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Abstract 
 
The main idea behind this project is that the pattern classification process can be 

enhanced by taking into account the geometry of class structure in datasets of interest. 

In contrast to previous work in the literature, this research not only develops a 

measure of discernibility of individual patterns but also consistently applies it to 

various stages of the classification process.  

 The applications of the discernibility concept cover a wide range of issues 

from pre-processing to the actual classification and beyond that. Specifically, we 

apply it for: (a) finding feature subsets of similar classification quality (applicable in 

diverse ensembles), (b) feature selection, (c) data reduction, (d) reject option, and (e) 

enhancing the k-NN classifier. Also, a number of auxiliary algorithms and measures 

are developed to facilitate the proposed methodology. Experiments have been carried 

out using datasets of the University of California at Irvine (UCI) repository. The 

experiments provide numerical evidence that the proposed approach does improve the 

performance of various classifiers. This, together with its simplicity renders it a novel, 

useful and versatile tool for the classification process. 
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Chapter 1 – Introduction 
 

“Science is the systematic classification of experience” 
– George H. Lewes (1817-1878) 

 

 Concept classification is one of the fundamental attributes of intelligence and 

finds application in many different aspects of our lives. Its introduction to Computer 

Science influenced fields like Pattern Recognition and Machine Learning. Yet, as our 

dealing with data becomes more and more complicated, our demands for an efficient 

and sustainable use of classification leads us to the development of (quite often) 

sophisticated methods for analysing and employing it for various types of predictions, 

may it be static or dynamic. Whatever the case, as predictions tend to come along 

with errors, it has been our task to develop classification systems that minimise these 

errors and provide more and more reliable predictions. This project constitutes one of 

the many attempts to make this task more understandable and improve its 

applications. 

 In general, classification as Pattern Recognition is “the act of taking raw data and 

taking an action based on the ‘category’ of the pattern” (Duda et al, 2001). The 

applications of classification include automated procedures for sorting letters based on 

post-codes, assigning individuals to credit status, as well as providing a preliminarily 

disease diagnosis while waiting for definitive test results (Mitcie et al., 1994). Due to 

the broad spectrum of applications, classification has attracted the interest of many 

researchers and many techniques for it have been developed. 

 Yet, simple as the problem may sound, its treatment often involves sophisticated 

methods in order to accomplish an accurate and reliable classification. This is one of 

the main reasons that spawned the development of a number of information systems 

focused on this particular activity using various approaches. Nevertheless, the 

underlying process remains largely the same in all approaches: typically a pre-

processing stage takes place, which prepares the data in a way that they are more 

suitable for the classifier used (this may involve segmentation and/or feature 

selection/extraction). Then, the training of the classifier takes place, where the 

patterns of a particular part of the dataset (the training set) are used. Afterwards, in 

some cases, the cost of classification is taken into account. Finally, the actual 

classification takes place, rendering the unlabeled patterns into the predefined classes. 
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 Another point of view regarding classification is that put forward by McKenzie  

and Low (1992). According to them, classification is the application of certain rules, 

which are defined by the process of discrimination. Yet, these rules are often in a 

form that is not accessible or comprehensible to us, since they depend on the structure 

of the classifier used. 

 In all cases, classification systems need to overcome a number of difficulties. The 

most important of these is the over-fitting problem. This involves learning the training 

pattern in such a rigid way that the classifier is unable to perform well on novel 

patterns. The classifier needs to be sophisticated enough so that it can distinguish the 

difference among the different classes, but simple enough so that it can classify novel 

patterns accurately (Duda et al, 2001; Vapnik, 2000a). 

1.1 Motivation of this Project 
There has been a great deal of research on classification systems, aiming at the 

development of general methods and specialised techniques to tackle particular 

classification problems. These techniques often employ the statistical properties of the 

data involved (e.g. McKenzie & Low, 1992; Jain et al., 2000), or adaptive 

mechanisms (e.g. the classifier described by Wang et al., 2007) to exploit every little 

piece of information that may reveal a useful property of the data, leading to a reliable 

classification.  

 Yet, datasets not always follow the assumed statistical distribution; this renders 

the statistical classifiers unable to cope with the problems and reduces their reliability. 

Also, many classifiers tend to become “confused” when dealing with large datasets, as 

the excessive information that is there often compromises the classifiers’ 

performance, sometimes due to the problem of over-fitting. This can be attributed to 

the fact that they often consider all patterns being equally important, instead of taking 

into account their underlying structure which may yield more useful information for 

the classification process. 

 Motivated by this, we decided to view the problem anew, focusing on first 

understanding and evaluating what we know, and then tackling the pieces of data that 

are unknown, trying to discern which class is more appropriate for their classification. 

That is why we developed and proposed a new measure for investigating and 

evaluating the structural properties of the dataset in hand, without any a priori 
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information about it. This we coin as Discernibility, an insightful tool to facilitate and 

enhance the classification process, regardless of the dataset or the classifier used. 

1.2 Aim 
In this project we aim to investigate how the various aspects of classification, namely 

features selection, data reduction, reliability evaluation, and information fusion can be 

improved by employing a new perspective to it through the use of the Discernibility 

concept. Discernibility is a novel concept introduced in this research, aspiring to 

clarify the structural properties of a dataset, in both a pattern and dataset level.  

1.3 Objectives 
There are several objectives that we plan to fulfil in this project in order to achieve 

our aim. These are the following: 

 Introduce the new concept of Discernibility and identify relationships with other 

similar metrics 

 Demonstrate how the proposed concept functions and how it can be applied in the 

classification process, particularly for improving the kNN classifier 

 Develop feature selection and data reduction techniques based on the 

Discernibility concept 

 Develop new methods for measuring reliability for different classifiers, as well as 

their combination 

 Explore how Discernibility can be incorporated to enhance the performance of a 

diversity ensemble (a set of classifiers aiming to yield an improved performance 

by basing its structure on the diversity of errors of its members) 

1.4 Methodology 
The philosophy of this project is to investigate the newly introduced concept of 

Discernibility and explore its various applications in classification problems. The 

objectives presented in Section 1.3 will be accomplished by employing a diverse 

methodology, centred however around this philosophy.  

As regards the first objective, a descriptive methodology will be employed, first 

explaining the idea and the implementations of it, then describing the details of the 

algorithms developed, and finally comparing them with the existing measures that 

share the same general approach. 
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Regarding the second objective, the function of Discernibility in the classification 

process will be shown by examining how the kNN classifier is enhanced by 

incorporating this notion in its function. For this purpose, a number of benchmark 

datasets will be used and an experimental comparison with the original kNN 

classification algorithm will be conducted. The findings of this round of experiments 

will then be presented and discussed. 

Concerning the feature selection and data reduction applications of Discernibility, 

a literature review will be conducted and the shortcomings of the traditional methods 

will be pinpointed. Afterwards, some techniques based on Discernibility will be 

presented and it will be shown how they attempt to address these problems. A number 

of experiments on some benchmark datasets will be carried out to demonstrate their 

function and performance. 

With regards to meeting the reliability objective, firstly a literature review will be 

carried out pinpointing the limitations of the probability-based methods. Afterwards, 

the Discernibility-based approach will be presented and it will be described how it 

attempts to tackle these shortcomings. Furthermore, the findings of the relevant 

experimentation will be exhibited and discussed. 

The final objective, related to the application of Discernibility in classifier 

ensembles, will be accomplished by first reviewing the relevant literature on 

ensembles, concentrating on one particular type (as this field is vast and would 

demand an excessively larger research to do it justice). This method will then be 

explained and its limitations pinpointed. Then, it will be shown how (and why) by 

employing Discernibility this method can be improved. Afterwards, the experiments 

involved will be conducted and their results analysed, putting forward the comparison 

of the different variations of the method and the improvement due to Discernibility. 

1.5 Thesis Structure 
This PhD thesis comprises eight chapters. In Chapter 2 a review of the general 

literature of the field is conducted. This serves as an introduction to Pattern 

Recognition and a taxonomy of the various ΑΙ techniques developed for it. 

Afterwards, in Chapter 3, the core concept of this project, Discernibility, is 

presented and its relation with similar measures is discussed. This chapter describes 

how discernibility operates through the use of some examples and examines its 

relationship with other measures, namely the SOM-based Class Overlap Degree 
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Coefficient (Lemeni & Tepus, 2008) and the Silhouette Width (Kaufman & 

Rousseeuw, 1990). It presents two forms of discernibility: the spherical index and the 

harmonic index and discusses their role and potential as tool in the classification 

process.  

Chapters 4 to 7 are devoted to applying the concept of Discernibility to 

various parts of the process of classification. Specifically, in Chapter 4 the application 

of Discernibility in the classification process is shown. Particularly, it is demonstrated 

how kNN variations based on Discernibility can be developed, and their performance  

is investigated by comparing them against the classical kNN classifier. 

 Chapter 5 describes how the Discernibility concept can be applied in the pre-

processing stage of classification. Namely, it is shown how Discernibility can be 

employed for the development of feature selection and data reduction techniques. 

Moreover, the effectiveness of the proposed techniques is demonstrated through 

various experiments. 

 The possibility of a reliability measure and its application as a reject option are 

discussed in Chapter 6. After providing a literature review on the subject, an 

alternative method for measuring reliability is proposed. Then, its application on a 

number of different classifiers as well as on their combination is exhibited. 

 Afterwards, in Chapter 7 the possibility of incorporating Discernibility in 

diverse ensembles, in order to improve their accuracy rate, is explored. After thorough 

experimentation, a new automated approach to improve the current one is proposed 

and discussed. 

 Finally, in Chapter 8, the conclusions based on the findings of this research are 

presented, along with the avenues of future research that are opened by this project. 

1.6 Contribution of the Thesis 
The field of Pattern Classification is quite broad and several valuable 

contributions have been made so far to improve the effectiveness of the classification 

process. This thesis introduces and explores the Discernibility concept investigating 

the various forms it can take. It demonstrates how versatile this concept can be, and 

how its application in the various classification stages can enhance the classification 

process.  

The thesis reviews (Chapter 2) the various classification systems that are used 

today, focusing on statistical and the AI-based classifiers, and discusses the conditions 
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under which the latter are preferable to the former in terms of flexibility with respect 

to the data and assumptions made about data distribution. 

The thesis describes in detail (Chapter 3) the concept of Discernibility and shows 

the different forms it can take, emphasising on the Spherical Index of Discernibility, 

which appears to be closer to one’s intuitive understanding of the notion. This concept 

allows the development of a variety of straight-forward methods that can make the 

classification process better and faster. The thesis also introduces two measures 

namely the Degree of Certainty and Net Reliability that can be applied in a variety of 

cases and are independent of the classifiers use as well as the datasets. 

The contribution Discernibility can make to the field of Pattern Classification is 

investigated through the various Discernibility-based classifiers that are developed 

based on the kNN philosophy (Chapter 4). The effectiveness of classifiers, which are 

equipped with the Index of Discernibility, is demonstrated, while the experiments 

carried out show that these classifiers generally outperform kNN. This part of the 

thesis also contributes a few alternative approaches to improving the kNN classifier 

and also proposes another distance-based classifier similar to kNN, namely the 

Minimum Spanning Tree classifier. Moreover, the advantages and limitations of the 

proposed methods are discussed. 

The thesis also makes another contribution by showing how Descernibility can be 

used in order to tackle some open problems in the classification literature offering 

innovative approaches to feature selection and data reduction. In particular, the thesis 

(Chapter 5) shows how the Spherical Index of Discernibility can be used without 

major alterations to develop feature selection techniques. This leads to contributing 

two feature selection methods: one operates by evaluating each individual feature of a 

dataset and then selecting the best ones while the other by taking different groups of 

features (feature sub-sets of the dataset) and comparing their discernibilities with that 

of the original feature set. The results of the corresponding experiments are 

encouraging showing that these methods are quite effective in reducing the features of 

a dataset without compromising the classification performance, both in terms of 

accuracy rate and in CPU time. 

The thesis also contributes a data reduction method that employs the 

Discernibility concept (Chapter 5). It shows that by taking into account the 

discernibilities of the various patterns as well as the distances among them, we can 

remove the ones which are discernible and distant (i.e. their average distance in the 
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data space is large), thus ending up with a smaller dataset, which however maintains 

the structure of the original one. This is mirrored by the performance of a number of 

different classifiers, which (for most of them) appears to be at the same level or might 

even get better when using the reduced data set. 

The thesis then proceeds by demonstrating how the Discernibility concept can be 

applied to measure the classification reliability of a single classifier and of an 

amalgamation of classifiers (Chapter 6). Also, it shows how it can be elaborated into a 

parametric reliability measure taking into account other factors, particularly the 

change of accuracy rate and the change of Degree of Certainty. Our hypothesis that 

Discernibility can be a useful reliability metric, especially if used in combination with 

the other two factors, is verified by the quite encouraging experimental results. 

In that respect, the thesis also contributes in the field of Pattern Classification by 

offering a new measure of reliability for the classification process that does not 

depend on probabilities or assumptions about the distributions of the dataset. The 

flexibility that this characteristic offers allows the proposed reliability measure to be 

more applicable to classification problems, particularly when the dataset is relatively 

small. Also, this part of the thesis describes how with practically no changes in its 

function, Discernibility can be applied to an entirely different domain, providing 

useful information on the unknown patterns, a priori. Considering that Discernibility 

was developed mainly to tackle situations where all the patterns were known 

(labelled), it is interesting how it can be easily adapted to deal with unknown ones as 

well. This is significant as it opens the possibility of a reject option, which can 

enhance the classification process.  

Furthermore, the thesis explores how Discernibility can support the generation of 

diverse ensembles, which is a popular approach to combine classifiers, by introducing 

a novel approach for partitioning the feature set (Chapter 7). This approach involves 

an ensemble of classifiers that are specialised on different feature subsets of the 

dataset, forming a diverse feature set. The advantage of the proposed method is that, 

because of the use of Discernibility, the feature subsets are more or less of the same 

classification quality; therefore this method allows creating ensembles whose 

members possess adequate generalisation potential. The aim of this part of the thesis 

is not to give a definite solution to the problem of creating diverse ensembles – an 

area of Pattern Recognition where there is a lot of ongoing research – but to offer a 
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new perspective to this problem which might be potentially useful for developing 

alternative approaches for generating diverse ensembles.  
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Chapter 2 – Review of Classification Literature 
 

A number of classification systems have been developed, often specialising in 

particular problem domains or dataset types (Duda et al., 2001). Their performance is 

evaluated according to their ability to classify novel patterns, based on the ones they 

are trained with. The most popular measure that reflects this is accuracy (usually 

expressed as a rate), which is defined as the number of correct classifications over the 

total number of patterns classified. 

 When developing classification systems there is an underlying tendency towards 

simpler models, as the overly complex ones may compromise the accuracy of the 

classification (Duda et al., 2001) while at the same time exhibit higher computational 

cost. Therefore, the dominant approach for many years was to use (often basic) 

statistics and develop what are now known as the Statistical Methods of classification. 

Yet, relatively recently, another approach has been developed, namely, that using 

Artificial Intelligence (AI) methods. These two types of approaches are the two main 

categories of pattern recognition (McKenzie & Low, 1992). 

 Statistical Methods include Linear and Quadratic Discriminant Functions (LDFs 

and QDFs respectively), Bayesian classifiers, Parzen Classifier, Logistic Classifier, 

etc. (McKenzie & Low, 1992; Jain et al., 2000). The characteristic which appears in 

the majority of them is their use of probabilities for the estimation of the most suitable 

class of the unknown patterns using the assumed probability density functions based 

on the known patterns. 

 The main difference between statistical and AI methods is that the former make 

assumptions of the data (such as the distribution they form), while the latter make less 

strict assumptions (Montgomery et al., 1997; Shanin et al., 2001) However, since 

there have been developed a lot of classifiers which take elements of both approaches, 

the boundaries between Statistical and AI classification methods are not clear-cut. 

 Another important issue is that of noise, which influences the data values by 

making the structure of the classes appear to be more irregular. Though its presence is 

often a hindrance to statistical classifiers, AI based classifiers often deal with it 

effectively and sometimes it even helps them make better generalisation (e.g. in the 

case of Neural Networks), as argued by Duda et al. (2001). 

 Lastly, a significant issue for classification systems is that of computational 

complexity. Even though in some cases it may be possible to attain an error-free 
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classification by using a vast amount of resources (particularly time and storage), this 

is often not practical (Duda et. al, 2001). Many AI methods are developed so that they 

are “lighter” and therefore perform the classification process in a fast and efficient 

way, something which is not usually shared by the statistical methods. They are like 

that because they often rely on heuristic measures or methods for the classification 

process. 

2.1 Artificial Intelligence Methods for Classification  
The Artificial Intelligence methods used in classification vary in their function and 

their structure. The most popular ones are: 

 Support Vector Machines (SVMs) 

 Decision Trees  

 Artificial Neural Networks (ANNs), such as 

o Multi-Layer Neural Networks or Multi-Layer Perceptrons (MLPs) 

o Radial Basis Function networks (RBFs) 

o Self-Organising Maps (SOMs) 

o Probabilistic Neural Networks (PNNs) 

 K Nearest Neighbour (kNN) and its variations 

 Other distance-based classifiers 

 Fuzzy Logic classifiers 

 Stochastic methods (according to Duda et. al (2001) this type of classifiers 

belongs to the AI category, even though they have many Statistical elements in 

their function) 

 Hybrid classification systems 

 

Apart from these classifiers, there are also approaches which aim at combining 

different classifiers, either of the same kind, or, quite often, of different philosophy 

such as mixture of expert models, pooled classifiers, or classifier ensembles (Ruta & 

Gabrys, 2005; Shipp & Kuncheva, 2002). These methods employ an information 

fusion technique (e.g. majority vote (Lam & Suen, 1997)) to combine the outputs of 

the different classifiers they comprise of (ensemble members). In some cases, the 

combination of the members of the ensemble takes place in a lower level, particularly 

that of the training phase (Fard, 2006). The classifier ensembles can have statistical 

methods (such as Linear and Quadratic Discriminant Functions, Bayesian classifiers, 
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Parzen Classifier, Logistic Classifier, etc.) as their members, yet they usually include 

one or more AI methods. In the remainder of the section a review of the AI techniques 

will be given. 

2.1.1 Support Vector Machines 
Most of the AI methods have their own advantages and exhibit an edge in particular 

problems or dataset types. SVMs for example perform quite well in two-class 

problems. 

 SVMs perform classification by finding a hyperplane that separates the two 

classes of the dataset in the best possible way (i.e. having a relatively high margin). 

They form decision rules based on that hyperplane and perform classification 

accordingly. In order to accomplish this, they make use of a usually much higher 

dimensionality than that of the original feature space. This is because with the right 

nonlinear mapping to a high enough dimension, patterns from two different classes 

can always be separated by a hyperplane. Yet, the boundaries they form in this space 

can be non-linear as well, depending on the kernel parameter of the SVM (Vapnik, 

2000b). By finding a separating hyperplane with the highest possible margin (i.e. 

distance from actual patterns of the dataset), SVMs provide the generalisation they 

require for the classification task (the higher the margin, the better the generalisation). 

 Although SVMs were primarily able to tackle two-class classification problems, 

with the appropriate adjustments they are able to deal with multi-class datasets 

(Cristianini & Shawe-Taylor, 2000). Although SVMs are quite good at tackling 

various types of problems, often the large number of parameters involved makes them 

difficult to fine-tune and often their performance is compromised if the user is not 

knowledgeable of the optimum choice of parameters, even though they are only two 

of them. 

 Support Vector Machines and other classification methods that share the same 

philosophy are thoroughly described in Vapnik (2000b). 

2.1.2 Decision Trees 
Decision Trees form a number of queries based on one or more of the attributes of the 

dataset. Based on these queries, which depend on the data type and on the percentage 

of patterns that are considered enough to form a rule (usually if 90% of the patterns at 

a given node comply with the rule, it is accepted). The rule of thumb for creating 
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decision trees is simplicity, since cumbersome trees may be too complicated resulting 

to the problem of over-fitting. 

 Decision Trees comprise of a number of nodes, where certain “checks” take place, 

guiding the classifier’s decision about what pattern belongs where. The top-most part 

of the tree is called the root node and the lowest part is made up of the so-called leaf-

nodes. The various nodes of the tree are connected with one or more of the other 

nodes via certain lines called links. 

 Decision Trees classify a given pattern starting at the root node, where the value 

of a particular property of the pattern is checked. The various links stemming from the 

root node correspond to the various possible outcomes of this check. Based on the 

outcome the appropriate link is followed to a descendent node. Usually only one link 

will is followed, although there are other types of Decision Trees where this is not the 

case. Following, the decision is made at the sub-tree appropriate subsequent node, 

which can be seen as sub-tree’s root. This process is repeated until a leaf node is 

reached, where there is no further check and where the class label is assigned to the 

pattern. 

 Decision Trees exhibit fast performance and can tackle a variety of problems, 

including dataset with nominal data. Also, they can easily incorporate expert 

knowledge in their structure and their decisions are easy to interpret (Duda et al, 

2001). Lastly, their performance is not compromised by the existence of missing 

values or errors in data (since not all attributes are used at the same time), and are 

particularly useful when dealing with noisy data or when disjunctive expressions are 

involved (since these do not affect the rules that the Decision Trees form) (Mitchell, 

1997; Winston, 1992). 

 Since they first appeared (Winston, 1969) they have evolved significantly and 

adopted more elaborate approaches for their construction. CART (Classification and 

Regression Trees) was one of the most well-known Decision Trees, which due to its 

high computational cost, its limited use of features (only single ones and linear 

combinations of them were considered at each node) as well as its inability to create 

an optimal sub-tree (Safavian & Landgrebe, 1991) rendered it less popular. ID3 is 

another well-known approach which is designed to deal with nominal data only (Duda 

et al., 2001). Its refined version which succeeds it, the quite popular C4.5,manages to 

deal with real-valued variables as well, and makes use of statistical significance for 
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obtaining the optimum tree structure. As C4.5 is used in many of the experiments in 

this research, its function is described more thoroughly (see Algorithm 2.1). 

 

Algorithm 2.1 – Pseudo-code of C4.5 classifier 
Inputs: Input patterns of training set (P), labels of training set (T), number of neighbours (k), patters of 
testing set (PT) 
Outputs: classification vector of testing set (y) 
 

1 Initialisation: Set i = 0, j = 0, th = 0.10 (proportion of alien entities in a node) 

2 N ← number of data elements in P 

3 na ← number of attributes in P 

4 do i ← (i + 1)  

5 find normalized information gain (Gi) from splitting on attribute i, so that no more than th*N of 
patterns from different classes exist in each split 

6 until i = na 

7 i_best ← i value for which Gi is maximised 

8 create a decision node than splits on i_best 

9 repeat steps 4-8 for all cases obtained by splitting on i_best and add the additional nodes created 
as sub-nodes of node 

10 do j ← j + 1 

11 classify pattern j based on decision tree created previously 

12 until j = n 

2.1.3 Artificial Neural Networks 
An Artificial Neural Network (ANN) consists of a number of nodes, called neurons, 

usually organised in layers, which can handle incoming signals (input values of the 

dataset or outputs from other neurons) by means of a transfer function. The latter can 

be any monotonous function yielding values between -1 and 1, although in most cases 

it is the sigmoid function (Cybenko, 1989). Auxiliary inputs called biases are also 

used throughout the network. The strength of each signal and the biases are 

represented by weights and constants, which are estimated through the training phase. 

For the latter there is a number of training algorithms used, among which 

backpropagation-based methods (Rumelhart et al., 1986) are the most popular; these 

employ the gradient descent algorithm (Valafar & Ersoy, 1994). 

 Originally, ANNs started in the form of a single neuron, proposed in the 

McCulloch and Pitts model in the 1940s (McCulloch & Pitts, 1943). Yet, it was in the 

1960s when they attracted some serious research interest (starting with Rosenblatt’s 

perceptron in 1962). In the 1980s, they became more popular and great advances took 

place in their field (Hopfield networks came about with Hopfield’s research 
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(Hopfield, 1982), while at around the same time the Kohonen Self-Orginising Maps 

appeared (Kohonen, 1982). Also, in the same decade, the Back-propagation learning 

algorithm was rediscovered and developed further (Rumelhart et al., 1986). In the 

1990s Radial Basis Function ANNs were developed (Niranjan & Fallside, 1990; 

Musavi et al., 1992), while in the 2000s, the creation of ensembles of ANNs has 

attracted a lot of research interest (Jiang & Zhou, 2004; Brown, 2004). 

 ANNs can model quite complex datasets and establish classification rules that 

evade other classifier types. Also, their performance tends to be insensitive to noise, 

which in some cases improves their generalisation (Sugiyama & Ogawa, 2000). Yet, 

in certain cases the generalisation can be enhanced by eliminating the noisy patterns 

from the training set, in order to avoid overfitting (Nakashima & Ogawa, 2000). 

 Multilayer perceptrons (MLPs), which can be trained using a backpropagation 

method, is a very popular choice for many researchers. Radial Basis Function 

networks (RBFs) are preferable when the data form clusters (Roy, Govil, & Miranda, 

1995; Kaylani & Dasgupta., 1994) because of the way they handle the data they use. 

Also, RBFs have a number of properties, such as localisation, interpolation, 

approximation of functions and cluster modelling, making them suitable for a number 

of applications in a variety of fields (Bors, 2001). 

 Lastly, the Self-organising Maps (SOMs) are quite handy when there is a need for 

visual representation of the solution obtained (Kohonen, 2001; Carpenter & 

Grossberg, 1991) since we can visually examine the structure of their neurons and 

connections among them on two-dimensional space. In general ANNs generate a 

complex set of rules, which are not visible to the user. Yet, there have been developed 

systems for extracting knowledge from an ANN that has already been trained. 

 Probabilistic Neural Networks (PNNs) are a special case of ANNs, based on 

Parzen windows (a method for estimating the univariate normal density of 

probabilities, which is a function showing the structure of a distribution consisting of 

a single variable). PNNs are exceptionally fast, since their training phase requires only 

one pass through the training patterns. However, the storage they require is relatively 

high. Also, the new patterns classified can be easily incorporated into another 

classifier (already trained), rendering PNNs a good alternative for on-line applications 

(Specht, 1990). In other words, their output can be later processed by another 

classification system, to improve the overall performance, and as this happens very 

fast, PNNs are suitable for on-line applications where a real-time classifier is required. 
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2.1.4 The k Nearest Neighbour and Other Distance-Based Classifiers 
The k Nearest Neighbour method classifies an unknown pattern based on the ones in 

close proximity to it (the k parameter is the number of these proximal patterns). 

Although some researchers consider it a statistical classifier (Jain et al., 2000), the 

absence of any consideration of statistical metrics in its function renders it an 

independent classifier. Also, many of its variations make use of AI techniques (e.g. 

Fuzzy k Nearest Neighbour). Therefore it fits better the profile of the AI methods. 

 The kNN classifier, originally put forward by Cover & Hart (1967), is very fast 

and with the right choice of the number of neighbours (k), it usually yields good 

results (though it is suboptimal, compared to the Bayesian classifier (Duda et al, 

2001)). Also, because of its simplicity, it has found a number of applications in 

various fields, such as image analysis, spatial data processing, etc. Its inherent 

weaknesses, namely its suboptimal performance and its inability to tackle data of high 

dimensionality effectively, have been a subject of ongoing research which has led to 

the development of a number of kNN variants. A special case of kNN is the Nearest 

Neighbour classifier (1NN), where only the closest pattern is taken into account. The 

pseudo-code of kNN can be found in Algorithm 2.2. 

