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Abstract

A fundamental aspect of software quality and reliability is ensuring that an implementation

meets the requirements of a speci�cation� In this thesis� the concept of software �delity is

examined� We de�ne �delity as the closeness of an implementation to its speci�cation at

any point during the re�nement of that implementation� A set of re�nement metrics were

introduced to capture features of the implementation as it was re�ned and an empirical study

using four CSP systems was carried out� The four systems covered two application domains�

The �rst two systems were bit�protocol type problems �a multiplexed�bu�er problem and the

alternating bit protocol problem�� The second two systems were classical computer science

problems �the Towers of Hanoi and the Dining Philosophers problems�� A key result of the

analysis showed that the implementations of the two pairs of systems exhibited similar char�

acteristics as they were re�ned� Signi�cant di�erences� however� were found when comparing

the two application domains� suggesting that di�erent types of problem give rise to di�erent

features �given by the set of metrics�� The initial set of metrics proposed were only found

to be appropriate for bit�protocol problems� the need for �exibility in metrics development

to cater for di�erent application domains is another important issue raised by the research�

The notation of Communicating Sequential Processes �CSP� and its underlying semantics

was used as the vehicle for expressing both speci�cation and implementation�s��
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Chapter �

Introduction

One of the major problems in the �eld of software engineering today is to ensure that a piece

of software is engineered to meet its speci�ed requirements� In this thesis� we assume those

requirements to be the true requirements of a piece of software �� although in Chapter ��

we will brie�y look at the e�ect that changing the speci�cation has on its relationship with

the implementation� The dominant theme of this thesis is the measurement of di�erences

between a piece of software and its speci�cation� Such measurements establish the degree of

faithfulness or �delity of a piece of software�

E�cient and a�ordable improvements in software �delity have been achieved through the

use of�

� speci�cation languages �see �Jon��� and �Spi���� which allow the capture of require�

ments using a precise notation�

� various automated model checkers ��BS��� and �For�
�� and tools which generate code

automatically � so called program generators�

�The area of determining whether user requirements have been satisfactorily met is an area currently the
subject of much research� and beyond the scope of this current work� the interested reader should consult
�Som����

	



� languages with speci�c features geared towards the generation of reliable code� see� for

example �Dep�	�� �US�
� and �Bar�����

� more recently developed languages such as C�� �Str���� which� through encapsulation

and inheritance� allow data types to be constructed which mirror the natural structure

of the application domain to be realised�

All these languages and tools have reduced the gap between speci�cation and implemen�

tation� thus making the task of development and maintenance of software quicker and less

error�prone� However� we are still faced with the problem that� at the most detailed level�

there is unlikely to be an accurate mapping between speci�cation and its implementation�

Henceforth� we will use the term speci�cation to describe a set of user requirements�

and implementation to describe the code generated either automatically� in the case of a

program generator� or manually� in the case of a speci�cation language such as Z� We view

the problem which this thesis addresses as one of characterising the di�erences� via a set of

metrics� between a speci�cation and its implementation� In the next section� the problem

which this thesis addresses is explained�

��� The problem explained

In the software engineering world� the problem of ensuring a piece of software satis�es the

user requirements of its initial speci�cation is still a very active research area� Use of speci��

cation languages to produce reliable real�world systems has been successfully demonstrated

�WB���� However� generally speaking� we are still faced with the problem of characterising

and quantifying the di�erences between a speci�cation and its implementation�

�In Chapter �� we make a distinction between the �delity of software and the reliability of software� for
now� we take the two to mean the same�



Even with the assistance of program proof techniques such as those developed by Hoare

�Hoa��� and Owicki and Gries �OG
�� and exempli�ed by the automated program prover

of King �Kin

�� we can never hope to prove very large systems correct� simply because of

their complexity� and the large number of states which are generated as that complexity

increases�� Even small systems can generate a large number of states� and this presents

any comparison of a speci�cation and its implementation with the problem of balancing the

cost of generating and checking those states against the bene�ts accrued by performing the

comparison�

����� A notion of divergence

If we accept that there are going to be di�erences between a speci�cation and its implementa�

tion in terms of the emergent behaviour of the latter� then we can say that an implementation

diverges from that speci�cation when it exhibits unspeci�ed behaviour� divergence of an im�

plementation from its speci�cation necessarily reduces the �delity of that implementation�

This is not to say� however� that divergent behaviour is necessarily invalid behaviour as will

be shown subsequently in the thesis�

The notion of divergence of an implementation from its speci�cation in the sense just

described is not a new one� In a concurrent setting� the term divergent �BHR��� is frequently

used to describe a state in which a process is exhibiting what we usually call an in�nite loop�

in this thesis� divergence therefore takes on a di�erent slant�

If we accept that failures are likely to occur in all but software of a trivial nature� then

it would seem sensible to approach the problem of characterising the di�erences between a

speci�cation and its implementation by �rst expressing both in some common medium� To

�For now� we take the term state to mean the result of executing a program statement�



illustrate what we mean� we turn to a simple example expressed in the language of CSP

�Communicating Sequential Processes� �Hoa����

Example

The example considers the speci�cation of a CSP single�place bu�er which is implemented

using two processes communicating internally� The set of values to be communicated in

this system are apples� oranges and pears� The channels down which those values are

to be passed are left� right and mid� The ack channel is used to acknowledge receipt

of a value� The speci�cation� called COPY� is a single place bu�er which receives a value

on the left channel and outputs that value on the right channel� The implementation�

called SYSTEM� consists of two processes SEND and REC which communicate over mid and

ack� The internal �or hidden� behaviour �given by channels mid and ack� is denoted by the

backward slash symbol� Checking the implementation SYSTEM against the speci�cation COPY

will con�rm that the implementation does indeed re�ne the speci�cation� since externally

observed� speci�cation and implementation are identical �Bro����

datatype FRUIT � apples � oranges � pears

channel left�right�mid � FRUIT

channel ack

COPY � left � x �� right � x �� COPY

SEND � left � x �� mid � x �� ack �� SEND

REC � mid � x �� right � x �� ack �� REC

SYSTEM � �SEND 	� 
� mid� ack �� �� REC
 � 
� mid� ack ��

assert COPY 	FD� SYSTEM

A diagrammatic representation of SYSTEM can be seen in Figure 	�	� The added �hidden�

behaviour incorporated into SYSTEM is that inside the boundary of the outer box�



right ! xleft ? x mid ! x mid ? x

SEND REC

ack ack

Figure 	�	� Diagram of SYSTEM

A number of points arise from looking at this CSP example� Firstly� we could develop

the implementation �i�e�� SYSTEM� by constructing either SEND or REC �rst� At any point�

we could run a re�nement check of SYSTEM against COPY� i�e�� assert COPY �FD� SYSTEM�

to establish whether re�nement �Hoa��� held� if not� the reason for non�re�nement could

be obtained from the model�checker� Alternatively� we could build the sender and receiver

concurrently� adding the hidden behaviour �interface behaviour� at the end� Whichever way

was chosen� the proper re�nement has appropriate hidden and visible behaviour� so that�

externally� both processes appear identical� We could also add further values to the datatype

FRUIT� for example� plums� so that we could view the e�ect on the re�nement process this

would have� An important point to note here is that the implementation SYSTEM can be

mapped directly to a language supporting CSP constructs� an example of such a language

would be Occam �PM�
��

In order to capture information about the behaviour of the implementation �and the level

of �delity with the speci�cation� we need a set of metrics by which the emergent behaviour

of the implementation can be monitored and assessed� We also need a way of evaluating the

impact of candidate changes to SYSTEM� all of which may be feasible� but only one of which

may generate a small number of implementation states�



��� Motivation

As we have seen� a speci�cation or implementation expressed in CSP can be realised in

terms of the low�level communications along channels between a number of processes� In

Chapter �� we de�ne a state and an action� the former arising as a result of the latter� �In

the CSP example� the actions were communications along channels�� We use the concepts of

state and action as the vehicles of our analysis� We then have a foundation for our analysis

of divergence and propose a set of metrics for measuring features of both speci�cation and

implementation�

Identifying the di�erences between speci�cation and implementation will give us a mea�

sure of the �delity of di�erently constructed implementations of the speci�cation� We note

that such an approach was �rst proposed by Counsell �Cou�
� and extended in �CM���� The

question that then naturally arises is to why we should be interested in identifying di�erences

between a speci�cation and its implementation during re�nement �Bro���� The main reasons

are that an implementation expressed in CSP� as in the example of the previous section� �i�e��

conforming to re�nement principles� is likely to�

	� contain fewer faults �since the starting point is the speci�cation itself��


� be a more e�cient implementation if it uses re�nement in an incremental fashion during

the process of development� Each re�nement is checked against the speci�cation�

�� is likely to be more maintainable and� since it appeals to software engineering principles

�Som���� will require less maintenance�



��� Objectives and contribution

The main objectives of the thesis are�

	� To obtain a greater understanding of the behaviour of processes expressed in CSP as

they are developed through re�nement and non�re�nement�


� To assess the capability of a set of proposed metrics for measuring the di�erences be�

tween a speci�cation and its implementation during re�nement� with speci�c emphasis

on the types of state encountered in each�

We now brie�y consider to what extent these objectives have been achieved�

Chapter � considers two bit�protocol problems� namely� a multiplexed bu�er and an

alternating bit protocol� We de�ne this type of problem� expressed in CSP� as a Type I CSP

system� A signi�cant amount of commonality was found between these two Type I CSP

systems� for example� in the propensity for each such system to generate a large number

of states� Equally� subtle di�erences were found between them� For example� the extent to

which each such system carried out error condition checking in the body of the CSP code

itself�

Chapter 
 looks at two further problems� namely� the Towers of Hanoi problem and the

Dining Philosophers problem� we de�ne this type of problem� expressed in CSP� as a Type

II CSP system� Signi�cant similarities were also found between these two Type II CSP

systems� In particular� the level of recursion generated by each system imposed restrictions

on the degree to which the state space could be increased�

With respect to the �rst objective� the main lesson learnt from the analysis on the four

CSP systems was the complete contrast between Type I CSP systems and Type II CSP



systems� The contrast ranged from the style in which each pair of systems was written� the

static CSP features used by each such pair and the behaviour of each pair when analysed�

Addressing the second of our objectives� for the bit�protocol oriented problems� the met�

rics were useful in showing features such as the growth in the state space� the number of

sub�processes generated as this occurred and the in�uence of di�erent types of action on the

behaviour of the sub�processes� Interestingly� the set of proposed metrics were not found to

be suitable for Type II CSP systems� and thus alternative metrics were suggested in this

case�

In terms of greater understanding of the features and behaviour of di�erent types of CSP

system� the �rst objective has been achieved� Although the set of proposed metrics did not

show themselves to be applicable across both types of CSP system� this lesson in itself and

the opportunity to modify the set of proposed metrics was a valuable experience� Empirical

evidence in this thesis suggests that no uni�ed set of metrics exists for di�erent application

domains when expressed in CSP� In this sense� the second objective has been realised as well�

��� Overview of the thesis

In Chapter 
 we present a survey of related work� indicating the major areas which have

in�uenced our work�

In Chapter � we introduce formal de�nitions of state� action� �nite state machine and

labelled transition system� These concepts are fundamental in developing the work presented

in subsequent chapters�

In Chapter � we begin our analysis of divergence with a de�nition of two types of state�

We call these two types of state non�divergent and partially divergent� We show that the

states of a process� on any execution� can be expressed in terms of just these two types



of state� and identify the state transitions �which are possible between these two types

of state�� We also de�ne process alphabets� information hiding and relabelling� We then

consider the notions of a speci�ed action �having a similarity with a non�divergent state�

and an unspeci�ed action �having a similarity with a partially divergent state� and formally

de�ne these two types of action�

In Chapter � we describe the set of metrics which we utilise in estimating the level of

divergence� and hence the �delity� of an implementation given the speci�cation�

In Chapter � we analyse the two Type I CSP systems in the context of re�nement and

non�re�nement� These are the Multiplexed Bu�er problem and the Alternating Bit Protocol

problem� The associated CSP systems for each of these two problems are analysed and

compared by using the set of metrics introduced in Chapter �� This includes an analysis of

how each system evolves during re�nement in terms of its sub�processes�

In Chapter 
 we analyse the two Type II CSP systems in the context of re�nement

and non�re�nement� These are the Towers of Hanoi problem and the Dining Philosophers

problem� We also look brie�y at some alternative metrics in the light of the di�culties

experienced when trying to apply the set of metrics introduced in Chapter �� In addition�

we also consider the e�ect� in terms of the metrics values� of introducing mutation into the

implementation�

Finally� in Chapter �� we look brie�y at the situation where the speci�cation is modi�ed

in order to re�ect changes in user requirements and the e�ect this has on the values of the

metrics� We then draw some conclusions and discuss possible future work�

Throughout the thesis the terms cardinality and size of a set will be used interchangeably�

Similarly� the set of states or the size of the state space �see Chapters � and �� will also be

used interchangeably�



Chapter �

A survey of related work

��� Introduction

Before we present our empirical analysis of the four CSP systems and hence attempt to

learn more about the emerging behaviour of their implementation through a set of proposed

metrics� it is appropriate to describe in some detail some of the work previously carried out

in related and complementary areas� The reasons for this are� �rstly� it justi�es our approach

to software �delity� and� secondly� it demonstrates how we arrived at this approach� taking

inspiration from certain areas whilst rejecting others� We examine how our research achieves

its objectives in the light of that related work�

In Section 
�
� we discuss the area of formal methods which incorporates the traditional

view taken of divergence� speci�cation languages� process equivalence and process re�nement�

the CCS and CSP models of concurrency and the use of model�checkers� A model�checker

was used in this thesis to aid the extraction of metrics and to permit re�nement checks

upon which the empirical study rests� In Section 
��� we describe related work in the use

and analysis of software metrics� and compare that work with our metrics� Since our work is

	�



empirical� Section 
�� also describes some relevant work in the empirical software engineering

�eld� For each of these areas� we examine related and complementary work� justifying in

each case why our approach is di�erent� Finally� we summarise the contents of the chapter

in Section 
���

��� Formal methods

According to Spivey �Spi���� formal methods comprise two things� formal speci�cation and

veri�ed design� The �rst denotes the precise speci�cation of the behaviour of a piece of

software� the second that of proving that an implementation meets its speci�cation� In

our model� we are primarily concerned with the second� This is because we assume the

speci�cation satis�es the stated requirements of the problem� Chapter � includes some

tentative work in which we try to assess the e�ects on the speci�cation as a result of a

change request� but delving in greater depth at this aspect of software engineering is an area

for signi�cant future research�

Unlike most other speci�cation languages� CSP allows a concrete �low�level� implemen�

tation to be derived from an abstract de�nition of a speci�cation� A major drawback with

many speci�cation languages is that although they permit an abstract view of a speci�ca�

tion� this does not lend itself well to the automatic production of a concrete implementa�

tion� Choice of a speci�cation language to use therefore has a major impact on the ease

with which an implementation can be produced� The research contained herein is under�

pinned by the assumption that speci�cation and implementation are expressed using the

same medium� namely� CSP� This di�erentiates the work contained in this thesis from pre�

vious work �KvEvS��� AM��� BDFM����

One speci�cation language� which induces a straightforward mapping from a speci�cation



to an implementation� is the Z speci�cation language �Spi���� Other speci�cation languages

are VDM �BJ�
�� LOTOS �FSV�
� and LCS �BS���� Of particular interest is Z� in which the

notions of a before and an after state of an event are made explicit� as is the concept of state

identi�er values changing as a result of a state transition �alluded to in the model developed

in this thesis��

There has also been some work done in the automatic conversion of Z to an implementa�

tion language� Speci�cally� Spivey �Spi��� describes the animation of Z speci�cations in both

Miranda �Tur��� and Prolog �Bra���� Similarly� Woodcock and Morgan �WM��� describe how

Z can be translated into CSP� Some work has also been undertaken in code generation from

an object�oriented viewpoint �BFVY����

Over the past ten years� a body of research has also been built up devoted to extracting

metrics from Z speci�cations �Spi���� We adopt a similar approach when extracting metrics

from CSP systems �see Chapters � and 
�� We illustrate some of the characteristics of Z via

a simple example�

Example

Consider a library book lending service� The state of such a system can be modelled at any

moment by the number of books on the shelves plus any books returned� and hence waiting

to be re�shelved� These represent the two variables of our system� The return of a single

book will cause the number of books waiting to be re�shelved to increase by one� However�

the number of shelved books remains unchanged by this event� Similarly� if all books in the

returned stacks are placed back on the shelves then both variables of our system change �i�e��

books on shelves and books returned��

A Z speci�cation comprises a top�level schema and associated sub�schemas� The latter



can be likened to sub�processes of an overall process� The schema de�nes the top�level

functions which the speci�cation uses� and the sub�schemas de�ne the operations which each

of those functions perform�� A Z schema actually ful�ls two roles� �rstly� to describe the

possible states of a process and� secondly� to describe the state transitions �which cause those

states to change�� and the e�ect on any identi�ers used by the speci�cation of that state

change�

There is a close relationship between the way Z speci�es how an implementation should

behave and the concepts of a non�divergent and partially divergent state described in Chapter

� as part of our model� The emphasis in the Z language and encapsulated in our two types

of state �see Chapter 	� is on the nature of the events �or actions as we call them� causing

state transitions� A state transition in our model causes changes in the values held in a

single identi�er� Our model� unlike previous work� captures state information from both the

speci�cation and the implementation� this information is then used as a basis for the analysis

of the di�erences between the two�

In �Whi��� the problem of measuring Z speci�cations is addressed� complementing earlier

work in the area of complexity measures �Pra��� FW���� A short circuit model for evalu�

ating the structure of Z speci�cations is described using a graph�based system to describe

Z expressions� The interesting feature of this technique is that it focuses on the important

aspects of a typical Z speci�cation �i�e�� universal and existential quanti�ers�� The same

is true for the metrics we develop for CSP systems �see Chapter ��� with the emphasis on

states� actions and sub�processes � features which we felt were representative of every CSP

system� In keeping with this theme of extracting metrics from speci�cations� an approach

in which metrics could be collected at an early stage from speci�cations �using automated

�We could say that the schema de�nes what the functions of the speci�cation are� and the sub	schemas
how those functions are realised�



tools� was the subject of work undertaken by the COSMOS �Cost Management with Metrics

for Speci�cations� project �FTW���� The idea was that early identi�cation of problems in

the development process through the automated production of graphs and visual aids could

help to prevent some of the problems normally associated with software development from

occurring� e�g�� cost overruns� time delays� etc� In this thesis� the focus of our research is on

the identi�cation of features of CSP system behaviour as a means of determining how well

the implementation re�nes the speci�cation at every stage throughout the development of

the implementation� Description of a tool to collect metrics directly from Z speci�cations�

description of the metrics themselves� and analysis of the values obtained from some sample

speci�cations� as an enactment of the COSMOS objectives� are given in �BWW�	��

In �SDN���� the relationship between speci�cation and implementation was examined

for pairs of speci�cation and implementation� For each speci�cation� an implementation�

cast in another language� was analysed for correlation with its speci�cation� Results showed

that the lines of code in an implementation could be predicted from certain features of the

speci�cation� Additionally� and interestingly� the programming style of the implementation

was found to be independent of the program features necessary to do the task required� In

other words� rigorous techniques need to be adopted in the implementation as well as in the

speci�cation in order for similar implementations to be produced� This is supported by a

�nding we have discovered via experimentation for both Type I and Type II CSP systems� i�e��

that certain CSP constructs would always have to be used in the implementation for certain

types of application� whatever style of programming in CSP was used� This is because they

are constructs essential for functionality to be expressed� For example� both the bit�protocol

systems analysed in Chapter � used signi�cant amounts of communication operators� this

was not the case for the Towers of Hanoi and Dining Philosophers problems of Chapter




� because these two problems contain features intuitively and inherently more related to

recursion� Our research therefore reinforces the �ndings in �SDN���� and reinforces the need

for rigour in both the speci�cation and implementation�

Of particular interest in the area of formal methods are the tools becoming available for

converting from speci�cation languages to concrete implementation languages� In this thesis�

we use the FDR model�checker to produce the underlying graphs of speci�cation and im�

plementation �each CSP system is represented internally by a graph structure�� Therefrom�

we are able to enumerate the di�erences between the two� Of related interest is �O�N�
��

in which it becomes possible to convert from VDM to SML� Similarly� Arrowsmith and

McMillin �AM��� describe a system for debugging distributed systems� the system converts

from CSP to C� The speci�cation language LOTOS �FSV�
� has proved useful in develop�

ing and designing communication protocols� Work has also been done on conversion of a

LOTOS speci�cation to C code �KvEvS���� More recently� Straunstrup et al� �SAH����

have described a new technique for evaluating large systems �incorporating a thousand or so

concurrent components� in a matter of minutes� they use a tool similar to a model�checker

to generate the states of a �nite state machine�

We note� in passing� that the B speci�cation language �Abr���� based on the Z speci�ca�

tion language� resembles a programming language in its notation and use� hence the mapping

and relationship between B and Z is quite strong� We believe this relationship to be the

closest in the literature to the relationship between speci�cation and implementation found

in the CSP systems analysed in this thesis�

A similar tool to that of FDR is LCS �BS���� an experimental language aimed at exploring

the design and implementation of programming languages based on CCS and CSP� The

language extends Standard ML with primitives for concurrency and communication based



on the CCS formalism� As in our model� the abstract operational semantics are given in

terms of a transition system� However� the major drawback with LCS� when compared with

the FDR model�checker� is that explicit state and event information is not provided by LCS�

Our analysis of divergence requires the state and event information which FDR provides�

A survey was completed in the earlier stages of the research contained in this thesis to

determine which model�checker was most applicable for our model� this led us to choose

FDR�

Finally� BenAyed et al� �BDFM��� describe a number of techniques for deriving a map�

ping from speci�cation to implementation� These include software incrementation �adding

features to a software system in the same spirit as re�nement� and software adaptation

�modifying a program to satisfy a speci�cation��

The chief di�erence between the related work just described and the research in this

thesis is that we use the same language for speci�cation and implementation� thus the tran�

sition from speci�cation to �nal implementation is seamless� The drawback of the approach

�if it can be considered a drawback� is the loss in �exibility of being able to choose the

implementation language� herein� we are restricted to using CSP�

����� Process equivalence and re�nement

The notion of the equivalence of two processes� not surprisingly� has received and is still

receiving a lot of attention� Hennessy� de Nicola and Kennaway �Hen��� investigated various

notions of testing a process� Two processes are said to be equivalent if they pass exactly the

same tests� Although testing is not strictly related to the work in this thesis� some of the

re�nement checks undertaken in Chapters � and 
 are tests for certain conditions holding

true� For example� in the case of the Towers of Hanoi problem� the terminating condition is



that the discs be properly arranged on pegs according to the rules of the puzzle� Hennessy

�Hen��� describes two processes as having di�erent behaviour if there is an experiment which

one passes and the other does not� Milner �Mil��� describes two other types of equivalence�

Two processes are strongly equivalent if both their internal and external actions are the same�

while processes are observationally equivalent if only their external behaviour is the same�

The notion of hiding or abstraction described in Chapter � permits internal behaviour to be

hidden� In this case� we can have two processes which are observationally equivalent� yet

not strongly equivalent� A good example of how this might occur can be found in Chapter

	� with the example of the CSP bu�er implementation� which externally is equivalent to the

speci�cation� but has internally hidden behaviour making it not strongly equivalent� This

leads us to the notion of re�nement �WM��� AH���� a process P re�nes another process Q

if all possible behaviours of Q are possible behaviours of P � This implies that P could have

behaviours �albeit hidden� which are not possible behaviours of Q� In this context� we can

generalise re�nement to speci�cation and implementation�

The relevance and applicability of equivalence and re�nement to our model is that we can

view each trace of an implementation as equivalent to a trace in the speci�cation� even though

it may have internal �hidden� behaviour not included in its visible traces� In most cases�

an implementation may re�ne the speci�cation with additional behaviour� However� this

additional behaviour of the re�nement may be behaviour which is required in the implemen�

tation� Consequently� in this thesis� such behaviour is not considered as invalid behaviour�

but part of the process of re�nement� In the model used herein� we accept that an imple�

mentation will be observationally equivalent to its speci�cation� but will contain additional

behaviour also� Had we not accepted the possibility of hidden behaviour existing in the

implementation� then a large number of the metrics we develop in Chapter � would not



have been collectable �central to the analysis of the four CSP systems in Chapters � and 


is quanti�cation of the di�erence between speci�cation and implementation a�orded by the

metrics values we compute��

����� Divergence

The notion and measurement of the �delity of software is inextricably tied to the concept

of divergence �AH�
�� According to Hoare �Hoa���� divergence is the general term for the

phenomenon known in programming languages as an in�nite loop� Milner �Mil��� de�nes

a divergent agent as one having a cycle containing only the � �internal� action� No other

types of action are possible from then onwards� and since � is internal� the behaviour of the

agent is� observationally� that of an in�nite loop� According to Roscoe �Ros���� a process is

in a state of non�divergence if it is not divergent� In other words� there is an absence of a �

cycle� In our model� if a process is not divergent then it may be non�divergent or partially

divergent� Brookes et al� �BHR��� take a similar view to Roscoe �Ros���� A process is

divergent if it is engaging in in�nite internal chatter� or entails an in�nite path all of whose

labels are � � The distinct di�erence between any other de�nition of divergence and our

de�nition of divergence is the introduction of the intermediate state of partial divergence�

We therefore extend the notion of divergence as it is usually thought of� The introduction of

the state of partial divergence was considered essential for an analysis of CSP systems when

they exhibit a state between that of non�divergence and divergence�

We cannot mention the area of divergence without some treatment of CSP and CCS�

There is an intuitive relationship between our model and those of CSP �Hoa��� and CCS �Mil����

namely� that a non�divergent or partially divergent state in our model corresponds to a non�

divergent state in �Hoa��� and �Ros���� Most notable among the areas of CSP from which



we have drawn� and to which we added our own interpretation� is the CSP
p
�tick� event�

In a CSP sense� the
p
event represents termination of the process which engages in it� The

end of a trace is therefore signi�ed by a single occurrence of the
p
event� Since in CSP all

processes are sequential� it becomes necessary to have an operator which signals the end of

one process� and possibly the start of another� If a process P expressed in CSP becomes

divergent �exhibits an in�nite loop�� then
p �� P �i�e�� the tick event is not an element of

the set of events of the process�� This is particularly important when composing processes

in the form P �Q� Here� process Q begins when process P engages in the
p
event� If

p ��

P � then Q will never start executing�

In Chapter �� we re�ne
p
by introducing

p
exp� representing termination with expected

results� in which an end�state of the implementation is equivalent to that of an end�state

in the speci�cation�
p

unexp means termination with unexpected results� in which an end�

state of the implementation is not equivalent to any end�state of the speci�cation� From a

theoretical point of view� the re�nement of the
p
event in terms of

p
exp and

p
unexp is a direct

re�ection of the fact that
p
represents termination of a process� but makes no judgement

as to the type or nature of the end�state� In our model� the presence of partial divergence

is re�ected in the values held by identi�ers at a particular state� We also borrow the notion

of a trace from CSP� but enhance its de�nition to include actions and states� The roles of

hiding and relabelling� common to both CCS and CSP� are incorporated into our model in

order to provide a mapping from speci�cation to implementation�

����� Program correctness

Program correctness� or program proof as it is otherwise known� has received much cover�

age� and has stimulated widespread research over many years �LPP
�� Gri�	� Bac���� The



problem of program correctness can be seen as comprising two parts� The �rst is conditional

correctness �or partial correctness�� and requires that a program be correct under the as�

sumption that the program does terminate� The second� total correctness� requires that a

program be correct and that the program does terminate� We can re�state these two concepts

as follows�

	� if program X terminates� then S will be the set of results produced�


� program X does terminate� and S will be the set of results produced�

Central to the idea of proving a program correct is the notation for propositions of the form�

�p�� st �p��

where p� and p� are both propositions referring to identi�ers owned by a proces P� say� The

proposition can be read� if p� is true before statement st is executed� and st does terminate�

then p� is true after st has executed� For example� the following axiom states that if� before

the statement x �� x � � has been executed� x holds the value zero� then after executing

that statement x will hold the value one�

�x � 	� x �� x � � �x � ��

We term p� the pre�condition on the action� and p� the post�condition on the action�

The above concepts establish the context of our work on divergence� We de�ne our

concepts of a non�divergent and a partially divergent state �Chapter �� in terms of the

values of identi�ers held at each state� The notion of whether the identi�ers at a particular

state hold speci�ed or unspeci�ed values forms the basis of our decision as to whether a state

is considered non�divergent or partially divergent� Since we view each trace that a process

is capable of executing as terminating� our model is a model of total correctness� for now�

we view a trace as simply an execution path�



The concept of program proof using the pre� and post�condition concepts was also adopted

by Owicki and Gries �OG
�� to allow concurrent programs to be proved correct but in a

setting of a partial correctness model�

We can also de�ne conditions which a program must ful�l in terms of its pre� and post�

conditions� and then show how the associated code satis�es those conditions� One of the

earliest program veri�ers following this approach was that developed by King �Kin

�� de�

scribed at the time as a new approach to program testing� By carrying out re�nement checks

between speci�cation and implementation� this guarantees� in the case of a true re�nement�

that every behaviour of the speci�cation is possible by the implementation�

Quality factors

Since software �delity is the theme of this thesis� our prime objective is to try and understand

the relationship between a speci�cation and its implementation� in terms of the emerging

behaviour of the latter through re�nement and to develop a set of metrics applicable to all

CSP systems� Fidelity of an implementation is a factor in the quality of a system� We thus

need to relate this quality factor to other indicators of quality�

Laprie �Lap��� de�nes �system� dependability as the reliance which can justi�ably be

placed on the service provided by a computer system� this is a de�nition echoed in �LA����

Dependability can be seen in terms of viewpoints depending on the part of the system under

consideration� For example� readiness for usage in terms of its availability� continuity of

service in terms of its reliability� the non�occurrence of unauthorised disclosure of information

in terms of its integrity� etc� System attributes such as availability and reliability� according

to this de�nition� become facets of dependability� Of interest is a paper by Waeselynck

and Boulanger �WB���� in which the B pseudo�speci�cation language �Abr��� is used as



a framework for stringent testing of a live system� Therein� elements of testing� formal

development� reliability and dependability are encapsulated�

����� Model�checkers

Related to the area of program testing and program proving are a number of model�checkers�

most of which take a representation of a speci�cation and its implementation and allow a

comparison of the two to be made� Key to the comparison of speci�cation and imple�

mentation in Chapters � and 
 is the use of the FDR model�checker� A variety of other

model�checkers are in general use undertaking similar tasks to those of FDR�

The SPIN model�checker �Hol��� allows speci�c properties of a process to be proven as

holding true under all executions of that process� Within SPIN� a model is speci�ed using

the language PROMELA� incorporating conventional program constructs� and allowing the

speci�cation of channel variables� A simulation of program execution is then performed�

and C code is generated to perform a validation of the program state space� It therefore

encompasses elements of exhaustive testing and combines this with a feature for proving

properties of a process correct� In providing these features� the designer of SPIN accepted

that proving every property of a program under all conditions was too large a task to be

undertaken� Dillon �DY��� incorporates the use of test oracles �in a similar fashion to SPIN�

in order to prove temporal properties of processes� A GIL �Graphical Interface Logic� in

which properties of processes can be proved and shown graphically is used to perform tests

establishing properties which hold during speci�c time intervals� This approach combines

elements of testing theory and program proving� and again accepts that to show all properties

of a process as holding true is too sizeable a task�

Of interest in tying the two �elds of probability and model�checking is the work done



in producing PRAVDA �Low�	�� a tool developed for verifying probabilistic communicating

processes� A speci�cation and its implementation are taken as input� and a probability as

to whether certain events are likely to occur can be given� For example� given a process

which is capable of executing an event �� but is dependent on event � occurring �rst� then

a probability that event � will occur within a speci�c time frame can be estimated�

In the following section� related and complementary work in the �eld of software metrics

is described�

��� Software metrics

A software metric� or simply metric� can be de�ned as any quanti�able measure of the

behaviour and characteristics of a software system� As a measure of software attributes�

software metrics play an important role in the �eld of software engineering� Better under�

standing of the development process� sound software design principles and the ability to

better estimate costs and e�ort of future projects are just a few of the potential bene�ts of

collecting and using metrics �Gil

� FP��� She���� Software metrics can help us to identify

and understand various features of software products and processes� For example� �nding

a relationship between the number of faults found in a program module and the coupling

of the module �in terms of associations with other modules� can help us understand what

constitutes a generally recognised optimum coupling level� This optimum level can then be

used to assess whether� in future projects� the right amount of coupling has been used� In

Chapter �� we propose a set of metrics for capturing attributes of CSP systems� Thus� we are

able to� �rstly� establish features common to certain types of problem domain� and� secondly�

establish di�erences between types of problem domain�

As we noted in Chapter 	� some of the metrics we proposed proved useful in revealing



features of Type I and Type II CSP systems� Others were found to be inappropriate for the

task� and in that case we trimmed and added to the original set of metrics� In order for a

software metric to have any real value therefore� it must be appropriate in the sense that it is

useful and meaningful for the problem it is applied to� Hence� the theoretical considerations

for the validity of metrics are as important as the empirical evaluation of metrics� This

evaluation may be conducted through repeated experimentation �or� as in the case of this

thesis� through repeated running of re�nement checks with an increasing cardinality of the

state space�� The theoretical approach to the validation of metrics requires us to clarify what

attributes of software we are measuring� and how we go about measuring those attributes

�Fen��� KPF��� BBM���� a metric must measure what it claims to measure� Kitchenham et

al� �KPF��� describe a list of features for a metric which must hold for that metric to be

theoretically valid� In Chapter � we address some of the theoretical issues involved in the

development of the proposed set of metrics� and so we postpone a full treatment of these

issues until that point�

Fidelity and quality

Throughout this thesis� it is important that we do not lose sight of the high�level objectives

stated in Chapter 	� We must also retain a hold on why �delity is important and understand

what is di�erent about �delity when compared to other quality features� After all� improving

the quality of software is the underlying aim of all software engineering practice �Som����

Herein we view the quality factor of �delity in terms of the extent to which an implemen�

tation re�nes a speci�cation� This is very di�erent to re�nement itself� The notion of �delity

is the measurement of the process of re�nement rather than the act of merely doing the

re�nement itself� Fidelity would thus be the top�level feature we would be trying to capture



through measurement of the re�nement process� At lower levels� the notion of �delity is

expressed in terms of the states� actions and other relevant features of a process at di�erent

stages of re�nement� in other words� the proposed metrics� Di�erences between the states�

actions and these metrics of the speci�cation and implementation are then quanti�ably com�

parable and hence can be used to get a clearer picture of the nature of the high�level quality

factor of �delity� Development of a quality model is an essential step in clarifying what we

are attempting to measure from a high�level abstract perspective right through to low�level

countable measures�

Many models have been suggested as a means of identifying quality� Most notable

amongst these has been the GQM �Goal Question Metric� method �BR���� The metrics

proposed in this thesis were developed along similar lines to those of the GQM approach�

There are also quality guidelines based on the ISO �	
� standard �ISO�	� and the QMS

sub�system �KWD���� which identify the individual quality factors making up the overall

view of quality� For example� in the ISO �	
� standard� reliability has the criteria of� avail�

ability� correctness and fault�tolerance� these criteria are then broken down further and the

metrics are computed at the lowest level of the resulting tree�like structure� Availability� for

example� is broken down further into directly measurable attributes such as� percentage of

time machine is available over a speci�c time period� response times and maximum loads�

etc�

Fenton and P�eeger �FP��� describe a number of techniques and practices for producing

software metrics� This includes a description of cost models such as COCOMO �Boe�	�� and

statistical tests and experiments which can be applied to software�

In our analysis� which incorporates two types of state� we have chosen metrics which best

re�ect the level of re�nement between a speci�cation and its implementation� the proposed



metrics emphasise states� actions� hidden behaviour and sub�processes in the speci�cation

and implementation� We do not claim our metrics to be any more valid than any other

proposed to date for measuring software� For example� we could assess the quality of a

system in terms of a metric capturing the features of implementation time and e�ort� its

work capacity� and overall costs� Standards could then be set for achieving certain goals

related to these three features� We could then de�ne acceptable and unacceptable levels of

quality� The important point to note about the set of metrics we propose in Chapter � is

that they give us a means by which we can evaluate the behaviour of CSP processes� even

if they only apply to certain types of CSP process �which� as it turned out� was indeed the

case��

Other metric suites

Various object�oriented metrics suites have been suggested as a means of determining whether

the systems under investigation hold desired properties of object�oriented software� or whether

that software is of su�cient quality� The MOOSE �Metrics for Object�Oriented Software

Engineering� set of object�oriented metrics started a sequence of empirical studies into the

features of the Smalltalk and C�� object�oriented languages �CK���� Other sets of metrics

have also tackled the object�oriented paradigm �Lor���� and it is only� now� after a consid�

erable number of experiments� case�studies� etc�� that the object�oriented community has

begun to assess issues relevant to the paradigm� Only now are we beginning to see the

real problems faced in the OO world� In terms of this thesis� the empirical study carried

out �Chapters � and 
� only really scratches the surface of analysing the behaviour of CSP

processes during re�nement� One of the problems of doing such research is that it reveals

more questions than it answers� Future work �Chapter �� does� however� suggest a number



of alternative ways in which the study can be taken further�

The nature of our metrics

To understand the nature of our metrics� it is important to make the distinction between

a product and a process metric� A product metric is a measure of a software artifact� for

example� a piece of code� It relates to the product itself� and as such is a metric of a static

artifact� A process metric is a measure of the process of software development rather than

the product itself� for example� the number of hours spent carrying out software maintenance

or development� A similar approach to the comparison of speci�cation and implementation

�as we have done in this thesis�� in which product and process metrics play a part� is found

in the Balboa tool �CW���� Balboa is a process validation tool which allows discrepancies

between static process models and their execution equivalents to be assessed� Balboa allows

the capture of event process data� where event data refers to actions performed by agents�

whether they be a human or an automaton� An event characterises the behaviour of a process

in terms of identi�able� instantaneous events� It therefore takes a behavioural approach to

the study of processes� Metrics measuring the discrepancies between the static process model

and its execution equivalent are proposed and evaluated�

We view processes as combinations of states and actions� A set of re�nement metrics

using our de�nition of �delity could be seen as both product and process metrics� they are

hybrid metrics� since they chart the progress of an implementation from a high�level abstract

design to a low�level implementation �i�e�� mapping the process of development through a

number of stages�� At each stage the metrics are re�ective of static features of the process �in

terms of states� actions and associated metrics� and hence are� in a sense� product metrics

as well� The artifacts under study at each stage are the CSP constructs of the speci�cation



and its implementation�

The fact that our metrics are product and process metrics combined distinguishes our

work from other studies which tend to focus on either product or process metrics �McC
��

Hal

� YW
�� Hum���� but not metrics which are a combination of the two� Also of relevance

are the current e�orts aimed at improving our understanding of techniques for estimating

software process characteristics �SC�	� SK�	��

����� Empirical software engineering

Empirical software engineering can be de�ned as the study of software�related artifacts for

the purpose of characterisation� understanding� evaluation� prediction� control� management

or improvement through qualitative or quantitative analyses� Empirical research within

the software engineering arena can be used to investigate the association between proposed

software metrics and other indicators of software quality such as maintainability or compre�

hensibility� Qualitative or quantitative analyses� through the use of metrics� can be used to

support these investigations �Sch�
� BBM��� BDM�
��

As well as being theoretically valid� it is also useful to have a metric that can be shown

to be of use through empirical evaluation� For example� an empirical investigation which

attempts to identify design metrics most useful to the software engineer has been described in

�IS���� A metric based on information �ow is introduced� and found to correlate highly with

development e�ort� In the same study� various code metrics are shown to be poor indicators

of development e�ort� The numbers of events and states found in software systems were also

investigated in �CS��� and shown to be useful indicators of system features �as we also found

in our analysis in Chapters � and 
��

The careful planning of an empirical study is essential to the success of any study� Careful



planning of a study also means that further tests can be undertaken and the study can be

replicated by other researchers� this is important for hypotheses to be con�rmed or refuted�

Herein� accurate collection of data and accurate dissemination of information and reporting

of results to the software engineering community was also important for further studies to be

carried out e�ectively� In the analysis of the four CSP systems �Chapters � and 
�� the data�

i�e�� the metrics� values� are collected automatically by software and then analysed using

a spreadsheet� Future work will attempt to provide automatic analysis from the collected

data�

In a paper by Votta et al� �VPP���� a number of current problems in the experimental

software engineering world are described� These include the suggestion that repeated exper�

iments are not valued as important research� that a poor synergy currently exists between

computer science� software engineering and software development enterprises and that too

many proposed theories in the computer science world cannot be tested� and are� hence� of

little use to the empirical community� A number of suggestions are made to improve the

current situation in the empirical software engineering community� These include the need to

repeat experiments� and the need for access to real project data in order for the community

as a whole to move forward�

Herein� we have tried to create the conditions for the same type of test to be repeated

and as far as possible to use real systems developed by CSP developers� As an epilogue we

state and answer �ve questions� originally proposed by Fenton �Fen���� pertaining to any

claim made of software engineering research�

	� Is it based on empirical evaluation of data�


� Was the experiment designed correctly�



�� Is it based on a toy or real situation�

�� Were the measurements used appropriate�

�� Was the experiment run over a su�cient period of time�

In terms of the research herein� Question 	 is certainly true� Data� in the form of metrics

values� was collected and analysed using a spreadsheet� Although the evaluation in Chapters

� and 
 could not really be seen as constituting an experiment� but more of a case study

approach� it is nonetheless true to say that the number and types of re�nement checks

undertaken were thought through very carefully prior to them being run �Question 
�� Every

e�ort was made to extract the most information from the planned re�nement checks� even

though in certain cases that information was not what we had hoped for� The CSP systems

analysed herein are not toy problems� certainly not in terms of the cardinality of the state

spaces of the two Type I CSP systems� They were written by developers familiar and

experienced with the CSP paradigm �Question ��� We have to admit that� on re�ection�

a number of the measurements �metrics�� initially thought to be useful� did not turn out

to be as appropriate as we had hoped �Question ��� Finally� Question � relates mostly to

experimental conditions� and hence it is di�cult in this particular case to answer�

��� Summary

In this chapter� we have described related and complementary work� undertaken in the areas

related to our model of �delity� Some areas have direct relevance and inform our model�

Others have less in�uence� and some are described as a way of comparing a completely

di�erent approach to ours� The main areas described were formal methods� incorporating

process equivalence� divergence and program correctness and software metrics� on which



our empirical analysis rests� incorporated within software metrics is the area of empirical

software engineering�

What we have described� therefore� are the major in�uences in the way our model has

been shaped and developed� how some areas have been complemented by our approach

and why we decided upon the research direction we did� In the next chapter� we begin a

formal description of some of the techniques we have just described and� in particular� the

fundamental concepts upon which our model is built� namely� that of state� action� �nite

state machine and labelled transition system�



Chapter �

Foundations of a divergence model

��� Introduction

In chapters 	 and 
 we have given an informal description of our interpretation of divergence�

and how this augmented our de�nition of a non�terminating program� The objective of this

chapter is to place our understanding of divergence and its theoretical foundations on a more

formal footing�

According to Brookes �Bro��� and Hoare �Hoa���� an arbitrary process X is capable of

exhibiting the phenomenon of divergence if it is capable of performing an action an in�nite

number of times� This can be any action within the set of possible actions a process is

capable of engaging in� No claim is made as to whether this is how we expect process X to

behave� or whether or not this is a desirable behaviour�

Henceforth� we describe an executing process as divergent if it was intended to terminate

but is currently exhibiting characteristics of non�termination� We describe as non�divergent

any process which we expect to terminate� and which is not currently exhibiting the char�

acteristics which would indicate that it was a non�terminating process� For such a process�

�




this is either because it will eventually terminate� or because it has not yet reached a point

in its execution where the characteristics of non�termination are observable� In what follows

we use the term status� as distinct from state� to describe whether a process is currently

divergent or non�divergent�

We can quite easily envisage a scenario in which a process begins its execution as non�

divergent� and becomes divergent at a later point �from then onwards� the process is incapable

of returning to a non�divergent status�� If we are to view each of the two extremes of non�

divergence and divergence as a possible status of a process� then there lies an intermediate

status of a process characterised by a sequence of actions which take that process from a

non�divergent status to divergent status� henceforth we �nd it convenient to view this very

sequence of actions as also de�ning the status of a process� In saying this� however� we are

not implying that every process which exhibits the characteristics of this intermediate status

will necessarily eventually become divergent�

Herein we introduce the theoretical foundations upon which our analysis of divergence is

based by employing Finite State Machines �FSMs� and Labelled Transition Systems �LTSs��

In Section ��
 we discuss the concepts of an action and a state� We give an example to

illustrate the importance of these two concepts� In Section ��� we explain the need for a

formal de�nition of an FSM and give an example to illustrate how the principles of an FSM

apply in the real world� In Section ��� we de�ne a �deterministic� FSM� we also introduce

the idea of a Communicating Finite State Machine �CFSM�� capable of a restricted set of

actions� In Section ��� we introduce the concept of a labelled transition system� showing

how it can be used to de�ne a process in terms of traces� We then give some examples to

illustrate these de�nitions� The chapter is summarised in Section ����



��� Preliminaries

We use the term speci�cation as de�ning the intended behaviour of an implementation� an

implementation is an attempt to realise that speci�cation� Given these informal de�nitions�

we consider two di�erent de�nitions of software non��delity� namely either�

� the speci�cation is met� but that speci�cation is incorrect �the speci�cation does not

adequately capture the user�s real requirements��

or� alternatively�

� the speci�cation is correct �the speci�cation does capture the user�s real requirements��

but the implementation exhibits unspeci�ed behaviour�

In this and subsequent chapters� we use the latter de�nition of software non��delity�� We are

then in a position from which we can make appropriate comparisons between the behaviours

of di�erent implementations� In order for the last claim to have any meaning� we must �rst

show that there is an intuitive and physically realisable relationship between a speci�cation

and its implementation� Only if we can show a level of commonality in terms of the behaviour

of a speci�cation and its implementation can we hope to compare the two�

We can think of a speci�cation as expressing what functions a process should perform but

not how it should perform those functions� We assume the existence of a �multi�valued�map�

ping function from the speci�cation to a number of implementations each of which attempts

to meet that speci�cation� �In O�Neill �O�N�
� it is shown how a mapping between VDM

�Jon��� and SML �Mye
�� is accomplished�� If none of the behaviours of an implementation

is a behaviour of its speci�cation� then that mapping ful�ls no function whatsoever� since

�The former interpretation is the subject of current requirements analysis research� and as such is beyond
the scope of our work� The interested reader should consult Somerville �Som����



there is no correspondence between the two� At the other extreme� if neither speci�cation

nor implementation is capable of exhibiting behaviour not possible of the other then their

behaviours are equivalent� In that case� we �nd a correspondence between every behaviour

of the speci�cation and every behaviour of its implementation�

Until now we have talked about the status of a process as being either non�divergent or

partially divergent� To avoid confusion we have deliberately avoided use of the term state�

We want to reserve its use for a more formal discussion�

For the moment� if we view a state as a particular con�guration in the store of a computer�

then details about certain states in the implementation would also be a necessary part of

the speci�cation�

In general� given a speci�cation S� let I be a concrete implementation of S� Included

in I would be the identi�ers� actions and states necessary to demonstrate the equivalence

of I and S� In practice� the granularity of an implementation I when compared with a

speci�cation S might vary greatly� i�e�� the extent to which S would have to be re�ned to

yield I� An implementation is unlikely to comprise exactly the same number of identi�ers�

actions and states as its speci�cation� The problem is therefore one of �nding a way in which

a speci�cation can be compared with an implementation� irrespective of the granularities of

either� Fortunately� the proliferation of tools currently available on the market for choosing

the granularities of speci�cation and implementation makes our task easier� For example� we

could choose VDM as the speci�cation language and SML as the implementation language�

environments exist already and research is still being undertaken in mapping between various

speci�cation and implementation languages �see �O�N�
�� �AM��� and �AH����� However� in

any comparison we might hope to make between a speci�cation and its implementation� we

need to de�ne the underlying models we intend to use as a basis for that comparison�



��� The need for formal de�nitions

We are interested in using a speci�cation language and an implementation language which

give us as close a mapping between that speci�cation and implementation as possible �� It

follows that the closer the mapping we can obtain� the easier will be the judgment on their

equivalence or non�equivalence� and the easier we can obtain information on the di�erences

between speci�cation and implementation ��

Fundamental to the idea of expressing speci�cations and implementations in such a way

that the said mapping can be made trivial is the mathematical concept of an FSM� Before

giving the formal de�nition of an FSM� we describe how� additionally� the notion of a model

incorporating actions and states is appropriate in the physical world� To illustrate this point�

we consider the following example�

Example

A sweets vending machine is being used by a customer� in which each action by that customer

is re�ected as a state of the vending machine following that action� We assume� for the sake

of clarity� that no error conditions arise in this transaction� i�e�� the vending machine behaves

correctly on every occasion� The action by the customer of insert�coin will yield a vending

machine state of coin�inserted and the action by the customer of make�selection will yield a

vending machine state of sweet�dispensed�

We can show this sequence diagrammatically in Figure ��	� in which the start of the

transaction is given by state q� �which is also the �nal state of the transaction�� State q�

�The disparity between a speci�cation language and an implementation language is known as an impedance

mismatch�
�In Chapter 
 we discuss a tool� called Failures	Divergence Re�nement �FDR� �For�
�� based on the theory

of Communicating Sequential Processes �CSP� �Hoa���� in which a speci�cation and an implementation are
expressed using the same medium�



q
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q
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insert-coin

Figure ��	� A vending machine with states and actions

represents the coin�inserted state of the vending machine� and the actions are labelled on

the arrows �or arcs��

The vending machine� under normal operation� has speci�ed states and actions� and

provides us with an idea of how actions and states are inextricably linked� this is a theme

we will return to at length in later chapters� We next de�ne formally an FSM� this will form

the theoretical basis of the de�nitions of a non�divergent and partially divergent state which

we will give in Chapter ��

��� Finite state machines

Thus far� we have viewed a state as a particular con�guration in the store of a computer�

We took this notion of a state to include the implicit and explicit addresses in store� the

former relating to the contents of registers in a physical store �e�g�� program counter�� the

latter relating to the contents of user program identi�ers� The ensuing de�nition� taken from

Cooke and Bez �CB���� marks the start of a formalised approach to the notion of divergence�

De�nition ��

A deterministic �nite state machine �FSM� M is an algebraic structure�

M � �Q��� t� q�� F �



where

Q is a non�empty �nite set of states

� is a non�empty �nite input alphabet �or set of actions�

t is a mapping Q� � �� Q� called a state transition function

q� � Q is the initial state

F � F � Q� is the set of �nal states �or accepting states��

�For the sake of clarity� we omit the usual print �or output� function p de�ned by p� Q� �

�� �� In some cases� we distinguish between an input alphabet ��� and an output alphabet

���� to indicate that they need not be identical���

The behaviour of M can be shown diagrammatically via a directed graph� in which states

are represented by labelled circles� and elements of F have a further circle drawn around

them� We capture the essential characteristics of a �nite state machine in Figure ��
� where

the input alphabet is fa� bg� The �nite state machine is capable of accepting the sequences�

h a� b i� h b� ai�

the empty sequence hi� and any sequence obtained by a concatenation of these three alter�

natives any number of times�

����� State transition notation

Since the idea of a process consisting of a series of state transitions occurs frequently in

this and future chapters� we �nd it convenient to adopt a notation in which we can express

�This machine is called a �nite state transducer �CB����
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Figure ��
� A �nite state machine

transitions simply� we represent a single state transition using the notation

s
a�� s�

�or �s� a� s��� to describe a transition from state s to state s� by virtue of action a� where

�	� s� s� � Q

�
� a � � and t�s� a� � s��

Here t maps a given source state s and an action a to a target state s��

In Figure ��
� we assume the actions to be read actions� capable of reading a or b� As a

result� possible types of action include�

� a read action drawn from an input alphabet which we could label ��� e�g�� read�x�

reads a value into identi�er x from a source external to the program�

� a write action drawn from an alphabet of actions which we could label ��� e�g�� write�x�

writes out the current contents of identi�er x�

� an assignment action in the usual sense of an assignment� e�g�� x �� y 
 � sets the



identi�er x to be one less than identi�er y� we could label this alphabet ���

We could then amend the transition function t to incorporate the above scenario �t is now a

mapping Q� ��� ��� � ��� �� Q� giving us a certain �exibility in de�ning a non�reading

action� To illustrate the importance of having this �exibility� we could draw the underlying

graph of a communicating process� showing how it comprises only read and write actions� Any

underlying model for such a communicating process would have to incorporate both types

of action �read and write� within its alphabet� As a further illustration of this �exibility�

an imperative high�level language would have actions for reading� writing� assignment etc��

and we could quite easily model any �nite number of types of action within a single FSM�

For the moment� we retain just read and write actions in our de�nition of an FSM� on

the understanding that each high�level action can be expressed in terms of just these two

primitive actions�

As an example of the translation of a high�level imperative language� complete with added

concurrent constructs� into a form where the semantics of that language is captured by the

above primitive actions� see Milner �Mil���� In the example which follows� we use the notation

of Communicating Sequential Processes �CSP� to describe a simple copy process and show

the similarity with a single high�level assignment command� For further information on the

CSP notation we refer the reader to Hoare �Hoa����

Example

The high�level assignment x �� � can be represented by a CSP process which o�ers a value

� on a channel left� and places the value of x on a channel right� The two respective

actions are written�

�A communicating process is one whose source of input is data passed to it on channels by other commu	
nicating processes to which it is connected� its output is directed to those other processes�
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Figure ���� Finite state machine of a communicating process

CSPPROC
left ? 2 right ! x

Figure ���� Block diagram of CSPPROC

left � � right � x

We can represent this process by the �nite state machine shown in Figure ���� and in CSP

notation �where the notation 

 can be read as� �followed by���

CSPPROC � left � � 

 right � x

Informally this can be stated as�

The left channel o�ers the value � to the right channel� When the exchange of

the value � has been made� x holds the value �

and is shown diagrammatically in Figure ���� The acceptance of the value on the right

channel is synchronised in the absence of bu�ered channels� the left and right channels

may be linked� but we have not incorporated these features into Figure ���� The last example

exposes a major drawback of our current de�nition of a �nite state machine so far� It fails

to consider the concept of channel variables holding values� e�g�� left � � indicates that

the left channel is willing to accept the value �� An ability of our model to incorporate the

concept of channel variables holding values will prove an important feature of our approach

to divergence�



����� A communicating �nite state machine

In view of the preceding discussion� we would then be justi�ed in extending our basic FSM

to form a communicating �nite state machine �CFSM� �Hol�	� Hol�� de�ned as a ��tuple

�Q�A� t� q��M�� where A is a set of variable names �i�e�� channel names � left� right�� M is

the set of all message queues� currently on the named channels of a process �we will assume

the queue to be of length greater than one�� and Q� q� and t retain their de�nitions as before�

A replaces �� Elements of the setM could represent the current state of a process� expressed

in terms of the values currently held on all the channels it uses� For our own purposes� we

re�de�ne A �the alphabet of the process�� namely� it now comprises all di�erent combina�

tions of channel names and values which can validly be held on those channels� alphabet A

would therefore be a mixture of read and write actions� We could have incorporated a set

of �nal states into our de�nition� but prefer to assume that a CFSM is a continuously op�

erating process� without any valid �nal states� Finally� a message queue is taken to consist of�

�	� the number of slots in the queue �we have assumed at least two��

�
� the current queue contents�

��� Transition systems

For a theoretical underpinning� FSMs provide a useful starting point� However� in order

that we can give further meaning to the concepts of action and state� we must look to the

notion of a Labelled Transition System �LTS�� As in the testing methodology of Hennessy

�Hen���� using an approach based on LTSs will allow us to de�ne our model in terms of its

�We can think of a message queue as a bu�er of messages waiting to be processed�



operational semantics� a characteristic not a�orded us by a treatment that solely relies on

FSMs�

Central to the theme of processes being characterised by their actions and states is the

notion of a Transition System incorporating the possible states of that process� and the

state changes �or transitions� the process is capable of making� We �rst consider a simple

transition system �Arn��� in which we view transitions and states as unsequenced� Hence�

there are two mappings for each transition�

De�nition ��

A transition system is a quadruple T � hQ� T� �� �i where�

Q is a �nite or in�nite set of states

T is a �nite or in�nite set of transitions

� and � are two mappings from T to Q mapping each transition t in T

to the source ���t�� and target ���t�� states� respectively�

We next consider the de�nition of a path� taking into consideration the sequence of states�

De�nition ��

A path of �nite length n �n � 	� in a transition system T is a sequence of

transitions t�� ���� tn such that 	i � 	 
 i�n� ��ti� � ��ti���� A path of in�nite

length can be similarly de�ned�



����� Labelled transition systems

We now re�ne further the de�nition of a transition system to incorporate an alphabet of

actions� re�ecting possible actions the transition system is capable of executing� This is

known as a labelled transition system �LTS�� In the sequel� we can think of a label as being

equivalent to an action�

De�nition ��

A transition system labelled by a �nite alphabet � is a ��tuple L � hQ� T� �� �� �i

where

hQ� T� �� �i is a transition system� and

� is a mapping from T to � �� � T �� �� taking each transition t in T

to its label ��t��

We note that an LTS is essentially a non�deterministic FSM with no speci�c initial or �nal

states�

We now de�ne the concept of a trace� whose importance in our model should become

evident as we develop the model further� In the sequel �� denotes the Kleene operator over

��

De�nition ��

A �nite trace of a path t�� ���� tn is the sequence ��t��� ���� ��tn� in �
��



De�nition 	�

An in�nite trace of a path t�� t�� t�� ��� is the sequence ��t��� ��t��� ��t��� ��� in �
��

We are now in a position to de�ne a process in terms of an LTS�

De�nition 
�

A process is an LTS with a speci�c initial state�

We consider an implementation process as comprising one or more traces� If the speci�cation

process is expressed in the same way� we also view it as comprising one or more traces�

Example �

A sweets vending machine has a potentially in�nite set of traces of �nite length� where a

trace equates to the actions and states of a single customer transaction�� The alphabet of

actions contains the valid customer and vending machine actions� the states of the vending

machine being determined by those actions� For example� a single trace of insert
coin

followed by make
selection for a sweets vending machine process SVM could be expressed

as a sequence whose elements are of the form �s� a� s���

SVM � ��no
coin
inserted� insert
coin� coin
inserted��

�coin
inserted� make
selection� sweet
dispensed��

�sweet
dispensed� set
to
ready� no
coin
inserted�


Here� the set
to
ready action is automatically executed by SVM after dispensing a sweet�

i�e�� an indicator light shows its readiness to accept another coin as part of a new transaction�

�In practice� the set of traces is �nite� as eventually the vending machine becomes obsolete and is replaced�



Example �

In CSP� the process STOP has a single trace� namely� that of the empty sequence hi� This

would not be a suitable process to model a vending machine� since it would be capable of no

actions� and would yield no states� apart from that given by its only state� the null state�

Example �

Consider the example of a process COUNTDOWN which takes a value x between one and �ve�

and applies the action dec �which decrements by 	� until x reaches zero� at which point its

single trace terminates� The states of COUNTDOWN are the values of x at any moment� and

the labelled action is simply dec� We ignore the possibility of error conditions �e�g�� dec 	�

in order to illustrate the point being made�

This gives us a transition system for COUNTDOWN capable of a �nite trace� with the fol�

lowing possible transitions �in the format �s� a� s���� extended to become a labelled transition

system with a single label �or action� dec�

��� dec� ��

��� dec� ��

��� dec� ��

��� dec� ��

��� dec� 	�

We include the states s and s� for each action a on the trace�

��
�

���� dec� 	�
�



���� dec� ��� ��� dec� 	�
�

���� dec� ��� ��� dec� ��� ��� dec� 	�
�

���� dec� ��� ��� dec� ��� ��� dec� ��� ��� dec� 	�
�

���� dec� ��� ��� dec� ��� ��� dec� ��� ��� dec� ��� ��� dec� 	�
�

The above examples give us just an intuitive feel for the notion of a state� in terms of FSMs

and LTSs� So� thus far� we have only hinted at a possible de�nition of a state� cast in terms

a�orded by an LTS �see Section ��� for the details��

��� Summary

In this chapter we have laid the theoretical foundations of a model which we will be building

on in subsequent chapters� and will use for our analysis of divergence in processes� This was

accomplished via the concepts of an FSM and an LTS� We have demonstrated how an LTS

gives us greater �exibility in our de�nition of a process as well as the traces which make up

that process�

In the next chapter� in addition to formally de�ning the notions of our two di�erent types

of state� we pause to examine some alternative de�nitions of the concept of a state in order

to illustrate that there is no single de�nition which can be generally applied� The de�nition

of a state varies from model to model� and from application to application� For example�

models with temporal or timed aspects to their de�nition must incorporate the notion of

physical time into their notion of a state �Sch���� Strain�Clark et al� �SCMC��� describe

the state of a process as only the mode of system behaviour which is externally observable�

whilst Abowd �AD��� describes a state as the internal information of an entity� and reserves

the term status for the externally available information about that entity� In the ensuing



chapter� we also examine the inter�relationships between actions and states�



Chapter �

Divergent states and actions

��� Introduction

The objective of this chapter is to de�ne the notion of the state of a process� We also de�ne

non�divergent and partially divergent states� We extend the notion of divergence to traces

and processes and consider the role of actions in the context of divergence� The two types

of state� together with the actions a process engages in� form the foundation of our model

and the basis of our analysis and evaluation in later chapters of the thesis�

In Section ��
� we review some de�nitions of state in the literature and give an example

which anticipates our de�nition of state� In Section ���� we describe the di�cuties in trying

to compare a speci�cation and its implementation� In Section ���� we formalise the notion

of divergence allowing us to provide de�nitions of a non�divergent and a partially divergent

state� together with some other properties of processes which will prove useful in Chapters

