Composing the Model 

The distance-wise element in the hybrid K-means criterion derived in §5.2.1 serves to 

promote a cleaner separation of clusters in chemical descriptor space than would be 

achieved with pure regression-wise K-means. Crucially, it also provides cluster 

centroids. So, although hybrid K-means clusters may still have some residual overlap 

in their projections onto feature space, the final centroids may be used as the basis for 

a pure distance-wise Voronoi tessellation. This will allow the ‘Classification’ step 

(step 1) of Algorithm 5.1 to proceed. 

In resolving the hybrid clustering into a purely distance-wise partitioning of feature 

space, we effectively applied a single supplementary iteration of the Alternating 
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Optimisation algorithm (Algorithm 3.1), using the distance-wise formulation, to 

update the cluster contents accordingly. 

An alternative to this single supplementary iteration is to apply as many 

supplementary iterations of distance-wise Alternating Optimisation as are required for 

it to converge. Under this alternative, the resulting clustering will be K-means-optimal 

(in the distance-wise sense). To achieve this we have of course foregone optimality in 

the hybrid K-means sense, although we shall nevertheless recalculate the clusters’ 

regression models – the ‘elementary models’ in the ‘Evaluation step’ of Algorithm 5.1 

– so as to be optimal with respect to the content of the final clustering. 

In this latter case, in which distance-wise Alternating Optimisation was applied in full 

(i.e. until reconvergence), a shift of perspective allows us to view the hybrid K-means 

computation as a preprocessing step for the distance-wise K-means computation: the 

hybrid K-means clustering provides the distance-wise Alternating Optimisation 

algorithm with initial clusters that are aligned with regions of linearity. Relegating the 

hybrid K-means to a mere initialisation phase will of course reduce its impact, as 

compared with the ‘single supplementary iteration’ approach in which it had an 

immediate bearing on the final clustering. We shall experimentally investigate the 

difference between these two approaches in a later section. 

Both regression-wise K-means and hybrid K-means share with standard distance-wise 

K-means clustering the requirement for an initial cluster assignment (and indeed 

determination of the number K of clusters to use). We propose that this initialisation 

be achieved using Anomalous Pattern Clustering, exactly as was incorporated into the 

distance-wise Intelligent K-Means Algorithm (Algorithm 3.2) and used elsewhere in 

this thesis. Note that the variant of 2-means used by this Anomalous Pattern 

Clustering to extract the initial clusters should be applied using the standard distance-

only K-means criterion given by equation (3.1). It would be inappropriate and 

infeasible to use any form of regression-wise clustering during Anomalous Pattern 

Clustering’s constrained 2-means because the ‘anomalous’ cluster is initialised to be a 

single point, which expresses a location in feature space but is insufficient to define a 

regression model. 

A further enhancement, affecting both steps of Algorithm 5.1, is to use fuzzy cluster 

memberships to ensure that the elementary models are blended together smoothly. 
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The final composite model f(x) for the activity of a chemical compound characterised 

in chemical descriptor space by x then takes the following form: 

 f(x)  =  Σk zk(x) fk(x) 
(5.5) 

where zk(x) is the fuzzy membership for x of cluster k, and fk(x) is the elementary 

model for cluster k. 

In the same spirit, we shall use the fuzzy cluster memberships to influence the 

elementary models fk themselves, and train them according to the fuzzy regression-

wise K-means formulation in equations (3.25) and (3.26). This helps to go beyond the 

(crisp) regression-wise K-means formulation’s rigid concern with fitting the training 

data, by taking more account of continuity of trends into neighbouring clusters. 

In spite of these uses of fuzzy cluster membership, and as was the case with the 

distance-to-domain measure derived in §4.2, the fuzzy memberships do not affect the 

generation of the clustering: they are merely involved with how the final clustering is 

applied. 

5.3. Experimentation 
Two set of experiments were performed. Firstly, the methods were applied to a 

collection of randomly generated datasets in order to prove the principle. 

Secondly, a real QSAR dataset for aqueous solubility was used to investigate the 

practical applicability of the method. 

5.3.1. Experimentation on Randomly Generated Datasets 

The hybrid K-means method was first applied to a collection of artificially generated 

datasets, each consisting of entities drawn from a randomly chosen mixture of 

distributions in some M-dimensional linear feature space. A single ‘output’ variable is 

also generated (for each entity), according to a different (randomly generated) 

approximately linear model on each distribution. The intent was to measure how well 

these ‘mixed model’ datasets may be fitted using cluster-based composite regression 

models, and to what degree this fit may be improved by guiding the clustering with a 

regression-wise contribution. The following is a modified form of a discussion first 

presented in [Stanforth et al 2007b]. 
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Ten datasets, each with 5000 points in ten-dimensional feature space augmented with 

one activity component, were generated randomly. Each dataset was generated with 

an underlying structure of five clusters, with the clusters’ sizes chosen uniformly at 

random within the simplex of their possible relative sizes. Each cluster was assigned a 

randomly generated mean and spread tensor, on the basis of which the cluster contents 

were generated according to the multivariate normal distribution. Each cluster was 

also randomly assigned a linear activity model and an activity error variance; activity 

values for the points in the cluster were generated according to this linear model with 

random perturbations according to the error variance. 

Each dataset was clustered according to the hybrid K-means algorithm using the 

criterion derived in section §5.2.1, the clustering having first been initialised 

according to Anomalous Pattern Clustering. Results were output at this stage, and 

again after one supplementary iteration of K-means in which the minimum distance 

assignment was performed with no regression-wise contribution. The K-means 

algorithm was then allowed to proceed with no regression-wise contribution until 

convergence was achieved again, after which the results were output for a third and 

final time. 

This procedure was repeated (for each dataset) for several values of p, the relative 

proportion of the regression-wise contribution. 

At each stage, the following results were generated: 

Regression-wise criterion: value of the regression-wise loss function, expressed as 

an explained proportion: 1 − L  / L (worst) regr; p regr; p

Hybrid criterion: value of the hybrid loss function, expressed as an explained 

proportion: 1 − L  / L (worst) hybrid; p hybrid; p

Distance-wise criterion: value of the distance-wise loss function, expressed as an 

explained proportion: 1 − L  / L (worst) dist; p dist; p

Mean relative prediction error: the mean value of |y  − yn; predicted n| / |yn| over all 

entities n, where the predicted value is according to the regression model of 

the entity’s cluster in the current configuration. 

In the above, the ‘worst’ configuration (used for normalising the loss function values) 

is that obtained using a single cluster and a constant (flat) regression model, leading to 

the maximum (worst) possible value of the criterion. 
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Table 5.1 below presents the mean relative errors of prediction for all datasets at all 

three stages, for the various values of p under consideration. Mean values over all ten 

 
p = 0 p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 Dataset 

       

2.0865 1.5636 1.3256 0.6849 0.5302 0.5673 
2.0865 2.0125 1.9633 1.9708 2.0743 2.1780 

 
1 

2.0865 2.0839 2.0534 2.0534 2.0560 2.0560 
0.8609 0.5667 0.5353 0.5582 0.5423 0.5381 
0.8609 0.9819 0.8698 1.0281 0.9231 0.9405 

 
2 

0.8609 0.8909 0.8902 0.7512 0.7509 0.9148 
0.4919 0.4072 0.4075 0.4104 0.4080 0.3762 
0.4919 0.5639 0.5516 0.5514 0.5533 0.5389 

 
3 

0.4919 0.4919 0.4919 0.4919 0.4919 0.4919 
0.5529 0.4333 0.4219 0.4185 0.4197 0.4200 
0.5529 0.5528 0.5628 0.5153 0.5456 0.5564 

 
4 

0.5529 0.5528 0.5628 0.5327 0.5330 0.5328 
0.3150 0.1817 0.1864 0.1747 0.1545 0.1539 
0.3150 0.3199 0.3152 0.3202 0.3149 0.3157 

 
5 

0.3150 0.3200 0.3200 0.3201 0.3201 0.3200 
0.8154 0.5500 0.3196 0.3512 0.3738 0.3651 
0.8154 0.8012 0.5979 0.5677 0.5954 0.5942 

 
6 

0.8154 0.8214 0.5770 0.4339 0.4048 0.5913 
0.7504 0.4859 0.3332 0.4152 0.5957 0.5252 
0.7504 0.5733 0.5748 0.5082 0.5879 0.6339 

 
7 

0.7504 0.5743 0.5539 0.5583 0.5814 0.5814 
0.3790 0.2697 0.2257 0.2110 0.2088 0.2026 
0.3790 0.4102 0.4276 0.4605 0.4666 0.4322 

 
8 

0.3790 0.3964 0.3955 0.3997 0.3960 0.3584 
0.1625 0.1607 0.1624 0.1628 0.1633 0.2831 
0.1625 0.1625 0.1625 0.1625 0.1605 0.2176 

 
9 

0.1625 0.1625 0.1625 0.1625 0.1625 0.1625 
1.5186 0.5604 0.5875 0.4545 0.4115 0.5007 
1.5186 0.9123 0.9341 0.8754 0.9154 1.0462 

 
10 

1.5186 0.8755 0.9003 0.9253 0.9155 0.9140 
       

0.7933 0.5179 0.4505 0.3841 0.3808 0.3932 
0.7933 0.7290 0.6959 0.6960 0.7137 0.7453 

 
Mean 

0.7933 0.7170 0.6908 0.6629 0.6612 0.6923 

Table 5.1: Mean Relative Prediction Error 

The three quantities in each cell present: the error of the composite model based on the original 

hybrid K-means clustering (top), the error based on the clustering after one distance-wise 

iteration (middle), and the error of the composite model based on a clustering post-processed 

with the distance-wise K-means until convergence (bottom). 
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datasets are also included. 

The prediction results for the ‘original’ hybrid K-means (top value in each cell) show 

a strong decreasing trend (i.e. improvement) as p starts to increase from zero. This is 

unsurprising, as the relative prediction error closely corresponds to the regression-

wise K-means criterion [Diday et al 1989]. Note that this stage’s ‘prediction’ results 

have a somewhat artificial advantage as they are based on a cluster assignment that in 

turn depends on prior knowledge of the activity values. Even so, as p continues to 

increase towards 50%, the decreasing trend in prediction errors is not maintained (and 

is even reversed for several datasets), suggesting that a relentlessly large regression-

wise contribution is not aiding the modelling, and that retaining a distance-wise 

contribution is significantly beneficial in divining the underlying structure of the 

dataset. 