 

Algorithm 2.2 – Pseudo-code of k Nearest Neighbour classifier 
Inputs: Input patterns of training set (P), labels of training set (T), number of neighbours (k), patters of 
testing set (PT) 
Outputs: classification vector of testing set (y) 

1 Initialisation: Set i = 0, j = 0 

2 N ← number of data elements in P 

3 n ← number of data elements in PT 

4 q ← number of unique values of T (classes) 

5 do i ← (i + 1) 

6 calculate distance array (d) based on the Euclidean distances (Eq. 2.2) between test pattern i 
and each one of the training patterns 

7 sort distances and store indexes (ind) 

8 get k nearest patterns based on the first k values of ind 

9    do j ← j + 1 

10    count number of neighbours that are labelled as class j (mj) 

11 until j = q 

12 Q ← j value for which mj is maximised 

13    classify pattern i to class Q (yi ← class Q) 

14 until i = n 
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 One interesting variation of kNN, which is used in the experiments involved in 

this research is the Fuzzy kNN (Keller et al., 1985).  This classifier makes use of a 

function of the distance of each pattern to each neighbour. These functions take the 

form of weights which are calculated using Eq. 2.1. 

w(i) =
)1(

1
m

ijd
                                       

 

(2.1)

 

where  w(i) is the weight of pattern i, 

  dij is the distance between pattern i and neighbour j 

  m is a parameter, having a default value of 2 

 After normalising these weights, they are used in combination with the class 

labels of the neighbours yielding the classification output. Generally, the performance 

of Fuzzy kNN is more robust than that of the classic kNN classifier, especially when 

there is a high class overlap (Yu et al., 2002). The function of Fuzzy kNN can be 

viewed in Algorithm 2.3 

 
Algorithm 2.3 – Pseudo-code of Fuzzy k Nearest Neighbour classifier 
Inputs: Input patterns of training set (P), labels of training set (T), number of neighbours (k), patters of 
testing set (PT) 
Outputs: classification vector of testing set (y) 
 

1 Initialisation: Set i = 0, m = 2 (fuzzy parameter) 

2 N ← number of data elements in P 

3 n ← number of data elements in PT 

4 q ← number of unique values of T (classes) 

5 transform T into a q x N binary matrix (consisting of a row for each pattern, in which there is a 1 
in the column corresponding to the class it belongs to, and 0 in all other places) 

6 do i ← (i + 1) 

7 calculate distance array (d) based on the Euclidean distances (Eq. 2.2) between test pattern i 
and each one of the training patterns 

8 sort distances and store indexes (ind) 

9    get k nearest patterns based on the first k values of array ind 

10    set weights array (w) equal to membership function based on Eq. 2.1 

11 if a value of w is infinite then replace this value with 1 

12 calculate memberships: M ← T * wT / Σw for all the neighbours (based on ind array) 

13    Q ← j value for which Mj is maximised 

14    classify pattern i to class Q (yi ← class Q) 

15 until i = n 
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 Other distance-based classifiers, often having an inherent similarity to the kNN 

method, have been developed for pattern recognition problems. Two of these are the 

Gravity Model Classifier, which is based on the paradigm proposed by Ruta & Garbys 

(2003), and the Reduced Coulomb Energy Networks (thoroughly presented in Jeon et 

al., 2002). For these classifiers, as well as for the kNN, the most popular distance 

measure used is the Euclidean distance, although other metrics have been considered. 

The Euclidean distance is defined as: 
 

, 

 

(2.2) 

 

where d(x,y) is the distance between two patterns x and y, and j denotes the j-th 

feature value while m the total number of features. 

 The gravity model classifier is based on models from physics and applies them in 

classification. This classifier takes into account the “pull” from all the patterns of each 

class and as this greatly depends on their distance, the different “forces” involved pull 

the unknown pattern into one or the other direction (class). The class yielding the 

greater “gravitational pull” to the unknown pattern “wins” the classification. 

Naturally, the greater the number of patterns near the unknown pattern, the stronger 

the pull, so the nearest neighbours influence the classification decision more. The 

main advantages of this method are its high speed and the fact that it does not require 

any parameters. Its function is shown in Algorithm 2.4. 

 The Reduced Coulomb Energy (RCE) network is similar to a Probabilistic Neural 

Network, although their function is more similar to the kNN method. RCE assumes a 

fixed radius λ around each pattern. During the training phase, each λ is chosen to be 

as large as possible so as not to contain any pattern from different classes. If however 

this parameter becomes too small, this may result to the classifier being unable to 

classify a given pattern (i.e. yields an “ambiguous” label). Nevertheless, just like 

kNN, RCE yields high speed and has low memory requirements. (Jeon et al., 2002).  

Its function is presented in Algorithm 2.5 (note that as the “ambiguous” label is not 

useful practically, in this version of the method we have replaced it with a random 

classification). 
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Algorithm 2.4 – Pseudo-code of Gravity Model classifier 
Inputs: Input patterns of training set (P), labels of training set (T, patters of testing set (PT) 
Outputs: classification vector of test set (y) 
 

1 Initialisation: Set i = 0, j = 0, k = 0 

2 N ← number of data elements in P 

3 n ← number of data elements in PT 

4 q ← number of unique values of T (classes) 

5 do i ← (i + 1) 

6 fi ← patterns of training set which belong to class i 

7 until i = q 

8 do j ← j + 1 

9    compute distance array (d) between test pattern j and all patterns of training set 

10 calculate “force of attraction” array (F = 1 / d2) 

11 for k ← k + 1 

12    calculate total gravity forces of class k (FCk) by adding the elements of F that belong to fi 

13    until k = q 

14    compute total gravity force of class k: FTk = sum of all elements of FCk array 

15    Q ← k value for which FTk is maximised 

16    classify pattern j to class Q (yj = Q) 

17 until i = n 

 
Algorithm 2.5 – Pseudo-code of Reduced Coulomb Energy classifier 
Inputs: Input patterns of training set (P), labels of training set (T, patters of testing set (PT), maximum 
radius parameter (λm (default value = 0.5)) 
Outputs: classification vector of test set (y) 
 

1 Initialisation: Set i = 0, j = 0, L = 0 (λ parameter), e = 0.0001 (ε parameter), D = {} 

2 N ← number of data elements in P 

3 n ← number of data elements in PT 

4 do i ← (i + 1) 

5    calculate distance array based on the Euclidean distances (Eq. 2.2) between test pattern i  
   and each one of the training patterns and sort them (d) 

6 find nearest point which is not in class of pattern i (X) 

7 calculate lambda for pattern i: Li = min ( dX – e , λm ) 

8 until i = N 

9 q ← number of unique values of T (classes) 

10 do j ← j + 1 

11 calculate distance of pattern j of testing set, to all patterns of training set (d) 

12 find all patterns whose distances are smaller than L and add them to set D  

13 if there are no patterns close enough then classify pattern j randomly 

14 if the label of all patterns belonging to D is the same then classify pattern j accordingly (yj = 
label of patterns in D) 

16 until j = n 
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2.1.5 Fuzzy Logic Classifiers 
Fuzzy Logic classifiers are classification systems that make use of fuzzy sets or fuzzy 

logic (Kuncheva, 2000), converting real-world data values into membership degrees 

through the use of the so-called “membership functions” (Zadeh, 1965), thereby 

forming high level rules that are then used for the classification process. This is done 

by defining “categories” (a concept different to classes, as in this case it refers to 

different values or intervals of values) for each one of the attributes. In cases where 

there is limited precision in the data values, or when classification is required in real-

time, fuzzy logic classifiers are preferable to all the other methods (Siler & Buckley, 

2005), due to their very high speed. Also, their decisions are easily interpretable by 

the user and expert knowledge on a particular domain can be used directly for them. 

Their main problem is the “curse of dimensionality”, which renders these classifiers 

inadequate for problems having a large number of features. Also, they behave poorly 

on complex problems, while there is a limited amount of knowledge that the designer 

can incorporate in the system (if n is the number of fuzzy categories used, and m is 

the dimensionality of the problem, the number of possible rules that can be created is 

nm, rendering it a very time-consuming problem. Typically n = 3). As the fuzzy logic 

classifier is trained by partitioning the dataset to n parts for each one of the m 

features, this slows down the classification process significantly (Babuska, 1998). 

Finally, pure fuzzy logic systems do not make use of the training data, something that 

gave rise to hybrid fuzzy systems, as we will see later on. 

 Although Fuzzy Logic first appeared in the 1960s, with the innovative research of 

Zadeh (1965), its application in Classification came about much later, in the 1980s. 

The first work on the field was that of Takagi & Sugeno (1985). Since then, Fuzzy 

Logic in Classification has attracted a lot of interest, rendering it a popular choice for 

a variety of applications, directly or indirectly related to Classification. For example, 

it has been successfully used in feature selection (Shen & Jensen, 2008; Shang & 

Shen, 2006; Jensen & Shen, 2005) rendering Fuzzy Logic a very useful tool for pre-

processing. 

2.1.6 Stochastic Methods 
Stochastic methods constitute an approach focusing on complex and real-world 

problems, where the analytical methods often fail to produce adequate results. They 

can be classified into two main categories: the methods inspired by ideas and models 
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from physics, particularly statistical mechanics, and the methods inspired by ideas 

from biology and specifically from the mathematical theory of evolution 

(Michalewicz, 1995; Michalewicz, Schoenauer, 1996). The former is more 

established theoretically and constitutes the majority of the stochastic models of 

pattern recognition. The latter is more heuristic and offers more flexibility; it has 

attracted an increasing number of researchers over the years and appears to be quite 

promising. Stochastic methods of the first category include Simulated Annealing and 

Botzmann Factor / Learning (Aarts & Korst, 1990). Some of the methods of the 

second category are Genetic Algorithms, Particle Swarm Optimisation (PSO) 

(Kennedy & Eberhart, 1995; Clerc, 2006; Poli, Kennedy, Blackwell, & Freitas, 2008), 

Ant Colony Optimisation (ACO) (Dorigo et al., 1991; Dorigo & Blum, 2005; Dorigo 

& Stützle, 2004), and other nature-inspired models, such as Bee Colony Optimisation 

(BCO) (Karaboga, 2005; Pham et al, 2006). Note that most of these stochastic 

methods have applications in other fields of computer science, such as complex 

optimisation problems, function approximation, etc. 

2.1.7 Hybrid Classification Systems 
Hybrid classification systems enable a self-management of resources and structural 

inputs (Cung et al, 2006) and combine the strengths of two or more AI algorithms. 

For example, the PSO method is known to perform well with continuous features, 

while it fails to function with nominal data for instance. By combining it with the 

ACO method, it is possible to tackle problems which involve nominal features as 

well, aiming at finding the optimum classification rules (Holden & Fietas, 2007). 

Another example of a hybrid classification system is the widely known neuro-fuzzy 

classifiers (Bezdek et al, 1992; Castellano, Fanelli, & Mencar, 2004), which 

incorporate fuzzy logic in the neurons of an MLP. Finally, there have been attempts of 

combining different types of ANNs to form a hybrid ANN which can tackle highly 

complex problems. Such a system is the Parallel Probablistic Self-Organising 

Hierarchical Neural Netwrok (PPSHNN) which was developed by Valafar & Ersoy 

(1994). 

 There is often a distinction between hybrid classification systems and ensembles, 

although sometimes this is not clear, as in the case of Cung et al. (2006), where the 

definition given for a hybrid system is broad enough to include many types of 
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classifier ensembles. Yet, often the classifier ensembles include a greater number of 

classifiers; these classifiers sometimes are of the same type. 

 The main advantage of the hybrid classification systems is that they are versatile 

and often capable of adapting since they are designed to deal with a variety of 

problems and apply a different approach to each one of them. Also, they are able to 

tackle classification problems that would not be feasible by traditional classification 

methods. Particularly the more sophisticated ANNs (PPSHNNs) are able to function 

effectively on problems of high dimensionality and/or high non-linearity (Valafar & 

Ersoy, 1994). 

2.2 Summary and Contribution of the Chapter 
In this chapter we gave a brief presentation of the different types of classification 

systems, namely the statistical and the AI-based classifiers. In addition, we examined 

how the latter are in many ways preferable to the former due to their more flexible 

approach to the data, involving less strict assumptions about their distribution. 

Moreover, the specific characteristics of each one of the main AI-based classification 

systems, as well as the ensembles of classifiers, were described based on the relevant 

literature. Furthermore, we elaborated on their differences and the main advantages 

they exhibit, as well as their main weaknesses. 
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Chapter 3 – The Concepts of Discernibility and Data 

Quality in Classification Problems 

 

In this chapter the concept of Discernibility is defined and the two Indexes of 

Discernibility are introduced. The term Discernibility involves the concept of 

discerning between (or among) the different classes of a dataset. So a dataset having 

well-separated classes generates high Discernibility. Also, this concept can be applied 

for the patterns of the dataset, in the same way. This notion has been implemented in a 

variety of ways, two of which stand out in terms of performance and speed, namely 

the spherical and the harmonic Indexes of Discernibility, and are described below. 

The others are earlier forms of these Indexes and attempt to express the same idea but 

with different geometric forms. 

3.1 Spherical Index of Discernibility 
One way to define a measure for assessing Discernibility is to take a pattern i and use 

of a hyper-sphere around it so as to examine how many other patterns of its class fall 

within that area. We assume a fixed radius around each element of the dataset with the 

radius being the average distance between the elements of this element’s class. Note 

that the radius depends on the element so that elements belonging to different classes 

may have different radii (since the distances are different for each element, resulting 

to a different average distance for each one of them). Once the radius r of an element i 

is established by taking the average distance among the elements of  i’s class we can 

count both the total number of elements of the dataset and the number of elements of 

the dataset belonging to the same class as i, within the radius distance r from i. The 

aim of having a non-fixed radius for each pattern is that it is guaranteed that there will 

exist elements within the hypershere around the pattern. Also, the average distance is 

chosen because it is non-extreme value; if an extreme value for the radius was chosen, 

the result would be a very inaccurate estimation of the Discernibility of the pattern, 

and the whole dataset in consequence. Afterwards, by taking the number of patterns 

that have a Discernibility score over 0.5 and dividing it by the total number of patterns 

of the dataset, we can obtain a Discernibility score which charaterises the whole 

dataset. 
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Figure 3.1. An illustration of the Discernibility of elements in a two-class data set. In this 

example, the Discernibility of the element in the centre of circle A is D1 = 2 / 2 = 1; that of 

the central element in the circle B is D2 = 0 / 3 = 0, and the Discernibility of the central 

element in circle C is D3 = 1 / 2 = 0.5. 

 

The Spherical Index of Discernibility (SID) of the element i, SID(i), is defined as the 

ratio of the latter and the former, that is, proportion of i’s class elements among all the 

training dataset patterns in the hyper-sphere of radius r centred at i (see Figure 3.1). 

The greater the degree of Discernibility, the better is the chance that the classifier’s 

prediction is correct. This index has been used recently for conditioning the kNN 

classifier, which resulted in improved performances of the classifier (Voulgaris & 

Magoulas, 2008a). 

 The Spherical Index of Discernibility is implemented in a fast and reliable 

function having a complexity of O(N2 na). This function takes the input values of the 

patterns of a dataset as well as their labels and provides a vector containing the 

discernibilities of each one of the patterns, and a number for the overall Discernibility 

of the dataset. The latter is the ration of the number of patterns having Discernibility 

equal or higher than a given threshold (usually 0.5). Its pseudo-code is presented in 

Algorithm 3.1. 
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Algorithm 3.1 – Pseudo-code for calculating the Spherical Index of Discernibility 
Inputs: Input data (P), Data Labels (T)  
Outputs: Discernibilities of data elements (zi), Spherical Index of Discernibility (SID) 

1 Initialisation: set l=0 (index over the problem’s classes), i=0 (index over the data 
elements/patterns), th=0.5 (default threshold of discernible element) 

2 N ← number of data elements in P 

3 q ← number of unique values of T (classes) 

4 do l ← (l + 1) 

5 Cl ← data elements belonging to class l 

6 Dl ← distance matrix of class l 

7 rl ← calculate radius as average distance between 2 elements of the class l 

8 until l = q 

9 do i ← (i + 1) 

10 b ← class of the i-th element based on T 

11 d ← distances of the i-th element from all other elements of the dataset 

12 n ← number of elements for which d ≤ rb 

13 c ← number of elements belonging to class b  
         for which d ≤ rb 

14 zi ←   c / n 

15 until i = N 

16 SID ← number of elements for which zi ≥ th 

The computational complexity of this algorithm is O(N2 na). 

3.2 Harmonic Index of Discernibility 
The harmonic mean H of a set of numbers x 1, x 2, .., x N is defined as 

H = N/(k1/x k)      (3.1)  

The basic characteristic of this type of mean tends to be much nearer to smaller values 

among the set than the arithmetic average. By employing this in the distances of a 

given pattern to the others patterns of its class and of the distances of that pattern to 

the other patterns of other classes, we can obtain a more accurate measure of the 

Discernibility concept. Also, by employing this approach, we do not need to use a 

hypersphere, rendering this new measure of Discernibility more robust. This measure 

we call Harmonic Index of Discernibility (HID) as it makes use of harmonic means in 

its calculation. For a given a pattern i belonging to class c it is defined using Eq. (3.2) 

                                   HID(i) =
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                                               (3.2) 

where z1(i) = H(dist(i, Ai)), and z2(i) = H(dist(i, Bi)), where Ai = entities of class c, Bi 

= entities of all other classes. In both Ai and Bi pattern i is excluded from the set to 

avoid unnecessary null distances. The harmonic distances are calculated using Eq. 
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(3.1). Also, we add a small positive number to the denominator, to avoid division by 

0. In the rare case that HID(i) is negative (i.e. when the distances of the patterns of its 

own class are generally greater than those of the patterns of the other classes), it is 

adjusted to be 0, since a negative value would be meaningless and to maintain 

coherency between the two indexes). The pseudo-code for the calculation of this 

measure, having complexity of O(N2 na), can be viewed in Algorithm 3.2. 

 

Algorithm 3.2 – Pseudo-code for calculating the Harmonic Index of Discernibility 
Inputs: Input data (P), Data Labels (T)  
Outputs: Discernibilities of data elements (zi), Harmonic Index of Discernibility (HID) 

1 Initialisation: set l=0 (index over the problem’s classes), i=0 (index over the data 
elements/patterns), th=0.5 (default threshold of discernible element) 

2 N ← number of data elements in P 

3 q ← number of unique values of T (classes) 

4 do l ← (l + 1) 

5 Cl ← data elements belonging to class l 

6 Dl ← distance matrix of class l (a matrix containing all the distances between all possible pairs 
of patterns in this class) 

7 until l = q 

8 do i ← (i + 1) 

9 b ← class of the i-th element based on T 

10 d ← distances of the i-th element from all other elements of the dataset 

11 a1 ← distances of i-th element from elements of class b 

12 a2 ← distances of i-th element from elements not of class b 

13 z1(i) ← harmonic mean of a1 (using Eq. 3.1) 

14    z2(i) ← harmonic mean of a2 (using Eq. 3.1) 

15 zi ←  (z2(i) – z1(i)) / (z2(i) + z1(i) + eps)  

16 until i = N 

17 HID ← number of elements for which zi ≥ th 

Note: eps is a very small number (having a preset value in MATLAB). The computational complexity 
of this algorithm is O(N2 na). Yet, it is slightly slower than SID. 

 

3.3 Comparison with Relevant Work 
Both the Spherical and the Harmonic index of Discernibility reflect how distinguished 

the classes of a dataset are, and there is a high correlation among them. However, in 

some case one performs better than the other. Yet, they both perform generally better 

than another measure of Discernibility, Silhouette Width (SW). The latter has been 

used successfully in clustering (Kaufman & Rousseeuw, 1990), although to the best of 
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our knowledge there are no records of it being used in pattern classification. It is 

calculated using Eq. 3.3. 

SW =
))i(b),i(amax(

)i(a)i(b 
    (3.3) 

where a(i) = average similarity between i and all other entities of the cluster it belongs 

to, b(i) = minimum of the average similarity of i and all the other entities in other 

clusters. It takes values in the interval [-1, 1]. 

The advantage the proposed measures (particularly the Harmonic Index of 

Discernibility) have over the Silhouette Width measure is that they take into account 

all the different classes, not merely the class of the element examined and the foreign 

class closest to it. This allows the Index of Discernibility to have a wider perspective 

of the dataset and provide a more accurate insight over its structural properties. 

 In order to investigate the difference in performance of the Index of 

Discernibility and the Silhouette Width measure, we conducted a set of experiments, 

on some artificial datasets. We used this type of datasets because the extent to which 

the classes are distinguishable is easily verified, since they are all two-dimensional. 

These datasets were the following: 

● “Concentric” dataset (ELENA Project Artificial Databases, 2008): a dataset 

consisting of classes in the form of two concentric circles non-linearly separated. 

It has 5000 points and its class structure can be seen in Figure 3.2. 

● Dual Triangles dataset: an artificial dataset consisting of 2 classes forming 2 

triangles, linearly separated. It has 500 points. 

● Quadruple Squares dataset: an artificial dataset consisting of 4 classes forming 4 

squares, linearly separated. It has 2000 points. 

● Random Box 2 dataset: an artificial dataset consisting of 2 classes overlapping 

completely. It has 500 points. 

● Random Box 3 dataset: an artificial dataset consisting of 3 classes overlapping 

completely. It has 900 points. 

Note that apart from the first dataset, all the others are of our own design. Also, all of 

them are balanced in their class structure. 
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Figure 3.2. Graphical representation of the class structure of concentric dataset. The patterns 

of class “0” are depicted as squares while diamonds denote patterns of class “1” . As it can be 

seen from the graph, the two classes are easily distinguishable as they form two concentric 

circles. Therefore, their Discernibility should be high. 

 

Since Silhouette Width takes values between -1 and 1, for the sake of 

comparison with the two Indexes of Discernibility it was normalised to [0, 1] . Having 

done this transformation we obtained the measures presented in Table 3.1 for the five 

different datasets. The results of these demonstrations can be generalised to more 

complex datasets, consisting of more attributes and a higher number of patterns. 

 

Dataset Silhouette Width SID HID Desired Disc.

Concentric 0.4905 0.9416 0.9856 1 

Dual Triangles 0.7352 0.9720 0.9820 1 

Quadruple Squares 0.5996 0.8870 0.9990 1 

Random Box 2 0.4986 0.5440 0.5220 0 

Random Box 3 0.4863 0.0000 
(mean = 0.3331)

0.4033 0 

 
Table 3.1. Results of the Discernibility experiments, carried out using Silhouette Width and 
the two versions of the Index of Discernibility, proposed in this project. Note that in the last 
dataset, even if we take the average values of the individual discernibilities of its patterns, 
measured by SID, the overall Discernibility is quite lower than that yielded by Silhouette 

Width. 
 

From the results presented in Table 3.1 it can be observed that both SID and 

HID perform better than Silhouette Width in describing the class overlap of a dataset. 
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The only exception was in the Random Box 2 dataset where the overlap is maximum 

(and therefore all these measures should be zero), and SW had the lowest value. Yet 

even in this case, the Index of Discernibility (particularly HD) was not far behind, 

being slightly higher than the SW. Note that in a similar dataset, where there are three 

classes instead of two, the Indexes of Discernibility (particularly SID) describe it 

much better than Silhouette Width. 

 Although originally the Discernibility measures developed in this work were 

intended as a tool for assessing the dataset structure, it turned out that the 

discernibilities of the individual patterns of the dataset as well as the discernibilities of 

the individual features, were equally important (or even more important in some 

cases). This allowed the concept to expand its applicability in other areas of 

Classification. This was one of the reasons that different versions of it were 

developed. 

Note that these Discernibility measures presented here should not be confused 

with the Discernibility tables, or the indiscernibility concept, used in Rough Sets 

(Komorowski et al., 1998). The latter are completely different both in function and in 

field of application since they do not deal with individual patterns or whole datasets, 

but rather with variables. 

Also, it is noteworthy that recently there has been similar research, 

independent of this project, investigating a supplementary concept but with the use of 

SOMs (Lemeni & Tepus, 2008). Particularly, a metric for describing the extent to 

which the classes of a dataset overlap (Class Overlap Degree Coefficient) was 

introduced. This was defined as the number of the nodes of a SOM that fall on the 

common area of two or more classes, over the total number of nodes. 

 Yet, due to the increased overhead of that method it is not considered a 

practical alternative to measuring the class overlap in a dataset. Between the other 

two, Index of Discernibility and Silhouette Width, the latter is relatively inferior as it 

has been shown in the experiments of the previous section.  

It is interesting how the Discernibility concept can be applied to the feature 

evaluation of a dataset. This can be done either individually or in groups. For the 

former type of evaluation, each feature is evaluated separately, as seen in Algorithm 

3.3. 
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Algorithm 3.3 – Pseudo-code for evaluating feature individually using Discernibility 
Inputs: Input data (P), Data Labels (T) 
Outputs: Discernibilities of features (zi) 

1 Initialisation: set l=0 (index over the problem’s classes), i=0 (index over the features) 

2 na ← number of features of dataset 

3 do i ← (i + 1) 

4    Pi  ← feature i of Input data P (i-th column or i-th row of P, depending on format) 

5 zi ←  ID(Pi,T) of i-th feature(using either Algorithm 3.1 or Algorithm 3.2) 

6 until i = na 

The computational complexity of this algorithm, regardless of which ID metric is used, is O(N2 na2). 

3.4 Degree of Certainty and Degree of Reliability 
Previously we have examined how the dataset quality can be evaluated be means of 

the Discernibility concept, implemented in either one of the two measures developed 

in our research. The question that now arises is whether the same can be done with 

respect to the classification quality. In other words, is there a way of having a more or 

less objective view of how “good” a classification is a priori, i.e. before the 

evaluation phase? The answer to this question is affirmative and there have been 

various methods developed to accomplish that. These have been referred to with 

many names, such as Chow’s index (Bresnahan, 1986), Certainty Factor, Inductive 

(or Transductive) Conformal Prediction (ICP) (Papadopoulos, 2004; Papadopoulos, 

Vovk, & Gammerman, 2007). There have been a couple of measures proposed by the 

author of this thesis as well, as we will see later on. The reason for doing so is that we 

would need a measure that is versatile enough so as to be applicable to all (or almost 

all) types of classifiers. 

Now, let us first consider an analogue to the Chow’s index applied to any 

classifier’s scoring function, for which Aidin and Guvenir coined the term Certainty 

Factor (CF) (Aydin & Guvenir, 2006). It is assumed that the classifier under 

consideration, for each pattern i and each class, produces a classification score, so that 

the class for which the score is maximal is predicted for i by the classifier. The 

relative proportion of this maximum classification score is referred to as the Degree of 

Certainty (DC):  
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where i denotes the i-th pattern classified, c the class label, q the number of classes 

and Sc is the classification output of the classifier for class c. Unfortunately, this index 
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by itself cannot be used as a measure of reliability of classification. Experiments have 

shown that it provides a very low correlation with the true class labels. There is 

however a correlation between this measure and the expected Index of Discernibility 

of a test pattern. This is natural if one considers that a discernible pattern (i.e. one 

with a high Discernibility score) is bound to be predicted correctly, so the classifier 

will tend to be relatively certain about its classification. This observation led to the 

development of a measure of reliability, which is independent of the classifier used, 

namely the Degree of Reliability (DR), defined and discussed below.  

The Degree of Reliability is a way of assessing how “sure” a classification is, 

regardless of the classifier used. It aims to tackle the problem of classifier dependency 

that arises in the case of Degree of Certainty. The price one pays for it is that the 

Degree of Reliability is a fairly time-consuming process and in some cases, 

impractical (e.g. when using ANNs or any other classifier that has a relatively long 

training phase). This measure reflects the how typical an unknown entity is as a 

representative of its class, which is evaluated by one of the Indices of Discernibility 

applied on the entity. Since the class of this entity in not known, the predicted class is 

used, according to the classifier employed. 

The calculation of the Degree of Reliability employs the Index of 

Discernibility (mainly the Spherical version due to its simplicity and slightly better 

performance ) using the predicted class as a class label of the test pattern to be 

evaluated. This has been tested with a number of classifiers for different datasets, with 

promising results (Voulgaris & Mirkin, 2008a), leading to the development of a 

Reject Option method, which is described in Chapter 6.  

