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ABSTRACT

In the pre-Internet age, radio, newspapers and television were the only infor-

mation sources available to people. Currently, over the Internet, the sources

of information are not limited to these few channels but have grown exponen-

tially. To fulfil the information appetite of any user, the Internet has a vast

and diverse set of information sources available. Having considered the expo-

nential growth of diverse sets of information over the Internet, it is natural

to consider methods to evaluate or measure the diversity of information for

any topic, specifically when the topic or query for the required information is

ambiguous or vaguely specified.

Ambiguous queries, in Web search engines, hide the actual information

needs of users. When the actual information needs of users are uncertain then

it is preferable to present the users with a diverse and less redundant set of

search query results. There arises a cyclic process of abandoning and retyping

a search query when users do not find the required information in search query

results. The diversity of search query results makes it less likely that a user

will abandon a query in a Web search engine.

In this thesis we provided a new perspective to analyse and examine the

diversity into the Web, which is not done previously. To do that we introduce

the methods of diversity, namely Inverse Simpson’s index and Shannon’s di-

versity index, which includes Richness and Evenness, into the context of the

Web. After that we investigate the relationship between diversity related fac-

tors and the prediction of lifetime of a query popularity, with the help of Cox

proportional hazard regression model. Afterwards we propose an alternate

method to calculate the diversity for overlapping categories. Along with that

we further analyse the trend and seasonality for any changes in diversity with

respect to time. Finally we apply these diversity methods to two application

domains: (i) to get the optimal number of clusters for text data and (ii) to

produce a meta-evaluation of evaluation methods for diversified search.

In summary, we empirically analyse diversity and its usefulness over the

Web. This can help understand the Web and get more useful and relevant

information from the huge data available over the Web.
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CHAPTER 1

INTRODUCTION

1.1 PERSPECTIVE OF DIVERSITY OVER THE

WEB

After the invent of the Internet, there has been an exponential increase in the

multiple channels, i.e. websites, which provide information about any query

posted by different users over the Internet.

Web search engines are nowadays the primary means for people to locate

required information from the vast and diverse set of sources or websites avail-

able over the Internet [49]. A survey conducted in 2012 reported that about

91% of users had started to employ search engines for their information needs

[65]. N. Craswell et al. [25] observed that a user’s click on search results is

biased towards top search results which means that a website effectively does

not exist if it is not included in the top search results.

Due to different backgrounds of users, the queries posted by them are

ambiguous, i.e. queries that are not clear to understand and having more than

one meaning. For example, a user posts a query “Donald Trump”. Now due

to no knowledge of the user’s intentions, it is not clear for example, if the user

is interested in “the history and background of Donald Trump”, “the election

campaign of president Donald Trump” or “a particular policy statement from

Donald Trump, e.g. the ban on some of the mostly Muslim countries”.

To show more relevant results for ambiguous queries, Web search engines

use the personalisation of search results [63], in which the results are per-

sonalised to every user based on there personal information, previous search

history and the preference of the websites that a user clicks in the search

12



1.1. PERSPECTIVE OF DIVERSITY OVER THE WEB 13

results. There is a well-known problem with personalization of search results

which is termed as filter bubble [61]. It is the state in which a user is presented

with the only results which coincide with a user’s personal opinions and forces

one belief over another belief which might go against a user’s personal opinion.

In this way, the personalization causes an intellectual isolation of a user from

a diverse range of information available on any topic over the Internet. There

is also an issue of privacy which is linked with gathering personal informa-

tion of any user. For example, When AOL publicly released their anonymous

search terms for the purpose of research. For which they were sued by AOL

subscribers [55] who found that search queries from that anonymous dataset

links back to them.

In order to cover multiple aspects of ambiguous queries, it is important to

present the users with a diverse set of information sources. Having different

users’ information needs that are attached to similar queries is generally in-

sufficient to present results based only on relevance to the query in question

[93].

This gives rise to a crucial question of whether the top K results provided

by a search engine are relevant to different user’s needs and at the same time

contain the diverse sources of information over the web.

In recent years, there has been a surge of research on diversifying Web

search results [28, 74]. Carbonell and Goldstein [14] were the first to recognise

this problem, and they proposed a method which focuses on the similarity

between documents in a result set, to introduce novelty, along with the rele-

vance of these documents to the query. By considering novelty in the resulting

documents, they introduce diversity in the result set, so as to satisfy different

users’ information needs attached to the query.

Clarke et al. [21] proposed the extended version of the nDCG algorithm for

evaluation of the list of ranked documents, i.e. α-nDCG, which is a function of

“information nuggets” in the query and documents. They favoured novelty in

the ranked result set, using the value of α, by penalising the documents if they

contain the same information which is already present in the documents ranked

higher. Radlinski et al. [67] used related queries to re-rank top-k Web search

results for a query. They generate a set of related queries R, by using Web

search engine query logs, for a query q. To get the top-k number of results
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they take k
|R|+1 number of results from each query in R and from q. With

this setup, they present a diverse set of results by assuming different user

information needs to be present in related queries. Agrawal et al. [3] took

into account the relative importance of different categories for the queries.

They tried to produce diverse resulting documents based on relevance to each

category, ranked by its relative importance, of the query.

The motivation for said existing studies was mainly to deal with the am-

biguity of a user query or the multiplicity of a user intent — the central

problem that their proposed techniques have attempted to solve is to find

the optimal balance between the relevance and the diversity of search results

[14, 93, 67, 3, 90, 79, 95, 96, 76]. The performance measures used in those

papers, such as α-nDCG [21], combine both relevance and diversity. However,

all these papers have only investigated the topic diversity, i.e. the coverage

or variety of topics in the top-k search results. Besides topic diversity, there

are other dimensions of diversity. For example Giunchiglia et al. [30] define

these dimensions of diversity as: diversity of sources (multiplicity of sources

of texts and images); diversity of resources (e.g. images, text); diversity of

topic; diversity of viewpoint; diversity of genre (e.g. blogs, news, comments);

diversity of language; geographical/spatial diversity; and temporal diversity.

The primary focus of our work in this thesis is to empirically analyse the

diversity over the Web. The important questions to investigate the diversity

over the Web are:

(i) Are Web search results dominated by major websites and therefore lack-

ing diversity?

(ii) What is the topic diversity of Web search results?

(iii) Does advert websites on Web search engines also follow the same pattern

as organic websites?

(iv) What is the diversity of queries coverage in Web search engines?

We aim to answer these questions by quantitatively modelling the diversity of:

(i) diversity of organic websites,

(ii) topic diversity in Web search results,

(iii) diversity of advert websites, and

(iv) diversity of queries coverage,

in two major search engines, Google and Bing, by making use of two diver-
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sity measures well-studied in ecology, namely Inverse Simpson’s index and

Shannon’s diversity index.

Thereafter we use the Cox proportional hazard regression model to investi-

gate the factors which affect query popularity, i.e. the effect of diversity-related

factors with which we can predict the number of months a query remains in

the Google top charts.

We further investigate diversity in a domain other than Web search results,

i.e. diversity of movies in genres or box office gross. The motivation behind

this new dataset is that it has the additional time dimension and it also has

overlapping categories since a single movie can be categorised into multiple

movie genres.

After analysing diversity in search query results and movies, we apply these

diversity measures to two application domains:

(i) to get the optimal number of balanced clusters for text data and

(ii) to produce a meta-evaluation for ranking of the top-k search query re-

sults that are relevant to the diverse needs of different users whose exact

information needs are uncertain.

We note that all the programming in the experiments and analysis for our

thesis has been performed in the Python language [85].

To understand and analyse the Web data in terms of diversity can help

organisations better satisfy user needs, by providing information from different

perspectives available in a wide range of sources in the Web. For example,

if a Web search engine e.g. Google, can understand the relationship between

diversity and user satisfaction, it can satisfy more users who visit their website,

which will help grow their own business.

1.2 THESIS STRUCTURE

In Chapter 2 we describe the past and current literature about the work in

diversity and its concepts as a whole and in particular over the Web. We

discuss any connections with the work done concerning diversity over the Web

and how our work is different from the work of others. In Chapter 3 we analyse

and compare the diversity in Web search engines. We investigate the diversity

in three different parts of Web search results page, i.e. diversity in organic

Web search results, diversity in adverts presented alongside organic Web search
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results and in the end, we analyse the topic diversity in Web search engines. In

Chapter 4 we further investigate into the diversity of queries coverage in Web

search engines. Afterwards, we analyse the role of diversity-related and other

covariates affecting the popularity or lifetime of queries to remain in Google top

charts. In Chapter 5 we take a look into additional dimensions of diversity.

In particular, we analyse the diversity in movies related dataset which has

overlapping categories. Afterwards, we also look into how the diversity is

changing with respect to time. In Chapter 6 we investigate the role of diversity

in clustering. We show how the diversity measures can be used to estimate

the number of clusters in a given dataset. Afterwards, we show how to meta-

evaluate the evaluation methods for ranking the diversified Web search results.

Lastly, Chapter 7 summarises the thesis by describing the main contributions

and prospects for the future research and development in the diversity over

the Web.



CHAPTER 2

CRITICAL REVIEW

This chapter presents a critical review of the research and literature related

to the diversity in the Web.

In Section 2.1 we shall talk about information retrieval in Web search en-

gines and the importance of Web search engines in the Web. We also talk

about how the search results in Web search engines are evaluated and pre-

sented to fulfil user requirements. After that in Section 2.2 we look into the

diversity matrices that we propose to use in the Web to diversify the Web

search results. Lastly in Section 2.3 we present the methods which are pro-

posed in the literature, to diversify the Web search results.

2.1 WEB SEARCH AND INFORMATION

RETRIEVAL

Many people use the Internet in everyday activities, and Web search engines

have become an integral part of the Web to access information on websites.

A survey conducted in 2012 has a finding that about 91% users use the Web

search engines to find any required information over the Web. The primary fo-

cus of an IR (information retrieval) system in general and Web search engines,

in particular, is to provide the results based on relevance to the user queries.

On the other hand, the relevance of the retrieved documents is subjective

based on the user who posted the query [11]. Web search engines provide the

ranked results based on relevance to the query. The evaluation of relevance

based ranking of Web search results has also been discussed in the research

literature [53, 49, 26]. Vorhees [88] suggested a measure, mean reciprocal rank

17
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(MRR), for evaluating the relevance of ranked results. It is basically the in-

verse of the rank of first relevant result for a query and then takes an average

of this number for a certain number of queries in the system. It is defined as

follows:

MRR =
1

Q
×

Q∑
i=1

1

ri
(2.1)

where Q is the number of queries and ri is the rank or position of the first

relevant result in the ranked Web search results.

K Järvelin and J Kekäläinen [42] proposed a method, normalised dis-

counted commutative gain (nDCG), based on the graded relevance of doc-

uments presented in the ranked results. Graded relevance simply represents

the relevance of a document to a particular query. For example, this relevance

can be a number from 0 to 5, 0 for not relevant at all and 5 for perfectly

relevant. nDCG is basically normalised DCG after dividing by ideal DCG.

Whereas DCG is defined as:

DCG =

k∑
i=1

2GRi − 1

log2(i+ 1)
(2.2)

where k is the number of Web search results for a query and GRi is the graded

relevance of the document at position i.

While search engines are the primary source to find information over the

Web, the users need to formulate a query in order to search for the required

information. This has been observed through the research that the queries

posted by users remain short and are limited to certain keywords hence these

queries are not always clear and does not properly reflect the actual needs

or requirements of the corresponding users [74, 81, 40, 41]. These type of

queries which are not clear are termed as ambiguous queries. Queries posted

by users on Web search engines are classified into three classes [21, 81]. Am-

biguous, underspecified and clear queries. Ambiguous queries are the queries

which have multiple interpretations or different meanings attached to it. For

example, a query “jaguar” is an ambiguous query because it is not clear that

required information by the user is about “jaguar animal” or “jaguar car” or

is it about “jaguar novel”. Underspecified queries or semi-ambiguous queries,

on the other hand, are those queries which have a clear interpretation but

has multiple aspects or sub-topics, which are not yet clear. For example a
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query “iPhone” has a clear interpretation, i.e. iPhone smartphone, but it is

not clear what the user wants to know about iPhone, the user could either be

interested in buying an iPhone or iPhone reviews or some other iPhone related

news, e.g. an upcoming iPhone launch event. Finally, the clear queries are

the queries which have a clear and well-understood meaning. For example

“Birkbeck University of London”.

There has been a surge of research to deal with the ambiguous and un-

derspecified queries [41, 81, 40, 75]. One possible solution is to diversify the

Web search results based on multiple interpretations of a query, i.e. provide

results from all possible interpretations or subtopics of the query. We discuss

the general concept of diversity in Section 2.2. Afterwards, in Section 2.3, we

review and explain the research literature concerning diversity in the context

of Web and information retrieval.

2.2 DIVERSITY MEASURES

The concept of diversity originated from ecology [52], has been widely diffused

into many other scientific disciplines [82, 60] (such as linguistics and sociology).

When measuring the biological diversity of a habitat, where types of in-

terest or concern are usually species, it is important to consider not only the

number of different species present but also the relative abundance of each

species. In the literature of ecology, the former is called richness and the lat-

ter is called evenness [62, 52, 10]. The measure of richness on its own cannot

provide a full picture of diversity, as it does not account for the varying propor-

tions of the number of individuals in any species. For example, intuitively, one

wild-flower field with 500 daisies and 500 dandelions should be more diverse

than another wild-flower field with 999 daisies and 1 dandelion — although

they both have the same richness (two species), evidently the first field has

much higher evenness than the second field.

The richness, R of the search result set for a query (topic) could be just

defined as the number of distinct subtopics or interpretations appeared in the

set.

For Example, in Fig. 2.1, it is shown that jungle a has three species, Lion,

Elephant and Rhino, whereas, jungle b has only two species, Lion and Ele-

phant. Hence jungle a has greater Richness ‘3’ than jungle b Richness ‘2’.
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(a) Richness = 3 (b) Richness = 2

Figure 2.1: Differences in Richness in two jungles, a and b.

On the other hand, the evenness of the search result set for a query (topic)

refers to how close in numbers each subtopic in the set is, i.e. it quantifies how

evenly the search results are spread over the subtopics. For example, a search

result set having 5 results from subtopic u and 5 results from subtopic v should

have greater evenness than a search result set having 2 results from subtopic

u and 8 results from subtopic v. In another example, from the species point of

view, as shown in Fig. 2.2, jungle a has more evenly distributed species than

jungle b. Hence jungle a has greater Evenness, ‘1’ than jungle b Evenness,

‘0.8’.

Mathematically, the value of evenness is calculated as the normalised di-

versity:

evenness = D/Dmax , (2.3)

where D is a diversity index, and Dmax is the maximum possible value of D.

Although there exist many different diversity measures (such as HCDT

entropy and Renyi entropy) and it is debatable which diversity index is the

best [38, 43], we choose to use Inverse Simpson’s Index [78], Shannon’s Shan-

non’s diversity index and Rao’s quadratic entropy [69] to analyse the diversity

in the Web, because the former two measures take into account both rich-

ness and evenness, and the latter one measure the sizes (richness) of species

(groups) and the distances between species (groups).
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(a) Evenness = 1 (b) Evenness = 0.8

Figure 2.2: Differences in Evenness in two jungles, a and b.

