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Abstract

Little research has been conducted in investigating the implications of employ-
ing reflection in object-oriented (OO) systems on software qualities such as
coupling and reuse.

In this thesis, we investigate the reflective capabilities of Java as a rep-
resentative of mainstream OO languages and propose a behavioural reflection
model, which complements the language’s inextensible, introspective, structural
reflection model. We show that reflective systems based on the proposed model
support the principle of open implementation, and exhibit less coupling and a
higher level of code reuse. Programming examples explain how the behaviour
of such systems can be customised or adapted without changing their default
behaviour or structure. We then show that the model is also applicable to
distributed systems allowing for generic coding on the server side.

We address the question of assessing coupling and code reuse qualities of
reflective systems quantitatively. For this purpose, we define a dynamic cou-
pling metric and a measuring tool that allows the collection of object coupling
data at runtime. A case study shows that our coupling metric can be measured
automatically and confirms the hypothesis about the relatively low coupling of
reflective systems in comparison with equivalent systems based on the classi-
cal non-reflective programming model. As for code reuse, we define OO reuse
metrics by extending a set of metrics previously developed for procedural lan-
guages. A case study is used to confirm the hypothesis that reflective systems
are more reusable than non-reflective systems exhibiting the same behaviour.
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Chapter 1

Introduction

1.1 Problem and motivation

It is widely accepted that most research conducted in the past on evaluating
software quality of object-oriented (OO) systems can be characterised by the
following features:

1. The definition of static metrics at the class level for measuring various
quality attributes.

2. The analysis of system qualities where dynamic behaviour was only a
minor and inconsequential issue.

Moreover, little research has been conducted into investigating software quali-
ties of reflective systems. Only recently has research been focused on dynamic
object metrics with the aim of investigating the impact of reflection and OO
runtime mechanisms such polymorphism (in combination with inheritance) on
system quality attributes such as coupling, reuse and fault-proneness [13, 14,
55, 81].

Reflective systems incorporate structures representing themselves. They
are characterised by a variable dynamic behaviour, where, with the support of
reflection, retrieval of program information and change of program behaviour
as well as structure are permitted during execution. Maes [76] defines reflection
(also known as meta-programming) as “the process of reasoning about and/or
acting upon itself”.

There are various reasons for considering the reflective programming model.
Reflection makes software systems adaptable to change and allows for customis-
ing systems’ behaviour according to changing conditions. Adaptability means
adjusting the system to new requirements in a non-invasive manner thus po-
tentially reducing the costs of change. In the context of programming language
design, Kiczales et al. [67] observed that

1



CHAPTER 1. INTRODUCTION 2

“as languages become higher and higher level and their expressive
power becomes more and more focused the ability to cleanly inte-
grate something outside of the language’s scope becomes more and
more limited. An open language implementation that provides con-
trol over the language permits the programmer to shift the language
focus somewhat so that it becomes a better vehicle for expressing
what they have in mind.”

Many OO programming languages including popular (or mainstream) lan-
guages such as Java [7], C++ [92], C# [30] and Smalltalk [48] support reflection
to varying degrees. For example, the Meta-Object Protocols (MOPs) of the
Common Lisp Object System (CLOS) [21, 68] constitute an open system which
allows programmers to tune the language according to a user’s needs. Java
and C# provide library packages that permit programs to inspect their own
structures. C++ supports the detection of objects’ types at runtime through
the Run-Time Type Information (RTTI) mechanism. Smalltalk-80 provides a
rich reflective interface allowing programs to compile classes and methods on
the fly, change the class of instances and the inheritance hierarchy of a class.

The subject matter of this thesis is the investigation of the reflective ca-
pabilities of mainstream languages through the reflection models of Java, and
the study of coupling and reuse attributes of reflective systems based on the
language’s reflection models. We concentrate on the following features:

1. Reflective code can be implemented in a generic manner, thus enhancing
the level of code reuse.

2. In reflective systems, runtime object interactions are not necessarily or
entirely dictated by static class relationships, but are also determined
by runtime mechanisms provided by the language. Binding mechanisms
which assign meta-objects their application objects allow for change of
structure and/or behaviour of the application objects at runtime. Run-
time flexibility reduces coupling and enhances reuse.

3. Reflective systems inherently support the principle of separation of con-
cerns; meta-objects at higher levels can be assigned some tasks on behalf
of the objects they represent, i.e., base objects residing at lower levels
of the reflective tower. Applying the principle of separation of concerns
promotes system modularity.

4. Reflection allows programmers to take control over program implementa-
tion. As systems evolve, they must be adapted to changes in the envi-
ronment or intended use. Reflection supports the principle of open im-
plementation [69] which allows system customisations as add-on without
modifying default behaviour.
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Some authors differentiate between a reflective system and a meta-system.
Cointe [36], for example, represents a meta-system as a system consisting of
two parts in which the object system representing part of the real world is ex-
plicitly separated from the meta representation part. A reflective system, on
the other hand, is represented as one entity. This difference is irrelevant to
the work presented in this thesis and we shall only refer to reflective systems
henceforth.

Although reflective techniques and mechanisms play a major role in con-
structing generic software systems such as debuggers, networking facilities and
frameworks etc., reflection has not been, and still is not, part of common pro-
gramming practice. The reasons for this can be stated as:

1. Reflection is not an explicit part of the OO core paradigm.

2. In the 1980s and in the 1990s, many industrial systems were developed
in Smalltalk, C++ and Java. With Smalltalk-80, the meta-class capa-
bilities of Smalltalk-72 were restricted and meta-programming was dis-
couraged [24]. In C++, meta-programming is restricted to the template
mechanism. No explicit representation of program structure is permit-
ted besides the class code representing the problem domain. The RTTI
mechanism of C++ can be considered to be only a weak reflective mecha-
nism which allows programs to detect the type of their objects at runtime.
Java supports introspection without allowing full structural reflection. A
program can inspect and reason about its structure at runtime, but the
program is not permitted to change this structure. In Chapter 3, we show
that Java’s dynamic proxies, first introduced in the Java Developing En-
vironment (JDK) version 1.3, provide the basis for defining a behavioural
reflection model [53, 57].

3. Reflective systems could be considered unstable and complex. An end-
user could potentially change the system and there is relative difficulty
of understanding and learning the coherence and connection between the
different levels (meta-levels and base level) comprising a reflective system.

4. Reflection has been confined to particular research areas such as Artificial
Intelligence (AI). Many languages supporting reflection, e.g., LISP and
its derivatives, are partly developed for research interests and play only a
minor role in developing industrial systems.

In this thesis we argue that combining the secure programming paradigm sup-
ported by popular languages (strong typing, compile-time checking, etc.) with
the reflective possibilities provided by the same languages allow for the construc-
tion of robust and flexible systems. Such systems, we claim, are qualitatively
better than pure static systems in terms of coupling and the degree of code
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reuse. This claim is based on the features listed in the previous paragraphs and
will be pursued in the course of the thesis.

We choose Java as a representative of mainstream programming languages
and study the language’s reflective models. The reasons for choosing Java
are among others: Java’s multiple platform portability, support of reflection
(though limited) and the richness of the language component library as well
as Application Programming Interfaces (APIs). The language library covers a
wide range of application domains such as distributed programming including
Web and Internet applications as well as multi-threading. Moreover, Java is
supported by a large programming community and is, at present, a popular
and widely used programming language.

The Thesis comprises two main components. Firstly, it explores the reflec-
tive capabilities of Java as a representative of mainstream OO programming
languages. Secondly, it employs the software metrics approach to assess quan-
tifiably the impact of employing reflection in constructing OO systems. The
latter component serves as a tool for demonstrating the viability of the former.
The use of metrics in the second half of the Thesis strengthens our claims about
the benefits of employing reflection made in the first half of the Thesis.

1.2 Thesis objectives and contribution

The objectives of this thesis, which at the same time represent its contribution,
are to show the advantages of employing reflection as part of an OO program-
ming paradigm. In the remainder of this thesis, we:

1) explore the reflective capabilities of Java as a representative of mainstream
languages and show that, in addition to the inextensible structural reflec-
tion model, there is a behavioural reflection model [53, 57],

2) investigate the software qualities of reflective systems, their coupling and
reuse qualities by proposing appropriate metrics. We define appropriate
metrics and demonstrate that use of reflective techniques quantitatively
lessens coupling and provide greater reuse opportunities than OO systems
using standard programming techniques [54, 55]

3) validate the proposed metrics theoretically against sets of formal criteria.
For our empirical validation, we present case studies and use a measuring
tool to collect dynamic coupling data automatically [56].

We believe that as reflective techniques become more accessible to the program-
ming community, reflection will be used more intensely in implementing indus-
trial applications than before. Our goal is to find appropriate programming
practices using reflection and, ultimately, to show that the reflective program-
ming model supports relatively low coupling and high code reuse.
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1.3 Thesis outline

The thesis is organised as follows. In the next chapter related work is dis-
cussed. Here, the results of the research work presented in the thesis are com-
pared with the work of other researchers in the fields of reflection models and
software metrics. In Chapter 3, the reflection capabilities of Java are reviewed
and a behavioural reflection model based on dynamic proxies presented. The
question of whether the proposed model supports open implementation design
is addressed. In Chapter 4, we show that the proposed reflection model is
applicable to distributed environments. Examples of distributed applications
based on RMI, CORBA and Java Servlets technologies are presented showing
that the model, as in the single application case, supports generic coding and
open implementation. Chapters 5 and 6 deal with the issue of measuring soft-
ware attributes of coupling and code reuse of systems built on the proposed
reflection model. The proposed metrics serve as a means of evaluating the
reflective programming paradigm and confirm our hypothesis about their cou-
pling and reuse qualities. In Chapter 5, a dynamic coupling metric is defined
and its theoretical validation against two sets of formal criteria discussed. For
the metric’s empirical validation, we developed a measuring tool and used it in
a case study to collect coupling data at runtime. In Chapter 6, we propose OO
code reuse metrics, validate these theoretically and apply them to a case study
where we compare the code reuse level of two functionally identical systems hav-
ing different architectural characteristics, namely, reflective and non-reflective.
Finally, in Chapter 7, we draw conclusions from our work and discuss future
research directions.



Chapter 2

Related Work

The contribution of this thesis referred to in the introduction can be split into
two parts. The first involves proposing a behavioural reflection model in Java
and showing that this model supports the open implementation design prin-
ciple and is applicable to distributed environments as well as to single Java
Virtual Machine (JVM) applications. The second part involves investigating
the software qualities of coupling and reuse of reflective systems based on the
proposed model. A dynamic coupling metric is defined and validated theoreti-
cally. For the empirical validation, a tool is developed and used in a case study
to show that coupling data can be collected at runtime. OO code reuse metrics
suitable for assessing reuse percentages of entire systems were also defined and
validated. The purpose of this chapter is to relate our work to the work of other
researchers in the fields of reflection models and software metrics and contrast
with that of others.

As for reflection models, Maes [76] introduced a reflection model in the
context of the 3-KRS language where each object was assigned a meta-object
representing its structure and the way it handled messages. In our model, an
application object can be assigned zero or more meta-objects representing the
object’s behavioural state. Our meta-objects provide no structural representa-
tion of their referents residing at the base level.

The nature of meta-objects in Maes’ model is not specified and 3-KRS is
not a class-based. Ferber [44] observed that there are two types of reflection
models representing solutions to the problem of adapting the 3-KRS reflection
model to class-based languages. The two solutions are based on identifying the
meta-object:

i. with the receivers’ class (first model), or

ii. with an instance of a specific class called META-OBJECT (second model).

In our model [53, 57], there are no meta-classes allowing for a dynamic creation
of instance classes at runtime. We do not alter the underlying object model of
Java where classes are compile-time entities representing the template behaviour

6
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of their instances (objects) created at runtime by invoking the method new().
Our meta-objects are not classes but instances of type java.lang.reflect.-

InvocationHandler. They are similar to META-OBJECT instances, in that
they include operational and control information about their referents, leaving
the structural information (i.e. the description of the internal structure of the
receiver) to the receiver’s class. The receiver class is a java.lang.reflect.Proxy

which acquires the type of the application object upon its creation. In Java, the
structural information can be obtained through the introspective API described
in the next chapter.

The proposed reflection model in this work does not represent an exten-
sion of the Java language, as for example in the case of AspectJ, [4] or Open-
Java [34, 95]. The two languages are prominent examples used in Aspect-
Oriented Programming (AOP) [70] and meta-programming, respectively. Lan-
guage extensions make use of an existing language environment (compiler, tools,
class-hierarchy etc.) to provide new programming features not available in the
original language. Although both language extensions add to the power of Java
in terms of structure and mechanisms, extra effort is needed to allow for a flexi-
ble structural and behavioural customisation of application objects at runtime.
In our model, although restricted to behavioural reflection, meta-objects can
be created and assigned to application objects at runtime.

In our model, application objects are encapsulated by proxies which delegate
control to meta-objects. In a similar fashion, Pascoe [86] used the exception
handling mechanism of Smalltalk-80 to define encapsulator objects and trap
messages sent to the encapsulated (base) objects. In Smalltalk-80, exception
handling works as follows: when an object receives a message for a method
it has not defined, the message #doesNotUnderstand() is sent to the receiver
with the original message and its arguments. The protocol of encapsulators
(including that of their predecessors) does not overlap with the protocol of
base objects. Consequently, messages are trapped by the #doesNotUnderstand()

method object which can be inspected and redefined to customise the behaviour
of the encapsulated objects.

As in the case of Smalltalk-80, the exception handling mechanism of CLOS
can be used to encapsulate base objects with the aim of defining meta-objects
to control the base objects. In CLOS, generic functions are used for polymor-
phic operations called messages in traditional OO languages. The exception
handling mechanism works similarly to that of Smalltalk-80 and can be used
to customise objects’ behaviour. However, there is an important difference: in
CLOS, there is no single receiver of a message. Object interactions are based on
generic functions. The methods to be performed are determined by the types
(and possibly the identities) of all their parameters. This so called multiple dis-
patch mechanism is in contrast to the single dispatch mechanism supported by
most of OO programming languages including Smalltalk. If a generic function
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is called and no methods are applicable, the function NO-APPLICABLE-METHOD()

is invoked with parameters including the generic function object for which no
applicable method was found and the list of arguments to that generic func-
tion. The generic function NO-APPLICABLE-METHOD() is not intended to be called
by programmers. However, programmers may write methods for it by which
objects’ behaviour can be modified.

Some languages provide mechanisms that support customisation of objects’
behaviour. For example, CLOS and early dialects of OO Lisp such as Fla-
vors [101] and Lisp Object-Oriented Programming System (LOOPS) [23] pro-
vide a mechanism that allow modification of object behaviour using auxiliary
methods together with method qualifiers such as :before, :after and :around.
The behaviour of an object can be modified by combining the primary method
of its generic function with auxiliary methods.

CLOS, through the MOP interface, constitutes an open system which al-
lows for modification of language abstraction and its implementation [67, 68].
Customising the underlying programming language instead of customising ap-
plications directly is not addressed in this thesis and is left for future research.

There is a close connection between reflective systems or meta-level archi-
tectures and systems based on the AOP approach. A reflective system can be
characterised by its separation of meta-objects from the objects they represent,
i.e., base objects. AOP separates functional modules of an application (known
also as application core concerns) from tasks which do not directly participate
in a system’s primary function (classified as non-functional features). The lat-
ter usually cross-cut the functional modules and are thus hard to modularize
using traditional OO abstraction mechanisms. As in AOP, reflection can sys-
tematically separate such non-functional (cross-cutting) features from the rest
of an application. We remark that separating cross-cutting aspects from an
application does not necessarily reduce coupling and lead to loosely coupled
and reusable aspects. However, combining Java’s introspective API with the
support of the principle of separation of concerns provided by AspectJ allow for
the implementation of generic reusable aspects [52]. The same applies to im-
plementing generic hyperslice definitions in Hyper/J [94], as shown by Hassoun
and Constantinides in [51].

In [19, 20], Biggerstaff discusses the reuse problem of scaling component
libraries such as APIs and foundation class libraries. Extending reuse libraries
in both component sizes and feature variations with acceptable performance
leads to the combinatorial explosion problem or the scaling problem. The key
problem of reuse libraries is that they are based on static components with
all corresponding activity, such as composition, refinement and specialization
being localized to predetermined areas of a target program. The solution to
combinatorial explosion of the component library, according to Biggerstaff, is
to build all feature variations into highly general components and leave com-
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ponent generation and composition decisions until runtime. The open imple-
mentation approach supported by our reflection model provides a solution to
the scaling problem of Java libraries. The question of how our model could be
used to counter potential scaling problems associated with Java libraries is not
addressed, since the issues lie outside the scope of this thesis.

In this thesis, we address some of the outstanding issues related to dynamic
coupling metrics. In the context of validating dynamic coupling metrics, other
researchers have used different techniques for collecting metric data at run-
time. Arisholm [13] uses Smalltalk features specific to the IBM-VisualWorks
programming environment to collect coupling data at runtime by intercepting
all the object messages sent and received. In [14], Arisholm et al. define a set
of dynamic coupling measures. To collect dynamic coupling data, the authors
use a tool in which the JVM loads a library of routines that are called whenever
specified internal events occur. The tool remains separate from the program
under study (the sample) and interacts with it through the JVM at runtime.
In both papers, the sample program remains separate from the process code
collecting data. Our measuring tool used in the context of empirical validation
of the dynamic coupling metric (DCM) is developed in a generic way indepen-
dently of the sampled program. We do not modify the source code to collect
coupling data at runtime [55, 56]. However, our approach is different from Ar-
isholm et al. in that it does not interfere in the JVM processing at runtime.
We also do not use vendor-specific features of the Java language. The specifi-
cation of events and the merging of source code with the program sample for
data collection are realized at compile-time. In our approach, knowledge of the
sample program is necessary, because the default DCM values depend on the
class structure.

Mitchell and Power define a number runtime metrics for coupling and cohe-
sion [81]. They use the Java Platform Debug Architecture (JPDA), available as
part of the Sun Microsystems Java 2 Standard Edition [7], to obtain a runtime
profile of the Java program under consideration. Their approach is restricted to
Java and requires extra tools for program samples written in other languages.
In contrast, our approach is applicable to a range of different languages. The
AOP techniques used for developing the data measuring tool support different
languages. AOP language extensions for C++, Smalltalk-80 and prototypes for
other languages are also available [3].

The research described in this thesis relates to reuse and the measurement
of code reuse in systems where reflective techniques are employed. A number
of metrics in the past have tried to capture the extent of software reuse. The
OO metrics of Poulin [87] include a Reused Source Instructions (RSI) metric
as well as various other development project based reuse metrics. The met-
ric is concerned with estimating the financial benefit of software development
within “product lines”. Withey [104] defines a product line as “a group of prod-
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ucts sharing a common managed set of features that satisfy the specific needs
of a selected market”. Czarnecki and Eisenecker [38] observe that the concept
of a product line is based on a marketing strategy and not on the technical
similarities between member products. The area of software product lines is of
relevance to our work, since reuse has a strong link with establishing generic
traits in software that can be used in different software artefacts with only minor
variation [40]. However, in our research, we are not concerned with estimating
the financial benefit, but only with the impact of using reflective techniques on
code reuse.

The most commonly referenced OO metrics are those of Chidamber and Ke-
merer [35] who proposed two inheritance-related metrics: Depth of Inheritance
Tree (DIT) and Number of Children (NOC). Both were intended to give the de-
signer an impression of expected reuse in an application through specialisation.
Chidamber and Kemerer also proposed the Coupling Between Objects (CBO)
metric as an indicator of reuse potential. However, we do not view CBO as an
indicator of direct reuse and together all three measures can only be used for
individual classes. They are not therefore suitable to quantify the code reuse of
an entire program. In addition, the metrics are design metrics; that is, they are
useful to assess the quality of software at the design level but are not adequate
for code reuse purposes.

Kang and Bieman investigated the impact of the shapes of inheritance trees
on code reuse and proposed corresponding reuse measures [63]. The authors
defined a set of metrics which classified forests of inheritance trees into a set
of five shape classes. The investigation provided useful guidance on the appro-
priate shape of an inheritance hierarchy for supporting code reuse. However,
inheritance is not the only mechanism supporting code reuse. Aggregation,
parametric polymorphism and reflection (if supported by the implementation
language) also achieve the same aim and support a motivation for this research
namely the development of appropriate metrics to model these OO features.



Chapter 3

Reflection in Java

In this chapter, we investigate the reflective programming model by introduc-
ing the notion of reflective object-oriented system. The underlying structure
of such a system is a reflective tower consisting of several levels. Objects at
higher levels are termed meta-objects and those residing in the base level are
called base objects. Further, we consider Java’s reflection model, review the
introspective structural reflection interface and define a behavioural reflection
model using dynamic proxies. Invocation handlers of proxies are interpreted as
meta-objects. The resulting reflective tower is two-level where proxy objects
(including invocation handlers) reside in the meta-level and application objects
populate the base level. Meta-objects can be used to customise the behaviour
of objects they represent (their referents). We give two examples showing the
scope of applicability of our model and discuss the model’s open implementation
design feature.

The chapter builds on the related work described in Chapter 2 in relation to
reflection models. It contributes to the overall thesis by providing the theoret-
ical foundation of the reflection model which we will be using in the following
chapters. In the first section, the concepts of reflection and reflective systems
are introduced. Section 3.2 provides an introduction to proxies. Proxy’s roles in
single-application systems as well as in distributed systems including Web appli-
cations are discussed and the difference between standard and dynamic proxies
stressed. Section 3.3 deals with Java’s reflection model. Here, the structural
reflection capabilities are reviewed and a behavioural reflection model based
on dynamic proxies is proposed. Section 3.3.4 compares our approach to be-
havioural reflection to that of building an MOP interface for customising the
behaviour of CLOS as the underlying programming language. In Section 3.4, we
consider the design principle of open implementation and address the question
of whether our model supports open architectures, i.e., systems that follow the
open implementation design principles. Two examples about customising ap-
plications’ behaviour are presented showing that the proposed reflection model
supports open architectures. In Section 3.5, the impact of applying the pro-

11
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posed model on systems’ attributes, such as coupling and reuse is discussed and
similarities between our approach and aspect-oriented programming paradigm
are identified. We end the chapter with concluding remarks in Section 3.6.

3.1 Reflection

Smith [91] defines reflection as “a process’s integral ability to represent, operate
on, otherwise deal with itself in the same way that it represents, operates on
and deals with its primary subject matter”. In [22], Bobrow et al. define reflec-
tion as “the ability of a program to manipulate as data something representing
the state of the program during its own execution. There are two aspects of
such manipulation: introspection and intercession. Introspection is the ability
for a program to observe and therefore reason about its own state. Intercession
is the ability for a program to modify its own execution state or alter its own
interpretation or meaning. Both aspects require a mechanism for encoding exe-
cution state as data; providing such an encoding is called reification”. Maes [76]
defines a reflective system as a system having itself as application domain and
that is causally connected with this domain.

For example, in CLOS, functions with a class as argument such as class--

direct-superclasses(), class-direct-slots() and class-direct-methods() al-
low a program to extract and inspect, respectively, a list of the immediate super-
classes, a list of non-inherited slots1 and a list of non-inherited methods. Java
provides an introspective interface which allow a program to get the same type
of information about each of its runtime objects. We discuss Java’s introspective
interface as part of the language structural reflection model in Section 3.3.1.

On the other hand, CLOS functions such as add-method() and remove-

method() can be used to change the structure of a generic function2 by adding
and removing corresponding methods defined for certain classes. Another ex-
ample is the standard generic function make-instance() which can be used to
create new class meta-objects by specifying their class meta-object, names, su-
perclasses and slots [68]. Unlike CLOS, where structural changes at runtime
are allowed, Java’s structural reflection model is restricted to introspection and
does not allow programs to create new classes, change classes or hierarchies at
runtime. However, behavioural change is permitted and in Section 3.3.2 we
discuss how it can be implemented in Java.

In OO systems, the structural entities are classes and objects. These entities
communicate by sending and receiving messages. In reflective OO systems,

1In CLOS, slots are synonyms for fields of a class instance, which in some OO languages
are called instance variables or attributes. For more details, refer to standard books on CLOS,
for example, [64].

2A generic function is a synonym for a message. It consists of a set of zero or more methods
and provides class-specific operations.
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certain structural and behavioural aspects of the base level are represented or
reified as meta-objects. Depending on the reflection model, meta-objects can
either be objects, i.e., normal class instances, or meta-classes. In the latter case,
meta-objects provide representations defining the structure of their classes as
well as handling of object messages [44]. We observe that the label meta-class
is rather arbitrary and that the role of the object entity in the reflection model
is more relevant. In [68], for example, Kiczales et al. refrain from calling higher
classes in the CLOS hierarchy meta-classes in spite of the fact that higher classes
provide representations of application objects at the base level(see Section 3.3.4
for more details). Various models of reflection are discussed in Section 3.3.

In [76, 77], Maes introduced a reflection model based on representation
of objects. Objects, in conventional object-oriented programming (OOP), are
representations of real world entities whereas meta-objects are representations
of objects. The role of meta-objects is to observe and modify the objects they
represent. Meta-computation is often performed by intercepting normal com-
putation carried out by normal objects. Meta-objects trap actions of their
referents, perform meta-computation and thereby customise or substitute ref-
erents’ actions. In Maes’s model, meta-objects themselves are objects and can
also be represented by meta-objects. The model leads to an infinite repetition
of meta-objects similar to the infinite tower of 3-Lisp [90]. Objects populating
the base level are called base objects and those residing at the higher levels
termed meta-objects. Base objects provide a representation of the application
domain and thus perform computation on entities of this domain. Meta-objects
perform computation on objects residing in the lower level. The code dealing
with meta-objects is called a meta-program. The program on which reflective
computation is performed is called the base program or simply the application.

Compared to static systems exhibiting the same interface, reflective systems
show a lower level of object coupling and, consequently, they are more reusable
and potentially easier to maintain [54, 55].

3.2 Proxies

We use proxies to develop a behavioural reflection model. This section serves
as an introduction to proxies and their use in software.

A proxy is a program that provides a communication bridge allowing differ-
ent applications to engage one another and exchange data. The idea of a proxy
can be utilized in many different ways; it can be used to protect applications
from each other as a firewall or it can cache exchanged data as a caching proxy.
Equally, a proxy can be used as a translator between applications with different
communication strategies, for example, Internet and legacy systems.

In OOP, proxies are entities that act as intermediaries between client objects
and target objects. The role of a proxy as a communication bridge between
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applications has many uses in software. From a design perspective, a proxy is a
design pattern [47]; it describes a general solution to common design problems
that occur repeatedly in different contexts. In distributed systems, including
Web applications, a proxy is a service that sits between application servers and
clients. This service receives requests from clients and makes requests to servers
on behalf of the clients. Figure 3.1 shows a typical situation for two classes,
Client and Target, where clients request service from target objects to fulfil
their tasks. The interface ITarget defines the list of services a target object can
provide. Here, only class names are shown and Unified Modelling Language
(UML) notation is used [10].

Figure 3.1: Clients request services from Target objects to fulfil their tasks

During the software life-cycle, proxies are useful as a means by which soft-
ware can accommodate new changes. For common problems like tracing, adapt-
ing classes, and in general, adding new features to an existing system, a proxy
provides an adequate solution. With a proxy, the code of existing classes need
not be modified; it is desirable to avoid changing existing code to reduce poten-
tial testing and maintenance costs. Figure 3.2 depicts the modified class struc-
ture representing the proxy solution. The Proxy class implements the same
interface and uses a Target object as a delegate. The proxy can manipulate
clients’ requests before dispatching control over to its delegate. If adapting a
new class to replace Target is required, the proxy retains the client interface by
implementing ITarget and delegates the client request to the object of the new
class.

Figure 3.2: A proxy can manipulate clients’ requests before dispatching control

In a networking context, a proxy can be utilized to support security, to
optimize performance or to act as a translator to support the embedding of
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legacy systems into the Internet. As firewalls, proxies can be used for build-
ing a security layer to prevent unauthorized access to corporate Web services.
Caching proxies are employed to reduce the network load as well as the server
load and HTTP proxies can be used to translate clients’ HTTP-requests into
the native language of legacy systems and return results back as HTML pages.
Proxies can also be used to implement lazy instantiation, i.e., to defer the costs
of creating and initialising an object until it is actually needed.

In addition to normal proxies, Java supports dynamic proxies. A Dynamic
Proxy API has been introduced in Java 2 Standard Edition (J2SE) version
1.3. Normal proxy classes are usually available as byte-codes after having been
compiled from the corresponding Java source files. The byte-codes are loaded
into the JVM before proxy objects are instantiated. The byte-codes of Java’s
dynamic proxies, on the other hand, are generated at runtime.

Figure 3.3 shows the key classes of our example involving dynamic prox-
ies. Here, key methods are shown using a part of the UML class notation.
ProxyFactory creates a proxy object and returns it back to the client by invok-
ing the static method newProxyInstance() of the Proxy class. Method invoca-
tion on the created proxy instance dispatches control to the invoke() method of
the AssociatedHandler object associated with the proxy. The binding between
proxy and target objects is realised at runtime through parameter passing. The
factory method createProxy() takes an object of type java.lang.Object as a
parameter. At runtime, and with the support of polymorphism, an object of
type ITarget can be passed. The target object is then passed further upon
creating an AssociatedHandler object.