The subjectivity of the Degree of Certainty can also be overcome if one 

considers its relative change instead. This is employed in a version of the Degree of 

Reliability, called the Parametric Degree of Reliability, which is thoroughly described 

in Chapter 6. Just like the original Degree of Reliability, the parametric version of it 

makes use of the Spherical and Harmonic Indexes of Discernibility as they are. The 

difference in that version is that the Discernibility metric used is accompanied by two 

other measures, and three parameters. We will investigate this measure further in 

Chapter 6 where we will also explore its applications in Classification. 

 It is worth noting that the Degree of Certainty as well as the Degree of 

Reliability are different to the Inductive (or Transductive) Conformal Prediction-ICP 

(Papadopoulos, 2004; Papadopoulos et al, 2007; Papadopoulos, 2008), yet they are 
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complimentary in a way. The difference is that the proposed measures (DC and DR) 

aim to give an insight to how confident the classifier is about the prediction it makes, 

while the ICP measure, being probabilistic in nature, offers the maximum probability 

that a prediction is wrong. In addition, DC and DR are generally light in terms of 

computational cost. Due to these reasons, the proposed methods are the ones 

employed in most of the experiments conducted for this research. 

3.5 Net Reliability 
As seen earlier, the Degree of Certainty provides an insight on how probable it is for 

the classification to be accurate, according to a particular classifier. However, often 

this may be a misleading piece of information, as in cases where the dataset is 

complex, the classifier may be “sure” about something completely wrong. Thus, the 

use of a measure that evaluates the Degree of Certainty of a classifier, and therefore 

the classifier’s reliability, is essential. The use of correlation coefficient (a statistical 

measure R, taking values between -1 and 1, that show how correlated two variables 

are, based on their variances and their covariance) is not a good choice because in 

some cases it fails to provide any results, since it is usually applicable in scale 

variables. For example, there are cases where the correlation coefficient may yield an 

infinite value as an output, which is meaningless to the user. Besides, the binary 

nature of the validity vector (a binary vector v which depicts each correct 

classification with a 1 and each wrong one with a 0) makes it incompatible with the 

variance metric employed in the correlation coefficient, since it often fails to deal with 

nominal variables like this one. Therefore we have developed another measure for 

this, the Net Reliability. This is expressed by Equation 3.4 as seen below. 
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(3.5) 

 

where v is the classification validity vector, DC is the Degree of Certainty vector, i 

denotes the pattern classified, and n is the total number of elements in the test set. A 

high Net Reliability score for a classifier is generally good for the classifier . The Net 

Reliability of a classification takes values between –1 and 1 (inclusive). 

 Although this measure was primarily developed for the evaluation of a 

classifier after the validation stage, it may find use in the pre-processing stage, by 

applying in on a subset of the training set as a validation set. 



 32

 It has been observed that almost all of the classifiers tend to have a high Net 

Reliability in datasets exhibiting a high Index of Discernibility. 

 Note that the Net Reliability measure is not linked in any direct way to the 

Degree of Reliability. Besides, its function lies in assessing how reliable the Degree 

of Certainty is, based on the correct classifications, while the Degree of Reliability is 

a way of predicting how reliable a classification is, prior to accessing the correct 

classification values. However, as they both refer to ways of measuring reliability, 

they both have this term in their name. 

3.6 Summary and Contribution of the Chapter 
This chapter has introduced and described Discernibility at a conceptual level. Also, it 

has presented the two versions of its implementation. In addition, a comparison with 

the known similar measures is carried out– the SOM-based Class Overlap Degree 

Coefficient and the Silhouette Width. The latter, in particular, is compared with ID 

experimentally for five different artificial datasets and has been found inferior. 

Furthermore, Discernibility’s relationship with the Degree of Certainty and Net 

Reliability has been pinpointed and discussed. Finally, the Degree of Reliability, an 

alternative measure based on Discernibility, has been introduced. 

 This chapter is considered a fundamental part of the thesis as the whole 

research involved in this project revolves around the ideas presented here. This 

chapter contributes to the field of Pattern Classification by offering a few simple to 

implement methods that can enhance and in many cases speed up the classification 

process. Furthermore, it is important to note that the metrics introduced in this chapter 

can be applied in a variety of cases and are independent of the classifiers use as well 

as the datasets. 
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Chapter 4 – Discernibility-Based Classification 
 

The simplicity and high convergence speed of the k Nearest Neighbour (kNN) 

classifier have made it a popular choice for pattern classification (Moreno-Seco et al., 

2003) with applications in a variety of cases (Abidin & Perrizo, 2006; Khan et al., 

2002; Yu & Ji, 2002). Nevertheless, there are situations where kNN might fail to 

produce adequate results (Sotoca et al., 2003), or its operation may render it 

impractical (Moreno-Seco et al., 2003). Such cases are in problems involving high 

dimensionality and/or complex datasets with high class overlap. In practice, the fact 

that kNN only requires the user to specify one parameter, the number of neighbours 

used (k), facilitates fine-tuning the method to a variety of situations. The main kNN 

classifier consists of the following steps: given a set P of N labelled points (training 

set), P={x1, …,xN}, classify a set PT of n points (testing set), PT={t1, …,tn}, into the 

same set of classes (labels) by examining the k closest points around each point of the 

testing set, and by applying the majority vote scheme (Duda et al., 2001). 

 The kNN classifier is a suboptimal procedure, with a few inherent problems such 

as inability to deal with complex dataset, which is why researchers have proposed 

different extensions of the kNN (Bermejo & Cabestany, 2000; Manocha & Girolami, 

2007; Hattori & Takahashi, 2000; Gao & Wang, 2007; Lai et al., 2007; Warfield, 

1996; Wu et al., 2002; Zhou & Chen, 2006; Wang et al., 2006; Wang et al., 2007), or 

even ensemble formulations of kNN classifiers (Domeniconi & Yan, 2005). Most of 

these approaches have exhibited some interesting and quite promising results and 

have motivated further research on improving the kNN method. 

 In this chapter two kNN variations based on the Spherical Index of Discernibility 

introduced in Chapter 3 will be presented and discussed. Also, two more kNN 

variations will be introduced as well as a classifier which is based on Minimum 

Spanning Trees (Kruskal, 1956), which are graphs describing the shortest possible 

total length of line segments connecting a given number of points, so as to connect all 

of them (for an overview see (Graham & Hell, 1985)). The distance computation in all 

of them is carried out using the Euclidean distance. 

 Other distance alternatives include the Manhattan (city-block) distance (Kawahara 

& Shibata, 2005), the Euclidean Squared distance (Bailey, 2004) and the Mahalanobis 

distance (Torra et al., 2006). However, as the Euclidean distance is the most popular 

one, it is the one chosen for this research. 
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4.1 Background Research on kNN Extensions 
Although the kNN method when used in classification problems is quite fast, it is 

often impeded by the size of certain datasets, which is why some researchers have 

focused on improving its speed (Abidin & Perrizo, 2006; Lai, 2007; Warfield, 1996). 

SMART-TV for instance (Abidin & Perrizo, 2006) was designed to deal with datasets 

of high dimensionality by transforming them into a single-dimensional feature space. 

A similar approach is shared by Khan et al. (2002) for spatial data, where this method 

works best (Abidin & Perrizo, 2006, Mainar-Ruiz & Pérez-Cortes, 2006) mainly due 

to the simplicity of the dataset structure . Yet, these approaches concentrate on high 

speed mainly and often fail to achieve exceptionally good accuracy rate unless they 

are applied on particular problems, such as spatial datasets (Khan et al., 2002) and 

images (Warfield, 1996). 

 Other approaches involve feature selection methods which are tested on several 

both real and artificial datasets (Sotoca et al., 2003). These methods, which focus on 

establishing appropriate weights to the various features, appear to be promising; yet, 

the methods described in the literature are not always very fast, since it appears to be 

a trade-off between performance and speed (Sotoca et al., 2003). 

 Changing the way distance is dealt with, in a fundamental level by considering a 

different method of evaluating distance, is an interesting alternative, which can 

improve speed considerably (since less calculations are required) without having any 

significant reductions in the accuracy of the classification rate (Moreno-Seco et al., 

2003). When dealing with complex problems this can be quite fruitful (Yu & Ji, 

2002), yet these methods appear to be rather cumbersome when applied to other 

simpler datasets. Other methods of this category consider cam weighted distance* 

(Zhou & Chen, 2006), or an adaptive distance (Wang et al., 2007), and appear quite 

promising. 

 Often it is more efficient to combine different classifiers, either by forming a low-

level mixture where the classifiers interact during the training phase (Hendrickx & 

Van den Bosch, 2004) or by building an ensemble (Domeniconi & Yan, 2005). In the 

first case, it becomes apparent that changes in the structure of the kNN classifier may 

be essential in order to improve its performance. In the second case, creating a 

diversity ensemble classifier is attempted by combining negatively correlated 

                                                 
* This type of distance takes its name from the deflective cam contours for equal-distance 
contour in classification it yields. 
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classifiers (i.e. classifiers whose errors are as different as possible)in an ensemble 

formulation; an approach that seems to improve the accuracy rate and which is used in 

Chapter 7. Yet, the results although interesting, denote that kNN-based approaches 

still require much improvement if they are to be used in ensembles to target various 

classes of problems. 

 The use of rules, which take the form of additional features in the dataset, in kNN 

has been researched by Van den Bosch (2004) who put forward three methods which 

were tested on several datasets with some success. However, in many datasets the 

creation of rules may be time-consuming and even computationally expensive. Also, 

in high dimensional datasets, the additional cost could make the classification process 

very slow and therefore inefficient. 

 Another type of extensions considers the use of statistics to make kNN more 

robust (Manocha & Girolami, 2007; Wang et al., 2006). This is done either by 

transforming the kNN classifier into a probabilistic classifier (Manocha & Girolami, 

2007) by approximating the probability of a classification using a method based on 

cross validation for various k values, or by using statistics to find the best size for the 

neighbourhood involved (Wang et al., 2006). The former approach, although it does 

not have significantly better results than the classic kNN, it provides continuous 

preditive probabilities thus offering a way of dealing with uneven misclassification 

costs. 

 Another method encountered in the literature questions the efficiency of the 

voting scheme of the kNN (Wang & Bell, 2004), and proposes an alternative measure 

for determining how each class is related to a test point. This approach is taken one 

step further in one of the kNN variations proposed in this chapter (see sections 4.2.1 

and 4.2.2), since the use of only one measure (distance) to assess the relationship to a 

class is often insufficient. 

 Of the methods described above, the one by Wang & Bell (2004) goes beyond the 

simple counting of neighbours as it evaluates them as well. Sharing this philosophy, 

we bring forward a kNN variant, which assigns a quality index to each element of the 

dataset. Also, similarly to Sotoca et al. (2003), we introduce a classifier that makes 

use of different weights for the various features of the dataset.  

 



 36

4.2 kNN Extensions Based on Discernibility 
4.2.1 Discernibility kNN 

The Discernibility kNN (D-kNN) first calculates the discernibility of the neighbours 

as well as their distances from the test patterns. By taking the ratio of these two 

factors, a score is produced for each one of the neighbours. Based on the neighbours’ 

score, scores for each class are then averaged to produce one classification score for 

each one of them. The class yielding the highest classification score is selected as the 

most probable output for the classification. Algorithm 4.1, below, provides a high 

level description of the D-kNN.  

 
 
Algorithm 4.1 – The D-kNN classifier 
Inputs: Input patterns of training set (P), labels of training set (T), number of neighbours (k), patters of 
testing set (PT) 
Outputs: classification vector of testing Set (y) 

1 Initialisation: set i=0 (index of the patterns), j=0 (index over the classes) 

2 n ← number of patterns of testing set (PT) 

3 N ← number of patterns of training set (P) 

4 z ← discernibility vector for elements of P, using Algorithm-1and P, T as inputs; z = {zi}, 
        i = 1 ... N 

5 q ← number of unique values of T (classes) 

6 do i ← (i + 1)    

7 D ← vector of distances of PT(i) to P based on Eq. (4.1) 

8 sd ← sorted values of d 

9 dk ← k first values of sd 

10 v ← { vm : vm = zm / dkm}, m = 1 ... k 

11 do j ← (j + 1) for current i 

12 Cj ← subset of k nearest elements of P belonging to the j-th class 

13 Classification score Sj ← mean(vCj),  
vCj = {vm:  m  Cj } 

14 until j = q 

15 
jj

Sb maxarg   

16 yi ← class b 

17 until i = n 
 

 
 When the classes of a dataset are overlapping, the D-kNN classifier appears to 

provide an advantage over the standard kNN. In these cases the kNN classifier is 

bound to miss many entities of the test set, which D-kNN is bound to predict more 

accurately by taking into account the structural properties of the neighbours (reflected 

on their Discernibility scores) as well as their distances from each test pattern. 
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Particularly it calculates the ratio of Discernibility / distance for each neighbour and 

takes the average of these ratios for each class. This can be illustrated using an 

example from the clouds dataset, taken from (ELENA Project Artificial Databases, 

2008). Compared to kNN’s inaccurate classification (as shown in Fig. 4.1), the D-

kNN classifies the test element correctly as it takes into account not only the fact that 

they are nearest neighbours, but also the Discernibility scores and their distances (Fig. 

4.2). The D-kNN classifier (Algorithm 4.1) does this by producing for each pattern to 

be classified a score vector v, for all of its neighbours. This is a function of the 

discernibilities of the neighbouring patterns and their distances from the test pattern. 

Then, by averaging these scores for each one of the possible classes, the classification 

score of each class is calculated (Sj). Finally, the test pattern is classified by 

comparing the classification scores of the different classes of the dataset, the highest 

of which wins the classification. 

 
Figure 4.1 – kNN’s performance on a pattern of the clouds dataset. The test pattern is marked 
as (*) while the patterns of the two classes of the dataset are marked as (+) and (x) 
respectively. The boxes around some patterns show the patterns that are taken into account for 
classification. kNN fails to classify the pattern at hand correctly (k = 5). 
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Figure 4.2 – D-kNN’s performance on the same pattern of the clouds dataset (as Fig. 4.1).   
D-kNN classifies the pattern at hand correctly to the class represented by (+) since it 
considers not the number of neighbours but their significance in terms of Discernibility and 
their individual distances to the test element, in the form of a ratio. The score vm calculated by 
the D-kNN is depicted next to each one of the patterns taken into account for the 
classification. The patterns inside the boxes are the ones taken into account for the 
classification (k = 5). 
 

4.2.2 Weight-based kNN 

The Weight-based kNN (W-kNN) performs an evaluation of the features of a dataset 

based on the training set P. First, each one of the features f of the training set is 

evaluated using Algorithm 3.3 and the Indices of Discernibility for the various 

features are found (in Algorithm 4.2, below, they are denoted as IDf). The weights are 

then obtained by normalising the IDs. Lastly, the weights are applied on both the 

training and the testing set thus changing the features’ values, resulting in a 

transformation of the dataset’s feature space. Afterwards, it performs classification on 

this space, using the kNN classification rule. An algorithm model of the W-kNN is 

presented in Algorithm 4.2. 

 This classifier is particularly useful in the case where a dataset has many features, 

some of which can be considered unnecessary, since W-kNN deals with them by 

giving them appropriate weights, based on their Discernibility scores. These features 

often confuse the kNN classifier, yet by transforming the feature space as W-kNN 

does, this situation can be alleviated as the unnecessary features are bound to have a 

low Discernibility score IDf so they will not count significantly in the transformed 

feature space (due to their low relative weight). Afterwards, one may choose to 

disregard these features altogether, performing feature selection.  
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Algorithm 4.2 – The W-kNN classifier 
Inputs: Input patterns of training set (P), labels of training set (T), number of neighbours (k), patterns 
of testing set (PT) 
Outputs: classification vector of testing set (y) 

1 Initialisation: set f=0 (index over the features) 

2 n ← number of patterns of testing set (PT) 

3 N ← number of patterns of training set (P) 

4 m ← number of features in dataset 

5 do f ← (f +1) 

 Pf ← vector of values for the f feature of P 

6 IDf ← ID (Pf, T) using Alg. 3.1 

7 until f = m 

8 w ← ID / sum(ID) 

9 P2 ← P * (w * I) 

10 PT2 ← PT * (w * I) 

11 y ← classification output of kNN based on P2, PT2 and k 

Where I is the unitary matrix of order m (an mxm matrix containing ones on the diagonal and zeros 
everywhere else). 
 

  

 An example of W-kNN’s edge in performance over kNN is shown in Figure 4.3, 

where the clouds dataset from (ELENA Project Artificial Databases, 2008) is used as 

an example. The test pattern to be identified, denoted by an asterisk (*) in the figure, 

belongs to the class depicted with the crosses (+). The patterns inside a square are the 

ones taken into account for the classification. The kNN takes into account the k = 5 

closest neighbours (Fig. 4.1) and fails to classify the test pattern (*) correctly. Note 

that kNN would still fail with k = 3 or k = 7, in this case. W-kNN on the other hand 

transforms the feature space by giving more importance to the second feature (y axis) 

at the expense of the first one (x axis), because the latter has a lower Discernibility 

score. Because of this, W-kNN classifies the pattern at hand accurately as it makes 

use of a slightly different set of data points (Fig. 4.3). 
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Figure 4.3 – W-kNN’s performance on a pattern of the clouds dataset. W-kNN classifies the 
pattern at hand correctly since it makes use of the k nearest neighbours in a transformed 
feature space where the first feature (depicted as the horizontal axis) is considered less 
important and thus the distances over it are compromised, yielding a better result. The 
patterns in the boxes are the ones taken into account by the classifier. Note that the rightmost 
neighbour is taken into account by W-kNN because its distance in the transformed feature 
space (where the first feature is not so important) is not so great, so it is near enough to be 
considered as one of the k = 5 nearest neighbours. 
 

 

4.2.3 Experimental Results of the Discernibility-based kNN Extensions 

4.2.3.1 Datasets Used and Experimental Setup 

 The characteristics of the datasets used in our study are summarised in Table 4.1. 

All the classifiers used the k value which was considered the best choice, based on the 

work in Voulgaris & Magoulas (2008a). These values ranged from 2 to 7, based on 

the output of the V-kNN classifier, introduced and discussed in Section 4.3.1.1. 

 The six datasets were downloaded from the UCI repository (UCI Repository, 

2008) and the experiments were carried out in MATLAB 2007a, where the tested 

algorithms were implemented. The CPU time was measured using a built-in function 

in MATLAB, and took into account the training phase of each classifier. As kNN has 

no training phase, in all of the experiments its CPU time was set to 0. The 

experiments included 50 rounds of 10-fold cross-validation (500 classifications 

altogether for each one of the classifiers). 
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Dataset Features Patterns Classes 
Bupa Liver 6 345 2 
Pima Indians 8 768 2 
Breast Cancer W. 9 683 2 
Heart Disease 13 270 2 
Vehicle 18 846 4 
Boston Housing 13 506 3 

 
Table 4.1 – Characteristics of the datasets used in the experiments 

 
 

4.2.3.2 Evaluation Criteria 

The classifiers were assessed using the average Accuracy Rate, a measure which has 

been used extensively in the literature (Gao & Wang, 2007; Wu et al., 2002), the CPU 

time, and a correlation between Accuracy and Degree of Certainty (Net Reliability, 

described in Chapter 3). Note that all of the datasets used are more or less balanced, 

and thus eligible for the evaluation measure of Accuracy Rate. 

 The CPU time is defined as the interval between two consecutive checks of the 

CPU clock of the computer. It is considered to be more reliable than the time interval 

measured with a stopwatch by the user, because it takes into account only the CPU 

usage of the experiments themselves. This way it is not influenced much by the other 

processes that may run simultaneously in the OS. 

 

4.2.3.3 Results  

In the first dataset used, Bupa Liver, the best classifier in terms of performance was 

D-kNN, due to the very high Accuracy Rate (over 3% compared to kNN) and the 

rather high Net Reliability it exhibited. It was moderately fast, as the calculation of 

the index of discernibility for each pattern was rather time-consuming. The detailed 

results for this dataset can be seen in Table 4.2. 

 

Classifier Accuracy Rate Net Reliability CPU Time 
kNN 62.99% 0.1964 0.0000 
W-kNN 62.48% 0.1892 0.0226 
D-kNN 66.31% 0.2572 0.0510 

 
Table 4.2 – Results for the Bupa Liver dataset. Undoubtedly, the winning classifier is D-kNN, 

scoring better in both Accuracy Rate and Net Reliability. 
 
 It appears that the W-kNN classifier did not perform as well as the classic kNN, in 

terms of accuracy rate and Net Reliability. This was attributed to the nature of the 
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dataset, particularly the fact that it contains only 6 features, all of which are of the 

same importance (which is mirrored by the SID values of the features: 0.5797 for 

each one of them. Interestingly, the SID of the whole dataset is slightly higher: 

0.5855). For W-kNN to perform well, a larger number of features is needed, so that 

some diversity among their value exists. 

Regarding the Pima Indians dataset, as it can be seen in Table 4.3, W-kNN is the 

best in both Accuracy Rate and Net Reliability (although its accuracy rate is coined by 

the kNN classifier as well). Also, compared to the D-kNN classifiers, it is the fastest 

too. As this dataset was not complex (the calculated Index of Discernibility is 0.6862 

denoting that the classes of the dataset are not overlapping so much), it is natural that 

D-kNN does not have an advantage, hence its performance. 

 

Classifier Accuracy Rate Net Reliability CPU Time 
kNN 73.70% 0.4199 0.0000 
W-kNN 73.70% 0.4241 0.1020 
D-kNN 72.99% 0.4299 0.2445 

 
Table 4.3 – Results for the Pima Indians dataset. The winning classifier is W-kNN, combining 

good Accuracy Rate, Net Reliability and CPU time. 
 

Concerning the Breast Cancer Wisconsin dataset, the most accurate classifier 

is D-kNN, which has also the best Net Reliability although its CPU time is not so 

good. Also, the W-kNN scored quite well, and was much faster too compared to D-

kNN. The results for this dataset can be seen in Table 4.4. 

 

Classifier Accuracy Rate Net Reliability CPU Time 
kNN 94.50% 0.9039 0.0000 
W-kNN 94.80% 0.9072 0.0920 
D-kNN 95.90% 0.9169 0.1805 

 
Table 4.4 – Results for the Breast Cancer Wisconsin dataset. The winning classifier is D-

kNN, scoring better in Net Reliability and Accuracy Rate. 
 

In the Heart Disease dataset, the best classifier is D-kNN, which had the 

highest Accuracy Rate, the best Net Reliability and a moderately good CPU time. 

The results for all three classifiers can be seen in Table 4.5. 
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Classifier Accuracy Rate Net Reliability CPU Time 
kNN 80.86% 0.5649 0.0000 
W-kNN 80.35% 0.5634 0.0332 
D-kNN 81.31% 0.5926 0.0554 

 
Table 4.5 – Results for the Heart Disease dataset. The winning classifier is D-kNN, scoring 

better in Accuracy Rate and Net Reliability while at the same time its CPU time was 
reasonably good. 

 

As for the Vehicle dataset, D-kNN was better in Accuracy Rate and Net 

Reliability. However, it was rather slow. In Table 4.6 one can see all the results for 

this dataset. 

Classifier Accuracy Rate Net Reliability CPU Time 
kNN 70.03% 0.3899 0.0000 
W-kNN 69.99% 0.3880 0.2403 
D-kNN 70.44% 0.4009 0.4795 

 
Table 4.6 – Results for the Vehicle dataset. The winning classifier is D-kNN, scoring better in 

Accuracy Rate and Net Reliability. 
 

Regarding the last dataset, Boston Housing, the results are somewhat 

ambiguous, like in the Breast Cancer Wisconsin dataset. W-kNN was the most 

accurate one, having the best Net Reliability as well, while its CPU time was quite 

satisfactory. In Table 4.7 one can see the results for all classifiers for this dataset. 

Classifier Accuracy Rate Net Reliability CPU Time 
kNN 67.57% 0.3308 0.0000 
W-kNN 68.96% 0.3587 0.0789 
D-kNN 66.99% 0.3483 0.1793 

 
Table 4.7 – Results for the Boston Housing dataset. The winning classifier is W-kNN, scoring 
better in Accuracy Rate and Net Reliability. At the same time, its CPU time was good as well. 

 

In Table 4.8, we summarise the findings of the experiments with the six 

datasets, showing the winner with respect to each evaluation criterion.  
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Dataset Accuracy Rate Net Reliability CPU Time (2nd) 
in sec. 

Bupa Liver D-kNN (66.31%) D-kNN (0.2572) W-kNN (0.0226) 
Pima Indians W-kNN and kNN 

(73.70%) 
D-kNN (0.4299) W-kNN (0.1020) 

Breast Cancer W. D-kNN (95.90%) D-kNN (0.9169) W-kNN (0.0920) 
Heart Disease D-kNN (81.31%) D-kNN (0.5926) W-kNN (0.0332) 
Vehicle D-kNN (70.44%) D-kNN (0.4009) W-kNN (0.2403) 
Boston Housing W-kNN (68.96%) W-kNN (0.3587) W-kNN (0.0789) 
 

Table 4.8 – Winners based on average performance over the 50 rounds. The winning 
performance metric is shown inside brackets. The Net Reliability is calculated by means of 

the classification and the Degree of Certainty vectors at the end of each experiment. 
 
 

Afterwards, a one-to-one comparison was made for each pair of classifiers, 

showing how many times (rounds) one classifier outperformed the other. Then, 

these scores were added up for each classifier. The final sum reveals the relative 

performance of each classifier and is shown in Table 4.9. 

Dataset Accuracy Rate Net 
Reliability 

CPU Time 
(2nd) in sec. 

Bupa Liver D-kNN (97) D-kNN (100) W-kNN (50) 
Pima Indians W-kNN (67) D-kNN (76) W-kNN (50) 
Breast Cancer W. D-kNN (100) W-kNN (90) W-kNN (50) 
Heart Disease D-kNN (73) D-kNN (94) W-kNN (50) 
Vehicle D-kNN (65) D-kNN (86) W-kNN (50) 
Boston Housing W-kNN (94) W-kNN (88) W-kNN (50) 

 
Table 4.9 – Winners based on the relative performance, pairwise, over 50 rounds. The 

numbers in brackets show the total number of times the winning classifier was better than the 

other two in terms of a particular performance measure, for each dataset. As each classifier is 

compared against two others, these numbers range from 0 to 100. 

 

It is noteworthy that in all of the six datasets, kNN was outperformed by one 

of the variations introduced in this work. Also, the only criterion where it actually 

performed well was speed, since it required no training. The mean performance of 

the three classifiers over the six datasets is shown in Table 4.10.  
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Classifier Accuracy Rate Net Reliability CPU Time 
kNN 74.94% 0.4676 0.0000 
W-kNN 75.05% 0.4718 0.1093 
D-kNN 75.66% 0.4910 0.1984 

 
Table 4.10 – Average performance of classifiers, for the six datasets they were tested on. The 

proposed classifiers have a higher accuracy rate than kNN and a higher reliability as well. 

 
 From the above results we can see that while both of the proposed classifiers 

perform better than the kNN, on average the D-kNN method performs best, taking 

into account both Accuracy Rate and Net Reliability. Yet, as regards speed, it is 

outperformed by kNN. Quite close in terms of performance comes the other kNN 

extension, W-kNN, which is also faster. In addition, there is a correlation between the 

Accuracy Rate and the Net Reliability, in the winners’ tables. This is something 

expectable, as a winning classifier is bound to be good in both of these criteria. 

4.3 Other kNN Extensions 
4.3.1 Extensions of kNN with Self-determined k  

Although the measures presented in this section are not strictly Discernibility-based, 

they are interesting variations of kNN and can compliment the methods described 

previously. These extensions have the interesting feature of not needing a k parameter 

from the user, since they optimise it on their own. Two such extensions have been 

developed: the Variable k Nearest Neighbour (V-kNN) and the Class-based k Nearest 

Neighbour (C-kNN). 

 

4.3.1.1 Variable k Nearest Neighbour 

Since the value of the k parameter often influences the classification results, 

sometimes significantly, we devised a classification algorithm that overcomes this 

issue. By making use of the Degree of Certainty concept it estimates the optimum k 

for each classification. 