2.2.1 Inverse Simpson’s Index

Inverse Simpson’s index, aka Herfindahl-Hirschman index in economics [35,

37], is defined as

D =

(
N∑
i=1

p2i

)−1
, (2.4)

where N is the total number of different species (i.e., richness), and pi is the

proportional abundance of the i-th species (i.e., the proportion of the individu-

als belonging to the i-th species relative to the entire community of individuals

in the area). It could be interpreted as the inverse of the probability that two

individuals randomly selected belong to the same species. This index, which

indicates the “effective” number of species [36], starts with 1 as its minimum

possible value (representing a community containing only one species). For

example when there are only lions in a jungle and no other species is avail-

able then Simpson’s diversity index is 1 for that jungle. This index has its

maximum possible value N (which occurs when all the N species are equally

common in the community of interest). For example when there are lions and

elephants each has 10 individuals then Simpson’s diversity index is N = 2

for that jungle. The evenness under this index could be calculated as the

normalised diversity index DE = D/N which ranges between 0 and 1.
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2.2.2 Shannon’s Diversity Index

Shannon’s diversity index [77], aka entropy in information theory [51], is de-

fined as

H = −
N∑
i=1

pi ln pi , (2.5)

where N and pi refer to the same quantities as in Section 2.2.1. It could be

interpreted as the uncertainty (i.e., the degree of surprise) in predicting the

species identity of an individual that is taken at random from the community

of interest. This index has the minimum possible value 0 (which occurs when

there is only one species). For example when there are only lions in a jungle

and no other species is available then Shannon’s diversity index is 0 for that

jungle. The maximum possible value for this index is lnN (which occurs

when all the N species are equally common in the community of interest).

For example when there are lions and elephants each has 10 individuals then

Shannon’s diversity index is ln 2 = 0.69 for that jungle. The evenness under

this index could be calculated as the normalised diversity index HE = H/ lnN ,

which ranges between 0 and 1.

Shannon’s Diversity Index is known as Shannon’s entropy in information

theory. It is the core concept in information theory. It was proposed by Claude

E. Shannon [77], who is known as the father of information theory. Shannon’s

entropy, in general, refers to disorder or uncertainty in predicting the outcome

of an event. For example, when we toss a fair coin then each side, heads and

tails, has an equal chance or probability to appear as a result. Hence H = 1

when pi, in this case, is 0.5 for both the outcomes. Which is the maximum

of Shannon’s entropy for this system (coin) i.e. it is maximum uncertainty

in predicting the outcome of a coin. Now consider a coin which is not a fair

coin e.g. heads has a greater chance, 0.8, to appear in the outcome than tails,

0.2. For this coin which is not fair, Shannon’s entropy is 0.72. It is because

in this unfair coin there is less uncertainty in predicting its outcome. For the

coin which is the same on both sides e.g. both sides tails, shall have a zero

Shannon’s entropy because there is zero uncertainty in predicting its outcome.

These two diversity measures discussed in Section 2.2.1 and Section 2.2.2,

both being popular in the literature of ecology and other scientific disciplines

such as linguistics [6] and sociology [4], can be regarded as two special cases

of the general entropy function
(∑N

i=1 p
α
i

) 1
1−α

: when α = 2 it is Simpson’s
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(a) Higher Differences (δ) (b) Lower Differences (δ)

Figure 2.3: Differences in between species in two jungles, a and b.

index and when α approaches 1 it becomes Shannon’s diversity index [60]. It

is debatable which diversity index is the best [38, 43]. In this paper, we make

use of both.

2.2.3 Rao’s Quadratic Entropy

Along with richness and evenness, it is also important to take into account the

measure of distance or difference between two species, to measure diversity.

For example, as shown in Fig. 2.3, intuitively, an animals field, jungle a, with

10 elephants and 10 butterflies should be more diverse than another animals

field, jungle b, with 10 elephants and 10 lions — although they both have the

same richness and same evenness, evidently the first field has a much higher

difference or distance than the second field.

For this purpose, we use Rao’s quadratic entropy [69] as it takes into ac-

count both the sizes of species and the distances or differences between species.

Rao’s quadratic entropy, denoted by Q, is given by

Q =

N∑
i=1

N∑
j=1

pipjδ(i, j) , (2.6)

where N is the number of species and pi, pj is the proportions of species i and

j, respectively, and δ(i, j) is the difference or distance between them.

2.3 DIVERSITY IN INFORMATION

RETRIEVAL

In recent years, a variety of quantitative measures of diversity have been suc-

cessfully applied in computer science for Web search [21, 28, 45, 74, 96], text
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mining [7], and recommender systems [15].

If the queries that are posted by users are either ambiguous or underspec-

ified, apparently the search results, which are not diversified, provided by a

Web search engine, shall not satisfy the requirements of all of its users. On the

other hand, if the search results are diversified over multiple interpretations

or sub-topics of the users’ queries then there is greater chance that the user

shall be satisfied with at least one result from the search results.

Radlinski et al. [66] classify the diversity approaches in two separate classes

as either extrinsic or intrinsic. Extrinsic approach deals with users’ informa-

tion needs when the queries are ambiguous. Whereas intrinsic approaches

explore the ways to deal with redundancy in the result set when the queries

are underspecified or semi-ambiguous.

A number of approaches have been discussed in the literature to deal with

diversifying the Web search results.

Carbonell and Goldstein [14] were among the earlier authors to introduce

the diversity in a result set. They introduced Maximal Marginal Relevance

(MMR) which not only use relevance between documents and a query but also

take into account for similarities between document to document to reduce the

redundancy and introduce novelty. They get the ranked list of document set

by maximising:

MMR = arg max
d∈D

[
α(simQD(d, q)− (1− α) max

dj∈S
simDD(d, dj))

]
(2.7)

where D is the set of documents returned by a Web search engine, simQD(d, q)

is the similarity between query q and document d and represents the relevance,

simDD(d, dj) is the similarity between document d with other documents in

the result set S which are ranked higher than document d and parameter α

controls the balance between relevance and novelty, a measure of diversity, of

the result set.

Chapelle et al. [18] proposed an extension to the Reciprocal Rank for

the case of graded relevance and described Expected Reciprocal Rank, ERR,

for graded relevance to evaluate the ranking of the Web search results. This

method is based on the assumption that usefulness of the document at rank

i is not independent from the usefulness of documents before rank i, which

is not the case in nDCG [42] in which document’s relevance or usefulness is
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independent of each other. While in DCG works only with graded relevance,

which is independent of other documents in the result set, ERR, on the other

hand, takes into account for the probability of user satisfaction at every po-

sition of ranked list and discounts the measure accordingly. ERR is defined

as:

ERR =
n∑
r=1

1

r

r−1∏
i=1

(1−Ri)Rr

where n is the total number of documents in ranking, r is the rank of the

document and
∏r−1
i=1 (1−Ri)Rr is the probability that user stops at position

r, and (1−Ri) is the discount on Rr.

Ri = R(gi)

where R(gi) is defined as mappings from relevance grades to probability of

relevance which is chosen in accordance to gain function of DCG as:

R(gi) =
2g − 1

2gmax
, g ∈ {0, ..., gmax}

where g is the graded relevance of the document.

Clarke et al. [21] studied diversity and novelty in the answers to any

question. They focused on ranking the documents containing answers, “infor-

mation nuggets”, to a question with respect to relevance and diversity which

reduces redundancy in favour of novelty. They proposed a generalised version

of the function for nDCG [42] and named it α–nDCG which is a function of

information nuggets in question and its answers.

For their experiments, they used the dataset from the TREC 2005 ques-

tion answering task [89]. In this, they were given a topic, query, and a set of

questions related to the topic. By using the topic as query their goal is to pro-

vide answers to these questions from the corpus of the collection of newspaper

articles used at TREC.

Basically, they considered a document to be ranked highest when it answers

the highest number of questions. If two documents answer the same number

of questions then the document which is not answered before is ranked higher.

In this way, they introduced novelty in the result set.
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They defined the probability of a document d ranked at position k as:

P (Rk = 1|u, d1, ...) = γα

m∑
i=1

J(dk, i)(1− α)ri,k−1 (2.8)

where u is the information need occasioning a user to formulate query, i is the

information nugget, dk is the document at rank k, γ is the probability of i

being in u, P (i ∈ u), which is assumed to be constant for all i, J(dk, i) is the

human judgement for whether nugget i is present or not in document k and it

is either 0 or 1, α is a constant, with 0 < α ≤ 1, which controls the novelty in

results by penalizing a document dk if it contains the same information nugget

as in dk−1 documents, (ri, k − 1) is the number of documents ranked up to

position k − 1 that have been judged to contain nugget ni which is given as:

ri, k − 1 =

k−1∑
j=1

J(dj , i)

By dropping the constant γα from Eq. (2.8), which has no impact on

relative values, they define the kth element of the gain vector G, for α–nDCG,

as:

G[K] =
m∑
i=1

J(dk, i)(1− α)ri,k−1 (2.9)

By using the gain vector defined by Eq. (2.9) they calculated nDCG mea-

sure. Due to the importance of α in it, they call it α–nDCG. When the value

of α is 0 then α–nDCG correspond to standard nDCG measure.

Bache et al.[7] used an approach which uses the content of a document to

quantify its diversity. Their focus is to compute the diversity of each document

relative to the rest of the corpus. For this task, they used Rao’s quadratic

diversity [69] which is defined in Eq. (2.6).

They create a D×T document-topic count matrix, using LDA topic model,

with entries ndj corresponding to the number of word tokens in document d

that are assigned to topic j. Using this they define the diversity per document

as:

div(d) =
T∑
i=1

T∑
i=1

p(i|d)p(j|d)δ(i, j) (2.10)

where P (i|d) is the proportion of word tokens in document d that are assigned

to topic i, and δ(i, j) is a measure of the distance between topic i and topic



2.3. DIVERSITY IN INFORMATION RETRIEVAL 27

j. For the experiments, they used three different types of datasets. First

is the PubMed Central Open Access dataset which is comprised of articles

published in biomedical journals. Second is the NSF Awards from 2007 to

2012 gathered from www.nsf.gov/awardsearch and the third dataset used is

the Association of Computational Linguistics Anthology Network consisting

of papers published in selected computational linguistics conferences.

Agrawal et al. [3] took into account the relative importance of different

categories for the queries and documents in Web search. They used the prob-

ability distribution for categories C of a query q, P (c|q), i.e. probability of a

given query belonging to different categories from ODP taxonomy. Along with

that they also used the quality value of a document d for query q when the

intended category is c, V (d|q, c). This can be interpreted as the probability

that a document d satisfies the information need having query q in category

c. To find a set of documents S from the corpus D they used:

P (S|q) =
∑
c

P (c|q)(1−
∏
d∈S

(1− V (d|q, c))) (2.11)

where (1-V(d—q,c)) is the probability that the document d does not qualify to

fulfil the information need for given query q in category c. Hence the Eq. (2.11)

will provide at least one document to satisfy user’s information intentions for

the query q using its relative importance in different categories.

Radlinski et al. [68] used user clicks to learn the best ranking for results

in order to present a diverse set of documents. For a fixed query q, they go

through all the documents by considering every position, for top-k positions,

for every document and learn the ranking of documents from different users’

clicks. By considering user clicks from all the users who have a diverse set of

requirements for the same query, the ranking algorithm implicitly takes care

for the result set to become diverse.

In order to diversify top-k Web search results for query q, Radlinski et

al. [67] used related queries to rerank them. They generate a set of related

queries R, using query logs from a Web search engine, for query q. To get the

top-k number of results they take k
|R|+1 number of results from each query in

R and from q.

To evaluate the diversity they use relevance feedback match(di, u), how

well document di matches the interest of user u. In order to get the diversity



2.3. DIVERSITY IN INFORMATION RETRIEVAL 28

score across a set of users U they take an average of the maximum match score,

in document set D, for all the users as 1
|U |
∑

(u∈U) maxdi∈Dmatch(di, u).



CHAPTER 3

WEBSITES DIVERSITY IN

WEB SEARCH ENGINES

Web search engines nowadays are the primary means for people to locate infor-

mation over the Internet [49]. A survey conducted several years ago reported

that about 91% of users would employ search engines for their information

needs [65]. It has also been observed that users’ clicks on search results are

heavily biased towards those on the top of the results list [25]. Many people

believe that if a website is not in the top search results of a mainstream search

engine, it has minimal influence and effectively does not exist. Hence it is

important to investigate the website (source) diversity of Web search engines.

In this chapter, we set out to investigate to what degree Web search re-

sults are dominated by major websites (such as Amazon), i.e. how diverse

Web search results are. In addition to the organic search results that are

returned by a search engine to a user because of their relevance to the corre-

sponding search query, we also look into sponsored search results that appear

as advertisements.

For a similar reason, that diversity is crucial to the sustainability of ecosys-

tems and the prosperity of any human society [60], a healthy level of diversity

is very important for the advancement of the Web. Lack of diversity in Web

search engines may imply that small, new websites do not have a fair chance to

compete with large, old well-established websites, and thus users are limited

to a narrow choice of information channels.

The rest of this chapter is organised as follows. Firstly, we analyse the

diversity of organic websites in two Web search engines, with two measures

29



3.1. DIVERSITY OF ORGANIC WEBSITES 30

of diversity i.e. Inverse Simpson’s diversity index and Shannon’s diversity

index along with their corresponding richness and evenness. Secondly, we

have an insight into the topic diversity of Web search results and see how

the different interpretations i.e. sub-topics, are covered in the main query

results. Thereafter, we examine the diversity in adverts websites that appear

along with the main Web search results. Afterwards, we perform a randomised

significance test to see if the changes in the diversity values in two Web search

engines are significant or not. Lastly, we draw conclusions for this chapter.

3.1 DIVERSITY OF ORGANIC WEBSITES

3.1.1 Overview

Are Web search results usually dominated by major websites and therefore

lacking diversity? We aim to answer this question by quantitatively modelling

the diversity of search results for popular queries by using two diversity mea-

sures well-studied in ecology, namely Inverse Simpson’s diversity index and

Shannon’s diversity index (see Section 2.2).

3.1.2 Presentation and Analysis of Data

To collect typical Web search results data for our investigation, we first gath-

ered all the popular queries over 114 months from January 2004 until June

2013 in the six representative categories of Google Top Charts, and then down-

loaded the top-k (k = 10 and k = 50) organic search results as well as all the

sponsored search results for those queries from two mainstream Web search

engines with most users: Google and Bing. The six categories are: (i) Shop-

ping, (ii) Nature & science, (iii) Sports, (iv) Business & politics, (v) Travel &

leisure, (vi) Entertainment.

Fig. 3.1 shows Top Charts queries for January 2004, in two categories,

namely, Travel & leisure and Nature & science. All the queries are pre-

categorized by Google, into six different categories. It can also be seen that

all these queries fall into the definition of underspecified queries [74] i.e. these

queries are neither completely ambiguous nor clear.

Since we focus on measuring website diversity, we extract the hostname

from each search result’s corresponding URL as its website address. For ex-



3.1. DIVERSITY OF ORGANIC WEBSITES 31

<TopChartQueries>

<Date value=”Jan 2004”>

<Category MainCat=”Travel & leisure”>

<Query>Wine</Query>

<Query>Coffee</Query>

<Query>Cake</Query>

<Query>Pizza</Query>

<Query>Chocolate</Query>

<Query>Cookie</Query>

<Query>Soup</Query>

<Query>Beer</Query>

<Query>Chicken</Query>

<Query>Tea</Query>

</Category>

<Category MainCat=”Nature & science”>

<Query>Dog</Query>

<Query>Cat</Query>

<Query>Horse</Query>

<Query>Fish</Query>

<Query>Bird</Query>

<Query>Bear</Query>

<Query>Chicken</Query>

<Query>Cow</Query>

<Query>Monkey</Query>

<Query>Rabbit</Query>

</Category>

</Date>

</TopChartQueries>

Figure 3.1: Top chart queries, for Jan 2004, in two categories, i.e. “Travel &

leisure” and “Nature & science”.
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Table 3.1: The dataset of organic search results.