Figure 3.3: Key classes of dynamic proxies’ dispatch mechanism

There are advantages to using dynamic proxies instead of normal proxies.
Firstly, from an OO design point of view, the class structure of Figure 3.3
exhibits less coupling between Proxy classes and Target classes when compared
to the static case. There is no direct relationship between these two class groups;
the coupling takes place dynamically at the object level. In fact, the type of
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the created dynamic proxy, i.e., the array of interfaces it implements, is set at
runtime with the creation of the proxy. Secondly, the dispatching mechanism of
dynamic proxies allows, using polymorphism and reflection, for implementing
generic behaviour independent of the targets’ types. As a strongly typed OO
language, Java supports subtype polymorphism (often referred to simply as
polymorphism). In [38], subtype polymorphism is defined as the mechanism
according to which variables of a given type can also hold objects of its subtype.
Johnson and Foote [62] refer to a polymorphic procedure as an object-oriented
mechanism supporting reuse. Essentially, the invoke() methods of the proxies’
associated handlers can be seen as polymorphic procedures.

While the use of proxies is generally advantageous, there are limitations to
employing proxies in a networking environment. HTTP Proxies must be prop-
erly installed before communication with legacy target systems can be estab-
lished. Security constraints of firewalls could hamper the development within
the corporate network. Benefits of caching proxies are constrained by several
factors such as cache replacement policy, minimum document size cached and
disk area allocated for caching.

3.3 Structural and Behavioural Reflection Models

In Section 3.1, we referred to two aspects of reflection, namely, introspection and
intercession and gave some examples. In this section, we review the reflection
models of Java in some detail and propose a behavioural reflection model based
on Java’s dynamic proxies.

At the class level, the reflection kernel of Java is composed of two classes
Object and Class, both of which belong to the java.lang package. Object

represents the ultimate superclass of the language’s inheritance hierarchy and
Class is a direct subclass of Object. At the object level, instances of both classes
can be derived from each other by invoking appropriate methods. An Object

instance can be created by invoking the method newInstance() on a Class object
and a Class instance can be obtained by invoking the method getClass() on
its object. In addition to Object and Class, Java provides a reflection package
java.lang.reflect including classes, which support structural reflection as well
as behavioural reflection.

3.3.1 Java’s introspective structural reflection

As noted in Section 3.1, introspection is the ability of a program to obtain
information about its own structure including its classes, its hierarchy and
the instantiation relationships of its objects. Java’s introspective API, which
constitutes the structural reflection model, is supported by Class and associated
classes like Method, Field and Constructor of the java.lang.reflect package.
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Upon the loading of its class by the JVM, an object acquires a unique in-
stance of Class representing its meta-object. By invoking the method getClass(),
the object’s class is reified allowing inspection of the structure of the system ap-
plication. Since Object lies at the root of every inheritance hierarchy, the class
of any application object can be reified and used to expose the object’s struc-
ture. A complete description of the type of a base object may be obtained by
invoking the various methods of Class on the corresponding meta-object. The
methods allow us to obtain representations of the class’ constructors, methods,
fields, superclass and interfaces. These representations in turn provide methods
that allow their structure, e.g., the types of fields and the parameter types of
methods, to be discovered. The process can be continued recursively to cover
the entire class hierarchy of the object under consideration.

Class is defined as final and has no public constructors, meaning that it can
be neither extended by inheritance nor instantiated. Instead, Class objects are
constructed automatically by the JVM as classes are loaded and by calls to the
defineClass() method in the class loader. Similarly, the classes Method, Field
and Constructor are also final and provide no public constructors. This shows
that Java’s introspection is limited to obtaining information about objects’
structures and that the (structural) reflective model supported by these classes
is fixed by the Java system and hence cannot be changed. Accordingly, the
class of an object can be reified at runtime and the object’s structure can be
uncovered. However, an application can neither change the behaviour of its
objects nor their structure.

3.3.2 A behavioural reflection model based on proxies

A behavioural reflection model allows programs to intervene in the current
execution of a program in order to execute some reflective code analysing or
modifying the course of events [39]. There are different implementations of the
model depending on the programming language. In the following, we show that
Java supports behavioural reflection through dynamic proxies, which include
the Proxy class and the InvocationHandler interface.

Ferber [44] sets three conditions for defining an OO reflective architecture:

1. what is the nature of meta-objects and/or meta-communications, and
what is their structure and behaviour?

2. how is the handling of messages and lookup of methods described at the
meta-level related to basic message passing?

3. when does the system use meta-object and/or meta-communication?

In [53], the author of this thesis with his supervisors proposed a two-level
OO reflective model based on Java’s dynamic proxies classes and dispatching
mechanism. In Figure 3.4, proxy objects at the meta-level include invocation
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handlers associated with proxies created at runtime. The proposal was based
on the following propositions:

1’. invocation handlers of dynamic proxies are meta-objects,

2’. message handling makes use of the dispatching mechanism provided by
dynamic proxies. Messages are handled at the base level if their receivers
are base objects. They are dispatched to meta-objects and handled at the
meta-level if sent to proxies representing application objects at the base
level. Eventually, meta-objects pass control to their referents,

3’. events that trigger the meta-level are method calls on proxy objects.

Upon instantiating a proxy, a base object is associated with the meta-object
thus reified. The proxy object acquires the type(s) of the base object without
implementing its interfaces explicitly.

Figure 3.4: A two-level reflective architecture with proxies

3.3.3 Meta-objects as a means of reflection

Our behavioural reflection model complements the structural reflection model
of Java. Both models are based on the meta-object approach, initiated by
Maes [76, 77]. In our model, a meta-object can have many or no referents,
and, conversely, a base object can be represented by an arbitrary number of
meta-objects.

Ferber [44] identifies three different models of reflection in the domain of
OO languages.

i. Classes as meta-objects: In this model, the class of object is usually
considered as its meta-object.

ii. Meta-Objects as instances of the class Meta-Object: In this model, meta-
objects are defined as instances of a class called META-OBJECT instead of
being identified with the receiver’s class, i.e., with the class of the object
receiving a message (case i.). The meta-objects differ from the class of
the receiver and include only operational and control information.
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iii. Reflection as a reification of communications: In this model, meta-objects
are defined as communication objects, which can react to sending mes-
sages.

Our reflection model has similarities with the second model (ii.). This model is
a variation of the meta-object approach of Maes, as observed by Ferber in [44].
Our meta-objects are instances of classes of type InvocationHandler. These
classes are different from the classes of potential referents. They can be made
to implement generic code independent of the types of the referents at the base
level. This code is meant to customise the behaviour of base objects and does
not include any data describing the internal structure of base objects. Further,
as with Ferber’s second model (ii.), our model is concerned only with the issue
of how messages are intercepted and methods are applied, i.e., with behavioural
reflection, leaving structural issues to Java’s structural reflection model.

In the case where one base object is represented by a collection of meta-
objects, the former can be associated with the meta-object collection in two
different ways:

1. attaching the same base object to several meta-objects, i.e., using the
object’s reference as a parameter in the binding methods to all handlers,

2. first attaching the base object to one meta-object, then attaching the
binding reference obtained from the first binding to a second meta-object
and so on up to any number of subsequent handlers.

The first case results in different and independent reifications and requires dif-
ferent method invocations on the same object. The second case is more complex
and results in a chaining effect triggered by a method invocation on the object.
It starts with the handler to which the object instance is first attached and
continues at the meta-level over all the handlers in the sequence.

In the first case, the program flow depends on the order of the method
invocations triggering the reification processes within the application program
code. In the second case, the program flow depends on the order in the binding
sequence. The reification process is triggered by one method and the flow is
completely controlled by the meta-level.

To explain the second case, consider the combination of a generic tracing
handler (TracingHandler) with a bean active property handler (ActiveProperty-
Handler). The tracing handler intercepts all method invocations of any object
being attached to it such that it gives method related information before and
after the method is called. The active property handler transforms base ob-
jects’ attributes into active JavaBeans properties characterized by the firing of
an event when the state of the object changes. Further details on implement-
ing generic tracing and active properties transformation code are presented
in Section 3.4. The chaining relationship at the meta-level is, in general, not
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commutative, i.e., the relationship [TracingHandler, ActivePropertyHandler] has
different semantics when compared to its reverse and depends on the handler
implementations. Intercepting a set method by an ActivePropertyHandler in-
volves calling get methods before and after invoking the method itself. As a
result, with the first case, only explicit set method calls at the base level will
be traced and the listener reaction will be accounted for. In the second case,
however, in addition, the get method calls within the ActivePropertyHandler

implementation will be traced.

3.3.4 Comparison with CLOS MOPs

In CLOS, customising the default behaviour of the underlying language as a
mechanism for modifying application behaviour is realised in three steps. These
steps constitute a procedure for extending the language by building a MOP
interface [68]:

1. Use subclassing (or inheritance) to derive specialised meta-object classes
from standard meta-object classes, for example:

(defclass derived-class(standard-class) ...)

2. Modify standard methods which are generic functions applied to standard
meta-object classes (and which define the language default behaviour) by
defining corresponding methods specialised to meta-object classes defined
in the first step. The specialised methods constitute behavioural customi-
sation and can be added using method qualifiers.

3. Create specialised class meta-objects by instantiating specialised meta-
object classes defined in the first step. The specialised class meta-objects
inherit the behaviour of the standard class standard-class through inher-
itance but they also show additional behaviour as defined in the second
step. Instances of the specialised class meta-object exhibit the customised
behaviour when the modified methods are called on them.

Our approach, based on the reflection model proposed in the previous section,
does not modify the underlying language. Instead, it provides (generic) imple-
mentations for customising application behaviour in a form similar to library
routines. In comparison with the MOP approach of CLOS, we note that:

1. We use inheritance and derive classes from java.lang.reflect.Invocation-

Handler for implementing behaviour customisation. Objects of these classes
are termed meta-objects.

2. Standard language methods are not modified. Bahaviour customisation
is implemented in the invoke() method of InvocationHandler.
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3. We use the proxy creation method to assign application objects to meta-
objects. Creating a proxy represents a reification of customising the be-
haviour of the base object being assigned. By invoking an object’s meth-
ods on the proxy, customisations of object behaviour are reflected back
to the base level.

Kiczales et al. [68] label all instances of the specialised class meta-objects rep-
resenting program domain as objects whereas all other entities are labelled as
meta-objects. Meta-objects are distributed over a multilevel hierarchy with
t class at the root, followed by standard-object. The next meta-level hosts
the standard meta-object classes and consists of standard-class, standard--

generic-function and standard-method. User defined meta-objects are termed
specialised meta-object classes and their instances are called class meta-objects.
Instances of the latter provide representation of the program domain and are
termed objects.

Throughout this thesis, we retain the terminology used in popular OO lan-
guages where classes are strictly compile-time entities providing template be-
haviour of their instances, which are created at runtime. In OOP, classes can
be divided into system classes (class hierarchy and runtime support) and user
defined classes. Unlike Kiczales et al., we do not associate any meta attributes
with the root class java.lang.Object; although the class is part of the pro-
gram domain and not of the application domain. The same applies to classes
of the Java package libraries or other user defined classes that may be used to
represent the program domain.

We need, however, to extend the popular OO terminology used in Java
and introduce the concept of meta-object. In the previous section, we have
seen that Java’s runtime system supports the concept of meta-objects. In
Java’s structural reflection model, meta-objects are runtime entities of type
java.lang.Class which can be reified and used to expose the structure of appli-
cation objects. Our model adds another type of meta-object which can be used
to customise the behaviour of application objects. These meta-objects are run-
time entities of type java.lang.reflect.InvocationHandler and can be reified
using dynamic proxies. Instance of classes representing the problem domain are
termed base objects.

3.4 Open Implementation

In computer science, the principle of abstraction plays a fundamental role in
overcoming the complexity inherent in large software systems. Abstraction is
used as a means by which uninteresting details can be removed while keeping
the desired essence. The traditional way of applying abstraction follows the
principle of information hiding according to which implementation details are
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separated from and hidden behind a module’s interface. The interface rep-
resents an abstraction barrier separating clients from implementation. Data
provided at the abstraction barrier is the only means by which clients can ma-
nipulate the abstraction; this strategy of information hiding is also known as
black-box abstraction [74, 85].

The concept of information hiding was first introduced by Parnas [85]. He
argued that in implementing a system, difficult design decisions or decisions
which are likely to change subsequently should be assigned to modules and not
to subroutines. Design decisions transcend execution time and therefore design
modules need not correspond to processing steps. Each module should be de-
signed so as to hide the internal details of its processing activities and modules
communicate only through well-defined interfaces. According to Meyer [80],
information hiding emphasizes separation of a module’s function from its im-
plementation. Meyer defines information hiding as a selected subset of the
module’s properties that can be made available to the authors of client mod-
ules. A principle related to information hiding is that of encapsulation, which
is part of the OO paradigm and supported by OO languages. Encapsulation
is sometimes used as a synonym for information hiding, but the two are dif-
ferent. Encapsulation is closely related to the concept of Abstract Data Type
(ADT) which bundles data with methods that operate on that data. Often
data abstraction as implemented in ADT is wrongly interpreted to mean that
data is somehow hidden. Encapsulating data does not necessarily imply hiding
data, for we can, for example, define a class where data members are directly
accessible.

A module is conceived as a programming unit which handles one aspect of
the problem being solved. In OO, a module is identified more closely with a
class [58]. The principle of information hiding is not restricted to OO class
abstraction, however. Prior to the emergence of popular OO programming lan-
guages, Niklaus Wirth developed Modula-2 [103] as a language where separa-
tion between interface and implementation is supported explicitly. In Modula-2,
implementation details are hidden in an “Implementation Module” behind an
interface defined as “Definition Module”. In Ada [2], the programming units
used to hide implementation details are the “Packages”.

Despite the benefits of applying black-box abstractions such portability and
localisation of change, there are cases where it is advantageous to open im-
plementations and allow clients to change them. The open implementation
approach [65, 66] calls for a new and practical interpretation of the black-box
abstraction allowing clients some control over the selection of the implemen-
tation strategy while still hiding many true implementation details. That is,
in cases where default behaviour is inappropriate, clients can customise an im-
plementation according to their needs without changing its default behaviour.
An open architecture is a two-level reflective architecture in which the default
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implementation resides at the base level whereas the meta-level is optional and
can be used if the default implementation is inadequate to meet client’s require-
ments.

Our reflection model supports the principle of open implementation. The
goal of open implementation is to give clients some control over the implemen-
tation strategy of the modules while retaining the advantages of the traditional
closed implementation modules [69]. Our goal is to allow clients to modify the
behaviour of their applications by providing them with reusable code and a
meta-interface to access this code.

3.4.1 Open implementation guidelines

Kiczales et al. [69] proposed five design guidelines for implementing open ar-
chitectures. In the terminology of the authors, “a module represents a work
assignment and an interface is the set of assumptions a client programmer us-
ing the module may make about its behavior”. The guidelines are:

1. Open implementation module interfaces should support a clear separation
between client code that uses the module’s functionality (use code) and
client code that controls the module’s implementation strategy (ISC code)

2. Open implementation module interfaces should be designed to make the
ISC code optional, make the ISC code easy to disable, and support alter-
native ISC codes for one piece of use code.

3. Open implementation module interfaces should be designed to allow the
scope of influence of ISC code to be controlled in a way that is both
natural and sufficiently fine-grained.

4. Open implementation module interfaces should be designed to pass only
essential implementation strategy information.

5. When there is a simple interface that can describe strategies that will sat-
isfy a significant fraction of clients, but it is impractical to accommodate
all important strategies in that interface, then the interfaces should be
layered.

To analyse our reflection model according to the guidelines just presented, we
need to identify some expressions in the list with the terms used in this thesis.
An open implementation module in the work of Kiczales et al. corresponds
to a programming entity implementing our behavioural reflection model. The
implementation strategy (ISC code) corresponds to the code used to reify meta-
objects by creating proxies and to assign meta-objects their referents. Moreover,
the “use code” refered to in the list corresponds to the meta-code implementing
behaviour customisation. Default implementation is provided by the applica-
tion (at the base level).
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In reflective systems implementing our model, application code used to reify
meta-objects and trigger the meta-level is separated from customisation code
implemented at the meta-level. Thus the first guideline is satisfied.

The meta-code can be activated according to a certain procedure of assign-
ing application objects to meta-objects and invoking application methods on
the created proxy representing the first objects. Since this procedure is optional
and default implementation should work without the meta-program, the second
guideline is satisfied.

We assume that the meta-program is implemented in a generic manner in-
dependently of potential client applications. In this case, the scope of influence
is purely dynamic and affects only the behaviour of base objects assigned to
meta-objects at runtime. Thus the third guideline is satisfied.

In discussing guidelines 4 and 5, Kiczales et al. introduce the concept of ISC
code subject matter to express explicitly what the code is about. Recall that
“ISC code” corresponds to the code controlling the invocation of the meta-
program. The subjects that can be handled by this program depend on the
reflective model and its expressive power. The model is limited to behavioural
reflection; it does not, however, restrict the subjects to be handled. The appro-
priateness of implementing the model depends on the requirements of potential
client application.

It is possible to provide client applications with a set of alternatives cor-
responding to different subjects. To activate the meta-program, base objects
are passed to the meta-level together with additional parameters potentially
needed for execution of the desired behaviour. In this way, guidelines 4 and 5
are satisfied.

Therefore, the reflection model proposed in Section 3.3 provides means for
realising the open implementation design principle according to the guidelines
of Kiczales et al.

3.4.2 Customising applications’ behaviour

In our reflection model, base applications provide default behaviour and remain
executable without being bound to the meta-interface. Base applications corre-
spond to the default implementation of the clients’ modules. The meta-interface
provides access to customise the default implementation. If the meta-program
is implemented in a generic manner, we can use the meta-code to customise
arbitrary applications without changing their default behaviour.

In the following examples, we note that the base level application remains
executable without being attached to the meta-level. The meta-level program
is optional and is supposed to customise particular aspects of the application
to better meet new requirements.

We consider two examples showing how the proposed behavioural reflective
model supports open implementation for applications running on a single JVM.
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3.4.2.1 Tracing

Consider a tracing meta-object, which intercepts all method invocations of the
application objects it represents such that method related information before
and after the method is called is accessible. The tracing code implemented
at the meta-level using the proxies can be made available to any application
as part of a debugging and testing framework, without the need to change
the application code. The tracing strategy can be modified without affecting
potential client applications; applications can use the code without the need to
change the behaviour or the structure of any of their objects.

import java.lang.reflect.*; //1

public class ProxyFactory {

public Object createProxy(Object base_obj) throws Throwable {

Class c=base_obj.getClass();

ClassLoader cl=c.getClassLoader();

Class[] infs=c.getInterfaces();

Object proxy=Proxy.newProxyInstance(cl, infs, new TracingHandler(base_obj));

return proxy;

}

} //11

Listing 3.1: ProxyFactory for creating proxy objects

Creating a proxy constitutes the first step in the process of customising
application behaviour. Listing 3.1 shows the class ProxyFactory responsible for
creating proxies. The base object is passed as a parameter to the invocation
handler (here TracingHandler). The returned proxy object acquires the types
(interfaces) of the base-object. Invoking base methods on the proxy triggers the
reification process in which the behaviour of the base-object can be modified.
The reified meta-object of type TracingHandler inspects the structure of the
base object and uses the collected data to pass debugging information about
its referent.

We note that ProxyFactory does not represent a creational design pat-
tern as the Factory patterns of [47]. With createProxy(Object base obj),
base objects can register themselves and be attached to meta-objects at the
higher level. The returned proxy object can be used to represent base objects.
ProxyFactory depends on the type of the invocation handler and the proxy
classes of java.lang.reflect package but is independent of application. The
same applies to the invocation handler class implementing the customisation
code.
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// base level object representing a Model

IPoint apoint=new Point();

// base level listener representing a View

Demo listener= new Demo();

// binding base objects to a proxy invocation handler

ProxyFactory fac=new ProxyFactory();

IPoint wrap=(IPoint)fac.createProxy(apoint, listener);

// triggering reification by setting x

wrap.setx(<arbitrary values>);

Listing 3.2: Example Runtime binding and triggering reification

3.4.2.2 Active JavaBeans Properties

Consider the problem of transforming the attributes of some objects into active
JavaBeans properties. Active JavaBeans properties are characterized by the
firing of an event when the state of the object changes; for example, by invoking
set methods. We can make a simple property active by binding its changes
to anonymous event listeners. JavaBeans support active properties through a
new event type called the PropertyChangeEvent, the listener interface Property-

ChangeListener and through a support class called PropertyChangeSupport. The
JavaBeans mechanism of active properties can be used for implementing the
Model-View-Controller (MVC) pattern often employed in developing GUIs [71].
The View object is supposed to be informed every time the state(s) of its
Model object(s) is (are) changed. Views are registered as listeners to changes
of active properties in corresponding Models. The firing mechanism for an event
which changes a model’s state and thereby informs interested listeners can be
implemented using dynamic proxies. The proxy implementation has several
advantages when compared with the classical approach (using inheritance and
aggregation) of realising the MVC pattern for constructing GUIs, namely:

1. the separation of event-firing and informing listeners from basic classes
(Views and Models),

2. the provision of a generic implementation of the event-triggering mecha-
nism.

Using inheritance and aggregation for implementing the MVC pattern requires
adding event-firing code in all the set methods of all Model classes holding the
data. This implies dependency of the GUI implementation on the corresponding
JavaBeans classes, stronger coupling and potentially extra costs of testing and
maintenance. Listing 3.2 shows how a Point object with type IPoint (represent-
ing a Model) can be attached to a meta-object of type ActivePropertyHandler

(see Listing 3.4). A listener object of an arbitrary type Demo (representing a
View) is assigned. The implementation of the binding method createProxy()
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follows the same pattern of Listing 3.1 with the meta-object type being Active-

PropertyHandler.
In addition to being an InvocationHandler, ActivePropertyHandler also im-

plements the interface IPropertyChange (Listing 3.3) to allow for the addition
and removal of listeners and for firing a property change event after intercepting
the set methods.

import java.beans.PropertyChangeListener; //1

public interface IPropertyChange extends Serializable {

public void add(PropertyChangeListener lis);

public void remove(PropertyChangeListener lis);

public void fire(String property, Object oldVal, Object newVal);

} //7

Listing 3.3: Example Runtime binding and triggering reification

Intercepting any change of state of a base level object of any type is im-
plemented in Listing 3.4 as follows. Before invoking the set method on the
base-object, the meta-objects gets the old value of the base object’s property
field. It then invokes the set method, gets the new value and fires the event.
Any other method is delegated to the base-object. We note that the base level
object attached to ActivePropertyHandler is of type java.lang.Object and that
we use polymorphism and reflection to provide a generic implementation of the
JavaBeans active properties’ mechanism. ProxyFactory and ActiveProperty-

Handler are implemented independently of base objects and can thus be used
as library classes providing support for implementing GUIs of arbitrary appli-
cations. Java’s dynamic proxies mechanism provides the means of invoking the
reflective code at runtime.

3.5 Discussion

A proxy is a program that provides a communication bridge allowing differ-
ent applications (clients and targets) to engage and exchange data. Dynamic
proxies are proxies with additional mechanisms supporting behavioural reflec-
tion and open implementation. There are advantages to using dynamic proxies
instead of normal proxies, particularly in relation to program design and con-
sequently program maintenance. Firstly, from an OO Design (OOD) point of
view, dynamic proxy classes were shown earlier in this chapter to exhibit less
coupling to target classes in comparison with normal proxies. There is no direct
relationship between these two class groups. The coupling takes place dynami-
cally at the object level. In fact, the type of a dynamic proxy is set to that of
the target object upon its creation at runtime. The type of a normal proxy, on
the other hand, is set at compile-time. Secondly, the dispatching mechanism of
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import java.lang.reflect.*; //1

import java.beans.*;

public class ActivePropertyHandler implements InvocationHandler, IPropertyChange {

private Object base_obj;

private Object listener;

public ActivePropertyHandler(Object base_obj, Object lis) {

this.base_obj=base_obj;

this.listener=lis;

(this).add((PropertyChangeListener)listener);

}

public Object invoke(Object proxy, Method meth, Object[] args) throws Throwable {

Object result = null;

if (meth.getName().startsWith("set")!=-1) {

String property=meth.getName().substring("set".length());

Object oldVal=null; Object newVal=null;

Method[] meths=base_obj.getClass().getDeclaredMethods();

Method getMethod=null; // get-Method thru introspection

for (int i=0; i<meths.length; i++) {

// obtain oldVal through getMethod;

}

try {

result=meth.invoke(delegate, args);

newVal=getMethod.invoke(delegate, null);

} catch (InvocationTargetException e) { ... }

(this).firePropertyChange(property, oldVal, newVal);

}

else {

//no set-method, dispatch control to base object

}

return result;

}

// use a PropertyChangeSupport to manipulate listeners

PropertyChangeSupportsupport pcs=new PropertyChangeSupport(this);

public void add(PropertyChangeListener lis) {pcs.addPropertyChangeListener(lis);}

public void remove(PropertyChangeListener lis) {

pcs.removePropertyChangeListener(lis);

}

public void fire(String property, Object oldVal, Object newVal) {

pcs.firePropertyChange(property, oldVal, newVal);

}

} //52

Listing 3.4: Generic implementation of JavaBeans mechanism

dynamic proxies allows, using polymorphism and reflection, for implementing
generic behaviour independent of the target’s type.

The flexibility gained by employing the behavioural reflection model is not
without cost. The extra overhead imposed by reflection might cause perfor-
mance problems. Moreover, since the proposed reflection model allows each
application object to acquire an arbitrary number of meta-objects, the num-
ber of meta-objects is virtually infinite. It is therefore necessary to manage
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the meta-objects in such a way that they can be cached, shared and created
only when needed, i.e., in a lazy way. The problem of setting a caching policy
including sharing and lazy creation to improve performance is left for future
research.

The proposed reflection model based on dynamic proxies has parallels with
the AOP approach [3, 70], since it inherently exhibits a degree of separation
of concerns. In AOP, a systems constitutes a collection of concerns which are
classified as core concerns and system-level concerns called aspects. The first
group deals with functional requirements and can be implemented as loosely
coupled programming units using techniques and constructs supported by cur-
rent programming languages (including OO languages). The latter tend to
cross-cut core programming units. However, separation of concerns in AOP
does not necessarily mean weak (or loose) coupling; there is nothing that pre-
vents aspects implemented in AspectJ (the most widely used language) [4] from
explicitly referring to classes of the core concerns. In addition, core concerns
and aspects are combined at compile-time. Nevertheless, AspectJ allows struc-
tural change of application classes and provides a powerful join-points model
which allows grouping of pointcuts. Pointcuts are execution points at which
aspect code is inserted (weaved) into the application at compile-time.

Inheritance is recognized as an object-oriented mechanism that facilitates
software reuse. Empirical studies have shown that, as OO systems develop in
time, inheritance trees remain relatively shallow indicating that software de-
velopers are aware of the conflict between the advantages and disadvantages of
inheritance [17]. Advantages of inheritance are mainly reuse and disadvantages
are increased coupling and complexity. In [31], Cargill recommends that de-
velopers should reduce inheritance and hence reduce coupling. Our reflection
model can be employed to implement reusable Java code avoiding the problems
of strong coupling associated with inheritance and aggregation.

OOD is concerned with developing a model mapping the problem domain
into classes and objects to implement the system requirements. Design activities
and artefacts serve to document system structures and to provide a smooth
transition in the implementation phase. There are no prepared recipes for
building high quality software which is reusable, extendable, adaptable and
reliable; but there are design principles, guidelines and concepts. Applying these
principles and making use of the concepts enhance the quality of software. For
example, following the idea of Design by Contract [79] enhances the reliability
of the system. From the perspective of viewing the relationship between a class
and its clients as a formal agreement, the correctness of software elements can
be addressed [80]. Also, applying the design principle of open implementation
makes software systems more adaptive to changes. The main features of open
architectures are less coupling between components/objects and separation of
concerns.
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3.6 Conclusions

In this chapter, we have provided an analysis of the reflective abilities of the
Java language. The proposed reflection model established with the help of prox-
ies provides a means of customising applications’ behaviour and of adapting
to new requirements without the need for modification. The reflection model
supports application customisation in a way similar to the open implemen-
tation approach. Application objects provide a default representation, which
acts upon and deals with some part of the real world (problem domain). The
base representation is closed, meaning that it remains executable without being
merged with the meta-representation. The latter representation is independent
of applications; it is defined solely in terms of the service it provides.