 The Variable kNN (V-kNN) classifier works as follows. First for each one of the 

training set patterns a classification of it is performed based on various 

neighbourhoods and the Degree of Certainty (DC) for various k values is calculated. 

Then, the k value that maximises the DC of each classification is found (i.e. for every 

pattern to be classifier, there is bound to be a different k which is more appropriate). 

Therefore, for each training pattern, there corresponds a particular k value which is 
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considered the best available (the set of these values constitutes the “best” k array). 

All this is the training phase of the V-kNN classifier. Coming to the testing phase of 

the classifier, for each unknown element, the nearest neighbour of the test pattern is 

found and based on the “best” k array, its k value is assumed. Then, the kNN classifier 

is applied on that test pattern using that particular k value. As a concept, this is 

something similar to one of the ideas presented by Khan et al. (2002), who showed 

that the kNN performance can be increased if “instead of taking exactly the k nearest 

neighbours a closed-KNN set is formed”. The pseudocode of this classifier appears in 

Algorithm 4.3. Note that since the performance of kNN is not affected much by the k 

parameter for high values of it, a default maximum value of 20 is used. Also, a higher 

value would compromise the classifier’s speed. 

 

Algorithm 4.3 – The V-kNN classifier 
Inputs: Input patterns of training set (P), labels of training set (T), patterns of testing set (PT) 
Outputs: classification vector of testing set (y) 

1 Initialisation: set i = 0 (the i-th training pattern), j = 0 (the j-th testing pattern), k (parameter of 
the KNN, given by the user), kmax = 20 

2 n ← number of patterns of testing set (PT) 

3 N ← number of patterns of training set (P) 

4 Do i ← (i + 1) 

5 P2 ← P without pattern i 

6 do k ← (k + 1) 

7 classify i using P2 and kth nearest neighbour 

8 D(k) ← calculate the Degree of Certainty of Classification using Eq. (3.2) for the particular  
             k-th nearest neighbour 

9 until k = kmax 

10 )(maxarg kDK
ki   

11 until i = N 

12 Do j ← (j+1) 

13 d(N) ← vector of distances of PT(j) to each one of the elements of P, calculated using Eq. 3.1 

14 )(minarg jdnn
j

  

15 k ← K(nn) where K = {Ki} 

16 Yj ← classification output based on kNN using above k 

17 DCj ← Degree of Certainty based on above classification 

18 until j = n 

 
 It is noteworthy that apart from its performance as a classifier, the V-kNN 

approach yields some useful information about the dataset: a good value for the k 

parameter, which for kNN-type classifiers is very useful to know as it improves their 
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performance, particularly for the classical kNN classifier. However, for very sparse 

datasets the optimum k found may not be valid and the results may not be better than 

those of kNN. The suggested k values for the various dataset used are shown in Table 

4.11. 

 

Dataset Suggested k 
Bupa Liver 7 
Pima Indians 6 
Breast Cancer W. 2 
Heart Disease 6 
Vehicle 5 
Boston Housing 6 

 

Table 4.11 – Suggested k values for the various datasets used. These values were obtained by 

averaging the k values V-kNN found best for each one of the patterns of the datasets it was 

applied on. 

 

 In datasets where the classes are quite entwined and the entities of each class are 

close together with each other, V-kNN definitely yields better results than kNN, as the 

k parameter needs to be redefined for each entity of the test set. 

 We can observe V-kNN’s advantage over kNN visually in Figure 4.4. This is a 

close-up of the clouds dataset, from (ELENA Project Artificial Databases, 2008). The 

pattern to be identified (*) belongs to the class depicted with the crosses (+). The 

patterns inside a square are the ones taken into account for each classification. 

 While kNN takes into account the k = 5 closest patterns, V-kNN decides to use 

only the k* = 1 closest pattern (Fig. 4.4), as it has found it to yield the best result 

among the elements of the training set. This difference in the k parameter can be the 

difference between a misclassification and a correct classification, as it is apparent in 

this case. Note that kNN would still fail with k = 3 or k = 7, in this case. 
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Figure 4.4 – V-kNN’s performance on the same pattern of the clouds dataset (as Fig. 4.1 – 
4.3). V-kNN classifies the pattern at hand correctly since it makes use of the best k for this 

particular pattern, which in this case is equal to 1. Hence the one and only pattern taken into 
account for the classification is the one inside the box. 

 

 

4.3.1.2 Class-Based k Nearest Neighbour 

The Class Based kNN (CB-kNN) is somewhat different as a kNN extension as it does 

not take into account a number of neighbours around a given test pattern but a number 

of neighbours from each class. It was developed because often the datasets are 

unbalanced as regards their class structure, so it may be a case that one class has too 

few elements to “win” the vote of a classification of the kNN classifier. 

 The CB-kNN algorithm deals with these datasets by working in the following 

way. For every test element, the k nearest elements of each class are taken. The value 

of k is automatically selected by the classifier, so as to maximise the DC of the 

classification. Afterwards, the harmonic mean of the distances of these neighbours is 

calculated (so that it is not influenced so much by the most distant elements). Finally, 

these means are compared and the class yielding the lowest value is chosen for the 

classification. The detailed algorithm of this classifier can be viewed below: 
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Algorithm 4.2 – The CB-kNN classifier 
Inputs: Input patterns of training set (P), labels of training set (T), number of neighbours (k), patterns 
of testing set (PT) 
Outputs: classification vector of testing set (y) 

1 Initialisation: set l=0 (class variable), i=0 (pattern variable), j=0 (another class variable), k=0 
(number of neighbours from each class) 

2 n ← number of patterns of testing set (PT) 

3 N ← number of patterns of training set (P) 

4 q ← number of classes of dataset 

5 do l ← (l + 1) 

6 Cl ← P(elements belonging to the l–th class) 

7 until l = q 

8 do i ← (i + 1) 

9 do j ← (j + 1) 

10 d ← vector of distances of PT(i) to C(j) 

11 sd ← d sorted in ascending order 

12 do k ← (k + 1) 

13 apply kNN using current k 

14 D(k) ← Degree of Certainty of above classification using Eq. (3.4) 

15 until k = 20 

16 )(maxarg kDK
ki   

17 sd ← sd(first K elements) 

18 Hj ← harmonic mean (sd) 

19 until j = q 

20 )(maxarg jHb
j

  

21 yi ← class b 

22 DCi ← sum(Η) / min(Η) 

23 until i = n 

 

 CB-kNN’s superiority over kNN in some difficult classification instances can be 

viewed in the “clouds” dataset example (Fig. 4.5). The pattern of interest is indicated 

by a (*) and squares are used to identify the points taken into account for the 

classification. As the classifier estimates a K = 1, it takes into account only 1 pattern 

from each class. Since the distance of the pattern of class (+) is smaller than that of 

class (x), the pattern at hand is classified accurately as belonging to class (+). 
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Figure 4.5 – CB-kNN’s performance on the same pattern of the clouds dataset. CB-kNN 

classifies the pattern at hand correctly because instead of taking the k nearest neighbours, it 
takes Κ neighbours from each class and compares the harmonic mean of their distances to the 
test element. In this case, K is estimated by the classifier to be equal to 1. Therefore, only 1 
pattern from each class is taken into account. These patterns are the ones within the boxes. 

 
 
4.3.1.3 Experimental Results of kNN Extensions with Self-determined k  

The experiments conducted for these kNN extensions are of the same type as those 

described in the previous section (i.e. they are carried out in the same datasets and for 

the same number of rounds, using the same evaluation criteria). Their results are as 

follows: 

 In the Bupa Liver dataset, CB-kNN was slightly better than kNN (about 0.5%) yet 

its reliability was slightly less. However, V-kNN had a higher reliability than all of 

them. Therefore there is no clear winner for this dataset, as it can be seen from Table 

4.12. 

 

Classifier Accuracy Rate Net Reliability CPU Time 
kNN 62.99% 0.1964 0.0000 
V-kNN 62.08% 0.2188 0.0265 
CB-kNN 63.59% 0.1903 0.1071 

 
Table 4.12 – Results for the Bupa Liver dataset. There is no clear winner, although CB-kNN 

scored best in Accuracy Rate. 
 
Apparently, V-kNN did not perform as well as the classic kNN in terms of 

accuracy rate. This is due to the nature of the dataset, particularly its structure which 

requires a different approach than that of V-kNN. Particularly, in this dataset V-kNN 

assumed an average k value of 1 for each one of the classification experiments. This 
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means that is actually turned itself into a simple NN classifier, which is naturally less 

effective than a kNN one. 

 As regards the Pima Indians dataset, V-kNN outperformed the other two 

classifiers by scoring 0.85% higher accuracy rate (see Table 4.13) and a quite higher 

Net Reliability. Also, compared to CB-kNN, it was much faster as well. If the dataset 

was more complex CB-kNN would have also outperformed kNN. And if we consider 

the Discernibility of the dataset, as an expression of this complexity we will see that a 

pattern emerges. This dataset, just like the previous one (Bupa), has a relatively high 

Discernibility (Pima’s SID is 0.6862 and Bupa’s SID is 0.5855). Therefore, such a 

sophisticated classifier could be considered inappropriate for such a dataset. 

 

Classifier Accuracy Rate Net Reliability CPU Time 
kNN 73.70% 0.4199 0.0000 
V-kNN 74.55% 0.4707 0.1008 
CB-kNN 72.70% 0.3244 0.4211 

 
Table 4.13 – Results for the Pima Indians dataset. Unmistakably, the winning classifier is V-
kNN, scoring high in both Accuracy Rate and Net Reliability. Also, it had a quite good CPU 

time. 
 
 Regarding the Breast Cancer Wisconsin dataset, both of the proposed classifiers 

performed quite well compared to kNN. CB-kNN halved the error rate of kNN, 

although its Net Reliability was not as high. Therefore, since V-kNN’s accuracy rate 

was not much lower, its Net Reliability the highest of all three classifiers, and its CPU 

time quite low, we can safely say that this is the winning classifier for this dataset (see 

Table 4.13). 

 

Classifier Accuracy Rate Net Reliability CPU Time 
kNN 94.50% 0.9039 0.0000 
V-kNN 96.56% 0.9285 0.0839 
CB-kNN 96.93% 0.8522 0.3691 

 
Table 4.14 – Results for the Breast Cancer Wisconsin dataset. Although CB-kNN had the 

highest Accuracy Rate, V-kNN performed best, exhibiting high Accuracy Rate, the highest 
Net Reliability and low CPU time. 

 
 
 Concerning the Heart Disease dataset, the winning classifier is kNN. However V-

kNN had a higher Net Reliability, yet the accuracy rate gap was much higher in the 

case of the classic kNN. The results for all of the classifiers are shown in Table 4.15. 
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Being a very simple dataset (SID = 0.8444), it appears that is requires an equally 

simple classifier, if we are to obtain the best possible results. 

 
Classifier Accuracy Rate Net Reliability CPU Time 
kNN 80.86% 0.5649 0.0000 
V-kNN 71.83% 0.5803 0.0180 
CB-kNN 79.29% 0.4762 0.0877 

 
Table 4.15 – Results for the Heart Disease dataset. The winning classifier is kNN having the 

highest Accuracy Rate and relatively high Net Reliability. 
 

 

As concerns the Vehicle dataset (see Table 4.16), V-kNN was clearly the winning 

classifier, scoring a very high Accuracy Rate and a relatively high Net Reliability, 

without compromising much on the CPU time. This can be explained as follows: the 

Discernibility of this dataset is extremely low (SID gives a value of 0.0024), implying 

that the classes are very much overlapping. Therefore, a more sophisticated approach 

would be necessary if we are to obtain a good accuracy in the classification. This is 

demonstrated by the results of the proposed classifiers, which aim to undertake this 

role. 

 
Classifier Accuracy Rate Net Reliability CPU Time 
kNN 70.03% 0.3899 0.0000 
V-kNN 85.08% 0.3831 0.1230 
CB-kNN 70.89% 0.2461 1.0179 

 
Table 4.16– Results for the Vehicle dataset. The winning classifier is V-kNN due to the 

exceptionally high Accuracy Rate and the high Net Reliability. Also its CPU time was quite 
low. 

 
 

As for the last dataset used, Boston Housing, CB-kNN is the winning classifier 

among the three. Its high Accuracy Rate (about 2.5% higher than that of kNN), 

combined with its relatively high Net Reliability renders it better than the other two 

(although V-kNN performs very well in comparison). However, if speed is of higher 

importance, V-kNN can be considered as the best classifier, since it is quite fast and it 

has the highest reliability as well. Also, its accuracy rate is higher than that of kNN - 

see Table 4.17 for details. The better performance of CB-kNN (as well as that of V-

kNN) can be explained by taking into account the Discernibility concept. Particularly, 

the SID measure shows that the dataset is quite difficult, as it has an SID value of 
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0.1917. Therefore, one would expect that a simplistic classifier such as kNN would 

need an extra boost in its function if it is to perform well. 

 

Classifier Accuracy Rate Net Reliability CPU Time 
kNN 67.57% 0.3308 0.0000 
V-kNN 67.79% 0.3574 0.0496 
CB-kNN 69.03% 0.3327 0.3654 

 
Table 4.17 – Results for the Boston Housing dataset. Here there is no clear winner either. 

However, both V-kNN and CB-kNN performed better than kNN. 
 
 

 The results of the experiments for the six datasets are summarised in Table 4.18, 

showing the winning classifier for each evaluation criterion and its performance in 

brackets. 

 

Dataset Accuracy Rate Net Reliability CPU Time (2nd) in 
sec. 

Bupa Liver CB-kNN (63.59%) V-kNN (0.2188) V-kNN (0.0265) 
Pima Indians V-kNN (74.55%) V-kNN (0.4707) V-kNN (0.1008) 
Breast Cancer W. CB-kNN (96.93%) V-kNN (0.9285) V-kNN (0.0839) 
Heart Disease kNN (80.86%) V-kNN (0.5803) V-kNN (0.0180) 
Vehicle V-kNN (85.08%) kNN (0.3899) V-kNN (0.1230) 
Boston Housing CB-kNN (69.03%) V-kNN (0.3574) V-kNN (0.0496) 
 

Table 4.18 – Summary results of self-determined k kNN variations based on average 
performance on all six datasets. The figures in the brackets show the winning performance 

value. 
 

 

In addition, we make a one-to-one comparison for each pair of classifiers, 

showing the number of times one classifier performed better than the other (i.e. the 

number of rounds one’s performance exceed the other one’s). Afterwards, these 

scores are added up for each classifier. This is done for each one of the evaluation 

criteria. The final sum shows the relative performance of each classifier (see Table 

4.19). 
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Dataset Accuracy Rate Net Reliability CPU Time (2nd) in sec. 
Bupa Liver CB-kNN (74) V-kNN (85) V-kNN (50) 
Pima Indians V-kNN (84) V-kNN (100) V-kNN (50) 
Breast Cancer W. V-kNN (100) V-kNN (100) V-kNN (50) 
Heart Disease kNN (71) V-kNN (92) V-kNN (50) 
Vehicle CB-kNN (94) kNN (86) V-kNN (50) 
Boston Housing CB-kNN (86) V-kNN (95) V-kNN (50) 

 
Table 4.19 – Summary results based on pair-wise of the  self-determined k kNN variations on 

all six datasets. The figures in the brackets show the total number of times the winning 
classifier performed better than the other two, based on each particular criterion. Since each 

classifier is compared against two others for a total of 50 rounds, these numbers range from 0 
to 100. 

 

 It is worth mentioning that in five out of the six datasets, kNN was outperformed 

by one of the methods proposed in this work. Also, apart from that instance, its only 

advantage over the others was speed, since it required no training. In Table 4.20, the 

average performance of all three classifiers over the datasets used can be seen. 

 

Classifier Accuracy Rate Net Reliability CPU Time 
kNN 74.94% 0.4676 0.0000 
V-kNN 79.16% 0.5440 0.0751 
CB-kNN 75.40% 0.4037 0.3947 

 
Table 4.20 – Average performance of the three self-determined k kNN variations based on all 

six datasets. The proposed classifiers have a higher Accuracy Rate than kNN and V-kNN has 

a higher Net Reliability as well. 

 

 From these results we can see that CB-kNN has a slightly higher accuracy rate 

than kNN while V-kNN outperforms them in both accuracy and reliability, 

significantly. Also, the CPU time of V-kNN is considerably low (although kNN is the 

winner in this criterion). So, it can be argued that V-kNN is the winning classifier in 

general. 

 

4.3.2 Minimum Spanning Tree Classifier 

4.3.2.1 Description of Classifier 

The Minimum Spanning Tree Classifier (MSTC) can be seen as an extension of kNN 

with k = 2, utilizing a Minimum Spanning Tree (MST, introduced by Kruskal (1956)) 

representation of the training instances within each class (see Figure 4.6). The 

algorithm for developing these MSTs is a variation of the well-known Prim’s 
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algorithm, which is thoroughly described in textbooks, such as Baase & Van Gelder 

(1999). 

The algorithm works as follows. Each edge in an MST is depicted as a straight 

line between the corresponding patterns (i.e. the patterns that are located on the two 

extremes of the edge) . The distance from a test pattern to an MST is defined as the 

Euclidean distance to the nearest edge of the MST. The classification score is the 

inverse of the distance to the class’ MST (plus a small positive number to avoid the 

division by zero). Note the similarity of MSTC with CB-kNN, and yet the alternative 

approach of employing distances to lines connecting patterns (the MST branches), 

instead of merely distances to the patterns themselves. Its analytical function can be 

seen in Algorithm 4.3. 

 

 

 

 

 

 
 

Figure 4.6 – Illustration of Minimum Spanning Tree Classifier. The two classes, comprised 

by patterns depicted as circles or squares respectively, are represented by their Minimum 

Spanning Trees. The dashed lines represent the distances from the test pattern (represented by 

a white cross) to its nearest MST edges. 

 

Algorithm 4.3 – Pseudo-code for the Minimum Spanning Tree Classifier 
Inputs: Input patterns of training set (P), labels of training set (T), patterns of testing set (PT) 
Outputs: classification vector of testing set (y) 

1 Initialisation: set i = 0 (the i-th testing pattern), j = k = 0 (the j-th class) 

2 n ← number of patterns of testing set (PT) 

3 N ← number of patterns of training set (P) 

4 q ← number of distinctly different values in T (number of classes of dataset) 

5 do j ← (j + 1) 

6 Dj ← distance matrix for patterns of class j 

7    Cj ← connections matrix of MST of class j, based on Dj (variation of Prim algorithm is used) 

8 until j = q 

9 do i ← (i + 1) 

10    do k ← (k + 1) 

11    D ← minimum distance of pattern i to class k 

12    ind ← first pattern for which d = minimum 
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13 F1 ← pattern for which a branch of the MST of class k begins from ind, based on Ck 

14 F2 ← pattern for which a branch of the MST of class k ends to ind, based on Ck 

15 dtemp ← distance vector of pattern i to patterns of f1 and f2 

16 D2 ← shortest distance of i to the group of patterns of class k, connected to ind 

 17 ind2 ← pattern for which d2 = minimum 

18 D3 ← distance between ind and ind2 (these are the patterns of the closest branch) 

19 if d2 ≥ sqrt((d1)2 + (d3)2) 

20    d ← d1 (the closest part of the branch is the pattern in the closest end of the branch) 

21 Else 

22    t ← (d1 + d2 + d3) / 2 (semi-circumference of the triangle formed by the test pattern (i) and   
the patterns of the closest branch) 

23    area ← sqrt(t.(t-d1).(t-d2).(t-d3)) (Heron’s method of calculating the area of the triangle) 

24    d ← 2.area / d3 (height of the triangle, which by definition is equal to the distance of i to the 
closest branch) 

25    end of if 

26    pj ←  1 / (d + eps) (where pk  = voting score for class k, and eps is a very small number, to avoid 
division by zero) 

27    until k = q 

28    IND ← class for which p = maximum 

29    yi ← class IND (classification of pattern i) 

30 until i = n 

 

 The main advantage of the MSTC is that it views each class as an entity instead as 

an amalgamation of points. This allows it to “sense” links between pairs of patterns 

that would be otherwise invisible to a transductive classifier (a classifier that uses a 

direct associationg between the testing patterns and the training ones), such as kNN 

and its extensions. Also, it is a relatively diverse classifier, not limited to a particular 

type of dataset. However, its Net Reliability (for a definition, see Section 3.3) is 

relatively low, in general, as the way Degree of Certainty is applied on its 

classification rule is often misleading due to the great variance of the distances 

involved. In addition, it may be slow when it is applied on very large dataset in terms 

of number of patterns. Overall, the MSTC is a robust classification system for 

relatively small datasets, particularly ones having a lot of noise. Also, it performs best 

when the patterns of each one of the classes of the dataset form one cluster. 

Furthermore, it may be rather useful in problems tackled with the semi-supervised 

learning approach. 

 

 



 57

4.3.2.2 Experimental Results of Minimum Spanning Tree Classifier 

Some experiments were conducted to test the performance of the MSTC. These were 

carried out in five different benchmark datasets from the UCI repository (UCI 

Repository, 2008): Wine, Glass, Bupa Liver, Vehicle and Vowel. The experiments 

comprised of 50 rounds of 10-fold cross-validation and involved the Minimum 

Spanning Tree and k Nearest Neighbour classifiers. The evaluation criteria used were 

Accuracy Rate and CPU time. The results are shown in Table 4.21. 

 

KNN MSTC Classifier 
Dataset Accuracy Rate CPU Time Accuracy Rate CPU Time 

Wine 95.26% 0.0045 95.37% 0.0345 
Glass 66.74% 0.0055 69.59% 0.0390 
Bupa Liver 60.88% 0.0091 61.51% 0.2929 
Vehicle 70.08% 0.0442 70.08% 0.9758 
Vowel 91.55% 0.0146 94.87% 0.1725 

 
Table 4.21 – Average performance of the kNN and MST classifiers based on five datasets. 

The proposed classifier generally has a slightly higher Accuracy Rate than kNN although it is 

somewhat slower. 

 

From the above results we can observe that MSTC performs at least as well as the 

kNN classifier. One drawback of this method is that it requires a lot of CPU time, 

mainly due to the fact that the construction of a MST is a computationally expensive 

process. Yet, if our primary concern is the accuracy rate, it is worth the effort, 

particularly when dealing with “difficult” datasets, such as glass. 

4.4 Summary and Contribution of the Chapter 
In this chapter we presented the two classifiers that are based on or related to the 

Discernibility concept, as well as three other classifiers based on the kNN philosophy. 

Their function was explained and their behaviour was investigated experimentally. 

The experiments conducted show that the developed methods generally outperform 

kNN.  

 This chapter also contributed a few alternative approaches to improving the kNN 

classifier and also proposed another distance-based classifier similar to kNN, namely 

the Minimum Spanning Tree classifier. In addition, the advantages and limitations of 

the proposed methods are exhibited. 



 58

 This chapter contributes to the thesis by showing how the Discernibility concept 

can be used to enhance the performance of a classifier and explain its behaviour on 

different types of datasets. 
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Chapter 5 – Discernibility-Based Methods of Data 

Processing 

 

One of the most practical applications of the Discernibility concept is that of data 

processing. Particularly, the evaluation of (a part of) a dataset can be used to assess 

the importance of features and patterns and therefore clear the dataset of the features 

or patterns which are considered less useful for the classification process. In the first 

case the application of Discernibility takes the form of a “filter” or a filtering process, 

used to find the most discernible features (or   combination of features), discarding all 

the others (feature selection). In the second case, it involves finding the most 

discernible patterns (i.e. those having the highest discernibility) and by taking into 

account the distances among them removing many of them (data reduction).  

5.1 Feature Selection and Discernibility 
Feature selection, the process of finding the best features within a dataset and 

discarding the rest, has been a popular topic over the past few years, as it promises 

better performance (particularly in terms of speed) and reduced complexity, 

something very significant in classification, among other fields of application. In 

addition, sometimes the accuracy rate is increased when the classifier is applied on the 

reduced feature set. This renders feature selection an important technique for 

classification problems with high dimensional data. 

Feature selection is a special type of dimensionality reduction. The latter has been 

accomplished using Genetic Algorithms (Frohlich & Chapelle, 2003; Lecocke & 

Hess, 2005), Locally Linear Embedding (LLE) (Chao & Lihui, 2005), Recursive 

Salient Analysis (RSA) (Cao et al., 2003), the selection of a support set (Alexe et al., 

2005), a combination of PCA and the UKW clustering algorithm (Tasoulis et al., 

2006), t-tests (Lecocke & Hess, 2005; Mukkamala et al., 2005), Regression Splines 

(MARS) (Mukkamala et al., 2005), Classification and Regression Trees (CART) 

(Mukkamala et al., 2005), Random Forests (Mukkamala et al., 2005), Linear Genetic 

Programs (LGP) (Mukkamala et al., 2005), Neural Networks as a similarity measure 

(Sawa & Ohno-Machado, 2003), and clustering analysis (Alon et al., 1999). 

 Method employing Feature Selection in particular include approaches using 

statistics (Hochreiter & Obermay, 2003; Michalak & Kwa/Snicka, 2006; Liu et. al, 
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2002), fuzzy logic (Shen & Jensen, 2008; Shang & Shen, 2006; Jensen & Shen, 2005) 

as well as several other approaches (for an overview see (Dash & Liu, 1997; Hall, 

1999)). 

The key difference between feature selection and other techniques of 

dimensionality reduction, which is also the edge of the former, is that it preserves the 

semantics by merely selecting the most important features and discarding all the rest. 

Other methods of dimensionality reduction transform the feature space, rendering the 

new feature set challenging to understand and interpret. 

This is why feature selection is a popular choice for various datasets, especially 

ones of high dimensionality, such as those encountered in bioinformatics applications. 

In those cases feature selection is not merely a plausible but often an essential part of 

the classification process as it alleviates the classifier(s) from a lot of unnecessary 

data, rendering the whole process more efficient. To this end, over the last few years a 

series of methods for feature selection have been introduced, most of them focusing 

on microarray data (Frohlich & Chapelle, 2003; Chao & Lihui, 2005; Weston et al., 

2001; Lecocke & Hess, 2005 ; Alexe et al., 2005; Tasoulis et al., 2006; Mukkamala et 

al., 2005; Sawa & Ohno-Machado, 2003; Alon et al., 1999), where the number of data 

points (patterns) is small whilst the dimensionality of the features is very high. 

Feature selection methods used in the literature have been applied successfully 

with SVMs (Frohlich & Chapelle, 2003; Chao & Lihui, 2005; Weston et al., 2001), 

which benefit greatly by the reduction of feature space. This is because their 

performance depends on the dimensionality of the data they are applied on, and a 

relatively high number of features compromises their performance due to overfitting 

(Duda et al., 2001). 

Other approaches have been also considered (Lecocke & Hess, 2005; Alexe et al., 

2005 ; Tasoulis et al., 2006; Mukkamala et al.,  2005; Sawa & Ohno-Machado, 2003; 

Alon et al., 1999) with success as well. However, the underlying problem that all of 

the above methods have is that there is no particular stopping criterion for the feature 

selection method. In other words, the reduced feature sets come in a variety of sizes 

with limited a priori knowledge on the quality of the selected features. 

Based on the Index of Discernibility (Spherical version) we have developed two 

independent feature selection methods. Although of similar philosophy, they differ in 

their structure and in the way they employ the Index of Discernibility. 
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5.1.1 Discernibility-based Feature Selection: the IFF Method 

The first method, IFF (Individual Feature Filtering), is the simplest and the fastest in 

its function. As it can be seen from its flow chart in Fig. 5.1, it makes an assessment 

of each one of the features of the dataset, using the Index of Discernibility, and then 

selects the ones, which are of a given standard. The latter is expressed by the 

threshold th which is given by the user (this is found empirically although any value 

between 0.5 and 1.0 is generally good, with the higher yielding less features). Note 

that since this is an absolute parameter, the number of features at the new feature set 

heavily depends on the dataset itself. However, a value ranging from 0.7 to 0.85 is a 

good choice for the th parameter for most problems. This parameter is set by the user 

in the Initialisation stage, along with the definition of the dataset (Fig. 5.1). The 

outputs of this method are the reduced feature set (P2), as well as a list of the indexes 

(names) of these features (NFS). Note that the initial number of features (na) is 

obtained by MATLAB using a built-in function.  
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Fig. 5.1. Flow chart of the first ID-based feature selection method (IFF). 
 