Google Bing

top-k category #queries #results #results

10

Shopping 106 990 985

Nature & science 346 3570 3539

Sports 746 7432 7421

Business & politics 397 4350 4273

Travel & leisure 539 5660 5634

Entertainment 1625 16215 16037

50

Shopping 106 4866 2998

Nature & science 346 17233 10635

Sports 746 35919 26122

Business & politics 397 19766 14325

Travel & leisure 539 26911 17306

Entertainment 1625 77814 51696

Table 3.2: The websites that appear most often in the top-50 organic search

results.

Google Bing

rank website freq. website freq.

(1) Wikipedia 4454 Wikipedia 5735

(2) Youtube 3775 Imdb 3343

(3) Amazon 3629 Youtube 3037

(4) Facebook 3271 Amazon 2501

(5) Google Images 3221 Twitter 1395

(6) Twitter 2575 Facebook 1294

(7) Imdb 2475 HuffingtonPost 1251

(8) Google Sites 1905 Bing Images 1210

(9) TheGuardian 1657 Bing Videos 1134

(10) DailyMail 1409 Espn 1020

ample, the website address of the URL www.acm.org/sigs/publications/

would be just “acm.org”.

Table 3.1 shows the number of search queries and the number of organic

search results pooled together for each category in this real-world data set.

One phenomenon that we can immediately observe from the data is the

www.acm.org/sigs/publications/
acm.org
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high skewness of the websites’ distribution — a few popular websites (see

Table 3.2) occur very frequently, while the majority of websites occur only a

small number of times. The websites that appear most often in the top-50

organic search results (across all the six categories) from Google and Bing are

listed in Table 3.2. The table of the most popular websites in the top-10 search

results look quite similar, so it is omitted.

Figs. 3.2 and 3.3 shows the log-log plots of website frequency (against

rank order) in the top-10 and top-50 organic search results respectively, where

the curves have been smoothed using the Fibonacci binning [86]. Fibonacci

binning is a simple logarithmic binning technique in which bins are sized like

the Fibonacci numbers. It makes it visually more accurate than power-of-b

binning (where b = 2, 10) [87].

As we have anticipated, all of those log-log plots are roughly in the shape of

straight lines, which indicates that the distribution of websites follows Zipf’s

law [64] — the frequency of the i-th popular website, fi, is proportional to

1/is, where s is the exponent characterising the distribution (shown as the

slope of the straight line in the corresponding log-log plot). It is known that

Zipf’s law holds if the number of occurrences of each element is independent

and identically distributed random variables with power law distribution [2].

As power law is prevalent on the Internet [58], it is not surprising to see that

the distribution of website in the top-k search results can be well modelled

by Zipf’s law. This could probably be explained by an underlying preferential

attachment process (i.e. “the rich get richer” phenomenon) [9].

Without loss of generality, we could rank all the N distinct websites in the

top-k organic search results according to their frequencies, then the proportion

of the i-th website would be given by

pi =
fi∑N
j=1 fj

=
1/is∑N

j=1(1/j
s)
. (3.1)

Table 3.3 shows the number of distinct websitesN together with the Zipfian

exponent s for the top-k organic search results in each category from Google

and Bing, where s was estimated by employing linear regression to fit the

log-log plot. The coefficient of determination for the regression, R2, is greater

than 0.96 for all the categories, which means that the data fit the model of

Zipf’s law very well. In our data set, s is between 0.7 and 1.2.
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(a) Google

(b) Bing

Figure 3.2: The log-log plots of website frequency in the top-10 organic search

results.

3.1.3 Theoretical Analysis of Diversity

As the occurrence of each distinct website in the search results is, in general,

governed by Zipf’s Law Eq. (3.1), we should be able to analytically compute

the two diversity measures, Inverse Simpson’s index D and Shannon’s diversity

index H using Eq. (2.4) and Eq. (2.5), respectively. For example, in the

case of organic search results which follow Zipf’s law, it can be shown that
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(a) Google

(b) Bing

Figure 3.3: The log-log plots of website frequency in the top-50 organic search

results.

Inverse Simpson’s index D = G2
N,s/GN,2s, where Gn,m =

∑n
i=1(1/i

m) is the

generalised harmonic number [46]. The corresponding evenness could also be

obtained accordingly.

Hereafter we elaborate on the relationship between the aforesaid diversity

measures and the Zipfian distribution for organic search results. It can be

extended straightforwardly to the Zipfian distribution with the exponential
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Table 3.3: The distribution of websites in the organic search results.

Google Bing

top-k category #website N exponent s #website N exponent s

10

Shopping 261 0.919 348 0.788

Nature & science 915 1.004 1010 0.896

Sports 853 1.166 1282 1.066

Business & politics 1080 1.004 1475 0.905

Travel & leisure 1582 1.042 1802 0.924

Entertainment 2223 1.167 3120 1.077

50

Shopping 1751 0.739 1039 0.761

Nature & science 7217 0.772 3561 0.794

Sports 6689 0.910 4565 0.944

Business & politics 6469 0.849 4916 0.825

Travel & leisure 11020 0.809 6222 0.850

Entertainment 16467 0.950 10476 0.974

cut-off for sponsored search results see Section 3.3.1.

Fig. 3.4 shows how the website diversity and evenness are affected by the

Zipfian exponent s when the number of distinct websites N , i.e. the website

richness, is fixed. It can be seen from Fig. 3.4 that as s increases, the website

diversity, D or H, keeps decreasing, though the speed of decrease becomes

slower, (i.e. the marginal loss is diminishing). Since richness does not change

here, the sole reason for the decrease of diversity is just the decrease of even-

ness: when s is bigger, the Zipfian distribution of websites is more skewed,

and thus there is less evenness as represented by DE or HE and consequently

less diversity.

Fig. 3.5 shows how website diversity and evenness are affected by the num-

ber of distinct websites N , when the Zipfian exponent s is fixed (s = 1.00 in

our case). It can be seen that as N increases, the website diversity, D or

H, keeps increasing, though the rate of increase becomes slower, (i.e. the

marginal return is diminishing). What is most interesting here is the relation-

ship between the website richness N and the website evenness (as shown in

Fig. 3.5b). For a given Zipfian distribution of websites with a specific Zipfian

exponent s, it turns out that the website evenness, DE or HE , actually de-

creases as the website richness N increases. This implies that there is a tension
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(a) diversity

(b) evenness

Figure 3.4: How the website diversity and evenness change with s (when

N = 100).

between the website richness N and the website evenness E, assuming that

the search results in one category have an intrinsic Zipfian exponent s (see

Table 3.3). Nevertheless, the website richness seems to play a more important

role than the website evenness here, because the overall diversity would still

be higher with a bigger N (as shown in Fig. 3.5a), even though it reduces the

website evenness. Zipf’s law is known to generate a “long tail” distribution

where a small high-frequency population is followed by a large low-frequency

population which gradually tails off: although the low-frequency items at the

long tail each has a low probability of occurrence, the total number of their
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(a) diversity

(b) evenness

Figure 3.5: How the website diversity and evenness change with N (when

s = 1.00).

occurrences could be bigger than that of the high-frequency items [5]. The

above analysis suggests that when the long tail of websites becomes longer,

the overall diversity of Web search results will be better due to the higher

richness implied by a larger N even if the evenness might be lower. It has

been found by previous studies that in online book sales [12] and consumer

software downloads [94] the long tail has grown longer over time.
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Table 3.4: The websites evenness of the organic search results.

Google Bing

top-k category Simpson’s DE Shannon’s HE Simpson’s DE Shannon’s HE

10

Shopping 0.136 0.806 0.166 0.863

Nature & science 0.042 0.750 0.041 0.778

Sports 0.031 0.655 0.027 0.698

Business & politics 0.029 0.719 0.031 0.799

Travel & leisure 0.020 0.716 0.022 0.769

Entertainment 0.011 0.608 0.009 0.652

50

Shopping 0.125 0.866 0.137 0.865

Nature & science 0.053 0.862 0.052 0.843

Sports 0.029 0.767 0.028 0.753

Business & politics 0.038 0.821 0.038 0.837

Travel & leisure 0.028 0.847 0.028 0.835

Entertainment 0.012 0.746 0.012 0.739

Table 3.5: The website diversity of the organic search results.

Google Bing

top-k category Simpson’s D Shannon’s H Simpson’s D Shannon’s H

10

Shopping 35.411 1.948 57.810 2.192

Nature & science 38.015 2.222 41.149 2.338

Sports 26.541 1.921 35.141 2.171

Business & politics 30.826 2.182 45.702 2.531

Travel & leisure 31.680 2.289 40.194 2.502

Entertainment 23.728 2.035 27.768 2.277

50

Shopping 219.431 2.810 142.825 2.610

Nature & science 384.124 3.327 183.509 2.993

Sports 194.646 2.933 127.363 2.755

Business & politics 246.298 3.128 188.837 3.088

Travel & leisure 311.872 3.422 175.483 3.167

Entertainment 198.295 3.144 120.601 2.972

3.1.4 Experiments and Results for Diversity in Organic Web-

sites

Currently, Google and Bing are the two major Web search engines for English

users [1].

There arises the question: How do they compare against each other in terms

of the diversity of their search results?

While analysing and examining the diversity of Web search engines it is also
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(a) top-10

(b) top-50

Figure 3.6: The websites richness of the organic search results.

important to analyse the richness and evenness along side the Simpson’s and

Shannon’s diversity index. Richness and evenness will help better understand,

for example, in the diversity results for two Web search engines when the first

is better in terms of richness but poorer in terms of evenness than the second

Web search engine. Hence to analyse and better understand the differences

we compare the search results in Web search engines in terms of Simpson’s
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and Shannon’s diversity indices and their corresponding richness, evenness

measures.

Fig. 3.6 shows the website richness of the top-k organic search results from

Google and Bing (see also Table 3.3). An apparent pattern across all cat-

egories in this bar chart is that in the top-10 organic search results Bing’s

richness is consistently higher than Google’s, but in the top-50 organic search

results, Google’s richness is consistently higher than Bing’s. Such a discrep-

ancy between these two search engines is probably rooted in the differences

between their proprietary webpage ranking algorithms [47].

Table 3.4 shows the website evenness of the top-k organic search results for

Google and Bing. Unlike the website richness, it turns out that Google and

Bing do not exhibit a marked difference with regards to the website evenness:

their evenness scores are very close to each other for any particular category:

the largest gap between their Simpson’s evenness DE is 0.03; the largest gap

between their Shannon’s HE is 0.06 (Shopping category). Moreover, there

is no clear winner on the website evenness: Google has a higher evenness for

some categories, but Bing has a higher evenness for some other categories. The

website evenness for organic search results seems to be mostly determined by

the category rather than by the search engine: it varies greatly from category

to category, but does not change much when switching from one search engine

to the other.

Since Google and Bing are roughly equivalent with regards to the website

evenness, their overall diversity levels for organic search results would depend

on the website richness. It can be seen clearly from Table 3.5 that in the top-10

organic search results Bing’s diversity is consistently higher than Google’s, but

in the top-50 organic search results, Google’s diversity is consistently higher

than Bing’s — the same pattern that the website richness follows. Here we can

say, as it is evident from diversity and in particular richness, that compared

to Bing, the Google presents less sources in top-10 Web search results results

but it focuses on showing more sources (websites) if users go beyond the first

page (top-50) of Web search results.

Since sites like Wikipedia, Imdb and DailyMail are highly reliable and

authoritative in their relevant categories. Therefore people are more likely to

prefer seeing results from them. This requires a further study into what level
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of search results diversity is good to improve the user experience. Therefore,

having a more diverse set of results should not be considered better or worse

without considering the relevance and user preferences for any authoritative

websites.

3.2 TOPIC DIVERSITY

Here we investigate the topic diversity in Web search results. When a user

submits an ambiguous query, the Web search engines should present the search

results from all the possible aspects or subtopics of the given query. There

are several ways to get different possible aspects that are related to an am-

biguous query. For example, a query expansion technique [70] can be used

for this purpose which utilises the search results retrieved for the main query

to redefine an ambiguous query. Web search engines could analyse the query

logs to formulate the subtopics for an ambiguous query [8, 27]. Santos et al.

[75] showed how the “related queries”, shown along with the search results

in Web search engine’s interface, can be used to rank the diversifies search

results. As the two Web search engines, Google and Bing, under investigation

here, use the related queries to deal with queries having multiple aspects, we

use these related queries as subtopics for the main query. After having the

queries and their related queries, subtopics, we analyse the topic diversity in

two Web search engines, Google and Bing.

3.2.1 Presentation and Analysis of Data

To analyse the topic diversity per query, we use the Top Chart queries, in

six different categories: (i) Shopping, (ii) Nature & science, (iii) Sports, (iv)

Business & politics, (v) Travel & leisure, (vi) Entertainment.

We also collect the related queries for these top chart queries from Web

search engines. We collect the related queries, for any top chart query, from the

respective Web search engine. For example related queries, for the main query

“Barack Obama”, are collected separately from Bing and Google Web search

engines. Afterwards, we collect top-K search results for top chart queries and

related queries from Google and Bing. Table 3.6 shows the number of queries

and related queries, along with the average number of queries per query, across

all the categories in Google and Bing.
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Thereafter, we collect host-names of the URLs from these Web search

result’s snippets as we showed in Section 3.1.2. For example, the website

address of the URL http://www.acm.org/sigs/publications/ would be just

“acm.org”.

As shown in Section 3.1.2 that top chart queries are underspecified queries

[74], i.e. these queries are neither completely ambiguous nor clear. Fig. 3.7

shows a query and its related queries. It can be seen that with the help

of related queries (subtopics), for the top chart queries (topics), Web search

engines are trying to clearly explain the intent of a user or different aspects of

a query. Hence we assume that Web search engines use the related queries to

reduce ambiguity in the main query.

<Query topic =”barack obama”>

<RelatedQuery>barack obama biography</RelatedQuery>

<RelatedQuery>barack obama education</RelatedQuery>

<RelatedQuery>barack obama parents</RelatedQuery>

<RelatedQuery>barack obama sr</RelatedQuery>

<RelatedQuery>barack obama Twitter</RelatedQuery>

<RelatedQuery>barack obama facts</RelatedQuery>

<RelatedQuery>barack obama net worth</RelatedQuery>

<RelatedQuery>barack obama daughter</RelatedQuery>

</Query>

Figure 3.7: A query and it’s related query

For the purpose of our analysis, topic diversity in Web search results, the

related queries serve as the subtopics for a query topic. To consider a related

query as a distinct subtopic we assume that all the related queries, for any

main query, provided by Web search engines are distinct from each other in

terms of information required from Web search engines.