As we would expect, performing the supplementary distance-only iteration of K-

means causes the predictive results (centre value in each cell in Table 5.1) to worsen. 

This is because we are now effectively forgoing our ‘unfair’ prior knowledge of the 

activity values and basing the cluster selection on feature values and cluster centroids 

alone. Here we observe, for most of the datasets and also for the mean, a trend in 

which the predictive power improves as p starts to increase from zero then worsens 

again as p becomes too large. For any dataset, a value of p specific to that dataset 

should then be chosen to minimise the prediction errors, expressing the optimal trade-

off between regression-wise guidance and distance-wise cluster separation. 

The alternative scheme of carrying through the supplementary distance-only K-means 

until convergence is achieved again yields similar, even slightly better, results. (See 

the bottom value in each cell in Table 5.1.) The point at which continuing to increase 

the proportion p of regression-wise contribution starts to have a detrimental effect 

tends to occur later than it did with only a single supplementary distance-only 

iteration (around 0.4 rather than 0.3). This can be explained by the fact that 

performing a greater amount of distance-based post-processing is better able to 

overcome a heavier regression-wise bias in the initial processing. 

Overall, the following conclusions can be made from these experiments: 
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• The proposed hybrid-based method does indeed allow for a significant 

reduction in the relative prediction error, of the order of 10%-20%. On 

average, the error decreases from 79% (using pure distance-wise K-means) to 

66% (using hybrid K-means with the optimal value of the compromise 

coefficient p). 

• On average, the option of post-processing with the conventional distance-wise 

K-means works better. However, when the error of the hybrid model is high, 

as is the case with datasets 1 and 10, the option of post-processing with a 

single application of the minimal distance rule (i.e. one supplementary 

Alternating Optimisation iteration) leads to better results. 

• The best reduction of the error is achieved with the value of the compromise 

coefficient p at around 0.3. 

Table 5.2 presents the values of the regression-wise, hybrid, and distance-wise K-

 
p = 0 p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 Criterion 

       

0.9777 0.9954 0.9962 0.9965 0.9967 0.9967 
0.9777 0.9806 0.9798 0.9792 0.9783 0.9783 

 
regr 

0.9777 0.9812 0.9828 0.9816 0.9817 0.9825 
0.6533 0.9672 0.9824 0.9880 0.9910 0.9927 
0.6533 0.9548 0.9676 0.9719 0.9736 0.9751 

 
hybrid; p 

0.6533 0.9555 0.9707 0.9744 0.9771 0.9794 
0.6533 0.6388 0.6239 0.6108 0.5979 0.5814 
0.6533 0.6512 0.6494 0.6461 0.6455 0.6442 

 
dist 

0.6533 0.6531 0.6529 0.6514 0.6540 0.6540 
       

0.7933 0.5179 0.4505 0.3841 0.3808 0.3932 
0.7933 0.7290 0.6959 0.6960 0.7137 0.7453 

Mean 
Prediction 

Error 0.7933 0.7170 0.6908 0.6629 0.6612 0.6923 

Table 5.2: Average Values of Each K-Means Criterion 

Values of the criterion (expressed as an explained proportion) of each of the three considered 

cluster-based models – based on distance-wise, regression-wise and the hybrid K-means 

clustering – at different values of p. The three quantities in each cell present: the criterion value 

after running the hybrid K-Means to convergence then stopping (top), that after one 

supplementary distance-wise iteration (middle), and the value obtained by post-processing with 

distance-wise K-means until convergence (bottom). 
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means criteria (averaged over the ten datasets) at the three stages of analysis. The 

values in this table demonstrate the degree to which the distance-wise criterion is 

boosted, to the detriment of the regression-wise criterion, as the supplementary 

distance-only K-means iterations are performed. 

5.3.2. Experimentation on QSAR Data 

A practical consideration that arises, and must be addressed before cluster-based 

composite modelling may be applied to a real-world dataset, is that of overfitting 

[Hawkins 2004]. While training a model, overfitting is the introduction of more 

complexity than is appropriate for the training data, with the result that the model will 

overzealously fit the ‘noise’ in the data instead of isolating the essential trends. 

Overfitting typically manifests itself as the presence of too many parameters to fit in 

the model. In an extreme case, if the number of parameters in the model exceeds the 

number of training cases, then there are liable to be sufficiently many degrees of 

freedom for the ‘model’ to mimic the training data perfectly. Even before we reach 

this extreme case, if the number of model parameters is not much smaller than the 

number of training cases then the model is unlikely to be stable under internal cross-

validation. 

Multivariate linear regression involves fitting M + 1 model parameters (where M is 

the dimension of the feature space): one linear coefficient for each feature, together 

with the constant term. With composite modelling this number of parameters arises on 

each of the K clusters, resulting in K(M + 1) parameters in total in the model. It is 

common to build QSAR models in which the number of training chemical compounds 

N is of the order of merely five or six times the number of descriptors M; see for 

example [Jiang et al 2003, Varnek et al 2004, Duchowicz et al 2007, Toropov et al 

2007]. Even with a modest number of clusters K, using cluster-based composite 

modelling in such scenarios will therefore have a strong tendency to overfit the 

training data. 

Having established that it is only appropriate to investigate cluster-based composite 

modelling using a comparatively small number of descriptors, we seek a rationale for 

selecting a manageable number of descriptors from the several hundred made 

available by software tools in common use [Talete 2007, Molconn-Z 2006]. 
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The specific criterion that we used for selecting a descriptor is that it be invariant 

under tautomerism, which we shall define shortly. 

Recall that calculation of a chemical descriptor is based purely on the molecular 

connectivity graph of the subject compound’s chemical structure. This is a graph in 

the mathematical graph theoretical sense, and provides an abstract representation of 

molecular structure, with one vertex for each atom (annotated with atom type and 

other properties such as number of attached hydrogens1) and one edge for each 

molecular bond (annotated with the bond’s so-called ‘type’: single, double, triple or 

aromatic). 

This abstract characterisation of a chemical structure by its molecular connectivity 

graph is a somewhat idealised representation. In reality, a large class of organic 

chemical compounds never exist in a single, pure form, but will spontaneously change 

their structure between two (or more) distinct forms. If one of the forms were isolated 

in the laboratory it would, inevitably, rapidly revert to an equilibrium mixture of the 

multiple forms. When the distinct forms occurring in this equilibrium have different 

molecular connectivity graphs, calculation of a chemical descriptor can involve 

arbitration to select (artificially) one form as being the canonical one on whose 

molecular connectivity graph the descriptor calculation is to be based. 

Tautomerism is a particularly common class of such cases of equilibrium between 

multiple forms [Vollhardt 1987]. In tautomerism, the molecular connectivity graphs 

of the forms (‘tautomeric forms’ or ‘tautomers’) occurring in the equilibrium all share 

the same topological structure, and differ only in atom properties (specifically, 

number of attached hydrogens) and bond types (usually single versus double). 

Descriptors that do not depend directly on atom properties or bond types (i.e. that only 

depend on atom types and abstract connectivity) can therefore be said to be invariant 

                                                 
1 A hydrogen atom is only ever bonded to one other atom. It is therefore normal practice to work with 

the so-called ‘hydrogen-depleted’ molecular connectivity graph, in which the hydrogen atoms are not 

represented in the graph as separate vertices in their own right. Instead, each non-hydrogen atom is 

annotated with a count of the number hydrogen atoms attached to it. 

In practice, an atom’s annotated hydrogen count is often implicit, as it can almost always be inferred 

from its neighbourhood in the hydrogen-depleted graph. 
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under tautomerism: their computed values will be independent of selection of 

tautomeric form. 

It was therefore decided to restrict attention to tautomer-invariant descriptors for the 

purposes of the experimental validation of the cluster-based local modelling. A model 

for aqueous solubility based on 1026 training compounds was used [Huuskonen 

2000]. 46 tautomer-invariant topological descriptors [Devillers & Balaban 1999, 

Todeschini & Consonni 2002] were identified, from which a sequence of eleven was 

identified using the IDBS PredictionBase software [IDBS 2007] as statistically 

significant in the dependence relationship of activity (solubility). This sequence of 

descriptors was constructed in decreasing order of significance to facilitate study of 

the most significant ten, nine, eight, etc. descriptors. They are listed in Appendix A. 

Table 5.3 presents the results of fitting composite multivariate linear regression 

models based on hybrid K-means clustering to the Huuskonen dataset as described 

with this nested sequence of descriptor sets. 

Because solubility is measured on a logarithmic scale, it made sense to measure the 

absolute prediction errors (as opposed to the relative prediction errors used with the 

randomly generated datasets in §5.3.1). Root mean square prediction errors were also 

calculated; they exhibited much the same trends as those shown by the mean absolute 

errors in Table 5.3. 

Examining the values in Table 5.3 row by row, we first observe that, unsurprisingly, 

for each selection of descriptors, the composite model based on clustering in 

descriptor-space alone (the ‘p = 0’ column) achieves a significant reduction in error 

over the usage of a single linear model (the ‘global model’ column). Note that fitting a 

single, global linear model may be viewed as the special case of cluster-based 

composite modelling in which K = 1: the entire dataset belongs to a single 

supercluster. We would expect this trend to continue: the greater the number of 

clusters, the better the composite model is able to fit the training data (and the greater 

is the risk of overfitting). Indeed, some of the greatest improvements in mean absolute 

error in the ‘p = 0’ column over the ‘global model’ column in Table 5.3 occur in those 

rows in which the number of clusters K is large; (for example, see the row in which 

M = 6). 

 84 
 



The improvement given by the distance-only K-means (p = 0) over non-composite 

modelling may be interpreted as a benchmark for measuring improvement in 

composite modelling. The remaining columns (p > 0) indicate the degree to which this 

improvement is further enhanced (if at all) by the use of hybrid regression-wise 

clustering to incorporate the effects of the activity variation. 

