

Discernibility Concept in Classification Problems

Zacharias N. Voulgaris

A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy for the University of London

May 2009

 ii

To my family

 iii

Abstract

The main idea behind this project is that the pattern classification process can be

enhanced by taking into account the geometry of class structure in datasets of interest.

In contrast to previous work in the literature, this research not only develops a

measure of discernibility of individual patterns but also consistently applies it to

various stages of the classification process.

 The applications of the discernibility concept cover a wide range of issues

from pre-processing to the actual classification and beyond that. Specifically, we

apply it for: (a) finding feature subsets of similar classification quality (applicable in

diverse ensembles), (b) feature selection, (c) data reduction, (d) reject option, and (e)

enhancing the k-NN classifier. Also, a number of auxiliary algorithms and measures

are developed to facilitate the proposed methodology. Experiments have been carried

out using datasets of the University of California at Irvine (UCI) repository. The

experiments provide numerical evidence that the proposed approach does improve the

performance of various classifiers. This, together with its simplicity renders it a novel,

useful and versatile tool for the classification process.

 iv

Acknowledgements

I would like to take this opportunity to express my gratitude to all those people

who helped me, in their way, for the completion of this research.

First of all, I would like to thank my family, without whose invaluable support

this project would have remained an unfulfilled dream. Through the past four years

they showed great understanding, support and trust, despite the adverse circumstance

that I found myself in. Also, their advice on general matters involving the project, and

their genuine interest helped fuel my motivation to complete it, at times when the

adversities were overwhelming.

I would also like to thank my supervisors, Dr. George Magoulas and Prof.

Boris Mirkin, who showed patience, tolerance and great intelligence in their guidance

through this mental journey that, due to their help, brought about a number of new

skills, experiences and helped me develop the priceless know-how that made this

project worthwhile. I am very grateful especially to Dr. Magoulas, for his

encouragement through the difficult times of the research, as well as for his priceless

advice, on all types of practical matters, throughout these years. His help at the

writing up stage as well as during the defence viva is especially acknowledged.

This acknowledgements part would be incomplete if I were not to include

Matina Karastatira, who helped me make this research project an enjoyable and quite

easier task. Her patient understanding and support transmuted this period of my life to

a great lesson of combining things and striking a healthy balance between

professional duty and personal life. Also her support during the proofreading part of

the thesis writing saved me a lot of time and effort, while it made the whole process of

editing and enriching it more easily acceptable to me.

I would also like to extend my thanks to the various members of the academic

staff here at Birkbeck, who with their inspiring example, helped me understand that

this PhD is not an end-product, but a door to an interesting and creative life. Special

thanks to Dr. Jenny Pedler and Dr. Ian Harrison for the invaluable opportunities they

offered me in teaching and getting a clearer perspective of the responsibilities

involved in such a task. Also, I would like to thank Dr. Eli Katsiri for her advice.

Special appreciation to my friends, especially Julian Scott and Sabine Leitner

(for their support in many levels), Melissa Andrade, Dr. Kostas Filipopolitis, Dr.

 v

George Themelis, Ken Tsang, Dionysis Dimakopoulos, Dr. Harris Alexakis, Dr.

Rajesh Pampapathi and Dr. Aris Moustakas (for demystifying the post-PhD life for

me). Also, I would like to thank Dr. Simon Coupland for his help at the last minute

corrections of the thesis.

Furthermore, I would like to extend my sincere thanks to my examiners, Prof.

Shen and Dr. Pontil. With their scholastic review of this thesis, many mistakes were

pinpointed and I had the opportunity to make a number of clarifications in the text.

Also, they drew my attention to the most essential part of this project and helped me

gain a better understanding of the field. Moreover, they aided in my development as a

researcher by showing me how to view my work from another researcher’s

perspective.

My final words of gratitude go to my family again, especially my brother

Costas and his family, who maintained a more or less objective viewpoint providing

me with great insight and a clearer perspective, when it came to strategic matters.

Also, their presence in this country in the first years of my research made the first

phase much easier. Also, I would like to express my gratitude to my godfather who

made this project of strategic importance for me, offering the possibility of a bridge

between academic qualifications and professional experience.

 vi

Table of Contents

Abstract . iii

Acknowledgements . iv

List of Tables . x

List of Figures . xiii

1 Introduction . 1

1.1 Motivation of this Project . 2

1.2 Aim . 3

1.3 Objectives . 3

1.4 Methodology . 3

1.5 Thesis Structure . 4

1.6 Contribution of the Thesis . 5

2 Review of Classification Literature . 9

2.1 Artificial Intelligence Methods for Classification. 10

2.1.1 Support Vector Machines . 11

2.1.2 Decision Trees . 11

2.1.3 Artificial Neural Networks . 13

2.1.4 k Nearest Neighbour and Other Distance-Based Classifiers 15

2.1.5 Fuzzy Logic Classifiers . 19

2.1.6 Stochastic Methods . 19

2.1.7 Hybrid Classification Systems . 20

2.2 Summary and Contribution of the Chapter . 21

3 The Concept of Discernibility and Data Quality in Classification 22

3.1 Spherical Index of Discernibility . 22

3.2 Harmonic Index of Discernibility . 24

3.3 Comparison with Relevant Work . 25

3.4 Degree of Certainty and Degree of Reliability. 29

 vii

3.5 Net Reliability . 31

3.6 Summary and Contribution of the Chapter . 32

4 Discernibility-Based Classification . 33

4.1 Background Research on kNN Extensions . 34

4.2 kNN Extensions Based on Discernibility . 36

4.2.1 Discernibility kNN . 36

4.2.2 Weight-based kNN . 38

4.2.3 Experimental Results of the Discernibility-based kNN

Extensions .

40

4.2.3.1 Description of the Datasets and Experimental

Setup .

40

4.2.3.2 Evaluation Criteria . 41

4.2.3.3 Results . 41

4.3 Other kNN Extensions . 45

4.3.1 Extensions of kNN with Self-determined k. 45

4.3.1.1 Variable k Nearest Neighbour 42

4.3.1.2 Class-Based k Nearest Neighbour 48

4.3.1.3 Experimental Results of the kNN Extensions with

Self-determined k .

50

4.3.2 Minimum Spanning Tree Classifier 54

4.3.2.1 Description of Classifier 54

4.3.2.2 Experimental Results of Minimum

Spanning Tree Classifier .

57

4.4 Summary and Contribution of the Chapter . 57

5 Discernibility-Based Methods of Data Processing . 59

5.1 Feature Selection and Discernibility . 59

5.1.1 Discernibility-Based Feature Selection: the IFF Method . . . 61

5.1.2 Discernibility-Based Feature Selection: the GFS Method . . 62

5.2 Data Reduction and Discernibility . 65

5.3 Experimental Results . 68

5.3.1 Experimental Setup . 68

5.3.2 Feature Selection Experiments . 71

5.3.2.1 Results of Feature Selection Methods 71

 viii

5.3.2.2 Classification Experiments with the Reduced

Feature Sets .

71

5.3.3 Experimental Results for Data Reduction 76

5.4 Summary and Contribution of the Chapter . 79

6 Reject Option Based on Discernibility . 81

6.1 Experimental Setup . 82

6.2 Reject Option . 83

6.2.1 Reliable Elite for a Classifier . 83

6.2.2 The One-Third-Out Rule . 85

6.2.3 The Loners-Out Rule . 85

6.3 Evaluation Criteria . 86

6.4 Experimental Results . 87

6.5 Fine-tuning of the Method . 91

6.5.1 Parametric Degree of Reliability . 91

6.5.2 The Vibrating Grid Optimisation Technique 92

6.5.3 Experimental Results for the Parametric Degree of

Reliability .

92

6.6 Summary and Contribution of the Chapter . 94

7 Employing Discernibility in Classifier Ensembles . 95

7.1 Techniques for Formulating Ensembles . 95

7.2 The Role of Discernibility in Ensembles . 96

7.2.1 Structure of the Proposed Ensemble 96

7.3 Experimental Results . 97

7.4 Discussion . 99

7.4 Summary and Contribution of the Chapter . 99

8 Conclusions . 101

8.1 Conclusions and Contribution . 101

8.2 Limitations . 103

8.3 Future Work . 103

References . 106

Appendix A – Dataset Description . 121

Appendix B – MATLAB Code . 125

Appendix C – List of Articles Published or Awaiting Publication 143

 ix

 x

List of Tables

3.1 Results of the Discernibility experiments carried out using Silhouette

Width and the two versions of the Index of Discernibility.

27

4.1 Characteristics of the datasets used in the experiments with the

Discernibility based kNN variations.

41

4.2 Results of Discernibility based kNN variations for the Bupa Liver dataset. 41

4.3 Results of Discernibility based kNN variations for the Pima Indians

dataset.

42

4.4 Results of Discernibility based kNN variations for the Breast Cancer

Wisconsin dataset.

42

4.5 Results of Discernibility based kNN variations for the Heart Disease

dataset.

43

4.6 Results of Discernibility based kNN variations for the Vehicle dataset. 43

4.7 Results of Discernibility based kNN variations for the Boston Housing

dataset.

43

4.8 Winners based on average performance over the 50 rounds, for the

Discernibility based kNN variations experiments.

44

4.9 Winners based on pair-wise comparisons in performance, for the

Discernibility based kNN variations experiments.

44

4.10 Average performance of the Discernibility based kNN variations

classifiers.

45

4.11 Suggested k values for the various datasets used 47

4.12 Results of self-determined k kNN variations for the Bupa Liver dataset. 50

4.13 Results of self-determined k kNN variations for the Pima Indians dataset. 51

4.14 Results of self-determined k kNN variations for the Breast Cancer

Wisconsin dataset.

51

4.15 Results of self-determined k kNN variations for the Heart Disease dataset. 52

4.16 Results of self-determined k kNN variations for the Vehicle dataset. 52

4.17 Results of self-determined k kNN variations for the Boston Housing

dataset.

53

4.18 Summary results of self-determined k kNN variations based on average

performance.

53

 xi

4.19

Summary results of self-determined k kNN variations based on pairwise

comparisons in performance

54

4.20 Average performance of the self-determined k kNN variations. 54

4.21 Average performance of the kNN and MST classifiers based on five datasets 57

5.1 Datasets characteristics and sizes of reduced feature sets 71

5.2 Results for kNN using the original feature set 72

5.3 Results for V-kNN using the original feature set 72

5.4 Results for Fuzzy kNN Using the original feature set 72

5.5 Results for LDA using the original feature set 72

5.6 Results for GMC using the original feature set 72

5.7 Results for kNN using the reduced feature set created by IFF 73

5.8 Results for V-kNN using the reduced feature set created by IFF 73

5.9 Results for Fuzzy kNN using the reduced feature set created by IFF 73

5.10 Results for LDA using the reduced feature set created by IFF 73

5.11 Results for GMC using the reduced feature set created by IFF 73

5.12 Results for kNN using the reduced feature set created by GFS 73

5.13 Results for V-kNN using the reduced feature set created by GFS 74

5.14 Results for Fuzzy kNN using the reduced feature set created by GFS 74

5.15 Results for LDA using the reduced feature set created by GFS 74

5.16 Results for GMC using the reduced feature set created by GFS 74

5.17 Index of Discernibility values for each dataset, before and after the feature

selection process, for both of the methods employed

75

5.18 Summary of results 75

5.19 Data reduction results for clouds dataset 77

5.20 Data reduction results for pendigits dataset 77

5.21 Data reduction results for magic dataset 78

6.1 Characteristics of the datasets used in our experiments 83

6.2 Accuracy rates of the classifiers under consideration 87

6.3 Accuracy rates of various classifiers at different elite levels and Indexes of

Discernibility

88

6.4 Accuracy rates at the different methods of amalgamation of reliability elites 89

 xii

6.5 Elite sizes, per cent, at different methods of amalgamation of reliability

elites

90

6.6 Accuracy Rates of elite classifications based on the Parametric Degree of

Reliability

93

7.1 Characteristics of the datasets used in our experiments 98

7.2 Average accuracy rates and average overall performance for the 3 ensemble types 98

 xiii

List of Figures

3.1 The concept of Discernibility (spherical form) in a simple two-dimensional

dataset

23

3.2 The concentric dataset class structure 27

4.1 kNN’s performance on a pattern of the Clouds dataset 37

4.2 D-kNN’s performance on a pattern of the Clouds dataset 38

4.3 W-kNN’s performance on a pattern of the Clouds dataset 40

4.4 V-kNN’s performance on a pattern of the Clouds dataset 48

4.5 CB-kNN’s performance on a pattern of the Clouds dataset 50

4.6 Illustration of the function of the Minimum Spanning Tree Classifier 55

5.1 Flow chart of the Discernibility-based feature selection method IFF 62

5.2 Flow chart of the Discernibility-based feature selection method GFS 64

5.3 Flow chart of the Discernibility-based data reduction method 67

5.4 Representation of the Clouds dataset based on different levels of reduction 79

6.1 Average level of misclassification for three SID categories for the Glass

dataset

84

6.2 Average level of misclassification for different numbers of classifiers

voting for a pattern on the Glass dataset

86

 1

Chapter 1 – Introduction

“Science is the systematic classification of experience”
– George H. Lewes (1817-1878)

 Concept classification is one of the fundamental attributes of intelligence and

finds application in many different aspects of our lives. Its introduction to Computer

Science influenced fields like Pattern Recognition and Machine Learning. Yet, as our

dealing with data becomes more and more complicated, our demands for an efficient

and sustainable use of classification leads us to the development of (quite often)

sophisticated methods for analysing and employing it for various types of predictions,

may it be static or dynamic. Whatever the case, as predictions tend to come along

with errors, it has been our task to develop classification systems that minimise these

errors and provide more and more reliable predictions. This project constitutes one of

the many attempts to make this task more understandable and improve its

applications.

 In general, classification as Pattern Recognition is “the act of taking raw data and

taking an action based on the ‘category’ of the pattern” (Duda et al, 2001). The

applications of classification include automated procedures for sorting letters based on

post-codes, assigning individuals to credit status, as well as providing a preliminarily

disease diagnosis while waiting for definitive test results (Mitcie et al., 1994). Due to

the broad spectrum of applications, classification has attracted the interest of many

researchers and many techniques for it have been developed.

 Yet, simple as the problem may sound, its treatment often involves sophisticated

methods in order to accomplish an accurate and reliable classification. This is one of

the main reasons that spawned the development of a number of information systems

focused on this particular activity using various approaches. Nevertheless, the

underlying process remains largely the same in all approaches: typically a pre-

processing stage takes place, which prepares the data in a way that they are more

suitable for the classifier used (this may involve segmentation and/or feature

selection/extraction). Then, the training of the classifier takes place, where the

patterns of a particular part of the dataset (the training set) are used. Afterwards, in

some cases, the cost of classification is taken into account. Finally, the actual

classification takes place, rendering the unlabeled patterns into the predefined classes.

 2

 Another point of view regarding classification is that put forward by McKenzie

and Low (1992). According to them, classification is the application of certain rules,

which are defined by the process of discrimination. Yet, these rules are often in a

form that is not accessible or comprehensible to us, since they depend on the structure

of the classifier used.

 In all cases, classification systems need to overcome a number of difficulties. The

most important of these is the over-fitting problem. This involves learning the training

pattern in such a rigid way that the classifier is unable to perform well on novel

patterns. The classifier needs to be sophisticated enough so that it can distinguish the

difference among the different classes, but simple enough so that it can classify novel

patterns accurately (Duda et al, 2001; Vapnik, 2000a).

1.1 Motivation of this Project
There has been a great deal of research on classification systems, aiming at the

development of general methods and specialised techniques to tackle particular

classification problems. These techniques often employ the statistical properties of the

data involved (e.g. McKenzie & Low, 1992; Jain et al., 2000), or adaptive

mechanisms (e.g. the classifier described by Wang et al., 2007) to exploit every little

piece of information that may reveal a useful property of the data, leading to a reliable

classification.

 Yet, datasets not always follow the assumed statistical distribution; this renders

the statistical classifiers unable to cope with the problems and reduces their reliability.

Also, many classifiers tend to become “confused” when dealing with large datasets, as

the excessive information that is there often compromises the classifiers’

performance, sometimes due to the problem of over-fitting. This can be attributed to

the fact that they often consider all patterns being equally important, instead of taking

into account their underlying structure which may yield more useful information for

the classification process.

 Motivated by this, we decided to view the problem anew, focusing on first

understanding and evaluating what we know, and then tackling the pieces of data that

are unknown, trying to discern which class is more appropriate for their classification.

That is why we developed and proposed a new measure for investigating and

evaluating the structural properties of the dataset in hand, without any a priori

 3

information about it. This we coin as Discernibility, an insightful tool to facilitate and

enhance the classification process, regardless of the dataset or the classifier used.

1.2 Aim
In this project we aim to investigate how the various aspects of classification, namely

features selection, data reduction, reliability evaluation, and information fusion can be

improved by employing a new perspective to it through the use of the Discernibility

concept. Discernibility is a novel concept introduced in this research, aspiring to

clarify the structural properties of a dataset, in both a pattern and dataset level.

1.3 Objectives
There are several objectives that we plan to fulfil in this project in order to achieve

our aim. These are the following:

 Introduce the new concept of Discernibility and identify relationships with other

similar metrics

 Demonstrate how the proposed concept functions and how it can be applied in the

classification process, particularly for improving the kNN classifier

 Develop feature selection and data reduction techniques based on the

Discernibility concept

 Develop new methods for measuring reliability for different classifiers, as well as

their combination

 Explore how Discernibility can be incorporated to enhance the performance of a

diversity ensemble (a set of classifiers aiming to yield an improved performance

by basing its structure on the diversity of errors of its members)

1.4 Methodology
The philosophy of this project is to investigate the newly introduced concept of

Discernibility and explore its various applications in classification problems. The

objectives presented in Section 1.3 will be accomplished by employing a diverse

methodology, centred however around this philosophy.

As regards the first objective, a descriptive methodology will be employed, first

explaining the idea and the implementations of it, then describing the details of the

algorithms developed, and finally comparing them with the existing measures that

share the same general approach.

 4

Regarding the second objective, the function of Discernibility in the classification

process will be shown by examining how the kNN classifier is enhanced by

incorporating this notion in its function. For this purpose, a number of benchmark

datasets will be used and an experimental comparison with the original kNN

classification algorithm will be conducted. The findings of this round of experiments

will then be presented and discussed.

Concerning the feature selection and data reduction applications of Discernibility,

a literature review will be conducted and the shortcomings of the traditional methods

will be pinpointed. Afterwards, some techniques based on Discernibility will be

presented and it will be shown how they attempt to address these problems. A number

of experiments on some benchmark datasets will be carried out to demonstrate their

function and performance.

With regards to meeting the reliability objective, firstly a literature review will be

carried out pinpointing the limitations of the probability-based methods. Afterwards,

the Discernibility-based approach will be presented and it will be described how it

attempts to tackle these shortcomings. Furthermore, the findings of the relevant

experimentation will be exhibited and discussed.

The final objective, related to the application of Discernibility in classifier

ensembles, will be accomplished by first reviewing the relevant literature on

ensembles, concentrating on one particular type (as this field is vast and would

demand an excessively larger research to do it justice). This method will then be

explained and its limitations pinpointed. Then, it will be shown how (and why) by

employing Discernibility this method can be improved. Afterwards, the experiments

involved will be conducted and their results analysed, putting forward the comparison

of the different variations of the method and the improvement due to Discernibility.

1.5 Thesis Structure
This PhD thesis comprises eight chapters. In Chapter 2 a review of the general

literature of the field is conducted. This serves as an introduction to Pattern

Recognition and a taxonomy of the various ΑΙ techniques developed for it.

Afterwards, in Chapter 3, the core concept of this project, Discernibility, is

presented and its relation with similar measures is discussed. This chapter describes

how discernibility operates through the use of some examples and examines its

relationship with other measures, namely the SOM-based Class Overlap Degree

 5

Coefficient (Lemeni & Tepus, 2008) and the Silhouette Width (Kaufman &

Rousseeuw, 1990). It presents two forms of discernibility: the spherical index and the

harmonic index and discusses their role and potential as tool in the classification

process.

Chapters 4 to 7 are devoted to applying the concept of Discernibility to

various parts of the process of classification. Specifically, in Chapter 4 the application

of Discernibility in the classification process is shown. Particularly, it is demonstrated

how kNN variations based on Discernibility can be developed, and their performance

is investigated by comparing them against the classical kNN classifier.

 Chapter 5 describes how the Discernibility concept can be applied in the pre-

processing stage of classification. Namely, it is shown how Discernibility can be

employed for the development of feature selection and data reduction techniques.

Moreover, the effectiveness of the proposed techniques is demonstrated through

various experiments.

 The possibility of a reliability measure and its application as a reject option are

discussed in Chapter 6. After providing a literature review on the subject, an

alternative method for measuring reliability is proposed. Then, its application on a

number of different classifiers as well as on their combination is exhibited.

 Afterwards, in Chapter 7 the possibility of incorporating Discernibility in

diverse ensembles, in order to improve their accuracy rate, is explored. After thorough

experimentation, a new automated approach to improve the current one is proposed

and discussed.

 Finally, in Chapter 8, the conclusions based on the findings of this research are

presented, along with the avenues of future research that are opened by this project.

1.6 Contribution of the Thesis
The field of Pattern Classification is quite broad and several valuable

contributions have been made so far to improve the effectiveness of the classification

process. This thesis introduces and explores the Discernibility concept investigating

the various forms it can take. It demonstrates how versatile this concept can be, and

how its application in the various classification stages can enhance the classification

process.

The thesis reviews (Chapter 2) the various classification systems that are used

today, focusing on statistical and the AI-based classifiers, and discusses the conditions

 6

under which the latter are preferable to the former in terms of flexibility with respect

to the data and assumptions made about data distribution.

The thesis describes in detail (Chapter 3) the concept of Discernibility and shows

the different forms it can take, emphasising on the Spherical Index of Discernibility,

which appears to be closer to one’s intuitive understanding of the notion. This concept

allows the development of a variety of straight-forward methods that can make the

classification process better and faster. The thesis also introduces two measures

namely the Degree of Certainty and Net Reliability that can be applied in a variety of

cases and are independent of the classifiers use as well as the datasets.

The contribution Discernibility can make to the field of Pattern Classification is

investigated through the various Discernibility-based classifiers that are developed

based on the kNN philosophy (Chapter 4). The effectiveness of classifiers, which are

equipped with the Index of Discernibility, is demonstrated, while the experiments

carried out show that these classifiers generally outperform kNN. This part of the

thesis also contributes a few alternative approaches to improving the kNN classifier

and also proposes another distance-based classifier similar to kNN, namely the

Minimum Spanning Tree classifier. Moreover, the advantages and limitations of the

proposed methods are discussed.

The thesis also makes another contribution by showing how Descernibility can be

used in order to tackle some open problems in the classification literature offering

innovative approaches to feature selection and data reduction. In particular, the thesis

(Chapter 5) shows how the Spherical Index of Discernibility can be used without

major alterations to develop feature selection techniques. This leads to contributing

two feature selection methods: one operates by evaluating each individual feature of a

dataset and then selecting the best ones while the other by taking different groups of

features (feature sub-sets of the dataset) and comparing their discernibilities with that

of the original feature set. The results of the corresponding experiments are

encouraging showing that these methods are quite effective in reducing the features of

a dataset without compromising the classification performance, both in terms of

accuracy rate and in CPU time.

The thesis also contributes a data reduction method that employs the

Discernibility concept (Chapter 5). It shows that by taking into account the

discernibilities of the various patterns as well as the distances among them, we can

remove the ones which are discernible and distant (i.e. their average distance in the

 7

data space is large), thus ending up with a smaller dataset, which however maintains

the structure of the original one. This is mirrored by the performance of a number of

different classifiers, which (for most of them) appears to be at the same level or might

even get better when using the reduced data set.

The thesis then proceeds by demonstrating how the Discernibility concept can be

applied to measure the classification reliability of a single classifier and of an

amalgamation of classifiers (Chapter 6). Also, it shows how it can be elaborated into a

parametric reliability measure taking into account other factors, particularly the

change of accuracy rate and the change of Degree of Certainty. Our hypothesis that

Discernibility can be a useful reliability metric, especially if used in combination with

the other two factors, is verified by the quite encouraging experimental results.

In that respect, the thesis also contributes in the field of Pattern Classification by

offering a new measure of reliability for the classification process that does not

depend on probabilities or assumptions about the distributions of the dataset. The

flexibility that this characteristic offers allows the proposed reliability measure to be

more applicable to classification problems, particularly when the dataset is relatively

small. Also, this part of the thesis describes how with practically no changes in its

function, Discernibility can be applied to an entirely different domain, providing

useful information on the unknown patterns, a priori. Considering that Discernibility

was developed mainly to tackle situations where all the patterns were known

(labelled), it is interesting how it can be easily adapted to deal with unknown ones as

well. This is significant as it opens the possibility of a reject option, which can

enhance the classification process.

Furthermore, the thesis explores how Discernibility can support the generation of

diverse ensembles, which is a popular approach to combine classifiers, by introducing

a novel approach for partitioning the feature set (Chapter 7). This approach involves

an ensemble of classifiers that are specialised on different feature subsets of the

dataset, forming a diverse feature set. The advantage of the proposed method is that,

because of the use of Discernibility, the feature subsets are more or less of the same

classification quality; therefore this method allows creating ensembles whose

members possess adequate generalisation potential. The aim of this part of the thesis

is not to give a definite solution to the problem of creating diverse ensembles – an

area of Pattern Recognition where there is a lot of ongoing research – but to offer a

 8

new perspective to this problem which might be potentially useful for developing

alternative approaches for generating diverse ensembles.

 9

Chapter 2 – Review of Classification Literature

A number of classification systems have been developed, often specialising in

particular problem domains or dataset types (Duda et al., 2001). Their performance is

evaluated according to their ability to classify novel patterns, based on the ones they

are trained with. The most popular measure that reflects this is accuracy (usually

expressed as a rate), which is defined as the number of correct classifications over the

total number of patterns classified.

 When developing classification systems there is an underlying tendency towards

simpler models, as the overly complex ones may compromise the accuracy of the

classification (Duda et al., 2001) while at the same time exhibit higher computational

cost. Therefore, the dominant approach for many years was to use (often basic)

statistics and develop what are now known as the Statistical Methods of classification.

Yet, relatively recently, another approach has been developed, namely, that using

Artificial Intelligence (AI) methods. These two types of approaches are the two main

categories of pattern recognition (McKenzie & Low, 1992).

 Statistical Methods include Linear and Quadratic Discriminant Functions (LDFs

and QDFs respectively), Bayesian classifiers, Parzen Classifier, Logistic Classifier,

etc. (McKenzie & Low, 1992; Jain et al., 2000). The characteristic which appears in

the majority of them is their use of probabilities for the estimation of the most suitable

class of the unknown patterns using the assumed probability density functions based

on the known patterns.

 The main difference between statistical and AI methods is that the former make

assumptions of the data (such as the distribution they form), while the latter make less

strict assumptions (Montgomery et al., 1997; Shanin et al., 2001) However, since

there have been developed a lot of classifiers which take elements of both approaches,

the boundaries between Statistical and AI classification methods are not clear-cut.

 Another important issue is that of noise, which influences the data values by

making the structure of the classes appear to be more irregular. Though its presence is

often a hindrance to statistical classifiers, AI based classifiers often deal with it

effectively and sometimes it even helps them make better generalisation (e.g. in the

case of Neural Networks), as argued by Duda et al. (2001).

 Lastly, a significant issue for classification systems is that of computational

complexity. Even though in some cases it may be possible to attain an error-free

 10

classification by using a vast amount of resources (particularly time and storage), this

is often not practical (Duda et. al, 2001). Many AI methods are developed so that they

are “lighter” and therefore perform the classification process in a fast and efficient

way, something which is not usually shared by the statistical methods. They are like

that because they often rely on heuristic measures or methods for the classification

process.

2.1 Artificial Intelligence Methods for Classification
The Artificial Intelligence methods used in classification vary in their function and

their structure. The most popular ones are:

 Support Vector Machines (SVMs)

 Decision Trees

 Artificial Neural Networks (ANNs), such as

o Multi-Layer Neural Networks or Multi-Layer Perceptrons (MLPs)

o Radial Basis Function networks (RBFs)

o Self-Organising Maps (SOMs)

o Probabilistic Neural Networks (PNNs)

 K Nearest Neighbour (kNN) and its variations

 Other distance-based classifiers

 Fuzzy Logic classifiers

 Stochastic methods (according to Duda et. al (2001) this type of classifiers

belongs to the AI category, even though they have many Statistical elements in

their function)

 Hybrid classification systems

Apart from these classifiers, there are also approaches which aim at combining

different classifiers, either of the same kind, or, quite often, of different philosophy

such as mixture of expert models, pooled classifiers, or classifier ensembles (Ruta &

Gabrys, 2005; Shipp & Kuncheva, 2002). These methods employ an information

fusion technique (e.g. majority vote (Lam & Suen, 1997)) to combine the outputs of

the different classifiers they comprise of (ensemble members). In some cases, the

combination of the members of the ensemble takes place in a lower level, particularly

that of the training phase (Fard, 2006). The classifier ensembles can have statistical

methods (such as Linear and Quadratic Discriminant Functions, Bayesian classifiers,

 11

Parzen Classifier, Logistic Classifier, etc.) as their members, yet they usually include

one or more AI methods. In the remainder of the section a review of the AI techniques

will be given.

2.1.1 Support Vector Machines
Most of the AI methods have their own advantages and exhibit an edge in particular

problems or dataset types. SVMs for example perform quite well in two-class

problems.

 SVMs perform classification by finding a hyperplane that separates the two

classes of the dataset in the best possible way (i.e. having a relatively high margin).

They form decision rules based on that hyperplane and perform classification

accordingly. In order to accomplish this, they make use of a usually much higher

dimensionality than that of the original feature space. This is because with the right

nonlinear mapping to a high enough dimension, patterns from two different classes

can always be separated by a hyperplane. Yet, the boundaries they form in this space

can be non-linear as well, depending on the kernel parameter of the SVM (Vapnik,

2000b). By finding a separating hyperplane with the highest possible margin (i.e.

distance from actual patterns of the dataset), SVMs provide the generalisation they

require for the classification task (the higher the margin, the better the generalisation).

 Although SVMs were primarily able to tackle two-class classification problems,

with the appropriate adjustments they are able to deal with multi-class datasets

(Cristianini & Shawe-Taylor, 2000). Although SVMs are quite good at tackling

various types of problems, often the large number of parameters involved makes them

difficult to fine-tune and often their performance is compromised if the user is not

knowledgeable of the optimum choice of parameters, even though they are only two

of them.

 Support Vector Machines and other classification methods that share the same

philosophy are thoroughly described in Vapnik (2000b).

2.1.2 Decision Trees
Decision Trees form a number of queries based on one or more of the attributes of the

dataset. Based on these queries, which depend on the data type and on the percentage

of patterns that are considered enough to form a rule (usually if 90% of the patterns at

a given node comply with the rule, it is accepted). The rule of thumb for creating

 12

decision trees is simplicity, since cumbersome trees may be too complicated resulting

to the problem of over-fitting.

 Decision Trees comprise of a number of nodes, where certain “checks” take place,

guiding the classifier’s decision about what pattern belongs where. The top-most part

of the tree is called the root node and the lowest part is made up of the so-called leaf-

nodes. The various nodes of the tree are connected with one or more of the other

nodes via certain lines called links.

 Decision Trees classify a given pattern starting at the root node, where the value

of a particular property of the pattern is checked. The various links stemming from the

root node correspond to the various possible outcomes of this check. Based on the

outcome the appropriate link is followed to a descendent node. Usually only one link

will is followed, although there are other types of Decision Trees where this is not the

case. Following, the decision is made at the sub-tree appropriate subsequent node,

which can be seen as sub-tree’s root. This process is repeated until a leaf node is

reached, where there is no further check and where the class label is assigned to the

pattern.

 Decision Trees exhibit fast performance and can tackle a variety of problems,

including dataset with nominal data. Also, they can easily incorporate expert

knowledge in their structure and their decisions are easy to interpret (Duda et al,

2001). Lastly, their performance is not compromised by the existence of missing

values or errors in data (since not all attributes are used at the same time), and are

particularly useful when dealing with noisy data or when disjunctive expressions are

involved (since these do not affect the rules that the Decision Trees form) (Mitchell,

1997; Winston, 1992).