 

5.1.2 Discernibility-based Feature Selection: the GFS Method 

The second method, GFS (Group Feature Selector), is quite different in its 

function and somewhat more complex. However, it has the advantage that it is 

entirely automatic, as it has no need for a threshold parameter for the selection of the 

features. As it can be seen for Fig. 5.2, where its flow chart is shown, it gradually 

builds the new feature set (P2) by initially taking the first feature of the dataset and 

then adding two features at a time, so as to maximise the Spherical Index of 

Discernibility of the whole feature set. In other words, the features are not evaluated 

one by one, but as a group, something which although more time-consuming, is a 
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better way of selecting the features, since it takes into account their relationship. 

Afterwards, the algorithm checks if by removing one of the features of P2 the 

Spherical Index of Discernibility is increased or at least remains the same. This step 

helps prevent the accumulation of redundant features in the new feature set. By 

repeating this process (adding 2 new features and removing 1, if there is a 

redundancy) until the Spherical Index of Discernibility ceases to increase, this method 

goes through the rest of the available features of the original feature set. Alike the 

previous method, its outputs are the reduced feature set (P2), as well as a list of the 

indexes of these features (NFS). This method tends to yield smaller reduced feature 

sets and often takes longer, due to the increased number of Discernibility calculations 

that are required. A high-level description of this method is exhibited in Algorithm 

5.1. 

 

Algorithm 5.1 – General description of the GFS method for Discernibility-based Feature 
Selection 
Inputs: Input data (P), Data Labels (T)  
Outputs: Selection of best set of features (P2), indexes of these features (NFS) 
 

1 Find the Discernibility of the original feature set using Eq. (3.1) 

2 Get the first feature of P and the corresponding label from T 

3 Find the Discernibility of each one of the combinations of the features acquired so far and all the 
other ones, using Eq. (3.1) 

4 Keep the feature that maximises the Discernibility of the pair 

5 Check if by removing any one of the features gathered so far is unnecessary (i.e. the 
Discernibility of the new feature set is the same or higher if this feature is removed 

6 Get another feature, so as the Discernibility of the new feature set is maximised (i.e. repeat what 
was done in Steps 3 and 4). Store the selected features in P2 and their indexes in NFS 

7 Repeat steps 3-6 while the Discernibility of the acquired features is smaller than that of the 
original feature set (calculated in Step 1) 

8 Output new feature set (P2) and the indexes of the selected features (NFS) 
 

Generally, this method is quite simple to implement and works well with a 

number of different classifiers. Also, it is independent on the dataset it is applied on. 
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Fig. 5.2. Flow chart of the second Discernibility-based feature selection method (GFS). Note 
that although this method uses the Spherical Index of Discernibility, it can also employ the 

Harmonic ID, which is why the term ID is used in the flowchart. 
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5.2 Data Reduction and Discernibility 
The past five decades have been revolutionary in the way in which data acquisition 

has developed (Skyt et al., 2008). This facilitated the accumulation of data, in both 

resolution (high number of features) and size (large number of patterns), rendering 

today’s databases on the order of terabytes (Skyt et al., 2008). This gave rise to a 

constantly growing need for data reduction as well as the adoption of an eclectic 

attitude towards the attributes of certain datasets, particularly those containing 

microarray data (Voulgaris & Magoulas, 2008b). In this section we explore how we 

can achieve data reduction using the novel concept of Discernibility that we have 

introduced previously. 

According to Li and Jacob (2008), there are two distinct approaches to Data 

Reduction: the general purpose Data Reduction and the task-specific Data Reduction. 

Since in this research we are dealing with classification, we will focus on the latter 

approach (which as one would expect, yields better results for the classification task). 

Contrary to what one would expect the reduced datasets often exhibit better 

classification performance (accuracy rate). This is probably due to the reduction in 

complexity, which in the original dataset takes the form of redundant patterns and 

useless outliers as well as the removal of noisy patterns in some cases. 

Data reduction can be accomplished using the Discernibility concept by 

assessing how “easily” distinguishable the various patterns of a dataset are, and then 

removing the ones having the highest discernibility, taking into account their 

distances to the other patterns of their classes. Contrary to the feature reduction 

techniques, in this application of Discernibility it is unwise to eliminate patterns 

below a given threshold, since there is a strong inter-dependency among all of them, 

as regards their Discernibility status and by removing the patterns below a certain 

threshold, the dataset loses its original geometric structure. Therefore, the patterns to 

be removed have to be selected carefully; otherwise there is a risk of distorting the 

class structure of the dataset (resulting to a drop in the accuracy rate of the classifiers). 

In the method developed here, this is accomplished by using Discernibility along with 

the distances between the removed patterns. In other words, we remove not only the 

most discernible patterns (i.e. the ones the are “easy” to classify and therefore 

relatively redundant), but also the ones that are as far as possible from the ones 

already removed. An analytical description of the operation of this method can be 

seen in the flowchart of Fig. 5.3.  



 66

From this flow chart, one can observe that the two factors mentioned earlier –, 

the patterns’ Discernibility scores (Z) and their distances (DD) to the other patterns 

that are to be discarded – are taken into account with equal weight since they are both 

equally important. Therefore, a removed pattern has to be easy to distinguish (i.e. 

have a high Discernibility) and be relatively far away from other patterns that will be 

removed (have a large distance from them). This allows the reduction of the patterns 

to be “smooth” and balanced, since the removed patterns are taken from the whole 

dataset space (due to the distance criterion) and thin out the denser areas of each class 

(Discernibility criterion). 

The data reduction method is fine-tuned using a particular threshold parameter 

(th), which refers to the reduction ratio. This parameter is equal to the amount of 

patterns that are removed from the original dataset. 
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Fig. 5.3. Flow chart of the Discernibility-based data reduction method. 
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5.3 Experimental Results 
5.3.1 Experimental Setup 

The above methods have been implemented in MATLAB and tested thoroughly on a 

number of datasets. A number of different classifiers were used, in order to 

demonstrate the methods’ independence to the classification process itself, in terms of 

performance. 

 The classifiers used in the experiments were the k Nearest Neighbour and two of 

its modifications, the Linear Discriminant Analysis (LDA) method, described in Duda 

et al (2001) as well as Fidler & Leonardis (2003), the Gravity Model Classifier 

(GMC) which was initially proposed by Ruta & Gabrys (2003), the Fuzzy kNN 

method (Keller et al., 1985), the Decision Tree C4.5 algorithm, the Reduced Coulomb 

Energy classifier (RCE), as described in Duda et al (2001) and the Minimum 

Spanning Tree Classifier (MSTC), which was presented in Section 4.3.2. 

 The kNN algorithm classifies a pattern according the plurality vote among its k 

nearest neighbours from the training set: the pattern is assigned with the winning 

class; if there is a tie, the minimum index wins. The classifier scoring function, for a 

class, is the number of those of the k neighbours that belong to the class. In our 

experiments, we take the k to be equal to 5, as our experience shows that this a good 

choice for the neighbours parameter for these datasets. 

 The kNN extensions used in these experiments are V-kNN (for the feature 

selection experiments) and the Fuzzy kNN. The first of them was described 

thoroughly in Chapter 4.4 and was chosen due to its promising performance and high 

classification speed. The second kNN extension was introduced by Keller et al. (1985) 

and is a good demonstration of a Fuzzy Logic classification system, based on the kNN 

paradigm. This classifier is more thoroughly described in Section 2.1.4. 

 The LDA algorithm implements Fisher’s linear decision rule (Fisher, 1938) by 

deriving a separating hyperplane for each class to minimise the ratio of the “within-

class” average error over the “out-of-class” average error. Its scoring function, for 

each class, is the value of the separating linear rule derived for the class if it is 

positive, or zero if it is negative. This rule is based on the conditional probability fi 

that a test pattern k belongs to a particular class i, calculated with Eq. 5.1. The class 

yielding the highest probability value fi wins the classification. 

            
Eq. 5.1 
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where  μi is the average feature values of the patterns of class i, 

  xk is the vector of the feature values of pattern k, 

  C is the covariance matrix, and 

  pi is the prior probability related to class i, which is estimated based on the 

number of patterns in the class. 

The function of LDA is described in Algorithm 5.2. 

 

Algorithm 5.2 – Pseudo-code of LDA classifier 
Inputs: Input patterns of training set (P), labels of training set (T), patters of testing set (PT) 
Outputs: classification vector of testing set (y) 
 

1 Initialisation: Set i = 0, j = 0 

2 N ← number of data elements in P 

3 q ← number of unique elements in T (classes) 

4 na ← number of attributes in P 

5 remove attributes that have variance of 0 (if a is their number, na ← na – a) 

4 do i ← (i + 1)  

5 find patterns of class i (Xi) and count them (ni) 

6    calculate the class probability of class i: pi ← ni / N 

7    calculate the mean of class i: mi ← sum(pi) / ni 

8 until i = q 

9 calculate the global mean: M ← p*m 

10 do j ← j + 1 

11 find distance of each pattern of class j, to the class’s mean: XX ← Xj – mj 

12 compute covariance matrix for class j: c ← XXT*XX / ni 

13 compute within group variance: C ← C + c*pj 

14 until j = q 

15 calculate the inverse matrix of C: CC ← C-1 

16 find most significant eigenvectors: A ← –0.5 * diag(m*CC*mT) + log(p)T 

17 calculate probability values for different classes: f ← m*CC*PTT + A 

18 Q ← j value for which fj is maximised 

19 classify all patterns to classes depicted by Q 

 

 The GMC algorithm used closely follows the method proposed by Ruta and 

Gabrys (2003). Given a test pattern, its squared Euclidean distances to all training 

instances are computed, inversed (with an added very small positive to avoid 

divisions by zero) and summed up within the classes. A within-class sum represents 

the class’ gravity force. The class whose force is maximal wins and is assigned to the 

pattern. The forces form the classification scores. 
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 The C4.5 method used is the popular Quinlan’s algorithm that draws a decision 

tree over the training set to minimise the entropy between the tree leaf partition and 

class-partition. Its default parameter is the split stopping threshold (th = 10% of alien 

entities in a node). We have taken the scoring function of this decision rule to be 

constant and equal to 1 – th = 0.9. This is a very good estimate of the confidence of 

the classifier, since this is the expected probability of a correct classification, based on 

the training set (which defines the branches of the decision tree). 

 The RCE algorithm surrounds each of the training patterns by a sphere of the 

maximum radius satisfying the property that no training patterns belonging to 

different classes belong to the sphere. (The radius is defined, thus, as the minimum 

distance between the current pattern and a pattern from a different class minus a small 

positive real, typically about 10-4.) Given a test pattern, the classification score of a 

class is the number of training patterns from the class, whose spheres contain the test 

pattern. 

 The MSTC method is a classifier already described in section 4.3. 

 In the classifiers utilising the between-pattern distances, the (whole) dataset is pre-

normalised in such a way that, for each feature, its minimum is zero and the 

maximum is unity. 

 The datasets used for feature selection and data reduction were selected so as to be 

suitable for the application of these techniques. In the first case they are four datasets 

taken from a bio-medical repository (Kent Ridge Bio-medical Data Set Repository, 

2008) and are representative of a class of bioinformatics applications that employ 

microarray data. These datasets are Lymphoma, Colon, Leukaemia, Prostate, and 

Brain Cancer. All of them exhibit a very high dimensionality, while the number of 

patterns is quite limited. This makes the feature selection process more necessary as 

well as more challenging. 

 For the data reduction experiments, we made use of two large datasets from UCI 

repository (UCI Repository, 2008) and the clouds dataset from (ELENA Project 

Artificial Databases, 2008). The datasets from UCI repository are coded as pendigits 

and magic. All of these datasets exhibit a large number of patterns. A larger size 

would render them too large to manage using MATLAB, given the memory 

restrictions of the computers used. In all of the experiments conducted in this chapter, 

50 rounds of 10-fold cross-validation were carried out. 
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5.3.2 Feature Selection Experiments 
5.3.2.1 Results of Feature Selection Methods 

The aim of this set of experiments was to investigate whether the methods can cope 

with different datasets without fine tuning. So we decided not to experiment with 

different threshold values in order to establish some kind of “optimum” threshold for 

each dataset but to set the threshold value used in the IFF method equal to 0.75 (this 

means that any feature having an SID less than 0.75 is omitted from the new feature 

set). Although this may not be the optimum value, results exhibited in Tables 5.2 – 

5.11 were quite promising in general.  

 As it can be seen from Table 5.1, the reduction of the feature set for each one of 

the four datasets is dramatic. Particularly after the application of the GFS method, the 

new feature sets are tiny compared to the original ones. This is translated to smaller 

complexity of the datasets (as it will be seen later on), and significantly less need for 

storage space. 

 
Dataset No. of 

Patterns 
Original no. of 

Features 
Features 
after IFF 

Features 
after GFS 

DLBCL 47 4026 45 4 
Colon 62 2000 11 4 
CNS 60 7129 19 4 
Leukaemia 72 7129 112 2 

 
Table 5.1. Datasets characteristics and sizes of reduced feature sets 

 
 

5.3.2.2 Classification Experiments with the Reduced Feature Sets 

In this set of experiments we investigated whether the use of the reduced feature sets 

affects the quality of the classification. To this end we used a variety of classifiers and 

evaluation measures.  

 Classification results with the original feature sets are presented in Tables 5.2-5.6. 

The accuracy rate in all these experiments is computed for the test set. Note that for 

the LDA classifier, there are no results for the CNS and Leukaemia datasets. This is 

because due to very high computational demands, the system could not complete the 

relevant experiments. 

 As regards the overhead of the feature selection process, for the IFF algorithm, the 

CPU time ranged from 6 to 23 seconds (depending on the dataset), while for the GFS 

method, from 24 to 104 seconds. 
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Dataset Accuracy Rate Degree of Certainty CPU Time (sec) 

DLBCL 0.5532 0.6511 1.0100 
Colon 0.8387 0.8516 0.8900 
CNS 0.6667 0.6767 3.0500 
Leukaemia 0.9306 0.8861 4.6800 

 
Table 5.2. Results for kNN using the original feature set 

 

Dataset Accuracy Rate Degree of Certainty CPU Time (sec) 
DLBCL 0.4894 0.8237 16.880 
Colon 0.7903 0.9530 15.820 
CNS 0.6333 0.8263 76.520 

Leukaemia 0.9028 0.9746 144.45 
 

Table 5.3. Results for V-kNN using the original feature set 

 

Dataset Accuracy Rate Degree of Certainty CPU Time (sec) 
DLBCL 0.5532 0.6548 0.9600 
Colon 0.8548 0.8561 0.7200 
CNS 0.6667 0.6806 3.1900 

Leukaemia 0.9306 0.8871 4.7400 
 

Table 5.4. Results for Fuzzy kNN Using the original feature set 

 

Dataset Accuracy Rate Degree of Certainty CPU Time (sec) 
DLBCL 0.6383 0.7234 5381.4 
Colon 0.5161 0.7736 882.40 
CNS - - - 
Leukaemia - - - 

 
Table 5.5. Results for LDA using the original feature set 

 

Dataset Accuracy Rate Degree of Certainty CPU Time (sec) 
DLBCL 0.5106 0.5771 1.7400 
Colon 0.6452 0.6405 1.5300 
CNS 0.6500 0.6227 5.7100 

Leukaemia 0.6528 0.6926 8.3500 
 

Table 5.6. Results for GMC using the original feature set 

 
 

The results of the experiments using the reduced feature sets are exhibited in Tables 

5.7-5.16 and provide the average of the 50 runs. The first five of them show the 

results using the IFF method whilst the rest using the GFS method.  

 



 73

 

Dataset Accuracy Rate Degree of Certainty CPU Time (sec) 
DLBCL 0.7234 0.8936 0.0600 
Colon 0.8548 0.8871 0.0500 
CNS 0.7167 0.7800 0.1200 
Leukaemia 0.9444 0.9639 0.1700 

 
Table 5.7. Results for kNN using the reduced feature set created by IFF 

 
Dataset Accuracy Rate Degree of Certainty CPU Time (sec) 

DLBCL 0.6809 0.9303 1.2900 
Colon 0.9032 0.9480 2.2900 
CNS 0.6833 0.8601 2.2200 
Leukaemia 0.9444 0.9888 3.5500 

 
Table 5.8. Results for V-kNN using the reduced feature set created by IFF 

 

Dataset Accuracy Rate Degree of Certainty CPU Time (sec) 
DLBCL 0.8723 0.8990 0.0900 
Colon 0.9032 0.9011 0.0600 
CNS 0.7000 0.7821 0.1400 
Leukaemia 0.9444 0.9624 0.1900 

 
Table 5.9. Results for Fuzzy kNN using the reduced feature set created by IFF 

 

Dataset Accuracy Rate Degree of Certainty CPU Time (sec) 
DLBCL 0.4255 0.7553 0.2000 
Colon 0.7742 0.8104 0.1900 
CNS 0.5667 0.6945 0.1100 
Leukaemia 0.4861 0.7335 0.2600 

 
Table 5.10. Results for LDA using the reduced feature set created by IFF 

 

Dataset Accuracy Rate Degree of Certainty CPU Time (sec) 
DLBCL 0.7234 0.6951 0.1300 
Colon 0.8387 0.6899 0.2500 
CNS 0.6667 0.6437 0.2200 
Leukaemia 0.6528 0.7954 0.3400 

 
Table 5.11. Results for GMC using the reduced feature set created by IFF 

 

Dataset Accuracy Rate Degree of Certainty CPU Time (sec) 
DLBCL 0.9362 0.8894 0.0700 
Colon 0.8226 0.8710 0.0600 
CNS 0.7833 0.7400 0.0900 
Leukaemia 0.9861 0.9861 0.1400 

 
Table 5.12. Results for kNN using the reduced feature set created by GFS 
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Dataset Accuracy Rate Degree of Certainty CPU Time (sec) 

DLBCL 0.9574 0.9811 1.2700 
Colon 0.7581 0.9568 2.3200 
CNS 0.7667 0.9285 2.1700 
Leukaemia 1.0000 1.0000 3.0300 

 
Table 5.13. Results for V-kNN using the reduced feature set created by GFS 

 
Dataset Accuracy Rate Degree of Certainty CPU Time (sec) 

DLBCL 0.9362 0.9246 0.1000 
Colon 0.8548 0.8915 0.0600 
CNS 0.8500 0.7925 0.1100 
Leukaemia 0.9861 0.9885 0.1800 

 
Table 5.14. Results for Fuzzy kNN using the reduced feature set created by GFS 

 

Dataset Accuracy Rate Degree of Certainty CPU Time (sec) 
DLBCL 0.8085 0.7872 0.1300 
Colon 0.7903 0.8304 0.1900 
CNS 0.6833 0.6896 0.0700 
Leukaemia 0.9167 0.9004 0.0700 

 
Table 5.15. Results for LDA using the reduced feature set created by GFS 

 

Dataset Accuracy Rate Degree of Certainty CPU Time (sec) 
DLBCL 0.9574 0.7384 0.0300 
Colon 0.7419 0.7349 0.2200 
CNS 0.7333 0.6770 0.2100 
Leukaemia 0.9722 0.9036 0.2500 

 
Table 5.16. Results for GMC using the reduced feature set created by GFS 

 

As it can be observed from Tables 5.7-5.16 the average CPU time of the 

classification is significantly reduced. This is very important, considering that the 

feature selection itself takes a not neglectible amount of time. However, the reduction 

of the time involved in the classification (due to the simplicity of the new dataset) 

might make it worthwhile. Also, as one would expect, the second feature selection 

method (GFS) takes considerably more time, for all of the datasets. Yet, this is 

understandable, as it is a more complicated method, working with groups of features 

instead of single features, at a time. 

Another important point is that the average accuracy rate is significantly increased 

in most of the datasets, for most of the classifiers. This is something expected, since 

the original feature set contains a large number of useless features which not only do 
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not aid the classification, but for many of the classifiers, they make it more difficult 

due to the additional noise they often contain. So, by eliminating these features we 

end up with a relatively “easier” and noise-free dataset to classify. This change is also 

depicted at the SID, which often is larger for the new datasets, something that rarely 

happens for smaller datasets (on the contrary, if from a dataset having a small number 

of features you diminish the feature set by merely one feature, the ID of the whole is 

bound to drop). This can be seen in Table 5.17. 

 

Dataset DLBCL Colon CNS Leukaemia 
Original feature set 0.7872 0.8226 0.3833 0.8333 
Reduced feature set (IFF) 0.9362 0.8871 0.6500 0.9306 
Reduced feature set (GFS) 0.8936 0.8871 0.8667 1.0000 

 
Table 5.17. Index of Discernibility values for each dataset, before and after the feature 

selection process, for both of the methods employed 
 

The fact that the datasets become simpler is backed up by another point, which can 

be observed in Tables 5.2-5.16: the increase in the average Degree of Certainty, for 

almost all of the classifiers, for the various datasets. Particularly in the DLBCL 

dataset, the increase is quite significant. 

Also it is noteworthy that the feature selection methods introduced allowed the 

LDA classifier to be applied to the CNS and Leukaemia datasets, which were 

unmanageable with the original feature set. This is also important when considering 

that many of the produced microarray datasets are of this dimensionality or even of a 

higher one. 

A summary of the above results depicting which feature set yielded the highest 

performance, for each one of the datasets and for each one of the classifiers is 

provided in Table 5.18. Note that a feature set was considered as yielding the highest 

performance, for a particular classifier, when it outperformed the other feature sets in 

two or more of the evaluation measures used. 

 

Classifier/Data DLBC Colon CNS Leukaemia 
kNN GFS IFF GFS GFS 
V-kNN GFS IFF GFS GFS 
Fuzzy kNN GFS IFF GFS GFS 
LDA GFS GFS GFS GFS 
GMC GFS IFF GFS GFS 

 
Table 15.8. Summary of results 
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From Table 5.18, it can be observed that the reduced feature sets of both of the 

feature selection methods introduced here outperformed the original feature set, for all 

of the classifiers used. Particularly the feature set of the second method, GFS, 

dominated the other ones for three of the datasets, in spite of the fact that it is slower 

than the other feature selection method. However, as the reduced feature sets it 

created were significantly smaller, it managed to yield quite low CPU times on 

average. 

The feature selection of the method IFF appeared to be weaker in the case of LDA 

for one particular dataset (DLBCL), however the reduced feature set it yielded for this 

dataset seemed to work very well with all the other classifier. So the weakness was 

because of a problematic generalisation of the LDA classifier, probably due to the 

presence of one or more useless features in the reduced feature set. So this raises the 

issue of whether the threshold of 0.75 for the IFF method is reliable. It could be the 

case that different datasets require different threshold values in order to yield 

appropriately reduced feature sets. This would render the IFF method a quite flexible 

alternative, which when fine-tuned, could perform equally well to the GFS method. 

5.3.3 Experimental Results for Data Reduction 
For this series of experiments, we tested the data reduction method with three fairly 

large datasets and applied four different threshold values (1/10, 1/4, 1/3 and 1/2), so 

as to explore how sensitive the performance of the classifiers is in relation to the 

reduction rate. The experiments comprised of 30 rounds of 10-fold cross validation. 

The datasets used were clouds, which contains 5000, 2-dimensional patterns, the 

pendigits (10992, 16-dimensional patterns) and magic (19020, 11-dimensional). We 

experimented with a few different classifiers, measuring for each one of them the 

Accuracy Rate before and after the data reduction, as well as the CPU time taken for 

each classification. The data reduction overhead was measured separately. 

The results of the classifications for each one of the three datasets are shown in 

Tables 5.19–5.21. The data reduction overhead ranged from 5 to 60 sec., depending 

on the dataset. It is generally higher for large as well as complex datasets (e.g. the 

magic dataset). 
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Classifier 
Reduction, Ev. Measure 

kNN C4.5 Fuzzy kNN LDA GMC 

Accuracy Rate 88.19 65.40 86.02 50.00 86.73  

None CPU Time (sec) 0.59 5.10 0.71 <.01 1.64 
Accuracy Rate 88.21 64.55 86.40 50.00 86.70  

1/10 CPU Time (sec) 0.54 4.40 0.64 <.01 1.48 
Accuracy Rate 88.24 67.77 86.87 50.00 86.13  

1/4 CPU Time (sec) 0.47 5.17 0.53 <.01 1.24 
Accuracy Rate 88.13 63.95 87.18 50.00 85.73  

1/3 CPU Time (sec) 0.42 2.90 0.48 <.01 1.10 
Accuracy Rate 87.93 63.97 87.41 50.00 83.40  

1/2 CPU Time (sec) 0.34 1.96 0.37 <.01 0.84 
 

Table 5.19. Data reduction results for clouds dataset 

 

 

Classifier 
Reduction, Ev. Measure 

kNN C4.5 Fuzzy kNN LDA GMC 

Accuracy Rate 97.60 79.47 88.02 82.19 81.13  

None CPU Time (sec) 23.88 394.31 24.76 0.09 57.98 
Accuracy Rate 97.60 34.19 97.74 82.59 85.42  

1/10 CPU Time (sec) 20.62 287.68 21.09 0.04 51.19 
Accuracy Rate 97.66 46.66 97.66 82.08 87.94  

1/4 CPU Time (sec) 16.43 206.69 16.49 0.03 40.98 
Accuracy Rate 97.68 39.88 97.63 81.79 86.39  

1/3 CPU Time (sec) 13.53 169.09 13.43 0.03 31.69 
Accuracy Rate 97.40 37.34 97.37 81.36 73.44  

1/2 CPU Time (sec) 7.47 102.07 7.99 0.03 22.52 
 

Table 5.20. Data reduction results for pendigits dataset 
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Classifier 
Reduction, Ev. Measure 

kNN C4.5 Fuzzy kNN LDA GMC 

Accuracy Rate 83.04 81.17 82.91 77.35 67.79  

None CPU Time (sec) 56.72 127.90 59.95 0.04 151.39 
Accuracy Rate 83.29 81.05 83.09 78.22 67.79  

1/10 CPU Time (sec) 48.88 108.02 52.56 0.04 130.26 
Accuracy Rate 82.93 79.41 82.67 78.48 68.15  

1/4 CPU Time (sec) 35.43 84.00 38.81 0.03 92.00 
Accuracy Rate 82.64 79.17 82.36 78.62 68.69  

1/3 CPU Time (sec) 28.58 70.41 30.77 0.02 83.06 
Accuracy Rate 81.57 77.69 81.52 78.08 69.76  

1/2 CPU Time (sec) 19.19 47.20 21.45 0.01 58.39 
 

Table 5.21. Data reduction results for magic dataset 

 

From Tables 5.19-5.21, it can be seen that in the majority of cases, both the 

Accuracy Rate and the CPU time are enhanced, for all of the classifiers. Also, in some 

cases (e.g. for the GMC classifier in the dataset Magic), the CPU time is decreased so 

much that even together with the data reduction overhead (which in this case is about 

1 minute) it is still faster than with the original dataset for all of the reduction 

thresholds. 

The reduced dataset is often very similar in appearance (i.e. it maintains the 

general structure of the patterns in the feature space), as it can be seen in Figure 5.4, 

for the dataset Clouds. This is because the patterns to be excluded are chosen in such 

a way that they are far apart from each other. Otherwise, if the Discernibility of each 

pattern were to be used as the sole decision rule (instead of the product of 

Discernibility and distance), the reduced dataset would not be as robust.  
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Fig. 5.4. Clouds dataset originally (top), with 1/10 reduction (middle) and with 1/3 reduction 

(bottom). The geometry of the dataset is generally preserved. 
 

5.4 Summary and Contribution of the Chapter 
In this chapter two of the applications of Discernibility were presented and discussed. 