The proposed behavioural reflection model alters neither the underlying
object model of the Java language nor the JVM. In the context of OO pro-
gramming languages, an object model refers to a collection of concepts used to
describe objects in the language. In the Java object model, classes represent
higher abstractions of application domains and objects are created as class in-
stances at runtime. As with the object model of most OO languages, Java’s
object model is said to be a 2-level system, where classes are not first-class ob-
jects, i.e., not instances of higher entities often referred to as meta-classes, and
classes cannot be created by constructors and cannot receive messages. This is
in contrast to 3-level systems where classes are instances of meta-classes and can
be manipulated at runtime, for example, CLOS. java.lang.Object continues to
be the root of the inheritance hierarchy of any application and the mechanism of
associating instances of java.lang.Class with application objects upon load-
ing corresponding classes remains the same. java.lang.Class and classes of
java.lang.reflect package represent an API allowing introspective structural
reflection.

Java’s dynamic proxies provide the means for writing meta-programs en-
abling the interception of base level operations such as method invocations, field
access and the transfer of control to the proxy object at the meta-level. They
allow the meta-level to replace operations in the base level and support dynamic
binding of proxy objects to the base level. Proxies have added new features to
the reflective power of the Java language beyond introspection. However, not all
proxy technologies support meta-programming; Microsoft Component Object
Model (COM) proxies, for example, do not allow reflective techniques.

Although dynamic proxies are mainly used to implement J2EE architec-
tures, where application servers are set as part of an enterprise solution, we use
proxies as a means of writing reusable code in an open architecture. Our ap-
proach does not have any restrictions on the architecture and can be extended
to a distributed environment. That is, the base level and the meta-level need
not be part of the same environment and may be made to communicate over
the Remote Method Invocation (RMI) protocol, the Internet Inter-ORB Pro-
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tocol (IIOP) of the Common Object Request Broker Architecture (CORBA),
the HyperText Transfer Protocol (HTTP) or a combination of these protocols.

Dynamic proxies support open implementation. They are implemented in
a generic manner and are thus made reusable allowing customisation of appli-
cation behaviour after being coupled to the application through well-defined
factory methods. A base level object may be attached to several proxies, each
of which controls one aspect of its behavior.

We do not address the impact of customizing system behaviour at runtime
on system correctness and leave this question for future investigation. We also
do not discuss the option of considering the Java language as an application do-
main and customise its library classes instead of customising Java applications.
We leave this option for future research.



Chapter 4

Applications of the Reflection

Model

In Chapter 3, we proposed a behavioural reflection model with the aim of
constructing open architectures showing less coupling and a higher degree of
reuse. The model was applied to non-distributed applications. The purpose
of this chapter is to demonstrate the applicability of the reflection model in
distributed environments and its impact on design patterns. By showing the
applicability of the model, we will proceed in the next chapters to investigate the
coupling and reuse properties of systems employing the model using techniques
of measurement theory.

In this chapter, we extend the model to include distributed systems using
different networking technologies provided by the Java 2 platform and discuss
the prospect of implementing reusable code on the server side. Reusable com-
ponents, represented as classes or logically connected groups of classes, are
implemented independently of, and separated from, their application context.
As such, coupling between reusable components and applications is reduced
and as a result the level of reusability is increased. The composition of precom-
piled reusable components with application objects, implemented at the base
level on the client side, is realized at runtime by passing application objects as
parameters. Decoupling is achieved by disregarding the meta-object to which
base objects are attached and by invoking the methods directly on base objects.
Parameter passing varies according to the distributed technology used. In all
cases, however, the objects must be serializable to conform to Java’s mechanism
of sending object data between different virtual machines running on different
computers on the network. In RMI, the objects are passed as parameters of a
method invoked on a remote object. In CORBA, the objects are passed over
the Object Request Broker (ORB) as parameters of a service method invoked
on the server object implementing the method. With Java’s Servlets, the base
objects are sent as parameters of an HTTP-request method and the client re-
ceives the result as an HTTP-response. On the server side, Java’s Servlets API

32
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is used to implement specialized Servlets controlling access to the reusable code.
In this chapter, we also address the question of adapting design patterns

of Gamma et al. [47] to the reflection model supported by dynamic proxies.
Although many patterns make use of inheritance, Gamma et al. propose pro-
gramming to interfaces and favour object composition over class inheritance as
guiding principles for pattern implementation. The proposed reflection model
provides a mechanism based on flexible runtime object composition. As a re-
sult, applying the reflection model is expected to lessen coupling and increase
code reuse of (at least some) pattern implementations.

The chapter is organised as follows. Section 4.1 extends the reflection model
to distributed applications. In Section 4.2, different networking technologies are
considered including RMI, CORBA and Java Servlets. First, we consider the
RMI protocol and use the corresponding technology (Java’s RMI API) avail-
able as part of the evolving Java development environment since JDK1.1.x.
Next, we look at a CORBA implementation using a fully-functional ORB that
is available in every deployment of the Java 2 Platform since JDK1.2.x. Finally,
Section 4.2.3 deals with the HTTP protocol and builds a Java Servlet imple-
mentation using the corresponding API available as part of Java 2 Platform,
Enterprise Edition (J2EE). In our discussion of the different implementations,
we omit issues related to network security, access control, data encryption or
Internet-firewalls, which we consider outside the scope of our research1. In Sec-
tion 4.3, the question of adapting design patterns to the proposed reflection
model is addressed. In Section 4.4, we discuss the different reflective implemen-
tation approaches for constructing distributed systems and assess their merits.
The impact of applying our reflection model on design patterns in terms of less
coupling and a higher degree of code reuse is presented. Section 4.5 ends the
chapter with some concluding remarks.

4.1 Open architecture in a distributed system

The model of Figure 3.4 in Section 3.3.2 provides a suitable OO framework to
implement code separated from, and independent of, client applications. It also
allows the composition of components with application code at runtime in a
natural way. From a distributed system perspective, however, it represents a
single application running on a single JVM. The proxy code must be downloaded
and installed on the client’s machine (i.e., where the application code runs) to
permit the construction of an open architecture and consequently to allow the
customization of the default implementation.

In a distributed environment, the code must be accessible by several clients

1Although network security and related issues are important features of distributed sys-
tems, they are orthogonal to software attributes such as coupling and code reuse as well as to
design aspects such as open implementation.
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running on different machines, each with its own JVM. In such a case, the
link between base and meta-level must be modified in a way which allows sev-
eral applications at the base level to customize the behaviour of their objects
concurrently using meta-objects running on a different machine. The resulting
client/server architecture requires the specification of a communication protocol
and consequently the application of the technology that allows the implemen-
tation of such a protocol. There are several alternatives, the most common of
which are the Java Remote Method Protocol (JRMP), better known as RMI
protocol [8], the Internet Inter Object request broker Protocol (IIOP) associ-
ated with the CORBA [1, 5] architecture and the HyperText Transfer Protocol
(HTTP) on the Web [6, 7].

The most natural extension of the open architecture of Figure 3.4 is a client-
/server architecture with several clients at the base level connected to one (or
more) server application(s) at the meta-level over a TCP/IP network (see Fig-
ure 4.1).

Figure 4.1: A two-level reflective model with remote proxies

Using JRMP as a communication protocol, the communication between
clients denoted by App. 1, App. 2, .... , App. n, at the base level and the
server application(s) at the meta-level, realized on top of the TCP/IP protocol,
extends over the three layers of the RMI architecture. The RMI system provides
the client with a stub (a proxy) representing the remote object to which the
application object can be bound to customize its behaviour. The remote method
call on the stub is forwarded to a RemoteRef object residing in the remote
reference layer; this layer defines and supports the invocation semantics of RMI.
The connection between the JVM of the client and that of the server is realised
at the transport layer with the support of the TCP/IP protocol.

With the IIOP protocol, the communication between client and server is
realized in a similar fashion. Each object reference on the client side, App. 1,
App. 2, .... , App. n, points to a stub function. The stub uses the ORB to
connect to the server machine that runs the server object. After establishing
the connection, the stub sends the object reference and parameters to the skele-
ton code linked to the destination object’s implementation. The skeleton code
transforms the call and parameters into the required implementation-specific
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format and calls the object. Any results or exceptions are returned along the
same path via the ORB. The ORB represents the underlying transport layer.

Servlets follow a request/response model in which a client sends an HTTP
request message to a server and the server responds by sending back a reply
message. Servlets are normally used to support application processing assigned
to a middle tier that acts as a Web-server in so called three-tier client/server
systems, passing and controlling the requests and responses between a light-
weight client and a data source. The clients, App. 1, App. 2, .... , App. n pass
their requests to the servlets on the server side utilizing the HTTP protocol
and receive, in response, a reference to remote objects.

We note that by distributing the application over several machines and as-
signing the meta-level its own JVMs on which the server process(es) runs, we do
not modify the semantics of either the meta-level or the base level objects. That
is, in the distributed architecture, the model of reflection provided by Java’s
dynamic proxies persists. The proxies’ invocation handler are still interpreted
as meta-objects, to which application objects at the base level, distributed over
different clients’ processes and memory environments, can be attached to cus-
tomize their behaviour. Moreover, the causal relationship between base and
meta-level remains the same. Distribution adds a new dimension to the exist-
ing structure without affecting the other dimension representing the base-meta
property of objects. The reification process and its triggering by method calls
at the base level remains the same and with RMI, CORBA and Java’s servlets
technologies, the details of how this process develops over the network remain
hidden from the user. The question we need to address is, what modifications
are required in order to attach an application client object to a remote reusable
meta-object running on a different machine?

4.2 Distributed Applications

We now address the question of constructing a distributed system by imple-
menting the model of Figure 4.1. The resulting system supports code reuse
using the networking technologies available in the Java-2 Platform. We start
with the RMI, followed by CORBA and finish with the servlet implementation
of our model. We deal with each of the networking approaches separately and
in each case we consider clients as simple applications that communicate with
their respective servers over the corresponding protocol. With the support of
the networking technologies provided the by Java 2 Platform, it is possible to
distribute the objects of Figure 4.1 over different JVMs by further dividing them
into client and server objects. Base objects with their interfaces represent client
applications, whereas proxies with associated handlers and factories define the
server application.
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4.2.1 RMI-based system

To begin with, we note that in the single application case, ProxyFactory (List-
ing 3.1) or its representative plays the role of interface between clients and
the customisation service provided by the meta-objects. With this observation,
we propose to employ the following steps for transforming a single application
system into a distributed RMI-based system:

1. Define a remote service interface with a creation method createProxy().

2. Adapt the code connecting the base and the meta-level by defining a
wrapper class around ProxyFactory. This wrapper is a remote object
that implements the remote interface of step 1 and delegates the binding
of base objects to its aggregate, the ProxyFactory.

3. Make base objects used as parameters or as return values of a remote
method call serializable.

4. Define an HTTP service class to allow dynamic class loading using RMI-

ClassLoader.

For the first step, defining a remote service interface is part of any RMI im-
plementation in order that the client can communicate its queries to the server
through the layers of the RMI system architecture. In our case, the remote
interface offers a method that allows client objects at the base level to bind
themselves to meta-objects on the server side. Listing 4.1 shows a pseudo im-
plementation of IProxyFactory, where the first Object parameter refers to the
client base object to be assigned to a meta-object and consecutive dots mean
possible extensions, depending on the application. Remote service interfaces
such as IProxyFactory must be visible to both client and server at compile
time.

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface IProxyFactory extends Remote {

public Object createProxy(Object o) throws RemoteException;

public Object createProxy(Object o, ...) throws RemoteException;

...

}

Listing 4.1: The communication interface between clients and server(s)

For the second step, Listing 4.2 depicts a pseudo implementation of Proxy-

FactoryWrapper. It implements the remote interface IProxyFactory and thus
defines a remote object. It also extends UnicastRemoteObject allowing the cre-
ation of a simple remote object that supports unicast (point-to-point) remote
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communication and uses RMI’s default socket-based transport for communica-
tion. Although this is not the only way for clients to connect to a remote service
implementation, it is compatible with clients’ JVMs that run on JDK1.1.x.
Notice that ProxyFactoryWrapper uses ProxyFactory to create the proxy and
attaches an application object to it.

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

public class ProxyFactoryWrapper extends UnicastRemoteObject

implements IProxyFactory {

private ProxyFactory bpf=new ProxyFactory();

public Object createProxy(Object obj) throws RemoteException {

// delegate creation of a proxy to bpf and return the object

}

...

public ProxyFactoryWrapper() throws RemoteException {super();}

}

Listing 4.2: Delegating binding of a base object to ProxyFacory

For the third step, client objects to be attached to meta-objects on the
server side are passed as parameters through ProxyFactoryWrapper methods.
These and all other objects that need to be exchanged between client and
server as parameters or as return types must be serialized, i.e., implement the
java.io.Serializable interface. Serialization is necessary to conform to the
RMI mechanism of sending object data over the network wire. The objects are
then de-serialized in the remote JVM and made ready for use by the application
that needs them.

For the fourth and final step, RMI supports remote dynamic class load-
ing through the RMIClassLoader. The property -Djava.rmi.server.codebase=-

<URL-value> can be used to specify a Uniform Resource Locator (URL) value
identifying the resources on the network. This allows the RMI system to dynam-
ically load the required classes. We may specify the path by setting -Djava.-

rmi.server.codebase=file://<class path> or an HTTP (or FTP) server by set-
ting -Djava.rmi.server.codebase=http://<resource name>. In the latter case,
active servers on the client as well as on the server side are necessary to aid
the delivery of class files between JVMs on both sides. If a serialized object
is passed from one JVM to another, the receiving machine needs to load the
class file of that object. In passing the object, the RMI system embeds a URL
specifying where on the network this class file can be found and asks the HTTP
server to deliver the file on request.

The class diagram of Figure 4.2 shows the key classes needed to imple-
ment the distributed system, according to the transformation algorithm de-
scribed previously. Notice the remote layer consisting of ProxyFactoryWrapper,
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IProxyFactory, java.rmi.server.UnicastRemoteObject and java.rmi.Remote are
inserted between the meta-level and the base level classes of Figure 3.3.

To explain how to implement the algorithm described by steps one to four,
we consider the single application system example on “Active JavaBeans Prop-
erties” discussed in Section 3.4.2 of the previous chapter. We concentrate on
the features related to transforming this application into a distributed RMI-
based system. In the distributed system, the reusable code becomes part of
the server implementation and consists of three units. The first is the inter-
face IPropertyChangeSupport, to allow the registering and removal of listener
objects as well as firing a PropertyChangeEvent to notify the listeners once the
object’s state has been modified. The second is ActivePropertyHandler, to pro-
vide the reusable code by implementing the interfaces InvocationHandler and
IPropertyChangeSupport. The third is the ProxyFactory, to deliver a reference
to a proxy object.

Figure 4.2: Class diagram in the distributed RMI environment

Distributing the system requires a server process on the server-side. List-
ing 4.3 shows the class ProxyServiceRegistration with the main() method to
start the server. A security manager to control access to the resources from
downloaded code to run within the server virtual machine is installed (line
6). The security policy can be set using the -Djava.security.policy property.
Next, ProxyFactoryWrapper (See Listing 4.5) is instantiated and bound to an
arbitrary name (lines 9 and 10). The client process looks up the remote object
by using this name. By registering the service, the server process is completed
and waits for client requests running on different JVMs on the network.

We now turn to the communication interface and define, as required in the
first step, the remote interface as in Listing 4.4. This interface must be known
to both the client and server.

As required in the second step of the transformation algorithm, we employ
the Adapter pattern of Gamma et al. [47] and wrap the ProxyFactory in a



CHAPTER 4. APPLICATIONS OF THE REFLECTION MODEL 39

import java.rmi.*; //1

import java.util.*; //2

//3

public class ProxyServiceRegistration { //4

public static void main(String[] args) { //5

System.setSecurityManager(new RMISecurityManager()); //6

try { //7

System.out.println("Registering ProxyService ..."); //8

IProxyFactory bps = new ProxyFactoryWrapper(); //9

Naming.rebind("ProxyService", bps); //10

System.out.println("Server is ready."); //11

} catch (Exception e) { ... } //12

} //13

} //14

Listing 4.3: The RMI-server process

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface IProxyFactory extends Remote {

public Object createProxy(Object o, Object lis) throws RemoteException;

}

Listing 4.4: The remote interface defining the service protocol

remote object ProxyFactoryWrapper as in Listing 4.5.
Having established the generic service on the server side and a generic com-

munication interface, all of which reside in the meta-level, we now turn to the
client side and consider a simple application at the base level involving a Point

object and a client object as listener. The attributes of the Point object are
supposed to be customized to become active JavaBeans properties. The Point

class implements a serializable interface IPoint, which defines get and set meth-
ods for the attributes. Listing 4.6 shows an example of a client listener class
(implements PropertyChangeListener, lines 8 - 10). The client request begins
by installing a security manager (line 13). The security manager is necessary,
because, as with the server, the RMI-system could be downloading code to the
client. In this example, the ProxyFactoryWrapper’s stub is downloaded. After
installing a security manager, the base object is created (line 14) and the client
constructs a name used to look up an IProxyFactory remote object (lines 16
and 17). The value of the first command line argument, args[0], is the name
of the remote host on which the IProxyFactory object runs. args[1] specifies
the port that the remote object uses to accept requests. The client uses the
Naming.lookup() method to look up the remote object by name in the remote
host’s registry (line 18). With the help of the remote object, the proxy object is
created (line 20). In creating the proxy, the base object is attached by passing
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import java.lang.reflect.*;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

public class ProxyFactoryWrapper extends UnicastRemoteObject

implements IProxyFactory {

private ProxyFactory bpf=new ProxyFactory();

public Object createProxy(Object o, Object lis) throws RemoteException {

Object proxy=null;

try {

proxy = bpf.createProxy(o, listener);

} catch(Exception e) { ... };

return proxy;

}

public ProxyFactoryWrapper() throws RemoteException { super();}

}

Listing 4.5: Remote object wrapper for the Factory class

it as parameter, together with a listener object. Invoking a set method on the
proxy causes the corresponding object attribute to acquire a new value and
an event of type PropertyChangeEvent to be fired informing the listener of the
state change. In this way, the attributes of the base object behave as active
properties of JavaBeans.

As in the server case, the client defines a security policy and may use a
Web-server to download the classes needed by the RMI-system on its side dy-
namically. The client may, however, provide a URL path expression to indicate
where the classes will be made available. In our example, these classes are
Point, IPoint and ProxyClient.

4.2.2 CORBA implementation

In CORBA, client and server applications interact over the ORB. Using the
ORB, the client conveys a request for a method invocation to the server and
the server sends results back to the client along the same path.

We follow a similar procedure to the RMI case where we define an IDL-
interface and implement it on the server side using the functionality of Proxy-

Factory. Moreover, we use the IDL programming model of the Java-2 Platform,
known as Java IDL, consisting of both the Java CORBA ORB and the idlj com-
piler. The compiler maps the Object Management Group’s (OMG) Interface
Definition Language (IDL) to Java bindings [9]. The model enables distributed
Web-enabled Java applications to transparently invoke operations on remote
network services using the industry standard IDL and the IIOP protocol [1].

Following the IDL programming model, we define remote interfaces using
the IDL, then compile the interfaces using the idlj compiler. The compiler gen-
erates the Java version of the interface, as well as the class code files for the
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import java.beans.*; //1

import java.lang.reflect.Proxy; //2

import java.rmi.*; //3

import java.io.Serializable; //4

//5

public class ProxyClient implements PropertyChangeListener, Serializable {

//7

public void propertyChange(PropertyChangeEvent e) { //8

// implement the reaction of the listener //9

} //10

//11

public static void main(String [] args) throws Throwable { //12

System.setSecurityManager(new RMISecurityManager()); //13

IPoint point=new Point(); //14

try { //15

String service="ProxyService"; //16

String url="rmi://"+args[0]+":"+args[1]+"/"+service; //17

IProxyFactory bpf=(IProxyFactory)Naming.lookup(url); //18

ProxyClient lis=new ProxyClient(); //19

IPoint wrap=(IPoint)bpf.createProxy(point, lis); //20

// Do something with the proxy object thus obtained //21

} catch (Exception e) { ... } //22

} //23

} //24

Listing 4.6: A PropertyChangeListener as a client process class

stubs and skeletons that enable our applications to hook into the ORB. Ap-
plying idlj on the IDL interfaces is similar to invoking the rmic tool of RMI
system on remote object implementations, i.e., ProxyFactoryWrapper in the pre-
vious section. Because the services provided by the server are reusable pieces
of code, they are generic, implement general behaviour and are independent of
applications’ specifications. The IDL interfaces, which nominate the services
implemented on the server side and are passed to clients over the ORB, reflect
the genericity of these services by using generic parameters and return types un-
related to any client application. IDL provides appropriate types, e.g., any, that
allow us to express the genericity of the services. An any-type is mapped into
Java org.omg.CORBA.Any and an object of such type represents a pair consisting
of an org.omg.CORBA.TypeCode and a value. We note that org.omg.CORBA.Any

provides operations that allow insertion and extraction of the TypeCode and the
value contained in the object.

Listing 4.7 shows an example of a generic IDL interface in pseudo-code,
where consecutive dots denote further functions. The first in-parameter, obj,
of type any represents the application object to be attached to the proxy invo-
cation handler. The handler, implemented at the server side, provides reusable
functionality suitable to customize the behaviour of the object. The second
parameter is of type any and is added arbitrarily. The function’s return value is
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also of type any. The module ProxyObjects is mapped into a Java package with
the same name, where the stubs and skeletons needed for the communication
over the ORB are placed.

module ProxyObjects {

interface ProxyFactoryWrapper {

any createProxy(in any obj, in any listener);

...

};

};

Listing 4.7: IDL to support reuse of method invocations over the ORB

import ProxyObjects.*; //1

import org.omg.CORBA.*; //2

import java.lang.reflect.*; //3

//4

public class ProxyFactoryWrapperImpl extends ProxyFactoryWrapperPOA { //5

private ProxyFactory bpf; //6

public ProxyFactoryWrapperImpl (ProxyFactory bpf) { //7

this.bpf=bpf; //8

} //9

//10

public Any createProxy(Any obj, Any lis) throws SystemException { //11

java.lang.Object oo=(java.lang.Object)obj.extract_Value(); //12

java.lang.Object ol=(java.lang.Object)listener.extract_Value(); //13

Any anyThing=_orb().create_any(); //14

try { //15

// ActivePropertyHandler defines general behaviour //16

ActivePropertyHandler aph=bpf.createProxy(oo, ol); //17

anyThing.insert_Value(aph); //18

} catch (Exception e) { ... } //19

return anyThing; //20

} //21

// ... //22

} //23

Listing 4.8: Implementation of the IDL interface ProxyFactoryWrapper

A Java sample implementation of the IDL interface ProxyFactoryWrapper is
shown in Listing 4.8. The class extends the ProxyFactoryWrapperPOA (line 5)
and provides a method for each operation in the interface. An object of type
ProxyFactory is used as an aggregate (line 6) and initialized in the construc-
tor (lines 7 - 9). In the method createProxy(), the objects’ content (values)
of the org.omg.CORBA.Any parameters are first extracted as java.lang.Objects

(lines 12 and 13). The return object of type org.omg.CORBA.Any is created using
the instance of the ORB currently associated with the skeleton (line 14). The
extracted objects are used as parameters of the method delegated to the aggre-
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gate to obtain a proxy object as a return value (line 17). The proxy object is
inserted into the return object (line 18) before the latter is returned (line 20).
Delegating the call to ProxyFactory is similar to the way we implemented the
RMI remote object ProxyFactoryWrapper in Listing 4.5 in the previous section.

The skeleton ProxyFactoryWrapperPOA is generated by the idlj compiler and
acquires a name of the form <InterfaceName>POA as part of the IDL/Java map-
ping specification. All the skeleton classes generated by applying the idlj-
compiler allow our server application to connect to the ORB runtime system
and provide marshalling and un-marshalling routines. There is an alternative
to this inheritance implementation style of associating object implementation
classes with a skeleton class, called delegation or the Tie-method. With the
Tie-method, FactoryWrapperImpl does not extend ProxyFactoryWrapperPOA but
it implements ProxyFactoryWrapperOperations and delegates method invoca-
tions to the skeleton class ProxyFactoryWrapperPOATie. Generating the required
classes to implement the Tie-Method is achieved by using appropriate options
when applying the idlj tool.

The Portable Object Adapter (POA) is a component of the ORB structure
responsible for looking up and potentially activating the implementation for
executing operations.

Listing 4.9 shows a typical implementation of the server application class.
In the main() method, the class initializes the ORB (line 8), creates the imple-
mentation object theProxyImpl (lines 12 and 13), and makes it available to the
clients by using the CORBA’s naming service NameService (lines 19 and 20).
The implementation object is bound to an arbitrary name (line 21), through
which it can be identified by clients. Before giving the object a name, it must
be first transformed into a CORBA object reference through the POA (line 15).
The object adaptor is obtained by referencing root POA, which is always avail-
able from the ORB, and the result is narrowed down to a POA type (line 10).
The object adaptor is activated through the POAManager to allow for dispatching
incoming requests (line 23). Finally, run() is called on the ORB object to allow
the main thread to wait and listen for incoming requests (line 24).

Listing 4.10 shows the client implementation class. As in the server case, the
client application first initializes the ORB and then uses CORBA’s naming ser-
vice to resolve the object reference (lines 9 - 15). The reference is of type org.-

omg.CORBA.Object and is narrowed down to the appropriate Java interface type
with the help of ProxyFactoryWrapperHelper (line 16). ProxyFactoryWrapper in-
terface is generated by applying the idlj tool to the .idl-file of Listing 4.7. The
tool maps an IDL-interface into a Java interface with the same name and same
set of methods. Having obtained the object reference with the appropriate type,
we can invoke methods on the object, whose implementations are defined on the
server side, as for example, createProxy(Any, Any). To invoke this method, we
use the ORB to create two org.omg.CORBA.Any objects and insert into these the
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import org.omg.CORBA.*; //1

import org.omg.PortableServer.*; //2

import org.omg.CosNaming.*; //3

//4

public class ProxyServer { //5

public static void main(String[] args) { //6

try { //7

ORB orb=ORB.init( args, null ); //init orb //8

//init object adapter //9

POA poa=POAHelper.narrow(orb.resolve_initial_references("RootPOA"));

// create a ProxyFactoryWrapperImpl object //11

ProxyFactory pf=new ProxyFactory(); //12

ProxyFactoryWrapperImpl theProxyImpl=new ProxyFactoryWrapperImpl(pf);

// export the object reference //14

org.omg.CORBA.Object o=poa.servant_to_reference(theProxyImpl); //15

// print stringiefied object reference //16

System.out.println( orb.object_to_string(o) ); //17

//18

org.omg.CORBA.Object oRef=orb.resolve_initial_references("NameService");

NamingContextExt nc=NamingContextExtHelper.narrow(oRef); //20

nc.bind( nc.to_name("anyx"), o); //21

// wait for requests //22

poa.the_POAManager().activate(); //23

orb.run(); //24

} catch(SystemException e) { e.printStackTrace(); //25

} catch(UserException u) { u.printStackTrace(); } //26

} //27

} //28

Listing 4.9: The CORBA server application

appropriate serializable parameter base objects as values using insert Value()

(lines 19 - 30). The result of the method invocation can be extracted from the
method’s return Any-type, using extract Value() and type-casting (lines 32 and
33). In our example, the result is of type java.lang.reflect.InvocationHandler

and is implemented on the server by ActivePropertyHandler thus providing
reusable behaviour. Having obtained the result, the client can create a proxy
to allow for base object customizations, as in the RMI case.
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import java.lang.reflect.*; //1

import org.omg.CORBA.*; //2

import org.omg.CosNaming.*; //3

//4

public class ProxyClient implements java.io.Serializable { //5

//6

public static void main(String args[]) { //7

try { //8

ORB orb = ORB.init( args, null ); // initialize the ORB //9

org.omg.CORBA.Object obj = null; // get object reference //10

//11

org.omg.CORBA.Object oRef=orb.resolve_initial_references("NameService");

NamingContextExt nc=NamingContextExtHelper.narrow(oRef); //13

if(nc==null) throw new RuntimeException("narrow failed"); //14

obj = nc.resolve( nc.to_name("anyx")); //15

ProxyFactoryWrapper pfw=ProxyFactoryWrapperHelper.narrow(obj); //16

if(pfw==null) System.exit(1); //17

//18

// appl object parameters of types IPoint and ProxyClient //19

IPoint pt=new Point(); //20

ProxyClient listener=new ProxyClient(); //21

//22

// insert paramters into Anys to use in method invocation //23

Any anyPoint = orb.create_any(); //24

anyPoint.insert_Value(pt); //25

Any anyListener = orb.create_any(); //26

anyListener.insert_Value(listener); //27

//28

// invoke the operation //29

Any anyProxy=pfw.createProxy(anyPoint, anyListener); //30

// Extract the result of method invocation //31

ActivePropertyHandler ih=

(ActivePropertyHandler)anyProxy.extract_Value(); //32

// Do something with this result like creating a proxy //33

// ... //34

} catch(UserException u) { ... } //35

catch(SystemException ex) { ... } //36

} //37

} //38

Listing 4.10: The CORBA client application

4.2.3 Java’s Servlets implementation

Compared to Sockets, the classes URL and URLConnection of the java.net pack-
age provide a relatively high-level mechanism and system-independent network
communication for accessing resources on the Internet. These classes allow a
client application to locate and connect to servlets on the server side. The
method getConnection() of Listing 4.11 (lines 14 - 21) shows an example of
a client using URL and URLConnection objects to establish a connection to a
Web-server. The servlet’s location on the Internet is passed as a URL para-
meter string (lines 7 and 15). After establishing the connection, the client can



CHAPTER 4. APPLICATIONS OF THE REFLECTION MODEL 46

utilize the URLConnection object reference to request services from the server
by passing required parameters as serialized objects and obtain the result by
de-serializing the received data.