We examine Table 5.3 row by row once again, studying the trends in each row as p 

increases. For between 4 and 8 descriptors, a distinct trend emerges, in which 

increasing p from zero initially gives rise to a greater improvement in fit (reducing the 

 
global 

model
(a)M K(b) p = 0 p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6(c)

          

2 10 1.279 1.189 1.185 1.186 1.183 1.169 1.188 1.181 

3 12 1.270 1.164 1.126 1.160 1.160 1.168 1.164 1.164 

4 28 1.272 1.220 1.199 1.196 1.199 1.183 1.181 1.188 

5 14 1.275 1.156 1.152 1.141 1.128 1.127 1.147 1.162 

6 31 1.275 1.090 1.085 1.089 1.079 1.049 1.083 1.098 

7 27 1.274 1.121 1.136 1.122 1.114 1.098 1.101 1.362 

8 37 1.274 1.148 1.323 1.028 0.979 1.096 1.102 1.226 

9 24 0.878 0.643 0.637 0.635 0.639 0.644 0.642 0.639 

10 21 0.851 0.738 0.767 0.744 0.752 0.752 0.754 0.750 

11 25 0.777 0.678 0.705 0.656 0.658 0.671 0.678 0.686 

Table 5.3: Mean Absolute Error of Composite Models of Aqueous Solubility 

This table presents the absolute prediction errors (averaged over all 1026 chemical compounds 

in the dataset) arising from composite linear models based on hybrid regression-wise K-means 

clustering for a range of values of p, the proportion of contribution of the regression-wise 

element. A single supplementary iteration (only) of distance-wise K-means was applied in 

each case. 
(a) The number of descriptors. A nested sequence of descriptor sets was used, with each row in 

the table relating to the inclusion of one additional descriptor over the set used in the previous 

row, culminating in M=11 descriptors in the final row. 
(b) Number of clusters. 
(c) The ‘global model’ column contains the corresponding results for the non-composite (i.e. 

single, global) linear model. 

 85 
 



mean absolute error). As was the case with the randomly generated datasets studied in 

§5.3.1, however, this improvement in fit is not maintained as p continues to increase. 

The greatest improvement in fit is yielded at around p = 0.4, where the ‘baseline’ 

improvement (given by p = 0 compared with the single global model) is amplified by 

around 25%. In these cases (for these numbers of descriptors), the regression-wise 

component of the hybrid K-means clustering appears to be successfully aligning the 

clusters with regions of linearity in the data. 

When the number of descriptors M is small (at 2 or 3), there is no discernible trend in 

the mean absolute error as p varies. This may be accounted for by the fact that three 

descriptors are simply insufficient to characterise a chemical structure, for the 

purposes of determining its solubility: given a value for each of these three 

descriptors, there may exist in general several chemical compounds whose structures 

share these descriptor values, but which have completely different solubilities. No 

model – not even a non-linear model – can be expected to fit well in such 

circumstances. As a result, the regression-wise clustering is no more likely to find 

regions of locally linear dependence than distance-wise clustering, as there are none to 

be found. 

At the other extreme, when the number of descriptors M exceeds about 9, the 

relationship between p and mean absolute error is also absent. This does not appear to 

by caused by the onset of overfitting (which will eventually trump the effects of 

composite modelling for sufficiently large M), for the number of clusters for these 

values of M is actually smaller than the M = 8 case, which demonstrated a strong 

trend. (The number of model parameters to be fitted for M = 8, 9, 10 & 11 are 

K(M+1) = 333, 240, 231 & 300 respectively, compared with the number of datapoints 

of 1026.) 

Instead, we postulate that the failure to maintain the trends above M = 9 is caused by 

the comparative instability of the multivariate linear regressions (being performed for 

each cluster in each iteration of the hybrid K-means algorithm) in higher-dimensional 

feature spaces. The fact that this intolerance of higher dimensions appears to occur 

sooner than with the randomly generated datasets used in §5.3.1 (in which trends were 

discernible despite working within a 10-dimensional feature space) can be explained 
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by the greater number of data points (5000) in the random datasets, and the fact that 

the random data was contrived to contain strong underlying linear trends. 

5.4. Conclusions 
The K-means cluster-based measure of distance to domain, developed in §4, achieved 

a successful compromise between the overfitted nearest-neighbour approach on the 

one hand, and the underfitted global ellipsoidal model of dataset shape on the other 

hand. It managed this by using the clustering to define an intermediate level of detail 

that was just sufficient to capture the essential elements of the dataset’s shape. 

In this chapter we have given an analogous treatment to the modelling of an output 

variable (activity). Local linear trends are identified at the granularity (level of detail) 

of the K-means clusters; these are then aggregated into a non-linear, non-parametric 

model of the dependence of activity on chemical structure whose domain of 

applicability encompasses the entire dataset. This model provides an equally 

successful compromise between the overfitted k-nearest-neighbour regression method 

at one extreme, and rigid global linear regression at the other extreme. 

The concept of cluster-wise modelling immediately evokes regression-wise clustering, 

which simultaneously optimises clusters and cluster-wise models. Regression-wise K-

means clustering was honed into a form suitable for cluster-based modelling: using 

the additivity property of K-means criteria, a ‘hybrid’ form of K-means clustering was 

constructed by combining regression-wise and distance-wise K-means. This 

hybridisation of the regression-wise and distance-wise criteria manages the two 

potentially conflicting goals of, respectively, aligning clusters with regions of 

linearity, and separating the clusters in feature space. 

One possible interpretation of this hybrid K-means clustering is as a form of 

preprocessing, supplying the standard distance-wise K-means algorithm with an initial 

partitioning that is aligned with local regions of linearity (of the dependence of 

activity on the chemical descriptors) in the dataset. 

The regression-wise element in hybrid K-means also allows the resulting cluster-

based composite model to have a deeper interpretation. Recall that in §4 the distance-

wise K-means clusters were merely a device to tile the dataset without making any 

assumptions on its shape: no significance was attributed the individual clusters, and 
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indeed this was seen as a positive advantage as it circumvented the problem of 

instability of the clustering. However, upon incorporating a regression-wise 

contribution, the individual clusters can once again assume significance: they 

potentially correspond to regions in which distinct mechanisms of activity apply. 

Experimentation, both on randomly generated data and on a real QSAR dataset, 

demonstrated that composite modelling based on hybrid K-means clustering can 

indeed give improvements, over and above those obtained using composite modelling 

based on conventional distance-wise K-means clustering alone. One observes a 

modest improvement that is initially roughly proportional to the weight of the 

regression-wise contribution. However, these improvements are reversed and 

eventually annulled if the regression-wise contribution is too heavy, indicating that 

the underlying distance-wise contribution is crucial in the development of a clustering 

that is amenable to composite modelling. For any applicable dataset, the optimal 

trade-off between distance-wise and regression-wise contributions can be identified 

for best results. 

It remains a limitation of the method that the optimal value of this trade-off parameter 

p is not procured by the clustering. This is in contrast with other approaches to model-

based clustering, for example [Murtagh & Raftery 1984], in which all parameters 

concerning the clusters’ location, shape and orientation emerge from the expectation 

maximisation. It would have to be the subject of future research to determine whether 

the trade-off between distance-wise and regression-wise elements may be optimised, 

possibly on a cluster-specific basis, as an integral part of the clustering algorithm 

itself. 

The experimentation on real QSAR data identified those scenarios to which composite 

modelling based on hybrid K-means is suited. The method is applicable to a dataset 

involving a comparatively small number of chemical descriptors (features) such that, 

while there may be no globally applicable linear model, nevertheless dependence 

(albeit non-linear) of activity on descriptor values can be observed. (This is merely the 

statement that the descriptor set must be sufficient to satisfy the Fundamental 

Assumption of QSAR: that compounds whose chemical structures have similar 

descriptor values will have similar activity values.) Hybrid K-means exhibited 

promising improvements (for an aqueous solubility dataset of 1000 chemical 
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compounds) with between four and eight descriptors. Too few descriptors and 

dependence of activity on chemical descriptors was lost. On the other hand, with too 

many descriptors, the excessive dimensionality in the regression-wise clustering led to 

the introduction of instability in the algorithm and eventually to overfitting. 

Composite modelling therefore emerges as a technique suitable for the capture of 

complex, localised phenomena described using a very modest number of features. 
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6. Test Set Extraction Using Clustering 

6.1. Overview 
When considering a model of some behavioural aspect of entities of a certain type, a 

test set is a collection of entities (of that type) whose behaviour is known, but which 

are not used to influence the construction of the model per se. A test set is used to 

validate a model by checking, against the known behaviour of the entities in the test 

set, the predictions made by the model about the behaviour of those entities. 

The purpose of a test set is to validate that the model can accurately predict the 

behaviour of previously unseen applicable entities. This isolation of its purpose 

immediately identifies an important interplay between test set validation and the 

model’s domain of applicability: in general, we would by definition not expect a 

model to make accurate predictions for entities outside its domain. Validation using a 

test set containing such inapplicable entities would therefore not constitute a fair 

evaluation of the model because it may lead to a model that is valid (within its domain 

of applicability) being reported as invalid. 

In this chapter we shall consider models that are based on a ‘training’ dataset of 

entities whose behaviour is known, sampling the space of entities to which the model 

will ultimately apply. (Such inductive ‘machine learning’ modelling is in contrast to 

other forms of modelling, in which, for example, the model is constructed based on 

prior human expert knowledge or understanding of the mechanism by which the 

behaviour of an entity arises.) In such cases a test set will be a separate collection 

from the training set, not contributing to the model training (machine learning) 

process. 

Training a model in this ‘machine learning’ sense should (it is hoped) result in a 

model that fits the training data to some high degree: ‘resubstituting’ the training 

entities into the trained model should approximately reproduce their known 

behaviour. The purpose of a test set in this context is to validate that, instead of 

merely just fitting the training data well, the model can accurately predict the 

behaviour of unseen entities. In other words, the test set is used to validate that the 

model generalises beyond sole applicability to the individual entities in the training 

set. 
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In this form of model training, the domain of applicability is determined by the 

content of the training set. (This is in contrast with modelling that is not based on a 

training set: in expert systems, for example, the domain of applicability is the region 

of entity space in which all the assumptions made by the human expert hold.) The 

‘fairness criterion’ of test set validation, that proscribed from the test set any entity 

outside the domain of applicability, can then be rephrased as requiring that each test 

set entity be similar to some entities in the training set. 