� and 
� In Section ��� we analyse� with examples� the impact an action can have on the

state of a process and� as a result� identify features of CSP which will prove useful in later

chapters� These features are formalised in Section ��� and a summary is given in Section

��



��
�

��� Review of state de�nitions

According to Milner �Mil���� expressions relating an agent �a system entity capable of per�

forming actions� to the current values of those expressions can be considered the state of

that agent� The state of a system is then the combination of the states of the individual

agents�

According to Roscoe �Ros���� in the context of a CSP model�checker� the state of a

process can be viewed in terms of the values of parameters currently being passed to that

process� For example� the state of a recursively de�ned factorial function is de�ned in terms

of the partial results of that computation�

According to Holzmann� in the context of SPIN �Hol���� a model�checker for verifying

properties of concurrent systems� a system consists of three types of object each of which

has a local state� These are summarised in Table ��	�

Object Type Local State

Data Value
Message Channel Contents
Processes Program Counter �and local objects�

Table ��	� Objects of a system

According to Hoare �Hoa�	�� the state of a message channel is the sequence of messages

that have passed through the channel and the set of messages that can enter it� The state of

the overall process is the combined states of all message channels used by that process� Two

states s� and s� are then equivalent if every executable sequence of actions starting from s�

leading to a state at which a set of actions X are executable is also executable starting from



s� and leading to a state at which the same set of actions X are executable�

Each of the above state de�nitions emphasises the values held by data objects� In the

next section we illustrate� with examples� the di�cuties in achieving an equivalence between

the states of a speci�cation and its implementation� This will pave the way for a formal

de�nition of the two types of state of our model�

��� Di�culties in achieving equivalence

Consider the pseudo�code of Example 	 which we assume� for the moment� to be the speci�

�cation of a process� In reality� a speci�cation is unlikely to contain the details required for

an implementation to be coded verbatim� We use the example of a sequential program to

illustrate the principles involved�

Example �� a sequential program

We assume that x and y are identi�ers for integer variables� to which the values � and � are

assigned� respectively� �We assume a correct initial state q� to be one in which x and y are

unde�ned��

begin

y � �

x � �

end�

We could equally have expressed these requirements in the VDM speci�cation language��

and converted that speci�cation to SML in the spirit of �O�N�
�� We can annotate this

�In VDM� this would have appeared as the de�nition of two values x and y�



q0 q1 q2
y := 4 x := 2

Figure ��	� Finite state machine of a sequential program

speci�cation with the expected values of the variables x and y after each action� and at each

state� These annotations can be seen as pre� and post�conditions of the action �Hoa���� we

enclose those expected values between fg� We can annotate the implementation in the same

way �the implementation could represent the SML produced from the VDM speci�cation���

We assume this implementation matches the speci�cation line for line� giving�

begin

�x� y undefined�

y � ��

�y � �� x undefined�

x � ��

�y � �� x � ��

end�

We can represent this implementation by a transition system with three states� and two

actions� as shown in Figure ��	�

This example illustrates how� by annotating both speci�cation and implementation� we

gain insight into how we might compare the two and analyse their di�erences� However� we

have engineered this example so there is an exact match between the actions and states in

the speci�cation and implementation� This is an unrealistic assumption for three reasons�

	� A single action in the speci�cation may be implemented by n actions in the implemen�

tation or vice versa�

�In SML� we would have to use reference variables� considered non	standard in SML and most functional
languages�




� There may be identi�ers in the speci�cation for which there are no corresponding

identi�ers in the implementation or vice versa�

�� When using a high�level speci�cation language such as Z� a speci�cation de�nes what

the program should do� not how it should do it� This means there is unlikely to be

a simple mapping betwen the two� Therefore� establishing a correspondence between

the states and actions in the speci�cation and implementation would prove di�cult in

the majority of cases�

In the next example� we illustrate the last of these problems using a power function speci�ed

using the Z speci�cation language�

Example �� power function in Z

This example is based on one given by Diller �Dil��� which raises three to the power of in�

First� we describe the notation used� In a Z speci�cation� operations are speci�ed in

terms of input�output behaviour� The operations are packaged into a schema� Every schema

has a name placed at the top of the schema box� The declaration part is written below the

name of the schema� followed by the predicate part of the schema� as shown below for the

Power schema�

in out?, ! : Z

in 
out !

> 0? 

Power 

3 in?

The function speci�es in the declaration an input value in� and an output value out�� both

of which are integers� The predicate part of the schema has two elements� The condition on

the input value is that it has to be greater than zero� The output value is three raised to the



power of the input value� The program code for such a speci�cation could be implemented

recursively or iteratively� The following code shows a recursive implementation�

function POWERA�X�INTEGER��

begin

if X � 	 then

POWERA �� �

else

POWERA �� � � POWERA�X 
 ��

end�

In any implementation� there will necessarily be an input value� a means of computing

three raised to the power of a speci�ed value and a means of outputting the result� However�

the form this takes in the majority of cases� and the fact that the implementation can be

coded in so many di�erent ways� makes it impractical to consider any automated comparison

between speci�cation and implementation� In the de�nition of our two types of state� we must

therefore be careful to ensure that the speci�cation and implementation are comparable in

some form� The importance of ensuring a mapping between speci�cation and implementation

is exempli�ed further by the square root function of a natural number�

Example �� square root function

As a more complicated example� consider the Z speci�cation to calculate the square root of

a natural number �Jac�
�� Here� the declaration part of the schema tells us that the function

iroot takes a natural number� and returns a natural number� The declaration of both these

values as such numbers excludes the possibility of a negative integer being accepted as input�

In the implementation� the responsibility is on the coder to ensure that this does not occur�

The predicate part of the schema returns the largest positive natural number iroot whose

square is no more than a� For example� an input value of � will return the value 
� as will



: N -> N

A

Iroot

a : N 

Iroot(a) * Iroot(a) <= a < (Iroot(a) + 1) * (Iroot(a) + 1) 

Iroot

input values of �� �� 
 and �� An input value of � will return the value �� so too will 	��

		� 	
� 	�� 	� and 	�� Using the fact that the di�erence of two successive squares� n� and

�n� 	��� is 
n� 	� the following is the C code corresponding to the speci�cation�

int iroot�int a�

�

int i�term�sum�

term � �� sum � ��

for �i � 	� sum �� a� i���

�

term � term � ��

sum � sum � term�

�

return i�

�

We can see that the code bears no resemblance to the speci�cation� Clearly� for programs

of a certain category� particularly if they are speci�ed in a language such as Z� the three

problems outlined previously are signi�cant ones� We therefore accept in this thesis that it

would be impractical and unrealistic to develop a model which compared� for example� a Z

speci�cation with an arbitrary coded implementation� The notation we use has to provide a

mapping between speci�cation and implementation to allow a comparison between the two�

In the following section� that notation� allowing the de�nition and comparison of a non�

divergent and partially divergent state� is given� In particular� it will allow a speci�cation

and an implementation� expressed in CSP� to be compared�



��� Divergence

Given a process� P � let IP denote the set of identi�ers in P � We will denote a speci�cation

of P by  and let ��� ���� �k denote implementations of  � Given an identi�er� i� we de�ne

the state� s� of a process� P � to be the set

f h i�b i � i � IP g

where b is a boolean constant� true or false� b is de�ned to be true if there is a corresponding

identi�er in  with the same current value of i and false otherwise� We refer to hi�bi as an

s�pair �an abbreviation of state pair��

A state� fs � hi�truei � i � IPg� is said to be non�divergent� Otherwise� s is partially

divergent� A trace is a sequence of states� s�� s����sm� A trace results from a process starting in

an initial state� s�� and state transitions resulting from actions� �We note that this de�nition

of a trace departs from the CSP de�nition of Hoare �Hoa���� where a trace is de�ned in

terms of sequences of events�� We write s
a� s� to denote the transition from state s to s�

with action a� Clearly� we can represent this situation using a state transition diagram� We

will also write s
�� s� to denote that state s� is reachable from s via some ��nite� sequence

of actions�

Let t be the termination state of a trace �if such a state exists�� A trace of a process

has harmless partial divergence if the trace enters a partially divergent state and t is a non�

divergent state� A trace has harmful partial divergence if t is partially divergent� A trace is

non�divergent if every state in the trace is non�divergent�

A trace is divergent if it enters a non�terminating state sequence� A process is divergent

if it has a divergent trace�



In contrast to a trace which exhibits a harmless or harmful partial divergence� we say that

a �nite trace of an arbitrary process is totally non�divergent if every state of the trace is non�

divergent� We note that a speci�cation contains only traces comprising non�divergent states�

thus� every trace of the speci�cation is totally non�divergent� Some further termination

properties are examined in the following section�

����� Termination properties

In CSP �Hoa���� the
p
event represents successful termination of a process� In �AG��a� the

description of processes includes the possibility that a process may terminate after executing

a limited number of actions as opposed to being inde�nitely invoked�� Leaving aside� for the

moment� processes which are designed to be non�terminating� we introduce a modi�cation

of the
p
event which will prove useful in comparing the end state of processes� We rede�ne

the
p
event to become representative of the status of a process if it terminates� so making a

distinction between a process terminating in a non�divergent state and one terminating in a

partially divergent state� In what follows� and for the purposes of our de�nition� we take sI

to be the terminating state of the implementation� Remembering our de�nition of a trace

as a sequence of states �and associated actions� we can now state the following�

p
exp is the end�state status of an implementation trace if sI is non�divergent�

p
unexp is the end�state status of an implementation trace if sI is partially divergent�

At sI at least one s�pair is of the form � iI � false ��

Having de�ned these two notions of termination� we can move on to consider some features of

transition sequences� By considering sequences of transitions� we can gain some insight into

�We consider such processes when later we describe the FDR system in more detail�



the behaviour of an implementation in the context of its traces and termination properties�

In the next section� we make a comparison of harmless and harmful partial divergence with

that of forward and backward recovery�

����� Forward and backward recovery

A harmless partial divergence represents behaviour in which a process recovers from an

unspeci�ed state� This recovery can be deliberate or accidental� A close link exists between

this concept and recovery in fault�tolerant systems� In the context of a fault�tolerant system�

a process can recover from a fault through either� forward or backward recovery �LA���� The

principle of each is to return a process to a state in which manifestation of that fault is

avoided�

Forward error recovery refers to the manipulation of the current system state to prevent a

failure from occurring� The system is then capable of making unhindered progress� Failures

are anticipated� and dealt with as and when they occur� For example� an exception handling

facility for dealing with speci�c faults in a program� e�g�� arithmetic over�ow�

Backward error recovery is usually achieved through recovery points �often referred to as

checkpoints� in which the state of a system is restored to a prior� failure�free state� Recovery

data �stored at each recovery point� allows the state of the system to be restored� An

alternative to recovery points is via a historical record of activity of the system known as an

audit trail �or log�� Finally� we note that both types of recovery described can be applied in

a sequential and concurrent process environment�



��� Inter	dependence of actions and states

As an example of the inter�dependence of states and actions� consider again the case of

the sweet vending machine �see Section ����� Suppose� in response to a single coin being

deposited� the vending machine produced two sweets when it should only have produced one�

We can view this sequence of events as a speci�ed �rst action� yielding a non�divergent state�

followed by the second action �dispensing the sweets� which can be seen as an unspeci�ed

action yielding a partially divergent state� The behaviour we expected of the vending machine

was for a single action to produce a single sweet yielding a non�divergent end�state� The

transition from a non�divergent to a partially divergent state is therefore made at the point

when the second sweet is dispensed� The vending machine has clearly engaged in unspeci�ed

behaviour�

We can also show� with reference to the elements of a state transition �s�a�s��� how the

type of a destination state s� is determined by the action a� For example� if a sweet costs 	�

pence� and � pence has already been deposited in the vending machine �this fact would be

re�ected in the state of the vending machine�� then depositing a further 
 pence will cause

a sweet to be dispensed �again� re�ected in the state of the vending machine�� The choice

of which coin a customer may deposit next� to make up the cost of a sweet� is determined

by the value of coins deposited so far�

In the refusals model of Brookes et al� �BHR���� a non�deterministic choice from a set of

possible actions gives rise to a refusal set containing the actions refused in preference to the

one that is chosen� For example� assume the customer has deposited a � pence coin so far�

The customer then deposits a further � pence coin� This means that the choice of a 
 pence

or 	 pence coin has been refused �by the customer� at that point� A customer therefore has

choices at each stage of depositing the coins making up the 	� pence� In the refusals model�



the set of traces a process is capable of engaging in represents the combination of choices of

action it has at each execution step� In the above example� this is just saying that there are

many combinations of coins capable of making up the 	� pence�

����� Interpretation of an action

First� we view an action as causing some change in the information known about the current

state� For example� we can view the state of a vending machine as the cumulative value

of coins deposited in the machine �before dispensing a sweet�� and the action of depositing

further coins as adding more information about the progress of the transaction as a whole�

Consider the following example of a poorly�coded implementation� in which the process

repeats the request for an x on the channel left �hence introducing a redundant action��

Assume the speci�cation is to accept the value for x just once�

Example �� a redundant action

x � �

PING � left � x 

 left � x

The second left action does not change the information we know about the process at that

state� In fact� in our model so far� both states of the implementation just described we would

label non�divergent� since x holds the correct value at each state� and the process ends with

p
exp� We could interchange the two actions with no change in the subsequent end�state

type� whether it be
p

exp or
p

unexp� In our model of divergence� a state is de�ned by the

set of identi�ers and the values they currently hold�� We therefore assume the absence of a

�In our programmed implementation� a directed graph structure is used to represent both speci�cation
and implementation� This provides the necessary information on sequencing�



program�counter �pc�� and accept that� in some instances� an action will cause no change in

the information known about a state �i�e�� the states in a trace are not necessarily distinct��

However� particularly in the case of the execution of concurrent processes� we do want to

emphasise the importance of action sequencing in our model� since this sequence determines

the types of action and state in a process� As the thesis develops� we show how we avoid the

need for a pc� yet still obtain the sequencing information we need� We now consider some

more examples to illustrate the importance of the sequence in which actions are executed�

Example �� a process to increment an identi�er

In a CSP setting� consider the following implementation which accepts an identi�er x on

the left channel and then increments it by 	� Consider the following implementation for a

speci�cation to increment a value by one�

x � 	

IMP � left � x 

 right � x � � ���

The cumulative e�ect of that increment is incorporated into the annotated state informa�

tion �see Example 	�� All states of this implementation are non�divergent� and the process

ends
p

exp� i�e�� the states of the speci�cation and the implementation are equivalent upon

termination� We note that the correct sequence of the two actions � initialise and then

increment � is crucial to this program performing its speci�cation function� Consider now

the types of state of an implementation which outputs a value of one on the right channel

and waits for the value zero on the left channel before terminating� i�e��

x � 	

IMP � right � x � � 

 left � x ���



In the implementation� a value one would be output on the right channel� the left channel

would be left hanging� waiting with a value zero to be accepted� The same number of actions

are used as in ���� and each action is encountered in the speci�cation� However� all states in

��� except the start state would be partially divergent and hence this would be an example

of a harmful partial divergence �as we de�ned it in Section ����� The two examples� i�e��

��� and ���� illustrate how� by analysing notions of both action and state� and the inter�

dependence of the two� we can begin to understand the characteristics of actions as well as

those of states� If we wanted to analyse the level of divergence of an implementation from

its speci�cation in terms of state information �and state information is dependent on the

actions which a process executes�� then we should include an analysis of the actions which

cause those states�

����� Observable and unobservable actions

Consider the sweet vending machine example again� capable of dispensing two types of sweet�

The racks of the vending machine and the selection of the sweets from those racks are assumed

to be unobservable �hidden�� i�e�� cannot be seen by the customer� Another unobservable

action would be the acceptance of coins� An observable �non�hidden� action would be the

o�ering of the sweet to the customer� thereby ending that particular transaction� We could

view the vending machine as a black�box� into which money is deposited� and sweets are

produced�

We have already seen some examples of the way in which the execution of an action can

in�uence the behaviour of a process� irrespective of whether the action is part of a physical

real�world object such as a vending machine� or in a non�physical form such as that of a

computer program� If we want to compare the actions in a speci�cation with those in an



implementation� then we should choose an alphabet of actions which lends itself readily to

this comparison and allows us to enumerate the actions in that process�

����� The alphabet of a process

Each entity� whether an object in the real world or an abstract process� has a set of pre�

de�ned� valid actions in which it can engage� Milner �Mil��� de�nes the alphabet Act of a

process to be the set of labels of a transition system� say L� plus the handshake action � �the

tau action was described brie�y in Section 
������ In a communicating process environment�

the � action represents the action of exchanging values on two channels� It is an instantaneous

action� as opposed to the synchronised actions we have described so far� In the context of

the vending machine� an example of the handshake action � would represent the o�ering of

the sweets by the machine followed by the customer removing the sweets from the dispensing

tray of the vending machine�

Thus far we have described how� as in the case of a vending machine� di�erent states are

yielded� and we have touched brie�y on the set of speci�ed actions which bring about a desired

end�state� Consider� for a moment� the unspeci�ed actions of a vending machine� We are

unable to explicitly list these actions� since the alphabet of a vending machine speci�cation

contains only speci�ed actions� and its implementation �the physical machine� cannot cater

for every eventuality� We cannot really predict the invalid behaviour that machine is likely

to encounter in its lifetime�

In the case of a vending machine we can think of a large number of ways a machine may

malfunction� However� in the case of a computer program� we can assume a large �but lim�

ited� number of ways that the program can go wrong� We therefore assume that the actions

causing non�divergent and partially divergent states are �nite in number� thus simplifying



our de�nition of speci�ed and unspeci�ed actions� Consider the following example�

Example 	� alphabet contents

Using CSP� we declare a process X as having channels left and right� and declare that

the only values capable of being passed to those channels are the values 	 and �� This gives

the following alphabet for process X� comprising eight actions�

left � 	� left � �� left � 	� left � �� right � 	�

right � �� right � 	� right � �

We note that process X can be either speci�cation or implementation� We further note that

in the examples given in this chapter� we use CSP containing only a minimal number of

control statements� By using this small set of actions� in which values assigned to identi�ers

are explicitly stated� it becomes relatively easy to determine statically the actions in the

alphabets of a speci�cation and its implementation� The reason for this simpli�cation is

simple� In our programmed implementation of the model we have described in this and

the preceding chapter� we use CSP whereby for our analysis� we must be able to statically

determine the speci�cation and implementation alphabets�

����� Speci�ed and unspeci�ed actions

The previous section showed the need for analysis of actions as well as states of a process�

and hinted at a formal de�nition of a speci�ed and unspeci�ed action� Based on our analysis

of the examples given� as a �rst attempt at a de�nition of a speci�ed and unspeci�ed action�

we could say that�

� a speci�ed action is any action a in the alphabet of an implementation which has an

equivalent action in the alphabet of its speci�cation�



� an unspeci�ed action is any action a in the alphabet of an implementation which does

not have an equivalent action in the alphabet of its speci�cation�

When we say that an action in the alphabet of an implementation is also in the alphabet of

its speci�cation� we are referring to the contents of any identi�ers contained in that action�

not just their syntactic equivalence� For example� the action z �� x � y must contain the

same values for x and y in both alphabets� So� z�� � � � is not equivalent to z �� �	 �

� even though both cause the same value for z to be yielded�

We accept that it is unlikely that all actions in an implementation will have corresponding

syntactic actions in its speci�cation� In the presence of re�nement however� some actions in

the implementation may well be equivalent� in the sense described above� to corresponding

actions in the speci�cation� We note in passing that� in the case where the alphabets of

the speci�cation and its implementation are the same� i�e�� no unspeci�ed actions exist in

the implementation� their behaviour need not necessarily be equivalent� We could easily re�

order the sequence �and number� of the implementation actions �drawn from that common

process alphabet� in such a way that its behaviour di�ers from that of the speci�cation� In

the following section� we formalise three comparison techniques which will be useful in later

chapters as part of the empirical investigation and the use of re�nement metrics� namely�

enumeration of the alphabet of a process� information hiding and relabelling�

��� Comparison techniques

Given a process� P � the set of possible actions of P � denoted AP � is called the alphabet of

P � Process alphabets clearly provide a means of comparing two processes� as illustrated in

Section ������



When an implementation re�nes a speci�cation� we often internalise some set of actions�

This process is known as information hiding� Given two processes� P and Q� we say that Q

is externally equivalent to P if there is a subset B � AQ which is hidden and AP � AQ n B�

Informally� we write P � Q n B to denote that P is externally equivalent to Q given that

the set of actions B is hidden in Q�

Given two processes� P and Q� we say 	 is a relabelling �function or facility� from P to

Q if for all identi�ers in P there is a corresponding identi�er in Q� If pi is an identi�er in

P � and the corresponding identi�er in Q is qi� i � f	�
�����ng� we usually write 	 in the form

p�
q�� ����pn
qn� We now give some examples to illustrate these three comparison techniques�

Examples of the three techniques

Suppose we have two processes� P and Q� which are de�ned as follows�

P � left � x 

 right � x

Q � in � x 

 mid � x 

 mid � x 

 out � x

Then� on assuming the identi�er x can take the values 	 or �� AP is given by

�left � 	� left � �� right � 	� right � �� ���

and AQ is given by

�left � 	� left � �� mid � 	� mid � �� mid � 	�

mid � �� right � 	� right � �� ���

The above� i�e�� ��� and ��� yield the enumeration of AP and AQ� respectively� Moreover�

if we assume that



�mid � x� mid � x�

is hidden� then

P � Q � �mid � x� mid � x��

Finally� left�in� right�out is a relabelling function from P to Q�

��
 Summary

In this chapter we have identi�ed two divergent types of state and the transitions possible

between them� A non�divergent type of state can be viewed as speci�ed behaviour� A

partially divergent state can be viewed as unspeci�ed behaviour� From this� we were able to

determine the possible state transitions between these two types of state and how termination

properties were related to the sequence of states of these two types during the execution of

a process� We also looked at the e�ect of actions on the states of a process emphasising the

importance of actions to our model� From the previous discussion� it is clear that any model

which attempts to compare a speci�cation with its implementation would have to be at a

level in which the notation of each could be compared� Using CSP whereby processes are

modelled in terms of communication between channels and the techniques outlined earlier�

this task becomes practically feasible�



Chapter �

Re�nement metrics

��� Introduction

A central objective of this thesis is to be able to analyse the level of divergence between

a speci�cation and its implementation in terms of re�nement of that speci�cation� In this

chapter� we approach this objective by describing metrics that can be applied to both a

speci�cation and its implementation�

The use of metrics as a vehicle for comparison of a speci�cation and its implementation

is not a new concept� A set of metrics was proposed by Samson et al� �SDN���� to compare

algebraic speci�cation languages and their implementation languages �see Chapter 
�� Met�

rics for measuring attributes of the Z speci�cation language have also been proposed and

investigated �BWW�	�� The major di�erence between this body of work and that described

herein is that the latter uses CSP as the medium for expressing both the speci�cation and

its implementation� moreover� we use the same metrics for speci�cation and its implementa�

tion to monitor re�nement� As far as we know� previous work in this area has used di�erent

languages to express a speci�cation and its implementation and correspondingly di�erent

��



metrics to monitor re�nement�

Since the emphasis in the thesis has been on a characterisation of the types of state in

a process �and to a lesser extent the actions of a process�� the re�nement metrics will be

predominantly cast in terms of the states and actions of the process� the de�nitions of our

two types of state lend themselves easily to this type of analysis as they allow the comparison

to be made at a very �ne level of granularity�

The set of metrics proposed hereafter are not intended to be a de�nitive set� The metrics

were chosen for the purpose of highlighting di�erences between speci�cation and implemen�

tation when both are expressed in CSP� It was not evident during the development of the

metrics which metrics would prove most useful� Indeed� it transpired after the initial set of

experiments that some of the proposed metrics were only applicable to Type I CSP systems

�i�e�� bit�protocol problems�� further metrics had to be developed tailored to Type II CSP

systems �i�e�� those involving a high degree of recursion� such as the Towers of Hanoi�� A

key feature of the proposed metrics therefore is that they encompass as far as possible the

features of CSP which relate to the model de�ned in Chapters � and ��

The tailoring of metrics to suit the application domain emphasises an important lesson

learnt from the work in this thesis� Even when using the same notation �in this case CSP��

there is no generally applicable set of metrics� there has to be a certain amount of re�ection

and �exibility in the choice and interpretation of metrics� However� in the �rst instance�

obvious metrics to investigate were those based on the features of a typical CSP process

and that is the basic reason for the choice of the twelve metrics� In addition� as part of the

overall research approach� the seeding of faults into the implementation during the re�nement

process and the subsequent e�ect that this had on the metrics values was also investigated

�although� it must be stated� to a lesser degree than the main focus of the work which was



the examination of the re�nement process in the absence of faults��

In the next section� we describe the re�nement metrics developed� outlining why each

is useful as a re�nement metric and how a developer may bene�t from the information it

provides� In Section ��� we describe the motivational issues regarding the development of

our metrics and in Section ��� we discuss their empirical and theoretical aspects� Finally� in

Section ��� we present our conclusions�

��� The metrics developed

The metrics developed embody the principle of information hiding in the form of processes

whose internal behaviour is hidden from the outside world� the process is viewed as a black�

box� As a result of re�nement� this hidden behaviour can take the form of sub�processes all

of whose behaviour may be hidden by the developer� Henceforward� we de�ne a re�nement

step as�

a point in the development of an implementation at which a comparison of the

speci�cation and its implementation is made� this comparison determines whether

the implementation re�nes the speci�cation�

A re�nement step can be viewed as a checkpoint of a process �following the principle of

step�wise re�nement�� Given a top�level description �speci�cation� of a process� successive

re�nements are made until the developer decides that the implementation is at a low enough

level of granularity and satis�es the original speci�cation� We then talk in terms of !suc�

cessive re�nement steps" to produce an implementation from a speci�cation� This principle

is embodied in our re�nement metrics� The list of the twelve re�nement metrics proposed

is given in Table ��	� One of the main aims of the empirical evaluation undertaken was to



Metric Description
� Number of states in the speci�cation
� Number of states in the implementation
� Number of distinct actions in the speci�cation
� Number of distinct actions in the implementation
� Number of hidden actions in the implementation

 Number of visible actions in the implementation

 Number of sub	processes in the speci�cation
� Number of sub	processes in the implementation
� Number of additional actions in the implementation
�� Number of non	divergent states in the implementation
�� Number of transitions in the implementation
�� Number of harmless partially divergent states

Table ��	� Re�nement metrics

examine the changes in selected metrics in those cases where the cardinality of the state

space of both the speci�cation and its implementation was systematically increased�

The state space of a CSP process can be increased in a controlled way by increasing the

number of values which can be passed down the channels de�ned in that process� such an

increase can be achieved by simply editing the CSP code to increase the data values the

process is able to use� The exact e�ects are analysed in Chapters � and 
�

In the sequel� we examine each of these metrics in turn� providing a justi�cation for each�

considering any limitations in their use and commenting on how the value of the metric may

change as the size of the state space increases�

�� Number of states in the speci�cation

Every state in the speci�cation is unique� each state identi�es the current status of the

process in terms of the progress it has made� State information relating to the speci�cation

is available when a re�nement check is run between the speci�cation and its implementation

�using the facilities of the FDR model�checker�� For the two examples used in the following



chapter� the speci�cation is assumed to remain unchanged during re�nement �� The number

of states in the speci�cation will increase if the number of values declared in the speci�cation�

capable of being passed down a channel� is increased� A speci�cation is normally composed

of a �small� set of channels and other operators and� hence� we would expect the number of

states in the speci�cation to expand relatively slowly vis�#a�vis the corresponding number in

the implementation�

�� Number of states in the implementation

This metric is produced when a re�nement check is run using the FDR model�checker� If the

implementation re�nes the speci�cation then� by the de�nition of re�nement� there should

be more states generated by the implementation than by the speci�cation� The number of

additional states in the implementation would indicate the extent to which the developer has

re�ned the implementation in terms of adding extra behaviour� For example� adding more

channels increases the capabilities of an implementation by increasing the opportunities for

communication� We would expect the gap �in terms of the size of the respective state spaces�

between speci�cation and implementation to grow at an increasing rate due to re�nement�

The number of states in the implementation will increase if the number of values capable

of being passed down a channel is increased� since the implementation will normally comprise

a larger number of channels than the speci�cation� the number of states in an implementation

will tend to grow at a much faster rate than that of the speci�cation when extra values are

added to a channel�s capability� A study of how the state space increases as data values

increase is examined in more detail in the subsequent two chapters� For di�erent application

�One interesting extension to the work contained in this thesis might be to analyse the e�ects in terms of
the metrics values of modifying the speci�cation� i�e�� removing the assumption that the speci�cation models
the requirements exactly� A small sample of tests were made under these conditions� the results of which
are described in the �nal chapter�



domains� the rate of increase of the state space of the implementation is likely to vary

enormously� For example� it was found that increasing the state space of Type II systems

was far more problematic than for Type I systems�

�� Number of distinct actions in the speci�cation

The speci�cation will contain a minimum set of actions which accurately capture the stated

requirements� From this minimum set� the implementation will be derived� In this thesis�

distinct actions refers to the combination of possible values which a channel is capable of

holding� In the programmed implementation of our model� an identi�er is expressed in terms

of a CSP channel capable� at any one point� of holding more than one value� For example�

for a channel

left � x

if x can take the values zero or one� then this represents two distinct actions� The number

of distinct actions can be increased by increasing the number of values in the datatype set

within the body of the CSP process� Increasing the number of values capable of being passed

down a channel will therefore increase the number of distinct actions in the speci�cation�

We note� in passing� that the number of distinct actions �in both the speci�cation and its

implementation� can obviously be increased by the addition of new channels as well as by

increasing the capacity of existing channels� We also note that� in a sense� before re�nement

starts� the implementation and speci�cation could be considered as identical �i�e�� they are

one and the same process��



�� Number of distinct actions in the implementation

It may be useful for a developer to know the number of distinct actions in the implementation

in order to quantify the additional capabilities of either introducing new channels as part

of the re�nement process or enhancing existing channels� Extra behaviour can be either

hidden or observable� For example� the addition of the mid channel used in earlier examples

allowed a single�place bu�er to become a two�place bu�er� the extra capability was hidden�

Increasing the number of values capable of being passed down a channel will increase the

number of distinct actions in the implementation�

�� Number of hidden actions in the implementation

The number of hidden actions in the implementation indicates the extent of information

hiding invested in the CSP process by the developer� What we are trying to capture with

this metric is the number of actions which the process is capable of executing internally