On the server side, the Web-server acts as a servlet container supporting
Java’s servlets technology and hosts the reusable resources needed to customize
the behaviour of application objects on the client side. The servlets act as
controllers allowing access to these resources.

To explain the Servlet implementation supporting code reuse, we present
the same example considered in the RMI and CORBA-based systems.

Listing 4.11 shows the pseudo-code for an application client utilizing URL and
URLConnection objects (lines 34 and 14 - 21) to request a reference to a proxy
object implementing a reusable general behaviour on the server side. The client
forwards a request by serializing the request’s parameters (lines 22 - 26) as two
elements of a vector (lines 35 - 39). The result is de-serialized (lines 27 - 32) and
cast to IPoint (line 40). As in the previous RMI and CORBA cases, invoking
a set method on the returned proxy object (line 41) sets the object attribute
to a new value and fires an event of type PropertyChangeEvent informing the
listener sclient of the state change. In this way, the attributes of the base
object ipoint behave as active properties of JavaBeans.

The servlet referred to in Listing 4.11 is specified in the URL string expres-
sion “http://<server:port/servlet location>” and runs on a Web-server. In
addition, the server also hosts the classes implementing the reusable code of
catching and firing PropertyChangeEvents. Listing 4.12 shows an implementa-
tion of an HttpServlet. The servlet processes HTTP requests (i.e., GET, POST,
PUT, DELETE, HEAD) by a client by overriding the corresponding methods.
By default, an HttpServlet handles an unspecified request as a GET-request
and dispatches the processing to the doGet() method. We choose to delegate
the processing to the doPost() method because there is no limit on the data
size to be processed (lines 27 - 29). The method uses the HttpServletRequest

parameter to de-serialize the data (lines 20 and 7 - 12) and obtain the object
parameters needed to call the reusable code (lines 21 - 23). The proxy reference
is then serialized and sent back to the client using the HttpServletResponse

parameter of the method (lines 24 and 13 - 17).
By de-serializing the parameters, the server must have access to client classes

to call the reusable code. Mechanisms, such as dynamic class-loading as pro-
vided by the RMI system or provision of a pool of classes accessible to the server
are needed to support the HTTP communication and allow the server to load
the client object parameters.
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import java.io.*; //1

import java.net.*; //2

import java.util.Vector; //3

import java.beans.*; //4

//5

public class ServletClient implements Serializable, PropertyChangeListener {

private static final String servlet="http://<resource address>"; //7

private static Vector ov=new Vector(); //8

//9

public void propertyChange(PropertyChangeEvent e) { //10

// implement the reaction of the listener //11

} //12

//13

private static URLConnection getConnection() throws IOException { //14

URL u = new URL(servlet); //15

URLConnection con = u.openConnection(); //16

// set boolean flags for input, output, cache etc .. //17

// request property key & value: Content-type & octet-stream //18

con.setRequestProperty("Content-type","application/octet-stream");//19

return con; //20

} //21

private static void sendObject(URLConnection con, Object obj) //22

throws IOException {

ObjectOutputStream out=new ObjectOutputStream(con.getOutputStream());

if (obj != null) out.writeObject(obj); //24

out.close(); //25

} //26

private static Object receiveObject(URLConnection con) throws Exception {

ObjectInputStream in=new ObjectInputStream(con.getInputStream()); //28

Object obj = in.readObject(); //29

in.close(); //30

return obj ; //31

} //32

public static void main( String[] args ) throws Exception { //33

URLConnection con = getConnection(); //34

IPoint ipoint=new Point(0, 0); //35

PropertyChangeListener sclient=new ServletClient(); //36

ov.addElement(ipoint); //37

ov.addElement(sclient); //38

sendObject(con, ov); //39

IPoint proxy=(IPoint)receiveObject(con); //40

proxy.setx(<arbitrary value>); //41

} //42

} //43

Listing 4.11: Client uses URL objects to communicate with Web-server
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import java.io.* ; //1

import javax.servlet.* ; //2

import javax.servlet.http.* ; //3

import java.util.Vector; //4

//5

public class ActivePropertyServlet extends HttpServlet { //6

private Object receiveObject(HttpServletRequest req) throws Exception {

ObjectInputStream in=new ObjectInputStream(req.getInputStream()); //8

Object obj = in.readObject(); //9

in.close(); //10

return obj ; //11

} //12

private void sendObject(HttpServletResponse resp , Object obj) //13

throws Exception {

ObjectOutputStream out=new ObjectOutputStream(resp.getOutputStream());

out.writeObject(obj); //15

out.close(); //16

} //17

public void doPost(HttpServletRequest req , HttpServletResponse resp) {

try { //19

Vector iv=(Vector)receiveObject(req); //20

Object o1=iv.elementAt(0); //21

Object o2=iv.elementAt(1); //22

Object proxy=new ProxyFactory().createProxy(o1, o2); //23

sendObject(resp , proxy); //24

} catch (Exception e) { ... } //25

} //26

public void doGet(HttpServletRequest req, HttpServletResponse resp) { //27

doPost(req, resp); //28

} //29

} //30

Listing 4.12: Controller servlet provides clients with ActivePropertyHandlers
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4.3 Design Patterns

Design patterns describe general solutions to common design problems. Some
design problems appear repeatedly in different contexts; the main motivation
behind patterns is to provide abstract solutions applicable in all contexts. In
a particular context, however, application-dependent information must be pro-
vided. A pattern is described by its name, intent, the contexts where the
pattern occurs, the forces or trade-offs resulting from applying the pattern and
the solution provided.

Research on design patterns in software was inspired by the work of C.
Alexander on the problems of urban architecture [11, 12]. In software, de-
sign patterns are used in different application domains and at different lev-
els of software development including architectural design and implementa-
tion [29, 37, 46, 47, 84, 98]. The application domains include design of pro-
gramming languages’ libraries (for example, Java’s GUI packages), middleware
(for example, CORBA) and concurrent systems, to name a few. Gamma et
al. provide a systematic approach and a catalogue of twenty-three design pat-
terns [47] in the domain of program design.

In the subsequent analysis, the patterns of Gamma et al. are analysed from
the perspective of the reflection model proposed in Chapter 3. Applying the
model makes the implementation of some patterns qualitatively simpler. We
show that for most patterns, the separation between generic control structure of
the pattern and application dependent data helps to reduce the coupling among
pattern’s participants. This becomes clear from the class diagrams expressed
in UML notation. For some other patterns, however, employing the reflection
model shows no genuine advantages when compared with the standard (non-
reflective) implementation of the patterns. This is due to the limitations of
the reflection model and/or to the structure and/or application of the pattern
itself. The model does not allow structural changes at runtime. The appli-
cation domain of some patterns, e.g., compiler construction of the Interpreter
pattern, makes the employment of the reflection model inappropriate. In such
cases, separating the participants of the pattern into base and meta-objects be-
comes inadequate. For some patterns, the Java language provides appropriate
abstractions, e.g., Iterator and Prototype.

To adapt patterns to our behavioural reflection model, we proceed as follows.
We start by analysing the pattern by separating its constituents (participants
including control structure) into two parts: the application dependent part
and the generic part. If the separation provides a better solution in terms
of less coupling and a higher level of code reuse, we provide an alternative
implementation using the model. In certain cases, we discuss some pattern
implementations in detail with the aim of showing how the procedure works.
Code extracts as well as the class diagrams before and after adapting the pattern
to the reflection model are shown. To keep UML diagrams simple, we only show
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the relevant constituents of a structure and give more detail only as needed.
The idea is to highlight the resulting class structure of each of the patterns after
adaptation to the reflection model.

Gamma et al. classify the patterns in different families according to the
pattern’s purpose. As a result, three pattern categories emerge: behavioural,
structural and creational patterns. Subsequently, we follow this classification
and discuss each pattern category in a separate section.

4.3.1 Behavioural Patterns

4.3.1.1 The Template Method Pattern

The Template Method Pattern defines the skeleton of an algorithm and defers
some steps to sub-classes without changing the algorithm’s structure. The
pattern underpins object orientation where inheritance is used to extend and/or
modify existing behaviour.

The Template Method pattern serves as a good example of how a dynamic
proxy dispatching mechanism can be used as a substitute for inheritance. The
“abstract” part of the Template Method algorithm is implemented by super-
class(es) and invoked by looking up the methods along the inheritance path.
Using our reflection model, this part is moved to the meta-level and invoked
through the dispatching mechanism supported by dynamic proxies.

Listing 4.13 and 4.14 show extracts of an implementation of the Template
pattern using dynamic proxies. The algorithm consists of three different steps
defined at the meta-level (Listing 4.13, line 22). Some of the algorithm’s meth-
ods are defined at the base level; BaseImpl implements the second step and
part of the third step (Listing 4.14, lines 6 - 10). An implementation using in-
heritance replaces the proxy classes (TemplateMethodHandler and ProxyFactory)
with super-classes (to BaseImpl) implementing the methods of the algorithm,
namely, firstStep() and the parts of the thirdStep() not implemented in
BaseImpl.

4.3.1.2 The Strategy Pattern

The Strategy pattern makes a family of encapsulated and related algorithms
interchangeable by separating the algorithms from the context in which they
are used. Strategy is an example of how our reflection model simplifies the
implementation of the pattern. Figure 4.3 depicts the class structure of the
Strategy pattern in UML notation. We note the dependency of the context
represented by StrategyContext on the algorithms represented by Strategy.

Different applications provide different families of related algorithms; in
other words, strategies are application dependent. In the Strategy pattern, the
role of a context object is to control the execution of algorithms and these can
be altered without any reference to the context. It follows that strategies can be
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import java.lang.reflect.*; //1

//2

public class ProxyFactory { //3

public Object createProxy(Object base_obj) throws Throwable { //4

// creates and returns a proxy using Proxy.newProxyInstance(...) //..

// The handler is of type TemplateMethodHandler

}

} //12

class TemplateMethodHandler implements InvocationHandler {

private Object base_obj;

public TemplateMethodHandler(Object base_obj) { this.base_obj=base_obj; }

public Object invoke(Object x, Method m, Object[] args) throws Throwable {

try { this.perform(); } catch (Exception e) { ... }

return null;

}

//20

public void perform() { //21

firstStep(); ((ITemplateMethod)base_obj).secondStep(); thirdStep(); //22

} //23

private void firstStep() { System.out.println( "Metaobject.. firstStep" ); }

private void thirdStep() { //25

thirdStep_1();

((ITemplateMethod)base_obj).thirdStep_2();

thirdStep_3();

}

private void thirdStep_1() {System.out.println("Metaobject.. thirdStep_1" ); }

private void thirdStep_3() {System.out.println("Metaobject.. thirdStep_3"); }

} //32

Listing 4.13: An implementation of the Template pattern: the meta-program

interface ITemplateMethod { //1

public void secondStep(); //2

public void thirdStep_2(); //3

public void findSolution(); //4

} //5

class BaseImpl implements ITemplateMethod { //6

public void secondStep() { System.out.println ("BaseImpl.. secondStep" ); }

public void thirdStep_2() { System.out.println( "BaseImpl..thirdStep_2" );}

public void findSolution() { //default impl. }

} //10

public class TemplateMethodDemoDynamic {

public static void main( String[] args) throws Throwable {

ProxyFactory pfac=new ProxyFactory();

ITemplateMethod algo=(ITemplateMethod)pfac.createProxy(new BaseImpl());

algo.findSolution();

}

}

Listing 4.14: An implementation of the Template pattern: the client part
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assigned to the base level, because they are application dependent, and contexts
can be lifted to the meta-level, because their role is general and independent of
algorithms.

Figure 4.3: Class structure of the Strategy pattern

Figure 4.4 shows the class structure of the Strategy pattern correspond-
ing to an alternative implementation using proxies. The context class is re-
placed by two classes: ProxyFactory and StrategyHandler; the latter imple-
ments InvocationHandler of the java.lang.reflect package and corresponds
to the meta-object. There is no direct association between application strategy
classes at the base level and classes representing context objects at the meta-
level. The binding of strategies to context objects is established first at runtime
with the help of a ProxyFactory. We note that by changing the mechanisms of
associating strategies to their contexts, the requirements of the Strategy pat-
tern are preserved, i.e., encapsulating the family of algorithms and making it
changeable independent of the context. In addition, contexts are made generic,
thus reusable and independent of the algorithms.

With the reflection model supported by the proxies, separating algorithms
from contexts is implemented as a direct consequence of the separation be-
tween base- and meta-level. Method interception of meta-objects suffices and
no manual changes to the static class structure are needed. Binding strategies
to context objects is realized at runtime; there is otherwise no coupling between
algorithms and their contexts. This is not the case in the static implementation
of Figure 4.3; a context object contains a strategy so that method invocations
to execute the various algorithms can be delegated.

An extract of an implementation using proxy objects is depicted in List-
ing 4.15. The class StrategyHandler makes use of the dispatching mechanism
provided by dynamic proxies to invoke the executeAlgorithm() methods on base
objects of type Strategy.

The class diagrams of Figures 4.3 and 4.4 show that proxy implementation
of the pattern exhibits less coupling when compared with direct implementa-
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Figure 4.4: Adapting the Strategy pattern to the reflection model

tion. In the latter, a context is replaced by a meta-object to which control is
dispatched by invoking strategy methods on corresponding proxy objects. A
context is explicitly separated from the algorithms and it is also independent
from them. Furthermore, it is generic and can be reused irrespective of how
the algorithms and their methods are implemented.

import java.lang.reflect.*;

public class ProxyFactory {

public Object createProxy(Object algo) throws Throwable {

// The invocation handler is a StrategyHandler

}

}

class StrategyHandler implements InvocationHandler {

private Object delegate;

public ContextStrategy (Object delegate) {

this.delegate=delegate;

}

public Object invoke(Object p, Method m, Object[] args) throws Throwable {

Object result = null;

try { result = method.invoke(delegate, args); }

catch (InvocationTargetException e) { ... }

return result;

}

}

Listing 4.15: The meta-level part of the Strategy pattern implementation

4.3.1.3 The State Pattern

The State pattern allows an object to alter its behaviour when its internal state
changes. The State pattern has similarities with the Strategy pattern; both
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are examples of composition and delegation. The difference lies in the intent;
a state object encapsulates a state-dependent behaviour and possibly a state
transition rule while a strategy object encapsulates an algorithm.

Separating states from their contexts follows the same procedure applied
to the Strategy pattern in the previous section. State objects reside in the
base level and contexts are meta-objects controlling state transitions. A State
transition scheme is defined by the application at the base level. The context
object at the meta-level identifies current states including the initial state and
invokes the state method on these objects.

In a traditional implementation of the State pattern, the meta-program is
replaced by a context class (or classes). The context class maintains a state
object and using polymorphism delegates state-specific requests to this object.
Unlike the proxy implementation where the context is decoupled from states and
coupling becomes active only when requested at runtime, the coupling between
contexts and state objects in a traditional implementation holds during the
entire lifetime of the context object.

4.3.1.4 The Iterator Pattern

The Iterator pattern provides a way of accessing the elements of an aggre-
gate object sequentially without exposing its underlying representation. Java
provides a number of iterator classes in the java.util package as part of the lan-
guage collections framework. These classes support polymorphic iteration [47]
by providing traverse and access operations independent from the aggregate
internal structure. Java Iterators separate the generic control structure of the
pattern from specifics of their clients. Consequently, the objectives of applying
the reflection model on this pattern are met by the Java library class imple-
mentations.

4.3.1.5 The Visitor Pattern

The Visitor pattern separates object structures from operations acting on those
objects and thus allows the addition of operations to classes without changing
those classes. To achieve this, Visitor uses a double-dispatch technique where
dispatching control to a method depends on the name of the request and the
types of two receivers, i.e., the object and its visitor.

The Visitor pattern could be considered as a substitute for the double-
dispatch mechanism unsupported by mainstream OO languages such as C++,
Java and Smalltalk. As observed by Gamma et al. [47], languages that support
multiple dispatching (for example CLOS) lessen the need for this pattern.

The class diagram of the Visitor pattern is depicted in Figure 4.5 and List-
ing 4.16 shows an extract of corresponding implementation. We note the de-
pendency between objects and their visitor; the objects’ accept() method takes
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Figure 4.5: Class structure of the Visitor pattern

interface ITreeNode { public void accept(IVisitor v); } //1

//2

class TreeNode_0 implements ITreeNode { //3

public void accept(IVisitor v) { v.visit(this); } //4

public String visit_treeNode_0() { return "visiting TreeNode_0"; } //5

} //6

class TreeNode_1 implements ITreeNode { // as TreeNode_0 } //10

//11

interface IVisitor { //12

public void visit(TreeNode_0 tn_0); //13

public void visit(TreeNode_1 tn_1); //14

} //15

class Visitor implements IVisitor { //16

public void visit(TreeNode_0 n_0) { //17

System.out.println(n_0.visit_treeNode_0()); //18

} //19

public void visit(TreeNode_1 n_1) { //20

System.out.println(n_1.visit_treeNode_1()); //21

} //22

} //23

//24

public class VisitorPattern { //25

// define a tree of nodes and traverse it applying the visit //26

} //27

Listing 4.16: An implementation of the Visitor pattern
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a IVisitor type as parameter and a visitor operation (visit() method) has a
parameter of type ITreeNode. There are two different ITreeNode class types,
each of which implements the accept() operation, thus allowing the visitor to
act upon its objects. The Visitor class provides implementations of visiting
operations for each ITreeNode object type. In running the pattern, the nodes
can be traversed in such a way that each object is operated upon by invoking
the accept() method.

We can implement the double-dispatch technique by using the dispatch
mechanism provided by dynamic proxies. Node objects are separated from
the visitor by assigning them to the base level; proxy objects residing at the
meta-level take the role of visitors. Once an accept() method is invoked on
an ITreeNode object, control is dispatched to the meta-level where reflective
code implemented by the meta-object is executed. Figure 4.6 shows the class
structure of the Visitor pattern according to this view in UML notation. Note
that the classes of proxy objects are completely decoupled from application
classes at the base level.

import java.lang.reflect.*;

public class ProxyFactory {

public Object createProxy(Object tnode) throws Throwable {

// creates and returns a proxy. Handler is of type VisitorHandler

}

}

class VisitorHandler implements InvocationHandler {

private Object tnode;

public VisitorProxy (Object tnode) { this.tnode=tnode; }

public Object invoke(Object p, Method m, Object[] args) throws Throwable {

Object result = null;

try {

Method[] meths=tnode.getClass().getDeclaredMethods();

for (int i=0; i < meths.length; i++) {

if (meths[i].getName().startsWith("visit")) {

result=meths[i].invoke(tnode, null);

}

}

} catch (InvocationTargetException e) { ... }

return result;

}

}

Listing 4.17: An implementation of the Visitor pattern at the meta-level

Figure 4.6 suggests that, at the base level, the method accept() is made
independent of the visitor. As a result, ITreeNode classes provide a default
(an empty) implementation of the method. The accept() method is invoked
on proxy objects triggering the visitor’s operation implemented at the meta-
level. The result is the same as in the static case. The differences lie in the
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implementation of the visitor object as well as in its activation.
Listing 4.17 shows an extract from the corresponding Java implementation

of the pattern. Instances of class VisitorHandler represents visitor objects
which operate on base objects by intercepting accept() method invocations
on them. Reflection is used to invoke the visit methods on base objects. In
executing the meta-code, meta-objects assume that objects at the base level
provide visiting methods whose names start with “visit”.

Figure 4.6: Adapting the Visitor pattern to the reflection model

4.3.1.6 The Observer Pattern

The Observer pattern defines a one-to-many dependency between objects so
that when one object changes state, all its dependents are notified and updated
automatically. This is equivalent to the MVC pattern where Views are depen-
dent on their Models and must be informed every time data held by models has
changed.

Java provides a number of abstractions that allow direct implementation of
the pattern. There is, on the one hand, the class tuple (Observable, Observer)

in the java.util package. Observable objects keep track of interested observers.
When a change of state of an observable object takes place, all observers are
notified and updated automatically. On the other hand, there are the Jav-
aBeans classes PropertyChangeEvent, PropertyChangeListener and Property-

ChangeSupport, which support active JavaBeans properties. In Section 3.4.2.2
of the previous chapter, we implemented the Observer pattern using JavaBeans
classes. By adapting this implementation to our reflective model, we provided
a generic coding of the event-trigger mechanism independent of the application
object (the observable). The generic implementation shows the power of our
reflection model in supporting code reuse and less coupling.

4.3.1.7 The Command Pattern

The Command pattern encapsulates a request as an object. It decouples clients
from objects having the knowledge to perform the requested operations.
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Adapting the Command pattern to the proxies’ reflective model is straight-
forward, due to the fact that the model supports decoupling of objects and
classes. Clients can be identified with base objects and commands as meta-
objects. The meta-objects are assisted by other objects having the knowledge
to perform the required operations. Clients’ requests are dispatched to the
invocation handlers (meta-objects), which pass on the request to appropriate
objects for manipulation.

Listing 4.18 shows an example of how two commands are implemented
(LightOnCommand and LightOffCommand) together with a CommandHandler control-
ling the execution of these commands. Switching lights on or off depends on
clients’ input dispatched to the handler through a proxy object. Listing 4.19 is
an example of a client using a proxy to pass its requests to a command controller
residing at the meta-level. The coupling between client objects and commands
takes places at runtime and is temporal; once the commands are executed the
coupling ceases to exist.

The advantages of implementing Command using dynamic proxies are less
coupling at the class (and object) level and promotion of modularity as a result
of the separation of clients and commands.

4.3.1.8 The Chain of Responsibility Pattern

The Chain of Responsibility pattern avoids coupling the sender of a request
to its receiver by giving more than one object a chance to handle the request.
Receiving objects are chained and the request is passed along the chain until
an object handles it.

As for the Command pattern, Chain of Responsibility promotes looser cou-
pling between classes. It forwards requests along a chain of classes whereas the
Command pattern forwards a request to a specific class. Adapting the pattern
to the reflection model follows the same procedure as that applied to the Com-
mand pattern. Request senders are interpreted as base objects and the chain
of handlers reside at the meta-level. The proxy’s invocation handler receives
clients’ requests and implements the chaining operation with the support of
receiver objects.

4.3.1.9 The Mediator Pattern

The Mediator pattern defines an object that encapsulates how a set of objects
interact. The pattern promotes loose coupling by keeping objects from referring
to each other explicitly.

We can minimise coupling further by applying our reflective model to Me-
diator. The role of the mediator object can be implemented at the meta-level.
The meta-object keeps a list of all (base) objects and keeps them from referring
to each other explicitly. The meta-object implements the interaction strategy;
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import java.lang.reflect.* ;

public class ProxyFactory {

public Object createProxy(Object base_obj) throws Throwable {

// creates a proxy. The invocation handler is CommandHandler

}

}

class CommandHandler implements InvocationHandler {

private Object swit;

private Light light;

public CommandHandler(Object swit) {

this.swit=swit;

light=new Light();

}

public Object invoke(Object px, Method m, Object[] args) throws Throwable {

Object result = null;

try {

if (method.getName().equals("switchOnCommand")) {

new LightOnCommand(light).execute();

}

else if (method.getName().equals("switchOffCommand")) {

new LightOffCommand(light).execute();

}

else result=method.invoke(swit, args);

} catch (InvocationTargetException e) { ... }

return result;

}

}

interface ICommand { public abstract void execute(); }

class Light {

public void turnOn() { System.out.println("Light is on "); }

public void turnOff() { System.out.println("Light is off"); }

}

class LightOnCommand implements ICommand {

private Light myLight;

public LightOnCommand (Light light) { myLight=light; }

public void execute() { myLight.turnOn(); }

}

class LightOffCommand implements ICommand {

private Light myLight;

public LightOffCommand (Light light) { myLight=light; }

public void execute() { myLight.turnOff(); }

}

Listing 4.18: CommandHandler controls execution of commands
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interface IRequest {

public void switchOnCommand ();

public void switchOffCommand ();

}

class Switch implements IRequest {

public void switchOnCommand() { }

public void switchOffCommand() { }

}

public class CommandDemo {

public static void main(String[] args) throws Throwable {

ProxyFactory pf=new ProxyFactory();

IRequest ireq=(IRequest)pf.createProxy(new Switch());

// use proxy and associated handler to switch on/off

}

}

Listing 4.19: Commands are dispatched to the meta-level using a proxy object

it provides necessary operations to ensure that the objects work properly to-
gether. The objects are instantiated at the application level and passed to
the same meta-object upon creation of corresponding proxies. Method invoca-
tions are trapped by the meta-object where they are introspected and handled
according to the interaction strategy.

Applying the reflection model promotes loose coupling of Mediator further;
the set of objects whose interactions are to be controlled by the Mediator but
are passed at runtime and have no reference to the Mediator (of type Invocation-
Handler) at the class level. In a non-reflective implementation of the pattern,
there is an additional coupling resulting from the dependency of interacting
objects on the Mediator at compile-time.

4.3.1.10 The Interpreter Pattern

The Interpreter pattern defines a representation for the grammar of a language
along with an interpreter that uses the representation to interpret sentences
in the language. Implementing the Interpreter pattern requires routine com-
piler techniques including parsing the language expressions, interpreting the
resulting syntax tree into actions and then executing the actions to be exer-
cised. Error checking is also required to handle grammatical statements with
incorrect syntax.

The Interpreter pattern is useful in cases where a simple compiler is needed
to handle a particular set of expressions of an arbitrary application. The com-
piler construction process consists of several consecutive steps (scanning, pars-
ing, code generation etc) normally executed in a specified order. Inserting
proxies in the compilation process as a result of applying our reflection model
is not beneficial, because it complicates the process with no apparent gains.
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4.3.2 Structural Patterns

4.3.2.1 The Adapter Pattern

import java.lang.reflect.*;

public class ProxyFactory {

public Object createProxy(Object base_obj) throws Throwable {

// creates & return a proxy. Handler is a StackHandler

}

}

class StackHandler implements InvocationHandler {

private Object stack;

private java.util.Vector adaptee;

public StackHandler(Object stack) {

this.stack=stack;

adaptee=new java.util.Vector();

}

public Object invoke(Object pxy, Method m, Object[] args) throws Throwable {

Object result = null;

try {

if (method.getName().equals("push")) adaptee.addElement(args[0]);

else if (method.getName().equals("pop")) {

Object le = adaptee.lastElement();

adaptee.removeElementAt(adaptee.size() - 1);

result=le;

}

else if (method.getName().equals("top")) result=adaptee.lastElement();

else result=method.invoke(stack, args);

} catch (InvocationTargetException e) { ... }

return result;

}

}

Listing 4.20: A Vector object as adaptee

The Adapter pattern converts the interface of one class into that of another.
The intention of the pattern is to convert the interface of a class to match the
requirements of a client class.

There are two ways to implement Adapter: through inheritance and through
composition [47]. The two approaches are termed class adapter and object
adapter, respectively. The non-conforming class is referred to as the adaptee
and the new class as the adapter. In the case of inheritance, the adapter is
defined as a sub-class of the adaptee and the methods required to match the
desired interface are added to it. In the case of composition, the adaptee is
included inside the adapter and acts as a delegate to method calls invoked on
adapter objects.

Adapters are intermediary entities between adaptees and client objects.
Proxy objects can play this intermediary role of adapters. The difference to the
class and object adapter implementations is that a dynamic proxy (as adapter)
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acquires the target interface at runtime. It is independent of this interface and
uses reflection to identify method calls. The proxy depends on the adaptee to
implement the required functionality, as in the class and object adapter im-
plementation. Furthermore, the proxy implementation does not substitute the
original target class with the adapter class, but keeps this class and represents
its objects at runtime.

Listing 4.20 shows an example of how our model can be used to imple-
ment the Adapter pattern in such a way that a proxy object plays the role
of an adapter. In this extract, the handler uses a java.util.Vector object
(the adaptee) as delegate to implement the required functionality. Listing 4.21
shows an example of how a target class interface BaseStack can be converted
into a Vector interface by passing the client request to the meta-object using a
proxy. We note that the only change required to adapt the default implementa-
tion represented by BaseStack is to divert the method invocation to the proxy
object.

import java.util.*;

interface IStack {

public void push(Object v);

public Object pop( );

public Object top( );

public boolean empty( );

}

class BaseStack implements IStack {

public void push(Object v) { // default impl }

public Object pop( ) { // default impl }

public Object top( ) { // default impl }

public boolean empty( ) { return true; }

}

public class AdapterDemo {

public static void main(String [] args) throws Throwable {

ProxyFactory fac=new ProxyFactory();

IStack stack=(IStack)fac.createProxy(new BaseStack());

// stack allows adaptation of default impl using a Vector as adaptee

}

}

Listing 4.21: Adapting default implementation of a stack using a proxy

4.3.2.2 The Decorator Pattern

The Decorator pattern attaches additional responsibilities to an object dynam-
ically. It provides a flexible alternative to sub-classing for extending function-
ality. Decorator and Adapter are wrapper patterns. While Decorator wraps
and adds new responsibilities to a core object without changing its interface,
Adapter changes the adaptee’s interface.
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Decorator can be easily adapted to the proposed reflection model. Core
objects residing at the base level can be decorated by attaching them to meta-
objects. Meta-objects extend the functionalities of their referents before dele-
gating control back to them.