An ‘external’ test set is a test set that has been supplied as a separate collection from 

the training set. In contrast, an ‘internal’ test set, the subject of this chapter, is one that 

has been extracted from the supplied ‘original’ training set at the outset of the 

modelling process. The ‘residual training set’, comprising only those training entities 

that have not been extracted to the internal test set, thereafter adopts the role of 

training dataset in forming the basis for actually building the model. 

When an internal test set has been extracted, the domain of applicability of the 

resulting model is determined only by this residual training set. There are two 

important consequences of this fact. Firstly, the domain of applicability will vary, 

depending on precisely which entities have been extracted to the test set. For any 

choice of internal test set, whether algorithmic or by manual selection, care must 

therefore be taken to ensure that the extracted entities remain within the domain 

determined by the remaining entities. 

Secondly, it is strongly desirable for a model’s domain of applicability to be as large 

as it can possibly be, given the originally supplied collection of training entities. The 

internal test set must be chosen so that, as far as possible, it results in a domain of 

applicability that is just as large as that which would have arisen if no test set had 

been extracted. 

These consequences are of course related: a depletion of the domain of applicability 

as a result of test set extraction occurs precisely when extraction of all test entities in 

the affected area leaves them outside the depleted domain. This issue of applicability, 

in which we require each test entity to have nearby entities in the residual training set, 

will be a guiding principle when we develop an algorithm for internal test set 

extraction. 
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A concern that is in some sense dual to the applicability issue is that of coverage, in 

which we desire each training entity to have nearby representatives in the test set. A 

test set exhibiting poor coverage will give rise to validation that, while not necessarily 

being unfair, will be incomplete because some regions of the training set remain 

untested. 

Poor test set coverage effectively means that the model will be only partially 

validated, possibly leading to invalid models being reported as valid (a type II error in 

detecting invalidity). Although this is a principal concern, higher priority will be 

given to avoiding the applicability issue, in which ‘unfair’ validation (using 

inapplicable test entities) may lead to the more serious problem of valid models being 

reported as invalid (type I error in detecting invalidity). 

These dual concerns of ‘applicability’ and ‘coverage’ may be viewed as the test set 

representing no more and no less than the residual training set, so that they both 

capture the essence of the original dataset [Golbraikh & Tropsha 2002b]. 

6.2. Cluster-Based Test Set Extraction 
The interrelationship of the concepts of domain of applicability and internal test set 

was described in §6.1. For any test set extraction algorithm, therefore, it makes sense 

to specify the distance-to-domain measure in use. In this section, we shall continue to 

employ the K-means cluster-based distance-to-domain measure derived in §4.2, and 

construct an algorithm for test set extraction that makes use of the same K-means 

clusters. 

We seek an algorithm for extracting a test set that satisfies the following criteria: 

Target Size: the extracted test set accounts for a specified proportion of the original 

dataset. 

Reproducibility: running the algorithm twice on the same dataset gives identical 

results. 

Applicability: any point in the extracted test set has nearby representatives in the 

residual training set. 

Coverage: any point in the residual training set has nearby representatives in the test 

set. 
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The approach we shall take in the algorithm is to work on one cluster at a time, 

extracting the required proportion of entities from each cluster separately. 

Amalgamating the individual clusters’ extracted portions into a single test set ensures 

that the ‘target size’ criterion is satisfied. 

Stipulating that the same proportion of entities is extracted from each cluster ensures 

that, at least at the level of the cluster-based model of the dataset, the test set is evenly 

distributed over the training set. The residual training set (when clustered with the 

same partitioning as the original dataset) therefore has much the same cluster-based 

model as the original: the cluster sizes will have been consistently reduced, and the 

cluster centroids may have migrated, but statistically speaking their expected position 

coincides with their original position, and they will in any case still be inside the 

cluster’s original Voronoi cell. The domain of applicability may therefore be taken to 

be the same, satisfying the ‘applicability’ criterion. 

Similarly, the possibility of failing to meet the ‘coverage’ criterion is slim: the test set 

covers the dataset uniformly amongst all the clusters. The worst that can happen is 

that an individual cluster is only partially covered, if all the test points in that cluster 

happen to be confined to part of it. Even in that statistically unlikely case, a part of the 

cluster can still only be considered ‘not covered’ at the fine scale of within-cluster 

distances. In the broader scale of between-cluster distances, which is more relevant 

for the dataset as a whole and is precisely the level of detail retained by the cluster-

based synoptic model, a cluster may be deemed adequately covered by any selection 

of test points in it. 

Within each cluster, the choice of test entities to extract is made simply by random 

selection. To ensure that the ‘reproducibility’ criterion is satisfied, the random 

element is supplied by pseudo-random numbers generated according to a specified 

algorithm that is always reseeded to a fixed value at the start of the test set extraction. 

We shall use the following linear congruential sequence for pseudo-random number 

generation [Knuth 1981]: 

  r0  =  0 
  ri+1  =  [1664525r  + 1013904223]  (reduced modulo 232) i

 (6.1) 
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This is efficient and trivial to implement in 32-bit unsigned integer arithmetic, where 

the reduction modulo 232 occurs ‘for free’. We can then reduce any of these pseudo-

random numbers into the range (0, 1, …, C−1) by applying the following calculation: 

(r)  =  ⎣ 
r

⎣(232−1)/C⎦ + 1  R  ⎦ C

 (6.2) 

where the ‘floor’ brackets in ⎣x⎦ mean that x is rounded down to the nearest integer 

below. This calculation can be performed easily in 32-bit unsigned integer arithmetic. 

The calculation also ensures that the reduced value RC(r) depends on the most 

significant bits of (the 32-bit representation of) r, rather than on the least significant 

bits. This is important because it is the most significant bits of terms of the sequence 

in (6.1) that exhibit pseudo-random behaviour; the n least significant bits are periodic 

with period at most 2n. 

The full algorithm is as follows: 

Algorithm 6.1: Cluster-Based Test Set Extraction 

Inputs: 

• dataset of N points x  in M-dimensional feature space n

• number of clusters K 

• partitioning π of {1, …, N} into K clusters 

• target proportion p (0<p<1) to extract to test set (corresponds to target size pN) 

Procedure: 

1. Reset the pseudo-random number generator, so that r1 (6.1) is the next pseudo-

random number to be used. 

2. Initialise S to be the empty set, and initialise u = N and t = pN. 

3. For each (non-empty) cluster Ck, selected in order of increasing size Nk: 

a. Let Tk = min { ⎣(t/u)Nk⎦, Nk−1 }. 

b. Do Tk times: 

i. Let j = RNk(r) as defined in (6.2) where r is the next random 

number in the sequence. 
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ii. Select the entity xn from Ck whose index n is smallest-but-j in 

Ck, i.e. for which there are exactly j entities xm in Ck with m < n. 

iii. If the index n of the selected entity is already in S then return to 

step i. 

iv. Add n to S. 

c. Update u := u − Nk and t := t − Tk. 

Outputs: 

• subset S of {1, …, N} indicating the extracted test set 

At each iteration, u is the number of entities in all clusters remaining to be treated, and 

t is the number of entities that still need to be extracted in order to meet the ‘target 

size’ criterion. Note that t can never go negative because, in step 3a, the fact that 

Nk ≤ u ensures that Tk ≤ t. 

Algorithm 6.1 aims to achieve the target size of the extracted test set by extracting the 

same proportion of entities from each cluster. There are two constraints on doing this. 

Firstly, because the number of entities extracted must be a whole number, some small 

variation in this proportion will inevitably be discernible across the clusters due to the 

discretisation, especially for very small clusters. Secondly, also affecting in particular 

clusters of low cardinality, we expressly forbid any cluster to lose all its members to 

the test set. This is necessary to satisfy the ‘applicability’ criterion, which requires 

that, for any test entities in a cluster, there must be some residual training entities in 

that cluster in order to maintain the domain of applicability. 

During the test set extraction, these constraints may cause some deviation in the actual 

proportion of entities extracted so far (as a proportion of the members of the clusters 

thus far treated). Algorithm 6.1 attempts in each iteration (i.e. for each new cluster 

treated) to put this proportion back on course. It does this by setting out to use the 

updated proportion t/u that, if followed for all remaining clusters, would achieve the 

required overall proportion p, thereby putting the algorithm back on track to satisfy 

the ‘target size’ criterion. 

For these corrections to be most effective, the algorithm processes the clusters in 

order of increasing size. It is much easier to maintain to the revised proportions t/u 

when the clusters are large, as that is when the constraints (that the proportion actually 
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extracted from cluster k must be a whole multiple of 1/Nk and must be strictly less 

than 1) have the least impact. If small clusters were left to the end then there would be 

little freedom remaining to meet the target size. For example, in a dataset of 150 

entities, if the last three clusters to be considered have two elements each, such an 

attempt to extract two thirds of the entities into the test set may succeed in extracting 

96 from 144, thus far meeting the target of two thirds, but then be constrained to 

extract only one entity from each of the remaining clusters. The resulting test set of 99 

entities will have missed its target size. 

It was mentioned above that the scale of within-cluster-distances, related to the 

clusters’ radii, determines the resolution at which cluster-based test set extraction 

preserves the original dataset’s distribution in feature space. For an additional angle of 

comparison, the experiments described in the following subsections will therefore be 

repeated using a larger number of clusters. 

The increase in cluster count K for this repetition is achieved by analysing the original 

clustering (arising from Algorithm 3.2) and reclustering any of those clusters that 

exceed an ‘elongation’ threshold. Anomalous Pattern Clustering is used for this 

reclustering of ‘elongated’ clusters, and after all ‘elongated’ clusters have been thus 

processed  is reapplied to converge on a K-means optimal partitioning. Algorithm 3.1

The ‘elongation’ λk of a cluster k is defined in this context as the cluster’s variance 

along the axis connecting the dataset’s overall centroid g with the cluster’s centroid ck, 

expressed as a fraction of the sum of the cluster’s variances over any complete set of 

M orthogonal directions in the M-dimensional feature space. The elongation may be 

computed according to the following expression, which assumes for ease of 

presentation that the feature data has been centred such that g = 0: 

  λk  =  
Σn:π(n)=k ((xn − ck)⋅ck)²

(ck⋅ck) Σn:π(n)=k (xn − ck)⋅(xn − ck)
 

   =  
Σn:π(n)=k ( (xn⋅ck)² − (ck⋅ck)² )

Σn:π(n)=k ( xn⋅xn ck⋅ck − (ck⋅ck)² )
 

 (6.3) 

This elongation λk attains its maximum value of unity when all points in the cluster lie 

on a common line through the dataset’s overall centroid g. On the other hand, a cluster 
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whose variance/covariance tensor is isotropic (i.e. a cluster whose distribution in 

feature space has no directional bias and appears spherical) has elongation λk = 1/M. 