 Since they first appeared (Winston, 1969) they have evolved significantly and

adopted more elaborate approaches for their construction. CART (Classification and

Regression Trees) was one of the most well-known Decision Trees, which due to its

high computational cost, its limited use of features (only single ones and linear

combinations of them were considered at each node) as well as its inability to create

an optimal sub-tree (Safavian & Landgrebe, 1991) rendered it less popular. ID3 is

another well-known approach which is designed to deal with nominal data only (Duda

et al., 2001). Its refined version which succeeds it, the quite popular C4.5,manages to

deal with real-valued variables as well, and makes use of statistical significance for

 13

obtaining the optimum tree structure. As C4.5 is used in many of the experiments in

this research, its function is described more thoroughly (see Algorithm 2.1).

Algorithm 2.1 – Pseudo-code of C4.5 classifier
Inputs: Input patterns of training set (P), labels of training set (T), number of neighbours (k), patters of
testing set (PT)
Outputs: classification vector of testing set (y)

1 Initialisation: Set i = 0, j = 0, th = 0.10 (proportion of alien entities in a node)

2 N ← number of data elements in P

3 na ← number of attributes in P

4 do i ← (i + 1)

5 find normalized information gain (Gi) from splitting on attribute i, so that no more than th*N of
patterns from different classes exist in each split

6 until i = na

7 i_best ← i value for which Gi is maximised

8 create a decision node than splits on i_best

9 repeat steps 4-8 for all cases obtained by splitting on i_best and add the additional nodes created
as sub-nodes of node

10 do j ← j + 1

11 classify pattern j based on decision tree created previously

12 until j = n

2.1.3 Artificial Neural Networks
An Artificial Neural Network (ANN) consists of a number of nodes, called neurons,

usually organised in layers, which can handle incoming signals (input values of the

dataset or outputs from other neurons) by means of a transfer function. The latter can

be any monotonous function yielding values between -1 and 1, although in most cases

it is the sigmoid function (Cybenko, 1989). Auxiliary inputs called biases are also

used throughout the network. The strength of each signal and the biases are

represented by weights and constants, which are estimated through the training phase.

For the latter there is a number of training algorithms used, among which

backpropagation-based methods (Rumelhart et al., 1986) are the most popular; these

employ the gradient descent algorithm (Valafar & Ersoy, 1994).

 Originally, ANNs started in the form of a single neuron, proposed in the

McCulloch and Pitts model in the 1940s (McCulloch & Pitts, 1943). Yet, it was in the

1960s when they attracted some serious research interest (starting with Rosenblatt’s

perceptron in 1962). In the 1980s, they became more popular and great advances took

place in their field (Hopfield networks came about with Hopfield’s research

 14

(Hopfield, 1982), while at around the same time the Kohonen Self-Orginising Maps

appeared (Kohonen, 1982). Also, in the same decade, the Back-propagation learning

algorithm was rediscovered and developed further (Rumelhart et al., 1986). In the

1990s Radial Basis Function ANNs were developed (Niranjan & Fallside, 1990;

Musavi et al., 1992), while in the 2000s, the creation of ensembles of ANNs has

attracted a lot of research interest (Jiang & Zhou, 2004; Brown, 2004).

 ANNs can model quite complex datasets and establish classification rules that

evade other classifier types. Also, their performance tends to be insensitive to noise,

which in some cases improves their generalisation (Sugiyama & Ogawa, 2000). Yet,

in certain cases the generalisation can be enhanced by eliminating the noisy patterns

from the training set, in order to avoid overfitting (Nakashima & Ogawa, 2000).

 Multilayer perceptrons (MLPs), which can be trained using a backpropagation

method, is a very popular choice for many researchers. Radial Basis Function

networks (RBFs) are preferable when the data form clusters (Roy, Govil, & Miranda,

1995; Kaylani & Dasgupta., 1994) because of the way they handle the data they use.

Also, RBFs have a number of properties, such as localisation, interpolation,

approximation of functions and cluster modelling, making them suitable for a number

of applications in a variety of fields (Bors, 2001).

 Lastly, the Self-organising Maps (SOMs) are quite handy when there is a need for

visual representation of the solution obtained (Kohonen, 2001; Carpenter &

Grossberg, 1991) since we can visually examine the structure of their neurons and

connections among them on two-dimensional space. In general ANNs generate a

complex set of rules, which are not visible to the user. Yet, there have been developed

systems for extracting knowledge from an ANN that has already been trained.

 Probabilistic Neural Networks (PNNs) are a special case of ANNs, based on

Parzen windows (a method for estimating the univariate normal density of

probabilities, which is a function showing the structure of a distribution consisting of

a single variable). PNNs are exceptionally fast, since their training phase requires only

one pass through the training patterns. However, the storage they require is relatively

high. Also, the new patterns classified can be easily incorporated into another

classifier (already trained), rendering PNNs a good alternative for on-line applications

(Specht, 1990). In other words, their output can be later processed by another

classification system, to improve the overall performance, and as this happens very

fast, PNNs are suitable for on-line applications where a real-time classifier is required.

 15

2.1.4 The k Nearest Neighbour and Other Distance-Based Classifiers
The k Nearest Neighbour method classifies an unknown pattern based on the ones in

close proximity to it (the k parameter is the number of these proximal patterns).

Although some researchers consider it a statistical classifier (Jain et al., 2000), the

absence of any consideration of statistical metrics in its function renders it an

independent classifier. Also, many of its variations make use of AI techniques (e.g.

Fuzzy k Nearest Neighbour). Therefore it fits better the profile of the AI methods.

 The kNN classifier, originally put forward by Cover & Hart (1967), is very fast

and with the right choice of the number of neighbours (k), it usually yields good

results (though it is suboptimal, compared to the Bayesian classifier (Duda et al,

2001)). Also, because of its simplicity, it has found a number of applications in

various fields, such as image analysis, spatial data processing, etc. Its inherent

weaknesses, namely its suboptimal performance and its inability to tackle data of high

dimensionality effectively, have been a subject of ongoing research which has led to

the development of a number of kNN variants. A special case of kNN is the Nearest

Neighbour classifier (1NN), where only the closest pattern is taken into account. The

pseudo-code of kNN can be found in Algorithm 2.2.

Algorithm 2.2 – Pseudo-code of k Nearest Neighbour classifier
Inputs: Input patterns of training set (P), labels of training set (T), number of neighbours (k), patters of
testing set (PT)
Outputs: classification vector of testing set (y)

1 Initialisation: Set i = 0, j = 0

2 N ← number of data elements in P

3 n ← number of data elements in PT

4 q ← number of unique values of T (classes)

5 do i ← (i + 1)

6 calculate distance array (d) based on the Euclidean distances (Eq. 2.2) between test pattern i
and each one of the training patterns

7 sort distances and store indexes (ind)

8 get k nearest patterns based on the first k values of ind

9 do j ← j + 1

10 count number of neighbours that are labelled as class j (mj)

11 until j = q

12 Q ← j value for which mj is maximised

13 classify pattern i to class Q (yi ← class Q)

14 until i = n

 16

 One interesting variation of kNN, which is used in the experiments involved in

this research is the Fuzzy kNN (Keller et al., 1985). This classifier makes use of a

function of the distance of each pattern to each neighbour. These functions take the

form of weights which are calculated using Eq. 2.1.

w(i) =
)1(

1
m

ijd

(2.1)

where w(i) is the weight of pattern i,

 dij is the distance between pattern i and neighbour j

 m is a parameter, having a default value of 2

 After normalising these weights, they are used in combination with the class

labels of the neighbours yielding the classification output. Generally, the performance

of Fuzzy kNN is more robust than that of the classic kNN classifier, especially when

there is a high class overlap (Yu et al., 2002). The function of Fuzzy kNN can be

viewed in Algorithm 2.3

Algorithm 2.3 – Pseudo-code of Fuzzy k Nearest Neighbour classifier
Inputs: Input patterns of training set (P), labels of training set (T), number of neighbours (k), patters of
testing set (PT)
Outputs: classification vector of testing set (y)

1 Initialisation: Set i = 0, m = 2 (fuzzy parameter)

2 N ← number of data elements in P

3 n ← number of data elements in PT

4 q ← number of unique values of T (classes)

5 transform T into a q x N binary matrix (consisting of a row for each pattern, in which there is a 1
in the column corresponding to the class it belongs to, and 0 in all other places)

6 do i ← (i + 1)

7 calculate distance array (d) based on the Euclidean distances (Eq. 2.2) between test pattern i
and each one of the training patterns

8 sort distances and store indexes (ind)

9 get k nearest patterns based on the first k values of array ind

10 set weights array (w) equal to membership function based on Eq. 2.1

11 if a value of w is infinite then replace this value with 1

12 calculate memberships: M ← T * wT / Σw for all the neighbours (based on ind array)

13 Q ← j value for which Mj is maximised

14 classify pattern i to class Q (yi ← class Q)

15 until i = n

 17

 Other distance-based classifiers, often having an inherent similarity to the kNN

method, have been developed for pattern recognition problems. Two of these are the

Gravity Model Classifier, which is based on the paradigm proposed by Ruta & Garbys

(2003), and the Reduced Coulomb Energy Networks (thoroughly presented in Jeon et

al., 2002). For these classifiers, as well as for the kNN, the most popular distance

measure used is the Euclidean distance, although other metrics have been considered.

The Euclidean distance is defined as:

,

(2.2)

where d(x,y) is the distance between two patterns x and y, and j denotes the j-th

feature value while m the total number of features.

 The gravity model classifier is based on models from physics and applies them in

classification. This classifier takes into account the “pull” from all the patterns of each

class and as this greatly depends on their distance, the different “forces” involved pull

the unknown pattern into one or the other direction (class). The class yielding the

greater “gravitational pull” to the unknown pattern “wins” the classification.

Naturally, the greater the number of patterns near the unknown pattern, the stronger

the pull, so the nearest neighbours influence the classification decision more. The

main advantages of this method are its high speed and the fact that it does not require

any parameters. Its function is shown in Algorithm 2.4.

 The Reduced Coulomb Energy (RCE) network is similar to a Probabilistic Neural

Network, although their function is more similar to the kNN method. RCE assumes a

fixed radius λ around each pattern. During the training phase, each λ is chosen to be

as large as possible so as not to contain any pattern from different classes. If however

this parameter becomes too small, this may result to the classifier being unable to

classify a given pattern (i.e. yields an “ambiguous” label). Nevertheless, just like

kNN, RCE yields high speed and has low memory requirements. (Jeon et al., 2002).

Its function is presented in Algorithm 2.5 (note that as the “ambiguous” label is not

useful practically, in this version of the method we have replaced it with a random

classification).

 18

Algorithm 2.4 – Pseudo-code of Gravity Model classifier
Inputs: Input patterns of training set (P), labels of training set (T, patters of testing set (PT)
Outputs: classification vector of test set (y)

1 Initialisation: Set i = 0, j = 0, k = 0

2 N ← number of data elements in P

3 n ← number of data elements in PT

4 q ← number of unique values of T (classes)

5 do i ← (i + 1)

6 fi ← patterns of training set which belong to class i

7 until i = q

8 do j ← j + 1

9 compute distance array (d) between test pattern j and all patterns of training set

10 calculate “force of attraction” array (F = 1 / d2)

11 for k ← k + 1

12 calculate total gravity forces of class k (FCk) by adding the elements of F that belong to fi

13 until k = q

14 compute total gravity force of class k: FTk = sum of all elements of FCk array

15 Q ← k value for which FTk is maximised

16 classify pattern j to class Q (yj = Q)

17 until i = n

Algorithm 2.5 – Pseudo-code of Reduced Coulomb Energy classifier
Inputs: Input patterns of training set (P), labels of training set (T, patters of testing set (PT), maximum
radius parameter (λm (default value = 0.5))
Outputs: classification vector of test set (y)

1 Initialisation: Set i = 0, j = 0, L = 0 (λ parameter), e = 0.0001 (ε parameter), D = {}

2 N ← number of data elements in P

3 n ← number of data elements in PT

4 do i ← (i + 1)

5 calculate distance array based on the Euclidean distances (Eq. 2.2) between test pattern i
 and each one of the training patterns and sort them (d)

6 find nearest point which is not in class of pattern i (X)

7 calculate lambda for pattern i: Li = min (dX – e , λm)

8 until i = N

9 q ← number of unique values of T (classes)

10 do j ← j + 1

11 calculate distance of pattern j of testing set, to all patterns of training set (d)

12 find all patterns whose distances are smaller than L and add them to set D

13 if there are no patterns close enough then classify pattern j randomly

14 if the label of all patterns belonging to D is the same then classify pattern j accordingly (yj =
label of patterns in D)

16 until j = n

 19

2.1.5 Fuzzy Logic Classifiers
Fuzzy Logic classifiers are classification systems that make use of fuzzy sets or fuzzy

logic (Kuncheva, 2000), converting real-world data values into membership degrees

through the use of the so-called “membership functions” (Zadeh, 1965), thereby

forming high level rules that are then used for the classification process. This is done

by defining “categories” (a concept different to classes, as in this case it refers to

different values or intervals of values) for each one of the attributes. In cases where

there is limited precision in the data values, or when classification is required in real-

time, fuzzy logic classifiers are preferable to all the other methods (Siler & Buckley,

2005), due to their very high speed. Also, their decisions are easily interpretable by

the user and expert knowledge on a particular domain can be used directly for them.

Their main problem is the “curse of dimensionality”, which renders these classifiers

inadequate for problems having a large number of features. Also, they behave poorly

on complex problems, while there is a limited amount of knowledge that the designer

can incorporate in the system (if n is the number of fuzzy categories used, and m is

the dimensionality of the problem, the number of possible rules that can be created is

nm, rendering it a very time-consuming problem. Typically n = 3). As the fuzzy logic

classifier is trained by partitioning the dataset to n parts for each one of the m

features, this slows down the classification process significantly (Babuska, 1998).

Finally, pure fuzzy logic systems do not make use of the training data, something that

gave rise to hybrid fuzzy systems, as we will see later on.

 Although Fuzzy Logic first appeared in the 1960s, with the innovative research of

Zadeh (1965), its application in Classification came about much later, in the 1980s.

The first work on the field was that of Takagi & Sugeno (1985). Since then, Fuzzy

Logic in Classification has attracted a lot of interest, rendering it a popular choice for

a variety of applications, directly or indirectly related to Classification. For example,

it has been successfully used in feature selection (Shen & Jensen, 2008; Shang &

Shen, 2006; Jensen & Shen, 2005) rendering Fuzzy Logic a very useful tool for pre-

processing.

2.1.6 Stochastic Methods
Stochastic methods constitute an approach focusing on complex and real-world

problems, where the analytical methods often fail to produce adequate results. They

can be classified into two main categories: the methods inspired by ideas and models

 20

from physics, particularly statistical mechanics, and the methods inspired by ideas

from biology and specifically from the mathematical theory of evolution

(Michalewicz, 1995; Michalewicz, Schoenauer, 1996). The former is more

established theoretically and constitutes the majority of the stochastic models of

pattern recognition. The latter is more heuristic and offers more flexibility; it has

attracted an increasing number of researchers over the years and appears to be quite

promising. Stochastic methods of the first category include Simulated Annealing and

Botzmann Factor / Learning (Aarts & Korst, 1990). Some of the methods of the

second category are Genetic Algorithms, Particle Swarm Optimisation (PSO)

(Kennedy & Eberhart, 1995; Clerc, 2006; Poli, Kennedy, Blackwell, & Freitas, 2008),

Ant Colony Optimisation (ACO) (Dorigo et al., 1991; Dorigo & Blum, 2005; Dorigo

& Stützle, 2004), and other nature-inspired models, such as Bee Colony Optimisation

(BCO) (Karaboga, 2005; Pham et al, 2006). Note that most of these stochastic

methods have applications in other fields of computer science, such as complex

optimisation problems, function approximation, etc.

2.1.7 Hybrid Classification Systems
Hybrid classification systems enable a self-management of resources and structural

inputs (Cung et al, 2006) and combine the strengths of two or more AI algorithms.

For example, the PSO method is known to perform well with continuous features,

while it fails to function with nominal data for instance. By combining it with the

ACO method, it is possible to tackle problems which involve nominal features as

well, aiming at finding the optimum classification rules (Holden & Fietas, 2007).

Another example of a hybrid classification system is the widely known neuro-fuzzy

classifiers (Bezdek et al, 1992; Castellano, Fanelli, & Mencar, 2004), which

incorporate fuzzy logic in the neurons of an MLP. Finally, there have been attempts of

combining different types of ANNs to form a hybrid ANN which can tackle highly

complex problems. Such a system is the Parallel Probablistic Self-Organising

Hierarchical Neural Netwrok (PPSHNN) which was developed by Valafar & Ersoy

(1994).

 There is often a distinction between hybrid classification systems and ensembles,

although sometimes this is not clear, as in the case of Cung et al. (2006), where the

definition given for a hybrid system is broad enough to include many types of

 21

classifier ensembles. Yet, often the classifier ensembles include a greater number of

classifiers; these classifiers sometimes are of the same type.

 The main advantage of the hybrid classification systems is that they are versatile

and often capable of adapting since they are designed to deal with a variety of

problems and apply a different approach to each one of them. Also, they are able to

tackle classification problems that would not be feasible by traditional classification

methods. Particularly the more sophisticated ANNs (PPSHNNs) are able to function

effectively on problems of high dimensionality and/or high non-linearity (Valafar &

Ersoy, 1994).

2.2 Summary and Contribution of the Chapter
In this chapter we gave a brief presentation of the different types of classification

systems, namely the statistical and the AI-based classifiers. In addition, we examined

how the latter are in many ways preferable to the former due to their more flexible

approach to the data, involving less strict assumptions about their distribution.

Moreover, the specific characteristics of each one of the main AI-based classification

systems, as well as the ensembles of classifiers, were described based on the relevant

literature. Furthermore, we elaborated on their differences and the main advantages

they exhibit, as well as their main weaknesses.

 22

Chapter 3 – The Concepts of Discernibility and Data

Quality in Classification Problems

In this chapter the concept of Discernibility is defined and the two Indexes of

Discernibility are introduced. The term Discernibility involves the concept of

discerning between (or among) the different classes of a dataset. So a dataset having

well-separated classes generates high Discernibility. Also, this concept can be applied

for the patterns of the dataset, in the same way. This notion has been implemented in a

variety of ways, two of which stand out in terms of performance and speed, namely

the spherical and the harmonic Indexes of Discernibility, and are described below.

The others are earlier forms of these Indexes and attempt to express the same idea but

with different geometric forms.

3.1 Spherical Index of Discernibility
One way to define a measure for assessing Discernibility is to take a pattern i and use

of a hyper-sphere around it so as to examine how many other patterns of its class fall

within that area. We assume a fixed radius around each element of the dataset with the

radius being the average distance between the elements of this element’s class. Note

that the radius depends on the element so that elements belonging to different classes

may have different radii (since the distances are different for each element, resulting

to a different average distance for each one of them). Once the radius r of an element i

is established by taking the average distance among the elements of i’s class we can

count both the total number of elements of the dataset and the number of elements of

the dataset belonging to the same class as i, within the radius distance r from i. The

aim of having a non-fixed radius for each pattern is that it is guaranteed that there will

exist elements within the hypershere around the pattern. Also, the average distance is

chosen because it is non-extreme value; if an extreme value for the radius was chosen,

the result would be a very inaccurate estimation of the Discernibility of the pattern,

and the whole dataset in consequence. Afterwards, by taking the number of patterns

that have a Discernibility score over 0.5 and dividing it by the total number of patterns

of the dataset, we can obtain a Discernibility score which charaterises the whole

dataset.

 23

Figure 3.1. An illustration of the Discernibility of elements in a two-class data set. In this

example, the Discernibility of the element in the centre of circle A is D1 = 2 / 2 = 1; that of

the central element in the circle B is D2 = 0 / 3 = 0, and the Discernibility of the central

element in circle C is D3 = 1 / 2 = 0.5.

The Spherical Index of Discernibility (SID) of the element i, SID(i), is defined as the

ratio of the latter and the former, that is, proportion of i’s class elements among all the

training dataset patterns in the hyper-sphere of radius r centred at i (see Figure 3.1).

The greater the degree of Discernibility, the better is the chance that the classifier’s

prediction is correct. This index has been used recently for conditioning the kNN

classifier, which resulted in improved performances of the classifier (Voulgaris &

Magoulas, 2008a).

 The Spherical Index of Discernibility is implemented in a fast and reliable

function having a complexity of O(N2 na). This function takes the input values of the

patterns of a dataset as well as their labels and provides a vector containing the

discernibilities of each one of the patterns, and a number for the overall Discernibility

of the dataset. The latter is the ration of the number of patterns having Discernibility

equal or higher than a given threshold (usually 0.5). Its pseudo-code is presented in

Algorithm 3.1.

 24

Algorithm 3.1 – Pseudo-code for calculating the Spherical Index of Discernibility
Inputs: Input data (P), Data Labels (T)
Outputs: Discernibilities of data elements (zi), Spherical Index of Discernibility (SID)

1 Initialisation: set l=0 (index over the problem’s classes), i=0 (index over the data
elements/patterns), th=0.5 (default threshold of discernible element)

2 N ← number of data elements in P

3 q ← number of unique values of T (classes)

4 do l ← (l + 1)

5 Cl ← data elements belonging to class l

6 Dl ← distance matrix of class l

7 rl ← calculate radius as average distance between 2 elements of the class l

8 until l = q

9 do i ← (i + 1)

10 b ← class of the i-th element based on T

11 d ← distances of the i-th element from all other elements of the dataset

12 n ← number of elements for which d ≤ rb

13 c ← number of elements belonging to class b
 for which d ≤ rb

14 zi ← c / n

15 until i = N

16 SID ← number of elements for which zi ≥ th

The computational complexity of this algorithm is O(N2 na).

3.2 Harmonic Index of Discernibility
The harmonic mean H of a set of numbers x 1, x 2, .., x N is defined as

H = N/(k1/x k) (3.1)

The basic characteristic of this type of mean tends to be much nearer to smaller values

among the set than the arithmetic average. By employing this in the distances of a

given pattern to the others patterns of its class and of the distances of that pattern to

the other patterns of other classes, we can obtain a more accurate measure of the

Discernibility concept. Also, by employing this approach, we do not need to use a

hypersphere, rendering this new measure of Discernibility more robust. This measure

we call Harmonic Index of Discernibility (HID) as it makes use of harmonic means in

its calculation. For a given a pattern i belonging to class c it is defined using Eq. (3.2)

 HID(i) =
)()(

)()(

12

12

iziz

iziz

 (3.2)

where z1(i) = H(dist(i, Ai)), and z2(i) = H(dist(i, Bi)), where Ai = entities of class c, Bi

= entities of all other classes. In both Ai and Bi pattern i is excluded from the set to

avoid unnecessary null distances. The harmonic distances are calculated using Eq.

 25

(3.1). Also, we add a small positive number to the denominator, to avoid division by

0. In the rare case that HID(i) is negative (i.e. when the distances of the patterns of its

own class are generally greater than those of the patterns of the other classes), it is

adjusted to be 0, since a negative value would be meaningless and to maintain

coherency between the two indexes). The pseudo-code for the calculation of this

measure, having complexity of O(N2 na), can be viewed in Algorithm 3.2.

Algorithm 3.2 – Pseudo-code for calculating the Harmonic Index of Discernibility
Inputs: Input data (P), Data Labels (T)
Outputs: Discernibilities of data elements (zi), Harmonic Index of Discernibility (HID)

1 Initialisation: set l=0 (index over the problem’s classes), i=0 (index over the data
elements/patterns), th=0.5 (default threshold of discernible element)

2 N ← number of data elements in P

3 q ← number of unique values of T (classes)

4 do l ← (l + 1)

5 Cl ← data elements belonging to class l

6 Dl ← distance matrix of class l (a matrix containing all the distances between all possible pairs
of patterns in this class)

7 until l = q

8 do i ← (i + 1)

9 b ← class of the i-th element based on T

10 d ← distances of the i-th element from all other elements of the dataset

11 a1 ← distances of i-th element from elements of class b

12 a2 ← distances of i-th element from elements not of class b

13 z1(i) ← harmonic mean of a1 (using Eq. 3.1)

14 z2(i) ← harmonic mean of a2 (using Eq. 3.1)

15 zi ← (z2(i) – z1(i)) / (z2(i) + z1(i) + eps)

16 until i = N

17 HID ← number of elements for which zi ≥ th

Note: eps is a very small number (having a preset value in MATLAB). The computational complexity
of this algorithm is O(N2 na). Yet, it is slightly slower than SID.

3.3 Comparison with Relevant Work
Both the Spherical and the Harmonic index of Discernibility reflect how distinguished

the classes of a dataset are, and there is a high correlation among them. However, in

some case one performs better than the other. Yet, they both perform generally better

than another measure of Discernibility, Silhouette Width (SW). The latter has been

used successfully in clustering (Kaufman & Rousseeuw, 1990), although to the best of

 26

our knowledge there are no records of it being used in pattern classification. It is

calculated using Eq. 3.3.

SW =
))i(b),i(amax(

)i(a)i(b
 (3.3)

where a(i) = average similarity between i and all other entities of the cluster it belongs

to, b(i) = minimum of the average similarity of i and all the other entities in other

clusters. It takes values in the interval [-1, 1].

The advantage the proposed measures (particularly the Harmonic Index of

Discernibility) have over the Silhouette Width measure is that they take into account

all the different classes, not merely the class of the element examined and the foreign

class closest to it. This allows the Index of Discernibility to have a wider perspective

of the dataset and provide a more accurate insight over its structural properties.

 In order to investigate the difference in performance of the Index of

Discernibility and the Silhouette Width measure, we conducted a set of experiments,

on some artificial datasets. We used this type of datasets because the extent to which

the classes are distinguishable is easily verified, since they are all two-dimensional.

These datasets were the following:

● “Concentric” dataset (ELENA Project Artificial Databases, 2008): a dataset

consisting of classes in the form of two concentric circles non-linearly separated.

It has 5000 points and its class structure can be seen in Figure 3.2.

● Dual Triangles dataset: an artificial dataset consisting of 2 classes forming 2

triangles, linearly separated. It has 500 points.

● Quadruple Squares dataset: an artificial dataset consisting of 4 classes forming 4

squares, linearly separated. It has 2000 points.

● Random Box 2 dataset: an artificial dataset consisting of 2 classes overlapping

completely. It has 500 points.

● Random Box 3 dataset: an artificial dataset consisting of 3 classes overlapping

completely. It has 900 points.

Note that apart from the first dataset, all the others are of our own design. Also, all of

them are balanced in their class structure.

 27

Figure 3.2. Graphical representation of the class structure of concentric dataset. The patterns

of class “0” are depicted as squares while diamonds denote patterns of class “1” . As it can be

seen from the graph, the two classes are easily distinguishable as they form two concentric

circles. Therefore, their Discernibility should be high.

Since Silhouette Width takes values between -1 and 1, for the sake of

comparison with the two Indexes of Discernibility it was normalised to [0, 1] . Having

done this transformation we obtained the measures presented in Table 3.1 for the five

different datasets. The results of these demonstrations can be generalised to more

complex datasets, consisting of more attributes and a higher number of patterns.

Dataset Silhouette Width SID HID Desired Disc.

Concentric 0.4905 0.9416 0.9856 1

Dual Triangles 0.7352 0.9720 0.9820 1

Quadruple Squares 0.5996 0.8870 0.9990 1

Random Box 2 0.4986 0.5440 0.5220 0

Random Box 3 0.4863 0.0000
(mean = 0.3331)

0.4033 0

Table 3.1. Results of the Discernibility experiments, carried out using Silhouette Width and
the two versions of the Index of Discernibility, proposed in this project. Note that in the last
dataset, even if we take the average values of the individual discernibilities of its patterns,
measured by SID, the overall Discernibility is quite lower than that yielded by Silhouette

Width.

From the results presented in Table 3.1 it can be observed that both SID and

HID perform better than Silhouette Width in describing the class overlap of a dataset.

 28

The only exception was in the Random Box 2 dataset where the overlap is maximum

(and therefore all these measures should be zero), and SW had the lowest value. Yet

even in this case, the Index of Discernibility (particularly HD) was not far behind,

being slightly higher than the SW. Note that in a similar dataset, where there are three

classes instead of two, the Indexes of Discernibility (particularly SID) describe it

much better than Silhouette Width.

 Although originally the Discernibility measures developed in this work were

intended as a tool for assessing the dataset structure, it turned out that the

discernibilities of the individual patterns of the dataset as well as the discernibilities of

the individual features, were equally important (or even more important in some

cases). This allowed the concept to expand its applicability in other areas of

Classification. This was one of the reasons that different versions of it were

developed.

Note that these Discernibility measures presented here should not be confused

with the Discernibility tables, or the indiscernibility concept, used in Rough Sets

(Komorowski et al., 1998). The latter are completely different both in function and in

field of application since they do not deal with individual patterns or whole datasets,

but rather with variables.

Also, it is noteworthy that recently there has been similar research,

independent of this project, investigating a supplementary concept but with the use of

SOMs (Lemeni & Tepus, 2008). Particularly, a metric for describing the extent to

which the classes of a dataset overlap (Class Overlap Degree Coefficient) was

introduced. This was defined as the number of the nodes of a SOM that fall on the

common area of two or more classes, over the total number of nodes.

 Yet, due to the increased overhead of that method it is not considered a

practical alternative to measuring the class overlap in a dataset. Between the other

two, Index of Discernibility and Silhouette Width, the latter is relatively inferior as it

has been shown in the experiments of the previous section.

It is interesting how the Discernibility concept can be applied to the feature

evaluation of a dataset. This can be done either individually or in groups. For the

former type of evaluation, each feature is evaluated separately, as seen in Algorithm

3.3.

 29

Algorithm 3.3 – Pseudo-code for evaluating feature individually using Discernibility
Inputs: Input data (P), Data Labels (T)
Outputs: Discernibilities of features (zi)

1 Initialisation: set l=0 (index over the problem’s classes), i=0 (index over the features)

2 na ← number of features of dataset

3 do i ← (i + 1)

4 Pi ← feature i of Input data P (i-th column or i-th row of P, depending on format)

5 zi ← ID(Pi,T) of i-th feature(using either Algorithm 3.1 or Algorithm 3.2)

6 until i = na

The computational complexity of this algorithm, regardless of which ID metric is used, is O(N2 na2).

3.4 Degree of Certainty and Degree of Reliability
Previously we have examined how the dataset quality can be evaluated be means of

the Discernibility concept, implemented in either one of the two measures developed

in our research. The question that now arises is whether the same can be done with

respect to the classification quality. In other words, is there a way of having a more or

less objective view of how “good” a classification is a priori, i.e. before the

evaluation phase? The answer to this question is affirmative and there have been

various methods developed to accomplish that. These have been referred to with

many names, such as Chow’s index (Bresnahan, 1986), Certainty Factor, Inductive

(or Transductive) Conformal Prediction (ICP) (Papadopoulos, 2004; Papadopoulos,

Vovk, & Gammerman, 2007). There have been a couple of measures proposed by the

author of this thesis as well, as we will see later on. The reason for doing so is that we

would need a measure that is versatile enough so as to be applicable to all (or almost

all) types of classifiers.

Now, let us first consider an analogue to the Chow’s index applied to any

classifier’s scoring function, for which Aidin and Guvenir coined the term Certainty

Factor (CF) (Aydin & Guvenir, 2006). It is assumed that the classifier under

consideration, for each pattern i and each class, produces a classification score, so that

the class for which the score is maximal is predicted for i by the classifier. The

relative proportion of this maximum classification score is referred to as the Degree of

Certainty (DC):

 q

c
c

cc
i

S

S
DC

1

)(max

 (3.4)

where i denotes the i-th pattern classified, c the class label, q the number of classes

and Sc is the classification output of the classifier for class c. Unfortunately, this index

 30

by itself cannot be used as a measure of reliability of classification. Experiments have

shown that it provides a very low correlation with the true class labels. There is

however a correlation between this measure and the expected Index of Discernibility

of a test pattern. This is natural if one considers that a discernible pattern (i.e. one

with a high Discernibility score) is bound to be predicted correctly, so the classifier

will tend to be relatively certain about its classification. This observation led to the

development of a measure of reliability, which is independent of the classifier used,

namely the Degree of Reliability (DR), defined and discussed below.

The Degree of Reliability is a way of assessing how “sure” a classification is,

regardless of the classifier used. It aims to tackle the problem of classifier dependency

that arises in the case of Degree of Certainty. The price one pays for it is that the

Degree of Reliability is a fairly time-consuming process and in some cases,

impractical (e.g. when using ANNs or any other classifier that has a relatively long

training phase). This measure reflects the how typical an unknown entity is as a

representative of its class, which is evaluated by one of the Indices of Discernibility

applied on the entity. Since the class of this entity in not known, the predicted class is

used, according to the classifier employed.