4.3.2.3 The Memento Pattern

The Memento pattern stores the current state of an object in a memento ob-
ject. The object’s state can be later restored without exposing the internal
representation of the object to the outside world.

We can adapt the Memento pattern to the proposed reflection model by
letting meta-objects implement the undo and save operations invoked on their
referents. Here, we assume that the internal states of base objects need to be
stored by mementos. When the undo operation is invoked, a meta-object asks
the base object to retrieve stored data from its memento. When the save op-
eration is invoked, a meta-object allows its referent to create a new memento
object and store data in the newly created object. The class relationships be-
tween base objects and their mementos remain the same as in the non-reflective
case.

Listing 4.22 shows an extract of an implementation of the undo and save
operations using our proxy-based reflection model. The meta-object (of type
MementoHandler) holds references to the base object (of type <Object Type>)
and its memento (of type <Memento Type>) passed as parameters upon creation
(lines 16 - 19). When a save() or an undo() method is invoked at the base level,
control is dispatched to the meta-object. In case of save(), a memento object
is created and the base object fields are set (lines 22 - 25). In case of undo(),
the fields are retrieved by invoking setMemento((<Memento Type>)mem) and the
base object is returned with the retrieved values (lines 26 - 30).

The advantage of implementing Memento using dynamic proxies is the sep-
aration of application objects from objects manipulating the states of these
objects, thus increasing the modularity level. This separation is particularly
useful when save and undo are part of typical database transactions. In this
case, meta-objects can act as buffers holding application objects’ states and as
initiators of database actions, thus separating object state manipulations from
object data.

4.3.2.4 The Bridge Pattern

The Bridge pattern is meant to decouple an abstraction from its implementation
so that the two can vary independently.

The Bridge pattern supports the principle of abstraction in software en-
gineering, according to which implementation details are separated from and
hidden behind an application’s interface. The proposed reflection model sup-
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import java.lang.reflect.*; //1

//2

public class ProxyFactory { //3

public Object createProxy(Object base_obj, Object mem) throws Throwable {

// ... //..

}

} //12

class MementoHandler implements InvocationHandler { //13

private Object base_obj; //14

private Object mem; //15

public MementoHandler(Object base_obj, Object mem) { //16

this.base_obj=base_obj; //17

this.mem=mem; //18

} //19

public Object invoke(Object pxy, Method m, Object[] args) throws Throwable {

try { //21

if (method.getName().equals("save")) { //22

mem=(<Memento_Type>)(((<Object_Type>)base_obj).createMemento()); //23

// set object’s fields //24

} //25

else if (method.getName().equals("undo")) { //26

if (mem==null) throw new Exception("No Mememnto object ..."); //27

((<Object_Type>)base_obj).setMemento((<Memento_Type>)mem); //28

return ((<Object_Type>)base_obj); //29

} //30

} catch (InvocationTargetException e) { ... }

return null;

}

}

Listing 4.22: Adapting default implementation of a stack using a proxy

ports the principle of abstraction. However, the model allows clients to modify
application behaviour through a meta-interface. The modification is carried out
without modifying the default implementation. Adapting the Bridge pattern
to the proposed reflection model is useful only if the new feature of the model,
namely, open implementation, can be used effectively and the benefits gained
outweigh the complexity of adding this new feature.

4.3.2.5 The Composite Pattern

The Composite pattern composes objects into tree structures to represent whole-
part hierarchies and allows individual objects (leaves) and composites (nodes)
to be treated uniformly. The pattern is used to describe a recursive composition
in such a way that simple and compound objects are treated equally.

Figure 4.7 shows the class structure of the Composite pattern. The pro-
gramming units IComponent and Component represent abstractions providing the
basic functionality of a recursive structure and allow a uniform treatment of
simple and compound objects. The Leaf class represents simple objects and
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interface IComponent {

public void specify();

public void add(IComponent c) throws Exception;

public void remove() throws Exception;

public IComponent getFirst();

public IComponent getRest();

}

class Component implements IComponent {

// provides a default impl of IComponent. Throws exceptions

// for add/remove and returns nulls for getFirst and getLast

}

class Leaf extends Component {

public String name;

public int id;

public Leaf(String name, int id) { this.name=name; this.id=id; }

public void specify() { // specify a leaf ... }

}

class Composite extends Component {

// implements stack structure recursively

IComponent first; IComponent rest;

Composite cons; // will be first defined by calling add

public Composite() { first=null; rest=null; }

public Composite(IComponent f, IComponent r) {

this.first=f; this.rest=r;

}

public void specify() {

IComponent en=cons.getFirst();

IComponent re=cons.getRest();

while (en!=null && re!=null) {

en.specify(); en=(re.getFirst()); re =re.getRest();

}

}

public void add(IComponent o) {

if (cons==null) cons=new Composite();

cons=new Composite(o, cons);

}

public void remove () { // for simplicity removes 1st object

cons.first=(cons.getRest()).getFirst();

cons.rest =(cons.getRest()).getRest();

}

public IComponent getFirst() { return this.first; }

public IComponent getRest() { return this.rest; }

}

Listing 4.23: An implementation of Composite without meta-programming
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Figure 4.7: Class structure of the Composite pattern

hence inherits the default behaviour defined by its superclass, Component. By
default, a Component cannot add to, remove from, or navigate through the ob-
ject structure. Class Leaf defines individual object attributes and how objects
specify themselves. Class Composite represents compound objects and defines
the functionality needed to manipulate and navigate through the objects’ struc-
ture in the form of a stack. The stack is constructed recursively through the
add() method. The recursive structure of Composite is represented by a self-
association as shown in Figure 4.7. Specifying a composite object requires
traversing its structure and, at each entry, calling the corresponding specify()

method. The remove() method removes the first object from the list. List-
ing 4.23 shows an extract of a Java implementation of the pattern without
using meta-level facilities provided by the proxies.

To adapt the static structure of the Composite pattern to the reflective
two-level architecture, we need to identify the generic aspects of the pattern
and separate them from those that are application specific. Simple objects
with their attributes and specifications are application dependent. Recursive
structures are abstract data types and are inherently generic. Following this
view, simple and compound objects can be treated uniformly and classified as
base and meta-objects, respectively. Figure 4.8 shows the class structure of the
Composite pattern according to this classification. Note that CompositeHandler
refers to itself reflecting the recursive structure of the stack. As in previous
cases, the class diagram shows no coupling between classes of the two levels.

The base level implementation of the Composite pattern can be deduced
from Figure 4.8. The abstraction, IComponent, which defines the recursive struc-
ture and represents simple and compound components, remains the same as in
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Figure 4.8: Adapting the Composite pattern to the reflection model

the static case. Similarly, class Component and class Leaf also remain the same
as before. To run the pattern application, a meta-object is reified upon instanti-
ating a proxy using the factory method of ProxyFactory. The result is identical
to that of the static case. The difference is that, in the dynamic case, manip-
ulating a compound object is realized at the meta-level in a generic manner
without reference to the base class types, IComponent, Component and Leaf.

Listing 4.24 shows an extract from the Composite pattern implementation
at the meta-level. The class CompositeHandler represents compound objects
(lines 14 - 35). As with the Composite class in the static case, it implements
all the methods of the component interface. The major difference is that
CompositeHandler makes no reference to base object types. To manipulate the
recursive structure of a compound object, the methods of adding or removing
simple objects, navigating through the structure and specifying the entries are
intercepted and delegated to the generic invoke() method (lines 22 - 34). With
the specify() method, the recursive structure is traversed and at each entry
the corresponding method of simple objects is called back.

The advantages of separating the generic part of the Composite pattern
from the application specific part are less coupling, reuse of the meta-code, and
support for separation of concerns (the base level from the meta-level). The
combination of these features allows for a better understanding of design and
for potentially reduced maintenance costs.

4.3.2.6 The Facade Pattern

The Facade pattern provides a unified interface to a set of interfaces in a sub-
system. Facade defines a higher-level interface that makes the subsystem easier
to use. This can be used to simplify a number of complicated object interactions
into a single interface.

Facade can be seen as an extended form of the Adapter pattern; while an
adapter wraps one object, facade wraps a number of existing objects. As in the
case of Adapter, a dynamic proxy can play the role of an intermediary between
client and a set of objects. In this case, objects are attached to the facade at
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import java.lang.reflect.*; //1

//2

public class ProxyFactory { //3

public Object createProxy(Object delegate) throws Throwable { //4

// ... The invocation handler is a CompositeHandler //..

}

} //12

//13

class CompositeHandler implements InvocationHandler { //14

private Object delegate; //15

CompositeProxy cons; //16

// define first and rest variable ... //17

public ContextComposite (Object delegate) { //18

this.delegate=delegate; //19

cons=new ContextComposite (); //20

} //21

public Object invoke(Object pxy, Method m, Object[] args) throws Throwable {

Object result = null; //23

try { //24

if (method.getName().equals("add")) { //25

cons=new CompositeProxy(args[0], cons); //26

} //27

else if (method.getName().equals("specify")) { // as in static case }

else if (method.getName().equals("remove")) { // as in static case }

else if (method.getName().equals("getFirst")) cons.getFirst();

else if (method.getName().equals("getRest")) cons.getRest();

} catch (InvocationTargetException e) { ... }

return result; //33

} //34

} //35

Listing 4.24: The meta-level part of the Composite pattern implementation

runtime. The advantages of using a dynamic proxy as facade are flexibility and
less coupling.

4.3.2.7 The Flyweight Pattern

The Flyweight pattern uses sharing to support large numbers of fine-grained
objects efficiently. The participants involved in the pattern are the Flyweight,
the ConcreteFlyweight, the UnsharedConcreteFlyweight, the Client and the
FlyweightFactory. ConcreteFlyweight implements the Flyweight interface and
stores intrinsic states independent of its objects context. A ConcreteFlyweight

object must be shareable unlike an UnsharedConcreteFlyweight. The Flyweight-
Factory serves to deliver particular flyweights when requested. The factory is
passed certain properties and returns the requested flyweight if it already ex-
ists; otherwise it creates and returns a new flyweight. In addition, there is the
Context class, which acts as a repository of an extrinsic state. When creating a
new object, a Client assigns a flyweight to the object and computes its extrinsic
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state.
We note that the role of Context together with FlyweightFactory is to con-

trol the flow of flyweights required by a Client. On the other hand, Flyweight,
ConcreteFlyweight, and UnsharedConcreteFlyweight provide the data structure
whose storage is to be efficiently manipulated.

We can employ the reflection model and separate the control classes from
the structural classes. However, because of the large number of objects involved,
we expect computation time to increase due to the reflection overhead caused
by the proxy mechanism. In addition, employing the reflection model does
not reduce the level of coupling, because the factory must know the flyweight
structure (i.e., type) in order to decide whether to create a new flyweight or
deliver an existing one.

4.3.2.8 The Proxy Pattern

The intent of a normal proxy is to provide a surrogate or placeholder for another
object to control access to it. Dynamic proxies, on which our reflective model
is based, play the same role with additional advantages of less coupling and a
higher degree of code reuse. The type and the relationship of a normal proxy
to target objects are fixed at compile-time. Those of a dynamic proxy are
first determined at runtime. Dynamic proxies allow, using polymorphism and
reflection, for implementing generic behaviour independent of the targets’ type.

4.3.3 Creational Patterns

Factory patterns provide an interface for creating an object or families of related
objects. Depending on runtime data, the factory decides which instance of
the several possible subclasses or class hierarchies to return and returns one.
Singleton ensures a class only has one instance and provides a global point to
access it.

As observed by Norvig [82] and Sullivan [93], languages that allow overriding
of the default creation method provide direct support for the Factory Method
and Singleton patterns. Also, for languages in which classes are first-class en-
tities, there is no need for abstract factories since classes themselves serve as
factories. The behavioural reflection model supported by dynamic proxies does
not allow redefinition of Java’s new() method for object creation independently
of Factory classes. Moreover, as noted in Section 3.6 of the previous chapter,
the proposed reflection model does not change the underlying object model.
Classes are not first-class, they are strictly compile-time entities and their in-
stances do not understand creation messages. As a result, there are no benefits
in employing proxies for implementing Factory Method, Abstract Factory and
Singleton patterns.

The Builder pattern separates the construction of a complex object from
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its representation (type and content) so that the same construction process can
create different representations. It is similar to Abstract Factory but objects
are created in more than one step. As for the factory patterns, applying the
proxies’ reflection model has no apparent advantages when compared with the
static implementation.

The Prototype pattern is used when it becomes more appropriate to cre-
ate objects by cloning rather than by instantiating the class. Java’s interface
Cloneable provides an implementation of the pattern. Objects must implement
this interface and override the clone() method of the root class java.lang.Object
before they can be copied. The method performs a shallow copy of the object,
i.e., the copy points to the same objects the copied object points to. The method
copies values of the fields in the new object, not the actual objects (references)
the original object points to. If a shallow copy of the data is sufficient, the Java
implementation of Prototype is simple.

4.4 Discussion

Extending the reflective architecture to incorporate the client/server model is
straightforward and varies only according to the networking technology used
to implement the communication protocol. In the client/server model, meta-
objects providing customisation services become remote objects, running on a
different JVM (on the server side) as their clients at the base level.

We have presented three implementation approaches for constructing dis-
tributed systems based on dynamic proxies. Part of any analysis should be a
comparison of those approaches to assess the relative merits of each. In doing
so, we concentrate on the salient features of the different architectures.

RMI and CORBA are considered as two platforms specifically designed for
developing OO distributed systems and as such share common features. Java
Servlets, on the other hand, provide an API allowing HTTP communications
between clients and servers according to the request/response model. Compared
to the RMI and CORBA/IIOP protocols, HTTP is stateless and suitable for
text transfer only; objects must be serialized and de-serialized before being sent
and received along the communication wire. Enterprise applications require
stateful communication sessions, security and transaction services. Servlets
provide no naming service, no dynamic class loading and there is no security
mechanism readily available for them (access security is normally managed by
the servlet engine, i.e., the Web server).

RMI and CORBA provide such services and more. RMI and CORBA pro-
vide similar mechanisms for transparently accessing remote objects. The most
important difference between the two technologies lies in the portability across
language and operating systems platforms. RMI can only operate with Java
systems and is thus tied to platforms with Java support whereas CORBA sup-
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ports heterogeneous systems written in different languages and distributed over
different platforms. RMI provides no support for legacy systems written, for
example, in Fortran and Cobol; in CORBA, server implementations can be
written in various languages and accessed by any language with an IDL map-
ping. Although developing distributed applications follows a similar procedure
in both frameworks, CORBA requires knowledge of the IDL and IDL map-
ping of the implementation language. IDL language mappings are specified by
the OMG and mapping tools for generating stubs and skeletons required to
establish the connection between clients and servers over the ORB would be
needed.

In addition to the difference in the definition of the client server interface
(RMI uses Java interface construct and CORBA the IDL), there is a slight
difference in their architectures. In RMI, stubs and skeletons are generated
from implementation objects. In CORBA, stubs and skeletons are formed from
the IDL interface. As a result, in RMI, the generated stub is a proxy for all
the remote interfaces of the remote object whereas in CORBA each interface
requires its own stub.

We perceive four key advantages to implementing reusable code on the server
side with the help of dynamic proxies. Firstly, no changes on the client side are
required and the client applications remain executable without being attached
to the meta-code on the server side. Secondly, the meta-code is held separated
from base applications. This is a desirable design feature since it reduces com-
plexity and enhances the readability of the code. Thirdly, the class structure
shows less coupling when compared with the corresponding static case and the
object coupling between both sides (clients and servers) is flexible; one meta-
object can be used to represent several base objects and vice-versa. Finally, with
the help of polymorphism and reflection, customisation code is implemented in-
dependently and without any reference to particular applications. Variables of
generic types such as java.lang.Object are used to hold application objects and
reflection is used to manipulate object data at runtime.

Table 4.1 summarizes the impact of applying the proposed reflection model
on design patterns in terms of prominent features. The features include the
usefulness of applying the model, whether applying the model simplifies the
pattern implementation, promotes loose coupling and increases the level of code
reuse as well as modularity. Applying the model is not useful if it complicates
the implementation without apparent benefits. The conclusions related to loose
coupling and code reuse are derived intuitively from class diagrams and coding
examples.

Most pattern implementations resulted from applying the model show a
higher level of modularity, due to the fact that the proposed model supports
the separation of application objects from their meta-representations. Recall
that in OO, a module is identified more closely with a class [58]. We note that
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Pattern’s name Prominent features of applying the reflection model

Template Method Substitutes inheritance by object composition

Strategy Simplifies pattern implementation

State Similar to Strategy pattern

Iterator Not useful. Java’s abstractions are satisfactory

Visitor Promotes loose coupling

Observer Using JavaBeans, increases level of code reuse

Command Increases level of modularity and promotes loose coupling

Chain of Responsibility Similar to Command pattern

Mediator Promotes loose coupling further

Interpreter Not useful

Adapter Provides a more flexible implementation

Decorator Similar to Adapter

Memento Supports separation of concerns

Bridge Useful in case open implementation feature is required

Composite Promotes loose coupling and code reuse

Facade Promotes loose coupling and code reuse

Flyweight Not useful, due to costs of reflection overhead

Proxy Not applicable

Creational patterns Not useful, because model cannot be utilized to redefine new()

Table 4.1: Features of design patterns when adapted to the reflection model

some pattern implementations do not lead to autonomous and self-contained
modules independent of application specifics. For example, the Memento pat-
tern implementation separates application objects from (meta-) objects ma-
nipulating their states; the meta-program, however, depends on the types of
application objects (See Listing 4.22).

For the Template Method pattern, the reflection model substitutes inher-
itance with object composition. For Strategy and State, applying the model
simplifies pattern implementation. For Iterator and Prototype (a creational
pattern), Java provides appropriate abstractions as library classes that allow
for a direct implementation. Applying the reflection model to the Observer
pattern using JavaBeans classes allows for a generic implementation of event-
trigger mechanism, thus increasing the level of code reuse. For Adapter and
Decorator, the model provides a more flexible implementation; the adaptee is
added through a proxy and the default implementation is kept as is. For some
patterns, applying the model promotes loose coupling arising from the move-
ment of some participants to the meta-level. For Interpreter and Flyweight
patterns, applying the model complicates the implementation and worsens the
performance. The reflection model is not useful when applied to creational
patterns, because the model cannot be utilized to redefine the new() method.

Empirical investigations are required to support or refute the claims about
coupling and reuse features exhibited by the pattern. We accept that we have
not so far supported our claims with software metrics. In Chapters 5 and 6 we
address this question in terms of appropriate coupling and code reuse metrics.
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Case studies indicate that reflective systems exhibit less coupling and higher
level of code reuse when compared with identical non-reflective systems.

4.5 Conclusions

In this chapter, the behavioural reflection model was extended to include the
client/server programming model. To provide an enterprise solution with mul-
tiple JVMs connected over a TCP/IP network while retaining the semantics
of both levels as is, we transform the single application into a client/server
application. The transformation is realized by adapting the single application
code, firstly, to the requirements of an RMI based system, secondly, to those
of a CORBA IDL programming model and finally, to the requirements of re-
quest/response model supported by HTTP servlets.

As in the case of the single application model, we used the reflection model
to implement reusable code. In the case of distributed systems, this code is im-
plemented on the server side and accessed by clients via RMI, CORBA/IIOP
or HTTP protocols. The question of comparing our approach to code reuse
with the standard OO mechanisms such as inheritance and aggregation (com-
position) will be discussed in detail in Chapter 6.

Applying the reflection model to design patterns showed that some pattern
implementations become simpler. For a number of patterns the implementation
exhibited less coupling, a higher degree of modularity and greater reuse. How-
ever, for many patterns, in particular creational patterns, the reflection model
showed no apparent benefits over the traditional implementation.

Elevating design patterns to the meta-level has many advantages. In addi-
tion to being reusable design assets, patterns can be coded as abstract reusable
classes. Patterns’ code is implemented separately from client applications and
can be developed and maintained independently. As the pattern code is lo-
calised (at the meta-level) and not scattered over the application, design com-
prehension and program code are potentially improved and maintenance costs
potentially reduced.



Chapter 5

Coupling Metrics

In Chapters 3 and 4, we introduced the notion of reflective systems and amended
Java’s introspection with a behavioural reflection model. In this chapter, we
study the object coupling of reflective systems implementing the proposed
model. We demonstrate how metrics applied to systems employing the model
can provide quantifiable benefits in terms of reduced coupling. In terms of its
contribution to the Thesis, this chapter provides a metric theoretic approach to
quantifying the coupling level of systems employing the model in comparison
with identical models following the classical OO approach. In Chapter 6, we
apply the same approach in the context of code reuse.

One important aspect of reflection is the ability to manipulate a program’s
execution state at runtime. The behaviour and the structure of a reflective
system changes during program execution. Here, program execution can be
thought of as an ordered sequence of program steps in time and the program
state at one step in the sequence is the sum over the states of all objects. A
change of behaviour or structure (or both) reflects a change of coupling between
objects.

Various OO coupling metrics have been proposed and used in past empirical
investigations [15, 26, 35, 41, 50, 60, 73]; none of these metrics, however, take
the dynamic change of objects’ coupling into account. Yacoub et al. [105] define
object coupling metrics. The authors, however, follow a static approach based
on parsing UML design documents to calculate the measures. We believe that
any measurement of coupling should include changes taking place at runtime.
Arisholm [13] argues that static coupling measures are insufficient for capturing
coupling aspects of systems related to the dynamic behavior of software. The
author remarks that in the case of inheritance and due to polymorphism, it is
not always possible to determine the actual receiver and sender objects from
static code analysis. In recent work [14], Arisholm, Briand and Føyen observe
that regardless of the structural attribute used to define the coupling metric,
predictions of external attributes based on a static analysis of the design or code
become imprecise when inheritance and polymorphism are used intensively in

74
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the systems under study. The authors argue that inheritance and polymorphism
will be used more frequently to improve internal reuse in a system and facilitate
maintenance, as the use of OO design and programming matures in the industry.

In reflective systems, object interactions at runtime are not entirely deter-
mined by their static class couplings. Static metrics relying on class structure
relationships are inadequate when reflective mechanisms are used. To under-
stand the coupling behaviour of reflective systems, we need to define metrics
that take object interactions into account. We also need to develop appropriate
measuring tools that allow us to collect coupling data at runtime.

In this chapter, we introduce a dynamic coupling metric, examine its theo-
retical foundations and conduct an empirical validation with the support of a
measuring tool developed for collecting coupling data at runtime. Our hypoth-
esis is that reflective systems based on separating base objects from meta-level
objects show less runtime coupling when compared to equivalent static systems
exhibiting the same behaviour. This hypothesis is based on the observation
that in reflective systems, objects can interact by passing messages without
their respective classes being directly related at the class level. In addition to
inheritance, polymorphism and introspection, a reflective system is supported
by runtime mechanisms such as behavioural and/or structural reflection that
allow the program to manipulate its own state. This allows for a flexible object
communication and less object coupling as a result. Introduction of a dynamic
coupling metric allows us to demonstrate quantifiably and in a practical sense
the relative coupling of classes within OO applications. We view such a metric
as a useful approach serving the theoretical evaluation of reflection as well as a
practical tool during application development. The proposed dynamic coupling
metric applies equally to reflection-based (employing a reflection model) as well
as to OO systems in general.

This chapter is organised as follows. The next section provides an intro-
duction to software metrics and presents the underlying measurement theory.
Section 5.2 defines a dynamic coupling metric as a mapping of object entities
into the set of real numbers, where the attribute of interest is object coupling.
In Section 5.3, we address the theoretical validation of the metric. Two sets
of measurement principles are considered as evaluation criteria. The problems
of applying these criteria to our dynamic metric are discussed. Section 5.4 in-
vestigates the prospect of empirical validation. A measuring tool is developed
and used in a case study conducted for testing the hypothesis empirically. In
Section 5.5, the proposed metric is compared with static metrics based on OO
class relations such as inheritance and aggregation and we conclude the chapter
in Section 5.6.
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5.1 Software Metrics

Applying quantitative measures - known as software metrics - to assess the
quality of software design and code has a great impact on the ease of implemen-
tation, maintainability and reliability of software [42, 59, 61]. The underlying
theory behind software metrics is measurement theory. This section introduces
the basic concepts of this theory and its application in the domain of software
system development and maintenance. The introduction serves as the basis for
the definition of coupling and code reuse metrics introduced in this and the
next chapter.

Measurement theory is concerned with the connection between data and the
real world. The basic concept of measurement theory is the correspondence or
mapping between the real world (modelled as a set of entities with attributes)
and a set of numbers or symbols - normally the set of real numbers, R. Measure-
ments are real numbers and the attributes being measured represent features
or properties of entities of the system under study. The fundamental ideas are

1) measurement data is not the same as the attributes being measured, and

2) conclusions about attributes should take into account the correspondence
between measurements and attributes.

When combined with the theory of statistics, measurement theory can be used
to derive meaningful inferences and make prdictions about the real world.

Fenton and Pfleeger [42] define the notion of a measurement as “the process
by which numbers or symbols are assigned to attributes of entities in the real
world in such a way as to describe them according to clearly defined rules”.
The authors provide another definition of measurement as “a mapping from
the empirical world to the formal, relational world”. They introduce the notion
of a measure as “the number or symbol assigned to an entity by the measure-
ment mapping in order to characterise an attribute”. We refer to measures as
metrics and introduce a metric as a function that defines a correspondence or a
measurement mapping between system entities and the set of real numbers. An
example of an entity is source code. The size of the code is represented by an
attribute and one possible metric for measuring the size of code is the number
of Lines Of Code (LOC). Statements can be made about sets of entities by
use of comparison operators on their corresponding attribute values. Thus, if
e0 and e1 are two source code entities and LOC(e0) ≤ 2 ∗ LOC(e1), then we
say the size of e0 is at most double the size of e1.

Further useful definitions include measurement scale, the corresponding set
of admissible transformations and the nature of attributes [42]. A measurement
scale refers to the entirety of measurement mapping, i.e., the metric function,
the function’s domain and its range. The domain of the function is the set of
system entities in the empirical or real world and the range is the set of real
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numbers or any set of symbols. An admissible transformation is a transforma-
tion of a measurement scale that preserves the relationships of the measurement.
For example, source code e0 is “shorter than” e1 corresponds through a metric
definition, LOC, to LOC(e0) < LOC(e1). This numerical relationship and its
correspondence to real world entities are not affected by an order preserving
operation on the metric such as multiplying the metric values by a positive real
constant. An internal attribute of an entity is an attribute that can be measured
purely in terms of the entity itself, for example, the size of a piece of some code.
An external attribute is one that can only be measured with respect to how the
entity relates to its environment, for example, time required to write a given
piece of source code.

Applying measurement theory to software implies restricting the real world
or narrowing the application domain of the general theory to software systems.

5.1.1 Metric scales

There are at least five different scales of measurements. Each scale is associated
with a set of permissible transformations. The scales form a partially ordered set
according to the restriction imposed by the set of admissible transformations.
An account of this approach can be found in [42].

1. Nominal scale: In this scale, which is the weakest of all scales, the real
world consists of entities that are classified into sets with no ordering.
Numerical labelling (the metric) is totally arbitrary and entities with the
same label have the same attribute. A metric on this scale maps dis-
tinct entities into distinct numbers. For example, consider an OO system
consisting of a finite set of classes. Any mapping which assigns a unique
symbol to each entity in the set as a characterisation of some attribute
shared by all entities, is a nominal scale metric. The values assigned are
arbitrary with no order. The class of admissible transformations for a
nominal scale metric is the set of all one-to-one mappings.

2. Ordinal scale: In this scale, entities are ordered according to a pairwise
comparison and the corresponding metric values reflect an ordering re-
lation defined by the attribute in the set of entities. Consider the OO
system of the previous paragraph. If the attribute is the complexity of a
class, then a metric which assigns to each class a distinct number (ε R)
representing the class complexity, is an ordinal scale metric. We note
that, the ordering induced by the metric in R must match the ordering
defined by the attribute in the real world system. The class of admissi-
ble transformations for an ordinal scale metric is the set of all monotonic
functions that preserve ordering.

3. Interval scale: In this scale, entities are assigned metric values such that
differences between these values reflect differences between corresponding
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attribute values defined by the ordering relation in the set of entities.
Consider the same OO system of the previous paragraph. Let the at-
tribute be the level of dependency of a class where the levels are ordered
and the difference between consecutive levels is constant. A mapping
which assigns to each class a real number representing its level of depen-
dency such that difference between neighbouring entities stays the same,
is a interval scale metric. In the interval scale, the origin and the unit of
measurement are arbitrary. The class of admissible transformations for
an interval scale metric is the set of all affine transformations of the form:
µ(e) → µ′(e) = aµ(e) + b, where µ represents the metric function, a and
b are real constants with a > 0.