�unobservably�� This metric may give an indication of the extent to which the developer

has thought about the design of the process� since the addition of hidden behaviour to the

implementation indicates that the developer is aware of speci�cation behaviour� In other

words� the developer is fully aware of the possibilities for adding hidden behaviour to the

implementation through extensive knowledge of the behaviour of the speci�cation�

Just as in the object�oriented paradigm� where decisions regarding encapsulation and

coupling need to be thought through carefully� so the same is true of CSP�based processes�

The extent of hiding behaviour in a CSP process may re�ect a well�thought out design by

its conformance to the black�box approach�



�� Number of visible actions in the implementation

A developer may be interested to know the number of actions which can be executed observ�

ably� in many cases� those actions which can be observed visibly in the implementation will

have corresponding actions in the speci�cation �since� strictly speaking� all re�ned behaviour

should be hidden�� This metric may help to identify commonalities between the implemen�

tation and speci�cation� in the context of a fault in the implementation� knowledge of which

parts of the implementation overlap with the speci�cation may help in the fault detection

process� In Chapter 
� limited fault�based analysis is described for each of the four systems

investigated �� We note that� although this metric is derivable by subtracting the number

of hidden actions from the number of distinct actions in the implementation� the distinc�

tion may serve a useful purpose in the ensuing chapter when analysing scatter plots and

correlation values�

�� Number of sub�processes in the speci�cation

The speci�cation is unlikely to contain the same level of decomposition as the implementation

and therefore is unlikely to contain the same number of sub�processes� Often� a speci�cation

will contain zero sub�processes� indicating that all of its behaviour is observable� One such

example is the single�place bu�er� used as an example in Chapters 	� � and �� which contained

zero sub�processes�

�Available literature in the area of fault seeding is large� The analysis of fault seeding in this thesis
was only preliminary in the sense that the conclusions are tentative� and hence need to be examined more
thoroughly� Enough data was collected� however� to at least get an idea of the e�ect of seeding faults within
CSP processes�



	� Number of sub�processes in the implementation

An important part of incremental development is the ability to construct a larger process

by glueing together smaller� stand�alone processes� In �AG��b�� it was shown how the ar�

chitecture of a system could be viewed in terms of components and the glue holding those

components together�

As developers we would be interested to know the number of sub�processes belonging to

a process in order to measure the extent of decomposition that we had chosen to incorporate

into the implementation� In terms of program maintenance� where the maintainer is often

not the original coder� knowing the extent of decomposition might be useful in pinpointing

the source of required maintenance� whether corrective� preventative or perfective� We would

also be interested in the number of states attributable to each sub�process� if� for example�

we wanted to compare two sub�processes for e�ciency� or to determine where the majority of

the process behaviour had been invested� This metric is produced by running a re�nement

check of a speci�cation against the corresponding implementation�

�� Number of additional actions in the implementation

This is the number of actions in the implementation not present in the speci�cation� It gives

an indication of the extra behaviour that the implementation is capable of engaging in� As

an implementation is re�ned� this metric should increase�

We note that preliminary empirical evaluation revealed that the metric counting the num�

ber of additional actions in the speci�cation is inappropriate� The implementation should

contain at least the same number of actions as the speci�cation �it should not normally

contain fewer actions��



��� Number of non�divergent states in the implementation

This metric indicates the number of states in the implementation which� after relabelling

and hiding� have corresponding states in the speci�cation� To obtain this metric requires

an analysis of the set of states in the implementation� An implementation which re�nes a

speci�cation will contain only non�divergent states� If there are faults in the implementation�

not all states will be non�divergent �i�e�� they will be classed as partially divergent states��

Equally� if a state in the implementation does not appear in the speci�cation� it will be

classed as a partially divergent state�

��� Number of transitions in the implementation

For problems which are� by their nature� communication�based� a large number of the un�

derlying state transitions will be handshake �or tau� operations representing the exchange

of data between the di�erent sub�processes of the process� This metric would therefore be a

measure of the extent of communication�based computation in a process� in theory� di�erent

applications within the same domain should exhibit similar levels of communication� For

example� we would expect the multiplexed bu�er and alternating bit protocol examples to

exhibit broadly similar communication patterns�

On the other hand� domains such as those typi�ed by the Dining Philosophers and Towers

of Hanoi problems may exhibit completely di�erent communication patterns� Investigation

of this sort of feature is central to the analyses contained in the next two chapters�

��� Number of harmless partially divergent states

As well as the number of transitions in the implementation� the number of harmless partially

divergent states was also collected� Whilst a strong relationship between this metric and



the previous metric was expected for implementations which re�ne their speci�cations� the

relationship between the two metrics in other circumstances such as part�re�nement �i�e��

checking just part of the implementation against the speci�cation� is not so clear� In Chapters

� and 
 we investigate the relationship between these two metrics�

We next discuss some of the issues raised by the proposed metrics�

����� Discussion

Although there has been considerable interest in the use of metrics for various types and sizes

of system� see �CS��� for example� to date few metrics have been developed to capture features

of CSP re�nement� Re�nement has been viewed in the past as a technique of program

development in the formal methods community� rather than as an applicable discipline in

the empirical software engineering domain�

More importantly� very few sets of proposed metrics capture either features of the design

or features of the development process� Capturing metrics of the process rather than the

product has obvious implications for the overall time and e�ort of development� If we can

understand problems associated with the development process� we will be in a better position

to understand some of the problems associated with the development life cycle such as late

delivery of projects or over�budget projects�

We note �rstly that the re�nement metrics proposed in this thesis are all capturable au�

tomatically by a programmed implementation� In any system containing a large number of

states� manual collection would be error�prone� cumbersome and time�consuming� We note

secondly that the re�nement metrics proposed and our model of divergence were designed to

be applied to a subset of processes� i�e�� to those expressed in CSP� They may not necessarily

be appropriate in other environments� for example� processes expressed in high�level lan�



guages such as C�� �Str���� The metrics chosen are all counting metrics� and are relatively

simple to collect and interpret� We see this as a positive feature� since simple metrics are

often the most e�ective� We note �nally that�

� since all states in the speci�cation are non�divergent� the number of non�divergent

states in the speci�cation is the same as its number of states�

� the number of partially divergent states in an implementation can be calculated by

subtracting the number of non�divergent states from the total number of states�

From these proposed metrics� divergence can then be expressed at varying levels of granu�

larity� in terms of any of the following�

	� The number of extra states present in the implementation�


� The number of extra actions present in the implementation at each re�nement step�

This would indicate the extent to which extra computation had been introduced into

the implementation at that re�nement step�

�� The type of each state and action within an implementation�

�� For each sub�process within an implementation� the states� actions and the type of each

state� At di�erent levels of abstraction� we can also determine the level of information

hiding in the implementation in terms of sub�processes and hidden actions�

����� Normalisation of the metrics values

One consideration which should not be overlooked is the possibility of normalising our re�ne�

ment metrics to take account of the di�erence in size between one process and another �i�e��

the speci�cation and its implementation�� However� the notation of CSP processes is unlike



that of programs written in the procedural or object�oriented paradigm� This makes it prob�

lematic to normalise on any attributes of a CSP process� such as the number of lines of code�

The counting metrics developed allow meaningful comparisons to be made between processes

based on states� actions� extent of hiding� etc� We expect� in general� the implementation to

be larger than the speci�cation �in terms of actions and states� and this would be re�ected

in the metrics values obtained from comparison of a speci�cation and its implementation�

The same principle applies to the comparison of one implementation with another� in the

case where we would like to know which contains the greater number of states� actions and

extent of hiding� for example�

As an example of the CSP processes we will be describing in the following chapter �and

to illustrate some of the features relevant to the metrics just described and the analysis in

the next chapter�� consider the same example as that given in Chapter 	� of the single�place

bu�er implemented by using two sub�processes�

����� Example

The speci�cation is represented by COPY and the implementation by SYSTEM�

DATATYPE � 
����

channel left�right � DATATYPE

channel mid � DATATYPE

COPY � left � x �� right � x �� COPY

SEND � left � x �� mid � x �� SEND

REC � mid � x �� right � x �� REC

SYSTEM � �SEND 	� 
� mid �� �� REC
 � 
� mid ��

In Chapter � we described how� through the use of both hidden identi�ers �or channels as

they are more commonly known� and relabelling� an implementation can be observationally



equivalent to its speci�cation� but may also contain extra identi�ers which may or may

not be hidden� Our de�nitions of a non�divergent and partially divergent state were based

on the equivalence or otherwise of states after hiding and relabelling had been taken into

consideration� The example just given encapsulates all of these CSP features�

We can now view the distinction between a non�divergent state and a partially divergent

state as necessary for the development of our re�nement metrics� not least because they

allow questions such as the following to be answered�

	� For how long �in terms of the number of state transitions� is the implementation in

a partially divergent state� This would tell us for how long a process is exhibiting

unspeci�ed behaviour�


� Which sub�sequences of states in the implementation are non�divergent states�

If we know that the implementation makes a transition from a non�divergent state to another

non�divergent state� then both states contain no other channels other than those that were

either hidden or included in the speci�cation� the implementation re�nes the speci�cation�

Equally� if an implementation makes a transition from a partially divergent state to a par�

tially divergent state then both states contain extra channels which do not appear in the

speci�cation� These are all conclusions we can draw from our de�nitions of non�divergent

and partially divergent state�

In the following section� we describe the empirical aspects of our approach�

��� Development of the metrics

Empirical evaluation can be used to investigate the association between proposed software

metrics and other indicators of software quality such as maintainability or understandabil�



ity� What we are attempting to do by validating metrics is to show how they can help us

understand how software is constructed� Validation in this sense can take a number of forms

including hypothesis testing� cost models and fault injection techniques�

The examples we present in the following chapter represent an empirical investigation

of our metrics in order to establish their usefulness to a developer� based on our model of

divergence� On its own� the empirical evaluation of metrics is not su�cient� the theoretical

aspects of metrics must also be considered�

In the next section� issues relating to the theoretical nature of our metrics are discussed�

����� Criteria for theoretical validation

In measuring attributes of software� Fenton �FP��� poses several questions� applicable for

real�world entities� but more di�cult to answer when considering software� The questions

posed highlight the more abstract nature of software and the problems associated with

software measurement� For each of the following points� we consider the role of our model

of divergence and how our re�nement metrics �gure in terms of the theoretical issues raised�

	� How much must we know about a software attribute before it is reasonable to consider

measuring it� Our model makes the distinction between two types of state� for example�

This then allows metrics to be produced based on an underlying model of these two

features�


� How do we know if we have really measured the software attribute we wanted to

measure� Since re�nement is made to an implementation in terms of extra behaviour

�and extra behaviour can be expressed in terms of states and actions�� then it is fair

to assume that the metrics proposed do capture aspects of re�nement�



�� What meaningful statements can we make about a software attribute and the entities

that possess it� Since our metrics are counting metrics� we can easily compare pro�

cesses in terms of numbers of states� actions� etc�� and make valid judgements on the

di�erences between any �nite number of processes in these terms�

�� What meaningful operations can we perform on measures� Mathematical operations

are meaningful on counting metrics �based on the absolute scale of measurement�� To

say that one process has twice the number of states� actions or sub�processes compared

to another process has an intuitive and mathematical meaning�

The theoretical approach to the validation of metrics requires us to clarify what attributes of

software we are measuring� and how we go about measuring those attributes �Fen��� KPF���

BBM���� a metric must measure what it claims to measure�

We next introduce the idea of the representation condition and demonstrate how our

metrics conform to this and other theoretical principles of metrics�

Fenton �FP��� describes the representation condition� satisfaction of which is the pre�

requisite for any metric to be viewed as valid� The representation condition states that

any measurement mapping must map entities into numbers� and empirical relations into

numerical relations� such that those empirical relations are preserved� In other words� our

observations in the real world must be re�ected in the numerical values we obtain from

the mathematical world� Since our measures of re�nement are expressed in terms of simple

counts� we expect the metrics collected to re�ect the observed re�nement values� For exam�

ple� if one process appears to contain a larger amount of information hiding than another

process� then this will be re�ected in the metrics obtained �in particular� in the number of

sub�processes and hidden actions��



Kitchenham et al� describe a list of features of metrics which must hold for any metric to

be valid �KPF���� Metrics are usually based on internal �low�level� attributes� derived from

external �high�level� attributes� For our model� the internal directly measurable software

attributes �derived from software �delity� are encapsulated in the twelve proposed re�nement

metrics�

The following criteria must hold for a direct metric �i�e�� a metric associated with a

directly measurable software attribute� to be considered valid�

� For a software attribute to be measurable� it must allow di�erent entities to be distin�

guished from one another� As an example� it is possible for one object to be travelling

faster than another object� Analogously in the context of software� it is feasible for one

OO class to have more methods than another� From the example expressed in CSP�

given earlier in this chapter� it is obvious that one process can have more states than

another process� It is expected� for example� that an implementation will� through the

process of re�nement� contain more states than the corresponding speci�cation�

� A valid metrics measure must obey the representation condition� that is� it must pre�

serve all intuitive notions about the software attribute under consideration and the

way in which the measure distinguishes between entities� For example� one object

may indeed be travelling faster than another object� and when measured in miles per

hour �mph� this observation holds true� Applied to software� counting the number of

methods in two OO classes� which appear di�erent in size� reveals that one contains

more methods than the other� The same is true in the case of our metrics in terms of

the number of distinct actions and sub�processes� for example�

� Each unit of a software attribute contributing to a valid measure is equivalent� Con�



sidering the speed of a particular object� the unit di�erence between �� mph and �	

mph is the same as that between �	 mph and �
 mph� and so on� Applied to software�

each OO class method is considered to be the same �it adds one to the total number

of methods�� Since each of our re�nement metrics are counting metrics� each unit�

whether state or sub�process� for example� is considered to be the same� No distinction

is made between one state or another in terms of its unitary value� the same can be

said of sub�processes�

� Di�erent entities can have the same software attribute value within the limits of mea�

surement error� Continuing the analogy� one object may indeed be travelling at an

identical speed to another object� Applied to software� two OO classes may well have

the same number of methods� and in terms of our re�nement metrics it is quite feasible

for one process to have the same number of states or sub�processes� for example� as

another process�

The ability to quantify the extent to which an implementation re�nes a speci�cation� by

using our set of proposed metrics� can be put to use in various ways�

Firstly� we can decide which of several completed implementations re�ne a speci�cation

the most� In such circumstances we may want to choose the implementation which is furthest

�in terms of divergence� from the speci�cation� as this would represent the most re�ned

implementation� However� the meaning of furthest would have to be clari�ed� One option

would be to use the number of states as the distance metric� The di�erence between two CSP

processes would then be expressed in terms of the di�erence in the number of states� Another

option may be to use the degree of hiding in the implementation �given by the number of

sub�processes�� Some of these issues� including the notion of a re�nement ordering� were

investigated in �MMM�
� and the purpose of the next two chapters is to explore some of



these issues in a CSP setting�

Secondly� if several re�nement options are available to choose from� then producing a

metric which captures the e�ect of that re�nement �in terms of metrics values� can provide

valuable information to the developer in deciding which re�nement option to choose� In our

case� the metrics values could therefore be used to guide the development process�

����� Other metrics collected and considered

As well as the metrics described in earlier sections of this chapter� the CPU timings for each

re�nement run were also collected� The motivation for collecting this data was that timing

information may shed light on features of a re�nement check which the other metrics may

have disguised� This was particularly important in the context of the di�erent application

domains being investigated� Di�erent styles in the way re�nement was achieved lead to

interesting di�erences in the time it took to run a re�nement check for speci�cation and

implementation� The two non�protocol based applications investigated �the Dining Philoso�

phers and Towers of Hanoi� showed very di�erent characteristics to those of the �rst two

�multiplexed bu�ers and the alternating bit protocol� in terms of the way they were written

and the size of the state space examined� The nature of CSP processes also meant that

metrics based on program complexity �Hal

�� or metrics based on lines of code� were less

appropriate than they are in other programming languages� The depth of recursion used in

each of the problems considered also made counts such as lines of code inappropriate�

As a further note on the empirical evaluation� in the case of implementations with a

large state space� each re�nement run often required a time interval of one and a half hours

between starting and completing� Some re�nement runs had to be terminated because

virtual memory on the server being used �rhea�dcs�bbk�ac�uk� was exceeded� In such cases�



no metrics could be obtained from the re�nement checks� We postpone a full explanation of

the empirical evaluation until the next two chapters�

��� Conclusion

In this chapter� we have described the development of the re�nement metrics we will be using

in our comparison of a speci�cation and its implementation� We looked at the empirical and

theoretical nature of metrics and a set metrics were then proposed as a means of quantifying

divergence in the sense we have described in Chapter �� These metrics capture elements of

the process as an implementation is successively re�ned and may give an insight into the

re�nement process and the choices available to a developer during the process of re�nement�

The metrics may also shed some light on the behaviour of CSP in the presence of faults in

the implementation�

In the next two chapters� we present our empirical evaluation� Four examples were chosen

as the basis of the empirical evaluation� As well as looking at metrics from the re�nement

�and non�re�nement� point of view for each of these example problems� the e�ect of introduc�

ing selected faults into the implementation was also touched upon� Empirical evaluation will

help to establish how useful the metrics are in re�ecting features of the re�nement process

and how e�ectively they capture properties in di�erent application domains�



Chapter �

Empirical evaluation �Type I CSP

Systems�

��� Introduction

In the previous chapter� a set of metrics was proposed which forms the basis of an empirical

study of divergence� The aim of developing these metrics is to investigate the features of

CSP processes during the process of re�nement� In this chapter we describe the �rst part

of this empirical study in which these metrics are collected� detailing the types of process

investigated� the data analysis undertaken and an interpretation of the results for the two

Type I CSP systems� An assessment of the proposed set of metrics was a main objective of the

thesis �see Chapter 	� Section 	���� A major part of this chapter is to analyse their behaviour

in the context of re�nement and non�re�nement �this was the other objective of the thesis

stated in Chapter 	�� In other words� when� �rstly� an implementation satis�es �re�nes�

the speci�cation and� secondly� when it does not �in the latter case� because it may contain

behaviour unrecognised by the speci�cation or lacks behaviour required by the speci�cation�

��



� �

i�e�� non�re�nement of the speci�cation�� An equally important part of this chapter will be

to compare the results from the two Type I CSP systems analysed� The proposed metrics

are the means by which di�erences between the speci�cation and implementation are made

explicit�

In Section ��
� we describe the motivation for the empirical study� Section ��� gives a

brief description of the two systems investigated� how the study was carried out� and the

data analysis for the �rst two problems in the context of re�nement� Interpretations of the

results from this analysis are also given� supported by scatter plots and histograms� Section

��� gives a similar analysis to that of Section ���� but in the context of non�re�nement�

Finally some conclusions are presented in Section ����

��� Motivation

The motivation for the empirical study is�

Firstly� there are likely to be features of the re�nement process of CSP systems which

have yet to be uncovered through a study of this sort� The software engineering community

is still trying to learn about software construction and the behaviour of the programmers

that write the software� Indeed� major issues such as the use of inheritance is the subject

of debate within the object�oriented paradigm� for example� issues to do with the use of

inheritance� In short� empirically�based research is still in its infancy and many more studies

in all aspects of software engineering need to be undertaken�

Secondly� very little is understood about the architecture of systems across di�erent

application domains and di�erently sized problems� For example� whether all solutions to

bit�protocol problems exhibit similar levels of information hiding or exhibit similar patterns

of communication� Equally� whether highly recursive systems �such as those described in



� �

the next chapter� exhibit completely di�erent features to those less recursively�oriented� An

important objective of the empirical study is to try and improve our understanding in these

areas�

Thirdly� CSP systems lend themselves naturally to decomposition and synthesis� For

example� implementation of the two�place bu�er �introduced in Chapter 	� comprised two

processes communicating via an intermediate channel�

The empirical study will examine features of CSP systems as they are combined with

�or decomposed further into� other such systems� This means that in addition to situations

where the implementation re�nes the speci�cation� there will also be an analysis of situations

where the implementation does not re�ne the speci�cation� in such cases� instead of focusing

on re�nement� we look at the di�erences between the speci�cation and its implementation as

the latter is constructed� This situation would also arise in the case of fault injection where

we would like to be able to see what di�erences there are between a speci�cation and its

implementation as the latter is being constructed �a topic we very brie�y address in Chapter


��

Four di�erent CSP systems were chosen for the empirical study� In this chapter� the �rst

two are empirically investigated in the context of re�nement and non�re�nement� These are

two bit�protocol applications� that is� applications whose solution is largely based around

communication between sub�processes to form the overall process �Type I CSP systems�� In

the next chapter� the other two� representing classical problems in computer science� are also

empirically investigated �Type II CSP systems��

As well as a di�erent emphasis on the underlying problems they addressed� there was

also a di�erence in the type of computing resource used by each pair of CSP systems� Type

I CSP systems used predominantly system main memory� whereas Type II CSP systems



� �

tended to use system stack space due to their dependance on recursive structures� We also

note that Type I CSP systems used more interleaving and non�deterministic operators than

Type II CSP systems �these are key CSP semantic features��

We note further that the two types of system identi�ed �Type I and Type II� are not

exhaustive� this taxonomy is more for convenience and for clarity of explanations in the

thesis� The Railway Crossing system� for example� examined brie�y in Chapter 
� could

well form the basis for another type of CSP system since it exhibits properties somewhere

between Type I and Type II systems�

We remark at this point that the four CSP systems were originally presented in �For�
��

they have� however� been modi�ed in certain ways to control the re�nement checks� and later

on� in the context of fault injection� to in�uence the behaviour of the re�nement process�

��� The four examples

The four CSP systems used for the empirical study were�

	� System one� A Multiplexed Bu�er


� System two� An Alternating Bit Protocol

�� System three� The Towers of Hanoi

�� System four� The Dining Philosophers

The choice of these four systems was made on the basis that they should be of realistic size

�in terms of the problem which they address�� capable of being expanded to a large state

space� By large state space� we expected the upper limit �through prior pilot experiments�

to be around four hundred thousand generated states� This value could have been raised�



� �

but would have started to compromise limits on the virtual memory of the machine on which

the re�nements were being run�

There should be two systems within each of the two domains identi�ed �Type I and Type

II� to allow a comparison both between and within domains� The domains themselves should

also be widely contrasting in their nature� Hence� there are two systems from the bit�oriented

domain� and two from the classical computer science domain� The bit�oriented domain is

typical of the types of problem suited to CSP� the last two systems are more problem based

and highly recursive in nature� The fact that they were highly recursive highlighted its own

problems� not least of which were the large internal structures� for example� directed graphs

generated by the FDR model�checker� we describe these issues when we analyse Systems

three and four in the next chapter�

In the following sections� the two bit�protocol systems are presented in detail� For each�

the experiments undertaken are also described and the results analysed� comparisons between

the two systems are presented at various points� For each of the two systems the following

tests were carried out�

	� Re�nement tests for each of the two systems � this is where the implementation re�nes

the speci�cation�


� Non�re�nement tests for each of the two systems � to understand how systems are

composed �synthesised� to construct the implementation and the changing features

of systems as this happens� a large number of re�nement tests were carried out and

metrics were collected for such tests of sub�processes against the speci�cation�

We note that all four systems by their speci�c nature imposed some limitations on what

re�nement checks could be carried out� For the �rst two systems we could only expand the



� �

size of the state space up to a limit imposed by the machine on which they were running�

This applied to both the re�nement tests and the non�re�nement tests� These limitations

also explain why� for each of the four CSP systems analysed� di�erent numbers of re�nement

checks were undertaken�

The CSP code for the four systems is contained in Appendices A to D� However� in the

following descriptions� fragments of the CSP code from these appendices are reproduced to

aid the reader�s comprehension of each system�

	���� System one� a multiplexed bu�er system

The full CSP code for the multiplexed bu�er system is given in Appendix A� The following

description is on the whole from �For�
��

The idea of this example is to multiplex a number of bu�ers down a pair of

channels� They can all be in one direction� or there might be some in both

directions� The techniques demonstrated here work for any number of bu�ers�

and any types of transmission� The number of states in the system can be easily

increased to any desired size by increasing either the number of bu�ers� or the

size of the transmitted dataset�

Figure ��	 illustrates the overall structure of the system� The speci�cation of such a system

can be expressed simply as

Copy�i
 � left�i
 � x �� right�i
 � x �� Copy�i


Spec � ��� i�Tag � Copy�i


where i represents the instance of a transmitter or receiver� The ��� symbol represents an in�

terleaving of behaviour between transmitters and receivers� The implementation �Figure ��	�
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Figure ��	� Multiplexed bu�ers with acknowledgment

consists of n transmitters �Ti�� the same number of receivers and four other processes which

handle communications between the transmitters and receivers� SM �Send Message� multi�

plexes transmitted data and RM �Receive Message� demultiplexes messages� RA �Receive

Acknowledge� and SA �Send Acknowledge� handle the acknowledgments for these messages�

Key to the understanding of this and the following problem was the ability to manually

increase the state space by altering the values that could be passed down the channels of a

process� The following datatype declarations are for Tag and Data� these were changed to

increase the size of the state space� and hence generate a new set of metrics�

datatype Tag � t� � t� � t�

datatype Data � d� � d�

These values could be changed as and when necessary� and the re�nement check re�run� The

overall system �implementation� can be viewed as an LHS communicating with an RHS with

hidden channels mess and ack� namely�

System � �LHS 	�
�mess� ack���� RHS
 � 
�mess�ack��



� �

LHS �see ��� below� is a composition of multiple transmitters �see de�nition of Txs given by

����� with SndMess and RcvAck being interleaving operations� The channels

snd�mess

rcv�ack

are hidden� In this case� LHS is de�ned by

LHS � �Txs 	�
�snd�mess� rcv�ack����

�SndMess ��� RcvAck

�
�snd�mess� rcv�ack�� ��


Looking at each of the three sub�processes of LHS in turn� we note that the set of transmitters

Tx�i� is de�ned by

Txs � ��� i�Tag � Tx�i
 ��


Tx�i
 � left�i � x �� snd�mess�i � x �� rcv�ack�i �� Tx�i


SndMess � 	� i�Tag � �snd�mess�i � x �� mess � i�x �� SndMess


RcvAck � ack � i �� rcv�ack�i �� RcvAck

Correspondingly� RHS is de�ned by

RHS � �Rxs 	�
�rcv�mess� snd�ack����

�RcvMess ��� SndAck

�
�rcv�mess� snd�ack��

Rx�i
 � rcv�mess�i � x �� right�i � x �� snd�ack�i �� Rx�i


Rxs � ��� i�Tag � Rx�i


RcvMess � mess � i�x �� rcv�mess�i � x �� RcvMess

SndAck � 	� i�Tag � �snd�ack�i �� ack � i �� SndAck




� �

	���� Re�nement details

The �rst experiment for System one involved a set of thirty�seven re�nement checks for the

following asertion�

assert Spec �FD� System

The following results were produced by the FDR model�checker with three Tags and one

Data value as parameters �we use this data con�guration as an example to illustrate the

typical output from the FDR model�checker��

Checking mbuff�csp

Starting���

Compiling���

Reading���

Loading��� done

Starting���

Compiling���

Reading���

Loading��� done

�� Normalising specification

�� Normalisation complete

Starting timer

About to start refinement

Refinement check�

Refine checked ���� states

With ���� transitions

Stopped timer

Resource Start End Elapsed

Wall time ������� ������� �

CPU �self
 � � �

CPU �sys
 � � �

�inc children


CPU �self
 � � �

CPU �sys
 � � �

true

The output re�ects the fact that the implementation re�nes the speci�cation �the word true

at the end of the output indicates that the implementation re�nes the speci�cation�� For each
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of the thirty�seven re�nement checks� the value of Tag or Data was changed accordingly� Each

re�nement check produced a set of the twelve metrics described in Chapter �� Interestingly�

because of the limitation on virtual memory of the machine on which the tests were being

run �rhea�dcs�bbk�ac�uk�� it became impossible to obtain metrics beyond a system with �ve

Tags and three Data values� i�e�� with the following datatype de�nitions�

datatype Tag � t� � t� � t� � t� � t�

datatype Data � d� � d� � d�

We note that� in some cases� re�nement jobs were still hanging two months later inside the

system�

	���� Summary data

Summary metrics for System one are presented in Table ��	� The columns represent the

minimum� maximum� median� mean and standard deviation values for all twelve metrics for

the thirty�seven re�nement checks of Spec against System� The mean and median values

have been rounded up or down where appropriate�

Metric min� max� median mean std�dev�
� Number of states in the speci�cation � ���� ��� �
� ������
� Number of states in the implementation �
 �
���� ����� �
��� 
�������
� Number of distinct actions in the speci�cation � 
� �
 �� ���
�
� Number of distinct actions in the implementation �� �
� 
� �� �����
� Number of hidden actions in the implementation � �� �� �
 ����

 Number of visible actions in the implementation �
 ��� �
 
� ����


 Number of sub	processes in the speci�cation � �� � � ����
� Number of sub	processes in the implementation �� �� �� �� ���

� Number of additional actions in the implementation �� �� �� �� �����
�� Number of non	divergent states in the implementation �
 �
�
�� ����� �
��� ��
��
���
�� Number of transitions in the implementation �� 


��� �
��� 
���� ���������
�� Number of harmless partially divergent states 
 ����
� ���� ����� 

������

Table ��	� Summary metrics for System one
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All metrics values were obtained independently bearing in mind that metric � added to metric

� gives metric �� We also observe that for implementations which re�ne the speci�cation

�in contrast to non�re�nement�� the number of non�divergent states in the implementation

�metric 	�� equals the number of states in the implementation �metric 
��

It is noticeable that the maximum� median and mean number of transitions in the im�

plementation �metric 		� is larger than the corresponding values for the number of states in

the implementation �metric 
�� This is because the �transitions metric� includes the tau �or

handshake� action �Mil���� which is not included in the digraph from which the metric for

the number of states in the implementation is computed� The exception to this trend is the

minimum value for metric 		� which is smaller than that for metric 
� Inspection of the raw

data revealed an interesting trait� Implementations with small numbers of Tags and Data

values tended to generate more states than transitions� This was not the case for larger com�

binations of Tags and Data values� where the gap between these two metrics closed rapidly�

the number of transitions then overtook the number of states� Also of interest is the narrow

range of the number of sub�processes in the implementation �metric ��� indicating that as

the number of states increases� the architecture of the implementation remains fairly static�

this was found to be a feature of Systems one and two� in complete contrast to Systems three

and four �Chapter 
�� Scatter plot analysis in later sections of this chapter illustrates this

feature of Systems one and two in greater detail�

The minimum� maximum� median� mean and standard deviation CPU timings �in min�

utes� for the set of re�nement checks are provided in Table ��
� CPU timings are given since

they give an indication of the computational e�ort required by the FDR model�checker and

the program code used to generate the metrics�

The histogram for these timings is shown in Figure ��
� it shows the limit of the machine�s
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min� max� median mean std� dev�
System one ���� 
���� ���
 