To make an analogy to diversity of species in the field of Ecology, an

intersection of number of unique URLs in related queries and a query, i.e. the

URL that is present in the result set of a related query is also in the query, will

be analogous to the total number of organisms or individuals of a particular

species. For example if five URLs from a related query, subtopic, “Brack

Obama Biography” are also present in the main query “Barack Obama” then

the frequency (the number of individuals of any species) of this subtopic is

five.

http://www.acm.org/sigs/publications/
acm.org
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Table 3.6: Dataset for topic diversity, showing number of queries and their

related queries (average number of related queries per query) across all cate-

gories

Google Bing

Category #Queries #Related Queries #Related Queries

Shopping 106 810 (7.6) 809 (7.6)

Nature & science 346 2725 (7.9) 2718 (7.9)

Sports 746 5769 (7.7) 5745 (7.7)

Business & politics 397 3133 (7.9) 3124 (7.9)

Travel & leisure 539 4124 (7.6) 4116 (7.6)

Entertainment 1625 12446 (7.7) 12414 (7.6)

Figure 3.8: Average richness for every query in search results.

3.2.2 Experiments and Results for Topic Diversity

Fig. 3.8 shows the average topic richness, i.e. the average number of related

queries per query, across all the categories, in Google and Bing (see Table 3.6).

It shows that Google and Bing has somewhat the same richness, i.e. around

eight number of subtopics per topic. This can be due to their subtopic formu-

lation module used by these Web search engines.

On the other hand Table 3.7 shows the average topic evenness in Web

search results from Google and Bing. It is shown here that Google has consis-

tently higher evenness than Bing, in top 10 and top 50 search results, across

all six categories. Which shows that Google has more balanced, evenly dis-
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Table 3.7: Average topic evenness per query in Web search results.

Google Bing

top-k category Simpson’s DE Shannon’s HE Simpson’s DE Shannon’s HE

10

Shopping 0.67 0.82 0.65 0.82

Nature & science 0.69 0.85 0.63 0.79

Sports 0.67 0.84 0.65 0.81

Business & politics 0.70 0.86 0.67 0.84

Travel & leisure 0.67 0.83 0.65 0.80

Entertainment 0.70 0.85 0.68 0.82

50

Shopping 0.84 0.94 0.73 0.89

Nature & science 0.84 0.94 0.74 0.89

Sports 0.86 0.94 0.77 0.90

Business & politics 0.87 0.96 0.77 0.91

Travel & leisure 0.83 0.93 0.73 0.88

Entertainment 0.85 0.94 0.76 0.89

tributed, results across different subtopics for any topic. This can be due to

the fact that Google and Bing give different priority or importance to different

subtopics for a query which is observed here in terms of evenness.

Table 3.8 shows the average topic diversity of the search results from

Google and Bing. As the richness was almost equal in both the Web search

engines, then it is due to the evenness that Google has consistently higher

diversity than Bing, in top-10 and top-50 Web search results, across all six

categories. As in Google the diversity is consistently higher than Bing, and

the reason for this is the higher evenness, which shows Google’s approach

for more balanced distribution of Web search results from different sub-topics

linked to a main topic.

3.3 DIVERSITY OF ADVERT WEBSITES

3.3.1 Presentation and Analysis of Data

To analyse the sponsored search results diversity, we collected the adverts

from the search results pages for all the queries in each category and then

extracted the hostnames from the URL of each advert as we did earlier (see

Section 3.1.2).

Table 3.9 shows the number of queries and adverts across all of the cate-

gories in Google and Bing. It can be seen that Bing has a much higher number
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Table 3.8: Average topic diversity per query in Web search results.

Google Bing

top-k category Simpson’s D Shannon’s H Simpson’s D Shannon’s H

10

Shopping 5.21 0.72 5.10 0.73

Nature & science 5.48 0.77 5.01 0.71

Sports 5.26 0.75 5.05 0.72

Business & politics 5.54 0.77 5.33 0.75

Travel & leisure 5.24 0.74 5.08 0.72

Entertainment 5.43 0.76 5.26 0.73

50

Shopping 6.61 0.83 5.76 0.79

Nature & science 6.69 0.85 5.88 0.80

Sports 6.74 0.84 6.06 0.81

Business & politics 6.88 0.86 6.12 0.82

Travel & leisure 6.50 0.83 5.77 0.78

Entertainment 6.65 0.83 5.91 0.79

Table 3.9: The dataset of sponsored search results.

Google Bing

The number of all the queries 3516 3516

The number of queries with adverts 358 2822

The number of queries without adverts 3158 694

The number of adverts in all the queries 818 10275

of queries having adverts as well as the average number of adverts per query

(for a query having advert) is higher in Bing than Google.

Table 3.10 lists the websites that occur most frequently in the sponsored

search results from Google and Bing. Following the same pattern of organic

search results, the distribution of websites in sponsored search results also

exhibits a high skewness, for both of the Web search engines — a few big

advertisers’ websites occur very frequently while the majority of websites occur

only a small number of times.

Fig. 3.9 shows the log-log plots of website frequency (against rank order)

in the sponsored search results. Similar to what we see in the organic search

results, it is apparent that the distribution of websites in the sponsored search

results also roughly follows Zipf’s law [64], though this time a better fit of the

model could be found with the Zipf’s law with exponential cut-off [22]. In other
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Table 3.10: The websites that appear most often in the sponsored search

results.

Google Bing

rank website freq. website freq.

(1) Amazon 62 Amazon 2291

(2) wow 16 about 1092

(3) tripadvisor 13 booking 249

(4) audleytravel 13 shopzilla 207

(5) autotrader 10 lowpriceshopper 171

(6) booking 9 travelrepublic 147

(7) ebay 8 televisionfanatic 112

(8) marksandspencer 7 tripadvisor 109

(9) carwow 7 viagogo 99

(10) bluecross 6 lifescript 99

Table 3.11: The distribution of websites in the sponsored search results.

Google Bing

top-k category #websites N exponent s cut-off q #websites N exponent s cut-off q

50

Shopping 100 0.603 1.002 198 0.859 1.001

Nature & science 82 0.556 1.001 424 1.122 1.002

Sports 18 1.091 1.102 460 1.459 1.007

Business & politics 50 0.823 1.038 259 0.000 0.601

Travel & leisure 180 0.812 1.006 678 0.834 0.973

Entertainment 145 0.986 1.018 1110 1.684 1.005

words, the frequency of the i-th popular website, fi, should be proportional to

qi/is, where s is the exponent for the Zipfian distribution and q is the cut-off

parameter.

Table 3.11 shows the number of distinct websites N together with the

Zipfian exponents s as well as the cut-off parameter q for the sponsored search

results in each category from Google and Bing, where q and s were estimated

by fitting the log-log plot. Using Zipf’s law with exponential cut-off, the

coefficient of determination for the regression, R2, is greater than 0.91 for all

the categories, which confirms a very good fit of the model [57].
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(a) Google

(b) Bing

Figure 3.9: The log-log plots of websites frequency in the sponsored search

results.

3.3.2 Experiments and Results for Diversity in Advert Web-

sites

Fig. 3.10 shows the website richness of the sponsored search results from

Google and Bing (see also Table 3.11). It can be seen from this figure that

in all the categories, the website richness of Bing’s sponsored search results

is much higher than Google’s, i.e. Bing seems to use many more advertising
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Figure 3.10: The websites richness of the sponsored search results.

Table 3.12: The websites evenness of the sponsored search results.

Google Bing

top-k category Simpson’s DE Shannon’s HE Simpson’s DE Shannon’s HE

50

Shopping 0.576 0.952 0.191 0.860

Nature & science 0.634 0.957 0.049 0.752

Sports 0.687 0.946 0.022 0.670

Business & politics 0.762 0.974 0.011 0.221

Travel & leisure 0.353 0.927 0.020 0.515

Entertainment 0.427 0.945 0.006 0.543

Table 3.13: The websites diversity of the sponsored search results.

Google Bing

top-k category Simpson’s D Shannon’s H Simpson’s D Shannon’s H

50

Shopping 57.606 1.903 37.734 1.976

Nature & science 51.98 1.831 20.933 1.977

Sports 12.36 1.187 10.330 1.783

Business & politics 38.101 1.655 2.951 0.533

Travel & leisure 63.458 2.091 13.253 1.457

Entertainment 61.965 2.043 6.387 1.655

sources than Google, which is not to be expected since Google has more traf-

fic or users than Bing [1]. So apparently if advertisers show their adverts on

Google, they are more likely to have more customers or users.

Table 3.12 shows the website evenness of the sponsored search results from
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Google and Bing. Contrary to the website richness, in all the categories,

Google has much higher website evenness in its sponsored search results than

Bing, i.e. Google tends to spread the available advertising slots more evenly

to different advertising sources than Bing does.

Regarding the website diversity in the sponsored search results, as shown

in Table 3.13, Google consistently has higher Inverse Simpson’s diversity than

Bing in all the categories (following the same pattern as for website evenness),

whereas using Shannon’s diversity, the picture is not so clear.

Overall, what we can say for the sponsored search results is that Bing has

higher richness while Google has higher evenness.

3.4 SIGNIFICANCE TESTS

To assess whether the diversity difference between Google and Bing, i.e. |D(G)−

D(B)| or |H(G)−H(B)|, is significant or not, we have performed a nonparamet-

ric statistical significance test [80]. It works as follows. For a given category,

suppose that Google has m1 search results and Bing has m2 search results. We

would first pool those m1 +m2 search results together and randomly partition

the combined set of search results into two subsets of size m1 and m2 re-

spectively, then calculate the diversity index of each subset, and finally check

whether the simulated absolute diversity difference between those two ran-

dom subsets is greater than the observed absolute diversity difference between

Google and Bing. Iterating the above process for a large number of times

(10,000 times in our experiment), the proportion of such random partitions

with the simulated diversity difference greater than the observed diversity dif-

ference would provide the estimated p-value for this two-sided test. If the

p-value is very small (say less than 0.01), we could confidently reject the null

hypothesis that there is no real difference between Google and Bing on diver-

sity.

Table 3.14 shows the statistical significance test outcomes for the compar-

ison of Google and Bing in terms of the organic search results diversity see

Section 3.1. For almost all of the categories, the p-value is far less than 0.01.

The only exceptions are Simpson’s D for the top-10 organic search results in

category “Nature & Science” and Shannon’s H for the top-50 organic search

results in category “Business & Politics”. Thus we can confirm that Google
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Table 3.14: The statistical significance test results for comparing Google and

Bing in terms of the organic search results diversity.

Simpson’s D Shannon’s H

top-k category |D(G) −D(B)| p-value |H(G) −H(B)| p-value

10

Shopping 22.399 0.0008 0.244 0.0000

Nature & science 3.134 0.3744 0.116 0.0000

Sports 8.600 0.0000 0.250 0.0000

Business & politics 14.876 0.0000 0.349 0.0000

Travel & leisure 8.514 0.0005 0.213 0.0000

Entertainment 4.040 0.0000 0.242 0.0000

50

Shopping 76.606 0.0000 0.200 0.0000

Nature & science 200.615 0.0000 0.334 0.0000

Sports 67.283 0.0000 0.178 0.0000

Business & politics 57.461 0.0000 0.040 0.5700

Travel & leisure 136.389 0.0000 0.255 0.0000

Entertainment 77.694 0.0000 0.172 0.0000

and Bing are indeed significantly different from each other, from the perspec-

tive of organic search results diversity. The same process can be applied to

the sponsored search results diversity and topic diversities straightforwardly.

3.5 CONCLUSION

In this chapter first we have theoretically analysed how the diversity of Web

search results is determined by the Zipfian distribution of websites. Notably,

there is a tension between richness and evenness for a given Zipfian distribu-

tion, but richness matters more than evenness, because in Zipfian distribution

when the zipfian exponent s is kept constant then the diversity increases with

increasing richness see Section 3.1.3, so the overall diversity of search results

would benefit from a longer tail of websites.

After that, we have empirically analysed how Google and Bing compare

against each other over the diversity of their search results. Specifically, for

organic search, Google is more diverse in the top-50 search results, while Bing

is more diverse in the top-10 search results; for sponsored search, Google has

higher evenness, while Bing has higher richness; for topic diversity, Google is
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more diverse in top-10 and top-50 search results, while the richness is equal in

both Google and Bing.

For the experiments and analysis in our thesis we have used the popular

queries that are the result of most of the searches over a popular Web search

engine (Google) and hence these are the queries which are considered impor-

tant by WSEs so as to satisfy most of its users. Though the queries which are

not popular can be important e.g. “breast cancer symptoms” or “fire emer-

gency”. But in our thesis we have considered only the popular queries from

Google top charts and the procedure could be followed to any set of queries

from the users.

For the future work, as it is mentioned in Section 3.1.4, it would also be

interesting to see the effect of diversity on the Web search results, when the

reliability or credibility of the sources, websites in our case, is also considered.

Although in this chapter we focused on static diversity only. It would also

be interesting to model how the diversity of Web search results changes with

respect to time, as ecologists often do for species diversity [71], which is the

topic of Chapter 5.



CHAPTER 4

PREDICTING QUERIES

LIFETIME BY QUERIES

COVERAGE DIVERSITY

As a Web search engine is limited by its coverage of the whole Web to fulfil

the requirements of users from diverse backgrounds. Other than diversity in

organic websites and topic diversity in Web search engines it is also impor-

tant to have an insight into how the Web search engines compare in terms of

coverage of the Web for popular queries.

It is also very helpful to see if there is any connection between diversity

and the prediction of lifetime of popularity of a query.

In this chapter we shall first analyse the query coverage diversity in Sec-

tion 4.1. Afterwards we show how the diversity related factors e.g. richness

and evenness can be used to predict the lifetime of popularity of a query.

4.1 DIVERSITY OF QUERIES COVERAGE

4.1.1 Overview

It is interesting to see and compare Google and Bing for the total coverage

of the Internet and how diverse it is for queries in the six different categories

that we consider. For this purpose we use the query results diversity, in which

we measure and compare the diversity of the total number of results in Google

and Bing for most popular queries in the Google top charts1.

1http://www.google.com/trends/topcharts

53
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Table 4.1: The data set for the number of search results for queries from

Google and Bing.

Category # queries
Google

# results (109)

Bing

# results (109)

Shopping 99 12.13 0.64

Nature & science 340 55.77 18.93

Sports 709 20.98 5.51

Business & politics 375 31.37 3.24

Travel & leisure 528 154.00 14.39

Entertainment 1521 295.00 47.37

4.1.2 Presentation and Analysis of Data

In order to collect the data for the number of search results per query for our

investigation, we first gathered all the popular queries (aka “hot searches”),

as mentioned in Section 3.1.2 ,over 114 months from January 2004 until June

2013 in six representative categories of Google Top Charts2. The six categories

are: (i) Shopping, (ii) Nature & Science, (iii) Sports, (iv) Business & Politics,

(v) Travel & Leisure, (vi) Entertainment.

Thereafter we retrieve the figure for the total number of search results for

every query from the Google and Bing search engines. Table 4.1 shows the

number of search queries and the number of search results for each category

in this large real-world data set. It can be seen here that Google has higher

number of search results for queries than Bing, across all the categories.

Fig. 4.1 shows the average number of results per query across all the cat-

egories in Google and Bing. It is seen here that Google and Bing have the

different average number of results per query in any category, i.e. Google has

greater average number of results per query in Travel & leisure followed by

Entertainment, Nature & science, Shopping, Business & politics and Sports

category has the least number of results per query. On the other hand, in Bing

has greater average number of results per query in Nature & science followed

by Entertainment, Travel & leisure, Business & politics, Sports and Shopping

category has the least number of results per query. The difference here could

be because of how these two Web search engines update their index of Web

2http://www.google.com/trends/topcharts

http://www.google.com/trends/topcharts
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Figure 4.1: Average number of results per query, in millions (106).

pages crawled from the Internet.