4. Ratio scale: Here, entities are assigned metric values such that differences
and ratios between these real number values reflect differences and ratios
between corresponding attribute values defined by the ordering relation
in the set of entities. Compared with the interval scale, only the unit
of measurement is arbitrary. The class of admissible transformations for
a ratio scale metric is the set of all linear transformations of the form:
µ(e) → µ′(e) = a µ(e), where µ represents the metric function and a is
a strictly positive real constant.

5. Absolute scale: The strongest of scales. In this scale, entities are assigned
real numbers such that all the properties of numbers reflect properties
of attributes in the real world. Fenton and Pfleeger [42] observe that
the only possible measurement mapping is the actual count in the enti-
ties. For example, the number of failures observed during an integration
test can be measured only by counting the failures. The only admissible
transformation is the identity transformation.

5.1.2 Metric validation

There are two aspects of validating a software metric, theoretical and empirical.
Theoretical validation amounts to proving analytically that the metric conforms
to a set of formal criteria. Weyuker’s set of measurement principles [102] and the
properties of Briand et al. for testing the usefulness of coupling metrics [25] are
examples of criteria with which proposed metrics can be evaluated. Validating a
software metric experimentally is confined to the set of assumptions relating the
measure of an internal property to an externally visible attribute. Observations
made about the external property of the system during its execution can be
gathered and co-related with an internal property defined by the metric. The
assessment of this co-relation should support or refute the assumption made
about the predictive power of the metric.
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5.2 A Dynamic Coupling Metric

According to the ontological model of Wand and Weber [99], itself based on
Bunge’s work [27, 28], two objects are coupled if either one of them can influence
the history of the other. The history of an object is defined as the sequence of
its states in time. Objects are representations of things; the attributes of a thing
are represented as attributes of the object and permitted state transformations
as the result of operations on the object. The state is defined as the set of
values of the object’s attributes.

A coupling measure between two arbitrary objects, P0 and P1, thus depends
on the time during which P0 influences the history of P1 or vice-versa. A
coupling measure also depends on the number of objects involved and on their
complexity. Here, complexity is due to the underlying class relationships. An
object P is the entity and the measure is the object’s coupling during a time
period ∆t, defined as the sum over all program execution steps and the sum
over all objects, Oi, coupled to P :

µ(P )|∆t =
∑

j

∑

i

fi(tj)gp(|Oi|)

Here, i = 0, 1, 2, ..., number of coupled objects,
∑

i is the sum over the set of
objects coupled to P , ∆t is an ordered sequence of program execution steps
< t0, .., tj , .., tn > and

∑
j is the sum over the program execution steps; fi(tj)

assumes values 1 or 0 depending on whether coupling of the ith object is active
at tj or not and gp(|Oi|) denotes the complexity measure (due to class coupling)
of the ith object coupled to P .

Note that the sequence of program execution steps is not identical to the
sequence of program statements, but is the sequence of events representing ob-
ject interactions during program execution. According to the OO paradigm,
objects interact by passing messages such as object creation or method invoca-
tion. Depending on the underlying class relationships, a single statement such
as object creation may induce a chain of events leading to a number of objects
being created.

When an object P is created at some time t (i.e., due to an event dur-
ing program execution. t=0 corresponds to the start of program execution.),
the default value of µ(P ) is determined by the (static) class structure. Hence-
forward, we refer to our metric as simply DCM (Dynamic Coupling Metric)
and to the time-independent factor,

∑
i gp(|Oi|), as the contribution due to the

complexity measures of the coupled objects.
In the ontological model of Wand and Weber, a system is a set of things

(objects) in which every object is coupled to at least one other object in the
set. At the system level, the coupling measure in a time interval ∆t is the sum
of all measures defined over all the objects of the system, i.e.,
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DCM(system)|∆t = µ(system)|∆t =
all system objects∑

P

µ(P )

The term gp(|Oi|) represents the static part of the DCM and is determined
by the class relation between P and Oi. The form of gp(|Oi|) depends, as
observed by Briand et al. [25], on the goal of the measurement. The goal
is determined by the external attribute or quality we associate with our mea-
sure. For example, Briand et al. [26] showed that an inheritance-based coupling
measure is not appropriate for predicting fault-proneness of classes, whereas a
non-inheritance-based measure is. Therefore, for the fault-proneness as exter-
nal property, it is inappropriate to assign metric values to gp(|Oi|) such as DIT
(Depth of Inheritance Tree) and NOC (Number Of Children) of Chidamber and
Kemerer [35]. Furthermore, if we are interested in comparing reflective systems
to non-reflective systems exhibiting the same behaviour with regard to coupling,∑

i gp(|Oi|) can be used to express the complexity of class coupling in the two
systems. To this end, it is sufficient to assign gp(|Oi|) a real number counting
the number of classes which class of P uses or depends on; for example DAC
(Data Abstraction Coupling) [73] or CBO (Coupling Between Objects) [35] met-
ric values. In summary, gp(|Oi|) is determined by the goal of the measurement
and, in particular cases, requires knowledge of class relationships.

The factor fi(tj) is calculated on a step-by-step basis and requires knowledge
of objects’ coupling scales (transient or static. See next section on DCM scales).
If a meta-object Oi is coupled to P at tj and decoupled immediately after, the
contributions to DCM(P ) due

∑
i gp(|Oi|) are not counted from tj+1 onwards.

In Java, the coupling scale of objects (base and meta-objects) can be identified
according to their class types. A DCM measuring program should be able to
identify objects by reading data files provided at the start of the program.

A program execution state is the collection of its objects’ states. If a pro-
gram consists of one object, then the coupling measure is zero. On the other
hand, if, at an execution step tj , the coupling of an object Oi can be switched
off, the contribution of this object to DCM(P ) is set to zero until the coupling
is reactivated again. We follow object behaviour during a limited period of time
consisting of a sequence of program execution steps and measure the coupling
of the object at each step. The contribution to DCM(P ) due to the complexity
measures of the coupled objects (

∑
i gp(|Oi|) factor) may remain constant and

retain its default value (determined by the class structure) during the entire life-
time of P . This contribution may, however, vary in time in the case where the
program is allowed to change its behaviour and/or structure due to reflective
mechanisms provided by the implementation language. In the particular case
where a system can be described solely in terms of static class relationships,
fi(tj) = 1 ∀ tj , the contributions to DCM(P ) are determined entirely in terms
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of class relationships.
A number of metrics in the literature define coupling, cohesion and com-

plexity by referring to the static class structure. Coupling metrics reflect de-
pendencies among classes including inheritance, aggregation and usage class
relationships (see Section 5.2.2 for a discussion on class relationship and ob-
ject coupling). Cohesion metrics indicate whether a class represents a single
abstraction or multiple abstractions. For example, the metric LCOM (Lack of
Cohesion in Methods) of Chidamber and Kemerer reflect cohesion of a class
by counting the number of method pairs that share instance variables against
the count of those method pairs that do not share such variables. Complexity
metrics give us indications about the complexity of a class, for example, by
counting its Lines of Code (LOC) or Number of Methods (NOM) [59].

The most notable of static coupling metrics are DAC [73], CBO [35] and
MPC (Message-Passing Coupling) [73, 75]. If we classify inheritance as a cou-
pling relationship, we can add to the list the inheritance related metrics of
Chidamber and Kemerer, DIT and NOC. None of these measures, refer to cou-
pling induced at runtime between objects due to reflective mechanisms. DAC
measures coupling that results from declaring classes as attributes in another
class, i.e., coupling due to aggregation. DAC counts the number of abstract
data types, i.e., classes, defined in a class. CBO of a class is a count of the
number of other classes to which it is coupled. In the definition of CBO, in-
heritance is not considered as a form of coupling between classes. Still, CBO
includes DAC, since it also counts the classes defined as attributes. MPC mea-
sures the dependency of a class on methods of other classes. MPC counts the
number of send statements, i.e., method calls on objects of other classes from
the methods of a class. DIT counts the number of ancestor classes of a class and
NOC represents the number of immediate sub-classes in the class hierarchy.

5.2.1 DCM scales

We use the time dependency of DCM to define an ordinal scale between differ-
ent types of couplings. Where coupling between a pair of objects (P, Oi) holds
during the whole lifetime of P , we refer to the coupling as strong or static,
otherwise we refer to it as loose or transient. In the case of object composition,
the aggregate Oi influences the history of its container P as long as the con-
tainer exists. In this case, the coupling is static. On the other hand, if P is a
base object and Oi represents a set of meta-objects, the latter can influence the
former only as long as the binding relationship holds. In addition, the state of
the meta-object is not contained in, and consequently cannot affect, the state
of the base object when the binding between both objects is switched off. In
this case, the coupling is transient.

Boolean statements describing the relationships between the measures of
different objects are invariant under transformations of the form: DCM(P ) →
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a DCM(P ) with a being a positive real number. This implies that DCM is at
least on the ratio scale.

5.2.2 Class dependencies and object coupling

In this section, the connection between object couplings and the underlying class
couplings will be investigated. The basis of this investigation is the instantiation
relationship which exists between classes and objects, according to the OO
paradigm. We restrict ourselves to classes and objects of so-called 2-Level object
model adopted by most OO languages, such as C++ and Java. Here, classes
represent template behaviour of their instance and are strictly compile-time
entities. This restriction does not, however, exclude Smalltalk-80 systems, since,
although the language object model is 3-Level, meta-classes are anonymous
and cannot be defined explicitly by the user. In practice, this means there are
no meta-classes and the dominating instantiation relationship is a class-object
relation.

Having defined object coupling types as elements of an ordinal scale of the
DCM, we now discuss the interconnection between object coupling types and
OO class relationships. The DCM metric defines two types of couplings between
objects; static and transient. Static object coupling refers to couplings that
persist as long as the participating objects remain accessible during program
execution. Transient object coupling, on the other hand, is more flexible and
can be switched on/off during program execution.

Most object interactions are determined by their class relationships. There
is a connection between object coupling types as just mentioned and the un-
derlying class relationships. Class relationships imply dependencies between
corresponding objects’ instances created at runtime. Independent of the class
relationship inducing the coupling, dependency between objects ceases when
the dependent object is destroyed; this can occur either explicitly by invoking
an object’s destructor, as in C++, or implicitly by invoking a garbage collector,
as in Java and Smalltalk-80.

Class aggregation (has-a) and class inheritance (is-a) are two examples of
class relationships that induce static coupling between objects. In the case of
class aggregation, the relationship of inner classes to their containers is ignored,
because it is purely a containment relationship at the class level. For our
purposes, class aggregation that implies object composition (has-a relationship
at the instance level) is relevant. Classes are defined independently of each other
and the container class holds other classes (aggregates) as attributes. As far as
our object coupling type classification is concerned, inheritance resembles class
aggregation; inheritance induces static coupling between a child object and its
parent.

In addition to inheritance and aggregation there are class relationships in
which classes use other classes (uses-a) to implement their functionality. For
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example, a class A uses a class B as a method parameter or as a return type.
Alternatively, B is needed to implement the logic of a method and is used as
a local variable in a method of A. An instance of the class A does not include
instances of B as part of its state. This is the main difference between the
(uses-a) relationship and the other two class relationships. The instances of
used classes do not constitute a part of the state of the instance that uses them.
The uses-a class relationship thus induces transient coupling at the object level.

The coupling relationship between application objects and meta-objects of a
reflective system is transient. In strongly typed object-oriented languages, sub-
type polymorphism may be used to implement meta-object classes in a generic
manner, thus eliminating explicit compile-time class dependencies. This makes
the coupling between objects at the base level and those at the meta-level a
purely runtime issue. In reflective systems, base objects are bound to meta-
objects at runtime and decoupled from them after the changes made at the
meta-level are reflected back to the base level.

5.3 Theoretical Validation of DCM

In this section, the theoretical validation of DCM against Weyuker’s set of
measurement principles [102] and properties of Briand et al. for justifying
coupling measures [25] is addressed. In both cases, we begin by presenting the
principles in the same notation as expressed by the authors and consequently
analyse the metric with respect to each entry in each set.

We recall that the DCM metric maps objects into real numbers where the
numbers characterise object coupling. The sets of Weyuker and Briand et al.
require the concept of concatenation between real world entities which are, in
our case, runtime objects, to be defined. In the following, we define object
combination in terms of the combination of their constituent classes. In the
same manner, permutation of elements within the entities being measured, as
required in Weyuker’s seventh axiom, will be applied to classes whose objects
constitute the real world.

Weyuker’s axioms represent a formal set of criteria with which we can eval-
uate software metrics. Many authors have criticized the axioms for not being
founded on a consistent view of complexity [42], for being inconsistent with
the principles of scaling [106] and for being only necessary but not sufficient
conditions for good complexity metrics [33]. However, Weyuker’s set for evalu-
ating software metrics is considered to be a well-defined set of properties which
constitute a formal analytical approach and provide a language for evaluation
of metrics [35, 49]. In the same way, the set of properties proposed by Briand
et al. provide a formal approach for evaluating coupling metrics. The latter
set, constitutes, apart from the non-negativity property of coupling metrics, a
subset of Weyuker’s set of principles.
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5.3.1 Weyuker’s set of measurement principles

The set of axioms suggested by Weyuker are intended to aid in the evaluation of
complexity metrics. We use the same language employed by Weyuker to express
the axioms. The language includes arithmetic and boolean operators expressing
operations and relationships among real numbers used in the usual manner. In
addition, there is a concatenation operator acting on a set of program entities
which we denote by ⊕. The object of study is a mapping || from the set of
programs to the set of real numbers. The mapping reflects certain qualities or
attributes intrinsic to the entities; for example, the complexity inherent in a
program. The mapping is an abstraction of software metrics which assign real
numbers to software systems entities (representing the real world). In the OO
world, entities are classes, objects or an entire program and attributes of the
entities include coupling, level of code reuse, fault proneness etc.

Following Weyuker [102], let S denote a set of programs and p0, p1 ε S.
The expression p0 ≡ p1, represents program equivalence and means that the
two programs have the same output values on the same input. The expression
p0 = p1 means that the two programs are syntactically identical.

• Property 1: (∃ p0 ε S)(∃ p1 ε S)(|p0| 6= |p1|). Property 1 excludes metrics
which give all program entities the the same value.

• Property 2: For a nonnegative number c, there are only a finite number
of programs of that complexity.

• Property 3:(∃ p0 ε S)(∃ p1 ε S)(p0 6= p1 and |p0| = |p1|). Property 3
asserts that there are distinct programs having the same complexity.

• Property 4: (∃ p0 ε S)(∃ p1 ε S)(p0 ≡ p1 and |p0| 6= |p1|). Property
4 suggests that a different program implementing the same functionality
can have different complexity.

• Property 5: (∀ p0 ε S), (∀ p1 ε S)(|p0| ≤ |p0 ⊕ p1| and |p1| ≤ |p0 ⊕ p1|).
Property 5 requires monotonicity of the complexity metric. It states that
the complexity of the sum of two parts should be at least as great as the
complexity of either part.

• Property 6: (∃ p0 ε S)(∃ p1 ε S)(∃ p2 ε S)(|p0| = |p1| and |p0 ⊕ p2| 6=
|p1⊕ p2|). Property 6 assures that the concatenations of code segment p0

and p1 of the same complexity, with a third code segment p2, may result in
program entities having different complexity measures. The same applies
to concatenations being performed in the opposite order, i.e., the p2 code
added at the beginnings of p0 and p1 instead of the ends.

• Property 7: (∃ p0 ε S)(∃ p1 ε S) such that p1 is formed by permuting
the statements of p0 and |p0| 6= |p1|. Property 7 states that changing the
order of the statements can change the complexity.
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• Property 8: For programs p0 ε S and p1 ε S, if p1 is a renaming of p0 then
|p0| = |p1|. Property 8 states that changing variable names in a program
does not change its complexity.

• Property 9: (∃ p0 ε S)(∃ p1 ε S)(|p0|+ |p1|) < |p0⊕ p1|. Property 9 states
that the concatenation of two program entities may result in a program
more complex than the sum of the complexities of its constituents.

5.3.2 Applying Weyuker’s principles on DCM

Weyuker’s set of measurement principles can be applied to OO metrics where
the complexity mapping || is considered as a mapping from the set of classes or
objects to R. In our case, the complexity mapping is identified with the DCM

metric defined in Section 5.2. Here, the set of programs S refers to the domain
of the metric, namely, the set of objects which constitutes the OO program
under consideration. In addition, we need to adapt the concatenation operator
⊕. The ontological model of Wand and Weber [99], based on Bunge’s work,
does not provide a definition of the notion of aggregation of two or more things.
Bunge’s ontology, however, provides a basis for defining the combination of
classes. As observed by Chidamber and Kemerer [35], from their principle of
additive aggregation of two (or more) things, the combination of two object
classes results in another class whose properties are the union of the properties
of the component classes. Thus, the concatenation operator ⊕ can be defined
on a basis provided by Bunge’s ontology. The expression µ(P0 ⊕ P1) refers to
the DCM metric value of an object of a class obtained by concatenating the
classes of the objects P0 and P1.

We assume that two classes can have a number of “identical” methods
and/or fields. Such methods and attributes become redundant through a com-
bination of their classes. In each case only one copy of a method and/or an
attribute is considered. We further assume that an object of a combination
class can replace the objects of the constituent classes without affecting the
overall behaviour of the enclosing program. We shall use these assumptions
when considering Weyuker’s properties 5, 6 and 9. Each item in the following
list validates our metric against the corresponding Weyuker’s criterion. Further,
µ(P ) ε R refers to the metric function DCM of an object entity P mapped into
the set of real numbers.

1. Weyuker’s first property states that not every object can have the same
metric value. This property is satisfied by the DCM metric if we assume
(in common with Chidamber and Kemerer) that the number of couplings
of a given object at any stage of program execution is a discrete random
variable characterised by some general distribution function; all such num-
bers are independent and identically distributed. Thus, object couplings
follow a statistical distribution not apparent to an observer of the system.
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This assumption is similar to that made by Chidamber and Kemerer on
number of methods of a given class, number of instance variables used by
a method etc. Following this assumption, object couplings (DCM val-
ues) of two different objects P0 and P1 are independent and identically
distributed which implies that µ(P0) 6= µ(P1).

2. Weyuker’s second property states that a metric should assign the same
value only for a finite number of objects. Since the domains of the metric
constitute finite OO executable systems, each of which contains a finite set
objects, this property will be met by any dynamic object metric, including
DCM .

3. Weyuker’s third property states that different objects might have the same
metric value. Here, the objects can be instances of the same class or of
different classes. DCM is independent of the object identity; it is defined
in terms of number of coupled objects, their class coupling complexity
(gp(|Oi|)) and the nature of coupling (fi(tj) factor) over a certain number
of program execution steps. Property 3 is thus satisfied.

4. Weyuker’s fourth property states that different objects exhibiting the
same behaviour (their classes implementing the same functionality) might
have different metric values. Here, the same argument applies as in the
case of the third property. The DCM value of an object, though de-
pendent on the functionality of its class, it is not determined by it. The
contribution to the metric through the class functionality is due only to
one factor in DCM , namely, gp(|Oi|). Thus, property 4 is satisfied.

5. Weyuker’s fifth property states that the metric value of an object of a
combination of classes should be at least as great as the DCM value of
either objects of the constituent classes.

Let P0 and P1 denote two objects whose classes are combined. The as-
sumption made about class combination implies that the combined class
has less methods and/or less fields but provides the same functionality.
It follows that at any execution step, objects of the combined class have
less object interactions when used instead of objects of the constituent
classes. Therefore,

∀ tj ε {set of execution steps}

fi(tj)
∑

i

gp0⊕p1(|Oi|) ≤ fi(tj)(
∑

i

gp0(|Oi|) +
∑

i

gp1(|Oi|))

In this expression, two equivalent object systems are involved. The left-
hand side of boolean operator (≤) corresponds to a program containing
objects of classes obtained by combining classes of a second system cor-
responding to the right-hand side.
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We note that fi(tj) factors (which express the type of object coupling) do
not change in the system containing objects of combined classes; they keep
their values as in the original system with constituent objects. Therefore,
by summing over all tj , we get:

µ(P0 ⊕ P1) = µ(P0) + µ(P1)− δ....................(A5)

where δ is the number of object couplings reduced due to combination
of the classes of P0 and P1. Since reductions can not be greater than
the original number of object interactions, we have: µ(P0) − δ ≥ 0, and
µ(P1)−δ ≥ 0. It follows that µ(P0⊕P1) ≥ µ(P0) and µ(P0⊕P1) ≥ µ(P1).
Thus, property 5 is satisfied.

6. Weyuker’s sixth property states that given two objects having equal met-
ric values, the metric values of their concatenations with a third object
can be different.

Let P0 and P1 denote two different objects with µ(P0) = µ(P1). Consider a
third object P2 together with two other objects whose classes are obtained
by combining each of the classes of P0 and P1 with the P2 class. Using
formula A5, we have:

µ(P0 ⊕ P2) = µ(P0) + µ(P2)− δ

µ(P1 ⊕ P2) = µ(P1) + µ(P2)− η

Since δ and η are independent of the metric values of P0 and P1, they can
be different. Therefore, the right-hand side of the preceeding formulas
need not be equal. It follows that:

µ(P0 ⊕ P2) 6= µ(P1 ⊕ P2)

Thus, property 6 is satisfied.

7. Weyuker’s seventh property requires that a permutation of elements within
an object should change the metric value of that object. As noted in the
introduction of this section, we consider such permutations as being ap-
plied to the classes of the objects involved. Objects interact by sending
messages realised as method calls. Permuting method statements may
change a method’s semantics and consequently the behaviour of objects
concerned. As a result, DCM values of objects change according to mod-
ifications made to the objects they are coupled to at arbitrary execution
steps. Thus, property 7 is satisfied.

8. According to Weyuker’s eighth property, metric values should not change
with the change of object names. DCM is defined independently of ob-
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jects’ names and depends only on the nature of their interactions and
class relationships. Consequently, this property is satisfied by DCM .

9. Weyuker’s ninth property states that the metric value of an object of a
combination of classes is greater than the sum of the DCM values of
objects of the constituent classes.

Following the same analysis of property 5, we get by using formula (A5):

µ(P0 ⊕ P1) ≤ µ(P0) + µ(P1).........................(A9)

Weyuker’s property 9 is not satisfied by DCM , i.e., a combination of
classes does not increase a program’s object interactions measured by the
metric; on the contrary, it reduces those interactions. Failing to meet
the ninth property shows that DCM exhibits the same behaviour as the
metrics of Chidamber and Kemerer; some of which (CBO, DIT and NOC)
are classified as static coupling metrics. We conclude that, in designing
software, minimizing the number of classes decreases redundancy and as a
result reduces object coupling. Notice that, in the limit where all system
classes are combined to form a single class, DCM is zero, i.e.,

µ(system of single object) = 0.........................(A9′)

Properties 5, 6 and 9 deal with objects of class combinations. In validating
DCM against these properties, we assumed that at every program execution
step, the set of objects coupled to the object entity being measured (P ) is
reduced to a subset. Let P0 and P1 denote the objects of classes combined to
produce the class of P . If Stj ,P denotes the set of objects coupled to P at some
execution step tj , Stj ,P0 and Stj ,P1 being the sets of objects coupled to P0 and
P1, respectively, then our assumption reads as:

∀ tj ε {set of execution steps} Stj ,p ⊆ Stj ,p0

⋃
Stj ,p1

We further assume that the types of object coupling expressed in terms of the
step function fi(tj) do not change as a result of class combination. This means
the set of object relationships between P and Stj ,P over all the execution steps,
denoted by RSP

, is a subset of the union of corresponding sets of relationships
of P0 and P1. If the two latter sets are denoted by RSP0

and RSP1
, we can

express our assumption as:

RSp ⊆ RSp0

⋃
RSp1

If these two assumption hold, DCM satisfies properties 5, 6 and invalidates
property 9 over the entire program.
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5.3.3 The coupling measures criteria of Briand et al.

Briand et al. [25] define five properties for testing the usefulness of coupling
metrics. These properties represent necessary but not sufficient conditions for
justifying a coupling measure and were applied for testing various class level
metrics.

The notation of Briand et al. will be used to express the properties, where
c denotes a class, C denotes an OO system considered as a collection of classes,
OuterR(c) denotes the relevant set of relationships from or to a class c, and
finally, InterR(C) =

⋃
c ε C OuterR(c) denotes the set of all class coupling.

Briand et al. distinguish between used classes and the using classes. With-
out loss of generality, we can drop the direction of dependency and refer to
OuterR(c) as the set of classes coupled to c. Hereafter, Coupling denotes the
metric whose validity is investigated.

1. Nonnegativity: The coupling of a class c or of an object-oriented system
C is nonnegative.

Coupling(c) ≥ 0 or Coupling(C) ≥ 0

2. Null value: The coupling of a class c or of an OO system C is null if
OuterR(c) or InterR(C) is empty.

OuterR(c) = φ ⇒ Coupling(c) = 0 or

InterR(C) = φ ⇒ Coupling(C) = 0

3. Monotonicity: Let C be an OO system and c ε C be a class in C. Assume
that class c is modified to form a new class c′ which is identical to c except
that OuterR(c) ⊆ OuterR(c′), i.e., some relationships were added to c′.
Let C ′ be the object-oriented system identical to C except that class c is
replaced by class c′. It follows:

Coupling(c) ≤ Coupling(c′) or

Coupling(C) ≤ Coupling(C ′)

4. Merging of classes: Let C be an OO system, and c0, c1 ε C two classes
in C. Let c′ be the class which is the union of c0 and c1. Let C ′ be the
OO system identical to C except that classes c0 and c1 are replaced by
c′. Then

Coupling(c0) + Coupling(c1) ≥ Coupling(c′) or

Coupling(C) ≥ Coupling(C ′)



CHAPTER 5. COUPLING METRICS 90

5. Merging of unconnected classes: Let C be an OO system, and c0, c1 ε C

be two classes in C. Let c′ be the class which is the union of c0 and c1.
Let C ′ be the OO system which is identical to C except that classes c0

and c1 are replaced by c′. If no relationships exist between classes c0 and
c1 in C, then:

Coupling(c0) + Coupling(c1) = Coupling(c′) or

Coupling(C) = Coupling(C ′)

Applying the criteria of Briand et al. on DCM requires modification of their
semantics to adapt them to the DCM domain (where entities are objects and
not classes). We proceed as in the case of Weyuker’s principles and consider
each property separately.

i. For the nonnegativity, no term in the analytical expression of DCM is
negative. The measure is always greater than zero and the nonnegativity
property is satisfied.

ii. In the case of a system consisting only of one object, the set of coupled
objects is empty. Hence, the factor

∑
i gp(|Oi|) is zero and DCM value is

therefore null (See A9’ in the previous section).

iii. The monotonicity property is identical to that of Weyuker’s fifth axiom.
In the previous section, we showed that DCM satisfied this property.

iv. Merging of classes property corresponds to Weyuker’s ninth axiom. In
analysing the DCM validation of Weyuker’s ninth axiom, we have shown
that for a combination of classes (c0 and c1), the DCM values are related
as in A9, namely, µ(c0⊕ c1) ≤ µ(c0) + µ(c1). Here, c0⊕ c1 expresses class
merging of c0 and c1. Thus the property of Briand et al. with respect to
class merging is satisfied.

v. The merging of unconnected classes property is a special case of the pre-
vious property where OuterR(c0)

⋂
OuterR(c1) = φ. In this case, the

classes do not share common methods or common fields. For the DCM
metric, we have µ(c0 ⊕ c1) = µ(c0) + µ(c1).

The properties of Briand et al. of class coupling metrics can be adapted to
dynamic object metrics with minor changes in the semantic of merging of metric
domain entities. Monotonicity and merging properties correspond to similar
properties in Weyuker’s set of principles. In the next section we present an
empirical validation of the DCM which will allow us to demonstrate the practical
application of the metric.
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5.4 On the Empirical Validation of the DCM

In the context of empirical validation, we present a measuring tool and show
that DCM can be measured automatically. A case study is conducted and
the tool is used to collect object coupling data at runtime. The motivation
behind this study is investigating the hypothesis that reflective systems show
less runtime coupling when compared to equivalent static systems exhibiting
the same behaviour.

5.4.1 Measuring tool

One way to collect coupling data of interacting objects is to intercept the mes-
sage exchanges between them. In C++ and Java, where objects are the only
runtime entities, message exchange is realized as method invocation on objects.
In these languages, programming constructs (loops, conditional statements, as-
signments, etc.) are used to control interaction between objects but themselves
take no part in it. For C++ and Java systems, the programme execution
steps relevant to coupling are object instantiations and method invocations.
In Smalltalk-80, language constructs themselves represent objects and applying
them amounts to sending messages with particular parameters. If we neglect the
meta-class instantiations carried out independently of the user by the Virtual
Machine (VM) and if we consider only objects corresponding to class instanti-
ation, then object interaction can be treated in the same way as in C++ and
Java.