Without any significant modifications, the Index of Discernibility can be applied as 

part of a feature selection technique. This can be done by (at least) two different ways: 

either by evaluating each individual feature of a dataset and selecting the best ones 
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(IFF method) or by taking different groups of features (feature sub-sets of the dataset) 

and comparing their discernibilities with that of the original feature set (GFS). The 

results, as the relevant experiments demonstrated, is a significant reduction in the 

number of features of a dataset and an improvement in the classification performance, 

both in terms of accuracy rate and in CPU time. 

 The Discernibility concept can also be applied in data reduction. By taking 

into account the discernibilities of the various patterns as well as the distances among 

them, we can remove the ones which are discernible and distant (i.e. their average 

distance is large), thus yielding a smaller dataset which however maintains the 

structure of the original one. This is mirrored by the performance of a number of 

different classifiers, which (for most of them) appears to be as good as or even 

slightly better than that using the original dataset. 

 This chapter demonstrated how versatile the Discernibility concept can be, and 

how its application in the pre-processing stage can enhance the classification 

performance. Moreover, it contributed innovative approaches to feature selection and 

data reduction that employ Discernibility which can be potentially useful for other 

Pattern Classification problems. 
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Chapter 6 – Reject Option Based on Discernibility 

 

In this chapter we explore how the Discernibility concept can be applicable as a 

metric for reliability, leading to the possibility of a reject option for a number of 

different classifiers. 

As the classification process is often a costly procedure when it comes to 

inaccurate classifications, in many cases it is preferable to avoid classifying certain 

instances, or in other words rejecting the classifications. In addition, there are cases 

where an unreliable classification can also be costly, due to the need in testing the 

predictions considered unreliable, by other more expensive ways, e.g. manual 

classification (Fumera et al., 2000), or developing a new feature set (Giusti et al., 

2000). In these cases, the option of rejection to classify particular patterns is applied 

(Arlandis et al., 2002; Baram, 1998; Cordella et al., 1995; Duda et al., 2001; Fumera 

et al., 2000; Sansone et al., 2001; Santos-Pereira and Pires, 2005; Thien, 1996a). 

The mainstream approach for analysing the trade-off between a potential error 

and rejection is modelled in terms of posterior probabilities of different classes; if the 

posterior probability of the best class label is high, then the label is attached to the 

pattern, otherwise, the classification is not performed (reject-option). The optimal 

value of the rejection threshold is yielded by what is known as Chow’s rule (Baram, 

1998; Fumera et al, 2000; Sansone et al., 2001; Santos-Pereira and Pires, 2005; Thien, 

1996a, 1996b). This rule is defined as: if the maximum a posteriori probability Pmax of 

a classification being correct is less than a predefined threshold T, then the 

classification is rejected. Also, these probabilities are directly linked with the error 

rate and the misclassification costs involved. As a result, there is a trade-off between 

error and rejection (Fumera et al, 2000). Since in most applications the posterior 

probabilities are not known, some other scoring indexes can be used instead of the 

posterior probabilities. This approach was implemented a number of times by 

different authors, specifically, for classifiers based on neural networks in (Cordella et 

al., 1995; Fumera et al., 2000; Sansone et al., 2001; Santos-Pereira and Pires, 2005) 

and k Nearest Neighbours in (Arlandis et al., 2002; Denoeux, 1995; Fumera et al., 

2000; Giusti et al., 2002). Yet the major premise is the same: the reject-option is 

defined in terms of the class label scoring function, not independently. This holds true 

even in the cases where the authors recognise limitations of the approach involving 
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just one rejection threshold. Even when ROC curves (for a definition and overview 

see (Fawcett, 2006)), that are universal regarding classifiers, are used for rejection of 

certain patterns (Sansone et al., 2001), there are problems in the cases of more than 

two classes and of small training sets that lead to unreliable ROC.  

Employing the Discernibility concept as a way to predict the reliability of 

classification yields an independent measure of classifier’s reliability over an entity, 

which is applicable to any classifier on any data set. This measure mirrors the 

“typicality” of an entity as a representative of its class, which is evaluated by the 

Index of Discernibility of the class from the entity’s location. To fully investigate this 

possibility we test three different scoring functions for the Discernibility 

measurement. One of them utilises the proportion of the entity’s class within the 

entity’s neighbourhood (Spherical Index of Discernibility). The other two are based 

on comparison of the average distances from the entity to entities of its class versus 

distances to entities of other classes. These two measures are the Silhouette Width 

coefficient (Kaufman and Rousseeuw, 1990) and the Harmonic Index of 

Discernibility (Chapter 3). Each one of the Discernibility measures defines a 

reliability elite, the set of patterns with the highest discernibility scores. We 

experimentally test the different discernibility scoring functions over their elites. Then 

we use the elites for combining classifiers. Combining classifiers to make a better 

prediction is a common idea (Ledward, nd; Tsymbal and Puuronen, 2000). This is 

usually done by using weighted voting or summing schemes (Ledward, 2008). Yet, 

this subject will be more thoroughly discussed in Chapter 7. In this case, one can 

combine classifiers according to their discernibility scores in such a way that, at each 

entity, only classifiers that have highest discernibility score at it are used. 

6.1 Experimental Setup 
The classifiers used in this series of experiments are kNN, LDA, C4.5, RCE, GMC 

and MSTC. These are thoroughly described in Section 5.3.1. 

Regarding the datasets used, we used five datasets from the UCI repository 

(UCI Repository, 2008): Iris, Wine, Heart, E.coli and Glass. A detailed description of 

these datasets can be found in Appendix A, while their main characteristics are 

exhibited in Table 6.1 below. These datasets have been chosen because of their: 

1. diversity regarding the numbers of attributes and classes,  
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2. diversity with respect to the proportions of classes, both balanced and unbalanced, 

and  

3. relatively small sizes.  

The last point is quite important since the conventional probability-based 

methodologies for estimating the classification reliability are more problematic to 

implement on small datasets. The method proposed here aims to fill in this gap. 

 

Dataset Number of patterns Number of attributes Number of classes 

Iris 150 4 3 

Wine 178 13 3 

Heart (disease) 270 13 2 

E.coli 336 8 8 

Glass (identification) 214 10 6 
 

Table 6.1. Characteristics of the datasets used in our experiments. 

 

All of the experiments were conducted as 50 rounds of the 10-fold cross-

validation testing. Therefore there were 500 classification testing exercises for each 

one of the classifiers used, rendering the results rather stable and, thus, reliable. In 

each of the experiments all six classifiers were assessed individually as well as 

collectively, by the amalgamation of their elites, as described previously. 

6.2 Reject Option 
6.2.1. Reliable Elite for a Classifier 

As explained earlier, our concern is in computational prediction of classes in such 

situations where the cost of errors is overwhelming compared to that of manual 

prediction (as is typical for complex technical devices). This makes us value the 

reliability of the computational predictions over the extent of reject-option. Therefore, 

we focus on the most reliable instances, based on one of the discernibility metrics. 

Let us first specify a proportion value  between 0 and 1. Given a classifier, 

we refer to a set of patterns as its reliability -elite if they constitute the first N 

entities (N is the number of patterns in the training set) in the list of test patterns 

sorted in the descendent order of the degree of reliability as measured by any of the 
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three Discernibility indexes above. For example, at =1/2, the reliability elite will be 

comprised of approximately half of the test data set. 

Given a set of classifiers, their reliability elites can be combined in a variety of 

ways. According to the literature, classifiers have been combined by making use of 

weighted voting or scoring systems (for a review, see Ledward, 2008). Sansone et al. 

(2001) used a set of five different classifiers which were used in parallel, and Giusti et 

al. (2002) made use of two classifiers working together in a serial fashion. 

However, in this case we combine classifiers based on their reliability scores. 

Specifically, for the patterns belonging to more than one of the elites, the classifier 

yielding a classification with the highest level of discernibility should prevail over the 

outputs of the other classifiers. This would lead to a simple rule for combining 

classifiers by combining their elites in the set-theoretic union E and using the most 

reliable classifier at each one of the patterns in E. However, the overall accuracy rate 

on the union E can be compromised by combining “unworthy” cases for different 

classifiers so that the average accuracy rate on E can be lower than the accuracy rates 

of the individual classifiers over their elites. To address this problem, we introduce 

two filters in the form of rules for combining the elites of the classifiers. These are the 

one-third-out rule and the loners-out rule. These rules aim to filter out those elite 

patterns that might be riskier than the others, leaving an elite with more or less worthy 

classifications. 

                        

Figure 6.1. The average levels of misclassification for three SID categories 

for the Glass dataset. 
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6.2.2 The One-Third-Out Rule 

This rule discards one third of the elements of the set-theoretic union E of the 

individual elites. This threshold was selected empirically and is by no means 

optimum. The objective here is to demonstrate how such a rule works in this 

paradigm. 

Each pattern in E is assigned with a reliability score, which is the maximum of 

the discernibility scores of the classifiers, whose elite the pattern belongs to. 

Afterwards, all of the elements of E are sorted according to their reliability scores, 

after which the bottom third of them is jettisoned. The choice of this threshold is made 

after careful examination of the levels of misses for the members of E having their 

discernibility scores within different ranges. In Figure 6.1, one can see that indeed 

most of the misclassifications occur for the discernibility scores between the 

minimum and m1, which is the trisection point of the set. The graph is based on the 

figures obtained for the Glass dataset with the Spherical Index of Discernibility, yet 

they are typical for other sets of data considered. The edge of the One-Third-Out rule 

is that it guarantees high accuracy rates for the amalgamation of classifiers for a 

variety of datasets. However, it drastically reduces the size of E. 

 

6.2.3 The Loners-Out Rule 

For this filtering technique of the amalgamation elite set E, we concentrate on the 

number of classifiers supporting patterns in E. From the experiments carried out, we 

found that in most cases a misclassification occurs on such a member of E which is 

voted for by only one classifier, i.e., this pattern belongs to the elite of only one 

individual classifier, as can be seen on Fig. 6.2. This graph is based on the 

classification results of the Glass dataset, but it is typical for other datasets as well. 
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Figure 6.2. Average levels of misclassification for different numbers of classifiers voting for a 

pattern on the Glass dataset. 

 

Therefore, by eliminating those members of E that have been introduced by a 

sole classifier, we may increase the accuracy rate at the amalgamation. Since, on 

average, the proportion of such patterns is rather small, the size of E is not that greatly 

reduced by applying this rule (contrary to the One-Third-Out rule). At the same time, 

since most of the patterns eliminated are bound to be misclassifications anyway, the 

overall accuracy rate remains relatively high. 

Since the two rules for removing “risky” elite members are independent from 

each other, they can be used in combination with each other. Apparently, if we apply 

the Loners-Out rule after the One-Third-Out rule, this would produce larger 

amalgamated elites, so this is why we always keep this order for the combined rule.  

6.3 Evaluation Criteria 
The classifiers were assessed using the average Accuracy Rate, a measure which has 

been used extensively in the literature (Gao & Wang, 2007; Wu et al., 2002), the CPU 

time, and a correlation between Accuracy and Degree of Certainty, which we call Net 

Reliability (see Chapter 3).  

 The CPU time is an .evaluation criterion used previously and is described in 

Section 4.2.3.2 We also made use of Net Reliability (NR), which is thoroughly 

described in Chapter 3. This was made possible by calculating the Degree of Certainty 

(see Chapter 3) in each classification as well. 
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6.4 Experimental Results 

In Table 6.2, the average accuracy rates of the individual classifiers on the whole 

datasets are exhibited. 

 
Dataset KNN LDA C4.5 RCE GMC MSTC 

Iris 0.9569 0.8381 0.9456 0.8987 0.9551 0.9541 
Wine 0.9514 0.9858 0.9334 0.9095 0.9777 0.9537 
Heart 0.8027 0.8389 0.6404 0.6918 0.8005 0.7644 
E.coli 0.8655 0.8557 0.8008 0.7691 0.7919 0.7952 
Glass 0.6676 0.6049 0.6281 0.6254 0.6800 0.6928 

 
Table 6.2. Accuracy rates of the classifiers under consideration. 

 

One can observe that, with respect to the classifiers, the datasets fall into the 

following three categories:  

1. relatively high accuracy rate of 90-97% on Iris and Wine;  

2. medium accuracy rate of about 80% on Heart and E.coli, and  

3. relatively low accuracy rate of 60-70% on Glass.  

We can also observe that performances of different classifiers peak at different 

datasets: kNN is the best on Iris and E.coli, LDA is the best on Wine and Heart (and 

the worst on Iris), and MSTC is the best on Glass. The other three algorithms trail 

behind regarding the overall performances, yet they should not be discarded 

altogether – each may have a good performance as mirrored in Table 6.3.  

For our experiments, we maintained two levels of elites: =1/2 and =1/3, the 

former choosing those patterns whose degree of discernibility is better than the 

median discernibility, and the latter comprising the best third of discernible patterns. 

These two are maintained at each of the three discernibility indexes defined above, 

SID, SW and HID. Table 6.4 presents average accuracy rates of the individual 

classifiers on the five datasets at each of the six combinations of the elite level and 

discernibility index.  
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Classifier D. Meas, Elite Iris Wine Heart E.coli Glass 

50% 0.9997 0.9997 0.9139 0.9658 0.6941 SID 
33% 1.0000 1.0000 0.9476 0.9788 0.7328 
50% 0.9997 0.9965 0.9239 0.9366 0.6898 SW 
33% 1.0000 1.0000 0.9511 0.9788 0.7328 
50% 1.0000 0.9990 0.9141 0.9268 0.8596 

kNN 

HID 
33% 1.0000 1.0000 0.9478 0.9305 0.9230 
50% 0.9990 1.0000 0.9146 0.9705 0.6929 SID 
33% 1.0000 1.0000 0.9476 0.9790 0.7219 
50% 0.9995 1.0000 0.9241 0.9319 0.6453 SW 
33% 1.0000 1.0000 0.9511 0.9502 0.6970 
50% 1.0000 1.0000 0.9174 0.9267 0.8124 

LDA 

HID 
33% 1.0000 1.0000 0.9482 0.9302 0.8887 
50% 0.9997 0.9997 0.9175 0.9605 0.6913 SID 
33% 1.0000 1.0000 0.9416 0.9779 0.7289 
50% 0.9997 0.9972 0.9186 0.9545 0.6413 SW 
33% 1.0000 1.0000 0.9509 0.9579 0.7041 
50% 1.0000 0.9990 0.9062 0.9470 0.8284 

C4.5 

HID 
33% 1.0000 1.0000 0.9524 0.9449 0.9157 
50% 0.9997 1.0000 0.9071 0.9581 0.6401 SID 
33% 1.0000 1.0000 0.9453 0.9762 0.7002 
50% 0.9995 0.9967 0.9199 0.9548 0.6669 SW 
33% 1.0000 1.0000 0.9491 0.9745 0.7259 
50% 1.0000 0.9988 0.9116 0.9492 0.8388 

RCE 

HID 
33% 1.0000 1.0000 0.9476 0.9631 0.9300 
50% 0.9997 0.9997 0.9123 0.9621 0.7055 SID 
33% 1.0000 1.0000 0.9476 0.9776 0.7239 
50% 0.9997 0.9967 0.9237 0.9382 0.7080 SW 
33% 1.0000 1.0000 0.9511 0.9501 0.7554 
50% 1.0000 0.9990 0.9140 0.9266 0.8740 

GMC 

HID 
33% 1.0000 1.0000 0.9478 0.9286 0.9408 
50% 0.9997 0.9997 0.9144 0.9617 0.7440 SID 
33% 1.0000 1.0000 0.9560 0.9777 0.7739 
50% 0.9997 0.9967 0.9224 0.9310 0.7026 SW 
33% 1.0000 1.0000 0.9533 0.9449 0.7540 
50% 1.0000 0.9990 0.9156 0.9254 0.8463 

MSTC 

HID 
33% 1.0000 1.0000 0.9520 0.9288 0.9074 

 
Table 6.3. Accuracy rates of various classifiers at different elite levels and Indices of 

Discernibility. 

 

The results from Table 6.3 show: 

1. All three discernibility indexes lead to drastically raising accuracy rates for all the 

classifiers, reaching 100% accuracy for Iris and Wine datasets and about 95-97% 

accuracy on E.coli dataset on the 50%-elites. The only diehard is Glass dataset 
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that does not change much the accuracies at the 50%-elites over SID and SW 

indexes. Still, HID index leads to a much improved, 85%, accuracy over 50%-

reliability elites, and more than 90% accuracy over the 33%-reliability elites.  

2. There is no overwhelming winner among the three discernibility indexes, though 

each of the indexes shows consistent results over all the classifiers. Specifically, 

SID always wins on Wine and E.coli datasets, HID always wins on Iris and Glass 

datasets, and SW is the winner on Heart dataset. 

The RCE and GMC classifiers, which exhibit a mediocre performance over the 

total data set, appear to become most effective over the elite. 

The results for the amalgamation of reliability elites using rules One-Third-Out, 

Loners-Out and their combination are shown in Tables 6.4 and 6.5. The former 

relates to the accuracy rates whereas the latter to the amalgamation sizes.  

Rule DI Elite Iris Wine Heart E.coli Glass 

50% 0.9991 0.9993 0.9054 0.9557 0.6630 SID 

33% 1.0000 1.0000 0.9422 0.9753 0.6907 

50% 0.9991 0.9994 0.9142 0.9332 0.6107 SW 

33% 1.0000 1.0000 0.9476 0.9450 0.6843 

50% 0.9998 0.9991 0.9120 0.9223 0.7714 

Loners Out 

HID 

33% 1.0000 1.0000 0.9470 0.9317 0.9030 

50% 1.0000 1.0000 0.9396 0.9763 0.6754 SID 

33% 1.0000 1.0000 0.9710 0.9823 0.7253 

50% 1.0000 0.9997 0.9463 0.9420 0.6277 SW 

33% 1.0000 1.0000 0.9751 0.9630 0.7123 

50% 1.0000 1.0000 0.9407 0.9305 0.8645 

One Third Out 

HID 

33% 1.0000 1.0000 0.9588 0.9371 0.9164 

50% 1.0000 1.0000 0.9425 0.9764 0.6824 SID 

33% 1.0000 1.0000 0.9736 0.9817 0.7484 

50% 1.0000 0.9997 0.9423 0.9478 0.6457 SW 

33% 1.0000 1.0000 0.9760 0.9652 0.7191 

50% 1.0000 1.0000 0.9405 0.9302 0.8677 

Combination 

of Both Rules 

HID 

33% 1.0000 1.0000 0.9635 0.9417 0.9444 

 
Table 6.4. Accuracy rates at the different methods of amalgamation of reliability elites. 
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Rule D. Meas., Elite Iris Wine Heart E.coli Glass 

50% 55.6 50.3 57.0 54.8 68.0 SID 

33% 43.4 39.5 35.6 36.8 46.0 

50% 54.1 50.1 56.3 57.8 70.7 SW 

33% 33.3 37.1 35.0 37.4 47.6 

50% 53.8 50.2 54.7 55.8 66.5 

Loners Out 

HID 

33% 33.4 37.1 34.1 37.0 39.6 

50% 43.8 36.0 37.0 35.3 43.2 SID 

33% 20.0 24.7 22.5 23.5 29.3 

50% 34.0 31.7 36.6 37.6 45.3 SW 

33% 20.0 24.7 22.5 24.2 29.9 

50% 33.8 31.7 35.4 36.0 43.0 

One Third Out 

HID 

33% 21.0 24.7 25.8 27.0 30.1 

50% 43.9 35.9 36.9 35.3 43.3 SID 

33% 19.9 24.7 22.6 23.6 28.5 

50% 34.1 31.7 36.5 37.7 45.6 SW 

33% 19.9 24.7 22.5 24.2 30.0 

50% 33.9 31.6 35.5 36.0 42.5 

Combination 

of Both Rules 

 

HID 

33% 20.0 24.7 22.3 24.1 24.4 

 
Table 6.5. Elite sizes, per cent, at different methods of amalgamation of reliability 

elites. 

These results lead to the following conclusions. As one would expect, the One-

Third-Out rule consistently outperforms the Loners-Out rule; however, this is by just 

a small margin of the order of 1% or less - with the price of drastically reducing the 

size of the elite. Overall, the amalgamation does not boost performances of the 

algorithms that much. However, we can see that HID 33%-elites consistently lead to 

the accuracy rates of 90% and more. The combined rule raises the accuracy on the 

Glass dataset – the most difficult for predictions – to more than 94%. The price, in 

terms of reject-option applied to the non-elite, is rather high indeed: 60%, 70%, and 

75% of all cases for Loners-Out, One-Third-Out and Combined rules, respectively. 

But this may be worth doing in the situations at which the reliability of classification 

is a must.  
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Also, Table 6.5 shows that the SID 33%-elite Loners-Out amalgamation leads to 

somewhat better coverage of the data – about 45%, rather than 33%, of the dataset 

are there. 

6.5 Fine-tuning of the Method 
We have observed that the Degree of Reliability can be enhanced by adding two 

other factors in its calculation. These are the change in Accuracy Rate and the change 

in Degree of Certainty, within the training set. Therefore, by combining these three 

factors in a new reliability metric, we can obtain even better results. However, the 

level of contribution of each one of them is different, so this needs to be reflected in 

the new metric as well. This is accomplished by introducing three parameters in it, 

one for each factor. As a result, the new reliability metric works more efficiently. 

 

6.5.1 Parametric Degree of Reliability 

The Parametric Degree of Reliability (PDR), which is a function of the three factors 

mentioned previously, attempts to evaluate how much the unknown pattern X (which 

is classified into a class Y) “fits” into the training set P. This is done by examining 

how the Accuracy Rate of the classifier applied on the training set is improved and 

how the Degree of Certainty of this classification improves as well. The improvement 

of these measures is measured by taking the ratio of their values after the adoption of 

X in P over their values before. 

 

The generic formula for the Parametric Degree of Reliability is: 

cba
X DCRARRDPDR   

 

(6.1)

 

where DX is the (expected) Discernibility of the unknown pattern, calculated like the 

normal Discernibility (as seen in Chapter 3), using the class prediction of the 

classifier as the class label, ARR is the Accuracy Rate Ratio, DCR the Degree of 

Certainty Ratio, and a, b and c the weight parameters which take values between 0 

and 1. These parameters, as they are exponents (Eq. 6.1), affect the outcome 

immensely. Therefore, they need to be chosen carefully, in order to obtain a useful 

result. In other words, we need to choose values a, b and c using an optimisation 

technique so that the accuracy rate of the elite of classification, based on this 
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measure, is maximised. The technique used is the Vibrating Grid Optimser, which 

was developed specifically for this purpose and is described below. 

 

6.5.2 The Vibrating Grid Optimisation Technique 

As the parameters needed to be optimised fall in the 3-dimensional space and are 

restricted within the range of [0, 1] for each dimension, we can depict them as points 

belonging to a cube defined by the points (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), 

(1,0,1), (1,1,0), (1,1,1). By taking them as a starting point for a grid, we can gradually 

optimise the accuracy rate of the elite classifications, based on the PDR function (Eq. 

6.1). The elite patterns are defined as the ones having the highest reliability value. To 

select the best classification on the elite patterns, we evaluate each point and then 

take at random another point in the neighbourhood. The latter is defined as the range 

of half the distance to the nearest point of the grid. So, originally the neighbourhood 

is the range [x ± 0.5, y ± 0.5, z ± 0.5]. To speed up the process, if the boarders of the 

neighbourhood fall below 0 or over 1, we replace them to 0 and 1 respectively. If the 

new point yields a higher score, then it replaces the grid point related to it (i.e. the 

grid point around which it was generated). After a new set of points is developed it 

replaces the older grid and the neighbourhoods are calculated again. 

 This process is repeated until the accuracy rate of the elite classifications in 

terms of PDR is reached. Usually the number of classifications is fixed as a given 

proportion of the testing set. As the process does not involve any complex 

calculations, it is exceptionally fast and always converges in a relatively small 

number of steps. 

 Although this method was developed for optimising a set of three parameters, 

it can be used for more sophisticated optimisation problems having more dimensions. 

The only restriction is that the parameters have to be bound in given intervals. 

 

6.5.3 Experimental Results for the Parametric Degree of Reliability 

The experiments were carried out on 10 rounds of 10-fold cross validation. Just like 

the previous set of experiments, five different datasets were used, taken from the UCI 

repository (UCI Repository, 2008): iris, wine, heart disease, e.coli, and glass 

identification. The characteristics of the above datasets are exhibited in Table 6.1. 

We applied our method using the same six classifiers as previously: the k 

Nearest Neighbours (kNN), the Linear Discriminant Analysis (LDA) method, the 
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Minimum Spanning Tree Classifier (MSTC), introduced by Voulgaris & Mirkin 

(2008), the Gravity Model Classifier (GMC), based on one of the classifiers 

developed by Ruta and Gabrys (2003), the C4.5 Decision Tree, and the Reduced 

Coulomb Energy classifier (RCE), as described by Duda et al. (2001). The elite 

classifications were taken to be the ones having the top one-third values in terms of 

parametric degree of reliability. In other experiments we have taken the elite to be the 

top half of the DR scores, but this compromises the accuracy rate of the selection. 

However, one can experiment with different thresholds around the one we used here, 

without significantly changing the results. 

 We attempted optimising the parameters of PDR for all datasets and classifiers 

together and then for each pair of them. The second strategy proved to be better 

overall. Its results can be seen in Table 6.6. 

 

Classifier Iris Wine Heart E.coli Glass 

KNN 1.0000 1.0000 0.9566 0.9287 0.9284 

LDA 1.0000 1.0000 0.9544 0.9276 0.9017 

MSTC 1.0000 1.0000 0.9566 0.9240 0.9171 

GMC 1.0000 1.0000 0.9533 0.9222 0.9466 

C4.5 1.0000 1.0000 0.9499 0.9403 0.9312 

RCE 1.0000 1.0000 0.9577 0.9638 0.9382 

Average 1.0000 1.0000 0.9548 0.9344 0.9272 
 

Table 6.6. Accuracy Rates of elite classifications based on the Parametric Degree of 

Reliability. 

 

 The overall accuracy rate of all the classifiers over all five datasets was 0.9633 

while the first strategy yielded an average accuracy rate of 0.9211. Therefore, by 

employing this method and fine-tuning it to each individual case (classifier-dataset 

pair), the error rate on average is halved. 

 Also, if we were to compare it with the original DR measure (which is based 

on Discernibility alone), PDR outperforms it by showing a 6% lower error rate. Yet, 

in one of the datasets, Glass, the decrease in the error rate using the Parametric 

Degree of Reliability was about 25%. This is significant, if one considers that this is 

the most “difficult” dataset among those in this group. 

 Note that on average, the one or two of the parameters found for the reliability 

measure sometimes approached 0, implying that a particular factor was not so 
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important for these instances. Yet, if we were to eliminate it completely, the results 

would be degraded. This demonstrates that the optimisation function is very sensitive 

to changes in the parameters and that all of these parameters are essential in order to 

obtain a good outcome. 

6.6 Summary and Contribution of the Chapter 
In this chapter we demonstrated how the Discernibility concept could be applied as a 

measure of classification reliability both for a single classifier and for an 

amalgamation of classifiers. Also, we showed how it could be elaborated into a 

parametric reliability measure taking into account other factors, particularly the 

change of accuracy rate and the change of Degree of Certainty. The quite promising 

experimental results verified our hypothesis that Discernibility can be a useful 

reliability metric, especially if used in combination with the other two factors. 

 The contribution of this chapter in the Pattern Recognition field is that it offers 

another measure for classification reliability, a measure that does not depend on 

probabilities or assumptions about the distributions of the dataset. The flexibility that 

this characteristic offers allows the proposed reliability measure to be more applicable 

to classification problems, particularly when the dataset is relatively small. 

This chapter also contributes significantly to the thesis, as it describes how 

with practically no changes in its function, Discernibility can be applied to an entirely 

different domain, yielding useful information on the unknown patterns, a priori. 