Fig. 4.2 shows the log-log plots of the total number of search results for

queries in different categories for Google and Bing, respectively. Where the

total number of results are normalised against maximum number of results for

query. As the coefficient of determination, R2, is more than 96% for the queries

in all categories, we can say that it follows the Power law with exponential

cutoff[22]. The frequency fi, the total number of results, for the i-th query

is directly proportional to qi/is, where s is the exponent characterising the

distribution and q is the cut-off parameter.

Without loss of generality, we could rank all the N queries according to

their frequencies, the total number of results, then the proportion of the i-th

query would be given by

pi =
fi∑N
k=1 fk

=
qi/is∑N

k=1(q
k/ks)

. (4.1)

Table 4.2 shows the number of queries N together with the exponent s and

cut-off parameter q, in each category from Google and Bing, where s and q

were estimated by fitting the log-log plot through regression.
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Figure 4.2: The log-log plots of the total number of search results for queries.
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Table 4.2: Query results distribution.

Google Bing

Category # queries s q s q

Shopping 99 0.738 0.976 0.257 0.961

Nature & science 340 1.153 0.998 0.000 0.619

Sports 709 0.557 0.996 0.000 0.598

Business & politics 375 0.428 0.991 0.000 0.312

Travel & leisure 528 0.517 0.996 0.822 0.910

Entertainment 1521 0.655 0.998 0.505 0.964

4.1.3 Experiments and Results for Diversity in Queries Cov-

erage

Currently, Google and Bing are the two major Web search engines for English

users. How do they compare against each other in terms of the diversity of

their number of search results?

To calculate the diversity for queries coverage, we use Inverse Simpson’s

index and Shannon’s diversity index as defined in Eq. (2.4) and Eq. (2.5)

respectively. Where N is the total number of queries per category and pi is

the proportion of the total number of results for ith query with respect to the

total number of results for all the queries per category.

Fig. 4.3 shows the queries coverage per category in Google and Bing (see

also Table 4.1). An apparent pattern across all categories in this bar chart is

that Google’s coverage is consistently higher than the coverage in Bing.

Richness, number of queries per category, for Google and Bing is shown

in Table 4.2. Which in this case remains exactly same in both Web search

engines.

Table 4.3 shows Inverse Simpson’s evenness DE and Shannon’s evenness

HE for the total number of search results in queries for Google and Bing. It is

shown here that Google has higher Inverse Simpson’s evenness and Shannon’s

evenness than Bing’s in each category with the only exception of the Shopping

category. Having more evenness in Google reflects the fact that Google has

less differences in the total number of search results between queries for each

category compared to Bing, whereas in the Shopping category it is vice versa.
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Figure 4.3: Query coverage results.

Table 4.3: Query results evenness.

Google Bing

Category Simpson’s DE Shannon’s HE Simpson’s DE Shannon’s HE

Shopping 0.176 0.770 0.336 0.845

Nature & science 0.036 0.647 0.013 0.299

Sports 0.157 0.840 0.006 0.256

Business & politics 0.241 0.855 0.005 0.152

Travel & leisure 0.226 0.872 0.012 0.389

Entertainment 0.082 0.810 0.015 0.504
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It can be seen from Table 4.4 that Google’s diversity is consistently higher

than Bing’s in all categories with the only exception of the Shopping category

— the same pattern that the evenness follows. It is rather very interesting

to see the distribution of results is more balanced in Bing than Google in

shopping category. This shows Bing’s focus and interest in shopping category.

Table 4.4: Query results diversity

Google Bing

Category Simpson’s D Shannon’s H Simpson’s D Shannon’s H

Shopping 17.427 1.537 33.310 1.686

Nature & science 12.255 1.636 4.253 0.758

Sports 111.350 2.394 3.979 0.728

Business & politics 90.297 2.200 1.908 0.392

Travel & leisure 119.388 2.375 6.561 1.060

Entertainment 125.293 2.577 22.945 1.605

4.2 PREDICTING THE LIFETIME OF QUERIES

Herein we analyse the factors which affect query popularity and investigate

for any diversity-related factors influencing such a popularity.

The popularity of a query is determined by the number of months it re-

mains in the Google top charts. Apparently, if a query remains more number

of months in the Google top charts then it is more popular than the queries

that remained for less number of months.

For the purpose of predicting the lifetime or popularity of a query, i.e the

number of months it shall be in the Google top charts, we use Cox proportional

hazard regression model [24]. The Cox proportional hazard regression model

is a statistical model which is used in survival analysis. It deals with the

survival time until an event of failure or death. It is used in areas, such as

biology, sociology, economics and engineering among others [48]. The Cox

proportional hazard regression model is defined as:

h(t) = h0(t)× exp(β1x1 + β2x2 + ...+ βkxk) . (4.2)

where x1, ..., xk are the covariates that influence the survival duration, i.e. it

affects the number of months for a query to remain in Google top charts. The
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effects of these covariates are proportional as these are introduced through an

exponential function. β1, ..., βk are the coefficient that shows the importance of

corresponding covariates. h0(t) represents the prediction time in the absence

of any of the covariates.

We get some insight into the factors, i.e. covariates affecting the survival,

i.e. the number of months, for a query to remain in Google top charts. We

analyse different combinations of covariates for prediction of query popular-

ity. The covariates that we use are: 1. The number of adverts for a query in

the search results page, 2. The total number of results for a query, 3. Shan-

non’s diversity of query coverage for the category of a query (see Table 4.4),

4. Simpson’s diversity of query coverage for the category of a query, 5. Shan-

non’s Evenness of query coverage for the category of a query (see Table 4.3),

6. Simpson’s Evenness of query coverage for the category of a query and 7. a

binary value for whether the search results for a query contain the popular

website, e.g. Amazon, Twitter or Youtube. (Shown as covariates in Table 4.5)

We train the Cox proportional hazard regression model with a different

variation of these covariates and compare the c, concordance, index [33] which

estimates the probability of concordance between predicted and observed re-

sponses. More specifically it is the fraction of pairs in the data where the

observation with higher survival time has the higher probability of survival

predicted by the model. The value of concordance, c index, is between 0 and

1, where 0.5 is the expected result from random prediction, 1.0 is the perfect

concordance, and 0.0 is perfect anti-concordance which can be multiplied with

−1 to get the perfect concordance.

Table 4.5 shows the value of the c index after using various combinations

of covariates. As we can see from this table, by using only diversity dependent

covariates the value of the c index is 0.569, which is not better than the value,

0.617, seen by using the combination of popular websites for queries. But

the highest value of 0.626 is obtained by using the combination of both; this

indicates that diversity plays some role in predicting the lifetime of a query.

4.3 CONCLUSION

In this chapter, we compared Google and Bing in terms of diversity of queries

coverage. First, we showed how the diversity of queries coverage is determined
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Table 4.5: c index results for various covariates in Cox proportional hazard

regression model

Covariates c index Covariates c index Covariates c index

# Adverts

0.569

Amazon

0.617

# Adverts

0.626

# Results Facebook # Results

Shannon Diversity DailyMail Shannon Diversity

Simpson Diversity news.google Simpson Diversity

Shannon Evenness imges.google Shannon Evenness

Simpson Evenness Imdb Simpson Evenness

TheGuardian Amazon

Twitter Facebook

Youtube DailyMail

news.google

images.google

Imdb

TheGuardian

Twitter

Youtube

by Power law with exponential cutoff, in both Google and Bing. Then we

showed that although richness, i.e. the number of queries, remains same in

both Web search engines, the diversity of queries coverage in all the categories

follows the same pattern as evenness which is higher in Google with the only

exception of shopping category which is higher in Bing.

Afterwards by using Cox proportional hazard regression model we analysed

the factors affecting the lifetime of a query. We observed that highest value

of the c, concordance, index is obtained with the inclusion of diversity-related

factors, i.e. diversity and evenness for the category of a particular query, with

other factors which affect the lifetime of a query.



CHAPTER 5

ADDITIONAL

DIMENSIONS OF

DIVERSITY

Other than analysing source diversity in Web search engines we analyse the

diversity in other aspects of Web datasets. Specifically, we investigate how

the diversity changes with regards to time and we also want to analyse the

diversity when the categories under observation are overlapping categories,

i.e. an item of the dataset could be in more than one category. For example

consider a movie which can be in more than one genre, e.g. “star wars” movie

could be in “adventure” as well as “sci-fi” genres. The diversity that we have

analysed until now is the static diversity and is only for the datasets which

have hard categories. However, in real-world we have the datasets which are

dynamically changing and the datasets which have overlapping categories.

In this chapter we first introduce another dataset of movies in Section 5.1,

which we use for analysing diversity in overlapping categories and also the

diversity with respect to time. Afterwards in Section 5.2 we propose a new

method to investigate the diversity in a dataset having overlapping categories.

Finally in Section 5.3 we analyse that how diversity is changing with respect

to time and present a method to get the information from changing diversity,

which is not directly visible directly from diversity values.

62
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5.1 DATASET

For our purpose of analysing the diversity with regards to time and the diver-

sity for datasets with overlapping categories, we use movies datasets from two

different sources. The first dataset that we call the-numbers dataset which we

extracted from the Web pages of a feature rich and structured Website 1. The

second dataset that we are using is from a very well known Website for movies

which is Imdb2 movies dataset. The the-number dataset contains total gross

earned for any movie and the genres for movies and it has 1604 movies in 6

years time from 2009 to 2014. On the other hand, Imdb dataset mentions the

principal people linked with a movie, which includes, actor, actress, director,

producer and writer for each movie. The Imdb dataset that we use for our

analyses, spans from 1917 to 2017.

5.2 DIVERSITY IN OVERLAPPING

CATEGORIES

5.2.1 Diversity of Genres for Movies

For the diversity analysis in terms of overlapping categories, we compared the

diversity of genres for movies across six years in the the-numbers dataset. It

could be interpreted as the inverse of the probability that two movies randomly

selected belong to the same genre.

To calculate the diversity we used Inverse Simpson’s index and Shannon’s

diversity index as shown in Eq. (2.4) and Eq. (2.5) respectively, where N is the

number of distinct genres for all the movies in a year and Pi is the proportion

of genre i in all the movies.

As a movie could have more than one genre, we calculate the proportion

of genres across movies with two separate methods. The first method (Method

I ) is defined in Eq. (5.1) where Gi is the total number of movies in genre i and

N is the number of distinct genres. This method assumes a separate virtual

movie for each genre of a single movie. For example, if a movie has three

genres then we assume three separate movies for this case. This way all the

1http://www.the-numbers.com/
2http://www.Imdb.com/

http://www.the-numbers.com/
http://www.Imdb.com/
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movies shall have a single genre.

Pi =
Gi∑N
j=1Gj

. (5.1)

The second method (Method II ) to calculate the proportions is defined in

Eq. (5.2) where M is the number of movies, WMj is the weight of movie j

which is always 1 in this case, and GMj is the number of genres for movie j.

WGi is the weight of genre i with respect to the number of genres for a movie,

across all the movies. This method does not consider separate movies for a

movie having multiple genres instead the separate genres are given a weight.

WGi =
M∑
j=1


WMj

GMj
if movie j has Genre i

0 otherwise

Pi =
WGi∑N
j=1WGj

. (5.2)

Fig. 5.1 shows the results for Inverse Simpson’s diversity and Shannon’s

diversity, for the genres of movies across six years. This shows the diversity

with two separate methods for the proportions of genres, i.e. Method I and

Method II. It can be seen in the figure that the diversity results with Method I

is always higher than the results with Method II. This is because of the reason

that Method I assumes the maximum weight, i.e. 1, for each genre for a movie.

Whereas, in Method II the weight is distributed across the genres for the same

movie.

Fig. 5.2 shows the results of Evenness for Inverse Simpson’s diversity and

Shannon’s diversity. It is observed here that as the richness, the number of

genres, is constant across six years, i.e. 25 genres, the diversity follows the

same pattern as evenness. As shown here, we can increase diversity in genres

for movies with balancing the distribution of movies across all the genres of

movies which shall also increase overall gross profit in movies as we show in

Section 5.2.2.

5.2.2 Diversity of Gross Profit per Genre

In this section, we analysed the diversity in another dataset with the Method

I and Method II mentioned in Section 5.2.1. We instigated the diversity of

gross profit per genre.
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Figure 5.1: Genres diversity in movies with Method I and Method II.

For the first method, (Method I ), in Eq. (5.1) we define Gi as the gross

profit for all movies in genre i and N is the number of distinct genres. As

mentioned earlier in Section 5.2.1, that this method assumes a separate virtual

movie for each genre of a single movie. For example, if a movie has three genres

then we assume its gross profit for all three separate genres for this case.

For the second method, (Method II ), in Eq. (5.2) we define M as the

number of movies, WMj is the weight of movie j which is gross profit for

movie j in this case, and GMj is the number of genres for movie j. WGi is
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Figure 5.2: Genres evenness in movies with Method I and Method II.

the weight of genre i with respect to the gross profit.

Fig. 5.3 and Fig. 5.4 shows the results for diversity and evenness, respec-

tively, of gross income per genre. As it was expected it follows the same

pattern as the diversity of genres because apparently, the gross income per

genre is dependant on the number of movies per genre.
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Figure 5.3: Gross income diversity in movies with Method I and Method II.

5.3 DIVERSITY WITH RESPECT TO TIME

For the diversity analysis with respect to time, we compared the diversity for

five separate movie principal types, i.e. actor, actress, director, producer and

writer from the year 1917 to 2017. It is shown in Fig. 5.5 that the number

of movies listed at Imdb, for every principal type per year is different. It can

be seen that the number of movies has grown substantially over the past 20

years. Production of more movies from past 20 years could be attributed to
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Figure 5.4: Gross income evenness in movies with Method I and Method II.

creating more demand by reaching more public through advertisements, over

the Web, which became possible after the increasing usage of the Internet over

these years.

Fig. 5.6 shows the richness, which is the unique number of principals,

per year for movies. The richness of all the principal types follows the same

pattern as the number of movies produced across the years. Which also started

increasing sufficiently around the same period, i.e. past 20 years.

To calculate the diversity we used Inverse Simpson’s index as shown in
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Figure 5.5: Number of movies per year in Imdb.
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Figure 5.6: Richness per year in Imdb.

Eq. (2.4), where N is the different actors for the principal type actor and

different directors for principal type director and so on, and Pi is the proportion

of actor and director for the corresponding principal type. Fig. 5.7 shows the

Inverse Simpson’s diversity per year for different principal types in movies. It
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can be seen here that diversity follows the same pattern as richness for every

principal type. This increase in diversity can be attributed to more movies

being produced every year as it is evident in the richness of movies. The high

increase in number of movies produced from last 20 years can be because of

increasing interest in people (consumers) by more advertisement and reaching

more people through the invent of Internet.

1920 1940 1960 1980 2000 2020
Year

0

5000

10000

15000

20000

Si
m

ps
on

's 
Di

ve
rs

ity

actor
actress
director
producer
writer

Figure 5.7: Inverse Simpson’s Diversity per year in Imdb.

Fig. 5.8 shows the evenness per year. The pattern of evenness for all the

principal types in a movie, across the years, is not clear from the figure. It

has quite a few peaks and drops across the years.

To observe any trend and seasonality in the diversity and evenness across

the years we used the time series analysis. For the time series analysis, we

used only the principal type actor as all other principal types follow the same

pattern. Fig. 5.9 shows the decomposed component plots, with the frequency

of every 2 years, for the Inverse Simpson’s diversity of principal type actor.