5.4.1.1 Tool implementation

A trivial implementation of the idea of intercepting objects’ message exchanges
is to modify the existing code by inserting intercepting code at appropriate
places. Modifying applications implies extra costs of testing and maintenance.

There are different ways to avoid the problems of changing existing code.
One alternative is to customise the behaviour of the underlying VM. Arisholm
et al. [14], for example, let the JVM load a library of routines for data collection
every time object interactions take place. A second alternative is use reflective
capabilities of the programming language. Arisholm [13] uses specific features
provided by the IBM-VisualWorks Smalltalk programming environment and
lets “shadow objects” intercept all messages sent and received at runtime.

To avoid changing JVM behaviour and using incompatible language fea-
tures, we developed, using AOP techniques, the interceptive code as an inde-
pendent programming unit and merged it with the target programme using a
weaving tool. AOP supports the principle of separation of concerns through
a wide range of tools. There are AOP language extensions for Java, C++,
Smalltalk-80 and prototypes for other languages are also available [3].
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In AOP, intercepting code could be realised as an aspect or a concern whose
code cross-cuts that of the system’s core concerns. For Java programs, we
used AspectJ to implement intercepting code which was then inserted at the
appropriate join points, i.e., at those places in the sample programme where
objects are created or exchange messages. AspectJ is an extension of Java
with new language constructs such as pointcuts, advices and aspects that allow
explicit implementation of the principle of separation of concerns.

Listing 5.1 provides the key features of the interceptive code implemented in
AspectJ. We note that the Interceptor aspect makes no reference to application
programs and is abstract (line 4). Abstract aspects cannot be merged and
must be specialized (through the extends mechanism) before their code can be
weaved into the programme code. Two abstract pointcuts with no parameters
are defined corresponding to objects’ creation and methods’ invocation (lines
5 - 6). A third pointcut (line 7) is defined to invoke data collection advice
code. Data collected throughout programme execution is manipulated using
this advice (lines 57). In extending the aspect, i.e., defining concrete aspects
that apply in certain contexts, the join points at which the corresponding advice
code is executed must be specified. Join points are specified using pointcut
designators (or events) such as calling a constructor or invocation of a method.
The code to be executed when an object is created or when a method is invoked
is implemented as an advice. Advices can be invoked before, instead of or after
join points are reached. Aspect extension languages provide APIs allowing the
invocation of the target method from within the around-advice.

A number of hash tables, lists and a variable are defined for manipulat-
ing object data and for counting the execution steps (lines 8 - 16). One key
feature of this manipulation is getting the identity of an object set by the sys-
tem at runtime using the method thisJoinPoint.getThis(). This expression is
transformed into a string and used to identify the object.

Object creation is manipulated in the around-advice myConstructor(). There
is an after-advice with the same name; its task is to increment the execution
step counter. When an object is created, the Interceptor reads its

∑
i gp(|Oi|)

value and a digit (0 for static and 1 for transient) from configuration files.
The digit represented the coupling scale to which the object belongs to. Using
AspectJ reflective capabilities, the object type is derived as well as its unique
identity. Each newly created object is assigned a record of three integer values
(
∑

i gp(|Oi|), exec-step, coupling scale) and saved in a hash table with its ID
being the key. All created objects are saved together with their records for later
use (line 31). Executions steps, represented as integer values, are incremented
after every constructor and method is called. The dependency of object DCM
values on the number of execution steps is realised in the Interceptor aspect
implementation by saving the execution step value as a key together with the
object identity and DCM value (hash table exec ht, line 16). In addition, the
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class types of the created objects are also saved in a list for the final counting.
Method calls on objects are handled by the around-advice execsTest().

With each execution step corresponding to a message exchange, the measures
of all existing objects are updated depending on the coupling scale (lines 46 -
47 and 53). Again, the reflective interface of AspectJ allow us to identify the
object and by using the hash table containing the objects and their records
(objects ht), Interceptor can identify the object and update its record includ-
ing its DCM value. When a message exchange results in a chain of objects’
interactions, the DCM value of the leading object (initiating the series of calls)
is incremented by the contributions of objects involved and needed to fulfill the
leading object’s task (lines 43, 48 - 49). This is achieved by keeping a list of
the objects involved in the chain interaction. The list is populated by an au-
tomatic recursive call caused by calling the method proceed(). Recall that an
around-advice traps the execution of the original method representing the join
point and that the original action can be recovered by calling proceed() from
within the advice. As in the case of object creation, the execution step counter
is incremented every time an object exchanges messages with other objects.

5.4.1.2 Data Collection Process

Recall that the goal of our measurement is to compare two systems with regard
to their object coupling. In this case, it is sufficient to assign for each gp(|Oi|)
a value representing the number of classes which the class of P uses or depends
on. The gp(|Oi|) values of all class types can be read from the system’s class
diagrams. They can be stored in configuration files and read during programme
execution. The files can be expressed in XML or any other suitable text format.

To the outside world the two systems behave in the same way. Their de-
signs, however, are different. This difference reflects itself in varying gp(|Oi|)
values and a different internal object behaviour. It also reflects itself in the
different values of fi(tj) factors which we associate with objects upon their
creation depending on type of their classes. For example, objects of type
InvocationHandler are assigned value 0, whereas application objects are as-
signed the value 1.

To apply the Interceptor aspect in a certain context, we had to extend the
aspect (i.e., make it concrete) and specify the join points. Invoking the AspectJ
weaving tool inserted the corresponding advices’ code at the specified points
in the application programme. Listing 5.2 shows an example of a concrete
aspect that allows the application of the abstract Interceptor aspect in an
application named TestClass and involves objects of types Class 1, Class 2,
etc. We assume that the application programme, before terminating, calls a
method collectData() to allow for DCM data collection.
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import org.aspectj.lang.*; //1

import org.aspectj.lang.reflect.CodeSignature; //2

import java.util.*; //3

abstract aspect Interceptor { //4

abstract pointcut myConstructor(); // object creation event //5

abstract pointcut execsTest(); // object interactions //6

abstract pointcut dataCollection(); // for collecting data //7

// hash table for object records (objects IDs, (dcm, exec step, 1|0)) //8

Hashtable objects_ht=new Hashtable(); //9

// for class types(name,(total no of objects of type, total coupling val))

Hashtable types_ht=new Hashtable(); //11

Vector task_objects=new Vector(); // objs taking part in fulfilling a task

Vector all_objects=new Vector(); // all created objects //13

Vector all_types=new Vector(); // all class types //14

// holding data (key, value) as (exec step, (objects ID, coupling value))

Hashtable exec_ht=new Hashtable(); //16

private int exec_step=0; // no. of execution steps //17

after(): myConstructor() { exec_step +=1; } //18

void around(): myConstructor() { //19

Signature sig=thisJoinPoint.getStaticPart().getSignature(); //20

String class_name=sig.getDeclaringType().getName(); //..

String the_object=""+thisJoinPoint.getThis();

if (thisJoinPoint.getThis()!=null) all_objects.add(the_object);

...

if (!object_found) {

// DCM_val_sm contains gp(|Oi|) and 0|1 separated by ";". 1 for

// static and 0 for meta-object. DCM_val refers to Sum(gp(|Oi|))

String DCM_val_sm=ClassRelationship.getParameter(class_name);

// extract gp(|Oi|) value and the nature of the object.

// define val as array of Integers:(gp(|Oi|), exec_step, Integer(0|1))

objects_ht.put(the_object, val); //31

... //32

} //33

} //34

after(): execsTest() { exec_step +=1; } //35

Object around(): execsTest() { //36

String the_object=""+thisJoinPoint.getThis(); //37

if (thisJoinPoint.getThis()!=null) task_objects.add(the_object); //..

Object result = proceed();

...

Enumeration keys=objects_ht.keys();

if (task_objects.size() > 1) {

String oid=(String)task_objects.elementAt(0); // leading object //43

int leadObj_extra_value=0; // due to Sum over all objects coupled

while (keys.hasMoreElements()) {

// if (object belongs to task set or is a static object) //46

// update its record by adding the default gp(|Oi|) value //47

// if (a task object) then update leadObj_extra_value as //48

leadObj_extra_value+=new Integer(<gp(|object|)>).intValue() //49

...

}

if (task_objects.size()==1) { // no object task list //52

// update the coupling values of static objects //53

} //54

}

} //56

void around(): dataCollection() { // collect data ... } //57

} //58

Listing 5.1: Main features of the interceptive code
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public aspect ConcreteInterceptor extends Interceptor {

pointcut myConstructor():

(within(TesClass)||within(Class_1)||..)&&execution(new(..));

pointcut execsTest():

(within(TesClass)||within(Class_1)..)&&execution(* *(..));

pointcut dataCollection():(within(TestClass))&&call(void collectData(..));

}

Listing 5.2: Concrete aspect for intercepting executions a concrete system

5.4.2 A case study

Consider two Java systems with different architectural characteristics providing
the same functionality. Classes in the first model, henceforth referred to as the
static system, are related through the known has-a and uses-a relationships
and all the objects interact accordingly. In the second model, i.e., the meta-
system, the class structure exhibits less coupling due to the dynamic nature
of the coupling relationships. In the latter system, object interaction is more
flexible and supported by polymorphism and reflective features of the Java
programming language. Application objects are attached dynamically to reified
meta-objects and decoupled from them after the reflection process is over, i.e.,
after changes made at the meta-level have been reflected back to the base level.

The structure of configuration files could be simplified and deployed as a
list of pairs in the format (class name, (

∑
i gp(|Oi|); 0|1)). The choice between 0

or 1 depends on the scale of object coupling (transient or static) an object can
build. For systems implementing our reflection model, there are two alterna-
tives: objects of type InvocationHandler including those of helper classes used
at the meta-level are assigned value 0 and application objects are assigned the
value 1.

Figure 5.1 depicts the class diagram of the static system in UML nota-
tion [10], showing only class names and their relationships. The configuration
file corresponding to the model of Figure 5.1 contains four entries: (A, (2;1)),
(B, (1;1)), (C, (1;1)) and (D, (0;1)); the configuration file was expressed as a Java
properties file. In these entries, the numbers representing

∑
i gp(|Oi|) refer to

the number of aggregates in each class. They correspond to the DAC (Data
Abstraction Coupling) counts. We are interested in these counts, because they
represent static coupling at the object level.

Table 5.1 shows the total number of objects of each of the class type in
the model. The first column (pes) refers to the number of execution steps or
the number of object interactions. The second, third and fourth columns show
the total number of objects and the corresponding DCM value separated by
commas for A, B and C class types, respectively. The fifth column shows the
total number of D objects created at each stage of data collection. Since D is an
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D

A

+getBi() : int

+getCs(c: C) : String

+printMsg() : void

B

+get_i() : int

+getCs() : String

C

+get_s() : String

java.lang.String

Figure 5.1: Class structure of the static system

independent object, DCM(D) remains zero throughout program execution and
therefore not shown in the table. The objects column shows the total number
of objects taking part at each stage and the DCM(system) gives the overall
coupling value of all objects.

pes A µ(A) B µ(B) C µ(C) D objects µ(sys)
1 0 0 0 0 0 0 0 0 0
10 1 9 1 5 1 5 2 5 19
100 2 356 2 179 2 179 3 9 714
200 2 702 3 436 5 607 4 14 1745
500 2 1902 3 1363 5 2107 4 14 5345
1000 102 12602 103 6786 105 7757 104 414 27145
2000 102 74052 253 60636 255 62407 104 714 197095
3000 202 166752 353 107586 355 110557 204 1114 384895
5000 222 194892 373 123576 375 130387 224 1194 448855
10000 222 214892 373 138576 375 155387 224 1194 508855

Table 5.1: DCM values as a function of the execution steps of the static model

Table 5.1 shows an increase in the DCM values and in the total number
of objects as the pes-value increases. Increases in the individual DCM values
depend on object’s contribution to the interactions and is calculated according
to the scheme described in the previous sections. To increase objects’ interac-
tions, new objects were created and methods invoked on them. In some cases,
methods’ invocations induced further invocations on other objects, resulting in
a chain of objects’ interactions. To produce the above results, different aspects
of objects interactions were considered. These were:
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• object instantiation,

• object instantiation through object composition,

• method invocations leading to a chain of objects’ interactions and, finally,

• method invocation corresponding to simple client-target object interac-
tion (no further invocations).

These aspects cover object coupling types discussed in Section 5.2.2. We note
that coupling due to an is-a class relationship is considered identical to coupling
due to a has-a relationship and that implicit inheritance relationships implied
by the implementation language were not considered as part of our study.

The class structure of the meta-system is illustrated in Figure 5.2 where
methods relevant to proxies’ mechanisms of binding and method invocation are
shown. It involves, in addition to the classes of the static system, classes that
allow customization of objects’ behaviour at runtime. Polymorphism and Java’s
dynamic proxies mechanism are used to implement the model. We arbitrarily
chose to decouple B from A and made B part of InvocationHandler class at the
meta-level. The resulting system exhibits the same functionality provided by
the static model. The difference is that method invocation on B is realised
through a proxy and the coupling between B’s and A’s is transient.

Figure 5.2: Class structure of the dynamic system

The configuration file corresponding to the model of Figure 5.2 contains
two new classes when compared with the static case, i.e., ProxyFactory and
B Handler. The DCM default value of A changes and thus for this model we
have the pairs: (A, (1;1)), (B, (1;0)), (C, (1;1)), (D, (0;1)), (ProxyFactory, (1;0))
and (BC Handler, (1;0)). We note that the coupling scale of B has changed from
1 to 0.

Table 5.2 shows the DCM values and the number of objects present together
with the overall DCM value of the meta-model system as they change with pro-



CHAPTER 5. COUPLING METRICS 98

gram execution steps. The numbers in the pes-column are slightly different
from the corresponding numbers in the static case of Table 5.1. This is due to
the difference in the set of objects involved and interactions needed to establish
the connection between base objects (A and D) and objects at the meta-level
(ProxyFactory, B Handler and B). The same application code is applied in both
models. In the meta case, calls on A and B instances are diverted to the meta-
level. ProxyFactory assigned A objects to the meta-object of type B Handler. We
note that only one ProxyFactory object was created and used to bind the differ-
ent base objects (of type A) and that only one meta-object was created and used
to represent all these base objects. Furthermore, only one B object contained
in B Handler was created. DCM(ProxyFactory)=1 over all the executions steps,
since this object does not take part in object interactions. The object counts
of ProxyFactory, B Handler and B as well as the DCM(ProxyFactory) value are
all one (1) and will not be shown in the table.

pes A µ(A) C µ(C) D µ(B) µ(B Ha..) objects µ(sys)
1 0 0 0 0 0 0 0 0 0
15 1 6 1 6 2 2 2 7 17
105 2 182 1 92 3 3 3 9 281
201 2 360 2 267 4 5 5 11 638
508 3 1345 3 1257 5 6 6 14 1905
908 103 6795 3 1557 105 6 6 214 8365
2358 253 114195 3 3657 255 156 156 514 118165
3258 353 191145 3 5457 355 156 156 714 196915
5238 273 213135 3 11217 375 156 156 754 224665
10238 373 228135 3 26217 375 156 156 754 254665

Table 5.2: DCM values as a function of the execution steps of the meta-model

5.4.2.1 Comparison of Systems

From Table 5.1 and Table 5.2, we observe that the meta-model needs fewer
objects for the same behaviour when compared with the static model. For ex-
ample, in the static model (Table 5.1), the total number of objects and the
DCM(system) corresponding to 10000 pes are 1194 and 508855, respectively,
whereas in the meta-model the corresponding values are 754 and 254665. How-
ever, in cases where the communication between base and meta-level is inten-
sified, the meta-system exhibits more interactions. This is the case when base
level objects like A instances send messages (through the meta-object) to an
object of type B asking for a C string. For example, the the pes values 2358,
3258, 5238 and 10238 in Table 5.2 are greater than the corresponding values in
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Figure 5.3: DCM(static system) vs DCM(meta-system) for 1-1000 steps

Table 5.1: 2000, 3000, 5000 and 10000. On the other hand, when the objects at
base level (the As) do not interact intensively with the meta-level, the number
of interactions in the meta-system is less than that in the static system. For
example, compare the pes-value 908 with the corresponding 1000 in the static
case. Here, most of the interactions took place at the base level.

Figure 5.4: DCM(static system) vs DCM(meta-system) for 1-10000 steps

Figures 5.3 and 5.4 show graphical representations of the DCM(system)
values of both models as a function of the number of pes. In Figure 5.3, the
lower range of execution steps (10 - 1000) is shown whereas in the second,
the full range of our experiment (10 - 10000 interaction) is considered. With
interactions fewer than 100, the difference in DCM values is negligible. As
the number of interactions increases, DCM values of the static system grow
faster than that of the meta-system. The total number of objects shows similar
behaviour.

In conducting this study, the sample programs are implemented in such a
way as to include all types of object coupling. We started with programs de-
scribing static systems and transformed these to programs exhibiting the same
behaviour but using reflective mechanisms according to the reflection model
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proposed in eralier chapters. Direct interactions between A and B objects in the
static case, in which the first asks the second to deliver data, is diverted to the
meta-level. Here, a proxy is created and all A objects are assigned to a single
B Handler residing at the meta-level. The meta-object inspected the call and
asked the contained B for the required data. The result is then sent back to the
requesting object.

We conclude that reflective systems exhibiting the same behaviour as corre-
sponding static systems have less coupling, fewer objects and more interactions.
This is expected because of the dynamic nature of the coupling. Dynamic object
coupling in reflective systems is transient. However, unlike the corresponding
coupling arising from uses-a class relationships in static systems, the classes of
the coupled objects are not related.

5.5 Discussion

One issue arising from the work in this chapter is the comparison of reflective
techniques with classical OO techniques of inheritance and aggregation from
object coupling perspective. In OOP, the two most common mechanisms for
software reuse are aggregation and inheritance. In composing two classes, the
container class uses aggregate services to extend or customize its own function-
ality. One of the known examples of reuse using the composition mechanism is
the Adapter pattern of Gamma et al. [47]. The adapter object delegates method
invocations to the adaptee to provide the client with the required functionality.

Figure 5.5: Static coupling holds a constant contribution to DCM over time

According to our classification of coupling, both composition and inheri-
tance induce static coupling between objects. In case of composition, the ag-
gregate is normally instantiated with the instantiation of the container object
and holds as long as the container object holds. The same applies to inheri-
tance. With the instantiation of a child object, a parent object is instantiated
and the coupling is held during the entire lifetime of the child object. Figure 5.5
shows a representation of the contributions to DCM(P) corresponding to the
complexity measures of objects coupled to a an object P , the

∑
i gp(|Oi|) fac-

tor. It is assumed that a hypothetical object P is coupled statically to other
objects as a container (composition coupling) or as a child object (inheritance
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Figure 5.6: DCM increases steadily at a constant rate in case of static coupling

coupling). Here, t0 and tf denote programme steps at which the object was
created and then destroyed, respectively. If n denotes the total number of
execution steps and if P does not take part in any interaction, the coupling
measure increases by a constant value at each step , and as a result, we get:
DCM(P ) = n ∗ ∑

i gp(|Oi|). Figure 5.6 shows that DCM increases steadily at
a constant rate in time as each execution step contributes a constant factor to
the measure.

Figure 5.7: Transient coupling reduces the number of contributions to DCM

Unlike composition and inheritance, reflection provides a flexible mecha-
nism allowing transient coupling. The mechanism underlying the relationship
between application objects and meta-objects differs from that of composition
and inheritance; it is flexible and allows variable coupling during program exe-
cution. As a result, we expect the contributions due the complexity measures
of the coupled objects (gp(|Oi|) factor) to vary during program execution. Fig-
ure 5.7 shows a representation of these contributions to the measure of the
same hypothetical (base) object of Figure 5.5 being coupled to other (meta-)
objects. We consider the same set of objects as in Figure 5.5 with different
coupling and assume that the system defined by this set of objects behaves
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in the same way as the system in Figure 5.5, i.e., provides the same interface
as seen from the outside world. As before, t0 and tf denote program steps at
which the base object is created and then destroyed, respectively. The coupling
to a meta-object at the higher level takes place at a later step (ti), after the
creation of the object. The coupling is switched off at ti+j and activated again
at tk and held activated until tk+l. This means that contributions between t0
and ti, between ti+j+1 and tk as well as between tk+1 and tf are all set to zero.

If n denotes the same number of execution steps as in the previous case, the
coupling measure of the system is: DCM(P ) = (j + l) ∗ ∑

i gp(|Oi|.
Since (j + l) < n, it follows that static coupling measure is greater than

the measure due to dynamic coupling. Figure 5.8 shows that DCM increases in
time at a variable and slower rate compared to the case of static coupling.

Figure 5.8: A variable and slower increase rate in case of transient coupling

We are aware of the threats to the validity of the case study carried out in
this chapter. Firstly is the assumption that values from automatic data collec-
tion are the correct values. To counter this threat, significant effort, including
visual checking and manual counting was done to ensure that the correct values
of the DCM had been obtained. A further threat to the validity of our study is
the scalability of the models considered in this work. We believe that the mod-
els can be scaled up to any number of objects. There are no logical constraints
that would prevent the extension of the model to include larger numbers of
objects and we feel a similar trend to that found would be shown as a result.
The number of interactions, through which we compared both models, could
also be reached with larger number of objects.

5.6 Conclusions

Most OO coupling measures proposed in the literature deal with coupling at the
class level. Counting class attributes and method invocations does not cover
the coupling features of objects at runtime. Measuring object couplings gives
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us insight into the system structure and allows us to compare architectural
aspects of different systems relative to reuse and maintenance. In reflective
systems with meta-level architectures, objects’ coupling are runtime dependent
and may change due to customisation of objects’ behaviour or modifications to
their structure.

Our DCM metric can be used to measure the coupling of particular objects
and/or the entire system at runtime. It is two-dimensional: the time factor
reflects the fact that it is an object coupling measure and the class complexity
factor can be specified according to the goal of the measurement. The DCM can
be also used to predict the runtime complexity of the system. It may also help
system engineers to decide on the appropriate software components to be used
in the production and maintenance phase. Classes with high object couplings
need more attention and care and consequently induce higher maintenance cost;
these types of classes should thus be assigned to more capable developers.

In this chapter, we presented an empirical case study of DCM. Two pro-
gramming models representing different architectural design approaches while
exhibiting the same behaviour were considered. In the first model, class re-
lationships including inheritance, aggregation and association determined the
type of objects’ interactions at runtime. The second model adhered to a reflec-
tive architecture and showed less class coupling. In the latter model, objects’
interactions were also determined by polymorphism and reflection. At each
stage of the investigation, data corresponding to DCM values of individual ob-
jects, the DCM value of the system and the total number of objects involved
together with the total number of objects’ interactions was collected and com-
pared. The application programs, which exhibited the same behaviour at each
stage, were coded in such a way to cover all possible object interaction types.

The process of collecting DCM data for empirical validation was automated.
Using the AOP approach, we developed the profiling code independently from
the target programme and then merged this code with the program code. We
defined concrete aspects needed to apply the interceptive code and specified the
join points suitable for the application.

We found the DCM could be used to directly compare systems’ coupling at
runtime. We can thus foresee the use of DCM as a means of comparing runtime
coupling of one system at different stages of the system’s development. The
approach outlined in this chapter for automating the collection of DCM data
concentrates on Java source code. It is, however, directly applicable to systems
coded in C++ and Smalltalk, using the aspect extensions available for these
languages.



Chapter 6

Code Reuse Metrics

In Chapter 5, we applied the metric approach to assess the coupling level of
reflective systems. In this chapter, we apply the same approach to assess the
level of code reuse of such systems. The contribution of this chapter is to
demonstrate the quantitative benefits of employing the reflection model to a
key concept in object-orientation, namely, reuse.

It is widely accepted that applying reuse-supporting techniques has the po-
tential for increasing software productivity, shortening development time and
decreasing maintenance costs. Objective measurement of reuse through met-
rics can help us to understand such issues and realize these benefits. In this
chapter, we adapt code reuse metrics proposed for procedural languages to
object-oriented languages and use these metrics to assess an approach to code
reuse through reflective techniques. The proposed approach consists of identi-
fying and refactoring aspects of an application, re-implementing these aspects
in a generic manner, and then composing the re-factored aspects with the rest
of the application to recover original behavior.

Despite wide acceptance that reuse has the potential for increasing soft-
ware productivity and enhancing software quality in terms of reliability and
maintainability, reuse is rarely practiced as a standard part of the software de-
velopment process, according to Krueger [72], and the quantifiable benefits of
applying code reuse rarely shown, as argued by Chen et al. [32]. Definitions of
reuse also vary. Krueger [72] defines software reuse as the process of creating
software systems from existing software assets, rather than building software
systems from scratch. Tracz [96], makes the distinction between reuse and sal-
vaging; software salvaging is using software not originally designed for reuse. In
turn, Prieto-Diaz [89] defines reuse as the use of existing software components to
construct new systems. The software assets or components appearing in these
definitions may include different aspects of software beyond code components.
Many authors [16, 18, 45, 72, 78, 88, 97, 100] have also extended the scope
of reuse to encompass, in addition to component reuse (a synonym for code
reuse), all the resources used and produced during the development process.

104
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These include concepts, tools, analysis, design, specifications, documentation,
people and domain knowledge.

The OO paradigm supports code reuse through inheritance, polymorphism
and aggregation and different OO languages provide extra mechanisms such as
reflection to support code reuse. For example, as we have seen in the previ-
ous chapters, Java supports reuse through subtype polymorphism, introspec-
tion and generic implementation of customisation code. C++ supports reuse
through parametric polymorphism known as the template mechanism.

In the previous chapters, we have shown that reflective techniques can be
used to reduce coupling; such an approach was applied to both a distributed
and single JVM environment [53, 57]. In this chapter, we define OO code reuse
metrics as means to quantify the code reuse due to reflective techniques. We
adopt refactoring principles due to Fowler and Opdyke [43, 83] and extend the
code reuse metrics proposed in Chen et al. [32] to OO systems. We then propose
an approach which identifies and refactors certain aspects of applications, re-
implements these aspects in a generic manner (thus making them reusable) and
later composes those aspects with the rest of the application to recover the
original behaviour. A case study based on the Model-View Controller (MVC)
pattern is used to demonstrate the benefits of this approach (a quantifiable
improvement in reuse) and a reduction in application code size.

This chapter is organized as follows. In the next section, a model of software
systems and code reuse measures proposed by Chen et al. are reviewed and the
question of extending and adapting both procedural-based model and measures
to OO systems is addressed. In Section 6.2, the code reuse metrics are evaluated
against Weyuker’s set of measurement principles. Section 6.3 investigates the
issue of empirical validation of the proposed metrics. A case study is presented
to affirm or refute the hypothesis on the high level of code reuse of reflective
systems. The metrics are used to analyse code reuse data. In Section 6.4, the
proposed metrics are compared with other OO reuse metrics in the context. The
question of automating the process of gathering reuse data is also discussed. We
end the chapter with some concluding remarks in Section 6.5.

6.1 Object-Oriented Code Reuse Measures

In this section we review the model of software systems and the reuse metrics
applied to procedural-based systems of Chen et al. and adapt both to OO
systems. Our choice of Chen’s metrics as a basis for OO reuse metrics (and
disregard for other proposed metrics) stems from the fact that firstly, Chen’s
metrics are system-wide (as opposed to class-based) metrics and hence give us
an advantage over the majority of current OO reuse metrics. Secondly, they
allow us to incorporate the essential features of OO systems without major
changes to their original format. Finally, they provide an intuitive and quan-
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tifiable basis for measuring reuse and improvements in reuse when considering
concrete application examples.

6.1.1 Adapting Chen’s software model and measures

According to Chen et al., a software system consists of two parts: an application
part and a reusable part. Formally, a system S consists of a set E of basic code
entities (e). Entities may directly or indirectly depend on each other and direct
dependencies among entities are expressed in terms of a set D of 2-tuples (e1, e2),
meaning e1 is directly dependent on e2. It is assumed that there exists a subset
R (root entities) of E such that each execution of S starts from R. In this way,
S is modelled as a directed graph (R,E,D) with root set R, node set E and
edge set D.

In OO systems, the basic code entities are classes, and dependencies corre-
spond to class relationships such as inheritance, aggregation, association, etc.
The subset R corresponds to object classes having a main() method or equiva-
lent programme starting entity. Inheritance hierarchies represent dependencies
and indirect reference. However, part of inherited code may never be used in
certain application contexts and should not be considered as part of the set of
entities, E. Two conditions are required of E:

• E is complete, i.e., each part of the software system is covered by some
class entity in E.

• Each class entity is reachable from R.

We associate with each class entity (e) its Non-Commented Source Lines (NCSL)
as its weight, weight(e), and define the size of S as:

Size(S) =
∑

e ε E

weight(e)

where the
∑

e ε E denotes the sum over all the class entities of the system. We
note that, because of the reachability condition imposed on S, we consider
reachable classes in inheritance hierarchies to include those that can be reached
through polymorphism at runtime.