Although, as was discussed in §4.2, K-means clusters tend to be approximately 

spherical, this tendency is not always perfectly borne out. Elongation values 

substantially greater than 1/M are indicative of this case, and we use a threshold 

criterion of λk ≥ 2/(1 + M) for distinguishing clusters as ‘elongated’. (This 

corresponds to λk ≥ 2 (M−1)−1(1 − λ ), i.e. the cluster’s variance in the ck k − g direction 

being at least double its average variance over the orthogonal directions.) 

The complete algorithm is as follows: 

Algorithm 6.2: Recluster Elongated Clusters 

Inputs: 

• dataset of N points x  in M-dimensional feature space n

• initial number of clusters K 

• initial K-means-optimal clustering (π, [ck]) of [x ] into K clusters n

Procedure: 

1. For each cluster k: 

a. Calculate the elongation λk according to equation (6.3). 

b. If λk ≥ 2/(1 + M) (i.e. the cluster is ‘elongated’): 

i. Apply the Anomalous Pattern Clustering initialisation phase of 

the Intelligent K-Means Algorithm (steps 1-3 of Algorithm 3.2) 

to the entities in cluster k. 

ii. Add the new clusters resulting from step i to the collection of 

clusters. Increase K and update the partition function π 

accordingly. 

2. Invoke the Alternating Optimisation algorithm on the full dataset, initialised 

with (and updating) the current partitioning π into K clusters. 

Outputs: 

• final number of clusters K 

• final K-means-optimal clustering (π, [ck]) of [x ] into K clusters n
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6.3. Measures of Quality of a Test Set 

6.3.1. Linkage Measures 

A number of different measures will be used to measure the quality of an extracted 

test set. 

Intrinsic measure of test set quality will be provided by so-called ‘linkage’ measures 

[Bolshakova & Azuaje 2003] providing measures of how close, in aggregate, the test 

set and residual training set are to one another in feature space. (These measures are 

‘intrinsic’ in the sense that they do not incorporate activity values or consider any test 

set validation results. They are defined purely in terms of the test set entities’ feature 

values.) Linkage measures (defined with respect to a common distance measure in 

feature space) differ over how the aggregation is performed over each of the two sets 

in question. The specific linkage measures that we shall use are the Hausdorff 

distances [Preparata & Shamos 1985, Panchenko & Madej 2005, Bolshakova & 

Azuaje 2003] defined as follows: 

Test linkage: the distance in feature space from the worst represented test entity to its 

nearest representative in the residual training set 

Training linkage: the distance in feature space from the worst represented residual 

training entity to its nearest representative in the test set 

Formally, these are defined respectively as follows, for a subset S of {1, …, N} 

indicating a test set extracted from N entities xn in M-dimensional feature space U: 

  lktest(S)  =  maxm∈S  minn∉S  d(xm, xn) 
  lktrain(S)  =  maxm∉S  minn∈S  d(xm, x ) n

 (6.4) 

These linkage measures correspond closely to the ‘applicability’ and ‘coverage’ 

criteria respectively, that were stipulated in §6.2. ‘Applicability’ (of each test entity to 

models trained on the residual training set) demands that each test entity have a 

nearby representative in the residual training set; the test linkage value states just how 

close that representative is (in the worst case). Similarly, ‘Coverage’ (of the residual 

training set by the test set) requires each residual training entity to have a nearby test 

entity; the proximity of this representative is measured (in the worst case) by the 

training linkage. 
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This correspondence between test linkage and applicability, and between training 

linkage and coverage, mean that the arguments given in §6.2 in favour of cluster-

based test set selection (Algorithm 6.1) also demonstrate the theoretical tendency of 

the algorithm to pursue fair linkage scores. This can of course be seen directly: 

ensuring wherever possible that each cluster contains both training and test entities 

means that, at worst, any test entity has a nearby training representative inside the 

same cluster and vice versa. 

6.3.2. Model Validation Measures 

In addition to these linkage measures, a separate class of ‘extrinsic’ measures will be 

employed. These take into account the known activity values associated with the 

training and test entities, by training a regression model on the dataset and measuring 

how well the model fares on the training and test sets individually. These extrinsic 

measures are therefore more closely related to the intended use of the test set as a 

validation tool. 

Specifically, we shall train the linear least-squares regression model on the residual 

training set that remains after the test set has been extracted, and consider the root-

mean-square error of ‘prediction’ (or more accurately, in certain cases, training 

residues) over the various sets listed in Table 6.1. 

The first measure, Etest(S), presents the result of the validation experiment for which 

the test set is ultimately intended. Having first trained the linear least-squares 

regression model [a(S), b(S)] on the residual training set { [x , yn n]  :  n∉S }, the 

measure Etest(S) calculates the root-mean-square prediction error in applying this 

regression model to the extracted test set S. It bears a simple relationship with the 

‘Prediction Error Sum of Squares’ (PRESS) value often associated with such 

validation experiments: 

  Etest(S)²  =  
1
|S|   (a(S)⋅x  + b(S) − y Σn∈S n n)² 

   =  
PRESS(S)

|S|  

 (6.5) 
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Secondly, the measure Etrain(S) measures how well the linear least-squares regression 

model fits its training data (the residual training set), and is related to the ‘Residual 

Sum of Squares’ (RSS) of the model: 

(S)²  =  
1

N−|S|   (a(S)⋅x  E  + b(S) − y Σn∉S n ntrain )² 

   =  
RSS(S)
N−|S|  

 (6.6) 

Note that the linear least-squares regression model on this residual training set is by 

definition precisely that which minimises RSS(S) and hence E (S). train

The next measure Eall(S) captures the accuracy of the model over the entire dataset 

(covering both training and test subsets): 

  Eall(S)²  =  
1
N  (a(S)⋅x Σn n + b(S) − yn)² 

   =  
RSS(S) + PRESS(S)

N  

RSS 
Measure 

Model trained 
over: 

RMS error 
calculated 
over: 

Sense Purpose 

Etest(S) residual 
training set 

test set low values 
are best 

measures how well the 
test set conforms to the 
linear trend exhibited by 
the residual training set 

E (S) residual 
training set 

residual 
training set 

low values 
are best 

measures the strength of 
linear trend in the 
residual training set 

train

Eall(S) compare with Eresidual 
training set 

entire dataset low values 
are best 

orig to 
measure the detriment to 
the model incurred by 
extracting the test set 

     

E entire dataset entire dataset low values 
are best 

measures, as a control 
case, the strength of 
linear trend in the 
original dataset 

orig

Table 6.1: Validation-Based Measures of Quality of Extracted Test Set 
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 (6.7) 

The reference score Eorig is simply the root-mean-square training residue of the linear 

least-squares regression model trained over the entire dataset. It has its own 

interpretation as the ‘control’ value of both E  and Etrain all associated with an empty test 

set: 

²  =  
1
N  (a(∅)⋅x  E  + b(∅) − y Σn n norig )² 

   =  
RSS(∅)

N  

   =  E (∅)²  =  Etrain all(∅)² 
 (6.8) 

When compared with the reference score Eorig (associated with no test set having been 

extracted), observe that the measure Eall(S) calculates the root-mean-square error over 

the same dataset (the original dataset in its entirety) but from prediction using a 

different model (that with the test set excluded from its training data). The difference 

Eall(S) − Eorig is therefore a measure of stability, in the sense that it detects by how 

much the regression model is perturbed upon exclusion of the test set. (Note that, for 

any test set S, Eall(S) ≥ Eorig by the least-squares-optimality of the linear regression 

model [a(∅), b(∅)] over the whole dataset.) 

Eall(S) therefore indicates the detriment to the model incurred by excluding the test set 

entities from the dataset. This detriment is indirectly related to the ‘applicability’ 

criterion. Test set entities that bear no similarity to any residual training entities occur 

precisely when the dataset’s domain of applicability has been depleted in those 

vicinities, due to insufficient training entities remaining. Such cases, corresponding to 

a tangibly different sampling of feature space by the residual training set, cannot be 

expected to recover a model that applies as well to the depleted parts of the dataset. 

More generally, the comparison between Eall(S) and E  = Eorig all(∅) can be viewed as 

an attempt to validate that the test set (and hence also the residual training set) 

preserves the dataset’s sampling distribution in feature space, and is not limited to 

detecting cases involving full depletion of certain localities of feature space. Under 

the Fundamental Assumption of QSAR – that compounds that are similar in chemical 

space (as characterised in the feature space of chemical descriptors) have similar 

activity values, an even subsampling of the dataset that honours its distribution in 
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chemical space will give rise to a similar model and hence a similar value of Eall(S) to 

E . A value of Eorig all(S) that is substantially worse (greater) than Eorig is, therefore, 

subject to the Fundamental Assumption of QSAR, indicative of an uneven sampling 

in the test set extraction in which the residual training set fails to capture the essence 

of the original dataset. 

6.4. Experimental Results 
A descriptor-based linear least-squares regression model for solubility was used, 

trained on the publicly available Huuskonen dataset of aqueous solubilities of 1026 

chemical compounds [Huuskonen 2000]. The IDBS PredictionBase software [IDBS 

2007] was used to identify topological [Devillers & Balaban 1999, Todeschini & 

Consonni 2002] and electrotopological [Kier & Hall 1999] descriptors that are 

statistically significant in the dependence relationship of activity (solubility) on 

chemical structure according to stepwise linear least-squares regression. Two sets of 

descriptors were adopted for comparison, one a subset of the other, corresponding to 

two different stopping points in the stepwise regression: 12 descriptors gave rise to a 

coefficient of multiple correlation of R² = 0.750, while 26 descriptors correspond to 

the higher value of R² = 0.826. These are listed in Appendix A. 