It is shown here that the trend was quite apparent in the original data for

Inverse Simpson’s diversity. It is interesting to see the seasonality component

which is varying from 10 to -10, in Inverse Simpson’s diversity value, every

two years.

Fig. 5.10 shows the decomposed component plots, with the frequency of
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Figure 5.8: Inverse Simpson’s Evenness per year in Imdb.
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Figure 5.9: Time series decomposed component plots of Inverse Simpson’s

diversity for actors.

every 25 years, for the Inverse Simpson’s diversity evenness of principal type

actor. It is interesting to see the pattern and the seasonality which was not

very obvious in the original data of evenness for Inverse Simpson’s diversity.
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Simpson’s diversity for actors.

5.4 CONCLUSION

In this chapter first, we showed how the diversity could be analysed with

two different methods for calculating the proportions of categories which are

overlapping, i.e. the categories are not hard and an individual item could be

in more than one category. Afterwards, we analysed how the diversity changes

with respect to time. Notably, it is shown that how we can use time series

decomposed components to see the trend and seasonality which are not very

obvious by just looking at the diversity measures.

For the future work, it would also be interesting to look into another di-

mension of diversity into Web search results, which is to have a look into how

diversity changes when queries from multiple languages are considered. For

example sometimes their is more ambiguity one language than another lan-

guage e.g. a sentence in English language is usually more ambiguous than a

sentence in French language.



CHAPTER 6

TWO APPLICATIONS OF

DIVERSITY

In this chapter we present two real world applications of diversity in which we

use diversity method to get some useful information. In Section 6.1 we show

how we can estimate the number clusters from a dataset. We propose a new

diversity method to estimate the number of balanced clusters and avoid any

outliers. In Section 6.2 We show how the evaluation methods for diversified

search, which are popular in the literature, can detect the changing levels of

richness, evenness and relevance in Web search results.

6.1 ESTIMATING THE NUMBER OF CLUSTERS

USING DIVERSITY

It is an important and challenging problem in unsupervised learning to esti-

mate the number of clusters in a dataset. Knowing the number of clusters is a

prerequisite for many commonly used clustering algorithms such as k-means.

Here, we propose a novel diversity based approach to this problem. Specifi-

cally, we show that the difference between the global diversity of clusters and

the sum of each cluster’s local diversity of their members can be used as an

effective indicator of the optimality of the number of clusters, where the di-

versity is measured by Rao’s quadratic entropy. A notable advantage of our

proposed method is that it encourages balanced clustering by taking into ac-

count both the sizes of clusters and the distances between clusters. In other

words, it is less prone to very small “outlier” clusters than existing meth-
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ods. Our extensive experiments on both synthetic and real-world datasets

(with known ground-truth clustering) have demonstrated that our proposed

method is robust to clusters of different sizes and shapes, and it is more ac-

curate than existing methods (including elbow, Caliński-Harabasz, silhouette,

and gap-statistic) in terms of finding out the true number of clusters.

6.1.1 Overview

Clustering is an important unsupervised learning task aiming to group a col-

lection of items into subsets (clusters) such that those within the same clus-

ter are more closely related (similar) to each other than to those in differ-

ent clusters [34]. For many commonly used clustering algorithms (such as

k-means [34], k-medoids [34], Gaussian mixtures [92], and spectral cluster-

ing [59]), it is necessary to specify beforehand the number of clusters, a pa-

rameter often labelled k as in the k-means/k-medoids algorithm, to run the

algorithm. However, we often do not have prior knowledge about the correct

choice of k, and it is a very challenging problem to accurately estimate it by

analysing the dataset itself only [54, 73, 39]. On one hand, increasing k will

reduce the amount of error (in terms of data recovery [56]) in the resulting

clustering, to the extreme case of full accuracy when k = n the total number

of items in the dataset. On the other hand, decreasing k will offer a higher

compression ratio, to the extreme case of maximum compression when k = 1.

The optimal choice of k probably lies somewhere in the middle ground, de-

pending on the characteristics of the dataset such as its size, variance, and

shape.

We propose a novel diversity based approach to the problem of estimating

the number of clusters in a dataset. A notable advantage of our proposed

method is that it encourages balanced clustering by taking into account both

the sizes of clusters and the distances between clusters. In other words, it is

less prone to “outlier” clusters (that are much smaller than most other clusters

in the dataset) than existing methods. Such a property of clustering is usu-

ally desirable in practice. For example, when using a clustering algorithm to

perform image segmentation [23], a very small cluster (segment) usually corre-

sponds not to a complete meaningful object but only part of it, and therefore

should be avoided. For another example, when using a clustering algorithm
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to perform market segmentation [91], a very small cluster (segment) proba-

bly means that the market segment has too few customers to be profitable,

and therefore should be discouraged. Obviously in some scenarios, small out-

lier clusters can be useful, e.g., for revealing exceptions or abnormalities in

the data. However, there are many real-world applications where balanced

clusters are preferred, which is the focus of this paper.

6.1.2 Related Work for Estimating the Number of Clusters

The problem of estimating the number of clusters k in a dataset has been stud-

ied extensively, and a number of methods have been proposed by researchers

from various disciplines. In this section, we review a few representative ones.

The elbow method

The elbow method [83] examines the percentage of variance explained by the

clustering as a function of the number of clusters k. If we plot the percentage

of variance explained against k, the first clusters will be able to explain a lot of

variance, but at some point the marginal gain will drop, giving an “elbow” in

the graph. The optimal k is chosen at this point, as introducing more clusters

would not give a better explanation of variance in the dataset, though such

an “elbow” cannot always be unambiguously identified [44]. In this paper, we

use a slight variation of this method which plots the curve of the intra-cluster

variance [32]:

E(k) =

k∑
r=1

W (Cr) , (6.1)

where W (Cr) is the variance within the r-th cluster Cr.

The Caliński-Harabasz method

Milligan et.al. [54] compared 30 different methods to finding the estimated

number of clusters in the dataset and found that the best performing method

is given by Caliński and Harabasz [13]:

CH(k) =
B(k)/(k − 1)

W (k)/(n− k)
, (6.2)

where B(k) is the inter-cluster variance (i.e. the sum of squared distances for

the k clusters), and W (k) is the intra-cluster variance. Maximising CH(k)

against different values of k gives the estimated number of clusters.
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The silhouette method

Rousseeuw et.al. [72] proposed the silhouette method, of which the main goal

is to examine whether an item i is classified well in the cluster or not. For

every item or point i, its silhouette is calculated as:

S(i) =
b(i)− a(i)

max(a(i), b(i))
, (6.3)

where a(i) is the average distance of item i to all the items in the same cluster

and b(i) is its average distance to all the items in the nearest cluster. The i-th

item is well clustered if the value of S(i) approaches the maximum which is

1; and a S(i) value 0 means a(i) = b(i), whereas S(i) value −1 means item i

belongs to the other cluster. After plotting the average S(i) for all the items

against different values of k from 1 to n, the maximum value of average S(i)

for all the items gives the estimated number of clusters, k, for the dataset.

The gap-statistic method

Tibshirani et.al. [84] proposed another method, gap-statistic, which compares

intra-cluster variance with the expected values under the null reference distri-

bution of the dataset. After clustering the dataset for different values of k,

we get the intra-cluster variance for the observed and reference datasets and

calculate the gap-statistic as:

Gapn(k) = E∗n{log(W (k))} − log(W (k)) , (6.4)

where W (k) is the total intra-cluster variance and E∗n denotes the expectation

under a sample of size n from the reference distribution. The gap-statistic

measures the deviation of the observed W (k) value from its expected value

under the null distribution.

6.1.3 Our Approach for Estimating the Number of Clusters

One drawback of the above mentioned methods for estimating the number

of clusters is that they could lead to very imbalanced clustering, where some

“outlier” clusters are much smaller than the other clusters. This is often unde-

sirable for real-life clustering applications (see Section 6.1.1). Here we propose

a novel diversity based approach to the problem of estimating the number

of clusters, which is less tolerant to such “outlier” clusters and encourages
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balanced clustering by taking into account both the sizes of clusters and the

distances between clusters.

The Diversity Method for Estimating the Number of Clusters

The requirement of balance among clusters, in fact, implies that there should

be no particular cluster dominating the dataset, i.e. there should be a certain

level of diversity among clusters.

To find out the true number of clusters in a dataset with n items, we

use the output of the given clustering algorithm (such as k-means) and then

measure the difference between the global diversity of clusters and the sum of

each cluster’s local diversity of their members, denoted by Q(k) and given by

Q(k) = DivG −
k∑
r=1

DivLr , (6.5)

where DivG is the global diversity of k clusters (with each cluster as a species)

while DivLr is the local diversity of the r-th cluster (with each member item

of the cluster as a species) as measured by Rao’s quadratic entropy given in

Eq. (2.6). We choose to use Rao’s quadratic entropy [69] to measure the diver-

sity of data, because it takes into account both the sizes of species (clusters)

and the distances between species (clusters). We calculate the diversity based

statistic Q(k) for various values of k, i.e. for k = 1 to n, and the maximum

value of Q(k) should be able to tell us the true number of clusters in the

dataset, i.e.

k̂ = arg max
1≤k≤n

Q(k) . (6.6)

The underlying intuition of this diversity method is that in a good cluster-

ing, the items within each cluster should be as homogeneous as possible, (i.e.

less local diversity), while the clusters themselves should be as heterogeneous

as possible, (i.e. more global diversity). The balance of cluster sizes is actually

implied by a high level of diversity among clusters.

The approaches to estimating the number of clusters can be divided into

two categories, global methods and local methods, as pointed out by Gor-

don [31]. The former evaluate some measure over the entire dataset and opti-

mise it as a function of the number of clusters; the latter consider individual

pairs of clusters and decide whether they should be amalgamated [84]. Ob-

viously, the diversity method proposed by us is a global method. According
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Figure 6.1: The trade-off between the sizes of clusters and the distances be-

tween clusters.

to Gordon [31], most global methods suffer from a serious disadvantage that

they are undefined for one cluster, (i.e. k = 1) and therefore cannot be used

to determine whether the dataset should be clustered at all. It is worth men-

tioning that our diversity method does not have this shortcoming: Q(k) is well

defined for k = 1, as we show later in Section 6.1.4.

6.1.4 Experiments for Estimating the Number of Clusters

Balance Between Size and Distance in Clusters

As can be seen in Eq. (2.6), Rao’s quadratic entropy takes into account the

sizes of clusters and the distances between clusters, which is important to

achieve balanced clustering that is desirable in many real-life clustering appli-

cations.

For the purpose of investigating the trade-off between the sizes of clusters

and the distances between clusters, we first create two clusters from two 2-

dimensional standard normal distributions which have 1000 items each and

are centred at (0, 0) and (0, 5) respectively, and then we create another cluster

from one 2-dimensional standard normal distribution with varying number of

items from 1 to 1000, (i.e. we obtain 1000 different datasets). Following this,

we move the third cluster’s centre (x, y) as follows: we keep y at 2.5 (halfway
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from the first cluster’s centre to the second cluster’s centre), and gradually

increase x from 0 to +∞ until the third cluster is detected by our proposed

diversity method as a separate, third, cluster.

The results of the simulation study are shown in Fig. 6.1, which indicate

that using the diversity method to estimate the number of clusters, a small

cluster needs to be distant from the other clusters in the dataset to be regarded

as a separate cluster, otherwise it will be assimilated into another nearby

cluster: the smaller the cluster, the larger its distance to the other clusters

should be. In other words, the diversity method tends to avoid suggesting

very small clusters unless they are very far away from the rest of the data.

Robustness of Our Method for Estimating the Number of Clusters

In this section, we investigate how robust our proposed diversity method is

when it is applied to different types of datasets.

For this purpose, we create five synthetic datasets of different sizes, vari-

ances, and shapes. In addition, we also make use of three real-world datasets

— Wine, Breast Cancer, and Thyroid Disease — from the UCI Machine Learn-

ing Repository [50]. On these synthetic and real-world datasets, we cluster the

data points into k clusters with k from 1 to n (using k-means for the first three

synthetic datasets and the first real-world dataset, but average-link hierarchi-

cal agglomerative clustering [53] for the remaining datasets), and calculate the

value of Q(k) for each k. The actual number of clusters in the dataset is esti-

mated to be the k that maximises Q(k) (see Section 6.1.3). It can be seen from

the experimental results in Figs. 6.2 to 6.6, for both synthetic and real-world

data, no matter what size, variance, or shape the dataset has, our proposed

diversity method can successfully discover the correct number of clusters.

Comparison with Other Methods for Estimating the Number of

Clusters

We use four synthetic datasets to evaluate and compare Q(k) method to the

other methods introduced in Chapter 2, i.e. elbow, Caliński-Harabasz, silhou-

ette, and gap-statistic.

All those datasets differ in terms of the number of clusters, the number of

dimensions, and the number of items. They are defined as follows.
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Figure 6.2: Experiments on the synthetic dataset with five clusters with equiv-

alent sizes and equivalent variances.

• (a) Four clusters in 2 dimensions; their sizes are 250, 250, 250, and 500

respectively; their centres are (1, 3), (0, 8), (8, 0) and (4,−2) respectively.

• (b) Four “normal” clusters and one small “outlier” cluster in 2 dimen-

sions; the sizes of those “normal” clusters are 1000, 900, 900, and 850

respectively while the size of that “outlier” cluster is randomly set to a

number between 50 and 100; the centres for all the clusters are chosen
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Figure 6.3: Experiments on the synthetic dataset with five clusters with equiv-

alent sizes but different variances.

randomly.

• (c) Five clusters in 10 dimensions; their number of items are randomly

set to either 50 or 100; their centres are chosen randomly.

• (d) Six clusters with the same settings as in 5 clusters except that the

number of dimensions is 4.
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Figure 6.4: Experiments on the synthetic dataset with four clusters with dif-

ferent sizes and some random noise.

The items (data points) in each above cluster are all sampled from a particular

standard multivariate normal distribution.

For each setting defined above, we generated 50 concrete datasets so as to

carry out 50 simulation trials. Then we used the k-means clustering algorithm

to divide the generated dataset into k clusters with k varying from 1 to 9.

On the basis of the clustering results, we apply the diversity method and the
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Figure 6.5: Experiments on the synthetic dataset with two ring-shape clusters.

other methods in comparison to make estimations about the actual number of

clusters.

The results of the simulation study are summarised in Table 6.1. Each

number in the table shows how many times a particular method detected the

number of clusters mentioned in its column header. In the 1st case where there

is little noise, all the methods perform almost equally well. In the 2nd case

where there is a lot of noise, it can be clearly seen that the diversity methods
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Figure 6.6: Experiments on the synthetic dataset with two moon-shape clus-

ters.

outperforms all the other methods significantly. In the 3rd and 4th case, the

diversity method performs best with near-perfect accuracy, closely followed

by the gap-statistic method (which is widely regarded as the state-of-the-art

method).
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6.2 A META-EVALUATION OF EVALUATION METH-

ODS FOR DIVERSIFIED SEARCH

For the evaluation of diversified search results, a number of different methods

have been proposed in the literature. Prior to making use of such evaluation

methods, it is important to have a good understanding of how diversity and

relevance contribute to the performance metric of each method. In this paper,

we use the statistical technique ANOVA to analyse and compare three repre-

sentative evaluation methods for diversified search, namely α-nDCG, MAP-IA,
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(c) Thyroid Disease: m = 5, k∗ = 2.