The calculation of the Degree of Reliability employs the Index of

Discernibility (mainly the Spherical version due to its simplicity and slightly better

performance) using the predicted class as a class label of the test pattern to be

evaluated. This has been tested with a number of classifiers for different datasets, with

promising results (Voulgaris & Mirkin, 2008a), leading to the development of a

Reject Option method, which is described in Chapter 6.

The subjectivity of the Degree of Certainty can also be overcome if one

considers its relative change instead. This is employed in a version of the Degree of

Reliability, called the Parametric Degree of Reliability, which is thoroughly described

in Chapter 6. Just like the original Degree of Reliability, the parametric version of it

makes use of the Spherical and Harmonic Indexes of Discernibility as they are. The

difference in that version is that the Discernibility metric used is accompanied by two

other measures, and three parameters. We will investigate this measure further in

Chapter 6 where we will also explore its applications in Classification.

 It is worth noting that the Degree of Certainty as well as the Degree of

Reliability are different to the Inductive (or Transductive) Conformal Prediction-ICP

(Papadopoulos, 2004; Papadopoulos et al, 2007; Papadopoulos, 2008), yet they are

 31

complimentary in a way. The difference is that the proposed measures (DC and DR)

aim to give an insight to how confident the classifier is about the prediction it makes,

while the ICP measure, being probabilistic in nature, offers the maximum probability

that a prediction is wrong. In addition, DC and DR are generally light in terms of

computational cost. Due to these reasons, the proposed methods are the ones

employed in most of the experiments conducted for this research.

3.5 Net Reliability
As seen earlier, the Degree of Certainty provides an insight on how probable it is for

the classification to be accurate, according to a particular classifier. However, often

this may be a misleading piece of information, as in cases where the dataset is

complex, the classifier may be “sure” about something completely wrong. Thus, the

use of a measure that evaluates the Degree of Certainty of a classifier, and therefore

the classifier’s reliability, is essential. The use of correlation coefficient (a statistical

measure R, taking values between -1 and 1, that show how correlated two variables

are, based on their variances and their covariance) is not a good choice because in

some cases it fails to provide any results, since it is usually applicable in scale

variables. For example, there are cases where the correlation coefficient may yield an

infinite value as an output, which is meaningless to the user. Besides, the binary

nature of the validity vector (a binary vector v which depicts each correct

classification with a 1 and each wrong one with a 0) makes it incompatible with the

variance metric employed in the correlation coefficient, since it often fails to deal with

nominal variables like this one. Therefore we have developed another measure for

this, the Net Reliability. This is expressed by Equation 3.4 as seen below.

n

i
ii DCv

n
NR

1

12
1

(3.5)

where v is the classification validity vector, DC is the Degree of Certainty vector, i

denotes the pattern classified, and n is the total number of elements in the test set. A

high Net Reliability score for a classifier is generally good for the classifier . The Net

Reliability of a classification takes values between –1 and 1 (inclusive).

 Although this measure was primarily developed for the evaluation of a

classifier after the validation stage, it may find use in the pre-processing stage, by

applying in on a subset of the training set as a validation set.

 32

 It has been observed that almost all of the classifiers tend to have a high Net

Reliability in datasets exhibiting a high Index of Discernibility.

 Note that the Net Reliability measure is not linked in any direct way to the

Degree of Reliability. Besides, its function lies in assessing how reliable the Degree

of Certainty is, based on the correct classifications, while the Degree of Reliability is

a way of predicting how reliable a classification is, prior to accessing the correct

classification values. However, as they both refer to ways of measuring reliability,

they both have this term in their name.

3.6 Summary and Contribution of the Chapter
This chapter has introduced and described Discernibility at a conceptual level. Also, it

has presented the two versions of its implementation. In addition, a comparison with

the known similar measures is carried out– the SOM-based Class Overlap Degree

Coefficient and the Silhouette Width. The latter, in particular, is compared with ID

experimentally for five different artificial datasets and has been found inferior.

Furthermore, Discernibility’s relationship with the Degree of Certainty and Net

Reliability has been pinpointed and discussed. Finally, the Degree of Reliability, an

alternative measure based on Discernibility, has been introduced.

 This chapter is considered a fundamental part of the thesis as the whole

research involved in this project revolves around the ideas presented here. This

chapter contributes to the field of Pattern Classification by offering a few simple to

implement methods that can enhance and in many cases speed up the classification

process. Furthermore, it is important to note that the metrics introduced in this chapter

can be applied in a variety of cases and are independent of the classifiers use as well

as the datasets.

 33

Chapter 4 – Discernibility-Based Classification

The simplicity and high convergence speed of the k Nearest Neighbour (kNN)

classifier have made it a popular choice for pattern classification (Moreno-Seco et al.,

2003) with applications in a variety of cases (Abidin & Perrizo, 2006; Khan et al.,

2002; Yu & Ji, 2002). Nevertheless, there are situations where kNN might fail to

produce adequate results (Sotoca et al., 2003), or its operation may render it

impractical (Moreno-Seco et al., 2003). Such cases are in problems involving high

dimensionality and/or complex datasets with high class overlap. In practice, the fact

that kNN only requires the user to specify one parameter, the number of neighbours

used (k), facilitates fine-tuning the method to a variety of situations. The main kNN

classifier consists of the following steps: given a set P of N labelled points (training

set), P={x1, …,xN}, classify a set PT of n points (testing set), PT={t1, …,tn}, into the

same set of classes (labels) by examining the k closest points around each point of the

testing set, and by applying the majority vote scheme (Duda et al., 2001).

 The kNN classifier is a suboptimal procedure, with a few inherent problems such

as inability to deal with complex dataset, which is why researchers have proposed

different extensions of the kNN (Bermejo & Cabestany, 2000; Manocha & Girolami,

2007; Hattori & Takahashi, 2000; Gao & Wang, 2007; Lai et al., 2007; Warfield,

1996; Wu et al., 2002; Zhou & Chen, 2006; Wang et al., 2006; Wang et al., 2007), or

even ensemble formulations of kNN classifiers (Domeniconi & Yan, 2005). Most of

these approaches have exhibited some interesting and quite promising results and

have motivated further research on improving the kNN method.

 In this chapter two kNN variations based on the Spherical Index of Discernibility

introduced in Chapter 3 will be presented and discussed. Also, two more kNN

variations will be introduced as well as a classifier which is based on Minimum

Spanning Trees (Kruskal, 1956), which are graphs describing the shortest possible

total length of line segments connecting a given number of points, so as to connect all

of them (for an overview see (Graham & Hell, 1985)). The distance computation in all

of them is carried out using the Euclidean distance.

 Other distance alternatives include the Manhattan (city-block) distance (Kawahara

& Shibata, 2005), the Euclidean Squared distance (Bailey, 2004) and the Mahalanobis

distance (Torra et al., 2006). However, as the Euclidean distance is the most popular

one, it is the one chosen for this research.

 34

4.1 Background Research on kNN Extensions
Although the kNN method when used in classification problems is quite fast, it is

often impeded by the size of certain datasets, which is why some researchers have

focused on improving its speed (Abidin & Perrizo, 2006; Lai, 2007; Warfield, 1996).

SMART-TV for instance (Abidin & Perrizo, 2006) was designed to deal with datasets

of high dimensionality by transforming them into a single-dimensional feature space.

A similar approach is shared by Khan et al. (2002) for spatial data, where this method

works best (Abidin & Perrizo, 2006, Mainar-Ruiz & Pérez-Cortes, 2006) mainly due

to the simplicity of the dataset structure . Yet, these approaches concentrate on high

speed mainly and often fail to achieve exceptionally good accuracy rate unless they

are applied on particular problems, such as spatial datasets (Khan et al., 2002) and

images (Warfield, 1996).

 Other approaches involve feature selection methods which are tested on several

both real and artificial datasets (Sotoca et al., 2003). These methods, which focus on

establishing appropriate weights to the various features, appear to be promising; yet,

the methods described in the literature are not always very fast, since it appears to be

a trade-off between performance and speed (Sotoca et al., 2003).

 Changing the way distance is dealt with, in a fundamental level by considering a

different method of evaluating distance, is an interesting alternative, which can

improve speed considerably (since less calculations are required) without having any

significant reductions in the accuracy of the classification rate (Moreno-Seco et al.,

2003). When dealing with complex problems this can be quite fruitful (Yu & Ji,

2002), yet these methods appear to be rather cumbersome when applied to other

simpler datasets. Other methods of this category consider cam weighted distance*

(Zhou & Chen, 2006), or an adaptive distance (Wang et al., 2007), and appear quite

promising.

 Often it is more efficient to combine different classifiers, either by forming a low-

level mixture where the classifiers interact during the training phase (Hendrickx &

Van den Bosch, 2004) or by building an ensemble (Domeniconi & Yan, 2005). In the

first case, it becomes apparent that changes in the structure of the kNN classifier may

be essential in order to improve its performance. In the second case, creating a

diversity ensemble classifier is attempted by combining negatively correlated

* This type of distance takes its name from the deflective cam contours for equal-distance
contour in classification it yields.

 35

classifiers (i.e. classifiers whose errors are as different as possible)in an ensemble

formulation; an approach that seems to improve the accuracy rate and which is used in

Chapter 7. Yet, the results although interesting, denote that kNN-based approaches

still require much improvement if they are to be used in ensembles to target various

classes of problems.

 The use of rules, which take the form of additional features in the dataset, in kNN

has been researched by Van den Bosch (2004) who put forward three methods which

were tested on several datasets with some success. However, in many datasets the

creation of rules may be time-consuming and even computationally expensive. Also,

in high dimensional datasets, the additional cost could make the classification process

very slow and therefore inefficient.

 Another type of extensions considers the use of statistics to make kNN more

robust (Manocha & Girolami, 2007; Wang et al., 2006). This is done either by

transforming the kNN classifier into a probabilistic classifier (Manocha & Girolami,

2007) by approximating the probability of a classification using a method based on

cross validation for various k values, or by using statistics to find the best size for the

neighbourhood involved (Wang et al., 2006). The former approach, although it does

not have significantly better results than the classic kNN, it provides continuous

preditive probabilities thus offering a way of dealing with uneven misclassification

costs.

 Another method encountered in the literature questions the efficiency of the

voting scheme of the kNN (Wang & Bell, 2004), and proposes an alternative measure

for determining how each class is related to a test point. This approach is taken one

step further in one of the kNN variations proposed in this chapter (see sections 4.2.1

and 4.2.2), since the use of only one measure (distance) to assess the relationship to a

class is often insufficient.

 Of the methods described above, the one by Wang & Bell (2004) goes beyond the

simple counting of neighbours as it evaluates them as well. Sharing this philosophy,

we bring forward a kNN variant, which assigns a quality index to each element of the

dataset. Also, similarly to Sotoca et al. (2003), we introduce a classifier that makes

use of different weights for the various features of the dataset.

 36

4.2 kNN Extensions Based on Discernibility
4.2.1 Discernibility kNN

The Discernibility kNN (D-kNN) first calculates the discernibility of the neighbours

as well as their distances from the test patterns. By taking the ratio of these two

factors, a score is produced for each one of the neighbours. Based on the neighbours’

score, scores for each class are then averaged to produce one classification score for

each one of them. The class yielding the highest classification score is selected as the

most probable output for the classification. Algorithm 4.1, below, provides a high

level description of the D-kNN.

Algorithm 4.1 – The D-kNN classifier
Inputs: Input patterns of training set (P), labels of training set (T), number of neighbours (k), patters of
testing set (PT)
Outputs: classification vector of testing Set (y)

1 Initialisation: set i=0 (index of the patterns), j=0 (index over the classes)

2 n ← number of patterns of testing set (PT)

3 N ← number of patterns of training set (P)

4 z ← discernibility vector for elements of P, using Algorithm-1and P, T as inputs; z = {zi},
 i = 1 ... N

5 q ← number of unique values of T (classes)

6 do i ← (i + 1)

7 D ← vector of distances of PT(i) to P based on Eq. (4.1)

8 sd ← sorted values of d

9 dk ← k first values of sd

10 v ← { vm : vm = zm / dkm}, m = 1 ... k

11 do j ← (j + 1) for current i

12 Cj ← subset of k nearest elements of P belonging to the j-th class

13 Classification score Sj ← mean(vCj),
vCj = {vm: m Cj }

14 until j = q

15
jj

Sb maxarg

16 yi ← class b

17 until i = n

 When the classes of a dataset are overlapping, the D-kNN classifier appears to

provide an advantage over the standard kNN. In these cases the kNN classifier is

bound to miss many entities of the test set, which D-kNN is bound to predict more

accurately by taking into account the structural properties of the neighbours (reflected

on their Discernibility scores) as well as their distances from each test pattern.

 37

Particularly it calculates the ratio of Discernibility / distance for each neighbour and

takes the average of these ratios for each class. This can be illustrated using an

example from the clouds dataset, taken from (ELENA Project Artificial Databases,

2008). Compared to kNN’s inaccurate classification (as shown in Fig. 4.1), the D-

kNN classifies the test element correctly as it takes into account not only the fact that

they are nearest neighbours, but also the Discernibility scores and their distances (Fig.

4.2). The D-kNN classifier (Algorithm 4.1) does this by producing for each pattern to

be classified a score vector v, for all of its neighbours. This is a function of the

discernibilities of the neighbouring patterns and their distances from the test pattern.

Then, by averaging these scores for each one of the possible classes, the classification

score of each class is calculated (Sj). Finally, the test pattern is classified by

comparing the classification scores of the different classes of the dataset, the highest

of which wins the classification.

Figure 4.1 – kNN’s performance on a pattern of the clouds dataset. The test pattern is marked
as (*) while the patterns of the two classes of the dataset are marked as (+) and (x)
respectively. The boxes around some patterns show the patterns that are taken into account for
classification. kNN fails to classify the pattern at hand correctly (k = 5).

 38

Figure 4.2 – D-kNN’s performance on the same pattern of the clouds dataset (as Fig. 4.1).
D-kNN classifies the pattern at hand correctly to the class represented by (+) since it
considers not the number of neighbours but their significance in terms of Discernibility and
their individual distances to the test element, in the form of a ratio. The score vm calculated by
the D-kNN is depicted next to each one of the patterns taken into account for the
classification. The patterns inside the boxes are the ones taken into account for the
classification (k = 5).

4.2.2 Weight-based kNN

The Weight-based kNN (W-kNN) performs an evaluation of the features of a dataset

based on the training set P. First, each one of the features f of the training set is

evaluated using Algorithm 3.3 and the Indices of Discernibility for the various

features are found (in Algorithm 4.2, below, they are denoted as IDf). The weights are

then obtained by normalising the IDs. Lastly, the weights are applied on both the

training and the testing set thus changing the features’ values, resulting in a

transformation of the dataset’s feature space. Afterwards, it performs classification on

this space, using the kNN classification rule. An algorithm model of the W-kNN is

presented in Algorithm 4.2.

 This classifier is particularly useful in the case where a dataset has many features,

some of which can be considered unnecessary, since W-kNN deals with them by

giving them appropriate weights, based on their Discernibility scores. These features

often confuse the kNN classifier, yet by transforming the feature space as W-kNN

does, this situation can be alleviated as the unnecessary features are bound to have a

low Discernibility score IDf so they will not count significantly in the transformed

feature space (due to their low relative weight). Afterwards, one may choose to

disregard these features altogether, performing feature selection.

 39

Algorithm 4.2 – The W-kNN classifier
Inputs: Input patterns of training set (P), labels of training set (T), number of neighbours (k), patterns
of testing set (PT)
Outputs: classification vector of testing set (y)

1 Initialisation: set f=0 (index over the features)

2 n ← number of patterns of testing set (PT)

3 N ← number of patterns of training set (P)

4 m ← number of features in dataset

5 do f ← (f +1)

 Pf ← vector of values for the f feature of P

6 IDf ← ID (Pf, T) using Alg. 3.1

7 until f = m

8 w ← ID / sum(ID)

9 P2 ← P * (w * I)

10 PT2 ← PT * (w * I)

11 y ← classification output of kNN based on P2, PT2 and k

Where I is the unitary matrix of order m (an mxm matrix containing ones on the diagonal and zeros
everywhere else).

 An example of W-kNN’s edge in performance over kNN is shown in Figure 4.3,

where the clouds dataset from (ELENA Project Artificial Databases, 2008) is used as

an example. The test pattern to be identified, denoted by an asterisk (*) in the figure,

belongs to the class depicted with the crosses (+). The patterns inside a square are the

ones taken into account for the classification. The kNN takes into account the k = 5

closest neighbours (Fig. 4.1) and fails to classify the test pattern (*) correctly. Note

that kNN would still fail with k = 3 or k = 7, in this case. W-kNN on the other hand

transforms the feature space by giving more importance to the second feature (y axis)

at the expense of the first one (x axis), because the latter has a lower Discernibility

score. Because of this, W-kNN classifies the pattern at hand accurately as it makes

use of a slightly different set of data points (Fig. 4.3).

 40

Figure 4.3 – W-kNN’s performance on a pattern of the clouds dataset. W-kNN classifies the
pattern at hand correctly since it makes use of the k nearest neighbours in a transformed
feature space where the first feature (depicted as the horizontal axis) is considered less
important and thus the distances over it are compromised, yielding a better result. The
patterns in the boxes are the ones taken into account by the classifier. Note that the rightmost
neighbour is taken into account by W-kNN because its distance in the transformed feature
space (where the first feature is not so important) is not so great, so it is near enough to be
considered as one of the k = 5 nearest neighbours.

4.2.3 Experimental Results of the Discernibility-based kNN Extensions

4.2.3.1 Datasets Used and Experimental Setup

 The characteristics of the datasets used in our study are summarised in Table 4.1.

All the classifiers used the k value which was considered the best choice, based on the

work in Voulgaris & Magoulas (2008a). These values ranged from 2 to 7, based on

the output of the V-kNN classifier, introduced and discussed in Section 4.3.1.1.

 The six datasets were downloaded from the UCI repository (UCI Repository,

2008) and the experiments were carried out in MATLAB 2007a, where the tested

algorithms were implemented. The CPU time was measured using a built-in function

in MATLAB, and took into account the training phase of each classifier. As kNN has

no training phase, in all of the experiments its CPU time was set to 0. The

experiments included 50 rounds of 10-fold cross-validation (500 classifications

altogether for each one of the classifiers).

 41

Dataset Features Patterns Classes
Bupa Liver 6 345 2
Pima Indians 8 768 2
Breast Cancer W. 9 683 2
Heart Disease 13 270 2
Vehicle 18 846 4
Boston Housing 13 506 3

Table 4.1 – Characteristics of the datasets used in the experiments

4.2.3.2 Evaluation Criteria

The classifiers were assessed using the average Accuracy Rate, a measure which has

been used extensively in the literature (Gao & Wang, 2007; Wu et al., 2002), the CPU

time, and a correlation between Accuracy and Degree of Certainty (Net Reliability,

described in Chapter 3). Note that all of the datasets used are more or less balanced,

and thus eligible for the evaluation measure of Accuracy Rate.

 The CPU time is defined as the interval between two consecutive checks of the

CPU clock of the computer. It is considered to be more reliable than the time interval

measured with a stopwatch by the user, because it takes into account only the CPU

usage of the experiments themselves. This way it is not influenced much by the other

processes that may run simultaneously in the OS.

4.2.3.3 Results

In the first dataset used, Bupa Liver, the best classifier in terms of performance was

D-kNN, due to the very high Accuracy Rate (over 3% compared to kNN) and the

rather high Net Reliability it exhibited. It was moderately fast, as the calculation of

the index of discernibility for each pattern was rather time-consuming. The detailed

results for this dataset can be seen in Table 4.2.

Classifier Accuracy Rate Net Reliability CPU Time
kNN 62.99% 0.1964 0.0000
W-kNN 62.48% 0.1892 0.0226
D-kNN 66.31% 0.2572 0.0510

Table 4.2 – Results for the Bupa Liver dataset. Undoubtedly, the winning classifier is D-kNN,

scoring better in both Accuracy Rate and Net Reliability.

 It appears that the W-kNN classifier did not perform as well as the classic kNN, in

terms of accuracy rate and Net Reliability. This was attributed to the nature of the

 42

dataset, particularly the fact that it contains only 6 features, all of which are of the

same importance (which is mirrored by the SID values of the features: 0.5797 for

each one of them. Interestingly, the SID of the whole dataset is slightly higher:

0.5855). For W-kNN to perform well, a larger number of features is needed, so that

some diversity among their value exists.

Regarding the Pima Indians dataset, as it can be seen in Table 4.3, W-kNN is the

best in both Accuracy Rate and Net Reliability (although its accuracy rate is coined by

the kNN classifier as well). Also, compared to the D-kNN classifiers, it is the fastest

too. As this dataset was not complex (the calculated Index of Discernibility is 0.6862

denoting that the classes of the dataset are not overlapping so much), it is natural that

D-kNN does not have an advantage, hence its performance.

Classifier Accuracy Rate Net Reliability CPU Time
kNN 73.70% 0.4199 0.0000
W-kNN 73.70% 0.4241 0.1020
D-kNN 72.99% 0.4299 0.2445

Table 4.3 – Results for the Pima Indians dataset. The winning classifier is W-kNN, combining

good Accuracy Rate, Net Reliability and CPU time.

Concerning the Breast Cancer Wisconsin dataset, the most accurate classifier

is D-kNN, which has also the best Net Reliability although its CPU time is not so

good. Also, the W-kNN scored quite well, and was much faster too compared to D-

kNN. The results for this dataset can be seen in Table 4.4.

Classifier Accuracy Rate Net Reliability CPU Time
kNN 94.50% 0.9039 0.0000
W-kNN 94.80% 0.9072 0.0920
D-kNN 95.90% 0.9169 0.1805

Table 4.4 – Results for the Breast Cancer Wisconsin dataset. The winning classifier is D-

kNN, scoring better in Net Reliability and Accuracy Rate.

In the Heart Disease dataset, the best classifier is D-kNN, which had the

highest Accuracy Rate, the best Net Reliability and a moderately good CPU time.

The results for all three classifiers can be seen in Table 4.5.

 43

Classifier Accuracy Rate Net Reliability CPU Time
kNN 80.86% 0.5649 0.0000
W-kNN 80.35% 0.5634 0.0332
D-kNN 81.31% 0.5926 0.0554

Table 4.5 – Results for the Heart Disease dataset. The winning classifier is D-kNN, scoring

better in Accuracy Rate and Net Reliability while at the same time its CPU time was
reasonably good.

As for the Vehicle dataset, D-kNN was better in Accuracy Rate and Net

Reliability. However, it was rather slow. In Table 4.6 one can see all the results for

this dataset.

Classifier Accuracy Rate Net Reliability CPU Time
kNN 70.03% 0.3899 0.0000
W-kNN 69.99% 0.3880 0.2403
D-kNN 70.44% 0.4009 0.4795

Table 4.6 – Results for the Vehicle dataset. The winning classifier is D-kNN, scoring better in

Accuracy Rate and Net Reliability.

Regarding the last dataset, Boston Housing, the results are somewhat

ambiguous, like in the Breast Cancer Wisconsin dataset. W-kNN was the most

accurate one, having the best Net Reliability as well, while its CPU time was quite

satisfactory. In Table 4.7 one can see the results for all classifiers for this dataset.

Classifier Accuracy Rate Net Reliability CPU Time
kNN 67.57% 0.3308 0.0000
W-kNN 68.96% 0.3587 0.0789
D-kNN 66.99% 0.3483 0.1793

Table 4.7 – Results for the Boston Housing dataset. The winning classifier is W-kNN, scoring
better in Accuracy Rate and Net Reliability. At the same time, its CPU time was good as well.

In Table 4.8, we summarise the findings of the experiments with the six

datasets, showing the winner with respect to each evaluation criterion.

 44

Dataset Accuracy Rate Net Reliability CPU Time (2nd)
in sec.

Bupa Liver D-kNN (66.31%) D-kNN (0.2572) W-kNN (0.0226)
Pima Indians W-kNN and kNN

(73.70%)
D-kNN (0.4299) W-kNN (0.1020)

Breast Cancer W. D-kNN (95.90%) D-kNN (0.9169) W-kNN (0.0920)
Heart Disease D-kNN (81.31%) D-kNN (0.5926) W-kNN (0.0332)
Vehicle D-kNN (70.44%) D-kNN (0.4009) W-kNN (0.2403)
Boston Housing W-kNN (68.96%) W-kNN (0.3587) W-kNN (0.0789)

Table 4.8 – Winners based on average performance over the 50 rounds. The winning
performance metric is shown inside brackets. The Net Reliability is calculated by means of

the classification and the Degree of Certainty vectors at the end of each experiment.

Afterwards, a one-to-one comparison was made for each pair of classifiers,

showing how many times (rounds) one classifier outperformed the other. Then,

these scores were added up for each classifier. The final sum reveals the relative

performance of each classifier and is shown in Table 4.9.

Dataset Accuracy Rate Net
Reliability

CPU Time
(2nd) in sec.

Bupa Liver D-kNN (97) D-kNN (100) W-kNN (50)
Pima Indians W-kNN (67) D-kNN (76) W-kNN (50)
Breast Cancer W. D-kNN (100) W-kNN (90) W-kNN (50)
Heart Disease D-kNN (73) D-kNN (94) W-kNN (50)
Vehicle D-kNN (65) D-kNN (86) W-kNN (50)
Boston Housing W-kNN (94) W-kNN (88) W-kNN (50)

Table 4.9 – Winners based on the relative performance, pairwise, over 50 rounds. The

numbers in brackets show the total number of times the winning classifier was better than the

other two in terms of a particular performance measure, for each dataset. As each classifier is

compared against two others, these numbers range from 0 to 100.

It is noteworthy that in all of the six datasets, kNN was outperformed by one

of the variations introduced in this work. Also, the only criterion where it actually

performed well was speed, since it required no training. The mean performance of

the three classifiers over the six datasets is shown in Table 4.10.

 45

Classifier Accuracy Rate Net Reliability CPU Time
kNN 74.94% 0.4676 0.0000
W-kNN 75.05% 0.4718 0.1093
D-kNN 75.66% 0.4910 0.1984

Table 4.10 – Average performance of classifiers, for the six datasets they were tested on. The

proposed classifiers have a higher accuracy rate than kNN and a higher reliability as well.

 From the above results we can see that while both of the proposed classifiers

perform better than the kNN, on average the D-kNN method performs best, taking

into account both Accuracy Rate and Net Reliability. Yet, as regards speed, it is

outperformed by kNN. Quite close in terms of performance comes the other kNN

extension, W-kNN, which is also faster. In addition, there is a correlation between the

Accuracy Rate and the Net Reliability, in the winners’ tables. This is something

expectable, as a winning classifier is bound to be good in both of these criteria.

4.3 Other kNN Extensions
4.3.1 Extensions of kNN with Self-determined k

Although the measures presented in this section are not strictly Discernibility-based,

they are interesting variations of kNN and can compliment the methods described

previously. These extensions have the interesting feature of not needing a k parameter

from the user, since they optimise it on their own. Two such extensions have been

developed: the Variable k Nearest Neighbour (V-kNN) and the Class-based k Nearest

Neighbour (C-kNN).

4.3.1.1 Variable k Nearest Neighbour

Since the value of the k parameter often influences the classification results,

sometimes significantly, we devised a classification algorithm that overcomes this

issue. By making use of the Degree of Certainty concept it estimates the optimum k

for each classification.

 The Variable kNN (V-kNN) classifier works as follows. First for each one of the

training set patterns a classification of it is performed based on various

neighbourhoods and the Degree of Certainty (DC) for various k values is calculated.

Then, the k value that maximises the DC of each classification is found (i.e. for every

pattern to be classifier, there is bound to be a different k which is more appropriate).

Therefore, for each training pattern, there corresponds a particular k value which is

 46

considered the best available (the set of these values constitutes the “best” k array).

All this is the training phase of the V-kNN classifier. Coming to the testing phase of

the classifier, for each unknown element, the nearest neighbour of the test pattern is

found and based on the “best” k array, its k value is assumed. Then, the kNN classifier

is applied on that test pattern using that particular k value. As a concept, this is

something similar to one of the ideas presented by Khan et al. (2002), who showed

that the kNN performance can be increased if “instead of taking exactly the k nearest

neighbours a closed-KNN set is formed”. The pseudocode of this classifier appears in

Algorithm 4.3. Note that since the performance of kNN is not affected much by the k

parameter for high values of it, a default maximum value of 20 is used. Also, a higher

value would compromise the classifier’s speed.

Algorithm 4.3 – The V-kNN classifier
Inputs: Input patterns of training set (P), labels of training set (T), patterns of testing set (PT)
Outputs: classification vector of testing set (y)

1 Initialisation: set i = 0 (the i-th training pattern), j = 0 (the j-th testing pattern), k (parameter of
the KNN, given by the user), kmax = 20

2 n ← number of patterns of testing set (PT)

3 N ← number of patterns of training set (P)

4 Do i ← (i + 1)

5 P2 ← P without pattern i

6 do k ← (k + 1)

7 classify i using P2 and kth nearest neighbour

8 D(k) ← calculate the Degree of Certainty of Classification using Eq. (3.2) for the particular
 k-th nearest neighbour

9 until k = kmax

10)(maxarg kDK
ki

11 until i = N

12 Do j ← (j+1)

13 d(N) ← vector of distances of PT(j) to each one of the elements of P, calculated using Eq. 3.1

14)(minarg jdnn
j

15 k ← K(nn) where K = {Ki}

16 Yj ← classification output based on kNN using above k

17 DCj ← Degree of Certainty based on above classification

18 until j = n

 It is noteworthy that apart from its performance as a classifier, the V-kNN

approach yields some useful information about the dataset: a good value for the k

parameter, which for kNN-type classifiers is very useful to know as it improves their

 47

performance, particularly for the classical kNN classifier. However, for very sparse

datasets the optimum k found may not be valid and the results may not be better than

those of kNN. The suggested k values for the various dataset used are shown in Table

4.11.

Dataset Suggested k
Bupa Liver 7
Pima Indians 6
Breast Cancer W. 2
Heart Disease 6
Vehicle 5
Boston Housing 6

Table 4.11 – Suggested k values for the various datasets used. These values were obtained by

averaging the k values V-kNN found best for each one of the patterns of the datasets it was

applied on.

 In datasets where the classes are quite entwined and the entities of each class are

close together with each other, V-kNN definitely yields better results than kNN, as the

k parameter needs to be redefined for each entity of the test set.

 We can observe V-kNN’s advantage over kNN visually in Figure 4.4. This is a

close-up of the clouds dataset, from (ELENA Project Artificial Databases, 2008). The

pattern to be identified (*) belongs to the class depicted with the crosses (+). The

patterns inside a square are the ones taken into account for each classification.

 While kNN takes into account the k = 5 closest patterns, V-kNN decides to use

only the k* = 1 closest pattern (Fig. 4.4), as it has found it to yield the best result

among the elements of the training set. This difference in the k parameter can be the

difference between a misclassification and a correct classification, as it is apparent in

this case. Note that kNN would still fail with k = 3 or k = 7, in this case.

 48

Figure 4.4 – V-kNN’s performance on the same pattern of the clouds dataset (as Fig. 4.1 –
4.3). V-kNN classifies the pattern at hand correctly since it makes use of the best k for this

particular pattern, which in this case is equal to 1. Hence the one and only pattern taken into
account for the classification is the one inside the box.

4.3.1.2 Class-Based k Nearest Neighbour

The Class Based kNN (CB-kNN) is somewhat different as a kNN extension as it does

not take into account a number of neighbours around a given test pattern but a number

of neighbours from each class. It was developed because often the datasets are

unbalanced as regards their class structure, so it may be a case that one class has too

few elements to “win” the vote of a classification of the kNN classifier.