The Intelligent K-means algorithm (Algorithm 3.2) was applied (using the standard 

distance-wise K-means loss function), with the result that 5 clusters (excluding 1 

singleton) emerged for the 12 descriptors, and 7 clusters (excluding 2 singletons) 

arose in the case of 26 descriptors. 

In order to investigate how the results depend on the resolution yielded by the scale of 

within-cluster distances, the experiments that follow were repeated using a larger 

number of clusters. Algorithm 6.2 was used to boost the number of clusters. Using the 

method of detection of elongated clusters described in 6.2, reclustering them, and 

reoptimising the K-means clustering, gave rise to the following cluster counts 

(ignoring singletons in each case): 
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Number of 
Elongated 
Clusters 

Number of 
Descriptors 

Original Number 
of Clusters 

Final Number of 
Clusters 

12 5 3 39 

26 7 5 47 

Table 6.2: Numbers of K-Means Clusters, Before and After Reclustering 

Elongated Clusters 

Test sets of various sizes T were extracted from the original dataset (of size N) 

according to each of the following methods: 

Random: T compounds are selected completely at random from the original dataset. 

Activity-Based: The original dataset is sorted so as to be indexed in increasing order 

of activity (m ≥ n => ym ≥ yn and m ≤ n => ym ≤ yn), and compounds are 

selected as regularly as possible from this sorted list to achieve the target size 

T. Specifically, the extracted test set is given by 

S = { n : ⎣s + nT/N⎦ > ⎣s + (n−1)T/N⎦ } where 0 ≤ s < 1 is a random seed. 

Cluster-Based: Algorithm 6.1 applied to the original Intelligent K-means clustering 

given by Algorithm 3.2. 

Cluster-Based with Reclustering: Algorithm 6.1 applied to the Intelligent K-means 

clustering with its elongated clusters reclustered according to Algorithm 6.2. 

For each combination of method, descriptor set, and test set size, ten test sets were 

extracted, with the random number sequence (6.1) reseeded to the first value only at 

the start of the run of ten. The results for each combination were averaged over the ten 

runs; this allows the investigation to incorporate the susceptibility of each method to 

the chance occurrence of atypical uneven samplings. 

The results of calculating the linkage and validation measures for test sets extracted 

according to these methods are presented in Table 6.3. Test set sizes T of 10%, 25%, 

and 50% of the dataset size N were studied, alongside the ‘control’ configuration of 

T = 0. 
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Several trends were observed in the results in Table 6.3: 

• On extracting 10% and using 26 descriptors, the cluster-based test set 

extraction (Algorithm 6.1) demonstrates an improvement in the Etest value. 

However, this improvement is not mirrored by the linkage scores. 

• When extracting larger test set sizes, the improvements are less pronounced. 

 
Test 
Set 
Size 

Cluster-
Based with 

Reclustering 

Activity-
Based 

Cluster-
Based Random  

12 (26) 
Descriptors 

   5 (7) 
Clusters 

39 (47) 
Clusters 

      

1.03  (0.92) 1.05  (0.94) 1.07  (0.86) 1.00  (0.84) 10% 
25% 1.03  (0.89) 1.01  (0.87) 1.04  (0.89) 1.04  (0.88) Etest

1.05  (0.90) 1.03  (0.89) 1.06  (0.89) 1.04  (0.87) 50% 
      

(E 1.02  (0.85) 1.02  (0.85) 1.02  (0.85) 1.02  (0.85) none ) orig

1.02  (0.85) 1.02  (0.84) 1.02  (0.85) 1.02  (0.85) 10% 
25% 1.02  (0.85) 1.03  (0.85) 1.02  (0.85) 1.02  (0.85) Etrain

1.01  (0.84) 1.02  (0.84) 1.00  (0.84) 1.02  (0.85) 50% 
      

(E 1.02  (0.85) 1.02  (0.85) 1.02  (0.85) 1.02  (0.85) none ) orig

1.02  (0.86) 1.02  (0.86) 1.02  (0.85) 1.02  (0.85) 10% 
25% 1.02  (0.86) 1.02  (0.86) 1.02  (0.86) 1.02  (0.86) Eall

1.03  (0.87) 1.03  (0.87) 1.03  (0.87) 1.03  (0.86) 50% 
      
      

0.28  (1.18) 0.33  (1.36) 0.31  (1.18) 0.30  (0.98) 10% 
25% 0.30  (1.39) 0.31  (1.27) 0.35  (1.18) 0.32  (1.26) lktest

0.41  (1.66) 0.40  (1.53) 0.43  (1.55) 0.39  (1.50) 50% 
      

0.95  (3.19) 0.87  (3.04) 0.94  (3.35) 0.78  (2.77) 10% 
25% 0.57  (2.06) 0.63  (2.06) 0.57  (2.11) 0.54  (1.93) lktrain

0.40  (1.52) 0.41  (1.55) 0.40  (1.63) 0.40  (1.51) 50% 

Table 6.3: Extracted Test Set Scores 

The entries in this table relate to the solubility dataset of 1026 chemical compounds described in 

[Huuskonen 2000]. The first entry in each cell relates to the analysis using 12 descriptors, while 

the second (parenthesised and italicised) entry is associated with the 26 descriptor analysis. The 

E measures are the root mean square residuals described in Table 6.1, while the lk measures are 

the Hausdorff distance linkages defined in equation (6.4). All values are averaged over the ten 

test sets generated for the combination of method, descriptor count, and test set size. 
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• The E  and Etrain all values are hardly affected by the choice of method, and in all 

cases remain close to E . orig

• Significant improvements are yielded across the board by cluster-based test set 

extraction when using the larger number of clusters offered by Algorithm 6.2. 

When using the cluster-based test set extraction (Algorithm 6.1), and extracting 10% 

of the overall dataset into the test set, reasonable results are obtained for the case with 

26 descriptors: the model validation Etest measure is slightly improved in comparison 

with the existing methods. 

In this instance there is no improvement in the linkage scores. (However, neither are 

they substantially worse than with the random or activity-based methods.) This 

ostensible paradox – that a test set extraction with much the same linkage traits (as 

compared with the random method) appears to give a noticeably better sampling of 

the original dataset, as judged empirically by validation on the test set – can be 

explained by the fact that the linkage measures are sensitive to the worst case of 

nearest single chemical structure in the complementary set. The apparent evenness of 

sampling obtained with the cluster-based test set extraction method suggests that on 

the whole, most training structures have several nearby test structures, and vice versa, 

notwithstanding the mediocrity of the linkage scores. 

With 12 descriptors, no such improvements in the Etest measure offered by the cluster-

based methods (at 10%) were observed. The higher dimensionality and intrinsically 

lower stability of 26-dimensional regression suggest that there is a greater importance 

in a carefully designed test set extraction (such as is offered by the cluster-based 

methods) in the 26 descriptor case than there is in the presence of fewer descriptors. 

When reclustering the elongated clusters using Algorithm 6.2, there are consistent 

improvements over Algorithm 6.1 in almost all configurations. Observing that the 

random selection method is equivalent to the ‘corner case’ of cluster-based extraction 

with only one cluster (Algorithm 6.1 with K = 1), then boosting the number of clusters 

would indeed be expected to continue the trends, amplifying any improvements that 

the cluster-based method offers. Increasing the number of clusters serves to refine the 

level of detail at which the test set’s and residual training set’s distributions are 

constrained to match those of the original dataset. 
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The experiments involving 25% and 50% test sets gave rise to more marginal results. 

Nevertheless, it is reassuring that the cluster-based method has demonstrated its 

ability to equal the performance of existing method in this case. Note that extracting 

the test set by random selection will in a typical case give results close to the 

optimum, especially when the test set and residual training sets are both large. It is 

therefore to be expected that the improvement should be most pronounced at the more 

extreme cases involving a small test set (e.g. 10%) or a small residual training set (e.g. 

that complementary to a 90% test set), where an atypical, unrepresentative sampling 

distribution may be more likely to occur by chance. 

It is unsurprising that the E  and Etrain all measures are barely affected in the 10% cases. 

With only 10% of compounds removed from the training set, a substantial impact on 

the regression model would be indicative of the more serious problem of model 

instability. With greater proportions, approaching 50%, of compounds being removed 

to the test set, it is indeed reassuring that E  and Etrain all remain close to Eorig (and to one 

another) for the cluster-based methods (as they did for the random selection and 

activity-based methods). This is evidence that the ‘applicability’ criterion of the test 

set extraction has been satisfied, as the model trained on the residual training set has 

demonstrably remained very close to the original, implying adequate coverage by 

residual training compounds. 

6.5. Conclusions 
An ‘internal’ test set, extracted from the training set of a QSAR study, may be viewed 

as a subsample of the originally supplied training dataset. In order to allow a fair and 

complete test of the QSAR model, and to avoid attenuation of the domain of 

applicability of the trained model, we require this subsampling to be even over the 

training set and so properly representative of it. In other words, for a test set to be 

successful, both it and its remainder in the training set must capture the essence of the 

original dataset. 

The problem of internal test set extraction is inherently connected with the concept of 

domain of applicability, which has a direct influence on the aforementioned ‘evenness 

of sampling’ criterion. When extracting the test set, oversampling within a region 

would lead to that region dropping out the domain of applicability. This compromises 

not only model quality but also test fairness, because the test chemical compounds in 
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the oversampled region will now be liable to be outside the domain of the model 

trained on the remainder. 

The K-means cluster-based measure of domain of applicability therefore inspires an 

algorithm for the automatic extraction of an internal test set. This algorithm uses the 

same cluster-based description of the distribution of the dataset in chemical descriptor 

space to ensure that the ‘evenness of sampling’ criterion is met, by ensuring that the 

sampling rate is uniform across the clusters. 

In the case of a small test set of 10% of the original dataset being extracted, 

experimental validation of this cluster-based test set extraction algorithm 

demonstrated that it offers immediate gains, in the form of reduced average prediction 

errors, over the existing methods (including random selection). Furthermore, in no 

case did the reduction of the training set produce any significant adverse effect on the 

quality of the trained QSAR model. 

This experimentation also revealed that it is the small test sets that stand to benefit 

from the more intelligent approach to test set extraction. With larger test sets (e.g. 