Having defined an OO program model, we now formalise the reusable part
of S in terms of code reuse measures. Let P (subset of E) denote the set of
all reusable class entities. We define Refer(S, P ) to be the set of entities of
P that S directly refers to, and Closure(S, P ) to be the set of entities of P

that S directly or indirectly refers to. Note that the two sets (Refer(S, P )
and Closure(S, P )) are identical in the case where the dependency graph of
P is shallow, i.e., where reusable classes are independent entities. We note
that both Refer(S, P ) and Closure(S, P ) are sets and hence do not allow for
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double-counting of elements. The reuse metric of a system S with respect to a
set of reusable entities that are reachable from R is defined as:

ReusePart(S, P ) =
∑

e ε Closure(S,P )

weight(e)

where
∑

e ε Closure(S,P ) denotes the sum over all the reusable class entities in-
cluding reachable classes in the inheritance hierarchies of directly and indirectly
referenced entities. The percentage of reused code of P to the size of S is defined
as:

AppReusePerc(S, P ) = ReusePart(S, P )/Size(S)

In the same way, we define the measure for the percentage of the repository of
reusable classes (represented by the set P ) that is reused by S as:

RepReusePerc(S, P ) = ReusePart(S, P )/Size(P )

In addition to the previous metrics, which are adaptations of Chen’s et al.
metrics, we define the measure of the application code as a complement to the
reuse measure as:

AppPart(S) =
∑

e ε E−P

weight(e)

where
∑

e ε E−P denotes the sum over all the application class entities, i.e., those
system entities that are considered not reusable (in E but not in P ). The defi-
nitions of E, R and Refer(S, P ) follow the same pattern as that of procedural
languages proposed by Chen et al. For the Closure(S, P ) set, however, we need
to identify the entities that S indirectly refers to in the inheritance hierarchies
of P . Although inheritance implies dependency, not all the entities in a hier-
archy are relevant to code reuse since some entities will not be used in certain
contexts. We need to consider only those entities in an inheritance tree that
are reachable. For OO systems, the condition that each class entity is reach-
able from R can be implemented using (subtype) polymorphism. In strongly
typed languages such as C++ and Java, the polymorphic reusable code can
be used only by objects whose types belong to the hierarchy and thus identifi-
able at compile time. In Smalltalk, the same principle applies; identifying the
reachable classes is, however, more complex and requires runtime analysis.

6.1.2 An illustrative example

To explain the OO reuse measures and related definitions, consider an applica-
tion S reusing a set of entities P as shown in Figure 6.1. S consists of four class
entities {e1, e2, e3, e4} and P of the entities {e5, e6, e7, e8} where e7 is shown to
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be part of a hierarchy tree. Figure 6.1 represents a class diagram and the arrows
denote class dependencies expressing class relationships such as inheritance, ag-
gregation or association. The set E consists of all the classes {e1..e8} plus the
inheritance hierarchies lying behind these classes and the root set R = {e1}.
The set of entities of P , directly referred to by S is:

Refer(S, P ) = {e5}

The set of entities of P that S directly and indirectly refers is the Closure

set. The Closure set includes all the classes that are directly and indirectly
referred to, i.e., {e5, e6, e7, e8} in addition to those classes in the underlying class
hierarchies that are reachable through polymorphism (denoted by <reachable
classes>):

Closure(S, P ) = {e5, e6, e7, e8, < reachable classes >}

Figure 6.1: Application S reusing set P

6.2 Theoretical Validation of the Metrics

In this section, we evaluate our code reuse metrics AppReusePerc(S, P ) and
RepReusePerc(S, P ) against Weyuker’s formal set of measurement principles
discussed in the previous chapter. We restrict ourselves to these two metrics,
because all other measures, such as, Size, ReusePart and AppPart are intro-
duced as auxiliary measures for defining the reuse percentages. We follow the
same procedure applied to validating the coupling metric DCM in Section 5.3.

Recall that the metrics were defined in Section 6.1.1 in terms of the per-
centages of the sizes of S and P . A system S has been defined as a set of
class entities E including a set of reusable entities P and modelled as a directed
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graph.
In the following, we need to introduce the notion of system combination as

the union of sets of the constituent systems which involves class concatenation.
In combining systems, equal system elements (classes) are made redundant and
considered only once whereas corresponding classes are combined to form a
single entity. As in the case of evaluating the DCM metric in Section 5.3.2
of the previous chapter, we assume that a concatenation of two class entities
results in redundant methods and/or fields where only one copy of a method
and/or a field is considered. We further assume that a combination class can
replace the constituent classes without affecting the overall behaviour of the
enclosing system.

1. Weyuker’s first property requires that not every system can have the
same metric values. This property is satisfied by the code reuse metrics
AppReusePerc(S, P ) and RepReusePerc(S, P ) if we assume that number
of classes (on the application and reusable sides) of a given system is a dis-
crete random variable characterised by some general distribution function.
Further, all such numbers are independent and identically distributed.
Thus, systems classes (S as well as P ) follow a statistical distribution not
apparent to an observer of the system. Following this assumption, the
reuse percentages of the application as well as of the repository of two
different systems (S0, P0) and (S1, P1) are independent and identically
distributed which implies that:

AppReusePerc(S0, P0) 6= AppReusePerc(S1, P1)

RepReusePerc(S0, P0) 6= RepReusePerc(S1, P1)

2. Weyuker’s second property requires that a metric should assign the same
value only for a finite of objects. Since the domains of the metric con-
stitute finite OO executable systems, each of which contains a finite set
objects, this property will be met by any metric, including our reuse per-
centages AppReusePerc(S, P ) and RepReusePerc(S, P ).

3. Weyuker’s third property requires that different systems (entities) might
have the same metric value. Here, the S and P sets of different systems
can include different classes. The reuse metrics are defined as ratios of
the sizes of the two sets expressed in terms of NCSL. The metrics are
independent of the structure of the systems and also of the class semantics
and structures. It follows that property three is satisfied.

4. Weyuker’s fourth property requires that different systems exhibiting the
same behaviour (their classes implementing the same functionality) might
have different metric values. Here, the same argument applies as in the
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case of the third property. The reuse metrics values are not determined
by the functionality of systems classes, rather by their NCSL. Therefore,
property four is satisfied.

5. Weyuker’s fifth property states that the reuse metric values of a system
obtained by combining different systems (through class concatenation)
should be at least as great as the metric values of either systems.

We show that Weyuker’s fifth property is not satisfied by the percentage
reuse metrics AppReusePerc(S, P ) and RepReusePerc(S, P ).

Consider two systems characterised by the tuples (S0, P0) and (S1, P1),
and let (S, P ) denote their combination. Consider the case where (S1, P1)
consists of a single application class, i.e., Card(E1) = 1 and P1 = φ. In
such a case, ReusePart(S1, P1) = 0 and consequently the percentages of
reused code to the size of S1 and to the size of P1 vanish. Furthermore,
ReusePart(S, P ) = ReusePart(S0, P0) and because Size(S) > Size(S0),
it follows:

AppReusePerc(S, P ) < AppReusePerc(S0, P0)

On the other hand, because Size(P ) = Size(P0), the repository reuse
percentages are related as follows:

RepReusePerc(S, P ) = RepReusePerc(S0, P0)

6. Weyuker’s sixth property states that: given two systems having equal
metric values, the metric values of their combination with a third system
can be different.

Let (S0, P0) and (S1, P1) denote two different systems with their reuse
metrics equal. Consider a third system (S2, P2) together with two other
systems obtained by combining each of the first two systems with the
(S2, P2). In general, class concatenations with (S2, P2) results in different
sets of application and reusable classes. The differences between corre-
sponding sets in the resulting systems are independent of reuse metric
values. Therefore, reuse metric values of the systems resulting from com-
bining each of (S0, P0) and (S1, P1) with (S2, P2) can be different. Thus,
property six is satisfied.

7. Weyuker’s seventh property requires that a permutation of elements within
a system should change the metric value of that system. Permutating
class statements does not change its size but may change its semantics
and consequently its reuse. As a result, reuse metric values of systems
change according to modifications made to their classes. Thus property
seven is satisfied.
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8. According to Weyuker’s eighth property, metric values should not change
with the change of system labelling or the names of their constituent
classes. Reuse metrics are defined independently of systems’ names and
depend only on the systems’ structures and their class relationships. Con-
sequently, this property is satisfied by our reuse metrics.

9. Weyuker’s ninth property states that the reuse metric value of a combi-
nation of systems is greater than the sum of the values of the constituent
systems.

We show that Weyuker’s ninth property is not satisfied by the percentage
reuse metrics AppReusePerc(S, P ) and RepReusePerc(S, P ). Following
the same arguments used in discussing property 5, we have:

AppReusePerc(S1, P1) = 0

RepReusePerc(S1, P1) = 0

AppReusePerc(S, P ) < AppReusePerc(S0, P0)

RepReusePerc(S, P ) = RepReusePerc(S0, P0)

It follows that:

AppReusePerc(S, P ) < AppReusePerc(S0, P0) + AppReusePerc(S1, P1)

RepReusePerc(S, P ) = RepReusePerc(S0, P0) + RepReusePerc(S1, P1)

Thus, it is not the case that the reuse percentages of the combined systems
is greater than the sum of reuse percentages of the constituent systems.
Therefore, property nine is not satisfied.

Most of Weyuker’s properties are satisfied by AppReusePerc(S, P ) and
RepReusePerc(S, P ) code reuse metrics with two exceptions: Properties
five and nine. Failing to meet property five implies that it is possible
to divide a system where the application reuse percentage of individual
constituents is greater than that of the original system. Failing to satisfy
property nine means that the application reuse percentage could increase
if a system is divided into smaller systems. Intuitively, this result is to be
expected if systems are divided in a such a way that the whole reusable
part is associated with part of the system leaving the other part with an
an empty repository of reusable classes.

6.3 Empirical Validation: A Case Study

As noted in Section 5.4 where empirical validation of DCM is discussed, reflec-
tive systems based on the separation of base level and meta-level objects show
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less coupling when compared to equivalent static systems exhibiting the same
behaviour. In this section, we conduct a case study to support the hypothesis
that, in addition, reflective systems show a higher degree of code reuse.

6.3.1 An approach to code reuse

To incorporate our approach for the enhancement of code reuse, we extend
the model previously described by adding the concept of a sub-system. An
OO software system S is defined as a collection of related class entities. A
sub-system (or a component) is a subset of the system’s collection of logically
connected classes. In other words, a sub-system encompasses a cluster of class
entities that share a common property. A property represents a certain aspect of
the system’s behaviour. Components constitute abstractions allowing a coarse
view of the system. At the component level of abstraction, a system consists
of inter-dependent parts each of higher or (at least equal) granularity when
compared to individual class entities; the smallest component is a class entity.

The approach we adopt consists of identifying a certain aspect of system
behaviour, extracting the corresponding code from the application and re-
implementing the resulting component in a generic manner thus making it
independent of the system specifics. Being generic and independent of the
system, such components constitute reusable pieces of code. Separating certain
parts of the system is the first step. The second step is to find a mechanism for
composing (or glueing) the independent part with (or to) its target system.

To implement our method, we consider two systems providing the same
functionality. The second system is derived from the first by refactoring one
component out, implementing this component in a generic manner (as a meta-
programme) independently of the system’s specifics; later we combine the com-
ponent with the rest of the application to reproduce the original behaviour.

6.3.2 Improving OO code reuse through reflection

In this section, a case study is conducted with the aim of exposing the usage
of the proposed OO code reuse metrics for showing the impact of reflection
on code reuse. Consider the same example considered in Section 3.4.2.2 of
transforming objects’ attributes into active JavaBeans properties emphasizing
the MVC features. We implement the example by firstly, using the JavaBeans
classes directly and, secondly, extracting the code of catching and firing an
event of change from application specifics and making it part of a library of
reusable classes. Henceforward, we will refer to the first system as S0 and to
the second as S1.
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6.3.2.1 Direct reuse of the JavaBeans classes

Listing 6.1 shows the application classes implementing the MVC pattern with
the help of the JavaBeans classes. A PointModel fires a PropertyChangeEvent

every time a set method is called (lines 13 - 16); firing the event is realised by
delegating the task to the aggregate object of type PropertyChangeSupport (line
14). A PointView is an event listener and is registered as such upon its creation
(line 27). An application (lines 33 - 40) creates a model and a view and then
calls set methods on the model object. The change of state of the model object
results in the firing of an event and the view object reacts by printing out the
initial and final values of the attribute (lines 29 - 31). The Application class
represents the starting point (i.e., belongs to the root set, R).

6.3.2.2 Reusable code as meta-program

In Section 3.4.2.2, we implemented the mechanism of firing an event of change
and thereby informing interested listeners using dynamic proxies. Java’s dy-
namic proxies support behavioural reflection and allow generic coding. The
code can then be applied to any application employing the MVC pattern as
part of its GUI implementation. The classes used to implement the same be-
haviour of the previous section include a meta-program realised by the classes:
IPropertyChange (Listing 3.3) with 6 NCSL, ActivePropertyHandler (List-
ing 3.4) with 50 NCSL and ProxyFactory(Listing 3.1) with 10 NCSL. The
application classes are similar to those of Listing 6.1 and are shown in List-
ing 6.2. Note that PointModel is independent of the JavaBeans classes and that
adding a PointView as listener is realised by the meta-program. The Application
class (lines 21 − 30) provides the same behaviour as before and represents the
starting point at which the generic reusable part is combined with the applica-
tion classes.

6.3.3 Reuse Analysis

In case of reuse through reflection, i.e. system S1, the set of reusable entities
consists of two parts P0 and P1. P0 contains those classes of the java.beans

package needed to implement the Event-Trigger mechanism, that is, the classes
PropertyChangeSupport, PropertyChangeEvent and PropertyChangeListener. P1

contains the entities ActivePropertyHandler, ProxyFactory and IPropertyChange

developed to abstract the Event-Trigger mechanism from application specifics.
In the case of direct reuse of the JavaBeans classes, i.e. system S0, the set of
reusable entities is P = P0 and for S1, P = P0

⋃
P1. We note that only ex-

plicitly used and reachable classes are considered; super-classes of the reusable
entities such as EventObject, EventListener of the java.util package and their
dependencies are not considered. We further note that the set of Entities E0 of
S0 contains fewer elements than E1, the set of class entities of S1.
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import java.beans.PropertyChangeSupport; //1

import java.beans.PropertyChangeListener; //2

import java.beans.PropertyChangeEvent; //3

//4

interface IPointModel { //5

public int getx(); //6

public void setx(int x); //7

} //8

class PointModel implements IPointModel { //9

private int x = 0; //10

private PropertyChangeSupport sup= new PropertyChangeSupport(this);

public int getx(){ return x; } //12

public void setx(int newX) { //13

sup.firePropertyChange("x", x, newX); //14

x = newX; //15

} //16

public PropertyChangeSupport getPropertyChangeSupport() { //17

return sup; //18

} //19

} //20

class PointView implements PropertyChangeListener { //23

private IPointModel pmodel; //24

public PointView(PointModel pm) { //25

this.pmodel=pm; //26

pm.getPropertyChangeSupport().AddPropertyChangeListener(this);

} //28

public void propertyChange(PropertyChangeEvent e){ //29

// Do something about the change of property ... //30

} //31

} //32

public class Application { //33

public static void main(String [] args) throws Throwable { //34

PointModel wrap=new PointModel(); //35

PointView pview=new PointView(wrap); //36

wrap.setx(<arbitrary value>); // set x to an arbitrary value

wrap.getx(); //38

} //39

} //40

Listing 6.1: MVC implementation using JavaBeans

Table 6.1 shows the entities of the two systems with their weights. The “En-
tity” column refers to all entities existing in both systems, S0 and S1. There
are entities common to both systems; the two systems share the same applica-
tion classes (IPointModel, PointModel, PointView, Application) with differ-
ent implementations as their weights indicate. The two systems also share
the reusable JavaBeans classes (PropertyChangeEvent, PropertyChangeSupport,

PropertyChangeListener). The values of NCSL(S0 or S1) refer to the weights
of entities. If an entity is assigned a zero weight, it does not belong to the cor-
responding system. For example, the reusable classes ActivePropertyHandler,
ProxyFactory, IPropertyChange which were extracted from S1 to implement
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interface IPiontModel {//as before } //1

//..

class PointModel implements IPointModel {

private int x = 0; //7

public int getx() { return x; } //8

public void setx(int newX) { x = newX; } //9

}

class PointView implements PropertyChangeListener { //12

private IPointModel pmodel; //13

public PointView(PointModel pm) { //14

this.pmodel=pm; //15

} //16

public void propertyChange(PropertyChangeEvent e) { //17

// Do something about the change of property ...

} //19

} //20

public class Application { //21

public static void main(String [] args) throws Throwable { //22

PointModel pt=new PointModel();

PointView pview=new PointView(pt);

ProxyFactory bpf=new ProxyFactory();

IPointModel wrap=(IPointModel)bpf.createProxy(pt, pview);

wrap.setx(<arbitrary value>); // set x to an arbitrary value

wrap.getx();

}

} //30

Listing 6.2: Application classes of the second system

the Event-Trigger mechanism in a generic way are not part of S1 and are
therefore assigned zeros for NCSL(S0). These classes, together with other
reusable and reachable classes such as Proxy, InvocationHandler, Serializable
and Object are assigned appropriate weights under the NCSL(S1) column.
The column “reusable” identifies whether an entity belongs to the reusable part
(Y −value) or to the application part (N−value) of the system. It follows that
if an entity is assigned a zero weight, i.e., an entity does not belong to the sys-
tem, the reusable boolean value (Y orN) becomes irrelevant. The reusable sets
of the two systems, P = P0 and P = P0

⋃
P1 can be derived from the combina-

tion of the corresponding weight column (NCSL) with the “reusable ” column.
We note that the measure of the application part of S0 is greater than that of
S1 (c.f. Section 6.1.1):

AppPart(S0) =
∑

e ε E0−P0

weight(e) = 4 + 12 + 10 + 8 = 34

AppPart(S1) =
∑

e ε E1−P

weight(e) = 4 + 5 + 9 + 10 = 28

The measures of the reuse part of the two systems exhibit the opposite rela-
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tionship:

ReusePart(S0, P0) =
∑

e ε Closure(S0,P0)

weight(e) = 28 + 195 + 4 + 38 = 265

ReusePart(S1, P ) = 28 + 195 + 4 + 50 + 10 + 6 + 146 + 4 + 3 + 38 = 484

The reuse part of S1 is larger than that of S0 and uses the Java class library
to a larger extent than S0. The ratio of the code developed to enhance code
reuse (ActivePropertyHandler, ProxyFactory, IPropertyChange) to the reuse
measure totals 66/484 = 14%. Table 6.1 also shows the reuse measures of the
two systems, the AppReusePerc and the RepReusePerc values. In calculating
the latter, we assume that the set of reusable entities is P of S1 consisting of all
reusable classes whose weight is non-zero. The AppReusePerc ratios (i.e., the
NCSL of Y/(Y + N) from Table 6.1) give 265/299 = 89% and 484/512 = 95%
for S0 and S1, respectively. The RepReusePerc values 265/484 = 55% and
484/484 = 100% for S0 and S1, respectively, indicate a significantly higher
reuse of repository code by S1.

Entity e NCSL(S0) NCSL(S1) Reusable
PropertyChangeEvent 28 28 Y
PropertyChangeSupport 195 195 Y
PropertyChangeListener 4 4 Y
ActivePropertyHandler 0 50 Y
ProxyFactory 0 10 Y
IPropertyChange 0 6 Y
Proxy 0 146 Y
InvocationHandler 0 4 Y
Serializable 0 3 Y
Object 38 38 Y
IPointModel 4 4 N
PointModel 12 5 N
PointView 10 9 N
Application 8 10 N

System AppReusePerc RepReusePerc
S0 89% 55%
S1 95% 100%

Table 6.1: Entities of both systems and reuse percentages

We note that the application code of S1 is 28 NCSL compared with 34
for S0; application code has been reduced as a result of using reflection. The
higher reuse percentages of S1 are due to the fact that we, firstly, re-factored
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the firing of events and informing of listeners out and separated them from basic
classes (Views and Models) and secondly, we implemented the Event-Trigger
mechanism in a generic manner and thus made it reusable. In the following
section, we discuss some of the issues raised by this analysis.

6.4 Discussion

A number of metrics in the past have tried to capture the extent of software
reuse [35, 63, 87]. None of these metrics are suitable for measuring code reuse
of an entire program and none of them takes the effect of reflection on code
reuse into consideration. The metric of Poulin [87] is concerned with estimat-
ing the financial benefit of software development within product lines. The
metrics defined by Chidamber and Kemerer [35] are applicable at the design
level and those which can be considered as reuse metrics are useful for assessing
OO reuse attributes of individual classes only. The metrics proposed by Kang
and Bieman [63] are useful for identifying the most appropriate shape of an in-
heritance hierarchy for supporting code reuse. Our metrics, on the other hand,
can be used to assess the code reuse of entire programs and are not restricted
to OO reuse mechanisms supported by OO paradigm, namely, inheritance and
aggregation.

A number of issues need to be addressed with a study of the type conducted
in this chapter. Firstly, we have compared our approach with an application
that uses non-reflective techniques. Although there are various other models
against which we could compare our approach, in this case at least we feel that
the benefits of reuse obtained (on balance) outweigh an obvious, yet necessary
overhead of extra lines of code for implementing the reflective architecture (213
extra lines of code). The key point of the research however is that lines of
application code have decreased, a benefit that we believe would be magnified
with larger systems (the overhead would remain the same). Secondly, we see our
approach as a step towards showing that use of reflective techniques can have
tangible benefits. We see these techniques as ways that could help developers
more easily produce highly modular, reusable code. Thirdly, use of appropriate
metrics has allowed a comparison in concrete terms to be made. One of the key
reasons why Chen’s metrics were chosen was because of the ease with which we
could apply them to the OO paradigm.

Finally, there is the issue of automating the process described in this chap-
ter. Automating the collection of reusable data would require identifying the
reusable parts of the system and hence those elements of the application to
be refactored. In our approach, the reusable part includes also those classes
that can be reached through polymorphism. For strongly-typed programming
languages like C++ and Java, it is easier to identify the polymorphic classes
in the inheritance hierarchy when compared to languages such as Smalltalk
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that do not perform type checking at compile time. To extend this work to
industrial-sized systems, we would need to develop tools to assist the process.
Further studies of an empirical nature would help to establish conclusions about
reflective techniques and allow their value to be confirmed or refuted.

6.5 Conclusions

In OO systems, there is significant potential for code reuse through reflective
techniques. In this chapter, we adopted an approach whereby certain aspects
of an application were identified, refactored and implemented in a generic man-
ner. Composing or re-integrating the reusable code with the rest of the ap-
plication was realised at runtime. To assess the impact of reflection on code
reuse, we proposed OO code reuse metrics and used them to assess and compare
reusability levels of two system models representing different architectural de-
sign approaches while exhibiting the same behaviour. Our analysis affirmed the
hypothesis that reflective systems where meta-code is implemented generically
show a higher level of reusability when compared with identical non-reflective
systems. We have showed that by separating reusable parts from the applica-
tion and by applying the metrics of code reuse, benefits in terms of percentage
reuse could be demonstrated.



Chapter 7

Conclusions and future work

7.1 Theme and goals of the thesis

It is widely agreed that compared to other engineering disciplines, software
technology has a relatively low degree of reusability. Applications adapt poorly
to changes in environment or intended use, scale poorly and are difficult to
debug, maintain and enhance. As the scale of complexity of applications grow,
there is a need to develop software systems with the ability to adapt to both
changes in their environment and to requirements.

Reflective systems are equipped with means that makes them more adapt-
able to new requirements when compared with non-reflective systems. This is
due to the fact that such systems are supported by powerful runtime environ-
ments and promote code reuse and less coupling if implemented in a generic
manner.

Although OO languages support reflection (to varying degrees) and although
reflection can be useful in controlling and adapting software, little effort has
been made to promote reflection in the development of industrial systems. Also,
little research been conducted in investigating software features such as coupling
and reuse. The research reported in this thesis attempts to fill this gap.

The objectives of the thesis as stated in Chapter 1 were to investigate the
reflective capabilities of OO programming languages taking Java as a good
representative and to assess quantitatively the extent of coupling and code
reuse of reflective systems; in particular, systems employing Java’s reflection
models.

7.2 The contribution of the thesis

In general terms, the main contribution of the thesis was to shed light on reflec-
tive capabilities of OO languages and, in particular, that of Java. Analysis of
systems employing reflective techniques showed that such systems support open
implementation. Reflective systems also exhibit less coupling and a higher de-
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gree of code reuse when compared with equivalent systems following the classical
(non-reflective) OO paradigm. Features, such as support of open implementa-
tion, low coupling and high reuse support adaptability and potentially lower
cost maintenance.

In particular, the contribution of the research reported in the thesis can be
summarized as follows:

1. A behavioural reflection model based on Java’s dynamic proxies has been
proposed and it has been shown that this model supports open implemen-
tation design principle and generic coding. The model allows customisa-
tion of applications behaviour at runtime without changing the underlying
default implementation [53].

2. The proposed model has been shown to be applicable to distributed sys-
tems including RMI-based, CORBA and Web applications. Here, cus-
tomising generic code is implemented at the server side and represents
services which can be requested by client objects. Depending on the net-
working technology, clients’ requests are communicated using the appro-
priate protocol; Java Remote Method Protocol (JRMP) for RMI-based
systems, the Internet Inter Object request broker Protocol (IIOP) for
CORBA applications and the HyperText Transfer Protocol (HTTP) for
Web communications [57].

3. The issue of coupling in systems employing the proposed reflection model
by applying measurement theory has been addressed. A Dynamic Cou-
pling Metric (DCM) representing coupling in a dynamic sense has been
defined. In the context of measuring object coupling, a system is viewed
as a collection of interacting objects. One important feature of the DCM
is that it expresses explicitly the dependency of coupling on programme
execution steps or object interactions [55].

For the theoretical validation of DCM, the metric has been evaluated
against two sets of formal criteria: Weyukers’s set of measurement prin-
ciples and the set of coupling metrics properties due to Briand et al.

4. The question of the empirical validation of the DCM by developing a
coupling measurement tool using AOP techniques has also been addressed.
Intercepting code needed to capture objects’ exchange of messages can
be inserted in sample programs automatically by specialising the generic
implementation of the tool and using AOP weaving tools [56].

5. The issue of code reuse in systems employing the proposed reflection
model using appropriately defined OO code reuse metrics has been ad-
dressed. Contrary to previous OO reuse metrics defined for individual
classes, for inheritance trees and for assessing the economical benefits of
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product lines, our metrics are applicable to entire OO systems. That is,
they are mappings from the domain of OO systems into the set of real
numbers where the numbers represent the code reuse values of systems
under study.

For the theoretical validation of the code reuse metrics, Weykers’s set of
measurement has been used as validation criterion.

For empirical validation, a procedure based on reflection and refactor-
ing has been applied as part of a case study. The study allowed us to
confirm the hypothesis about the relatively higher level of code reuse in
reflective systems when compared to equivalent systems not employing
reflection [54].

6. The impact of employing the proposed reflection model on design patterns
of Gamma et al. has been considered. As a result of applying the reflection
model, some pattern implementations became simpler, some showed less
coupling and higher reuse, whereas for some patterns, in particular the
creational patterns, the model had no impact.

The investigations followed in this work have shown, at least in the case of Java
as a strongly-typed OO programming language providing limited support to re-
flection, that reflection supports low coupling, enhances the level of code reuse
and, as a result, is beneficial in reducing potential maintenance costs. Apply-
ing reflective techniques is a useful programming practice that opens systems,
lessens coupling, promotes reuse and consequently leads to the construction of
robust and flexible software systems.

In the case of the Java language extension supporting the AOP paradigm,
i.e., AspectJ and Hyper/J, we have shown that reflection adds to the power
of these languages supporting the principle of separation of concerns [51, 52].
Applying Java’s introspective API which amounts to an non-extensible struc-
tural reflection model leads to the development of generic and loosely coupled
AspectJ aspects as well generic and loosely coupled Hyper/J hyperslices. We
expect that the results obtained apply also to other languages such as Smalltalk-
80, C++ and C#.

7.3 Future work

The research reported in this thesis opens the way for a number of issues that
could be addressed as part of future research program. Future research could:

1. Investigate the reflective capabilities of other OO languages and check
whether they show similar features such as supporting open implementa-
tion, low coupling and a higher code reuse level.
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2. Investigate the impact of applying compile-time MOPs such as those of
OpenJava and OpenC++ on code reuse and coupling.

3. Compare DCM with static coupling metrics defined at the class level.
The aim is to test the predictive power of DCM in relation to external
system attributes and compare results with those known from previous
investigations performed with static metrics.

4. Apply DCM to industrial sized systems using the measuring tool devel-
oped for validating the metric experimentally.

5. Develop tools for automating the procedure proposed for enhancing the
reuse level of a system and for collecting code reuse data for industrial
sized systems.

6. Investigate the question of how the proposed reflection model which sup-
ports open implementation design can be used in solving a potential com-
binatorial explosion problem or the scaling problem of Java libraries.

7. Address the problem of using the proposed reflection model for defin-
ing Java MOPs. That is, defining a programming interface that allows
Java users to customise the behaviour of the language itself instead of
customising applications.
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