 The CB-kNN algorithm deals with these datasets by working in the following

way. For every test element, the k nearest elements of each class are taken. The value

of k is automatically selected by the classifier, so as to maximise the DC of the

classification. Afterwards, the harmonic mean of the distances of these neighbours is

calculated (so that it is not influenced so much by the most distant elements). Finally,

these means are compared and the class yielding the lowest value is chosen for the

classification. The detailed algorithm of this classifier can be viewed below:

 49

Algorithm 4.2 – The CB-kNN classifier
Inputs: Input patterns of training set (P), labels of training set (T), number of neighbours (k), patterns
of testing set (PT)
Outputs: classification vector of testing set (y)

1 Initialisation: set l=0 (class variable), i=0 (pattern variable), j=0 (another class variable), k=0
(number of neighbours from each class)

2 n ← number of patterns of testing set (PT)

3 N ← number of patterns of training set (P)

4 q ← number of classes of dataset

5 do l ← (l + 1)

6 Cl ← P(elements belonging to the l–th class)

7 until l = q

8 do i ← (i + 1)

9 do j ← (j + 1)

10 d ← vector of distances of PT(i) to C(j)

11 sd ← d sorted in ascending order

12 do k ← (k + 1)

13 apply kNN using current k

14 D(k) ← Degree of Certainty of above classification using Eq. (3.4)

15 until k = 20

16)(maxarg kDK
ki

17 sd ← sd(first K elements)

18 Hj ← harmonic mean (sd)

19 until j = q

20)(maxarg jHb
j

21 yi ← class b

22 DCi ← sum(Η) / min(Η)

23 until i = n

 CB-kNN’s superiority over kNN in some difficult classification instances can be

viewed in the “clouds” dataset example (Fig. 4.5). The pattern of interest is indicated

by a (*) and squares are used to identify the points taken into account for the

classification. As the classifier estimates a K = 1, it takes into account only 1 pattern

from each class. Since the distance of the pattern of class (+) is smaller than that of

class (x), the pattern at hand is classified accurately as belonging to class (+).

 50

Figure 4.5 – CB-kNN’s performance on the same pattern of the clouds dataset. CB-kNN

classifies the pattern at hand correctly because instead of taking the k nearest neighbours, it
takes Κ neighbours from each class and compares the harmonic mean of their distances to the
test element. In this case, K is estimated by the classifier to be equal to 1. Therefore, only 1
pattern from each class is taken into account. These patterns are the ones within the boxes.

4.3.1.3 Experimental Results of kNN Extensions with Self-determined k

The experiments conducted for these kNN extensions are of the same type as those

described in the previous section (i.e. they are carried out in the same datasets and for

the same number of rounds, using the same evaluation criteria). Their results are as

follows:

 In the Bupa Liver dataset, CB-kNN was slightly better than kNN (about 0.5%) yet

its reliability was slightly less. However, V-kNN had a higher reliability than all of

them. Therefore there is no clear winner for this dataset, as it can be seen from Table

4.12.

Classifier Accuracy Rate Net Reliability CPU Time
kNN 62.99% 0.1964 0.0000
V-kNN 62.08% 0.2188 0.0265
CB-kNN 63.59% 0.1903 0.1071

Table 4.12 – Results for the Bupa Liver dataset. There is no clear winner, although CB-kNN

scored best in Accuracy Rate.

Apparently, V-kNN did not perform as well as the classic kNN in terms of

accuracy rate. This is due to the nature of the dataset, particularly its structure which

requires a different approach than that of V-kNN. Particularly, in this dataset V-kNN

assumed an average k value of 1 for each one of the classification experiments. This

 51

means that is actually turned itself into a simple NN classifier, which is naturally less

effective than a kNN one.

 As regards the Pima Indians dataset, V-kNN outperformed the other two

classifiers by scoring 0.85% higher accuracy rate (see Table 4.13) and a quite higher

Net Reliability. Also, compared to CB-kNN, it was much faster as well. If the dataset

was more complex CB-kNN would have also outperformed kNN. And if we consider

the Discernibility of the dataset, as an expression of this complexity we will see that a

pattern emerges. This dataset, just like the previous one (Bupa), has a relatively high

Discernibility (Pima’s SID is 0.6862 and Bupa’s SID is 0.5855). Therefore, such a

sophisticated classifier could be considered inappropriate for such a dataset.

Classifier Accuracy Rate Net Reliability CPU Time
kNN 73.70% 0.4199 0.0000
V-kNN 74.55% 0.4707 0.1008
CB-kNN 72.70% 0.3244 0.4211

Table 4.13 – Results for the Pima Indians dataset. Unmistakably, the winning classifier is V-
kNN, scoring high in both Accuracy Rate and Net Reliability. Also, it had a quite good CPU

time.

 Regarding the Breast Cancer Wisconsin dataset, both of the proposed classifiers

performed quite well compared to kNN. CB-kNN halved the error rate of kNN,

although its Net Reliability was not as high. Therefore, since V-kNN’s accuracy rate

was not much lower, its Net Reliability the highest of all three classifiers, and its CPU

time quite low, we can safely say that this is the winning classifier for this dataset (see

Table 4.13).

Classifier Accuracy Rate Net Reliability CPU Time
kNN 94.50% 0.9039 0.0000
V-kNN 96.56% 0.9285 0.0839
CB-kNN 96.93% 0.8522 0.3691

Table 4.14 – Results for the Breast Cancer Wisconsin dataset. Although CB-kNN had the

highest Accuracy Rate, V-kNN performed best, exhibiting high Accuracy Rate, the highest
Net Reliability and low CPU time.

 Concerning the Heart Disease dataset, the winning classifier is kNN. However V-

kNN had a higher Net Reliability, yet the accuracy rate gap was much higher in the

case of the classic kNN. The results for all of the classifiers are shown in Table 4.15.

 52

Being a very simple dataset (SID = 0.8444), it appears that is requires an equally

simple classifier, if we are to obtain the best possible results.

Classifier Accuracy Rate Net Reliability CPU Time
kNN 80.86% 0.5649 0.0000
V-kNN 71.83% 0.5803 0.0180
CB-kNN 79.29% 0.4762 0.0877

Table 4.15 – Results for the Heart Disease dataset. The winning classifier is kNN having the

highest Accuracy Rate and relatively high Net Reliability.

As concerns the Vehicle dataset (see Table 4.16), V-kNN was clearly the winning

classifier, scoring a very high Accuracy Rate and a relatively high Net Reliability,

without compromising much on the CPU time. This can be explained as follows: the

Discernibility of this dataset is extremely low (SID gives a value of 0.0024), implying

that the classes are very much overlapping. Therefore, a more sophisticated approach

would be necessary if we are to obtain a good accuracy in the classification. This is

demonstrated by the results of the proposed classifiers, which aim to undertake this

role.

Classifier Accuracy Rate Net Reliability CPU Time
kNN 70.03% 0.3899 0.0000
V-kNN 85.08% 0.3831 0.1230
CB-kNN 70.89% 0.2461 1.0179

Table 4.16– Results for the Vehicle dataset. The winning classifier is V-kNN due to the

exceptionally high Accuracy Rate and the high Net Reliability. Also its CPU time was quite
low.

As for the last dataset used, Boston Housing, CB-kNN is the winning classifier

among the three. Its high Accuracy Rate (about 2.5% higher than that of kNN),

combined with its relatively high Net Reliability renders it better than the other two

(although V-kNN performs very well in comparison). However, if speed is of higher

importance, V-kNN can be considered as the best classifier, since it is quite fast and it

has the highest reliability as well. Also, its accuracy rate is higher than that of kNN -

see Table 4.17 for details. The better performance of CB-kNN (as well as that of V-

kNN) can be explained by taking into account the Discernibility concept. Particularly,

the SID measure shows that the dataset is quite difficult, as it has an SID value of

 53

0.1917. Therefore, one would expect that a simplistic classifier such as kNN would

need an extra boost in its function if it is to perform well.

Classifier Accuracy Rate Net Reliability CPU Time
kNN 67.57% 0.3308 0.0000
V-kNN 67.79% 0.3574 0.0496
CB-kNN 69.03% 0.3327 0.3654

Table 4.17 – Results for the Boston Housing dataset. Here there is no clear winner either.

However, both V-kNN and CB-kNN performed better than kNN.

 The results of the experiments for the six datasets are summarised in Table 4.18,

showing the winning classifier for each evaluation criterion and its performance in

brackets.

Dataset Accuracy Rate Net Reliability CPU Time (2nd) in
sec.

Bupa Liver CB-kNN (63.59%) V-kNN (0.2188) V-kNN (0.0265)
Pima Indians V-kNN (74.55%) V-kNN (0.4707) V-kNN (0.1008)
Breast Cancer W. CB-kNN (96.93%) V-kNN (0.9285) V-kNN (0.0839)
Heart Disease kNN (80.86%) V-kNN (0.5803) V-kNN (0.0180)
Vehicle V-kNN (85.08%) kNN (0.3899) V-kNN (0.1230)
Boston Housing CB-kNN (69.03%) V-kNN (0.3574) V-kNN (0.0496)

Table 4.18 – Summary results of self-determined k kNN variations based on average
performance on all six datasets. The figures in the brackets show the winning performance

value.

In addition, we make a one-to-one comparison for each pair of classifiers,

showing the number of times one classifier performed better than the other (i.e. the

number of rounds one’s performance exceed the other one’s). Afterwards, these

scores are added up for each classifier. This is done for each one of the evaluation

criteria. The final sum shows the relative performance of each classifier (see Table

4.19).

 54

Dataset Accuracy Rate Net Reliability CPU Time (2nd) in sec.
Bupa Liver CB-kNN (74) V-kNN (85) V-kNN (50)
Pima Indians V-kNN (84) V-kNN (100) V-kNN (50)
Breast Cancer W. V-kNN (100) V-kNN (100) V-kNN (50)
Heart Disease kNN (71) V-kNN (92) V-kNN (50)
Vehicle CB-kNN (94) kNN (86) V-kNN (50)
Boston Housing CB-kNN (86) V-kNN (95) V-kNN (50)

Table 4.19 – Summary results based on pair-wise of the self-determined k kNN variations on

all six datasets. The figures in the brackets show the total number of times the winning
classifier performed better than the other two, based on each particular criterion. Since each

classifier is compared against two others for a total of 50 rounds, these numbers range from 0
to 100.

 It is worth mentioning that in five out of the six datasets, kNN was outperformed

by one of the methods proposed in this work. Also, apart from that instance, its only

advantage over the others was speed, since it required no training. In Table 4.20, the

average performance of all three classifiers over the datasets used can be seen.

Classifier Accuracy Rate Net Reliability CPU Time
kNN 74.94% 0.4676 0.0000
V-kNN 79.16% 0.5440 0.0751
CB-kNN 75.40% 0.4037 0.3947

Table 4.20 – Average performance of the three self-determined k kNN variations based on all

six datasets. The proposed classifiers have a higher Accuracy Rate than kNN and V-kNN has

a higher Net Reliability as well.

 From these results we can see that CB-kNN has a slightly higher accuracy rate

than kNN while V-kNN outperforms them in both accuracy and reliability,

significantly. Also, the CPU time of V-kNN is considerably low (although kNN is the

winner in this criterion). So, it can be argued that V-kNN is the winning classifier in

general.

4.3.2 Minimum Spanning Tree Classifier

4.3.2.1 Description of Classifier

The Minimum Spanning Tree Classifier (MSTC) can be seen as an extension of kNN

with k = 2, utilizing a Minimum Spanning Tree (MST, introduced by Kruskal (1956))

representation of the training instances within each class (see Figure 4.6). The

algorithm for developing these MSTs is a variation of the well-known Prim’s

 55

algorithm, which is thoroughly described in textbooks, such as Baase & Van Gelder

(1999).

The algorithm works as follows. Each edge in an MST is depicted as a straight

line between the corresponding patterns (i.e. the patterns that are located on the two

extremes of the edge) . The distance from a test pattern to an MST is defined as the

Euclidean distance to the nearest edge of the MST. The classification score is the

inverse of the distance to the class’ MST (plus a small positive number to avoid the

division by zero). Note the similarity of MSTC with CB-kNN, and yet the alternative

approach of employing distances to lines connecting patterns (the MST branches),

instead of merely distances to the patterns themselves. Its analytical function can be

seen in Algorithm 4.3.

Figure 4.6 – Illustration of Minimum Spanning Tree Classifier. The two classes, comprised

by patterns depicted as circles or squares respectively, are represented by their Minimum

Spanning Trees. The dashed lines represent the distances from the test pattern (represented by

a white cross) to its nearest MST edges.

Algorithm 4.3 – Pseudo-code for the Minimum Spanning Tree Classifier
Inputs: Input patterns of training set (P), labels of training set (T), patterns of testing set (PT)
Outputs: classification vector of testing set (y)

1 Initialisation: set i = 0 (the i-th testing pattern), j = k = 0 (the j-th class)

2 n ← number of patterns of testing set (PT)

3 N ← number of patterns of training set (P)

4 q ← number of distinctly different values in T (number of classes of dataset)

5 do j ← (j + 1)

6 Dj ← distance matrix for patterns of class j

7 Cj ← connections matrix of MST of class j, based on Dj (variation of Prim algorithm is used)

8 until j = q

9 do i ← (i + 1)

10 do k ← (k + 1)

11 D ← minimum distance of pattern i to class k

12 ind ← first pattern for which d = minimum

 56

13 F1 ← pattern for which a branch of the MST of class k begins from ind, based on Ck

14 F2 ← pattern for which a branch of the MST of class k ends to ind, based on Ck

15 dtemp ← distance vector of pattern i to patterns of f1 and f2

16 D2 ← shortest distance of i to the group of patterns of class k, connected to ind

 17 ind2 ← pattern for which d2 = minimum

18 D3 ← distance between ind and ind2 (these are the patterns of the closest branch)

19 if d2 ≥ sqrt((d1)2 + (d3)2)

20 d ← d1 (the closest part of the branch is the pattern in the closest end of the branch)

21 Else

22 t ← (d1 + d2 + d3) / 2 (semi-circumference of the triangle formed by the test pattern (i) and
the patterns of the closest branch)

23 area ← sqrt(t.(t-d1).(t-d2).(t-d3)) (Heron’s method of calculating the area of the triangle)

24 d ← 2.area / d3 (height of the triangle, which by definition is equal to the distance of i to the
closest branch)

25 end of if

26 pj ← 1 / (d + eps) (where pk = voting score for class k, and eps is a very small number, to avoid
division by zero)

27 until k = q

28 IND ← class for which p = maximum

29 yi ← class IND (classification of pattern i)

30 until i = n

 The main advantage of the MSTC is that it views each class as an entity instead as

an amalgamation of points. This allows it to “sense” links between pairs of patterns

that would be otherwise invisible to a transductive classifier (a classifier that uses a

direct associationg between the testing patterns and the training ones), such as kNN

and its extensions. Also, it is a relatively diverse classifier, not limited to a particular

type of dataset. However, its Net Reliability (for a definition, see Section 3.3) is

relatively low, in general, as the way Degree of Certainty is applied on its

classification rule is often misleading due to the great variance of the distances

involved. In addition, it may be slow when it is applied on very large dataset in terms

of number of patterns. Overall, the MSTC is a robust classification system for

relatively small datasets, particularly ones having a lot of noise. Also, it performs best

when the patterns of each one of the classes of the dataset form one cluster.

Furthermore, it may be rather useful in problems tackled with the semi-supervised

learning approach.

 57

4.3.2.2 Experimental Results of Minimum Spanning Tree Classifier

Some experiments were conducted to test the performance of the MSTC. These were

carried out in five different benchmark datasets from the UCI repository (UCI

Repository, 2008): Wine, Glass, Bupa Liver, Vehicle and Vowel. The experiments

comprised of 50 rounds of 10-fold cross-validation and involved the Minimum

Spanning Tree and k Nearest Neighbour classifiers. The evaluation criteria used were

Accuracy Rate and CPU time. The results are shown in Table 4.21.

KNN MSTC Classifier
Dataset Accuracy Rate CPU Time Accuracy Rate CPU Time

Wine 95.26% 0.0045 95.37% 0.0345
Glass 66.74% 0.0055 69.59% 0.0390
Bupa Liver 60.88% 0.0091 61.51% 0.2929
Vehicle 70.08% 0.0442 70.08% 0.9758
Vowel 91.55% 0.0146 94.87% 0.1725

Table 4.21 – Average performance of the kNN and MST classifiers based on five datasets.

The proposed classifier generally has a slightly higher Accuracy Rate than kNN although it is

somewhat slower.

From the above results we can observe that MSTC performs at least as well as the

kNN classifier. One drawback of this method is that it requires a lot of CPU time,

mainly due to the fact that the construction of a MST is a computationally expensive

process. Yet, if our primary concern is the accuracy rate, it is worth the effort,

particularly when dealing with “difficult” datasets, such as glass.

4.4 Summary and Contribution of the Chapter
In this chapter we presented the two classifiers that are based on or related to the

Discernibility concept, as well as three other classifiers based on the kNN philosophy.

Their function was explained and their behaviour was investigated experimentally.

The experiments conducted show that the developed methods generally outperform

kNN.

 This chapter also contributed a few alternative approaches to improving the kNN

classifier and also proposed another distance-based classifier similar to kNN, namely

the Minimum Spanning Tree classifier. In addition, the advantages and limitations of

the proposed methods are exhibited.

 58

 This chapter contributes to the thesis by showing how the Discernibility concept

can be used to enhance the performance of a classifier and explain its behaviour on

different types of datasets.

 59

Chapter 5 – Discernibility-Based Methods of Data

Processing

One of the most practical applications of the Discernibility concept is that of data

processing. Particularly, the evaluation of (a part of) a dataset can be used to assess

the importance of features and patterns and therefore clear the dataset of the features

or patterns which are considered less useful for the classification process. In the first

case the application of Discernibility takes the form of a “filter” or a filtering process,

used to find the most discernible features (or combination of features), discarding all

the others (feature selection). In the second case, it involves finding the most

discernible patterns (i.e. those having the highest discernibility) and by taking into

account the distances among them removing many of them (data reduction).

5.1 Feature Selection and Discernibility
Feature selection, the process of finding the best features within a dataset and

discarding the rest, has been a popular topic over the past few years, as it promises

better performance (particularly in terms of speed) and reduced complexity,

something very significant in classification, among other fields of application. In

addition, sometimes the accuracy rate is increased when the classifier is applied on the

reduced feature set. This renders feature selection an important technique for

classification problems with high dimensional data.

Feature selection is a special type of dimensionality reduction. The latter has been

accomplished using Genetic Algorithms (Frohlich & Chapelle, 2003; Lecocke &

Hess, 2005), Locally Linear Embedding (LLE) (Chao & Lihui, 2005), Recursive

Salient Analysis (RSA) (Cao et al., 2003), the selection of a support set (Alexe et al.,

2005), a combination of PCA and the UKW clustering algorithm (Tasoulis et al.,

2006), t-tests (Lecocke & Hess, 2005; Mukkamala et al., 2005), Regression Splines

(MARS) (Mukkamala et al., 2005), Classification and Regression Trees (CART)

(Mukkamala et al., 2005), Random Forests (Mukkamala et al., 2005), Linear Genetic

Programs (LGP) (Mukkamala et al., 2005), Neural Networks as a similarity measure

(Sawa & Ohno-Machado, 2003), and clustering analysis (Alon et al., 1999).

 Method employing Feature Selection in particular include approaches using

statistics (Hochreiter & Obermay, 2003; Michalak & Kwa/Snicka, 2006; Liu et. al,

 60

2002), fuzzy logic (Shen & Jensen, 2008; Shang & Shen, 2006; Jensen & Shen, 2005)

as well as several other approaches (for an overview see (Dash & Liu, 1997; Hall,

1999)).

The key difference between feature selection and other techniques of

dimensionality reduction, which is also the edge of the former, is that it preserves the

semantics by merely selecting the most important features and discarding all the rest.

Other methods of dimensionality reduction transform the feature space, rendering the

new feature set challenging to understand and interpret.

This is why feature selection is a popular choice for various datasets, especially

ones of high dimensionality, such as those encountered in bioinformatics applications.

In those cases feature selection is not merely a plausible but often an essential part of

the classification process as it alleviates the classifier(s) from a lot of unnecessary

data, rendering the whole process more efficient. To this end, over the last few years a

series of methods for feature selection have been introduced, most of them focusing

on microarray data (Frohlich & Chapelle, 2003; Chao & Lihui, 2005; Weston et al.,

2001; Lecocke & Hess, 2005 ; Alexe et al., 2005; Tasoulis et al., 2006; Mukkamala et

al., 2005; Sawa & Ohno-Machado, 2003; Alon et al., 1999), where the number of data

points (patterns) is small whilst the dimensionality of the features is very high.

Feature selection methods used in the literature have been applied successfully

with SVMs (Frohlich & Chapelle, 2003; Chao & Lihui, 2005; Weston et al., 2001),

which benefit greatly by the reduction of feature space. This is because their

performance depends on the dimensionality of the data they are applied on, and a

relatively high number of features compromises their performance due to overfitting

(Duda et al., 2001).

Other approaches have been also considered (Lecocke & Hess, 2005; Alexe et al.,

2005 ; Tasoulis et al., 2006; Mukkamala et al., 2005; Sawa & Ohno-Machado, 2003;

Alon et al., 1999) with success as well. However, the underlying problem that all of

the above methods have is that there is no particular stopping criterion for the feature

selection method. In other words, the reduced feature sets come in a variety of sizes

with limited a priori knowledge on the quality of the selected features.

Based on the Index of Discernibility (Spherical version) we have developed two

independent feature selection methods. Although of similar philosophy, they differ in

their structure and in the way they employ the Index of Discernibility.

 61

5.1.1 Discernibility-based Feature Selection: the IFF Method

The first method, IFF (Individual Feature Filtering), is the simplest and the fastest in

its function. As it can be seen from its flow chart in Fig. 5.1, it makes an assessment

of each one of the features of the dataset, using the Index of Discernibility, and then

selects the ones, which are of a given standard. The latter is expressed by the

threshold th which is given by the user (this is found empirically although any value

between 0.5 and 1.0 is generally good, with the higher yielding less features). Note

that since this is an absolute parameter, the number of features at the new feature set

heavily depends on the dataset itself. However, a value ranging from 0.7 to 0.85 is a

good choice for the th parameter for most problems. This parameter is set by the user

in the Initialisation stage, along with the definition of the dataset (Fig. 5.1). The

outputs of this method are the reduced feature set (P2), as well as a list of the indexes

(names) of these features (NFS). Note that the initial number of features (na) is

obtained by MATLAB using a built-in function.

 62

Fig. 5.1. Flow chart of the first ID-based feature selection method (IFF).

5.1.2 Discernibility-based Feature Selection: the GFS Method

The second method, GFS (Group Feature Selector), is quite different in its

function and somewhat more complex. However, it has the advantage that it is

entirely automatic, as it has no need for a threshold parameter for the selection of the

features. As it can be seen for Fig. 5.2, where its flow chart is shown, it gradually

builds the new feature set (P2) by initially taking the first feature of the dataset and

then adding two features at a time, so as to maximise the Spherical Index of

Discernibility of the whole feature set. In other words, the features are not evaluated

one by one, but as a group, something which although more time-consuming, is a

 63

better way of selecting the features, since it takes into account their relationship.

Afterwards, the algorithm checks if by removing one of the features of P2 the

Spherical Index of Discernibility is increased or at least remains the same. This step

helps prevent the accumulation of redundant features in the new feature set. By

repeating this process (adding 2 new features and removing 1, if there is a

redundancy) until the Spherical Index of Discernibility ceases to increase, this method

goes through the rest of the available features of the original feature set. Alike the

previous method, its outputs are the reduced feature set (P2), as well as a list of the

indexes of these features (NFS). This method tends to yield smaller reduced feature

sets and often takes longer, due to the increased number of Discernibility calculations

that are required. A high-level description of this method is exhibited in Algorithm

5.1.

Algorithm 5.1 – General description of the GFS method for Discernibility-based Feature
Selection
Inputs: Input data (P), Data Labels (T)
Outputs: Selection of best set of features (P2), indexes of these features (NFS)

1 Find the Discernibility of the original feature set using Eq. (3.1)

2 Get the first feature of P and the corresponding label from T

3 Find the Discernibility of each one of the combinations of the features acquired so far and all the
other ones, using Eq. (3.1)

4 Keep the feature that maximises the Discernibility of the pair

5 Check if by removing any one of the features gathered so far is unnecessary (i.e. the
Discernibility of the new feature set is the same or higher if this feature is removed

6 Get another feature, so as the Discernibility of the new feature set is maximised (i.e. repeat what
was done in Steps 3 and 4). Store the selected features in P2 and their indexes in NFS

7 Repeat steps 3-6 while the Discernibility of the acquired features is smaller than that of the
original feature set (calculated in Step 1)

8 Output new feature set (P2) and the indexes of the selected features (NFS)

Generally, this method is quite simple to implement and works well with a

number of different classifiers. Also, it is independent on the dataset it is applied on.

 64

Fig. 5.2. Flow chart of the second Discernibility-based feature selection method (GFS). Note
that although this method uses the Spherical Index of Discernibility, it can also employ the

Harmonic ID, which is why the term ID is used in the flowchart.

 65

5.2 Data Reduction and Discernibility
The past five decades have been revolutionary in the way in which data acquisition

has developed (Skyt et al., 2008). This facilitated the accumulation of data, in both

resolution (high number of features) and size (large number of patterns), rendering

today’s databases on the order of terabytes (Skyt et al., 2008). This gave rise to a

constantly growing need for data reduction as well as the adoption of an eclectic

attitude towards the attributes of certain datasets, particularly those containing

microarray data (Voulgaris & Magoulas, 2008b). In this section we explore how we

can achieve data reduction using the novel concept of Discernibility that we have

introduced previously.

According to Li and Jacob (2008), there are two distinct approaches to Data

Reduction: the general purpose Data Reduction and the task-specific Data Reduction.

Since in this research we are dealing with classification, we will focus on the latter

approach (which as one would expect, yields better results for the classification task).

Contrary to what one would expect the reduced datasets often exhibit better

classification performance (accuracy rate). This is probably due to the reduction in

complexity, which in the original dataset takes the form of redundant patterns and

useless outliers as well as the removal of noisy patterns in some cases.

Data reduction can be accomplished using the Discernibility concept by

assessing how “easily” distinguishable the various patterns of a dataset are, and then

removing the ones having the highest discernibility, taking into account their

distances to the other patterns of their classes. Contrary to the feature reduction

techniques, in this application of Discernibility it is unwise to eliminate patterns

below a given threshold, since there is a strong inter-dependency among all of them,

as regards their Discernibility status and by removing the patterns below a certain

threshold, the dataset loses its original geometric structure. Therefore, the patterns to

be removed have to be selected carefully; otherwise there is a risk of distorting the

class structure of the dataset (resulting to a drop in the accuracy rate of the classifiers).

In the method developed here, this is accomplished by using Discernibility along with

the distances between the removed patterns. In other words, we remove not only the

most discernible patterns (i.e. the ones the are “easy” to classify and therefore

relatively redundant), but also the ones that are as far as possible from the ones

already removed. An analytical description of the operation of this method can be

seen in the flowchart of Fig. 5.3.

 66

From this flow chart, one can observe that the two factors mentioned earlier –,

the patterns’ Discernibility scores (Z) and their distances (DD) to the other patterns

that are to be discarded – are taken into account with equal weight since they are both

equally important. Therefore, a removed pattern has to be easy to distinguish (i.e.

have a high Discernibility) and be relatively far away from other patterns that will be

removed (have a large distance from them). This allows the reduction of the patterns

to be “smooth” and balanced, since the removed patterns are taken from the whole

dataset space (due to the distance criterion) and thin out the denser areas of each class

(Discernibility criterion).

The data reduction method is fine-tuned using a particular threshold parameter

(th), which refers to the reduction ratio. This parameter is equal to the amount of

patterns that are removed from the original dataset.

 67

Fig. 5.3. Flow chart of the Discernibility-based data reduction method.

 68

5.3 Experimental Results
5.3.1 Experimental Setup

The above methods have been implemented in MATLAB and tested thoroughly on a

number of datasets. A number of different classifiers were used, in order to

demonstrate the methods’ independence to the classification process itself, in terms of

performance.

 The classifiers used in the experiments were the k Nearest Neighbour and two of

its modifications, the Linear Discriminant Analysis (LDA) method, described in Duda

et al (2001) as well as Fidler & Leonardis (2003), the Gravity Model Classifier

(GMC) which was initially proposed by Ruta & Gabrys (2003), the Fuzzy kNN

method (Keller et al., 1985), the Decision Tree C4.5 algorithm, the Reduced Coulomb

Energy classifier (RCE), as described in Duda et al (2001) and the Minimum

Spanning Tree Classifier (MSTC), which was presented in Section 4.3.2.

 The kNN algorithm classifies a pattern according the plurality vote among its k

nearest neighbours from the training set: the pattern is assigned with the winning

class; if there is a tie, the minimum index wins. The classifier scoring function, for a

class, is the number of those of the k neighbours that belong to the class. In our

experiments, we take the k to be equal to 5, as our experience shows that this a good

choice for the neighbours parameter for these datasets.

 The kNN extensions used in these experiments are V-kNN (for the feature

selection experiments) and the Fuzzy kNN. The first of them was described

thoroughly in Chapter 4.4 and was chosen due to its promising performance and high

classification speed. The second kNN extension was introduced by Keller et al. (1985)

and is a good demonstration of a Fuzzy Logic classification system, based on the kNN

paradigm. This classifier is more thoroughly described in Section 2.1.4.

 The LDA algorithm implements Fisher’s linear decision rule (Fisher, 1938) by

deriving a separating hyperplane for each class to minimise the ratio of the “within-

class” average error over the “out-of-class” average error. Its scoring function, for

each class, is the value of the separating linear rule derived for the class if it is

positive, or zero if it is negative. This rule is based on the conditional probability fi

that a test pattern k belongs to a particular class i, calculated with Eq. 5.1. The class

yielding the highest probability value fi wins the classification.

Eq. 5.1

 69

where μi is the average feature values of the patterns of class i,

 xk is the vector of the feature values of pattern k,

 C is the covariance matrix, and

 pi is the prior probability related to class i, which is estimated based on the

number of patterns in the class.

The function of LDA is described in Algorithm 5.2.

Algorithm 5.2 – Pseudo-code of LDA classifier
Inputs: Input patterns of training set (P), labels of training set (T), patters of testing set (PT)
Outputs: classification vector of testing set (y)

1 Initialisation: Set i = 0, j = 0

2 N ← number of data elements in P

3 q ← number of unique elements in T (classes)

4 na ← number of attributes in P

5 remove attributes that have variance of 0 (if a is their number, na ← na – a)

4 do i ← (i + 1)

5 find patterns of class i (Xi) and count them (ni)

6 calculate the class probability of class i: pi ← ni / N

7 calculate the mean of class i: mi ← sum(pi) / ni

8 until i = q

9 calculate the global mean: M ← p*m

10 do j ← j + 1

11 find distance of each pattern of class j, to the class’s mean: XX ← Xj – mj

12 compute covariance matrix for class j: c ← XXT*XX / ni

13 compute within group variance: C ← C + c*pj

14 until j = q

15 calculate the inverse matrix of C: CC ← C-1

16 find most significant eigenvectors: A ← –0.5 * diag(m*CC*mT) + log(p)T

17 calculate probability values for different classes: f ← m*CC*PTT + A

18 Q ← j value for which fj is maximised

19 classify all patterns to classes depicted by Q

 The GMC algorithm used closely follows the method proposed by Ruta and

Gabrys (2003). Given a test pattern, its squared Euclidean distances to all training

instances are computed, inversed (with an added very small positive to avoid

divisions by zero) and summed up within the classes. A within-class sum represents

the class’ gravity force. The class whose force is maximal wins and is assigned to the

pattern. The forces form the classification scores.

 70

 The C4.5 method used is the popular Quinlan’s algorithm that draws a decision

tree over the training set to minimise the entropy between the tree leaf partition and

class-partition. Its default parameter is the split stopping threshold (th = 10% of alien

entities in a node). We have taken the scoring function of this decision rule to be

constant and equal to 1 – th = 0.9. This is a very good estimate of the confidence of

the classifier, since this is the expected probability of a correct classification, based on

the training set (which defines the branches of the decision tree).

 The RCE algorithm surrounds each of the training patterns by a sphere of the

maximum radius satisfying the property that no training patterns belonging to

different classes belong to the sphere. (The radius is defined, thus, as the minimum

distance between the current pattern and a pattern from a different class minus a small

positive real, typically about 10-4.) Given a test pattern, the classification score of a

class is the number of training patterns from the class, whose spheres contain the test

pattern.

 The MSTC method is a classifier already described in section 4.3.

 In the classifiers utilising the between-pattern distances, the (whole) dataset is pre-

normalised in such a way that, for each feature, its minimum is zero and the

maximum is unity.

 The datasets used for feature selection and data reduction were selected so as to be

suitable for the application of these techniques. In the first case they are four datasets

taken from a bio-medical repository (Kent Ridge Bio-medical Data Set Repository,

2008) and are representative of a class of bioinformatics applications that employ

microarray data. These datasets are Lymphoma, Colon, Leukaemia, Prostate, and

Brain Cancer. All of them exhibit a very high dimensionality, while the number of

patterns is quite limited. This makes the feature selection process more necessary as

well as more challenging.