��� ���
�

Table ��
� Summary CPU statistics for System one

virtual memory to cope with the problem to be around sixty�two minutes �this was the

re�nement check for the �ve Tags� three Data values con�guration��

Each re�nement check �and hence each bar on the histogram� represents a Tag value and

the associated set of Data values for that particular Tag �we will henceforward call this a

family�� Speci�cally� the �rst family comprises one Tag and one Data value� one Tag and two

Data values� one Tag and three Data values� etc� until the virtual memory of the machine

is exhausted� The second family comprises two Tags and one Data value� two Tags and two

Data values� etc� until again the virtual memory of the machine is exhausted� this pattern

is repeated up to six Tags and one Data value� �The above mode of computation of the

re�nement numbers obtains throughout the thesis�� The histogram thus re�ects six di�erent

families �one per Tag�� The limit of each family for each set of re�nement checks is given in

Table ����

Re�nement number Tags Data values
� 	 �� � ��
�� 	 �� � �
�� 	 �� � ��
�� 	 �� � �
�� 	 �
 � �
�
 
 �

Table ���� Limits of re�nement families

We note that for a low number of Tags� i�e�� one� two and three� an arti�cial limit was

placed on the number of re�nement checks undertaken� It was feasible to extend the one

Tag relationship to a very large number of Data values for example� but this would add very

little to the overall analysis� Most noticeable from Figure ��
 is the nearest timing to the
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Figure ��
� Histogram of CPU timings

limit of sixty�two minutes �i�e�� forty�two minutes� applicable to the four Tags and four Data

values con�guration� The next highest timing applied to the con�guration for �ve Tags and

two Data values taking around twenty�two minutes to complete� This illustrates the nature

of System one� in terms of the time it took to generate the twelve metrics as the state space

was increased� The underlying structures �e�g�� digraphs� representing the processes grew

large very quickly�

In the sequel we will analyse experiments which were carried out for a varying number

of re�nement checks� this was dictated by various factors such as the virtual memory of the

machine� the size of the stack� the application domain and whether we investigate re�nement

or non�re�nement� On occasion� where it is manifestly obvious� tables like Table ��� will be

omitted� �Note that each re�nement number induces a re�nement check��

	���� Re�nement scatter plots

Choice of scatter plots

Since there are twelve metrics in the proposed set� a choice had to be made as to which scat�

ter plots to produce for analysis from the one hundred and thirty�two possible combinations
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of pairs of metrics� Since we are investigating the �delity of an implementation with its spec�

i�cation� the choice of scatter plots was in�uenced strongly by those pairs of metrics which

would shed some light on the relationship between speci�cation and its implementation�

The scatter plots chosen represent pairs of metrics which it was hoped would reveal most

about the re�nement process and provide an insight into the �delity of an implementation

with its speci�cation� as such� there is strong emphasis placed on states� actions� transitions�

non�divergent states and hidden behaviour�

We note that a robust correlation coe�cient such as Kendall�s � could have been com�

puted for each pair of metrics to identify relationships worth further exploration� Exploratory

analysis for our selection of pairs of metrics did reveal mostly signi�cant correlations� How�

ever� the nature of the set of metrics collected� for example� number of states and transitions

in the implementation �between which there is an obvious intuitive relationship� meant that

� coe�cients only con�rmed what was evident from the scatter plots� In other cases� a

correlation coe�cient could not be computed� for example� where the values of one metric

�for all re�nement checks� were identical and the values of the other metric �for the same

re�nement checks� were wildly �uctuating� While valuable in certain cases� we feel that our

approach for investigating relationships is just as valid as an approach based on � correlation

coe�cients�

We also note that there was an element of prospecting in the choice of scatter plots in

the hope that this may have revealed interesting� yet unexpected relationships�� as it turned

out� a number of unexpected relationships did� in fact� arise from the analysis� All pairs

of metrics and hence scatter plots were considered� but only those of interest$relevance to

�The same can be said of the metrics themselves� We do not claim that they are the de�nitive set for
characterising �delity� In the worst case� all that might be learnt is that the set of metrics is inappropriate
for analysing �delity� However� the hope is that they will illuminate some aspects of the re�nement process
and hence of �delity�
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Figure ���� Metric 	� versus metric 	

the analysis were used in this thesis� As well as the equations of the lines and curves �tted

around the scatter plots� we also present� where appropriate� the relevant R�squared values

�Rsv� �see Appendix F� indicating the goodness�of��t of that line or curve�

Finally� we note that� in order to avoid confusion for the reader� for System one the

speci�cation is called Spec and for System two the speci�cation is called SPEC� In the sequel�

each of the scatter plots is titled with the two metrics it represents on the appropriate axes�

Figure ��� shows the relationship between the number of non�divergent states in the

implementation �metric 	�� and the number of states in the speci�cation �metric 	�� A best

�t straight line and quadratic curve are given� for both Rsv � ���
�

Interestingly� the analysis appeared to reveal an anomaly in the data when plotting metric

	� versus metric 	 for each family� One family showed a sudden increase beyond a certain

point implying that the number of non�divergent states was not constant� Inspection of

the raw data revealed that this phenomenon in fact represented two families� namely� the

	 Tag n Data value con�guration� where states in the speci�cation merely increase by one

on each new re�nement check and then continuation of this line for the � Tag n Data value
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Figure ���� Metric 		 versus metric 	

con�guration �hence the sudden rise�� The overall trend in the data� however� is given by the

monotonically increasing best �t quadratic curve� indicating an increasing rate in the growth

of non�divergent implementation states as the number of speci�cation states increases� On

the empirical evidence obtainable� the gradient of this curve is gradually increasing�

A similar trend is exhibited in Figure ���� plotting metric 		 versus metric 	� The Rsv

for the quadratic is ���� �compared with ���� for the straight line�� This relationship is not

entirely unexpected� since the increase in the number of transitions in the implementation

should rise at an increasing rate with increases in the number of states in the speci�cation�

It is worthwhile noting at this point that the number of �transitions� metric includes all

handshake �or tau� transitions and hence has a higher upper limit than the corresponding

number of non�divergent states in the implementation� Mathematical analysis supported

the observation that the quadratic curve in Figure ��� does indeed have a steeper gradient

than that of Figure ���� transitions are therefore generated more quickly than non�divergent

states for the same number of speci�cation states in System one�

The relationship between metric 	� and metric 
 is shown in Figure ����a�� This is a
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���degree straight line� i�e�� the number of non�divergent states is equal to the number of

states in the implementation� by de�nition of re�nement as was observed after Table ��	�

Inspection of the raw data revealed that for Figure ����b� there is a tendency for the

number of transitions in the implementation to increase at a slightly higher rate than the

number of states in the implementation �as the size of the datatypes� i�e�� Tag and Data values

is increased�� Evidence of this is given by the monotonically increasing best �t quadratic curve

�dashed� which meets the straight line at the point where x � ������ implementation states�

the relationship between these two metrics� i�e�� 		 and 
 is clear� implementation transitions

increase at a faster rate than implementation states� The straight line in this case is a better

�t �with Rsv � ����� compared to the quadratic �with Rsv � ������

This trend is more evident when looking at the corresponding histograms of Figure ����

These show that� moving from a con�guration of �ve Tags� one Data value �re�nement

number ��� to a con�guration of �ve Tags� two Data values �re�nement number ��� sees

the number of non�divergent states rise from 
�	��� to ������� For the same change of

con�guration the number of transitions rises from �����
 to �
�	
��

The relationship between transitions and states �Figures ��� and ����b�� for System

one would seem to re�ect the nature of the application domain and its dependence on

communication between CSP processes� In other words� protocol type applications tend to

contain a high proportion of handshake operations� a feature which was found to a lesser

extent in System two� and absent in Systems three and four�

Figure ��
�a� shows the number of harmless partially divergent states in the implemen�

tation against the number of states in the speci�cation �metric 	
 against metric 	�� Again�

the trend is for the number of harmless partially divergent states to rise at an increasing rate

as Tag and Data values are combined� This relationship �see dashed best �t quadratic curve
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Figure ���� Metric 	� versus metric 
 and metric 		 versus metric 
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Figure ���� Histograms showing increase in non�divergent states and transitions in the im�
plementation across re�nement checks

in Figure ��
�a�� resembles that in Figure ���� suggesting a strong relationship between the

number of transitions in the implementation �metric 		� and harmless partially divergent

states �metric 	
�� The outermost value ��� on this plot is for the con�guration of �ve Tags�

three Data values� Again� the inability to go beyond this point was due to the limitation

imposed by the virtual memory of the machine on which the experiments were undertaken�

The Rsv value for this curve is ��

� for the straight line� the Rsv is ���	�

From the summary metrics in Table ��	� it can be deduced that the number of harmless

partially divergent states �metric 	
� is consistently less than the number of states in the

implementation �metric 
�� The exact relationship is given in Figure ��
�b�� This �gure shows

the quadratic relationship �dashed line� and the linear relationship to virtually overlap� The

Rsv value for both is �����

The scatter plot in Figure ���� representing sub�processes in the implementation �metric

�� versus actions in the implementation �metric ��� shows no discernible pattern� The Rsv
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Figure ��
� Metric 	
 versus metric 	 and metric 	
 versus metric 


for best �t line is ��	��

However� inspection of the original data revealed that the number of sub�processes in some

cases remained static when the number of actions in the implementation was increased� and

in other cases increased� This is better illustrated with a bar chart� in Figure ���� the lighter

bars in the histogram represent actions and the darker bars represent sub�processes�

Both the scatter plot and the histogram seem to suggest that within development of

System one� there are some actions that do not a�ect the number of sub�processes� whilst
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Figure ���� Metric � versus metric �

Figure ���� Histogram of actions and sub�processes in the implementation across re�nement
checks

the addition of other actions causes the number of sub�processes generated to increase�

Interestingly� this trend was also noticed for System two� �We note that generation of

sub�processes through recursive invocation was a major inhibiting factor in our analysis of

Systems three and four�� In the case of System one� the reason behind this feature was due

to the type of action being added� In other words� it is due to the di�erence between adding

ack actions� which contained no variables and hence added little behaviour to the overall

process� and adding actions of the form left�x�y which generated a variety of sub�processes
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depending on the size of x and y datatype values� The ack actions represent the interface

between the sub�processes rather than intrinsic features of the sub�processes themselves and

hence cause fewer sub�processes as part of the hidden behaviour of a process�

Scatter plots in Figure ��	� reinforce the relationship between non�divergent states and

transitions in the implementation with reference to metric �� Key to the increase in the

number of non�divergent states and transitions is the increase in the number of actions in the

implementation� We observed the same phenomenon with reference to metric 	 �Figures ���

and ���� and metric 
 �Figures ����a� and ����b��� �The Rsv�s show the quadratic curves

to be the best �t in each case ����
 and ���� for �a� and �b�� respectively���

Figure ��		�a� shows an interesting feature� and reiterates a point made earlier� but then

it was made in terms of the number of actions in the implementation �Figure ����� As the

number of states in the implementation increases� the number of sub�processes in certain

cases remains static� and in other cases increases� The general trend� however� is for the

number of sub�processes to increase initially and then �atten out beyond a certain point

which would indicate the point at which adding behaviour �in terms of extra states� may

not necessarily cause more sub�processes to be generated� Again� the key to this question

�as was only later discovered when looking at System two� was in the di�erent types of

action embedded within a process� since di�erent actions were capable of generating dif�

ferent numbers of sub�processes� A CSP process predominantly containing ack commands

seems to generate fewer sub�processes than one using and manipulating data values �such

as left�Tag�Data�� the role of ack commands is to synchronise communication between

sub�processes� They do not feature in the more involved workings of those sub�processes�

Inspection of the raw data revealed the number of sub�processes to stabilise at around 
�

�Figure ��		�a��� Beyond this point� due to the limitations imposed by the virtual memory
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Figure ��	�� Metric 	� versus metric � and metric 		 versus metric �

of the machine� it was impossible to increase this number� �We note that� as a result of the

recursive nature of Systems three and four� a large number of sub�processes were generated

in a similar scenario� However� as will be explained in the following chapter� this caused its

own problems��

Figure ��		�b� shows the scatter plot of metric � against metric �� No immediate relation�

ship is clear which seemed unusual at �rst� since sub�processes should encapsulate hidden

behaviour� After careful thought� it became evident that the nature of this relationship is
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Figure ��		� Metric � versus metric 
 and metric � versus metric �

developer�oriented� i�e�� the extent of hiding in a CSP system is down to the developer and

will hence vary� A similar phenomenon is shown in Figure ��	
�a�� but more actions are

evident on the x�axis for each sub�process when compared to Figure ��		�b��

Finally� Figure ��	
�b� shows the relationship between the number of states in the im�

plementation and the number of states in the speci�cation� The number of states in the

implementation increases at a higher rate than the number of states in the speci�cation� the

Rsv for the quadratic curve is ����� and for the straight line is �����
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Figure ��	
� Metric � versus metric � and metric 
 versus metric 	

	���� Re�nement of System one� discussion

A number of conclusions can be drawn from re�nement within the context of the multiplexed

bu�er application� Perhaps not unexpectedly� the number of states and transitions increase

at an accelerating rate as the number of Tags and Data values is increased� This can be seen

clearly from the scatter plots �Figures ��� and ����b��� However� because of the dependence

on handshake operations within bit�oriented applications� the number of transitions �metric

		� rises at a faster rate than that of states� This is interesting for several reasons�
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Firstly� when we come to look at injecting faults into the multiplexed bu�er system� those

injected at the interface level �at the point where a sub�process communicates with another�

may propagate further and have di�erent features to those faults injected at other parts of

the process�

Secondly� from a modularity perspective� an optimum level of coupling may exist between

processes� which minimises the propagation of faults but maximises comprehensibility arising

from proper use of coupling� Although beyond the scope of this thesis� a useful exercise might

be to look at fault propagation� with varying numbers of sub�processes� investigated from

an empirical viewpoint�

From the analysis of the multiplexed bu�er application it would also appear that� in

certain circumstances� the number of sub�processes remains static when the behaviour of

the application �in terms of actions� is increased� This may re�ect the robust nature of

the architecture of a multiplexed bu�er system� in other words the addition of any extra

behaviour added through actions �e�g�� left� right and ack� does not necessarily change

the structure of the application� and when it does� it does so only very marginally� However� it

must be noted that some types of added behaviour did generate more states �and potentially

more sub�processes� than others� A good example is the di�erence in the potential for added

behaviour between actions such as left�x�y and a simple ack action�

Finally� no relationship was found between sub�processes and hidden actions� which at

�rst seemed counter�intuitive� but after much thought was a reasonable conclusion to draw

based on knowledge of the other three systems� The extent of hiding in the implementation

is the responsibility of the developer and no immediate relationship between sub�processes

and hiding should be expected�
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	���	 System two� the alternating bit protocol

The full code for the alternating bit protocol system is given in Appendix B� The following

description of the main parts of the CSP code is taken on the whole from �For�
��

This is the initial example of a set which makes use of a pair of media which

are permitted to lose data� and provided no in�nite sequence is lost will work

independently of how lossy the channels are� They work by transmitting messages

one way and acknowledgments the other� The alternating bit protocol provides

the most standard of all protocol examples�

In the sequel� only the processes relevant to the re�nement checks undertaken are listed�

These are SPEC� PUT� GET� SEND and RECV� followed by the re�nement checks carried out�

Channels and data types

left and right are the external input and output�

a and b carry a tag and a data value�

c and d carry an acknowledgment tag�

�In this protocol tags are bits�


a PUT b

left � � right

������� SEND RECV �������

� �

d GET c

DATA � 
����

channel left�right � DATA

channel a� b � Bool�DATA

channel c� d � Bool


�

The overall specification we want to meet is that of a buffer�

��

SPEC � let


�

The most nondeterministic �left�to�right
 buffer with size bounded

by N is given by BUFF���� N
� where

��

BUFF�s� N
 �



� �

if null�s
 then

left�x �� BUFF��x�� N


else

right�head�s
 �� BUFF�tail�s
� N


	�

�s � N � �STOP ��� left�x �� BUFF�s �x�� N




�

For our purposes we will set N � � since this example does not introduce

more buffering than this�

��

within BUFF���� �


lossy�buffer�in� out� bound
 �

let

B��
 � in�x �� out�x �� B�bound��


B�n
 � in�x �� �B�n��
 ��� out�x �� B�bound��



within B�bound��


PUT � lossy�buffer�a� b� �


GET � lossy�buffer�c� d� �



�

The implementation of the protocol consists of a sender process and

receiver process� linked by PUT and GET�

��

SEND �

let

Null � �� �� any value not in DATA

S�v�bit
 �

�if v �� Null then left�x �� S�x� not bit
 else a�bit�v �� S�v� bit



	�

d�ack �� S�if ack��bit then Null else v� bit


within S�Null� true


RECV �

let

R�bit
 �

b�tag�data �� �if tag��bit then right�data �� R�not bit
 else R�bit



	�

c�not bit �� R�bit



�

The first message to be output has tag false� and there is no pending

message�

��

within R�false


make�system�receiver
 �

make�full�system�SEND� PUT���GET� receiver


make�full�system�sender� wiring� receiver
 �

sender	�
�a�d�����wiring	�
�b�c����receiver
�
�a�b�c�d��



� �

DIVSYSTEM � make�system�RECV


NDC�M
 �

let

C�n
 �

if n��� then

c�� �� C�n!�


else if n��M then

b�� �� C�n��


else

c�� �� C�n!�
 ��� b�� �� C�n��


within C�M��


RCVL � modify�receiver�LIMIT��



RCVN � modify�receiver�NDC��



�� and the checks of the respective systems against SPEC

assert SPEC 	FD� make�system�RCVL


assert SPEC 	FD� make�system�RCVN


Twenty re�nement checks were completed for the alternating bit protocol� We note that�

again� because of the limitations imposed by the machine on the amount of available virtual

memory� it was impossible to run the same number of re�nement checks for Sytem two as

were carried out for System one� Nine of the twenty re�nement checks were as a result of

increasing the value of the parameter of the process NDC at selected intervals up to the point

at which the virtual memory of the machine had been exhausted �this value was realised

when the parameter to NDC was set at M � 
���� The remaining eleven re�nement checks were

produced as a result of increasing the parameter of the process LIMIT� set at the value three

in the previous code� again� up to a limit imposed by the virtual memory of the machine �in

this case� value �����

Table ��� shows summary metrics for the twenty re�nement checks� Compared with

the same summary metrics for System one� a number of notable di�erences arise� To start

with� the number of actions in the implementation �metric �� remains static� so too does the

number of hidden actions in the implementation �metric �� and the number of sub�processes
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in the implementation �metric ��� This is despite the fact that the size of the state space was

being increased with successive changes to the parameters of LIMIT and of NDC� The upper

limit on the number of states in the implementation is comparable to that for System one�

However� the number of transitions for System two far exceeds that of System one� The

reason for this is simple� The handshake �or tau� action which contributes to the number of

transitions is greater in System two than in System one�

Inspection of the code for System two revealed that the logic in the alternating bit proto�

col was far more involved than in the multiplexed bu�er system in terms of error checking and

case testing� This accounts for the increasing number of states in the implementation �metric


�� Other features such as the complexity of the code �see Appendix B� also contributed to

the trend for a larger number of transitions in this system vis�#a�vis System one�

Metric min� max� median mean std� dev�
� Number of states in the speci�cation �
 �
 �
 �
 �
� Number of states in the implementation ���
 ������ ����� ���
� ���
���
�
� Number of distinct actions in the speci�cation 
 
 
 
 �
� Number of distinct actions in the implementation �� �� �� �� �
� Number of hidden actions in the implementation �� �� �� �� �

 Number of visible actions in the implementation 
 
 
 
 �

 Number of sub	processes in the speci�cation � � � � �
� Number of sub	processes in the implementation � � � � �
� Number of additional actions in the implementation �� �� �� �� �
�� Number of non	divergent states in the implementation ���
 ������ ����� ���
� ���
���
�
�� Number of transitions in the implementation ���� ���
��� 


�� �
���
 ��
�
����
�� Number of harmless partially divergent states ���� 
��
�� ����� ��
��� �������
�

Table ���� Summary metrics for System two

The CPU timings for System two are contained in Table ���� Of interest is the maximum

CPU timing �at just over sixty�four minutes�� generating ��
		
 states in the implementa�

tion� For System one� ������ states were generated in sixty�two minutes� suggesting that

System two is capable of generating states at a faster rate than System one� One explanation

for this could be that� unlike System one� the number of sub�processes in the implementation



� �

for System two remains static across re�nement checks �a striking feature of the application��

It thus becomes much easier to generate extra states due to this stability� Thus one notice�

able di�erence between System one and System two is in the architectures of each system

and their ability to generate states�

min� max� median mean std� dev�
System two ���� 
���
 ���
 ���� �
���

Table ���� Summary CPU statistics for System two

The histogram for the timings is shown in Figure ��	�� A similar trend is apparent as in

the multiplexed bu�er timings� As noted above� the maximum CPU timing occurs at just

over sixty�four minutes� The next highest timing stands at just over forty�two minutes� and

the next highest at just over thirty minutes� The preceding timing to that was just over

thirteen minutes� This sequence of timings seems to suggest that as the size of the state

space is increased� the time taken to perform the re�nement check is increasing� but at a

decreasing rate��

This feature may again be due to the architecture of the system as it becomes easier

to generate states around a stable architecture� More empirical studies would need to be

undertaken� however� before this phenomenon could be fully explained�

	���
 Scatter plots

Choice of scatter plots

The choice of scatter plots is intended �as for System one� to highlight the important features

of processes for the model of �delity we introduced in Chapters � and �� The choice of scatter

�Later in this chapter� an interesting di�erence between the implementation and speci�cation state di	
graphs for the two systems is identi�ed�
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Figure ��	�� Histogram of CPU timings

plots was also in�uenced by the need to compare features with those found in System one�

as such� many of the scatter plots used for System one were also produced for System two�

Scatter plots in Figure ��	� exhibit similar patterns to those for the multiplexed bu�er

�Figure ����a���b��� Since the implementation re�nes the speci�cation� the number of states

in the implementation is equal to the number of non�divergent states �Figure ��	��a��� How�

ever� unlike System one� where the straight line and quadratic curve showed some deviation�

the two in Figure ��	��b� are completely overlapping� This implies that transitions are gen�

erated at a slower rate in System two �compared with System one�� relative to the number

of states in the implementation� The Rsv values for the straight line and quadratic curve

were both ����� illustrating the closeness of �t�

Figure ��	��a� re�ects the static nature of the sub�processes for the implementation �met�

ric ��� The false appearance is of a single plotted value on the scatter plot �there are actually

twenty plotted values on the same spot corresponding to the twenty re�nement checks�� It

is interesting to note that increasing the value of the parameter M of NDC� as shown in the

fragment of code below� does not increase the number of actions in the implementation be

they hidden or visible �yet the number of states in the implementation does rise�� Further

investigation and tracing of the CSP process revealed a dependence of the system on the use
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Figure ��	�� Metric 	� versus metric 
 and metric 		 versus metric 
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of parameter passing to build up the size of the state space� this is unlike System one� where

communication of values was the key to its state space size and structure� This implies a

di�erent emphasis in the way the two systems were designed and coded and� more impor�

tantly� in the architecture of the two systems� as the empirical evidence seems to suggest� As

an example of how highly parameterised System two is� consider the following CSP process

�NDC fragment of System two� containing signi�cant parameter passing�

NDC�M
 �

let

C�n
 �

if n��� then

c�� �� C�n!�


else if n��M then

b�� �� C�n��


else

c�� �� C�n!�
 ��� b�� �� C�n��


within C�M��


Such code is not found in System one� Figure ��	��b� reinforces the static nature of the

actions in the implementation�

Scatter plots for other combinations of metrics were also produced� but tended to reinforce

the static nature of the number of states in the speci�cation and the number of actions in

the implementation� thus they have been omitted from this analysis�

	���� Re�nement of System two� discussion

A number of conclusions can be drawn from the empirical analysis of the alternating bit

protocol�

Firstly� the speci�cation was static in the sense that its number of states remained con�

stant across re�nement checks� This implies that the gap between the speci�cation and

implementation �in terms of the number of non�divergent states� transitions and other met�
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Figure ��	�� Metric � versus metric � and metric 	� versus metric �
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rics� widened as states were added to the implementation� re�nement in this sense is di�erent

from that of System one� The extent of re�nement given by our metrics seems to be de�

pendent on how the speci�cation is expressed and the ease with which the size of the state

space of the speci�cation can be increased� This could be viewed as a criticism of the metrics

suggested� In defence of the metrics however� we feel that it is as worthwhile to analyse the

size of this gap with a static number of speci�cation states as with a changing number of

speci�cation states� since� at the very least� we obtain information on the behaviour of the

implementation� We are also constrained by the nature of the application and the machine

in terms of what re�nement checks we can carry out� these in turn dictate the values of the

metrics produced�

Secondly� the amount of parameter passing in a CSP system seems to have a large e�ect

on the values of the metrics produced� System one was a standard CSP process which did no

error�checking and contained very little coding logic� hence� channel�oriented value passing

was used� On the other hand� System two employs error�checking and case�checking via

parameter passing� manifesting itself in di�erent state generation patterns�

We next re�visit Systems one and two in turn and look at non�re�nement� i�e�� when

behaviour in the speci�cation is not captured by the implementation� In this context� we

take non�re�nement to mean any situation where the FDR model�checker returns the result

xfalse from the re�nement check being undertaken� this indicates that the implementation

does not re�ne its speci�cation� Recall that �true� re�nement is indicated by the FDR

model�checker returning true� We pause brie�y to consider the objective of looking at

non�re�nement�

Our objective� in considering non�re�nement� is to see how the behaviour of the imple�

mentation with respect to the speci�cation �re�ected in terms of metrics values for each�
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System

LHS

Txs 

Tx(i)

SndMess RcvAck

Rx(i)

RHS

Rxs

Figure ��	�� Tree decomposition of System one

changes as sub�processes are composed� In an environment where di�erent sub�processes of

the implementation may be allocated to di�erent developers and then composed at a later

date� it is useful for the developer to see which �if any� behaviour is common to speci�cation

and implementation at the early stages of development� To achieve this� we can choose any

sub�process of the implementation and run a re�nement check of that sub�process against the

speci�cation� In the context of this thesis� we can thus operate a middle�out policy towards

our non�re�nement �choosing sub�processes which already contain other sub�processes�� a

more realistic choice� however� would be a top�down policy� where the highest level �skele�

ton� sub�processes are checked �rst� then each of the sub�processes contained therein� until

the lowest�level primitives are in place� Figure ��	� shows the implementation of System

one when decomposed into its constituent sub�processes in tree form� In the analysis of

non�re�nement which follows� we will look down one side of the tree �beginning with LHS

then Txs� etc� and ending with SndMess before considering RHS��
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��� Non	re�nement of Systems one and two

For both the multiplexed bu�er and the alternating bit protocol systems� a range of non�

re�nement checks were completed when the implementation did not capture its speci�cation�

In the following sections� we look at System one and develop our non�re�nement analysis by

looking at the largest sub�parts of this system� then the next largest sub�parts and so on�

until the decomposition is complete� i�e�� we arrive at CSP primitives� We therefore begin

by looking at the features of LHS�

	���� Multiplexed bu�er� non�re�nement

Process one� LHS

A set of eleven non�re�nement checks were carried out on the process LHS when run against

Spec� The limits for these re�nement checks are shown in Table ����

Re�nement number Tags Data values
� 	 � � �
� 	 
 � �
� 	 �� � �

Table ���� Limits of re�nement families

The CPU timings �in minutes and seconds� are given in Table ��
�

min� max� median mean std� dev�
System one ���
 
��� ���� ��
� ��
�

Table ��
� Summary CPU statistics for System one non�re�nement

Scatter plots were then produced to evaluate LHS against Spec as the speci�cation� The

scatter plots in Figure ��	
 show that LHS has one non�divergent state before a break down

in the expected behaviour of the implementation is found� That is� in our case� the LHS CSP
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Figure ��	
� Metric 	� versus metric 	 and metric 	� versus metric 
 �LHS�

process looks for a RHS CSP process to communicate with and it fails to do so� LHS generates

a large number of implementation states ��������� an indication of the role metric 
 plays

in the structure of the overall system�

Interestingly� the number of sub�processes in Figure ��	��a� remains stable as is the case

with Figure ��	
�a�� Contrasted with the number of sub�processes generated by both Type

II systems� namely the Towers of Hanoi and Dining Philosophers� this clearly shows the lack

of variation of System one in terms of the number of sub�processes� Figure ��	��b� indicates
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Figure ��	�� Metric � versus metric � and metric 	� versus metric � �LHS�

that whatever behaviour is added to the implementation� the re�nement check causes a break

down in the expected behaviour of the implementation after just one �non�divergent� state�

The scatter plot in Figure ��	� shows a linear relationship between the number of states in

the implementation and the number of states in the speci�cation� A dashed line �although not

visible�� representing a best �t quadratic curve� overlaps the linear relationship� indicating

that when only part of the implementation is used in the re�nement check� states in the

implementation do not rise as sharply as in the full implementation� Careful inspection of
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Figure ��	�� Metric 
 versus metric 	 �LHS�

the quadratic curve does show a slight deviation however� suggesting that at higher values

on the x�axis� this divergence will increase� The dashed �quadratic� curve in Figure ��	� has

equation y � ����
x� � 	���
�x � 		���	 and the straight line y � 	�����x � 
	��� both

have Rsv �����

The same number of re�nement checks were then carried out for RHS� in e�ect the mirror

image of LHS� Not surprisingly� both LHS and RHS produced identical sets of metrics values

and hence have identical scatter plots� We also add that� although the sets of metrics

values produced for the two implementations �LHS and RHS� were the same� the two sub�

processes did have di�ering types of action as would be expected from a sending side and a

receiving side of a large protocol�based process� For example� the sender always used CSP

send actions and the receiver CSP receive actions using the � and � operators� respectively�

This is interesting from a metrics perspective� since� in e�ect� two di�erent processes with

di�erent sets of actions can produce the same set of metrics values� The ambiguity lies in

the de�nition of our set of metrics� In order to distinguish one process from another without

ambiguity in this case� we would require the sets of respective actions �via a set�theoretical
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intersection operator� to be compared in order to highlight the di�erences� It is accepted

that this is a weakness in the set of proposed metrics�

We next decompose further the multiplexed bu�er system� Just as we have done for LHS�

so we do the same for Txs�

Process two� Txs

A set of thirty�three re�nement checks were carried out for Txs against Spec where

Txs � ��� i�Tag � Tx�i


Table ��� shows the limits for these re�nement checks� The maximum number of implemen�

Re�nement number Tags Data values
� 	 �� � ��
�� 	 �� � �
�� 	 �
 � �
�� 	 �� 
 


Table ���� Limits of re�nement relationships

tation states generated by the re�nement checks for this sub�process was 	�	��	� compared

with ������ of the process just analysed �LHS�� The upper limit on the number of states will

decrease as the processes are decomposed and become smaller�

The CPU timings in minutes and seconds for the thirty�three re�nement checks are given

in Table ���� It shows clearly the di�erence between comparing systems under re�nement

and non�re�nement� The mean of 
��� minutes is far exceeded by that from Table ��
 �����

minutes��

The scatter plots in Figures ��
� emphasise the similarity of Txs with LHS in certain

characteristics and the di�erences which arise because Txs is a sub�process of the higher�

level process LHS� For example� the mean number of sub�processes remains relatively static
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min� max� median mean std� dev�
System one ���� �
��� ���
 ���� 
���

Table ���� Summary CPU statistics for System one non�re�nement

in Txs in common with LHS� However� the contribution that Txs makes in terms of hidden

actions is far less� which is to be expected as the overall system is decomposed� �The outliers

in the case of Figure ��
��a� re�ect the wildly �uctuating nature of state expansion for this

system� the trend for outliers as more states are generated is still an open problem� An

examination of state expansion behaviour generally is still an open research area��

A set of twenty�nine re�nement checks were carried out for the receiver part of the

multiplexed bu�er Rxs de�ned by

Rxs � ��� i�Tag � Rx�i


against Spec� The limits of the re�nement checks for Rxs were slightly lower than they were

for Txs� indicating a higher capacity for generating states by Rxs� The only other di�erence

between this sub�process and the previous �mirror image� sub�process Txs is in the number

of non�divergent states in the implementation� Interestingly� the sub�process Txs had more

non�divergent states than Rxs �two against one�� This was surprising� since we would have

expected the missing behaviour in Txs to be identi�ed sooner because it is on the left�side

of the process LHS� Hence� being encountered �rst by the FDR model�checker� we would

have expected Txs to have fewer non�divergent states than Rxs� The answer after inspection

of the processes and raw data was simple� The Rxs has an initial action� which is hidden�

The �rst action of Txs is not hidden� Hence� the end of non�divergence is signalled earlier

with Rxs� It is also interesting to note that it is at this level of abstraction that hiding

starts to in�uence the set of non�divergent states in the implementation� Processes at higher
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Figure ��
�� Metric � versus metric 
 and metric � versus metric � �Txs�
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Figure ��
	� Metric � versus metric � �Rxs�

levels of abstraction were not at a low enough level for hiding to in�uence the number of

non�divergent states�

The scatter plot in Figure ��
	 is interesting when compared with the corresponding

scatter plot for LHS� namely Figure ��	��a�� where the number of sub�processes remained

static at �� �We observe that no discernible relationship seems to exist between metric �

and metric � in this case�� Clearly� as the overall system is decomposed and lower levels of

abstraction are investigated� the size of the interface grows� In other words� the intensity

of communication becomes greater as the layers of encapsulation are removed� We will see

when we later analyse the lowest level sub�process of System one� namely RcvAck� that there

is a limit to this growth which occurs at the lowest level sub�process� i�e�� RcvAck itself�

Although other scatter plots for Rxs were produced� none of them exhibited any other

di�erences between Rxs and Txs� the most signi�cant result related to this di�erence is in

the number of non�divergent states� Hence� all other scatter plots relating to Rxs have been

omitted�

We next consider SndMess for which thirty�one re�nement checks were carried out� Ta�
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ble ��	� shows the limits of these re�nement checks�

Re�nement number Tags Data values
� 	 � � �
�� 	 �� � �
�� 	 �
 � �
�
 	 �� 
 �

Table ��	�� Limits of re�nement families

Process three� SndMess

Process SndMess is de�ned by

SndMess � 	� i�Tag � �snd�mess�i � x �� mess � i�x �� SndMess


and �ts into the overall architecture of the system as follows�

LHS � �Txs 	�
�snd�mess� rcv�ack�����SndMess ��� RcvAck



�
�snd�mess� rcv�ack��

The CPU timings for this set of re�nement checks are given in Table ��		�

min� max� median mean std� dev�
System one ���� ���� ���
 ���� ���


Table ��		� Summary CPU statistics for System one non�re�nement

The single scatter plot produced for SndMss is shown in Figure ��

�a�� illustrating the

only key di�erence �i�e�� zero sub�processes in the implementation� between SndMss and

features of the processes at higher levels of abstraction� namely LHS� RHS� Txs and Rxs�

A corresponding set of thirty�one re�nement checks were undertaken for the RcvMess sub�

process� Scatter plots revealed the same features as for the SndMess process �as would be

expected from the obvious symmetry of this system��
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Process four� RcvAck

Thirty�one re�nement checks were carried out to evaluate RcvAck against Spec� For brevity

we do not detail the re�nement checks�

The RcvAck sub�process is de�ned by

RcvAck � ack � i 

 rcv�ack�i 

 RcvAck

Table ��	
 shows the CPU timings for these thirty�one re�nement checks in minutes and

seconds�

min� max� median mean std� dev�
System one ���� 
��
 ���
 ��
 ����

Table ��	
� Summary CPU statistics for System one non�re�nement�

In common with SndMss� RcvAck contained no sub�processes� Figure ��

�b� shows the

relationship between metric 
 and metric 	� The curve in this scatter plot is a much better

�t �Rsv ����� than the straight line �Rsv ������ This di�erence is remarkable� considering

the relative similarity of the Rsv values for the quadratic curve and straight line reported

previously in this chapter �see Figure ��	
�b���

The raw data for this sub�process revealed it to contain no hidden behaviour and no

sub�processes� In re�nement terms� the bottom level process had therefore been reached �at

four levels of nesting�� Exactly the same was true of the process SndAck� Interestingly� since

neither of these two sub�processes had initial hidden behaviour� the number of non�divergent

states was identical �i�e�� one� for each of the two processes�
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Figure ��

� Metric � versus metric 
 �SndMss� and metric 
 versus metric 	 �RcvAck�
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	���� System one� discussion

For a system such as the multiplexed bu�er system� the overall architecture seemed stable

in the sense that corresponding sub�processes on either the left side or the right side of the

system were fairly similar� What was unexpected was the role that hidden behaviour played

in the decomposition� namely� re�nement broke down more quickly in sub�processes without

hiding �implying that processes which did not have hiding had fewer non�divergent states

than those that did�� In addition� although the overall architecture is symmetrical in its

construction� the metrics did highlight di�erences between transmitter and receiver�

	���� Alternating bit protocol� non�re�nement

Process one� PUT

For the alternating bit protocol� the process PUT was run against SPEC� Eleven re�nement

checks were carried out� Table ��	� shows the CPU timings for these eleven re�nement

checks�

min� max� median mean std� dev�
System two ���� ���� ���� ���� ����

Table ��	�� Summary CPU statistics for System two non�re�nement

In the implementation there are no hidden actions and no sub�processes in the speci�ca�

tion and implementation� Only one non�divergent state in the implementation was encoun�

tered before the re�nement failed� There are no hidden actions in this process and hence

divergence was encountered immediately�

Figure ��
� shows the scatter plot for states in the implementation versus states in the

speci�cation �Rsv � ������ The shape of the best �t curve is di�erent to any of the correspond�
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ing scatter plots found for the multiplexed bu�er system for the same two metrics �see Figure

��

� for example�� After careful consideration� only one explanation could be put forward�

For implementations which incorporate hidden behaviour� the number of states will rise

rapidly and continue to do so� However� when the implementation has no hidden behaviour�

the number of states in the implementation versus the number of states in the speci�cation

will reach a plateau as tentatively indicated by the best �t curve in Figure ��

�b��

Process two� GET

A set of eleven re�nement checks were also carried out for GET versus the SPEC process�

For GET� there were again� no hidden actions� There were no sub�processes in either the

speci�cation or the implementation�

The CPU timings for these re�nement checks are shown in Table ��	��

min� max� median mean std� dev�
System two ���� ���
 ���� ���� ����

Table ��	�� Summary CPU statistics for System two non�re�nement

Interestingly� the GET process had a static number of implementation states� This meant

that the best �t curve found for the GET process �number of implementation states against

number of speci�cation states� was a straight line� The reason for the static number of

implementation states can be found in the de�nitions of the channels a�b�c and d� The

�rst two channels� used by PUT� are de�ned as Bool�DATA� the second two� used by GET� are

de�ned to be just Bool� This explains why the results for PUT and GET are di�erent� For

the alternating bit protocol� the left and right sides of the process are not as symmetrical as

in the case of the multiplexed bu�er �LHS and RHS�� In System two� processes PUT and GET�

whilst appearing similar� have distinctly di�erent behaviour�
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Figure ��
�� Metric 
 versus metric 	 �PUT�

Process three� GET and PUT

A set of eleven re�nement checks were carried out for GET and PUT joined together against

SPEC� Not surprisingly� the number of states and transitions in the implementation increased

from that of GET only and PUT only� as would be expected� The same trend in the relationship

between states in the implementation and speci�cation is evident from Figure ��
� �Rsv �

������ Since this relationship seemed to be the same for di�erent non�re�nements� it was

investigated further� It appears� from Figure ��
�� that the best �t curve will eventually

�atten out� however� using predictive �hill�climbing� techniques to estimate the two values

at higher levels for both variables� the curve was found to continue along a similar path and

did not in fact �atten out� Had it �attened out� this would have implied that an increase in

the number of states in the speci�cation caused no increase in the number of states in the

implementation� This would only arise if the two processes shared no actions and therefore

no behaviour�

Finally� eleven re�nement checks were carried out for RECV against SPEC� These again
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Figure ��
�� Metric 
 versus metric 	 �GET ��� PUT�

showed the same relationship between the number of implementation and the number of

speci�cation states�

��� Conclusions

In this chapter� an empirical evaluation and analysis of the multiplexed bu�er and the alter�

nating bit protocol problems has been carried out� Several di�erences have been identi�ed�

quite often these were due to the nature of the application and the resulting architecture�

The following main points can be concluded from the analysis�

Firstly� whilst both CSP systems generated a large number of states in the implemen�

tation� the multiplexed bu�er tended to generate more than the alternating bit�protocol�

we attribute this to the architecture of System one� which was able to generate more sub�

processes� allowing it to develop a larger set of implementation states�

Secondly� in the context of non�re�nement� the number of non�divergent states is deter�

mined by the extent of hiding in the behaviour encountered at the beginning of a re�nement
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check�

Thirdly� in certain cases� di�erent re�nement checks can produce the same set of metrics

values� further re�nement and development of the metrics would be one possibility of resolv�

ing this issue� Finally� the relationship between pairs of metrics can vary signi�cantly from

the expected�

Although there are no dramatic di�erences between the two application domains empir�

ically studied in this chapter� there are enough subtle di�erences to have made the investi�

gation a worthwhile exercise�

In the following chapter� the same empirical treatment is given to the Towers of Hanoi and

Dining Philosophers problems� Analysis of these two problems will then allow comparisons

between them �as was done in this chapter� as well as between Type I and Type II CSP

systems empirically investigated in the thesis�



Chapter 	

Empirical evaluation �Type II CSP

Systems�


�� Introduction

In this chapter� we focus on the Towers of Hanoi and the Dining Philosophers �Systems three

and four�� we have called these Type II CSP systems� They are di�erent to the �rst two

systems in terms of their size and construction� This is likely to mean that they will exhibit

completely di�erent re�nement characteristics� indeed� these systems were deliberately cho�

sen in order to give as broad a range of applications as possible in terms of both the systems�

size and their likely behaviour�

The objectives of this chapter are� �rstly� to examine whether Systems three and four

are similar in the features they both exhibit and� secondly� to examine in more detail the

di�erences between Type I CSP systems and Type II CSP systems� This will then allow us

to draw conclusions both across application domains� i�e�� those of bit�protocol and problem�

solving� and within those two application domains� The analysis will be performed primarily

	�	
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using the metrics proposed in Chapter �� Because of the nature of the applications in Type II

CSP Systems and the di�culty in extracting meaningful metrics in the context of re�nement�

the format of this chapter di�ers from the previous chapter in its structure� Various other

problems arose during our empirical investigation of Type II CSP Systems� most of those

problems were related to features of the systems themselves� We will describe each of these

in turn as the chapter develops� For now� we look at the two systems in isolation�

In Section 
�
� we discuss the motivation for the analysis contained in this chapter� In

Section 
��� we analyse the �rst of the two Type II CSP systems with appropriate fragments

of the CSP code� We also include� where appropriate� histograms and scatter plots to

illustrate the major points� In Section 
��� we analyse the second of the Type II CSP

systems� A discussion of the issues raised in this chapter is given in Section 
��� The main

objective of analysing the CSP systems thus far has been to identify traits in the re�nement

process� Equally important is the relevance and applicability of the metrics themselves in

each application domain� One of the major results from the analysis in this chapter was

found to be the wide di�erence in various characteristics between Type I CSP systems and

Type II CSP systems� The extent of the di�erences cast doubt on the scope of the proposed

metrics and their applicability for the last two systems� Hence� in Section 
��� we identify

other possible metrics which may give more insight into the characteristics of those last two

systems� In Section 
�
� we deliberately introduce faults into the implementation of each of

our four systems in order to assess the impact of errors on the values of the metrics� Finally�

in Section 
��� some conclusions about the analysis in this chapter are drawn�
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�� Motivation

The motivation for the work in this chapter is very similar to that for the previous chapter�

Firstly� there are likely to be features of the re�nement process and features of CSP processes

which have yet to be uncovered through a study of this sort� Secondly� very little is under�

stood about the architecture of systems across di�erent application domains and of di�erent

magnitudes� The analysis of a range of systems should highlight trends and characteristics

in those systems and provide a basis for further research� In a sense� for a study of the

type in this and the previous chapter� there is no such thing as a negative result� Every

result� whether con�rming or refuting a pre�determined hypothesis informs the next study�

Results� in terms of highlighting �aws in the metrics imply that other metrics may be more

appropriate� One of the key results from this chapter is that the proposed metrics described

in Chapter � are inadequate for problem�solving applications� Whilst this was initially dis�

appointing as it highlighted the frailty of our chosen metrics� on re�ection� it meant that

this knowledge could then be used to propose alternative metrics in Section 
���

The analysis described in this chapter therefore tries to capture a little more of the trends

and characteristics which emerged from the previous chapter� In common with the structure

of the previous chapter� we also look at situations where the implementation re�nes the

speci�cation�


�� Towers of Hanoi

A complete lisiting of the code for The Towers of Hanoi can be found in Appendix C� As

was the case for Systems one and two� we reiterate the point that the systems were written

by experienced CSP developers rather than the author�
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The Towers of Hanoi problem is widely known� and is used as a typical example of how a

recursive algortihm can be used to solve a problem� An arrangement of di�erently sized discs

on pegs have to be moved from their start position to a �nal position representing exactly

that of the start position� but on a di�erent peg� A restriction on the movement of a disc

is that disc a can not be placed on top of another disc b if disc a is larger in size than disc

b� In the statement of the initial problem� there are �ve discs and three pegs �this obviously

changed under user control as di�erent re�nement checks were undertaken��

transparent diamond

n � � �� How many discs

�� Discs are numbered

DISCS � 
���n�

�� But the pegs are labelled

datatype PEGS � A � B � C

For a given peg� we can get a new disc or put the top disc somewhere else� We must also

indicate when the peg is full�

channel get� put � DISCS

channel full

PEG�s
 �

get�d�allowed�s
 �� PEG��d� s


	�

not null�s
 � put�head�s
 �� PEG�tail�s



	�

length�s
 �� n � full �� PEG�s


Each POLE in the following segment of code represents the completed end status of a peg�

Now� given a simple peg we can rename it to form each of the three physical pegs ��poles��

of the puzzle� Move�d�i�j indicates that disc d moves to pole i from pole j�
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channel move � DISCS�PEGS�PEGS

channel complete � PEGS

initial�p
 � � ���n � p �� A �

POLE�p
 �

PEG�initial�p



		 full �� complete�p�

get�d �� move�d�p�i�

put�d �� move�d�i�p � i �� PEGS� i �� p� d �� DISCS ��

interface�p
 � 
 move�d�p�i� complete�p � d �� DISCS� i �� PEGS �

PUZZLE �

�� p � PEGS � 	 interface�p
 � diamond�POLE�p



assert PUZZLE � 
� complete�A� complete�B� move �� 	F� STOP

The puzzle is solved by asserting that C cannot become complete� Then the trace that refutes

the assertion is the solution�


���� Re�nement details

There are several interesting features of this problem when compared with the examples of

the previous chapter� some of these features can be seen immediately by inspection� while

others are less intuitive and emerged only after signi�cant investigation�

Firstly� the CSP code of System three is more compact in size than that of the �rst two�

From inspection of the code� there is a large amount of recursion and parameter passing �in

common with System two�� which aids an elegant and concise description of the problem�

Just because the code is compact does not imply� however� that it is any less complex than

the corresponding code of the other two problems� In fact� following the analysis of Type

II CSP Systems and the di�culty of producing meaningful metrics� one conclusion is that

the opposite is the case� Unlike some procedural programming languages� e�g�� C� C�� and



� �

Java� complexity in Type II CSP systems seems to be unrelated to its size �in terms of the

number of lines of CSP code��

Secondly� an interesting feature of System three relates to the state space generated by

the system� The most obvious way to increase the state space of this system is to increase the

numbers of pegs and$or discs� However� an immediate e�ect of doing this is an increase in the

amount of recursion the process becomes involved in� Increasing the amount of recursion in a

system has an altogether di�erent e�ect than merely increasing the number of values capable

of being passed down a communications channel �as was possible with Systems one and two��

The former consumes far more of the available stack space and hence the limit of the stack

size imposed by the particular machine is reached more quickly� Type I CSP Systems did use

recursion� but nowhere near the extent of System three� Also� in System three� by increasing

the scale of the system �i�e�� by increasing the number of pegs and$or discs�� in most cases�

what we are doing is e�ectively adding to the di�culty of solving the problem� not merely

to the further generation of states in the process as was the case for Systems one and two��

In fact� only a limited number of re�nement checks could be completed for System three�

resulting in a limited analysis for this system� However� we reiterate that although at �rst

this was disappointing� useful lessons were learnt and incorporated into subsequent analysis�

Thirdly� Type II CSP Systems di�er from Type I CSP Systems in that they attempt

to �nd a solution to a problem rather than the generation of large numbers of patterns of

bits that can be sent down a communications channel� As such� they are not amenable to

decomposition �or the layering of processes� as was found for Type I CSP Systems� This

meant that it was di�cult to decompose Systems three and four in the same way that

was achieved for Systems one and two� for System three� re�nement checks were simply

�It was observed that in certain cases� increasing the number of discs resulted in a trivial solution� as
would be expected� when� for example� there are equal numbers of pegs and discs or more pegs than discs�
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a check of the implementation against the CSP STOP operator �which became� in e�ect�

the speci�cation for this application�� STOP is a process which denotes termination in an

undesirable state �and also one where further progress by the process cannot be made�� A

good example of an occurrence of STOP is that of a robot in a maze reaching the end of

a corridor� facing a wall with no way forward and no means of backtracking� A serious

implication of running each re�nement check against STOP is that STOP only has one state

and zero actions� STOP therefore has no state transitions and no traces� Consequently� in the

initial re�nement checks for System three� the speci�cation has only one state� Despite this

being a very restrictive feature� it highlights the limitations that the type of problem places

on the re�nement checks that can be carried out on CSP processes�� The emphasis in this

problem is on the model�checker �nding a sequence of actions which the assertion says does

not exist� In short� re�nement in the case of System three �and� as we will see� of System

four� is not the same as re�nement in the case of Systems one and two� The re�nement

checks that should be carried out are completely di�erent�

Fourthly� for System three� the only variables which could be modi�ed were the num�

ber of discs and the number of pegs� There are� however� certain problems associated with

extending the state space in this way� A con�guration of n pegs and n discs� or any con�g�

uration where the number of pegs is greater than the number of discs� will take a relatively

short time to solve �since each disc can be placed on its own peg�� this simpli�cation of the

problem was not a feature of Type I CSP Systems�

Finally� the scope of e�ect that increasing the number of bits had in Systems one and two

far exceeded that for Systems three and four� Expressed in another way� addition of datatype

�A side	e�ect of this was that re�nement checks to modify the speci�cation� in order to see the e�ect that
that had on the metrics produced� could not be undertaken for this System as they could for Systems one
and two �see Chapter � for details about modi�cation of the speci�cation��
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values in Systems one and two permeated through the whole code of the application� this

did not happen for the �nal two systems� For example� in System one� the lowest level

processes are SndMess and RcvAck� Each of these processes has a series of communications

which a�ect the processes at the next level of abstraction above� i�e�� Txs and Rxs� This in

turn a�ects LHS and RHS� the top level processes of the system� Such a layering phenomenon

was not evident in System three� Closely related to the point just made is that� in e�ect�

although they are larger processes� the way that Systems one and two had been constructed

�as a composition of processes� made both of these processes signi�cantly easier to analyse

than Systems three and four� In short� Type I CSP Systems one and two are far easier to

analyse and comprehend�

In the following section� summary data is provided for System three� A number of the

points just raised are reinforced by the values found in Table 
�	� as well as introducing and

highlighting other points�


���� Summary data

Summary metrics for System three in Table 
�	 show values for the metrics of �fteen re�ne�

ment checks of PUZZLE against STOP �see Table 
���� The mean and median values have been

rounded up or down where appropriate�

The most striking feature in Table 
�	 is not so much the values of the metrics themselves�

as the lack of meaningfulness of the values for the last three metrics� na stands for non�

applicability� In the case of metrics 	�� 		 and 	
� no values can be collected� The reason for

this is because of the one�state de�nition of the speci�cation STOP� This explains the absence

of values for the three metrics in the table�

An implementation can only be compared with a speci�cation as the state space is in�
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Metric min� max� median mean std� dev�
� Number of states in the speci�cation � � � � �
� Number of states in the implementation ��� 
���� 



 ��
�
 �


��
�
� Number of distinct actions in the speci�cation � � � � �
� Number of distinct actions in the implementation 
� ��� ��
 ��� �����
� Number of hidden actions in the implementation 
 �
 �� �� ����

 Number of visible actions in the implementation � � � � �

 Number of sub	processes in the speci�cation � � � � �
� Number of sub	processes in the implementation �� �� �� �� �
� Number of additional actions in the implementation 
� ��� ��
 ��� �����
�� Number of non	divergent states in the implementation na na na na na
�� Number of transitions in the implementation na na na na na
�� Number of harmless partially divergent states na na na na na

Table 
�	� Summary metrics for System three

creased� if it is possible to increase the speci�cation state space as well� Central to the

analysis in the previous chapter was the divergence in speci�cation and implementation

metrics as the state space was increased� this was not possible for System three� This sce�

nario may therefore represent a �aw in the metrics themselves� and cast doubt on their ability

to capture features of applications other than for bit�protocol problems� We will examine

the appropriateness of our metrics in Section 
�� and suggest other metrics which may have

been more appropriate� For now� however� we continue with our analysis of System three�

The number of visible actions in the implementation is zero� This is because the imple�

mentation contains largely hidden behaviour� This can be seen clearly in the de�nition of

the assertion

ASSERT PUZZLE � �� complete�A� complete�B� complete�C� move ��

In other words� all behaviour related to move and complete is hidden� These actions rep�

resent the majority of the behaviour for this application� Compare this con�guration with

the two protocol�type problems where a fairly even balance between hidden and visible be�

haviour was identi�ed �in System one� for example� only channels mess and ack were hidden

whilst left and right were visible� in System two� the channels a�b�c�d were all hidden
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whilst left and right were visible�� The di�erences between System three and Type I CSP

Systems become evident in this sense� Generally speaking� Type I CSP Systems conform to

the principles of abstraction and the black�box approach� This does not seem to be the case

for System three� this is attributed to the nature of the problem�

Also noticeable in Table 
�	 is the relatively large number of actions in the implemen�

tation �metric �� maximum 
��� and the relatively small number of states generated in the

implementation �metric 
� maximum 
�	
��� when compared with the previous two systems

�see Tables ��	 and ����� Compare the maximum number of actions and states in the im�

plementation for the multiplexed bu�er system �	�	 and ������� respectively� and for the

alternating bit protocol �	� and ��
		
� respectively�� and the di�erence becomes apparent�

The reason for this is due to the large number of combinations of PEG and DISC which evolve

as the state space is increased� The set of actions that System three was capable of engaging

in represented every possible combination of movement of a peg to a disc� As the number of

pegs and$or discs grew� the possible movement of discs across PEG grew at an alarming rate�

It can be seen from Table 
�	 that the number of sub�processes in the implementation

remains static at �� as the state space increases� One explanation for this might be that the

architecture of System three remains fairly static� it is the possible behaviour around that

architecture which changes�

The minimum� maximum� median and mean CPU timings are provided in Table 
�
�

min� max� median mean std� dev�
System three ���
 ���� ���
 ���� ����

Table 
�
� Summary of CPU statistics for System three

Interestingly� the CPU timings for System three are signi�cantly less than those for Systems

one and two� The mean time for a re�nement check for the multiplexed bu�er was ����
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Figure 
�	� Histogram of CPU timings

minutes �See Table ��
�� For the alternating bit protocol the mean was ���	 �See Table �����

There are a number of explanations for these relatively low timing �gures� System three is

heavily recursive in nature� The objective of the problem is to arrive at a solution �via the

assertion� rather than a declaration of re�nement �as found in Systems one and two�� We

also need to take into account the fact that the speci�cation only contains one state� meaning

that the majority of the processing time is not shared between analysing the speci�cation

and the implementation �as for the previous two systems�� only the implementation has to

be analysed� Allied to this is the ability of the model�checker to converge on a solution

quickly �CSP lends itself readily to extensive use of recursion�� and the reasons for relatively

low CPU timings start to become apparent�

For both systems in the previous chapter� a limit on the state space of the problem

appeared to exist� For the multiplexed bu�er problem� the upper limit was sixty�two minutes

�for the �ve Tags and three Data values con�guration�� For the alternating bit protocol� the

limit was just over sixty�four minutes� Inspection of the raw data for the corresponding limit

in the case of System three revealed the timing to be for a con�guration of six PEGS and seven

DISCS� The histogram in Figure 
�	 represents the timings for the di�erent combinations of

DISCS and PEGS for which re�nement checks were undertaken� The lowest timing was found
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for the three PEGS� �ve DISCS con�guration which took 	� seconds to complete� Figure 
�	

shows that for ten of the �fteen re�nement checks� the problem was solved in a relatively

short time�

For clarity� we give below Table 
�� corresponding to Table ��� in the previous chapter�

Re�nement number PEGS DISCS �range�
� 	 � � � 	 �

 	 � � � 	 �
�� 	 �� � � 	 

�� 	 �� 
 � 	 


Table 
��� Limits of re�nement families


���� Re�nement scatter plots

Due to the sparsity of metrics values for System three� due primarily to the speci�cation

comprising only one state and one action� there was� consequently� a severe limit on the

number of meaningful scatter plots that could be produced� In the previous chapter� certain

scatter plots were omitted from the analysis because the relationships between the metrics

were either obvious or had no intuitive meaning and therefore did not warrant investigation�

The same applies in the case of System three� After taking the obvious relationships for

System three into account� and also relationships where the metrics remain constant �for

example� in the case of the number of sub�processes�� there were only a few remaining rela�

tionships worth investigating� Later in the chapter �and to a larger extent in the conclusions

and evaluation chapter�� we take time to re�ect on the features of the four systems which

prevented or hampered further analysis�

One relationship worth investigating for system three� however� because of the similarity

with results found for Type I CSP Systems� is shown in the histogram of Figure 
�
� between

actions and sub�processes in the implementation �metric � and metric ���
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Figure 
�
� Actions and sub�processes in the implementation against re�nement checks�
�Light bars represent actions� dark bars represent sub�processes��

When Figure 
�
 is compared with Figure ��� of System one� it is clear that in both

systems there is little variation in the number of sub�processes as the state space is increased�

On the other hand� the rate at which new actions are introduced into the implementation

increases gradually� in general� for System three and �uctuates for System two�


���� Re�nement of System three� conclusions

There is clearly a big di�erence between the Towers of Hanoi problem and the two protocol�

type problems of the previous chapter� These di�erences cover a multitude of features� from

the size of the system in terms of its physical layout on a page� to the way it is written�

whether that be heavily recursively and$or based on extensive parameter passing�

The �rst conclusion from looking at System three is therefore that the choice of metrics

is crucial to obtaining the most information about a process� Clearly� the twelve metrics

proposed in chapter �ve are inadequate for the Towers of Hanoi problem� and alternative

metrics need to be investigated�

A further observation relates to the CPU timings for System three� Close inspection of

the data revealed that� in one case� the CPU timing actually went down upon addition of an

extra disc� This would imply that addition of the extra disc caused the solution to become
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trivial� This was not a feature of Systems one and two�


�� System four� dining philosophers

The Dining Philosophers problem is similar to the Towers of Hanoi problem in its dependence

on recursion� However� there is one essential di�erence� namely� that the possibility exists

for deadlock to occur at some point in the process of solving the problem�

The full code for System four is contained in Appendix D� The de�nition of the Dining

Philosophers problem is as follows�

There are �ve philosophers sitting round a table and ten forks� Each philoso�

pher does two things� eat and think� these activities being interleaved� In other

words� a philosopher will eat� think for a while and then eat again� However�

a philosopher can only eat if he$she has control of the fork to the left and the

fork to the right of them �let us assume they are eating spaghetti�� The problem

is one of avoiding a situation where every philosopher has a single fork and is

unable to obtain a second fork� hence a situation where nobody can eat �thus

causing starvation� a form of deadlock��

Looking at the CSP code for this problem� it can be seen that the Dining Philosophers

problem is similar in its compactness to System three� The only e�ective way of increasing

the state space is by increasing the number of philosophers� However� similar problems arose

when trying to increase the size of the state space of System four as for System three� The

number of philosophers could only be raised to nine before the number of sub�processes as a

result of recursive calls became unmanageable and exceeded the size of the virtual memory

of the machine �rhea�dcs�bbk�ac�uk� on which the experiments were run�
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datatype Move � Up � Down

channel left� right � Move

FORK � left�Up �� left�Down �� FORK 	� right�Up �� right�Down �� FORK

PHIL � left�Up �� right�Up �� left�Down �� right�Down �� PHIL

LPHILS�n
 �

let

L��
 �

FORK 	right���left� PHIL

L�n
 �

let

HALF � LPHILS�n��


within HALF 	right���left� HALF

transparent normal

within normal�L�n
 		 ��


RPHILS�n
 �

LPHILS�n
 		 left �� right� right �� left ��

PHILS�n
 �

LPHILS�n��
 	� 
� left� right �� �� RPHILS�n��


�� PHILS�n
 represents a network of � n philosophers

X � PHILS��


assert X 	FD� X

Summary metrics for System four are given in Table 
��� Again� the mean and median values

have been rounded up or down where appropriate�

Metric min� max� median mean std� dev�
� Number of states in the speci�cation � � � � �
� Number of states in the implementation � � � � �
� Number of distinct actions in the speci�cation 
 