Considering that this notion was developed primarily to evaluate known patterns, it is 

quite interesting how without any modifications it can be used to assess unknown 

ones too, therefore enhancing the classification process by offering a reject option to 

the classification system. 
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Chapter 7 – Employing Discernibility in Classifier 

Ensembles 

 

In this chapter we explore how a set of classifiers can be used together as an 

ensemble, for classification problems, using the Discernibility concept. This is 

accomplished by encompassing Discernibility as a criterion for the creation of the 

feature sub-sets of the dataset, used in the ensemble.  

7.1. Techniques for Formulating Ensembles 

Over the past few years several methods have been introduced for the creation of 

ensembles of classifiers, most of which involve the introduction of diversity of errors 

(in classification) as the main component of the ensemble (Brown et al., 2005). 

Diversity of errors is defined by Eq. 7.1 below: 

Div(X,Y) =
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Eq. 7.1 

where X,Y are the diverse classifiers examined 

  N11 and N00 are the number of instances where both classifiers are right or  

  wrong respectively, about their predictions on the Validation Set 

  N10 is the number of instances where the first classifier is right and the second  

  classifier wrong, at the same time 

  N01 is the number of instances where the second classifier is right and the  

  first classifier wrong, at the same time 

 A great deal of research has been carried out on diversity and on ways of 

measuring it as described in Kuncheva & Whitaker (2003). One of the most popular 

approaches is that of reverse correlation, as in the case of Zio et al. (2007). However, 

other researchers prefer more sophisticated methods of diversity measurement, such 

as entropy, in the case of Cunningham (2001). 

 Various ways for attaining diversity in a group of classifiers so as to form an 

ensemble have been proposed (Brown et al., 2005). The simplest method is to train 

each ensemble member using randomly initialised parameter setting (e.g. initial 

weights in the case of neural classifiers). A more advanced approach is to train the 

different classifiers on different subsets of the training set as bagging (Breiman, 1996) 

or variations of it (Evgeniou et al., 2004), where each training set is created by 
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resampling and replacement of the original training set with uniform probability. 

Boosting (Freund & Schapire, 1996) also uses resampling of the training set, but the 

data points previously poorly classified receive a higher probability. 

 Among the most efficient techniques, particularly for datasets having a large 

number of features, is that of partitioning the dataset into subsets of features, each of 

which is used independently as a training set for a classifier, called feature 

resampling. This approach is sometimes problematic since if the subsets are created at 

random, the huge number of possible combinations may render the whole process 

impractical (Cunningham, 2001). Yet, in many cases a random selection of features 

yields good results, as in the case of Bertoni et al. (2005).  

 Another approach to feature resampling is with the use of global search methods, 

such as Genetic Algorithms to improve the quality of the partitioning (Zio et al., 

2007), which is particularly useful when dealing with multiple criteria to be 

optimised. 

 In all the cases investigated, it becomes evident that diversity plays a significant 

role in the creation of an ensemble and guarantees a good classification performance. 

However, to the best of our knowledge, none of the approaches consider the factor of 

classification quality of the created feature partitions (i.e. subsets of features), an issue 

that is addressed in our approach. 

7.2 The Role of Discernibility in Ensembles 

7.2.1 Structure of Proposed Ensemble 

Although a high overall Discernibility in the feature subsets does not guarantee 

diversity (and vice versa), we hypothesise that by using it in the partitioning of the 

feature set it will yield good quality partitions, which in turn will yield good 

generalisation for the various classifiers of the ensemble. Note that this method 

operates at the level of feature resampling, so in the form presented here it cannot be 

considered as substitute for methods like bagging (Breiman, 1994; Breiman, 1996) 

and boosting (Freund & Schapire, 1996; Schapire, 2003). 

 As mentioned earlier, the main objective of feature resampling in ensemble 

creation is the introduction of diversity in the classifier errors by training them in 

different subsets of the dataset’s feature space. Therefore there is one function that is 

maximised, that of the diversity, which is calculated using Eq. 7.1. However, some of 

the subsets may be of potentially low classification quality rendering the classification 
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relatively inaccurate, so even if the diversity of the errors is high, the overall 

performance may not be optimum. This is resolved by introducing another function, 

that of the average discernibility. By taking into account the product of the diversity 

and the discernibility (both of which take values between 0 and 1), we have another 

function to maximise f = diversity × discernibility. This optimisation takes into 

account both factors and yields a partition that is both diverse in errors and of overall 

good quality. Yet, this method for selecting the best partition is suboptimal since it is 

done using a number of randomly generated partitions. Nevertheless, if this number is 

large enough, it is quite likely that there will be a near-optimal solution for the feature 

partitioning, as the candidate partitions will probably include some partitions like the 

ones we are looking for.  

 Also, as the partitions of the feature set depend on the dataset and the classifier, 

for each ensemble there is a variable number of classifiers of each type. In addition, 

for every different classification, the ensemble adapts to the data and changes its 

structure so as to be more efficient. 

7.3 Experiments and Results 

The ensemble employed in the experiments is structured as follows. Eight different 

classifiers are used and each one of them is trained in a number of partitions of the 

training set. These are the V-kNN classifier (see Section 4.3.1.1), the D-kNN 

classifier (see Section 4.2.1), the Minimum Spanning Tree Classifier (see Section 

4.3.2), the Linear Discriminant Analysis (LDA), the Reduced Coulomb Energy 

method (RCE), the C4.5 Decision Tree, the Gravity Model Classifier, and the Fuzzy 

kNN. 

 Another partition called the validation set (which is part of the training set) is used 

for assessing these classifiers. Based on their results in the classification of its 

patterns, some classifiers specialising in particular subsets of the feature set of the 

training set are selected. Then, based on the expected Discernibility of each test 

pattern, as well as its position, the pattern is classified by the appropriate specialist. 

 For the experiments conducted, three different datasets were used, taken from the 

UCI repository (UCI Repository, 2008): Glass identification, Wine, and E.coli. A 

detailed description of the datasets can be found in Appendix A, while the main 

characteristics of these datasets in Table 7.1. The experiments were carried out on 50 

rounds of 10-fold cross validation.  
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Dataset Patterns Attributes Classes 
Glass 214 10 6 
Wine 178 13 3 
E.coli 336 8 8 

 
Table 7.1. Characteristics of the datasets used in our experiments. 

 

 The results of the experiments on the different ensemble types for the datasets 

used are shown in Table 7.2. 

 

Ensemble Type Glass Wine E.coli average 

Diversity only 0.7412 0.9748 0.7866 0.8342 

Discernibility only 0.7188 0.9751 0.8446 0.8461 

Diversity & Discernibility 0.7398 0.9754 0.8440 0.8531 

 
Table 7.2. Average accuracy rates and average overall performance for the three ensemble 

types. 

 

 As one would expect, the combination of diversity and Discernibility exhibited on 

average improved performance in the classification of the ensemble. Also, the 

discernibility as a criterion for the partitioning of the feature set appears to work on 

average slightly better than the diversity criterion. The only exception is the Glass 

dataset where diversity exhibited better performance than the other two approaches, 

although the combination of diversity and Discernibility was not far behind in 

performance. This is probably due to the fact that the Discernibility of this dataset is 

very low, yielding partitions of low Discernibility as a result. Therefore, in such a 

case, the Discernibility criterion is bound to not work as it should. 

 The number of base classifiers in the ensemble ranged from 15 to 40. Also, the 

ensemble performance time (which included training, testing, evaluating and fusing 

the outputs of the different classifiers) was on average significantly higher in the 

ensembles involving Discernibility, as this is more computationally expensive. Thus, 

for ensembles that combined diversity and Discernibility the average time was 1.75 

times greater than that of the ensembles using diversity only. In addition, we 

measured the average performance of each one of the base classifiers and found it to 

be significantly less in all of the ensembles created. 
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7.4 Discussion 

From the results of the experiments, one can argue that although diversity yields 

promising results, the classification performance of an ensemble can be improved by 

incorporating Discernibility in the evaluation process of the feature-set partitioning. 

Also, even though Discernibility appears to work slightly better than diversity, the 

proposed method of combining the two criteria performs even better and shows an 

avenue of research worth of further investigation. 

 The performance of the combined criteria approach can be explained as follows. 

Diversity eliminates the feature subsets, which are very similar in terms of errors, for 

every given classifier. This results in having a partition, which in essence is 

equivalent to m different training sets for each classifier (m is the number of partitions 

and depends on the dataset as well as on the classifier). However, some of these 

subsets may be useless in terms of their contribution to the ensemble performance (the 

classifiers trained by them do not yield any noteworthy classifications), therefore 

“confusing” the ensemble. This is where the discernibility criterion enters the scene. 

Discernibility makes sure that each subset has relatively high classification quality. 

Note that in some cases it may be that a subset may have higher discernibility than the 

original dataset because some of the features may act as noise to the classification 

process, offering no useful information. By making use of the discernibility criterion 

we make sure that not all of these features end up in the same subset. 

 The whole process of the feature-set partitioning can be improved by 

incorporating an evolutionary method for finding the optimum partition; however this 

falls beyond the scope of this work, which is to show that discernibility can be a 

useful asset in the ensemble creation process. Based on the experimental results, this 

is a valid statement, although it comes at the price of additional computation, which is 

translated into considerably more CPU time. 

7.5 Summary and Contribution of the Chapter 

In this chapter a novel ensemble-related approach, based on the Discernibility concept 

was presented. This approach involves an ensemble of classifiers that are specialised 

on different feature subsets of the dataset, forming a diverse feature set. The edge of 

the proposed method is that due to the use of Discernibility, the feature subsets are 

more or less of the same classification quality, thereby offering an adequate 

generalisation potential for each one of the specialised classifiers. 
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 The aim of this part of the thesis is not to give a definite solution to the problem of 

creating diverse ensembles but to show that the Discernibility concept can be used, in 

an altogether different way, for the creation of balanced feature subsets of the dataset, 

in order to build robust diverse ensembles. This could also make a promising 

contribution to the field of Pattern Classification offering an alternative perceptive in 

an area where there is a lot of ongoing research without a definite solution yet to the 

problem of creating diverse ensembles. 
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Chapter 8 – Conclusions 

8.1 Conclusions and Contribution 
Based on the results obtained in the various sets of experiments, we can conclude that 

the Discernibility concept is a useful component of all the classification systems 

where it has been applied. This is possible due to the low computational cost of this 

method, which is more efficient compared to the other ones which are similar to it, 

such as the Silhouette Width. Its edge is that it reveals structural information on the 

dataset both as a whole and at a pattern level, in a quick and easy to adapt manner. 

This allows it to be easily adjusted and encompassed in a variety of applications, 

offering them an enhanced insight into the structure of the dataset, something that 

statistical classification methods attempt to do by assuming particular distributions. 

The difference in this case, which is also the main advantage of Discernibility, is that 

it makes no assumptions and examines the structure of the dataset, based on how little 

its classes overlap, through the individual assessment of each one of its patterns. The 

introduction of this concept, along with the two indexes that measure is are the main 

contribution is the introduction of this research project. 

 Regarding particular applications of this concept, the Discernibility measure does 

enhance the function of the kNN classifier in the two variations where it was used (D-

kNN and W-kNN), with a slight compromise in the classification speed. Yet, the 

proposed kNN extensions depicted clearly how the Discernibility concept can be a 

promising way of evaluating particular patterns or particular features, during the 

classification process, thereby enhancing it, for a number of different datasets. This, 

along with the three other classifiers introduced in this thesis (V-kNN, CB-kNN and 

MSTC), is another contribution of this research. 

 In addition, this concept exhibited a quite promising behaviour in the 

Discernibility-based feature selection methods introduced in this work. These 

methods, not only improved the classification speed significantly, but they also 

improved the accuracy rate and the Net Reliability in most of the cases. Furthermore, 

the two methods put forward in this research demonstrated how the Discernibility 

concept can be applied in different ways for this particular application, without any 

significant change in its function. This is an important contribution of this project, 

considering the efficiency of these two methods in the complex datasets used for the 

experiments. 
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 As regards the data reduction techniques, based on Discernibility and distance, 

they yielded promising results as well, even though the overhead is not insignificant. 

Yet, the reduced datasets exhibit the same accuracy rate for most of the classifiers and 

in some cases the accuracy rate is increased. One of the advantages of this approach is 

that even though Discernibility has an altogether different philosophy in the 

evaluation of the significance of the patterns of a dataset, it can easily be used in 

combination with other criteria, such as distance in this case, yielding quite promising 

results. This technique is another useful contribution, which opens us a new 

perspective to the Data Reduction area. 

 The Reject Option based on the reliability measure (which is primarily centred on 

the Discernibility measure) yielded promising results as well. Not only did it provide 

a quite high accuracy rate for elites of patterns, in a number of datasets, but it also 

yielded a justification why certain classifications were rejected (low reliability). In 

addition, this was done without increasing the computational cost of the classification 

process much. In addition, by encompassing the change of Accuracy Rate and the 

change of Degree of Certainty, this method was enhanced. Also, through its fine-

tuning, using a grid-based optimisation algorithm, this method yielded even better 

results, as it became more adaptable to the specific problem it was applied on, as well 

as to the particular classifier used. This method, along with its supplementary 

techniques, is one more contribution of this thesis. 

 Regarding the ensembles, the quite promising results of the experiments verified 

the initial hypothesis that Discernibility can be a useful asset in the creation of 

balanced subsets of the feature space. Moreover, it became evident that even if 

Discernibility was the only criterion for the creation of balanced subsets, the results 

are still better than those using the criterion of diversity of errors. Yet, by using both 

criteria, the accuracy rate of the ensemble can be enhanced. This can be explained as 

follows. By applying the diversity of errors criterion one makes sure that the different 

feature subsets of the dataset yield a different generalisation for a given classifier. As 

regards the Discernibility criterion, this ensures that the subsets will be of the same 

classification quality, thereby yielding a better generalisation since the differently 

trained classifiers will be characterised by a better classification quality as well. 

Therefore, by combining both criteria, the feature subsets will not only be 

supplementary to each other, but also of more or less the same standard. This 

alternative approach to diverse ensembles is another contribution of this research. 
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 Moreover, the auxiliary measures introduced in this project – the Degree of 

Certainty (which is a generalisation of the certainty factor, applicable to most 

classifier types) and the Net Reliability (a measure which evaluates how reliable the 

certainty of a classifier is, based on its accuracy – can be seen as one more 

contribution of this thesis. 

8.2 Limitations 
Promising as they may be, the measures expressing the Discernibility concept have 

some limitations that need to be addressed. First of all, both the Spherical and the 

Harmonic Indices of Discernibility may be time-consuming when it comes to very 

large datasets. Therefore, an option has to be introduced that allows the user to use 

these indexes to evaluate a dataset (or a feature of it) based on a sample of its patterns. 

This would speed up the whole process, yet it would come at the price of not yielding 

the discernibilities of the individual patterns. Therefore, this version of the Index of 

Discernibility would be applicable for large-scale evaluation, in the relevant 

applications (e.g. feature selection, partitioning of feature space for diverse 

ensembles, evaluation of a dataset, etc.). 

 Another limitation that we have discovered is that it is not a continuous metric. If 

therefore there would be a way to evaluate any point of the dataset feature space, even 

where there are no patterns, this would render it more robust as it would offer an 

insight to the dataset as a continuum and not as merely a group of patterns. 

 Finally, the Discernibility Indexes assume equal importance to all of the classes of 

the dataset, something that in some cases may not be valid. This is more noticeable in 

cases where the misclassification costs of each class are very different, such as in the 

case of medical datasets (the class denoting the presence of an illness is more 

important as misclassifying it may lead to delayed treatment of the patient). 

 These limitations show that the Discernibility concept, though versatile and 

practical in theory, has plenty of room for improvement as regards its 

implementations. This however renders it a fruitful topic for future research, 

promising even better results. 

8.3 Future Work 
It is our expectation that the Discernibility concept will be able to find other 

applications as well, which are however beyond the scope of this work. These can be 
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categorised as short-term and long-term, depending on the research workload 

involved. 

 Among the short-term ones is the use of Discernibility as the basis for feature 

generation. Such a pre-processing application will be aiming at enhancing the quality 

of a dataset by generating and evaluating new features, resulting to more accurate 

and/or faster classification (since the same or even better classification potential could 

be reached with less and more robust features). 

 Another short-term application involves the proposed ensembles in Chapter 7. 

These can be further enhanced and new ensembles or hybrid classification systems 

can be developed based on the Discernibility concept in combination with the 

diversity of errors. In addition, the possibility of other ensemble setups can be 

investigated. 

 One other short-term application has to do with the fine-tuning and addressing the 

limitations of the proposed methods. Particularly, the Indexes of Discernibility can be 

modified so as to take into account the misclassification cost, something which may 

prove useful in certain problem domains. This can be done by employing and 

extending the Degree of Reliability measure, adjusting it to the various datasets, based 

on the misclassification costs. 

 Discernibility can also be applied in the short-term application of dealing with 

discrete data more efficiently. This could be done by changing the distance measure 

used and the way the data is mapped. 

 Regarding the long-term applications, the Discernibility concept can be used in 

other problem domains, such as clustering. By employing one of the Indexes of 

Discernibility, the clustering process can be enhanced resulting to more meaningful 

and more clear-cut clusters. 

 Another long-term application is the use of Discernibility to explore which 

classifiers can be more suitable for which particular types of datasets based on its 

evaluation capability. This however is bound to be a complex investigation as it 

would require experiments with a number of different classifiers to prove the 

hypothesis. 

 One more long-term application is the use of Discernibility as a part of the 

function of Fuzzy classifiers. This could be possible by incorporating the 

Discernibility scores of the various features in the corresponding membership 
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functions, in an automated or semi-automated way. This however would require a lot 

of experiments in order to determine the optimum parameters involved. 

 The spawning of artificial patterns in a sparse dataset could be another long-term 

application of Discernibility. Using Discernibility, it could be possible to filter the 

most appropriate patterns generated, so that the new dataset maintains the same 

structure and classification quality but with more patterns. This translates into a better 

accuracy rate, although there are many factors that need to be taken into account in 

order to preserve the integrity of the dataset. 

 Discernibility can also be applied in the long-term application of time-series 

prediction. This could be possible by introducing new features so that each dynamic 

variable is replaced by static ones. Then Discernibility could be used to assess the 

classification quality of these variables and this way provide the optimum “time 

window” to be used. 

 Overall, as shown from this research, the Discernibility concept is a quite 

promising notion and its implementations are quite versatile and practical in many 

ways. Its great potential is not thwarted by its limitations, which may be seen as good 

opportunities for future avenues of research that may gradually facilitate and enhance 

the process of classification. 
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Appendix A – Dataset Description 
 

 Bupa Liver: this is a dataset that has been used extensively in the literature (Inza 

et. al., 1999; Jiang & Zhou, 2004; Zhou & Jiang, 2004). The first five variables are all 

blood tests, which are thought to be sensitive to liver disorders that might arise from 

excessive alcohol consumption. The sixth variable is the number of half-pint 

equivalents of alcoholic beverages drunk per day. There are two classes, denoting 

where a patient is diagnosed with liver disorder or not. The dataset was created by 

BUPA Medical Research Ltd.  

 Pima Indians: a medical dataset comprising of various cases of female patients of 

the Pima Indian heritage living near Phoenix, Arizona, USA. The disease involved is 

diabetes and it is predicted using various medical measures, as well as other features. 

This dataset was owned by National Institute of Diabetes and Digestive and Kidney 

Diseases and has been used in several studies (Blayvas & Kimmer, 2002; Eggermont 

et. al., 2003; Sykacek & Roberts, 2003).  

 Breast Cancer Wisconsin: This breast cancer database was obtained from the 

University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. It 

involves benign or malignant cases of breast cancer (class attribute) for 683 patients, 

over a period of three years. Various researchers such as Glackin (2008) and Veal 

(2008) have made use of it in classification applications. 

 Statlog Heart Disease: a medical dataset involving patients examined for heart 

disease from Statlog that is considered a typical benchmark (Brown, 2004; 

Kononenko et al., 1997; Ray & Page, 2003; Tang et al., 2005). It includes 13 

attributes, some of which are categorical while others are real numbers. There are two 

classes, relating to either presence or absence of heart disease.  

 Statlog Vehicle Silhouettes (used in used in Denoeux, 2000; Kononenko et. al., 

1997; Ray & Page, 2003; Tang et al., 2005, Zhong & Fukushima, 2007): This dataset 

comprises of data related to 2D silhouettes of four different types of vehicles (as seen 

from one of many different angles). Four “Corgie2” model vehicles were used for the 

experiment: double decker bus, Cheverolet van, Saab 9000 and Opel Manta 400. This 

choice was made so that the different types of vehicles can be more easily 

distinguishable (compared to different types of cars).  

 Boston Housing (used in Brown, 2004; Fung et. al., 2004; Hamers & Suykens, 

2003): This dataset concerns housing values in suburbs of Boston. Originally the class 
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attribute (median value of owner-occupied homes in $1000's) is continuous but in our 

experiments we use a discrete version of it, where all cases are characterised as easily 

affordable, medium valued and expensive. The 13 features involved for the prediction 

of the class describe the borough of each house with various demographics and 

characteristics of each house. 

 Wine (used in Aeberhard et al, 1992): this dataset has to do with the chemical 

analysis of wines, from three different cultivars of a particular region of Italy. The 13 

features it comprises of represent some of the constituents found in each of the 3 types 

of wines (class labels). 

 Glass (used in Zhong & Fukushima, 2005): This dataset involves a study of 

classification of 7 different types of glass, based on 9 characteristics, most of which 

have to do with particular chemical elements found in them. The relevant research 

which brought about the creation of this dataset was motivated by criminological 

investigation: at the scene of the crime, the glass left can be used as evidence, given it 

is correctly identified. 

 Vowel (used in Deterding, 1989): This dataset consists of a three dimensional 

array: voweldata [speaker, vowel, input]. The speakers are indexed by integers 0-89. 

(Actually, there are fifteen individual speakers, each saying each vowel six times.) 

The vowels are indexed by integers 0-10. For each utterance, there are ten floating-

point input values, with array indexes 0-9 (features). There are 528 patterns in the 

dataset. 

 DLBCL has to do with Diffuse Large B-Cell Lymphomas (DLBCL) and 

follicular lymphomas (FL) . These are two B-cell lineage malignancies having very 

different clinical presentations, natural histories and response to therapy. However, 

FLs frequently evolve over time and acquire the morphologic and clinical features of 

DLBCLs and some subsets of DLBCLs have chromosomal translocations 

characteristic of FLs. The gene-expression based classification model was built to 

distinguish between these two lymphomas which have 58 and 19 samples in the 

dataset respectively. The number of features of the dataset is 7070, each one 

representing a particular gene. 

 Colon cancer (used in Getz et al, 2001): a medical dataset containing expression 

levels of 2000 genes taken in 62 different samples. For each sample it is indicated 

whether it came from a tumor biopsy or not. Numbers and descriptions for the 
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different genes are also given. This dataset is used in many different research papers 

on gene expression data. 

 Leukaemia (used in Getz et al, 2001): this dataset contains expression levels of 

7129 genes taken over 72 samples. Labels indicate which of two variants of 

leukaemia is present in the sample (AML, 25 samples, or ALL, 47 samples). This 

dataset is of the same type as the colon cancer dataset and is usually used for the same 

kind of experiments. 

 CNS (used in Pomeroy et al, 2002): This dataset involves patients outcome 

prediction for central nervous system embryonal tumor. Survivors are patients who 

are alive after treatment whiles the failures are those who succumbed to their disease. 

The data set contains 60 patient samples, 21 are survivors (labelled as "Class 1") and 

39 are failures (labelled as "Class 0"). There are 7129 genes (features) in the dataset. 

 Pendigits (used in Alimoglu, 1996). This is a dataset for character recognition, 

based on a collection of 250 samples from 44 writers (yielding a total of about 11000 

patterns). For its creation a WACOM PL-100V pressure sensitive tablet with an 

integrated LCD display and a cordless stylus were used. The writers were asked to 

write 250 digits in random order inside boxes of 500 by 500 tablet pixel resolution. 

There are 15 integer features and a class label array comprising of 10 different classes 

(one for each digit). 

 Magic Gamma Telescope (used in Dvorak & Savicky, 2007). This is a large 

dataset regarding the MC generated to simulate registration of high energy gamma 

particles in a ground-based atmospheric Cherenkov gamma telescope using the 

imaging technique. It comprises of 19020 patterns and 10 continuous features. A 

relatively balanced dataset, it has two classes denoting signal or background. 

 Iris (used in Zhong & Fukushima, 2005): Probably the best known dataset in the 

Pattern Recognition literature. The data set contains 3 classes of 50 instances each, 

where each class refers to a type of iris plant. One class is linearly separable from the 

other 2, which are not linearly separable from each other. 

 Statlog Heart (used in Brown, 2004): This dataset is a heart disease database 

similar to the substantially larger Heart Disease database but in a slightly different 

form. It has 270 cases (patterns) of patients some of whom have heart disease (class 

label). There are 13 features in the datasets, quite diverse in nature, while about half 

of them are real numbers. They involve certain medical measurements and 

characteristics, as well as other attributes such as sex and age. 
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 E.coli (used in Horton & Nakai, 1996): this is a medical dataset involving the 

e.coli virus. It comprises of 336 patterns and 7 features (most of which are real 

numbers, although there are two binary ones as well). There are two classes, 

representing the presence or absence of the e.coli disease. 
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Appendix B – MATLAB Code 
 

Spherical Index of Discernibility (Algorithm 3.1) 
 
function [z Z] = IDND5(I,O) 
 
% Yet another IDND alternative 
 
Z1 = []; 
[N na] = size(I); 
 
a = length(O); 
if a ~= N 
    error('I and O sizes do not match!') 
end 
 
D(N,2) = 0; ZZ(N) = 0; 
for i = 1:N 
    D = [sum((rm(I(i,:),N,1) - I).^2,2) O]; 
    D(i,:) = []; 
    f = (D(:,2) == O(i)); 
    lf = sum(f); 
    r = sum(D(f,1))/lf; 
    f2 = (D(:,1) <= r); 
    lf2 = sum(f2); 
    c = sum(D(f2,2)==O(i)); 
    ZZ(i) = c / lf2; 
end 
 
Z = ZZ; 
z = sum(Z >= .5)/N; 
 
Note: swap is a function that interchanges the contents of two 
variables a and b 
rm is a light version of the build-in repmat function. 
 