 For the data reduction experiments, we made use of two large datasets from UCI

repository (UCI Repository, 2008) and the clouds dataset from (ELENA Project

Artificial Databases, 2008). The datasets from UCI repository are coded as pendigits

and magic. All of these datasets exhibit a large number of patterns. A larger size

would render them too large to manage using MATLAB, given the memory

restrictions of the computers used. In all of the experiments conducted in this chapter,

50 rounds of 10-fold cross-validation were carried out.

 71

5.3.2 Feature Selection Experiments
5.3.2.1 Results of Feature Selection Methods

The aim of this set of experiments was to investigate whether the methods can cope

with different datasets without fine tuning. So we decided not to experiment with

different threshold values in order to establish some kind of “optimum” threshold for

each dataset but to set the threshold value used in the IFF method equal to 0.75 (this

means that any feature having an SID less than 0.75 is omitted from the new feature

set). Although this may not be the optimum value, results exhibited in Tables 5.2 –

5.11 were quite promising in general.

 As it can be seen from Table 5.1, the reduction of the feature set for each one of

the four datasets is dramatic. Particularly after the application of the GFS method, the

new feature sets are tiny compared to the original ones. This is translated to smaller

complexity of the datasets (as it will be seen later on), and significantly less need for

storage space.

Dataset No. of

Patterns
Original no. of

Features
Features
after IFF

Features
after GFS

DLBCL 47 4026 45 4
Colon 62 2000 11 4
CNS 60 7129 19 4
Leukaemia 72 7129 112 2

Table 5.1. Datasets characteristics and sizes of reduced feature sets

5.3.2.2 Classification Experiments with the Reduced Feature Sets

In this set of experiments we investigated whether the use of the reduced feature sets

affects the quality of the classification. To this end we used a variety of classifiers and

evaluation measures.

 Classification results with the original feature sets are presented in Tables 5.2-5.6.

The accuracy rate in all these experiments is computed for the test set. Note that for

the LDA classifier, there are no results for the CNS and Leukaemia datasets. This is

because due to very high computational demands, the system could not complete the

relevant experiments.

 As regards the overhead of the feature selection process, for the IFF algorithm, the

CPU time ranged from 6 to 23 seconds (depending on the dataset), while for the GFS

method, from 24 to 104 seconds.

 72

Dataset Accuracy Rate Degree of Certainty CPU Time (sec)

DLBCL 0.5532 0.6511 1.0100
Colon 0.8387 0.8516 0.8900
CNS 0.6667 0.6767 3.0500
Leukaemia 0.9306 0.8861 4.6800

Table 5.2. Results for kNN using the original feature set

Dataset Accuracy Rate Degree of Certainty CPU Time (sec)
DLBCL 0.4894 0.8237 16.880
Colon 0.7903 0.9530 15.820
CNS 0.6333 0.8263 76.520

Leukaemia 0.9028 0.9746 144.45

Table 5.3. Results for V-kNN using the original feature set

Dataset Accuracy Rate Degree of Certainty CPU Time (sec)
DLBCL 0.5532 0.6548 0.9600
Colon 0.8548 0.8561 0.7200
CNS 0.6667 0.6806 3.1900

Leukaemia 0.9306 0.8871 4.7400

Table 5.4. Results for Fuzzy kNN Using the original feature set

Dataset Accuracy Rate Degree of Certainty CPU Time (sec)
DLBCL 0.6383 0.7234 5381.4
Colon 0.5161 0.7736 882.40
CNS - - -
Leukaemia - - -

Table 5.5. Results for LDA using the original feature set

Dataset Accuracy Rate Degree of Certainty CPU Time (sec)
DLBCL 0.5106 0.5771 1.7400
Colon 0.6452 0.6405 1.5300
CNS 0.6500 0.6227 5.7100

Leukaemia 0.6528 0.6926 8.3500

Table 5.6. Results for GMC using the original feature set

The results of the experiments using the reduced feature sets are exhibited in Tables

5.7-5.16 and provide the average of the 50 runs. The first five of them show the

results using the IFF method whilst the rest using the GFS method.

 73

Dataset Accuracy Rate Degree of Certainty CPU Time (sec)
DLBCL 0.7234 0.8936 0.0600
Colon 0.8548 0.8871 0.0500
CNS 0.7167 0.7800 0.1200
Leukaemia 0.9444 0.9639 0.1700

Table 5.7. Results for kNN using the reduced feature set created by IFF

Dataset Accuracy Rate Degree of Certainty CPU Time (sec)

DLBCL 0.6809 0.9303 1.2900
Colon 0.9032 0.9480 2.2900
CNS 0.6833 0.8601 2.2200
Leukaemia 0.9444 0.9888 3.5500

Table 5.8. Results for V-kNN using the reduced feature set created by IFF

Dataset Accuracy Rate Degree of Certainty CPU Time (sec)
DLBCL 0.8723 0.8990 0.0900
Colon 0.9032 0.9011 0.0600
CNS 0.7000 0.7821 0.1400
Leukaemia 0.9444 0.9624 0.1900

Table 5.9. Results for Fuzzy kNN using the reduced feature set created by IFF

Dataset Accuracy Rate Degree of Certainty CPU Time (sec)
DLBCL 0.4255 0.7553 0.2000
Colon 0.7742 0.8104 0.1900
CNS 0.5667 0.6945 0.1100
Leukaemia 0.4861 0.7335 0.2600

Table 5.10. Results for LDA using the reduced feature set created by IFF

Dataset Accuracy Rate Degree of Certainty CPU Time (sec)
DLBCL 0.7234 0.6951 0.1300
Colon 0.8387 0.6899 0.2500
CNS 0.6667 0.6437 0.2200
Leukaemia 0.6528 0.7954 0.3400

Table 5.11. Results for GMC using the reduced feature set created by IFF

Dataset Accuracy Rate Degree of Certainty CPU Time (sec)
DLBCL 0.9362 0.8894 0.0700
Colon 0.8226 0.8710 0.0600
CNS 0.7833 0.7400 0.0900
Leukaemia 0.9861 0.9861 0.1400

Table 5.12. Results for kNN using the reduced feature set created by GFS

 74

Dataset Accuracy Rate Degree of Certainty CPU Time (sec)

DLBCL 0.9574 0.9811 1.2700
Colon 0.7581 0.9568 2.3200
CNS 0.7667 0.9285 2.1700
Leukaemia 1.0000 1.0000 3.0300

Table 5.13. Results for V-kNN using the reduced feature set created by GFS

Dataset Accuracy Rate Degree of Certainty CPU Time (sec)

DLBCL 0.9362 0.9246 0.1000
Colon 0.8548 0.8915 0.0600
CNS 0.8500 0.7925 0.1100
Leukaemia 0.9861 0.9885 0.1800

Table 5.14. Results for Fuzzy kNN using the reduced feature set created by GFS

Dataset Accuracy Rate Degree of Certainty CPU Time (sec)
DLBCL 0.8085 0.7872 0.1300
Colon 0.7903 0.8304 0.1900
CNS 0.6833 0.6896 0.0700
Leukaemia 0.9167 0.9004 0.0700

Table 5.15. Results for LDA using the reduced feature set created by GFS

Dataset Accuracy Rate Degree of Certainty CPU Time (sec)
DLBCL 0.9574 0.7384 0.0300
Colon 0.7419 0.7349 0.2200
CNS 0.7333 0.6770 0.2100
Leukaemia 0.9722 0.9036 0.2500

Table 5.16. Results for GMC using the reduced feature set created by GFS

As it can be observed from Tables 5.7-5.16 the average CPU time of the

classification is significantly reduced. This is very important, considering that the

feature selection itself takes a not neglectible amount of time. However, the reduction

of the time involved in the classification (due to the simplicity of the new dataset)

might make it worthwhile. Also, as one would expect, the second feature selection

method (GFS) takes considerably more time, for all of the datasets. Yet, this is

understandable, as it is a more complicated method, working with groups of features

instead of single features, at a time.

Another important point is that the average accuracy rate is significantly increased

in most of the datasets, for most of the classifiers. This is something expected, since

the original feature set contains a large number of useless features which not only do

 75

not aid the classification, but for many of the classifiers, they make it more difficult

due to the additional noise they often contain. So, by eliminating these features we

end up with a relatively “easier” and noise-free dataset to classify. This change is also

depicted at the SID, which often is larger for the new datasets, something that rarely

happens for smaller datasets (on the contrary, if from a dataset having a small number

of features you diminish the feature set by merely one feature, the ID of the whole is

bound to drop). This can be seen in Table 5.17.

Dataset DLBCL Colon CNS Leukaemia
Original feature set 0.7872 0.8226 0.3833 0.8333
Reduced feature set (IFF) 0.9362 0.8871 0.6500 0.9306
Reduced feature set (GFS) 0.8936 0.8871 0.8667 1.0000

Table 5.17. Index of Discernibility values for each dataset, before and after the feature

selection process, for both of the methods employed

The fact that the datasets become simpler is backed up by another point, which can

be observed in Tables 5.2-5.16: the increase in the average Degree of Certainty, for

almost all of the classifiers, for the various datasets. Particularly in the DLBCL

dataset, the increase is quite significant.

Also it is noteworthy that the feature selection methods introduced allowed the

LDA classifier to be applied to the CNS and Leukaemia datasets, which were

unmanageable with the original feature set. This is also important when considering

that many of the produced microarray datasets are of this dimensionality or even of a

higher one.

A summary of the above results depicting which feature set yielded the highest

performance, for each one of the datasets and for each one of the classifiers is

provided in Table 5.18. Note that a feature set was considered as yielding the highest

performance, for a particular classifier, when it outperformed the other feature sets in

two or more of the evaluation measures used.

Classifier/Data DLBC Colon CNS Leukaemia
kNN GFS IFF GFS GFS
V-kNN GFS IFF GFS GFS
Fuzzy kNN GFS IFF GFS GFS
LDA GFS GFS GFS GFS
GMC GFS IFF GFS GFS

Table 15.8. Summary of results

 76

From Table 5.18, it can be observed that the reduced feature sets of both of the

feature selection methods introduced here outperformed the original feature set, for all

of the classifiers used. Particularly the feature set of the second method, GFS,

dominated the other ones for three of the datasets, in spite of the fact that it is slower

than the other feature selection method. However, as the reduced feature sets it

created were significantly smaller, it managed to yield quite low CPU times on

average.

The feature selection of the method IFF appeared to be weaker in the case of LDA

for one particular dataset (DLBCL), however the reduced feature set it yielded for this

dataset seemed to work very well with all the other classifier. So the weakness was

because of a problematic generalisation of the LDA classifier, probably due to the

presence of one or more useless features in the reduced feature set. So this raises the

issue of whether the threshold of 0.75 for the IFF method is reliable. It could be the

case that different datasets require different threshold values in order to yield

appropriately reduced feature sets. This would render the IFF method a quite flexible

alternative, which when fine-tuned, could perform equally well to the GFS method.

5.3.3 Experimental Results for Data Reduction
For this series of experiments, we tested the data reduction method with three fairly

large datasets and applied four different threshold values (1/10, 1/4, 1/3 and 1/2), so

as to explore how sensitive the performance of the classifiers is in relation to the

reduction rate. The experiments comprised of 30 rounds of 10-fold cross validation.

The datasets used were clouds, which contains 5000, 2-dimensional patterns, the

pendigits (10992, 16-dimensional patterns) and magic (19020, 11-dimensional). We

experimented with a few different classifiers, measuring for each one of them the

Accuracy Rate before and after the data reduction, as well as the CPU time taken for

each classification. The data reduction overhead was measured separately.

The results of the classifications for each one of the three datasets are shown in

Tables 5.19–5.21. The data reduction overhead ranged from 5 to 60 sec., depending

on the dataset. It is generally higher for large as well as complex datasets (e.g. the

magic dataset).

 77

Classifier
Reduction, Ev. Measure

kNN C4.5 Fuzzy kNN LDA GMC

Accuracy Rate 88.19 65.40 86.02 50.00 86.73

None CPU Time (sec) 0.59 5.10 0.71 <.01 1.64
Accuracy Rate 88.21 64.55 86.40 50.00 86.70

1/10 CPU Time (sec) 0.54 4.40 0.64 <.01 1.48
Accuracy Rate 88.24 67.77 86.87 50.00 86.13

1/4 CPU Time (sec) 0.47 5.17 0.53 <.01 1.24
Accuracy Rate 88.13 63.95 87.18 50.00 85.73

1/3 CPU Time (sec) 0.42 2.90 0.48 <.01 1.10
Accuracy Rate 87.93 63.97 87.41 50.00 83.40

1/2 CPU Time (sec) 0.34 1.96 0.37 <.01 0.84

Table 5.19. Data reduction results for clouds dataset

Classifier
Reduction, Ev. Measure

kNN C4.5 Fuzzy kNN LDA GMC

Accuracy Rate 97.60 79.47 88.02 82.19 81.13

None CPU Time (sec) 23.88 394.31 24.76 0.09 57.98
Accuracy Rate 97.60 34.19 97.74 82.59 85.42

1/10 CPU Time (sec) 20.62 287.68 21.09 0.04 51.19
Accuracy Rate 97.66 46.66 97.66 82.08 87.94

1/4 CPU Time (sec) 16.43 206.69 16.49 0.03 40.98
Accuracy Rate 97.68 39.88 97.63 81.79 86.39

1/3 CPU Time (sec) 13.53 169.09 13.43 0.03 31.69
Accuracy Rate 97.40 37.34 97.37 81.36 73.44

1/2 CPU Time (sec) 7.47 102.07 7.99 0.03 22.52

Table 5.20. Data reduction results for pendigits dataset

 78

Classifier
Reduction, Ev. Measure

kNN C4.5 Fuzzy kNN LDA GMC

Accuracy Rate 83.04 81.17 82.91 77.35 67.79

None CPU Time (sec) 56.72 127.90 59.95 0.04 151.39
Accuracy Rate 83.29 81.05 83.09 78.22 67.79

1/10 CPU Time (sec) 48.88 108.02 52.56 0.04 130.26
Accuracy Rate 82.93 79.41 82.67 78.48 68.15

1/4 CPU Time (sec) 35.43 84.00 38.81 0.03 92.00
Accuracy Rate 82.64 79.17 82.36 78.62 68.69

1/3 CPU Time (sec) 28.58 70.41 30.77 0.02 83.06
Accuracy Rate 81.57 77.69 81.52 78.08 69.76

1/2 CPU Time (sec) 19.19 47.20 21.45 0.01 58.39

Table 5.21. Data reduction results for magic dataset

From Tables 5.19-5.21, it can be seen that in the majority of cases, both the

Accuracy Rate and the CPU time are enhanced, for all of the classifiers. Also, in some

cases (e.g. for the GMC classifier in the dataset Magic), the CPU time is decreased so

much that even together with the data reduction overhead (which in this case is about

1 minute) it is still faster than with the original dataset for all of the reduction

thresholds.

The reduced dataset is often very similar in appearance (i.e. it maintains the

general structure of the patterns in the feature space), as it can be seen in Figure 5.4,

for the dataset Clouds. This is because the patterns to be excluded are chosen in such

a way that they are far apart from each other. Otherwise, if the Discernibility of each

pattern were to be used as the sole decision rule (instead of the product of

Discernibility and distance), the reduced dataset would not be as robust.

 79

Fig. 5.4. Clouds dataset originally (top), with 1/10 reduction (middle) and with 1/3 reduction

(bottom). The geometry of the dataset is generally preserved.

5.4 Summary and Contribution of the Chapter
In this chapter two of the applications of Discernibility were presented and discussed.

Without any significant modifications, the Index of Discernibility can be applied as

part of a feature selection technique. This can be done by (at least) two different ways:

either by evaluating each individual feature of a dataset and selecting the best ones

 80

(IFF method) or by taking different groups of features (feature sub-sets of the dataset)

and comparing their discernibilities with that of the original feature set (GFS). The

results, as the relevant experiments demonstrated, is a significant reduction in the

number of features of a dataset and an improvement in the classification performance,

both in terms of accuracy rate and in CPU time.

 The Discernibility concept can also be applied in data reduction. By taking

into account the discernibilities of the various patterns as well as the distances among

them, we can remove the ones which are discernible and distant (i.e. their average

distance is large), thus yielding a smaller dataset which however maintains the

structure of the original one. This is mirrored by the performance of a number of

different classifiers, which (for most of them) appears to be as good as or even

slightly better than that using the original dataset.

 This chapter demonstrated how versatile the Discernibility concept can be, and

how its application in the pre-processing stage can enhance the classification

performance. Moreover, it contributed innovative approaches to feature selection and

data reduction that employ Discernibility which can be potentially useful for other

Pattern Classification problems.

 81

Chapter 6 – Reject Option Based on Discernibility

In this chapter we explore how the Discernibility concept can be applicable as a

metric for reliability, leading to the possibility of a reject option for a number of

different classifiers.

As the classification process is often a costly procedure when it comes to

inaccurate classifications, in many cases it is preferable to avoid classifying certain

instances, or in other words rejecting the classifications. In addition, there are cases

where an unreliable classification can also be costly, due to the need in testing the

predictions considered unreliable, by other more expensive ways, e.g. manual

classification (Fumera et al., 2000), or developing a new feature set (Giusti et al.,

2000). In these cases, the option of rejection to classify particular patterns is applied

(Arlandis et al., 2002; Baram, 1998; Cordella et al., 1995; Duda et al., 2001; Fumera

et al., 2000; Sansone et al., 2001; Santos-Pereira and Pires, 2005; Thien, 1996a).

The mainstream approach for analysing the trade-off between a potential error

and rejection is modelled in terms of posterior probabilities of different classes; if the

posterior probability of the best class label is high, then the label is attached to the

pattern, otherwise, the classification is not performed (reject-option). The optimal

value of the rejection threshold is yielded by what is known as Chow’s rule (Baram,

1998; Fumera et al, 2000; Sansone et al., 2001; Santos-Pereira and Pires, 2005; Thien,

1996a, 1996b). This rule is defined as: if the maximum a posteriori probability Pmax of

a classification being correct is less than a predefined threshold T, then the

classification is rejected. Also, these probabilities are directly linked with the error

rate and the misclassification costs involved. As a result, there is a trade-off between

error and rejection (Fumera et al, 2000). Since in most applications the posterior

probabilities are not known, some other scoring indexes can be used instead of the

posterior probabilities. This approach was implemented a number of times by

different authors, specifically, for classifiers based on neural networks in (Cordella et

al., 1995; Fumera et al., 2000; Sansone et al., 2001; Santos-Pereira and Pires, 2005)

and k Nearest Neighbours in (Arlandis et al., 2002; Denoeux, 1995; Fumera et al.,

2000; Giusti et al., 2002). Yet the major premise is the same: the reject-option is

defined in terms of the class label scoring function, not independently. This holds true

even in the cases where the authors recognise limitations of the approach involving

 82

just one rejection threshold. Even when ROC curves (for a definition and overview

see (Fawcett, 2006)), that are universal regarding classifiers, are used for rejection of

certain patterns (Sansone et al., 2001), there are problems in the cases of more than

two classes and of small training sets that lead to unreliable ROC.

Employing the Discernibility concept as a way to predict the reliability of

classification yields an independent measure of classifier’s reliability over an entity,

which is applicable to any classifier on any data set. This measure mirrors the

“typicality” of an entity as a representative of its class, which is evaluated by the

Index of Discernibility of the class from the entity’s location. To fully investigate this

possibility we test three different scoring functions for the Discernibility

measurement. One of them utilises the proportion of the entity’s class within the

entity’s neighbourhood (Spherical Index of Discernibility). The other two are based

on comparison of the average distances from the entity to entities of its class versus

distances to entities of other classes. These two measures are the Silhouette Width

coefficient (Kaufman and Rousseeuw, 1990) and the Harmonic Index of

Discernibility (Chapter 3). Each one of the Discernibility measures defines a

reliability elite, the set of patterns with the highest discernibility scores. We

experimentally test the different discernibility scoring functions over their elites. Then

we use the elites for combining classifiers. Combining classifiers to make a better

prediction is a common idea (Ledward, nd; Tsymbal and Puuronen, 2000). This is

usually done by using weighted voting or summing schemes (Ledward, 2008). Yet,

this subject will be more thoroughly discussed in Chapter 7. In this case, one can

combine classifiers according to their discernibility scores in such a way that, at each

entity, only classifiers that have highest discernibility score at it are used.

6.1 Experimental Setup
The classifiers used in this series of experiments are kNN, LDA, C4.5, RCE, GMC

and MSTC. These are thoroughly described in Section 5.3.1.

Regarding the datasets used, we used five datasets from the UCI repository

(UCI Repository, 2008): Iris, Wine, Heart, E.coli and Glass. A detailed description of

these datasets can be found in Appendix A, while their main characteristics are

exhibited in Table 6.1 below. These datasets have been chosen because of their:

1. diversity regarding the numbers of attributes and classes,

 83

2. diversity with respect to the proportions of classes, both balanced and unbalanced,

and

3. relatively small sizes.

The last point is quite important since the conventional probability-based

methodologies for estimating the classification reliability are more problematic to

implement on small datasets. The method proposed here aims to fill in this gap.

Dataset Number of patterns Number of attributes Number of classes

Iris 150 4 3

Wine 178 13 3

Heart (disease) 270 13 2

E.coli 336 8 8

Glass (identification) 214 10 6

Table 6.1. Characteristics of the datasets used in our experiments.

All of the experiments were conducted as 50 rounds of the 10-fold cross-

validation testing. Therefore there were 500 classification testing exercises for each

one of the classifiers used, rendering the results rather stable and, thus, reliable. In

each of the experiments all six classifiers were assessed individually as well as

collectively, by the amalgamation of their elites, as described previously.

6.2 Reject Option
6.2.1. Reliable Elite for a Classifier

As explained earlier, our concern is in computational prediction of classes in such

situations where the cost of errors is overwhelming compared to that of manual

prediction (as is typical for complex technical devices). This makes us value the

reliability of the computational predictions over the extent of reject-option. Therefore,

we focus on the most reliable instances, based on one of the discernibility metrics.

Let us first specify a proportion value between 0 and 1. Given a classifier,

we refer to a set of patterns as its reliability -elite if they constitute the first N

entities (N is the number of patterns in the training set) in the list of test patterns

sorted in the descendent order of the degree of reliability as measured by any of the

 84

three Discernibility indexes above. For example, at =1/2, the reliability elite will be

comprised of approximately half of the test data set.

Given a set of classifiers, their reliability elites can be combined in a variety of

ways. According to the literature, classifiers have been combined by making use of

weighted voting or scoring systems (for a review, see Ledward, 2008). Sansone et al.

(2001) used a set of five different classifiers which were used in parallel, and Giusti et

al. (2002) made use of two classifiers working together in a serial fashion.

However, in this case we combine classifiers based on their reliability scores.

Specifically, for the patterns belonging to more than one of the elites, the classifier

yielding a classification with the highest level of discernibility should prevail over the

outputs of the other classifiers. This would lead to a simple rule for combining

classifiers by combining their elites in the set-theoretic union E and using the most

reliable classifier at each one of the patterns in E. However, the overall accuracy rate

on the union E can be compromised by combining “unworthy” cases for different

classifiers so that the average accuracy rate on E can be lower than the accuracy rates

of the individual classifiers over their elites. To address this problem, we introduce

two filters in the form of rules for combining the elites of the classifiers. These are the

one-third-out rule and the loners-out rule. These rules aim to filter out those elite

patterns that might be riskier than the others, leaving an elite with more or less worthy

classifications.

Figure 6.1. The average levels of misclassification for three SID categories

for the Glass dataset.

 85

6.2.2 The One-Third-Out Rule

This rule discards one third of the elements of the set-theoretic union E of the

individual elites. This threshold was selected empirically and is by no means

optimum. The objective here is to demonstrate how such a rule works in this

paradigm.

Each pattern in E is assigned with a reliability score, which is the maximum of

the discernibility scores of the classifiers, whose elite the pattern belongs to.

Afterwards, all of the elements of E are sorted according to their reliability scores,

after which the bottom third of them is jettisoned. The choice of this threshold is made

after careful examination of the levels of misses for the members of E having their

discernibility scores within different ranges. In Figure 6.1, one can see that indeed

most of the misclassifications occur for the discernibility scores between the

minimum and m1, which is the trisection point of the set. The graph is based on the

figures obtained for the Glass dataset with the Spherical Index of Discernibility, yet

they are typical for other sets of data considered. The edge of the One-Third-Out rule

is that it guarantees high accuracy rates for the amalgamation of classifiers for a

variety of datasets. However, it drastically reduces the size of E.

6.2.3 The Loners-Out Rule

For this filtering technique of the amalgamation elite set E, we concentrate on the

number of classifiers supporting patterns in E. From the experiments carried out, we

found that in most cases a misclassification occurs on such a member of E which is

voted for by only one classifier, i.e., this pattern belongs to the elite of only one

individual classifier, as can be seen on Fig. 6.2. This graph is based on the

classification results of the Glass dataset, but it is typical for other datasets as well.

 86

Figure 6.2. Average levels of misclassification for different numbers of classifiers voting for a

pattern on the Glass dataset.

Therefore, by eliminating those members of E that have been introduced by a

sole classifier, we may increase the accuracy rate at the amalgamation. Since, on

average, the proportion of such patterns is rather small, the size of E is not that greatly

reduced by applying this rule (contrary to the One-Third-Out rule). At the same time,

since most of the patterns eliminated are bound to be misclassifications anyway, the

overall accuracy rate remains relatively high.

Since the two rules for removing “risky” elite members are independent from

each other, they can be used in combination with each other. Apparently, if we apply

the Loners-Out rule after the One-Third-Out rule, this would produce larger

amalgamated elites, so this is why we always keep this order for the combined rule.

6.3 Evaluation Criteria
The classifiers were assessed using the average Accuracy Rate, a measure which has

been used extensively in the literature (Gao & Wang, 2007; Wu et al., 2002), the CPU

time, and a correlation between Accuracy and Degree of Certainty, which we call Net

Reliability (see Chapter 3).

 The CPU time is an .evaluation criterion used previously and is described in

Section 4.2.3.2 We also made use of Net Reliability (NR), which is thoroughly

described in Chapter 3. This was made possible by calculating the Degree of Certainty

(see Chapter 3) in each classification as well.

 87

6.4 Experimental Results

In Table 6.2, the average accuracy rates of the individual classifiers on the whole

datasets are exhibited.

Dataset KNN LDA C4.5 RCE GMC MSTC

Iris 0.9569 0.8381 0.9456 0.8987 0.9551 0.9541
Wine 0.9514 0.9858 0.9334 0.9095 0.9777 0.9537
Heart 0.8027 0.8389 0.6404 0.6918 0.8005 0.7644
E.coli 0.8655 0.8557 0.8008 0.7691 0.7919 0.7952
Glass 0.6676 0.6049 0.6281 0.6254 0.6800 0.6928

Table 6.2. Accuracy rates of the classifiers under consideration.

One can observe that, with respect to the classifiers, the datasets fall into the

following three categories:

1. relatively high accuracy rate of 90-97% on Iris and Wine;

2. medium accuracy rate of about 80% on Heart and E.coli, and

3. relatively low accuracy rate of 60-70% on Glass.

We can also observe that performances of different classifiers peak at different

datasets: kNN is the best on Iris and E.coli, LDA is the best on Wine and Heart (and

the worst on Iris), and MSTC is the best on Glass. The other three algorithms trail

behind regarding the overall performances, yet they should not be discarded

altogether – each may have a good performance as mirrored in Table 6.3.

For our experiments, we maintained two levels of elites: =1/2 and =1/3, the

former choosing those patterns whose degree of discernibility is better than the

median discernibility, and the latter comprising the best third of discernible patterns.

These two are maintained at each of the three discernibility indexes defined above,

SID, SW and HID. Table 6.4 presents average accuracy rates of the individual

classifiers on the five datasets at each of the six combinations of the elite level and

discernibility index.

 88

Classifier D. Meas, Elite Iris Wine Heart E.coli Glass

50% 0.9997 0.9997 0.9139 0.9658 0.6941 SID
33% 1.0000 1.0000 0.9476 0.9788 0.7328
50% 0.9997 0.9965 0.9239 0.9366 0.6898 SW
33% 1.0000 1.0000 0.9511 0.9788 0.7328
50% 1.0000 0.9990 0.9141 0.9268 0.8596

kNN

HID
33% 1.0000 1.0000 0.9478 0.9305 0.9230
50% 0.9990 1.0000 0.9146 0.9705 0.6929 SID
33% 1.0000 1.0000 0.9476 0.9790 0.7219
50% 0.9995 1.0000 0.9241 0.9319 0.6453 SW
33% 1.0000 1.0000 0.9511 0.9502 0.6970
50% 1.0000 1.0000 0.9174 0.9267 0.8124

LDA

HID
33% 1.0000 1.0000 0.9482 0.9302 0.8887
50% 0.9997 0.9997 0.9175 0.9605 0.6913 SID
33% 1.0000 1.0000 0.9416 0.9779 0.7289
50% 0.9997 0.9972 0.9186 0.9545 0.6413 SW
33% 1.0000 1.0000 0.9509 0.9579 0.7041
50% 1.0000 0.9990 0.9062 0.9470 0.8284

C4.5

HID
33% 1.0000 1.0000 0.9524 0.9449 0.9157
50% 0.9997 1.0000 0.9071 0.9581 0.6401 SID
33% 1.0000 1.0000 0.9453 0.9762 0.7002
50% 0.9995 0.9967 0.9199 0.9548 0.6669 SW
33% 1.0000 1.0000 0.9491 0.9745 0.7259
50% 1.0000 0.9988 0.9116 0.9492 0.8388

RCE

HID
33% 1.0000 1.0000 0.9476 0.9631 0.9300
50% 0.9997 0.9997 0.9123 0.9621 0.7055 SID
33% 1.0000 1.0000 0.9476 0.9776 0.7239
50% 0.9997 0.9967 0.9237 0.9382 0.7080 SW
33% 1.0000 1.0000 0.9511 0.9501 0.7554
50% 1.0000 0.9990 0.9140 0.9266 0.8740

GMC

HID
33% 1.0000 1.0000 0.9478 0.9286 0.9408
50% 0.9997 0.9997 0.9144 0.9617 0.7440 SID
33% 1.0000 1.0000 0.9560 0.9777 0.7739
50% 0.9997 0.9967 0.9224 0.9310 0.7026 SW
33% 1.0000 1.0000 0.9533 0.9449 0.7540
50% 1.0000 0.9990 0.9156 0.9254 0.8463

MSTC

HID
33% 1.0000 1.0000 0.9520 0.9288 0.9074

Table 6.3. Accuracy rates of various classifiers at different elite levels and Indices of

Discernibility.

The results from Table 6.3 show:

1. All three discernibility indexes lead to drastically raising accuracy rates for all the

classifiers, reaching 100% accuracy for Iris and Wine datasets and about 95-97%

accuracy on E.coli dataset on the 50%-elites. The only diehard is Glass dataset

 89

that does not change much the accuracies at the 50%-elites over SID and SW

indexes. Still, HID index leads to a much improved, 85%, accuracy over 50%-

reliability elites, and more than 90% accuracy over the 33%-reliability elites.

2. There is no overwhelming winner among the three discernibility indexes, though

each of the indexes shows consistent results over all the classifiers. Specifically,

SID always wins on Wine and E.coli datasets, HID always wins on Iris and Glass

datasets, and SW is the winner on Heart dataset.

The RCE and GMC classifiers, which exhibit a mediocre performance over the

total data set, appear to become most effective over the elite.

The results for the amalgamation of reliability elites using rules One-Third-Out,

Loners-Out and their combination are shown in Tables 6.4 and 6.5. The former

relates to the accuracy rates whereas the latter to the amalgamation sizes.