 
 
 �
� Number of distinct actions in the implementation 
 
 
 
 �
� Number of hidden actions in the implementation � � � � �

 Number of visible actions in the implementation � � � � �

 Number of sub	processes in the speci�cation � ���� 


 

� �

���
� Number of sub	processes in the implementation � ���� 


 

� �

���
� Number of additional actions in the implementation � � � � �
�� Number of non	divergent states in the implementation na na na na na
�� Number of transitions in the implementation na na na na na
�� Number of harmless partially divergent states na na na na na

Table 
��� Summary metrics for System four
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The �rst point to note from Table 
�� is that the number of states in the implementation

is the same as the number of states in the speci�cation� As in the previous example� the

assertion tested was

assert X �FD� X

In other words� the speci�cation is set to be equivalent to the implementation� this was done

deliberately and through necessity� the aim of the implementation is to �nd a deadlock�free

solution� rather than decide on re�nement or not� Hence� the assertion tested in this case

di�ers from the original description of the Dining Philosophers problem� where the asertion

is that the solution is free from deadlock� The important point is that� because of the way

in which the metrics collection code had been written� i�e�� tailored primarily to protocol

type problems� none of the metrics could have been extracted if the assertion had been one

of deadlock freedom� Another way of expressing this is to say that the Dining Philosophers

problem is not amenable to the same sort of re�nement check as the two protocol�type

problems� The same problem therefore arises with System four as did for System three� The

set of proposed metrics is inadequate for capturing features of systems typi�ed by Systems

three and four�

The second point worth noting from Table 
�� is the maximum value of the number of

sub�processes in the implementation �metric ��� For the four re�nement checks carried out�

the number of sub�processes rose from �ve sub�processes for one philosopher� to nine for two

philosophers� The number of sub�processes then remained unchanged at 	��� sub�processes

for three and four philosophers� It would have been interesting to have increased the number

of philosophers further in order to view the e�ect this had on the number of sub�processes�

However� this was not a practical consideration as the stack space of the machine �rhea� was

exhausted�
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Finally� the number of actions in the implementation �metric �� remains static despite

the number of philosophers being increased� The number of actions in the implementation

for this application is always �xed� since there are only a speci�c set of moves that can be

made� This represents another di�erence between System four and Systems one� two and�

in this case� System three� The list of actions for System four are�

tau

right�Up

right�Down

left�Up

left�Down

tick

However� in common with the Towers of Hanoi problem� the majority of actions in the

implementation �apart from the tau action� are hidden actions �see metric ���

Table 
�� shows the statistics for the CPU timings for System four� The minimum�

maximum� median and mean values are all at ���� seconds� The similarity of these values

is di�cult to interpret� One would imagine that� in view of the extensive use of recursion

in System four� the CPU timings would rise rapidly as the number of philosophers was

increased� this was obviously not the case� One explanation for this might be that the

problem is essentially one of avoiding a deadlock situation� i�e�� a situation where none of

the philosophers can pick up a second fork� Hence� as soon as it had been established that

the system did or did not deadlock� the process terminated �irrespective of the assertion

being tested�� Addition of extra philosophers had no impact on the time it took to reach

the conclusion regarding freedom from deadlock�
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min� max� median mean std� dev�
System � ���� ���� ���� ���� �

Table 
��� Summary CPU statistics for System four


�� Discussion

The two problems analysed in this chapter have certain similarities� One major similarity

between Systems three and four was in the small number of states in the implementation

generated at the upper limit of the problem� vis�#a�vis Systems one and two� In the case

of System four� this was a combination of� �rstly� the memory restrictions imposed by the

machine generating those states� and� more speci�cally� the stack space available� secondly�

the number of actions in the implementation �metric �� which remained static as the state

space increased� In the case of System three� the number of actions in the implementation is

higher than any of the other three systems� However� it is the limit imposed on expansion of

the state space through the in�uence of recursion which limits the state space in this case�

Hence� the di�erence is that for Systems one and two� the upper limit in the size of the state

space was restricted by the amount of virtual memory� In Systems three and four� it was

the size of the stack which impacted the size of the state space�

The results in this chapter also suggest that for a particular programming language� there

are no universal metrics which capture features of every program derived from the language�

This comes as no surprise� the same is true of the object�oriented paradigm� Some metrics

will always be countable in the OO sense� for example� the number of classes� methods and

attributes� Other metrics may yield no meaningful values� evidence suggests �CNM��� that

aggregation in OO systems is used very sparingly� Ultimately� it is a question of tailoring

the choice of metrics to the particular application domain being analysed� In addition� the
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nature of the application domain� in this case a problem�solving environment� will determine

how well an implementation can be compared with its speci�cation�

The key feature of this discussion is the inadequacy of the metrics proposed in Chapter

�� In the following section� using the experience of collecting metrics from Systems three

and four �and the experiences from Systems one and two�� a number of alternative metrics

are proposed which may provide a greater insight into the characteristics of the last two

systems�


���� Alternative metrics

To propose metrics which are more meaningful for the Type II CSP systems� we must consider

the features which were missing from Systems three and four� but were present in Systems

one and two �and vice versa�� Expressed in another way�

Why were the metrics more appropriate for bit�protocol type applications than

for problem�solving applications�

One suggestion why the metrics in Table ��	 were appropriate for Type I CSP Systems but

not for the last two systems is that when developing those metrics� only features of a bit�

protocol type problem were considered� Re�nement was the key issue from the beginning

and the metrics were designed to capture essential di�erences between speci�cation and its

implementation�

In the ensuing sections� we consider features pertaining to all CSP systems and their

potential for capturing features of Type II CSP systems more accurately than the original

proposed set of metrics� Our consideration is heavily in�uenced by the results of our empirical

analysis�
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Channel communications

The number of actions and states in a CSP process largely re�ect the number of communica�

tion patterns in the application being considered� This feature only seems to manifest itself

in applications where the state space is not limited by the stack space of the machine� In

other words� it is worth considering how many of the operators in each of the four systems

were either an input from or output to a channel� By inspection� the number of communi�

cations are fourteen for System one and thirteen for System two� This compares with two

for System three and zero for System four� There is clearly a di�erence in the volume of

communication and therefore patterns of communication between the four systems�

Recursion

Another feature which di�ered between the two types of application was the amount of

recursion� One metric which may be useful to know in order to assess the potential for

state space expansion is the number of static recursive calls in the CSP implementation�

Examination of the implementation of System one revealed it to contain eight static recursive

calls �the speci�cation contains one recursive call�� The implementation of System two

contained twelve static calls� The implementation of System three contained three static

recursive calls and System four contained three� This metric� however� is clearly not as

applicable as others� since what we are really interested in is the dynamic �run�time� extent

of recursion� which this metric �based on our experience of analysing CSP processes� does not

give� This run�time metric is a potential new metric for Type II CSP systems and requires

further research�
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Renaming

Another feature which seemed to distinguish the two types of domain was the number of

renaming operations� In Systems one and two� there are zero renaming operations� In

Systems three and four there are seven and two renaming operations� respectively�

Interleaving and non�determinism

System one contained four interleaving operations �one of which was contained in the speci��

cation�� This re�ects all the possible combinations of transfers of data between sub�processes�

System two has three non�deterministic operators� because the choice of channel a value

should be received from is not deterministic� Type II CSP Systems three and four have

neither of these CSP features� Whilst highlighting the di�erences between the four systems�

the number of interleaving and non�deterministic operators are two candidate metrics for

extension of the original twelve metrics in Systems one and two �but not for Systems three

and four��

Retained metrics

There are some metrics of the initial proposed set which do accurately re�ect features of

each of the four CSP systems� These include�

� The number of states in the implementation�

� The number of visible actions in the implementation�

� The number of hidden actions in the implementation�

To the above three metrics we add the following two metrics� which appear to be common

in Systems three and four�



� �

� The number of communication�based structures in the implementation�

� The number of renaming operations in the implementation�

Finally� as a dynamic measure of recursion �rather than a static one� which does not re�ect

run�time recursive behaviour� we propose the new metric�

� The number of sub�processes in the implementation�

This gives a set of six metrics for capturing features of problem�solving applications� These

six metrics represent a mixture of dynamic and static measures� This is interesting as it

suggests that a set of applicable metrics should contain both static and dynamic metrics�

The question then has to be asked� do these metrics give more insight into the process

of re�nement� The answer to this question is that the last two CSP systems do not tend

to engage in signi�cant levels of re�nement as evidenced by the empirical analysis� The

assertions tested in these two systems are tests of re�nement against trivial processes� In

other words� testing any features of re�nement in systems such as those of Systems three and

four is likely to reveal very little� Although in a sense this is disappointing� it is a worthwhile

result to be aware of� since it suggests that re�nement is not always used in the same sense

for each type of application domain�

For the CSP processes analysed in this and the previous chapter� it would seem that

there is a process scale� on one end of which are bit�oriented CSP processes and at the

other end are problem�based CSP processes� The features of protocol�based applications are

primarily �as would be expected� a dependence on communication events� hiding and inter�

leaving� The features of problem�based applications are a limited amount of communication

through channels� a high dependence on renaming �relabelling� to fu�l the functionality of

the problem� and signi�cant amounts of run�time �dynamic� recursion� To justify the choice
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of metrics and go some way to supporting the claim of a scale along which CSP processes

of di�erent application types can be found� a �nal CSP system was analysed and the above

six metrics were collected� We hasten to add that analysis of this new CSP system was not

on the scale of the previous Systems �one to four��


���� Railway crossing system

The railway crossing example is a CSP process which models the operations of trains on

railway tracks� the controls that ensure gates operating access to the railway open and shut

at the right time� and the timing constraints that apply when a train is between certain

sensors� The logic of the problem is quite complex� and there is also a need for strict

communication rules between the competing elements of the system� i�e�� the trains� signals�

sensors� etc�

The railway crossing problem �see Appendix E� was chosen because it represents neither

a pure communication�based application� nor a purely problem�based application� Initial

analysis revealed it to contain both non�deterministic and interleaving operations� It also

contained an average level of communication�based operators� i�e�� less than the two Type I

CSP systems yet more than the two Type II CSP systems� it also contained renaming� The

static metrics for this CSP process were�

� The number of visible actions in the implementation ����

� The number of hidden actions in the implementation ��
��

� The number of communication�based structures �����

� The number of renaming operations �	��



� �

For this system� two re�nement checks were carried out ��

For the initial con�guration �of 	� track segments�� there were 
�	
	 states in the im�

plementation� and �� sub�processes in the implementation� This application contained fea�

tures found in both the bit�protocol systems �with large numbers of communication�based

structures� and the problem�solving systems �with large amounts of hidden behaviour and

sub�processes�� Increasing the track segments to 	
� resulted in the following set of metrics�

� The number of visible actions in the implementation ����

� The number of hidden actions in the implementation �����

� The number of communication based structures �����

� The number of renaming operations �	��

For the changed con�guration� there were ���

 states in the implementation� and �� sub�

processes in the implementation� It thus became apparent very quickly that for this CSP

system� some features resembled those of Type I CSP systems and others those of Type

II CSP systems� In terms of the characteristics of this railway crossing problem� evidence

suggests that it lies somewhere between Type I and Type II� supporting the claim that bit�

protocol and problem�solving applications are� in e�ect� at opposite ends of the CSP process

spectrum�


�� Fault	based analysis

A certain number of re�nement checks were undertaken for each of the four systems analysed

to view the e�ect of seeded faults on the metrics values� The main objective was to determine

�At �rst� an attempt was made to increase the state space by increasing the number of trains from its
current initial value of two� However� this proved to be an unmanageable problem for the model	checker�
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how the metrics values change as a result of faulty behaviour being introduced� In particular�

to contrast the metrics values obtained in the context of faults with those obtained from the

fault�free analysis carried out earlier� changes in the relationship between speci�cation and

its implementation �for each of the four systems� are bound to be re�ected in the metrics

values thereby obtained� Subjecting the four CSP systems to di�erent types of analysis is

also likely to increase our understanding of the behaviour of those four systems�


�	�� System one� multiplexed bu�er

The choice of which faults to introduce was determined in the case of System one by the

existence of a faulty system �called appropriately FaultySystem�� written by the original de�

veloper� as an example of how the re�nement process can become faulty� The �rst re�nment

check carried out was therefore Spec versus FaultySystem� for which twenty�two re�nement

checks were carried out� for varying numbers of Tags and Data� Table 
�� indicates the

re�nement limits for these twenty�two checks�

Re�nement checks Tags Data values
� 	 �� � ��
�� 	 �
 � 

�
 	 �� � �
�� 	�� �
 
 �
�� 
 �

Table 
��� Limits of re�nement families

The faulty version of the implementation centres around the ability �or not� of the sub�

process FaultyRx�i� to send an acknowledgement after outputting a value on the right

channel� namely�

Rx�i
 � rcv�mess�i � x �� right�i � x �� snd�ack�i �� Rx�i




� �

FaultyRx�i
 � rcv�mess�i � x �� right�i � x ���FaultyRx�i


��� snd�ack�i �� FaultyRx�i



FaultyRxs � Rx�t�
 ��� Rx�t�
 ��� FaultyRx�t�


FaultyRHS � �FaultyRxs 	�
�rcv�mess� snd�ack����

�RcvMess ��� SndAck

�
�rcv�mess� snd�ack��

FaultySystem � �LHS 	�
�mess� ack���� FaultyRHS
�
�mess� ack��

Table 
�
 contains the summary metrics for the twenty�two re�nement checks� The most

Metric min� max� median mean std� dev
� Number of states in the speci�cation � ���� ��� ��� ��
�
�
� Number of states in the implementation ��� ���
�� �
�
� ����� 
�
�����
� Number of distinct actions in the speci�cation � 
� �
 �� ���
�
� Number of distinct actions in the implementation �
 �
� 
� �� �����
� Number of hidden actions in the implementation 
 �� �
 �� ����

 Number of visible actions in the implementation �� ��� �
 
� �����

 Number of sub	processes in the speci�cation � �� � 
 ����
� Number of sub	processes in the implementation �� �� �� �� ��
�
� Number of additional actions in the implementation �� �� �
 �� ���
�
�� Number of non	divergent states in the implementation �� ���
 �
� ���� ��
������
�� Number of transitions in the implementation ���
 ��
��
 �
��� ��
�� ����

�
�
�� Number of harmless partially divergent states ��� ������ ���

 ����� 
�
����


Table 
�
� Summary metrics for fault�based analysis �System one�

noticeable feature in Table 
�
 is the relatively small number of non�divergent states �metric

	�� when compared with the number of states in the implementation �metric 
�� These two

metrics values are plotted in the histogram of Figure 
�� against the re�nement number and

show clearly the in�uence of the fault on the number of non�divergent states �represented

by the darker bars��

The other metrics values are comparable to the initial analysis of Chapter �� Thus� the

only metric which re�ects the in�uence of the fault is the number of non�divergent states�

This could be seen as another criticism of the set of proposed metrics since only one of the

metrics gives worthwhile information about the injected fault�

The CPU timings for the fault�based analysis were comparable to those for the analysis
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Figure 
��� Fault�based analysis� System one

contained in Chapter ��


�	�� System two� alternating bit protocol

For System two� thirteen re�nement checks were carried out �the number of DATA values in

the body of the code was raised from � to 	� to achieve this�� Unlike for System one� no

faulty system exists in the technical literature� The choice of fault to investigate in this case

was strongly in�uenced by the type of fault investigated for System one� The advantage of

this approach is that we can then compare the resulting metrics between Systems one and

two�

The following section of code is taken from System two and re�ects the code used in the

analysis of the system in the previous chapter�

R�bit
 �

b�tag�data �� �if tag��bit then right�data ��

R�not bit
 else R�bit



	�

c�not bit �� R�bit


within R�false


This is followed by the code with a seeded fault� similar to that used for System one�
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R�bit
 �

b�tag�data �� �if tag��bit then �right�data ��

R�not bit
 ���

R�not bit

 else R�bit



	�

c�not bit �� R�bit


within R�false


Table 
�� contains the summary metrics for the thirteen re�nement checks� The table

only includes the three most relevant metrics for this analysis� the previous analysis for

System one revealed that the majority of the set of metrics were similar to those found for

the initial analysis in Chapter �� Hence� for this type of analysis of System two� we accept

that only certain metrics are relevant�

Metric min� max� median mean
Number of states in the speci�cation 
� ��
� 
�� ���

Number of states in the implementation ��� ����� ���� �
��
Number of non	divergent states in the implementation 
�
 ��
� ���
 ����

Table 
��� Summary metrics for fault�based analysis �System two�

Another conclusion from the research in this thesis would be that for fault analysis� only

a certain subset of the proposed metrics is applicable�

The histogram of non�divergent states and the number of states in the implementation

against re�nement number is shown in Figure 
�� �the darker bars represent the number

of non�divergent states�� Interestingly� and in contrast to System one� the number of non�

divergent states rises proportionately with the number of states� The relatively larger number

of non�divergent states in System two is due to the fault occurring at a far later stage in the

receiving end of the system�
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Figure 
��� Fault�based analysis� System two


�	�� System three� towers of Hanoi

For System three� nine re�nement checks were carried out� with the number of PEGS held at

� and the range of DISCS ranging from � to 	�� The injected fault was embedded in the code

as follows�

R�bit
 �

POLE�p
 �

PEG�initial�p



		 full �� complete�p�

get�d �� move�d�i�p�

put�d �� move�d�i�p � i �� PEGS� i �� p� d �� DISCS ��

assert STOP 	FD� PUZZLE � 
� complete�A� complete�B� move ��

In this segment of code� the move�d�i�p occurs twice� The �rst of these moves should

have been move�d�p�i� Running the re�nement revealed that the implemention refused to

engage in an event which should have been allowed after just one state� This meant that for

each of the re�nement checks� there was only ever one non�divergent state�

Table 
�� contains the summary metrics for the nine re�nement checks undertaken for

this process� From this table� it is even more evident that the original set of twelve metrics

is inappropriate for fault�based analysis�
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Metric min� max� median mean
Number of states in the speci�cation � � � �
Number of states in the implementation � � � �
Number of non	divergent states in the implementation � � � �

Table 
��� Summary metrics for fault�based analysis �System three�

A further set of four re�nement checks �for the � PEGS� �ve� six� seven and eight DISC

combinations� were carried out with the following fault seeded modi�cations

interface�p
 � 
 move�d�i�p� move�d�p�i� complete�p � d �� DISCS� i �� PEGS �

assert PUZZLE � 
� complete�A� complete�B� move �� 	F� STOP

In this segment of code� move�d�i�p occurs in front of the move�d�p�i� There is an

added move and that move is erroneous�

Table 
�	� contains the summary metrics for these four re�nement checks undertaken

for this scenario� The histogram of states and non�divergent states in the implementation

Metric min� max� median mean
Number of states in the speci�cation � � � �
Number of states in the implementation ��� 
�
� ���� ����
Number of non	divergent states in the implementation ��� 
��� ���� ����

Table 
�	�� Summary metrics for fault�based analysis �System three�

against re�nement number is shown in Figure 
�� �the darker bars represent the number of

non�divergent states�� Interestingly� the gap between the number of implementation states

and non�divergent states remains constant until re�nement number three� suggesting that

the role of the interface does not change between �ve and seven discs �the solution is trivial

with six discs�� Carrying out re�nement checks beyond eight discs led to a segmentation

fault in the machine� However� from this small analysis� it is apparent that the Towers of
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Figure 
��� Fault�based analysis� System three

Hanoi is less amenable a system to fault seeding than the previous two systems� Again� the

metrics are not appropriate for this kind of analysis�


�	�� System four� the dining philosophers

For System four� nine re�nement runs were carried out� ranging from 	 to � philosophers�

Table 
�		 contains the summary metrics for the nine re�nement checks� Just as for the

analysis described earlier in the chapter� the di�culty with System four was �nding a suitable

re�nement check which would provide meaningful information about the speci�cation and

its implementation� What little information was available did not shed any light on the fault

to be seeded in the process� in fact� we changed

PHIL � left�Up �� right�Down �� left�Up �� right�Down �� PHIL

to

PHIL � left�Up �� right�Down �� left�Down �� right�Down �� PHIL

The fault invested changed the second left�Up to left�Down� Table 
�		 reinforces the view

that the original set of proposed metrics are inapplicable for fault�based analyses in both of
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Metric min� max� median mean
Number of states in the speci�cation � � � �
Number of states in the implementation � � � �
Number of non	divergent states in the implementation � � � �

Table 
�		� Summary metrics for fault�based analysis �System four�

the two Type II systems� We note that in Tables 
�� to 
�		� the values of only three metrics

have been given� This is because� based on inspection of the empirical data produced� these

three showed most relevance for analysis in the context of faults�


�
 Conclusions

It is clear from the empirical analysis carried out in this and the preceding chapter that there

are signi�cant di�erences between Type I and Type II CSP systems� The main conclusion to

be drawn from the analysis contained in this chapter is that the metrics described in Chapter

� are adequate for protocol�based systems only� For applications where there is signi�cant

problem�solving element� issues related to the applicability of metrics arise immediately�

These issues range from limits on the type of re�nement check possible� to a system�related

problem of inadequate stack space to handle the level of recursion� It is clear from the

analysis carried out that a separate set of metrics to characterise features of problem�solving

CSP processes needs to be produced�

A number of alternative metrics were proposed which it was hoped would more accu�

rately capture the features of problem�based CSP systems and these were collected using

the example of a railway crossing application� In terms of its characteristics� this �nal ap�

plication seems to lie somewhere between the two domains previously analysed� although

further analyses need to be undertaken to con�rm or refute this� The original proposed set
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of metrics also proved inappropriate for any serious application of seeding faults into the

implementation�

In the following chapter we take a critical look at the four CSP systems and the metrics

thereof� justifying their use� suggesting ways in which the analysis could possibly have been

improved� and how the work could be extended� We also look tentatively at the e�ect

that slightly changing the speci�cation can have on the metrics for the multiplexed bu�er

problem�



Chapter 


Conclusions and future research

��� Introduction

In Chapter 	� we stated the problem that we were attempting to solve in this thesis� namely�

the problem of ensuring that a piece of software matched the requirements expressed in a

speci�cation� In that chapter� we described how this became a problem of comparing a

speci�cation and its implementation� ensuring that implementation and speci�cation were

both expressed in such a way that this comparison could be made� Throughout the thesis�

CSP and its underlying semantics have been used for all the systems analysed� The choice

was deliberate� since it permitted us to use the same notation for both speci�cation and

implementation and hence achieve a transparent mapping between the two� The objectives

of the thesis were�

	� To obtain a greater understanding of the behaviour of CSP systems as they are devel�

oped through the process of re�nement� To this end� four CSP systems were analysed

empirically� For each of the four corresponding speci�cations� an implementation or

partial implementation of the speci�cation was examined to determine the changing

	
�



behaviour of the implementation as the cardinality of the state space was increased�

to e�ect such an increase� the range of data values used by the CSP systems was

successively increased to a practically scalable size�


� To assess the capability of a set of proposed metrics for measuring features of the spec�

i�cation and implementation during the process of re�nement� with speci�c emphasis

on the types of state encountered in both speci�cation and implementation� To this

end� a set of re�nement metrics was proposed and evaluated on each of the four CSP

systems� It was found that� while appropriate for Type I CSP systems� the initial set

of metrics proved inappropriate for Type II CSP systems� A closer examination of

the metrics was made and tentative new metrics more appropriate for the latter were

proposed�

In the light of the content of the previous chapters and the experience this has given us� and

taking the two objectives stated above into consideration� we next post�analyse the main

contributions made in the thesis�

In the next section� the two main contributions are stated and justi�cation for each

of those contributions then given� together with suggestions as to what might have been

changed had the analysis been repeated� In Section ���� we outline the main lessons learnt

from the research contained herein and provide pointers to future research�

��� Contributions of the thesis

The two main contributions of the thesis are�

	� A greater understanding of the behaviour of implementation pertaining to the two types

of application domain �Type I and Type II� has been acquired� It has been found that



this behaviour of CSP systems di�ers signi�cantly across application domains�


� A greater understanding of the requirements for metrics when applied to di�erent

application types� within a CSP context� has also been acquired� It has been found

that metrics covering the process of re�nement are domain�dependent� In other words�

some metrics are applicable to Type I problems� while others are more applicable to

Type II problems�

We next substantiate the above two statements�

����� Contribution one

The insights provided by our analysis of the four CSP systems studied can be looked at

from two viewpoints � within the two application domains and between the two application

domains�

From the �rst viewpoint� namely� within the two types of application domain� there were

noticeable similarities between each pair of systems� When compared� the multiplexed bu�ers

�System one� and the alternating�bit protocol �System two� showed only minor di�erences

in terms of the upper limit on the number of states which could be generated and the nature

of some of the other metrics collected �e�g�� the number of sub�processes� which tended

to remain static throughout re�nement�� Both of these systems were characterised by a

strong emphasis on communication between sub�processes and an architecture amenable to

decomposition through various levels of abstraction� Equally� for the �nal two systems� the

Towers of Hanoi �System three� and The Dining Philosophers �System four�� it was noticeable

how similar these two systems were in terms of their features� namely� a dependance on the

use of recursion to solve the problems they each addressed and a tendency to use the same

CSP constructs�



From the second viewpoint� namely� between application domains� there was a stark dif�

ference between the �rst two systems and the second two systems� This included di�erences

in the way the systems were written as well as other statically analysable di�erences �e�g��

extent of hiding� level of decomposition�� The two di�erent application domains also tended

to use di�erent CSP syntactic constructs� Take� for example� the varying levels of relabelling

over the four systems with none found in the �rst pair of systems and a high level in the

second pair of systems� The number of states capable of being generated was also very small

in the latter two systems� in contrast to the �rst two systems� and the opportunities for

analysing re�nement� via the metrics of Chapter �� a good deal less� In the last two systems�

it was more a case of checking the implementation for terminating conditions rather than

against the speci�cation�

����� Contribution two

Metrics were proposed which were thought to be applicable to the CSP environment� and

hence applicable to all CSP systems� In substantiating our claim about this contribution�

it is perhaps as valid to state the lessons that have been learnt in terms of the metrics�

rather than simply outlining the development of the metrics themselves� With hindsight�

one di�cult� but interesting lesson learnt� was that the initial set of twelve metrics lacked

�exibility� the majority of the metrics were found to be inapplicable for Type II problems�

This raised a number of interesting questions�

Firstly� for a particular programming medium� is there a generally applicable subset of

metrics� In the object�oriented community� this question has proved di�cult to answer� and

the indication from the research contained herein is that evaluating metrics for CSP systems

is no less di�cult�



Secondly� were the metric values obtained from each of the four CSP systems re�ective

of the nature of the problem� or simply the way that the CSP systems had been expressed�

Consider the last two CSP systems� Conceivably� these two systems could have been writ�

ten in a style which minimised the level of recursion in the code� i�e�� they could have been

written in an iterative fashion� We need to ask whether the same metrics values would have

been produced had those two systems been coded di�erently� In response to this� we empha�

sise that coding an implementation of the Towers of Hanoi or Dining Philosophers problem�

without using recursive techniques� goes against the CSP ethos� which� after all� is based

on the use of recursive techniques� It is thus likely that the metrics values obtained would

not di�er signi�cantly whether the implementation was written recursively or iteratively� for

the simple reason that certain CSP constructs �e�g�� renaming and non�determinism� would

have to be used in any implementation of these two problems� The only metrics values which

might change are those related to the number of sub�processes generated� due to the level of

recursion� by the speci�cation and implementation of the problem� From a practical view�

point� if the metrics values were di�erent as a result� then this may merely indicate a poor

design or poor choice of coding constructs in the implementation by the developer� rather

than being indicative of a poor set of metrics�

Consider the �rst two CSP systems� It is di�cult to envisage an alternative way of

coding these systems� and so� again� the problem of having to decide whether alternatively

coded implementations would produce di�erent metrics values does not arise� Hence� the

conclusion is that� to a large extent� it is the nature of the problem which determines the

metrics values� and not the way that the CSP system is coded�

As to the question of what could have been done di�erently had the research been re�

peated� only minor aspects would be changed� and these mainly relate to future research



anyway�

Broadening the scope of the analysis to more CSP systems across other application

domains would be an obvious extension to the research reported in this thesis�

Using principal components analysis to extract the most appropriate metrics across more

than the two domains examined herein would be another avenue for future research� but

would require more analysis of alternative metrics� It might also have been useful to automate

the whole process of metrics collection and analysis� At present� only the collection is

automated� which tends to slow down the extraction of results considerably� In terms of a

wider context in which the set of proposed metrics can be placed� the current trend in software

metrics is towards their use for predicting development e�ort and cost as early as possible

in the development process �BW�	� SC�	� SK�	�� The use of appropriate measurement and

statistical techniques lies at the heart of this research� The emphasis of the set of metrics

proposed herein was not to go this far� however� it is not inconceivable that they could be

used for prediction purposes in a CSP system� this would be a topic for future research�

One area which was investigated brie�y� as a �nal task of the analysis� was the e�ect of

changing the speci�cation of a CSP system on the metrics values� To this end� thirty�six

re�nement checks were carried out with a modi�ed speci�cation using System one as a basis�

The original speci�cation de�ned by

Copy�i� � left�i � x 

 right�i � x 

 Copy�i�

Spec � ��� i�Tag � Copy�i�

was modi�ed to include an extra right � x in Copy�i� immediately following the initial

left�i � x� A number of scatter plots were then investigated� We describe only the key

points to come out of this initial investigation�

Firstly� addition of this extra action rendered it impossible to achieve the limit of thirty�



seven re�nement checks �as shown in Table ����� so only thirty�six re�nement checks were

carried out� This was due to the limitation of the machine�s virtual memory� It was remark�

able how addition of just one action to the speci�cation caused such a change in the number

of states generated by the speci�cation �metric 	�� The metrics values corresponding to row

	 of Table ��	 now are� � �min��� �
�	 �max��� 	�
 �median�� 	
�� �mean� and 

����� �std�

dev���

Secondly� related to the previous point� small changes to a CSP speci�cation may give

rise to the need for signi�cant re�design of the re�nement process� The low number of non�

divergent states in the implementation �metric 	�� observed for the new Spec when compared

against the old System re�ected this need� The metrics values corresponding to row 	� of

Table ��	 now are� � �min��� ����
 �max��� ��� �median�� ���� �mean� and 

�	��
 �std�

dev���

Finally� some of the other metrics relating to the speci�cation did not vary from their

values in the original version of Spec� An example of this is the number of distinct actions in

the speci�cation �metric ��� another example is the number of sub�processes in the speci�ca�

tion �metric 
�� Being at a higher level of abstraction� it would seem that the speci�cation

was insensitive to certain types of change in its composition� A rigorous analysis of the

nature of this set of changes would again be a topic for future research�

��� Lessons learnt and future research

A number of lessons� in terms of research techniques� have been learnt during the conduct

of the research in this thesis�

Firstly� that it is as valid to report negative results as it is to report positive results� This

relates� in particular� to the initial statement of the proposed metrics for Type I problems�



which were then pruned and expanded in order that they be applicable to Type II problems�

Secondly� that empirical work� carrying out analyses such as those in the thesis� reveals

more questions to be answered than it actually answers� Parallels with other programming

languages� the coding habits of developers� program comprehension and maintenance issues

all have input to the �eld of empirical analysis� Useful results� however� are more likely to

emerge from taking a small area and investigating it well rather than tackling a large area

and covering that area poorly�

Thirdly� that it is important to state the assumptions on which the research rests un�

equivocally� In the case of this thesis� it was that the CSP medium and semantics were to

be used throughout and that the speci�cation captured the requirements exactly�

Finally� that an open mind to alternative theories should always be held in work of this

nature� In the context of this research� further studies in the area need to be undertaken to

shed light on current results and thinking�

One area of future research would therefore be to extend the empirical analysis to other

CSP systems to con�rm �or not� the �ndings reported herein� For example� we have not

claimed that the proposed metrics were a de�nitive set� Further research could therefore

focus on introducing other metrics applicable to other application domains� As stated earlier

�Section ��
�
�� one of the major lessons learnt throughout this thesis has been that empirical

analysis requires a great deal of �exibility in terms of examining� re�ning and evolving

metrics from �rst�cut versions to those which truly re�ect the features of CSP systems�

Future research would also address fault injection issues �and the e�ect this would have on

the metrics values� in more depth than has so far been considered� For example� it might

be fruitful to examine the e�ect of di�erent fault categories in a CSP context� so building

up a picture of the e�ect that a particular type of error by developers may have on an



implementation�

In view of the fact that we also looked brie�y at the e�ect on the metrics values induced

by changing the speci�cation� future research will� again� need to delve in depth at issues

related to changing requirements� Again� it may be fruitful to examine the e�ect of di�erent

categories of requirement on a CSP speci�cation �and hence the CSP implementation�� Fi�

nally� it may be useful to be able to predict attributes of CSP systems �cf� �SC�	� SK�	�� such

as the number of generated states or number of sub�processes� based on the static features of

those CSP systems �e�g�� the data types�� This would obviate the need for time�consuming

re�nement checks to be undertaken�



Appendix A

System one �Multiplexed Bu�ers�

�� Multiplexed buffers� version for fdr���� �� Bill Roscoe

�� Modified for fdr���� ������� Dave Jackson

�� The idea of this example is to multiplex a number of buffers down a

�� pair of channels� They can all be in one direction� or there might be

�� some both ways� The techniques demonstrated here work for all

�� numbers of buffers� and any types for transmission� The number of states

�� in the system can be easily increased to any desired size by increasing

�� either the number of buffers� or the size of the transmitted type�

datatype Tag � t� � t� � t�

datatype Data � d� � d�

channel left� right � Tag�Data

channel snd�mess� rcv�mess � Tag�Data

channel snd�ack� rcv�ack � Tag

channel mess � Tag�Data

channel ack � Tag

�� The following four processes form the core of the system

��

��

�� ��� SndMess ��� ����������� ��� RcvMess ���

��

�� ��� RcvAck ��� ����������� ��� SndAck ���

��

�� SndMess and RcvMess send and receive tagged messages� while

�� SndAck and RcvAck send and receive acknowledgements�

SndMess � 	� i�Tag � �snd�mess�i � x �� mess � i�x �� SndMess


	��



� �

RcvMess � mess � i�x �� rcv�mess�i � x �� RcvMess

SndAck � 	� i�Tag � �snd�ack�i �� ack � i �� SndAck


RcvAck � ack � i �� rcv�ack�i �� RcvAck

�� These four processes communicate with equal numbers of transmitters �Tx


�� and receivers �Rx
� which in turn provide the interface with the

�� environment�

Tx�i
 � left�i � x �� snd�mess�i � x �� rcv�ack�i �� Tx�i


Rx�i
 � rcv�mess�i � x �� right�i � x �� snd�ack�i �� Rx�i


FaultyRx�i
 � rcv�mess�i � x �� right�i � x ���FaultyRx�i


��� snd�ack�i �� FaultyRx�i



�� Txs is the collection of transmitters working independently�

Txs � ��� i�Tag � Tx�i


�� LHS is just everything concerned with transmission combined� with

�� internal communication hidden�

LHS � �Txs 	�
�snd�mess� rcv�ack�����SndMess ��� RcvAck

�
�snd�mess� rcv�ack��

�� The receiving side is built in a similar way�

Rxs � ��� i�Tag � Rx�i


FaultyRxs � Rx�t�
 ��� Rx�t�
 ��� FaultyRx�t�


RHS � �Rxs 	�
�rcv�mess� snd�ack����

�RcvMess ��� SndAck

�
�rcv�mess� snd�ack��

FaultyRHS � �FaultyRxs 	�
�rcv�mess� snd�ack����

�RcvMess ��� SndAck

�
�rcv�mess� snd�ack��

�� Finally we put it all together� and hide internal communication�

System � �LHS 	�
�mess� ack���� RHS
�
�mess�ack��

FaultySystem � �LHS 	�
�mess� ack���� FaultyRHS
�
�mess� ack��

�� The specification is just the parallel composition of several one�place

�� buffers�

Copy�i
 � left�i � x �� right�i � x �� Copy�i


Spec � ��� i�Tag � Copy�i




� �

�� Correctness of the system is asserted by Spec 	FD� System�

assert Spec 	FD� System

�� If the multiplexer is being used as part of a larger system� then

�� it would make a lot of sense to prove that it meets its specification

�� and then use its specification in its stead in higher�level system

�� descriptions� This applies even if the higher�level system does not

�� break up into smaller components� since the state�space of the

�� specification is significantly smaller than that of the multiplexer�

�� which will make the verification of a large system quicker� It is

�� even more true if the channels of the multiplexer are used independently�

�� in other words if each external channel of the multiplexer is connected

�� to a different user� and the users do not interact otherwise�

�� for it would then be sufficient to prove that each of the separate

�� pairs of processes interacting via our multiplexer is correct relative

�� to its own specification� with a simple one�place buffer between them�

�� For we would have proved the equivalence� by the correctness of the

�� multiplexer� of our system with a set of three�process independent ones�



Appendix B

System two �Alternating Bit

Protocol�


�

Alternating bit protocol�

Bill Roscoe� August ����

Adapted for FDR����� Bryan Scattergood� April ���"

This is the initial example of a set which make use of a pair of media

which are permitted to lose data� and provided no infinite sequence is lost

will work independently of how lossy the channels are �unlike the file

prots�csp where the protocols were designed to cope with specific badnesses


They work by transmitting messages one way and acknowledgements the other�

The alternating bit protocol provides the most standard of all protocol

examples� The treatment here has a lot in common with that in the

Formal Systems information leaflet #The Untimed Analysis of Concurrent

Systems#�

��


�

Channels and data types

left and right are the external input and output�

a and b carry a tag and a data value�

c and d carry an acknowledgement tag�

�In this protocol tags are bits�


a PUT b

	��



� �

left � � right

������� SEND RECV �������

� �

d GET c

��

DATA � 
���� �� in a data�independent program� where nothing is done to

�� data� or is conditional on data� this is sufficient to

�� establish correctness�

channel left�right � DATA

channel a� b � Bool�DATA

channel c� d � Bool


�

The overall specification we want to meet is that of a buffer�

��

SPEC � let


�

The most nondeterministic �left�to�right
 buffer with size bounded

by N is given by BUFF���� N
� where

��

BUFF�s� N
 �

if null�s
 then

left�x �� BUFF��x�� N


else

right�head�s
 �� BUFF�tail�s
� N


	�

�s � N � �STOP ��� left�x �� BUFF�s �x�� N




�

For our purposes we will set N � � since this example does not introduce

more buffering than this�

��

within BUFF���� �



�

The protocol is designed to work in the presence of lossy channels�

We specify here channels which must transmit one out of any three values� but

any definition would work provided it maintains order and does not lose

an infinite sequence of values� The only difference would evidence itself

in the size of the state�space�

��

lossy�buffer�in� out� bound
 �

let

�� Increasing bound makes this definition less deterministic�

�� n is the number of outputs which may be discarded�

B��
 � in�x �� out�x �� B�bound��


B�n
 � in�x �� �B�n��
 ��� out�x �� B�bound��



within B�bound��




� �

PUT � lossy�buffer�a� b� �


GET � lossy�buffer�c� d� �



�

The implementation of the protocol consists of a sender process and

receiver process� linked by PUT and GET above�

��

SEND �

let

Null � �� �� any value not in DATA


�

The sender process is parameterised by the current value it

tries to send out� which may be Null in which case it does

not try to send it� but instead accepts a new one from

channel left�

It is always willing to accept any acknowledgement� and if

the tag corresponds to the current bit� v is made Null�

��

S�v�bit
 �

�if v �� Null then left�x �� S�x� not bit
 else a�bit�v �� S�v� bit



	�

d�ack �� S�if ack��bit then Null else v� bit



�

Initially the data value is Null and bit is true so the first

value input gets bit false�

��

within S�Null� true


RECV �

let


�

The basic part of the receiver takes in messages� sends

acknowledgements� and transmits messages to the environment�

R�b
 is a process that will always accept a message or

send an acknowledgement� save that it will not do so when it

has a pending message to transmit to the environment�

��

R�bit
 �

b�tag�data �� �if tag��bit then right�data �� R�not bit
 else R�bit



	�

c�not bit �� R�bit



�

The first message to be output has tag false� and there is no pending

message�

��

within R�false



�



� �

If this receiver is placed in the system� there is the danger of

livelock� or divergence� if an infinite sequence of acknowledgements is

transmitted by RECV and received by SEND without the next message being

transmitted� as is possible� Alternatively� a message can be transmitted

and received infinitely without being acknowledged�

Thus� while the following system is

partially correct� it can diverge �infinitely
�

��

make�system�receiver
 �

make�full�system�SEND� PUT���GET� receiver


make�full�system�sender� wiring� receiver
 �

sender	�
�a�d�����wiring	�
�b�c����receiver
�
�a�b�c�d��

DIVSYSTEM � make�system�RECV


assert DIVSYSTEM �	livelock free�


�

We can avoid divergence by preventing the receiver acknowledging or

receiving infinitely without doing the other �acknowledging
� This can

be done by putting it in parallel with any process which allows these

actions in such a way as to avoid these infinitely unfair sequences�

In fact� the receiver may choose one of the two to do rather than give

the choice as above� Examples that will work are�

��

�� Simple alternation

ALT � b�� �� c�� �� ALT

�� Give the environment the choice� provided there is no run of more

�� than M of either�

LIMIT�M
 �

let

L�bs�cs
 �

bs � M � b�� �� L�bs!�� �


	�

cs � M � c�� �� L��� cs!�


within L����


�� Choose nondeterministically which to allow� provided the totals

�� of b$s and c$s do not differ too much�

NDC�M
 �

let

C�n
 �

if n��� then

c�� �� C�n!�




� �

else if n��M then

b�� �� C�n��


else

c�� �� C�n!�
 ��� b�� �� C�n��


within C�M��


�� Modified receiver processes� with small values for the constants� are

modify�receiver�constraint
 �

RECV 	�
�b�c���� constraint

RCVA � modify�receiver�ALT


RCVL � modify�receiver�LIMIT��



RCVN � modify�receiver�NDC��



�� and the checks of the respective systems against SPEC

assert SPEC 	FD� make�system�RCVA


assert SPEC 	FD� make�system�RCVL


assert SPEC 	FD� make�system�RCVN



�

Of course� one would not normally construct one$s receiver as a composition

of an algorithmic process and constraint in this way� but we now know that

any receiver which refines RCVN will work� For example�

��

RCVimp �

let

R�bit
 �

b�tag�data �� if tag��bit then

right�data �� c�tag �� R�not bit


else

c�tag �� R�bit


within R�false



�

You can check that RCVimp refines RCVN� which proves that the larger

check below is correct� �This can� in this instance� be proved directly�


��

assert RCVN 	FD� RCVimp

assert SPEC 	FD� make�system�RCVimp



�

Indeed� RCVimp actually equals �semantically
 RCVA� and you can check

that refinement either way�

��

assert RCVimp 	FD� RCVA



� �

assert RCVA 	FD� RCVimp


�

If you want to develop this example much further� perhaps by inserting

a more interesting process in one or both channels� the state�space may

grow uncomfortably large for a full check �including absence of divergence
�

Any different channel definitions which satisfy all of

�� outputs�tr
 subseq of inputs�tr
 in the obvious sense

�� will not do an infinite sequence of inputs without an output

�� refines LIVCH �given below
 and hence can always either input

any value� or make an output

are substitutable for PUT and�or GET�

��

LIVCH�in� out
 �

let

P �

in�� �� P

���

��� x�
�out�� � x �� P

within P

assert LIVCH�a�b
 	FD� PUT

assert LIVCH�c�d
 	FD� GET


�

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Failures�only Checking

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The following is fairly advanced material for those who want to

understand the subtle differences between full and failures�only� and even

exploit them�

As we know� Failures and Traces checking do not test the implementation

for potential divergence� This is usually something to overcome

by establishing separately that the implementation is divergence�free�

Provided we know clearly what we are doing� there are cases where

establishing facts about processes which can diverge are valuable�

In other words� there are useful theorems that can be proved using

these restricted forms of check that are not provable using a full check�

We know of two sorts of results to prove in this way� They are

similar in execution� but rather different in interpretation� and

both can be successfully demonstrated using the alternating bit



� �

example�

Spec 	�F Imp proves that every trace� and every stable refusal

of Imp is satisfactory� If we take a divergence�free

component of Imp and refine it� then not only will the

overall set of failures and divergence be refined �reduced


but so will the observable traces and stable refusals�

It follows that� if we can establish Spec 	�F Imp� then we have proved

a theorem that any Imp$ produced by refining the component which is

also divergence�free �i�e�� Imp$ is
� then Imp$ will failures�divergence

refine Spec�

This is valuable in arguments like that involving the receiver process

above� where a number of different processes were introduced� as varying

ways of eliminating divergence� We proved each of them worked�

but really we would like a general result about a class of receiver

processes� which leaves divergence as the only remaining issue� This

can be done with the generalised co�process

��

ND � b�� �� ND ��� c�� �� ND


�

which is an approximation to ALT� LIMIT and NDC above� The generalised

receiver process

��

RCVG � modify�receiver�ND



�

approximates any conceivable process we might want to put at the

right�hand�side of the alternating bit protocol� Note that it can

always choose whether it wants to accept a message or send an acknowledgement

��

�� The system

GSYSTEM � make�system�RCVG



�

will be found to diverge if you use a full check� However the failures

check will work� which� as we said above� establishes that

any refinement of RCVG which eliminates divergence from the whole

system will give a valid failures�divergence refinement of SPEC�

Note that we could not have made the same argument using RECV� since

it is a deterministic process� In fact� DIVSYSTEM has no stable

states at all� a very different proposition from GSYSTEM�

which implicitly has all the stable states of every possible working

right�hand process�



� �

��

assert SPEC 	F� GSYSTEM

assert SPEC 	FD� GSYSTEM


�

The second sort of result uses very similar techniques to reason about

#fairness# issues� It perhaps does not make much sense to talk about a

fair receiver process� when the design of that process is likely to be

firmly within our control� But it certainly makes sense to introduce

fairness assumptions about the communications medium� It is really more

natural to bring in assumption like #the medium will never lose an infinite

sequence of consecutive messages# rather than #it will not lose more than

three out of every four#� The ideal model of a communications medium

in this respect is

��

PUT$ � a�tag�data �� �b�tag�data �� PUT$ ��� PUT$


GET$ � c�tag �� �d�tag �� GET$ ��� GET$



�

with the additional assumption that an infinite set of messages is not

lost� This actually defines perfectly valid processes in the infinite

traces�failures model of CSP� and mathematical arguments in that model

will exclude divergence from a system such as

��

FSYSTEM �

make�full�system�SEND� PUT$���GET$� RCVA



�

with the additional assumptions about EG and FG that we cannot make in

the finite failures�divergence model� Since the additional assumptions

only serve to refine EG and FG further� proving that FSYSTEM refines

SPEC using a failures check will prove that the system with the

fairness assumptions in place will be a full refinement of SPEC�

��

assert SPEC 	F� FSYSTEM



Appendix C

System three �Towers of Hanoi�


�

A version of the Towers of Hanoi using lots of features

which were not present in FDR ���

JBS � March ���� �based loosely on AWR$s version for FDR ���


��

transparent diamond

n � � �� How many discs

�� Discs are numbered

DISCS � 
���n�

�� But the pegs are labelled

datatype PEGS � A � B � C


�

For a given peg� we can get a new disc or put the

top disc somewhere else� We are also allowed to

to indicate when the peg is full�

��

channel get� put � DISCS

channel full

�� We are allowed to put any &smaller& disc onto the current stack

allowed�s
 � 
 ���head�s �n!��
�� �

PEG�s
 �

get�d�allowed�s
��PEG��d� s


	��



� �

	�

not null�s
 � put�head�s
��PEG�tail�s



	�

length�s
 �� n � full��PEG�s



�

Now� given a simple peg we can rename it to form each

of the three physical pegs �'poles$
 of the puzzle�

move�d�i�j indicates that disc d moves to pole i from pole j

��

channel move � DISCS�PEGS�PEGS

channel complete � PEGS

initial�p
 � � ���n � p �� A �

POLE�p
 �

PEG�initial�p



		 full �� complete�p�

get�d �� move�d�p�i�

put�d �� move�d�i�p � i�� PEGS� i �� p� d��DISCS ��


�

The puzzle is just the three poles� communicating on the

relevant events� all the moves� and the done�notdone events�

��

interface�p
 � 
 move�d�p�i� complete�p � d��DISCS� i��PEGS �

PUZZLE �

�� p � PEGS � 	 interface�p
 � diamond�POLE�p




�

The puzzle is solved by asserting that C cannot become complete�

Then the trace that refutes the assertion is the solution�

��

NOTSOLVED � complete�x�
A�B��� NOTSOLVED 	� move�x �� NOTSOLVED

assert NOTSOLVED 	T� PUZZLE

assert PUZZLE � 
� complete�A� complete�B� move �� 	F� STOP



Appendix D

System four �Dining Philosophers�

�� Play with massive numbers of dining philosophers

�� �Powers of � only


�� JBS� May ���"�

datatype Move � Up � Down

channel left� right � Move

FORK � left�Down��left�Down��FORK 	� right�Down��right�Down��FORK

PHIL � left�Up��right�Down��left�Up��right�Down��PHIL

LPHILS�n
 �

let

L��
 �

FORK 	right���left� PHIL

L�n
 �

let

HALF � LPHILS�n��


within HALF 	right���left� HALF

transparent normal

within normal�L�n
 		 ��


RPHILS�n
 �

LPHILS�n
 		 left �� right� right �� left ��

PHILS�n
 �

LPHILS�n��
 	�
� left� right ���� RPHILS�n��


�� PHILS�n
 represents a network of � n philosophers

	��



� �

X � PHILS��


assert X 	FD� X



Appendix E

Railway Crossing

�� Model of a level crossing gate for FDR� revised version

�� Illustrating discrete�time modelling using untimed CSP

�� �c
 Bill Roscoe� November ���� and July ����

�� Revised for FDR ���� May ���"


�

This file contains a revised version� to coincide with my ����

notes� of the level crossing gate example which was the first CSP

program to use the #tock# model of time�

The present version has �I think
 a marginally better incorporation

of timing information�

��

�� The tock event represents the passing of a unit of time

channel tock

�� The following are the communications between the controller process and

�� the gate process

datatype GateControl � go�down � go�up � up � down

�� where we can think of the first two as being commands to it� and the

�� last two as being confirmations from a sensor that they are up or down�

channel gate � GateControl

�� For reasons discussed below� we introduce a special error event�

	��



channel error

�� To model the speed of trains� and also the separation of more than one

�� train� we divide the track into segments that the trains can enter or

�� leave�

Segments � �� �� the number of segments including the outside one

LastSeg � Segments � �

TRACKS � 
���LastSeg�

REALTRACKS � 
���LastSeg�

�� Here� segment � represents the outside world� and 	��Segment
 actual

�� track segments( including the crossing� which is at

GateSeg��

�� This model handles two trains

datatype TRAINS � Thomas � Gordon

�� which can move between track segments

channel enter� leave � TRACKS�TRAINS

�� Trains are detected when they enter the first track segment by a sensor�

�� which drives the controller� and are also detected by a second sensor

�� when they leave GateSeg

datatype sensed � in � out

channel sensor � sensed

�� The following gives an untimed description of Train A on track segment j

�� A train not currently in the domain of interest is given index ��

Train�A�j
 � enter���j!�
%Segments
�A �� leave�j�A �� Train�A��j!�
%Segments


�� There is no direct interference between the trains

Trains � Train�Thomas��
 ��� Train�Gordon��


�� The real track segments can be occupied by one train at a time� and each

�� time a train enters segment � or leaves GateSeg the sensors fire�

Track�j
 �

let

Empty � enter�j�A �� if j��� then sensor�in �� Full�A
 else Full�A


Full�A
 � leave�j�A �� if j��GateSeg then sensor�out �� Empty else Empty

within Empty



�� Like the trains� the untimed track segments do not communicate with

�� each other

Tracks � ��� j � REALTRACKS � Track�j


�� And we can put together the untimed network� noting that since there is

�� no process modelling the outside world there is no need to synchronise

�� on the enter and leave events for this area�

Network � Trains 	�
�enter�j� leave�j � j��REALTRACKS���� Tracks

�� We make assumptions about the speed of trains by placing �uniform


�� upper and lower #speed limits# on the track segments�

�� MinTocksPerSeg � � �� make this a parameter to experiment with it

SlowTrain � � �� inverse speed parameter� MinTocksPerSegment

NormalTrain � �

FastTrain � �

MaxTocksPerSeg � �

�� The speed regulators express bounds on the times between successive

�� enter events�

SpeedReg�j�MinTocksPerSeg
 �

let

Empty � enter�j�A �� Full��
 	� tock �� Empty

Full�n
 � n � MaxTocksPerSeg � tock �� Full�n!�


	� MinTocksPerSeg �� n � enter��j!�
%Segments�A �� Empty

within Empty

�� The following pair of processes express the timing contraint that

�� the two sensor events occur within one time unit of a train entering

�� or leaving the domain�

InSensorTiming � tock �� InSensorTiming

	� enter���A �� sensor�in �� InSensorTiming

OutSensorTiming � tock �� OutSensorTiming

	� leave�GateSeg�A �� sensor�out �� OutSensorTiming

�� The timing constraints of the trains and sensors are combined into the

�� network as follows� noting that no speed limits are used outside the domain�

SpeedRegs�min
 �

�� j � REALTRACKS � 	
�tock� enter�j� enter��j!�
%Segments��� SpeedReg�j�min


SensorTiming � InSensorTiming 	�
tock��� OutSensorTiming

NetworkTiming�min
 � SpeedRegs�min
 	�
�tock� enter������ SensorTiming



TimedNetwork�min
 �

Network 	�
�enter� sensor� leave�GateSeg���� NetworkTiming�min


�� The last component of our system is a controller for the gate� whose duties

�� are to ensure that the gate is always down when there is a train on the

�� gate� and that it is up whenever prudent�

�� Unlike the first version of this example� here we will separate the

�� timing assumptions about how the gate behaves into a separate process�

�� But some timing details �relating to the intervals between sensors

�� firing and signals being sent to the gate
 are coded directly into this

�� process to illustrate a different coding style to that used above�

Controller �

let

�� When the gate is up� the controller does nothing until the sensor

�� detects an approaching train�

�� In this state� time is allowed to pass arbitrarily� except that the

�� signal for the gate to go down is sent immediately on the occurrence of

�� the sensor event�

ControllerUp � sensor�in �� gate�go�down �� ControllerGoingDown��


	� sensor�out �� ERROR

	� tock �� ControllerUp

�� The two states ControllerGoingDown and ControllerDown �see below


�� both keep a record of how many trains have to pass before the gate

�� may go up�

�� Each time the sensor event occurs this count is increased�

�� The count should not get greater than the number of trains that

�� can legally be between the sensor and the gate �which equals

�� the number of track segments
�

�� The ControllerGoingDown state comes to an end when the

�� gate�down event occurs

ControllerGoingDown�n
 �

�if GateSeg � n then ERROR else sensor�in �� ControllerGoingDown�n!�



	� gate�down �� ControllerDown�n


	� tock �� ControllerGoingDown�n


	� sensor�out �� ERROR

�� When the gate is down� the occurrence of a train entering its

�� sector causes no alarm� and each time a train leaves the gate

�� sector the remaining count goes down� or the gate is signalled

�� to go up� as appropriate�

�� Time is allowed to pass arbitrarily in this state� except that

�� the direction to the gate to go up is instantaneous when due�

ControllerDown�n
 �

�if GateSeg � n then ERROR else sensor�in �� ControllerDown�n!�



	� sensor�out �� �if n��� then gate�go�up �� ControllerGoingUp

else ControllerDown�n��



	� tock �� ControllerDown�n


�� When the gate is going up� the inward sensor may still fire�

�� which means that the gate must be signalled to go down again�

�� Otherwise the gate goes up after UpTime units�



ControllerGoingUp � gate�up �� ControllerUp

	� tock �� ControllerGoingUp

	� sensor�in �� gate�go�down �� ControllerGoingDown��


	� sensor�out �� ERROR

within ControllerUp

�� Any process will be allowed to generate an error event� and since we will

�� be establishing that these do not occur� we can make the successor process

�� anything we please� in this case STOP�

ERROR � error �� STOP

�� The following are the times we assume here for the gate to go up

�� and go down� They represent upper bounds in each case�

�� DownTime � � �� make this a parameter for experimentation

VeryFastGate � �

FastGate � �

NormalGate � �

SlowGate � �

UpTime � �

Gate�DownTime
 �

let

GateUp � gate�go�up �� GateUp

	� gate�go�down �� GateGoingDown��


	� tock �� GateUp

GateGoingDown�n
 �

gate�go�down �� GateGoingDown�n


	� if n �� DownTime

then gate�down �� GateDown

else gate�down �� GateDown ��� tock �� GateGoingDown�n!�


GateDown � gate�go�down �� GateDown

	� gate�go�up �� GateGoingUp��


	� tock �� GateDown

GateGoingUp�n
 � gate�go�up �� GateGoingUp�n


	� gate�go�down �� GateGoingDown��


	� if n �� UpTime

then gate�up �� GateUp

else gate�up �� GateUp ��� tock �� GateGoingUp�n!�


within GateUp

�� Since Gate has explicitly nondeterministic behaviour� we can expect

�� to gain by applying a compression function� such as diamond� to it(

�� we declare a number of #transparent# compression functions

transparent sbisim

transparent normalise

transparent explicate

transparent diamond



GateAndController�dt
 � Controller 	�
�tock�gate���� diamond�Gate�dt



�� Finally� we put the network together with the gate unit to give our

�� overall system

System�invmaxspeed�gatedowntime
 �

TimedNetwork�invmaxspeed
 	�
�sensor�tock���� GateAndController�gatedowntime


�� And now for specifications� Since we have not synchronised on any

�� error events� they would remain visible if they occurred� Their

�� absence can be checked with

NoError � CHAOS�diff�Events�
error�



�� This shows that none of the explicitly caught error conditions arises�

�� but does not show that the system has the required safety property of

�� having no train on the GateSeg when the gate is other than down�

�� The required specifications are slight generalisations of those

�� discussed in specs�csp( the following notation and development is

�� consistent with that discussed therein�

SETBETWEENx�EN�DIS�C
 � �	�x�EN � x �� SETOUTSIDEx�DIS�EN�C



	� �	� x�DIS � x �� SETBETWEENx�EN�DIS�C



SETOUTSIDEx�DIS�EN�C
 � �	� c�C � c �� SETOUTSIDEx�DIS�EN�C



	� �	� x� EN � x �� SETOUTSIDEx�DIS�EN�C



	� �	� x�DIS � x �� SETBETWEENx�EN�DIS�C



�� The above capture the sort of relationships we need between the

�� relevant events� If we want to stay within Failures�Divergence Refinement

�� �as opposed to using Trace checking subtly
� we need to do the following to

�� turn them into the conditions we need�

EnterWhenDown �

SETBETWEENx�
gate�down��


gate�up�gate�go�up�gate�go�down��


�enter�GateSeg��


	�
�gate� enter�GateSeg����

CHAOS�Events


GateStillWhenTrain �

SETOUTSIDEx�
�enter�GateSeg���
�leave�GateSeg���
�gate��


	�
�gate�enter�GateSeg�leave�GateSeg����

CHAOS�Events


�� So we can form a single safety spec by conjoining these�



Safety � EnterWhenDown 	�Events�� GateStillWhenTrain

�� There are a number of possible combinations which may be of interest�

�� An important form of #liveness# we have thus far ignored is that the clock

�� is not stopped� for this it is sufficient that TimingConsistency

�� refines TOCKS� where

TOCKS � tock �� TOCKS

�� The following is the set of events that we can rely on the environment

�� for delaying them�

Delayable � 
�enter����

NonTock � diff�Events�
tock�


TimingConsistency�ts�gs
 �

explicate�System�ts�gs
	�Delayable��normalise�CHAOS�Delayable

�NonTock


assert TOCKS 	FD� TimingConsistency�NormalTrain�NormalGate


�� The safety condition completely ignored time �although� if you change some

�� of the timing constants enough� you will find it relies upon timing for

�� it to be satisfied
� Because of the way we are modelling time� the

�� main liveness constraint �that the gate is up when prudent
 actually

�� becomes a safety condition �one on traces
� It is the combination of this

�� with the TOCKS condition above �asserting that time passes
 that gives

�� it the desired meaning�

�� We will specify that when X units of time have passed since the last

�� train left the gate� it must be open� and remain so until another

�� train enters the system� This is done by the following� which monitor

�� the number of trains in the system and� once the last train has left� no

�� more than X units of time pass �tock events
 before the gate is up� The

�� gate is not permitted to go down until a train is in the system�

Liveness�X
 �

let

Idle � tock �� Idle

	� enter���� �� Busy��


Busy�n
 � tock �� Busy�n


	� enter���� �� Busy�if n � GateSeg then �n!�
 else n


	� leave�GateSeg�� �� �if n��� then UpBefore�X
 else Busy�n��



	� gate�� �� Busy�n


UpBefore�m
 � m �� � � tock �� UpBefore�m��


	� gate�x �� �if x��up then Idle else UpBefore�m



	� enter���� �� Busy��


�� Initially the gate is up in the system� so the liveness condition

�� takes this into account�

within Idle

GateLive�X
 � Liveness�X
 	�
�tock�gate�enter���leave�GateSeg����CHAOS�Events






Appendix F

Calculation of R�squared value

In �tting equations to data� a measure of the goodness�of��t� designated by Rsv� is given by

R� � 	 � �SSE
SST �

where

SSE �
P
�Yi � %Yi�

� and SST �
P

Y �
i � �

P
Yi�

� 
 n


��
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