 
Harmonic Index of Discernibility (Algorithm 3.2) 
 
function [z Z] = IDND6(I,O,q,Q) 
 
% Yet another IDND alternative 
 
N = size(I,1); 
a = length(O); 
if a ~= N 
    error(‘I and O sizes do not match!’) 
end 
 
if nargin < 3 
    [q Q] = nc(O); 
end 
 
class{q} = []; NN(q) = 0; 
for I = 1:q 
    class{I} = find(O==Q(i));     
    NN(i) = length(class{I}); 
end 
 
d(N,N) = Inf; 
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for I = 1:(N-1) 
    X = ones((N-I),1)*I(I,:); 
    d((i+1):N,i) = sum( (X - I((i+1):N,:)).^2,2 ) ; 
    d(i,i) = Inf; 
end 
 
D = d + d'; % A compact form of the distance matrix 
ZZ(N) = 0; 
 
for i = 1:N 
    f = (O(i) == Q); 
    otherclasses = 1:N; 
    otherclasses(class{f}) = []; 
    z1 = sqrt(NN(f) / (sum(1./(d(class{f}) + eps)) - eps)); 
    z2 = sqrt(( N - NN(f) ) / sum(1./(d(otherclasses) + eps)- eps)); 
    ZZ(i) = max( ((z2 - z1) / (z1 + z2)) , 0); 
end 
 
Z = ZZ; 
z = sum(Z>0.5)/N; 
 
 
Discernibility k Nearest Neighbour Classifier (Algorithm 4.1) 
 
function [y Dcy cpu] = DNNK(P,T,PT,K) 
 
if nargin < 4 
    K = 5; 
end 
 
[N na] = size(P); 
n = size(PT,1); 
[q, Q, cs] = nc(T); 
 
t = cputime; 
 
class{q} = []; 
for I = 1:q 
    class{I} = P((T==Q(i)),:); 
end 
[z Z] = IDND5(P,T); 
 
 
cpu = cputime – t; 
 
% N = number of elements in training set 
% n = number of elements in testing set 
% na = number of attributes (=features) 
% q = number of classes 
% Q = classes vector 
 
Y(n) = 0; DCY(n) = 0; 
for I = 1:n % Do this for every element to be classified 
    z = zeros(q,1); 
    X = PT(I,:); 
    d(1:N,1:2) = 0; % Squared distance vector 
    D(:,1) = sum(((rm(X,N,1) – P).^2),2); 
    D(:,2) = T; 
    D(:,3) = Z; 
    DK = ksr(D,K); 
    for j = 1:q 
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        f = (DK(:,2) == Q(j)); 
        z(j) = sum(DK(f,3)./(DK(f,1)+eps)); 
    end 
     
    [M ind] = max(z); 
    Y(i) = Q(ind); 
    DCY(i) = M / sum(z); 
end % of FOR I 
 
y = Y; 
Dcy = DCY; 
 
 
Weighted k Nearest Neighbour Classifier (Algorithm 4.2) 
 
function [y DCy cpu] = WKNN(P,T,PT,K) 
 
%  WkNN - Weighted Nearest Neighbour K 
% 
%  A variation of NNK, using the independence vetors of each 
attribute, provided 
%  by IDND5, as weights for the distance vectors used for the 
classification. 
 
if nargin < 4 
    K = 5; 
end 
 
[N na] = size(P); 
n = size(PT,1); 
[q, Q] = nc(T); 
 
t = cputime; 
 
Z = zeros(N,na); 
for i = 1:na 
    [z Z(:,i)] = IDND5(P(:,i),T); 
end 
     
cpu = cputime - t; 
 
for i = 1:n 
    d = sum(((repmat(PT(i,:),N,1) - P).^2),2); 
    [m ind] = min(d); 
    w = Z(ind,:)';        
    d(:,1) = ((repmat(PT(i,:),N,1) - P).^2)*w; 
    d(:,2) = T; 
    ds = sortrows(d); % Sorted distances 
    D = ds(1:K,:); % K nearest neighbours 
    for j = 1:q 
        c(j) = length(find(D(:,2)==Q(j))); % Class counter 
    end 
    [M ind] = max(c); 
    DCY(i) = M/(sum(c)); 
    Y(i) = Q(ind);     
end 
 
y = Y; 
DCy = DCY; 
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Variable k Nearest Neighbour Classifier (Algorithm 4.3) 
 

function [Y DCY K cpu] = VKNN(P,T,PT) 
 
% NNVK - Nearest Neighbour with Variable K parameter 
 
 
% Some fundamental variables defined here 
N = size(P,1); 
n = size(PT,1); 
[q, Q] = nc(T); 
 
% N = number of elements in training set 
% n = number of elements in testing set 
% na = number of attributes (=features) 
% q = number of classes 
% Q = classes vector 
 
t = cputime; 
 
D = dmatrix(P); % the distance matrix of the training set 
BK(N,2) = 0; % Best K list 
minN = min((N-1),20); 
tempDC(minN) = 0; 
for i = 1:N 
    temp = D(i,:)'; 
    [st(:,1) ind] = sort(temp); 
    st(:,2) = T(ind); 
    for j = 1:minN 
        temp = st(1:j,:); 
        a = sum(temp(:,2)==T(i)); 
        tempDC(j) = a/j; 
    end 
    [M ind] = max(tempDC); 
    BK(i,:) = [i ind]; 
end 
clear D temp 
cpu = cputime - t; 
k(n) = 0; Y(n) = 0; DCY(n) = 0; 
 
for i = 1:n 
    x = PT(i,:); 
    temp(:,1) = sum((rm(x,N,1) - P).^2,2)'; 
    temp(:,2) = 1:N; 
    temp(:,3) = T; 
    [TEMP IND] = sort(temp(:,1)); 
    ind = IND(1); 
     
    k(i) = BK(temp(ind,2),2); % this is the optimum k of the nearest 
neighbour 
     
    st = [TEMP temp(IND,2:3)]; 
    knn = st(1:k(i),3); 
    for j = 1:q 
        a(j) = sum(knn==Q(j)); 
    end 
    [M ind] = max(a); 
    Y(i) = Q(ind); 
    DCY(i) = M / sum(a); 
end 
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K = sum(k)/n; 
 
 
Class-Based k Nearest Neighbour Classifier (Algorithm 4.2) 

 
function [y DCy cpu] = CBKNN(P,T,PT) 
 
[N na] = size(P); 
n = size(PT,1); 
[q, Q] = nc(T); 
 
t = cputime; 
 
for i = 1:q 
    f = find(T==Q(i)); 
    class{i} = P(f,:); 
    cs(i) = length(f); % Class Size 
end 
 
cputemp = cputime - t; 
 
% N = number of elements in training set 
% n = number of elements in testing set 
% na = number of attributes (=features) 
% q = number of classes 
% Q = classes vector 
 
for i = 1:n % Do this for every element to be classified 
    X = PT(i,:); 
    t = cputime;     
    for k = 1:( min( min(cs),12 ) ) 
        for j = 1:q 
            d(1:N,1:2) = 0; % Squared distance vector 
            d = sum(((repmat(X,cs(j),1) - class{j}).^2),2); 
            ds = sort(d); % Sorted distances 
            D(j) = harmean(ds(1:k),1,.0001); % Average distance of K 
nearest neighbours of class         
        end 
        [m ind] = min(D); 
        Ytemp(k) = Q(ind); 
        if m == 0 
            DCYtemp(k) = 1; 
        else 
            DCYtemp(k) = 1/(m*sum(1./D)); 
        end         
    end % of FOR k 
    cputemp = cputemp + cputime - t; 
    [M ind] = max(DCYtemp); 
    Y(i) = Ytemp(ind); 
    DCY(i) = DCYtemp(ind); 
end % of FOR i 
 
y = Y; 
DCy = DCY; 
cpu = cputemp; 
 
 
 
Net Reliability (Equation 3.4) 
 
function z = NR(y, TT, DCy) 
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%  Net Reliability 
% 
%  This function computes the Net Reliability of a classifier, based 
on a 
%  given classification (y) and its degree of certainty for that 
(DCy). 
% 
%  (c) by Zack Voulgaris, Crete 25/8/'06 
 
n1 = length(y); % The number of elements classified 
n2 = length(TT); 
n3 = length(DCy);  
if (n1 ~= n2)|(n1 ~= n3) 
    error('Input vectors do not match in length!'); 
end 
 
v = (y == TT'); % Vector of correctly classified elements 
% n = sum(v); % Number of correctly classified elements 
 
z = sum((2*v - 1).*DCy)/n1; 
 
 
 
Individual Feature Filter (Figure 5.1) 

 
function [ITr2 ITe2 NFS] = IFF(P, PT, T, th) 
 
% Feature Selector function 3 (irrelevant to 1 & 2). 
% Copyright by Zack Voulgaris, London, March - September 2007 
 
sT = size(T); 
[N ind] = max(sT); % Number of elements 
[r na] = size(P); 
 
if r ~= N 
    error('Dimensionality of Input and Output do not match!') 
end 
 
[r c] = size(PT); 
if c ~= na 
    error('Dimensionality of Input and Output do not match!') 
end 
 
if sT(3-ind) ~= 1 
    error('Target Training must be a vector') 
end 
 
p(na) = 0; 
for i = 1:na 
    p(i) = IDND5(P(:,i),T); 
end 
 
if nargin < 4 
    th = harmean(p,2,eps); 
end 
      
NFS = find(p>=th); 
ITr2 = P(:,NFS); 
ITe2 = PT(:,NFS); 
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Note: harmean is a function calculating the harmonic mean of an array 
p. 
 
 
 
Group Feature Selector (Algorithm 5.1, Figure 5.2) 
 
function [ITr2 ITe2 NFS] = GFS(P, PT, T) 
 
% Feature Selector function 10 (irrelevant to 1, 2 & 3) 
% A variation of Feature Selector 6. Here features are added and 
pruned at 
% the same time, until the optimum feature set is found.  
 
% Copyright by Zack Voulgaris, London, April-September 2007 
 
sT = size(T); 
[N ind] = max(sT); % Number of elements 
[r na] = size(P); 
if r ~= N 
    error('Dimensionality of Input and Output do not match!') 
end 
 
[r c] = size(PT); 
if c ~= na 
    error('Dimensionality of Input and Output do not match!') 
end 
 
if sT(3-ind) ~= 1 
    error('Target Training must be a vector') 
end 
 
[q Q] = nc(T); 
 
% ID0 = IDND5(P, T); % Original ID 
% RR = sprintf ('%0.5g', 100*ID0); 
% ['Original IDND: ' RR '%'] 
 
 
% Building up starts here 
 
Itemp = P(:,1); FS = 1; 
% IDtemp = IDND5(Itemp,T); 
AF = 2:na; % Available Features 
naf = na - 1; % Number of Available Features 
ff = 1; 
flag = 1; 
tempID = zeros(1,naf); 
 
for i = 1:naf 
    temp = [Itemp P(:,AF(i))]; 
    tempID(i) = IDND5(temp,T,q,Q); 
end 
[M ind] = max(tempID); 
FS = [FS AF(ind)]; ff = ff + 1; naf = naf - 1; 
Itemp = [Itemp P(:,AF(ind))]; 
IDtemp = M; 
AF(ind) = []; 
clear temp 
 
tempID = zeros(1,ff); 
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for i = 1:ff 
    temp{i} = Itemp; 
    temp{i}(:,i) = []; 
    tempID(i) = IDND5(temp{i},T,q,Q); 
end 
[M ind] = max(tempID); 
if M >= IDtemp 
    ff = ff - 1; 
    naf = naf + 1; 
    AF = [AF FS(ind)]; 
    FS(ind) = [];     
    Itemp(:,ind) = []; 
    IDtemp = M; 
end 
clear temp 
 
while flag == 1 
    for i = 1:naf 
        temp = [Itemp P(:,AF(i))]; 
        tempID(i) = IDND5(temp,T,q,Q); 
    end 
    [M ind] = max(tempID); 
    if M > IDtemp 
        FS = [FS AF(ind)]; ff = ff + 1; naf = naf - 1; 
        Itemp = [Itemp P(:,AF(ind))]; 
        AF(ind) = []; 
        IDtemp = M; 
    else 
        flag = 2; 
        break 
    end 
     
    for i = 1:naf 
        temp = [Itemp P(:,AF(i))]; 
        tempID(i) = IDND5(temp,T,q,Q); 
    end 
    [M ind] = max(tempID); 
    if M > IDtemp 
        FS = [FS AF(ind)]; ff = ff + 1; naf = naf - 1; 
        Itemp = [Itemp P(:,AF(ind))]; 
        AF(ind) = []; 
        IDtemp = M; 
    else 
        flag = 0; 
    end 
    clear temp 
 
    tempID = zeros(1,ff); 
    for i = 1:ff 
        temp{i} = Itemp; 
        temp{i}(:,i) = []; 
        tempID(i) = IDND5(temp{i},T,q,Q); 
    end 
    [M ind] = max(tempID); 
    if M >= IDtemp 
        ff = ff - 1; 
        naf = naf + 1; 
        AF = [AF FS(ind)]; 
        FS(ind) = []; 
        Itemp(:,ind) = []; 
        IDtemp = M; 
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    end     
end 
 
if flag == 2 
    clear temp 
    tempID = zeros(1,ff); 
    for i = 1:ff 
        temp{i} = Itemp; 
        temp{i}(:,i) = []; 
        tempID(i) = IDND5(temp{i},T,q,Q); 
    end 
    [M ind] = max(tempID); 
    if M >= IDtemp 
        ff = ff - 1; 
        naf = naf + 1; 
        AF = [AF FS(ind)]; 
        FS(ind) = []; 
        Itemp(:,ind) = []; 
        IDtemp = M; 
    end     
end 
 
NFS = FS; 
ITr2 = Itemp; 
ITe2 = PT(:,NFS); 
% RR = sprintf ('%0.5g', 100*IDtemp); 
% ['Reduced Feature Set IDND: ' RR '%'] 
 
 
Data (Pattern) Reducer (Figure 5.3) 
 
function [P2 T2 A] = PR(P,T,th) 
 
% Pattern Reduction 
 
if nargin < 3 
    th = .25; 
end 
 
% R = 10000000; % repeating ID calculation parameter 
[N na] = size(P); 
n = round(N * th); 
 
[T ind] = sort(T); 
P = P(ind,:); 
Q = [T(1) nan nan nan nan nan nan nan nan nan]; 
q = 1; 
class{20} = []; c(20) = 0; cc(20) = 0; 
temp = T; 
 
for i = 1:inf 
    ff = (1:N)'.*(temp == Q(q)); 
    f = ff(ff>0); 
    c(q) = length(f); cc(q) = cc(q) + c(q); 
    class{q} = [class{q};f]; 
    temp(f) = NaN;       
    if sum(isnan(temp))==N 
        break 
    end 
    q = q + 1; 
    Q(q) = temp(cc(q-1)+1); 
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    cc(q) = cc(q-1) + cc(q); 
end 
 
Q = Q(1:q); 
a = [1 (cc(1:(q-1))+1)]; 
A(n,2) = 0; % Matrix showing patterns to be discarded 
D(N,N) = 0; % Distance matrix of dataset 
ad(q) = 0; % Average distance of class 
 
for i = 1:q 
    d = dmatrix3(P(class{i},:)); 
    ad(i) = sum(sum(d))/(c(i)*(c(i)-1)); 
    D(a(i):cc(i),a(i):cc(i)) = d / ad(i); 
end 
 
[z Z] = IDND5(P,T); 
DD(q,N) = 0; % Minimum distance 
 
for i = 1:q 
    [M ind] = max(Z(class{i})); 
    A(i,1) = ind + a(i) - 1; 
    A(i,2) = i; 
    Z(A(i,1)) = 0; 
    DD(i,:) = D(A(i,1),:); 
end 
 
v(q,N) = 0; 
 
for i = (q+1):n 
%     p = round(100*i/n); 
%     if mod(i,R) == 0 
%         clc,disp(p) 
%         temp = A((A(:,1)>0),1); 
%         P1 = P; T1 = T; 
%         P1(temp,:) = repmat(inf,length(temp),na); 
%         [z Z] = IDND5(P1,T1); 
%         Z(temp) = 0; 
%     end 
     
    for j = 1:q 
        v(j,:) = DD(j,:).*Z; 
    end 
     
    [M r c] = mmax(v); % r = class, c = pattern 
    Z(c) = 0; 
    A(i,:) = [c r]; 
    DD(r,:) = min(DD(r,:),D(A(i,1),:)); 
end 
 
% p = 100;clc,disp(p) 
 
P(A(:,1),:) = []; T(A(:,1)) = []; 
P2 = P; T2 = T; 
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Degree of Reliability (Section 3.4) 
 
function [DRy elite] = DR(P,T,PT,yy,classifier) 
 
if nargin < 5 
    classifier = 'NNKlite'; 
end 
 
[q, Q, NN, class] = nc(T); % Class information 
[N na] = size(P); 
n = size(PT,1); 
 
% Create Validation set (V matrix and TV vector) 
 
[ITR ITE TTR TTE] = KFCV(P,T,4); 
 
th(4) = 0; 
for k = 1:4 
     
    P1 = ITR{k}; T1 = TTR{k}; 
    V = ITE{k}; TV = TTE{k}; 
    N1 = length(T1); m = length(TV); 
    for i = 1:q 
        temp = (1:m)'.*(TV==Q(i)); 
        classV{i} = temp(temp>0); 
        LC(i) = length(classV{i}); 
    end 
 
    DRY(m) = 0; 
    [y DCy] = feval(classifier,P1,T1,P1); 
    DCY = sum(DCy); 
    AR = sum(y==T1'); % Self-assessment of classifier 
    for i = 1:m 
        X = V(i,:); 
        CX = (yy(i)==Q); 
        P2 = [P1; X]; 
        T2 = [T1; Q(CX)]; 
        [y DCy] = feval(classifier,P2,T2,P1); 
        d = sum((repmat(X,(N-m),1) - P1).^2,2); 
        classi = classV{CX}; 
        otherclasses = 1:N1; 
        otherclasses(classi) = []; 
        z1 = sqrt(LC(CX) / (sum(1./(d(classi) + eps)) - eps)); 
        z2 = sqrt(( N1 - LC(CX) ) / sum(1./(d(otherclasses) + eps) - 
eps)); 
        Z = max( ((z2 - z1) / (z1 + z2)) , 0); 
        DRY(i) = ((sum(y==T1')/AR)*sum(DCy)/DCY * Z).^(0.5); 
    end 
 
    TH = 1.05; M = 0; 
    for i = 1:20 
        TH = TH - 0.05; 
        temp = (1:m).*(DRY>=TH); 
        ELITE = temp(temp>0); 
        if isempty(ELITE) 
            Z(i) = NaN; 
        else 
            Z(i) = (sum(y(ELITE)==TV(ELITE)')) / length(ELITE); 
            if Z(i) > M 
                M = Z(i); 
                ind2 = i; 
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            end 
        end 
    end 
 
    [M ind1] = max(Z); 
    th(k) = 1.05 - 0.025*(ind1 + ind2); 
end % of k loop 
     
th = median(th) 
DRY(1:n) = 0; 
[y DCy] = feval(classifier,P,T,P); 
DCY = sum(DCy); 
AR = sum(y==T'); % Self-assessment of classifier 
for i = 1:n 
    X = PT(i,:); 
    CX = (yy(i)==Q); 
    P2 = [P; X]; 
    T2 = [T; Q(CX)]; 
    [y DCy] = feval(classifier,P2,T2,P); 
    d = sum((repmat(X,N,1) - P).^2,2); 
    classi = class{CX}; 
    otherclasses = 1:N; 
    otherclasses(classi) = []; 
    z1 = sqrt(NN(CX) / (sum(1./(d(classi) + eps)) - eps)); 
    z2 = sqrt(( N - NN(CX) ) / sum(1./(d(otherclasses) + eps) - 
eps)); 
    Z = max( ((z2 - z1) / (z1 + z2)) , 0); 
    DRY(i) = ((sum(y==T')/AR)*sum(DCy)/DCY * Z).^(0.5); 
end 
 
f = (DRY >= th); 
temp = (1:n).*f; 
elite = temp(temp>0); 
DRy = min(DRY,1); 
 
Note: NNKlite is a light version of the classic kNN classifier. This 
is selected as the default classifier, in case the user doesn’t 
define a classifier to be used. 
 
 
Minimum Spanning Tree Classifier (Algorithm 4.3) 
 
function [y DCy cpu] = MSTC(P,T,PT) 
 
t = cputime; 
 
[q Q] = nc(T); 
[N na] = size(P); 
N2 = length(T); 
[n na2] = size(PT); 
 
if (N ~= N2)||(na ~= na2) 
    error('Dimensionality mismatch!') 
end 
 
C{q} = []; TB{q} = []; N(q) = 0; p(q) = 0; Y(n) = 0; DCY(n) = 0; 
for c = 1:q 
    f = (T == Q(c)); 
    C{c} = P(f,:); % Class cell 
    DM = dmatrix(C{c}); 
    [temp TB{c}] = MST(DM); 
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    N(c) = sum(f); 
end 
 
cpu = cputime - t; 
 
for i = 1:n 
    X = PT(i,:); % Test element to be classified 
    for j = 1:q 
        D = sum( (ones(N(j),1)*X - C{j}).^2 , 2);       
        [d1 ind1] = min(D); 
         
        d1 = sqrt(d1); 
         
        f1 = find(TB{j}(:,1) == ind1); 
        f2 = find(TB{j}(:,2) == ind1); 
        lf = length(f1) + length(f2);        
        TEMP = [C{j}(TB{j}(f1,2) , :); C{j}(TB{j}(f2,1) , :)]; 
        dtemp = sum( (TEMP - ones(lf,1)*X).^2 , 2);       
        [d2 ind2] = min(dtemp);         
        d2 = sqrt(d2);        
        d3 = sqrt( sum( (TEMP(ind2,:) - C{j}(ind1,:)).^2 , 2 ) );         
        clear dtemp 
        if d2 >= sqrt(d1^2 + d3^2) 
            d = d1; % d = shortest distance to the branch 
        else 
            t = (d1 + d2 + d3) / 2; 
            area = sqrt(t*(t-d1)*(t-d2)*(t-d3)); 
            d = 2*area / d3; 
        end 
        p(j) = 1 / (d + eps); 
    end 
    [M ind] = max(p); 
    Y(i) = Q(ind); 
    DCY(i) = M / sum(p); 
end 
 
y = Y; 
DCy = DCY; 
 
 
Minimum Spanning Tree function (auxiliary program for MSTC) 
 
function [y C] = MST(P) 
%  MST  Minimum Spanning Tree (using Prim Algorithm variation) 
% 
%  D = distance matrix 
%  C = connections matrix for MST 
%  y = minimum distance 
% 
%  Created by Zack Voulgaris, London 29/9/'06 
 
n = size(P,1); 
 
d(n,n) = Inf; 
for i = 1:(n-1) 
    X = ones((n-i),1)*P(i,:); 
    d((i+1):n,i) = sum((X - P((i+1):n,:)).^2,2); 
    d(i,i) = Inf; 
end 
 
D = d + d'; 
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CC = []; 
yy = 0; 
c = 1; 
 
[m f] = min(D(1,:)); 
CC = [CC;1 f]; 
yy = yy + m; 
c = c + 1; 
D(1,f) = Inf; D(f,1) = Inf; 
x(1) = 1; x(2) = f; 
 
while c < n 
    temp = D(x,:); 
    [m1 ind1] = min(temp,[],2); 
    [m ind2] = min(m1); 
    fx = ind1(ind2); 
    fy = x(ind2); 
     
    CC = [CC; fy fx]; 
    yy = yy + m; 
    c = c + 1; 
    x(c) = fx; 
    for i = 1:(c-1) 
        D(x(i),fx) = Inf; 
        D(fx,x(i)) = Inf; 
    end 
end 
 
y = yy; 
C = CC; 
 
 
Distance Matrix (auxiliary program for MST) 
 
function D = dmatrix(P) 
 
N = size(P,1); 
 
d = zeros(N); 
for I = 1:(N-1) 
    X = ones((N-I),1)*P(I,:); 
    d((i+1):N,i) = sum((X - P((i+1):N,:)).^2,2); 
end 
 
D = sqrt(d + d'); 
 
 
Feature Subset function (auxiliary program) 
 
function [FS IND] = fss(I, k, na) 
 
% FSS – Feature SubSets 
% 
% Creates k feature subsets of original dataset (I, O) containing na 
features. 
% The subsets are not overlapping. 
 
IND{k} = []; % Feature Subset 
m = floor(na / k); % Number of features in every feature partition 
af = 1:na; % Available features 
naf = na; % Number of available features 
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for j = 1:m 
    for I = 1:(k-1) 
        a = ceil(naf*rand); 
        IND{I} = [IND{I} af(a)]; 
        af(a) = []; 
        naf = naf – 1; 
    end 
end 
 
IND{k} = af; 
 
for I = 1:k 
    IND{I} = sort(IND{I}); 
    FS{I} = I(:,IND{I}); 
end 
 
 
Feature Subsets – Balanced (Section 7.2.1) 
 
function [FS IND] = fssb(I, O, k, N, na) 
 
% FSSB - Feature SubSets that are Balanced (in terms of 
Discernibility) 
% 
% Creates k feature subsets of original dataset (I, O) containing na 
features. 
% The subsets are not overlapping. 
 
th = 0.6; NI = 200; % Termination conditions (0.6 = 0.8 x 0.75) 
 
IND{k} = []; % Feature subSet 
m = floor(na / k); % Number of features in every feature partition 
D(k) = 0; 
 
d = disc(I, O, N); 
 
AF = 1:na; 
IND{k} = []; FS = IND; 
 
c = 1; 
v = 0; V = 0; 
while (v < th) 
    c = c + 1; 
    af = AF; % Available features 
    naf = na; % Number of available features 
    ind = IND; 
    for i = 1:(k-1) 
        for j = 1:m         
            a = ceil(naf*rand); 
            ind{i} = [ind{i} af(a)]; 
            af(a) = []; 
            naf = naf - 1; 
        end 
        D(i) = disc(I(:,ind{i}), O, N); 
    end 
    ind{k} = [IND{k} af]; 
    D(k) = disc(I(:,ind{k}), O, N); 
    v = (min(D))^2 / (d * max(D)); 
    if v > V 
        V = v; 
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        indB = ind; 
    end 
    if c == NI 
        ind = indB; 
        break 
    end 
end 
 
for i = 1:k 
    IND{i} = sort(ind{i}); 
    FS{i} = I(:,ind{i}); 
end 
 
return 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function z = disc(I, O, N) 
 
ZZ(N) = 0; 
for i = 1:N 
    D = [sum((repmat(I(i,:),N,1) - I).^2,2) O]; 
    D(i,:) = []; 
    f = (D(:,2) == O(i)); 
    lf = sum(f); 
    r = sum(D(f,1))/lf; 
    f2 = (D(:,1) <= r); 
    lf2 = sum(f2); 
    c = sum(D(f2,2)==O(i)); 
    ZZ(i) = c / lf2; 
end 
 
z = sum(ZZ >= .5)/N; 
 
 
Note: the disc function within the fssb function is the Spherical 
Index of Discernibility function. 
 
 
Feature Subsets – Diverse and Balanced (Section 7.2.1) 
 
function [FS IND] = fssdb(P, T, PV, TV, C, N, na) 
 
% FSSDB - Feature SubSets that are Diverse (in terms of errors)  
%         and Balanced (in terms of Discernibility) 
% 
% Creates k feature subsets of original dataset (P, V) containing na 
features. 
% The subsets are not overlapping and are as diverse as possible. 
% C = classifier used 
% PV = Validation set Input values 
% TV = Validation set Target values 
 
K = 20; % swarm size 
NI = 250; % Total number of iterations 
 
 
p = 3; % number of partitions 
 
n = length(TV); 
x(K) = 0; d(K) = 0; 
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clear X temp V 
combs = p*(p-1)/2; 
X{K,p} = []; temp(p) = 0; V(n,p) = 0; temp2(combs) = 0; 
 
for j = 1:K % swarm particle 
    af = 1:na; % Available Features 
    naf = na; 
    for i = 1:p 
        r = ceil(naf*rand); 
        X{j,i} = [X{j,i} af(r)]; % Partition i 
        af(r) = []; 
        naf = naf - 1;     
    end 
 
    for i = 1:naf 
        r = ceil(p*rand); 
        X{j,r} = [X{j,r} af(i)]; 
    end 
 
    for i = 1:p 
        X{j,i} = sort(X{j,i}); 
        temp(i) = disc(P(:,X{j,i}),T,N); % discernibilies of subsets 
        y = feval(C,P(:,X{j,i}),T,PV(:,X{j,i})); 
        V(:,i) = (y' == TV); 
    end 
     
    c = 0; 
    for i = 1:(p-1) 
        for ii = (i+1):p 
            c = c + 1; 
            temp2(c) = div(V(:,i),V(:,ii),N); 
        end 
    end 
 
    x(j) = mean(temp); % average discernibility 
    d(j) = mean(temp2); % average diversity 
    f = x.*d; % function to be maximised 
end 
 
[M ind] = max(f); 
stop 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function z = disc(I, O, N) 
 
ZZ(N) = 0; 
for i = 1:N 
    D = [sum((repmat(I(i,:),N,1) - I).^2,2) O]; 
    D(i,:) = []; 
    f = (D(:,2) == O(i)); 
    lf = sum(f); 
    r = sum(D(f,1))/lf; 
    f2 = (D(:,1) <= r); 
    lf2 = sum(f2); 
    c = sum(D(f2,2)==O(i)); 
    ZZ(i) = c / lf2; 
end 
 
z = sum(ZZ >= .5)/N; 
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Note: the disc function within the fssdb function is the Spherical 
Index of Discernibility function. 
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