Rule DI Elite Iris Wine Heart E.coli Glass

50% 0.9991 0.9993 0.9054 0.9557 0.6630 SID

33% 1.0000 1.0000 0.9422 0.9753 0.6907

50% 0.9991 0.9994 0.9142 0.9332 0.6107 SW

33% 1.0000 1.0000 0.9476 0.9450 0.6843

50% 0.9998 0.9991 0.9120 0.9223 0.7714

Loners Out

HID

33% 1.0000 1.0000 0.9470 0.9317 0.9030

50% 1.0000 1.0000 0.9396 0.9763 0.6754 SID

33% 1.0000 1.0000 0.9710 0.9823 0.7253

50% 1.0000 0.9997 0.9463 0.9420 0.6277 SW

33% 1.0000 1.0000 0.9751 0.9630 0.7123

50% 1.0000 1.0000 0.9407 0.9305 0.8645

One Third Out

HID

33% 1.0000 1.0000 0.9588 0.9371 0.9164

50% 1.0000 1.0000 0.9425 0.9764 0.6824 SID

33% 1.0000 1.0000 0.9736 0.9817 0.7484

50% 1.0000 0.9997 0.9423 0.9478 0.6457 SW

33% 1.0000 1.0000 0.9760 0.9652 0.7191

50% 1.0000 1.0000 0.9405 0.9302 0.8677

Combination

of Both Rules

HID

33% 1.0000 1.0000 0.9635 0.9417 0.9444

Table 6.4. Accuracy rates at the different methods of amalgamation of reliability elites.

 90

Rule D. Meas., Elite Iris Wine Heart E.coli Glass

50% 55.6 50.3 57.0 54.8 68.0 SID

33% 43.4 39.5 35.6 36.8 46.0

50% 54.1 50.1 56.3 57.8 70.7 SW

33% 33.3 37.1 35.0 37.4 47.6

50% 53.8 50.2 54.7 55.8 66.5

Loners Out

HID

33% 33.4 37.1 34.1 37.0 39.6

50% 43.8 36.0 37.0 35.3 43.2 SID

33% 20.0 24.7 22.5 23.5 29.3

50% 34.0 31.7 36.6 37.6 45.3 SW

33% 20.0 24.7 22.5 24.2 29.9

50% 33.8 31.7 35.4 36.0 43.0

One Third Out

HID

33% 21.0 24.7 25.8 27.0 30.1

50% 43.9 35.9 36.9 35.3 43.3 SID

33% 19.9 24.7 22.6 23.6 28.5

50% 34.1 31.7 36.5 37.7 45.6 SW

33% 19.9 24.7 22.5 24.2 30.0

50% 33.9 31.6 35.5 36.0 42.5

Combination

of Both Rules

HID

33% 20.0 24.7 22.3 24.1 24.4

Table 6.5. Elite sizes, per cent, at different methods of amalgamation of reliability

elites.

These results lead to the following conclusions. As one would expect, the One-

Third-Out rule consistently outperforms the Loners-Out rule; however, this is by just

a small margin of the order of 1% or less - with the price of drastically reducing the

size of the elite. Overall, the amalgamation does not boost performances of the

algorithms that much. However, we can see that HID 33%-elites consistently lead to

the accuracy rates of 90% and more. The combined rule raises the accuracy on the

Glass dataset – the most difficult for predictions – to more than 94%. The price, in

terms of reject-option applied to the non-elite, is rather high indeed: 60%, 70%, and

75% of all cases for Loners-Out, One-Third-Out and Combined rules, respectively.

But this may be worth doing in the situations at which the reliability of classification

is a must.

 91

Also, Table 6.5 shows that the SID 33%-elite Loners-Out amalgamation leads to

somewhat better coverage of the data – about 45%, rather than 33%, of the dataset

are there.

6.5 Fine-tuning of the Method
We have observed that the Degree of Reliability can be enhanced by adding two

other factors in its calculation. These are the change in Accuracy Rate and the change

in Degree of Certainty, within the training set. Therefore, by combining these three

factors in a new reliability metric, we can obtain even better results. However, the

level of contribution of each one of them is different, so this needs to be reflected in

the new metric as well. This is accomplished by introducing three parameters in it,

one for each factor. As a result, the new reliability metric works more efficiently.

6.5.1 Parametric Degree of Reliability

The Parametric Degree of Reliability (PDR), which is a function of the three factors

mentioned previously, attempts to evaluate how much the unknown pattern X (which

is classified into a class Y) “fits” into the training set P. This is done by examining

how the Accuracy Rate of the classifier applied on the training set is improved and

how the Degree of Certainty of this classification improves as well. The improvement

of these measures is measured by taking the ratio of their values after the adoption of

X in P over their values before.

The generic formula for the Parametric Degree of Reliability is:

cba
X DCRARRDPDR

(6.1)

where DX is the (expected) Discernibility of the unknown pattern, calculated like the

normal Discernibility (as seen in Chapter 3), using the class prediction of the

classifier as the class label, ARR is the Accuracy Rate Ratio, DCR the Degree of

Certainty Ratio, and a, b and c the weight parameters which take values between 0

and 1. These parameters, as they are exponents (Eq. 6.1), affect the outcome

immensely. Therefore, they need to be chosen carefully, in order to obtain a useful

result. In other words, we need to choose values a, b and c using an optimisation

technique so that the accuracy rate of the elite of classification, based on this

 92

measure, is maximised. The technique used is the Vibrating Grid Optimser, which

was developed specifically for this purpose and is described below.

6.5.2 The Vibrating Grid Optimisation Technique

As the parameters needed to be optimised fall in the 3-dimensional space and are

restricted within the range of [0, 1] for each dimension, we can depict them as points

belonging to a cube defined by the points (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0),

(1,0,1), (1,1,0), (1,1,1). By taking them as a starting point for a grid, we can gradually

optimise the accuracy rate of the elite classifications, based on the PDR function (Eq.

6.1). The elite patterns are defined as the ones having the highest reliability value. To

select the best classification on the elite patterns, we evaluate each point and then

take at random another point in the neighbourhood. The latter is defined as the range

of half the distance to the nearest point of the grid. So, originally the neighbourhood

is the range [x ± 0.5, y ± 0.5, z ± 0.5]. To speed up the process, if the boarders of the

neighbourhood fall below 0 or over 1, we replace them to 0 and 1 respectively. If the

new point yields a higher score, then it replaces the grid point related to it (i.e. the

grid point around which it was generated). After a new set of points is developed it

replaces the older grid and the neighbourhoods are calculated again.

 This process is repeated until the accuracy rate of the elite classifications in

terms of PDR is reached. Usually the number of classifications is fixed as a given

proportion of the testing set. As the process does not involve any complex

calculations, it is exceptionally fast and always converges in a relatively small

number of steps.

 Although this method was developed for optimising a set of three parameters,

it can be used for more sophisticated optimisation problems having more dimensions.

The only restriction is that the parameters have to be bound in given intervals.

6.5.3 Experimental Results for the Parametric Degree of Reliability

The experiments were carried out on 10 rounds of 10-fold cross validation. Just like

the previous set of experiments, five different datasets were used, taken from the UCI

repository (UCI Repository, 2008): iris, wine, heart disease, e.coli, and glass

identification. The characteristics of the above datasets are exhibited in Table 6.1.

We applied our method using the same six classifiers as previously: the k

Nearest Neighbours (kNN), the Linear Discriminant Analysis (LDA) method, the

 93

Minimum Spanning Tree Classifier (MSTC), introduced by Voulgaris & Mirkin

(2008), the Gravity Model Classifier (GMC), based on one of the classifiers

developed by Ruta and Gabrys (2003), the C4.5 Decision Tree, and the Reduced

Coulomb Energy classifier (RCE), as described by Duda et al. (2001). The elite

classifications were taken to be the ones having the top one-third values in terms of

parametric degree of reliability. In other experiments we have taken the elite to be the

top half of the DR scores, but this compromises the accuracy rate of the selection.

However, one can experiment with different thresholds around the one we used here,

without significantly changing the results.

 We attempted optimising the parameters of PDR for all datasets and classifiers

together and then for each pair of them. The second strategy proved to be better

overall. Its results can be seen in Table 6.6.

Classifier Iris Wine Heart E.coli Glass

KNN 1.0000 1.0000 0.9566 0.9287 0.9284

LDA 1.0000 1.0000 0.9544 0.9276 0.9017

MSTC 1.0000 1.0000 0.9566 0.9240 0.9171

GMC 1.0000 1.0000 0.9533 0.9222 0.9466

C4.5 1.0000 1.0000 0.9499 0.9403 0.9312

RCE 1.0000 1.0000 0.9577 0.9638 0.9382

Average 1.0000 1.0000 0.9548 0.9344 0.9272

Table 6.6. Accuracy Rates of elite classifications based on the Parametric Degree of

Reliability.

 The overall accuracy rate of all the classifiers over all five datasets was 0.9633

while the first strategy yielded an average accuracy rate of 0.9211. Therefore, by

employing this method and fine-tuning it to each individual case (classifier-dataset

pair), the error rate on average is halved.

 Also, if we were to compare it with the original DR measure (which is based

on Discernibility alone), PDR outperforms it by showing a 6% lower error rate. Yet,

in one of the datasets, Glass, the decrease in the error rate using the Parametric

Degree of Reliability was about 25%. This is significant, if one considers that this is

the most “difficult” dataset among those in this group.

 Note that on average, the one or two of the parameters found for the reliability

measure sometimes approached 0, implying that a particular factor was not so

 94

important for these instances. Yet, if we were to eliminate it completely, the results

would be degraded. This demonstrates that the optimisation function is very sensitive

to changes in the parameters and that all of these parameters are essential in order to

obtain a good outcome.

6.6 Summary and Contribution of the Chapter
In this chapter we demonstrated how the Discernibility concept could be applied as a

measure of classification reliability both for a single classifier and for an

amalgamation of classifiers. Also, we showed how it could be elaborated into a

parametric reliability measure taking into account other factors, particularly the

change of accuracy rate and the change of Degree of Certainty. The quite promising

experimental results verified our hypothesis that Discernibility can be a useful

reliability metric, especially if used in combination with the other two factors.

 The contribution of this chapter in the Pattern Recognition field is that it offers

another measure for classification reliability, a measure that does not depend on

probabilities or assumptions about the distributions of the dataset. The flexibility that

this characteristic offers allows the proposed reliability measure to be more applicable

to classification problems, particularly when the dataset is relatively small.

This chapter also contributes significantly to the thesis, as it describes how

with practically no changes in its function, Discernibility can be applied to an entirely

different domain, yielding useful information on the unknown patterns, a priori.

Considering that this notion was developed primarily to evaluate known patterns, it is

quite interesting how without any modifications it can be used to assess unknown

ones too, therefore enhancing the classification process by offering a reject option to

the classification system.

 95

Chapter 7 – Employing Discernibility in Classifier

Ensembles

In this chapter we explore how a set of classifiers can be used together as an

ensemble, for classification problems, using the Discernibility concept. This is

accomplished by encompassing Discernibility as a criterion for the creation of the

feature sub-sets of the dataset, used in the ensemble.

7.1. Techniques for Formulating Ensembles

Over the past few years several methods have been introduced for the creation of

ensembles of classifiers, most of which involve the introduction of diversity of errors

(in classification) as the main component of the ensemble (Brown et al., 2005).

Diversity of errors is defined by Eq. 7.1 below:

Div(X,Y) =
))()()((0010011100011011

01100011

NNNNNNNN

NNNN

Eq. 7.1

where X,Y are the diverse classifiers examined

 N11 and N00 are the number of instances where both classifiers are right or

 wrong respectively, about their predictions on the Validation Set

 N10 is the number of instances where the first classifier is right and the second

 classifier wrong, at the same time

 N01 is the number of instances where the second classifier is right and the

 first classifier wrong, at the same time

 A great deal of research has been carried out on diversity and on ways of

measuring it as described in Kuncheva & Whitaker (2003). One of the most popular

approaches is that of reverse correlation, as in the case of Zio et al. (2007). However,

other researchers prefer more sophisticated methods of diversity measurement, such

as entropy, in the case of Cunningham (2001).

 Various ways for attaining diversity in a group of classifiers so as to form an

ensemble have been proposed (Brown et al., 2005). The simplest method is to train

each ensemble member using randomly initialised parameter setting (e.g. initial

weights in the case of neural classifiers). A more advanced approach is to train the

different classifiers on different subsets of the training set as bagging (Breiman, 1996)

or variations of it (Evgeniou et al., 2004), where each training set is created by

 96

resampling and replacement of the original training set with uniform probability.

Boosting (Freund & Schapire, 1996) also uses resampling of the training set, but the

data points previously poorly classified receive a higher probability.

 Among the most efficient techniques, particularly for datasets having a large

number of features, is that of partitioning the dataset into subsets of features, each of

which is used independently as a training set for a classifier, called feature

resampling. This approach is sometimes problematic since if the subsets are created at

random, the huge number of possible combinations may render the whole process

impractical (Cunningham, 2001). Yet, in many cases a random selection of features

yields good results, as in the case of Bertoni et al. (2005).

 Another approach to feature resampling is with the use of global search methods,

such as Genetic Algorithms to improve the quality of the partitioning (Zio et al.,

2007), which is particularly useful when dealing with multiple criteria to be

optimised.

 In all the cases investigated, it becomes evident that diversity plays a significant

role in the creation of an ensemble and guarantees a good classification performance.

However, to the best of our knowledge, none of the approaches consider the factor of

classification quality of the created feature partitions (i.e. subsets of features), an issue

that is addressed in our approach.

7.2 The Role of Discernibility in Ensembles

7.2.1 Structure of Proposed Ensemble

Although a high overall Discernibility in the feature subsets does not guarantee

diversity (and vice versa), we hypothesise that by using it in the partitioning of the

feature set it will yield good quality partitions, which in turn will yield good

generalisation for the various classifiers of the ensemble. Note that this method

operates at the level of feature resampling, so in the form presented here it cannot be

considered as substitute for methods like bagging (Breiman, 1994; Breiman, 1996)

and boosting (Freund & Schapire, 1996; Schapire, 2003).

 As mentioned earlier, the main objective of feature resampling in ensemble

creation is the introduction of diversity in the classifier errors by training them in

different subsets of the dataset’s feature space. Therefore there is one function that is

maximised, that of the diversity, which is calculated using Eq. 7.1. However, some of

the subsets may be of potentially low classification quality rendering the classification

 97

relatively inaccurate, so even if the diversity of the errors is high, the overall

performance may not be optimum. This is resolved by introducing another function,

that of the average discernibility. By taking into account the product of the diversity

and the discernibility (both of which take values between 0 and 1), we have another

function to maximise f = diversity × discernibility. This optimisation takes into

account both factors and yields a partition that is both diverse in errors and of overall

good quality. Yet, this method for selecting the best partition is suboptimal since it is

done using a number of randomly generated partitions. Nevertheless, if this number is

large enough, it is quite likely that there will be a near-optimal solution for the feature

partitioning, as the candidate partitions will probably include some partitions like the

ones we are looking for.

 Also, as the partitions of the feature set depend on the dataset and the classifier,

for each ensemble there is a variable number of classifiers of each type. In addition,

for every different classification, the ensemble adapts to the data and changes its

structure so as to be more efficient.

7.3 Experiments and Results

The ensemble employed in the experiments is structured as follows. Eight different

classifiers are used and each one of them is trained in a number of partitions of the

training set. These are the V-kNN classifier (see Section 4.3.1.1), the D-kNN

classifier (see Section 4.2.1), the Minimum Spanning Tree Classifier (see Section

4.3.2), the Linear Discriminant Analysis (LDA), the Reduced Coulomb Energy

method (RCE), the C4.5 Decision Tree, the Gravity Model Classifier, and the Fuzzy

kNN.

 Another partition called the validation set (which is part of the training set) is used

for assessing these classifiers. Based on their results in the classification of its

patterns, some classifiers specialising in particular subsets of the feature set of the

training set are selected. Then, based on the expected Discernibility of each test

pattern, as well as its position, the pattern is classified by the appropriate specialist.

 For the experiments conducted, three different datasets were used, taken from the

UCI repository (UCI Repository, 2008): Glass identification, Wine, and E.coli. A

detailed description of the datasets can be found in Appendix A, while the main

characteristics of these datasets in Table 7.1. The experiments were carried out on 50

rounds of 10-fold cross validation.

 98

Dataset Patterns Attributes Classes
Glass 214 10 6
Wine 178 13 3
E.coli 336 8 8

Table 7.1. Characteristics of the datasets used in our experiments.

 The results of the experiments on the different ensemble types for the datasets

used are shown in Table 7.2.

Ensemble Type Glass Wine E.coli average

Diversity only 0.7412 0.9748 0.7866 0.8342

Discernibility only 0.7188 0.9751 0.8446 0.8461

Diversity & Discernibility 0.7398 0.9754 0.8440 0.8531

Table 7.2. Average accuracy rates and average overall performance for the three ensemble

types.

 As one would expect, the combination of diversity and Discernibility exhibited on

average improved performance in the classification of the ensemble. Also, the

discernibility as a criterion for the partitioning of the feature set appears to work on

average slightly better than the diversity criterion. The only exception is the Glass

dataset where diversity exhibited better performance than the other two approaches,

although the combination of diversity and Discernibility was not far behind in

performance. This is probably due to the fact that the Discernibility of this dataset is

very low, yielding partitions of low Discernibility as a result. Therefore, in such a

case, the Discernibility criterion is bound to not work as it should.

 The number of base classifiers in the ensemble ranged from 15 to 40. Also, the

ensemble performance time (which included training, testing, evaluating and fusing

the outputs of the different classifiers) was on average significantly higher in the

ensembles involving Discernibility, as this is more computationally expensive. Thus,

for ensembles that combined diversity and Discernibility the average time was 1.75

times greater than that of the ensembles using diversity only. In addition, we

measured the average performance of each one of the base classifiers and found it to

be significantly less in all of the ensembles created.

 99

7.4 Discussion

From the results of the experiments, one can argue that although diversity yields

promising results, the classification performance of an ensemble can be improved by

incorporating Discernibility in the evaluation process of the feature-set partitioning.

Also, even though Discernibility appears to work slightly better than diversity, the

proposed method of combining the two criteria performs even better and shows an

avenue of research worth of further investigation.

 The performance of the combined criteria approach can be explained as follows.

Diversity eliminates the feature subsets, which are very similar in terms of errors, for

every given classifier. This results in having a partition, which in essence is

equivalent to m different training sets for each classifier (m is the number of partitions

and depends on the dataset as well as on the classifier). However, some of these

subsets may be useless in terms of their contribution to the ensemble performance (the

classifiers trained by them do not yield any noteworthy classifications), therefore

“confusing” the ensemble. This is where the discernibility criterion enters the scene.

Discernibility makes sure that each subset has relatively high classification quality.

Note that in some cases it may be that a subset may have higher discernibility than the

original dataset because some of the features may act as noise to the classification

process, offering no useful information. By making use of the discernibility criterion

we make sure that not all of these features end up in the same subset.

 The whole process of the feature-set partitioning can be improved by

incorporating an evolutionary method for finding the optimum partition; however this

falls beyond the scope of this work, which is to show that discernibility can be a

useful asset in the ensemble creation process. Based on the experimental results, this

is a valid statement, although it comes at the price of additional computation, which is

translated into considerably more CPU time.

7.5 Summary and Contribution of the Chapter

In this chapter a novel ensemble-related approach, based on the Discernibility concept

was presented. This approach involves an ensemble of classifiers that are specialised

on different feature subsets of the dataset, forming a diverse feature set. The edge of

the proposed method is that due to the use of Discernibility, the feature subsets are

more or less of the same classification quality, thereby offering an adequate

generalisation potential for each one of the specialised classifiers.

 100

 The aim of this part of the thesis is not to give a definite solution to the problem of

creating diverse ensembles but to show that the Discernibility concept can be used, in

an altogether different way, for the creation of balanced feature subsets of the dataset,

in order to build robust diverse ensembles. This could also make a promising

contribution to the field of Pattern Classification offering an alternative perceptive in

an area where there is a lot of ongoing research without a definite solution yet to the

problem of creating diverse ensembles.

 101

Chapter 8 – Conclusions

8.1 Conclusions and Contribution
Based on the results obtained in the various sets of experiments, we can conclude that

the Discernibility concept is a useful component of all the classification systems

where it has been applied. This is possible due to the low computational cost of this

method, which is more efficient compared to the other ones which are similar to it,

such as the Silhouette Width. Its edge is that it reveals structural information on the

dataset both as a whole and at a pattern level, in a quick and easy to adapt manner.

This allows it to be easily adjusted and encompassed in a variety of applications,

offering them an enhanced insight into the structure of the dataset, something that

statistical classification methods attempt to do by assuming particular distributions.

The difference in this case, which is also the main advantage of Discernibility, is that

it makes no assumptions and examines the structure of the dataset, based on how little

its classes overlap, through the individual assessment of each one of its patterns. The

introduction of this concept, along with the two indexes that measure is are the main

contribution is the introduction of this research project.

 Regarding particular applications of this concept, the Discernibility measure does

enhance the function of the kNN classifier in the two variations where it was used (D-

kNN and W-kNN), with a slight compromise in the classification speed. Yet, the

proposed kNN extensions depicted clearly how the Discernibility concept can be a

promising way of evaluating particular patterns or particular features, during the

classification process, thereby enhancing it, for a number of different datasets. This,

along with the three other classifiers introduced in this thesis (V-kNN, CB-kNN and

MSTC), is another contribution of this research.

 In addition, this concept exhibited a quite promising behaviour in the

Discernibility-based feature selection methods introduced in this work. These

methods, not only improved the classification speed significantly, but they also

improved the accuracy rate and the Net Reliability in most of the cases. Furthermore,

the two methods put forward in this research demonstrated how the Discernibility

concept can be applied in different ways for this particular application, without any

significant change in its function. This is an important contribution of this project,

considering the efficiency of these two methods in the complex datasets used for the

experiments.

 102

 As regards the data reduction techniques, based on Discernibility and distance,

they yielded promising results as well, even though the overhead is not insignificant.

Yet, the reduced datasets exhibit the same accuracy rate for most of the classifiers and

in some cases the accuracy rate is increased. One of the advantages of this approach is

that even though Discernibility has an altogether different philosophy in the

evaluation of the significance of the patterns of a dataset, it can easily be used in

combination with other criteria, such as distance in this case, yielding quite promising

results. This technique is another useful contribution, which opens us a new

perspective to the Data Reduction area.

 The Reject Option based on the reliability measure (which is primarily centred on

the Discernibility measure) yielded promising results as well. Not only did it provide

a quite high accuracy rate for elites of patterns, in a number of datasets, but it also

yielded a justification why certain classifications were rejected (low reliability). In

addition, this was done without increasing the computational cost of the classification

process much. In addition, by encompassing the change of Accuracy Rate and the

change of Degree of Certainty, this method was enhanced. Also, through its fine-

tuning, using a grid-based optimisation algorithm, this method yielded even better

results, as it became more adaptable to the specific problem it was applied on, as well

as to the particular classifier used. This method, along with its supplementary

techniques, is one more contribution of this thesis.

 Regarding the ensembles, the quite promising results of the experiments verified

the initial hypothesis that Discernibility can be a useful asset in the creation of

balanced subsets of the feature space. Moreover, it became evident that even if

Discernibility was the only criterion for the creation of balanced subsets, the results

are still better than those using the criterion of diversity of errors. Yet, by using both

criteria, the accuracy rate of the ensemble can be enhanced. This can be explained as

follows. By applying the diversity of errors criterion one makes sure that the different

feature subsets of the dataset yield a different generalisation for a given classifier. As

regards the Discernibility criterion, this ensures that the subsets will be of the same

classification quality, thereby yielding a better generalisation since the differently

trained classifiers will be characterised by a better classification quality as well.

Therefore, by combining both criteria, the feature subsets will not only be

supplementary to each other, but also of more or less the same standard. This

alternative approach to diverse ensembles is another contribution of this research.

 103

 Moreover, the auxiliary measures introduced in this project – the Degree of

Certainty (which is a generalisation of the certainty factor, applicable to most

classifier types) and the Net Reliability (a measure which evaluates how reliable the

certainty of a classifier is, based on its accuracy – can be seen as one more

contribution of this thesis.

8.2 Limitations
Promising as they may be, the measures expressing the Discernibility concept have

some limitations that need to be addressed. First of all, both the Spherical and the

Harmonic Indices of Discernibility may be time-consuming when it comes to very

large datasets. Therefore, an option has to be introduced that allows the user to use

these indexes to evaluate a dataset (or a feature of it) based on a sample of its patterns.

This would speed up the whole process, yet it would come at the price of not yielding

the discernibilities of the individual patterns. Therefore, this version of the Index of

Discernibility would be applicable for large-scale evaluation, in the relevant

applications (e.g. feature selection, partitioning of feature space for diverse

ensembles, evaluation of a dataset, etc.).

 Another limitation that we have discovered is that it is not a continuous metric. If

therefore there would be a way to evaluate any point of the dataset feature space, even

where there are no patterns, this would render it more robust as it would offer an

insight to the dataset as a continuum and not as merely a group of patterns.

 Finally, the Discernibility Indexes assume equal importance to all of the classes of

the dataset, something that in some cases may not be valid. This is more noticeable in

cases where the misclassification costs of each class are very different, such as in the

case of medical datasets (the class denoting the presence of an illness is more

important as misclassifying it may lead to delayed treatment of the patient).

 These limitations show that the Discernibility concept, though versatile and

practical in theory, has plenty of room for improvement as regards its

implementations. This however renders it a fruitful topic for future research,

promising even better results.

8.3 Future Work
It is our expectation that the Discernibility concept will be able to find other

applications as well, which are however beyond the scope of this work. These can be

 104

categorised as short-term and long-term, depending on the research workload

involved.

 Among the short-term ones is the use of Discernibility as the basis for feature

generation. Such a pre-processing application will be aiming at enhancing the quality

of a dataset by generating and evaluating new features, resulting to more accurate

and/or faster classification (since the same or even better classification potential could

be reached with less and more robust features).

 Another short-term application involves the proposed ensembles in Chapter 7.

These can be further enhanced and new ensembles or hybrid classification systems

can be developed based on the Discernibility concept in combination with the

diversity of errors. In addition, the possibility of other ensemble setups can be

investigated.

 One other short-term application has to do with the fine-tuning and addressing the

limitations of the proposed methods. Particularly, the Indexes of Discernibility can be

modified so as to take into account the misclassification cost, something which may

prove useful in certain problem domains. This can be done by employing and

extending the Degree of Reliability measure, adjusting it to the various datasets, based

on the misclassification costs.

 Discernibility can also be applied in the short-term application of dealing with

discrete data more efficiently. This could be done by changing the distance measure

used and the way the data is mapped.

 Regarding the long-term applications, the Discernibility concept can be used in

other problem domains, such as clustering. By employing one of the Indexes of

Discernibility, the clustering process can be enhanced resulting to more meaningful

and more clear-cut clusters.

 Another long-term application is the use of Discernibility to explore which

classifiers can be more suitable for which particular types of datasets based on its

evaluation capability. This however is bound to be a complex investigation as it

would require experiments with a number of different classifiers to prove the

hypothesis.

 One more long-term application is the use of Discernibility as a part of the

function of Fuzzy classifiers. This could be possible by incorporating the

Discernibility scores of the various features in the corresponding membership

 105

functions, in an automated or semi-automated way. This however would require a lot

of experiments in order to determine the optimum parameters involved.

 The spawning of artificial patterns in a sparse dataset could be another long-term

application of Discernibility. Using Discernibility, it could be possible to filter the

most appropriate patterns generated, so that the new dataset maintains the same

structure and classification quality but with more patterns. This translates into a better

accuracy rate, although there are many factors that need to be taken into account in

order to preserve the integrity of the dataset.

 Discernibility can also be applied in the long-term application of time-series

prediction. This could be possible by introducing new features so that each dynamic

variable is replaced by static ones. Then Discernibility could be used to assess the

classification quality of these variables and this way provide the optimum “time

window” to be used.

 Overall, as shown from this research, the Discernibility concept is a quite

promising notion and its implementations are quite versatile and practical in many

ways. Its great potential is not thwarted by its limitations, which may be seen as good

opportunities for future avenues of research that may gradually facilitate and enhance

the process of classification.

 106

References

Aarts, E. and Korst, J., 1990. Simulated Annealing & Boltzmann Machines. John

Wiley & Sons.

Abidin, T. and Perrizo, W., 2006. SMART-TV: a fast and scalable nearest neighbor

based classifier for data mining. Proceedings of ACM SAC-06, Dijon, France. ACM

Press, New York, NY, 536-540.

Aeberhard, S., Coomans, D. and de Vel, O., 1992. Comparison of Classifiers in High

Dimensional Settings, Tech. Rep. 92-02, Dept. of Computer Science and Dept. of

Mathematics and Statistics, James Cook University of North Queensland.

Ahmadi, A., Omatu, A., Fujinaka, T., and Kosaka, T., 2004. Improvement of

reliability in banknote classification using reject option and local PCA. Information

Sciences, vol. 168 (1-4), 277-293.

Alexe, G., Bhanot, G., and Venkataraghavan, B., 2005. A robust meta-classification

strategy for cancer diagnosis from gene expression data. IEEE Computational System

Bioinformatics Conference, 322-325.

Alimoglu, F., 1996. Combining Multiple Classifiers for Pen-Based Handwritten Digit

Recognition. MSc Thesis, Institute of Graduate Studies in Science and Engineering,

Bogazici University.

Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D. and Levine, A.

J., 1999. Broad patterns of gene expression revealed by clustering analysis of tumor

and normal colon tissues probed by oligonucleotide arrays, Natl. Acad. Sci. USA, vol.

96, 6745-6750.

Arlandis, J., Perez-Cortes, J.C., and Cano, J., 2002. Rejection strategies and

confidence measures for a k-NN classifier in an OCR task. Proceedings of 16th

International Conference on Pattern Recognition ICPR-2002, vol. 1, Québeq

(Canada), 576-579.

Aydin, T. and Guvenir, H. A., 2006. Modeling interestingness of streaming

classification rules as a classification problem. 14th Turkish Symposium on Artificial

Intelligence and Artificial Neural Networks, 168-176.

Ayrulu, B. and Barshan, B., 2002. Reliability measure assignment to sonar for robust

target differentiation. Pattern Recognition, vol. 35 (6), 403-419.

 107

Baase, S. and Van Gelder, A., 1999. Computer Algorithms: Introduction to Design

and Analysis, 3rd edition. Addison-Wesley.

Babuska R., 1998. Fuzzy Modeling for Control. Kluwer Academic Publishers,

Boston, USA.

Bailey, D.G., 2004. An efficient Euclidean distance transform. Proceedings of

IWCIA04, 394-408.

Baram, Y., 1998. Partial Classification: the benefit of deferred decision. IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 20 (8), 769-776.

Bermejo, S. and Cabestany, J., 2000. Adaptive soft k-nearest neighbour classifiers.

Pattern Recognition, vol. 33, 1999-2005.

Bertoni, A., Folgieri, R., and Valentini, G., 2005. Bio-molecular cancer prediction

with random subspace ensembles of support vector machines. Neurocomputing, vol.

63, 535-539.

Bezdek, J. C., Tsao, E. C.-K. and Pal, N. R., 1992. Fuzzy Kohonen Clustering

Networks. Proceedings of IEEE Int. Conf. on Fuzzy Systems 1992 (San Diego), 1035-

1043.

Blayvas, I. and Kimmel, R., 2002. Efficient classification via multiresolution training

set approximation. CS Dept. Technical Report CIS-2002-01.

Bors A. G., 2001. Introduction of the Radial Basis Function (RBF) Networks. Online

symposium of Electronic Engineering, vol. 1 (1), 1-7.

Breiman, L., 1994. Bagging predictors. Technical Report no. 421, Department of

Statistics, University of California, Berkeley.

Breiman, L., 1996. Bagging predictors. Machine Learning, vol. 24, 123–140.

Bresnahan, T. F., 1986. Measuring the Spillovers from Technical Advance:

Mainframe Computers in Financial Services, The American Economic Review, vol. 76

(4), 742-755.

Brown, G., 2004. Diversity in neural network ensembles. PhD Thesis, The University

of Birmingham.

Brown, G., Wyatt, J., Harris, R., and Yao, X., 2005. Diversity creation methods: a

survey and categorisation. Information Fusion, vol. 6, 5-20.

Carpenter, G. A. and Grossberg, S., 1991. Pattern Recognition by Self-Organizing

Neural Networks. MIT Press, London, England.

 108

Castellano, G., Fanelli, A.M., and Mencar, C., 2004. An empirical risk functional to

improve learning in a neuro-fuzzy classifier. IEEE Transactions on Systems, Man,

and Cybernetics, Part B, vol. 34 (1), 725 – 731.

Chao, S. and Lihui, C., 2005. Feature dimension reduction for microarray data

analysis using locally linear embedding. 3rd Asia-Pacific Bioinformatics Conference,

211-217.

Chiang, J-H. and Chen, Y-H., 2002. Incorporating fuzzy operators in the decision

network to improve classification reliability. Computers & Electrical Engineering,

vol. 28 (6), 547-560.