Figure 6.6: Experimental results on three real-world datasets from UCI Ma-

chine Learning Repository, where m and k∗ are the number of features/di-

mensions and the actual number of clusters respectively in the corresponding

dataset.

and ERR-IA, on the TREC-2009 Web track dataset. It is shown that the per-

formance scores provided by those evaluation methods can indeed reflect two

crucial aspects of diversity — richness and evenness — as well as relevance,

though to different degrees.

6.2.1 Overview

The same query could be submitted to a search engine by users from different

backgrounds and with different information needs. When this occurs, the

search engine should present users with relevant and diversified results that

can cover multiple aspects or subtopics of the query. For more than a decade,

there has been a surge of research in the diversification of search results [14,

96, 74, 45]. The main objective of such research is to deal with the ambiguity

of query or the multiplicity of user intent.

To evaluate the performance of diversified search, a variety of metrics have

been proposed in recent years, such as α-nDCG [21], MAP-IA [3], and ERR-IA

[17] which generalise the corresponding traditional IR metrics [53] to capture

both the diversity and the relevance of search results. Here, we aim to in-
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Table 6.1: Experimental results on synthetic data showing how many times out

of 50 simulation trials a particular method estimated the number of clusters

to be k̂, where the column corresponding to the correct number of clusters is

annotated with ∗.

Method Estimates of the following numbers of clusters k̂

1 2 3 4 5 6 7 8 9

(a) Ground truth: 4 clusters (relatively clean)

elbow 0 0 1 49∗ 0 0 0 0 0

silhouette 0 0 0 50∗ 0 0 0 0 0

Caliński-Harabasz 0 0 0 50∗ 0 0 0 0 0

gap-statistic 0 0 0 50∗ 0 0 0 0 0

diversity 0 0 0 50∗ 0 0 0 0 0

(b) Ground truth: 4 clusters (relatively noisy)

elbow 0 0 5 29∗ 16 0 0 0 0

Caliński-Harabasz 0 0 1 0∗ 49 0 0 0 0

silhouette 0 0 0 39∗ 11 0 0 0 0

gap-statistic 0 0 0 14∗ 36 0 0 0 0

diversity 0 0 0 48∗ 2 0 0 0 0

(c) Ground truth: 5 clusters

elbow 0 1 0 5 44∗ 0 0 0 0

Caliński-Harabasz 0 7 0 6 37∗ 0 0 0 0

silhouette 0 2 0 9 39∗ 0 0 0 0

gap-statistic 0 0 0 0 48∗ 2 0 0 0

diversity 0 0 0 1 49∗ 0 0 0 0

(d) Ground truth: 6 clusters

elbow 0 0 0 0 8 42∗ 0 0 0

Caliński-Harabasz 0 6 0 0 8 36∗ 0 0 0

silhouette 0 0 0 0 12 38∗ 0 0 0

gap-statistic 0 0 0 0 0 49∗ 1 0 0

diversity 0 0 0 0 0 50∗ 0 0 0

vestigate exactly how the above mentioned three representative performance

metrics for diversified search are determined by diversity and relevance, using

the Analysis of Variance (ANOVA) [29].

6.2.2 Related Work

The widely used IR performance metric nDCG [42] measures the accumulated

usefulness (“gain”) of the ranked result list with the gain of each relevant
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document discounted at lower positions. Clarke et al. proposed its extended

version α-nDCG [21] to evaluate diversified search results. It takes into ac-

count not only the position at which a relevant document is ranked but also

the subtopics contained in that document, and uses a parameter α ∈ [0, 1) to

control the severity of redundancy penalisation. Specifically, α-nDCG for the

top-k search results is the discounted cumulative gain α-DCG[k] normalised

by its “ideal” value, and DCG[k] can be calculated as:

α-DCG[k] =

k∑
i=1

∑N
s=1 gi,s(1− α)

∑i−1
j=1 gj,s

log2(i+ 1)
, (6.7)

where N is the total number of distinct subtopics, and gi,s is the human

judgement for whether subtopic s is present or not in document i.

Agrawal et al. [3] proposed an approach to generalising traditional IR

performance metrics for the search results of a query with multiple subtopics

(user intents). The idea is to calculate the given performance metric for each

subtopic separately, and then aggregate those scores based on the probability

distribution of subtopics for the query. Extending the traditional IR perfor-

mance metrics MAP [53] and ERR [18] in this way, we get their diversified

versions:

MAP-IA =
N∑
s=1

P (s) ·MAPs and ERR-IA =
N∑
s=1

P (s) · ERRs , (6.8)

where N is the total number of distinct subtopics, P (s) is the probability or

weight of subtopic s, while MAPs and ERRs are the MAP and ERR scores

for subtopic s respectively.

The previous studies most similar to our work are those from Clarke

et al. [20] and Chandar et al. [16] which attempt to compare evaluation meth-

ods in the context of the diversified search. The former assumes simple cas-

cade models of user behaviour, while the latter measures diversity just by the

subtopic recall — s-Recall [93] — which may not reveal the full picture of

diversity.

6.2.3 Meta-Evaluation

Factors for Meta-Evaluation of Evaluation Methods for Diversified

Search

To examine the diversity of search results for a query, it is important to con-

sider not only the number of distinct subtopics but also the relative abundance
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of the subtopics present in the search result set. We use the concepts of rich-

ness and evenness as described in Section 2.2

Formally, we define the two measures, richness and evenness, in the context

of the diversified search, as follows. The richness of the search result set

for a query (topic) could be just defined as the number of distinct subtopics

appeared in the set. In order to make the value of richness comparable across

queries, we choose to use not the absolute number of distinct subtopics but

the relative proportion of distinct subtopics:

richness = R/N , (6.9)

where R is the number of distinct subtopics covered by the given search result

set for a query, while N is the total number of distinct subtopics relevant

to that query. This proportionate version of richness is actually equivalent

to the s-Recall proposed by Zhai et al. [93]. The value of (proportionate)

richness is obviously between 0 and 1. The evenness of the search result set

for a query (topic) refers to how close in numbers each subtopic in the set is,

i.e. it quantifies how evenly the search results are spread over the subtopics.

To implement the evenness we use Eq. (2.3). For diversity index in evenness

here, we use the well-known Inverse Simpson’s diversity index as defined in

Eq. (2.4).

For the purpose of assessing the relevance of search results, we can simply

use the Precision@k measure [53], as in [16].

Data for Meta-Evaluation of Evaluation Methods for Diversified

Search

The dataset used for our experiments comes from TREC-2009 Web track di-

versity task [19] which have also been used in previous studies [20, 16]. This

dataset includes 50 topics, each of which consists of a set of subtopics repre-

senting different user needs.

Experiments for Meta-Evaluation of Evaluation Methods for Diver-

sified Search

The evaluation methods for diversified search, including α-nDCG, MAP-IA,

and ERR-IA, must be able to capture not only the relevance of search results

but also the diversity of search results in terms of both richness and evenness.
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The statistical technique, Analysis of Variance (ANOVA) [29], provides the

perfect tool to gain insight into how each of these three factors (richness,

evenness, and relevance) contributes to the overall performance measured by

an evaluation method.

In our experiments, the dependent variable for the ANOVA would be the

performance score given by α-nDCG1, MAP-IA, or ERR-IA. Regarding the

independent variables (richness, evenness, and relevance), since the real IR

system outputs submitted to the TREC-2009 Web track could not account

for all the possible scenarios that we would like to investigate, we generated a

number of synthetic search result sets via a simulation process similar to the

“Rel+Div” setting in [16]. Given a query (topic) in our dataset, we randomly

sampled 10 documents form the full qrels file [19] to create such artificial docu-

ment rankings that satisfy one of the 33 = 27 different experimental conditions

for top-10 search results: low/medium/high richness, low/medium/high even-

ness, and low/medium/high relevance, where the category labels low, medium,

and high correspond to the value ranges 0.0–0.3, 0.3–0.6, and 0.6–1.0 respec-

tively. The simulation process would continue until for each of the 50 queries

(topics) we had generated 10 search result sets (rankings) per experimental

condition. Therefore, the ANOVA for each evaluation method would have

50× 10× 27 = 13500 data points to analyse.

Results of Meta-Evaluation of Evaluation Methods for Diversified

Search

The statistical significance results of the ANOVA are shown in Table 6.2. It

can be seen that all those performance metrics, α-nDCG, MAP-IA, and ERR-

IA, would be influenced heavily by the individual factors — richness, evenness,

and relevance — with almost zero p-values, but not so much by their interac-

tions. This confirms that the chosen three factors are relatively independent

(untangled) aspects of a system’s performance for diversified search.

Furthermore, Table 6.3 shows the variance decomposition results of the

ANOVA, where SSE stands for the sum of squared errors. It seems that

MAP-IA reflects more richness than the other two performance metrics, as

the change of richness accounts for 13% of the total variability in MAP-IA

1The parameter α for α-nDCG was set to 0.5, the default value used in the TREC-2009

Web track diversity task.
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Table 6.2: The statistical significance results of the ANOVA.

Component
α-nDCG MAP-IA ERR-IA

F p-value F p-value F p-value

richness 362.4 0.00 590.9 0.00 253.7 0.00

evenness 480.0 0.00 521.7 0.00 282.7 0.00

relevance 465.7 0.00 285.0 0.00 397.0 0.00

richness * evenness 10.8 0.00 2.9 0.03 0.9 0.46

richness * relevance 3.5 0.01 5.3 0.00 5.8 0.00

evenness * relevance 4.3 0.00 0.3 0.91 3.2 0.01

richness * evenness * relevance 0.8 0.53 1.4 0.24 2.4 0.05

Table 6.3: The variance decomposition results of the ANOVA.

Component
α-nDCG MAP-IA ERR-IA

SSE (%) SSE (%) SSE (%)

richness 13.1 (8%) 8.2 (13%) 2.0 (6%)

evenness 17.4 (11%) 7.2 (11%) 2.3 (7%)

relevance 16.9 (10%) 3.9 (6%) 3.2 (9%)

richness * evenness 0.6 (0%) 0.1 (0%) 0.0 (0%)

richness * relevance 0.3 (0%) 0.1 (0%) 0.1 (0%)

evenness * relevance 0.3 (0%) 0.0 (0%) 0.1 (0%)

richness * evenness * relevance 0.1 (0%) 0.0 (0%) 0.0 (0%)

residual 117.0 (71%) 44.6 (70%) 25.9 (77%)

which is substantially higher than 8% in α-nDCG and 6% in ERR-IA. On the

other hand, evenness is probably reflected better by α-nDCG or MAP-IA than

ERR-IA, as the change of evenness accounts for 11% of the total variability

in α-nDCG and MAP-IA but only 7% in ERR-IA. In terms of relevance, α-

nDCG looks the most accurate indicator, because 10% of its total variability is

attributed to the change of relevance, which is followed by 9% in ERR-IA and

6% in MAP-IA. The “residual” component which comprises everything about

the performance metric unexplained by the proposed independent variables

(factors) occupies a high proportion of the total variability, which suggests

that the difficulty of the query (topic) and also the specific ranking algorithm

still play the major roles in determining performance scores.
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6.3 CONCLUSION

In this chapter, we used a novel diversity based approach to the problem

of estimating the number of clusters in a dataset. To our knowledge, the

underlying connection between diversity and clustering has not been revealed

before in research literature.

Specifically, we show that the difference between the global diversity of

clusters and the sum of each cluster’s local diversity of their members can be

used as an effective indicator of the optimality of the number of clusters, where

the diversity is measured by Rao’s quadratic entropy. A notable advantage of

our proposed method is that it encourages balanced clustering by taking into

account both the sizes of clusters and the distances between clusters. In other

words, it is less prone to very small “outlier” clusters than existing methods.

Our extensive experiments on both synthetic and real-world datasets (with

known ground-truth clustering) have demonstrated that our proposed method

is robust to clusters of different sizes and shapes, and it is more accurate than

existing methods (including elbow, Caliński-Harabasz, silhouette, and gap-

statistic) in terms of finding out the true number of clusters.

Afterwards, we used richness, evenness and precision of search results to

meta-evaluate the evaluation of diversified search results. Our experiments

using ANOVA have indicated that richness, evenness, and relevance could be

well differentiated by three representative evaluation methods for diversified

search — α-nDCG, MAP-IA and ERR-IA — We further observed that each of

these evaluation methods has a different level of contribution for the proportion

of total variability, in the components of richness, evenness, and relevance.



CHAPTER 7

CONCLUSIONS

In this chapter, we summarise and present research contributions in the thesis.

In Section 7.1, contributions of this thesis are presented. The thesis concludes

in Section 7.2, with a discussion of the prospects for future research and de-

velopment of diversity in the Web.

7.1 CONTRIBUTIONS

We found the current issues in the Web which required to have a mechanism to

measure and compare diversity over the Web. In Chapter 1 we mentioned that

there arises an ambiguity when the information required by users is limited

to a few key-words which does not reflect the actual needs of these users.

This ambiguity in the need for actual information can be solved with the

help of presenting the diversified results set. The analysis of diversity has

been extensively studied and its concepts are very well established in the

field of ecology, where the types of interest are species in a certain region.

We introduced these methods namely, Inverse Simpson’s index, Shannon’s

diversity index and Rao’s quadratic diversity, to analyse the diversity in the

Web.

In Chapter 2, we discussed the research literature about introducing di-

versity in the Web. We discussed the extrinsic and intrinsic approaches to

deal with the diversity when the queries posted by users are either ambiguous

or underspecified. Afterwards, we mentioned well-known methods to reduce

redundancy and introduce novelty in the result set for any query. We further

went into review and compare the methods, e.g. MMR, ERR and α–nDCG

93
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are a few among others, which focused on introducing diversity in results with

respect to the multiplicity of topics for a query.

In Chapter 3, we introduced a novel method to analyse the diversity of

Web search results in two well-known Web search engines namely, Google

and Bing. After reviewing the current research literature, to the best of our

knowledge this method to analyse the diversity in the Web is not explored

before. Firstly, we theoretically observed that the diversity in Web search

results is determined by the Zipfian distribution of websites. Secondly, we

compared Google and Bing in terms of differences in richness, evenness and

diversity, with two methods Inverse Simpson’s index and Shannon’s diversity

index, of organic and advert websites. Along with that we also compared

the topic diversity in both aforementioned Web search engines. We showed

that the differences in diversity in both Web search engines are statistically

significant by using the non-parametric statistical significance test.

In Chapter 4 we showed how to predict the lifetime of popularity of a

query, i.e. how long a query remains in Google top charts. For that we in-

vestigated the diversity of queries coverage in Google and Bing. The results

of the diversity of queries coverage, i.e. diversity and evenness, are used as

covariates in Cox proportional hazard regression model for predicting the life-

time of popularity of a query. We observed the highest value of concordance

index, which represents how well our model predicts the lifetime of a query,

when we used diversity related factors, i.e. diversity and evenness, along with

other factors mentioned in Table 4.5.

It is a requirement of Inverse Simpson’s index and Shannon’s diversity

index that all the items should be in separate categories, i.e. the categories

should not be overlapping. In Chapter 5 we showed how to implement the

diversity measures when the categories are overlapping. We introduced two

separate methods to deal with overlapping categories. Afterwards, we dealt

with diversity with respect to time. We showed how we can get some mean-

ingful information, e.g, trend and seasonality, by using time series decomposed

components, which is not instantly obvious from the diversity values of his-

torical data.