25% and higher), naïve random selection was found to be a sufficient approach, as the 

law of large numbers [Grimmett & Stirzaker 1982] provides a greater confidence in 

the stability of the subsampling in those cases. 

The K-means cluster-based description of the dataset’s distribution effectively defines 

a granularity or ‘level of detail’ – a scale of interest at which the dataset’s shape is 

considered and below which the data scatter is effectively treated as noise. It was 

found experimentally that refining this granularity (by boosting the number of K-

means clusters in regions of descriptor space in which the dataset’s distribution does 

not closely follow the model based on hyperspherical clusters) significantly improves 

the degree to which the test set evenly samples the original dataset. The improvement 

was discernible according to several criteria: the Hausdorff test set linkage (measuring 

retention of applicability domain), the Hausdorff training set linkage (measuring test 

coverage), and the average prediction error over the test set were all enhanced without 

detriment to the stability of the QSAR model. 
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7. Discussion and Conclusions 

7.1. New Interpretations of K-Means Clustering 
Cluster analysis in general, and K-means clustering in particular, have been widely 

used in QSAR studies in the past as an unsupervised classification tool. In this work, 

however, we have instead applied K-means cluster analysis to model the shape of a 

QSAR dataset’s distribution within its feature space of chemical descriptors. This has 

not only led to some novel practical solutions to three key problems in QSAR, but has 

also furnished us with some new theoretical insights into K-means and fuzzy 

clustering. 

It is unsurprising that cluster analysis is often associated with classification. After all, 

a cluster may be defined as a group of entities that is cohesive in the sense of sharing 

some characteristics not exhibited by entities in other clusters; this suggests that a 

cluster may be identified with the class defined by those characteristics. In other 

words, the clusters’ partitioning of the dataset induces a classification rule for 

partitioning the surrounding feature space. Although this cluster-based classification 

is entirely empirical (rather than being specified a priori), its emergence as a natural 

structure in the data may nevertheless suggest an underlying significance that is worth 

investigating. 

The shift in perspective (on clustering) from classification to the modelling of data 

distribution arises from the clusters losing their individual significance, in place of 

which they assume a collective role, working in aggregate to form a (not necessarily 

unique) cover of the dataset in its feature space. Thus, rather than identifying 

characteristic parts of the dataset, this new perspective is concerned with describing 

the dataset as a whole. 

Disregarding the clusters’ individual significance in this fashion helps to overcome an 

issue of instability in the K-means algorithm – in particular, the algorithm’s sensitivity 

both to subsampling and to the choice of initial partitioning. Indeed, stability is 

measured in a different way in this case: instead of checking that a similar 

partitioning of the dataset is obtained (as we would do if we were concerned with the 

individual clusters), it suffices to perform the less stringent check that a similar region 

of chemical space is covered by the collection of clusters. It was shown in §4.3.1 
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through direct experimentation that K-means clustering is indeed stable under 10-fold 

cross-validation with respect to this weaker stability criterion, even when the 

underlying dataset lacks a strong underlying cluster structure. 

The most immediate purpose served by a description of the shape of a dataset’s 

distribution is to form a criterion for whether an arbitrary point in feature space 

belongs to the region occupied by the dataset. Such a criterion constitutes exactly the 

test required for whether a predictive model trained on the dataset can make a 

prediction at that point without having to extrapolate from its training data; in other 

words, this region of occupation should be taken as the ‘domain of applicability’ of 

such a predictive model. 

When using clustering to provide this description of the shape of a dataset, the region 

of occupation of the dataset comprises the union of the regions of occupation of its 

clusters; correspondingly, the affinity of a new point with the dataset amounts to 

affinity with any one of the clusters. Note that a K-means cluster’s region of 

occupation is not the same as its Voronoi cell: the latter (which is potentially 

unbounded) consists of all points that have a greater claim to membership of that 

cluster than to membership of any other cluster, regardless of whether it actually has 

any genuine affinity with the cluster in an absolute sense. 

These distinct concepts of (relative) membership of a cluster’s Voronoi cell and 

(absolute) affinity to a cluster were found to occur in Bezdek’s formulation of fuzzy 

membership as an optimisation problem [Bezdek 1981, Bezdek & Pal 1992]. In that 

formulation, a given point’s membership amongst a collection of fuzzy clusters is 

distributed over all clusters so as to minimise a membership-weighted average of the 

distances to, or non-affinities with, each individual cluster. Historically, this weighted 

average – the objective under optimisation – has been used only as a device for 

calculating the fuzzy membership distribution. In this work, however, we have taken 

the novel approach of imbuing the attained optimal objective value with significance 

in its own right: being an average distance to (i.e. non-affinity with) the clusters, we 

interpret it as a measure of collective non-affinity with the dataset as a whole. 

Furthermore, this offers the new interpretation of the optimal fuzzy membership 

values as being those which maximise the affinity of the given point with the dataset. 

 109 
 



We have therefore, in this work (§4), defined the ‘cluster-based distance to domain of 

applicability’ of a QSAR model to be this distance to (i.e. non-affinity with) the 

dataset, that emerges from the fuzzy cluster memberships. In doing so, we are less 

concerned with the quantified fuzzy membership of the individual clusters; this is 

analagous to – and consistent with – our collective (as opposed to individualistic) 

perspective on the clusters. 

This cluster-based measure of distance to domain was experimentally assessed in 

§4.3.2 with reference to a QSAR model. The experiments demonstrated that this 

measure is successful – indeed, more so than the existing measures such as 

Mahalanobis distance – in detecting those chemical compounds for which reliability 

of the model’s predictions is compromised due to extrapolation. 

The cluster-based model of domain of applicability has a compact representation – an 

important consideration if it is to augment a QSAR model that is itself representable 

by a few tens of model parameters. Indeed, the description of the region of chemical 

descriptor space occupied by the dataset has been distilled down to comprise only the 

centroids and sizes of the clusters. This resonates with the principle of K-means 

clustering as a data reduction technique in which each point is approximated by its 

cluster’s centroid.  

In our cluster-based approach, we are therefore modelling the domain of applicability 

as a collection of approximately hyperspherical regions. The form of the model makes 

no prior assumption or constraint on where these hyperspheres lie. It is this non-

parametric aspect that gives our approach the freedom to describe datasets of any 

shape, including non-convex, disconnected, and even multiply connected cases. 

These observations illustrate the relationship between the cluster-based model of the 

domain of applicability and other, existing estimates of the domain. At one extreme, 

the strongly non-parametric methods of k nearest neighbours and Parzen’s window 

[Parzen 1962] can accommodate arbitrary dataset shapes regardless of their convexity 

or connectivity, retaining the fine-grained detail, but they make no attempt whatsoever 

at a compact representation. At the other extreme, Euclidean distance relies on the 

rigid assumption that the dataset’s distribution conforms to a very specific shape (a 

hypersphere). Although admitting an especially compact representation, it does so at 
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the expense of the freedom to describe adequately the irregular shapes taken by real 

QSAR datasets. 

It was noted that our cluster-based domain of applicability model contains, upon 

varying the number of clusters, both of these methods as extreme cases. With the 

entire dataset merged into a single supercluster, our approach reduces to the 

hypersphere model of the Euclidean distance method. However, as we approach the 

case in which each point in the dataset resides in its own distinct cluster, the cluster-

based distance to dataset is nothing more than an average distance to nearby points, 

echoing the k nearest neighbour measure. 

This identifies an interpretation of the number of clusters, as determining the 

granularity or level of detail at which the dataset is considered. The relative spatial 

arrangement of the clusters is retained and constitutes the description of the dataset’s 

shape, while the distribution within each cluster is disregarded. The description of the 

dataset therefore accommodates only those details at the scale of the size of a cluster 

or greater. This reflects the well-known decomposition of data scatter, associated with 

K-means clustering, into ‘explained’ between-cluster scatter and ‘unexplained’ 

within-cluster scatter; (see equation (3.3)). 

In §6, this granularity interpretation of K-means clustering of a dataset was applied to 

the problem of automatic extraction of a suitable subset to be held out for testing 

QSAR models trained on the dataset. It was argued that this test set must be 

representative of the distribution of the original dataset, thereby capturing the essence 

of its shape. Constructing a sampling that was uniform between the clusters but 

random within them ensures that the resulting test is representative of the original 

dataset at the level of detail of the clusters. Experiments on QSAR data in §6.4 

demonstrated that such cluster-based sampling (uniform amongst the clusters) yields a 

more representative and less intrusive test set than random selection across the dataset 

(which corresponds to the coarsest granularity as given by a single supercluster). 

Furthermore, an algorithm was proposed (Algorithm 6.2) for obtaining a K-means 

clustering with a greater number of clusters – and hence a finer granularity – than that 

yielded by the Intelligent K-means algorithm initialised with Anomalous Pattern 

Clustering [Mirkin 2005] used hitherto in this work. The experiments showed that this 
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refinement – of the granularity at which the test set is designed – further enhanced the 

previously observed improvement in the test set’s representative quality. 

Interpreting the number – and the spatial size – of K-means clusters as a granularity 

has emerged as a common thread uniting the QSAR problems and solutions tackled in 

this study. In §5, we applied this interpretation to the problem of modelling an activity 

dependence that lacks a global linear explanation. In exact analogy with the 

description of domain of applicability developed in §4, we took the approach of 

constructing a simple parametric description of the structure-activity dependence 

locally within each cluster, and aggregated these into a description of the dependence 

over the whole dataset – without making any prior assumption on the global form 

taken by this dependence. So, this ensemble of simple linear cluster-specific models 

repeats the compromise between the k nearest neighbour method (for regression in 

this case) and a single naïve global description (here a global linear regression model). 

In this segmented approach to modelling a non-linear dependence of activity on 

chemical descriptors, the K-means clusters define the scale at which fluctuations in 

activity are explained by the model instead of being considered as noise. This 

distinction between ‘explanation’ and ‘noise’ in the activity dependence motivated the 

inclusion of a contribution of the regression-wise K-means clustering criterion, in 

which not only the model but also the location of the cluster itself is chosen to fit the 

activity data in the region most closely. It was experimentally verified, both using 

randomly generated mixed-model data (§5.3.1) and using a real QSAR dataset 

(§Error! Reference source not found.), that including this regression-wise 

contribution in the clustering yields a segmented piecewise linear model that even 

more closely describes the observed activity dependence. 