Clerc, M., 2006. Particle Swarm Optimization, ISTE Publishing Company.

Cordella, L. P., De Stefano, C., Tortorella F., Vento, M., 1995. A method for

improving classification reliability of multilayer perceptrons. IEEE Transactions on

Neural Networks, vol. 6 (5), 1140-1147.

Cover, T. M. and Hart, P. E., 1967. Nearest neighbor pattern classification. IEEE

Trans. Inform. Theory, vol. IT-13(1), 21–27.

Cristianini, N., and Shawe-Taylor, J., 2000. An Introduction to Support Vector

Machines and Other Kernel-based Learning Methods. Cambridge University Press.

Cung, V. D., Danjean, V., Dumas, J.-G., Gautier, T., Huard, G., Raddin, B., Rapine,

C., Roch, J.-L., and Trystram, D., 2006. Adaptive and hybrid algorithms:

classification and illustration on triangular system solving. Proceedings of

Transgressive Computing, Granada, Spain, April 2006, 131-148.

Cunningham, P., 2000. Overfitting and diversity in classification ensembles based on

feature selection. Dublin, Trinity College Dublin, Department of Computer Science,

TCD-CS-2000-07.

Cybenko, G. V., 1989. Approximation by superpositions of a sigmoidal function.

Mathematics of Control, Signals and Systems. vol. 2, 303-314.

Dash, M. and Liu, H., 1997. Feature selection for Classification. Intelligent Data

Analysis, vol. 1, 131-156.

Denoeux, T., 1995. A k-nearest neighbor classification rule based on Dempster-

Shafer. IEEE Transactions on Theory, Systems, Man and Cybernetics, vol. 25 (5),

804-813.

Denoeux, T., 2000. A neural network classifier based on Dempster-Shafer theory.

IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol. 30, 131-150.

 109

Deterding, D. H., 1989. Speaker Normalisation for Automatic Speech Recognition,

University of Cambridge, PhD thesis.

Domeniconi, C. and Yan, B., 2005. On error correlation and accuracy of nearest

neighbor ensemble classifiers. Proceedings of the SIAM International Conference on

Data Mining, Newport Beach, California, 217-226.

Dorigo, M., Maniezzo, V., and Colorni, A., 1991. Positive feedback as a search

strategy. Technical Report 91-016, Dipartimento di Elettronica, Politecnico di

Milano, Milan, Italy.

Dorigo, M. and Blum, C, 2005. Ant colony optimization theory: A survey.

Theoretical Computer Science, 344 (2–3), 243–278.

Dorigo, M. and Stützle, T., 2004. Ant Colony Optimization. MIT Press, Cambridge,

MA.

Douglas, K. M., 2007. General Method for Estimating the Classification Reliability of

Complex Decisions Based on Configural Combinations of Multiple Assessment

Scores. PhD thesis, University of Maryland, USA.

Duda, R. O., Hart, P. E., and Stork, D. G., 2001. Pattern Classification (2nd ed.).

John Wiley and Sons, University of Michigan.

Dvorak, J. and Savicky, P., 2007. Softening splits in decision trees using simulated

annealing. Proceedings of ICANNGA 2007, Warsaw, (Ed.: Beliczynski et. al), Part I,

LNCS 4431, 721-729.

Eggermont, J., Kok, J. N., and Kosters, W. A., 2004. Genetic programming for data

classification: partitioning the search space. Proceeding of Symposium of Applied

Computing, 1001-1005.

ELENA Project Artificial Databases, available on-line at http://www.dice.ucl.ac.be/

neural-nets/Research/Projects/ELENA/databases/ARTIFICIAL/clouds/ (last accessed

March 2008).

Enas, G. G. and Choi S. C., 1986. Choice of the smoothing parameter and efficiency

of k-nearest neighbor classification. Computers & Mathematics with Applications,

vol. 12 (2), 235-244.

Evgeniou, T., Pontil, M., and Elisseeff, A., 2004. Leave-one-out error, stability, and

generalization of voting combination of classifiers. Machine Learning, vol. 55(1), 71-

97.

Fard, M. M., 2006. Ensemble Learning with Local Experts. IEEE Computer Society

ezine “Looking.Forward” student magazine 14th edition. Available online at:

 110

http://www.computer.org/portal/cms_docs_ieeecs/ieeecs/communities/students/lookin

g/2006fall/05.pdf (last accessed: August 2008).

Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recognition Letters, vol.

27, 861-874.

Fidler, S. and Leonardis, A., 2003. Robust LDA classification by subsampling.

Proceedings of Conference on Computer Vision and Pattern Recognition Workshop

(CVPRW), vol. 8, 97-104.

Fisher, R. A., 1938. The statistical utilization of multiple measurements. Annals of

Eugenics, vol. 8, 376-386.

Frohlich, H. and Chapelle, O., 2003. Feature selection for support vector machines by

means of genetic algorithms. 15th IEEE International Conference on Tools with

Artificial Intelligence, 142-148.

Freund Y. and Schapire R. E., 1996, Experiments with a new boosting algorithm.

Proceedings of the Thirteenth International Conference Machine Learning, 148–156.

Fumera, G., Roli, F., and Giacinto G., 2000. Reject option with multiple thresholds.

Pattern Recognition, vol. 33 (12), 2099-2101.

Fung, G., Dundar, M. M., Bi, J., and Rao, B., 2004. A fast iterative algorithm for

fisher discriminant using heterogeneous kernels. Proceedings of the 21st International

Conference on Machine Learning. Available online at

http://portal.acm.org/citation.cfm?id=1015409 (last accessed: May 2008).

Gao, Q-B. and Wang, Z-Z., 2007. Centre-based nearest neighbor classifier. Pattern

Recognition, vol. 40, 346-349.

Getz, E., Levine, E., and Domany, E., 2001. Coupled Two-Way Clustering Analysis

of Gene Microarray Data (2001). Found online at: arXiv:physics/0004009v1 (last

accessed December 2008).

Ghosh, A. K., 2006. On optimum choice of k in nearest neighbour classification.

Computational Statistics & Data Analysis, vol. 50, 3113-3123.

Giusti, N., Masulli, F., and Sperduti, A., 2002. Theoretical and experimental analysis

of a two-stage system for classification. IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 24 (7), 893-904.

Glackin, C., 2008. Classification using a Fuzzy Spiking Neural Network. Proceedings

of UKCI Conference, 117-122.

Graham, R. L. and Hell, P., 1985. On the history of the minimum spanning tree

problem. Annals of the History of Computing, vol. 7(1), 43–57.

 111

Hall, M., 1999. Correlation-based Feature Selection for Machine Learning. PhD

thesis from the University of Waikato, Hamilton, New Zealand.

Hamers, B. and Suykens, J. A. K, 2003. Coupled transductive ensemble learning of

kernel models. Internal Report 03-172, ESAT-SISTA, K. U. Leuven.

Hand, D. J. and Vinciotti, V., 2003. Choosing k for two-class nearest neighbour

classifiers with unbalanced classes. Pattern Recognition Letters, vol. 24, 1555-1562.

Hattori, K. and Takahashi, M., 2000. A new edited k-nearest neighbor rule in the

pattern recognition problem. Pattern Recognition, vol. 33, 521-528.

Hendrickx, I. and Van den Bosch, A., 2004. Maximum-entropy parameter estimation

for the k-NN modified value-difference kernel. Proceedings of the 16th Belgian-

Dutch Conference on Artificial Intelligence, Groningen, The Netherlands, 19-26.

Hochreiter, S. and Obermay, K., 2003. Feature selection and classification on matrix

data: from large margins to small covering numbers. Chapter 16 in Advances in

Neural Information Processing Systems. MIT Press.

Holden, N. and Fietas, A. A., 2007. A hybrid PSO/ACO algorithm for classification.

Proceedings of GECCO’07, London, England, United Kingdom, 2745-2750.

Hopfield, J. J., 1982. Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the National Academy of Sciences of the USA,

vol. 79 (8), 2554-2558.

Horton, P. and Nakai, K., 1996. A probablistic classification system for predicting the

cellular localization sites of proteins. Proceedings of Intelligent Systems in Molecular

Biology, St. Louis, USA, 109-115.

Inza, I., Larrañaga, P., Sierra, B., Etxeberria, R., Lozano, J. A., and Peña, J. M., 1999.

Representing the behaviour of supervised classification learning algorithms by

Bayesian networks. Pattern Recognition Letters, vol. 20, 1201-1209.

Jain, A. K., Duin, R. P. W., Mao, J., 2000. Statistical pattern recognition: a review.

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22 (1), 4-38.

Jensen, R., and Shen, Q., 2005. Fuzzy-rough data reduction with ant colony

optimization. Fuzzy Sets and Systems, 149 (1), 5-20.

Jeon , B. H., Lee, S. U., and Lee, K. M., 2002. Face detection using the 1st-order RCE

classifier. Proceedings of International Conference on Image Processing, vol. 2, 125-

128.

Jiang, Y. and Zhou, Z.-H., 2004. Editing training data for kNN classifiers with neural

network ensemble. Lecture Notes in Computer Science, vol. 3173, 356-361.

 112

Karaboga.D, 2005. An idea based on honey bee swarm for numerical optimization.

Technical Report TR06, Erciyes University, Engineering Faculty, Computer

Engineering Department.

Kaufman, L. and Rousseeuw, P. J., 1990. Finding groups in data. Wiley Interscience

Publications, New York, 83-85.

Kawahara, K. and Shibata, T., 2005. A new distance measure employing element-

significance factors for robust image classification. Proceedings of 13th European

Signal Processing Conference (EUSIPCO 2005), Antalya, Turkey.

Kaylani, T. and Dasgupta, S., 1994. A new method for initializing radial basis

function classifiers systems. IEEE International Conference on Man, and

Cybernetics, vol. 3, 2584-2587.

Keller J. M., Gray M. R., and Givens J. A., Jr., 1985. A fuzzy k-nearest neighbor

algorithm. IEEE Transactions on Systems, Man, and Cybernetics, vol. 15 (4), 580-

584.

Kennedy, J. and Eberhart, R., 1995. Particle swarm optimization. Proceedings of

IEEE International Conference on Neural Networks, 1942-1948.

Kent Ridge Bio-medical Data Set Repository. Available online at

http://sdmc.lit.org.sg/GEDatasets/Datasets.html (last accessed January 2008).

Khan, M., Ding, Q. and Perrizo, W., 2002. K-nearest neighbors classification of

spatial data streams using P-trees. Proceedings of the PAKDD, 517-528.

Kohonen, T., 1982. Self-organized formation of topologically correct feature maps.

Biological Cybernetics, vol. 43, 59-69.

Kohonen, T., 2001. Self-Organizing Maps (Third Extended Edition). Springer, Berlin,

Heidelberg, New York.

Komorowski J., Pawlak Z., Polkowski L., and Skowron A., 1998. Rough sets: a

tutorial. In Pal, S.K. & Skowron, A. (Eds.): Rough-Fuzzy Hybridization: A New Trend

in Decision-Making. Springer-Verlag, Singapore. Available online at

http://folli.loria.fr/cds/1999/library/pdf/skowron.pdf (last accessed July 2008).

Kononenko, I., Simec, E., and Robnik-Sikonja, M., 1997. Overcoming the myopia of

inductive learning algorithms with RELIEFF. Applied Intelligence, vol. 7, 39-55.J. B.

Kruskal, J. B. Jr., 1956. On the shortest spanning subtree of a graph and the travelling

salesman problem. Proceedings of the American Mathematical Society, vol. 7(1), 48–

50.

 113

Kukar, M. and Kononenko, I., 2002. Reliable Classifications with Machine Learning.

13th European Conference on Machine Learning, 219-231.

Kuncheva, L. I., 2000. Fuzzy Classifier Design. Springer-Verlag, Heidelberg.

Kuncheva, L. I and Whitaker, C. J., 2003. Measures of Diversity in Classifier

Ensembles and Their Relationship with the Ensemble Accuracy. Machine Learning,

vol. 51, 181-207.

Lai, J. Z. C., Liaw, Y-C., and Liu, J., 2007. Fast k-nearest-neighbor search based on

projection and triangular inequality. Pattern Recognition, vol. 40, 351-359.

Lam, L. and Suen, S. Y., 1997. Application of majority voting to pattern recognition:

An analysis of its behavior and performance. IEEE Transactions on Systems, Man,

and Cybernetics, vol. 27, 553–568.

Lecocke, M. and Hess, K., 2005. An empirical study of univariate and GA-based

feature selection in binary classification with microarray data. UT MD Anderson

Cancer Center Department of Biostatistics Working Paper Series, Working Paper 5.

Available online at http://www.bepress.com/mdandersonbiostat/paper5 (last accessed

February 2008).

Ledward, A. Ensemble classifiers for machine learning. Available online at

http://www.ee.hawaii.edu/~kuh/ee645.f99/lectures.html (last accessed: April 2008).

Lemeni, I. and Tepus, N., 2008. A SOM method for classes overlap degree

evaluation. Proceedings of 3rd International Multi-Conference on Computing in the

Global Information Technology, 171-176.

Li, X. B., and Jacob, V. S., 2008. Adaptive data reduction for large-scale transaction

data. European Journal of Operational Research, vol. 188 (3), 910-924.

Liu, H., Li, J., and Wong, L., 2002.A comparative study on feature selection and

classification methods Using gene expression profiles and proteomic patterns.

Genome Informatics, vol. 13, 51-60.

Mainar-Ruiz, G. and Pérez-Cortes, J. S., 2006. Approximate nearest neighbor search

using a single space-filling curve and multiple representations of the data points.

Proceedings of 18th International Conference on Pattern Recognition (ICPR 2006),

Hong Kong, China, 502-505.

Manocha, S. and Girolami, M. A., 2007. An empirical analysis of the probabilistic K-

nearest neighbour classifier. Pattern Recognition Letters, vol. 28, 1818-1824.

McCulloch, W. and Pitts, W., 1943. A logical calculus of the ideas immanent in

nervous activity. Bulletin of Mathematical Biophysics, vol. 7, 115 - 133.

 114

McKenzie, D. and Low, L. H., 1992. The construction of computerized classification

systems using machine learning algorithms: an overview. Computers in Human

Behavior, vol. 8, 155-167.

Michalak K., and Kwa/Snicka, H., 2006. Correlation-based feature selection strategy

in classification systems. International Journal of Applied Mathematics and

Computer Science, vol. 16 (4), 503–511.

Michalewicz, Z., 1995. A survey of constraint handling techniques in evolutionary

computation methods. Proceedings of the Fourth Annual Conference on EP, 135-155.

Michalewicz, Z and Schoenauer, M., 1996. Evolutionary algorithms for constrained

parameter optimization problems, Evolutionary Computation, vol. 4, 1-32.

Mitchell, T., 1997. Machine Learning. The McGraw-Hill Companies Inc.

Mitchell, S. W., Remmel, T. K., Csillag, F. and Wulder, M., 2008. Distance to second

cluster as a measure of classification confidence. Remote Sensing of Environment, vol.

112, 2615-2626.

Mitchie, D., Spiegelhalter, D. J., and Taylor, C. C., 1994. Machine learning, neural

and statistical classification. Ellis Horwood Limited.

Montgomery, D., Swinnen, G., and Vanhoof, K., 1997. Comparison of some AI and

statistical classification methods for a marketing case. European Journal of

Operational Research, vol. 103 (2), 312-325.

Moreno-Seco, F., Mico, L. and Oncina, J., 2003. A modification of the LAESA

algorithm for approximated k-NN classification. Pattern Recognition Letters, vol. 24,

47-53.

Mukkamala, S., Liu, Q., Veeraghattam, R., and Sung, A. H., 2005. Computational

intelligent techniques for tumor classification (using microarray gene expression

data). International Journal of Lateral Computing, vol. 2 (1), 38-45.

Musavi, M. T, Ahmed, W., Chan, K. H., Faris, K. B., and Hummels, D. M., 1992. On

the training of radial basis function classifiers. Neural Networks, vol. 5, 595-603.

Nakashima, A. and Ogawa, H., 2000. Noise suppression in training examples for

improving generalization capability. Neural Networks, vol. 14, 459-469.

Niranjan, M. and Fallside, F., 1990. Neural networks and radial basis functions in

classifying static speech patterns. Computer Speech and Language, vol. 4, 275-289.

Okun, O. and Priisalu, H., 2007. Unsupervised data reduction. Signal Processing, vol.

87 (9), 2260-2267.

 115

Papadopoulos, H., 2004. Qualified Predictions for Large Data Sets. PhD thesis, Royal

Holloway, University of London.

Papadopoulos, H., 2008. Inductive conformal prediction: theory and application to

neural networks. Tools in Artificial Intelligence, P. Fritzsche, Ed. Croatia: I-Tech,

315-330.

Papadopoulos, H., Vovk, V., and Gammerman, A., 2007. Conformal prediction with

neural networks, Proceedings of the 19th IEEE International Conference on Tools

with Artificial Intelligence (ICTAI’07), vol. 2, 388-395, Patras, Greece, October 2007,

IEEE Computer Society, Los Alamitos, CA.

Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., and Zaidi, M., 2006. The

Bees Algorithm - A Novel Tool for Complex Optimisation Problems. Proceedings of

IPROMS 2006 Conference, 454-461.

Polat, K. and Güneş, S., 2007. A novel data reduction method: distance based data

reduction and its application to classification of epileptiform EEG signals. Applied

Mathematics and Computation. In Press, Corrected Proof, Available online at:

www.sciencedirect.com, (last accessed March 2008).

Poli, R., Kennedy, J., Blackwell, and T., Freitas, A. (editors), 2008. Particle Swarms:

The Second Decade, Hindawi Publishing Corp US SR.

Pomeroy, S.L, et al, 2002. Prediction of central nervous system embryonal tumour

outcome based on gene expression. Nature vol. 415, 436-442.

Ray, S. and Page, D., 2003. Skewing: an efficient alternative to look ahead for

decision tree induction. Proceedings of the International Joint Conference on

Artificial Intelligence, 601-612.

Richiardi, J., Prodanov, P. and Drygajlo, A., 2005. A probabilistic measure of

modality reliability in speaker verification. IEEE International Conference on

Acoustics, Speech, and Signal Processing, vol. 1, 709-712, Philadelphia, USA.

Roy, A., Govil, S., and Miranda, R., 1995. An algorithm to generate radial basis

function (RBF)-like nets for classification problems, Neural networks, vol. 8 (2), 179-

201.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J., 1986. Learning representations

by back-propagating errors. Nature, vol. 323, 533-536.

Russell, S. and Yoon, V., 2008. Applications of wavelet data reduction in a

recommender system. Expert Systems with Applications, vol. 34 (4), 2316-2325.

 116

Ruta, D. and Gabrys, B., 2003. Physical field models for pattern classification. Soft

Computing Journal, vol. 8 (2), 126-141.

Ruta, D. and Gabrys, B., 2005. Classifier selection for majority voting. Information

Fusion, 6, 63–81.

Safavian, S. R. and Landgrebe, D., 1991. A Survey of Decision Tree Classifier

Methodology. IEEE Transactions on Systems, Man, and Cybernetics, vol. 21 (3), 660-

674.

Sansone, C., Tortorella, F. and Vento, M., 2001. A classification reliability driven

reject rule for multi-expert systems. International Journal of Pattern Recognition and

Artificial Intelligence, vol. 15 (6), 1-19.

Santos-Pereira, C. M. and Pires, A. M., 2005. On optimal reject rules and ROC

curves. Pattern Recognition Letters, vol. 26 (7), 943-952.

Sawa, T. and Ohno-Machado, L., 2003. A neural network-based similarity index for

clustering DNA microarray data. Computers in Biology and Medicine, vol. 33, 1-15.

Schapire, R. E., 2003. The boosting approach to machine learning: an overview.

Nonlinear Estimation and Classification, Springer.

Shanin, M. A., Tollner, E. W. and McClendon, R. W., 2001. Artificial intelligence

classifiers for sorting apples based on watercore. Journal of Agricultural Engineering

Resources, vol. 79 (3), 265-274.

Shang, C., and Shen, Q., 2006. Aiding classification of gene expression data with

feature selection: a comparative study. Computational Intelligence Research, 1(1), 68-

76.

Sharkey, A. J. C., Sharkey, N. E., Gerecke, U. and Chandroth, G. O., 2000. The "Test

and Select" Approach to Ensemble Combination. Multiple Classifier Systems, 30-44.

Shen, Q., and Jensen, R., 2008. Approximation-based feature selection and

application for algae population estimation. Applied Intelligence, 28(2), 167-181.

Shipp, C. A. and Kuncheva, L. I., 2002. Relationships between combination methods

and measures of diversity in combining classifiers. Information Fusion, 3, 135–148

Siler, W., and Buckley, J. J., 2005. Fuzzy Expert Systems and Fuzzy Reasoning. John

Wiley and sons, inc.

Skyt, J., Jensen, C. S. and Pedersen, T. B., 2008. Specification-based data reduction in

dimensional data warehouses. Information Systems, vol. 33 (1), 36-63.

Song, H. and Feng, H. Y., 2007. A global clustering approach to point cloud

simplification with a specified data reduction ratio. Computer-Aided Design, in Press,

 117

Corrected Proof, Available online at: www.sciencedirect.com (last accessed March

2008).

Sotoca, J. M., Sanchez J. S. and Pla F., 2003. Estimating feature weights for distance-

based classification. Pattern Recognition in Information Systems PRIS2003, Angers,

France, 156-166, Ed. ICEIS PRESS, ISBN: 972-98816-3-4.

Specht, D. F., 1990. Probabilistic neural networks. Neural Networks, vol. 3 (1), 109-

118.

Stork, D. G. and Yom-Tov, E., 2004. Computer manual in Matlab to accompany

Pattern Classification 2nd edition. Wiley-Interscience.

Sugiyama M. and Ogawa, H., 2000. Incremental projection learning for optimal

generalization. Neural Networks, vol. 14, 53-66.

Sykacek, P. and Roberts, S. J., 2003. Adaptive classification by variational kalman

filtering. Neural Information Processing Systems, vol. 15, 737-744.

Takagi, T. and Sugeno, M., 1985. Fuzzy identification of systems and its application

to modeling and control. IEEE Trans. on Syst., Man & Cybernetics, vol. 15, 116-132.

Tan, S., Wang, Y., and Cheng, X., 2007. Text feature ranking based on rough-set

theory. Proceedings of IEEE/WIC/ACM International Conference on Web

Intelligence, 659-662.

Tang, K., Suganthan, P. N., Yao, X. and Qin, A. K., 2005. Linear dimensionality

reduction using relevance weighted LDA. Pattern Recognition, vol. 38, 485-493.

Tasoulis, D. K., Plagianakos, V. P. and Vrahatis, M. N., 2006. Unsupervised

clustering in mRNA expression profiles. Computers in Biology and Medicine, vol. 36,

1126-1142.

Thien, M. Ha, 1996a. An experimental study of the optimal class-selective rejection

rule. Available online at: http://citeseer.ist.psu.edu/103812.html (last accessed:

December 2007).

Thien, M. Ha, 1996b. Application of the optical class-based rejection rule to the

detection of abnormalities in OCR databases. Available online at:

http://citeseer.ist.psu.edu/135692.html (last accessed: December 2007).

Thireou, T., Guivernau, J. L. R., Atlamazoglou, V., Ledesma, M. J., Pavlopoulos, S.,

Santos, A., and Kontaxakis, G., 2006. Evaluation of data reduction methods for

dynamic PET series based on Monte Carlo techniques and the NCAT phantom.

Nuclear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, vol. 569 (2), 389-393.

 118

Toplak, W., 2008. A comparison of SOM and ALEV for data reduction purposes in

transport telematics. Proc. of 26th IASTED International Conference on Artificial

Intelligence and Applications, CD Proceedings ISBN: 978-0-88986-710-9, 181-186.

Torra, V., Abowd, J. M., and Domingo-Ferrer, J., 2006. Using Mahalanobis distance-

based record linkage for disclosure risk assessment. Lecture Notes in Computer

Science, 4302, 233-242.

Tsymbal, A. and Puuronen, S., 2000. Bagging and boosting with dynamic integration

of classifiers. Principles of Data Mining and Knowledge Discovery, 116-125.

UCI Repository: http://archive.ics.uci.edu/ml/datasets.html (last accessed: February

2008).

Valafar, F. and Ersoy, O., 1994. Parallel, Probabilistic, Self-Organising, Hierarchical

Neural Networks. Purdue University School of Electrical Engineering.

Van den Bosch, A., 2004. Feature transformation through rule induction: a case study

with the k-NN classifier. J. Fürnkrantz (Ed.), Proceedings of the ECML/PKDD 2004

Workshop on Advances in Inductive Rule Learning, Pisa, Italy, 1-16.

Vanherzeele, J., Guillaume, P., Vanlanduit, S., and Verboven, P., 2006. Data

reduction using a generalized regressive discrete Fourier series. Journal of Sound and

Vibration vol. 298 (1-2, 22), 1-11.

Vanlanduit, S., Cauberghe, B., Guillaume, P., Verboven, P., and Parloo, E., 2006.

Reduction of large frequency response function data sets using a robust singular value

decomposition. Computers & Structures, vol. 84 (12), 808-822.

Veal, B., 2008. Similarity measures for classification of binary data. Proceedings of

UKCI Conference, 71-76.

Vapnik, V. N., 2000a. The Nature of Statistical Learning Theory, Second Ed.

Springer-Verlag.

Vapnik, V., 2000b. Support Vector Machines and Other Kernel-based Learning

Methods. John Shawe-Taylor & Nello Cristianini, Cambridge University Press.

Voulgaris, Z. and Magoulas, G., 2008a. Extensions of the k nearest neighbour

methods for classification problems. Proceedings of the 26th IASTED International

Conference on Artificial Intelligence and Applications, 23-28.

Voulgaris Z. and Magoulas G. D., 2008b, A discernibility-based approach to feature

selection for microarray data. CD Proceedings of the IEEE International Conference

of Intelligent Systems, Varna, Bulgaria, Sept. 2008, IEEE Press.

 119

Voulgaris, Z. and Magoulas, G. D., 2008c. Dimensionality reduction for feature and

pattern selection in classification problems. Proceeding of The Third International

Multi-Conference on Computing in the Global Information Technology, Athens,

Greece, July 2008, 160-165.

Voulgaris, Z. and Magoulas, G. D., 2008d. Discernibility-based approach for creating

ensembles in pattern classification applications. Proceedings of the UKCI Conference,

Leicester U.K., Sept. 2008, 195-199.

Voulgaris, Z. and Mirkin, B., 2008a. Choosing a discernibility measure for reject-

option at a set of classifiers. Pattern Recognition Letters, under revision.

Voulgaris, Z. and Mirkin, B., 2008b. Optimising a reliability measure for

classification. Proceedings of the UKCI Conference, Leicester U.K., Sept. 2008, 43-

46.

Wang, H. and Bell, D., 2004. Extended k-nearest neighbours based on evidence

theory. The Computer Journal, vol. 47 (6), 662-672.

Wang, J., Nesboric, P., and Cooper, L. N., 2006. Neighborhood size selection in the

k-nearest-neighbor rule using statistical confidence. Pattern Recognition, vol. 39,

417-423.

Wang, J., Nesboric, P., and Cooper, L. N., 2007. Improving nearest neighbor rule with

a simple adaptive distance measure. Pattern Recognition Letters, vol. 28, 207-213.

Warfield, S., 1996. Fast k-NN classification for multichannel image data. Pattern

Recognition Letters, vol. 17, 713-721.

Weston, J. , Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., and Vapnik, V.,

2001. Feature selection for SVMs. Advances in Neural Information Processing

Systems, vol. 13, 668-674

Winston, R., 1969. A heuristic program that constructs decision trees. MIT project

MAC, Memo #173.

Winston, P., 1992. Learning by building identification trees. Artificial Intelligence,

Addison-Wesley Publishing Company.

Wu, Y., Ianakiev, K., and Gornidaraju, V., 2002. Improved k-nearest neighbor

classification. Pattern Recognition, vol. 35, 2311-2318.

Yu, K. and Ji, L., 2002. Karyotyping of comparative genomic hybridization human

metaphases using kernel nearest-neighbor algorithm. Cytometry, vol. 48, 202–208.

 120

Yu, S., De Backer, S., Scheunders, P., 2002. Genetic features selection combined with

fuzzy nearest neighbour classifiers for hyperspectral satellite imagery. Pattern

Recognition Letters, vol. 23, 183-190.

Zadeh, L. A., 1965. Fuzzy sets. Information and Control, vol. 8, 338-353.

Zhong, P. and Fukushima, M., 2007. A regularized nonsmooth Newton method for

multi-class support vector machines. Optimization Methods and Software, vol. 22,

225-236.

Zhou, Z.-H. and Jiang, Y., 2004. NeC4.5: neural ensemble based C4.5. IEEE

Transactions of Knowledge Data Engineering, vol. 16, 770-773.

Zhou, C. Y. and Chen, Y. Q., 2006. Improving nearest neighbor classification with

cam weighted distance. Pattern Recognition, vol. 39, 635-645.

Zio, E., Baraldi, P., and Gola, G., 2007. Feature-based classifier ensembles for

diagnosing multiple faults in rotating machinery. Applied Soft Computing, in press.

 121

Appendix A – Dataset Description

 Bupa Liver: this is a dataset that has been used extensively in the literature (Inza

et. al., 1999; Jiang & Zhou, 2004; Zhou & Jiang, 2004). The first five variables are all

blood tests, which are thought to be sensitive to liver disorders that might arise from

excessive alcohol consumption. The sixth variable is the number of half-pint

equivalents of alcoholic beverages drunk per day. There are two classes, denoting

where a patient is diagnosed with liver disorder or not. The dataset was created by

BUPA Medical Research Ltd.

 Pima Indians: a medical dataset comprising of various cases of female patients of

the Pima Indian heritage living near Phoenix, Arizona, USA. The disease involved is

diabetes and it is predicted using various medical measures, as well as other features.

This dataset was owned by National Institute of Diabetes and Digestive and Kidney

Diseases and has been used in several studies (Blayvas & Kimmer, 2002; Eggermont

et. al., 2003; Sykacek & Roberts, 2003).

 Breast Cancer Wisconsin: This breast cancer database was obtained from the

University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. It

involves benign or malignant cases of breast cancer (class attribute) for 683 patients,

over a period of three years. Various researchers such as Glackin (2008) and Veal

(2008) have made use of it in classification applications.

 Statlog Heart Disease: a medical dataset involving patients examined for heart

disease from Statlog that is considered a typical benchmark (Brown, 2004;

Kononenko et al., 1997; Ray & Page, 2003; Tang et al., 2005). It includes 13

attributes, some of which are categorical while others are real numbers. There are two

classes, relating to either presence or absence of heart disease.

 Statlog Vehicle Silhouettes (used in used in Denoeux, 2000; Kononenko et. al.,

1997; Ray & Page, 2003; Tang et al., 2005, Zhong & Fukushima, 2007): This dataset

comprises of data related to 2D silhouettes of four different types of vehicles (as seen

from one of many different angles). Four “Corgie2” model vehicles were used for the

experiment: double decker bus, Cheverolet van, Saab 9000 and Opel Manta 400. This

choice was made so that the different types of vehicles can be more easily

distinguishable (compared to different types of cars).

 Boston Housing (used in Brown, 2004; Fung et. al., 2004; Hamers & Suykens,

2003): This dataset concerns housing values in suburbs of Boston. Originally the class

 122

attribute (median value of owner-occupied homes in $1000's) is continuous but in our

experiments we use a discrete version of it, where all cases are characterised as easily

affordable, medium valued and expensive. The 13 features involved for the prediction

of the class describe the borough of each house with various demographics and

characteristics of each house.

 Wine (used in Aeberhard et al, 1992): this dataset has to do with the chemical

analysis of wines, from three different cultivars of a particular region of Italy. The 13

features it comprises of represent some of the constituents found in each of the 3 types

of wines (class labels).

 Glass (used in Zhong & Fukushima, 2005): This dataset involves a study of

classification of 7 different types of glass, based on 9 characteristics, most of which

have to do with particular chemical elements found in them. The relevant research

which brought about the creation of this dataset was motivated by criminological

investigation: at the scene of the crime, the glass left can be used as evidence, given it

is correctly identified.

 Vowel (used in Deterding, 1989): This dataset consists of a three dimensional

array: voweldata [speaker, vowel, input]. The speakers are indexed by integers 0-89.

(Actually, there are fifteen individual speakers, each saying each vowel six times.)

The vowels are indexed by integers 0-10. For each utterance, there are ten floating-

point input values, with array indexes 0-9 (features). There are 528 patterns in the

dataset.