Last but not the least in Chapter 6 we further show that how to utilise

and implement the diversity measures in two applications over the Web. we
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show that how we can estimate the number of balanced clusters using a novel

diversity based approach. We used Rao’s quadratic entropy, which uses size

and distance between clusters, to estimate the number of clusters in a dataset.

Afterwards, we meta-evaluate the evaluation of diversified search results. We

show how the well known evaluation methods, e.g. α–nDCG, MAP-IA and

ERR-IA, can differentiate between different levels of richness, evenness and

relevance of diversified Web search results.

7.2 FUTURE WORK

Although we have investigated only into the analysis of diversity in the Web.

It would be interesting to see the relationship of diversity with overall users’

satisfaction. For example, we can investigate into the relationship of relevance

with diversity and analyse to see what level or value of diversity is better

suited for a Web search engine, so that it satisfies all the users with different

backgrounds and with different needs.

To investigate if a few well-established websites dominate the Web search

engines, we analysed the Web search engines for the diversity of sources. Other

than source diversity in Web search results, there is another interesting aspect

of diversity, i.e. the type of source diversity. For example, we can classify

the documents in Web search results into type of source, e.g. News, Blog,

Social network, Videos, Images and Recreational, and apply the same diversity

models, e.g. Inverse Simpson’s index and Shannon’s diversity index, to better

understand the diversity in another dimension, i.e diversity of the type of

source in Web search results.

We have shown how to analyse the diversity in different datasets, and in

different scenarios, over the Web. In particular, we analysed the diversity in

Web search engine results and its queries, dataset for movies and the role of

diversity in clustering textual datasets. In our experiments we compared and

analysed two English language Web search engines, Google and Bing. It would

also be interesting and more informative to include other language Web search

engines or cover multiple languages and see how it effects the diversity. An

interesting aspect of diversity can be shown by looking into what is the role

of diversity in the various other types of datasets and user-oriented applica-

tions over the Web, such as recommender systems and social media networks.
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For example, it would greatly improve the user satisfaction, and ultimately

the whole business model, if we could know the relationship between diver-

sity in recommended products and user buying pattern over an e-commerce

website, such as amazom.com. On the other hand, there is a long debated

issue of bias in the conventional media sources, such as newspapers and televi-

sion. This issue can be better addressed through investigating and comparing

the topic diversity for news items in conventional news media sources, e.g.

NewYorkTimes, TheGuardian or DailyMail, with the news items in social me-

dia networks, such as Twitter or reddit, and analyse for any bias among these

news sources.
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[42] K. Järvelin and J. Kekäläinen. Cumulated Gain-Based Evaluation of

IR Techniques. ACM Transactions on Information Systems, TOIS,

20(4):422–446, 2002.

[43] L. Jost. Entropy and Diversity. Oikos, 113(2):363–375, 2006.

[44] D. J. Ketchen Jr and C. L. Shook. The Application of Cluster Analysis

in Strategic Management Research: An Analysis and Critique. Strategic

Management Journal, 17(6):441–458, 1996.

[45] S. K. Kingrani, M. Levene, and D. Zhang. Diversity Analysis of Web

Search Results. In Proceedings of the ACM Web Science Conference,

WebSci, pages 43:1–43:2, Oxford, UK, 2015.

[46] D. E. Knuth. The Art of Computer Programming. Addison-Wesley, 3rd

edition, 1997.

[47] A. N. Langville and C. D. Meyer. Google’s PageRank and Beyond: The

Science of Search Engine Rankings. Princeton University Press, 2011.

[48] J. G. Lee, S. Moon, and K. Salamatian. Modeling and Predicting the

Popularity of Online Contents With Cox Proportional Hazard Regression

Model. Neurocomputing, 76(1):134–145, 2012.

[49] M. Levene. An Introduction to Search Engines and Web Navigation.

Wiley-Blackwell, 2nd edition, 2010.

[50] M. Lichman. UCI Machine Learning Repository. http://archive.ics.

uci.edu/ml, 2013.

[51] D. J. C. MacKay. Information Theory, Inference, and Learning Algo-

rithms. Cambridge University Press, 2003.

[52] A. E. Magurran. Ecological Diversity and Its Measurement. Princeton

University Press, 1988.

[53] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information

Retrieval. Cambridge University Press, 2008.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


BIBLIOGRAPHY 102

[54] G. W. Milligan and M. C. Cooper. An Examination of Procedures for

Determining the Number of Clusters in a Data Set. Psychometrika,

50(2):159–179, 1985.

[55] E. Mills. Aol sued over web search data release. CNET news. https:

//www.cnet.com/news/aol-sued-over-web-search-data-release,

2006. Accessed: 01-June-2018.

[56] B. Mirkin. Clustering: A Data Recovery Approach. CRC Press, 2012.

[57] N. J. D. Nagelkerke. A Note on a General Definition of the Coefficient of

Determination. Biometrika, 78(3):691–692, 1991.

[58] M. E. J. Newman. Power Laws, Pareto Distributions and Zipf’s Law.

Contemporary Physics, 46(5):323–351, 2005.

[59] A. Y. Ng, M. I. Jordan, and Y. Weiss. On Spectral Clustering: Anal-

ysis and an Algorithm. In Advances in Neural Information Processing

Systems, NIPS, pages 849–856, Vancouver, Canada, 2002.

[60] S. E. Page. Diversity and Complexity. Princeton University Press, 2010.

[61] E. Pariser. The Filter Bubble: What the Internet is Hiding From You.

Penguin UK, 2011.

[62] E. C. Pielou. An Introduction to Mathematical Ecology. Wiley-

Interscience, 1969.

[63] J. Pitkow et al. Personalized search: A content computer approach may

prove a breakthrough in personalized search efficiency. Communications

of the ACM, 45(9):50–55, 2002.

[64] D. M. W. Powers. Applications and Explanations of Zipf’s Law. In Pro-

ceedings of the Joint Conferences on New Methods in Language Processing

and Computational Natural Language Learning, NeMLaP/CoNLL, pages

151–160, Sydney, Australia, 1998.

[65] K. Purcell, J. Brenner, and L. Rainie. Search Engine Use 2012. http:

//pewinternet.org/Reports/2012/Search-Engine-Use-2012.aspx,

2012.

 https://www.cnet.com/news/aol-sued-over-web-search-data-release 
 https://www.cnet.com/news/aol-sued-over-web-search-data-release 
 http://pewinternet.org/Reports/2012/Search-Engine-Use-2012.aspx 
 http://pewinternet.org/Reports/2012/Search-Engine-Use-2012.aspx 


BIBLIOGRAPHY 103

[66] F. Radlinski, P. N. Bennett, B. Carterette, and T. Joachims. Redundancy,

Diversity and Interdependent Document Relevance. In SIGIR Forum,

volume 43, pages 46–52, 2009.

[67] F. Radlinski and S. Dumais. Improving Personalized Web Search Using

Result Diversification. In Proceedings of the 29th Annual International

ACM SIGIR Conference on Research and Development in Information

Retrieval, SIGIR, pages 691–692, Seattle, Washington, USA, 2006.

[68] F. Radlinski, R. Kleinberg, and T. Joachims. Learning Diverse Rankings

With Multi-Armed Bandits. In Proceedings of the 25th International Con-

ference on Machine Learning, ICML, pages 784–791, Helsinki, Finland,

2008.

[69] C. R. Rao. Diversity and Dissimilarity Coefficients: A Unified Approach.

Theoretical Population Biology, 21(1):24 – 43, 1982.

[70] J. J. Rocchio. Relevance Feedback in Information Retrieval. The SMART

Retrieval System: Experiments in Automatic Document Processing, pages

313–323, 1971.

[71] M. L. Rosenzweig. Species Diversity in Space and Time. Cambridge

University Press, 1995.

[72] P. J. Rousseeuw and L. Kaufman. Finding Groups in Data. Wiley Online

Library, 1990.

[73] S. Salvador and P. Chan. Determining the Number of Clusters/Segments

in Hierarchical Clustering/Segmentation Algorithms. In 16th IEEE Inter-

national Conference on Tools With Artificial Intelligence, ICTAI, pages

576–584, Boca Raton, Florida, USA, 2004.

[74] R. L. T. Santos, C. Macdonald, and I. Ounis. Search Result Diversifica-

tion. Foundations and Trends in Information Retrieval, 9(1):1–90, 2015.

[75] R. L. Santos, C. Macdonald, and I. Ounis. Exploiting Query Reformu-

lations for Web Search Result Diversification. In Proceedings of the 19th

International Conference on World Wide Web, WWW, pages 881–890,

2010.



BIBLIOGRAPHY 104

[76] C. Sha, K. Wang, D. Zhang, X. Wang, and A. Zhou. Optimizing Top-K

Retrieval: Submodularity Analysis and Search Strategies. In Proceeedings

of the 15th International Conference on Web-Age Information Manage-

ment, WAIM, pages 18–29, Macau, China, 2014.

[77] C. E. Shannon. A Mathematical Theory of Communication. Bell System

Technical Journal, 27(3):379–423 & 623–656, 1948.

[78] E. H. Simpson. Measurement of Diversity. Nature, 163(4148), 1949.

[79] D. Skoutas, E. Minack, and W. Nejdl. Increasing Diversity in Web Search

Results. In Proceedings of Web Science 2010, WebSci, Raleigh, NC, USA,

2010.

[80] A. R. Solow. A Simple Test for Change in Community Structure. Journal

of Animal Ecology, 62(1):191–193, 1993.

[81] R. Song, Z. Luo, J.-R. Wen, Y. Yu, and H.-W. Hon. Identifying Am-

biguous Queries in Web Search. In Proceedings of the 16th International

Conference on World Wide Web, WWW, pages 1169–1170, Banff, Al-

berta, Canada, 2007.

[82] A. Stirling. A General Framework for Analysing Diversity in Sci-

ence, Technology and Society. Journal of the Royal Society Interface,

4(15):707–719, 2007.

[83] R. L. Thorndike. Who Belongs in the Family? Psychometrika, 18(4):267–

276, 1953.

[84] R. Tibshirani, G. Walther, and T. Hastie. Estimating the Number of

Clusters in a Data Set via the Gap Statistic. Journal of the Royal Statis-

tical Society: Series B (Statistical Methodology), 63(2):411–423, 2001.

[85] G. Van Rossum and F. L. Drake Jr. Python Tutorial. Centrum voor

Wiskunde en Informatica Amsterdam, The Netherlands, 1995.

[86] S. Vigna. Fibonacci Binning. Computing Research Repository, CoRR,

abs/1312.3749, 2013.

[87] Y. Virkar and A. Clauset. Power-Law Distributions in Binned Empirical

Data. The Annals of Applied Statistics, 8(1):89–119, 2014.



BIBLIOGRAPHY 105

[88] E. M. Voorhees. The TREC-8 Question Answering Track Report. In

Trec, volume 99, pages 77–82, 1999.

[89] E. M. Voorhees and H. T. Dang. Overview of the TREC 2005 Ques-

tion Answering Track. In Proceedings of the Fourteenth Text REtrieval

Conference, TREC, pages 15–18, Gaithersburg, Maryland, USA, 2005.

[90] J. Wang and J. Zhu. Portfolio Theory of Information Retrieval. In Pro-

ceedings of the 32nd Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, SIGIR, pages 115–

122, Boston, MA, USA, 2009.

[91] M. Wedel and W. A. Kamakura. Market Segmentation: Conceptual and

Methodological Foundations. Springer, 2012.

[92] L. Xu and M. I. Jordan. On Convergence Properties of the EM Algorithm

for Gaussian Mixtures. Neural Computation, 8(1):129–151, 1996.

[93] C. Zhai, W. W. Cohen, and J. D. Lafferty. Beyond Independent Rele-

vance: Methods and Evaluation Metrics for Subtopic Retrieval. In Pro-

ceedings of the 26th Annual International ACM SIGIR Conference on Re-

search and Development in Information Retrieval, SIGIR, pages 10–17,

Toronto, Canada, 2003.

[94] W. Zhou and W. Duan. Online User Reviews, Product Variety, and the

Long Tail: An Empirical Investigation on Online Software Downloads.

Electronic Commerce Research and Applications, 11(3):275–289, 2012.

[95] G. Zuccon and L. Azzopardi. Using the Quantum Probability Rank-

ing Principle to Rank Interdependent Documents. In Proceedings of the

32nd European Conference on IR Research, ECIR, pages 357–369, Milton

Keynes, UK, 2010.

[96] G. Zuccon, L. Azzopardi, D. Zhang, and J. Wang. Top-K Retrieval Using

Facility Location Analysis. In Proceedings of the 34th European Confer-

ence on IR Research, ECIR, pages 305–316, Barcelona, Spain, 2012.



APPENDIX A

LIST OF PUBLICATIONS

The papers resulting from the author’s PhD research are as follows.

• Suneel Kumar Kingrani, Mark Levene, and Dell Zhang. Diversity Anal-

ysis of Web Search Results. In Proceedings of the ACM Web Science

Conference (WebSci), pp. 43:1–43:2, Oxford, UK, 28 Jun – 1 Jul 2015.

• Suneel Kumar Kingrani, Mark Levene, and Dell Zhang. A Meta-Evaluation

of Evaluation Methods for Diversified Search. In Proceedings of the 40th

European Conference on Information Retrieval (ECIR), pp. 550–555,

Grenoble, France, Mar 2018.

• Suneel Kumar Kingrani, Mark Levene, and Dell Zhang. Estimating the

Number of Clusters Using Diversity. Artificial Intelligence Research,

7(1), pp. 15–22, 2018.

• Suneel Kumar Kingrani, Mark Levene, Dell Zhang. Analysing the Di-

versity of Web Search Results. Submitted to World Wide Web (WWW),

Springer.

106



APPENDIX B

KEY TERMS USED IN

THESIS

- Adverts Websites

The paid advertisement websites which appear alongside the main results of

any search query in a Web search engine.

- ANOVA

Analysis of variance is a statistical method in which we test groups and see if

there are differences between them.

- C-index

It is the probability of concordance between predicted and observed responses.

- Clustering

It is an statistical technique in which similar objects are grouped (clustered)

together.

- Cox Proportional Hazard Regression Model

It is an statistical model which is being used to explore the relationship be-

tween the “survival” (in presence of censored data) of a subject and the ex-

planatory variables. Where the response variable is the hazard function at a

given time t.

- Evenness

Distribution of species or how evenly the individuals are distributed among

the species in a jungle.

- Fibonacci Binning

It is a simple logarithmic binning technique in which bins are sized like the

Fibonacci numbers.
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- Inverse Simpson’s Diversity

It is the inverse of the probability that two individuals chosen at random

belong to same species.

- Organic Websites

The websites which appear as the main result of any search query over a Web

search engine.

- Power Law

It is the relationship between two quantities in which one quantity, x varies

as the power of the other quantity, y.

- Power Law with Exponential Cut-off

In this Power Law holds for small values of x, but then turns smoothly into a

declining exponential function for large values of x. The exponential, large-x

tail drops faster than the Power Law.

- Queries and Related Queries

The queries are posted by user to find to find the required information over

the Web. Related queries are provided by Web search engines, usually at the

bottom of the Web search results.

- Rao’s Quadratic Diversity

It is the expected distance between two randomly chosen individuals from all

the species in a jungle.

- Richness

Number of distinct species, N , in a jungle.

- Shannon’s Diversity

It is the uncertainty in predicting the species type of an individual who is

chosen at random.

- Zipf’s Law

It is one of a family of related Power Law. In which one quantity, y varies as

the power of its rank.
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