These experimental results indicate that the regression-wise contribution to the K-

means clustering has the ability to align the clusters with regions of the dataset that 

are most amenable to a (local) linear model. This suggests yet another interpretation 

for the regression-wise K-means clusters: that a regression-wise cluster occupies a 

region in chemical descriptor space in which a distinct (linear) mode of dependence of 

activity on chemical structure is in effect. This may even further suggest that the 

cluster corresponds to a distinct underlying chemical or biological mechanism of 

activity. This viewpoint is a return to the more traditional ‘classification’ perspective 
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on clustering in which each cluster has its own individual significance. Furthermore, it 

is an instance of the situation discussed at the start of this chapter in which a cluster 

(here identified as a mode of linear activity dependence), despite arising through an 

entirely empirical process of K-means optimisation, nevertheless gives us cause to 

suspect that it may have a deeper physical significance (here as a mechanism of 

activity) worthy of further investigation. 

7.2. Future Work 
This work has proposed several new approaches to tackling the QSAR problems of: 

the estimation of a model’s domain of applicability, the description of a structure-

activity relationship that does not admit a linear model, and the extraction of a 

representative test set such that an unbiased model may be trained on the chemical 

compounds that remain. In addition to the experimental investigation performed in 

this study, all these new methods have been implemented in the commercially 

available IDBS PredictionBase software [IDBS 2007], from where they are exposed 

to wider experimental validation within the QSAR community.  

The method of boosting the number of K-means clusters (Algorithm 6.2) was 

developed and used within the discourse on the cluster-based extraction of a test set, 

as a tool for refining the ‘level of detail’ retained by the cluster description of the 

dataset. Having observed in the concluding discussion that this cluster-determined 

level of detail (granularity) is a common theme shared by all the cluster-based 

approaches to the QSAR problems studied in this work, it would make sense to 

investigate the effect that boosting the number of clusters in this fashion would have 

elsewhere. In particular, future work may incorporate experimentation to investigate 

whether using a greater number of finer clusters results in a measure of distance to 

domain of applicability (of a QSAR model) that is better able to discern chemical 

compounds for which the model is at risk of making unreliable predictions through 

extrapolation. Another important consideration would be the extent to which 

instability emerges in this process of refining the granularity of the estimated domain 

of applicability. 

There are a number of possible extensions to the study of segmented local modelling 

in §5. For example, the measurement of quality of a cluster-based composite model 

was based purely on its approximation of the training data. Since overfitting was 
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identified as a particular risk to which this method is susceptible, there would be some 

merit in a future study of the predictive power of these cluster-based composite 

models, assessed either using internal cross-validation or using a test set extracted at 

the outset. 

Although the investigation of segmented local modelling was restricted to least-

squares regression on each cluster (in line with the formulation of regression-wise K-

means), in principle any modelling technique may be used for the elementary cluster 

models. In particular, the dimensionality reduction technique of partial least squares, 

in which the space of chemical descriptors is reduced to a much smaller number of 

latent variables that express strong (but mutually independent) correlation with 

activity, is popular in QSAR. This, or a similar technique for reduction in 

dimensionality such as principal components analysis, may help to overcome the 

tendency of the segmented local modelling to become overfitted rapidly when the 

number of training compounds is only a few times the number of chemical 

descriptors. Further investigation would be required to ascertain this. 

In §5.2.2, it was proposed that the hybrid K-means criterion (incorporating a specified 

contribution of the regression-wise criterion) be supplemented by an application of 

pure distance-wise K-means until convergence. This involves an abrupt transition 

from hybrid to distance-wise K-means, in which the regression-wise element is simply 

switched off. It may be worth investigating whether significantly different results 

would be obtained by a steady ‘cooling’ of the regression-wise contribution, 

continuously reducing its proportion towards zero in the hybrid criterion as the 

alternating optimisation approaches its final, optimal (with respect to the distance-

wise K-means criterion) clustering. 

Several of the methods developed in this work can be extended to apply to other 

forms of clustering than K-means. For example, the distance to domain of 

applicability given by equation (4.4) can be reformulated as: 

  D(2)
c(x)  =  

A
Σk (percentile95{dk(xn) : π(n) = k} / dk(x)) 

(7.1) 

where dk is the distance-to-cluster measure dk(x)  =  ||x − ck||². (Recall that π(n) is the 

cluster to which data point x  belongs, and A is a normalisation factor.) In order to n
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accommodate a different form of clustering, we need only construct an appropriate 

distance-to-cluster measure specific to that clustering and substitute it for dk. In 

particular, this would allow the distance-to-domain measure to be adapted to 

hierarchical clustering methods, for example Ward divisive clustering [Mirkin 2005], 

which are more amenable to tuning the number of clusters (and hence, in our 

applications, the granularity) than K-means. In addition, clustering based on a 

dissimilarity measure, for example the agglomerative methods by single, average, or 

complete linkage [Murtagh 1983], may be used in the case QSAR studies that 

consider the chemical structure directly instead of employing chemical descriptors. 
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Appendix A.  Chemical Descriptors 
This appendix tabulates the chemical descriptors used in the experimental aqueous 

solubility data for segmented linear modelling in §Error! Reference source not 

found. and automatic test set extraction in §6.4. The phenol toxicity dataset used to 

validate the distance-to-domain measure in §4.3.2 supplied its own descriptors 

tailored to its original study [Aptula et al 2005]. 

Table A.1 lists 11 chemical descriptors, calculated by the IDBS PredictionBase 

software [IDBS 2007], that are invariant under tautomerism [Vollhardt 1987]. They 

were selected according to the significance of their correlation with aqueous 

solubility, using (global) stepwise multivariate linear least-squares regression. They 

are listed below in decreasing order of significance. Each iteration of the segmented 

linear modelling experiment in §Error! Reference source not found. worked with a 

feature space of different dimension M (up to 11), based on the first M rows of the 

table. 

Table A.2 and Table A.3 together list those 26 descriptors, calculated by the IDBS 

PredictionBase software [IDBS 2007], most significant to aqueous solubility 

according to stepwise multivariate linear least-squares regression, as used in the 

experimentation in §6.4. For those iterations of the experiment that worked with a 12-

dimensional feature space, only the 12 descriptors from Table A.2 (the most 

significant ones) were used. 
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Rank Descriptor Name 
11 Kier and Hall connectivity index on 1-bond paths 

[Todeschini & Consonni 2002] 
χpath

J 2 Balaban average distance connectivity index 
[Estrada & Uriarte 2001] 

33 Kier and Hall connectivity index on 3-bond clusters 
[Todeschini & Consonni 2002] 

χcluster

Q′ 4 binormalised quadratic index 
[Todeschini & Consonni 2002, Balaban 1979] 

Q 5 normalised quadratic index 
[Todeschini & Consonni 2002, Balaban 1979] 

J6 Balaban connectivity index 
[Todeschini & Consonni 2002] 

t

M7 first Zagreb group index 
[Estrada & Uriarte 2001] 

1

M8 second Zagreb group index 
[Estrada & Uriarte 2001] 

2

N9 number of hydrogen-bond acceptors 
[Todeschini & Consonni 2002] 

HBa

N10 number of aromatic bonds 
[Vollhardt 1987] 

Ab

MW 11 molecular weight 
 

Table A.1: Chemical Descriptors Used in Segmented Linear Modelling of 

Aqueous Solubility Data 
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Rank Descriptor Name 

J1 mean Galvez topological charge index of order 2 
[de Julián-Ortiz et al 1998] 

2

N2 number of non-hydrogen atoms 
 

nonH

SIC3 structural information content of neighbourhoods of range 1 
[Devillers & Balaban 1999] 

1

W4 normalised Wiener index 
[Estrada & Uriarte 2001] 

n

05 Kier and Hall connectivity index on atoms 
[Todeschini & Consonni 2002] 

χatom

36 εW weighted edge connectivity index on 3-bond clusters 
[Devillers & Balaban 1999] 

cluster

eB7 highest eigenvalue of Burden matrix weighted by atomic 
Sanderson electronegativity [Burden 1989] 

BH1

Q′ 8 binormalised quadratic index 
[Todeschini & Consonni 2002, Balaban 1979] 

19 εw weighted edge connectivity index on bonds 
[Devillers & Balaban 1999] 

bond

Q10 Hall Polarity Index 
[Kier & Hall 1999] 

v

011 χv Kier and Hall valence-weighted connectivity index on atoms 
[Todeschini & Consonni 2002] 

atom

G12 Galvez topological charge index of order 2 
[de Julián-Ortiz et al 1998] 

2

Table A.2: Chemical Descriptors Used in Automatic Extraction of a Test Set in 

12 Dimensions 
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Rank Descriptor Name 

W13 root mean square Wiener index 
[Todeschini & Consonni 2002, Estrada & Uriarte 2001] 

rms

eB14 lowest eigenvalue of Burden matrix weighted by atomic 
Sanderson electronegativity [Burden 1989] 

BL1

115 edge connectivity index on bonds 
[Devillers & Balaban 1999] 

εbond

eB16 third-lowest eigenvalue of Burden matrix weighted by atomic 
Sanderson electronegativity [Burden 1989] 

BL3

N17 number of hydrogen-bond acceptors 
[Todeschini & Consonni 2002] 

HBa

N18 number of carbon atoms 
 

C

N19 number of bromine atoms 
 

Br

20 sum of bond electrotopological state 
[Kier & Hall 1999] 

ΣBI 

N21 number of oxygen atoms 
 

O

422 χv Kier and Hall valence-weighted connectivity index on 4-bond 
branched paths [Todeschini & Consonni 2002] 

pc

N23 number of weak hydrogen-bond acceptors 
[Todeschini & Consonni 2002] 

wHBa

E24 minimum electrotopological state 
[Kier & Hall 1999] 

min

vB25 second highest eigenvalue of Burden matrix weighted by van 
der Waals volume [Burden 1989] 

BH2

26 ATSe autocorrelation of lag 1 weighted by Sanderson 
electronegativity [Todeschini & Consonni 2002] 

1

Table A.3: Additional Chemical Descriptors Used in Automatic Extraction of a 

Test Set in 26 Dimensions 
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