 DLBCL has to do with Diffuse Large B-Cell Lymphomas (DLBCL) and

follicular lymphomas (FL) . These are two B-cell lineage malignancies having very

different clinical presentations, natural histories and response to therapy. However,

FLs frequently evolve over time and acquire the morphologic and clinical features of

DLBCLs and some subsets of DLBCLs have chromosomal translocations

characteristic of FLs. The gene-expression based classification model was built to

distinguish between these two lymphomas which have 58 and 19 samples in the

dataset respectively. The number of features of the dataset is 7070, each one

representing a particular gene.

 Colon cancer (used in Getz et al, 2001): a medical dataset containing expression

levels of 2000 genes taken in 62 different samples. For each sample it is indicated

whether it came from a tumor biopsy or not. Numbers and descriptions for the

 123

different genes are also given. This dataset is used in many different research papers

on gene expression data.

 Leukaemia (used in Getz et al, 2001): this dataset contains expression levels of

7129 genes taken over 72 samples. Labels indicate which of two variants of

leukaemia is present in the sample (AML, 25 samples, or ALL, 47 samples). This

dataset is of the same type as the colon cancer dataset and is usually used for the same

kind of experiments.

 CNS (used in Pomeroy et al, 2002): This dataset involves patients outcome

prediction for central nervous system embryonal tumor. Survivors are patients who

are alive after treatment whiles the failures are those who succumbed to their disease.

The data set contains 60 patient samples, 21 are survivors (labelled as "Class 1") and

39 are failures (labelled as "Class 0"). There are 7129 genes (features) in the dataset.

 Pendigits (used in Alimoglu, 1996). This is a dataset for character recognition,

based on a collection of 250 samples from 44 writers (yielding a total of about 11000

patterns). For its creation a WACOM PL-100V pressure sensitive tablet with an

integrated LCD display and a cordless stylus were used. The writers were asked to

write 250 digits in random order inside boxes of 500 by 500 tablet pixel resolution.

There are 15 integer features and a class label array comprising of 10 different classes

(one for each digit).

 Magic Gamma Telescope (used in Dvorak & Savicky, 2007). This is a large

dataset regarding the MC generated to simulate registration of high energy gamma

particles in a ground-based atmospheric Cherenkov gamma telescope using the

imaging technique. It comprises of 19020 patterns and 10 continuous features. A

relatively balanced dataset, it has two classes denoting signal or background.

 Iris (used in Zhong & Fukushima, 2005): Probably the best known dataset in the

Pattern Recognition literature. The data set contains 3 classes of 50 instances each,

where each class refers to a type of iris plant. One class is linearly separable from the

other 2, which are not linearly separable from each other.

 Statlog Heart (used in Brown, 2004): This dataset is a heart disease database

similar to the substantially larger Heart Disease database but in a slightly different

form. It has 270 cases (patterns) of patients some of whom have heart disease (class

label). There are 13 features in the datasets, quite diverse in nature, while about half

of them are real numbers. They involve certain medical measurements and

characteristics, as well as other attributes such as sex and age.

 124

 E.coli (used in Horton & Nakai, 1996): this is a medical dataset involving the

e.coli virus. It comprises of 336 patterns and 7 features (most of which are real

numbers, although there are two binary ones as well). There are two classes,

representing the presence or absence of the e.coli disease.

 125

Appendix B – MATLAB Code

Spherical Index of Discernibility (Algorithm 3.1)

function [z Z] = IDND5(I,O)

% Yet another IDND alternative

Z1 = [];
[N na] = size(I);

a = length(O);
if a ~= N
 error('I and O sizes do not match!')
end

D(N,2) = 0; ZZ(N) = 0;
for i = 1:N
 D = [sum((rm(I(i,:),N,1) - I).^2,2) O];
 D(i,:) = [];
 f = (D(:,2) == O(i));
 lf = sum(f);
 r = sum(D(f,1))/lf;
 f2 = (D(:,1) <= r);
 lf2 = sum(f2);
 c = sum(D(f2,2)==O(i));
 ZZ(i) = c / lf2;
end

Z = ZZ;
z = sum(Z >= .5)/N;

Note: swap is a function that interchanges the contents of two
variables a and b
rm is a light version of the build-in repmat function.

Harmonic Index of Discernibility (Algorithm 3.2)

function [z Z] = IDND6(I,O,q,Q)

% Yet another IDND alternative

N = size(I,1);
a = length(O);
if a ~= N
 error(‘I and O sizes do not match!’)
end

if nargin < 3
 [q Q] = nc(O);
end

class{q} = []; NN(q) = 0;
for I = 1:q
 class{I} = find(O==Q(i));
 NN(i) = length(class{I});
end

d(N,N) = Inf;

 126

for I = 1:(N-1)
 X = ones((N-I),1)*I(I,:);
 d((i+1):N,i) = sum((X - I((i+1):N,:)).^2,2) ;
 d(i,i) = Inf;
end

D = d + d'; % A compact form of the distance matrix
ZZ(N) = 0;

for i = 1:N
 f = (O(i) == Q);
 otherclasses = 1:N;
 otherclasses(class{f}) = [];
 z1 = sqrt(NN(f) / (sum(1./(d(class{f}) + eps)) - eps));
 z2 = sqrt((N - NN(f)) / sum(1./(d(otherclasses) + eps)- eps));
 ZZ(i) = max(((z2 - z1) / (z1 + z2)) , 0);
end

Z = ZZ;
z = sum(Z>0.5)/N;

Discernibility k Nearest Neighbour Classifier (Algorithm 4.1)

function [y Dcy cpu] = DNNK(P,T,PT,K)

if nargin < 4
 K = 5;
end

[N na] = size(P);
n = size(PT,1);
[q, Q, cs] = nc(T);

t = cputime;

class{q} = [];
for I = 1:q
 class{I} = P((T==Q(i)),:);
end
[z Z] = IDND5(P,T);

cpu = cputime – t;

% N = number of elements in training set
% n = number of elements in testing set
% na = number of attributes (=features)
% q = number of classes
% Q = classes vector

Y(n) = 0; DCY(n) = 0;
for I = 1:n % Do this for every element to be classified
 z = zeros(q,1);
 X = PT(I,:);
 d(1:N,1:2) = 0; % Squared distance vector
 D(:,1) = sum(((rm(X,N,1) – P).^2),2);
 D(:,2) = T;
 D(:,3) = Z;
 DK = ksr(D,K);
 for j = 1:q

 127

 f = (DK(:,2) == Q(j));
 z(j) = sum(DK(f,3)./(DK(f,1)+eps));
 end

 [M ind] = max(z);
 Y(i) = Q(ind);
 DCY(i) = M / sum(z);
end % of FOR I

y = Y;
Dcy = DCY;

Weighted k Nearest Neighbour Classifier (Algorithm 4.2)

function [y DCy cpu] = WKNN(P,T,PT,K)

% WkNN - Weighted Nearest Neighbour K
%
% A variation of NNK, using the independence vetors of each
attribute, provided
% by IDND5, as weights for the distance vectors used for the
classification.

if nargin < 4
 K = 5;
end

[N na] = size(P);
n = size(PT,1);
[q, Q] = nc(T);

t = cputime;

Z = zeros(N,na);
for i = 1:na
 [z Z(:,i)] = IDND5(P(:,i),T);
end

cpu = cputime - t;

for i = 1:n
 d = sum(((repmat(PT(i,:),N,1) - P).^2),2);
 [m ind] = min(d);
 w = Z(ind,:)';
 d(:,1) = ((repmat(PT(i,:),N,1) - P).^2)*w;
 d(:,2) = T;
 ds = sortrows(d); % Sorted distances
 D = ds(1:K,:); % K nearest neighbours
 for j = 1:q
 c(j) = length(find(D(:,2)==Q(j))); % Class counter
 end
 [M ind] = max(c);
 DCY(i) = M/(sum(c));
 Y(i) = Q(ind);
end

y = Y;
DCy = DCY;

 128

Variable k Nearest Neighbour Classifier (Algorithm 4.3)

function [Y DCY K cpu] = VKNN(P,T,PT)

% NNVK - Nearest Neighbour with Variable K parameter

% Some fundamental variables defined here
N = size(P,1);
n = size(PT,1);
[q, Q] = nc(T);

% N = number of elements in training set
% n = number of elements in testing set
% na = number of attributes (=features)
% q = number of classes
% Q = classes vector

t = cputime;

D = dmatrix(P); % the distance matrix of the training set
BK(N,2) = 0; % Best K list
minN = min((N-1),20);
tempDC(minN) = 0;
for i = 1:N
 temp = D(i,:)';
 [st(:,1) ind] = sort(temp);
 st(:,2) = T(ind);
 for j = 1:minN
 temp = st(1:j,:);
 a = sum(temp(:,2)==T(i));
 tempDC(j) = a/j;
 end
 [M ind] = max(tempDC);
 BK(i,:) = [i ind];
end
clear D temp
cpu = cputime - t;
k(n) = 0; Y(n) = 0; DCY(n) = 0;

for i = 1:n
 x = PT(i,:);
 temp(:,1) = sum((rm(x,N,1) - P).^2,2)';
 temp(:,2) = 1:N;
 temp(:,3) = T;
 [TEMP IND] = sort(temp(:,1));
 ind = IND(1);

 k(i) = BK(temp(ind,2),2); % this is the optimum k of the nearest
neighbour

 st = [TEMP temp(IND,2:3)];
 knn = st(1:k(i),3);
 for j = 1:q
 a(j) = sum(knn==Q(j));
 end
 [M ind] = max(a);
 Y(i) = Q(ind);
 DCY(i) = M / sum(a);
end

 129

K = sum(k)/n;

Class-Based k Nearest Neighbour Classifier (Algorithm 4.2)

function [y DCy cpu] = CBKNN(P,T,PT)

[N na] = size(P);
n = size(PT,1);
[q, Q] = nc(T);

t = cputime;

for i = 1:q
 f = find(T==Q(i));
 class{i} = P(f,:);
 cs(i) = length(f); % Class Size
end

cputemp = cputime - t;

% N = number of elements in training set
% n = number of elements in testing set
% na = number of attributes (=features)
% q = number of classes
% Q = classes vector

for i = 1:n % Do this for every element to be classified
 X = PT(i,:);
 t = cputime;
 for k = 1:(min(min(cs),12))
 for j = 1:q
 d(1:N,1:2) = 0; % Squared distance vector
 d = sum(((repmat(X,cs(j),1) - class{j}).^2),2);
 ds = sort(d); % Sorted distances
 D(j) = harmean(ds(1:k),1,.0001); % Average distance of K
nearest neighbours of class
 end
 [m ind] = min(D);
 Ytemp(k) = Q(ind);
 if m == 0
 DCYtemp(k) = 1;
 else
 DCYtemp(k) = 1/(m*sum(1./D));
 end
 end % of FOR k
 cputemp = cputemp + cputime - t;
 [M ind] = max(DCYtemp);
 Y(i) = Ytemp(ind);
 DCY(i) = DCYtemp(ind);
end % of FOR i

y = Y;
DCy = DCY;
cpu = cputemp;

Net Reliability (Equation 3.4)

function z = NR(y, TT, DCy)

 130

% Net Reliability
%
% This function computes the Net Reliability of a classifier, based
on a
% given classification (y) and its degree of certainty for that
(DCy).
%
% (c) by Zack Voulgaris, Crete 25/8/'06

n1 = length(y); % The number of elements classified
n2 = length(TT);
n3 = length(DCy);
if (n1 ~= n2)|(n1 ~= n3)
 error('Input vectors do not match in length!');
end

v = (y == TT'); % Vector of correctly classified elements
% n = sum(v); % Number of correctly classified elements

z = sum((2*v - 1).*DCy)/n1;

Individual Feature Filter (Figure 5.1)

function [ITr2 ITe2 NFS] = IFF(P, PT, T, th)

% Feature Selector function 3 (irrelevant to 1 & 2).
% Copyright by Zack Voulgaris, London, March - September 2007

sT = size(T);
[N ind] = max(sT); % Number of elements
[r na] = size(P);

if r ~= N
 error('Dimensionality of Input and Output do not match!')
end

[r c] = size(PT);
if c ~= na
 error('Dimensionality of Input and Output do not match!')
end

if sT(3-ind) ~= 1
 error('Target Training must be a vector')
end

p(na) = 0;
for i = 1:na
 p(i) = IDND5(P(:,i),T);
end

if nargin < 4
 th = harmean(p,2,eps);
end

NFS = find(p>=th);
ITr2 = P(:,NFS);
ITe2 = PT(:,NFS);

 131

Note: harmean is a function calculating the harmonic mean of an array
p.

Group Feature Selector (Algorithm 5.1, Figure 5.2)

function [ITr2 ITe2 NFS] = GFS(P, PT, T)

% Feature Selector function 10 (irrelevant to 1, 2 & 3)
% A variation of Feature Selector 6. Here features are added and
pruned at
% the same time, until the optimum feature set is found.

% Copyright by Zack Voulgaris, London, April-September 2007

sT = size(T);
[N ind] = max(sT); % Number of elements
[r na] = size(P);
if r ~= N
 error('Dimensionality of Input and Output do not match!')
end

[r c] = size(PT);
if c ~= na
 error('Dimensionality of Input and Output do not match!')
end

if sT(3-ind) ~= 1
 error('Target Training must be a vector')
end

[q Q] = nc(T);

% ID0 = IDND5(P, T); % Original ID
% RR = sprintf ('%0.5g', 100*ID0);
% ['Original IDND: ' RR '%']

% Building up starts here

Itemp = P(:,1); FS = 1;
% IDtemp = IDND5(Itemp,T);
AF = 2:na; % Available Features
naf = na - 1; % Number of Available Features
ff = 1;
flag = 1;
tempID = zeros(1,naf);

for i = 1:naf
 temp = [Itemp P(:,AF(i))];
 tempID(i) = IDND5(temp,T,q,Q);
end
[M ind] = max(tempID);
FS = [FS AF(ind)]; ff = ff + 1; naf = naf - 1;
Itemp = [Itemp P(:,AF(ind))];
IDtemp = M;
AF(ind) = [];
clear temp

tempID = zeros(1,ff);

 132

for i = 1:ff
 temp{i} = Itemp;
 temp{i}(:,i) = [];
 tempID(i) = IDND5(temp{i},T,q,Q);
end
[M ind] = max(tempID);
if M >= IDtemp
 ff = ff - 1;
 naf = naf + 1;
 AF = [AF FS(ind)];
 FS(ind) = [];
 Itemp(:,ind) = [];
 IDtemp = M;
end
clear temp

while flag == 1
 for i = 1:naf
 temp = [Itemp P(:,AF(i))];
 tempID(i) = IDND5(temp,T,q,Q);
 end
 [M ind] = max(tempID);
 if M > IDtemp
 FS = [FS AF(ind)]; ff = ff + 1; naf = naf - 1;
 Itemp = [Itemp P(:,AF(ind))];
 AF(ind) = [];
 IDtemp = M;
 else
 flag = 2;
 break
 end

 for i = 1:naf
 temp = [Itemp P(:,AF(i))];
 tempID(i) = IDND5(temp,T,q,Q);
 end
 [M ind] = max(tempID);
 if M > IDtemp
 FS = [FS AF(ind)]; ff = ff + 1; naf = naf - 1;
 Itemp = [Itemp P(:,AF(ind))];
 AF(ind) = [];
 IDtemp = M;
 else
 flag = 0;
 end
 clear temp

 tempID = zeros(1,ff);
 for i = 1:ff
 temp{i} = Itemp;
 temp{i}(:,i) = [];
 tempID(i) = IDND5(temp{i},T,q,Q);
 end
 [M ind] = max(tempID);
 if M >= IDtemp
 ff = ff - 1;
 naf = naf + 1;
 AF = [AF FS(ind)];
 FS(ind) = [];
 Itemp(:,ind) = [];
 IDtemp = M;

 133

 end
end

if flag == 2
 clear temp
 tempID = zeros(1,ff);
 for i = 1:ff
 temp{i} = Itemp;
 temp{i}(:,i) = [];
 tempID(i) = IDND5(temp{i},T,q,Q);
 end
 [M ind] = max(tempID);
 if M >= IDtemp
 ff = ff - 1;
 naf = naf + 1;
 AF = [AF FS(ind)];
 FS(ind) = [];
 Itemp(:,ind) = [];
 IDtemp = M;
 end
end

NFS = FS;
ITr2 = Itemp;
ITe2 = PT(:,NFS);
% RR = sprintf ('%0.5g', 100*IDtemp);
% ['Reduced Feature Set IDND: ' RR '%']

Data (Pattern) Reducer (Figure 5.3)

function [P2 T2 A] = PR(P,T,th)

% Pattern Reduction

if nargin < 3
 th = .25;
end

% R = 10000000; % repeating ID calculation parameter
[N na] = size(P);
n = round(N * th);

[T ind] = sort(T);
P = P(ind,:);
Q = [T(1) nan nan nan nan nan nan nan nan nan];
q = 1;
class{20} = []; c(20) = 0; cc(20) = 0;
temp = T;

for i = 1:inf
 ff = (1:N)'.*(temp == Q(q));
 f = ff(ff>0);
 c(q) = length(f); cc(q) = cc(q) + c(q);
 class{q} = [class{q};f];
 temp(f) = NaN;
 if sum(isnan(temp))==N
 break
 end
 q = q + 1;
 Q(q) = temp(cc(q-1)+1);

 134

 cc(q) = cc(q-1) + cc(q);
end

Q = Q(1:q);
a = [1 (cc(1:(q-1))+1)];
A(n,2) = 0; % Matrix showing patterns to be discarded
D(N,N) = 0; % Distance matrix of dataset
ad(q) = 0; % Average distance of class

for i = 1:q
 d = dmatrix3(P(class{i},:));
 ad(i) = sum(sum(d))/(c(i)*(c(i)-1));
 D(a(i):cc(i),a(i):cc(i)) = d / ad(i);
end

[z Z] = IDND5(P,T);
DD(q,N) = 0; % Minimum distance

for i = 1:q
 [M ind] = max(Z(class{i}));
 A(i,1) = ind + a(i) - 1;
 A(i,2) = i;
 Z(A(i,1)) = 0;
 DD(i,:) = D(A(i,1),:);
end

v(q,N) = 0;

for i = (q+1):n
% p = round(100*i/n);
% if mod(i,R) == 0
% clc,disp(p)
% temp = A((A(:,1)>0),1);
% P1 = P; T1 = T;
% P1(temp,:) = repmat(inf,length(temp),na);
% [z Z] = IDND5(P1,T1);
% Z(temp) = 0;
% end

 for j = 1:q
 v(j,:) = DD(j,:).*Z;
 end

 [M r c] = mmax(v); % r = class, c = pattern
 Z(c) = 0;
 A(i,:) = [c r];
 DD(r,:) = min(DD(r,:),D(A(i,1),:));
end

% p = 100;clc,disp(p)

P(A(:,1),:) = []; T(A(:,1)) = [];
P2 = P; T2 = T;

 135

Degree of Reliability (Section 3.4)

function [DRy elite] = DR(P,T,PT,yy,classifier)

if nargin < 5
 classifier = 'NNKlite';
end

[q, Q, NN, class] = nc(T); % Class information
[N na] = size(P);
n = size(PT,1);

% Create Validation set (V matrix and TV vector)

[ITR ITE TTR TTE] = KFCV(P,T,4);

th(4) = 0;
for k = 1:4

 P1 = ITR{k}; T1 = TTR{k};
 V = ITE{k}; TV = TTE{k};
 N1 = length(T1); m = length(TV);
 for i = 1:q
 temp = (1:m)'.*(TV==Q(i));
 classV{i} = temp(temp>0);
 LC(i) = length(classV{i});
 end

 DRY(m) = 0;
 [y DCy] = feval(classifier,P1,T1,P1);
 DCY = sum(DCy);
 AR = sum(y==T1'); % Self-assessment of classifier
 for i = 1:m
 X = V(i,:);
 CX = (yy(i)==Q);
 P2 = [P1; X];
 T2 = [T1; Q(CX)];
 [y DCy] = feval(classifier,P2,T2,P1);
 d = sum((repmat(X,(N-m),1) - P1).^2,2);
 classi = classV{CX};
 otherclasses = 1:N1;
 otherclasses(classi) = [];
 z1 = sqrt(LC(CX) / (sum(1./(d(classi) + eps)) - eps));
 z2 = sqrt((N1 - LC(CX)) / sum(1./(d(otherclasses) + eps) -
eps));
 Z = max(((z2 - z1) / (z1 + z2)) , 0);
 DRY(i) = ((sum(y==T1')/AR)*sum(DCy)/DCY * Z).^(0.5);
 end

 TH = 1.05; M = 0;
 for i = 1:20
 TH = TH - 0.05;
 temp = (1:m).*(DRY>=TH);
 ELITE = temp(temp>0);
 if isempty(ELITE)
 Z(i) = NaN;
 else
 Z(i) = (sum(y(ELITE)==TV(ELITE)')) / length(ELITE);
 if Z(i) > M
 M = Z(i);
 ind2 = i;

 136

 end
 end
 end

 [M ind1] = max(Z);
 th(k) = 1.05 - 0.025*(ind1 + ind2);
end % of k loop

th = median(th)
DRY(1:n) = 0;
[y DCy] = feval(classifier,P,T,P);
DCY = sum(DCy);
AR = sum(y==T'); % Self-assessment of classifier
for i = 1:n
 X = PT(i,:);
 CX = (yy(i)==Q);
 P2 = [P; X];
 T2 = [T; Q(CX)];
 [y DCy] = feval(classifier,P2,T2,P);
 d = sum((repmat(X,N,1) - P).^2,2);
 classi = class{CX};
 otherclasses = 1:N;
 otherclasses(classi) = [];
 z1 = sqrt(NN(CX) / (sum(1./(d(classi) + eps)) - eps));
 z2 = sqrt((N - NN(CX)) / sum(1./(d(otherclasses) + eps) -
eps));
 Z = max(((z2 - z1) / (z1 + z2)) , 0);
 DRY(i) = ((sum(y==T')/AR)*sum(DCy)/DCY * Z).^(0.5);
end

f = (DRY >= th);
temp = (1:n).*f;
elite = temp(temp>0);
DRy = min(DRY,1);

Note: NNKlite is a light version of the classic kNN classifier. This
is selected as the default classifier, in case the user doesn’t
define a classifier to be used.

Minimum Spanning Tree Classifier (Algorithm 4.3)

function [y DCy cpu] = MSTC(P,T,PT)

t = cputime;

[q Q] = nc(T);
[N na] = size(P);
N2 = length(T);
[n na2] = size(PT);

if (N ~= N2)||(na ~= na2)
 error('Dimensionality mismatch!')
end

C{q} = []; TB{q} = []; N(q) = 0; p(q) = 0; Y(n) = 0; DCY(n) = 0;
for c = 1:q
 f = (T == Q(c));
 C{c} = P(f,:); % Class cell
 DM = dmatrix(C{c});
 [temp TB{c}] = MST(DM);

 137

 N(c) = sum(f);
end

cpu = cputime - t;

for i = 1:n
 X = PT(i,:); % Test element to be classified
 for j = 1:q
 D = sum((ones(N(j),1)*X - C{j}).^2 , 2);
 [d1 ind1] = min(D);

 d1 = sqrt(d1);

 f1 = find(TB{j}(:,1) == ind1);
 f2 = find(TB{j}(:,2) == ind1);
 lf = length(f1) + length(f2);
 TEMP = [C{j}(TB{j}(f1,2) , :); C{j}(TB{j}(f2,1) , :)];
 dtemp = sum((TEMP - ones(lf,1)*X).^2 , 2);
 [d2 ind2] = min(dtemp);
 d2 = sqrt(d2);
 d3 = sqrt(sum((TEMP(ind2,:) - C{j}(ind1,:)).^2 , 2));
 clear dtemp
 if d2 >= sqrt(d1^2 + d3^2)
 d = d1; % d = shortest distance to the branch
 else
 t = (d1 + d2 + d3) / 2;
 area = sqrt(t*(t-d1)*(t-d2)*(t-d3));
 d = 2*area / d3;
 end
 p(j) = 1 / (d + eps);
 end
 [M ind] = max(p);
 Y(i) = Q(ind);
 DCY(i) = M / sum(p);
end

y = Y;
DCy = DCY;

Minimum Spanning Tree function (auxiliary program for MSTC)

function [y C] = MST(P)
% MST Minimum Spanning Tree (using Prim Algorithm variation)
%
% D = distance matrix
% C = connections matrix for MST
% y = minimum distance
%
% Created by Zack Voulgaris, London 29/9/'06

n = size(P,1);

d(n,n) = Inf;
for i = 1:(n-1)
 X = ones((n-i),1)*P(i,:);
 d((i+1):n,i) = sum((X - P((i+1):n,:)).^2,2);
 d(i,i) = Inf;
end

D = d + d';

 138

CC = [];
yy = 0;
c = 1;

[m f] = min(D(1,:));
CC = [CC;1 f];
yy = yy + m;
c = c + 1;
D(1,f) = Inf; D(f,1) = Inf;
x(1) = 1; x(2) = f;

while c < n
 temp = D(x,:);
 [m1 ind1] = min(temp,[],2);
 [m ind2] = min(m1);
 fx = ind1(ind2);
 fy = x(ind2);

 CC = [CC; fy fx];
 yy = yy + m;
 c = c + 1;
 x(c) = fx;
 for i = 1:(c-1)
 D(x(i),fx) = Inf;
 D(fx,x(i)) = Inf;
 end
end

y = yy;
C = CC;

Distance Matrix (auxiliary program for MST)

function D = dmatrix(P)

N = size(P,1);

d = zeros(N);
for I = 1:(N-1)
 X = ones((N-I),1)*P(I,:);
 d((i+1):N,i) = sum((X - P((i+1):N,:)).^2,2);
end

D = sqrt(d + d');

Feature Subset function (auxiliary program)

function [FS IND] = fss(I, k, na)

% FSS – Feature SubSets
%
% Creates k feature subsets of original dataset (I, O) containing na
features.
% The subsets are not overlapping.

IND{k} = []; % Feature Subset
m = floor(na / k); % Number of features in every feature partition
af = 1:na; % Available features
naf = na; % Number of available features

 139

for j = 1:m
 for I = 1:(k-1)
 a = ceil(naf*rand);
 IND{I} = [IND{I} af(a)];
 af(a) = [];
 naf = naf – 1;
 end
end

IND{k} = af;

for I = 1:k
 IND{I} = sort(IND{I});
 FS{I} = I(:,IND{I});
end

Feature Subsets – Balanced (Section 7.2.1)

function [FS IND] = fssb(I, O, k, N, na)

% FSSB - Feature SubSets that are Balanced (in terms of
Discernibility)
%
% Creates k feature subsets of original dataset (I, O) containing na
features.
% The subsets are not overlapping.

th = 0.6; NI = 200; % Termination conditions (0.6 = 0.8 x 0.75)

IND{k} = []; % Feature subSet
m = floor(na / k); % Number of features in every feature partition
D(k) = 0;

d = disc(I, O, N);

AF = 1:na;
IND{k} = []; FS = IND;

c = 1;
v = 0; V = 0;
while (v < th)
 c = c + 1;
 af = AF; % Available features
 naf = na; % Number of available features
 ind = IND;
 for i = 1:(k-1)
 for j = 1:m
 a = ceil(naf*rand);
 ind{i} = [ind{i} af(a)];
 af(a) = [];
 naf = naf - 1;
 end
 D(i) = disc(I(:,ind{i}), O, N);
 end
 ind{k} = [IND{k} af];
 D(k) = disc(I(:,ind{k}), O, N);
 v = (min(D))^2 / (d * max(D));
 if v > V
 V = v;

 140

 indB = ind;
 end
 if c == NI
 ind = indB;
 break
 end
end

for i = 1:k
 IND{i} = sort(ind{i});
 FS{i} = I(:,ind{i});
end

return

%%%

function z = disc(I, O, N)

ZZ(N) = 0;
for i = 1:N
 D = [sum((repmat(I(i,:),N,1) - I).^2,2) O];
 D(i,:) = [];
 f = (D(:,2) == O(i));
 lf = sum(f);
 r = sum(D(f,1))/lf;
 f2 = (D(:,1) <= r);
 lf2 = sum(f2);
 c = sum(D(f2,2)==O(i));
 ZZ(i) = c / lf2;
end

z = sum(ZZ >= .5)/N;

Note: the disc function within the fssb function is the Spherical
Index of Discernibility function.

Feature Subsets – Diverse and Balanced (Section 7.2.1)

function [FS IND] = fssdb(P, T, PV, TV, C, N, na)

% FSSDB - Feature SubSets that are Diverse (in terms of errors)
% and Balanced (in terms of Discernibility)
%
% Creates k feature subsets of original dataset (P, V) containing na
features.
% The subsets are not overlapping and are as diverse as possible.
% C = classifier used
% PV = Validation set Input values
% TV = Validation set Target values

K = 20; % swarm size
NI = 250; % Total number of iterations

p = 3; % number of partitions

n = length(TV);
x(K) = 0; d(K) = 0;

 141

clear X temp V
combs = p*(p-1)/2;
X{K,p} = []; temp(p) = 0; V(n,p) = 0; temp2(combs) = 0;

for j = 1:K % swarm particle
 af = 1:na; % Available Features
 naf = na;
 for i = 1:p
 r = ceil(naf*rand);
 X{j,i} = [X{j,i} af(r)]; % Partition i
 af(r) = [];
 naf = naf - 1;
 end

 for i = 1:naf
 r = ceil(p*rand);
 X{j,r} = [X{j,r} af(i)];
 end

 for i = 1:p
 X{j,i} = sort(X{j,i});
 temp(i) = disc(P(:,X{j,i}),T,N); % discernibilies of subsets
 y = feval(C,P(:,X{j,i}),T,PV(:,X{j,i}));
 V(:,i) = (y' == TV);
 end

 c = 0;
 for i = 1:(p-1)
 for ii = (i+1):p
 c = c + 1;
 temp2(c) = div(V(:,i),V(:,ii),N);
 end
 end

 x(j) = mean(temp); % average discernibility
 d(j) = mean(temp2); % average diversity
 f = x.*d; % function to be maximised
end

[M ind] = max(f);
stop
%%%

function z = disc(I, O, N)

ZZ(N) = 0;
for i = 1:N
 D = [sum((repmat(I(i,:),N,1) - I).^2,2) O];
 D(i,:) = [];
 f = (D(:,2) == O(i));
 lf = sum(f);
 r = sum(D(f,1))/lf;
 f2 = (D(:,1) <= r);
 lf2 = sum(f2);
 c = sum(D(f2,2)==O(i));
 ZZ(i) = c / lf2;
end

z = sum(ZZ >= .5)/N;

 142

Note: the disc function within the fssdb function is the Spherical
Index of Discernibility function.

 143

Appendix C – List of Articles Published or Awaiting
Publication

Articles Published in Referred Proceedings of International Conferences

 Voulgaris, Z., Magoulas, G., 2008. Extensions of the k nearest neighbour methods

for classification problems. Proceedings of the 26th IASTED International

Conference on Artificial Intelligence and Applications, 23-28.

 Voulgaris Z., Magoulas G. D., 2008, A discernibility-based approach to feature

selection for microarray data. CD Proceedings of the IEEE International

Conference of Intelligent Systems, Varna, Bulgaria, Sept. 2008, IEEE Press.

 Voulgaris, Z., Magoulas, G. D., 2008. Dimensionality reduction for feature and

pattern selection in classification problems. Proceeding of The Third International

Multi-Conference on Computing in the Global Information Technology, Athens,

Greece, July 2008, 160-165.

 Voulgaris, Z., Magoulas, G. D., 2008. Discernibility-based approach for creating

ensembles in pattern classification applications. Proceedings of the UKCI

Conference, Leicester U.K., Sept. 2008, 195-199.

 Voulgaris, Z., Mirkin, B., 2008. Optimising a reliability measure for classification.

Proceedings of the UKCI Conference, Leicester U.K., Sept. 2008, 43-46.

Submitted Journal Articles

 Voulgaris, Z., Mirkin, B., 2008. Choosing a discernibility measure for reject-

option at a set of classifiers. Pattern Recognition Letters, under revision.

 Voulgaris, Z., Magoulas, G., 2008. Discernibility-based extensions of the k

nearest neighbour rule for pattern classification. Pattern Recognition, under

review.

 Voulgaris, Z., Magoulas, G., 2008. Nearest Neighbour Rules with Self-determined

k for Classification. Pattern Recognition Letters, under review.

